diff --git a/master/.buildinfo b/master/.buildinfo index 3b4cb9116..d279163be 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 41305dceb2c318c472180c4d67205064 +config: 3ca33e5f8e18d93b95e7a59249b05f38 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index 896bf1fb7..10bb4676b 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/index.doctree and b/master/.doctrees/cleanlab/benchmarking/index.doctree differ diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree index 9a95867fb..096148b30 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree and b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree differ diff --git a/master/.doctrees/cleanlab/classification.doctree b/master/.doctrees/cleanlab/classification.doctree index ba3cb3d79..a20cc595a 100644 Binary files a/master/.doctrees/cleanlab/classification.doctree and b/master/.doctrees/cleanlab/classification.doctree differ diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index 2f41c4f31..6842960c7 100644 Binary files a/master/.doctrees/cleanlab/count.doctree and b/master/.doctrees/cleanlab/count.doctree differ diff --git a/master/.doctrees/cleanlab/data_valuation.doctree b/master/.doctrees/cleanlab/data_valuation.doctree index 519902323..e86d063ba 100644 Binary files a/master/.doctrees/cleanlab/data_valuation.doctree and b/master/.doctrees/cleanlab/data_valuation.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree index 4020eaff3..9594d4831 100644 Binary files a/master/.doctrees/cleanlab/datalab/datalab.doctree and b/master/.doctrees/cleanlab/datalab/datalab.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree b/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree index 639aad380..6ea38f925 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree and b/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index caee66bbc..41a355b90 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index 85690b91c..bd2aac245 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree and b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index 8d5d23a5e..d2f12b606 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/index.doctree and b/master/.doctrees/cleanlab/datalab/guide/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index 88161a85d..711820748 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree and b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/table.doctree b/master/.doctrees/cleanlab/datalab/guide/table.doctree index 46b9f9bd2..822dfedb8 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/table.doctree and b/master/.doctrees/cleanlab/datalab/guide/table.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index f4b6cb70f..7e5729c19 100644 Binary files a/master/.doctrees/cleanlab/datalab/index.doctree and b/master/.doctrees/cleanlab/datalab/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index 2f3b00df4..3eb6fb954 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data.doctree and b/master/.doctrees/cleanlab/datalab/internal/data.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index 314da5d6e..33a1f1a8e 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree and b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree index 0ff433f64..6dba321df 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/factory.doctree and b/master/.doctrees/cleanlab/datalab/internal/factory.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index c831cf4ac..819d43c05 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree index fc6d2494f..c7be2751e 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index 16ef6b926..9ebf5ee64 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree index 381a26da6..012b6c4ed 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index 398340c62..52e98bb40 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index 69fde7341..0e5ac131f 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree index 66634c579..160f5c9f5 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree index 3ba094fb4..6a5b61717 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index 3c62407a8..c029a8219 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree index 6a57a11a5..cb99527fa 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree index 8ecc4bd88..f92b66a16 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index 221602893..7f915fcae 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index 6fe7dfc9f..dbd12f566 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index 9edfc1606..20c1df523 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index 9ab3c316c..1071e821b 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index 37ca7c9f2..420276d7f 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index f2ef59b8f..9a46dc506 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree index 5ff24e024..73459e642 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree and b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index bf548e210..abba9408f 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/report.doctree and b/master/.doctrees/cleanlab/datalab/internal/report.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/task.doctree b/master/.doctrees/cleanlab/datalab/internal/task.doctree index 8d88b1622..de27bd5dc 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/task.doctree and b/master/.doctrees/cleanlab/datalab/internal/task.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index af3dc5232..542daa5c5 100644 Binary files a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree and b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree differ diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index f5e1315d9..11b4e68d8 100644 Binary files a/master/.doctrees/cleanlab/dataset.doctree and b/master/.doctrees/cleanlab/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 3487f4710..030861d67 100644 Binary files a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree and b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index 6ac7ff5d6..228478f91 100644 Binary files a/master/.doctrees/cleanlab/experimental/coteaching.doctree and b/master/.doctrees/cleanlab/experimental/coteaching.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index da9f4665a..4df489eca 100644 Binary files a/master/.doctrees/cleanlab/experimental/index.doctree and b/master/.doctrees/cleanlab/experimental/index.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree index 6ff262f55..ec6bef238 100644 Binary files a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree and b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index 5579562aa..6808aca96 100644 Binary files a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree and b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/span_classification.doctree b/master/.doctrees/cleanlab/experimental/span_classification.doctree index c625347e7..5a946cb48 100644 Binary files a/master/.doctrees/cleanlab/experimental/span_classification.doctree and b/master/.doctrees/cleanlab/experimental/span_classification.doctree differ diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index d0456b370..59368a16f 100644 Binary files a/master/.doctrees/cleanlab/filter.doctree and b/master/.doctrees/cleanlab/filter.doctree differ diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index b580fd582..ce2a3e199 100644 Binary files a/master/.doctrees/cleanlab/internal/index.doctree and b/master/.doctrees/cleanlab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index 284e39a7c..7f30836d6 100644 Binary files a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree and b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/latent_algebra.doctree b/master/.doctrees/cleanlab/internal/latent_algebra.doctree index 8d699c061..edb164ccc 100644 Binary files a/master/.doctrees/cleanlab/internal/latent_algebra.doctree and b/master/.doctrees/cleanlab/internal/latent_algebra.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index 259281035..a2a722726 100644 Binary files a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree and b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree index 3b55f439e..a97f91188 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree and b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index 8e371536a..db6e91efe 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree and b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/index.doctree b/master/.doctrees/cleanlab/internal/neighbor/index.doctree index 982a7b6fd..e2bf4b2cf 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/index.doctree and b/master/.doctrees/cleanlab/internal/neighbor/index.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree b/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree index 6fea0e132..f86b0a6eb 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree and b/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree index 11130d5c5..40c842346 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree and b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/search.doctree b/master/.doctrees/cleanlab/internal/neighbor/search.doctree index c35002db3..2adb565d7 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/search.doctree and b/master/.doctrees/cleanlab/internal/neighbor/search.doctree differ diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index fbbcdf47b..ab5ff4e1c 100644 Binary files a/master/.doctrees/cleanlab/internal/outlier.doctree and b/master/.doctrees/cleanlab/internal/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree index dcc759023..8cc6dd8a1 100644 Binary files a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree and b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index da91eeb1d..c2650608a 100644 Binary files a/master/.doctrees/cleanlab/internal/util.doctree and b/master/.doctrees/cleanlab/internal/util.doctree differ diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index 5b47a74fb..e2feb1222 100644 Binary files a/master/.doctrees/cleanlab/internal/validation.doctree and b/master/.doctrees/cleanlab/internal/validation.doctree differ diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index 9a884738b..851fa2d96 100644 Binary files a/master/.doctrees/cleanlab/models/index.doctree and b/master/.doctrees/cleanlab/models/index.doctree differ diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index a81860f75..84e9381b8 100644 Binary files a/master/.doctrees/cleanlab/models/keras.doctree and b/master/.doctrees/cleanlab/models/keras.doctree differ diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index ab7950602..0d179d45c 100644 Binary files a/master/.doctrees/cleanlab/multiannotator.doctree and b/master/.doctrees/cleanlab/multiannotator.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index dc0fb3140..142bb36af 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree and b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index a42c3d7ac..ed88e11f1 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree and b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree index 3e6e43aa4..2f384b2a5 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/index.doctree and b/master/.doctrees/cleanlab/multilabel_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree index 0ce640c88..de7e29620 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree and b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index c2b7b584f..e70eaf413 100644 Binary files a/master/.doctrees/cleanlab/object_detection/filter.doctree and b/master/.doctrees/cleanlab/object_detection/filter.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/index.doctree b/master/.doctrees/cleanlab/object_detection/index.doctree index 1ea5582f1..4e896346d 100644 Binary files a/master/.doctrees/cleanlab/object_detection/index.doctree and b/master/.doctrees/cleanlab/object_detection/index.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index 91b42eed4..0f6e94569 100644 Binary files a/master/.doctrees/cleanlab/object_detection/rank.doctree and b/master/.doctrees/cleanlab/object_detection/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index edbc68eca..7ba3ee050 100644 Binary files a/master/.doctrees/cleanlab/object_detection/summary.doctree and b/master/.doctrees/cleanlab/object_detection/summary.doctree differ diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index 07b9f2c85..6a0e5b7c6 100644 Binary files a/master/.doctrees/cleanlab/outlier.doctree and b/master/.doctrees/cleanlab/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index 3cbc5dca7..e28f90827 100644 Binary files a/master/.doctrees/cleanlab/rank.doctree and b/master/.doctrees/cleanlab/rank.doctree differ diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index 570c9e3fc..b49738590 100644 Binary files a/master/.doctrees/cleanlab/regression/index.doctree and b/master/.doctrees/cleanlab/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree index 2990f5741..ed43deafe 100644 Binary files a/master/.doctrees/cleanlab/regression/learn.doctree and b/master/.doctrees/cleanlab/regression/learn.doctree differ diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index 1254742d6..82d22f1ed 100644 Binary files a/master/.doctrees/cleanlab/regression/rank.doctree and b/master/.doctrees/cleanlab/regression/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/filter.doctree b/master/.doctrees/cleanlab/segmentation/filter.doctree index 8fca0455f..450a9e847 100644 Binary files a/master/.doctrees/cleanlab/segmentation/filter.doctree and b/master/.doctrees/cleanlab/segmentation/filter.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/index.doctree b/master/.doctrees/cleanlab/segmentation/index.doctree index a5cf7c4d8..cf801895c 100644 Binary files a/master/.doctrees/cleanlab/segmentation/index.doctree and b/master/.doctrees/cleanlab/segmentation/index.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index aacf1f610..ca325e77d 100644 Binary files a/master/.doctrees/cleanlab/segmentation/rank.doctree and b/master/.doctrees/cleanlab/segmentation/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index f69a5b137..22372909d 100644 Binary files a/master/.doctrees/cleanlab/segmentation/summary.doctree and b/master/.doctrees/cleanlab/segmentation/summary.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index e7e15ccd5..390c385fd 100644 Binary files a/master/.doctrees/cleanlab/token_classification/filter.doctree and b/master/.doctrees/cleanlab/token_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index 6501ebe0b..3225607f6 100644 Binary files a/master/.doctrees/cleanlab/token_classification/index.doctree and b/master/.doctrees/cleanlab/token_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index 78a72380a..2638b399a 100644 Binary files a/master/.doctrees/cleanlab/token_classification/rank.doctree and b/master/.doctrees/cleanlab/token_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index ad8af8b99..4200d82b8 100644 Binary files a/master/.doctrees/cleanlab/token_classification/summary.doctree and b/master/.doctrees/cleanlab/token_classification/summary.doctree differ diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle index e860f069b..ba3e9b57d 100644 Binary files a/master/.doctrees/environment.pickle and b/master/.doctrees/environment.pickle differ diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree index fb89290bd..15905d30d 100644 Binary files a/master/.doctrees/index.doctree and b/master/.doctrees/index.doctree differ diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index 2c6f81ee6..e65894c84 100644 Binary files a/master/.doctrees/migrating/migrate_v2.doctree and b/master/.doctrees/migrating/migrate_v2.doctree differ diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb index 1596ab50a..36baab6a0 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:20.536553Z", - "iopub.status.busy": "2024-08-29T17:07:20.536073Z", - "iopub.status.idle": "2024-08-29T17:07:21.786062Z", - "shell.execute_reply": "2024-08-29T17:07:21.785506Z" + "iopub.execute_input": "2024-09-04T16:36:33.494350Z", + "iopub.status.busy": "2024-09-04T16:36:33.493852Z", + "iopub.status.idle": "2024-09-04T16:36:34.726026Z", + "shell.execute_reply": "2024-09-04T16:36:34.725399Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:21.788700Z", - "iopub.status.busy": "2024-08-29T17:07:21.788279Z", - "iopub.status.idle": "2024-08-29T17:07:21.806586Z", - "shell.execute_reply": "2024-08-29T17:07:21.806009Z" + "iopub.execute_input": "2024-09-04T16:36:34.729286Z", + "iopub.status.busy": "2024-09-04T16:36:34.728744Z", + "iopub.status.idle": "2024-09-04T16:36:34.747897Z", + "shell.execute_reply": "2024-09-04T16:36:34.747378Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:21.808803Z", - "iopub.status.busy": "2024-08-29T17:07:21.808416Z", - "iopub.status.idle": "2024-08-29T17:07:21.929772Z", - "shell.execute_reply": "2024-08-29T17:07:21.929178Z" + "iopub.execute_input": "2024-09-04T16:36:34.750373Z", + "iopub.status.busy": "2024-09-04T16:36:34.749905Z", + "iopub.status.idle": "2024-09-04T16:36:35.046021Z", + "shell.execute_reply": "2024-09-04T16:36:35.045440Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:21.960601Z", - "iopub.status.busy": "2024-08-29T17:07:21.960225Z", - "iopub.status.idle": "2024-08-29T17:07:21.963941Z", - "shell.execute_reply": "2024-08-29T17:07:21.963468Z" + "iopub.execute_input": "2024-09-04T16:36:35.076604Z", + "iopub.status.busy": "2024-09-04T16:36:35.076192Z", + "iopub.status.idle": "2024-09-04T16:36:35.079864Z", + "shell.execute_reply": "2024-09-04T16:36:35.079398Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:21.965925Z", - "iopub.status.busy": "2024-08-29T17:07:21.965589Z", - "iopub.status.idle": "2024-08-29T17:07:21.973807Z", - "shell.execute_reply": "2024-08-29T17:07:21.973371Z" + "iopub.execute_input": "2024-09-04T16:36:35.081865Z", + "iopub.status.busy": "2024-09-04T16:36:35.081597Z", + "iopub.status.idle": "2024-09-04T16:36:35.090286Z", + "shell.execute_reply": "2024-09-04T16:36:35.089725Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:21.975916Z", - "iopub.status.busy": "2024-08-29T17:07:21.975570Z", - "iopub.status.idle": "2024-08-29T17:07:21.978067Z", - "shell.execute_reply": "2024-08-29T17:07:21.977625Z" + "iopub.execute_input": "2024-09-04T16:36:35.092459Z", + "iopub.status.busy": "2024-09-04T16:36:35.092118Z", + "iopub.status.idle": "2024-09-04T16:36:35.094778Z", + "shell.execute_reply": "2024-09-04T16:36:35.094312Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:21.980150Z", - "iopub.status.busy": "2024-08-29T17:07:21.979829Z", - "iopub.status.idle": "2024-08-29T17:07:22.497459Z", - "shell.execute_reply": "2024-08-29T17:07:22.496833Z" + "iopub.execute_input": "2024-09-04T16:36:35.096769Z", + "iopub.status.busy": "2024-09-04T16:36:35.096372Z", + "iopub.status.idle": "2024-09-04T16:36:35.623436Z", + "shell.execute_reply": "2024-09-04T16:36:35.622805Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:22.499970Z", - "iopub.status.busy": "2024-08-29T17:07:22.499787Z", - "iopub.status.idle": "2024-08-29T17:07:24.411694Z", - "shell.execute_reply": "2024-08-29T17:07:24.411025Z" + "iopub.execute_input": "2024-09-04T16:36:35.625916Z", + "iopub.status.busy": "2024-09-04T16:36:35.625730Z", + "iopub.status.idle": "2024-09-04T16:36:37.510736Z", + "shell.execute_reply": "2024-09-04T16:36:37.510124Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:24.414319Z", - "iopub.status.busy": "2024-08-29T17:07:24.413697Z", - "iopub.status.idle": "2024-08-29T17:07:24.424172Z", - "shell.execute_reply": "2024-08-29T17:07:24.423712Z" + "iopub.execute_input": "2024-09-04T16:36:37.513479Z", + "iopub.status.busy": "2024-09-04T16:36:37.512707Z", + "iopub.status.idle": "2024-09-04T16:36:37.522816Z", + "shell.execute_reply": "2024-09-04T16:36:37.522356Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:24.426313Z", - "iopub.status.busy": "2024-08-29T17:07:24.425865Z", - "iopub.status.idle": "2024-08-29T17:07:24.429917Z", - "shell.execute_reply": "2024-08-29T17:07:24.429479Z" + "iopub.execute_input": "2024-09-04T16:36:37.524923Z", + "iopub.status.busy": "2024-09-04T16:36:37.524600Z", + "iopub.status.idle": "2024-09-04T16:36:37.528591Z", + "shell.execute_reply": "2024-09-04T16:36:37.528155Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:24.432009Z", - "iopub.status.busy": "2024-08-29T17:07:24.431607Z", - "iopub.status.idle": "2024-08-29T17:07:24.439758Z", - "shell.execute_reply": "2024-08-29T17:07:24.439330Z" + "iopub.execute_input": "2024-09-04T16:36:37.530787Z", + "iopub.status.busy": "2024-09-04T16:36:37.530452Z", + "iopub.status.idle": "2024-09-04T16:36:37.538844Z", + "shell.execute_reply": "2024-09-04T16:36:37.538421Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:24.441674Z", - "iopub.status.busy": "2024-08-29T17:07:24.441407Z", - "iopub.status.idle": "2024-08-29T17:07:24.553494Z", - "shell.execute_reply": "2024-08-29T17:07:24.553024Z" + "iopub.execute_input": "2024-09-04T16:36:37.540782Z", + "iopub.status.busy": "2024-09-04T16:36:37.540515Z", + "iopub.status.idle": "2024-09-04T16:36:37.658571Z", + "shell.execute_reply": "2024-09-04T16:36:37.658063Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:24.555730Z", - "iopub.status.busy": "2024-08-29T17:07:24.555391Z", - "iopub.status.idle": "2024-08-29T17:07:24.558029Z", - "shell.execute_reply": "2024-08-29T17:07:24.557585Z" + "iopub.execute_input": "2024-09-04T16:36:37.660665Z", + "iopub.status.busy": "2024-09-04T16:36:37.660392Z", + "iopub.status.idle": "2024-09-04T16:36:37.663359Z", + "shell.execute_reply": "2024-09-04T16:36:37.662802Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:24.560040Z", - "iopub.status.busy": "2024-08-29T17:07:24.559706Z", - "iopub.status.idle": "2024-08-29T17:07:26.688998Z", - "shell.execute_reply": "2024-08-29T17:07:26.688364Z" + "iopub.execute_input": "2024-09-04T16:36:37.665583Z", + "iopub.status.busy": "2024-09-04T16:36:37.665415Z", + "iopub.status.idle": "2024-09-04T16:36:39.737444Z", + "shell.execute_reply": "2024-09-04T16:36:39.736766Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:26.692110Z", - "iopub.status.busy": "2024-08-29T17:07:26.691312Z", - "iopub.status.idle": "2024-08-29T17:07:26.702522Z", - "shell.execute_reply": "2024-08-29T17:07:26.702054Z" + "iopub.execute_input": "2024-09-04T16:36:39.740370Z", + "iopub.status.busy": "2024-09-04T16:36:39.739756Z", + "iopub.status.idle": "2024-09-04T16:36:39.751066Z", + "shell.execute_reply": "2024-09-04T16:36:39.750597Z" } }, "outputs": [ @@ -786,10 +786,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:26.704548Z", - "iopub.status.busy": "2024-08-29T17:07:26.704208Z", - "iopub.status.idle": "2024-08-29T17:07:26.733958Z", - "shell.execute_reply": "2024-08-29T17:07:26.733535Z" + "iopub.execute_input": "2024-09-04T16:36:39.753075Z", + "iopub.status.busy": "2024-09-04T16:36:39.752736Z", + "iopub.status.idle": "2024-09-04T16:36:39.921485Z", + "shell.execute_reply": "2024-09-04T16:36:39.920960Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb index 3eab5a92c..707ac8b48 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:29.992566Z", - "iopub.status.busy": "2024-08-29T17:07:29.992403Z", - "iopub.status.idle": "2024-08-29T17:07:33.011464Z", - "shell.execute_reply": "2024-08-29T17:07:33.010881Z" + "iopub.execute_input": "2024-09-04T16:36:42.886651Z", + "iopub.status.busy": "2024-09-04T16:36:42.886468Z", + "iopub.status.idle": "2024-09-04T16:36:45.659157Z", + "shell.execute_reply": "2024-09-04T16:36:45.658599Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:33.014357Z", - "iopub.status.busy": "2024-08-29T17:07:33.013943Z", - "iopub.status.idle": "2024-08-29T17:07:33.017670Z", - "shell.execute_reply": "2024-08-29T17:07:33.017129Z" + "iopub.execute_input": "2024-09-04T16:36:45.662011Z", + "iopub.status.busy": "2024-09-04T16:36:45.661488Z", + "iopub.status.idle": "2024-09-04T16:36:45.665636Z", + "shell.execute_reply": "2024-09-04T16:36:45.665005Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:33.020073Z", - "iopub.status.busy": "2024-08-29T17:07:33.019617Z", - "iopub.status.idle": "2024-08-29T17:07:33.022756Z", - "shell.execute_reply": "2024-08-29T17:07:33.022302Z" + "iopub.execute_input": "2024-09-04T16:36:45.667904Z", + "iopub.status.busy": "2024-09-04T16:36:45.667542Z", + "iopub.status.idle": "2024-09-04T16:36:45.670793Z", + "shell.execute_reply": "2024-09-04T16:36:45.670227Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:33.024837Z", - "iopub.status.busy": "2024-08-29T17:07:33.024520Z", - "iopub.status.idle": "2024-08-29T17:07:33.068535Z", - "shell.execute_reply": "2024-08-29T17:07:33.067989Z" + "iopub.execute_input": "2024-09-04T16:36:45.672736Z", + "iopub.status.busy": "2024-09-04T16:36:45.672439Z", + "iopub.status.idle": "2024-09-04T16:36:45.792460Z", + "shell.execute_reply": "2024-09-04T16:36:45.791940Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:33.070841Z", - "iopub.status.busy": "2024-08-29T17:07:33.070505Z", - "iopub.status.idle": "2024-08-29T17:07:33.074225Z", - "shell.execute_reply": "2024-08-29T17:07:33.073749Z" + "iopub.execute_input": "2024-09-04T16:36:45.794442Z", + "iopub.status.busy": "2024-09-04T16:36:45.794129Z", + "iopub.status.idle": "2024-09-04T16:36:45.797668Z", + "shell.execute_reply": "2024-09-04T16:36:45.797104Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:33.076126Z", - "iopub.status.busy": "2024-08-29T17:07:33.075947Z", - "iopub.status.idle": "2024-08-29T17:07:33.079593Z", - "shell.execute_reply": "2024-08-29T17:07:33.079143Z" + "iopub.execute_input": "2024-09-04T16:36:45.799617Z", + "iopub.status.busy": "2024-09-04T16:36:45.799292Z", + "iopub.status.idle": "2024-09-04T16:36:45.802644Z", + "shell.execute_reply": "2024-09-04T16:36:45.802082Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'card_about_to_expire', 'card_payment_fee_charged', 'getting_spare_card', 'beneficiary_not_allowed', 'cancel_transfer', 'change_pin', 'supported_cards_and_currencies'}\n" + "Classes: {'visa_or_mastercard', 'supported_cards_and_currencies', 'cancel_transfer', 'card_payment_fee_charged', 'getting_spare_card', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'card_about_to_expire', 'change_pin', 'beneficiary_not_allowed'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:33.081419Z", - "iopub.status.busy": "2024-08-29T17:07:33.081245Z", - "iopub.status.idle": "2024-08-29T17:07:33.084286Z", - "shell.execute_reply": "2024-08-29T17:07:33.083749Z" + "iopub.execute_input": "2024-09-04T16:36:45.804763Z", + "iopub.status.busy": "2024-09-04T16:36:45.804427Z", + "iopub.status.idle": "2024-09-04T16:36:45.807562Z", + "shell.execute_reply": "2024-09-04T16:36:45.807018Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:33.086307Z", - "iopub.status.busy": "2024-08-29T17:07:33.086105Z", - "iopub.status.idle": "2024-08-29T17:07:33.089483Z", - "shell.execute_reply": "2024-08-29T17:07:33.089006Z" + "iopub.execute_input": "2024-09-04T16:36:45.809658Z", + "iopub.status.busy": "2024-09-04T16:36:45.809323Z", + "iopub.status.idle": "2024-09-04T16:36:45.812457Z", + "shell.execute_reply": "2024-09-04T16:36:45.811999Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:33.091333Z", - "iopub.status.busy": "2024-08-29T17:07:33.091160Z", - "iopub.status.idle": "2024-08-29T17:07:38.705758Z", - "shell.execute_reply": "2024-08-29T17:07:38.705081Z" + "iopub.execute_input": "2024-09-04T16:36:45.814560Z", + "iopub.status.busy": "2024-09-04T16:36:45.814222Z", + "iopub.status.idle": "2024-09-04T16:36:50.800839Z", + "shell.execute_reply": "2024-09-04T16:36:50.800176Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d66d126e12a34285a73db2c25b6f5bc7", + "model_id": "d0ca941c93c6491ab3017fa26813543b", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "34aadc97f3c94cefb91704a973340671", + "model_id": "c0b412775b7545a6b9dd90faf75c419f", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7aee6a4a05544816aa1035d5b2a40f7e", + "model_id": "e8c8680718b942039a94ab4625097f83", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8c0c9e8afe4f4e63aba0336cc5859538", + "model_id": "bf91d8bb7dd04805a5bf430e8ecd7eb1", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bb7bae5a60bc4f389f3e1d2a1d26cb38", + "model_id": "f8c81f0e92d44c4ab72fbb8ab1d2b9ad", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f44b52f1626e414db5f00b894ccf657e", + "model_id": "471d21b2b6d34bd19f68db820ed3bd11", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2e403dcff411413eaaf46d44d295a0f0", + "model_id": "6ca9bbeab065433b9d8b1fcfff6afb5b", "version_major": 2, "version_minor": 0 }, @@ -601,10 +601,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:38.708453Z", - "iopub.status.busy": "2024-08-29T17:07:38.708265Z", - "iopub.status.idle": "2024-08-29T17:07:38.711029Z", - "shell.execute_reply": "2024-08-29T17:07:38.710547Z" + "iopub.execute_input": "2024-09-04T16:36:50.803667Z", + "iopub.status.busy": "2024-09-04T16:36:50.803245Z", + "iopub.status.idle": "2024-09-04T16:36:50.806160Z", + "shell.execute_reply": "2024-09-04T16:36:50.805603Z" } }, "outputs": [], @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:38.713010Z", - "iopub.status.busy": "2024-08-29T17:07:38.712834Z", - "iopub.status.idle": "2024-08-29T17:07:38.715374Z", - "shell.execute_reply": "2024-08-29T17:07:38.714929Z" + "iopub.execute_input": "2024-09-04T16:36:50.808118Z", + "iopub.status.busy": "2024-09-04T16:36:50.807809Z", + "iopub.status.idle": "2024-09-04T16:36:50.810565Z", + "shell.execute_reply": "2024-09-04T16:36:50.810015Z" } }, "outputs": [], @@ -644,10 +644,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:38.717274Z", - "iopub.status.busy": "2024-08-29T17:07:38.717098Z", - "iopub.status.idle": "2024-08-29T17:07:41.474831Z", - "shell.execute_reply": "2024-08-29T17:07:41.474125Z" + "iopub.execute_input": "2024-09-04T16:36:50.812544Z", + "iopub.status.busy": "2024-09-04T16:36:50.812216Z", + "iopub.status.idle": "2024-09-04T16:36:53.497011Z", + "shell.execute_reply": "2024-09-04T16:36:53.496323Z" }, "scrolled": true }, @@ -670,10 +670,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:41.478077Z", - "iopub.status.busy": "2024-08-29T17:07:41.477163Z", - "iopub.status.idle": "2024-08-29T17:07:41.485113Z", - "shell.execute_reply": "2024-08-29T17:07:41.484564Z" + "iopub.execute_input": "2024-09-04T16:36:53.500337Z", + "iopub.status.busy": "2024-09-04T16:36:53.499462Z", + "iopub.status.idle": "2024-09-04T16:36:53.507298Z", + "shell.execute_reply": "2024-09-04T16:36:53.506835Z" } }, "outputs": [ @@ -774,10 +774,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:41.487297Z", - "iopub.status.busy": "2024-08-29T17:07:41.486971Z", - "iopub.status.idle": "2024-08-29T17:07:41.491014Z", - "shell.execute_reply": "2024-08-29T17:07:41.490460Z" + "iopub.execute_input": "2024-09-04T16:36:53.509504Z", + "iopub.status.busy": "2024-09-04T16:36:53.509300Z", + "iopub.status.idle": "2024-09-04T16:36:53.513290Z", + "shell.execute_reply": "2024-09-04T16:36:53.512794Z" } }, "outputs": [], @@ -791,10 +791,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:41.493025Z", - "iopub.status.busy": "2024-08-29T17:07:41.492646Z", - "iopub.status.idle": "2024-08-29T17:07:41.495920Z", - "shell.execute_reply": "2024-08-29T17:07:41.495391Z" + "iopub.execute_input": "2024-09-04T16:36:53.515250Z", + "iopub.status.busy": "2024-09-04T16:36:53.514910Z", + "iopub.status.idle": "2024-09-04T16:36:53.518213Z", + "shell.execute_reply": "2024-09-04T16:36:53.517748Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:41.497982Z", - "iopub.status.busy": "2024-08-29T17:07:41.497802Z", - "iopub.status.idle": "2024-08-29T17:07:41.500890Z", - "shell.execute_reply": "2024-08-29T17:07:41.500416Z" + "iopub.execute_input": "2024-09-04T16:36:53.520261Z", + "iopub.status.busy": "2024-09-04T16:36:53.519930Z", + "iopub.status.idle": "2024-09-04T16:36:53.522784Z", + "shell.execute_reply": "2024-09-04T16:36:53.522364Z" } }, "outputs": [], @@ -852,10 +852,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:41.502976Z", - "iopub.status.busy": "2024-08-29T17:07:41.502639Z", - "iopub.status.idle": "2024-08-29T17:07:41.509307Z", - "shell.execute_reply": "2024-08-29T17:07:41.508767Z" + "iopub.execute_input": "2024-09-04T16:36:53.524763Z", + "iopub.status.busy": "2024-09-04T16:36:53.524431Z", + "iopub.status.idle": "2024-09-04T16:36:53.531295Z", + "shell.execute_reply": "2024-09-04T16:36:53.530841Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:41.511409Z", - "iopub.status.busy": "2024-08-29T17:07:41.511231Z", - "iopub.status.idle": "2024-08-29T17:07:41.736232Z", - "shell.execute_reply": "2024-08-29T17:07:41.735628Z" + "iopub.execute_input": "2024-09-04T16:36:53.533426Z", + "iopub.status.busy": "2024-09-04T16:36:53.533074Z", + "iopub.status.idle": "2024-09-04T16:36:53.763114Z", + "shell.execute_reply": "2024-09-04T16:36:53.762578Z" }, "scrolled": true }, @@ -1022,10 +1022,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:41.738796Z", - "iopub.status.busy": "2024-08-29T17:07:41.738421Z", - "iopub.status.idle": "2024-08-29T17:07:41.912832Z", - "shell.execute_reply": "2024-08-29T17:07:41.912272Z" + "iopub.execute_input": "2024-09-04T16:36:53.765511Z", + "iopub.status.busy": "2024-09-04T16:36:53.765075Z", + "iopub.status.idle": "2024-09-04T16:36:53.973032Z", + "shell.execute_reply": "2024-09-04T16:36:53.972450Z" }, "scrolled": true }, @@ -1073,10 +1073,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:41.915253Z", - "iopub.status.busy": "2024-08-29T17:07:41.914898Z", - "iopub.status.idle": "2024-08-29T17:07:41.918811Z", - "shell.execute_reply": "2024-08-29T17:07:41.918301Z" + "iopub.execute_input": "2024-09-04T16:36:53.975732Z", + "iopub.status.busy": "2024-09-04T16:36:53.975304Z", + "iopub.status.idle": "2024-09-04T16:36:53.979372Z", + "shell.execute_reply": "2024-09-04T16:36:53.978866Z" }, "nbsphinx": "hidden" }, @@ -1120,7 +1120,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "004c18d96db448f0a5572f4be09274e6": { + "03deb05b33c64dc0a54e8a208d823997": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1173,30 +1173,23 @@ "width": null } }, - "0504411ca37340008c15ac648b392eda": { + "08a7b158dfc34395b3395e874d8882f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f78458024afb43d3b0de4b20e2095b24", - "placeholder": "​", - "style": "IPY_MODEL_60e1e4c3aa504fbab18aac526d3ba544", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 34.5MB/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "0583cb2e581e40049974dd4ab187e1bb": { + "0dce119c465141149bf9df31378a9c3b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1211,15 +1204,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_359e7d3af050412994483a6d8cc402e8", + "layout": "IPY_MODEL_7f64890f74a4460883f6fd36bc03f00f", "placeholder": "​", - "style": "IPY_MODEL_905d6f02518041138e02aad74d75ed15", + "style": "IPY_MODEL_d239ceb1b62046d09ad901f7528558ce", "tabbable": null, "tooltip": null, - "value": "tokenizer_config.json: 100%" + "value": " 232k/232k [00:00<00:00, 3.69MB/s]" } }, - "09b401682ebd41de80021f05e72a63c7": { + "0e0f3d73d7c5479e9205c608e6a221f2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1272,7 +1265,7 @@ "width": null } }, - "0a7b2f78309241dbbefd557f241d0afc": { + "0e2793623a60493a862948d9148813d1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1325,74 +1318,7 @@ "width": null } }, - "0bbfc0caed8a41f68d6d4f0ecd843752": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_48aacd399d814cc5bb27839f4188c244", - "placeholder": "​", - "style": "IPY_MODEL_a81f2c5c0fac49198311d85222938569", - "tabbable": null, - "tooltip": null, - "value": "config.json: 100%" - } - }, - "15f65373b8e047a9a00d478ff9da5397": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1a1b13f8dbc34bbcbb02ce4d4239d30f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c18bea0a5e674d4fb6142ef5c4ee9dba", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_dac3b39cfbe24c90a24b3a8600b340e0", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 - } - }, - "1abfbbe601b8476fa0bf19586f37843f": { + "0ef3b82682c247fa948faf46338bbc47": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1408,74 +1334,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0a7b2f78309241dbbefd557f241d0afc", - "max": 2211.0, + "layout": "IPY_MODEL_80c3f488d1da4be9ac5ed2301c9abe54", + "max": 665.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_89f221ec1a4147b5a5c40b4a3ccc3916", - "tabbable": null, - "tooltip": null, - "value": 2211.0 - } - }, - "1e7f387387624f8196fa6c9eeb76440e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1e9d58bd038442d685cef12dba73d9ff": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2160d45513d148b9ac50cc6177349b8a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_37b15fc917e5476789be11b496266c86", - "placeholder": "​", - "style": "IPY_MODEL_74f67f88503145e0aab846dbf0c0095a", + "style": "IPY_MODEL_08a7b158dfc34395b3395e874d8882f1", "tabbable": null, "tooltip": null, - "value": " 54.2M/54.2M [00:01<00:00, 35.3MB/s]" + "value": 665.0 } }, - "22dd5ef98a124bbbab753a48bc706c44": { + "10856532033d4122bcdaaed1284eb4e7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1528,7 +1397,25 @@ "width": null } }, - "247cea6d7b5045218efe42c97001131b": { + "12227d53e2d646929355375900c380d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "17527287826741d495566304df5ff184": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1581,7 +1468,7 @@ "width": null } }, - "2926097f31794b8a97d25ab56cbb0428": { + "1990965ce8594312b54e9f1c00118574": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1596,68 +1483,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_004c18d96db448f0a5572f4be09274e6", + "layout": "IPY_MODEL_ee87e3b4436347b6a5383c65e75e9abd", "placeholder": "​", - "style": "IPY_MODEL_1e9d58bd038442d685cef12dba73d9ff", + "style": "IPY_MODEL_54bae9fd2e14481bbe5b0f643c873f04", "tabbable": null, "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 9.09kB/s]" + "value": "pytorch_model.bin: 100%" } }, - "2afcb988e80d4e2c96e0430e6422f029": { - "model_module": "@jupyter-widgets/base", + "2655af5fee21452a90e51c6db94c46e4": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2b54721d99a34a8c9d3bd409f33d01a9": { + "272cb833b2554305b7a96f617f49e925": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1672,15 +1524,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2d38fd721eb9459ab1f7c033d377c4b8", + "layout": "IPY_MODEL_f1cd151c786649629c0f35aafcacc883", "placeholder": "​", - "style": "IPY_MODEL_9e79d23b602a4138bb79213e841f3f34", + "style": "IPY_MODEL_cf02a7e0d799494a8b1d47ea50b25157", "tabbable": null, "tooltip": null, - "value": " 466k/466k [00:00<00:00, 41.3MB/s]" + "value": " 48.0/48.0 [00:00<00:00, 9.43kB/s]" } }, - "2d38fd721eb9459ab1f7c033d377c4b8": { + "28f514e5bf6d4787bdd5690fe4bee078": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1733,31 +1585,72 @@ "width": null } }, - "2e403dcff411413eaaf46d44d295a0f0": { + "2ac3806b1bcf4c8eb279e2466714c8b8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_545604a2661c4f53a66e973c55afedd9", - "IPY_MODEL_cd7e56d70562470ca03a636175cbc711", - "IPY_MODEL_0504411ca37340008c15ac648b392eda" - ], - "layout": "IPY_MODEL_995fd222aac544eaa78d553cbc137be9", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_03deb05b33c64dc0a54e8a208d823997", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e8ec41c7814745f3ad67a0642029a11e", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 231508.0 + } + }, + "3745e78b80704cc090c10bda5d066aa2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "394b9589a3014e7bb5445cca8eee8985": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_75aa31a0d822490b9563b40f47d0614e", + "placeholder": "​", + "style": "IPY_MODEL_a4d41b7d98db470eb62ff40819374de7", + "tabbable": null, + "tooltip": null, + "value": " 466k/466k [00:00<00:00, 7.27MB/s]" } }, - "32b672e3533b42e68623eb085b0adde2": { + "39f7fb07719e477aa8fc556d47d84e6b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1810,31 +1703,74 @@ "width": null } }, - "34aadc97f3c94cefb91704a973340671": { + "3a6c9c08bcbe465c845f93f31d1e082d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3dc1b96348584b10be189236384780e3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6a6e9f8a7ddb4d769e55cedaf234486b", - "IPY_MODEL_1abfbbe601b8476fa0bf19586f37843f", - "IPY_MODEL_f46043d882ae4f25aac72431590c7c21" - ], - "layout": "IPY_MODEL_2afcb988e80d4e2c96e0430e6422f029", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0e0f3d73d7c5479e9205c608e6a221f2", + "placeholder": "​", + "style": "IPY_MODEL_4867f479572f420e8ee766d8a630e9f0", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 391/391 [00:00<00:00, 70.3kB/s]" + } + }, + "3e83d94b3da94796a2e3c3f58fee6d24": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_953835c1d8d944c98bcf5a100c6eadea", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7441a0948ec245db97cc388e4c24346b", + "tabbable": null, + "tooltip": null, + "value": 2211.0 } }, - "359e7d3af050412994483a6d8cc402e8": { + "450f2b21675f4297a73b23d7332995c2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1887,7 +1823,179 @@ "width": null } }, - "37b15fc917e5476789be11b496266c86": { + "471d21b2b6d34bd19f68db820ed3bd11": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d76db974adf74d138edf1e6b2ab6d1bb", + "IPY_MODEL_57a5f3444ac54c458f1b18e919019ce8", + "IPY_MODEL_272cb833b2554305b7a96f617f49e925" + ], + "layout": "IPY_MODEL_891fe5492d71411bb2cdd8dc16c38aae", + "tabbable": null, + "tooltip": null + } + }, + "4867f479572f420e8ee766d8a630e9f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "54bae9fd2e14481bbe5b0f643c873f04": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5509cf9ad44a409ba66d21eff990056a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a7d7861f63be4db6ba7a8d0991cd3aaf", + "placeholder": "​", + "style": "IPY_MODEL_de294e3144514433bf42ed005297e6fb", + "tabbable": null, + "tooltip": null, + "value": "config.json: 100%" + } + }, + "57a5f3444ac54c458f1b18e919019ce8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f45d59708a3c4ed1865126a090e2c4e6", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9f615a67acf544a4a764f0b3e57bcf6d", + "tabbable": null, + "tooltip": null, + "value": 48.0 + } + }, + "65c1d7542fa548e0988f724388914017": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c37ec7d4d9254fceb7235956e2388332", + "placeholder": "​", + "style": "IPY_MODEL_e0cff003b80f40c4b36e41b33d67ac6a", + "tabbable": null, + "tooltip": null, + "value": "tokenizer.json: 100%" + } + }, + "6ca9bbeab065433b9d8b1fcfff6afb5b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7809a77866304983856122c3264042af", + "IPY_MODEL_2ac3806b1bcf4c8eb279e2466714c8b8", + "IPY_MODEL_0dce119c465141149bf9df31378a9c3b" + ], + "layout": "IPY_MODEL_95626d032d85453a823ed1ac7db3760d", + "tabbable": null, + "tooltip": null + } + }, + "7441a0948ec245db97cc388e4c24346b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "75aa31a0d822490b9563b40f47d0614e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1940,48 +2048,7 @@ "width": null } }, - "3baa74d1c3824b4a9a549598fda0d7bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_695396025f6b4cde9904cae30078620e", - "placeholder": "​", - "style": "IPY_MODEL_81832277dde34775bf22cc95d3573180", - "tabbable": null, - "tooltip": null, - "value": " 665/665 [00:00<00:00, 127kB/s]" - } - }, - "41a9309f8e2a43c981e51849683db8be": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "48aacd399d814cc5bb27839f4188c244": { + "76146f1f279944d9815241c655f088b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2034,41 +2101,30 @@ "width": null } }, - "4d137b6355a94a098596e9b016aafc61": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4df6410e248d481ea7cf3112093f09d6": { + "7809a77866304983856122c3264042af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bc9080caf76e43a7872ea082fa7bc94f", + "placeholder": "​", + "style": "IPY_MODEL_faa165c6cb984ac4812cbf528b4671e4", + "tabbable": null, + "tooltip": null, + "value": "vocab.txt: 100%" } }, - "53e0ff33a7e04cdab9b26394a371448b": { + "7941dc7aeab6412aa976f20e33ff80c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2086,30 +2142,7 @@ "text_color": null } }, - "545604a2661c4f53a66e973c55afedd9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fd0aa74493c34aedb94ddfe184026989", - "placeholder": "​", - "style": "IPY_MODEL_15f65373b8e047a9a00d478ff9da5397", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "54698cbe60c842cdade75b6b21474325": { + "7f64890f74a4460883f6fd36bc03f00f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2162,7 +2195,7 @@ "width": null } }, - "57d98036d235422ab33cf4990de796ba": { + "80c3f488d1da4be9ac5ed2301c9abe54": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2215,33 +2248,48 @@ "width": null } }, - "5a1cd5aaf1784044a4687f34ea8ef2fe": { + "82648a3f7ecb460ba325d367b7722596": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "85c0898316a74865bea082bc59f6f7b3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_57d98036d235422ab33cf4990de796ba", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4df6410e248d481ea7cf3112093f09d6", + "layout": "IPY_MODEL_db55cfeea8484f5f9d3c5177c2bacbe9", + "placeholder": "​", + "style": "IPY_MODEL_7941dc7aeab6412aa976f20e33ff80c1", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": " 54.2M/54.2M [00:00<00:00, 251MB/s]" } }, - "5bd138371a7845b99f64db4566a1b906": { + "891fe5492d71411bb2cdd8dc16c38aae": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2294,59 +2342,7 @@ "width": null } }, - "60e1e4c3aa504fbab18aac526d3ba544": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "60f2d0d7a59a4f5fa2769907b95fd880": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6340058adb024b37b45427aa6f71fbfd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "66ed0be9afe74df8a9f4b7069190b1af": { + "8be7661bcd1a4e188324a63e05d0415b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2399,53 +2395,49 @@ "width": null } }, - "672d54b98cd9418aa7698c0deb1c0d74": { + "8d75886ef5da4990962359e01bf052f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_79ef87ccd5344b8eb47c03dd16ec00de", - "placeholder": "​", - "style": "IPY_MODEL_4d137b6355a94a098596e9b016aafc61", + "layout": "IPY_MODEL_cc1f79fcf897409fa4037c46d565b46f", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9519195c1c754f0297acc1aef92427b5", "tabbable": null, "tooltip": null, - "value": ".gitattributes: 100%" + "value": 391.0 } }, - "675f498779f446388d30f83da7b39f20": { + "9519195c1c754f0297acc1aef92427b5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6c890ff4d68a42efbd9cd123d4b18be5", - "placeholder": "​", - "style": "IPY_MODEL_41a9309f8e2a43c981e51849683db8be", - "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 67.6kB/s]" + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "695396025f6b4cde9904cae30078620e": { + "953835c1d8d944c98bcf5a100c6eadea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2498,7 +2490,7 @@ "width": null } }, - "6a0734d6da0943148c07b795ad47d81d": { + "95626d032d85453a823ed1ac7db3760d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2551,7 +2543,7 @@ "width": null } }, - "6a6e9f8a7ddb4d769e55cedaf234486b": { + "9d3c23e8dbd04ec7b13f66ac9c75b008": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2566,15 +2558,72 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8f09e4ca1bc04bf9b3540ac341b88401", + "layout": "IPY_MODEL_c86801e515064506acf8ea66a98816b2", "placeholder": "​", - "style": "IPY_MODEL_53e0ff33a7e04cdab9b26394a371448b", + "style": "IPY_MODEL_82648a3f7ecb460ba325d367b7722596", "tabbable": null, "tooltip": null, "value": "README.md: 100%" } }, - "6c890ff4d68a42efbd9cd123d4b18be5": { + "9f615a67acf544a4a764f0b3e57bcf6d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a1576db96088497882a37cc1fb9ced24": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_39f7fb07719e477aa8fc556d47d84e6b", + "placeholder": "​", + "style": "IPY_MODEL_b48c3c7a659e4ae8b39ca846e3708a7d", + "tabbable": null, + "tooltip": null, + "value": " 665/665 [00:00<00:00, 122kB/s]" + } + }, + "a4d41b7d98db470eb62ff40819374de7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a7d7861f63be4db6ba7a8d0991cd3aaf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2627,7 +2676,7 @@ "width": null } }, - "74b78823e59c49fc8a4c0c2862c80f5d": { + "ad0ca6ac240949bfb1878a2723127666": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2643,7 +2692,7 @@ "description_width": "" } }, - "74f67f88503145e0aab846dbf0c0095a": { + "b48c3c7a659e4ae8b39ca846e3708a7d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2661,7 +2710,30 @@ "text_color": null } }, - "79ef87ccd5344b8eb47c03dd16ec00de": { + "b50faf3c387846bbaae7dad55013e23a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_450f2b21675f4297a73b23d7332995c2", + "placeholder": "​", + "style": "IPY_MODEL_12227d53e2d646929355375900c380d2", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 442kB/s]" + } + }, + "bc9080caf76e43a7872ea082fa7bc94f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2714,7 +2786,7 @@ "width": null } }, - "7aee6a4a05544816aa1035d5b2a40f7e": { + "bf91d8bb7dd04805a5bf430e8ecd7eb1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2729,126 +2801,93 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0bbfc0caed8a41f68d6d4f0ecd843752", - "IPY_MODEL_5a1cd5aaf1784044a4687f34ea8ef2fe", - "IPY_MODEL_3baa74d1c3824b4a9a549598fda0d7bd" + "IPY_MODEL_1990965ce8594312b54e9f1c00118574", + "IPY_MODEL_f573bed877834059923a8e973c8bef5b", + "IPY_MODEL_85c0898316a74865bea082bc59f6f7b3" ], - "layout": "IPY_MODEL_5bd138371a7845b99f64db4566a1b906", + "layout": "IPY_MODEL_e4fbd562de564263aace68a6a30ea2a3", "tabbable": null, "tooltip": null } }, - "81832277dde34775bf22cc95d3573180": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "82b2301c67424053b6a0ea1424a65861": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d4609fb7bd2348f3aabb983249d77ce2", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1e7f387387624f8196fa6c9eeb76440e", - "tabbable": null, - "tooltip": null, - "value": 466062.0 - } - }, - "88591a4a537a477d8b31f17929c8fb10": { + "c0b412775b7545a6b9dd90faf75c419f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_54698cbe60c842cdade75b6b21474325", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b3fa7b73b3bc47c0a41148bc0ce66307", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9d3c23e8dbd04ec7b13f66ac9c75b008", + "IPY_MODEL_3e83d94b3da94796a2e3c3f58fee6d24", + "IPY_MODEL_b50faf3c387846bbaae7dad55013e23a" + ], + "layout": "IPY_MODEL_28f514e5bf6d4787bdd5690fe4bee078", "tabbable": null, - "tooltip": null, - "value": 48.0 + "tooltip": null } }, - "89f221ec1a4147b5a5c40b4a3ccc3916": { - "model_module": "@jupyter-widgets/controls", + "c37ec7d4d9254fceb7235956e2388332": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8c0c9e8afe4f4e63aba0336cc5859538": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f00cb3c8471649cd869389f44146769a", - "IPY_MODEL_1a1b13f8dbc34bbcbb02ce4d4239d30f", - "IPY_MODEL_2160d45513d148b9ac50cc6177349b8a" - ], - "layout": "IPY_MODEL_6a0734d6da0943148c07b795ad47d81d", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "8f09e4ca1bc04bf9b3540ac341b88401": { + "c86801e515064506acf8ea66a98816b2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2901,25 +2940,33 @@ "width": null } }, - "905d6f02518041138e02aad74d75ed15": { + "ca4f2cdb9c44425baaf76abafaae5eb5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_76146f1f279944d9815241c655f088b9", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ad0ca6ac240949bfb1878a2723127666", + "tabbable": null, + "tooltip": null, + "value": 466062.0 } }, - "95ed389edb4b4a4e95d66b81b122b6a4": { + "cc1f79fcf897409fa4037c46d565b46f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2972,7 +3019,7 @@ "width": null } }, - "995fd222aac544eaa78d553cbc137be9": { + "ceff41db18be47daa53033b7425fe56e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3025,7 +3072,7 @@ "width": null } }, - "9e79d23b602a4138bb79213e841f3f34": { + "cf02a7e0d799494a8b1d47ea50b25157": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3043,25 +3090,31 @@ "text_color": null } }, - "a7406ca71e614ffea206ff599eefac82": { + "d0ca941c93c6491ab3017fa26813543b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f40175c30fbd4a3f9514ff411e608fe1", + "IPY_MODEL_8d75886ef5da4990962359e01bf052f3", + "IPY_MODEL_3dc1b96348584b10be189236384780e3" + ], + "layout": "IPY_MODEL_10856532033d4122bcdaaed1284eb4e7", + "tabbable": null, + "tooltip": null } }, - "a81f2c5c0fac49198311d85222938569": { + "d239ceb1b62046d09ad901f7528558ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3079,7 +3132,30 @@ "text_color": null } }, - "a8c9bdc09b394d598f2b78b3d03c56a3": { + "d76db974adf74d138edf1e6b2ab6d1bb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ceff41db18be47daa53033b7425fe56e", + "placeholder": "​", + "style": "IPY_MODEL_3a6c9c08bcbe465c845f93f31d1e082d", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" + } + }, + "db55cfeea8484f5f9d3c5177c2bacbe9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3132,73 +3208,43 @@ "width": null } }, - "b3fa7b73b3bc47c0a41148bc0ce66307": { + "de294e3144514433bf42ed005297e6fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b50b6fd6f8cf4e0cabd4305fff38d0cf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_09b401682ebd41de80021f05e72a63c7", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_60f2d0d7a59a4f5fa2769907b95fd880", - "tabbable": null, - "tooltip": null, - "value": 391.0 + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "bb7bae5a60bc4f389f3e1d2a1d26cb38": { + "e0cff003b80f40c4b36e41b33d67ac6a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e25de84cee284b78a3a5abb9a94f8f93", - "IPY_MODEL_82b2301c67424053b6a0ea1424a65861", - "IPY_MODEL_2b54721d99a34a8c9d3bd409f33d01a9" - ], - "layout": "IPY_MODEL_95ed389edb4b4a4e95d66b81b122b6a4", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c18bea0a5e674d4fb6142ef5c4ee9dba": { + "e4fbd562de564263aace68a6a30ea2a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3251,33 +3297,7 @@ "width": null } }, - "cd7e56d70562470ca03a636175cbc711": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_22dd5ef98a124bbbab753a48bc706c44", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_74b78823e59c49fc8a4c0c2862c80f5d", - "tabbable": null, - "tooltip": null, - "value": 231508.0 - } - }, - "d4609fb7bd2348f3aabb983249d77ce2": { + "e7fc7b0cb31242daa2d63213b6d68c5d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3330,7 +3350,7 @@ "width": null } }, - "d66d126e12a34285a73db2c25b6f5bc7": { + "e8c8680718b942039a94ab4625097f83": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3345,34 +3365,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_672d54b98cd9418aa7698c0deb1c0d74", - "IPY_MODEL_b50b6fd6f8cf4e0cabd4305fff38d0cf", - "IPY_MODEL_675f498779f446388d30f83da7b39f20" + "IPY_MODEL_5509cf9ad44a409ba66d21eff990056a", + "IPY_MODEL_0ef3b82682c247fa948faf46338bbc47", + "IPY_MODEL_a1576db96088497882a37cc1fb9ced24" ], - "layout": "IPY_MODEL_247cea6d7b5045218efe42c97001131b", + "layout": "IPY_MODEL_8be7661bcd1a4e188324a63e05d0415b", "tabbable": null, "tooltip": null } }, - "d6c1cd84fc1c42e1bcd5215272692809": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "dac3b39cfbe24c90a24b3a8600b340e0": { + "e8ec41c7814745f3ad67a0642029a11e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3388,100 +3390,7 @@ "description_width": "" } }, - "e25de84cee284b78a3a5abb9a94f8f93": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_32b672e3533b42e68623eb085b0adde2", - "placeholder": "​", - "style": "IPY_MODEL_6340058adb024b37b45427aa6f71fbfd", - "tabbable": null, - "tooltip": null, - "value": "tokenizer.json: 100%" - } - }, - "f00cb3c8471649cd869389f44146769a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f5643b0fb091427e91d8238bcf9dcd89", - "placeholder": "​", - "style": "IPY_MODEL_a7406ca71e614ffea206ff599eefac82", - "tabbable": null, - "tooltip": null, - "value": "pytorch_model.bin: 100%" - } - }, - "f44b52f1626e414db5f00b894ccf657e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0583cb2e581e40049974dd4ab187e1bb", - "IPY_MODEL_88591a4a537a477d8b31f17929c8fb10", - "IPY_MODEL_2926097f31794b8a97d25ab56cbb0428" - ], - "layout": "IPY_MODEL_a8c9bdc09b394d598f2b78b3d03c56a3", - "tabbable": null, - "tooltip": null - } - }, - "f46043d882ae4f25aac72431590c7c21": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_66ed0be9afe74df8a9f4b7069190b1af", - "placeholder": "​", - "style": "IPY_MODEL_d6c1cd84fc1c42e1bcd5215272692809", - "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 387kB/s]" - } - }, - "f5643b0fb091427e91d8238bcf9dcd89": { + "ee87e3b4436347b6a5383c65e75e9abd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3534,7 +3443,7 @@ "width": null } }, - "f78458024afb43d3b0de4b20e2095b24": { + "f1cd151c786649629c0f35aafcacc883": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3587,7 +3496,30 @@ "width": null } }, - "fd0aa74493c34aedb94ddfe184026989": { + "f40175c30fbd4a3f9514ff411e608fe1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0e2793623a60493a862948d9148813d1", + "placeholder": "​", + "style": "IPY_MODEL_2655af5fee21452a90e51c6db94c46e4", + "tabbable": null, + "tooltip": null, + "value": ".gitattributes: 100%" + } + }, + "f45d59708a3c4ed1865126a090e2c4e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3639,6 +3571,74 @@ "visibility": null, "width": null } + }, + "f573bed877834059923a8e973c8bef5b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_17527287826741d495566304df5ff184", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3745e78b80704cc090c10bda5d066aa2", + "tabbable": null, + "tooltip": null, + "value": 54245363.0 + } + }, + "f8c81f0e92d44c4ab72fbb8ab1d2b9ad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_65c1d7542fa548e0988f724388914017", + "IPY_MODEL_ca4f2cdb9c44425baaf76abafaae5eb5", + "IPY_MODEL_394b9589a3014e7bb5445cca8eee8985" + ], + "layout": "IPY_MODEL_e7fc7b0cb31242daa2d63213b6d68c5d", + "tabbable": null, + "tooltip": null + } + }, + "faa165c6cb984ac4812cbf528b4671e4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb index ac2ee08e5..c207e9188 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:45.314227Z", - "iopub.status.busy": "2024-08-29T17:07:45.313757Z", - "iopub.status.idle": "2024-08-29T17:07:50.822059Z", - "shell.execute_reply": "2024-08-29T17:07:50.821392Z" + "iopub.execute_input": "2024-09-04T16:36:57.240536Z", + "iopub.status.busy": "2024-09-04T16:36:57.240126Z", + "iopub.status.idle": "2024-09-04T16:37:02.508553Z", + "shell.execute_reply": "2024-09-04T16:37:02.507910Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:50.824863Z", - "iopub.status.busy": "2024-08-29T17:07:50.824473Z", - "iopub.status.idle": "2024-08-29T17:07:50.827999Z", - "shell.execute_reply": "2024-08-29T17:07:50.827517Z" + "iopub.execute_input": "2024-09-04T16:37:02.511107Z", + "iopub.status.busy": "2024-09-04T16:37:02.510767Z", + "iopub.status.idle": "2024-09-04T16:37:02.514009Z", + "shell.execute_reply": "2024-09-04T16:37:02.513523Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:50.830030Z", - "iopub.status.busy": "2024-08-29T17:07:50.829746Z", - "iopub.status.idle": "2024-08-29T17:07:50.834755Z", - "shell.execute_reply": "2024-08-29T17:07:50.834166Z" + "iopub.execute_input": "2024-09-04T16:37:02.516080Z", + "iopub.status.busy": "2024-09-04T16:37:02.515729Z", + "iopub.status.idle": "2024-09-04T16:37:02.520401Z", + "shell.execute_reply": "2024-09-04T16:37:02.519982Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-29T17:07:50.836959Z", - "iopub.status.busy": "2024-08-29T17:07:50.836628Z", - "iopub.status.idle": "2024-08-29T17:07:52.427284Z", - "shell.execute_reply": "2024-08-29T17:07:52.426602Z" + "iopub.execute_input": "2024-09-04T16:37:02.522528Z", + "iopub.status.busy": "2024-09-04T16:37:02.522189Z", + "iopub.status.idle": "2024-09-04T16:37:04.464981Z", + "shell.execute_reply": "2024-09-04T16:37:04.464182Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-29T17:07:52.429849Z", - "iopub.status.busy": "2024-08-29T17:07:52.429650Z", - "iopub.status.idle": "2024-08-29T17:07:52.442318Z", - "shell.execute_reply": "2024-08-29T17:07:52.441839Z" + "iopub.execute_input": "2024-09-04T16:37:04.467875Z", + "iopub.status.busy": "2024-09-04T16:37:04.467459Z", + "iopub.status.idle": "2024-09-04T16:37:04.478830Z", + "shell.execute_reply": "2024-09-04T16:37:04.478255Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:52.444615Z", - "iopub.status.busy": "2024-08-29T17:07:52.444213Z", - "iopub.status.idle": "2024-08-29T17:07:52.450201Z", - "shell.execute_reply": "2024-08-29T17:07:52.449662Z" + "iopub.execute_input": "2024-09-04T16:37:04.481044Z", + "iopub.status.busy": "2024-09-04T16:37:04.480644Z", + "iopub.status.idle": "2024-09-04T16:37:04.487680Z", + "shell.execute_reply": "2024-09-04T16:37:04.487227Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-29T17:07:52.452398Z", - "iopub.status.busy": "2024-08-29T17:07:52.452025Z", - "iopub.status.idle": "2024-08-29T17:07:52.904496Z", - "shell.execute_reply": "2024-08-29T17:07:52.903991Z" + "iopub.execute_input": "2024-09-04T16:37:04.489721Z", + "iopub.status.busy": "2024-09-04T16:37:04.489383Z", + "iopub.status.idle": "2024-09-04T16:37:04.921219Z", + "shell.execute_reply": "2024-09-04T16:37:04.920692Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:52.906601Z", - "iopub.status.busy": "2024-08-29T17:07:52.906402Z", - "iopub.status.idle": "2024-08-29T17:07:53.921738Z", - "shell.execute_reply": "2024-08-29T17:07:53.921228Z" + "iopub.execute_input": "2024-09-04T16:37:04.923405Z", + "iopub.status.busy": "2024-09-04T16:37:04.923067Z", + "iopub.status.idle": "2024-09-04T16:37:06.038885Z", + "shell.execute_reply": "2024-09-04T16:37:06.038337Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-08-29T17:07:53.924303Z", - "iopub.status.busy": "2024-08-29T17:07:53.923916Z", - "iopub.status.idle": "2024-08-29T17:07:53.942788Z", - "shell.execute_reply": "2024-08-29T17:07:53.942329Z" + "iopub.execute_input": "2024-09-04T16:37:06.041320Z", + "iopub.status.busy": "2024-09-04T16:37:06.040954Z", + "iopub.status.idle": "2024-09-04T16:37:06.058858Z", + "shell.execute_reply": "2024-09-04T16:37:06.058388Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:53.944889Z", - "iopub.status.busy": "2024-08-29T17:07:53.944543Z", - "iopub.status.idle": "2024-08-29T17:07:53.947685Z", - "shell.execute_reply": "2024-08-29T17:07:53.947232Z" + "iopub.execute_input": "2024-09-04T16:37:06.060898Z", + "iopub.status.busy": "2024-09-04T16:37:06.060567Z", + "iopub.status.idle": "2024-09-04T16:37:06.063694Z", + "shell.execute_reply": "2024-09-04T16:37:06.063249Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:53.949733Z", - "iopub.status.busy": "2024-08-29T17:07:53.949405Z", - "iopub.status.idle": "2024-08-29T17:08:08.288437Z", - "shell.execute_reply": "2024-08-29T17:08:08.287884Z" + "iopub.execute_input": "2024-09-04T16:37:06.065550Z", + "iopub.status.busy": "2024-09-04T16:37:06.065299Z", + "iopub.status.idle": "2024-09-04T16:37:19.888301Z", + "shell.execute_reply": "2024-09-04T16:37:19.887692Z" }, "id": "2FSQ2GR9R_YA" }, @@ -617,10 +617,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-29T17:08:08.291066Z", - "iopub.status.busy": "2024-08-29T17:08:08.290682Z", - "iopub.status.idle": "2024-08-29T17:08:08.294750Z", - "shell.execute_reply": "2024-08-29T17:08:08.294287Z" + "iopub.execute_input": "2024-09-04T16:37:19.891159Z", + "iopub.status.busy": "2024-09-04T16:37:19.890725Z", + "iopub.status.idle": "2024-09-04T16:37:19.894418Z", + "shell.execute_reply": "2024-09-04T16:37:19.893957Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -680,10 +680,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:08.296913Z", - "iopub.status.busy": "2024-08-29T17:08:08.296733Z", - "iopub.status.idle": "2024-08-29T17:08:08.983956Z", - "shell.execute_reply": "2024-08-29T17:08:08.983336Z" + "iopub.execute_input": "2024-09-04T16:37:19.896408Z", + "iopub.status.busy": "2024-09-04T16:37:19.896073Z", + "iopub.status.idle": "2024-09-04T16:37:20.602181Z", + "shell.execute_reply": "2024-09-04T16:37:20.601542Z" }, "id": "i_drkY9YOcw4" }, @@ -717,10 +717,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-29T17:08:08.986816Z", - "iopub.status.busy": "2024-08-29T17:08:08.986596Z", - "iopub.status.idle": "2024-08-29T17:08:08.991480Z", - "shell.execute_reply": "2024-08-29T17:08:08.990907Z" + "iopub.execute_input": "2024-09-04T16:37:20.604989Z", + "iopub.status.busy": "2024-09-04T16:37:20.604734Z", + "iopub.status.idle": "2024-09-04T16:37:20.609848Z", + "shell.execute_reply": "2024-09-04T16:37:20.609329Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -767,10 +767,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:08.994063Z", - "iopub.status.busy": "2024-08-29T17:08:08.993672Z", - "iopub.status.idle": "2024-08-29T17:08:09.107043Z", - "shell.execute_reply": "2024-08-29T17:08:09.106388Z" + "iopub.execute_input": "2024-09-04T16:37:20.612364Z", + "iopub.status.busy": "2024-09-04T16:37:20.611869Z", + "iopub.status.idle": "2024-09-04T16:37:20.728927Z", + "shell.execute_reply": "2024-09-04T16:37:20.728316Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:09.109204Z", - "iopub.status.busy": "2024-08-29T17:08:09.109014Z", - "iopub.status.idle": "2024-08-29T17:08:09.121385Z", - "shell.execute_reply": "2024-08-29T17:08:09.120916Z" + "iopub.execute_input": "2024-09-04T16:37:20.731261Z", + "iopub.status.busy": "2024-09-04T16:37:20.731066Z", + "iopub.status.idle": "2024-09-04T16:37:20.743342Z", + "shell.execute_reply": "2024-09-04T16:37:20.742865Z" }, "scrolled": true }, @@ -870,10 +870,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:09.123615Z", - "iopub.status.busy": "2024-08-29T17:08:09.123278Z", - "iopub.status.idle": "2024-08-29T17:08:09.130891Z", - "shell.execute_reply": "2024-08-29T17:08:09.130337Z" + "iopub.execute_input": "2024-09-04T16:37:20.745337Z", + "iopub.status.busy": "2024-09-04T16:37:20.745143Z", + "iopub.status.idle": "2024-09-04T16:37:20.752883Z", + "shell.execute_reply": "2024-09-04T16:37:20.752335Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:09.133047Z", - "iopub.status.busy": "2024-08-29T17:08:09.132730Z", - "iopub.status.idle": "2024-08-29T17:08:09.136636Z", - "shell.execute_reply": "2024-08-29T17:08:09.136096Z" + "iopub.execute_input": "2024-09-04T16:37:20.754852Z", + "iopub.status.busy": "2024-09-04T16:37:20.754675Z", + "iopub.status.idle": "2024-09-04T16:37:20.758701Z", + "shell.execute_reply": "2024-09-04T16:37:20.758149Z" } }, "outputs": [ @@ -1018,10 +1018,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-08-29T17:08:09.138701Z", - "iopub.status.busy": "2024-08-29T17:08:09.138354Z", - "iopub.status.idle": "2024-08-29T17:08:09.143972Z", - "shell.execute_reply": "2024-08-29T17:08:09.143401Z" + "iopub.execute_input": "2024-09-04T16:37:20.760896Z", + "iopub.status.busy": "2024-09-04T16:37:20.760463Z", + "iopub.status.idle": "2024-09-04T16:37:20.766233Z", + "shell.execute_reply": "2024-09-04T16:37:20.765641Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1148,10 +1148,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-29T17:08:09.146089Z", - "iopub.status.busy": "2024-08-29T17:08:09.145758Z", - "iopub.status.idle": "2024-08-29T17:08:09.255928Z", - "shell.execute_reply": "2024-08-29T17:08:09.255411Z" + "iopub.execute_input": "2024-09-04T16:37:20.768311Z", + "iopub.status.busy": "2024-09-04T16:37:20.767969Z", + "iopub.status.idle": "2024-09-04T16:37:20.878983Z", + "shell.execute_reply": "2024-09-04T16:37:20.878408Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1205,10 +1205,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-29T17:08:09.257975Z", - "iopub.status.busy": "2024-08-29T17:08:09.257795Z", - "iopub.status.idle": "2024-08-29T17:08:09.360917Z", - "shell.execute_reply": "2024-08-29T17:08:09.360418Z" + "iopub.execute_input": "2024-09-04T16:37:20.880945Z", + "iopub.status.busy": "2024-09-04T16:37:20.880765Z", + "iopub.status.idle": "2024-09-04T16:37:20.983158Z", + "shell.execute_reply": "2024-09-04T16:37:20.982710Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1253,10 +1253,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-29T17:08:09.363068Z", - "iopub.status.busy": "2024-08-29T17:08:09.362884Z", - "iopub.status.idle": "2024-08-29T17:08:09.465174Z", - "shell.execute_reply": "2024-08-29T17:08:09.464642Z" + "iopub.execute_input": "2024-09-04T16:37:20.985183Z", + "iopub.status.busy": "2024-09-04T16:37:20.984843Z", + "iopub.status.idle": "2024-09-04T16:37:21.084157Z", + "shell.execute_reply": "2024-09-04T16:37:21.083719Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1297,10 +1297,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:09.467279Z", - "iopub.status.busy": "2024-08-29T17:08:09.467095Z", - "iopub.status.idle": "2024-08-29T17:08:09.570098Z", - "shell.execute_reply": "2024-08-29T17:08:09.569509Z" + "iopub.execute_input": "2024-09-04T16:37:21.086185Z", + "iopub.status.busy": "2024-09-04T16:37:21.085907Z", + "iopub.status.idle": "2024-09-04T16:37:21.185940Z", + "shell.execute_reply": "2024-09-04T16:37:21.185376Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:09.572711Z", - "iopub.status.busy": "2024-08-29T17:08:09.572132Z", - "iopub.status.idle": "2024-08-29T17:08:09.575430Z", - "shell.execute_reply": "2024-08-29T17:08:09.574967Z" + "iopub.execute_input": "2024-09-04T16:37:21.188035Z", + "iopub.status.busy": "2024-09-04T16:37:21.187701Z", + "iopub.status.idle": "2024-09-04T16:37:21.190701Z", + "shell.execute_reply": "2024-09-04T16:37:21.190263Z" }, "nbsphinx": "hidden" }, @@ -1392,54 +1392,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "03479e9660d64b7f9ee76846fb741dd4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c33cd4a72e0049dca4344285df50b370", - "placeholder": "​", - "style": "IPY_MODEL_e760806a0be44823addbbc7e8815321c", - "tabbable": null, - "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 725kB/s]" - } - }, - "0ae0dbb6989b41a9b0ea2a5b4e9a3cbf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e8ba80d6e09249839cdfd1da5085ab10", - "IPY_MODEL_90dea4bb42ca40e28b862772f4bd9970", - "IPY_MODEL_77cf50c676d04e2db4d9d33f18bf8540" - ], - "layout": "IPY_MODEL_d58466bf0f50423f92e3ef300c69a45d", - "tabbable": null, - "tooltip": null - } - }, - "0b0356dcb29649c7b6dc492a901737c4": { + "0399903d082a471dbab93da6d061c59d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1492,31 +1445,7 @@ "width": null } }, - "0c5316a7a9cd43c097ff92a841bea9fc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_160b320069ad474094c95eb56a994965", - "IPY_MODEL_a6b6f027197e4cf49c1c98180b349946", - "IPY_MODEL_ee50f9b046244366bdaf53f7c6e66396" - ], - "layout": "IPY_MODEL_681d0b92d1b24755b0bba02eb0abbd50", - "tabbable": null, - "tooltip": null - } - }, - "0e7a313a5c824026b683e120467e49fc": { + "07f132495bc040ea8f3804b7c9e8e6c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1534,7 +1463,7 @@ "text_color": null } }, - "1377fb622eed42c1a25a3899bf228840": { + "0b78f5e273c04dff97fe337955cc4d7e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1550,40 +1479,88 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9e554e3457d84b11ac345780706154f2", - "max": 128619.0, + "layout": "IPY_MODEL_f338dd71eb524ac78296561dbed7b0e8", + "max": 2041.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_e189805254a74de9857c999a79cdf12f", + "style": "IPY_MODEL_d129ec962b08471fb96c72e44225606e", "tabbable": null, "tooltip": null, - "value": 128619.0 + "value": 2041.0 + } + }, + "0bd9a3c34bea44c0b97e8e40cd2cb5d7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "160b320069ad474094c95eb56a994965": { + "0bf1f495853349febe3427e3b2a54e79": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d245c87ad22a445cb7d31bc4605c9f50", - "placeholder": "​", - "style": "IPY_MODEL_6493ec0db10f4ef39fd1d3317c51aab9", - "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "194eb7a4ab3245218a0515d24c812b1a": { + "19ccf5cb4d0d4b7eb8bf1cc16b1e9570": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1598,41 +1575,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_eaaae06691264df0ad410b54ec706d02", + "layout": "IPY_MODEL_32295bf49bf44700a4b01baf8601885b", "placeholder": "​", - "style": "IPY_MODEL_87eb373f76f64fc387733e771c61c276", + "style": "IPY_MODEL_df283cf7b7294ef7afc7c77637b8e506", "tabbable": null, "tooltip": null, - "value": " 129k/129k [00:00<00:00, 23.0MB/s]" + "value": "classifier.ckpt: 100%" } }, - "1d5367df48804e979f572fa33d77169d": { + "226bb6447d5a44cea9e94358dd159d4b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_73fab9bd205846db8303e41f6cc69bac", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f25843f8b9044a38970d7a2f6f55532f", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c76e5b2a4cc34e9e997debaa73672b65", + "IPY_MODEL_0b78f5e273c04dff97fe337955cc4d7e", + "IPY_MODEL_db63d51ae3cf41958c911fd701a21f9c" + ], + "layout": "IPY_MODEL_a131060cdc714df39db7a428b71fb35a", "tabbable": null, - "tooltip": null, - "value": 2041.0 + "tooltip": null } }, - "224daca37cb34206a36a8b89e0821d12": { + "32295bf49bf44700a4b01baf8601885b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1685,7 +1660,7 @@ "width": null } }, - "26ab503a7bc9423cbc4451b628443c0b": { + "3cf5ce3d2f4c42a294c18e44ef924562": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1738,7 +1713,48 @@ "width": null } }, - "2bc930006e834926abfde7b3abd96271": { + "408178d8f27b4eb99fc0acf8305e799f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ceca2a5eda0d415a93e5ca0a6460bc35", + "placeholder": "​", + "style": "IPY_MODEL_0bf1f495853349febe3427e3b2a54e79", + "tabbable": null, + "tooltip": null, + "value": "embedding_model.ckpt: 100%" + } + }, + "460b69932fe243d2a4ffb3bd9084dd61": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4655001187994b728fd1fa6b8b328ef9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1791,7 +1807,23 @@ "width": null } }, - "3015b6d6dcb54f10a962550a157ec46a": { + "513cf4e718144fc48ec82aacd56ff402": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "56bd5dde40904f95bb10fc1872eba1a1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1844,7 +1876,31 @@ "width": null } }, - "479d4d642c7e4ba48bfeecfabfc89392": { + "5a293ec9f7e643c98c9d6d7a78c0577f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c0cf7c3eb7244ac8b96ce96fb0de6c02", + "IPY_MODEL_f0f9d938bce947afb13e5ba81b1dd3a8", + "IPY_MODEL_af440f81578249c0b4658bdd9ec0eae4" + ], + "layout": "IPY_MODEL_0bd9a3c34bea44c0b97e8e40cd2cb5d7", + "tabbable": null, + "tooltip": null + } + }, + "66b537f699b748129a38e09178140259": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1897,7 +1953,7 @@ "width": null } }, - "47c0baecd0e04ec4880d81156bcc4a95": { + "687899e6b5e743c182bda60517db7530": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1915,7 +1971,7 @@ "text_color": null } }, - "4f54387387c6449e8a43d7cb98273467": { + "6befa45877f54c73a1043cbd36071f5c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1968,117 +2024,14 @@ "width": null } }, - "529f33a1cf8740969bef3f1e5347ecd2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "546b58523d8e492ba5e2a542b4039c1a": { - "model_module": "@jupyter-widgets/controls", + "6eb9db862564486eb8efed0e8805287b": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6493ec0db10f4ef39fd1d3317c51aab9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "681d0b92d1b24755b0bba02eb0abbd50": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6dd665b435b549c1be5f7072bb85a69c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -2124,31 +2077,25 @@ "width": null } }, - "6ee1d501331a43c4ae849fb6b3e25f2c": { + "71eb3debf64e4a2fbaf5c98d4735cd07": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c38c052cc1384154bc8a020912174a36", - "IPY_MODEL_1377fb622eed42c1a25a3899bf228840", - "IPY_MODEL_194eb7a4ab3245218a0515d24c812b1a" - ], - "layout": "IPY_MODEL_3015b6d6dcb54f10a962550a157ec46a", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6fbb4e1f5fe74bb1b8d81d98e1bc7859": { + "7eb4f954cd924555acff85d540fff206": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2163,179 +2110,112 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_26ab503a7bc9423cbc4451b628443c0b", + "layout": "IPY_MODEL_6befa45877f54c73a1043cbd36071f5c", "placeholder": "​", - "style": "IPY_MODEL_dee5d0a511b141f09a3e0f809526cdb7", + "style": "IPY_MODEL_b35790eac9564024837c9cdef51d3979", "tabbable": null, "tooltip": null, - "value": "hyperparams.yaml: 100%" - } - }, - "73fab9bd205846db8303e41f6cc69bac": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": " 3.20k/3.20k [00:00<00:00, 785kB/s]" } }, - "77cf50c676d04e2db4d9d33f18bf8540": { + "7ed440bcb8eb4eaba3602749108adb0a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4f54387387c6449e8a43d7cb98273467", - "placeholder": "​", - "style": "IPY_MODEL_78828249e75540d4b50a6894a4fdb2c0", + "layout": "IPY_MODEL_fd8588b5d0384105826c2fefac1b48c5", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ee4d0c7d7e064c3a88f1e8ac952a8de8", "tabbable": null, "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 172MB/s]" - } - }, - "78828249e75540d4b50a6894a4fdb2c0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 15856877.0 } }, - "7fde1cad6aac411182c8f3760c55bb4c": { + "8389b95f92774e53ad789f89a734f410": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2bc930006e834926abfde7b3abd96271", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f82b7299a92c40ee97bb528f6aba5e73", + "layout": "IPY_MODEL_d5f1d875434f48b2899bfc45f162862e", + "placeholder": "​", + "style": "IPY_MODEL_07f132495bc040ea8f3804b7c9e8e6c1", "tabbable": null, "tooltip": null, - "value": 3201.0 + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "87eb373f76f64fc387733e771c61c276": { + "8463514a576a4d2cbe58591dc844a6e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_408178d8f27b4eb99fc0acf8305e799f", + "IPY_MODEL_e2da1a03754e46288eb7247703f8f4ab", + "IPY_MODEL_9392f5c4f38244a68410a179ccb639a4" + ], + "layout": "IPY_MODEL_9cf6b71cfe074effa55ee7d22561e59e", + "tabbable": null, + "tooltip": null } }, - "90dea4bb42ca40e28b862772f4bd9970": { + "883c1af4d87e43fbb42a94f497c0e7cf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_224daca37cb34206a36a8b89e0821d12", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_529f33a1cf8740969bef3f1e5347ecd2", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_19ccf5cb4d0d4b7eb8bf1cc16b1e9570", + "IPY_MODEL_7ed440bcb8eb4eaba3602749108adb0a", + "IPY_MODEL_e86cbdcc2a534e8cb6ffa972789c121f" + ], + "layout": "IPY_MODEL_bca35073c85d459ebda92a18cb82fe35", "tabbable": null, - "tooltip": null, - "value": 16887676.0 + "tooltip": null } }, - "918fb51978744ab6bc2517926b5cf549": { + "9392f5c4f38244a68410a179ccb639a4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2350,51 +2230,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6dd665b435b549c1be5f7072bb85a69c", + "layout": "IPY_MODEL_d63be43df5d748cfafe39e355c2ff349", "placeholder": "​", - "style": "IPY_MODEL_47c0baecd0e04ec4880d81156bcc4a95", + "style": "IPY_MODEL_d48e147a1aed41bbbeb2ceb8d714f412", "tabbable": null, "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" - } - }, - "97a60215313846198897ec54486ae998": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "981b43a499d042eb8e78faa0f736fe84": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 16.9M/16.9M [00:00<00:00, 163MB/s]" } }, - "9e554e3457d84b11ac345780706154f2": { + "947f7386271b4edba4a9119252a699b1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2447,33 +2291,7 @@ "width": null } }, - "a6b6f027197e4cf49c1c98180b349946": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f6acf95fbfd348f79e2188e9c71c995d", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_546b58523d8e492ba5e2a542b4039c1a", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 - } - }, - "a9e8873bea304dbda3093f230984d3f4": { + "9cf6b71cfe074effa55ee7d22561e59e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2526,7 +2344,7 @@ "width": null } }, - "c2463a52f76943c292b43195cfb23d7b": { + "a131060cdc714df39db7a428b71fb35a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2579,7 +2397,66 @@ "width": null } }, - "c33cd4a72e0049dca4344285df50b370": { + "af440f81578249c0b4658bdd9ec0eae4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0399903d082a471dbab93da6d061c59d", + "placeholder": "​", + "style": "IPY_MODEL_b983e77576114ed492360eecadd37985", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 2.10MB/s]" + } + }, + "b35790eac9564024837c9cdef51d3979": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b983e77576114ed492360eecadd37985": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bca35073c85d459ebda92a18cb82fe35": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2632,7 +2509,7 @@ "width": null } }, - "c38c052cc1384154bc8a020912174a36": { + "c0cf7c3eb7244ac8b96ce96fb0de6c02": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2647,15 +2524,64 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c2463a52f76943c292b43195cfb23d7b", + "layout": "IPY_MODEL_56bd5dde40904f95bb10fc1872eba1a1", "placeholder": "​", - "style": "IPY_MODEL_981b43a499d042eb8e78faa0f736fe84", + "style": "IPY_MODEL_d039d690692e428c834e1fc4d9957d05", "tabbable": null, "tooltip": null, "value": "label_encoder.txt: 100%" } }, - "ce929334dc5c43699c0341dda0672461": { + "c76e5b2a4cc34e9e997debaa73672b65": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3cf5ce3d2f4c42a294c18e44ef924562", + "placeholder": "​", + "style": "IPY_MODEL_71eb3debf64e4a2fbaf5c98d4735cd07", + "tabbable": null, + "tooltip": null, + "value": "hyperparams.yaml: 100%" + } + }, + "c7b38c13c78f45758ec3e7301d923b5f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6eb9db862564486eb8efed0e8805287b", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f68917a8013c424cab9c2748cc45cad7", + "tabbable": null, + "tooltip": null, + "value": 3201.0 + } + }, + "ceca2a5eda0d415a93e5ca0a6460bc35": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2708,84 +2634,59 @@ "width": null } }, - "d245c87ad22a445cb7d31bc4605c9f50": { - "model_module": "@jupyter-widgets/base", + "d039d690692e428c834e1fc4d9957d05": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d129ec962b08471fb96c72e44225606e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "d3a3325d4d7f4ffea01742fc86cbcb42": { + "d48e147a1aed41bbbeb2ceb8d714f412": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_918fb51978744ab6bc2517926b5cf549", - "IPY_MODEL_7fde1cad6aac411182c8f3760c55bb4c", - "IPY_MODEL_03479e9660d64b7f9ee76846fb741dd4" - ], - "layout": "IPY_MODEL_d5fe65bc27724ee58c543a54fd239f81", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d58466bf0f50423f92e3ef300c69a45d": { + "d5f1d875434f48b2899bfc45f162862e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2838,7 +2739,7 @@ "width": null } }, - "d5fe65bc27724ee58c543a54fd239f81": { + "d63be43df5d748cfafe39e355c2ff349": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2891,31 +2792,30 @@ "width": null } }, - "daed83e18f3844adaa82d3c7820b0967": { + "db63d51ae3cf41958c911fd701a21f9c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6fbb4e1f5fe74bb1b8d81d98e1bc7859", - "IPY_MODEL_1d5367df48804e979f572fa33d77169d", - "IPY_MODEL_ff29970cf1d341baa232d05ddab20819" - ], - "layout": "IPY_MODEL_ce929334dc5c43699c0341dda0672461", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4655001187994b728fd1fa6b8b328ef9", + "placeholder": "​", + "style": "IPY_MODEL_687899e6b5e743c182bda60517db7530", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 443kB/s]" } }, - "de1fecb1ae82443aa48fc5e8161ece2b": { + "df283cf7b7294ef7afc7c77637b8e506": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2933,25 +2833,56 @@ "text_color": null } }, - "dee5d0a511b141f09a3e0f809526cdb7": { + "e2da1a03754e46288eb7247703f8f4ab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ee64c5c53a8b47528b51b74755b7b79e", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_513cf4e718144fc48ec82aacd56ff402", + "tabbable": null, + "tooltip": null, + "value": 16887676.0 + } + }, + "e86cbdcc2a534e8cb6ffa972789c121f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_66b537f699b748129a38e09178140259", + "placeholder": "​", + "style": "IPY_MODEL_460b69932fe243d2a4ffb3bd9084dd61", + "tabbable": null, + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 156MB/s]" } }, - "e189805254a74de9857c999a79cdf12f": { + "ee4d0c7d7e064c3a88f1e8ac952a8de8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2967,48 +2898,86 @@ "description_width": "" } }, - "e760806a0be44823addbbc7e8815321c": { - "model_module": "@jupyter-widgets/controls", + "ee64c5c53a8b47528b51b74755b7b79e": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e8ba80d6e09249839cdfd1da5085ab10": { + "f0f9d938bce947afb13e5ba81b1dd3a8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0b0356dcb29649c7b6dc492a901737c4", - "placeholder": "​", - "style": "IPY_MODEL_de1fecb1ae82443aa48fc5e8161ece2b", + "layout": "IPY_MODEL_947f7386271b4edba4a9119252a699b1", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f97a5c3811cb4878a4d2a30f2594d3ff", "tabbable": null, "tooltip": null, - "value": "embedding_model.ckpt: 100%" + "value": 128619.0 } }, - "eaaae06691264df0ad410b54ec706d02": { + "f338dd71eb524ac78296561dbed7b0e8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3061,30 +3030,23 @@ "width": null } }, - "ee50f9b046244366bdaf53f7c6e66396": { + "f68917a8013c424cab9c2748cc45cad7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a9e8873bea304dbda3093f230984d3f4", - "placeholder": "​", - "style": "IPY_MODEL_0e7a313a5c824026b683e120467e49fc", - "tabbable": null, - "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 159MB/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f25843f8b9044a38970d7a2f6f55532f": { + "f97a5c3811cb4878a4d2a30f2594d3ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3100,7 +3062,31 @@ "description_width": "" } }, - "f6acf95fbfd348f79e2188e9c71c995d": { + "fb96e5912f5a4ce891ef1ff4b41d1f7a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8389b95f92774e53ad789f89a734f410", + "IPY_MODEL_c7b38c13c78f45758ec3e7301d923b5f", + "IPY_MODEL_7eb4f954cd924555acff85d540fff206" + ], + "layout": "IPY_MODEL_fd52edc5a7d242ab8c17fe71d147178b", + "tabbable": null, + "tooltip": null + } + }, + "fd52edc5a7d242ab8c17fe71d147178b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3153,43 +3139,57 @@ "width": null } }, - "f82b7299a92c40ee97bb528f6aba5e73": { - "model_module": "@jupyter-widgets/controls", + "fd8588b5d0384105826c2fefac1b48c5": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ff29970cf1d341baa232d05ddab20819": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_479d4d642c7e4ba48bfeecfabfc89392", - "placeholder": "​", - "style": "IPY_MODEL_97a60215313846198897ec54486ae998", - "tabbable": null, - "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 482kB/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb index 161d64427..9a4d8b34f 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:12.945600Z", - "iopub.status.busy": "2024-08-29T17:08:12.945104Z", - "iopub.status.idle": "2024-08-29T17:08:14.174965Z", - "shell.execute_reply": "2024-08-29T17:08:14.174464Z" + "iopub.execute_input": "2024-09-04T16:37:25.182507Z", + "iopub.status.busy": "2024-09-04T16:37:25.182331Z", + "iopub.status.idle": "2024-09-04T16:37:26.371153Z", + "shell.execute_reply": "2024-09-04T16:37:26.370659Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:14.177579Z", - "iopub.status.busy": "2024-08-29T17:08:14.177115Z", - "iopub.status.idle": "2024-08-29T17:08:14.180259Z", - "shell.execute_reply": "2024-08-29T17:08:14.179789Z" + "iopub.execute_input": "2024-09-04T16:37:26.373791Z", + "iopub.status.busy": "2024-09-04T16:37:26.373414Z", + "iopub.status.idle": "2024-09-04T16:37:26.376277Z", + "shell.execute_reply": "2024-09-04T16:37:26.375845Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:14.182439Z", - "iopub.status.busy": "2024-08-29T17:08:14.182089Z", - "iopub.status.idle": "2024-08-29T17:08:14.190877Z", - "shell.execute_reply": "2024-08-29T17:08:14.190415Z" + "iopub.execute_input": "2024-09-04T16:37:26.378511Z", + "iopub.status.busy": "2024-09-04T16:37:26.378173Z", + "iopub.status.idle": "2024-09-04T16:37:26.386702Z", + "shell.execute_reply": "2024-09-04T16:37:26.386256Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:14.192874Z", - "iopub.status.busy": "2024-08-29T17:08:14.192567Z", - "iopub.status.idle": "2024-08-29T17:08:14.197020Z", - "shell.execute_reply": "2024-08-29T17:08:14.196587Z" + "iopub.execute_input": "2024-09-04T16:37:26.388633Z", + "iopub.status.busy": "2024-09-04T16:37:26.388317Z", + "iopub.status.idle": "2024-09-04T16:37:26.393336Z", + "shell.execute_reply": "2024-09-04T16:37:26.392769Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:14.199131Z", - "iopub.status.busy": "2024-08-29T17:08:14.198799Z", - "iopub.status.idle": "2024-08-29T17:08:14.384554Z", - "shell.execute_reply": "2024-08-29T17:08:14.383989Z" + "iopub.execute_input": "2024-09-04T16:37:26.395535Z", + "iopub.status.busy": "2024-09-04T16:37:26.395220Z", + "iopub.status.idle": "2024-09-04T16:37:26.576537Z", + "shell.execute_reply": "2024-09-04T16:37:26.575964Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:14.387213Z", - "iopub.status.busy": "2024-08-29T17:08:14.386830Z", - "iopub.status.idle": "2024-08-29T17:08:14.759817Z", - "shell.execute_reply": "2024-08-29T17:08:14.759249Z" + "iopub.execute_input": "2024-09-04T16:37:26.578929Z", + "iopub.status.busy": "2024-09-04T16:37:26.578586Z", + "iopub.status.idle": "2024-09-04T16:37:26.897183Z", + "shell.execute_reply": "2024-09-04T16:37:26.896618Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:14.762079Z", - "iopub.status.busy": "2024-08-29T17:08:14.761789Z", - "iopub.status.idle": "2024-08-29T17:08:14.785718Z", - "shell.execute_reply": "2024-08-29T17:08:14.785259Z" + "iopub.execute_input": "2024-09-04T16:37:26.899429Z", + "iopub.status.busy": "2024-09-04T16:37:26.899082Z", + "iopub.status.idle": "2024-09-04T16:37:26.921334Z", + "shell.execute_reply": "2024-09-04T16:37:26.920856Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:14.787805Z", - "iopub.status.busy": "2024-08-29T17:08:14.787620Z", - "iopub.status.idle": "2024-08-29T17:08:14.799176Z", - "shell.execute_reply": "2024-08-29T17:08:14.798696Z" + "iopub.execute_input": "2024-09-04T16:37:26.923342Z", + "iopub.status.busy": "2024-09-04T16:37:26.923003Z", + "iopub.status.idle": "2024-09-04T16:37:26.934083Z", + "shell.execute_reply": "2024-09-04T16:37:26.933643Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:14.801225Z", - "iopub.status.busy": "2024-08-29T17:08:14.800895Z", - "iopub.status.idle": "2024-08-29T17:08:16.940797Z", - "shell.execute_reply": "2024-08-29T17:08:16.940121Z" + "iopub.execute_input": "2024-09-04T16:37:26.936182Z", + "iopub.status.busy": "2024-09-04T16:37:26.935792Z", + "iopub.status.idle": "2024-09-04T16:37:28.937872Z", + "shell.execute_reply": "2024-09-04T16:37:28.937200Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:16.943337Z", - "iopub.status.busy": "2024-08-29T17:08:16.942872Z", - "iopub.status.idle": "2024-08-29T17:08:16.964195Z", - "shell.execute_reply": "2024-08-29T17:08:16.963617Z" + "iopub.execute_input": "2024-09-04T16:37:28.940176Z", + "iopub.status.busy": "2024-09-04T16:37:28.939856Z", + "iopub.status.idle": "2024-09-04T16:37:28.960344Z", + "shell.execute_reply": "2024-09-04T16:37:28.959784Z" } }, "outputs": [ @@ -830,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:16.966366Z", - "iopub.status.busy": "2024-08-29T17:08:16.966135Z", - "iopub.status.idle": "2024-08-29T17:08:16.984299Z", - "shell.execute_reply": "2024-08-29T17:08:16.983825Z" + "iopub.execute_input": "2024-09-04T16:37:28.962368Z", + "iopub.status.busy": "2024-09-04T16:37:28.962076Z", + "iopub.status.idle": "2024-09-04T16:37:28.979408Z", + "shell.execute_reply": "2024-09-04T16:37:28.978861Z" } }, "outputs": [ @@ -937,10 +937,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:16.986403Z", - "iopub.status.busy": "2024-08-29T17:08:16.986050Z", - "iopub.status.idle": "2024-08-29T17:08:16.999786Z", - "shell.execute_reply": "2024-08-29T17:08:16.999335Z" + "iopub.execute_input": "2024-09-04T16:37:28.981577Z", + "iopub.status.busy": "2024-09-04T16:37:28.981258Z", + "iopub.status.idle": "2024-09-04T16:37:28.996081Z", + "shell.execute_reply": "2024-09-04T16:37:28.995526Z" } }, "outputs": [ @@ -1075,17 +1075,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:17.001990Z", - "iopub.status.busy": "2024-08-29T17:08:17.001655Z", - "iopub.status.idle": "2024-08-29T17:08:17.022823Z", - "shell.execute_reply": "2024-08-29T17:08:17.022252Z" + "iopub.execute_input": "2024-09-04T16:37:28.998145Z", + "iopub.status.busy": "2024-09-04T16:37:28.997812Z", + "iopub.status.idle": "2024-09-04T16:37:29.016859Z", + "shell.execute_reply": "2024-09-04T16:37:29.016322Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e39c809fe1e5418fa02e423f6239224a", + "model_id": "a82b12c348af4b1cb24896bb4b947dcd", "version_major": 2, "version_minor": 0 }, @@ -1121,10 +1121,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:17.024929Z", - "iopub.status.busy": "2024-08-29T17:08:17.024753Z", - "iopub.status.idle": "2024-08-29T17:08:17.039444Z", - "shell.execute_reply": "2024-08-29T17:08:17.038965Z" + "iopub.execute_input": "2024-09-04T16:37:29.019103Z", + "iopub.status.busy": "2024-09-04T16:37:29.018781Z", + "iopub.status.idle": "2024-09-04T16:37:29.032859Z", + "shell.execute_reply": "2024-09-04T16:37:29.032412Z" } }, "outputs": [ @@ -1247,10 +1247,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:17.041523Z", - "iopub.status.busy": "2024-08-29T17:08:17.041339Z", - "iopub.status.idle": "2024-08-29T17:08:17.047239Z", - "shell.execute_reply": "2024-08-29T17:08:17.046785Z" + "iopub.execute_input": "2024-09-04T16:37:29.034905Z", + "iopub.status.busy": "2024-09-04T16:37:29.034581Z", + "iopub.status.idle": "2024-09-04T16:37:29.040289Z", + "shell.execute_reply": "2024-09-04T16:37:29.039848Z" } }, "outputs": [], @@ -1307,10 +1307,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:17.049357Z", - "iopub.status.busy": "2024-08-29T17:08:17.049030Z", - "iopub.status.idle": "2024-08-29T17:08:17.066758Z", - "shell.execute_reply": "2024-08-29T17:08:17.066321Z" + "iopub.execute_input": "2024-09-04T16:37:29.042309Z", + "iopub.status.busy": "2024-09-04T16:37:29.041977Z", + "iopub.status.idle": "2024-09-04T16:37:29.058945Z", + "shell.execute_reply": "2024-09-04T16:37:29.058403Z" } }, "outputs": [ @@ -1447,78 +1447,46 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "12a04c5f135740ce8abb43266b624fdf": { + "022627ac4a8d42ed8ed59e0e2927f625": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_70f0831e295b49a19b6c248f561c7ce4", + "placeholder": "​", + "style": "IPY_MODEL_6c23ad5469464e2ba5f419bc7ec105c8", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 13515.48 examples/s]" } }, - "24bae2c3872c4a43a5fd3fae4d9ed9eb": { - "model_module": "@jupyter-widgets/base", + "0faf1c44499b44398e97768f845c5ccb": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "4e3c3f0d367d480b8fcc7e684908d700": { + "1a279b2d19734290b37981c20d38044f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1571,7 +1539,7 @@ "width": null } }, - "55f93856cd4548a39c8c6e90826ecd93": { + "5960f005dca9493fba39d83ebbea7501": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1586,15 +1554,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4e3c3f0d367d480b8fcc7e684908d700", + "layout": "IPY_MODEL_1a279b2d19734290b37981c20d38044f", "placeholder": "​", - "style": "IPY_MODEL_12a04c5f135740ce8abb43266b624fdf", + "style": "IPY_MODEL_ad50f86230454235974a7058b324c74f", "tabbable": null, "tooltip": null, - "value": " 132/132 [00:00<00:00, 11638.35 examples/s]" + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "6c23ad5469464e2ba5f419bc7ec105c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5b87eb62ed214ce180caa1f921b0d9ea": { + "6d467bcf5764448a8204581828c498fe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1647,23 +1633,7 @@ "width": null } }, - "5d57d92b70144fdcb7098fca41086477": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c4f4ea12ab8d4b89a10654852ccbed0f": { + "70f0831e295b49a19b6c248f561c7ce4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1716,7 +1686,7 @@ "width": null } }, - "cc9ecab385db43349e56648be16263af": { + "93f3d5c18053458eb93c314d771e54af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1732,17 +1702,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5b87eb62ed214ce180caa1f921b0d9ea", + "layout": "IPY_MODEL_dbf82dbb10ce4fdd9d4269c96540fefa", "max": 132.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_5d57d92b70144fdcb7098fca41086477", + "style": "IPY_MODEL_0faf1c44499b44398e97768f845c5ccb", "tabbable": null, "tooltip": null, "value": 132.0 } }, - "e39c809fe1e5418fa02e423f6239224a": { + "a82b12c348af4b1cb24896bb4b947dcd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1757,39 +1727,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_e8102209c403486ea0c0ad5d32b673a3", - "IPY_MODEL_cc9ecab385db43349e56648be16263af", - "IPY_MODEL_55f93856cd4548a39c8c6e90826ecd93" + "IPY_MODEL_5960f005dca9493fba39d83ebbea7501", + "IPY_MODEL_93f3d5c18053458eb93c314d771e54af", + "IPY_MODEL_022627ac4a8d42ed8ed59e0e2927f625" ], - "layout": "IPY_MODEL_c4f4ea12ab8d4b89a10654852ccbed0f", + "layout": "IPY_MODEL_6d467bcf5764448a8204581828c498fe", "tabbable": null, "tooltip": null } }, - "e8102209c403486ea0c0ad5d32b673a3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_24bae2c3872c4a43a5fd3fae4d9ed9eb", - "placeholder": "​", - "style": "IPY_MODEL_ede416b2fa6d40bb94f2f110d2a17a92", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" - } - }, - "ede416b2fa6d40bb94f2f110d2a17a92": { + "ad50f86230454235974a7058b324c74f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1806,6 +1753,59 @@ "font_size": null, "text_color": null } + }, + "dbf82dbb10ce4fdd9d4269c96540fefa": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb index c8c193157..c29ef173d 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:20.113969Z", - "iopub.status.busy": "2024-08-29T17:08:20.113794Z", - "iopub.status.idle": "2024-08-29T17:08:21.353606Z", - "shell.execute_reply": "2024-08-29T17:08:21.353040Z" + "iopub.execute_input": "2024-09-04T16:37:31.771386Z", + "iopub.status.busy": "2024-09-04T16:37:31.770859Z", + "iopub.status.idle": "2024-09-04T16:37:32.956552Z", + "shell.execute_reply": "2024-09-04T16:37:32.955990Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:21.356240Z", - "iopub.status.busy": "2024-08-29T17:08:21.355852Z", - "iopub.status.idle": "2024-08-29T17:08:21.358998Z", - "shell.execute_reply": "2024-08-29T17:08:21.358428Z" + "iopub.execute_input": "2024-09-04T16:37:32.959181Z", + "iopub.status.busy": "2024-09-04T16:37:32.958782Z", + "iopub.status.idle": "2024-09-04T16:37:32.961888Z", + "shell.execute_reply": "2024-09-04T16:37:32.961377Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:21.361082Z", - "iopub.status.busy": "2024-08-29T17:08:21.360811Z", - "iopub.status.idle": "2024-08-29T17:08:21.370013Z", - "shell.execute_reply": "2024-08-29T17:08:21.369452Z" + "iopub.execute_input": "2024-09-04T16:37:32.964036Z", + "iopub.status.busy": "2024-09-04T16:37:32.963696Z", + "iopub.status.idle": "2024-09-04T16:37:32.972589Z", + "shell.execute_reply": "2024-09-04T16:37:32.972110Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:21.372175Z", - "iopub.status.busy": "2024-08-29T17:08:21.371862Z", - "iopub.status.idle": "2024-08-29T17:08:21.376987Z", - "shell.execute_reply": "2024-08-29T17:08:21.376421Z" + "iopub.execute_input": "2024-09-04T16:37:32.974605Z", + "iopub.status.busy": "2024-09-04T16:37:32.974252Z", + "iopub.status.idle": "2024-09-04T16:37:32.978768Z", + "shell.execute_reply": "2024-09-04T16:37:32.978341Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:21.379156Z", - "iopub.status.busy": "2024-08-29T17:08:21.378839Z", - "iopub.status.idle": "2024-08-29T17:08:21.566898Z", - "shell.execute_reply": "2024-08-29T17:08:21.566241Z" + "iopub.execute_input": "2024-09-04T16:37:32.980858Z", + "iopub.status.busy": "2024-09-04T16:37:32.980520Z", + "iopub.status.idle": "2024-09-04T16:37:33.162436Z", + "shell.execute_reply": "2024-09-04T16:37:33.161941Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:21.569454Z", - "iopub.status.busy": "2024-08-29T17:08:21.569150Z", - "iopub.status.idle": "2024-08-29T17:08:21.887845Z", - "shell.execute_reply": "2024-08-29T17:08:21.887274Z" + "iopub.execute_input": "2024-09-04T16:37:33.164663Z", + "iopub.status.busy": "2024-09-04T16:37:33.164344Z", + "iopub.status.idle": "2024-09-04T16:37:33.478065Z", + "shell.execute_reply": "2024-09-04T16:37:33.477467Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:21.890078Z", - "iopub.status.busy": "2024-08-29T17:08:21.889728Z", - "iopub.status.idle": "2024-08-29T17:08:21.892687Z", - "shell.execute_reply": "2024-08-29T17:08:21.892109Z" + "iopub.execute_input": "2024-09-04T16:37:33.480446Z", + "iopub.status.busy": "2024-09-04T16:37:33.480100Z", + "iopub.status.idle": "2024-09-04T16:37:33.482739Z", + "shell.execute_reply": "2024-09-04T16:37:33.482293Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:21.894739Z", - "iopub.status.busy": "2024-08-29T17:08:21.894432Z", - "iopub.status.idle": "2024-08-29T17:08:21.928438Z", - "shell.execute_reply": "2024-08-29T17:08:21.927809Z" + "iopub.execute_input": "2024-09-04T16:37:33.484844Z", + "iopub.status.busy": "2024-09-04T16:37:33.484502Z", + "iopub.status.idle": "2024-09-04T16:37:33.517980Z", + "shell.execute_reply": "2024-09-04T16:37:33.517549Z" } }, "outputs": [], @@ -638,10 +638,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:21.930771Z", - "iopub.status.busy": "2024-08-29T17:08:21.930478Z", - "iopub.status.idle": "2024-08-29T17:08:24.030674Z", - "shell.execute_reply": "2024-08-29T17:08:24.030079Z" + "iopub.execute_input": "2024-09-04T16:37:33.520005Z", + "iopub.status.busy": "2024-09-04T16:37:33.519670Z", + "iopub.status.idle": "2024-09-04T16:37:35.560158Z", + "shell.execute_reply": "2024-09-04T16:37:35.559551Z" } }, "outputs": [ @@ -685,10 +685,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:24.033167Z", - "iopub.status.busy": "2024-08-29T17:08:24.032657Z", - "iopub.status.idle": "2024-08-29T17:08:24.051094Z", - "shell.execute_reply": "2024-08-29T17:08:24.050618Z" + "iopub.execute_input": "2024-09-04T16:37:35.562690Z", + "iopub.status.busy": "2024-09-04T16:37:35.562196Z", + "iopub.status.idle": "2024-09-04T16:37:35.580571Z", + "shell.execute_reply": "2024-09-04T16:37:35.580012Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:24.053115Z", - "iopub.status.busy": "2024-08-29T17:08:24.052775Z", - "iopub.status.idle": "2024-08-29T17:08:24.059061Z", - "shell.execute_reply": "2024-08-29T17:08:24.058619Z" + "iopub.execute_input": "2024-09-04T16:37:35.582599Z", + "iopub.status.busy": "2024-09-04T16:37:35.582297Z", + "iopub.status.idle": "2024-09-04T16:37:35.588836Z", + "shell.execute_reply": "2024-09-04T16:37:35.588392Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:24.061038Z", - "iopub.status.busy": "2024-08-29T17:08:24.060703Z", - "iopub.status.idle": "2024-08-29T17:08:24.066244Z", - "shell.execute_reply": "2024-08-29T17:08:24.065776Z" + "iopub.execute_input": "2024-09-04T16:37:35.590838Z", + "iopub.status.busy": "2024-09-04T16:37:35.590526Z", + "iopub.status.idle": "2024-09-04T16:37:35.596108Z", + "shell.execute_reply": "2024-09-04T16:37:35.595675Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:24.068374Z", - "iopub.status.busy": "2024-08-29T17:08:24.067947Z", - "iopub.status.idle": "2024-08-29T17:08:24.078268Z", - "shell.execute_reply": "2024-08-29T17:08:24.077701Z" + "iopub.execute_input": "2024-09-04T16:37:35.598100Z", + "iopub.status.busy": "2024-09-04T16:37:35.597788Z", + "iopub.status.idle": "2024-09-04T16:37:35.607949Z", + "shell.execute_reply": "2024-09-04T16:37:35.607373Z" } }, "outputs": [ @@ -1200,10 +1200,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:24.080224Z", - "iopub.status.busy": "2024-08-29T17:08:24.080046Z", - "iopub.status.idle": "2024-08-29T17:08:24.089269Z", - "shell.execute_reply": "2024-08-29T17:08:24.088724Z" + "iopub.execute_input": "2024-09-04T16:37:35.609973Z", + "iopub.status.busy": "2024-09-04T16:37:35.609632Z", + "iopub.status.idle": "2024-09-04T16:37:35.618044Z", + "shell.execute_reply": "2024-09-04T16:37:35.617603Z" } }, "outputs": [ @@ -1319,10 +1319,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:24.091410Z", - "iopub.status.busy": "2024-08-29T17:08:24.091077Z", - "iopub.status.idle": "2024-08-29T17:08:24.097920Z", - "shell.execute_reply": "2024-08-29T17:08:24.097368Z" + "iopub.execute_input": "2024-09-04T16:37:35.619994Z", + "iopub.status.busy": "2024-09-04T16:37:35.619821Z", + "iopub.status.idle": "2024-09-04T16:37:35.626826Z", + "shell.execute_reply": "2024-09-04T16:37:35.626375Z" }, "scrolled": true }, @@ -1447,10 +1447,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:24.099999Z", - "iopub.status.busy": "2024-08-29T17:08:24.099726Z", - "iopub.status.idle": "2024-08-29T17:08:24.109078Z", - "shell.execute_reply": "2024-08-29T17:08:24.108508Z" + "iopub.execute_input": "2024-09-04T16:37:35.628964Z", + "iopub.status.busy": "2024-09-04T16:37:35.628519Z", + "iopub.status.idle": "2024-09-04T16:37:35.637919Z", + "shell.execute_reply": "2024-09-04T16:37:35.637354Z" } }, "outputs": [ @@ -1553,10 +1553,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:24.111257Z", - "iopub.status.busy": "2024-08-29T17:08:24.110943Z", - "iopub.status.idle": "2024-08-29T17:08:24.128371Z", - "shell.execute_reply": "2024-08-29T17:08:24.127947Z" + "iopub.execute_input": "2024-09-04T16:37:35.640087Z", + "iopub.status.busy": "2024-09-04T16:37:35.639776Z", + "iopub.status.idle": "2024-09-04T16:37:35.656365Z", + "shell.execute_reply": "2024-09-04T16:37:35.655938Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb index c70a728dc..cb169fc85 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:27.059101Z", - "iopub.status.busy": "2024-08-29T17:08:27.058926Z", - "iopub.status.idle": "2024-08-29T17:08:30.040828Z", - "shell.execute_reply": "2024-08-29T17:08:30.040273Z" + "iopub.execute_input": "2024-09-04T16:37:38.303462Z", + "iopub.status.busy": "2024-09-04T16:37:38.303044Z", + "iopub.status.idle": "2024-09-04T16:37:41.244865Z", + "shell.execute_reply": "2024-09-04T16:37:41.244308Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:30.043597Z", - "iopub.status.busy": "2024-08-29T17:08:30.043071Z", - "iopub.status.idle": "2024-08-29T17:08:30.046795Z", - "shell.execute_reply": "2024-08-29T17:08:30.046202Z" + "iopub.execute_input": "2024-09-04T16:37:41.247427Z", + "iopub.status.busy": "2024-09-04T16:37:41.247143Z", + "iopub.status.idle": "2024-09-04T16:37:41.250634Z", + "shell.execute_reply": "2024-09-04T16:37:41.250198Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:30.048992Z", - "iopub.status.busy": "2024-08-29T17:08:30.048517Z", - "iopub.status.idle": "2024-08-29T17:08:33.008906Z", - "shell.execute_reply": "2024-08-29T17:08:33.008290Z" + "iopub.execute_input": "2024-09-04T16:37:41.252505Z", + "iopub.status.busy": "2024-09-04T16:37:41.252330Z", + "iopub.status.idle": "2024-09-04T16:37:49.839843Z", + "shell.execute_reply": "2024-09-04T16:37:49.839373Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "02166c864ca449ecb48ca6570e5c3978", + "model_id": "319eb3c359274c29ba693fd30f98b99d", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "db7e223cca954fa69911aa2677ff4349", + "model_id": "1abdd5d51e71429c83f3161fb0f34a8a", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3a4a80e9a3f547d9b039302dbdd73447", + "model_id": "be064f9db0c241afa490cc2cddb76c07", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c2f58df60b6f4bb683e4db3d17f476f1", + "model_id": "39b7a60b22d9490c85820d3c8bb7afc7", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2c326980020e4183aef0bcca45f9b946", + "model_id": "33af8738fba94dfab36a8701ff30857a", "version_major": 2, "version_minor": 0 }, @@ -260,10 +260,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:33.011085Z", - "iopub.status.busy": "2024-08-29T17:08:33.010797Z", - "iopub.status.idle": "2024-08-29T17:08:33.014717Z", - "shell.execute_reply": "2024-08-29T17:08:33.014140Z" + "iopub.execute_input": "2024-09-04T16:37:49.842162Z", + "iopub.status.busy": "2024-09-04T16:37:49.841818Z", + "iopub.status.idle": "2024-09-04T16:37:49.846030Z", + "shell.execute_reply": "2024-09-04T16:37:49.845588Z" } }, "outputs": [ @@ -288,17 +288,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:33.017026Z", - "iopub.status.busy": "2024-08-29T17:08:33.016616Z", - "iopub.status.idle": "2024-08-29T17:08:44.567881Z", - "shell.execute_reply": "2024-08-29T17:08:44.567340Z" + "iopub.execute_input": "2024-09-04T16:37:49.848035Z", + "iopub.status.busy": "2024-09-04T16:37:49.847710Z", + "iopub.status.idle": "2024-09-04T16:38:01.327046Z", + "shell.execute_reply": "2024-09-04T16:38:01.326503Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "944d3d9122cd4a2688bd85cf843c82c1", + "model_id": "4bb198dfcbae4b5aa14ac1168e1b6695", "version_major": 2, "version_minor": 0 }, @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:44.570431Z", - "iopub.status.busy": "2024-08-29T17:08:44.570184Z", - "iopub.status.idle": "2024-08-29T17:09:03.080323Z", - "shell.execute_reply": "2024-08-29T17:09:03.079706Z" + "iopub.execute_input": "2024-09-04T16:38:01.329677Z", + "iopub.status.busy": "2024-09-04T16:38:01.329284Z", + "iopub.status.idle": "2024-09-04T16:38:19.893278Z", + "shell.execute_reply": "2024-09-04T16:38:19.892634Z" } }, "outputs": [], @@ -372,10 +372,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:09:03.083092Z", - "iopub.status.busy": "2024-08-29T17:09:03.082685Z", - "iopub.status.idle": "2024-08-29T17:09:03.088725Z", - "shell.execute_reply": "2024-08-29T17:09:03.088125Z" + "iopub.execute_input": "2024-09-04T16:38:19.896038Z", + "iopub.status.busy": "2024-09-04T16:38:19.895653Z", + "iopub.status.idle": "2024-09-04T16:38:19.901344Z", + "shell.execute_reply": "2024-09-04T16:38:19.900884Z" } }, "outputs": [], @@ -413,10 +413,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:09:03.091044Z", - "iopub.status.busy": "2024-08-29T17:09:03.090667Z", - "iopub.status.idle": "2024-08-29T17:09:03.094812Z", - "shell.execute_reply": "2024-08-29T17:09:03.094381Z" + "iopub.execute_input": "2024-09-04T16:38:19.903276Z", + "iopub.status.busy": "2024-09-04T16:38:19.902941Z", + "iopub.status.idle": "2024-09-04T16:38:19.907079Z", + "shell.execute_reply": "2024-09-04T16:38:19.906541Z" }, "nbsphinx": "hidden" }, @@ -553,10 +553,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:09:03.097052Z", - "iopub.status.busy": "2024-08-29T17:09:03.096741Z", - "iopub.status.idle": "2024-08-29T17:09:03.105849Z", - "shell.execute_reply": "2024-08-29T17:09:03.105377Z" + "iopub.execute_input": "2024-09-04T16:38:19.909304Z", + "iopub.status.busy": "2024-09-04T16:38:19.908877Z", + "iopub.status.idle": "2024-09-04T16:38:19.917613Z", + "shell.execute_reply": "2024-09-04T16:38:19.917139Z" }, "nbsphinx": "hidden" }, @@ -681,10 +681,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:09:03.108014Z", - "iopub.status.busy": "2024-08-29T17:09:03.107668Z", - "iopub.status.idle": "2024-08-29T17:09:03.136081Z", - "shell.execute_reply": "2024-08-29T17:09:03.135415Z" + "iopub.execute_input": "2024-09-04T16:38:19.919533Z", + "iopub.status.busy": "2024-09-04T16:38:19.919361Z", + "iopub.status.idle": "2024-09-04T16:38:19.945136Z", + "shell.execute_reply": "2024-09-04T16:38:19.944720Z" } }, "outputs": [], @@ -721,10 +721,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:09:03.138517Z", - "iopub.status.busy": "2024-08-29T17:09:03.138340Z", - "iopub.status.idle": "2024-08-29T17:09:37.733449Z", - "shell.execute_reply": "2024-08-29T17:09:37.732851Z" + "iopub.execute_input": "2024-09-04T16:38:19.947137Z", + "iopub.status.busy": "2024-09-04T16:38:19.946804Z", + "iopub.status.idle": "2024-09-04T16:38:52.806683Z", + "shell.execute_reply": "2024-09-04T16:38:52.806036Z" } }, "outputs": [ @@ -740,21 +740,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.447\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.850\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.931\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.533\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "30683b6059984426ba19841fd4a774ec", + "model_id": "e0d04f00652048319b15a7c8d92b501f", "version_major": 2, "version_minor": 0 }, @@ -775,7 +775,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2b84d19858824876b35a7eebdf801115", + "model_id": "14a337641dd1417c8844000cc271b2b4", "version_major": 2, "version_minor": 0 }, @@ -798,21 +798,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.921\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.716\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.694\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.764\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e3b91fd43b3e46c08a3c6d32e9efbe48", + "model_id": "c88ba26dbe76450d8c7a7ecda8dfca3e", "version_major": 2, "version_minor": 0 }, @@ -833,7 +833,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "245f60ab16d24a57b85ef53a5fb96484", + "model_id": "b8fa2ba849184558b5054c6e4a4e5dd8", "version_major": 2, "version_minor": 0 }, @@ -856,21 +856,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 5.072\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.906\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.779\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.489\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dd4fc8da52cc4c5cbd12d26954963ed1", + "model_id": "8a1c87dd1eaf47458965198d643def42", "version_major": 2, "version_minor": 0 }, @@ -891,7 +891,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3a83a86ee3254d7fbaa7f292d3461e66", + "model_id": "75f52856abb347d89314c3cc706909a4", "version_major": 2, "version_minor": 0 }, @@ -970,10 +970,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:09:37.736051Z", - "iopub.status.busy": "2024-08-29T17:09:37.735695Z", - "iopub.status.idle": "2024-08-29T17:09:37.752765Z", - "shell.execute_reply": "2024-08-29T17:09:37.752270Z" + "iopub.execute_input": "2024-09-04T16:38:52.809587Z", + "iopub.status.busy": "2024-09-04T16:38:52.808875Z", + "iopub.status.idle": "2024-09-04T16:38:52.825892Z", + "shell.execute_reply": "2024-09-04T16:38:52.825344Z" } }, "outputs": [], @@ -998,10 +998,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:09:37.755320Z", - "iopub.status.busy": "2024-08-29T17:09:37.754911Z", - "iopub.status.idle": "2024-08-29T17:09:38.245417Z", - "shell.execute_reply": "2024-08-29T17:09:38.244840Z" + "iopub.execute_input": "2024-09-04T16:38:52.827925Z", + "iopub.status.busy": "2024-09-04T16:38:52.827630Z", + "iopub.status.idle": "2024-09-04T16:38:53.283408Z", + "shell.execute_reply": "2024-09-04T16:38:53.282767Z" } }, "outputs": [], @@ -1021,10 +1021,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:09:38.247965Z", - "iopub.status.busy": "2024-08-29T17:09:38.247597Z", - "iopub.status.idle": "2024-08-29T17:11:29.864746Z", - "shell.execute_reply": "2024-08-29T17:11:29.864175Z" + "iopub.execute_input": "2024-09-04T16:38:53.285982Z", + "iopub.status.busy": "2024-09-04T16:38:53.285755Z", + "iopub.status.idle": "2024-09-04T16:40:43.226591Z", + "shell.execute_reply": "2024-09-04T16:40:43.225892Z" } }, "outputs": [ @@ -1063,7 +1063,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "edc1a5f44295433790bd440975c40ab2", + "model_id": "52daadd720d843c0afa302f1faa5901a", "version_major": 2, "version_minor": 0 }, @@ -1109,10 +1109,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:29.867387Z", - "iopub.status.busy": "2024-08-29T17:11:29.866814Z", - "iopub.status.idle": "2024-08-29T17:11:30.324739Z", - "shell.execute_reply": "2024-08-29T17:11:30.324184Z" + "iopub.execute_input": "2024-09-04T16:40:43.228968Z", + "iopub.status.busy": "2024-09-04T16:40:43.228597Z", + "iopub.status.idle": "2024-09-04T16:40:43.675739Z", + "shell.execute_reply": "2024-09-04T16:40:43.675200Z" } }, "outputs": [ @@ -1258,10 +1258,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:30.327596Z", - "iopub.status.busy": "2024-08-29T17:11:30.327051Z", - "iopub.status.idle": "2024-08-29T17:11:30.389811Z", - "shell.execute_reply": "2024-08-29T17:11:30.389255Z" + "iopub.execute_input": "2024-09-04T16:40:43.678201Z", + "iopub.status.busy": "2024-09-04T16:40:43.677671Z", + "iopub.status.idle": "2024-09-04T16:40:43.739002Z", + "shell.execute_reply": "2024-09-04T16:40:43.738437Z" } }, "outputs": [ @@ -1365,10 +1365,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:30.392151Z", - "iopub.status.busy": "2024-08-29T17:11:30.391806Z", - "iopub.status.idle": "2024-08-29T17:11:30.400249Z", - "shell.execute_reply": "2024-08-29T17:11:30.399703Z" + "iopub.execute_input": "2024-09-04T16:40:43.741132Z", + "iopub.status.busy": "2024-09-04T16:40:43.740794Z", + "iopub.status.idle": "2024-09-04T16:40:43.749267Z", + "shell.execute_reply": "2024-09-04T16:40:43.748826Z" } }, "outputs": [ @@ -1498,10 +1498,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:30.402446Z", - "iopub.status.busy": "2024-08-29T17:11:30.402084Z", - "iopub.status.idle": "2024-08-29T17:11:30.406868Z", - "shell.execute_reply": "2024-08-29T17:11:30.406399Z" + "iopub.execute_input": "2024-09-04T16:40:43.751193Z", + "iopub.status.busy": "2024-09-04T16:40:43.751016Z", + "iopub.status.idle": "2024-09-04T16:40:43.755783Z", + "shell.execute_reply": "2024-09-04T16:40:43.755317Z" }, "nbsphinx": "hidden" }, @@ -1547,10 +1547,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:30.408824Z", - "iopub.status.busy": "2024-08-29T17:11:30.408490Z", - "iopub.status.idle": "2024-08-29T17:11:30.912588Z", - "shell.execute_reply": "2024-08-29T17:11:30.912015Z" + "iopub.execute_input": "2024-09-04T16:40:43.757639Z", + "iopub.status.busy": "2024-09-04T16:40:43.757465Z", + "iopub.status.idle": "2024-09-04T16:40:44.265971Z", + "shell.execute_reply": "2024-09-04T16:40:44.265369Z" } }, "outputs": [ @@ -1585,10 +1585,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:30.914935Z", - "iopub.status.busy": "2024-08-29T17:11:30.914587Z", - "iopub.status.idle": "2024-08-29T17:11:30.922932Z", - "shell.execute_reply": "2024-08-29T17:11:30.922356Z" + "iopub.execute_input": "2024-09-04T16:40:44.268076Z", + "iopub.status.busy": "2024-09-04T16:40:44.267893Z", + "iopub.status.idle": "2024-09-04T16:40:44.276152Z", + "shell.execute_reply": "2024-09-04T16:40:44.275678Z" } }, "outputs": [ @@ -1755,10 +1755,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:30.925119Z", - "iopub.status.busy": "2024-08-29T17:11:30.924783Z", - "iopub.status.idle": "2024-08-29T17:11:30.931843Z", - "shell.execute_reply": "2024-08-29T17:11:30.931398Z" + "iopub.execute_input": "2024-09-04T16:40:44.278230Z", + "iopub.status.busy": "2024-09-04T16:40:44.277902Z", + "iopub.status.idle": "2024-09-04T16:40:44.284855Z", + "shell.execute_reply": "2024-09-04T16:40:44.284411Z" }, "nbsphinx": "hidden" }, @@ -1834,10 +1834,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:30.933599Z", - "iopub.status.busy": "2024-08-29T17:11:30.933424Z", - "iopub.status.idle": "2024-08-29T17:11:31.398085Z", - "shell.execute_reply": "2024-08-29T17:11:31.397512Z" + "iopub.execute_input": "2024-09-04T16:40:44.286862Z", + "iopub.status.busy": "2024-09-04T16:40:44.286552Z", + "iopub.status.idle": "2024-09-04T16:40:44.746586Z", + "shell.execute_reply": "2024-09-04T16:40:44.746027Z" } }, "outputs": [ @@ -1874,10 +1874,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:31.400844Z", - "iopub.status.busy": "2024-08-29T17:11:31.400634Z", - "iopub.status.idle": "2024-08-29T17:11:31.416578Z", - "shell.execute_reply": "2024-08-29T17:11:31.416009Z" + "iopub.execute_input": "2024-09-04T16:40:44.748828Z", + "iopub.status.busy": "2024-09-04T16:40:44.748427Z", + "iopub.status.idle": "2024-09-04T16:40:44.763715Z", + "shell.execute_reply": "2024-09-04T16:40:44.763150Z" } }, "outputs": [ @@ -2034,10 +2034,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:31.418744Z", - "iopub.status.busy": "2024-08-29T17:11:31.418557Z", - "iopub.status.idle": "2024-08-29T17:11:31.424086Z", - "shell.execute_reply": "2024-08-29T17:11:31.423645Z" + "iopub.execute_input": "2024-09-04T16:40:44.765997Z", + "iopub.status.busy": "2024-09-04T16:40:44.765675Z", + "iopub.status.idle": "2024-09-04T16:40:44.771164Z", + "shell.execute_reply": "2024-09-04T16:40:44.770690Z" }, "nbsphinx": "hidden" }, @@ -2082,10 +2082,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:31.426117Z", - "iopub.status.busy": "2024-08-29T17:11:31.425774Z", - "iopub.status.idle": "2024-08-29T17:11:32.215618Z", - "shell.execute_reply": "2024-08-29T17:11:32.215025Z" + "iopub.execute_input": "2024-09-04T16:40:44.773129Z", + "iopub.status.busy": "2024-09-04T16:40:44.772818Z", + "iopub.status.idle": "2024-09-04T16:40:45.529052Z", + "shell.execute_reply": "2024-09-04T16:40:45.528506Z" } }, "outputs": [ @@ -2167,10 +2167,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:32.218454Z", - "iopub.status.busy": "2024-08-29T17:11:32.217963Z", - "iopub.status.idle": "2024-08-29T17:11:32.228519Z", - "shell.execute_reply": "2024-08-29T17:11:32.228006Z" + "iopub.execute_input": "2024-09-04T16:40:45.531739Z", + "iopub.status.busy": "2024-09-04T16:40:45.531544Z", + "iopub.status.idle": "2024-09-04T16:40:45.541591Z", + "shell.execute_reply": "2024-09-04T16:40:45.541029Z" } }, "outputs": [ @@ -2195,47 +2195,47 @@ " \n", " \n", " \n", - " is_dark_issue\n", " dark_score\n", + " is_dark_issue\n", " \n", " \n", " \n", " \n", " 34848\n", - " True\n", " 0.203922\n", + " True\n", " \n", " \n", " 50270\n", - " True\n", " 0.204588\n", + " True\n", " \n", " \n", " 3936\n", - " True\n", " 0.213098\n", + " True\n", " \n", " \n", " 733\n", - " True\n", " 0.217686\n", + " True\n", " \n", " \n", " 8094\n", - " True\n", " 0.230118\n", + " True\n", " \n", " \n", "\n", "" ], "text/plain": [ - " is_dark_issue dark_score\n", - "34848 True 0.203922\n", - "50270 True 0.204588\n", - "3936 True 0.213098\n", - "733 True 0.217686\n", - "8094 True 0.230118" + " dark_score is_dark_issue\n", + "34848 0.203922 True\n", + "50270 0.204588 True\n", + "3936 0.213098 True\n", + "733 0.217686 True\n", + "8094 0.230118 True" ] }, "execution_count": 26, @@ -2298,10 +2298,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:32.231159Z", - "iopub.status.busy": "2024-08-29T17:11:32.230722Z", - "iopub.status.idle": "2024-08-29T17:11:32.236833Z", - "shell.execute_reply": "2024-08-29T17:11:32.236266Z" + "iopub.execute_input": "2024-09-04T16:40:45.543993Z", + "iopub.status.busy": "2024-09-04T16:40:45.543803Z", + "iopub.status.idle": "2024-09-04T16:40:45.550571Z", + "shell.execute_reply": "2024-09-04T16:40:45.550023Z" }, "nbsphinx": "hidden" }, @@ -2338,10 +2338,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:32.239180Z", - "iopub.status.busy": "2024-08-29T17:11:32.238981Z", - "iopub.status.idle": "2024-08-29T17:11:32.438795Z", - "shell.execute_reply": "2024-08-29T17:11:32.438295Z" + "iopub.execute_input": "2024-09-04T16:40:45.553267Z", + "iopub.status.busy": "2024-09-04T16:40:45.552801Z", + "iopub.status.idle": "2024-09-04T16:40:45.753254Z", + "shell.execute_reply": "2024-09-04T16:40:45.752684Z" } }, "outputs": [ @@ -2383,10 +2383,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:32.440785Z", - "iopub.status.busy": "2024-08-29T17:11:32.440618Z", - "iopub.status.idle": "2024-08-29T17:11:32.448088Z", - "shell.execute_reply": "2024-08-29T17:11:32.447641Z" + "iopub.execute_input": "2024-09-04T16:40:45.755369Z", + "iopub.status.busy": "2024-09-04T16:40:45.755031Z", + "iopub.status.idle": "2024-09-04T16:40:45.762462Z", + "shell.execute_reply": "2024-09-04T16:40:45.761919Z" } }, "outputs": [ @@ -2411,47 +2411,47 @@ " \n", " \n", " \n", - " low_information_score\n", " is_low_information_issue\n", + " low_information_score\n", " \n", " \n", " \n", " \n", " 53050\n", - " 0.067975\n", " True\n", + " 0.067975\n", " \n", " \n", " 40875\n", - " 0.089929\n", " True\n", + " 0.089929\n", " \n", " \n", " 9594\n", - " 0.092601\n", " True\n", + " 0.092601\n", " \n", " \n", " 34825\n", - " 0.107744\n", " True\n", + " 0.107744\n", " \n", " \n", " 37530\n", - " 0.108516\n", " True\n", + " 0.108516\n", " \n", " \n", "\n", "" ], "text/plain": [ - " low_information_score is_low_information_issue\n", - "53050 0.067975 True\n", - "40875 0.089929 True\n", - "9594 0.092601 True\n", - "34825 0.107744 True\n", - "37530 0.108516 True" + " is_low_information_issue low_information_score\n", + "53050 True 0.067975\n", + "40875 True 0.089929\n", + "9594 True 0.092601\n", + "34825 True 0.107744\n", + "37530 True 0.108516" ] }, "execution_count": 29, @@ -2472,10 +2472,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:32.449857Z", - "iopub.status.busy": "2024-08-29T17:11:32.449697Z", - "iopub.status.idle": "2024-08-29T17:11:32.640964Z", - "shell.execute_reply": "2024-08-29T17:11:32.640466Z" + "iopub.execute_input": "2024-09-04T16:40:45.764526Z", + "iopub.status.busy": "2024-09-04T16:40:45.764213Z", + "iopub.status.idle": "2024-09-04T16:40:45.959309Z", + "shell.execute_reply": "2024-09-04T16:40:45.958868Z" } }, "outputs": [ @@ -2515,10 +2515,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:32.643071Z", - "iopub.status.busy": "2024-08-29T17:11:32.642899Z", - "iopub.status.idle": "2024-08-29T17:11:32.647250Z", - "shell.execute_reply": "2024-08-29T17:11:32.646780Z" + "iopub.execute_input": "2024-09-04T16:40:45.961461Z", + "iopub.status.busy": "2024-09-04T16:40:45.961113Z", + "iopub.status.idle": "2024-09-04T16:40:45.965459Z", + "shell.execute_reply": "2024-09-04T16:40:45.965006Z" }, "nbsphinx": "hidden" }, @@ -2555,77 +2555,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0155f39e76b641a0997403416f227a84": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b8eb25ad27a645b4b1196d369517df6e", - "placeholder": "​", - "style": "IPY_MODEL_34368070659c4652b06234a5ddf214ba", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" - } - }, - "02166c864ca449ecb48ca6570e5c3978": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b899fea4be3f41fdad2310b7c2203a55", - "IPY_MODEL_e7f7e5f9e3b14be7a16a4c71b2317d22", - "IPY_MODEL_0dd17e06beba4539940570c8b1611024" - ], - "layout": "IPY_MODEL_760d2a4ef9f14d55b554ff1f53c49a50", - "tabbable": null, - "tooltip": null - } - }, - "0277bed58c03483d93a6c50e2b9b6722": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8b2b5f770cef4957b0cae17e5aed4562", - "placeholder": "​", - "style": "IPY_MODEL_4f15eed7799b486faac26dd4c03ad836", - "tabbable": null, - "tooltip": null, - "value": " 2/2 [00:00<00:00, 581.21it/s]" - } - }, - "055a2e65c92c43638c2d0e975fa33812": { + "0022417c77c54bd78bfd3a7cea985883": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2678,23 +2608,7 @@ "width": null } }, - "062b1634d54a44ccb33bbd31b552ae3b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "07a736b7838446e0a6062d74aa6d0472": { + "0141ce65cecf40918d943ac362a0a32d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2747,7 +2661,7 @@ "width": null } }, - "0aaafe3124de4c75bfcb92e44f8ddf6b": { + "0179924299be44a79a4cdecc3ed04e5e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2765,30 +2679,7 @@ "text_color": null } }, - "0dd17e06beba4539940570c8b1611024": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1ff6628d35674ed096c44c7819a6691c", - "placeholder": "​", - "style": "IPY_MODEL_d039b3628d7a47e2ba304fcb87558b1f", - "tabbable": null, - "tooltip": null, - "value": " 9.02k/9.02k [00:00<00:00, 1.10MB/s]" - } - }, - "0eee1fa4a60040fda1cd5335b48ae0e8": { + "04229d123f004c9ba6b4e82d3d240266": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2841,7 +2732,7 @@ "width": null } }, - "1289c374a6674e0198d82801b960ee43": { + "04d51f3a37bd41acb28fc4140bb30dce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2894,7 +2785,7 @@ "width": null } }, - "13e8d95a1dd34601a45ec583c686b58a": { + "09a9683625114e2e99db135163b06ca4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2947,56 +2838,92 @@ "width": null } }, - "1432df243741424cad3c2d8d81a50366": { + "0c21af7dcb2d444fbf62b722976a65c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d8c0f1a5c4704230a710b4e1f34aa60a", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_46a8aaaf91bc41ecb5cc7775d315eb4b", + "layout": "IPY_MODEL_cb4db10617e44ed7852597b4f6c0658f", + "placeholder": "​", + "style": "IPY_MODEL_de930b11aed94559b6e097c807955b8b", "tabbable": null, "tooltip": null, - "value": 5175617.0 + "value": "Computing checksums: 100%" } }, - "15aaefdc20954e4fb4be9541b93b659e": { + "0c47aef0907c47eaaedf291087d55f56": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0c9de8b16026487b995ada22a7ca529f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_af35b64a76284e4ea25c616ed38482ae", - "placeholder": "​", - "style": "IPY_MODEL_30b1145acc2e4346902e5abb2c35dc48", + "layout": "IPY_MODEL_7b2b42caf4e746468a4c818d86e8d170", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5d3716a8d48e48e1af03a3146e77ed32", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": 40.0 + } + }, + "0d024a28652841b8b8cf6a9b0ba3bbd3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "16046217f9024ce3b327598b6413db93": { + "0d458c2994de496aba51d52da7eea6c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3012,7 +2939,33 @@ "description_width": "" } }, - "175c6b9a6c7648ada814c9c5b7aab29a": { + "0dab7f632511443cb2d4077421f17178": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4f4783071cae4f53a6e05e869354c4f7", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_93d8212cabb54aaf9027643e0c5f66f7", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "0e004de4b55f4773b021420f142d22ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3065,43 +3018,7 @@ "width": null } }, - "19e9ad2ec0d247dcb24028ec3527467b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1f44333feca64afd9dd53619c7d357ab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1fcd9e48c80a404d8e16d8ece5130497": { + "13a29dac815c4abab8ee5054c8a72bfd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3154,7 +3071,7 @@ "width": null } }, - "1ff6628d35674ed096c44c7819a6691c": { + "143811f81d774487bc2a142f883ca61e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3207,7 +3124,31 @@ "width": null } }, - "20f26c11b8ae4e0ca67b76c332c0e242": { + "14a337641dd1417c8844000cc271b2b4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d734ef642bc844619743e54e7eb9f932", + "IPY_MODEL_562a16eb337241cc9d95976d3c3c77d5", + "IPY_MODEL_1e3826cbd4a74fb3a9ce78f2b3f4a287" + ], + "layout": "IPY_MODEL_b919f2d3fa084edbb558cbad11f2166c", + "tabbable": null, + "tooltip": null + } + }, + "15dcfef807544d3aa51f29c92aaf3371": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3223,121 +3164,193 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bdb6a0ce0bc746e2874ba1100a207920", - "max": 40.0, + "layout": "IPY_MODEL_04d51f3a37bd41acb28fc4140bb30dce", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_8659457b5e2c440982589324e760b3fa", + "style": "IPY_MODEL_0d458c2994de496aba51d52da7eea6c4", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 60000.0 } }, - "210abe0571c94b2eb6fc2c0eccf58c7b": { - "model_module": "@jupyter-widgets/controls", + "16c09ec9e1b5462b900750c043dcceed": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "23c305c6a1884467863bb8519da19306": { - "model_module": "@jupyter-widgets/controls", + "16e9b91fdf11469e939c62cba1bcb860": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_86258667777f4834904d2a4516a0c8d8", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a70f6afda7a1426db8b3edd1d7edb201", - "tabbable": null, - "tooltip": null, - "value": 2.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "241bc8357c7a446aaf1ed62561f866ee": { + "1abdd5d51e71429c83f3161fb0f34a8a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7005a0048df246e5bb1c1905e137fa1f", + "IPY_MODEL_8c297dc243924a5380ca75b96187a9a2", + "IPY_MODEL_7c9586beec5e4ef6bd9d8e0298fc948f" + ], + "layout": "IPY_MODEL_ffe865a35560473db7acaa29a0231711", + "tabbable": null, + "tooltip": null } }, - "242354652c904fe7a050d776f4320e6d": { + "1c5ecaf065d34b36a230ebd837a07c20": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f7747803683146dcb3f965ab87db1777", + "placeholder": "​", + "style": "IPY_MODEL_aa1330e5a3fd484ab8bde7ccdb0f1485", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "245f60ab16d24a57b85ef53a5fb96484": { + "1e3826cbd4a74fb3a9ce78f2b3f4a287": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5b8773e21e9045a38fc3cf6ff2061d0b", - "IPY_MODEL_20f26c11b8ae4e0ca67b76c332c0e242", - "IPY_MODEL_a620a4ab709944aabf30b10124f0c31d" - ], - "layout": "IPY_MODEL_175c6b9a6c7648ada814c9c5b7aab29a", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_314c1086d8364ce898c8f9936e83903d", + "placeholder": "​", + "style": "IPY_MODEL_687f60a5bc2b44c3ae7e1b75783a9275", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 40/40 [00:00<00:00, 59.82it/s]" } }, - "2609d164424347068454ab0a740d8463": { + "1f8ea27a7ecf48b8a2bd28d5838a3b37": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3352,63 +3365,56 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_abe6856ea06d4ef7b5e656e94f390070", + "layout": "IPY_MODEL_143811f81d774487bc2a142f883ca61e", "placeholder": "​", - "style": "IPY_MODEL_210abe0571c94b2eb6fc2c0eccf58c7b", + "style": "IPY_MODEL_9f167f352c574694bf36a8e30f9d3d02", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 9.02k/9.02k [00:00<00:00, 1.12MB/s]" } }, - "2b84d19858824876b35a7eebdf801115": { + "1fa0cf3d00a644b6ad96a96c39c0c669": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4ed09e7143db4ac39990f0a2233799bc", - "IPY_MODEL_f8f09ca8cc544d618d3f87d63c5a4180", - "IPY_MODEL_c139383a888345d4a1e7016c46401592" - ], - "layout": "IPY_MODEL_491a0b3435794395bb560413f263ae58", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e24703f8aefc42b0bc972f0a569e8901", + "placeholder": "​", + "style": "IPY_MODEL_2248610a21bb4f3ea65d26b18f72d60c", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 40/40 [00:00<00:00, 59.16it/s]" } }, - "2c326980020e4183aef0bcca45f9b946": { + "2248610a21bb4f3ea65d26b18f72d60c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e71a4b851fa4440aa1d6cd7180917f49", - "IPY_MODEL_54de349814594c9f8f3a74c0b3d65bd4", - "IPY_MODEL_68137c187954421998892a1b39cc9aea" - ], - "layout": "IPY_MODEL_ee8950bc16444c91889ce4ec4e91019a", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2db2296df0c54704afb18f0c6be6ea2a": { + "25f553a3238d4189a98f9ccd2122384c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3426,33 +3432,46 @@ "text_color": null } }, - "2dbf8565841045b194839dd51b538e83": { + "27d406972aee4b65a4c4b791f40952e1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2c07aca9a1094813b03c2dddbe0a5f93": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6ae9974c278c4c0cbec6907d83400adc", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cc8a737d11c44bb3afbb968953dc6b40", + "layout": "IPY_MODEL_313d41db989b4ef4bd52ebe95e120410", + "placeholder": "​", + "style": "IPY_MODEL_5aec3b49dac040898e4327896867ec89", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": "100%" } }, - "30479b03a99c460bbccd04f895c13bb2": { + "2e2c0b61876c4818b40e4bb9a74c3802": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3468,41 +3487,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_edc16b7386ce40dfa0266f9d5505e8b1", + "layout": "IPY_MODEL_09a9683625114e2e99db135163b06ca4", "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_da6d437c8bb04c09b41a93ea3c8cad18", + "style": "IPY_MODEL_a461306a60b44f338063b85e74df1e68", "tabbable": null, "tooltip": null, "value": 60000.0 } }, - "30683b6059984426ba19841fd4a774ec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b3aa1c4591074eaa95269b8548cf1fc8", - "IPY_MODEL_af52736584c84fd68f1fd37ebb85da69", - "IPY_MODEL_6238ea01a592424b9c79d90e82a492fc" - ], - "layout": "IPY_MODEL_3a6fb23c5c0f49a6bfd7d5116617af79", - "tabbable": null, - "tooltip": null - } - }, - "30b1145acc2e4346902e5abb2c35dc48": { + "30ac32a3eb5144eeaa93b2cc480f57e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3520,33 +3515,7 @@ "text_color": null } }, - "30fb4fef57e04f9492e81621f9a02609": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1fcd9e48c80a404d8e16d8ece5130497", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c7ac984677f04e989589e9c69a4c2a38", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "34368070659c4652b06234a5ddf214ba": { + "30c5ff2890a342eaa9a84e54e76a9b53": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3564,136 +3533,25 @@ "text_color": null } }, - "350d1a3e679b4c558f625b9eaa03c2ea": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "35db1575f3ea47848b941d9d3aac55ff": { + "3107875deb17443e918ba41745fe1e6f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8957a61d49c94301b1624e5ce62bf9ca", - "placeholder": "​", - "style": "IPY_MODEL_a601ff577450461fa86b58e7fa23f7a8", - "tabbable": null, - "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 76.9MB/s]" - } - }, - "35df5381a4da4817a02fc82e7a57a8e4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "366415409f5245bab9f80f71bf2b4230": { + "313d41db989b4ef4bd52ebe95e120410": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3746,7 +3604,7 @@ "width": null } }, - "39d7aa96bc3b4e4aa5ad3c8522fa6dc0": { + "314c1086d8364ce898c8f9936e83903d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3799,7 +3657,7 @@ "width": null } }, - "3a4a80e9a3f547d9b039302dbdd73447": { + "319eb3c359274c29ba693fd30f98b99d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3814,16 +3672,32 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_15aaefdc20954e4fb4be9541b93b659e", - "IPY_MODEL_1432df243741424cad3c2d8d81a50366", - "IPY_MODEL_35db1575f3ea47848b941d9d3aac55ff" + "IPY_MODEL_afe44f2bdc9841e2b632ea5127c4144b", + "IPY_MODEL_5d25821e62224cc6bcf0677e102c0cfb", + "IPY_MODEL_1f8ea27a7ecf48b8a2bd28d5838a3b37" ], - "layout": "IPY_MODEL_6084d7c2e2d846f4bd020a481589ada0", + "layout": "IPY_MODEL_933bf3a7089147c8bb60edea31f5c4f8", "tabbable": null, "tooltip": null } }, - "3a6fb23c5c0f49a6bfd7d5116617af79": { + "31e6839e780a42198137b352defeb802": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "338f85b059b84805abef575ea255ddbe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3876,7 +3750,7 @@ "width": null } }, - "3a83a86ee3254d7fbaa7f292d3461e66": { + "33af8738fba94dfab36a8701ff30857a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3891,50 +3765,123 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_2609d164424347068454ab0a740d8463", - "IPY_MODEL_30fb4fef57e04f9492e81621f9a02609", - "IPY_MODEL_ca44d1a0c97e42c0ba5c963bad3d2fbd" + "IPY_MODEL_e44982f2eb9e4791b08cd2156c548ca2", + "IPY_MODEL_410a39682eac4f738d95819a8ad29729", + "IPY_MODEL_5950dd3a54e0403db46b971f0bde39d0" ], - "layout": "IPY_MODEL_0eee1fa4a60040fda1cd5335b48ae0e8", + "layout": "IPY_MODEL_bff799b407884b1d86705a9be5706c4d", "tabbable": null, "tooltip": null } }, - "46147735dc3f4ab78cbfd74b1f806b38": { + "383e116f2e7f4ba28c1373459ab5b35b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "46a8aaaf91bc41ecb5cc7775d315eb4b": { + "39b7a60b22d9490c85820d3c8bb7afc7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9fd092569b0e4cb1b5c87ff215f04924", + "IPY_MODEL_0dab7f632511443cb2d4077421f17178", + "IPY_MODEL_6606dac2d810480c9a6abfe6040212e1" + ], + "layout": "IPY_MODEL_ad462a9af60f46638c00aee1663061b2", + "tabbable": null, + "tooltip": null + } + }, + "3b5a8e0b65d04c00a2928254aeb05198": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a4de1e27e08845ffb61131948a52daa3", + "placeholder": "​", + "style": "IPY_MODEL_637010f0d5ef45b3916b9ce7ff6a7b00", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 58.45it/s]" + } + }, + "410a39682eac4f738d95819a8ad29729": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_338f85b059b84805abef575ea255ddbe", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_27d406972aee4b65a4c4b791f40952e1", + "tabbable": null, + "tooltip": null, + "value": 10000.0 + } + }, + "41e648d218ea4894be674786d6e48d10": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "472d46a6df9d471299f43b7004fca650": { + "43b953da2af2432392c606841e8f7b2e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3952,7 +3899,23 @@ "text_color": null } }, - "491a0b3435794395bb560413f263ae58": { + "4768242974cc43e6bc10e127a929ccf5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "47c901ef0b8d4366be5d2fa1d1e244f1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4005,7 +3968,7 @@ "width": null } }, - "4ed09e7143db4ac39990f0a2233799bc": { + "4a373f8ac47e4756a8b00fb280811804": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4020,33 +3983,62 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e475a8fe6ee84b81b7c6fcdd3bb6ef90", + "layout": "IPY_MODEL_ced208e33e634e06b7f15bd47b70a0a9", "placeholder": "​", - "style": "IPY_MODEL_fdb4edb7a8bb4a7588ab227b2762abee", + "style": "IPY_MODEL_cca80cd9890b49babcc748d47b52949c", "tabbable": null, "tooltip": null, "value": "100%" } }, - "4f15eed7799b486faac26dd4c03ad836": { + "4bb198dfcbae4b5aa14ac1168e1b6695": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4ccdba32239b4df08f9f8d476cdf7d59", + "IPY_MODEL_2e2c0b61876c4818b40e4bb9a74c3802", + "IPY_MODEL_fd916e7ffc1548bbb5c29cf990a57996" + ], + "layout": "IPY_MODEL_47c901ef0b8d4366be5d2fa1d1e244f1", + "tabbable": null, + "tooltip": null + } + }, + "4ccdba32239b4df08f9f8d476cdf7d59": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fa02778a2cc040b4879714924186efaf", + "placeholder": "​", + "style": "IPY_MODEL_8b024a5f9ffe45edba4b3b4266313be1", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" } }, - "4fa9d3e77fa84132b629e16972ecc7b6": { + "4f4783071cae4f53a6e05e869354c4f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4099,97 +4091,7 @@ "width": null } }, - "536c195e34a3469c8721cef0fc99a326": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "53d10621096e4078bbe5deec2ef7c09f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7fa4854268024c4297e59b5e5972a504", - "placeholder": "​", - "style": "IPY_MODEL_2db2296df0c54704afb18f0c6be6ea2a", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "544951e7df3b481fa182d9b35e185488": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ce20d39ec6fe47ddaa2d8ab8440f7362", - "placeholder": "​", - "style": "IPY_MODEL_eab982631cc34ba8a8596e6ba5693904", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "54de349814594c9f8f3a74c0b3d65bd4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8e14e7a10be043febd5b5f05b264e8ab", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a0272fd931ac4c0bacfca76403ea1ee0", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "59d42367f0bc4da08336620c7352f5f0": { + "512e742019594d49b2d18335fc0873a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4242,69 +4144,31 @@ "width": null } }, - "5b8773e21e9045a38fc3cf6ff2061d0b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cc40cdf402aa4bbfa6075bcdd2db7087", - "placeholder": "​", - "style": "IPY_MODEL_804d41a62b0547c6a3419a45930219f0", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "5ed725f0d4654da98395d8ab6f8b8f3c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "5fdc766686a74da2ae974cdd770efb2e": { + "52daadd720d843c0afa302f1faa5901a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a349ca45c6e74dc9aa2bfb35f9724d4a", - "placeholder": "​", - "style": "IPY_MODEL_536c195e34a3469c8721cef0fc99a326", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4a373f8ac47e4756a8b00fb280811804", + "IPY_MODEL_15dcfef807544d3aa51f29c92aaf3371", + "IPY_MODEL_9d31520a5ddb4f4ca2cfb245ce9dd7eb" + ], + "layout": "IPY_MODEL_a5cceee0fd694167803fb7e58ac7a511", "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 281991.65 examples/s]" + "tooltip": null } }, - "6084d7c2e2d846f4bd020a481589ada0": { + "55e5ef22098548999aa147440ffd1524": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4357,7 +4221,33 @@ "width": null } }, - "6238ea01a592424b9c79d90e82a492fc": { + "562a16eb337241cc9d95976d3c3c77d5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_aaf1eb0282434241b66e8f2f251971e7", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_383e116f2e7f4ba28c1373459ab5b35b", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "5950dd3a54e0403db46b971f0bde39d0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4372,15 +4262,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e295e045b0af4a6984d0583f2e28515d", + "layout": "IPY_MODEL_13a29dac815c4abab8ee5054c8a72bfd", "placeholder": "​", - "style": "IPY_MODEL_9d13691cf7214be4bf6d73bbfa124bf8", + "style": "IPY_MODEL_77ddd926d9204425a0088ff2e947bb75", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.80it/s]" + "value": " 10000/10000 [00:00<00:00, 251849.65 examples/s]" + } + }, + "5aec3b49dac040898e4327896867ec89": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "667c7c2e4468430895d1457357b8f52e": { + "5c2293c88b074b72a9f12d308f76d09b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4433,7 +4341,49 @@ "width": null } }, - "68137c187954421998892a1b39cc9aea": { + "5d25821e62224cc6bcf0677e102c0cfb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bd5f78b5be0444f6a74c949e22a09963", + "max": 9015.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d01c367701d24317b1f240f0146eb42e", + "tabbable": null, + "tooltip": null, + "value": 9015.0 + } + }, + "5d3716a8d48e48e1af03a3146e77ed32": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5fab6c4a3ce2415ca661f381e68e6a88": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4448,15 +4398,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d112af36b217447a9be138aa2ee541ac", + "layout": "IPY_MODEL_ede4f31e258c4a39ab54822de2e0d6ab", "placeholder": "​", - "style": "IPY_MODEL_f753a03847e84059ba0a7144ad649a80", + "style": "IPY_MODEL_844975f4a38d426fa9fa8b4d36b1e450", "tabbable": null, "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 237482.89 examples/s]" + "value": "100%" + } + }, + "6280d471aa3b4686bcd78507f1195966": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "6ae9974c278c4c0cbec6907d83400adc": { + "6358ecec41264ff19792d78df6f3def2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4509,7 +4475,48 @@ "width": null } }, - "6f2d38a869d24bfe9927e015b667bf3c": { + "637010f0d5ef45b3916b9ce7ff6a7b00": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6606dac2d810480c9a6abfe6040212e1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7f660cc2fff944de9db3c1b9db79067a", + "placeholder": "​", + "style": "IPY_MODEL_dd5ad93143444cea9b477a6d38d462ff", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:00<00:00, 292456.70 examples/s]" + } + }, + "687f60a5bc2b44c3ae7e1b75783a9275": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4527,7 +4534,7 @@ "text_color": null } }, - "760d2a4ef9f14d55b554ff1f53c49a50": { + "69923747b3274fc3a875e6a81b98c06d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4580,7 +4587,7 @@ "width": null } }, - "7661386900684fe2a647d1ad8dfcaaf5": { + "6b85975f2bbc4da1b3135b1604afb19d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4598,7 +4605,7 @@ "text_color": null } }, - "7f0583957ac345dd8f16c7f03c81cb24": { + "6ea179cbaa5f4876bcadb8edfde1b69d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4616,7 +4623,53 @@ "text_color": null } }, - "7fa4854268024c4297e59b5e5972a504": { + "6f2d6c399239449a9899ea656784e063": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f07c4c03f4e04026ae5aa371e552f1d9", + "placeholder": "​", + "style": "IPY_MODEL_3107875deb17443e918ba41745fe1e6f", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "7005a0048df246e5bb1c1905e137fa1f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6358ecec41264ff19792d78df6f3def2", + "placeholder": "​", + "style": "IPY_MODEL_0c47aef0907c47eaaedf291087d55f56", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "70a92929cd554ad5a7c8cb2319e0c861": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4669,51 +4722,7 @@ "width": null } }, - "804d41a62b0547c6a3419a45930219f0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "83508f25486b412bb93c8c3331f78dc8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_35df5381a4da4817a02fc82e7a57a8e4", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_062b1634d54a44ccb33bbd31b552ae3b", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "86258667777f4834904d2a4516a0c8d8": { + "723bc85d099342e788f9e8b49ad50858": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4766,23 +4775,31 @@ "width": null } }, - "8659457b5e2c440982589324e760b3fa": { + "75f52856abb347d89314c3cc706909a4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5fab6c4a3ce2415ca661f381e68e6a88", + "IPY_MODEL_b08f01dc7102459b95765ff321d9a212", + "IPY_MODEL_8fba5c8c7b56497394f0a2d418758e48" + ], + "layout": "IPY_MODEL_55e5ef22098548999aa147440ffd1524", + "tabbable": null, + "tooltip": null } }, - "877913d07f6b46a5b66b61fe9ade5852": { + "77ddd926d9204425a0088ff2e947bb75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4793,14 +4810,40 @@ "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "782cd0a0af354c77b93a98b08827514e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_512e742019594d49b2d18335fc0873a7", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9237c3ec6f474840af49b5510a21050a", + "tabbable": null, + "tooltip": null, + "value": 2.0 } }, - "8957a61d49c94301b1624e5ce62bf9ca": { + "7b2b42caf4e746468a4c818d86e8d170": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4853,60 +4896,30 @@ "width": null } }, - "8aa3aa66d53b483dab294c012dd41529": { - "model_module": "@jupyter-widgets/base", + "7c9586beec5e4ef6bd9d8e0298fc948f": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8d78bd93294749efad258238e8e80526", + "placeholder": "​", + "style": "IPY_MODEL_25f553a3238d4189a98f9ccd2122384c", + "tabbable": null, + "tooltip": null, + "value": " 30.9M/30.9M [00:01<00:00, 28.2MB/s]" } }, - "8b2b5f770cef4957b0cae17e5aed4562": { + "7e1d6cd6445e48cb8552b90570d8595d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4959,7 +4972,7 @@ "width": null } }, - "8e14e7a10be043febd5b5f05b264e8ab": { + "7f660cc2fff944de9db3c1b9db79067a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5012,7 +5025,7 @@ "width": null } }, - "8e21989235f0427298336b2abd3843d8": { + "844975f4a38d426fa9fa8b4d36b1e450": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5030,96 +5043,51 @@ "text_color": null } }, - "8f4687566fbd4cd2989f41271e1c9aa9": { + "85195f3e658241b4aaeba328efadeb4c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_350d1a3e679b4c558f625b9eaa03c2ea", - "placeholder": "​", - "style": "IPY_MODEL_f759a3d80a1b4d2785b376e2042b63e6", + "layout": "IPY_MODEL_8b36f2d3f63a4666944573feff6995d0", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_88a909d2a4824e73834940bb28f085af", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 40.0 } }, - "9396c479eaa34c02b3d54c4f2047ec73": { + "8658bab11e2e49c0bb4c92644240b7e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "944d3d9122cd4a2688bd85cf843c82c1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9b3a9a2617e3445f834b659140d7b68d", - "IPY_MODEL_30479b03a99c460bbccd04f895c13bb2", - "IPY_MODEL_988bdb1ce4b14c2483135951f5b85254" - ], - "layout": "IPY_MODEL_e433d034c55049c08c874d37cec81200", - "tabbable": null, - "tooltip": null - } - }, - "94d40cc96b39429389af0bf7d48c7809": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d297bd7d5e7a4feeb1477330f0574f05", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_aaf3d3a8f8754d53adea65a1d87e0a5b", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "988bdb1ce4b14c2483135951f5b85254": { + "8793ff334f9042c4a3378e1a6305803c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5134,61 +5102,55 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ae99ca9cf9aa43db863362668bba2407", + "layout": "IPY_MODEL_0022417c77c54bd78bfd3a7cea985883", "placeholder": "​", - "style": "IPY_MODEL_242354652c904fe7a050d776f4320e6d", + "style": "IPY_MODEL_41e648d218ea4894be674786d6e48d10", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 6119.93 examples/s]" + "value": " 5.18M/5.18M [00:03<00:00, 1.53MB/s]" } }, - "98de88cd65da4b96ac893d4a4f55fd4f": { + "88a909d2a4824e73834940bb28f085af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ba40cd2b0072480daeefbdec26d51b3f", - "placeholder": "​", - "style": "IPY_MODEL_19e9ad2ec0d247dcb24028ec3527467b", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:51<00:00, 1239.42it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "9b3a9a2617e3445f834b659140d7b68d": { + "8a1c87dd1eaf47458965198d643def42": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d26fe91e72184bbcb6fb841ee749175c", - "placeholder": "​", - "style": "IPY_MODEL_46147735dc3f4ab78cbfd74b1f806b38", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1c5ecaf065d34b36a230ebd837a07c20", + "IPY_MODEL_bcf490ee6f0c45a3ba4fa11c9fb79924", + "IPY_MODEL_3b5a8e0b65d04c00a2928254aeb05198" + ], + "layout": "IPY_MODEL_dea3848bc67d44a5a7cb6f366d9ad5f9", "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" + "tooltip": null } }, - "9d13691cf7214be4bf6d73bbfa124bf8": { + "8b024a5f9ffe45edba4b3b4266313be1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5206,39 +5168,7 @@ "text_color": null } }, - "a0272fd931ac4c0bacfca76403ea1ee0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a1f09fe2b8f948faa4f2e772a9bd55a4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a25bbb2c5ade4c3f8f52f8fedaa7bde8": { + "8b36f2d3f63a4666944573feff6995d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5291,7 +5221,33 @@ "width": null } }, - "a349ca45c6e74dc9aa2bfb35f9724d4a": { + "8c297dc243924a5380ca75b96187a9a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8cde25b550a04bfebe1bf0b18ab1daee", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_976fe03aaafb46a986688b11b3501383", + "tabbable": null, + "tooltip": null, + "value": 30931277.0 + } + }, + "8cde25b550a04bfebe1bf0b18ab1daee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5344,7 +5300,7 @@ "width": null } }, - "a5c30c4516df44c6aee0680e1076de1f": { + "8d78bd93294749efad258238e8e80526": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5397,7 +5353,30 @@ "width": null } }, - "a601ff577450461fa86b58e7fa23f7a8": { + "8fba5c8c7b56497394f0a2d418758e48": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b64ad2cc1932429cb477b3d137dc7121", + "placeholder": "​", + "style": "IPY_MODEL_6b85975f2bbc4da1b3135b1604afb19d", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 61.39it/s]" + } + }, + "90d724e0f915428b93f193f05c8de6b4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5415,7 +5394,7 @@ "text_color": null } }, - "a620a4ab709944aabf30b10124f0c31d": { + "922d5087e2b649f48d475399d575ea1a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5430,15 +5409,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a8b05d7eb5304251b2d44a38c44a907e", + "layout": "IPY_MODEL_dc89999949e44292926b7510751ff2db", "placeholder": "​", - "style": "IPY_MODEL_d4cc15f9f1c14d1895abde36807ee4b4", + "style": "IPY_MODEL_30ac32a3eb5144eeaa93b2cc480f57e3", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 58.54it/s]" + "value": " 40/40 [00:00<00:00, 60.83it/s]" } }, - "a70f6afda7a1426db8b3edd1d7edb201": { + "9237c3ec6f474840af49b5510a21050a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5454,7 +5433,25 @@ "description_width": "" } }, - "a7b2adaba2fb4c0685701dbece00319c": { + "932f37f92945480081c581921d446839": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "933bf3a7089147c8bb60edea31f5c4f8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5507,7 +5504,62 @@ "width": null } }, - "a8b05d7eb5304251b2d44a38c44a907e": { + "93d8212cabb54aaf9027643e0c5f66f7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "976fe03aaafb46a986688b11b3501383": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9d31520a5ddb4f4ca2cfb245ce9dd7eb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_04229d123f004c9ba6b4e82d3d240266", + "placeholder": "​", + "style": "IPY_MODEL_0d024a28652841b8b8cf6a9b0ba3bbd3", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:49<00:00, 1167.09it/s]" + } + }, + "9d7dd109f84049a68e22e2db188f20e0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5560,7 +5612,7 @@ "width": null } }, - "a92ff54eb2604c949f95a70fab370e98": { + "9d9d5c5033a64a1290e83d5d2a44b5b6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5613,23 +5665,7 @@ "width": null } }, - "aaf3d3a8f8754d53adea65a1d87e0a5b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "abe6856ea06d4ef7b5e656e94f390070": { + "9e90235cd1084c3890f5f8d801589d4f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5682,30 +5718,25 @@ "width": null } }, - "ad13afc7fe8348dfbe9d7d7d76b291a0": { + "9f167f352c574694bf36a8e30f9d3d02": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a5c30c4516df44c6aee0680e1076de1f", - "placeholder": "​", - "style": "IPY_MODEL_0aaafe3124de4c75bfcb92e44f8ddf6b", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "adde9152a9da4e6fae33ec283a2d3566": { + "9fd092569b0e4cb1b5c87ff215f04924": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5720,15 +5751,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d999b5e873794461a8d82e2f4c8af4f8", + "layout": "IPY_MODEL_a1bcce5d7ec24b85a79966a254d92346", "placeholder": "​", - "style": "IPY_MODEL_877913d07f6b46a5b66b61fe9ade5852", + "style": "IPY_MODEL_bc7dea28f58b4e7a97d3551fec0d22b3", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 58.16it/s]" + "value": "Generating train split: 100%" } }, - "ae99ca9cf9aa43db863362668bba2407": { + "a047fbf4c3f34260b27c9647a5b2e28c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5781,7 +5812,7 @@ "width": null } }, - "af35b64a76284e4ea25c616ed38482ae": { + "a1bcce5d7ec24b85a79966a254d92346": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5834,33 +5865,23 @@ "width": null } }, - "af52736584c84fd68f1fd37ebb85da69": { + "a461306a60b44f338063b85e74df1e68": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_667c7c2e4468430895d1457357b8f52e", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a1f09fe2b8f948faa4f2e772a9bd55a4", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "b0e1db8d22bc48949c043b3a256273fb": { + "a4de1e27e08845ffb61131948a52daa3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5913,76 +5934,7 @@ "width": null } }, - "b37cad2802504b1e8464dfba647d36d4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a25bbb2c5ade4c3f8f52f8fedaa7bde8", - "placeholder": "​", - "style": "IPY_MODEL_241bc8357c7a446aaf1ed62561f866ee", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.46it/s]" - } - }, - "b3aa1c4591074eaa95269b8548cf1fc8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a92ff54eb2604c949f95a70fab370e98", - "placeholder": "​", - "style": "IPY_MODEL_e4422f219d7e4454b2946f1e31b7260f", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "b899fea4be3f41fdad2310b7c2203a55": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_efc4391291b54332917067627ffafc85", - "placeholder": "​", - "style": "IPY_MODEL_7661386900684fe2a647d1ad8dfcaaf5", - "tabbable": null, - "tooltip": null, - "value": "Downloading readme: 100%" - } - }, - "b8eb25ad27a645b4b1196d369517df6e": { + "a5cceee0fd694167803fb7e58ac7a511": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6035,7 +5987,25 @@ "width": null } }, - "ba40cd2b0072480daeefbdec26d51b3f": { + "aa1330e5a3fd484ab8bde7ccdb0f1485": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "aaf1eb0282434241b66e8f2f251971e7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6088,33 +6058,7 @@ "width": null } }, - "bca143bce2e948f29cdedc5d4e1e65a1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4fa9d3e77fa84132b629e16972ecc7b6", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9396c479eaa34c02b3d54c4f2047ec73", - "tabbable": null, - "tooltip": null, - "value": 30931277.0 - } - }, - "bdb6a0ce0bc746e2874ba1100a207920": { + "ad462a9af60f46638c00aee1663061b2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6167,54 +6111,105 @@ "width": null } }, - "bfa07680b1b945abacbec7ae89df6ad0": { + "ae21782319044934a85f11a230613280": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0155f39e76b641a0997403416f227a84", - "IPY_MODEL_23c305c6a1884467863bb8519da19306", - "IPY_MODEL_0277bed58c03483d93a6c50e2b9b6722" - ], - "layout": "IPY_MODEL_13e8d95a1dd34601a45ec583c686b58a", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5c2293c88b074b72a9f12d308f76d09b", + "placeholder": "​", + "style": "IPY_MODEL_932f37f92945480081c581921d446839", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 63.62it/s]" + } + }, + "afe44f2bdc9841e2b632ea5127c4144b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c84fef20ad284afb8e7929ac706cfd32", + "placeholder": "​", + "style": "IPY_MODEL_0179924299be44a79a4cdecc3ed04e5e", + "tabbable": null, + "tooltip": null, + "value": "Downloading readme: 100%" + } + }, + "b08f01dc7102459b95765ff321d9a212": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_723bc85d099342e788f9e8b49ad50858", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_31e6839e780a42198137b352defeb802", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 40.0 } }, - "c139383a888345d4a1e7016c46401592": { + "b12e1da007be48ff954eea3be87bb3d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_dcc31ef4912342e9b8aed49f11a11d0e", - "placeholder": "​", - "style": "IPY_MODEL_7f0583957ac345dd8f16c7f03c81cb24", + "layout": "IPY_MODEL_9e90235cd1084c3890f5f8d801589d4f", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6280d471aa3b4686bcd78507f1195966", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 57.80it/s]" + "value": 40.0 } }, - "c20c2eba24504785bb150f2a8d3c0f8c": { + "b64ad2cc1932429cb477b3d137dc7121": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6267,7 +6262,7 @@ "width": null } }, - "c2f58df60b6f4bb683e4db3d17f476f1": { + "b8fa2ba849184558b5054c6e4a4e5dd8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6282,16 +6277,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_ad13afc7fe8348dfbe9d7d7d76b291a0", - "IPY_MODEL_83508f25486b412bb93c8c3331f78dc8", - "IPY_MODEL_5fdc766686a74da2ae974cdd770efb2e" + "IPY_MODEL_2c07aca9a1094813b03c2dddbe0a5f93", + "IPY_MODEL_0c9de8b16026487b995ada22a7ca529f", + "IPY_MODEL_1fa0cf3d00a644b6ad96a96c39c0c669" ], - "layout": "IPY_MODEL_1289c374a6674e0198d82801b960ee43", + "layout": "IPY_MODEL_0141ce65cecf40918d943ac362a0a32d", "tabbable": null, "tooltip": null } }, - "c4ed50e54fb14163ad2c7e26be20b122": { + "b919f2d3fa084edbb558cbad11f2166c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6344,46 +6339,95 @@ "width": null } }, - "c7ac984677f04e989589e9c69a4c2a38": { + "ba6ef61aefa743f68f87f9bf5e51e7c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "ca44d1a0c97e42c0ba5c963bad3d2fbd": { + "bc7dea28f58b4e7a97d3551fec0d22b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bcf490ee6f0c45a3ba4fa11c9fb79924": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c4ed50e54fb14163ad2c7e26be20b122", - "placeholder": "​", - "style": "IPY_MODEL_8e21989235f0427298336b2abd3843d8", + "layout": "IPY_MODEL_9d7dd109f84049a68e22e2db188f20e0", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ea315a626b0a44e29c5921b180079479", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "bd34b1eea233405cbdb124abaab21576": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_70a92929cd554ad5a7c8cb2319e0c861", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4768242974cc43e6bc10e127a929ccf5", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 58.66it/s]" + "value": 5175617.0 } }, - "cc40cdf402aa4bbfa6075bcdd2db7087": { + "bd5f78b5be0444f6a74c949e22a09963": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6436,23 +6480,31 @@ "width": null } }, - "cc8a737d11c44bb3afbb968953dc6b40": { + "be064f9db0c241afa490cc2cddb76c07": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ec49eea6b61b432380e1b8d67cce50f7", + "IPY_MODEL_bd34b1eea233405cbdb124abaab21576", + "IPY_MODEL_8793ff334f9042c4a3378e1a6305803c" + ], + "layout": "IPY_MODEL_9d9d5c5033a64a1290e83d5d2a44b5b6", + "tabbable": null, + "tooltip": null } }, - "ce20d39ec6fe47ddaa2d8ab8440f7362": { + "bea2584514b246daa5ce6a066dd5276a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6505,51 +6557,7 @@ "width": null } }, - "d039b3628d7a47e2ba304fcb87558b1f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d0d2dce902724064a0d010a7eb343642": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8aa3aa66d53b483dab294c012dd41529", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fd9a861c0a264ea892e95a4deef9270b", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "d112af36b217447a9be138aa2ee541ac": { + "bff799b407884b1d86705a9be5706c4d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6602,7 +6610,7 @@ "width": null } }, - "d26fe91e72184bbcb6fb841ee749175c": { + "c13c549df7764497971abe4b3c3bae16": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6655,7 +6663,7 @@ "width": null } }, - "d297bd7d5e7a4feeb1477330f0574f05": { + "c57c24697b8b41ab8d7decfda27846ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6708,25 +6716,7 @@ "width": null } }, - "d4cc15f9f1c14d1895abde36807ee4b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d8c0f1a5c4704230a710b4e1f34aa60a": { + "c84fef20ad284afb8e7929ac706cfd32": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6779,7 +6769,31 @@ "width": null } }, - "d999b5e873794461a8d82e2f4c8af4f8": { + "c88ba26dbe76450d8c7a7ecda8dfca3e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6f2d6c399239449a9899ea656784e063", + "IPY_MODEL_85195f3e658241b4aaeba328efadeb4c", + "IPY_MODEL_ae21782319044934a85f11a230613280" + ], + "layout": "IPY_MODEL_16e9b91fdf11469e939c62cba1bcb860", + "tabbable": null, + "tooltip": null + } + }, + "cb4db10617e44ed7852597b4f6c0658f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6832,23 +6846,25 @@ "width": null } }, - "da6d437c8bb04c09b41a93ea3c8cad18": { + "cca80cd9890b49babcc748d47b52949c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "db59e010b5aa4414854ab3c75cc8a736": { + "ced208e33e634e06b7f15bd47b70a0a9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6901,31 +6917,46 @@ "width": null } }, - "db7e223cca954fa69911aa2677ff4349": { + "d01c367701d24317b1f240f0146eb42e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d734ef642bc844619743e54e7eb9f932": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ddc117b0a0054fb0a5cb8ca1c96a921c", - "IPY_MODEL_bca143bce2e948f29cdedc5d4e1e65a1", - "IPY_MODEL_ddee2c0864db488ca6c5d36007e6f41d" - ], - "layout": "IPY_MODEL_c20c2eba24504785bb150f2a8d3c0f8c", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_16c09ec9e1b5462b900750c043dcceed", + "placeholder": "​", + "style": "IPY_MODEL_8658bab11e2e49c0bb4c92644240b7e4", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "dcc31ef4912342e9b8aed49f11a11d0e": { + "dc89999949e44292926b7510751ff2db": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6978,77 +7009,43 @@ "width": null } }, - "dd4fc8da52cc4c5cbd12d26954963ed1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_53d10621096e4078bbe5deec2ef7c09f", - "IPY_MODEL_d0d2dce902724064a0d010a7eb343642", - "IPY_MODEL_b37cad2802504b1e8464dfba647d36d4" - ], - "layout": "IPY_MODEL_b0e1db8d22bc48949c043b3a256273fb", - "tabbable": null, - "tooltip": null - } - }, - "ddc117b0a0054fb0a5cb8ca1c96a921c": { + "dd5ad93143444cea9b477a6d38d462ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_59d42367f0bc4da08336620c7352f5f0", - "placeholder": "​", - "style": "IPY_MODEL_1f44333feca64afd9dd53619c7d357ab", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "ddee2c0864db488ca6c5d36007e6f41d": { + "de930b11aed94559b6e097c807955b8b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_39d7aa96bc3b4e4aa5ad3c8522fa6dc0", - "placeholder": "​", - "style": "IPY_MODEL_472d46a6df9d471299f43b7004fca650", - "tabbable": null, - "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 118MB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e295e045b0af4a6984d0583f2e28515d": { + "dea3848bc67d44a5a7cb6f366d9ad5f9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7101,7 +7098,7 @@ "width": null } }, - "e3b91fd43b3e46c08a3c6d32e9efbe48": { + "e0d04f00652048319b15a7c8d92b501f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7116,16 +7113,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_8f4687566fbd4cd2989f41271e1c9aa9", - "IPY_MODEL_94d40cc96b39429389af0bf7d48c7809", - "IPY_MODEL_adde9152a9da4e6fae33ec283a2d3566" + "IPY_MODEL_fb5e03dcdbdb43aaace465b0ba1354d8", + "IPY_MODEL_b12e1da007be48ff954eea3be87bb3d3", + "IPY_MODEL_922d5087e2b649f48d475399d575ea1a" ], - "layout": "IPY_MODEL_db59e010b5aa4414854ab3c75cc8a736", + "layout": "IPY_MODEL_0e004de4b55f4773b021420f142d22ea", "tabbable": null, "tooltip": null } }, - "e433d034c55049c08c874d37cec81200": { + "e24703f8aefc42b0bc972f0a569e8901": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7178,25 +7175,69 @@ "width": null } }, - "e4422f219d7e4454b2946f1e31b7260f": { + "e44982f2eb9e4791b08cd2156c548ca2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bea2584514b246daa5ce6a066dd5276a", + "placeholder": "​", + "style": "IPY_MODEL_43b953da2af2432392c606841e8f7b2e", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: 100%" + } + }, + "ea315a626b0a44e29c5921b180079479": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" + } + }, + "ec49eea6b61b432380e1b8d67cce50f7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_69923747b3274fc3a875e6a81b98c06d", + "placeholder": "​", + "style": "IPY_MODEL_30c5ff2890a342eaa9a84e54e76a9b53", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" } }, - "e475a8fe6ee84b81b7c6fcdd3bb6ef90": { + "ede4f31e258c4a39ab54822de2e0d6ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7249,74 +7290,7 @@ "width": null } }, - "e71a4b851fa4440aa1d6cd7180917f49": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_366415409f5245bab9f80f71bf2b4230", - "placeholder": "​", - "style": "IPY_MODEL_6f2d38a869d24bfe9927e015b667bf3c", - "tabbable": null, - "tooltip": null, - "value": "Generating test split: 100%" - } - }, - "e7f7e5f9e3b14be7a16a4c71b2317d22": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a7b2adaba2fb4c0685701dbece00319c", - "max": 9015.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5ed725f0d4654da98395d8ab6f8b8f3c", - "tabbable": null, - "tooltip": null, - "value": 9015.0 - } - }, - "eab982631cc34ba8a8596e6ba5693904": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "edc16b7386ce40dfa0266f9d5505e8b1": { + "f07c4c03f4e04026ae5aa371e552f1d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7369,7 +7343,30 @@ "width": null } }, - "edc1a5f44295433790bd440975c40ab2": { + "f2daf5e88ba6473ba8880eb044dea606": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c57c24697b8b41ab8d7decfda27846ba", + "placeholder": "​", + "style": "IPY_MODEL_90d724e0f915428b93f193f05c8de6b4", + "tabbable": null, + "tooltip": null, + "value": " 2/2 [00:00<00:00, 668.04it/s]" + } + }, + "f5b8d7a635e94cc4ab27efea1e48cad6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7384,16 +7381,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_544951e7df3b481fa182d9b35e185488", - "IPY_MODEL_2dbf8565841045b194839dd51b538e83", - "IPY_MODEL_98de88cd65da4b96ac893d4a4f55fd4f" + "IPY_MODEL_0c21af7dcb2d444fbf62b722976a65c6", + "IPY_MODEL_782cd0a0af354c77b93a98b08827514e", + "IPY_MODEL_f2daf5e88ba6473ba8880eb044dea606" ], - "layout": "IPY_MODEL_055a2e65c92c43638c2d0e975fa33812", + "layout": "IPY_MODEL_a047fbf4c3f34260b27c9647a5b2e28c", "tabbable": null, "tooltip": null } }, - "ee8950bc16444c91889ce4ec4e91019a": { + "f7747803683146dcb3f965ab87db1777": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7446,7 +7443,7 @@ "width": null } }, - "efc4391291b54332917067627ffafc85": { + "fa02778a2cc040b4879714924186efaf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7499,100 +7496,103 @@ "width": null } }, - "f753a03847e84059ba0a7144ad649a80": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f759a3d80a1b4d2785b376e2042b63e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f8f09ca8cc544d618d3f87d63c5a4180": { + "fb5e03dcdbdb43aaace465b0ba1354d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_07a736b7838446e0a6062d74aa6d0472", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_16046217f9024ce3b327598b6413db93", + "layout": "IPY_MODEL_c13c549df7764497971abe4b3c3bae16", + "placeholder": "​", + "style": "IPY_MODEL_ba6ef61aefa743f68f87f9bf5e51e7c4", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": "100%" } }, - "fd9a861c0a264ea892e95a4deef9270b": { + "fd916e7ffc1548bbb5c29cf990a57996": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7e1d6cd6445e48cb8552b90570d8595d", + "placeholder": "​", + "style": "IPY_MODEL_6ea179cbaa5f4876bcadb8edfde1b69d", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 4865.71 examples/s]" } }, - "fdb4edb7a8bb4a7588ab227b2762abee": { - "model_module": "@jupyter-widgets/controls", + "ffe865a35560473db7acaa29a0231711": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index 093f71f03..2b3e4b6b1 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:36.379101Z", - "iopub.status.busy": "2024-08-29T17:11:36.378930Z", - "iopub.status.idle": "2024-08-29T17:11:37.569335Z", - "shell.execute_reply": "2024-08-29T17:11:37.568767Z" + "iopub.execute_input": "2024-09-04T16:40:49.475463Z", + "iopub.status.busy": "2024-09-04T16:40:49.475282Z", + "iopub.status.idle": "2024-09-04T16:40:50.600717Z", + "shell.execute_reply": "2024-09-04T16:40:50.600182Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:37.572372Z", - "iopub.status.busy": "2024-08-29T17:11:37.571623Z", - "iopub.status.idle": "2024-08-29T17:11:37.590425Z", - "shell.execute_reply": "2024-08-29T17:11:37.589943Z" + "iopub.execute_input": "2024-09-04T16:40:50.603405Z", + "iopub.status.busy": "2024-09-04T16:40:50.602877Z", + "iopub.status.idle": "2024-09-04T16:40:50.620956Z", + "shell.execute_reply": "2024-09-04T16:40:50.620416Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:37.592750Z", - "iopub.status.busy": "2024-08-29T17:11:37.592257Z", - "iopub.status.idle": "2024-08-29T17:11:37.614641Z", - "shell.execute_reply": "2024-08-29T17:11:37.614044Z" + "iopub.execute_input": "2024-09-04T16:40:50.623287Z", + "iopub.status.busy": "2024-09-04T16:40:50.622902Z", + "iopub.status.idle": "2024-09-04T16:40:50.644227Z", + "shell.execute_reply": "2024-09-04T16:40:50.643689Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:37.616822Z", - "iopub.status.busy": "2024-08-29T17:11:37.616498Z", - "iopub.status.idle": "2024-08-29T17:11:37.619816Z", - "shell.execute_reply": "2024-08-29T17:11:37.619387Z" + "iopub.execute_input": "2024-09-04T16:40:50.646201Z", + "iopub.status.busy": "2024-09-04T16:40:50.645882Z", + "iopub.status.idle": "2024-09-04T16:40:50.649299Z", + "shell.execute_reply": "2024-09-04T16:40:50.648753Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:37.621962Z", - "iopub.status.busy": "2024-08-29T17:11:37.621500Z", - "iopub.status.idle": "2024-08-29T17:11:37.629175Z", - "shell.execute_reply": "2024-08-29T17:11:37.628630Z" + "iopub.execute_input": "2024-09-04T16:40:50.651279Z", + "iopub.status.busy": "2024-09-04T16:40:50.650943Z", + "iopub.status.idle": "2024-09-04T16:40:50.658482Z", + "shell.execute_reply": "2024-09-04T16:40:50.658073Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:37.631249Z", - "iopub.status.busy": "2024-08-29T17:11:37.630950Z", - "iopub.status.idle": "2024-08-29T17:11:37.633949Z", - "shell.execute_reply": "2024-08-29T17:11:37.633523Z" + "iopub.execute_input": "2024-09-04T16:40:50.660525Z", + "iopub.status.busy": "2024-09-04T16:40:50.660181Z", + "iopub.status.idle": "2024-09-04T16:40:50.662616Z", + "shell.execute_reply": "2024-09-04T16:40:50.662167Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:37.635979Z", - "iopub.status.busy": "2024-08-29T17:11:37.635673Z", - "iopub.status.idle": "2024-08-29T17:11:40.721717Z", - "shell.execute_reply": "2024-08-29T17:11:40.721065Z" + "iopub.execute_input": "2024-09-04T16:40:50.664512Z", + "iopub.status.busy": "2024-09-04T16:40:50.664201Z", + "iopub.status.idle": "2024-09-04T16:40:53.731713Z", + "shell.execute_reply": "2024-09-04T16:40:53.731104Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:40.724378Z", - "iopub.status.busy": "2024-08-29T17:11:40.724167Z", - "iopub.status.idle": "2024-08-29T17:11:40.733453Z", - "shell.execute_reply": "2024-08-29T17:11:40.733018Z" + "iopub.execute_input": "2024-09-04T16:40:53.734310Z", + "iopub.status.busy": "2024-09-04T16:40:53.733908Z", + "iopub.status.idle": "2024-09-04T16:40:53.743636Z", + "shell.execute_reply": "2024-09-04T16:40:53.743175Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:40.735437Z", - "iopub.status.busy": "2024-08-29T17:11:40.735259Z", - "iopub.status.idle": "2024-08-29T17:11:42.766511Z", - "shell.execute_reply": "2024-08-29T17:11:42.765846Z" + "iopub.execute_input": "2024-09-04T16:40:53.745716Z", + "iopub.status.busy": "2024-09-04T16:40:53.745375Z", + "iopub.status.idle": "2024-09-04T16:40:55.677972Z", + "shell.execute_reply": "2024-09-04T16:40:55.677274Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:42.768783Z", - "iopub.status.busy": "2024-08-29T17:11:42.768452Z", - "iopub.status.idle": "2024-08-29T17:11:42.787280Z", - "shell.execute_reply": "2024-08-29T17:11:42.786814Z" + "iopub.execute_input": "2024-09-04T16:40:55.680381Z", + "iopub.status.busy": "2024-09-04T16:40:55.679890Z", + "iopub.status.idle": "2024-09-04T16:40:55.698324Z", + "shell.execute_reply": "2024-09-04T16:40:55.697856Z" }, "scrolled": true }, @@ -609,10 +609,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:42.789306Z", - "iopub.status.busy": "2024-08-29T17:11:42.788967Z", - "iopub.status.idle": "2024-08-29T17:11:42.796597Z", - "shell.execute_reply": "2024-08-29T17:11:42.796106Z" + "iopub.execute_input": "2024-09-04T16:40:55.700341Z", + "iopub.status.busy": "2024-09-04T16:40:55.700024Z", + "iopub.status.idle": "2024-09-04T16:40:55.707935Z", + "shell.execute_reply": "2024-09-04T16:40:55.707395Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:42.798575Z", - "iopub.status.busy": "2024-08-29T17:11:42.798213Z", - "iopub.status.idle": "2024-08-29T17:11:42.807143Z", - "shell.execute_reply": "2024-08-29T17:11:42.806709Z" + "iopub.execute_input": "2024-09-04T16:40:55.710164Z", + "iopub.status.busy": "2024-09-04T16:40:55.709761Z", + "iopub.status.idle": "2024-09-04T16:40:55.718695Z", + "shell.execute_reply": "2024-09-04T16:40:55.718150Z" } }, "outputs": [ @@ -848,10 +848,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:42.809227Z", - "iopub.status.busy": "2024-08-29T17:11:42.808904Z", - "iopub.status.idle": "2024-08-29T17:11:42.816927Z", - "shell.execute_reply": "2024-08-29T17:11:42.816360Z" + "iopub.execute_input": "2024-09-04T16:40:55.720776Z", + "iopub.status.busy": "2024-09-04T16:40:55.720379Z", + "iopub.status.idle": "2024-09-04T16:40:55.728279Z", + "shell.execute_reply": "2024-09-04T16:40:55.727725Z" } }, "outputs": [ @@ -965,10 +965,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:42.819065Z", - "iopub.status.busy": "2024-08-29T17:11:42.818748Z", - "iopub.status.idle": "2024-08-29T17:11:42.827764Z", - "shell.execute_reply": "2024-08-29T17:11:42.827196Z" + "iopub.execute_input": "2024-09-04T16:40:55.730411Z", + "iopub.status.busy": "2024-09-04T16:40:55.730017Z", + "iopub.status.idle": "2024-09-04T16:40:55.738656Z", + "shell.execute_reply": "2024-09-04T16:40:55.738163Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:42.829876Z", - "iopub.status.busy": "2024-08-29T17:11:42.829562Z", - "iopub.status.idle": "2024-08-29T17:11:42.837238Z", - "shell.execute_reply": "2024-08-29T17:11:42.836667Z" + "iopub.execute_input": "2024-09-04T16:40:55.740541Z", + "iopub.status.busy": "2024-09-04T16:40:55.740366Z", + "iopub.status.idle": "2024-09-04T16:40:55.747959Z", + "shell.execute_reply": "2024-09-04T16:40:55.747500Z" } }, "outputs": [ @@ -1197,10 +1197,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:42.839340Z", - "iopub.status.busy": "2024-08-29T17:11:42.839023Z", - "iopub.status.idle": "2024-08-29T17:11:42.846040Z", - "shell.execute_reply": "2024-08-29T17:11:42.845599Z" + "iopub.execute_input": "2024-09-04T16:40:55.749966Z", + "iopub.status.busy": "2024-09-04T16:40:55.749778Z", + "iopub.status.idle": "2024-09-04T16:40:55.757509Z", + "shell.execute_reply": "2024-09-04T16:40:55.757052Z" } }, "outputs": [ @@ -1306,10 +1306,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:42.848093Z", - "iopub.status.busy": "2024-08-29T17:11:42.847761Z", - "iopub.status.idle": "2024-08-29T17:11:42.855634Z", - "shell.execute_reply": "2024-08-29T17:11:42.855176Z" + "iopub.execute_input": "2024-09-04T16:40:55.759584Z", + "iopub.status.busy": "2024-09-04T16:40:55.759409Z", + "iopub.status.idle": "2024-09-04T16:40:55.767867Z", + "shell.execute_reply": "2024-09-04T16:40:55.767288Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index 94b2d2bc6..97c31ed15 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:45.779533Z", - "iopub.status.busy": "2024-08-29T17:11:45.779168Z", - "iopub.status.idle": "2024-08-29T17:11:48.629019Z", - "shell.execute_reply": "2024-08-29T17:11:48.628451Z" + "iopub.execute_input": "2024-09-04T16:40:58.594849Z", + "iopub.status.busy": "2024-09-04T16:40:58.594436Z", + "iopub.status.idle": "2024-09-04T16:41:01.338933Z", + "shell.execute_reply": "2024-09-04T16:41:01.338290Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:48.631743Z", - "iopub.status.busy": "2024-08-29T17:11:48.631306Z", - "iopub.status.idle": "2024-08-29T17:11:48.634659Z", - "shell.execute_reply": "2024-08-29T17:11:48.634082Z" + "iopub.execute_input": "2024-09-04T16:41:01.341714Z", + "iopub.status.busy": "2024-09-04T16:41:01.341211Z", + "iopub.status.idle": "2024-09-04T16:41:01.344547Z", + "shell.execute_reply": "2024-09-04T16:41:01.344080Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:48.636768Z", - "iopub.status.busy": "2024-08-29T17:11:48.636377Z", - "iopub.status.idle": "2024-08-29T17:11:48.639545Z", - "shell.execute_reply": "2024-08-29T17:11:48.638976Z" + "iopub.execute_input": "2024-09-04T16:41:01.346577Z", + "iopub.status.busy": "2024-09-04T16:41:01.346195Z", + "iopub.status.idle": "2024-09-04T16:41:01.349208Z", + "shell.execute_reply": "2024-09-04T16:41:01.348748Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:48.641703Z", - "iopub.status.busy": "2024-08-29T17:11:48.641295Z", - "iopub.status.idle": "2024-08-29T17:11:48.663938Z", - "shell.execute_reply": "2024-08-29T17:11:48.663379Z" + "iopub.execute_input": "2024-09-04T16:41:01.351352Z", + "iopub.status.busy": "2024-09-04T16:41:01.350932Z", + "iopub.status.idle": "2024-09-04T16:41:01.371702Z", + "shell.execute_reply": "2024-09-04T16:41:01.371170Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:48.665947Z", - "iopub.status.busy": "2024-08-29T17:11:48.665634Z", - "iopub.status.idle": "2024-08-29T17:11:48.669380Z", - "shell.execute_reply": "2024-08-29T17:11:48.668822Z" + "iopub.execute_input": "2024-09-04T16:41:01.374126Z", + "iopub.status.busy": "2024-09-04T16:41:01.373690Z", + "iopub.status.idle": "2024-09-04T16:41:01.377781Z", + "shell.execute_reply": "2024-09-04T16:41:01.377254Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'cancel_transfer', 'change_pin', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'getting_spare_card', 'visa_or_mastercard', 'card_about_to_expire', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'lost_or_stolen_phone'}\n" + "Classes: {'apple_pay_or_google_pay', 'getting_spare_card', 'change_pin', 'lost_or_stolen_phone', 'visa_or_mastercard', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'cancel_transfer', 'card_payment_fee_charged', 'card_about_to_expire'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:48.671469Z", - "iopub.status.busy": "2024-08-29T17:11:48.671133Z", - "iopub.status.idle": "2024-08-29T17:11:48.674361Z", - "shell.execute_reply": "2024-08-29T17:11:48.673893Z" + "iopub.execute_input": "2024-09-04T16:41:01.379956Z", + "iopub.status.busy": "2024-09-04T16:41:01.379537Z", + "iopub.status.idle": "2024-09-04T16:41:01.382734Z", + "shell.execute_reply": "2024-09-04T16:41:01.382205Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:48.676512Z", - "iopub.status.busy": "2024-08-29T17:11:48.676178Z", - "iopub.status.idle": "2024-08-29T17:11:52.298515Z", - "shell.execute_reply": "2024-08-29T17:11:52.297829Z" + "iopub.execute_input": "2024-09-04T16:41:01.384801Z", + "iopub.status.busy": "2024-09-04T16:41:01.384484Z", + "iopub.status.idle": "2024-09-04T16:41:05.425042Z", + "shell.execute_reply": "2024-09-04T16:41:05.424383Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:52.301372Z", - "iopub.status.busy": "2024-08-29T17:11:52.301006Z", - "iopub.status.idle": "2024-08-29T17:11:53.205868Z", - "shell.execute_reply": "2024-08-29T17:11:53.205269Z" + "iopub.execute_input": "2024-09-04T16:41:05.428052Z", + "iopub.status.busy": "2024-09-04T16:41:05.427629Z", + "iopub.status.idle": "2024-09-04T16:41:06.348646Z", + "shell.execute_reply": "2024-09-04T16:41:06.348110Z" }, "scrolled": true }, @@ -451,10 +451,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:53.208825Z", - "iopub.status.busy": "2024-08-29T17:11:53.208214Z", - "iopub.status.idle": "2024-08-29T17:11:53.211611Z", - "shell.execute_reply": "2024-08-29T17:11:53.211104Z" + "iopub.execute_input": "2024-09-04T16:41:06.351379Z", + "iopub.status.busy": "2024-09-04T16:41:06.350975Z", + "iopub.status.idle": "2024-09-04T16:41:06.353832Z", + "shell.execute_reply": "2024-09-04T16:41:06.353336Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:53.214175Z", - "iopub.status.busy": "2024-08-29T17:11:53.213781Z", - "iopub.status.idle": "2024-08-29T17:11:55.217193Z", - "shell.execute_reply": "2024-08-29T17:11:55.216477Z" + "iopub.execute_input": "2024-09-04T16:41:06.356200Z", + "iopub.status.busy": "2024-09-04T16:41:06.355817Z", + "iopub.status.idle": "2024-09-04T16:41:08.326773Z", + "shell.execute_reply": "2024-09-04T16:41:08.326129Z" }, "scrolled": true }, @@ -521,10 +521,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:55.221784Z", - "iopub.status.busy": "2024-08-29T17:11:55.220564Z", - "iopub.status.idle": "2024-08-29T17:11:55.247534Z", - "shell.execute_reply": "2024-08-29T17:11:55.246994Z" + "iopub.execute_input": "2024-09-04T16:41:08.329840Z", + "iopub.status.busy": "2024-09-04T16:41:08.329196Z", + "iopub.status.idle": "2024-09-04T16:41:08.352768Z", + "shell.execute_reply": "2024-09-04T16:41:08.352270Z" }, "scrolled": true }, @@ -654,10 +654,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:55.251301Z", - "iopub.status.busy": "2024-08-29T17:11:55.250349Z", - "iopub.status.idle": "2024-08-29T17:11:55.259480Z", - "shell.execute_reply": "2024-08-29T17:11:55.258979Z" + "iopub.execute_input": "2024-09-04T16:41:08.355171Z", + "iopub.status.busy": "2024-09-04T16:41:08.354780Z", + "iopub.status.idle": "2024-09-04T16:41:08.364358Z", + "shell.execute_reply": "2024-09-04T16:41:08.363857Z" }, "scrolled": true }, @@ -767,10 +767,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:55.261705Z", - "iopub.status.busy": "2024-08-29T17:11:55.261259Z", - "iopub.status.idle": "2024-08-29T17:11:55.265695Z", - "shell.execute_reply": "2024-08-29T17:11:55.265143Z" + "iopub.execute_input": "2024-09-04T16:41:08.366701Z", + "iopub.status.busy": "2024-09-04T16:41:08.366397Z", + "iopub.status.idle": "2024-09-04T16:41:08.370411Z", + "shell.execute_reply": "2024-09-04T16:41:08.369835Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:55.267789Z", - "iopub.status.busy": "2024-08-29T17:11:55.267464Z", - "iopub.status.idle": "2024-08-29T17:11:55.273881Z", - "shell.execute_reply": "2024-08-29T17:11:55.273336Z" + "iopub.execute_input": "2024-09-04T16:41:08.372360Z", + "iopub.status.busy": "2024-09-04T16:41:08.372021Z", + "iopub.status.idle": "2024-09-04T16:41:08.378227Z", + "shell.execute_reply": "2024-09-04T16:41:08.377738Z" } }, "outputs": [ @@ -928,10 +928,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:55.276103Z", - "iopub.status.busy": "2024-08-29T17:11:55.275716Z", - "iopub.status.idle": "2024-08-29T17:11:55.282363Z", - "shell.execute_reply": "2024-08-29T17:11:55.281836Z" + "iopub.execute_input": "2024-09-04T16:41:08.380294Z", + "iopub.status.busy": "2024-09-04T16:41:08.379963Z", + "iopub.status.idle": "2024-09-04T16:41:08.386336Z", + "shell.execute_reply": "2024-09-04T16:41:08.385784Z" } }, "outputs": [ @@ -1014,10 +1014,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:55.284483Z", - "iopub.status.busy": "2024-08-29T17:11:55.284080Z", - "iopub.status.idle": "2024-08-29T17:11:55.290321Z", - "shell.execute_reply": "2024-08-29T17:11:55.289768Z" + "iopub.execute_input": "2024-09-04T16:41:08.388135Z", + "iopub.status.busy": "2024-09-04T16:41:08.387960Z", + "iopub.status.idle": "2024-09-04T16:41:08.393752Z", + "shell.execute_reply": "2024-09-04T16:41:08.393284Z" } }, "outputs": [ @@ -1125,10 +1125,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:55.292501Z", - "iopub.status.busy": "2024-08-29T17:11:55.292181Z", - "iopub.status.idle": "2024-08-29T17:11:55.300591Z", - "shell.execute_reply": "2024-08-29T17:11:55.300041Z" + "iopub.execute_input": "2024-09-04T16:41:08.395608Z", + "iopub.status.busy": "2024-09-04T16:41:08.395432Z", + "iopub.status.idle": "2024-09-04T16:41:08.403730Z", + "shell.execute_reply": "2024-09-04T16:41:08.403294Z" } }, "outputs": [ @@ -1239,10 +1239,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:55.302719Z", - "iopub.status.busy": "2024-08-29T17:11:55.302381Z", - "iopub.status.idle": "2024-08-29T17:11:55.307865Z", - "shell.execute_reply": "2024-08-29T17:11:55.307405Z" + "iopub.execute_input": "2024-09-04T16:41:08.405680Z", + "iopub.status.busy": "2024-09-04T16:41:08.405503Z", + "iopub.status.idle": "2024-09-04T16:41:08.410937Z", + "shell.execute_reply": "2024-09-04T16:41:08.410395Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:55.309805Z", - "iopub.status.busy": "2024-08-29T17:11:55.309470Z", - "iopub.status.idle": "2024-08-29T17:11:55.314831Z", - "shell.execute_reply": "2024-08-29T17:11:55.314389Z" + "iopub.execute_input": "2024-09-04T16:41:08.413050Z", + "iopub.status.busy": "2024-09-04T16:41:08.412728Z", + "iopub.status.idle": "2024-09-04T16:41:08.417941Z", + "shell.execute_reply": "2024-09-04T16:41:08.417454Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:55.316839Z", - "iopub.status.busy": "2024-08-29T17:11:55.316503Z", - "iopub.status.idle": "2024-08-29T17:11:55.320158Z", - "shell.execute_reply": "2024-08-29T17:11:55.319714Z" + "iopub.execute_input": "2024-09-04T16:41:08.419859Z", + "iopub.status.busy": "2024-09-04T16:41:08.419677Z", + "iopub.status.idle": "2024-09-04T16:41:08.423027Z", + "shell.execute_reply": "2024-09-04T16:41:08.422505Z" } }, "outputs": [ @@ -1449,10 +1449,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:55.322296Z", - "iopub.status.busy": "2024-08-29T17:11:55.321948Z", - "iopub.status.idle": "2024-08-29T17:11:55.327047Z", - "shell.execute_reply": "2024-08-29T17:11:55.326621Z" + "iopub.execute_input": "2024-09-04T16:41:08.425011Z", + "iopub.status.busy": "2024-09-04T16:41:08.424833Z", + "iopub.status.idle": "2024-09-04T16:41:08.430112Z", + "shell.execute_reply": "2024-09-04T16:41:08.429634Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb index 45e10659e..1a14ce756 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:58.718767Z", - "iopub.status.busy": "2024-08-29T17:11:58.718583Z", - "iopub.status.idle": "2024-08-29T17:11:59.146531Z", - "shell.execute_reply": "2024-08-29T17:11:59.145994Z" + "iopub.execute_input": "2024-09-04T16:41:12.664036Z", + "iopub.status.busy": "2024-09-04T16:41:12.663550Z", + "iopub.status.idle": "2024-09-04T16:41:13.084540Z", + "shell.execute_reply": "2024-09-04T16:41:13.084042Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:59.149240Z", - "iopub.status.busy": "2024-08-29T17:11:59.148744Z", - "iopub.status.idle": "2024-08-29T17:11:59.280675Z", - "shell.execute_reply": "2024-08-29T17:11:59.280097Z" + "iopub.execute_input": "2024-09-04T16:41:13.087150Z", + "iopub.status.busy": "2024-09-04T16:41:13.086739Z", + "iopub.status.idle": "2024-09-04T16:41:13.215203Z", + "shell.execute_reply": "2024-09-04T16:41:13.214722Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:59.282900Z", - "iopub.status.busy": "2024-08-29T17:11:59.282658Z", - "iopub.status.idle": "2024-08-29T17:11:59.305884Z", - "shell.execute_reply": "2024-08-29T17:11:59.305336Z" + "iopub.execute_input": "2024-09-04T16:41:13.217480Z", + "iopub.status.busy": "2024-09-04T16:41:13.217063Z", + "iopub.status.idle": "2024-09-04T16:41:13.239737Z", + "shell.execute_reply": "2024-09-04T16:41:13.239204Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:59.308547Z", - "iopub.status.busy": "2024-08-29T17:11:59.308330Z", - "iopub.status.idle": "2024-08-29T17:12:02.115117Z", - "shell.execute_reply": "2024-08-29T17:12:02.114510Z" + "iopub.execute_input": "2024-09-04T16:41:13.242377Z", + "iopub.status.busy": "2024-09-04T16:41:13.241951Z", + "iopub.status.idle": "2024-09-04T16:41:15.980442Z", + "shell.execute_reply": "2024-09-04T16:41:15.979864Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:02.117844Z", - "iopub.status.busy": "2024-08-29T17:12:02.117264Z", - "iopub.status.idle": "2024-08-29T17:12:10.972806Z", - "shell.execute_reply": "2024-08-29T17:12:10.972199Z" + "iopub.execute_input": "2024-09-04T16:41:15.983269Z", + "iopub.status.busy": "2024-09-04T16:41:15.982680Z", + "iopub.status.idle": "2024-09-04T16:41:25.804093Z", + "shell.execute_reply": "2024-09-04T16:41:25.803484Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:10.975125Z", - "iopub.status.busy": "2024-08-29T17:12:10.974927Z", - "iopub.status.idle": "2024-08-29T17:12:11.155291Z", - "shell.execute_reply": "2024-08-29T17:12:11.154629Z" + "iopub.execute_input": "2024-09-04T16:41:25.806278Z", + "iopub.status.busy": "2024-09-04T16:41:25.805942Z", + "iopub.status.idle": "2024-09-04T16:41:25.977373Z", + "shell.execute_reply": "2024-09-04T16:41:25.976681Z" } }, "outputs": [], @@ -838,10 +838,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:11.157915Z", - "iopub.status.busy": "2024-08-29T17:12:11.157574Z", - "iopub.status.idle": "2024-08-29T17:12:12.510295Z", - "shell.execute_reply": "2024-08-29T17:12:12.509686Z" + "iopub.execute_input": "2024-09-04T16:41:25.979915Z", + "iopub.status.busy": "2024-09-04T16:41:25.979722Z", + "iopub.status.idle": "2024-09-04T16:41:27.310524Z", + "shell.execute_reply": "2024-09-04T16:41:27.309930Z" } }, "outputs": [ @@ -1000,10 +1000,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:12.512529Z", - "iopub.status.busy": "2024-08-29T17:12:12.512160Z", - "iopub.status.idle": "2024-08-29T17:12:12.986182Z", - "shell.execute_reply": "2024-08-29T17:12:12.985597Z" + "iopub.execute_input": "2024-09-04T16:41:27.312764Z", + "iopub.status.busy": "2024-09-04T16:41:27.312407Z", + "iopub.status.idle": "2024-09-04T16:41:27.724807Z", + "shell.execute_reply": "2024-09-04T16:41:27.724216Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:12.988869Z", - "iopub.status.busy": "2024-08-29T17:12:12.988294Z", - "iopub.status.idle": "2024-08-29T17:12:13.002906Z", - "shell.execute_reply": "2024-08-29T17:12:13.002292Z" + "iopub.execute_input": "2024-09-04T16:41:27.727236Z", + "iopub.status.busy": "2024-09-04T16:41:27.726782Z", + "iopub.status.idle": "2024-09-04T16:41:27.740061Z", + "shell.execute_reply": "2024-09-04T16:41:27.739611Z" } }, "outputs": [], @@ -1115,10 +1115,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.005087Z", - "iopub.status.busy": "2024-08-29T17:12:13.004750Z", - "iopub.status.idle": "2024-08-29T17:12:13.024384Z", - "shell.execute_reply": "2024-08-29T17:12:13.023799Z" + "iopub.execute_input": "2024-09-04T16:41:27.742084Z", + "iopub.status.busy": "2024-09-04T16:41:27.741764Z", + "iopub.status.idle": "2024-09-04T16:41:27.760850Z", + "shell.execute_reply": "2024-09-04T16:41:27.760303Z" } }, "outputs": [], @@ -1146,10 +1146,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.026753Z", - "iopub.status.busy": "2024-08-29T17:12:13.026407Z", - "iopub.status.idle": "2024-08-29T17:12:13.277368Z", - "shell.execute_reply": "2024-08-29T17:12:13.276719Z" + "iopub.execute_input": "2024-09-04T16:41:27.763210Z", + "iopub.status.busy": "2024-09-04T16:41:27.762807Z", + "iopub.status.idle": "2024-09-04T16:41:27.987337Z", + "shell.execute_reply": "2024-09-04T16:41:27.986718Z" } }, "outputs": [], @@ -1189,10 +1189,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.280198Z", - "iopub.status.busy": "2024-08-29T17:12:13.279676Z", - "iopub.status.idle": "2024-08-29T17:12:13.298717Z", - "shell.execute_reply": "2024-08-29T17:12:13.298205Z" + "iopub.execute_input": "2024-09-04T16:41:27.990095Z", + "iopub.status.busy": "2024-09-04T16:41:27.989628Z", + "iopub.status.idle": "2024-09-04T16:41:28.009086Z", + "shell.execute_reply": "2024-09-04T16:41:28.008517Z" } }, "outputs": [ @@ -1390,10 +1390,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.300783Z", - "iopub.status.busy": "2024-08-29T17:12:13.300463Z", - "iopub.status.idle": "2024-08-29T17:12:13.471108Z", - "shell.execute_reply": "2024-08-29T17:12:13.470505Z" + "iopub.execute_input": "2024-09-04T16:41:28.011441Z", + "iopub.status.busy": "2024-09-04T16:41:28.010977Z", + "iopub.status.idle": "2024-09-04T16:41:28.176788Z", + "shell.execute_reply": "2024-09-04T16:41:28.176211Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.473349Z", - "iopub.status.busy": "2024-08-29T17:12:13.473080Z", - "iopub.status.idle": "2024-08-29T17:12:13.482985Z", - "shell.execute_reply": "2024-08-29T17:12:13.482516Z" + "iopub.execute_input": "2024-09-04T16:41:28.179086Z", + "iopub.status.busy": "2024-09-04T16:41:28.178761Z", + "iopub.status.idle": "2024-09-04T16:41:28.188587Z", + "shell.execute_reply": "2024-09-04T16:41:28.188043Z" } }, "outputs": [ @@ -1729,10 +1729,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.485057Z", - "iopub.status.busy": "2024-08-29T17:12:13.484691Z", - "iopub.status.idle": "2024-08-29T17:12:13.493906Z", - "shell.execute_reply": "2024-08-29T17:12:13.493448Z" + "iopub.execute_input": "2024-09-04T16:41:28.190655Z", + "iopub.status.busy": "2024-09-04T16:41:28.190335Z", + "iopub.status.idle": "2024-09-04T16:41:28.199664Z", + "shell.execute_reply": "2024-09-04T16:41:28.199201Z" } }, "outputs": [ @@ -1919,10 +1919,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.495935Z", - "iopub.status.busy": "2024-08-29T17:12:13.495596Z", - "iopub.status.idle": "2024-08-29T17:12:13.526113Z", - "shell.execute_reply": "2024-08-29T17:12:13.525678Z" + "iopub.execute_input": "2024-09-04T16:41:28.201641Z", + "iopub.status.busy": "2024-09-04T16:41:28.201319Z", + "iopub.status.idle": "2024-09-04T16:41:28.226455Z", + "shell.execute_reply": "2024-09-04T16:41:28.226027Z" } }, "outputs": [], @@ -1956,10 +1956,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.528299Z", - "iopub.status.busy": "2024-08-29T17:12:13.527957Z", - "iopub.status.idle": "2024-08-29T17:12:13.530498Z", - "shell.execute_reply": "2024-08-29T17:12:13.529995Z" + "iopub.execute_input": "2024-09-04T16:41:28.228596Z", + "iopub.status.busy": "2024-09-04T16:41:28.228102Z", + "iopub.status.idle": "2024-09-04T16:41:28.231032Z", + "shell.execute_reply": "2024-09-04T16:41:28.230466Z" } }, "outputs": [], @@ -1981,10 +1981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.532537Z", - "iopub.status.busy": "2024-08-29T17:12:13.532217Z", - "iopub.status.idle": "2024-08-29T17:12:13.551762Z", - "shell.execute_reply": "2024-08-29T17:12:13.551238Z" + "iopub.execute_input": "2024-09-04T16:41:28.233191Z", + "iopub.status.busy": "2024-09-04T16:41:28.232860Z", + "iopub.status.idle": "2024-09-04T16:41:28.251385Z", + "shell.execute_reply": "2024-09-04T16:41:28.250804Z" } }, "outputs": [ @@ -2142,10 +2142,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.554534Z", - "iopub.status.busy": "2024-08-29T17:12:13.554173Z", - "iopub.status.idle": "2024-08-29T17:12:13.558538Z", - "shell.execute_reply": "2024-08-29T17:12:13.558052Z" + "iopub.execute_input": "2024-09-04T16:41:28.253837Z", + "iopub.status.busy": "2024-09-04T16:41:28.253519Z", + "iopub.status.idle": "2024-09-04T16:41:28.257759Z", + "shell.execute_reply": "2024-09-04T16:41:28.257200Z" } }, "outputs": [], @@ -2178,10 +2178,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.560435Z", - "iopub.status.busy": "2024-08-29T17:12:13.560256Z", - "iopub.status.idle": "2024-08-29T17:12:13.587883Z", - "shell.execute_reply": "2024-08-29T17:12:13.587425Z" + "iopub.execute_input": "2024-09-04T16:41:28.259740Z", + "iopub.status.busy": "2024-09-04T16:41:28.259407Z", + "iopub.status.idle": "2024-09-04T16:41:28.286565Z", + "shell.execute_reply": "2024-09-04T16:41:28.286005Z" } }, "outputs": [ @@ -2327,10 +2327,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.589955Z", - "iopub.status.busy": "2024-08-29T17:12:13.589553Z", - "iopub.status.idle": "2024-08-29T17:12:13.920885Z", - "shell.execute_reply": "2024-08-29T17:12:13.920275Z" + "iopub.execute_input": "2024-09-04T16:41:28.288831Z", + "iopub.status.busy": "2024-09-04T16:41:28.288383Z", + "iopub.status.idle": "2024-09-04T16:41:28.597994Z", + "shell.execute_reply": "2024-09-04T16:41:28.597431Z" } }, "outputs": [ @@ -2397,10 +2397,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.923410Z", - "iopub.status.busy": "2024-08-29T17:12:13.923057Z", - "iopub.status.idle": "2024-08-29T17:12:13.926548Z", - "shell.execute_reply": "2024-08-29T17:12:13.925922Z" + "iopub.execute_input": "2024-09-04T16:41:28.600027Z", + "iopub.status.busy": "2024-09-04T16:41:28.599709Z", + "iopub.status.idle": "2024-09-04T16:41:28.602809Z", + "shell.execute_reply": "2024-09-04T16:41:28.602272Z" } }, "outputs": [ @@ -2451,10 +2451,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.928781Z", - "iopub.status.busy": "2024-08-29T17:12:13.928369Z", - "iopub.status.idle": "2024-08-29T17:12:13.942357Z", - "shell.execute_reply": "2024-08-29T17:12:13.941751Z" + "iopub.execute_input": "2024-09-04T16:41:28.604860Z", + "iopub.status.busy": "2024-09-04T16:41:28.604546Z", + "iopub.status.idle": "2024-09-04T16:41:28.617110Z", + "shell.execute_reply": "2024-09-04T16:41:28.616570Z" } }, "outputs": [ @@ -2733,10 +2733,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.944843Z", - "iopub.status.busy": "2024-08-29T17:12:13.944458Z", - "iopub.status.idle": "2024-08-29T17:12:13.959537Z", - "shell.execute_reply": "2024-08-29T17:12:13.958923Z" + "iopub.execute_input": "2024-09-04T16:41:28.618988Z", + "iopub.status.busy": "2024-09-04T16:41:28.618816Z", + "iopub.status.idle": "2024-09-04T16:41:28.633222Z", + "shell.execute_reply": "2024-09-04T16:41:28.632782Z" } }, "outputs": [ @@ -3003,10 +3003,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.962019Z", - "iopub.status.busy": "2024-08-29T17:12:13.961658Z", - "iopub.status.idle": "2024-08-29T17:12:13.972409Z", - "shell.execute_reply": "2024-08-29T17:12:13.971932Z" + "iopub.execute_input": "2024-09-04T16:41:28.635056Z", + "iopub.status.busy": "2024-09-04T16:41:28.634886Z", + "iopub.status.idle": "2024-09-04T16:41:28.644736Z", + "shell.execute_reply": "2024-09-04T16:41:28.644321Z" } }, "outputs": [], @@ -3031,10 +3031,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.974825Z", - "iopub.status.busy": "2024-08-29T17:12:13.974455Z", - "iopub.status.idle": "2024-08-29T17:12:13.984415Z", - "shell.execute_reply": "2024-08-29T17:12:13.983776Z" + "iopub.execute_input": "2024-09-04T16:41:28.646802Z", + "iopub.status.busy": "2024-09-04T16:41:28.646400Z", + "iopub.status.idle": "2024-09-04T16:41:28.655411Z", + "shell.execute_reply": "2024-09-04T16:41:28.654853Z" } }, "outputs": [ @@ -3206,10 +3206,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.986928Z", - "iopub.status.busy": "2024-08-29T17:12:13.986550Z", - "iopub.status.idle": "2024-08-29T17:12:13.990476Z", - "shell.execute_reply": "2024-08-29T17:12:13.989951Z" + "iopub.execute_input": "2024-09-04T16:41:28.657469Z", + "iopub.status.busy": "2024-09-04T16:41:28.657144Z", + "iopub.status.idle": "2024-09-04T16:41:28.660816Z", + "shell.execute_reply": "2024-09-04T16:41:28.660269Z" } }, "outputs": [], @@ -3241,10 +3241,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.992658Z", - "iopub.status.busy": "2024-08-29T17:12:13.992306Z", - "iopub.status.idle": "2024-08-29T17:12:14.050241Z", - "shell.execute_reply": "2024-08-29T17:12:14.049616Z" + "iopub.execute_input": "2024-09-04T16:41:28.662875Z", + "iopub.status.busy": "2024-09-04T16:41:28.662564Z", + "iopub.status.idle": "2024-09-04T16:41:28.711619Z", + "shell.execute_reply": "2024-09-04T16:41:28.711087Z" } }, "outputs": [ @@ -3252,230 +3252,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3551,10 +3551,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:14.052949Z", - "iopub.status.busy": "2024-08-29T17:12:14.052381Z", - "iopub.status.idle": "2024-08-29T17:12:14.058571Z", - "shell.execute_reply": "2024-08-29T17:12:14.058047Z" + "iopub.execute_input": "2024-09-04T16:41:28.713769Z", + "iopub.status.busy": "2024-09-04T16:41:28.713379Z", + "iopub.status.idle": "2024-09-04T16:41:28.718911Z", + "shell.execute_reply": "2024-09-04T16:41:28.718382Z" } }, "outputs": [], @@ -3593,10 +3593,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:14.060733Z", - "iopub.status.busy": "2024-08-29T17:12:14.060364Z", - "iopub.status.idle": "2024-08-29T17:12:14.072297Z", - "shell.execute_reply": "2024-08-29T17:12:14.071693Z" + "iopub.execute_input": "2024-09-04T16:41:28.720910Z", + "iopub.status.busy": "2024-09-04T16:41:28.720526Z", + "iopub.status.idle": "2024-09-04T16:41:28.731222Z", + "shell.execute_reply": "2024-09-04T16:41:28.730672Z" } }, "outputs": [ @@ -3632,10 +3632,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:14.074432Z", - "iopub.status.busy": "2024-08-29T17:12:14.074223Z", - "iopub.status.idle": "2024-08-29T17:12:14.263188Z", - "shell.execute_reply": "2024-08-29T17:12:14.262581Z" + "iopub.execute_input": "2024-09-04T16:41:28.733373Z", + "iopub.status.busy": "2024-09-04T16:41:28.732961Z", + "iopub.status.idle": "2024-09-04T16:41:28.907204Z", + "shell.execute_reply": "2024-09-04T16:41:28.906655Z" } }, "outputs": [ @@ -3687,10 +3687,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:14.265384Z", - "iopub.status.busy": "2024-08-29T17:12:14.265183Z", - "iopub.status.idle": "2024-08-29T17:12:14.273743Z", - "shell.execute_reply": "2024-08-29T17:12:14.273131Z" + "iopub.execute_input": "2024-09-04T16:41:28.909365Z", + "iopub.status.busy": "2024-09-04T16:41:28.909175Z", + "iopub.status.idle": "2024-09-04T16:41:28.916651Z", + "shell.execute_reply": "2024-09-04T16:41:28.916093Z" }, "nbsphinx": "hidden" }, @@ -3756,10 +3756,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:14.276047Z", - "iopub.status.busy": "2024-08-29T17:12:14.275677Z", - "iopub.status.idle": "2024-08-29T17:12:14.623758Z", - "shell.execute_reply": "2024-08-29T17:12:14.623033Z" + "iopub.execute_input": "2024-09-04T16:41:28.918871Z", + "iopub.status.busy": "2024-09-04T16:41:28.918561Z", + "iopub.status.idle": "2024-09-04T16:41:29.350378Z", + "shell.execute_reply": "2024-09-04T16:41:29.349619Z" } }, "outputs": [ @@ -3767,18 +3767,25 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-29 17:12:14-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", - "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.110.153, 185.199.109.153, ...\r\n", - "Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.111.153|:443... connected.\r\n", - "HTTP request sent, awaiting response... 200 OK\r\n", + "--2024-09-04 16:41:28-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", + "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.108.153, 185.199.110.153, 185.199.109.153, ...\r\n", + "Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.108.153|:443... connected.\r\n", + "HTTP request sent, awaiting response... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200 OK\r\n", "Length: 986707 (964K) [application/zip]\r\n", "Saving to: ‘CIFAR-10-subset.zip’\r\n", "\r\n", "\r", "CIFAR-10-subset.zip 0%[ ] 0 --.-KB/s \r", - "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.005s \r\n", + "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.006s \r\n", "\r\n", - "2024-08-29 17:12:14 (189 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", + "2024-09-04 16:41:29 (149 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", "\r\n" ] } @@ -3794,10 +3801,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:14.626661Z", - "iopub.status.busy": "2024-08-29T17:12:14.626224Z", - "iopub.status.idle": "2024-08-29T17:12:16.635519Z", - "shell.execute_reply": "2024-08-29T17:12:16.634953Z" + "iopub.execute_input": "2024-09-04T16:41:29.352933Z", + "iopub.status.busy": "2024-09-04T16:41:29.352735Z", + "iopub.status.idle": "2024-09-04T16:41:31.255957Z", + "shell.execute_reply": "2024-09-04T16:41:31.255425Z" } }, "outputs": [], @@ -3843,10 +3850,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:16.638208Z", - "iopub.status.busy": "2024-08-29T17:12:16.637703Z", - "iopub.status.idle": "2024-08-29T17:12:17.304618Z", - "shell.execute_reply": "2024-08-29T17:12:17.303989Z" + "iopub.execute_input": "2024-09-04T16:41:31.258629Z", + "iopub.status.busy": "2024-09-04T16:41:31.258194Z", + "iopub.status.idle": "2024-09-04T16:41:31.875313Z", + "shell.execute_reply": "2024-09-04T16:41:31.874748Z" } }, "outputs": [ @@ -3861,7 +3868,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "782e971f14da458383f425f5d3bc7543", + "model_id": "11855cce6b9f4255a537a210fa57ef44", "version_major": 2, "version_minor": 0 }, @@ -4001,10 +4008,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:17.307410Z", - "iopub.status.busy": "2024-08-29T17:12:17.307061Z", - "iopub.status.idle": "2024-08-29T17:12:17.320998Z", - "shell.execute_reply": "2024-08-29T17:12:17.320467Z" + "iopub.execute_input": "2024-09-04T16:41:31.878079Z", + "iopub.status.busy": "2024-09-04T16:41:31.877746Z", + "iopub.status.idle": "2024-09-04T16:41:31.890193Z", + "shell.execute_reply": "2024-09-04T16:41:31.889705Z" } }, "outputs": [ @@ -4250,10 +4257,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:17.323540Z", - "iopub.status.busy": "2024-08-29T17:12:17.323207Z", - "iopub.status.idle": "2024-08-29T17:12:17.474887Z", - "shell.execute_reply": "2024-08-29T17:12:17.474218Z" + "iopub.execute_input": "2024-09-04T16:41:31.892548Z", + "iopub.status.busy": "2024-09-04T16:41:31.892233Z", + "iopub.status.idle": "2024-09-04T16:41:32.039148Z", + "shell.execute_reply": "2024-09-04T16:41:32.038562Z" } }, "outputs": [ @@ -4318,10 +4325,10 @@ "execution_count": 38, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:17.477223Z", - "iopub.status.busy": "2024-08-29T17:12:17.476876Z", - "iopub.status.idle": "2024-08-29T17:12:18.002376Z", - "shell.execute_reply": "2024-08-29T17:12:18.001766Z" + "iopub.execute_input": "2024-09-04T16:41:32.041442Z", + "iopub.status.busy": "2024-09-04T16:41:32.041235Z", + "iopub.status.idle": "2024-09-04T16:41:32.538172Z", + "shell.execute_reply": "2024-09-04T16:41:32.537643Z" }, "nbsphinx": "hidden" }, @@ -4337,7 +4344,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "22ce1bc5210545adb9df959fe9d1d2e7", + "model_id": "57561caff4de49ed8ad39ec4e2ea3e81", "version_major": 2, "version_minor": 0 }, @@ -4591,10 +4598,10 @@ "execution_count": 39, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:18.004822Z", - "iopub.status.busy": "2024-08-29T17:12:18.004404Z", - "iopub.status.idle": "2024-08-29T17:12:18.155648Z", - "shell.execute_reply": "2024-08-29T17:12:18.155048Z" + "iopub.execute_input": "2024-09-04T16:41:32.540650Z", + "iopub.status.busy": "2024-09-04T16:41:32.540256Z", + "iopub.status.idle": "2024-09-04T16:41:32.685512Z", + "shell.execute_reply": "2024-09-04T16:41:32.685011Z" }, "nbsphinx": "hidden" }, @@ -4646,30 +4653,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "04913c7b295f4a38aae251c092f6f651": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a8e38c103ff043fc8808e855a4422d92", - "placeholder": "​", - "style": "IPY_MODEL_599c1b1311a346a98db741df69a0985d", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "0b61687c1eaa47bcadf5c00bc5580f3a": { + "0f792337d4b94b79a7ed7826ad950afc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4722,7 +4706,31 @@ "width": null } }, - "0cba20f26ab947c483c60b3955f1b00b": { + "11855cce6b9f4255a537a210fa57ef44": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4f4f9fbe228a4465aa8431637253ebc9", + "IPY_MODEL_cc13f71e8eb84e5f80cd24a389085935", + "IPY_MODEL_44cf4cc73bba46e3b942876e659a319f" + ], + "layout": "IPY_MODEL_e424b1b21abc4d61b48321e8e49fa72e", + "tabbable": null, + "tooltip": null + } + }, + "12ca79d519064816bfd3bef376c3c301": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4738,31 +4746,30 @@ "description_width": "" } }, - "22ce1bc5210545adb9df959fe9d1d2e7": { + "1c0e0855d89c4912ac3cca58b9b071ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_04913c7b295f4a38aae251c092f6f651", - "IPY_MODEL_a119180eaf594654ae8e43788e5f1e5f", - "IPY_MODEL_4c125478a3424acd8956d9f6e2ca213a" - ], - "layout": "IPY_MODEL_64319a05ec684441a4f737b7497c0e9c", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ba9e6e1a8c6f48ed95c12f4d5aa1f5f5", + "placeholder": "​", + "style": "IPY_MODEL_f56e2a9c973f45af8ce7af8b864d8eb9", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "27c98cb49b604570bd1257a7e2c10477": { + "1eb522736c96413b83435fbd2d0ab352": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4780,78 +4787,46 @@ "text_color": null } }, - "3f021ce1cdab485687f2435e8e40cc28": { - "model_module": "@jupyter-widgets/base", + "383eefabde604e64a5adb5b00080897c": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "486be619f0824bdeb7ba1b0cf8c0cd24": { + "44cf4cc73bba46e3b942876e659a319f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_636d32c710a34208aed5366abe0cd8d6", + "placeholder": "​", + "style": "IPY_MODEL_1eb522736c96413b83435fbd2d0ab352", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 796.34it/s]" } }, - "4c125478a3424acd8956d9f6e2ca213a": { + "4f4f9fbe228a4465aa8431637253ebc9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4866,15 +4841,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3f021ce1cdab485687f2435e8e40cc28", + "layout": "IPY_MODEL_6f6791efd1a449b3a2ebcab7573555ea", "placeholder": "​", - "style": "IPY_MODEL_57ca3a1a06844f708bb7288bf4847824", + "style": "IPY_MODEL_6f73d26e4db04796b675fa2b7b306283", "tabbable": null, "tooltip": null, - "value": " 200/200 [00:00<00:00, 696.04it/s]" + "value": "100%" } }, - "53065ef2c3a94adcacc88f20a8b0f38a": { + "4f9aab7ca25c4263b796112cd40e972b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5113b13410b5494792a5c55b815df76c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4927,66 +4920,31 @@ "width": null } }, - "57ca3a1a06844f708bb7288bf4847824": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "599c1b1311a346a98db741df69a0985d": { + "57561caff4de49ed8ad39ec4e2ea3e81": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5b440c9a8f644f259f9db6f363cb92f1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c80257e26637485bb97ac7fc38e01727", - "placeholder": "​", - "style": "IPY_MODEL_486be619f0824bdeb7ba1b0cf8c0cd24", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1c0e0855d89c4912ac3cca58b9b071ff", + "IPY_MODEL_7f55b867a1a843639f73bcf1f846b39b", + "IPY_MODEL_a7a983871f5a46e3ae9180582117bedb" + ], + "layout": "IPY_MODEL_0f792337d4b94b79a7ed7826ad950afc", "tabbable": null, - "tooltip": null, - "value": "100%" + "tooltip": null } }, - "64319a05ec684441a4f737b7497c0e9c": { + "636d32c710a34208aed5366abe0cd8d6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5039,7 +4997,7 @@ "width": null } }, - "718d8bd405474436b39a588a81fb1c1d": { + "6f6791efd1a449b3a2ebcab7573555ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5092,73 +5050,127 @@ "width": null } }, - "782e971f14da458383f425f5d3bc7543": { + "6f73d26e4db04796b675fa2b7b306283": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7f55b867a1a843639f73bcf1f846b39b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5b440c9a8f644f259f9db6f363cb92f1", - "IPY_MODEL_c98ad304277e4d52b5b3729f0220f9b8", - "IPY_MODEL_b3f50354b6334c3c80af90c4f70fa5ad" - ], - "layout": "IPY_MODEL_a7cba9643a554291af58114587751a73", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9ad2a452ef454481afe910b396da739d", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_12ca79d519064816bfd3bef376c3c301", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 200.0 } }, - "7e0e2f6bb0ac41dc9f7174fc1c86be71": { - "model_module": "@jupyter-widgets/controls", + "9ad2a452ef454481afe910b396da739d": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a119180eaf594654ae8e43788e5f1e5f": { + "a7a983871f5a46e3ae9180582117bedb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0b61687c1eaa47bcadf5c00bc5580f3a", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7e0e2f6bb0ac41dc9f7174fc1c86be71", + "layout": "IPY_MODEL_af8c901c5a434cb7ab8a6a88e79f4b9b", + "placeholder": "​", + "style": "IPY_MODEL_4f9aab7ca25c4263b796112cd40e972b", "tabbable": null, "tooltip": null, - "value": 200.0 + "value": " 200/200 [00:00<00:00, 700.03it/s]" } }, - "a7cba9643a554291af58114587751a73": { + "af8c901c5a434cb7ab8a6a88e79f4b9b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5211,7 +5223,7 @@ "width": null } }, - "a8e38c103ff043fc8808e855a4422d92": { + "ba9e6e1a8c6f48ed95c12f4d5aa1f5f5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5264,30 +5276,33 @@ "width": null } }, - "b3f50354b6334c3c80af90c4f70fa5ad": { + "cc13f71e8eb84e5f80cd24a389085935": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_53065ef2c3a94adcacc88f20a8b0f38a", - "placeholder": "​", - "style": "IPY_MODEL_27c98cb49b604570bd1257a7e2c10477", + "layout": "IPY_MODEL_5113b13410b5494792a5c55b815df76c", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_383eefabde604e64a5adb5b00080897c", "tabbable": null, "tooltip": null, - "value": " 200/200 [00:00<00:00, 675.79it/s]" + "value": 200.0 } }, - "c80257e26637485bb97ac7fc38e01727": { + "e424b1b21abc4d61b48321e8e49fa72e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5340,30 +5355,22 @@ "width": null } }, - "c98ad304277e4d52b5b3729f0220f9b8": { + "f56e2a9c973f45af8ce7af8b864d8eb9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_718d8bd405474436b39a588a81fb1c1d", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0cba20f26ab947c483c60b3955f1b00b", - "tabbable": null, - "tooltip": null, - "value": 200.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index f499d38de..327b4bd04 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:22.678292Z", - "iopub.status.busy": "2024-08-29T17:12:22.678099Z", - "iopub.status.idle": "2024-08-29T17:12:23.876369Z", - "shell.execute_reply": "2024-08-29T17:12:23.875750Z" + "iopub.execute_input": "2024-09-04T16:41:36.541756Z", + "iopub.status.busy": "2024-09-04T16:41:36.541379Z", + "iopub.status.idle": "2024-09-04T16:41:37.674396Z", + "shell.execute_reply": "2024-09-04T16:41:37.673850Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:23.879105Z", - "iopub.status.busy": "2024-08-29T17:12:23.878558Z", - "iopub.status.idle": "2024-08-29T17:12:23.881505Z", - "shell.execute_reply": "2024-08-29T17:12:23.881048Z" + "iopub.execute_input": "2024-09-04T16:41:37.677036Z", + "iopub.status.busy": "2024-09-04T16:41:37.676591Z", + "iopub.status.idle": "2024-09-04T16:41:37.679357Z", + "shell.execute_reply": "2024-09-04T16:41:37.678887Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:23.883650Z", - "iopub.status.busy": "2024-08-29T17:12:23.883315Z", - "iopub.status.idle": "2024-08-29T17:12:23.894950Z", - "shell.execute_reply": "2024-08-29T17:12:23.894472Z" + "iopub.execute_input": "2024-09-04T16:41:37.681562Z", + "iopub.status.busy": "2024-09-04T16:41:37.681190Z", + "iopub.status.idle": "2024-09-04T16:41:37.692578Z", + "shell.execute_reply": "2024-09-04T16:41:37.692134Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:23.896795Z", - "iopub.status.busy": "2024-08-29T17:12:23.896621Z", - "iopub.status.idle": "2024-08-29T17:12:29.124569Z", - "shell.execute_reply": "2024-08-29T17:12:29.124049Z" + "iopub.execute_input": "2024-09-04T16:41:37.694700Z", + "iopub.status.busy": "2024-09-04T16:41:37.694370Z", + "iopub.status.idle": "2024-09-04T16:41:44.638192Z", + "shell.execute_reply": "2024-09-04T16:41:44.637686Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index ec1def7c4..6746ec983 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:31.435306Z", - "iopub.status.busy": "2024-08-29T17:12:31.434876Z", - "iopub.status.idle": "2024-08-29T17:12:32.602756Z", - "shell.execute_reply": "2024-08-29T17:12:32.602171Z" + "iopub.execute_input": "2024-09-04T16:41:46.756516Z", + "iopub.status.busy": "2024-09-04T16:41:46.756336Z", + "iopub.status.idle": "2024-09-04T16:41:47.881830Z", + "shell.execute_reply": "2024-09-04T16:41:47.881270Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:32.605542Z", - "iopub.status.busy": "2024-08-29T17:12:32.605054Z", - "iopub.status.idle": "2024-08-29T17:12:32.608529Z", - "shell.execute_reply": "2024-08-29T17:12:32.608061Z" + "iopub.execute_input": "2024-09-04T16:41:47.884583Z", + "iopub.status.busy": "2024-09-04T16:41:47.884101Z", + "iopub.status.idle": "2024-09-04T16:41:47.887341Z", + "shell.execute_reply": "2024-09-04T16:41:47.886907Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:32.610439Z", - "iopub.status.busy": "2024-08-29T17:12:32.610248Z", - "iopub.status.idle": "2024-08-29T17:12:36.028930Z", - "shell.execute_reply": "2024-08-29T17:12:36.028266Z" + "iopub.execute_input": "2024-09-04T16:41:47.889315Z", + "iopub.status.busy": "2024-09-04T16:41:47.889034Z", + "iopub.status.idle": "2024-09-04T16:41:51.189785Z", + "shell.execute_reply": "2024-09-04T16:41:51.189096Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:36.032050Z", - "iopub.status.busy": "2024-08-29T17:12:36.031366Z", - "iopub.status.idle": "2024-08-29T17:12:36.076606Z", - "shell.execute_reply": "2024-08-29T17:12:36.075973Z" + "iopub.execute_input": "2024-09-04T16:41:51.192724Z", + "iopub.status.busy": "2024-09-04T16:41:51.192059Z", + "iopub.status.idle": "2024-09-04T16:41:51.233718Z", + "shell.execute_reply": "2024-09-04T16:41:51.233075Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:36.079362Z", - "iopub.status.busy": "2024-08-29T17:12:36.079048Z", - "iopub.status.idle": "2024-08-29T17:12:36.123474Z", - "shell.execute_reply": "2024-08-29T17:12:36.122782Z" + "iopub.execute_input": "2024-09-04T16:41:51.236379Z", + "iopub.status.busy": "2024-09-04T16:41:51.235985Z", + "iopub.status.idle": "2024-09-04T16:41:51.273934Z", + "shell.execute_reply": "2024-09-04T16:41:51.273171Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:36.126375Z", - "iopub.status.busy": "2024-08-29T17:12:36.125935Z", - "iopub.status.idle": "2024-08-29T17:12:36.129100Z", - "shell.execute_reply": "2024-08-29T17:12:36.128643Z" + "iopub.execute_input": "2024-09-04T16:41:51.276680Z", + "iopub.status.busy": "2024-09-04T16:41:51.276288Z", + "iopub.status.idle": "2024-09-04T16:41:51.279333Z", + "shell.execute_reply": "2024-09-04T16:41:51.278859Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:36.131168Z", - "iopub.status.busy": "2024-08-29T17:12:36.130857Z", - "iopub.status.idle": "2024-08-29T17:12:36.133619Z", - "shell.execute_reply": "2024-08-29T17:12:36.133143Z" + "iopub.execute_input": "2024-09-04T16:41:51.281296Z", + "iopub.status.busy": "2024-09-04T16:41:51.280954Z", + "iopub.status.idle": "2024-09-04T16:41:51.283606Z", + "shell.execute_reply": "2024-09-04T16:41:51.283143Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:36.135829Z", - "iopub.status.busy": "2024-08-29T17:12:36.135488Z", - "iopub.status.idle": "2024-08-29T17:12:36.164835Z", - "shell.execute_reply": "2024-08-29T17:12:36.164245Z" + "iopub.execute_input": "2024-09-04T16:41:51.285743Z", + "iopub.status.busy": "2024-09-04T16:41:51.285436Z", + "iopub.status.idle": "2024-09-04T16:41:51.311389Z", + "shell.execute_reply": "2024-09-04T16:41:51.310854Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cad4caf07f124a1a9027592998338a63", + "model_id": "a719b1e1c5a54d2fa097f91d83e0d044", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c8ad193f70d74db4a4e52684ef1ecc28", + "model_id": "25ee13ad3c2f4f8eba001c8dd1078859", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:36.170675Z", - "iopub.status.busy": "2024-08-29T17:12:36.170488Z", - "iopub.status.idle": "2024-08-29T17:12:36.177363Z", - "shell.execute_reply": "2024-08-29T17:12:36.176818Z" + "iopub.execute_input": "2024-09-04T16:41:51.317467Z", + "iopub.status.busy": "2024-09-04T16:41:51.316964Z", + "iopub.status.idle": "2024-09-04T16:41:51.323386Z", + "shell.execute_reply": "2024-09-04T16:41:51.322968Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:36.179676Z", - "iopub.status.busy": "2024-08-29T17:12:36.179373Z", - "iopub.status.idle": "2024-08-29T17:12:36.182858Z", - "shell.execute_reply": "2024-08-29T17:12:36.182293Z" + "iopub.execute_input": "2024-09-04T16:41:51.325385Z", + "iopub.status.busy": "2024-09-04T16:41:51.325048Z", + "iopub.status.idle": "2024-09-04T16:41:51.328552Z", + "shell.execute_reply": "2024-09-04T16:41:51.328094Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:36.184876Z", - "iopub.status.busy": "2024-08-29T17:12:36.184571Z", - "iopub.status.idle": "2024-08-29T17:12:36.190921Z", - "shell.execute_reply": "2024-08-29T17:12:36.190364Z" + "iopub.execute_input": "2024-09-04T16:41:51.330395Z", + "iopub.status.busy": "2024-09-04T16:41:51.330223Z", + "iopub.status.idle": "2024-09-04T16:41:51.336522Z", + "shell.execute_reply": "2024-09-04T16:41:51.336028Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:36.193007Z", - "iopub.status.busy": "2024-08-29T17:12:36.192613Z", - "iopub.status.idle": "2024-08-29T17:12:36.242318Z", - "shell.execute_reply": "2024-08-29T17:12:36.241553Z" + "iopub.execute_input": "2024-09-04T16:41:51.338765Z", + "iopub.status.busy": "2024-09-04T16:41:51.338302Z", + "iopub.status.idle": "2024-09-04T16:41:51.382928Z", + "shell.execute_reply": "2024-09-04T16:41:51.382327Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:36.245296Z", - "iopub.status.busy": "2024-08-29T17:12:36.244766Z", - "iopub.status.idle": "2024-08-29T17:12:36.287675Z", - "shell.execute_reply": "2024-08-29T17:12:36.287052Z" + "iopub.execute_input": "2024-09-04T16:41:51.385521Z", + "iopub.status.busy": "2024-09-04T16:41:51.385117Z", + "iopub.status.idle": "2024-09-04T16:41:51.422891Z", + "shell.execute_reply": "2024-09-04T16:41:51.422277Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:36.290472Z", - "iopub.status.busy": "2024-08-29T17:12:36.290047Z", - "iopub.status.idle": "2024-08-29T17:12:36.423423Z", - "shell.execute_reply": "2024-08-29T17:12:36.422786Z" + "iopub.execute_input": "2024-09-04T16:41:51.425583Z", + "iopub.status.busy": "2024-09-04T16:41:51.425183Z", + "iopub.status.idle": "2024-09-04T16:41:51.552452Z", + "shell.execute_reply": "2024-09-04T16:41:51.551834Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:36.426228Z", - "iopub.status.busy": "2024-08-29T17:12:36.425637Z", - "iopub.status.idle": "2024-08-29T17:12:39.471432Z", - "shell.execute_reply": "2024-08-29T17:12:39.470781Z" + "iopub.execute_input": "2024-09-04T16:41:51.555335Z", + "iopub.status.busy": "2024-09-04T16:41:51.554558Z", + "iopub.status.idle": "2024-09-04T16:41:54.568700Z", + "shell.execute_reply": "2024-09-04T16:41:54.568034Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:39.474001Z", - "iopub.status.busy": "2024-08-29T17:12:39.473592Z", - "iopub.status.idle": "2024-08-29T17:12:39.530765Z", - "shell.execute_reply": "2024-08-29T17:12:39.530181Z" + "iopub.execute_input": "2024-09-04T16:41:54.570952Z", + "iopub.status.busy": "2024-09-04T16:41:54.570754Z", + "iopub.status.idle": "2024-09-04T16:41:54.628096Z", + "shell.execute_reply": "2024-09-04T16:41:54.627519Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:39.532867Z", - "iopub.status.busy": "2024-08-29T17:12:39.532686Z", - "iopub.status.idle": "2024-08-29T17:12:39.575220Z", - "shell.execute_reply": "2024-08-29T17:12:39.574734Z" + "iopub.execute_input": "2024-09-04T16:41:54.630324Z", + "iopub.status.busy": "2024-09-04T16:41:54.629893Z", + "iopub.status.idle": "2024-09-04T16:41:54.669819Z", + "shell.execute_reply": "2024-09-04T16:41:54.669269Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "5a9fb295", + "id": "b637ea6a", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "43eb24fc", + "id": "fcc1df9b", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "a05c6269", + "id": "601a7d65", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "e22ce93e", + "id": "5e9d920f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:39.577563Z", - "iopub.status.busy": "2024-08-29T17:12:39.577220Z", - "iopub.status.idle": "2024-08-29T17:12:39.584777Z", - "shell.execute_reply": "2024-08-29T17:12:39.584325Z" + "iopub.execute_input": "2024-09-04T16:41:54.671788Z", + "iopub.status.busy": "2024-09-04T16:41:54.671616Z", + "iopub.status.idle": "2024-09-04T16:41:54.679418Z", + "shell.execute_reply": "2024-09-04T16:41:54.678845Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "0d823101", + "id": "28b70114", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "06fb9ffa", + "id": "657d71b9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:39.586924Z", - "iopub.status.busy": "2024-08-29T17:12:39.586582Z", - "iopub.status.idle": "2024-08-29T17:12:39.605650Z", - "shell.execute_reply": "2024-08-29T17:12:39.605198Z" + "iopub.execute_input": "2024-09-04T16:41:54.681539Z", + "iopub.status.busy": "2024-09-04T16:41:54.681206Z", + "iopub.status.idle": "2024-09-04T16:41:54.700000Z", + "shell.execute_reply": "2024-09-04T16:41:54.699420Z" } }, "outputs": [ @@ -1521,13 +1521,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "88a79ebc", + "id": "b96be76e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:39.607676Z", - "iopub.status.busy": "2024-08-29T17:12:39.607338Z", - "iopub.status.idle": "2024-08-29T17:12:39.610365Z", - "shell.execute_reply": "2024-08-29T17:12:39.609843Z" + "iopub.execute_input": "2024-09-04T16:41:54.702045Z", + "iopub.status.busy": "2024-09-04T16:41:54.701717Z", + "iopub.status.idle": "2024-09-04T16:41:54.704754Z", + "shell.execute_reply": "2024-09-04T16:41:54.704179Z" } }, "outputs": [ @@ -1622,23 +1622,77 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "11bbac914d284dcb8cd774a9143a1a7e": { + "02eef24ed09e4972b001a6a5ae75fd1b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d31a3618611e4eee84f7f5e0b6522438", + "placeholder": "​", + "style": "IPY_MODEL_3c138714de5f495cbdcc170a1c83a426", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " + } + }, + "194b5ab9c8694ac6897617cfd4a40240": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7c5def0cd3ce41c1a2bb119bfe574bc8", + "placeholder": "​", + "style": "IPY_MODEL_700ed4943a764c2eb727336ed6c40a73", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1842354.39it/s]" + } + }, + "25ee13ad3c2f4f8eba001c8dd1078859": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_02eef24ed09e4972b001a6a5ae75fd1b", + "IPY_MODEL_b4e79d6a5293452f8124dc9d13d42cbe", + "IPY_MODEL_194b5ab9c8694ac6897617cfd4a40240" + ], + "layout": "IPY_MODEL_d50af9a53aa34e7586bf53ffb80404e0", + "tabbable": null, + "tooltip": null } }, - "2328049af2d241dcb69b9c4c6d2e488d": { + "3bd2ee5bd4574cb9ae99c31c8d6db603": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1691,30 +1745,57 @@ "width": null } }, - "2da213bd9b224be6a5ac7f052de94aaf": { + "3c138714de5f495cbdcc170a1c83a426": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_44f813c341a54c16b864aa2b865c3523", - "placeholder": "​", - "style": "IPY_MODEL_61a1c6323774462b86ea33ac15fb0448", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1240661.40it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4a3c2be825c84e6b9bae9c2566500466": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4c35586e39ee4749bccb6989f24c13be": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "34b618e7a5d3444a8d33284126186a14": { + "4eef2c8c74ae47b0933fbcf0002315f9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1732,7 +1813,30 @@ "text_color": null } }, - "3d5e7161191b424b8b56393f8bbc0fcb": { + "603c1c5317e24985b5140552ce393cf3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c3ba319bf6ab4cdd966425047521f3b8", + "placeholder": "​", + "style": "IPY_MODEL_4eef2c8c74ae47b0933fbcf0002315f9", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " + } + }, + "700ed4943a764c2eb727336ed6c40a73": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1750,7 +1854,7 @@ "text_color": null } }, - "44f813c341a54c16b864aa2b865c3523": { + "7c5def0cd3ce41c1a2bb119bfe574bc8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1803,7 +1907,51 @@ "width": null } }, - "514934945da14d98812b7145addff0bb": { + "8f12b48727b3448cb6b4e839f43f7f87": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a13b5731e63841ddbdf41c6617b1049e", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4c35586e39ee4749bccb6989f24c13be", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "933406ea42344c4092080ed53b31faa6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9ac9e315538944db842fe63b0842c53f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1856,7 +2004,7 @@ "width": null } }, - "5283739e39cf47d8bc7cfb45f9cf814d": { + "a13b5731e63841ddbdf41c6617b1049e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1909,7 +2057,80 @@ "width": null } }, - "6166de94ded042888e06a5b96a75e36e": { + "a719b1e1c5a54d2fa097f91d83e0d044": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_603c1c5317e24985b5140552ce393cf3", + "IPY_MODEL_8f12b48727b3448cb6b4e839f43f7f87", + "IPY_MODEL_bb997d46764048859303b5ee3ac89ea2" + ], + "layout": "IPY_MODEL_3bd2ee5bd4574cb9ae99c31c8d6db603", + "tabbable": null, + "tooltip": null + } + }, + "b4e79d6a5293452f8124dc9d13d42cbe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9ac9e315538944db842fe63b0842c53f", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4a3c2be825c84e6b9bae9c2566500466", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "bb997d46764048859303b5ee3ac89ea2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fbe636a8cce849caac942d342ab0ecb9", + "placeholder": "​", + "style": "IPY_MODEL_933406ea42344c4092080ed53b31faa6", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 916988.19it/s]" + } + }, + "c3ba319bf6ab4cdd966425047521f3b8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1962,48 +2183,7 @@ "width": null } }, - "61a1c6323774462b86ea33ac15fb0448": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7e5c9146cfc74609813d9c74ac22c0bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c526b040878a46baa88c1ad455d525d4", - "placeholder": "​", - "style": "IPY_MODEL_f9b5f35228e24c50b186dc5af9805432", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 815140.22it/s]" - } - }, - "86792d1244c649feb946f2c423167bdf": { + "d31a3618611e4eee84f7f5e0b6522438": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2056,59 +2236,7 @@ "width": null } }, - "a51d6d899cc6458e916e8df93ab20b43": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2328049af2d241dcb69b9c4c6d2e488d", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_11bbac914d284dcb8cd774a9143a1a7e", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "c1f71300bbab4029b4508e71b5d73f56": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f3fe540a57434540b34221dd462129f4", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ce24252a016c4fe5a1868f7568269be4", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "c526b040878a46baa88c1ad455d525d4": { + "d50af9a53aa34e7586bf53ffb80404e0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2161,117 +2289,7 @@ "width": null } }, - "c8ad193f70d74db4a4e52684ef1ecc28": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_dc1c06bd97bf41ceaad5b1925aaf1ec6", - "IPY_MODEL_a51d6d899cc6458e916e8df93ab20b43", - "IPY_MODEL_2da213bd9b224be6a5ac7f052de94aaf" - ], - "layout": "IPY_MODEL_514934945da14d98812b7145addff0bb", - "tabbable": null, - "tooltip": null - } - }, - "cad4caf07f124a1a9027592998338a63": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ec0af62d59c34fe3b3fd0ac269a03656", - "IPY_MODEL_c1f71300bbab4029b4508e71b5d73f56", - "IPY_MODEL_7e5c9146cfc74609813d9c74ac22c0bd" - ], - "layout": "IPY_MODEL_5283739e39cf47d8bc7cfb45f9cf814d", - "tabbable": null, - "tooltip": null - } - }, - "ce24252a016c4fe5a1868f7568269be4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "dc1c06bd97bf41ceaad5b1925aaf1ec6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6166de94ded042888e06a5b96a75e36e", - "placeholder": "​", - "style": "IPY_MODEL_3d5e7161191b424b8b56393f8bbc0fcb", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "ec0af62d59c34fe3b3fd0ac269a03656": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_86792d1244c649feb946f2c423167bdf", - "placeholder": "​", - "style": "IPY_MODEL_34b618e7a5d3444a8d33284126186a14", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "f3fe540a57434540b34221dd462129f4": { + "fbe636a8cce849caac942d342ab0ecb9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2323,24 +2341,6 @@ "visibility": null, "width": null } - }, - "f9b5f35228e24c50b186dc5af9805432": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb b/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb index 60df5097f..555c3d9d7 100644 --- a/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb @@ -60,10 +60,10 @@ "id": "2d638465", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:43.121741Z", - "iopub.status.busy": "2024-08-29T17:12:43.121574Z", - "iopub.status.idle": "2024-08-29T17:12:44.294461Z", - "shell.execute_reply": "2024-08-29T17:12:44.293781Z" + "iopub.execute_input": "2024-09-04T16:41:57.874415Z", + "iopub.status.busy": "2024-09-04T16:41:57.874232Z", + "iopub.status.idle": "2024-09-04T16:41:59.016765Z", + "shell.execute_reply": "2024-09-04T16:41:59.016138Z" }, "nbsphinx": "hidden" }, @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -99,10 +99,10 @@ "id": "b0bbf715-47c6-44ea-b15e-89800e62ee04", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:44.297191Z", - "iopub.status.busy": "2024-08-29T17:12:44.296745Z", - "iopub.status.idle": "2024-08-29T17:12:44.300598Z", - "shell.execute_reply": "2024-08-29T17:12:44.300033Z" + "iopub.execute_input": "2024-09-04T16:41:59.019409Z", + "iopub.status.busy": "2024-09-04T16:41:59.019122Z", + "iopub.status.idle": "2024-09-04T16:41:59.023023Z", + "shell.execute_reply": "2024-09-04T16:41:59.022449Z" } }, "outputs": [], @@ -140,10 +140,10 @@ "id": "c58f8015-d051-411c-9e03-5659cf3ad956", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:44.302769Z", - "iopub.status.busy": "2024-08-29T17:12:44.302452Z", - "iopub.status.idle": "2024-08-29T17:12:44.587474Z", - "shell.execute_reply": "2024-08-29T17:12:44.586894Z" + "iopub.execute_input": "2024-09-04T16:41:59.025026Z", + "iopub.status.busy": "2024-09-04T16:41:59.024718Z", + "iopub.status.idle": "2024-09-04T16:41:59.677364Z", + "shell.execute_reply": "2024-09-04T16:41:59.676761Z" } }, "outputs": [ @@ -273,10 +273,10 @@ "id": "1b5f50e6-d125-4e61-b63e-4004f0c9099a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:44.589512Z", - "iopub.status.busy": "2024-08-29T17:12:44.589335Z", - "iopub.status.idle": "2024-08-29T17:12:44.595118Z", - "shell.execute_reply": "2024-08-29T17:12:44.594661Z" + "iopub.execute_input": "2024-09-04T16:41:59.679604Z", + "iopub.status.busy": "2024-09-04T16:41:59.679420Z", + "iopub.status.idle": "2024-09-04T16:41:59.685449Z", + "shell.execute_reply": "2024-09-04T16:41:59.684874Z" } }, "outputs": [], @@ -312,10 +312,10 @@ "id": "a36c21e9-1c32-4df9-bd87-fffeb8c2175f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:44.597127Z", - "iopub.status.busy": "2024-08-29T17:12:44.596802Z", - "iopub.status.idle": "2024-08-29T17:12:44.604251Z", - "shell.execute_reply": "2024-08-29T17:12:44.603773Z" + "iopub.execute_input": "2024-09-04T16:41:59.687503Z", + "iopub.status.busy": "2024-09-04T16:41:59.687095Z", + "iopub.status.idle": "2024-09-04T16:41:59.694033Z", + "shell.execute_reply": "2024-09-04T16:41:59.693488Z" } }, "outputs": [ @@ -418,10 +418,10 @@ "id": "5f856a3a-8aae-4836-b146-9ab68d8d1c7a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:44.606288Z", - "iopub.status.busy": "2024-08-29T17:12:44.605960Z", - "iopub.status.idle": "2024-08-29T17:12:44.610709Z", - "shell.execute_reply": "2024-08-29T17:12:44.610216Z" + "iopub.execute_input": "2024-09-04T16:41:59.696128Z", + "iopub.status.busy": "2024-09-04T16:41:59.695786Z", + "iopub.status.idle": "2024-09-04T16:41:59.700400Z", + "shell.execute_reply": "2024-09-04T16:41:59.699936Z" } }, "outputs": [], @@ -449,10 +449,10 @@ "id": "46275634-da56-4e58-9061-8108be2b585d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:44.612748Z", - "iopub.status.busy": "2024-08-29T17:12:44.612435Z", - "iopub.status.idle": "2024-08-29T17:12:44.618272Z", - "shell.execute_reply": "2024-08-29T17:12:44.617710Z" + "iopub.execute_input": "2024-09-04T16:41:59.702363Z", + "iopub.status.busy": "2024-09-04T16:41:59.702033Z", + "iopub.status.idle": "2024-09-04T16:41:59.707574Z", + "shell.execute_reply": "2024-09-04T16:41:59.707122Z" } }, "outputs": [], @@ -488,10 +488,10 @@ "id": "769c4c5e-a7ff-4e02-bee5-2b2e676aec14", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:44.620290Z", - "iopub.status.busy": "2024-08-29T17:12:44.619975Z", - "iopub.status.idle": "2024-08-29T17:12:44.624368Z", - "shell.execute_reply": "2024-08-29T17:12:44.623923Z" + "iopub.execute_input": "2024-09-04T16:41:59.709687Z", + "iopub.status.busy": "2024-09-04T16:41:59.709271Z", + "iopub.status.idle": "2024-09-04T16:41:59.713252Z", + "shell.execute_reply": "2024-09-04T16:41:59.712782Z" } }, "outputs": [], @@ -506,10 +506,10 @@ "id": "7ac47c3d-9e87-45b7-9064-bfa45578872e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:44.626336Z", - "iopub.status.busy": "2024-08-29T17:12:44.625980Z", - "iopub.status.idle": "2024-08-29T17:12:44.691351Z", - "shell.execute_reply": "2024-08-29T17:12:44.690670Z" + "iopub.execute_input": "2024-09-04T16:41:59.715142Z", + "iopub.status.busy": "2024-09-04T16:41:59.714821Z", + "iopub.status.idle": "2024-09-04T16:41:59.779287Z", + "shell.execute_reply": "2024-09-04T16:41:59.778730Z" } }, "outputs": [ @@ -609,10 +609,10 @@ "id": "6cef169e-d15b-4d18-9cb7-8ea589557e6b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:44.694274Z", - "iopub.status.busy": "2024-08-29T17:12:44.694050Z", - "iopub.status.idle": "2024-08-29T17:12:44.706703Z", - "shell.execute_reply": "2024-08-29T17:12:44.706075Z" + "iopub.execute_input": "2024-09-04T16:41:59.782070Z", + "iopub.status.busy": "2024-09-04T16:41:59.781740Z", + "iopub.status.idle": "2024-09-04T16:41:59.792168Z", + "shell.execute_reply": "2024-09-04T16:41:59.791690Z" } }, "outputs": [ @@ -724,10 +724,10 @@ "id": "b68e0418-86cf-431f-9107-2dd0a310ca42", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:44.709438Z", - "iopub.status.busy": "2024-08-29T17:12:44.709239Z", - "iopub.status.idle": "2024-08-29T17:12:44.731644Z", - "shell.execute_reply": "2024-08-29T17:12:44.731160Z" + "iopub.execute_input": "2024-09-04T16:41:59.794627Z", + "iopub.status.busy": "2024-09-04T16:41:59.794317Z", + "iopub.status.idle": "2024-09-04T16:41:59.814684Z", + "shell.execute_reply": "2024-09-04T16:41:59.814209Z" } }, "outputs": [ @@ -931,10 +931,10 @@ "id": "0e9bd131-429f-48af-b4fc-ed8b907950b9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:44.733913Z", - "iopub.status.busy": "2024-08-29T17:12:44.733596Z", - "iopub.status.idle": "2024-08-29T17:12:44.737316Z", - "shell.execute_reply": "2024-08-29T17:12:44.736843Z" + "iopub.execute_input": "2024-09-04T16:41:59.816977Z", + "iopub.status.busy": "2024-09-04T16:41:59.816607Z", + "iopub.status.idle": "2024-09-04T16:41:59.820497Z", + "shell.execute_reply": "2024-09-04T16:41:59.820024Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "id": "e72320ec-7792-4347-b2fb-630f2519127c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:44.739588Z", - "iopub.status.busy": "2024-08-29T17:12:44.739285Z", - "iopub.status.idle": "2024-08-29T17:12:44.743168Z", - "shell.execute_reply": "2024-08-29T17:12:44.742688Z" + "iopub.execute_input": "2024-09-04T16:41:59.823575Z", + "iopub.status.busy": "2024-09-04T16:41:59.822655Z", + "iopub.status.idle": "2024-09-04T16:41:59.828730Z", + "shell.execute_reply": "2024-09-04T16:41:59.828237Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "id": "8520ba4a-3ad6-408a-b377-3f47c32d745a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:44.745465Z", - "iopub.status.busy": "2024-08-29T17:12:44.745116Z", - "iopub.status.idle": "2024-08-29T17:12:44.754997Z", - "shell.execute_reply": "2024-08-29T17:12:44.754601Z" + "iopub.execute_input": "2024-09-04T16:41:59.832220Z", + "iopub.status.busy": "2024-09-04T16:41:59.831298Z", + "iopub.status.idle": "2024-09-04T16:41:59.843595Z", + "shell.execute_reply": "2024-09-04T16:41:59.843194Z" } }, "outputs": [ @@ -1205,10 +1205,10 @@ "id": "3c002665-c48b-4f04-91f7-ad112a49efc7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:44.756852Z", - "iopub.status.busy": "2024-08-29T17:12:44.756572Z", - "iopub.status.idle": "2024-08-29T17:12:44.760296Z", - "shell.execute_reply": "2024-08-29T17:12:44.759896Z" + "iopub.execute_input": "2024-09-04T16:41:59.846343Z", + "iopub.status.busy": "2024-09-04T16:41:59.845607Z", + "iopub.status.idle": "2024-09-04T16:41:59.850455Z", + "shell.execute_reply": "2024-09-04T16:41:59.849885Z" } }, "outputs": [], @@ -1234,10 +1234,10 @@ "id": "36319f39-f563-4f63-913f-821373180350", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:44.762295Z", - "iopub.status.busy": "2024-08-29T17:12:44.761989Z", - "iopub.status.idle": "2024-08-29T17:12:44.873765Z", - "shell.execute_reply": "2024-08-29T17:12:44.873274Z" + "iopub.execute_input": "2024-09-04T16:41:59.852576Z", + "iopub.status.busy": "2024-09-04T16:41:59.852403Z", + "iopub.status.idle": "2024-09-04T16:41:59.963442Z", + "shell.execute_reply": "2024-09-04T16:41:59.962927Z" } }, "outputs": [ @@ -1711,10 +1711,10 @@ "id": "044c0eb1-299a-4851-b1bf-268d5bce56c1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:44.876035Z", - "iopub.status.busy": "2024-08-29T17:12:44.875564Z", - "iopub.status.idle": "2024-08-29T17:12:44.882161Z", - "shell.execute_reply": "2024-08-29T17:12:44.881586Z" + "iopub.execute_input": "2024-09-04T16:41:59.965646Z", + "iopub.status.busy": "2024-09-04T16:41:59.965216Z", + "iopub.status.idle": "2024-09-04T16:41:59.970877Z", + "shell.execute_reply": "2024-09-04T16:41:59.970376Z" } }, "outputs": [], @@ -1738,10 +1738,10 @@ "id": "c43df278-abfe-40e5-9d48-2df3efea9379", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:44.884568Z", - "iopub.status.busy": "2024-08-29T17:12:44.884224Z", - "iopub.status.idle": "2024-08-29T17:12:46.947050Z", - "shell.execute_reply": "2024-08-29T17:12:46.946371Z" + "iopub.execute_input": "2024-09-04T16:41:59.973310Z", + "iopub.status.busy": "2024-09-04T16:41:59.972950Z", + "iopub.status.idle": "2024-09-04T16:42:01.911875Z", + "shell.execute_reply": "2024-09-04T16:42:01.911272Z" } }, "outputs": [ @@ -1953,10 +1953,10 @@ "id": "77c7f776-54b3-45b5-9207-715d6d2e90c0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:46.951466Z", - "iopub.status.busy": "2024-08-29T17:12:46.950279Z", - "iopub.status.idle": "2024-08-29T17:12:46.965874Z", - "shell.execute_reply": "2024-08-29T17:12:46.965343Z" + "iopub.execute_input": "2024-09-04T16:42:01.915514Z", + "iopub.status.busy": "2024-09-04T16:42:01.914485Z", + "iopub.status.idle": "2024-09-04T16:42:01.928989Z", + "shell.execute_reply": "2024-09-04T16:42:01.928492Z" } }, "outputs": [ @@ -2073,10 +2073,10 @@ "id": "7e218d04-0729-4f42-b264-51c73601ebe6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:46.969570Z", - "iopub.status.busy": "2024-08-29T17:12:46.968637Z", - "iopub.status.idle": "2024-08-29T17:12:46.972773Z", - "shell.execute_reply": "2024-08-29T17:12:46.972271Z" + "iopub.execute_input": "2024-09-04T16:42:01.932311Z", + "iopub.status.busy": "2024-09-04T16:42:01.931431Z", + "iopub.status.idle": "2024-09-04T16:42:01.935298Z", + "shell.execute_reply": "2024-09-04T16:42:01.934802Z" } }, "outputs": [], @@ -2090,10 +2090,10 @@ "id": "7e2bdb41-321e-4929-aa01-1f60948b9e8b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:46.976326Z", - "iopub.status.busy": "2024-08-29T17:12:46.975403Z", - "iopub.status.idle": "2024-08-29T17:12:46.981211Z", - "shell.execute_reply": "2024-08-29T17:12:46.980704Z" + "iopub.execute_input": "2024-09-04T16:42:01.938565Z", + "iopub.status.busy": "2024-09-04T16:42:01.937681Z", + "iopub.status.idle": "2024-09-04T16:42:01.943081Z", + "shell.execute_reply": "2024-09-04T16:42:01.942590Z" } }, "outputs": [], @@ -2117,10 +2117,10 @@ "id": "5ce2d89f-e832-448d-bfac-9941da15c895", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:46.984806Z", - "iopub.status.busy": "2024-08-29T17:12:46.983859Z", - "iopub.status.idle": "2024-08-29T17:12:47.017100Z", - "shell.execute_reply": "2024-08-29T17:12:47.016516Z" + "iopub.execute_input": "2024-09-04T16:42:01.946376Z", + "iopub.status.busy": "2024-09-04T16:42:01.945498Z", + "iopub.status.idle": "2024-09-04T16:42:01.975499Z", + "shell.execute_reply": "2024-09-04T16:42:01.975010Z" } }, "outputs": [ @@ -2160,10 +2160,10 @@ "id": "9f437756-112e-4531-84fc-6ceadd0c9ef5", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:47.019805Z", - "iopub.status.busy": "2024-08-29T17:12:47.019501Z", - "iopub.status.idle": "2024-08-29T17:12:47.550358Z", - "shell.execute_reply": "2024-08-29T17:12:47.549759Z" + "iopub.execute_input": "2024-09-04T16:42:01.978823Z", + "iopub.status.busy": "2024-09-04T16:42:01.977944Z", + "iopub.status.idle": "2024-09-04T16:42:02.480036Z", + "shell.execute_reply": "2024-09-04T16:42:02.479536Z" } }, "outputs": [], @@ -2194,10 +2194,10 @@ "id": "707625f6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:47.554166Z", - "iopub.status.busy": "2024-08-29T17:12:47.553241Z", - "iopub.status.idle": "2024-08-29T17:12:47.689524Z", - "shell.execute_reply": "2024-08-29T17:12:47.688889Z" + "iopub.execute_input": "2024-09-04T16:42:02.483488Z", + "iopub.status.busy": "2024-09-04T16:42:02.482601Z", + "iopub.status.idle": "2024-09-04T16:42:02.622138Z", + "shell.execute_reply": "2024-09-04T16:42:02.621454Z" } }, "outputs": [ @@ -2408,10 +2408,10 @@ "id": "25afe46c-a521-483c-b168-728c76d970dc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:47.693157Z", - "iopub.status.busy": "2024-08-29T17:12:47.692202Z", - "iopub.status.idle": "2024-08-29T17:12:47.700958Z", - "shell.execute_reply": "2024-08-29T17:12:47.700445Z" + "iopub.execute_input": "2024-09-04T16:42:02.624962Z", + "iopub.status.busy": "2024-09-04T16:42:02.624352Z", + "iopub.status.idle": "2024-09-04T16:42:02.631657Z", + "shell.execute_reply": "2024-09-04T16:42:02.631140Z" } }, "outputs": [ @@ -2441,10 +2441,10 @@ "id": "6efcf06f-cc40-4964-87df-5204d3b1b9d4", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:47.704567Z", - "iopub.status.busy": "2024-08-29T17:12:47.703642Z", - "iopub.status.idle": "2024-08-29T17:12:47.711566Z", - "shell.execute_reply": "2024-08-29T17:12:47.711061Z" + "iopub.execute_input": "2024-09-04T16:42:02.634060Z", + "iopub.status.busy": "2024-09-04T16:42:02.633654Z", + "iopub.status.idle": "2024-09-04T16:42:02.639992Z", + "shell.execute_reply": "2024-09-04T16:42:02.639480Z" } }, "outputs": [ @@ -2477,10 +2477,10 @@ "id": "7bc87d72-bbd5-4ed2-bc38-2218862ddfbd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:47.715001Z", - "iopub.status.busy": "2024-08-29T17:12:47.714062Z", - "iopub.status.idle": "2024-08-29T17:12:47.721283Z", - "shell.execute_reply": "2024-08-29T17:12:47.720794Z" + "iopub.execute_input": "2024-09-04T16:42:02.642378Z", + "iopub.status.busy": "2024-09-04T16:42:02.641974Z", + "iopub.status.idle": "2024-09-04T16:42:02.647674Z", + "shell.execute_reply": "2024-09-04T16:42:02.647161Z" } }, "outputs": [ @@ -2513,10 +2513,10 @@ "id": "9c70be3e-0ba2-4e3e-8c50-359d402ca1fe", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:47.724690Z", - "iopub.status.busy": "2024-08-29T17:12:47.723784Z", - "iopub.status.idle": "2024-08-29T17:12:47.729765Z", - "shell.execute_reply": "2024-08-29T17:12:47.729273Z" + "iopub.execute_input": "2024-09-04T16:42:02.650024Z", + "iopub.status.busy": "2024-09-04T16:42:02.649630Z", + "iopub.status.idle": "2024-09-04T16:42:02.654116Z", + "shell.execute_reply": "2024-09-04T16:42:02.653593Z" } }, "outputs": [ @@ -2542,10 +2542,10 @@ "id": "08080458-0cd7-447d-80e6-384cb8d31eaf", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:47.731696Z", - "iopub.status.busy": "2024-08-29T17:12:47.731522Z", - "iopub.status.idle": "2024-08-29T17:12:47.736316Z", - "shell.execute_reply": "2024-08-29T17:12:47.735868Z" + "iopub.execute_input": "2024-09-04T16:42:02.656447Z", + "iopub.status.busy": "2024-09-04T16:42:02.656047Z", + "iopub.status.idle": "2024-09-04T16:42:02.660984Z", + "shell.execute_reply": "2024-09-04T16:42:02.660484Z" } }, "outputs": [], @@ -2569,10 +2569,10 @@ "id": "009bb215-4d26-47da-a230-d0ccf4122629", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:47.738296Z", - "iopub.status.busy": "2024-08-29T17:12:47.738108Z", - "iopub.status.idle": "2024-08-29T17:12:47.814917Z", - "shell.execute_reply": "2024-08-29T17:12:47.814292Z" + "iopub.execute_input": "2024-09-04T16:42:02.663570Z", + "iopub.status.busy": "2024-09-04T16:42:02.663173Z", + "iopub.status.idle": "2024-09-04T16:42:02.737828Z", + "shell.execute_reply": "2024-09-04T16:42:02.737279Z" } }, "outputs": [ @@ -3052,10 +3052,10 @@ "id": "dcaeda51-9b24-4c04-889d-7e63563594fc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:47.817103Z", - "iopub.status.busy": "2024-08-29T17:12:47.816926Z", - "iopub.status.idle": "2024-08-29T17:12:47.825966Z", - "shell.execute_reply": "2024-08-29T17:12:47.825387Z" + "iopub.execute_input": "2024-09-04T16:42:02.740343Z", + "iopub.status.busy": "2024-09-04T16:42:02.739973Z", + "iopub.status.idle": "2024-09-04T16:42:02.752701Z", + "shell.execute_reply": "2024-09-04T16:42:02.752269Z" } }, "outputs": [ @@ -3111,10 +3111,10 @@ "id": "1d92d78d-e4a8-4322-bf38-f5a5dae3bf17", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:47.828396Z", - "iopub.status.busy": "2024-08-29T17:12:47.827941Z", - "iopub.status.idle": "2024-08-29T17:12:47.830752Z", - "shell.execute_reply": "2024-08-29T17:12:47.830284Z" + "iopub.execute_input": "2024-09-04T16:42:02.754991Z", + "iopub.status.busy": "2024-09-04T16:42:02.754640Z", + "iopub.status.idle": "2024-09-04T16:42:02.757462Z", + "shell.execute_reply": "2024-09-04T16:42:02.757043Z" } }, "outputs": [], @@ -3150,10 +3150,10 @@ "id": "941ab2a6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:47.832857Z", - "iopub.status.busy": "2024-08-29T17:12:47.832409Z", - "iopub.status.idle": "2024-08-29T17:12:47.842686Z", - "shell.execute_reply": "2024-08-29T17:12:47.842124Z" + "iopub.execute_input": "2024-09-04T16:42:02.759660Z", + "iopub.status.busy": "2024-09-04T16:42:02.759312Z", + "iopub.status.idle": "2024-09-04T16:42:02.768158Z", + "shell.execute_reply": "2024-09-04T16:42:02.767743Z" } }, "outputs": [], @@ -3261,10 +3261,10 @@ "id": "50666fb9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:47.844570Z", - "iopub.status.busy": "2024-08-29T17:12:47.844400Z", - "iopub.status.idle": "2024-08-29T17:12:47.852487Z", - "shell.execute_reply": "2024-08-29T17:12:47.852017Z" + "iopub.execute_input": "2024-09-04T16:42:02.770481Z", + "iopub.status.busy": "2024-09-04T16:42:02.770127Z", + "iopub.status.idle": "2024-09-04T16:42:02.776682Z", + "shell.execute_reply": "2024-09-04T16:42:02.776278Z" }, "nbsphinx": "hidden" }, @@ -3346,10 +3346,10 @@ "id": "f5aa2883-d20d-481f-a012-fcc7ff8e3e7e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:47.854472Z", - "iopub.status.busy": "2024-08-29T17:12:47.854122Z", - "iopub.status.idle": "2024-08-29T17:12:47.857490Z", - "shell.execute_reply": "2024-08-29T17:12:47.857030Z" + "iopub.execute_input": "2024-09-04T16:42:02.778893Z", + "iopub.status.busy": "2024-09-04T16:42:02.778539Z", + "iopub.status.idle": "2024-09-04T16:42:02.781991Z", + "shell.execute_reply": "2024-09-04T16:42:02.781579Z" } }, "outputs": [], @@ -3373,10 +3373,10 @@ "id": "ce1c0ada-88b1-4654-b43f-3c0b59002979", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:47.859416Z", - "iopub.status.busy": "2024-08-29T17:12:47.859115Z", - "iopub.status.idle": "2024-08-29T17:12:51.895185Z", - "shell.execute_reply": "2024-08-29T17:12:51.894624Z" + "iopub.execute_input": "2024-09-04T16:42:02.784175Z", + "iopub.status.busy": "2024-09-04T16:42:02.783822Z", + "iopub.status.idle": "2024-09-04T16:42:06.744322Z", + "shell.execute_reply": "2024-09-04T16:42:06.743807Z" } }, "outputs": [ @@ -3419,10 +3419,10 @@ "id": "3f572acf-31c3-4874-9100-451796e35b06", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:51.898749Z", - "iopub.status.busy": "2024-08-29T17:12:51.897837Z", - "iopub.status.idle": "2024-08-29T17:12:51.901554Z", - "shell.execute_reply": "2024-08-29T17:12:51.901116Z" + "iopub.execute_input": "2024-09-04T16:42:06.746831Z", + "iopub.status.busy": "2024-09-04T16:42:06.746621Z", + "iopub.status.idle": "2024-09-04T16:42:06.750865Z", + "shell.execute_reply": "2024-09-04T16:42:06.750427Z" } }, "outputs": [ @@ -3460,10 +3460,10 @@ "id": "6a025a88", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:51.903470Z", - "iopub.status.busy": "2024-08-29T17:12:51.903230Z", - "iopub.status.idle": "2024-08-29T17:12:51.906015Z", - "shell.execute_reply": "2024-08-29T17:12:51.905545Z" + "iopub.execute_input": "2024-09-04T16:42:06.752867Z", + "iopub.status.busy": "2024-09-04T16:42:06.752550Z", + "iopub.status.idle": "2024-09-04T16:42:06.755427Z", + "shell.execute_reply": "2024-09-04T16:42:06.754905Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index 5b136c65b..ea452d54f 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:54.886949Z", - "iopub.status.busy": "2024-08-29T17:12:54.886773Z", - "iopub.status.idle": "2024-08-29T17:12:56.104468Z", - "shell.execute_reply": "2024-08-29T17:12:56.103850Z" + "iopub.execute_input": "2024-09-04T16:42:09.669951Z", + "iopub.status.busy": "2024-09-04T16:42:09.669454Z", + "iopub.status.idle": "2024-09-04T16:42:10.857078Z", + "shell.execute_reply": "2024-09-04T16:42:10.856536Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:56.107011Z", - "iopub.status.busy": "2024-08-29T17:12:56.106751Z", - "iopub.status.idle": "2024-08-29T17:12:56.295335Z", - "shell.execute_reply": "2024-08-29T17:12:56.294795Z" + "iopub.execute_input": "2024-09-04T16:42:10.859602Z", + "iopub.status.busy": "2024-09-04T16:42:10.859180Z", + "iopub.status.idle": "2024-09-04T16:42:11.036049Z", + "shell.execute_reply": "2024-09-04T16:42:11.035540Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:56.297915Z", - "iopub.status.busy": "2024-08-29T17:12:56.297716Z", - "iopub.status.idle": "2024-08-29T17:12:56.309783Z", - "shell.execute_reply": "2024-08-29T17:12:56.309342Z" + "iopub.execute_input": "2024-09-04T16:42:11.038424Z", + "iopub.status.busy": "2024-09-04T16:42:11.038097Z", + "iopub.status.idle": "2024-09-04T16:42:11.049631Z", + "shell.execute_reply": "2024-09-04T16:42:11.049041Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:56.311871Z", - "iopub.status.busy": "2024-08-29T17:12:56.311520Z", - "iopub.status.idle": "2024-08-29T17:12:56.520091Z", - "shell.execute_reply": "2024-08-29T17:12:56.519498Z" + "iopub.execute_input": "2024-09-04T16:42:11.051824Z", + "iopub.status.busy": "2024-09-04T16:42:11.051385Z", + "iopub.status.idle": "2024-09-04T16:42:11.259202Z", + "shell.execute_reply": "2024-09-04T16:42:11.258640Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:56.522281Z", - "iopub.status.busy": "2024-08-29T17:12:56.522084Z", - "iopub.status.idle": "2024-08-29T17:12:56.547806Z", - "shell.execute_reply": "2024-08-29T17:12:56.547360Z" + "iopub.execute_input": "2024-09-04T16:42:11.261584Z", + "iopub.status.busy": "2024-09-04T16:42:11.261174Z", + "iopub.status.idle": "2024-09-04T16:42:11.287643Z", + "shell.execute_reply": "2024-09-04T16:42:11.287051Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:56.549864Z", - "iopub.status.busy": "2024-08-29T17:12:56.549518Z", - "iopub.status.idle": "2024-08-29T17:12:58.659802Z", - "shell.execute_reply": "2024-08-29T17:12:58.659098Z" + "iopub.execute_input": "2024-09-04T16:42:11.289979Z", + "iopub.status.busy": "2024-09-04T16:42:11.289536Z", + "iopub.status.idle": "2024-09-04T16:42:13.340382Z", + "shell.execute_reply": "2024-09-04T16:42:13.339824Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:58.662480Z", - "iopub.status.busy": "2024-08-29T17:12:58.661939Z", - "iopub.status.idle": "2024-08-29T17:12:58.679875Z", - "shell.execute_reply": "2024-08-29T17:12:58.679307Z" + "iopub.execute_input": "2024-09-04T16:42:13.343035Z", + "iopub.status.busy": "2024-09-04T16:42:13.342535Z", + "iopub.status.idle": "2024-09-04T16:42:13.360303Z", + "shell.execute_reply": "2024-09-04T16:42:13.359860Z" }, "scrolled": true }, @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:58.681955Z", - "iopub.status.busy": "2024-08-29T17:12:58.681645Z", - "iopub.status.idle": "2024-08-29T17:13:00.311192Z", - "shell.execute_reply": "2024-08-29T17:13:00.310203Z" + "iopub.execute_input": "2024-09-04T16:42:13.362391Z", + "iopub.status.busy": "2024-09-04T16:42:13.362067Z", + "iopub.status.idle": "2024-09-04T16:42:14.929094Z", + "shell.execute_reply": "2024-09-04T16:42:14.928504Z" }, "id": "AaHC5MRKjruT" }, @@ -729,10 +729,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:00.313932Z", - "iopub.status.busy": "2024-08-29T17:13:00.313214Z", - "iopub.status.idle": "2024-08-29T17:13:00.327251Z", - "shell.execute_reply": "2024-08-29T17:13:00.326773Z" + "iopub.execute_input": "2024-09-04T16:42:14.932157Z", + "iopub.status.busy": "2024-09-04T16:42:14.931170Z", + "iopub.status.idle": "2024-09-04T16:42:14.944484Z", + "shell.execute_reply": "2024-09-04T16:42:14.944022Z" }, "id": "Wy27rvyhjruU" }, @@ -781,10 +781,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:00.329451Z", - "iopub.status.busy": "2024-08-29T17:13:00.328984Z", - "iopub.status.idle": "2024-08-29T17:13:00.409424Z", - "shell.execute_reply": "2024-08-29T17:13:00.408792Z" + "iopub.execute_input": "2024-09-04T16:42:14.946582Z", + "iopub.status.busy": "2024-09-04T16:42:14.946252Z", + "iopub.status.idle": "2024-09-04T16:42:15.025582Z", + "shell.execute_reply": "2024-09-04T16:42:15.024954Z" }, "id": "Db8YHnyVjruU" }, @@ -891,10 +891,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:00.411870Z", - "iopub.status.busy": "2024-08-29T17:13:00.411399Z", - "iopub.status.idle": "2024-08-29T17:13:00.625259Z", - "shell.execute_reply": "2024-08-29T17:13:00.624717Z" + "iopub.execute_input": "2024-09-04T16:42:15.028128Z", + "iopub.status.busy": "2024-09-04T16:42:15.027669Z", + "iopub.status.idle": "2024-09-04T16:42:15.238127Z", + "shell.execute_reply": "2024-09-04T16:42:15.237611Z" }, "id": "iJqAHuS2jruV" }, @@ -931,10 +931,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:00.627503Z", - "iopub.status.busy": "2024-08-29T17:13:00.627134Z", - "iopub.status.idle": "2024-08-29T17:13:00.644883Z", - "shell.execute_reply": "2024-08-29T17:13:00.644395Z" + "iopub.execute_input": "2024-09-04T16:42:15.240189Z", + "iopub.status.busy": "2024-09-04T16:42:15.240007Z", + "iopub.status.idle": "2024-09-04T16:42:15.256890Z", + "shell.execute_reply": "2024-09-04T16:42:15.256430Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1400,10 +1400,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:00.647235Z", - "iopub.status.busy": "2024-08-29T17:13:00.646834Z", - "iopub.status.idle": "2024-08-29T17:13:00.659081Z", - "shell.execute_reply": "2024-08-29T17:13:00.658556Z" + "iopub.execute_input": "2024-09-04T16:42:15.258893Z", + "iopub.status.busy": "2024-09-04T16:42:15.258711Z", + "iopub.status.idle": "2024-09-04T16:42:15.268357Z", + "shell.execute_reply": "2024-09-04T16:42:15.267918Z" }, "id": "0lonvOYvjruV" }, @@ -1550,10 +1550,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:00.661251Z", - "iopub.status.busy": "2024-08-29T17:13:00.660934Z", - "iopub.status.idle": "2024-08-29T17:13:00.756825Z", - "shell.execute_reply": "2024-08-29T17:13:00.756221Z" + "iopub.execute_input": "2024-09-04T16:42:15.270535Z", + "iopub.status.busy": "2024-09-04T16:42:15.270213Z", + "iopub.status.idle": "2024-09-04T16:42:15.362596Z", + "shell.execute_reply": "2024-09-04T16:42:15.361968Z" }, "id": "MfqTCa3kjruV" }, @@ -1634,10 +1634,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:00.759739Z", - "iopub.status.busy": "2024-08-29T17:13:00.759326Z", - "iopub.status.idle": "2024-08-29T17:13:00.905850Z", - "shell.execute_reply": "2024-08-29T17:13:00.905202Z" + "iopub.execute_input": "2024-09-04T16:42:15.365198Z", + "iopub.status.busy": "2024-09-04T16:42:15.364807Z", + "iopub.status.idle": "2024-09-04T16:42:15.500380Z", + "shell.execute_reply": "2024-09-04T16:42:15.499762Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1697,10 +1697,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:00.908205Z", - "iopub.status.busy": "2024-08-29T17:13:00.908011Z", - "iopub.status.idle": "2024-08-29T17:13:00.912072Z", - "shell.execute_reply": "2024-08-29T17:13:00.911517Z" + "iopub.execute_input": "2024-09-04T16:42:15.503164Z", + "iopub.status.busy": "2024-09-04T16:42:15.502765Z", + "iopub.status.idle": "2024-09-04T16:42:15.506446Z", + "shell.execute_reply": "2024-09-04T16:42:15.505904Z" }, "id": "0rXP3ZPWjruW" }, @@ -1738,10 +1738,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:00.914030Z", - "iopub.status.busy": "2024-08-29T17:13:00.913851Z", - "iopub.status.idle": "2024-08-29T17:13:00.917359Z", - "shell.execute_reply": "2024-08-29T17:13:00.916838Z" + "iopub.execute_input": "2024-09-04T16:42:15.508587Z", + "iopub.status.busy": "2024-09-04T16:42:15.508253Z", + "iopub.status.idle": "2024-09-04T16:42:15.511968Z", + "shell.execute_reply": "2024-09-04T16:42:15.511423Z" }, "id": "-iRPe8KXjruW" }, @@ -1796,10 +1796,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:00.919315Z", - "iopub.status.busy": "2024-08-29T17:13:00.918974Z", - "iopub.status.idle": "2024-08-29T17:13:00.956318Z", - "shell.execute_reply": "2024-08-29T17:13:00.955832Z" + "iopub.execute_input": "2024-09-04T16:42:15.513964Z", + "iopub.status.busy": "2024-09-04T16:42:15.513647Z", + "iopub.status.idle": "2024-09-04T16:42:15.550349Z", + "shell.execute_reply": "2024-09-04T16:42:15.549796Z" }, "id": "ZpipUliyjruW" }, @@ -1850,10 +1850,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:00.958581Z", - "iopub.status.busy": "2024-08-29T17:13:00.958192Z", - "iopub.status.idle": "2024-08-29T17:13:00.999322Z", - "shell.execute_reply": "2024-08-29T17:13:00.998783Z" + "iopub.execute_input": "2024-09-04T16:42:15.552389Z", + "iopub.status.busy": "2024-09-04T16:42:15.552071Z", + "iopub.status.idle": "2024-09-04T16:42:15.593615Z", + "shell.execute_reply": "2024-09-04T16:42:15.593022Z" }, "id": "SLq-3q4xjruX" }, @@ -1922,10 +1922,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:01.001564Z", - "iopub.status.busy": "2024-08-29T17:13:01.001211Z", - "iopub.status.idle": "2024-08-29T17:13:01.105915Z", - "shell.execute_reply": "2024-08-29T17:13:01.105289Z" + "iopub.execute_input": "2024-09-04T16:42:15.595654Z", + "iopub.status.busy": "2024-09-04T16:42:15.595316Z", + "iopub.status.idle": "2024-09-04T16:42:15.693816Z", + "shell.execute_reply": "2024-09-04T16:42:15.692973Z" }, "id": "g5LHhhuqFbXK" }, @@ -1957,10 +1957,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:01.108842Z", - "iopub.status.busy": "2024-08-29T17:13:01.108455Z", - "iopub.status.idle": "2024-08-29T17:13:01.219741Z", - "shell.execute_reply": "2024-08-29T17:13:01.219092Z" + "iopub.execute_input": "2024-09-04T16:42:15.696412Z", + "iopub.status.busy": "2024-09-04T16:42:15.696064Z", + "iopub.status.idle": "2024-09-04T16:42:15.796781Z", + "shell.execute_reply": "2024-09-04T16:42:15.796134Z" }, "id": "p7w8F8ezBcet" }, @@ -2017,10 +2017,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:01.222436Z", - "iopub.status.busy": "2024-08-29T17:13:01.222026Z", - "iopub.status.idle": "2024-08-29T17:13:01.435601Z", - "shell.execute_reply": "2024-08-29T17:13:01.435091Z" + "iopub.execute_input": "2024-09-04T16:42:15.799073Z", + "iopub.status.busy": "2024-09-04T16:42:15.798843Z", + "iopub.status.idle": "2024-09-04T16:42:16.015067Z", + "shell.execute_reply": "2024-09-04T16:42:16.014457Z" }, "id": "WETRL74tE_sU" }, @@ -2055,10 +2055,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:01.437978Z", - "iopub.status.busy": "2024-08-29T17:13:01.437610Z", - "iopub.status.idle": "2024-08-29T17:13:01.655421Z", - "shell.execute_reply": "2024-08-29T17:13:01.654757Z" + "iopub.execute_input": "2024-09-04T16:42:16.017515Z", + "iopub.status.busy": "2024-09-04T16:42:16.017082Z", + "iopub.status.idle": "2024-09-04T16:42:16.225862Z", + "shell.execute_reply": "2024-09-04T16:42:16.225198Z" }, "id": "kCfdx2gOLmXS" }, @@ -2220,10 +2220,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:01.657848Z", - "iopub.status.busy": "2024-08-29T17:13:01.657478Z", - "iopub.status.idle": "2024-08-29T17:13:01.663871Z", - "shell.execute_reply": "2024-08-29T17:13:01.663321Z" + "iopub.execute_input": "2024-09-04T16:42:16.228308Z", + "iopub.status.busy": "2024-09-04T16:42:16.227913Z", + "iopub.status.idle": "2024-09-04T16:42:16.233968Z", + "shell.execute_reply": "2024-09-04T16:42:16.233513Z" }, "id": "-uogYRWFYnuu" }, @@ -2277,10 +2277,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:01.665915Z", - "iopub.status.busy": "2024-08-29T17:13:01.665595Z", - "iopub.status.idle": "2024-08-29T17:13:01.887112Z", - "shell.execute_reply": "2024-08-29T17:13:01.886583Z" + "iopub.execute_input": "2024-09-04T16:42:16.236018Z", + "iopub.status.busy": "2024-09-04T16:42:16.235680Z", + "iopub.status.idle": "2024-09-04T16:42:16.448694Z", + "shell.execute_reply": "2024-09-04T16:42:16.448152Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2327,10 +2327,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:01.889533Z", - "iopub.status.busy": "2024-08-29T17:13:01.889116Z", - "iopub.status.idle": "2024-08-29T17:13:02.961779Z", - "shell.execute_reply": "2024-08-29T17:13:02.961228Z" + "iopub.execute_input": "2024-09-04T16:42:16.450793Z", + "iopub.status.busy": "2024-09-04T16:42:16.450474Z", + "iopub.status.idle": "2024-09-04T16:42:17.528667Z", + "shell.execute_reply": "2024-09-04T16:42:17.528043Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index 21c5da844..c630f8f0d 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:07.379288Z", - "iopub.status.busy": "2024-08-29T17:13:07.379129Z", - "iopub.status.idle": "2024-08-29T17:13:08.557670Z", - "shell.execute_reply": "2024-08-29T17:13:08.557107Z" + "iopub.execute_input": "2024-09-04T16:42:21.027161Z", + "iopub.status.busy": "2024-09-04T16:42:21.026989Z", + "iopub.status.idle": "2024-09-04T16:42:22.153963Z", + "shell.execute_reply": "2024-09-04T16:42:22.153417Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:08.560315Z", - "iopub.status.busy": "2024-08-29T17:13:08.559785Z", - "iopub.status.idle": "2024-08-29T17:13:08.563039Z", - "shell.execute_reply": "2024-08-29T17:13:08.562482Z" + "iopub.execute_input": "2024-09-04T16:42:22.156406Z", + "iopub.status.busy": "2024-09-04T16:42:22.156139Z", + "iopub.status.idle": "2024-09-04T16:42:22.159307Z", + "shell.execute_reply": "2024-09-04T16:42:22.158851Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:08.565443Z", - "iopub.status.busy": "2024-08-29T17:13:08.565021Z", - "iopub.status.idle": "2024-08-29T17:13:08.572955Z", - "shell.execute_reply": "2024-08-29T17:13:08.572477Z" + "iopub.execute_input": "2024-09-04T16:42:22.161273Z", + "iopub.status.busy": "2024-09-04T16:42:22.161083Z", + "iopub.status.idle": "2024-09-04T16:42:22.168998Z", + "shell.execute_reply": "2024-09-04T16:42:22.168531Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:08.574969Z", - "iopub.status.busy": "2024-08-29T17:13:08.574627Z", - "iopub.status.idle": "2024-08-29T17:13:08.621464Z", - "shell.execute_reply": "2024-08-29T17:13:08.620954Z" + "iopub.execute_input": "2024-09-04T16:42:22.170762Z", + "iopub.status.busy": "2024-09-04T16:42:22.170587Z", + "iopub.status.idle": "2024-09-04T16:42:22.217387Z", + "shell.execute_reply": "2024-09-04T16:42:22.216879Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:08.623819Z", - "iopub.status.busy": "2024-08-29T17:13:08.623616Z", - "iopub.status.idle": "2024-08-29T17:13:08.641297Z", - "shell.execute_reply": "2024-08-29T17:13:08.640824Z" + "iopub.execute_input": "2024-09-04T16:42:22.219237Z", + "iopub.status.busy": "2024-09-04T16:42:22.219063Z", + "iopub.status.idle": "2024-09-04T16:42:22.235988Z", + "shell.execute_reply": "2024-09-04T16:42:22.235545Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:08.643432Z", - "iopub.status.busy": "2024-08-29T17:13:08.643093Z", - "iopub.status.idle": "2024-08-29T17:13:08.646846Z", - "shell.execute_reply": "2024-08-29T17:13:08.646360Z" + "iopub.execute_input": "2024-09-04T16:42:22.238015Z", + "iopub.status.busy": "2024-09-04T16:42:22.237684Z", + "iopub.status.idle": "2024-09-04T16:42:22.241487Z", + "shell.execute_reply": "2024-09-04T16:42:22.240915Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:08.648905Z", - "iopub.status.busy": "2024-08-29T17:13:08.648571Z", - "iopub.status.idle": "2024-08-29T17:13:08.662471Z", - "shell.execute_reply": "2024-08-29T17:13:08.661979Z" + "iopub.execute_input": "2024-09-04T16:42:22.243605Z", + "iopub.status.busy": "2024-09-04T16:42:22.243290Z", + "iopub.status.idle": "2024-09-04T16:42:22.256635Z", + "shell.execute_reply": "2024-09-04T16:42:22.256173Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:08.664485Z", - "iopub.status.busy": "2024-08-29T17:13:08.664146Z", - "iopub.status.idle": "2024-08-29T17:13:08.690511Z", - "shell.execute_reply": "2024-08-29T17:13:08.690055Z" + "iopub.execute_input": "2024-09-04T16:42:22.258677Z", + "iopub.status.busy": "2024-09-04T16:42:22.258352Z", + "iopub.status.idle": "2024-09-04T16:42:22.283974Z", + "shell.execute_reply": "2024-09-04T16:42:22.283385Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:08.692667Z", - "iopub.status.busy": "2024-08-29T17:13:08.692336Z", - "iopub.status.idle": "2024-08-29T17:13:10.692423Z", - "shell.execute_reply": "2024-08-29T17:13:10.691861Z" + "iopub.execute_input": "2024-09-04T16:42:22.285867Z", + "iopub.status.busy": "2024-09-04T16:42:22.285695Z", + "iopub.status.idle": "2024-09-04T16:42:24.216087Z", + "shell.execute_reply": "2024-09-04T16:42:24.215532Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:10.694992Z", - "iopub.status.busy": "2024-08-29T17:13:10.694558Z", - "iopub.status.idle": "2024-08-29T17:13:10.701315Z", - "shell.execute_reply": "2024-08-29T17:13:10.700750Z" + "iopub.execute_input": "2024-09-04T16:42:24.218573Z", + "iopub.status.busy": "2024-09-04T16:42:24.218136Z", + "iopub.status.idle": "2024-09-04T16:42:24.224781Z", + "shell.execute_reply": "2024-09-04T16:42:24.224222Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:10.703445Z", - "iopub.status.busy": "2024-08-29T17:13:10.703082Z", - "iopub.status.idle": "2024-08-29T17:13:10.716205Z", - "shell.execute_reply": "2024-08-29T17:13:10.715753Z" + "iopub.execute_input": "2024-09-04T16:42:24.226767Z", + "iopub.status.busy": "2024-09-04T16:42:24.226468Z", + "iopub.status.idle": "2024-09-04T16:42:24.239484Z", + "shell.execute_reply": "2024-09-04T16:42:24.238946Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:10.718157Z", - "iopub.status.busy": "2024-08-29T17:13:10.717838Z", - "iopub.status.idle": "2024-08-29T17:13:10.724109Z", - "shell.execute_reply": "2024-08-29T17:13:10.723562Z" + "iopub.execute_input": "2024-09-04T16:42:24.241592Z", + "iopub.status.busy": "2024-09-04T16:42:24.241186Z", + "iopub.status.idle": "2024-09-04T16:42:24.247396Z", + "shell.execute_reply": "2024-09-04T16:42:24.246863Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:10.726270Z", - "iopub.status.busy": "2024-08-29T17:13:10.725863Z", - "iopub.status.idle": "2024-08-29T17:13:10.728666Z", - "shell.execute_reply": "2024-08-29T17:13:10.728121Z" + "iopub.execute_input": "2024-09-04T16:42:24.249422Z", + "iopub.status.busy": "2024-09-04T16:42:24.249105Z", + "iopub.status.idle": "2024-09-04T16:42:24.251824Z", + "shell.execute_reply": "2024-09-04T16:42:24.251348Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:10.730677Z", - "iopub.status.busy": "2024-08-29T17:13:10.730279Z", - "iopub.status.idle": "2024-08-29T17:13:10.733950Z", - "shell.execute_reply": "2024-08-29T17:13:10.733379Z" + "iopub.execute_input": "2024-09-04T16:42:24.253838Z", + "iopub.status.busy": "2024-09-04T16:42:24.253452Z", + "iopub.status.idle": "2024-09-04T16:42:24.256894Z", + "shell.execute_reply": "2024-09-04T16:42:24.256408Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:10.736069Z", - "iopub.status.busy": "2024-08-29T17:13:10.735675Z", - "iopub.status.idle": "2024-08-29T17:13:10.738431Z", - "shell.execute_reply": "2024-08-29T17:13:10.737869Z" + "iopub.execute_input": "2024-09-04T16:42:24.258990Z", + "iopub.status.busy": "2024-09-04T16:42:24.258657Z", + "iopub.status.idle": "2024-09-04T16:42:24.261106Z", + "shell.execute_reply": "2024-09-04T16:42:24.260668Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:10.740315Z", - "iopub.status.busy": "2024-08-29T17:13:10.740022Z", - "iopub.status.idle": "2024-08-29T17:13:10.744394Z", - "shell.execute_reply": "2024-08-29T17:13:10.743929Z" + "iopub.execute_input": "2024-09-04T16:42:24.263123Z", + "iopub.status.busy": "2024-09-04T16:42:24.262788Z", + "iopub.status.idle": "2024-09-04T16:42:24.266861Z", + "shell.execute_reply": "2024-09-04T16:42:24.266310Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:10.746411Z", - "iopub.status.busy": "2024-08-29T17:13:10.746112Z", - "iopub.status.idle": "2024-08-29T17:13:10.774547Z", - "shell.execute_reply": "2024-08-29T17:13:10.773921Z" + "iopub.execute_input": "2024-09-04T16:42:24.268975Z", + "iopub.status.busy": "2024-09-04T16:42:24.268663Z", + "iopub.status.idle": "2024-09-04T16:42:24.296639Z", + "shell.execute_reply": "2024-09-04T16:42:24.296222Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:10.777035Z", - "iopub.status.busy": "2024-08-29T17:13:10.776710Z", - "iopub.status.idle": "2024-08-29T17:13:10.781535Z", - "shell.execute_reply": "2024-08-29T17:13:10.780958Z" + "iopub.execute_input": "2024-09-04T16:42:24.298825Z", + "iopub.status.busy": "2024-09-04T16:42:24.298377Z", + "iopub.status.idle": "2024-09-04T16:42:24.302894Z", + "shell.execute_reply": "2024-09-04T16:42:24.302447Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index 8fa07059e..71d46a48c 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:13.815853Z", - "iopub.status.busy": "2024-08-29T17:13:13.815684Z", - "iopub.status.idle": "2024-08-29T17:13:15.038986Z", - "shell.execute_reply": "2024-08-29T17:13:15.038442Z" + "iopub.execute_input": "2024-09-04T16:42:27.239726Z", + "iopub.status.busy": "2024-09-04T16:42:27.239555Z", + "iopub.status.idle": "2024-09-04T16:42:28.412171Z", + "shell.execute_reply": "2024-09-04T16:42:28.411622Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:15.041340Z", - "iopub.status.busy": "2024-08-29T17:13:15.041071Z", - "iopub.status.idle": "2024-08-29T17:13:15.237062Z", - "shell.execute_reply": "2024-08-29T17:13:15.236517Z" + "iopub.execute_input": "2024-09-04T16:42:28.414764Z", + "iopub.status.busy": "2024-09-04T16:42:28.414366Z", + "iopub.status.idle": "2024-09-04T16:42:28.605821Z", + "shell.execute_reply": "2024-09-04T16:42:28.605210Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:15.239727Z", - "iopub.status.busy": "2024-08-29T17:13:15.239451Z", - "iopub.status.idle": "2024-08-29T17:13:15.252949Z", - "shell.execute_reply": "2024-08-29T17:13:15.252360Z" + "iopub.execute_input": "2024-09-04T16:42:28.608437Z", + "iopub.status.busy": "2024-09-04T16:42:28.608049Z", + "iopub.status.idle": "2024-09-04T16:42:28.621489Z", + "shell.execute_reply": "2024-09-04T16:42:28.620904Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:15.255134Z", - "iopub.status.busy": "2024-08-29T17:13:15.254739Z", - "iopub.status.idle": "2024-08-29T17:13:17.899597Z", - "shell.execute_reply": "2024-08-29T17:13:17.899091Z" + "iopub.execute_input": "2024-09-04T16:42:28.623727Z", + "iopub.status.busy": "2024-09-04T16:42:28.623319Z", + "iopub.status.idle": "2024-09-04T16:42:31.199521Z", + "shell.execute_reply": "2024-09-04T16:42:31.198956Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:17.901950Z", - "iopub.status.busy": "2024-08-29T17:13:17.901492Z", - "iopub.status.idle": "2024-08-29T17:13:19.253074Z", - "shell.execute_reply": "2024-08-29T17:13:19.252410Z" + "iopub.execute_input": "2024-09-04T16:42:31.202037Z", + "iopub.status.busy": "2024-09-04T16:42:31.201637Z", + "iopub.status.idle": "2024-09-04T16:42:32.534841Z", + "shell.execute_reply": "2024-09-04T16:42:32.534286Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:19.255731Z", - "iopub.status.busy": "2024-08-29T17:13:19.255365Z", - "iopub.status.idle": "2024-08-29T17:13:19.259482Z", - "shell.execute_reply": "2024-08-29T17:13:19.259020Z" + "iopub.execute_input": "2024-09-04T16:42:32.537189Z", + "iopub.status.busy": "2024-09-04T16:42:32.536822Z", + "iopub.status.idle": "2024-09-04T16:42:32.540854Z", + "shell.execute_reply": "2024-09-04T16:42:32.540371Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:19.261405Z", - "iopub.status.busy": "2024-08-29T17:13:19.261098Z", - "iopub.status.idle": "2024-08-29T17:13:21.317331Z", - "shell.execute_reply": "2024-08-29T17:13:21.316688Z" + "iopub.execute_input": "2024-09-04T16:42:32.542938Z", + "iopub.status.busy": "2024-09-04T16:42:32.542591Z", + "iopub.status.idle": "2024-09-04T16:42:34.557797Z", + "shell.execute_reply": "2024-09-04T16:42:34.557104Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:21.319921Z", - "iopub.status.busy": "2024-08-29T17:13:21.319573Z", - "iopub.status.idle": "2024-08-29T17:13:21.327758Z", - "shell.execute_reply": "2024-08-29T17:13:21.327204Z" + "iopub.execute_input": "2024-09-04T16:42:34.560515Z", + "iopub.status.busy": "2024-09-04T16:42:34.560011Z", + "iopub.status.idle": "2024-09-04T16:42:34.567955Z", + "shell.execute_reply": "2024-09-04T16:42:34.567443Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:21.330061Z", - "iopub.status.busy": "2024-08-29T17:13:21.329554Z", - "iopub.status.idle": "2024-08-29T17:13:24.097931Z", - "shell.execute_reply": "2024-08-29T17:13:24.097339Z" + "iopub.execute_input": "2024-09-04T16:42:34.570323Z", + "iopub.status.busy": "2024-09-04T16:42:34.569985Z", + "iopub.status.idle": "2024-09-04T16:42:37.280228Z", + "shell.execute_reply": "2024-09-04T16:42:37.279719Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:24.100261Z", - "iopub.status.busy": "2024-08-29T17:13:24.099922Z", - "iopub.status.idle": "2024-08-29T17:13:24.103149Z", - "shell.execute_reply": "2024-08-29T17:13:24.102694Z" + "iopub.execute_input": "2024-09-04T16:42:37.282713Z", + "iopub.status.busy": "2024-09-04T16:42:37.282138Z", + "iopub.status.idle": "2024-09-04T16:42:37.285988Z", + "shell.execute_reply": "2024-09-04T16:42:37.285420Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:24.105303Z", - "iopub.status.busy": "2024-08-29T17:13:24.104969Z", - "iopub.status.idle": "2024-08-29T17:13:24.108822Z", - "shell.execute_reply": "2024-08-29T17:13:24.108408Z" + "iopub.execute_input": "2024-09-04T16:42:37.287931Z", + "iopub.status.busy": "2024-09-04T16:42:37.287655Z", + "iopub.status.idle": "2024-09-04T16:42:37.291248Z", + "shell.execute_reply": "2024-09-04T16:42:37.290676Z" } }, "outputs": [], @@ -769,10 +769,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:24.110940Z", - "iopub.status.busy": "2024-08-29T17:13:24.110614Z", - "iopub.status.idle": "2024-08-29T17:13:24.114216Z", - "shell.execute_reply": "2024-08-29T17:13:24.113802Z" + "iopub.execute_input": "2024-09-04T16:42:37.293519Z", + "iopub.status.busy": "2024-09-04T16:42:37.293103Z", + "iopub.status.idle": "2024-09-04T16:42:37.296465Z", + "shell.execute_reply": "2024-09-04T16:42:37.296001Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index 3087da8d1..656db3626 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:26.707579Z", - "iopub.status.busy": "2024-08-29T17:13:26.707407Z", - "iopub.status.idle": "2024-08-29T17:13:27.929509Z", - "shell.execute_reply": "2024-08-29T17:13:27.928890Z" + "iopub.execute_input": "2024-09-04T16:42:39.738738Z", + "iopub.status.busy": "2024-09-04T16:42:39.738561Z", + "iopub.status.idle": "2024-09-04T16:42:40.919102Z", + "shell.execute_reply": "2024-09-04T16:42:40.918465Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:27.932306Z", - "iopub.status.busy": "2024-08-29T17:13:27.931716Z", - "iopub.status.idle": "2024-08-29T17:13:29.129230Z", - "shell.execute_reply": "2024-08-29T17:13:29.128545Z" + "iopub.execute_input": "2024-09-04T16:42:40.921962Z", + "iopub.status.busy": "2024-09-04T16:42:40.921532Z", + "iopub.status.idle": "2024-09-04T16:42:44.104525Z", + "shell.execute_reply": "2024-09-04T16:42:44.103811Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:29.131841Z", - "iopub.status.busy": "2024-08-29T17:13:29.131633Z", - "iopub.status.idle": "2024-08-29T17:13:29.134883Z", - "shell.execute_reply": "2024-08-29T17:13:29.134444Z" + "iopub.execute_input": "2024-09-04T16:42:44.106929Z", + "iopub.status.busy": "2024-09-04T16:42:44.106730Z", + "iopub.status.idle": "2024-09-04T16:42:44.110188Z", + "shell.execute_reply": "2024-09-04T16:42:44.109732Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:29.136741Z", - "iopub.status.busy": "2024-08-29T17:13:29.136568Z", - "iopub.status.idle": "2024-08-29T17:13:29.143057Z", - "shell.execute_reply": "2024-08-29T17:13:29.142623Z" + "iopub.execute_input": "2024-09-04T16:42:44.112113Z", + "iopub.status.busy": "2024-09-04T16:42:44.111792Z", + "iopub.status.idle": "2024-09-04T16:42:44.118685Z", + "shell.execute_reply": "2024-09-04T16:42:44.118218Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:29.144959Z", - "iopub.status.busy": "2024-08-29T17:13:29.144782Z", - "iopub.status.idle": "2024-08-29T17:13:29.640180Z", - "shell.execute_reply": "2024-08-29T17:13:29.639545Z" + "iopub.execute_input": "2024-09-04T16:42:44.120591Z", + "iopub.status.busy": "2024-09-04T16:42:44.120419Z", + "iopub.status.idle": "2024-09-04T16:42:44.609650Z", + "shell.execute_reply": "2024-09-04T16:42:44.609066Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:29.642961Z", - "iopub.status.busy": "2024-08-29T17:13:29.642738Z", - "iopub.status.idle": "2024-08-29T17:13:29.648359Z", - "shell.execute_reply": "2024-08-29T17:13:29.647788Z" + "iopub.execute_input": "2024-09-04T16:42:44.612557Z", + "iopub.status.busy": "2024-09-04T16:42:44.612368Z", + "iopub.status.idle": "2024-09-04T16:42:44.617513Z", + "shell.execute_reply": "2024-09-04T16:42:44.616965Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:29.650165Z", - "iopub.status.busy": "2024-08-29T17:13:29.649990Z", - "iopub.status.idle": "2024-08-29T17:13:29.653811Z", - "shell.execute_reply": "2024-08-29T17:13:29.653376Z" + "iopub.execute_input": "2024-09-04T16:42:44.619427Z", + "iopub.status.busy": "2024-09-04T16:42:44.619125Z", + "iopub.status.idle": "2024-09-04T16:42:44.622981Z", + "shell.execute_reply": "2024-09-04T16:42:44.622533Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:29.655941Z", - "iopub.status.busy": "2024-08-29T17:13:29.655603Z", - "iopub.status.idle": "2024-08-29T17:13:30.532765Z", - "shell.execute_reply": "2024-08-29T17:13:30.532094Z" + "iopub.execute_input": "2024-09-04T16:42:44.624920Z", + "iopub.status.busy": "2024-09-04T16:42:44.624597Z", + "iopub.status.idle": "2024-09-04T16:42:45.487014Z", + "shell.execute_reply": "2024-09-04T16:42:45.486401Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:30.535273Z", - "iopub.status.busy": "2024-08-29T17:13:30.534885Z", - "iopub.status.idle": "2024-08-29T17:13:30.785223Z", - "shell.execute_reply": "2024-08-29T17:13:30.784735Z" + "iopub.execute_input": "2024-09-04T16:42:45.489297Z", + "iopub.status.busy": "2024-09-04T16:42:45.489035Z", + "iopub.status.idle": "2024-09-04T16:42:45.702626Z", + "shell.execute_reply": "2024-09-04T16:42:45.702067Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:30.787457Z", - "iopub.status.busy": "2024-08-29T17:13:30.787105Z", - "iopub.status.idle": "2024-08-29T17:13:30.791415Z", - "shell.execute_reply": "2024-08-29T17:13:30.790846Z" + "iopub.execute_input": "2024-09-04T16:42:45.704657Z", + "iopub.status.busy": "2024-09-04T16:42:45.704348Z", + "iopub.status.idle": "2024-09-04T16:42:45.708586Z", + "shell.execute_reply": "2024-09-04T16:42:45.708028Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:30.793442Z", - "iopub.status.busy": "2024-08-29T17:13:30.793262Z", - "iopub.status.idle": "2024-08-29T17:13:31.259811Z", - "shell.execute_reply": "2024-08-29T17:13:31.259155Z" + "iopub.execute_input": "2024-09-04T16:42:45.710729Z", + "iopub.status.busy": "2024-09-04T16:42:45.710332Z", + "iopub.status.idle": "2024-09-04T16:42:46.157861Z", + "shell.execute_reply": "2024-09-04T16:42:46.157294Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:31.264390Z", - "iopub.status.busy": "2024-08-29T17:13:31.263984Z", - "iopub.status.idle": "2024-08-29T17:13:31.575388Z", - "shell.execute_reply": "2024-08-29T17:13:31.574740Z" + "iopub.execute_input": "2024-09-04T16:42:46.161127Z", + "iopub.status.busy": "2024-09-04T16:42:46.160743Z", + "iopub.status.idle": "2024-09-04T16:42:46.494374Z", + "shell.execute_reply": "2024-09-04T16:42:46.493916Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:31.577837Z", - "iopub.status.busy": "2024-08-29T17:13:31.577527Z", - "iopub.status.idle": "2024-08-29T17:13:31.947615Z", - "shell.execute_reply": "2024-08-29T17:13:31.947052Z" + "iopub.execute_input": "2024-09-04T16:42:46.496557Z", + "iopub.status.busy": "2024-09-04T16:42:46.496197Z", + "iopub.status.idle": "2024-09-04T16:42:46.858145Z", + "shell.execute_reply": "2024-09-04T16:42:46.857570Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:31.950390Z", - "iopub.status.busy": "2024-08-29T17:13:31.950110Z", - "iopub.status.idle": "2024-08-29T17:13:32.400281Z", - "shell.execute_reply": "2024-08-29T17:13:32.399703Z" + "iopub.execute_input": "2024-09-04T16:42:46.861411Z", + "iopub.status.busy": "2024-09-04T16:42:46.861015Z", + "iopub.status.idle": "2024-09-04T16:42:47.297930Z", + "shell.execute_reply": "2024-09-04T16:42:47.297412Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:32.404955Z", - "iopub.status.busy": "2024-08-29T17:13:32.404554Z", - "iopub.status.idle": "2024-08-29T17:13:32.856691Z", - "shell.execute_reply": "2024-08-29T17:13:32.856137Z" + "iopub.execute_input": "2024-09-04T16:42:47.302316Z", + "iopub.status.busy": "2024-09-04T16:42:47.301930Z", + "iopub.status.idle": "2024-09-04T16:42:47.746611Z", + "shell.execute_reply": "2024-09-04T16:42:47.746072Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:32.860308Z", - "iopub.status.busy": "2024-08-29T17:13:32.859889Z", - "iopub.status.idle": "2024-08-29T17:13:33.076853Z", - "shell.execute_reply": "2024-08-29T17:13:33.076291Z" + "iopub.execute_input": "2024-09-04T16:42:47.748860Z", + "iopub.status.busy": "2024-09-04T16:42:47.748528Z", + "iopub.status.idle": "2024-09-04T16:42:47.960774Z", + "shell.execute_reply": "2024-09-04T16:42:47.960230Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:33.079045Z", - "iopub.status.busy": "2024-08-29T17:13:33.078852Z", - "iopub.status.idle": "2024-08-29T17:13:33.261899Z", - "shell.execute_reply": "2024-08-29T17:13:33.261415Z" + "iopub.execute_input": "2024-09-04T16:42:47.962862Z", + "iopub.status.busy": "2024-09-04T16:42:47.962538Z", + "iopub.status.idle": "2024-09-04T16:42:48.161771Z", + "shell.execute_reply": "2024-09-04T16:42:48.161347Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:33.264222Z", - "iopub.status.busy": "2024-08-29T17:13:33.263853Z", - "iopub.status.idle": "2024-08-29T17:13:33.266872Z", - "shell.execute_reply": "2024-08-29T17:13:33.266403Z" + "iopub.execute_input": "2024-09-04T16:42:48.163921Z", + "iopub.status.busy": "2024-09-04T16:42:48.163521Z", + "iopub.status.idle": "2024-09-04T16:42:48.166403Z", + "shell.execute_reply": "2024-09-04T16:42:48.165912Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:33.268750Z", - "iopub.status.busy": "2024-08-29T17:13:33.268577Z", - "iopub.status.idle": "2024-08-29T17:13:34.219660Z", - "shell.execute_reply": "2024-08-29T17:13:34.219058Z" + "iopub.execute_input": "2024-09-04T16:42:48.168421Z", + "iopub.status.busy": "2024-09-04T16:42:48.168027Z", + "iopub.status.idle": "2024-09-04T16:42:49.184503Z", + "shell.execute_reply": "2024-09-04T16:42:49.183958Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:34.222039Z", - "iopub.status.busy": "2024-08-29T17:13:34.221835Z", - "iopub.status.idle": "2024-08-29T17:13:34.376874Z", - "shell.execute_reply": "2024-08-29T17:13:34.376359Z" + "iopub.execute_input": "2024-09-04T16:42:49.187022Z", + "iopub.status.busy": "2024-09-04T16:42:49.186859Z", + "iopub.status.idle": "2024-09-04T16:42:49.405712Z", + "shell.execute_reply": "2024-09-04T16:42:49.405134Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:34.379144Z", - "iopub.status.busy": "2024-08-29T17:13:34.378808Z", - "iopub.status.idle": "2024-08-29T17:13:34.536905Z", - "shell.execute_reply": "2024-08-29T17:13:34.536397Z" + "iopub.execute_input": "2024-09-04T16:42:49.407791Z", + "iopub.status.busy": "2024-09-04T16:42:49.407466Z", + "iopub.status.idle": "2024-09-04T16:42:49.596081Z", + "shell.execute_reply": "2024-09-04T16:42:49.595586Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:34.539100Z", - "iopub.status.busy": "2024-08-29T17:13:34.538808Z", - "iopub.status.idle": "2024-08-29T17:13:35.142058Z", - "shell.execute_reply": "2024-08-29T17:13:35.141458Z" + "iopub.execute_input": "2024-09-04T16:42:49.598425Z", + "iopub.status.busy": "2024-09-04T16:42:49.598075Z", + "iopub.status.idle": "2024-09-04T16:42:50.231144Z", + "shell.execute_reply": "2024-09-04T16:42:50.230582Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:35.144434Z", - "iopub.status.busy": "2024-08-29T17:13:35.144038Z", - "iopub.status.idle": "2024-08-29T17:13:35.148054Z", - "shell.execute_reply": "2024-08-29T17:13:35.147482Z" + "iopub.execute_input": "2024-09-04T16:42:50.233354Z", + "iopub.status.busy": "2024-09-04T16:42:50.232993Z", + "iopub.status.idle": "2024-09-04T16:42:50.236697Z", + "shell.execute_reply": "2024-09-04T16:42:50.236249Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index 84d5ac94b..17b8edea7 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:37.518055Z", - "iopub.status.busy": "2024-08-29T17:13:37.517881Z", - "iopub.status.idle": "2024-08-29T17:13:40.358016Z", - "shell.execute_reply": "2024-08-29T17:13:40.357398Z" + "iopub.execute_input": "2024-09-04T16:42:52.649194Z", + "iopub.status.busy": "2024-09-04T16:42:52.648683Z", + "iopub.status.idle": "2024-09-04T16:42:55.436647Z", + "shell.execute_reply": "2024-09-04T16:42:55.436105Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:40.360605Z", - "iopub.status.busy": "2024-08-29T17:13:40.360296Z", - "iopub.status.idle": "2024-08-29T17:13:40.692043Z", - "shell.execute_reply": "2024-08-29T17:13:40.691484Z" + "iopub.execute_input": "2024-09-04T16:42:55.439281Z", + "iopub.status.busy": "2024-09-04T16:42:55.438854Z", + "iopub.status.idle": "2024-09-04T16:42:55.755725Z", + "shell.execute_reply": "2024-09-04T16:42:55.755177Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:40.694445Z", - "iopub.status.busy": "2024-08-29T17:13:40.694127Z", - "iopub.status.idle": "2024-08-29T17:13:40.698116Z", - "shell.execute_reply": "2024-08-29T17:13:40.697695Z" + "iopub.execute_input": "2024-09-04T16:42:55.758406Z", + "iopub.status.busy": "2024-09-04T16:42:55.757955Z", + "iopub.status.idle": "2024-09-04T16:42:55.762158Z", + "shell.execute_reply": "2024-09-04T16:42:55.761743Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:40.700168Z", - "iopub.status.busy": "2024-08-29T17:13:40.699835Z", - "iopub.status.idle": "2024-08-29T17:13:45.580298Z", - "shell.execute_reply": "2024-08-29T17:13:45.579739Z" + "iopub.execute_input": "2024-09-04T16:42:55.764223Z", + "iopub.status.busy": "2024-09-04T16:42:55.763908Z", + "iopub.status.idle": "2024-09-04T16:43:02.719949Z", + "shell.execute_reply": "2024-09-04T16:43:02.719382Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 1835008/170498071 [00:00<00:09, 18329994.51it/s]" + " 0%| | 32768/170498071 [00:00<09:55, 286476.18it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 9011200/170498071 [00:00<00:03, 49669939.28it/s]" + " 0%| | 196608/170498071 [00:00<02:58, 952836.46it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 18120704/170498071 [00:00<00:02, 68523893.70it/s]" + " 0%| | 819200/170498071 [00:00<00:56, 2976967.78it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 28803072/170498071 [00:00<00:01, 83496337.43it/s]" + " 2%|▏ | 3276800/170498071 [00:00<00:16, 10184986.81it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 37158912/170498071 [00:00<00:01, 80139674.42it/s]" + " 6%|▌ | 9469952/170498071 [00:00<00:06, 26696954.83it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▊ | 48693248/170498071 [00:00<00:01, 91680575.44it/s]" + " 9%|▉ | 14942208/170498071 [00:00<00:04, 35418047.78it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 57933824/170498071 [00:00<00:01, 84570148.40it/s]" + " 12%|█▏ | 19791872/170498071 [00:00<00:03, 38238678.01it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 69173248/170498071 [00:00<00:01, 92724499.94it/s]" + " 15%|█▍ | 25264128/170498071 [00:00<00:03, 43164150.29it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 78610432/170498071 [00:00<00:01, 86030820.73it/s]" + " 18%|█▊ | 31064064/170498071 [00:00<00:03, 45456216.56it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 89456640/170498071 [00:01<00:00, 92342878.21it/s]" + " 21%|██▏ | 36503552/170498071 [00:01<00:02, 48033732.49it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 98893824/170498071 [00:01<00:00, 87030282.07it/s]" + " 25%|██▍ | 41943040/170498071 [00:01<00:02, 49560457.71it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 109608960/170498071 [00:01<00:00, 92579860.33it/s]" + " 28%|██▊ | 46956544/170498071 [00:01<00:02, 48811418.89it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 119046144/170498071 [00:01<00:00, 87203680.93it/s]" + " 31%|███ | 52002816/170498071 [00:01<00:02, 49276654.22it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 129859584/170498071 [00:01<00:00, 92794814.52it/s]" + " 34%|███▍ | 57704448/170498071 [00:01<00:02, 51159479.48it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 139329536/170498071 [00:01<00:00, 87311632.34it/s]" + " 37%|███▋ | 63078400/170498071 [00:01<00:02, 51312422.09it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 150110208/170498071 [00:01<00:00, 92708079.30it/s]" + " 40%|████ | 68222976/170498071 [00:01<00:02, 50084638.40it/s]" ] }, { @@ -380,7 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▎| 159547392/170498071 [00:01<00:00, 89415209.44it/s]" + " 43%|████▎ | 73957376/170498071 [00:01<00:01, 52172109.98it/s]" ] }, { @@ -388,7 +388,7 @@ "output_type": "stream", "text": [ "\r", - "100%|█████████▉| 169803776/170498071 [00:01<00:00, 92847216.16it/s]" + " 46%|████▋ | 79200256/170498071 [00:01<00:01, 51059149.17it/s]" ] }, { @@ -396,7 +396,143 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:01<00:00, 86603159.67it/s]" + " 49%|████▉ | 84344832/170498071 [00:02<00:01, 50541584.83it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 53%|█████▎ | 90013696/170498071 [00:02<00:01, 52277847.31it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 56%|█████▌ | 95256576/170498071 [00:02<00:01, 52267900.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 59%|█████▉ | 100499456/170498071 [00:02<00:01, 50251051.06it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 62%|██████▏ | 106266624/170498071 [00:02<00:01, 52102293.21it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 65%|██████▌ | 111509504/170498071 [00:02<00:01, 51385667.17it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 68%|██████▊ | 116686848/170498071 [00:02<00:01, 50685611.69it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 72%|███████▏ | 122060800/170498071 [00:02<00:00, 51228885.72it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 75%|███████▍ | 127238144/170498071 [00:02<00:00, 51336156.70it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 78%|███████▊ | 132382720/170498071 [00:02<00:00, 50654480.53it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 81%|████████ | 138018816/170498071 [00:03<00:00, 52212644.68it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 84%|████████▍ | 143261696/170498071 [00:03<00:00, 51472609.20it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 87%|████████▋ | 148439040/170498071 [00:03<00:00, 50790084.34it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 90%|█████████ | 153812992/170498071 [00:03<00:00, 51540397.38it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 93%|█████████▎| 158990336/170498071 [00:03<00:00, 51212796.08it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 96%|█████████▋| 164134912/170498071 [00:03<00:00, 50570691.19it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 169639936/170498071 [00:03<00:00, 51873138.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:03<00:00, 45958594.58it/s]" ] }, { @@ -514,10 +650,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:45.582739Z", - "iopub.status.busy": "2024-08-29T17:13:45.582371Z", - "iopub.status.idle": "2024-08-29T17:13:45.587064Z", - "shell.execute_reply": "2024-08-29T17:13:45.586613Z" + "iopub.execute_input": "2024-09-04T16:43:02.722295Z", + "iopub.status.busy": "2024-09-04T16:43:02.721885Z", + "iopub.status.idle": "2024-09-04T16:43:02.726775Z", + "shell.execute_reply": "2024-09-04T16:43:02.726194Z" }, "nbsphinx": "hidden" }, @@ -568,10 +704,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:45.589022Z", - "iopub.status.busy": "2024-08-29T17:13:45.588754Z", - "iopub.status.idle": "2024-08-29T17:13:46.101342Z", - "shell.execute_reply": "2024-08-29T17:13:46.100720Z" + "iopub.execute_input": "2024-09-04T16:43:02.728763Z", + "iopub.status.busy": "2024-09-04T16:43:02.728492Z", + "iopub.status.idle": "2024-09-04T16:43:03.272195Z", + "shell.execute_reply": "2024-09-04T16:43:03.271652Z" } }, "outputs": [ @@ -604,10 +740,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:46.103684Z", - "iopub.status.busy": "2024-08-29T17:13:46.103253Z", - "iopub.status.idle": "2024-08-29T17:13:46.591197Z", - "shell.execute_reply": "2024-08-29T17:13:46.590594Z" + "iopub.execute_input": "2024-09-04T16:43:03.274392Z", + "iopub.status.busy": "2024-09-04T16:43:03.274066Z", + "iopub.status.idle": "2024-09-04T16:43:03.795371Z", + "shell.execute_reply": "2024-09-04T16:43:03.794804Z" } }, "outputs": [ @@ -645,10 +781,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:46.593569Z", - "iopub.status.busy": "2024-08-29T17:13:46.593221Z", - "iopub.status.idle": "2024-08-29T17:13:46.596853Z", - "shell.execute_reply": "2024-08-29T17:13:46.596296Z" + "iopub.execute_input": "2024-09-04T16:43:03.797585Z", + "iopub.status.busy": "2024-09-04T16:43:03.797198Z", + "iopub.status.idle": "2024-09-04T16:43:03.800587Z", + "shell.execute_reply": "2024-09-04T16:43:03.800138Z" } }, "outputs": [], @@ -671,17 +807,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:46.598783Z", - "iopub.status.busy": "2024-08-29T17:13:46.598471Z", - "iopub.status.idle": "2024-08-29T17:13:58.885089Z", - "shell.execute_reply": "2024-08-29T17:13:58.884481Z" + "iopub.execute_input": "2024-09-04T16:43:03.802676Z", + "iopub.status.busy": "2024-09-04T16:43:03.802346Z", + "iopub.status.idle": "2024-09-04T16:43:16.096991Z", + "shell.execute_reply": "2024-09-04T16:43:16.096292Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b6b57ee9795545e1b957e77eb9537dc2", + "model_id": "ac3c97c855db4acfb6e63efc79dadb49", "version_major": 2, "version_minor": 0 }, @@ -740,10 +876,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:58.887358Z", - "iopub.status.busy": "2024-08-29T17:13:58.887178Z", - "iopub.status.idle": "2024-08-29T17:14:00.966725Z", - "shell.execute_reply": "2024-08-29T17:14:00.966166Z" + "iopub.execute_input": "2024-09-04T16:43:16.099819Z", + "iopub.status.busy": "2024-09-04T16:43:16.099351Z", + "iopub.status.idle": "2024-09-04T16:43:18.172158Z", + "shell.execute_reply": "2024-09-04T16:43:18.171496Z" } }, "outputs": [ @@ -787,10 +923,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:00.969099Z", - "iopub.status.busy": "2024-08-29T17:14:00.968619Z", - "iopub.status.idle": "2024-08-29T17:14:01.212635Z", - "shell.execute_reply": "2024-08-29T17:14:01.212055Z" + "iopub.execute_input": "2024-09-04T16:43:18.175070Z", + "iopub.status.busy": "2024-09-04T16:43:18.174585Z", + "iopub.status.idle": "2024-09-04T16:43:18.434321Z", + "shell.execute_reply": "2024-09-04T16:43:18.433761Z" } }, "outputs": [ @@ -826,10 +962,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:01.215200Z", - "iopub.status.busy": "2024-08-29T17:14:01.214773Z", - "iopub.status.idle": "2024-08-29T17:14:01.860391Z", - "shell.execute_reply": "2024-08-29T17:14:01.859771Z" + "iopub.execute_input": "2024-09-04T16:43:18.437156Z", + "iopub.status.busy": "2024-09-04T16:43:18.436716Z", + "iopub.status.idle": "2024-09-04T16:43:19.094057Z", + "shell.execute_reply": "2024-09-04T16:43:19.093495Z" } }, "outputs": [ @@ -879,10 +1015,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:01.862980Z", - "iopub.status.busy": "2024-08-29T17:14:01.862641Z", - "iopub.status.idle": "2024-08-29T17:14:02.156099Z", - "shell.execute_reply": "2024-08-29T17:14:02.155603Z" + "iopub.execute_input": "2024-09-04T16:43:19.096831Z", + "iopub.status.busy": "2024-09-04T16:43:19.096531Z", + "iopub.status.idle": "2024-09-04T16:43:19.435074Z", + "shell.execute_reply": "2024-09-04T16:43:19.434523Z" } }, "outputs": [ @@ -930,10 +1066,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:02.158148Z", - "iopub.status.busy": "2024-08-29T17:14:02.157972Z", - "iopub.status.idle": "2024-08-29T17:14:02.404653Z", - "shell.execute_reply": "2024-08-29T17:14:02.404083Z" + "iopub.execute_input": "2024-09-04T16:43:19.437338Z", + "iopub.status.busy": "2024-09-04T16:43:19.436988Z", + "iopub.status.idle": "2024-09-04T16:43:19.666170Z", + "shell.execute_reply": "2024-09-04T16:43:19.665542Z" } }, "outputs": [ @@ -989,10 +1125,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:02.407543Z", - "iopub.status.busy": "2024-08-29T17:14:02.407056Z", - "iopub.status.idle": "2024-08-29T17:14:02.495100Z", - "shell.execute_reply": "2024-08-29T17:14:02.494602Z" + "iopub.execute_input": "2024-09-04T16:43:19.668437Z", + "iopub.status.busy": "2024-09-04T16:43:19.668071Z", + "iopub.status.idle": "2024-09-04T16:43:19.760179Z", + "shell.execute_reply": "2024-09-04T16:43:19.759682Z" } }, "outputs": [], @@ -1013,10 +1149,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:02.497543Z", - "iopub.status.busy": "2024-08-29T17:14:02.497177Z", - "iopub.status.idle": "2024-08-29T17:14:12.680551Z", - "shell.execute_reply": "2024-08-29T17:14:12.679937Z" + "iopub.execute_input": "2024-09-04T16:43:19.762753Z", + "iopub.status.busy": "2024-09-04T16:43:19.762388Z", + "iopub.status.idle": "2024-09-04T16:43:29.993658Z", + "shell.execute_reply": "2024-09-04T16:43:29.992984Z" } }, "outputs": [ @@ -1053,10 +1189,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:12.683085Z", - "iopub.status.busy": "2024-08-29T17:14:12.682769Z", - "iopub.status.idle": "2024-08-29T17:14:14.935161Z", - "shell.execute_reply": "2024-08-29T17:14:14.934633Z" + "iopub.execute_input": "2024-09-04T16:43:29.995864Z", + "iopub.status.busy": "2024-09-04T16:43:29.995668Z", + "iopub.status.idle": "2024-09-04T16:43:32.179132Z", + "shell.execute_reply": "2024-09-04T16:43:32.178643Z" } }, "outputs": [ @@ -1087,10 +1223,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:14.937970Z", - "iopub.status.busy": "2024-08-29T17:14:14.937420Z", - "iopub.status.idle": "2024-08-29T17:14:15.141254Z", - "shell.execute_reply": "2024-08-29T17:14:15.140715Z" + "iopub.execute_input": "2024-09-04T16:43:32.181834Z", + "iopub.status.busy": "2024-09-04T16:43:32.181287Z", + "iopub.status.idle": "2024-09-04T16:43:32.396785Z", + "shell.execute_reply": "2024-09-04T16:43:32.396295Z" } }, "outputs": [], @@ -1104,10 +1240,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:15.143753Z", - "iopub.status.busy": "2024-08-29T17:14:15.143395Z", - "iopub.status.idle": "2024-08-29T17:14:15.146540Z", - "shell.execute_reply": "2024-08-29T17:14:15.146088Z" + "iopub.execute_input": "2024-09-04T16:43:32.399242Z", + "iopub.status.busy": "2024-09-04T16:43:32.398889Z", + "iopub.status.idle": "2024-09-04T16:43:32.402024Z", + "shell.execute_reply": "2024-09-04T16:43:32.401569Z" } }, "outputs": [], @@ -1145,10 +1281,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:15.148630Z", - "iopub.status.busy": "2024-08-29T17:14:15.148300Z", - "iopub.status.idle": "2024-08-29T17:14:15.156287Z", - "shell.execute_reply": "2024-08-29T17:14:15.155831Z" + "iopub.execute_input": "2024-09-04T16:43:32.403884Z", + "iopub.status.busy": "2024-09-04T16:43:32.403621Z", + "iopub.status.idle": "2024-09-04T16:43:32.411917Z", + "shell.execute_reply": "2024-09-04T16:43:32.411493Z" }, "nbsphinx": "hidden" }, @@ -1193,30 +1329,33 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0678addeb5354c0fbd249daa720e835c": { + "03d3523eeb4f4074b7cb37f688bb96b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2c89be3cf97b48e0aac1428e1d068c6e", - "placeholder": "​", - "style": "IPY_MODEL_466d8522075e44de80f286213329dd0a", + "layout": "IPY_MODEL_e50cd9891c2447b89c2c96ae5c584592", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_dc2f3cbed90542bea30156dba6e6ee18", "tabbable": null, "tooltip": null, - "value": " 102M/102M [00:00<00:00, 317MB/s]" + "value": 102469840.0 } }, - "23ad08a1e13d4e2ab14b6c6cf86856da": { + "495a3cb6c4b342819c23386f0258057d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1269,7 +1408,48 @@ "width": null } }, - "2c89be3cf97b48e0aac1428e1d068c6e": { + "550955f726ba444480184cf8a13d4576": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_495a3cb6c4b342819c23386f0258057d", + "placeholder": "​", + "style": "IPY_MODEL_f244b9fc605e47f8a8c9cffc04e521b5", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 298MB/s]" + } + }, + "6a7377f3d84e4e28b1c89f7743bc3957": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "701f9b1f323c4b1eae5d1ea1352c3848": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1322,41 +1502,7 @@ "width": null } }, - "3066dbed7ec24323afef9bc2dcf8135f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "466d8522075e44de80f286213329dd0a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7ca8dfcc9e8a4bc9866c4f90af9ce205": { + "a4bf76c669c944089954a7d90a0538c7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1409,7 +1555,70 @@ "width": null } }, - "97fa50438dfd48609bd3fd3292fc92ad": { + "ac3c97c855db4acfb6e63efc79dadb49": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c89c9b35073841c886912f519a58ee2c", + "IPY_MODEL_03d3523eeb4f4074b7cb37f688bb96b1", + "IPY_MODEL_550955f726ba444480184cf8a13d4576" + ], + "layout": "IPY_MODEL_a4bf76c669c944089954a7d90a0538c7", + "tabbable": null, + "tooltip": null + } + }, + "c89c9b35073841c886912f519a58ee2c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_701f9b1f323c4b1eae5d1ea1352c3848", + "placeholder": "​", + "style": "IPY_MODEL_6a7377f3d84e4e28b1c89f7743bc3957", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } + }, + "dc2f3cbed90542bea30156dba6e6ee18": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e50cd9891c2447b89c2c96ae5c584592": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1462,7 +1671,7 @@ "width": null } }, - "a1b5ce2ee6f0426ba7e4149a61ce24da": { + "f244b9fc605e47f8a8c9cffc04e521b5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1479,79 +1688,6 @@ "font_size": null, "text_color": null } - }, - "adce6dc3620044a98af589f7e9efeeaa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7ca8dfcc9e8a4bc9866c4f90af9ce205", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3066dbed7ec24323afef9bc2dcf8135f", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "b6b57ee9795545e1b957e77eb9537dc2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cb4572a1e29c40688f631ac891aae906", - "IPY_MODEL_adce6dc3620044a98af589f7e9efeeaa", - "IPY_MODEL_0678addeb5354c0fbd249daa720e835c" - ], - "layout": "IPY_MODEL_23ad08a1e13d4e2ab14b6c6cf86856da", - "tabbable": null, - "tooltip": null - } - }, - "cb4572a1e29c40688f631ac891aae906": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_97fa50438dfd48609bd3fd3292fc92ad", - "placeholder": "​", - "style": "IPY_MODEL_a1b5ce2ee6f0426ba7e4149a61ce24da", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index df55d12fa..3319fc622 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:19.347070Z", - "iopub.status.busy": "2024-08-29T17:14:19.346882Z", - "iopub.status.idle": "2024-08-29T17:14:20.597705Z", - "shell.execute_reply": "2024-08-29T17:14:20.597132Z" + "iopub.execute_input": "2024-09-04T16:43:36.768501Z", + "iopub.status.busy": "2024-09-04T16:43:36.768020Z", + "iopub.status.idle": "2024-09-04T16:43:37.948956Z", + "shell.execute_reply": "2024-09-04T16:43:37.948387Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:20.600401Z", - "iopub.status.busy": "2024-08-29T17:14:20.599950Z", - "iopub.status.idle": "2024-08-29T17:14:20.617696Z", - "shell.execute_reply": "2024-08-29T17:14:20.617249Z" + "iopub.execute_input": "2024-09-04T16:43:37.951410Z", + "iopub.status.busy": "2024-09-04T16:43:37.951053Z", + "iopub.status.idle": "2024-09-04T16:43:37.968627Z", + "shell.execute_reply": "2024-09-04T16:43:37.968158Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:20.619921Z", - "iopub.status.busy": "2024-08-29T17:14:20.619501Z", - "iopub.status.idle": "2024-08-29T17:14:20.622449Z", - "shell.execute_reply": "2024-08-29T17:14:20.621968Z" + "iopub.execute_input": "2024-09-04T16:43:37.970707Z", + "iopub.status.busy": "2024-09-04T16:43:37.970308Z", + "iopub.status.idle": "2024-09-04T16:43:37.973152Z", + "shell.execute_reply": "2024-09-04T16:43:37.972722Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:20.624547Z", - "iopub.status.busy": "2024-08-29T17:14:20.624217Z", - "iopub.status.idle": "2024-08-29T17:14:20.698073Z", - "shell.execute_reply": "2024-08-29T17:14:20.697593Z" + "iopub.execute_input": "2024-09-04T16:43:37.975225Z", + "iopub.status.busy": "2024-09-04T16:43:37.974765Z", + "iopub.status.idle": "2024-09-04T16:43:38.284642Z", + "shell.execute_reply": "2024-09-04T16:43:38.284071Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:20.700329Z", - "iopub.status.busy": "2024-08-29T17:14:20.699970Z", - "iopub.status.idle": "2024-08-29T17:14:20.882935Z", - "shell.execute_reply": "2024-08-29T17:14:20.882361Z" + "iopub.execute_input": "2024-09-04T16:43:38.286903Z", + "iopub.status.busy": "2024-09-04T16:43:38.286548Z", + "iopub.status.idle": "2024-09-04T16:43:38.464800Z", + "shell.execute_reply": "2024-09-04T16:43:38.464240Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:20.885528Z", - "iopub.status.busy": "2024-08-29T17:14:20.885087Z", - "iopub.status.idle": "2024-08-29T17:14:21.101274Z", - "shell.execute_reply": "2024-08-29T17:14:21.100697Z" + "iopub.execute_input": "2024-09-04T16:43:38.466846Z", + "iopub.status.busy": "2024-09-04T16:43:38.466575Z", + "iopub.status.idle": "2024-09-04T16:43:38.706751Z", + "shell.execute_reply": "2024-09-04T16:43:38.706216Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:21.103576Z", - "iopub.status.busy": "2024-08-29T17:14:21.103217Z", - "iopub.status.idle": "2024-08-29T17:14:21.107649Z", - "shell.execute_reply": "2024-08-29T17:14:21.107191Z" + "iopub.execute_input": "2024-09-04T16:43:38.708867Z", + "iopub.status.busy": "2024-09-04T16:43:38.708511Z", + "iopub.status.idle": "2024-09-04T16:43:38.712695Z", + "shell.execute_reply": "2024-09-04T16:43:38.712231Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:21.109562Z", - "iopub.status.busy": "2024-08-29T17:14:21.109244Z", - "iopub.status.idle": "2024-08-29T17:14:21.115478Z", - "shell.execute_reply": "2024-08-29T17:14:21.114917Z" + "iopub.execute_input": "2024-09-04T16:43:38.714637Z", + "iopub.status.busy": "2024-09-04T16:43:38.714301Z", + "iopub.status.idle": "2024-09-04T16:43:38.720623Z", + "shell.execute_reply": "2024-09-04T16:43:38.720046Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:21.117571Z", - "iopub.status.busy": "2024-08-29T17:14:21.117235Z", - "iopub.status.idle": "2024-08-29T17:14:21.119946Z", - "shell.execute_reply": "2024-08-29T17:14:21.119385Z" + "iopub.execute_input": "2024-09-04T16:43:38.723058Z", + "iopub.status.busy": "2024-09-04T16:43:38.722596Z", + "iopub.status.idle": "2024-09-04T16:43:38.725392Z", + "shell.execute_reply": "2024-09-04T16:43:38.724828Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:21.121825Z", - "iopub.status.busy": "2024-08-29T17:14:21.121522Z", - "iopub.status.idle": "2024-08-29T17:14:30.167997Z", - "shell.execute_reply": "2024-08-29T17:14:30.167432Z" + "iopub.execute_input": "2024-09-04T16:43:38.727408Z", + "iopub.status.busy": "2024-09-04T16:43:38.726961Z", + "iopub.status.idle": "2024-09-04T16:43:47.575755Z", + "shell.execute_reply": "2024-09-04T16:43:47.575208Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:30.170971Z", - "iopub.status.busy": "2024-08-29T17:14:30.170309Z", - "iopub.status.idle": "2024-08-29T17:14:30.177989Z", - "shell.execute_reply": "2024-08-29T17:14:30.177523Z" + "iopub.execute_input": "2024-09-04T16:43:47.578529Z", + "iopub.status.busy": "2024-09-04T16:43:47.578149Z", + "iopub.status.idle": "2024-09-04T16:43:47.585254Z", + "shell.execute_reply": "2024-09-04T16:43:47.584782Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:30.180040Z", - "iopub.status.busy": "2024-08-29T17:14:30.179858Z", - "iopub.status.idle": "2024-08-29T17:14:30.183700Z", - "shell.execute_reply": "2024-08-29T17:14:30.183239Z" + "iopub.execute_input": "2024-09-04T16:43:47.587243Z", + "iopub.status.busy": "2024-09-04T16:43:47.586922Z", + "iopub.status.idle": "2024-09-04T16:43:47.590560Z", + "shell.execute_reply": "2024-09-04T16:43:47.590097Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:30.185675Z", - "iopub.status.busy": "2024-08-29T17:14:30.185499Z", - "iopub.status.idle": "2024-08-29T17:14:30.188518Z", - "shell.execute_reply": "2024-08-29T17:14:30.187980Z" + "iopub.execute_input": "2024-09-04T16:43:47.592545Z", + "iopub.status.busy": "2024-09-04T16:43:47.592234Z", + "iopub.status.idle": "2024-09-04T16:43:47.595648Z", + "shell.execute_reply": "2024-09-04T16:43:47.595175Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:30.190444Z", - "iopub.status.busy": "2024-08-29T17:14:30.190268Z", - "iopub.status.idle": "2024-08-29T17:14:30.193189Z", - "shell.execute_reply": "2024-08-29T17:14:30.192741Z" + "iopub.execute_input": "2024-09-04T16:43:47.597524Z", + "iopub.status.busy": "2024-09-04T16:43:47.597353Z", + "iopub.status.idle": "2024-09-04T16:43:47.600367Z", + "shell.execute_reply": "2024-09-04T16:43:47.599908Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:30.195086Z", - "iopub.status.busy": "2024-08-29T17:14:30.194908Z", - "iopub.status.idle": "2024-08-29T17:14:30.203004Z", - "shell.execute_reply": "2024-08-29T17:14:30.202449Z" + "iopub.execute_input": "2024-09-04T16:43:47.602164Z", + "iopub.status.busy": "2024-09-04T16:43:47.601996Z", + "iopub.status.idle": "2024-09-04T16:43:47.610116Z", + "shell.execute_reply": "2024-09-04T16:43:47.609566Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:30.205011Z", - "iopub.status.busy": "2024-08-29T17:14:30.204632Z", - "iopub.status.idle": "2024-08-29T17:14:30.207398Z", - "shell.execute_reply": "2024-08-29T17:14:30.206929Z" + "iopub.execute_input": "2024-09-04T16:43:47.612117Z", + "iopub.status.busy": "2024-09-04T16:43:47.611941Z", + "iopub.status.idle": "2024-09-04T16:43:47.614504Z", + "shell.execute_reply": "2024-09-04T16:43:47.614066Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:30.209490Z", - "iopub.status.busy": "2024-08-29T17:14:30.209163Z", - "iopub.status.idle": "2024-08-29T17:14:30.333970Z", - "shell.execute_reply": "2024-08-29T17:14:30.333445Z" + "iopub.execute_input": "2024-09-04T16:43:47.616757Z", + "iopub.status.busy": "2024-09-04T16:43:47.616310Z", + "iopub.status.idle": "2024-09-04T16:43:47.740945Z", + "shell.execute_reply": "2024-09-04T16:43:47.740451Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:30.336284Z", - "iopub.status.busy": "2024-08-29T17:14:30.335759Z", - "iopub.status.idle": "2024-08-29T17:14:30.447188Z", - "shell.execute_reply": "2024-08-29T17:14:30.446695Z" + "iopub.execute_input": "2024-09-04T16:43:47.743100Z", + "iopub.status.busy": "2024-09-04T16:43:47.742731Z", + "iopub.status.idle": "2024-09-04T16:43:47.852984Z", + "shell.execute_reply": "2024-09-04T16:43:47.852467Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:30.449144Z", - "iopub.status.busy": "2024-08-29T17:14:30.448969Z", - "iopub.status.idle": "2024-08-29T17:14:30.950528Z", - "shell.execute_reply": "2024-08-29T17:14:30.949931Z" + "iopub.execute_input": "2024-09-04T16:43:47.855197Z", + "iopub.status.busy": "2024-09-04T16:43:47.854828Z", + "iopub.status.idle": "2024-09-04T16:43:48.365543Z", + "shell.execute_reply": "2024-09-04T16:43:48.364899Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:30.953233Z", - "iopub.status.busy": "2024-08-29T17:14:30.952869Z", - "iopub.status.idle": "2024-08-29T17:14:31.052110Z", - "shell.execute_reply": "2024-08-29T17:14:31.051488Z" + "iopub.execute_input": "2024-09-04T16:43:48.368337Z", + "iopub.status.busy": "2024-09-04T16:43:48.368002Z", + "iopub.status.idle": "2024-09-04T16:43:48.468212Z", + "shell.execute_reply": "2024-09-04T16:43:48.467642Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:31.054376Z", - "iopub.status.busy": "2024-08-29T17:14:31.054178Z", - "iopub.status.idle": "2024-08-29T17:14:31.063053Z", - "shell.execute_reply": "2024-08-29T17:14:31.062575Z" + "iopub.execute_input": "2024-09-04T16:43:48.470517Z", + "iopub.status.busy": "2024-09-04T16:43:48.470176Z", + "iopub.status.idle": "2024-09-04T16:43:48.478636Z", + "shell.execute_reply": "2024-09-04T16:43:48.478078Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:31.064982Z", - "iopub.status.busy": "2024-08-29T17:14:31.064807Z", - "iopub.status.idle": "2024-08-29T17:14:31.067390Z", - "shell.execute_reply": "2024-08-29T17:14:31.066933Z" + "iopub.execute_input": "2024-09-04T16:43:48.480756Z", + "iopub.status.busy": "2024-09-04T16:43:48.480445Z", + "iopub.status.idle": "2024-09-04T16:43:48.483242Z", + "shell.execute_reply": "2024-09-04T16:43:48.482762Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:31.069244Z", - "iopub.status.busy": "2024-08-29T17:14:31.069074Z", - "iopub.status.idle": "2024-08-29T17:14:36.743505Z", - "shell.execute_reply": "2024-08-29T17:14:36.742945Z" + "iopub.execute_input": "2024-09-04T16:43:48.485062Z", + "iopub.status.busy": "2024-09-04T16:43:48.484889Z", + "iopub.status.idle": "2024-09-04T16:43:54.084693Z", + "shell.execute_reply": "2024-09-04T16:43:54.084129Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:36.745868Z", - "iopub.status.busy": "2024-08-29T17:14:36.745544Z", - "iopub.status.idle": "2024-08-29T17:14:36.754180Z", - "shell.execute_reply": "2024-08-29T17:14:36.753751Z" + "iopub.execute_input": "2024-09-04T16:43:54.087081Z", + "iopub.status.busy": "2024-09-04T16:43:54.086690Z", + "iopub.status.idle": "2024-09-04T16:43:54.095241Z", + "shell.execute_reply": "2024-09-04T16:43:54.094653Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:36.756432Z", - "iopub.status.busy": "2024-08-29T17:14:36.756114Z", - "iopub.status.idle": "2024-08-29T17:14:36.819635Z", - "shell.execute_reply": "2024-08-29T17:14:36.819058Z" + "iopub.execute_input": "2024-09-04T16:43:54.097566Z", + "iopub.status.busy": "2024-09-04T16:43:54.097200Z", + "iopub.status.idle": "2024-09-04T16:43:54.160790Z", + "shell.execute_reply": "2024-09-04T16:43:54.160317Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 7a39f527b..260e00239 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:40.063403Z", - "iopub.status.busy": "2024-08-29T17:14:40.062940Z", - "iopub.status.idle": "2024-08-29T17:14:42.485605Z", - "shell.execute_reply": "2024-08-29T17:14:42.484974Z" + "iopub.execute_input": "2024-09-04T16:43:57.398115Z", + "iopub.status.busy": "2024-09-04T16:43:57.397950Z", + "iopub.status.idle": "2024-09-04T16:44:00.422408Z", + "shell.execute_reply": "2024-09-04T16:44:00.421657Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:42.488095Z", - "iopub.status.busy": "2024-08-29T17:14:42.487908Z", - "iopub.status.idle": "2024-08-29T17:15:42.347849Z", - "shell.execute_reply": "2024-08-29T17:15:42.347221Z" + "iopub.execute_input": "2024-09-04T16:44:00.424989Z", + "iopub.status.busy": "2024-09-04T16:44:00.424806Z", + "iopub.status.idle": "2024-09-04T16:45:04.882151Z", + "shell.execute_reply": "2024-09-04T16:45:04.881404Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:15:42.350509Z", - "iopub.status.busy": "2024-08-29T17:15:42.350313Z", - "iopub.status.idle": "2024-08-29T17:15:43.517871Z", - "shell.execute_reply": "2024-08-29T17:15:43.517356Z" + "iopub.execute_input": "2024-09-04T16:45:04.884810Z", + "iopub.status.busy": "2024-09-04T16:45:04.884607Z", + "iopub.status.idle": "2024-09-04T16:45:06.035210Z", + "shell.execute_reply": "2024-09-04T16:45:06.034656Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:15:43.520364Z", - "iopub.status.busy": "2024-08-29T17:15:43.520087Z", - "iopub.status.idle": "2024-08-29T17:15:43.523428Z", - "shell.execute_reply": "2024-08-29T17:15:43.522969Z" + "iopub.execute_input": "2024-09-04T16:45:06.037737Z", + "iopub.status.busy": "2024-09-04T16:45:06.037308Z", + "iopub.status.idle": "2024-09-04T16:45:06.040355Z", + "shell.execute_reply": "2024-09-04T16:45:06.039923Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:15:43.525372Z", - "iopub.status.busy": "2024-08-29T17:15:43.525198Z", - "iopub.status.idle": "2024-08-29T17:15:43.528851Z", - "shell.execute_reply": "2024-08-29T17:15:43.528416Z" + "iopub.execute_input": "2024-09-04T16:45:06.042624Z", + "iopub.status.busy": "2024-09-04T16:45:06.042293Z", + "iopub.status.idle": "2024-09-04T16:45:06.046099Z", + "shell.execute_reply": "2024-09-04T16:45:06.045622Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:15:43.530733Z", - "iopub.status.busy": "2024-08-29T17:15:43.530564Z", - "iopub.status.idle": "2024-08-29T17:15:43.534086Z", - "shell.execute_reply": "2024-08-29T17:15:43.533629Z" + "iopub.execute_input": "2024-09-04T16:45:06.048124Z", + "iopub.status.busy": "2024-09-04T16:45:06.047798Z", + "iopub.status.idle": "2024-09-04T16:45:06.051275Z", + "shell.execute_reply": "2024-09-04T16:45:06.050853Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:15:43.535858Z", - "iopub.status.busy": "2024-08-29T17:15:43.535691Z", - "iopub.status.idle": "2024-08-29T17:15:43.538397Z", - "shell.execute_reply": "2024-08-29T17:15:43.537946Z" + "iopub.execute_input": "2024-09-04T16:45:06.053341Z", + "iopub.status.busy": "2024-09-04T16:45:06.052998Z", + "iopub.status.idle": "2024-09-04T16:45:06.055696Z", + "shell.execute_reply": "2024-09-04T16:45:06.055273Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:15:43.540159Z", - "iopub.status.busy": "2024-08-29T17:15:43.539989Z", - "iopub.status.idle": "2024-08-29T17:16:21.544248Z", - "shell.execute_reply": "2024-08-29T17:16:21.543544Z" + "iopub.execute_input": "2024-09-04T16:45:06.057654Z", + "iopub.status.busy": "2024-09-04T16:45:06.057355Z", + "iopub.status.idle": "2024-09-04T16:45:44.136518Z", + "shell.execute_reply": "2024-09-04T16:45:44.135792Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f59b171099164f76b8305ddd48dbb399", + "model_id": "c29501bdfc7141ceadc36d4bd242e947", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "797e70863dcd4d92ab00f88ddb64b07a", + "model_id": "11fcea39be8443499c860e52baccfa36", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:16:21.546989Z", - "iopub.status.busy": "2024-08-29T17:16:21.546789Z", - "iopub.status.idle": "2024-08-29T17:16:22.218200Z", - "shell.execute_reply": "2024-08-29T17:16:22.217653Z" + "iopub.execute_input": "2024-09-04T16:45:44.139186Z", + "iopub.status.busy": "2024-09-04T16:45:44.138936Z", + "iopub.status.idle": "2024-09-04T16:45:44.802686Z", + "shell.execute_reply": "2024-09-04T16:45:44.802105Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:16:22.220507Z", - "iopub.status.busy": "2024-08-29T17:16:22.220105Z", - "iopub.status.idle": "2024-08-29T17:16:25.143584Z", - "shell.execute_reply": "2024-08-29T17:16:25.142977Z" + "iopub.execute_input": "2024-09-04T16:45:44.804935Z", + "iopub.status.busy": "2024-09-04T16:45:44.804500Z", + "iopub.status.idle": "2024-09-04T16:45:47.783346Z", + "shell.execute_reply": "2024-09-04T16:45:47.782764Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:16:25.145704Z", - "iopub.status.busy": "2024-08-29T17:16:25.145523Z", - "iopub.status.idle": "2024-08-29T17:16:57.114477Z", - "shell.execute_reply": "2024-08-29T17:16:57.113895Z" + "iopub.execute_input": "2024-09-04T16:45:47.785432Z", + "iopub.status.busy": "2024-09-04T16:45:47.785262Z", + "iopub.status.idle": "2024-09-04T16:46:19.370321Z", + "shell.execute_reply": "2024-09-04T16:46:19.369764Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "44abce64857e41b18d46cff97a645cb6", + "model_id": "6e7b56fcef5c486cb1b301226a96315c", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:16:57.116548Z", - "iopub.status.busy": "2024-08-29T17:16:57.116366Z", - "iopub.status.idle": "2024-08-29T17:17:12.559357Z", - "shell.execute_reply": "2024-08-29T17:17:12.558698Z" + "iopub.execute_input": "2024-09-04T16:46:19.372472Z", + "iopub.status.busy": "2024-09-04T16:46:19.372143Z", + "iopub.status.idle": "2024-09-04T16:46:34.869456Z", + "shell.execute_reply": "2024-09-04T16:46:34.868899Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:12.561798Z", - "iopub.status.busy": "2024-08-29T17:17:12.561592Z", - "iopub.status.idle": "2024-08-29T17:17:16.342031Z", - "shell.execute_reply": "2024-08-29T17:17:16.341561Z" + "iopub.execute_input": "2024-09-04T16:46:34.871907Z", + "iopub.status.busy": "2024-09-04T16:46:34.871709Z", + "iopub.status.idle": "2024-09-04T16:46:38.623774Z", + "shell.execute_reply": "2024-09-04T16:46:38.623174Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:16.344203Z", - "iopub.status.busy": "2024-08-29T17:17:16.343880Z", - "iopub.status.idle": "2024-08-29T17:17:17.838334Z", - "shell.execute_reply": "2024-08-29T17:17:17.837648Z" + "iopub.execute_input": "2024-09-04T16:46:38.626180Z", + "iopub.status.busy": "2024-09-04T16:46:38.625737Z", + "iopub.status.idle": "2024-09-04T16:46:40.106323Z", + "shell.execute_reply": "2024-09-04T16:46:40.105799Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3f1e3f0e04dc48ddb34e2479973f987f", + "model_id": "7e7b88cddfbd428db2ec7d485c5c6665", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:17.841034Z", - "iopub.status.busy": "2024-08-29T17:17:17.840575Z", - "iopub.status.idle": "2024-08-29T17:17:17.869860Z", - "shell.execute_reply": "2024-08-29T17:17:17.869337Z" + "iopub.execute_input": "2024-09-04T16:46:40.108795Z", + "iopub.status.busy": "2024-09-04T16:46:40.108440Z", + "iopub.status.idle": "2024-09-04T16:46:40.137972Z", + "shell.execute_reply": "2024-09-04T16:46:40.137451Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:17.872167Z", - "iopub.status.busy": "2024-08-29T17:17:17.871965Z", - "iopub.status.idle": "2024-08-29T17:17:24.053059Z", - "shell.execute_reply": "2024-08-29T17:17:24.052503Z" + "iopub.execute_input": "2024-09-04T16:46:40.140567Z", + "iopub.status.busy": "2024-09-04T16:46:40.140198Z", + "iopub.status.idle": "2024-09-04T16:46:46.220146Z", + "shell.execute_reply": "2024-09-04T16:46:46.219555Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:24.055411Z", - "iopub.status.busy": "2024-08-29T17:17:24.055070Z", - "iopub.status.idle": "2024-08-29T17:17:24.111177Z", - "shell.execute_reply": "2024-08-29T17:17:24.110679Z" + "iopub.execute_input": "2024-09-04T16:46:46.222415Z", + "iopub.status.busy": "2024-09-04T16:46:46.222228Z", + "iopub.status.idle": "2024-09-04T16:46:46.283593Z", + "shell.execute_reply": "2024-09-04T16:46:46.283096Z" }, "nbsphinx": "hidden" }, @@ -1038,23 +1038,57 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "034036b3b83d40a39150602a8d0d774b": { + "01715a241ede47049c8175ae74204dcb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_da7abc08e44b4fc5b2f705b29958ff4e", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ec0acf0b2a504079957d88a2e9996418", + "tabbable": null, + "tooltip": null, + "value": 30.0 } }, - "0c259ceb33d348f28a73d7a752a83d1f": { + "11fcea39be8443499c860e52baccfa36": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b605408da9d943728fe5c3bc9ee69de0", + "IPY_MODEL_01715a241ede47049c8175ae74204dcb", + "IPY_MODEL_388b17e8e5d4404187f690f917705610" + ], + "layout": "IPY_MODEL_af326f92c44c4443a107ea420cf02f30", + "tabbable": null, + "tooltip": null + } + }, + "13ddca1be3f6482ea8ea212b7da45a58": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1107,7 +1141,7 @@ "width": null } }, - "0d685f3729224eedb7b91231659e2757": { + "1670ba26e32f43d890a0c1a97dcf3fe6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1160,43 +1194,60 @@ "width": null } }, - "0e8a6425bd35419282d9435caa818906": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "12fb5404efa9407bb436ad7047308f7b": { - "model_module": "@jupyter-widgets/controls", + "1eeaa3465b3c47d0b8a2e4736187fdf0": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "18e897f0234744b995456435e96a3ac5": { + "2348ac71446446929cc29942ecfe7f23": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1214,7 +1265,7 @@ "text_color": null } }, - "2150c51d8b224467a87065c24db1f2cd": { + "2735b6f48cdc42eeb0337efda4887b88": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1229,15 +1280,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b821863d99744529a669c67f13612d82", + "layout": "IPY_MODEL_f26e929230e34d458d38de9ce5771d22", "placeholder": "​", - "style": "IPY_MODEL_0e8a6425bd35419282d9435caa818906", + "style": "IPY_MODEL_cd1edd44379742a4a8544dee6171325f", "tabbable": null, "tooltip": null, - "value": " 4997683/4997683 [00:31<00:00, 155147.87it/s]" + "value": " 30/30 [00:01<00:00, 20.10it/s]" } }, - "23d394fbee8b47188d2d3834f6b58af7": { + "32d1dd80bdc74f67bd45cefedf1cac1f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1252,33 +1303,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bab0622575024fecabd08e4b1d63f719", + "layout": "IPY_MODEL_5dbfb68e80dd4fe4b9c797dc02745c3c", "placeholder": "​", - "style": "IPY_MODEL_aed7d29c1eb147aaa4da525fbdcccfeb", + "style": "IPY_MODEL_8c7e66b980b347d396f3f67364cec683", "tabbable": null, "tooltip": null, "value": "images processed using softmin: 100%" } }, - "2617f6d87b1d44a19de682bf7fcc80b6": { + "388b17e8e5d4404187f690f917705610": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_637d22dc96bb468d9150845651b0add1", + "placeholder": "​", + "style": "IPY_MODEL_96f1ce41df2c4d8b85455ab3f6b77cb7", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:26<00:00,  1.15it/s]" } }, - "284040cc9a374386a6554aead1ea2644": { + "48d0c48a036a4be79be623e6537e66fd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1331,48 +1387,7 @@ "width": null } }, - "2ed144768d2d4dbcbd8fb7a089625911": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "30731e8ab0214e45a3e63558b35bb2a5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0c259ceb33d348f28a73d7a752a83d1f", - "placeholder": "​", - "style": "IPY_MODEL_18e897f0234744b995456435e96a3ac5", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "35992f93960747699ce0688cd2406d71": { + "4da0108d885943e298ab5e6f0ab72a55": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1425,87 +1440,7 @@ "width": null } }, - "3d6d6a29214f4d9180f1c432550f4eb8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "3f1e3f0e04dc48ddb34e2479973f987f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_23d394fbee8b47188d2d3834f6b58af7", - "IPY_MODEL_cb494b2cb783459b90ffc5c4a0e54cd3", - "IPY_MODEL_abb485abc3da4b998ad73c0d6ce9951f" - ], - "layout": "IPY_MODEL_7176b5b5fb0c48329d6d4ff1f55374d4", - "tabbable": null, - "tooltip": null - } - }, - "44abce64857e41b18d46cff97a645cb6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_69c97867bb414ce4a71317f7b51a6fc0", - "IPY_MODEL_e2b81de6c3e44bf8ab68f9e5797e5469", - "IPY_MODEL_2150c51d8b224467a87065c24db1f2cd" - ], - "layout": "IPY_MODEL_6a517b92b69c4fd4a072e89e82f255bf", - "tabbable": null, - "tooltip": null - } - }, - "517ae781ff0d467c9a97e22c51392ade": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "658c952d03924e839777edde3515e2a8": { + "50a561a211494999b82b0f7e14c91e64": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1558,7 +1493,48 @@ "width": null } }, - "681d1382b6af45c4acf9ca239ae777d3": { + "5a5a125bfa6d43bb9143c6bd0d2f86aa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_50a561a211494999b82b0f7e14c91e64", + "placeholder": "​", + "style": "IPY_MODEL_2348ac71446446929cc29942ecfe7f23", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" + } + }, + "5c2ce10a9a0c4004817b1ab6ed0c8eb0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5dbfb68e80dd4fe4b9c797dc02745c3c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1611,30 +1587,7 @@ "width": null } }, - "69c97867bb414ce4a71317f7b51a6fc0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d9889d1329d2417aa59e77528bf8c579", - "placeholder": "​", - "style": "IPY_MODEL_2ed144768d2d4dbcbd8fb7a089625911", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "6a517b92b69c4fd4a072e89e82f255bf": { + "61a33e5ba9c84954850fa7bbe5ffda56": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1687,7 +1640,7 @@ "width": null } }, - "7176b5b5fb0c48329d6d4ff1f55374d4": { + "637d22dc96bb468d9150845651b0add1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1740,7 +1693,106 @@ "width": null } }, - "797e70863dcd4d92ab00f88ddb64b07a": { + "6435bff16ce643fb9bef7ba9bd3d5965": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e0510c00ed0e44219cbce2a6b2f40086", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e6c27b6139894a26a0bec722079ebf23", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "64725b3089ff49b28e2885cf3d4d9274": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1eeaa3465b3c47d0b8a2e4736187fdf0", + "placeholder": "​", + "style": "IPY_MODEL_f3905a545d1549e6ac839b142976faf5", + "tabbable": null, + "tooltip": null, + "value": " 4997683/4997683 [00:31<00:00, 160298.07it/s]" + } + }, + "6e7b56fcef5c486cb1b301226a96315c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ecb42f54e7734c42b48cb0a6de8dff88", + "IPY_MODEL_77f18c82c64a405681baf0fc9ae700f2", + "IPY_MODEL_64725b3089ff49b28e2885cf3d4d9274" + ], + "layout": "IPY_MODEL_4da0108d885943e298ab5e6f0ab72a55", + "tabbable": null, + "tooltip": null + } + }, + "77f18c82c64a405681baf0fc9ae700f2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1670ba26e32f43d890a0c1a97dcf3fe6", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a971ef76ec7b42abb1ccaacaedeb405c", + "tabbable": null, + "tooltip": null, + "value": 4997683.0 + } + }, + "7e7b88cddfbd428db2ec7d485c5c6665": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1755,16 +1807,52 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_c6435c6e8ecf4f97945154165f8b3710", - "IPY_MODEL_a4f4b6731bf84c7fb0b112656e78d24e", - "IPY_MODEL_83293389c8284d6490e3d5be49b65303" + "IPY_MODEL_32d1dd80bdc74f67bd45cefedf1cac1f", + "IPY_MODEL_e2d894bdc1954600a760c365637c57bf", + "IPY_MODEL_2735b6f48cdc42eeb0337efda4887b88" ], - "layout": "IPY_MODEL_cb39fc68582f495d9128c47c2ea12d32", + "layout": "IPY_MODEL_61a33e5ba9c84954850fa7bbe5ffda56", "tabbable": null, "tooltip": null } }, - "7f83bb546cc2435090cdacd91f10377d": { + "812d1a37e5314b0c822c78f0803e41ee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8c7e66b980b347d396f3f67364cec683": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9079f128e32b443da78013fe14685adc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1817,30 +1905,7 @@ "width": null } }, - "83293389c8284d6490e3d5be49b65303": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_284040cc9a374386a6554aead1ea2644", - "placeholder": "​", - "style": "IPY_MODEL_2617f6d87b1d44a19de682bf7fcc80b6", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:25<00:00,  1.14it/s]" - } - }, - "8d6ce753439846f1a50809b38187bb92": { + "90af0231f6ee4bd28a9526a8d0f8d05f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1858,74 +1923,41 @@ "text_color": null } }, - "a4f4b6731bf84c7fb0b112656e78d24e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_658c952d03924e839777edde3515e2a8", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_034036b3b83d40a39150602a8d0d774b", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "abb485abc3da4b998ad73c0d6ce9951f": { + "96f1ce41df2c4d8b85455ab3f6b77cb7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_681d1382b6af45c4acf9ca239ae777d3", - "placeholder": "​", - "style": "IPY_MODEL_12fb5404efa9407bb436ad7047308f7b", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 20.78it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "aed7d29c1eb147aaa4da525fbdcccfeb": { + "a971ef76ec7b42abb1ccaacaedeb405c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "b064f6633b3d4184a3197a07f3dd0f15": { + "af326f92c44c4443a107ea420cf02f30": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1978,33 +2010,95 @@ "width": null } }, - "b5d2a5cc00394bc9a2320d5ed2c751c8": { + "af9858b2ff5445dc8083f3415038f58d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_eef352d40fcc4b798a64be886735332b", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_517ae781ff0d467c9a97e22c51392ade", + "layout": "IPY_MODEL_48d0c48a036a4be79be623e6537e66fd", + "placeholder": "​", + "style": "IPY_MODEL_812d1a37e5314b0c822c78f0803e41ee", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": " 30/30 [00:00<00:00, 777.04it/s]" + } + }, + "b605408da9d943728fe5c3bc9ee69de0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_13ddca1be3f6482ea8ea212b7da45a58", + "placeholder": "​", + "style": "IPY_MODEL_5c2ce10a9a0c4004817b1ab6ed0c8eb0", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: 100%" + } + }, + "c29501bdfc7141ceadc36d4bd242e947": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5a5a125bfa6d43bb9143c6bd0d2f86aa", + "IPY_MODEL_6435bff16ce643fb9bef7ba9bd3d5965", + "IPY_MODEL_af9858b2ff5445dc8083f3415038f58d" + ], + "layout": "IPY_MODEL_9079f128e32b443da78013fe14685adc", + "tabbable": null, + "tooltip": null + } + }, + "cd1edd44379742a4a8544dee6171325f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b821863d99744529a669c67f13612d82": { + "d05ad05c204c4a06b2366a18a84d7b9e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2057,7 +2151,7 @@ "width": null } }, - "bab0622575024fecabd08e4b1d63f719": { + "da7abc08e44b4fc5b2f705b29958ff4e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2110,46 +2204,7 @@ "width": null } }, - "c6435c6e8ecf4f97945154165f8b3710": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e68e2f112a8341cd8780484bf420acf7", - "placeholder": "​", - "style": "IPY_MODEL_8d6ce753439846f1a50809b38187bb92", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" - } - }, - "c9e278bab6254723a6997ea8b677b8fa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "cb39fc68582f495d9128c47c2ea12d32": { + "e0510c00ed0e44219cbce2a6b2f40086": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2202,33 +2257,7 @@ "width": null } }, - "cb494b2cb783459b90ffc5c4a0e54cd3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0d685f3729224eedb7b91231659e2757", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c9e278bab6254723a6997ea8b677b8fa", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "d9889d1329d2417aa59e77528bf8c579": { + "e26e8bb7c9764456a941ae60b6856b2f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2281,25 +2310,7 @@ "width": null } }, - "dfb120997aeb48e4b219e8fe2b040af5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e2b81de6c3e44bf8ab68f9e5797e5469": { + "e2d894bdc1954600a760c365637c57bf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2315,70 +2326,49 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b064f6633b3d4184a3197a07f3dd0f15", - "max": 4997683.0, + "layout": "IPY_MODEL_e26e8bb7c9764456a941ae60b6856b2f", + "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_3d6d6a29214f4d9180f1c432550f4eb8", + "style": "IPY_MODEL_fbdbb3005223478b896ae9e7d83a76d9", "tabbable": null, "tooltip": null, - "value": 4997683.0 + "value": 30.0 } }, - "e68e2f112a8341cd8780484bf420acf7": { - "model_module": "@jupyter-widgets/base", + "e6c27b6139894a26a0bec722079ebf23": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ec0acf0b2a504079957d88a2e9996418": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "e775fb19744d45c498549c471ea4d7ce": { + "ecb42f54e7734c42b48cb0a6de8dff88": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2393,15 +2383,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_35992f93960747699ce0688cd2406d71", + "layout": "IPY_MODEL_d05ad05c204c4a06b2366a18a84d7b9e", "placeholder": "​", - "style": "IPY_MODEL_dfb120997aeb48e4b219e8fe2b040af5", + "style": "IPY_MODEL_90af0231f6ee4bd28a9526a8d0f8d05f", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:00<00:00, 788.74it/s]" + "value": "100%" } }, - "eef352d40fcc4b798a64be886735332b": { + "f26e929230e34d458d38de9ce5771d22": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2454,28 +2444,38 @@ "width": null } }, - "f59b171099164f76b8305ddd48dbb399": { + "f3905a545d1549e6ac839b142976faf5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_30731e8ab0214e45a3e63558b35bb2a5", - "IPY_MODEL_b5d2a5cc00394bc9a2320d5ed2c751c8", - "IPY_MODEL_e775fb19744d45c498549c471ea4d7ce" - ], - "layout": "IPY_MODEL_7f83bb546cc2435090cdacd91f10377d", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fbdbb3005223478b896ae9e7d83a76d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index 65953d3c3..61fb82a09 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:26.339044Z", - "iopub.status.busy": "2024-08-29T17:17:26.338872Z", - "iopub.status.idle": "2024-08-29T17:17:27.941394Z", - "shell.execute_reply": "2024-08-29T17:17:27.940700Z" + "iopub.execute_input": "2024-09-04T16:46:48.653613Z", + "iopub.status.busy": "2024-09-04T16:46:48.653173Z", + "iopub.status.idle": "2024-09-04T16:46:55.007319Z", + "shell.execute_reply": "2024-09-04T16:46:55.006741Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-29 17:17:26-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-09-04 16:46:48-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,22 +94,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.236.100, 2400:52e0:1a00::1207:2\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.236.100|:443... connected.\r\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HTTP request sent, awaiting response... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "200 OK\r\n", + "143.244.50.84, 2400:52e0:1a01::1115:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|143.244.50.84|:443... connected.\r\n", + "HTTP request sent, awaiting response... 200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", @@ -124,7 +111,7 @@ "\r", "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-08-29 17:17:26 (7.78 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-09-04 16:46:49 (7.77 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -144,9 +131,22 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-29 17:17:27-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.170.49, 3.5.16.62, 52.217.68.44, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.170.49|:443... connected.\r\n", + "--2024-09-04 16:46:49-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.30.243, 3.5.25.73, 52.217.199.233, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.30.243|:443... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "connected.\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "HTTP request sent, awaiting response... " ] }, @@ -167,10 +167,194 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 96%[==================> ] 15.71M 31.3MB/s \r", - "pred_probs.npz 100%[===================>] 16.26M 32.2MB/s in 0.5s \r\n", + "pred_probs.npz 0%[ ] 74.09K 352KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 0%[ ] 165.71K 392KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 1%[ ] 279.97K 442KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 2%[ ] 402.44K 476KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 3%[ ] 534.85K 507KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 4%[ ] 702.63K 555KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 5%[> ] 891.47K 603KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 6%[> ] 1.09M 660KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 8%[> ] 1.33M 716KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 9%[> ] 1.61M 781KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 11%[=> ] 1.95M 861KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 14%[=> ] 2.34M 947KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 17%[==> ] 2.77M 1.01MB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 20%[===> ] 3.29M 1.11MB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 23%[===> ] 3.88M 1.23MB/s eta 10s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 28%[====> ] 4.58M 1.36MB/s eta 10s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 33%[=====> ] 5.38M 1.50MB/s eta 10s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 38%[======> ] 6.31M 1.66MB/s eta 10s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 45%[========> ] 7.37M 1.84MB/s eta 10s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 52%[=========> ] 8.60M 2.13MB/s eta 4s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 61%[===========> ] 10.04M 2.57MB/s eta 4s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 71%[=============> ] 11.69M 2.96MB/s eta 4s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 83%[===============> ] 13.61M 3.40MB/s eta 4s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 97%[==================> ] 15.85M 3.94MB/s eta 4s \r", + "pred_probs.npz 100%[===================>] 16.26M 4.04MB/s in 5.1s \r\n", "\r\n", - "2024-08-29 17:17:27 (32.2 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-09-04 16:46:54 (3.21 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -187,10 +371,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:27.944256Z", - "iopub.status.busy": "2024-08-29T17:17:27.943870Z", - "iopub.status.idle": "2024-08-29T17:17:29.261156Z", - "shell.execute_reply": "2024-08-29T17:17:29.260619Z" + "iopub.execute_input": "2024-09-04T16:46:55.009754Z", + "iopub.status.busy": "2024-09-04T16:46:55.009373Z", + "iopub.status.idle": "2024-09-04T16:46:56.250887Z", + "shell.execute_reply": "2024-09-04T16:46:56.250411Z" }, "nbsphinx": "hidden" }, @@ -201,7 +385,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -227,10 +411,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:29.263848Z", - "iopub.status.busy": "2024-08-29T17:17:29.263399Z", - "iopub.status.idle": "2024-08-29T17:17:29.266823Z", - "shell.execute_reply": "2024-08-29T17:17:29.266231Z" + "iopub.execute_input": "2024-09-04T16:46:56.253361Z", + "iopub.status.busy": "2024-09-04T16:46:56.252910Z", + "iopub.status.idle": "2024-09-04T16:46:56.256144Z", + "shell.execute_reply": "2024-09-04T16:46:56.255716Z" } }, "outputs": [], @@ -280,10 +464,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:29.269094Z", - "iopub.status.busy": "2024-08-29T17:17:29.268683Z", - "iopub.status.idle": "2024-08-29T17:17:29.272062Z", - "shell.execute_reply": "2024-08-29T17:17:29.271604Z" + "iopub.execute_input": "2024-09-04T16:46:56.258147Z", + "iopub.status.busy": "2024-09-04T16:46:56.257877Z", + "iopub.status.idle": "2024-09-04T16:46:56.260950Z", + "shell.execute_reply": "2024-09-04T16:46:56.260396Z" }, "nbsphinx": "hidden" }, @@ -301,10 +485,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:29.274632Z", - "iopub.status.busy": "2024-08-29T17:17:29.274212Z", - "iopub.status.idle": "2024-08-29T17:17:38.249516Z", - "shell.execute_reply": "2024-08-29T17:17:38.248858Z" + "iopub.execute_input": "2024-09-04T16:46:56.263038Z", + "iopub.status.busy": "2024-09-04T16:46:56.262707Z", + "iopub.status.idle": "2024-09-04T16:47:05.313089Z", + "shell.execute_reply": "2024-09-04T16:47:05.312548Z" } }, "outputs": [], @@ -378,10 +562,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:38.252121Z", - "iopub.status.busy": "2024-08-29T17:17:38.251901Z", - "iopub.status.idle": "2024-08-29T17:17:38.258509Z", - "shell.execute_reply": "2024-08-29T17:17:38.257889Z" + "iopub.execute_input": "2024-09-04T16:47:05.315553Z", + "iopub.status.busy": "2024-09-04T16:47:05.315222Z", + "iopub.status.idle": "2024-09-04T16:47:05.320683Z", + "shell.execute_reply": "2024-09-04T16:47:05.320235Z" }, "nbsphinx": "hidden" }, @@ -421,10 +605,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:38.260575Z", - "iopub.status.busy": "2024-08-29T17:17:38.260400Z", - "iopub.status.idle": "2024-08-29T17:17:38.611890Z", - "shell.execute_reply": "2024-08-29T17:17:38.611365Z" + "iopub.execute_input": "2024-09-04T16:47:05.322601Z", + "iopub.status.busy": "2024-09-04T16:47:05.322338Z", + "iopub.status.idle": "2024-09-04T16:47:05.667169Z", + "shell.execute_reply": "2024-09-04T16:47:05.666537Z" } }, "outputs": [], @@ -461,10 +645,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:38.614285Z", - "iopub.status.busy": "2024-08-29T17:17:38.614078Z", - "iopub.status.idle": "2024-08-29T17:17:38.618338Z", - "shell.execute_reply": "2024-08-29T17:17:38.617761Z" + "iopub.execute_input": "2024-09-04T16:47:05.669724Z", + "iopub.status.busy": "2024-09-04T16:47:05.669531Z", + "iopub.status.idle": "2024-09-04T16:47:05.673815Z", + "shell.execute_reply": "2024-09-04T16:47:05.673272Z" } }, "outputs": [ @@ -536,10 +720,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:38.620291Z", - "iopub.status.busy": "2024-08-29T17:17:38.620118Z", - "iopub.status.idle": "2024-08-29T17:17:41.255603Z", - "shell.execute_reply": "2024-08-29T17:17:41.254897Z" + "iopub.execute_input": "2024-09-04T16:47:05.675875Z", + "iopub.status.busy": "2024-09-04T16:47:05.675554Z", + "iopub.status.idle": "2024-09-04T16:47:08.252819Z", + "shell.execute_reply": "2024-09-04T16:47:08.252090Z" } }, "outputs": [], @@ -561,10 +745,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:41.258858Z", - "iopub.status.busy": "2024-08-29T17:17:41.257988Z", - "iopub.status.idle": "2024-08-29T17:17:41.262360Z", - "shell.execute_reply": "2024-08-29T17:17:41.261875Z" + "iopub.execute_input": "2024-09-04T16:47:08.255982Z", + "iopub.status.busy": "2024-09-04T16:47:08.255203Z", + "iopub.status.idle": "2024-09-04T16:47:08.259378Z", + "shell.execute_reply": "2024-09-04T16:47:08.258831Z" } }, "outputs": [ @@ -600,10 +784,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:41.264483Z", - "iopub.status.busy": "2024-08-29T17:17:41.264152Z", - "iopub.status.idle": "2024-08-29T17:17:41.269679Z", - "shell.execute_reply": "2024-08-29T17:17:41.269239Z" + "iopub.execute_input": "2024-09-04T16:47:08.261330Z", + "iopub.status.busy": "2024-09-04T16:47:08.261019Z", + "iopub.status.idle": "2024-09-04T16:47:08.266724Z", + "shell.execute_reply": "2024-09-04T16:47:08.266178Z" } }, "outputs": [ @@ -781,10 +965,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:41.271827Z", - "iopub.status.busy": "2024-08-29T17:17:41.271498Z", - "iopub.status.idle": "2024-08-29T17:17:41.298247Z", - "shell.execute_reply": "2024-08-29T17:17:41.297765Z" + "iopub.execute_input": "2024-09-04T16:47:08.268756Z", + "iopub.status.busy": "2024-09-04T16:47:08.268443Z", + "iopub.status.idle": "2024-09-04T16:47:08.295398Z", + "shell.execute_reply": "2024-09-04T16:47:08.294831Z" } }, "outputs": [ @@ -886,10 +1070,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:41.300294Z", - "iopub.status.busy": "2024-08-29T17:17:41.299959Z", - "iopub.status.idle": "2024-08-29T17:17:41.304530Z", - "shell.execute_reply": "2024-08-29T17:17:41.304060Z" + "iopub.execute_input": "2024-09-04T16:47:08.297388Z", + "iopub.status.busy": "2024-09-04T16:47:08.297074Z", + "iopub.status.idle": "2024-09-04T16:47:08.301299Z", + "shell.execute_reply": "2024-09-04T16:47:08.300740Z" } }, "outputs": [ @@ -963,10 +1147,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:41.306677Z", - "iopub.status.busy": "2024-08-29T17:17:41.306340Z", - "iopub.status.idle": "2024-08-29T17:17:42.766771Z", - "shell.execute_reply": "2024-08-29T17:17:42.766235Z" + "iopub.execute_input": "2024-09-04T16:47:08.303333Z", + "iopub.status.busy": "2024-09-04T16:47:08.303011Z", + "iopub.status.idle": "2024-09-04T16:47:09.680188Z", + "shell.execute_reply": "2024-09-04T16:47:09.679587Z" } }, "outputs": [ @@ -1138,10 +1322,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:42.768887Z", - "iopub.status.busy": "2024-08-29T17:17:42.768697Z", - "iopub.status.idle": "2024-08-29T17:17:42.772738Z", - "shell.execute_reply": "2024-08-29T17:17:42.772278Z" + "iopub.execute_input": "2024-09-04T16:47:09.682437Z", + "iopub.status.busy": "2024-09-04T16:47:09.682099Z", + "iopub.status.idle": "2024-09-04T16:47:09.686196Z", + "shell.execute_reply": "2024-09-04T16:47:09.685639Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/clean_learning/index.doctree b/master/.doctrees/tutorials/clean_learning/index.doctree index 3431e91a8..15e85afce 100644 Binary files a/master/.doctrees/tutorials/clean_learning/index.doctree and b/master/.doctrees/tutorials/clean_learning/index.doctree differ diff --git a/master/.doctrees/tutorials/clean_learning/tabular.doctree b/master/.doctrees/tutorials/clean_learning/tabular.doctree index 5a6ab0733..c0a3a6de2 100644 Binary files a/master/.doctrees/tutorials/clean_learning/tabular.doctree and b/master/.doctrees/tutorials/clean_learning/tabular.doctree differ diff --git a/master/.doctrees/tutorials/clean_learning/text.doctree b/master/.doctrees/tutorials/clean_learning/text.doctree index 9e914c42e..0fe2d1bd5 100644 Binary files a/master/.doctrees/tutorials/clean_learning/text.doctree and b/master/.doctrees/tutorials/clean_learning/text.doctree differ diff --git a/master/.doctrees/tutorials/datalab/audio.doctree b/master/.doctrees/tutorials/datalab/audio.doctree index 8150ecfa7..5aa7b7bcf 100644 Binary files a/master/.doctrees/tutorials/datalab/audio.doctree and b/master/.doctrees/tutorials/datalab/audio.doctree differ diff --git a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree index 5e47ffbfc..a74b4ee76 100644 Binary files a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree and b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree differ diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index 54e74683e..018a88b2e 100644 Binary files a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree and b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree differ diff --git a/master/.doctrees/tutorials/datalab/image.doctree b/master/.doctrees/tutorials/datalab/image.doctree index ad344852f..9c012b57e 100644 Binary files a/master/.doctrees/tutorials/datalab/image.doctree and b/master/.doctrees/tutorials/datalab/image.doctree differ diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree index 29452d983..084251166 100644 Binary files a/master/.doctrees/tutorials/datalab/index.doctree and b/master/.doctrees/tutorials/datalab/index.doctree differ diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree index 420346d71..a7eaea978 100644 Binary files a/master/.doctrees/tutorials/datalab/tabular.doctree and b/master/.doctrees/tutorials/datalab/tabular.doctree differ diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index ee6e03e33..816dfa723 100644 Binary files a/master/.doctrees/tutorials/datalab/text.doctree and b/master/.doctrees/tutorials/datalab/text.doctree differ diff --git a/master/.doctrees/tutorials/datalab/workflows.doctree b/master/.doctrees/tutorials/datalab/workflows.doctree index 1800fc9b5..2cf0b369c 100644 Binary files a/master/.doctrees/tutorials/datalab/workflows.doctree and b/master/.doctrees/tutorials/datalab/workflows.doctree differ diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree index f98677e1c..db849998b 100644 Binary files a/master/.doctrees/tutorials/dataset_health.doctree and b/master/.doctrees/tutorials/dataset_health.doctree differ diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree index 92b8129d8..4ca8403ce 100644 Binary files a/master/.doctrees/tutorials/faq.doctree and b/master/.doctrees/tutorials/faq.doctree differ diff --git a/master/.doctrees/tutorials/improving_ml_performance.doctree b/master/.doctrees/tutorials/improving_ml_performance.doctree index b456e7911..071119a18 100644 Binary files a/master/.doctrees/tutorials/improving_ml_performance.doctree and b/master/.doctrees/tutorials/improving_ml_performance.doctree differ diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index 88fa6ee47..0c38ae7d7 100644 Binary files a/master/.doctrees/tutorials/indepth_overview.doctree and b/master/.doctrees/tutorials/indepth_overview.doctree differ diff --git a/master/.doctrees/tutorials/index.doctree b/master/.doctrees/tutorials/index.doctree index dc7a529b6..330d056fa 100644 Binary files a/master/.doctrees/tutorials/index.doctree and b/master/.doctrees/tutorials/index.doctree differ diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index 99eb28ae9..949a860b8 100644 Binary files a/master/.doctrees/tutorials/multiannotator.doctree and b/master/.doctrees/tutorials/multiannotator.doctree differ diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree index b5d1d44d2..1de613833 100644 Binary files a/master/.doctrees/tutorials/multilabel_classification.doctree and b/master/.doctrees/tutorials/multilabel_classification.doctree differ diff --git a/master/.doctrees/tutorials/object_detection.doctree b/master/.doctrees/tutorials/object_detection.doctree index 6676afca9..828158827 100644 Binary files a/master/.doctrees/tutorials/object_detection.doctree and b/master/.doctrees/tutorials/object_detection.doctree differ diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree index 34179b938..596d2cd14 100644 Binary files a/master/.doctrees/tutorials/outliers.doctree and b/master/.doctrees/tutorials/outliers.doctree differ diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index 6e8abe72a..140a127aa 100644 Binary files a/master/.doctrees/tutorials/pred_probs_cross_val.doctree and b/master/.doctrees/tutorials/pred_probs_cross_val.doctree differ diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index 99dbaee83..d519c9ea5 100644 Binary files a/master/.doctrees/tutorials/regression.doctree and b/master/.doctrees/tutorials/regression.doctree differ diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree index 2ab423af6..26d9caaf0 100644 Binary files a/master/.doctrees/tutorials/segmentation.doctree and b/master/.doctrees/tutorials/segmentation.doctree differ diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index 12f0e7b01..80d54524c 100644 Binary files a/master/.doctrees/tutorials/token_classification.doctree and b/master/.doctrees/tutorials/token_classification.doctree differ diff --git a/master/_sources/tutorials/clean_learning/tabular.ipynb b/master/_sources/tutorials/clean_learning/tabular.ipynb index 60960831a..37b7ed16b 100644 --- a/master/_sources/tutorials/clean_learning/tabular.ipynb +++ b/master/_sources/tutorials/clean_learning/tabular.ipynb @@ -120,7 +120,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/clean_learning/text.ipynb b/master/_sources/tutorials/clean_learning/text.ipynb index fa4d0d45b..1fc055ceb 100644 --- a/master/_sources/tutorials/clean_learning/text.ipynb +++ b/master/_sources/tutorials/clean_learning/text.ipynb @@ -129,7 +129,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/audio.ipynb b/master/_sources/tutorials/datalab/audio.ipynb index 09e24f818..13e63362e 100644 --- a/master/_sources/tutorials/datalab/audio.ipynb +++ b/master/_sources/tutorials/datalab/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index 30f50c344..54820cc7b 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index d79def3da..eb6616780 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index 9866d6b3d..449c74cbe 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -80,7 +80,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index ca5d88906..fa225d07e 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index 1db5b3c47..fc0b409cf 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/improving_ml_performance.ipynb b/master/_sources/tutorials/improving_ml_performance.ipynb index af832f9bc..97a5be3f5 100644 --- a/master/_sources/tutorials/improving_ml_performance.ipynb +++ b/master/_sources/tutorials/improving_ml_performance.ipynb @@ -67,7 +67,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index a536064e2..c95ddfd64 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index 6e67b294a..ecb0c1720 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index e069830bb..bca21f41b 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index 7a04f092e..0085c1132 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index e29763bf2..f9f6facf0 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index c8868b60d..3ae99dd1e 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -110,7 +110,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index d1d864a9c..3fcae221a 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index cbf859261..4366a6e20 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/searchindex.js b/master/searchindex.js index d254216ad..9ac49aa44 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/improving_ml_performance", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/improving_ml_performance.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "Improving ML Performance via Data Curation with Train vs Test Splits", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 84, 89, 90, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 89, 90, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 89, 90, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 68, 91, 95, 96, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 83, 84, 89, 96, 105], "benchmark": [1, 38, 83, 84, 89, 90, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 98, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 61, 62, 66, 68, 69, 70, 71, 73, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 75, 77], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 61, 70, 79, 81, 83, 86, 87, 90, 93, 94, 95, 96, 97, 99, 101, 102, 104, 106, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 59, 61, 62, 65, 69, 70, 74, 78, 79, 81, 82, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 10, 88, 95, 97, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 62, 89, 90, 95, 96, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 89, 95, 98, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 61, 62, 63, 64, 65, 70, 71, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 95, 98, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 89, 93, 98, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 59, 63, 66, 69, 78, 82, 91, 93, 94, 95, 98, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 59, 61, 66, 69, 70, 71, 83, 91, 97, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 60, 61, 62, 63, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 70, 71, 73, 78, 87, 88, 89, 90, 91, 94, 96, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 61, 63, 66, 69, 71, 73, 74, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 97], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 59, 61, 63, 70, 72, 74, 77, 81, 83, 86, 87, 88, 89, 91, 93, 94, 95, 96, 98, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 63, 64, 65, 66, 68, 69, 70, 71, 73, 79, 81, 82, 90, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 32, 37, 39, 42, 44, 47, 57, 62, 63, 65, 71, 73, 74, 75, 77, 78, 84, 89, 90, 93, 94, 95, 97, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 63, 66, 68, 69, 70, 71, 93, 95, 103, 104], "trace": [1, 89, 90, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 87, 88, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 95, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 89, 90, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 89, 90, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 89, 95, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 61, 69, 70, 71, 75, 93, 94, 95, 98, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 86, 88, 89, 90, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 60, 66, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 68, 73, 87, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 73, 97, 98, 101, 108], "better": [1, 5, 10, 44, 53, 61, 63, 71, 73, 74, 83, 87, 88, 90, 93, 94, 95, 97, 99, 102, 103, 104, 105, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 60, 61, 66, 68, 70, 71, 73, 77, 81, 86, 88, 91, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 61, 71, 73, 86, 88, 89, 90, 91, 93, 95, 97, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 69, 73, 83, 86, 87, 89, 97, 99, 100, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 61, 62, 69, 70, 71, 97, 101, 104], "amount": [1, 3, 91], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 91, 94, 95, 98], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 95, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 83, 86, 87, 89, 90, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 88, 95, 96, 97, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 10, 47, 53, 56, 57, 71, 91, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 32, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 96, 97, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 61, 73, 93, 97, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 98, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 63, 71, 73, 74, 86, 88, 89, 90, 91, 93, 94, 97, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 59, 61, 62, 65, 69, 70, 71, 73, 78, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 71, 75, 78, 95, 97, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 61, 62, 63, 65, 66, 69, 70, 71, 73, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 62, 63, 65, 68, 73, 89, 90, 91, 97, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 96, 97, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 61, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 61, 62, 63, 65, 66, 82, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 61, 63, 65, 68, 69, 70, 71, 73, 74, 79, 81, 82, 83, 88, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 73, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 64, 70, 89, 90, 91, 93, 94, 98, 99], "yield": [1, 38, 42, 98], "between": [1, 5, 9, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 59, 61, 62, 65, 68, 70, 71, 73, 74, 77, 81, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 61, 62, 63, 68, 69, 77, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 60, 61, 68, 69, 71, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 91, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 70, 73, 83, 86, 88, 89, 93, 98, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 61, 62, 66, 68, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 68, 69, 73, 75, 77, 81, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 70, 71, 75, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10, 95], "python": [1, 2, 42, 60, 73, 89, 90, 96, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 63, 94, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 86, 87, 88, 91, 94, 95, 96, 97, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 65, 73, 83, 87, 88, 94, 95, 97, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 60, 61, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 10, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 70, 71, 73, 86, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 60, 69, 73, 74, 87, 88, 89, 90, 93, 95, 97, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 73, 95, 97, 98, 106], "astyp": [1, 98, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 65, 69, 70, 71, 73, 75, 77, 78, 79, 82, 88, 89, 91, 95, 98, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 69, 73, 74, 91, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 84, 95, 96, 97], "choic": [1, 8, 44, 53, 55, 91, 97, 102, 104], "replac": [1, 56, 60, 71, 86, 87, 89, 90, 91, 94, 95, 96, 97, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 71, 88, 89, 90], "05": [1, 10, 27, 31, 56, 69, 73, 79, 81, 93, 96, 97, 98, 99, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 89, 90, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 89, 90, 91, 95, 97, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 73, 86, 88, 89, 90, 93, 95, 96, 98, 99, 101, 102], "max_it": [1, 87, 88, 94, 104], "10000": [1, 41, 96, 97], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 60, 61, 63, 69, 70, 71, 73, 75, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 63, 68, 78, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 73, 83, 87, 88, 91, 93, 94, 95, 97, 98, 107, 108], "impli": [1, 10, 37, 62, 69], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 61, 62, 63, 65, 68, 69, 73, 77, 81, 88, 89, 90, 98, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 61, 62, 63, 66, 86, 87, 93, 94, 99, 102, 103, 106], "maximum": [1, 10, 70, 78, 82, 95, 107], "minimum": [1, 8, 10, 21, 44, 46, 63, 68, 81, 95], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 68, 73, 89, 97, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 89, 91, 95, 97, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 60, 61, 62, 63, 66, 68, 69, 70, 73, 74, 75, 77, 78, 81, 82, 83, 84, 86, 87, 88, 89, 91, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 89, 95], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 60, 61, 62, 64, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 61, 65, 69, 73, 78, 82, 83, 86, 87, 88, 90, 94, 97, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 59, 60, 63, 70, 71, 73, 75, 83, 84, 88, 95, 96, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 60, 61, 62, 63, 65, 68, 69, 70, 71, 73, 77, 78, 79, 81, 87, 90, 91, 94, 95, 96, 97, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 60, 63, 65, 66, 68, 70, 71, 73, 74, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 88, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 60, 61, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 86, 87, 89, 90, 93, 94, 95, 97, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 60, 61, 66, 68, 69, 70, 71, 73, 74, 78, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 59, 60, 61, 63, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 10, 17, 41, 44, 52, 53, 57, 68, 71, 73, 86, 87, 89, 90, 91, 95, 96, 98, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 66, 68, 69, 70, 71, 73, 75, 78, 82, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 60, 61, 70, 73, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 61, 83, 89, 90, 94, 95, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 89, 91, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 89, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 60, 61, 63, 65, 69, 70, 71, 73, 74, 77, 79, 81, 84, 86, 87, 88, 91, 93, 95, 97, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 60, 61, 70, 71, 73, 75, 77, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 98, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 59, 84], "produc": [1, 2, 5, 9, 10, 17, 49, 61, 71, 73, 75, 77, 83, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 60, 61, 62, 73, 90, 94, 95, 97, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 68, 89, 90, 91, 97, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 62, 69, 87, 91, 94, 96, 98, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 60, 65, 68, 73, 74, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 70, 71, 90, 91, 95, 98, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 70, 73, 78, 86, 87, 94, 95, 97, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 29, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 88, 89, 90, 91, 93, 97, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 63, 66, 69, 89, 90, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 61, 66, 68, 69, 70, 89, 90, 96, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 60, 97, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 63, 66, 70, 71, 73, 75, 78, 82, 86, 88, 95, 98, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 59, 60, 61, 62, 63, 70, 71, 73, 75, 77, 78, 79, 81, 82, 88, 95, 98, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 61, 63, 69, 75, 77, 78, 79, 81, 82, 86, 87, 88, 97, 98, 101, 102, 103, 107, 108], "ball": [1, 96], "bin": [1, 3, 63, 89, 90, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 60, 68, 71, 73, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 60, 61, 62, 63, 66, 68, 69, 70, 71, 74, 77, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 61, 62, 68, 71, 81, 91, 97, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 98, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 79, 81, 82, 83, 86, 87, 88, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 60], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 62, 63, 64, 65, 70, 71, 83, 95, 97, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 61, 63, 71, 73, 83, 87, 88, 94, 95, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 60, 72, 73, 74, 83, 84, 86, 87, 98, 106], "wrap": [2, 38, 42, 51, 60, 70, 73, 83, 86, 87, 89, 90, 93, 94, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 60, 69, 70, 73, 78, 86, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 60, 70, 73, 74, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 61, 64, 70, 71, 83, 84, 86, 87, 88, 93, 94, 97, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 73], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 61, 62, 63, 68, 70, 73, 75, 77, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 60, 66, 69, 70, 73, 84, 95, 97, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 71, 73, 75, 83, 89, 90, 93, 96, 97, 98, 101, 104, 108], "four": [2, 10, 96, 99, 108], "clf": [2, 3, 5, 49, 73, 83, 86, 93, 95, 97, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 59, 60, 70, 72, 73, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 73, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 59, 60, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 32, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 87, 96, 97, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 59, 60, 61, 62, 63, 64, 68, 70, 71, 72, 73, 78, 79, 80, 81, 82, 84, 91, 92, 100], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 61, 62, 63, 64, 66, 69, 70, 71, 73, 75, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 70, 73, 83, 86, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 61, 63, 71, 78, 79, 81, 87, 88, 94, 95, 97, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 61, 62, 66, 69, 71, 73, 83, 86, 87, 88, 89, 91, 93, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 62, 71, 73, 78, 81, 82, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 60, 61, 62, 65, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 59, 61, 66, 68, 70, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 32, 44, 46, 49, 52, 53, 54, 63, 66, 69, 71, 73, 74, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 63, 68, 69, 73, 75, 77, 87, 91, 93, 97, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 60, 61, 62, 63, 65, 66, 69, 70, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 61, 73, 83, 86, 87, 88, 89, 93, 94, 95, 97, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 61, 68, 71, 73, 87, 88, 89, 90, 94], "loss": [2, 39, 60, 71, 73, 91, 98], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 73, 83, 91, 95, 97, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 60, 61, 66, 69, 70, 73, 74, 84, 89, 90, 91, 93, 94, 96, 99, 100, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 60, 70, 71, 81, 83, 84, 88, 89, 90, 91, 95, 97], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 59, 60, 61, 62, 63, 65, 70, 71, 73, 74, 75, 77, 78, 84, 86, 87, 88, 91, 93, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 61, 89, 90, 91, 95, 97, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 62, 63, 68, 69, 73, 75, 87, 94, 95, 97, 102, 103, 106, 107], "clonabl": [2, 73], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 61, 66, 69, 70, 71, 73, 74, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 100, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 68, 70, 71, 73, 74, 77, 79, 81, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 73, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 65, 69, 73, 79, 84, 89, 95, 97, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 61, 62, 63, 65, 68, 69, 73, 83, 89, 90, 91, 93, 97, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 63, 64, 66, 69, 70, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 73, 83, 86, 87, 88, 95, 97, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 73, 83, 88, 91, 97, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 60, 70, 73, 87, 88, 89, 90, 94, 97, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 73, 91], "independ": [2, 3, 10, 62, 73, 94, 95, 98, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 60, 73, 74, 77, 81, 83, 86, 87, 95, 97, 105, 106], "neural": [2, 39, 60, 70, 73, 88, 91, 97, 102, 104, 106], "network": [2, 38, 39, 42, 60, 70, 73, 87, 88, 91, 94, 97, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 70, 73, 86, 87, 88, 90, 91, 93, 94, 98, 104, 105], "initi": [2, 3, 10, 14, 19, 38, 42, 52, 61, 73, 86, 94, 97, 98], "insid": [2, 42, 73, 97, 99], "There": [2, 3, 7, 52, 83, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 66, 68, 69, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 61, 73, 87, 88, 89, 94, 96, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 77, 81, 83, 86, 91, 98, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 59, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 63, 73, 84, 98, 103], "everyth": [2, 69, 99], "els": [2, 69, 89, 91, 95, 96, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 83, 89, 95, 96, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 62, 63, 64, 65, 70, 71, 75, 79, 81, 82, 90, 91, 98, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 74, 78, 79, 81, 82, 96, 97, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 62, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 81, 84, 86, 88, 89, 90, 93, 94, 95, 96, 98, 100], "erron": [2, 3, 37, 44, 47, 57, 62, 63, 71, 73, 74, 75, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 61, 65, 68, 73, 74, 79, 81, 82, 83, 86, 87, 93, 94, 95, 97, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 73, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 73, 83, 86, 87, 97, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 60, 61, 63, 69, 70, 71, 73, 78, 79, 83, 87, 88, 89, 90, 94, 95, 96, 97, 99, 101, 103, 104, 106], "x_train": [2, 86, 89, 90, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 73, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 59, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 87, 92, 100, 101, 104, 105, 106], "pred": [2, 44, 57, 86, 87, 98, 105, 106], "x_test": [2, 86, 89, 90, 99, 102, 106], "might": [2, 5, 10, 52, 61, 73, 78, 86, 87, 89, 90, 91, 95, 97, 103], "case": [2, 3, 10, 14, 37, 49, 52, 61, 73, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 60, 62, 63, 65, 71, 73, 83, 86, 89, 90, 93, 96, 98, 99, 103], "adapt": [2, 38, 40, 57, 59, 73, 104], "skorch": [2, 73, 83, 97], "kera": [2, 59, 66, 69, 73, 83, 97, 103], "scikera": [2, 60, 73, 97], "open": [2, 41, 86, 87, 90, 93, 94, 96, 99, 102, 103, 104, 106, 108], "doesn": [2, 10, 73, 83], "t": [2, 3, 4, 7, 10, 18, 28, 29, 38, 39, 41, 42, 43, 44, 49, 55, 56, 65, 70, 71, 73, 79, 81, 82, 83, 89, 90, 91, 94, 95, 96, 98, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 60, 61, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 60, 66, 68, 70, 73, 83, 84, 86, 87, 89, 90, 94, 101, 108], "made": [2, 5, 17, 38, 42, 53, 73, 86, 87, 91, 94, 95, 97, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 73, 89, 90, 96, 97, 99, 102], "inherit": [2, 7, 39, 73], "baseestim": [2, 42, 73], "yourmodel": [2, 73], "def": [2, 7, 15, 38, 42, 60, 73, 87, 88, 89, 90, 91, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 70, 71, 73, 86, 89, 91, 95, 96, 98, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 62, 63, 65, 66, 68, 69, 70, 73, 77, 78, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 60, 62, 63, 66, 69, 70, 73, 74, 77, 79, 81, 86, 87, 89, 91, 93, 94, 95, 97, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 62, 82, 91, 97, 107], "state": [2, 3, 5, 38, 39, 42, 48, 73, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 70, 71], "et": [2, 3, 37, 39, 70, 71], "al": [2, 3, 37, 39, 70, 71], "2021": [2, 3, 37, 70, 71], "weak": [2, 69], "supervis": [2, 10, 89, 90, 97, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 59, 66, 69, 70, 71, 73, 75, 79, 81, 83, 84, 89, 96, 98, 100, 105], "uncertainti": [2, 10, 46, 70, 73, 97, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 61, 68, 69, 73, 83, 89, 90, 91, 95, 97, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 60, 61, 71, 73, 83, 84, 87, 89, 90, 95, 96, 98, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 59, 61, 62, 65, 66, 70, 71, 73, 77, 78, 79, 81, 83, 84, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 59, 60, 73, 94], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 59, 73, 86, 87, 89, 90, 95, 96, 98, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 62, 69, 70, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 86, 87, 97], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 60, 61, 62, 65, 66, 68, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 60, 69, 73, 83, 84, 87, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 70, 71, 75, 77, 78], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 70, 71, 83, 87, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 63, 73, 83, 87, 89, 91, 97, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 61, 63, 66, 69, 71, 74, 88, 90, 94, 97, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 61, 62, 66, 68, 70, 71, 73, 88, 89, 93, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 70, 73, 86, 87, 88, 93, 94, 95, 97, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 63, 70, 71, 81], "tild": 2, "paper": [2, 4, 10, 61, 70, 79, 81, 96, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 73, 87], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 61, 62, 65, 66, 69, 73, 74, 81, 87, 89, 94, 96, 97, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 73, 84, 97, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 63, 79, 97], "clean": [2, 68, 71, 73, 74, 83, 86, 87, 89, 90, 96, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 73, 88, 95, 97, 98, 99, 101, 102, 103], "messi": [2, 73, 99], "ridden": [2, 73], "autom": [2, 9, 10, 73, 83, 86, 87, 90, 93, 94, 96, 97, 98, 99, 102, 104, 106], "robust": [2, 47, 52, 73, 90, 95, 97, 98], "prone": [2, 73], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 60, 63, 64, 66, 69, 70, 71, 73, 74, 82, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 61, 68, 73, 89, 90, 97, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 61, 77, 81, 88, 89, 90, 94, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 65, 68, 69, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 61, 62, 66, 68, 69, 70, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "tutori": [2, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "repo": 2, "wrapper": [2, 60, 86, 87, 88, 106], "around": [2, 68, 89, 90, 98, 103, 104, 108], "fasttext": 2, "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 70, 73, 86, 87, 93, 94, 95, 96, 97, 107, 108], "along": [2, 49, 63, 81, 89, 90, 91, 95, 97, 104], "dimens": [2, 57, 75, 78, 91, 97, 104, 107], "select": [2, 9, 10, 27, 51, 61, 71, 91, 98, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 99, 100, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 63, 66, 69, 71, 73, 74, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 73, 86, 88, 93, 96, 97, 103, 107], "By": [2, 37, 62, 63, 73, 89, 95, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 62, 63, 65, 70, 73, 83, 87, 88, 89, 90, 94, 95, 97, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 73], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 61, 62, 63, 65, 68, 69, 70, 71, 73, 74, 75, 77, 83, 84, 87, 89, 90, 96, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 59, 61, 70, 73, 84, 86, 87, 89, 90, 91, 93, 94, 95, 97, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 68, 70, 73, 78, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 104, 106], "consist": [2, 3, 10, 38, 42, 51, 57, 61, 95, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 60, 63, 68, 71, 73, 74, 77, 81, 83, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 62, 73, 90, 94, 95], "close": [2, 3, 10, 41, 47, 70, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 71, 73, 97], "equival": [2, 3, 38, 42, 47, 70, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 62, 63, 73, 97, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 62, 99], "certain": [2, 3, 5, 10, 38, 42, 60, 69, 73, 89, 90, 95, 96, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 81, 89, 90, 91, 97, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 60, 61, 63, 69, 70, 71, 73, 78, 79, 81, 89], "filter": [2, 3, 10, 41, 43, 56, 62, 64, 65, 67, 69, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 91, 94, 96, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 97, 102, 103, 106, 107, 108], "particularli": [2, 83, 98, 101, 104], "filter_bi": [2, 3, 41, 44, 63, 84, 97], "frac_nois": [2, 44, 63, 79, 97], "min_examples_per_class": [2, 44, 63, 97, 99], "impact": [2, 4, 10, 89, 90, 91, 95], "ml": [2, 4, 5, 9, 10, 16, 73, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 100, 101, 102, 104, 105, 106], "accuraci": [2, 10, 39, 71, 86, 87, 88, 91, 97, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 63, 75, 77, 79, 97, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 61, 63, 69, 75, 77, 79, 87, 88, 89, 95, 97, 98, 101, 105], "caus": [2, 44, 49, 89, 90, 95, 97], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 62, 63, 64, 66, 67, 69, 70, 72, 76, 78, 79, 80, 82, 83, 84, 86, 87, 89, 90, 96, 97, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 61, 63, 64, 65, 66, 67, 68, 71, 72, 74, 76, 77, 79, 80, 81, 84, 97, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 65, 70, 71, 99], "control": [2, 5, 9, 10, 17, 41, 44, 61, 69, 70, 73, 79, 81, 89, 90, 95, 96, 97], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 61, 62, 65, 66, 68, 70, 71, 73, 77, 81, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 73, 95, 97, 101], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 60, 61, 62, 66, 68, 69, 70, 73, 77, 78, 81, 82, 83, 84, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78, 107, 108], "statement": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78], "big": [2, 41, 63, 69, 73, 99], "limit": [2, 5, 17, 41, 52, 63, 83, 95, 103, 107, 108], "memori": [2, 38, 41, 42, 63, 69, 75, 77, 89, 107], "experiment": [2, 38, 39, 41, 42, 43, 63, 84, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 106], "label_issues_batch": [2, 40, 63, 97], "find_label_issues_batch": [2, 40, 41, 63, 97], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 68, 69, 70, 71, 77, 81, 89, 95, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 84, 99], "label_issu": [2, 41, 44, 63, 66, 73, 75, 84, 86, 87, 88, 91, 94, 97, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 73], "clf_final_kwarg": [2, 73], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 61, 62, 63, 65, 66, 68, 69, 71, 73, 74, 77, 81, 83, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101, 102, 103, 104, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 63, 65, 66, 69, 71, 73, 74, 75, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 63, 66, 69, 71, 73, 74, 75, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 99, 102, 104, 106, 107, 108], "final": [2, 10, 73, 86, 93, 95, 98, 103, 105, 106], "remain": [2, 73, 84, 86, 87, 91, 95, 98, 102, 106, 108], "datasetlik": [2, 57, 73], "beyond": [2, 5, 7, 9, 10, 12, 36, 83, 86, 87, 98, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 60, 61, 62, 73, 81, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 60, 61, 62, 73, 78, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 70, 95], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 93, 95], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 95], "torch": [2, 38, 39, 42, 87, 88, 91, 94, 96, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 60, 61, 66, 69, 73, 83, 84, 88, 89, 90, 91, 97, 99, 104], "tensorflow": [2, 57, 60, 83, 88, 97], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 60, 63, 66, 67, 68, 69, 70, 73, 81, 83, 87, 88, 90, 91, 93, 95, 97, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 77, 78, 79, 81, 82, 84, 87, 88, 89, 90, 91, 96, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 71, 78, 82, 86, 87, 88, 91, 93, 94, 95, 97, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 61, 62, 68, 70, 82, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 73, 88, 97, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 60, 61, 62, 63, 66, 69, 70, 71, 73, 75, 77, 78, 81, 82, 86, 89, 90, 91, 93, 95, 96, 98, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 88, 91, 94, 95, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 61, 66, 68, 73, 79, 81, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 60, 61, 75, 77, 91, 97, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 61, 62, 63, 66, 69, 70, 71, 75, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 60, 71, 83, 86, 87, 94, 97, 104], "eg": [2, 5, 10, 57, 66, 69, 89, 90, 97, 98], "repeat": [2, 57, 61, 101, 104], "appli": [2, 10, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 65, 70, 79, 83, 86, 87, 88, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 63, 70, 74], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 59, 61, 62, 63, 65, 66, 69, 70, 71, 73, 75, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 73, 81, 97, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 61, 62, 63, 65, 70, 71, 73, 78, 79, 81, 82, 86, 88, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 60, 61, 68, 77, 81, 87, 96, 98, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 61, 62, 63, 65, 68, 69, 71, 74, 75, 77, 81, 90, 97, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 61, 63, 66, 68, 71, 77, 81, 89, 95, 97, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 61, 68, 70, 71, 74, 77, 81, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 84, 91, 93, 95, 97, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 60, 63, 70, 71, 73, 74, 79, 81, 96, 97, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 68, 70, 81, 84, 90, 92, 95, 97, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 60, 68, 70, 71, 73, 77, 81, 98, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 60, 61, 62, 63, 66, 68, 70, 71, 73, 74, 82, 84, 87, 88, 90, 91, 94, 95, 98, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 68, 90, 96, 97, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 62, 63, 69, 84, 91, 95, 97, 103], "observ": [2, 3, 47, 54, 88, 89, 90, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 61, 62, 63, 66, 68, 71, 77, 79, 81, 82, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 72, 73, 86, 87, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 61, 63, 68, 70, 71, 75, 77, 90, 95, 97, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 61, 63, 66, 71, 73, 75, 77, 78, 83, 87, 88, 90, 91, 94, 97, 103, 106, 107], "label_issues_mask": [2, 44, 71, 73, 84], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 63, 66, 69, 70, 71, 73, 75, 79, 81, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 63, 79, 84, 86, 87, 97, 99], "significantli": [2, 10, 91, 95, 99, 101, 105], "reduc": [2, 41, 44, 57, 88, 97], "time": [2, 10, 38, 41, 42, 57, 61, 82, 84, 89, 91, 97, 98, 103, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 60, 71, 86, 91, 93, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 73, 88, 95, 97, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 69, 91, 95, 98, 99, 101, 105], "caution": [2, 5, 97, 98], "previous": [2, 5, 14, 57, 70, 73, 84, 86, 88, 89, 93, 94, 98, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 73, 86, 89, 91, 93, 95, 97, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 61, 65, 68, 71, 73, 79, 81, 84, 86, 90, 93, 95, 96, 97, 101, 102, 103, 108], "still": [2, 41, 42, 57, 70, 86, 91, 97, 104], "extra": [2, 38, 42, 57, 60, 61, 62, 73, 91, 94, 97, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 62, 65, 66, 73, 75, 79, 90, 103], "overwritten": [2, 73], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 60, 65, 97], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 69, 71, 73, 78, 88, 89, 90, 91, 95, 97, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 63, 71, 89, 93, 98, 102, 103], "earli": [2, 91], "stop": [2, 91], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 70, 86, 89, 91, 93, 95, 98, 102, 106, 108], "f": [2, 7, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 60, 73, 78, 82, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 61, 69, 70, 73, 75, 77, 87, 88, 91, 95, 97, 105, 107], "access": [2, 10, 14, 38, 42, 73, 90, 91, 96, 102], "hyperparamet": [2, 65, 70, 91], "purpos": [2, 52, 89, 90, 95, 97, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 61, 63, 73, 87, 89, 91, 94, 96, 98, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 73], "yourself": [2, 5, 41, 90, 95], "altern": [2, 7, 10, 49, 54, 57, 60, 61, 71, 84, 87, 88, 91, 93, 94, 96, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 60, 61, 63, 70, 71, 73, 77, 78, 81, 82, 83, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 61, 70, 73, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 104, 106], "offer": [2, 5, 9, 10, 87, 88, 89, 90, 94, 97, 98, 99, 102], "after": [2, 3, 5, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 61, 73, 87, 89, 91, 94, 95, 97, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 70, 73, 86, 89, 95], "label_issues_df": [2, 73, 91], "similar": [2, 10, 37, 38, 42, 54, 57, 61, 65, 66, 68, 70, 73, 77, 81, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 60, 62, 63, 65, 68, 69, 70, 73, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 66, 73, 89, 90], "were": [2, 3, 5, 10, 37, 42, 52, 62, 68, 81, 86, 88, 93, 97, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 70, 78, 83, 91, 95, 97, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 61, 62, 71, 90, 97, 99, 105, 108], "num_class": [2, 37, 41, 57, 60, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 78, 89, 95, 97, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 71, 95, 97, 99, 104], "trick": [2, 97], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 61, 69, 70, 71, 83, 89, 90, 91, 93, 94, 95, 98, 103, 104], "account": [2, 37, 61, 65, 70, 71, 87, 94, 97, 99, 101, 102, 104, 106], "word": [2, 3, 56, 81, 82, 97], "remov": [2, 10, 32, 37, 38, 42, 44, 73, 83, 86, 87, 91, 94, 95, 96, 97, 98, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 61, 62, 68, 71, 73, 77, 81, 88, 89, 90, 91, 94, 95, 98, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 60, 71, 73, 75, 83, 84, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 61, 63, 65, 70, 71, 73, 74, 75, 83, 86, 87, 88, 91, 94, 95, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 64, 66, 67, 68, 69, 70, 71, 72, 73, 76, 80, 83, 86, 87, 89, 92, 96, 98, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 71, 73, 98], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 60, 69, 73, 75, 77, 78, 79, 97], "test": [2, 5, 10, 27, 42, 49, 52, 60, 73, 83, 86, 87, 89, 90, 91, 93, 94, 100, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 61, 70, 71, 73, 86, 87, 97, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 71, 83, 87, 89, 90, 93, 94, 97, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 65, 70, 73, 83, 90, 91, 93, 94, 95, 98, 99, 103], "save_spac": [2, 10, 72, 73], "potenti": [2, 10, 37, 44, 56, 63, 66, 69, 71, 73, 75, 77, 82, 84, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 87, 94], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 60, 61, 62, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 60, 62, 63, 65, 81, 89, 98, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 61, 63, 71, 75, 77, 82, 83, 89, 91, 97, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 63, 66, 71, 73, 75, 77, 78, 83, 96, 97, 101, 103, 107, 108], "prefer": [2, 71, 79, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 87, 94, 97, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 73], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 60, 61, 63, 65, 69, 70, 71, 73, 74, 75, 77, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 71, 73], "mostli": [2, 57, 68, 73, 98, 102, 106], "longer": [2, 35, 48, 49, 56, 73, 84, 87, 94, 97, 98, 103], "info": [2, 5, 7, 10, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 73, 81, 90, 95, 96, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 61, 62, 65, 69, 73, 78, 81, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 73, 96, 99], "unless": [2, 38, 42, 52, 73, 97], "our": [2, 3, 10, 60, 61, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 73, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 62, 63, 68, 71, 73, 75, 77, 78, 83, 89, 90, 95, 97, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 61, 62, 63, 66, 69, 71, 73, 74, 75, 77, 78, 84, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 106], "label_qu": [2, 61, 73, 87, 99, 101, 106], "measur": [2, 5, 37, 61, 62, 73, 83, 86, 95, 96, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 61, 62, 63, 65, 66, 68, 71, 73, 74, 77, 79, 81, 83, 84, 88, 89, 91, 97, 98, 100], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 61, 62, 65, 68, 69, 71, 73, 74, 77, 81, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 69, 98, 99, 101], "against": [2, 38, 42, 89, 93, 95, 97, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107], "ad": [2, 38, 42, 90, 101, 106], "precis": [2, 53, 55, 63, 66, 69, 95, 96, 97, 99, 107, 108], "definit": [2, 7, 35, 49, 73, 86, 93], "accessor": [2, 73], "describ": [2, 10, 19, 61, 70, 71, 73, 79, 81, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 73, 96], "clear": [2, 38, 42, 54, 73, 87, 94, 95, 106], "save": [2, 5, 17, 38, 41, 42, 69, 73, 95, 97, 103, 107, 108], "space": [2, 5, 10, 70, 73, 91, 93, 95, 96], "place": [2, 38, 42, 52, 57, 73, 86, 101], "larg": [2, 9, 10, 41, 52, 73, 91, 97, 103, 104, 107, 108], "deploi": [2, 9, 10, 73, 91, 97, 98], "care": [2, 10, 38, 42, 52, 73, 94, 95, 97, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 73, 97, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 98, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 73], "__init_subclass__": [2, 40, 42, 72, 73], "set_": [2, 42, 73], "_request": [2, 42, 73], "pep": [2, 42, 73], "487": [2, 42, 73], "look": [2, 5, 7, 10, 17, 38, 42, 57, 73, 78, 86, 89, 90, 93, 94, 97, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 61, 62, 66, 69, 73, 78, 81, 82, 83, 88, 89, 93, 94, 95, 96, 98, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 73], "infer": [2, 42, 57, 73, 78, 82, 86, 87, 91, 101, 102], "signatur": [2, 38, 42, 73], "accept": [2, 38, 42, 54, 55, 71, 73, 89, 90, 97], "metadata": [2, 10, 42, 73, 91, 108], "through": [2, 5, 7, 42, 73, 87, 88, 90, 94, 95, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 73, 97, 99, 108], "request": [2, 42, 73, 86, 87, 90, 94, 95, 96, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 60, 61, 63, 69, 73, 77, 81, 82, 83, 88, 91, 95, 97, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 66, 69, 70, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 73, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 70, 73, 97, 98, 99, 108], "dev": [2, 42, 73], "0487": [2, 42, 73], "get_metadata_rout": [2, 40, 42, 72, 73], "rout": [2, 42, 73], "pleas": [2, 38, 42, 60, 73, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 73, 84, 88, 89, 90, 91, 92, 93, 94, 95, 98, 99], "mechan": [2, 38, 42, 73], "metadatarequest": [2, 42, 73], "encapsul": [2, 17, 42, 68, 73], "get_param": [2, 40, 42, 59, 60, 72, 73], "subobject": [2, 42, 73], "param": [2, 10, 38, 42, 60, 70, 73, 97], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 60, 61, 62, 69, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 72, 73], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 60, 61, 62, 66, 68, 69, 71, 73, 78, 82, 88, 89, 95, 97, 101, 102, 103, 108], "unchang": [2, 38, 42, 73, 95, 108], "relev": [2, 10, 17, 27, 42, 73, 91, 93, 95], "enable_metadata_rout": [2, 42, 73], "set_config": [2, 42, 73], "meta": [2, 42, 73], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 73, 97], "alia": [2, 38, 42, 73], "metadata_rout": [2, 42, 73], "retain": [2, 42, 57, 73], "chang": [2, 33, 35, 38, 41, 42, 46, 73, 81, 86, 87, 88, 89, 94, 97, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 59, 60, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 68, 73], "pipelin": [2, 42, 73, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 63, 73, 75, 77, 78, 82, 83, 87, 94, 97, 98], "updat": [2, 14, 38, 41, 42, 52, 60, 73, 84, 89, 91, 98], "set_param": [2, 40, 42, 59, 60, 72, 73], "simpl": [2, 38, 42, 44, 61, 71, 73, 86, 87, 89, 90, 91, 93, 94, 98, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 61, 63, 69, 71, 73, 78, 81, 82, 84, 89, 90, 91, 93, 94, 97, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 73, 79, 81, 82, 108], "latter": [2, 38, 42, 73, 104], "compon": [2, 42, 73], "__": [2, 42, 73], "set_score_request": [2, 72, 73], "structur": [3, 70, 93, 95, 97, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 61, 70, 71, 75, 77, 81, 91, 93, 95, 96, 97, 98, 99, 103, 108], "channel": [3, 88, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 62, 87, 90, 96], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 62, 63, 84, 97, 99], "un": 3, "under": [3, 10, 38, 42, 62, 69, 70, 90, 95, 98, 104], "joint": [3, 37, 44, 47, 57, 62, 63, 96], "num_label_issu": [3, 41, 44, 63, 78, 82, 84], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 63, 102], "don": [3, 10, 83, 90, 91, 94, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 63, 99], "off": [3, 44, 57, 68, 91, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 63, 66, 69, 70, 79, 81, 82, 89, 90, 99, 107, 108], "confident_learn": [3, 44, 63, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 61, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 75, 78, 88, 89, 90, 91, 95, 97, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 89, 90, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 86, 87, 88, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 68, 69, 75, 77, 86, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106], "As": [3, 7, 83, 89, 90, 94, 98, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 60, 69, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 102], "approach": [3, 37, 41, 44, 60, 86, 93, 95, 98, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 71, 87, 90, 94, 95, 99, 106], "know": [3, 10, 89, 90, 91, 94, 97, 99, 101, 106], "cut": [3, 68, 83, 86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 69, 83, 95, 97, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 65, 66, 68, 69, 71, 74, 81, 96, 97, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 77, 78, 79, 83, 84, 88, 95, 97, 98, 102, 104, 108], "num_issu": [3, 7, 41, 88, 89, 90, 91, 93, 94, 95, 98, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 60, 61, 87, 96, 97, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 62, 63, 65, 71, 89, 90, 100, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 62, 63, 65, 73, 86, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 106], "fashion": [3, 5, 75, 86], "2x2": 3, "incorrectli": [3, 37, 62, 63, 66, 93, 98, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 63, 71, 83, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 61, 65, 68, 74, 77, 81, 82, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 63, 69, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 61, 62, 69, 78, 103, 104], "done": [3, 10, 60, 73, 89, 97, 99, 102, 104, 105], "overfit": [3, 10, 66, 69, 86, 88, 89, 90, 91, 93, 94, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 61, 62, 68, 69, 70, 71, 81, 86, 88, 89, 95, 97, 99, 102, 103], "baselin": [3, 38, 44, 87, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 63, 69, 73, 81, 97], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 61, 63, 69, 77, 79, 81, 82, 88, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 61, 70, 75, 77, 83, 87, 91, 95, 97, 98, 107], "practic": [3, 86, 87, 90, 91, 98, 99, 104, 106], "complet": [3, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 65, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 69, 79, 96], "again": [3, 60, 86, 97, 104], "simplifi": [3, 15, 97], "understand": [3, 9, 10, 37, 62, 69, 90, 95, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 70, 71, 86, 87, 89, 90, 91, 93, 95, 96, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 60, 86, 87, 90, 91, 93, 94, 95, 96, 99, 101, 102, 104, 106], "speed": [3, 44, 87, 96, 97, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 65, 81, 88, 95, 98, 103], "enumer": [3, 38, 42, 88, 89, 90, 91, 95, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 81, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 71, 75, 78, 88, 95, 97, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 65, 74, 86, 88, 95], "eqn": [3, 47], "margin": [3, 44, 47, 49, 71], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 62, 99, 105], "poorli": [3, 47, 86, 95], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 73, 74, 88, 89, 93, 99, 102, 106], "exact": [3, 10, 47, 52, 86, 89, 90, 91, 93, 95, 98], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 63, 68, 77, 79, 81, 89, 90, 91, 97, 103, 107], "percent": 3, "often": [3, 37, 47, 62, 97, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 69, 86, 87, 88, 89, 91, 93, 94, 97, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 60, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 89, 91, 95, 96, 97, 98, 99, 105, 106], "becaus": [3, 10, 47, 53, 57, 68, 94, 95, 97, 98, 99, 101, 103, 105], "littl": [3, 41, 96, 103, 108], "uniform": [3, 71, 96, 97, 99], "20": [3, 7, 43, 82, 88, 91, 94, 95, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 91, 104], "bound": [3, 24, 26, 38, 42, 56, 65, 66, 68, 69, 103], "reason": [3, 10, 23, 38, 42, 53, 70], "comment": [3, 56, 95, 108], "end": [3, 5, 38, 42, 54, 69], "file": [3, 5, 13, 40, 41, 59, 69, 86, 88, 89, 93, 94, 96, 97, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 84, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 99, 102, 104, 106, 107, 108], "five": [3, 66, 69, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 98, 103], "confident_threshold": [3, 10, 23, 24, 41, 70], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 83, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 69, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 107, 108], "u": [4, 86, 87, 88, 89, 91, 93, 95, 97, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 95, 98, 103], "contribut": [4, 10, 19, 95, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 93, 95], "metric": [4, 5, 10, 19, 20, 22, 27, 29, 32, 45, 51, 52, 54, 55, 57, 60, 69, 70, 86, 87, 88, 91, 93, 94, 95, 98, 99, 106], "10": [4, 10, 19, 20, 24, 27, 29, 32, 38, 39, 52, 69, 70, 71, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 70, 90, 94, 95, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 70, 89, 90, 91, 93, 94, 95, 97, 104], "knn": [4, 10, 14, 19, 27, 29, 32, 51, 52, 53, 54, 55, 70, 93, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 61, 65, 66, 68, 69, 70, 73, 77, 91, 96, 98], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 60, 61, 87, 90, 94, 95, 97, 98, 102, 103, 106], "lowest": [4, 10, 61, 69, 90, 91, 93, 95, 97, 98, 101, 102, 103, 107], "fall": [4, 10, 68, 77, 81, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 62, 63, 66, 73, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 70, 95, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 63, 66, 69, 71, 78, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 70, 83, 87, 88, 89, 90, 93, 94, 95, 98, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 63, 83, 87, 88, 89, 90, 91, 94, 97, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 61, 86, 88, 95, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 62, 88, 89, 90, 91, 93, 94, 98, 99], "num_featur": [4, 5, 17, 38, 42, 60], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 68, 70, 93, 95, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 60, 95, 98], "nearestneighbor": [4, 5, 10, 19, 52, 54, 70, 93, 104], "cosin": [4, 10, 52, 53, 55, 70, 95, 104], "dim": [4, 70, 91, 107], "euclidean": [4, 5, 10, 52, 53, 55, 68, 70, 93], "dimension": [4, 27, 53, 57, 88, 99, 104], "scikit": [4, 42, 53, 54, 57, 70, 83, 86, 87, 88, 89, 90, 93, 94, 95, 97, 106], "fewer": [4, 10, 44, 57, 70, 95, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 59, 70, 84, 88, 89, 90, 91, 93, 94, 98, 99], "exce": [4, 52, 91, 95], "transform": [4, 10, 33, 49, 52, 55, 57, 70, 71, 86, 87, 90, 91, 94, 95, 98, 104, 108], "rel": [4, 10, 37, 52, 61, 62, 70, 89, 90, 91, 93, 94, 98, 99, 104], "adjust": [4, 39, 44, 52, 65, 70, 71, 83, 95, 98, 99], "closer": [4, 10, 68, 95, 103], "highli": [4, 90, 91], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 69, 95, 96, 104], "convers": 4, "neg": [4, 10, 68, 69, 89, 90, 95, 96], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 97], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 73, 75, 77, 91, 94, 96, 97], "55": [4, 56, 95, 96, 103, 106], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 88, 91, 92, 93, 94, 95, 97, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 95, 96], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 61, 69, 78, 79, 86, 87, 88, 89, 93, 94, 95, 98, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 59, 63, 70, 73, 74, 83, 95, 105], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 59, 60, 75, 77, 95], "pip": [5, 7, 9, 12, 36, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 70, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 83, 96], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "image_kei": [5, 10, 91, 95], "interfac": [5, 9, 10, 54, 83, 86, 87, 90, 93, 94, 96, 97, 98, 99, 102, 104, 106], "librari": [5, 10, 42, 54, 66, 69, 70, 83, 87, 89, 94, 95, 96, 97], "goal": [5, 106], "track": [5, 7, 14, 15, 83, 89, 96, 97, 99], "intermedi": [5, 9, 90], "statist": [5, 10, 14, 23, 27, 37, 61, 62, 69, 90, 93, 94, 95, 98, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 61, 68, 77, 81, 84, 87, 88, 91, 94, 95, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 91], "face": [5, 10, 13, 17, 91, 96, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 61, 62, 68, 70, 89, 90, 91, 94, 97, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 61, 62, 74, 78, 81, 82, 87, 93, 94, 95, 97, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 61, 62, 65, 66, 68, 69, 89, 90, 93, 94, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 69, 88, 89, 95, 97, 103], "local": [5, 7, 10, 13, 38, 39, 42, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 70, 79, 81, 82, 83, 85, 89, 90, 92, 96, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 86, 87, 93, 94, 98, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 61, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 87, 89, 90, 94, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 66, 68, 69, 70, 75, 77, 78, 83, 89, 90, 92, 96, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 86, 87, 95, 106], "pil": [5, 91], "cleanvis": [5, 10, 95], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 79, 81, 90, 91, 97, 100, 102, 107], "load_dataset": [5, 13, 91], "glue": 5, "sst2": 5, "properti": [5, 9, 13, 14, 35, 38, 42, 95], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 62, 69, 78, 82, 83, 96, 99, 103, 107, 108], "empti": [5, 13, 47, 61, 90, 95, 97, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 61, 63, 66, 68, 69, 71, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 83, 90, 92, 95, 96, 97, 98, 99, 102, 103, 107], "real": [5, 17, 83, 89, 90, 95, 97, 98, 99, 101, 106, 107], "world": [5, 17, 83, 89, 90, 95, 97, 98, 99, 101, 106, 107], "interact": [5, 17, 94, 97], "thereof": [5, 17], "insight": [5, 17, 69, 101], "best": [5, 9, 10, 17, 48, 61, 71, 86, 87, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 75, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 66, 69, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103], "lexicograph": [5, 48, 57, 88, 89, 90, 91, 93, 94, 98, 99, 102], "squar": [5, 57, 73, 96, 106], "csr": [5, 52, 95], "evenli": 5, "omit": [5, 68, 69, 91, 95, 103], "itself": [5, 33, 38, 42, 52, 95, 103], "three": [5, 10, 37, 61, 62, 73, 78, 86, 88, 89, 90, 93, 96, 99, 101, 105, 106, 107, 108], "indptr": [5, 95], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 83, 102, 108], "th": [5, 10, 43, 48, 56, 57, 61, 63, 66, 68, 69, 70, 79, 81, 82, 94, 102, 103, 108], "ascend": [5, 37, 62, 91, 99], "segment": [5, 75, 77, 78, 100], "reflect": [5, 10, 52, 86, 87, 93, 94, 98, 101, 103, 104, 106], "maintain": [5, 60], "kneighbors_graph": [5, 19, 54, 93], "illustr": [5, 95], "todens": 5, "second": [5, 49, 57, 69, 71, 89, 93, 97, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 83, 89, 95, 98, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 61, 95, 97, 101, 108], "unspecifi": [5, 17, 44, 63], "interest": [5, 17, 23, 78, 82, 86, 87, 94, 95, 98, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 73, 74, 95, 96, 106, 108], "random_st": [5, 86, 88, 89, 90, 91, 95, 98, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 83, 91, 95, 98, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 70, 95], "mode": [5, 12, 19, 38, 41, 42, 93, 104], "4x4": 5, "float64": [5, 27, 38, 42, 81], "compress": [5, 10, 52, 57, 75, 77, 95], "toarrai": [5, 52, 95], "NOT": [5, 41, 94], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 90], "suppos": [5, 10, 66, 86, 87, 104, 106], "who": [5, 68, 86, 93, 95, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 60, 89, 97], "clean_learning_kwarg": [5, 10, 11, 24, 31, 97, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 84], "prune_by_noise_r": [5, 44, 63, 99], "report": [5, 7, 10, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 82, 83, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34, 95, 98], "show_all_issu": [5, 34, 95, 98], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 59, 60, 62, 67, 76, 77, 79, 80, 81, 84, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 69, 78, 82, 86, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 63, 71, 82, 95, 108], "onc": [5, 10, 23, 37, 38, 42, 86, 89, 97, 98, 99, 102, 103], "familiar": [5, 95], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 61, 62, 65, 68, 69, 73, 77, 78, 79, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 65, 68, 70, 71, 77, 81, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 61, 70, 81, 89, 90, 93, 95, 98, 99, 103], "issue_summari": [5, 7, 10, 14, 95], "With": [5, 9, 10, 41, 87, 94, 97, 99, 101, 106, 107, 108], "usag": [5, 41, 60], "usual": [5, 13, 33, 34, 91, 101, 106], "ti": [5, 61], "exhibit": [5, 7, 10, 14, 78, 88, 89, 90, 91, 93, 94, 98, 99, 103], "ie": [5, 73], "likelihood": [5, 10, 41, 43, 44, 63, 68, 70, 71, 75, 79, 95], "wherea": [5, 10, 57, 63, 86, 87, 95, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 71, 83, 89, 90, 95, 98, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 10, 23, 38, 42, 96], "non_iid": [5, 10, 11, 15, 27, 90, 91, 93, 94, 95, 98, 99], "hypothesi": [5, 95], "iid": [5, 7, 9, 27, 83, 93, 98, 99], "never": [5, 88, 98, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 71, 103], "123": [5, 89, 90], "456": [5, 86, 87, 88], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 60, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 65, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 89, 90, 91, 93, 94, 98, 99], "789": 5, "get_issu": [5, 10, 14, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 88, 89, 90, 91, 93, 94, 95, 98, 99], "focu": [5, 10, 14, 94, 95, 98, 107, 108], "full": [5, 10, 14, 41, 60, 69, 91, 98, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 62, 78, 82, 83, 107], "specific_issu": [5, 14], "lie": [5, 10, 70, 71, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99], "get_issue_summari": [5, 10, 14, 90, 95], "get_info": [5, 10, 14, 90, 94, 95, 96], "yet": [5, 18, 28, 60, 96, 98, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 89], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 88, 89, 91], "load": [5, 13, 41, 69, 91, 96, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 61, 83, 89, 94], "overwrit": [5, 89], "separ": [5, 37, 49, 65, 89, 90, 91, 95, 97, 98, 103, 105], "static": 5, "rememb": [5, 94, 97, 98, 99], "part": [5, 10, 38, 42, 44, 66, 68, 69, 88, 89, 95, 96, 98, 107, 108], "ident": [5, 10, 23, 57, 94, 95], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 83, 86, 87, 96, 98, 101, 106], "walk": [7, 98], "alongsid": [7, 38, 42, 89, 97], "pre": [7, 8, 10, 38, 42, 83, 89, 90, 106], "runtim": [7, 38, 41, 42, 73, 75, 77, 88, 91, 97, 98], "issue_manager_factori": [7, 15, 89], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 87, 95, 99, 106], "next": [7, 61, 83, 86, 87, 88, 93, 94, 95, 97, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 89, 90, 95], "mark": [7, 10, 84, 103, 104, 106], "regard": [7, 90, 98, 99], "rand": [7, 49, 52, 89, 90, 95], "is_": [7, 10, 89], "_issu": [7, 10, 89], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "whole": [7, 10, 27, 38, 42, 90, 95], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "popul": [7, 94, 98], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 78, 82, 95, 97, 102], "intermediate_arg": 7, "min": [7, 49, 68, 81, 89, 97, 104], "sin_filt": 7, "sin": 7, "arang": [7, 95], "kernel": [7, 95], "affect": [7, 10, 38, 42, 53, 75, 81, 94, 95, 97], "easili": [7, 10, 47, 84, 86, 87, 88, 90, 93, 94, 98, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 83, 96, 104], "sai": [7, 10, 38, 42, 95, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 68, 71, 87, 93, 94, 95, 97, 99, 101, 104], "try": [7, 9, 10, 41, 44, 60, 61, 75, 77, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 104, 105, 106, 107], "won": [7, 38, 42, 89, 90, 97, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 89], "instanti": [7, 17, 41, 60, 70, 87, 88, 90, 93], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 69, 88, 89, 90, 91, 93, 94, 98, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 60, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 60, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 89, 90, 95, 96, 98, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32, 83, 98], "group": [8, 9, 27, 32, 83, 96, 98, 103, 108], "dbscan": [8, 10, 32], "hdbscan": 8, "etc": [8, 10, 23, 33, 38, 42, 47, 60, 61, 79, 83, 89, 90, 93, 94, 95, 97, 98, 99, 102, 106], "sensit": [8, 10, 55, 95, 98], "ep": [8, 32, 69], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 95], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 32, 95], "cluster_id": [8, 10, 11, 32, 95], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 90, 91, 93, 94, 95, 98, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 73, 95, 97, 98, 105], "nondefault": 9, "Near": [9, 97], "imbal": [9, 22, 65, 70, 71, 90], "spuriou": [9, 91], "correl": [9, 91], "null": [9, 11, 15, 22, 90, 91, 94, 98, 99], "togeth": [9, 10, 47, 87, 89, 90, 91, 93, 94, 98, 99, 106, 108], "built": [9, 49, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "own": [9, 38, 40, 42, 54, 59, 65, 66, 69, 75, 79, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 60, 95, 98, 104], "fulli": [9, 10, 38, 42, 60, 97], "platform": [9, 10, 83, 86, 87, 90, 91, 93, 94, 96, 97, 99, 102, 104, 105, 106], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 60, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 71, 86, 93, 97, 98, 99, 106, 107], "100x": [9, 10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "faster": [9, 10, 41, 70, 73, 75, 77, 83, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 106], "intellig": [9, 10, 98], "quickli": [9, 10, 39, 86, 88, 91, 93, 94, 97, 98, 102, 104, 105, 107, 108], "fix": [9, 10, 61, 86, 87, 90, 93, 94, 95, 96, 98, 99, 102, 104, 105, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 61, 62, 68, 87, 91, 94, 95, 97, 106], "power": [9, 10, 91, 96, 99, 108], "automl": [9, 10, 83, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 105, 106], "system": [9, 10, 88, 91, 107], "foundat": [9, 10, 83, 86, 87, 90, 93, 94, 95, 96, 99, 102, 104, 105, 106], "improv": [9, 10, 61, 86, 87, 90, 91, 96, 97, 99, 100, 106, 107], "click": [9, 10, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 87, 88, 94, 96, 98, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 86, 87, 90, 96, 97, 98, 106], "free": [9, 10, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 102, 104, 105, 106], "page": [10, 90, 97, 98, 99], "variou": [10, 14, 31, 40, 58, 59, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103], "why": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "matter": [10, 37, 62], "didn": [10, 95, 98], "plu": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "class_imbal": [10, 11, 15, 21, 90, 91, 93, 94, 95, 98, 99], "data_valu": [10, 11, 15, 22, 95], "No": [10, 11, 86, 87, 94, 95, 97], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 68, 86, 87, 108], "issue_scor": 10, "atyp": [10, 70, 89, 90, 91, 93, 94, 98, 99, 104], "datapoint": [10, 32, 44, 49, 57, 71, 74, 83, 86, 87, 88, 89, 90, 93, 94, 97, 98, 105, 106], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 88, 95], "expertis": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "interpret": [10, 96, 97, 99, 102, 106], "annot": [10, 37, 48, 61, 62, 63, 65, 66, 68, 69, 78, 81, 82, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 93, 94], "preced": 10, "incorrect": [10, 68, 71, 74, 86, 88, 89, 90, 91, 93, 94, 95, 98, 99, 103, 106], "due": [10, 41, 44, 71, 75, 77, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106], "appear": [10, 37, 48, 62, 63, 66, 74, 90, 91, 93, 94, 95, 98, 106, 107], "now": [10, 41, 84, 86, 87, 88, 90, 95, 97, 98, 101, 103, 104, 106, 108], "token": [10, 43, 56, 77, 78, 79, 80, 81, 82, 97, 99, 100], "hamper": [10, 91, 96], "analyt": [10, 83, 95, 97, 101], "lead": [10, 68, 71, 91, 95, 98, 103], "draw": [10, 89, 90], "conclus": [10, 94], "let": [10, 38, 42, 70, 71, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 106], "head": [10, 86, 87, 88, 90, 91, 93, 94, 95, 96, 98, 99, 101, 106], "97": [10, 86, 96, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 86, 90, 95, 96, 99, 103], "680894": 10, "41": [10, 95, 96, 98, 103, 106], "746043": 10, "794894": 10, "98": [10, 96, 97, 98, 106], "802911": 10, "give": [10, 49, 71, 99, 101, 107], "li": [10, 70], "especi": [10, 86, 87, 91, 95, 97, 106], "veri": [10, 37, 62, 66, 68, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106], "rare": [10, 44, 69, 89, 90, 91, 93, 94, 97, 98, 99], "anomal": [10, 71, 89, 90, 91, 93, 94, 98, 99], "articl": [10, 41, 97], "blog": 10, "unexpect": [10, 38, 42, 94], "consequ": 10, "inspect": [10, 87, 88, 90, 91, 98, 99, 103, 106], "011562": 10, "62": [10, 95, 98, 99, 103, 106, 108], "019657": 10, "22": [10, 88, 89, 91, 95, 96, 98, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 94, 95, 96, 103, 108], "056865": 10, "smaller": [10, 70, 102, 103], "extrem": [10, 89, 90, 91, 93, 94, 95, 97, 98, 99], "record": [10, 38, 42, 88, 93, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 82], "resolut": 10, "video": [10, 96], "audio": [10, 89, 90, 92, 97], "minor": [10, 56], "variat": 10, "translat": [10, 98], "d": [10, 55, 86, 93, 94, 95, 97, 98, 99, 102, 106, 108], "constant": [10, 32, 73], "median": [10, 31, 55], "question": [10, 23, 83, 99], "nearli": [10, 23, 90, 91, 93, 94], "awar": [10, 84, 99], "presenc": [10, 52, 54, 99], "36": [10, 95, 96, 98, 108], "066009": 10, "80": [10, 39, 86, 93, 98, 102, 106], "003906": 10, "093245": 10, "005599": 10, "27": [10, 93, 95, 96, 98, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 95, 96, 98, 99, 102, 106], "signific": [10, 86, 87, 90, 93, 94, 96, 98, 99, 102, 104, 106], "violat": [10, 83, 93, 94, 95, 98, 99], "assumpt": [10, 93, 94, 95, 98, 99], "changepoint": [10, 93, 94, 98, 99], "shift": [10, 52, 54, 93, 94, 98, 99], "drift": [10, 90, 93, 95, 98, 99], "autocorrel": [10, 93, 94, 98, 99], "almost": [10, 93, 94, 98, 99], "adjac": [10, 52, 93, 94, 98, 99], "tend": [10, 37, 47, 93, 94, 98, 99, 107, 108], "sequenti": [10, 38, 42, 60, 91], "pai": [10, 94, 95], "attent": [10, 95], "realli": [10, 87, 94, 98, 101, 107], "mere": 10, "highlight": [10, 78, 82, 89, 90, 93, 95, 107], "necessarili": [10, 61, 69, 94, 98, 99], "wrong": [10, 61, 66, 68, 84, 87, 89, 90, 94, 97, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 81, 86, 93, 94, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 66, 69, 103], "x2": [10, 66, 69, 103], "10th": 10, "100th": 10, "90": [10, 81, 86, 93, 98, 99, 105, 106], "similarli": [10, 38, 42, 89, 91, 93, 97, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 69, 101], "blogpost": 10, "proper": [10, 57, 61, 66, 69, 86, 91, 94, 97, 101, 103], "scenario": [10, 52, 54, 71, 89, 90], "underli": [10, 43, 54, 70, 79, 81, 108], "stem": [10, 70, 104], "evolv": 10, "influenc": 10, "act": [10, 68, 89], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 60, 62, 68, 71, 75, 77, 78, 83, 91, 95, 98], "problem": [10, 33, 41, 49, 78, 83, 89, 90, 91, 94, 95, 97], "deploy": [10, 86, 87, 99, 106], "overlook": [10, 68, 103], "fact": 10, "thu": [10, 37, 42, 62, 86, 88, 93, 94, 98, 99, 105, 108], "diagnos": [10, 90, 97], "24": [10, 88, 95, 96, 98, 99, 101, 103, 106], "681458": 10, "37": [10, 89, 95, 96, 98], "804582": 10, "64": [10, 42, 86, 91, 93, 95, 99, 103], "810646": 10, "815691": 10, "78": [10, 86, 93, 96, 98, 99, 103, 106, 108], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 69, 97], "rarest": [10, 90, 98], "q": [10, 95, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 91, 94, 95, 96, 98, 99, 101, 108], "75": [10, 49, 89, 90, 95, 96, 98, 101, 102, 103, 106, 108], "33": [10, 38, 42, 95, 96, 98, 103], "68": [10, 86, 96, 98, 99, 103, 108], "excess": [10, 91], "dark": [10, 95, 107], "bright": [10, 108], "blurri": [10, 91, 95], "lack": [10, 60, 95, 98], "unusu": [10, 103, 104], "discuss": [10, 97], "earlier": [10, 87, 108], "unintend": [10, 93, 94, 95], "relationship": [10, 37], "irrelev": 10, "exploit": 10, "fail": [10, 13], "unseen": 10, "hold": [10, 13], "aris": 10, "captur": [10, 37, 88, 103, 104, 107], "environment": 10, "preprocess": [10, 86, 87, 90, 93, 95, 104, 106], "systemat": [10, 78, 82, 101], "photograph": 10, "uncorrelated": [10, 95], "strongli": [10, 94, 95], "minu": [10, 71], "sole": [10, 73, 86, 89, 98, 101, 104], "review": [10, 86, 87, 90, 93, 94, 96, 97, 98, 99, 103, 106, 107, 108], "latch": 10, "onto": 10, "troublesom": 10, "spurious_correl": [10, 95], "correlations_df": [10, 95], "blurry_scor": [10, 95], "559": [10, 98], "dark_scor": [10, 91, 95], "808": 10, "light_scor": [10, 95], "723": [10, 93, 98], "odd_size_scor": [10, 95], "957": 10, "odd_aspect_ratio_scor": [10, 95], "835": 10, "grayscale_scor": [10, 95], "003": 10, "spurious": 10, "low_information_scor": [10, 91, 95], "688": [10, 98, 106], "categor": [10, 70, 85, 86, 89, 90, 92, 97, 98, 106], "characterist": [10, 37, 95], "grayscal": [10, 91, 95], "cluster": [10, 19, 32, 98], "slice": [10, 98], "poor": [10, 95, 98], "subpopul": [10, 98], "faq": [10, 83, 90, 91, 93, 94, 100], "get_self_confidence_for_each_label": [10, 49, 71], "r": [10, 41, 73, 89, 90, 95, 106, 107], "tabular": [10, 83, 85, 89, 90, 92, 95, 97, 98, 101], "encod": [10, 50, 69, 75, 78, 86, 87, 93, 94, 97, 98, 106, 107], "71": [10, 95, 96, 98, 99, 103, 106], "70": [10, 81, 93, 95, 98], "69": [10, 98, 99, 106], "subgroup": [10, 95], "wors": [10, 95, 101], "ratio": [10, 95], "miss": [10, 28, 38, 42, 57, 66, 68, 97, 98, 103, 106], "pattern": [10, 95], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 70, 97], "quantif": 10, "39": [10, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 106, 107, 108], "32": [10, 88, 89, 95, 96, 98, 101, 103, 108], "valuabl": [10, 19, 95], "exert": [10, 90], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 83, 96], "health_summary_kwarg": 10, "tandem": [10, 96], "view": [10, 38, 42, 43, 44, 77, 79, 81, 83, 86, 87, 88, 89, 90, 93, 94, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 70, 104], "outsid": [10, 97, 102], "outlierissuemanag": [10, 15, 22, 29], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107], "howev": [10, 38, 42, 52, 57, 86, 87, 88, 91, 93, 94, 95, 98, 101, 105, 107], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 62], "versa": [10, 62], "light": [10, 91, 95, 96, 103, 107], "29": [10, 91, 95, 96, 98, 101, 102, 103, 107, 108], "low_inform": [10, 91, 95], "odd_aspect_ratio": [10, 91, 95], "35": [10, 89, 95, 96, 98, 101, 102, 103], "odd_siz": [10, 91, 95], "doc": [10, 38, 42, 70, 83, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "is_outlier_issu": [11, 89, 90, 91, 93, 94, 95, 98, 99], "outlier_scor": [11, 29, 89, 90, 91, 93, 94, 95, 98, 99, 104], "is_near_duplicate_issu": [11, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_scor": [11, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_set": [11, 20, 22, 89, 90, 91, 93, 94, 97, 98, 99], "is_non_iid_issu": [11, 90, 93, 94, 95, 98, 99], "non_iid_scor": [11, 27, 90, 93, 94, 95, 98, 99], "is_class_imbalance_issu": [11, 90, 95, 98], "class_imbalance_scor": [11, 21, 90, 95, 98], "is_underperforming_group_issu": [11, 90, 95, 98], "underperforming_group_scor": [11, 32, 90, 95, 98], "is_null_issu": [11, 90, 95, 98], "null_scor": [11, 28, 90, 95, 98], "is_data_valuation_issu": [11, 95], "data_valuation_scor": [11, 19, 95], "studio": [12, 83, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 102, 104, 105, 106], "data_issu": [12, 16, 17, 34], "issue_find": [12, 16], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 60, 71, 89, 90, 91, 98, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 91], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": 14, "strategi": [14, 49, 95, 97], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 63, 66, 69, 73, 75, 77, 89, 90, 97, 98], "recomput": [14, 87], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 62, 83], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 70, 89], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 75, 77, 98], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 95, 98, 99, 103, 107, 108], "creation": [17, 42, 95], "execut": [17, 38, 42, 89, 97, 103], "coordin": [17, 66, 68, 69, 103, 108], "At": [17, 69, 97], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 60], "vstack": [19, 57, 91, 96, 97, 99, 101, 102], "25": [19, 27, 38, 49, 55, 90, 91, 95, 96, 98, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 89, 90, 91, 97, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 87, 94, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 86, 88, 89, 91, 95, 96, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 68, 83, 86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 70, 71, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "perform_clust": [22, 32], "get_underperforming_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 61, 95, 97, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 65, 68, 69], "scalartyp": [24, 26], "covari": [24, 26, 73, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 71, 75, 77, 103, 107], "empir": [27, 48, 61], "cumul": 27, "ecdf": 27, "histogram": [27, 93, 95, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 60, 91, 95, 98, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 77, 81, 89, 104, 106], "prompt": 28, "address": [28, 87, 89, 90, 94, 97], "enabl": [28, 42, 54, 98], "scaling_factor": [29, 55], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 69, 87, 108], "50": [32, 42, 95, 97, 98, 99, 101, 103, 104, 106], "keepdim": [32, 97], "signifi": 32, "absenc": 32, "int64": [32, 88, 98, 101], "npt": 32, "int_": 32, "id": [32, 61, 89, 91, 95, 97, 101], "unique_cluster_id": 32, "exclud": [32, 34, 43, 78, 82, 89, 108], "worst": [32, 49, 101], "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35, 98], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 70, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 88, 90, 95, 97], "datset": 34, "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 89, 90], "continu": [35, 60, 86, 87, 91, 94, 97, 101, 103, 106, 108], "binari": [35, 49, 57, 63, 65, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 89], "typeerror": [35, 49], "12": [35, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 61, 62, 71, 89, 90, 91, 96, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 86, 87, 88, 90, 91, 93, 94, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 97, 98, 99], "rank_classes_by_label_qu": [37, 90], "merg": [37, 52, 56, 83, 96, 97, 98, 108], "find_overlapping_class": [37, 97, 99], "problemat": [37, 62, 78, 82, 88, 103, 108], "unnorm": [37, 62, 99], "abov": [37, 38, 41, 42, 54, 57, 61, 68, 69, 71, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 86, 88, 89, 90, 93, 95, 98, 99, 101], "df": [37, 57, 82, 88, 95, 97], "overall_label_qu": [37, 62], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 62, 71], "label_nois": [37, 62], "human": [37, 96, 107, 108], "clearli": [37, 71, 91, 103, 107], "num": [37, 62, 96, 99], "overlap": [37, 83, 95, 96, 97, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 71, 95, 98], "vehicl": [37, 96], "truck": [37, 95, 96, 104, 107], "intuit": [37, 62], "car": [37, 96, 103, 107], "frequent": [37, 61, 95, 97, 98, 106], "l": [37, 38, 42, 66, 68, 69], "class1": 37, "class2": 37, "dog": [37, 57, 62, 64, 78, 96, 97, 104, 105, 108], "cat": [37, 57, 62, 64, 96, 97, 104, 105], "co": [37, 38, 39], "noisy_label": [37, 89, 90, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 62, 69], "overall_label_health_scor": [37, 62, 99], "half": [37, 38, 40, 42, 62, 96, 108], "health_scor": [37, 62], "classes_by_label_qu": [37, 90], "cnn": [38, 40, 42, 91], "cifar": [38, 39, 95, 96, 104], "teach": [38, 39], "bhanml": 38, "blob": [38, 95], "master": [38, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 69, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 91, 101], "overridden": [38, 42], "although": [38, 42, 70, 86, 93, 98], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 62, 69, 77, 81, 97, 98, 101, 102, 103, 105, 108], "hook": [38, 42, 96], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 69], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 91], "init": [38, 42, 99], "no_grad": [38, 42, 91, 104], "init_weight": [38, 42], "linear": [38, 42, 87, 91, 94], "fill_": [38, 42], "net": [38, 42, 88, 91, 96], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 91], "tensor": [38, 39, 42, 88, 91, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 88], "buffer": [38, 40, 42], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 60], "cpu": [38, 40, 42, 44, 88, 91], "move": [38, 42, 49, 84, 96], "cuda": [38, 40, 42, 88, 91], "devic": [38, 42, 88, 91, 98], "gpu": [38, 42, 87, 88, 94], "live": [38, 42], "copi": [38, 42, 73, 86, 88, 89, 90, 93, 95, 97, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 91, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 83, 89, 95, 96, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 73, 74, 95, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 94], "resolv": [38, 42, 95, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 91, 95, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 91], "break": [38, 42, 91, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 91], "16": [38, 42, 49, 52, 60, 77, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 71, 95, 96, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 90, 91, 95, 97, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 88, 89, 90, 96, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 95, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 69, 89, 91, 95, 97, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 88, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 86, 93], "fire": [38, 42, 96], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 89, 90], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 91, 93, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 87, 88, 94], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 60, 84, 97], "design": [38, 42, 52], "ordereddict": [38, 42], "detach": [38, 42, 91], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 62, 68], "complex": [38, 42, 98], "integr": [38, 42, 54, 83, 97], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 87, 94, 96], "desir": [38, 42, 52, 56, 69], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 88], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 91], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 60, 91], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 91, 97], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 71, 95, 97], "250": [39, 89, 90, 99, 103], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 87, 91, 94, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 91, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 59, 95, 108], "wish": [40, 59, 98, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 97], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 76, 77, 78, 79, 80, 81, 82, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 75, 77, 91, 97, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 91], "loader": [40, 42, 91], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 84], "mini": [41, 75, 77, 97], "low_self_confid": [41, 44, 63], "self_confid": [41, 44, 45, 49, 63, 65, 71, 79, 81, 86, 87, 97, 99], "conveni": [41, 54, 86, 87, 88, 94, 98], "script": 41, "labels_fil": [41, 97], "pred_probs_fil": [41, 97], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 61, 107], "read": [41, 46, 90, 97, 99, 104, 108], "zarr": [41, 97], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 97], "hdf5": 41, "further": [41, 43, 62, 63, 65, 68, 69, 77, 78, 88, 95, 97, 98], "yourfil": 41, "npy": [41, 96, 97, 107], "mmap_mod": [41, 107], "tip": [41, 44, 60, 97], "save_arrai": 41, "your_arrai": 41, "disk": [41, 96, 97], "npz": [41, 108], "maxim": [41, 61, 75, 77, 98, 107], "multiprocess": [41, 44, 63, 75, 77, 91, 97], "linux": [41, 75, 77], "physic": [41, 44, 75, 77, 103], "psutil": [41, 44, 75, 77], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 69, 89, 97, 98, 103, 104], "store_result": 41, "becom": [41, 95, 104], "verifi": [41, 54, 97, 98, 101, 104], "long": [41, 61, 70, 98, 101], "enough": [41, 57, 95, 97], "chunk": [41, 105], "ram": [41, 96], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 97], "shortcut": 41, "encount": [41, 44, 75], "1000": [41, 88, 94, 97, 104], "aggreg": [41, 45, 49, 61, 65, 68, 71, 81, 97, 99, 101], "seen": [41, 97, 98, 104, 108], "far": [41, 61, 98], "label_quality_scor": [41, 65, 68, 71, 74, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 63, 65, 71, 79, 81], "low_normalized_margin": [41, 44, 63], "issue_indic": [41, 68, 91], "update_num_issu": 41, "arr": [41, 97], "chunksiz": 41, "convnet": 42, "bespok": [42, 60], "download": [42, 88, 95, 97, 104], "mnist": [42, 83, 88, 96], "handwritten": 42, "digit": [42, 88, 96], "last": [42, 49, 66, 69, 89, 90, 97, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 71, 73, 88, 95, 99, 102, 103, 104], "templat": 42, "flexibli": 42, "among": [42, 61, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 87, 98, 104], "span": [43, 98], "sentenc": [43, 56, 79, 81, 82, 87, 94], "token_classif": [43, 56, 79, 81, 82, 97], "encourag": [44, 63, 71, 74], "multilabel_classif": [44, 62, 63, 65, 71, 97, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 63, 71, 99], "num_to_remove_per_class": [44, 63], "bad": [44, 52, 63, 68, 71, 94, 97], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 63, 65, 71, 79, 81], "label_issues_idx": [44, 71, 98], "entropi": [44, 46, 48, 49, 70, 71], "prune_by_class": [44, 63, 99], "predicted_neq_given": [44, 63, 99], "prune_counts_matrix": 44, "smallest": [44, 71], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 83, 87, 97], "too": [44, 49, 52, 70, 91, 97, 98, 103], "thread": [44, 63], "window": [44, 96], "shorter": [44, 66], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 97], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 84], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 65], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 65], "softmin": [45, 49, 65, 68, 77, 81], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 95], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 60, 61, 83, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 88, 95], "behav": 46, "unnecessari": [46, 97], "slightli": [46, 86, 87], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": [47, 98], "propag": 47, "throughout": [47, 57, 73, 82, 88, 101, 107, 108], "increas": [47, 55, 68, 70, 71, 88, 89, 95, 97, 101, 102, 108], "dot": [47, 81, 97], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 61], "ensembl": [48, 49, 61, 71, 86, 93, 97, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 61], "format_multiannotator_label": [48, 61, 101], "formatted_label": [48, 57], "old": [48, 57, 84, 96], "check_consensus_label_class": 48, "consensus_label": [48, 61, 101], "consensus_method": [48, 61], "consensu": [48, 61, 83, 100, 108], "establish": [48, 60, 87, 106], "compute_soft_cross_entropi": 48, "soft": [48, 96], "find_best_temp_scal": 48, "coarse_search_rang": [48, 73, 97], "fine_search_s": [48, 73, 97], "temperatur": [48, 49, 68, 77, 81], "scale": [48, 55, 86, 95, 96, 97, 104, 107], "factor": [48, 49, 55, 75, 77], "minim": [48, 68, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 96], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 71], "get_confidence_weighted_entropy_for_each_label": [49, 71], "scorer": 49, "alpha": [49, 65, 68, 89, 90, 95, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 63, 93, 94, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 91, 93, 97, 103], "discount": 49, "s_ema": 49, "175": [49, 91, 98, 99, 103], "underflow": 49, "nan": [49, 61, 86, 93, 95, 98, 101, 106], "aggregated_scor": 49, "base_scor": [49, 98], "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 65], "n_sampl": [49, 95], "n_label": 49, "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": [49, 98], "get_label_quality_scores_per_class": [49, 64, 65], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 88], "wider": 49, "splitter": 49, "kfold": [49, 91], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 91, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 63, 69, 75, 78, 86, 93, 96, 97, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 70], "reli": [52, 70, 87, 88, 89, 90, 94, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 97], "manner": [52, 65, 86, 87, 95, 101, 106], "701": 52, "900": [52, 86, 93, 106], "436": [52, 98], "000": [52, 87, 91, 94, 95, 96, 108], "idea": [52, 71, 98, 103], "dens": [52, 60, 95], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 62, 102], "vari": [52, 68, 90], "exact_duplicate_set": 52, "main": [52, 61], "front": [52, 96], "consider": 52, "capabl": [52, 83, 98], "come": [52, 57, 89, 90, 97, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 61, 86, 93, 95, 98], "slower": 53, "decid": [53, 61, 87, 94, 96, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 70], "spatial": [53, 70], "decis": [53, 86, 89, 90, 98], "That": [53, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 66, 69, 70, 88, 89, 90, 91, 93, 94, 97, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "exp": [55, 70, 71, 89], "dt": 55, "right": [55, 66, 69, 87, 94, 102, 103, 104], "strength": [55, 69, 95], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 83, 96], "thumb": 55, "ood_features_scor": [55, 70, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 88, 89, 97, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 83, 97, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 89, 90, 91, 93, 95, 108], "nbitbas": [56, 65], "probs_merg": 56, "0125": [56, 81], "0375": 56, "075": 56, "025": 56, "color": [56, 78, 89, 90, 93, 95, 99, 102, 104, 106, 107], "red": [56, 69, 89, 90, 95, 96, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 71, 86, 93, 97, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 61, 84, 91, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 69, 94, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 89, 90, 95, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 70, 87, 88, 93, 94, 98, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 83, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 88, 91, 96, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 66, 69, 95, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 69, 78, 82, 87, 88, 93, 94, 95, 99, 108], "jupyt": [57, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 61, 88, 90, 96, 97, 98, 99, 101, 102, 103, 105, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 63], "keraswrappermodel": [59, 60, 83], "keraswrappersequenti": [59, 60], "tf": [60, 88], "legaci": 60, "newer": 60, "interim": 60, "advis": [60, 102], "stabil": [60, 70], "until": 60, "accommod": 60, "keraswrapp": 60, "huggingface_keras_imdb": 60, "unit": [60, 108], "model_kwarg": [60, 73], "compile_kwarg": 60, "sparsecategoricalcrossentropi": 60, "layer": [60, 87, 88, 94, 104], "my_keras_model": 60, "from_logit": 60, "declar": 60, "apply_softmax": 60, "analysi": 61, "analyz": [61, 83, 95, 99, 101, 102], "get_label_quality_multiannot": [61, 101], "vote": 61, "crowdsourc": [61, 83, 101], "dawid": [61, 101], "skene": [61, 101], "analog": [61, 96, 101], "chosen": [61, 71, 97, 101], "crowdlab": [61, 101], "unlabel": [61, 91, 101, 104, 107], "get_active_learning_scor": [61, 101], "activelab": [61, 101], "priorit": [61, 68, 103, 107, 108], "showcas": 61, "best_qual": 61, "quality_method": 61, "calibrate_prob": 61, "return_detailed_qu": 61, "return_annotator_stat": 61, "return_weight": 61, "label_quality_score_kwarg": 61, "did": [61, 62, 86, 87, 88, 93, 99, 101, 106], "majority_vot": 61, "broken": [61, 69, 96, 106], "highest": [61, 69, 89, 91, 98, 105], "0th": 61, "consensus_quality_scor": [61, 101], "annotator_agr": [61, 101], "reman": 61, "1st": 61, "2nd": [61, 75], "3rd": 61, "consensus_label_suffix": 61, "consensus_quality_score_suffix": 61, "suffix": 61, "emsembl": 61, "weigh": [61, 96], "agreement": [61, 101], "agre": 61, "prevent": [61, 97], "overconfid": [61, 105], "detailed_label_qu": [61, 101], "annotator_stat": [61, 101], "model_weight": 61, "annotator_weight": 61, "warn": 61, "labels_info": 61, "num_annot": [61, 101], "deriv": [61, 101], "quality_annotator_1": 61, "quality_annotator_2": 61, "quality_annotator_m": 61, "annotator_qu": [61, 101], "num_examples_label": [61, 101], "agreement_with_consensu": [61, 101], "worst_class": [61, 101], "trustworthi": [61, 101, 106], "get_label_quality_multiannotator_ensembl": 61, "weigtht": 61, "budget": 61, "retrain": [61, 87, 106], "active_learning_scor": 61, "active_learning_scores_unlabel": 61, "get_active_learning_scores_ensembl": 61, "henc": [61, 88, 89, 98, 101], "get_majority_vote_label": [61, 101], "event": 61, "lastli": [61, 93], "convert_long_to_wide_dataset": 61, "labels_multiannotator_long": 61, "wide": [61, 86, 87, 88], "labels_multiannotator_wid": 61, "common_multilabel_issu": [62, 64], "exclus": [62, 102], "rank_classes_by_multilabel_qu": [62, 64], "overall_multilabel_health_scor": [62, 64], "multilabel_health_summari": [62, 64], "classes_by_multilabel_qu": 62, "inner": [63, 77, 95], "find_multilabel_issues_per_class": [63, 64], "per_class_label_issu": 63, "label_issues_list": 63, "pred_probs_list": [63, 71, 91, 99], "anim": [64, 104], "rat": 64, "predat": 64, "pet": 64, "reptil": 64, "box": [66, 68, 69, 96, 103], "object_detect": [66, 68, 69, 103], "return_indices_ranked_by_scor": [66, 103], "overlapping_label_check": [66, 68], "suboptim": [66, 68], "locat": [66, 68, 95, 103, 107, 108], "bbox": [66, 69, 103], "image_nam": [66, 69], "y1": [66, 69, 103], "y2": [66, 69, 103], "later": [66, 69, 70, 87, 98, 108], "corner": [66, 69, 103], "xyxi": [66, 69, 103], "io": [66, 69, 88, 95, 96], "keras_cv": [66, 69], "bounding_box": [66, 69, 103], "detectron": [66, 69, 103], "detectron2": [66, 69, 103], "readthedoc": [66, 69], "en": [66, 69], "latest": [66, 69], "visual": [66, 67, 69, 86, 89, 90, 91, 106, 108], "draw_box": [66, 69], "mmdetect": [66, 69, 103], "swap": [66, 68, 78, 82], "penal": [66, 68], "concern": [66, 68, 83, 90], "issues_from_scor": [67, 68, 76, 77, 78, 80, 81, 82, 103, 107, 108], "compute_overlooked_box_scor": [67, 68], "compute_badloc_box_scor": [67, 68], "compute_swap_box_scor": [67, 68], "pool_box_scores_per_imag": [67, 68], "object_counts_per_imag": [67, 69, 103], "bounding_box_size_distribut": [67, 69, 103], "class_label_distribut": [67, 69, 103], "get_sorted_bbox_count_idx": [67, 69], "plot_class_size_distribut": [67, 69], "plot_class_distribut": [67, 69], "get_average_per_class_confusion_matrix": [67, 69], "calculate_per_class_metr": [67, 69], "aggregation_weight": 68, "imperfect": [68, 97, 98], "chose": [68, 101, 103], "imperfectli": [68, 103], "dirti": [68, 71, 74, 106], "subtyp": 68, "badloc": 68, "nonneg": 68, "high_probability_threshold": 68, "auxiliary_input": [68, 69], "iou": [68, 69], "heavili": 68, "auxiliarytypesdict": 68, "pred_label": [68, 87], "pred_label_prob": 68, "pred_bbox": 68, "lab_label": 68, "lab_bbox": 68, "similarity_matrix": 68, "min_possible_similar": 68, "scores_overlook": 68, "low_probability_threshold": 68, "scores_badloc": 68, "accident": [68, 87, 93, 94, 97], "scores_swap": 68, "box_scor": 68, "image_scor": [68, 77, 107], "discov": [69, 90, 95, 108], "abnorm": [69, 91, 103], "auxiliari": [69, 104, 107], "_get_valid_inputs_for_compute_scor": 69, "object_count": 69, "down": 69, "bbox_siz": 69, "class_distribut": 69, "plot": [69, 89, 90, 95, 99, 102, 104, 106, 107], "sorted_idx": [69, 104], "class_to_show": 69, "hidden": [69, 104], "max_class_to_show": 69, "plt": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "matplotlib": [69, 78, 89, 90, 91, 95, 99, 102, 103, 104, 106], "pyplot": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "prediction_threshold": 69, "overlai": [69, 103], "figsiz": [69, 89, 90, 91, 95, 99, 102, 104], "save_path": [69, 103], "blue": [69, 96, 99, 103], "overlaid": 69, "side": [69, 96, 103], "figur": [69, 95, 99, 102, 104, 106], "extens": [69, 99, 101], "png": [69, 103], "pdf": [69, 70], "svg": 69, "num_proc": [69, 91], "intersect": [69, 97], "tp": 69, "fp": 69, "ground": [69, 96, 99, 101, 106], "truth": [69, 99, 101, 106], "bias": [69, 95], "avg_metr": 69, "distionari": 69, "95": [69, 79, 81, 93, 96, 98, 99, 106], "per_class_metr": 69, "Of": 70, "find_top_issu": [70, 71, 104], "behind": [70, 99], "dist_metr": 70, "subtract": [70, 71], "renorm": [70, 71, 97], "least_confid": 70, "sum_": 70, "log": [70, 71, 84], "softmax": [70, 77, 81, 91], "literatur": 70, "gen": 70, "liu": 70, "lochman": 70, "zach": 70, "openaccess": 70, "thecvf": 70, "cvpr2023": 70, "liu_gen_pushing_the_limits_of_softmax": 70, "based_out": 70, "distribution_detection_cvpr_2023_pap": 70, "fit_scor": [70, 104], "ood_predictions_scor": 70, "pretrain": [70, 87, 88, 94, 98, 104], "adjust_confident_threshold": 70, "probabilist": [70, 86, 88, 89, 90, 93, 94, 104, 105], "order_label_issu": [71, 84], "whichev": [71, 105], "argsort": [71, 87, 91, 94, 99, 103, 104, 106], "max_": 71, "get_label_quality_ensemble_scor": [71, 97, 99], "weight_ensemble_members_bi": 71, "custom_weight": 71, "log_loss_search_t_valu": 71, "0001": [71, 96], "scheme": 71, "log_loss_search": 71, "log_loss": [71, 94], "1e0": 71, "1e1": 71, "1e2": 71, "2e2": 71, "quality_scor": [71, 104], "forth": 71, "top_issue_indic": 71, "rank_bi": [71, 84], "weird": [71, 82], "prob_label": 71, "max_prob_not_label": 71, "AND": [71, 94], "get_epistemic_uncertainti": [72, 73], "get_aleatoric_uncertainti": [72, 73], "corrupt": [73, 106], "linearregress": [73, 97, 106], "y_with_nois": 73, "n_boot": [73, 97], "include_aleatoric_uncertainti": [73, 97], "bootstrap": [73, 97, 106], "resampl": [73, 88, 97], "epistem": [73, 97, 104, 106], "aleator": [73, 97, 106], "model_final_kwarg": 73, "coars": 73, "thorough": [73, 97], "fine": [73, 87, 88, 94, 104], "grain": 73, "grid": [73, 98], "varianc": [73, 99], "epistemic_uncertainti": 73, "residu": [73, 74, 97], "deviat": [73, 103, 106], "aleatoric_uncertainti": 73, "outr": 74, "contin": 74, "raw": [74, 83, 84, 90, 91, 96, 97, 98, 101, 103, 104, 106], "aka": [74, 88, 99, 103, 106, 108], "00323821": 74, "33692597": 74, "00191686": 74, "semant": [75, 77, 78, 100], "pixel": [75, 77, 78, 91, 104, 107], "h": [75, 77, 78, 107], "height": [75, 77, 78, 107], "w": [75, 77, 78, 107], "width": [75, 77, 78, 107], "labels_one_hot": [75, 78, 107], "stream": [75, 104, 108], "downsampl": [75, 77, 107], "shrink": [75, 77], "divis": [75, 77, 89], "common_label_issu": [76, 78, 80, 82, 107, 108], "filter_by_class": [76, 78, 107], "segmant": [77, 78], "num_pixel_issu": [77, 107], "product": [77, 91, 95, 97, 98], "pixel_scor": [77, 107], "enter": 78, "legend": [78, 89, 90, 95, 102, 103, 106, 107], "colormap": 78, "background": [78, 95], "person": [78, 97, 103, 107, 108], "ambigu": [78, 82, 87, 88, 94, 96, 99, 108], "misunderstood": [78, 82], "issues_df": [78, 91], "class_index": 78, "issues_subset": [78, 82], "filter_by_token": [80, 82, 108], "token_score_method": 81, "sentence_score_method": 81, "sentence_score_kwarg": 81, "compris": [81, 82], "token_scor": [81, 108], "converg": 81, "toward": [81, 95], "_softmin_sentence_scor": 81, "sentence_scor": [81, 108], "token_info": 81, "02": [81, 89, 90, 95, 99, 103], "03": [81, 93, 95, 96, 98, 99, 103, 108], "04": [81, 93, 95, 103], "08": [81, 95, 99, 103, 106, 108], "commonli": [82, 84, 89, 90, 102, 108], "But": [82, 94, 98, 99, 106, 108], "restrict": [82, 97], "reliabl": [83, 86, 88, 95, 97, 98, 101, 107], "thousand": 83, "imagenet": [83, 96], "popular": [83, 101, 103], "centric": [83, 91, 100], "minut": [83, 86, 87, 88, 93, 94, 96, 101, 102, 103, 106, 107, 108], "conda": 83, "feature_embed": [83, 104], "your_dataset": [83, 88, 89, 90, 91, 93, 94, 97], "column_name_of_label": [83, 88, 89, 90, 91, 93, 94], "tool": [83, 96, 99, 101], "catch": [83, 98], "dive": [83, 94, 95, 98], "plagu": [83, 90], "untrain": 83, "\u30c4": 83, "label_issues_info": [83, 90], "sklearn_compatible_model": 83, "framework": [83, 102, 103], "complianc": 83, "tag": [83, 102, 108], "sequenc": 83, "recognit": [83, 88, 97, 108], "train_data": [83, 86, 87, 104, 106], "gotten": 83, "test_data": [83, 86, 87, 99, 102, 104, 106], "deal": [83, 90, 95, 98], "feel": [83, 88, 90, 97], "ask": [83, 97], "slack": [83, 97], "project": [83, 98, 106], "welcom": 83, "commun": [83, 97], "guidelin": [83, 103], "piec": 83, "smart": [83, 86, 87, 90, 91, 93, 94, 96, 97, 99, 102, 104, 106], "edit": [83, 97, 98], "unreli": [83, 86, 88, 93, 94, 95, 98], "link": [83, 88, 96, 103], "older": 84, "outlin": 84, "substitut": [84, 98], "v2": [84, 86, 93], "get_noise_indic": 84, "psx": 84, "sorted_index_method": 84, "order_label_error": 84, "label_errors_bool": 84, "latent_estim": 84, "num_label_error": 84, "learningwithnoisylabel": 84, "neatli": 84, "organ": [84, 86, 93, 95, 96, 108], "reorgan": 84, "baseline_method": 84, "incorpor": [84, 99], "research": [84, 99], "polyplex": 84, "terminologi": 84, "label_error": 84, "quickstart": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "sql": [86, 93], "databas": [86, 93], "excel": [86, 93], "parquet": [86, 93], "student": [86, 93, 98, 106, 108], "grade": [86, 93, 98, 106], "exam": [86, 93, 98, 106], "letter": [86, 93, 108], "hundr": [86, 93], "mistak": [86, 87, 91, 93, 94, 98], "extratreesclassifi": 86, "extratre": 86, "Then": [86, 87, 91, 97], "ranked_label_issu": [86, 87], "branch": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "standardscal": [86, 93, 98, 104], "labelencod": [86, 87, 98], "train_test_split": [86, 87, 89, 90, 104], "accuracy_scor": [86, 87, 88, 94, 98, 99], "grades_data": [86, 93], "read_csv": [86, 87, 93, 94, 95, 98, 106], "demo": [86, 90, 93, 102], "stud_id": [86, 93, 98], "exam_1": [86, 93, 98, 106], "exam_2": [86, 93, 98, 106], "exam_3": [86, 93, 98, 106], "letter_grad": [86, 93], "f48f73": [86, 93], "53": [86, 89, 90, 93, 95, 96, 98, 102, 103], "00": [86, 89, 90, 93, 95, 96, 98, 104], "77": [86, 89, 90, 93, 98, 103], "0bd4e7": [86, 93], "81": [86, 93, 94, 98, 103, 106, 108], "great": [86, 93, 96, 98], "particip": [86, 93, 98], "cb9d7a": [86, 93], "61": [86, 93, 95, 99, 103, 106], "94": [86, 93, 96, 98, 99, 103, 106], "9acca4": [86, 93], "48": [86, 93, 95, 96, 99, 103], "x_raw": [86, 93], "labels_raw": 86, "interg": [86, 87], "categorical_featur": [86, 106], "x_encod": [86, 93], "get_dummi": [86, 93, 106], "drop_first": [86, 93], "numeric_featur": [86, 93], "scaler": [86, 93, 104], "x_process": [86, 93], "fit_transform": [86, 93, 95, 98], "bring": [86, 87, 91, 93, 94, 101, 106], "byod": [86, 87, 91, 93, 94, 101, 106], "tress": 86, "held": [86, 88, 93, 94, 96, 103, 104, 105], "straightforward": [86, 88, 93], "benefit": [86, 88, 105, 107], "num_crossval_fold": [86, 88, 93, 98, 101], "tabl": [86, 93, 96, 101], "212": [86, 98, 99], "iloc": [86, 87, 88, 93, 94, 98, 106], "92": [86, 89, 98, 99, 103], "93": [86, 96, 98, 103, 106], "827": 86, "99": [86, 95, 96, 98, 99], "86": [86, 90, 91, 93, 98, 99, 103, 106], "74": [86, 95, 98, 103, 106], "637": [86, 93], "79": [86, 96, 98, 103], "65": [86, 89, 95, 98, 103], "cheat": [86, 98], "0pt": [86, 98], "120": [86, 89, 90, 98], "233": 86, "83": [86, 98, 99, 103, 106, 108], "76": [86, 98, 99, 102, 103, 106], "suspici": [86, 93], "carefulli": [86, 91, 93, 94, 98], "examin": [86, 89, 90, 93, 95, 98, 103], "labels_train": 86, "labels_test": 86, "test_siz": [86, 87, 89, 90], "acc_og": [86, 87], "783068783068783": 86, "robustli": [86, 87, 106], "14": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [86, 87], "8095238095238095": 86, "blindli": [86, 87, 88, 97, 98, 106], "trust": [86, 87, 88, 97, 98, 99, 101, 105, 106], "effort": [86, 87, 98, 106], "cumbersom": [86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "intent": [87, 94], "servic": [87, 94, 97], "onlin": [87, 94], "bank": [87, 94, 96], "banking77": [87, 94], "oo": [87, 94], "categori": [87, 91, 94, 95, 98], "shortlist": [87, 94, 106], "scope": [87, 94], "logist": [87, 89, 90, 94, 101, 104], "probabilit": [87, 88], "drop": [87, 93, 95, 97, 98, 101, 106], "sentence_transform": [87, 94], "sentencetransform": [87, 94], "payment": [87, 94], "cancel_transf": [87, 94], "transfer": [87, 94], "fund": [87, 94], "cancel": [87, 94], "transact": [87, 94], "my": [87, 94], "revert": [87, 94], "morn": [87, 94], "realis": [87, 94], "yesterdai": [87, 94], "rent": [87, 94], "tomorrow": [87, 94], "raw_text": [87, 94], "raw_label": 87, "raw_train_text": 87, "raw_test_text": 87, "raw_train_label": 87, "raw_test_label": 87, "lost_or_stolen_phon": [87, 94], "apple_pay_or_google_pai": [87, 94], "visa_or_mastercard": [87, 94], "card_about_to_expir": [87, 94], "card_payment_fee_charg": [87, 94], "getting_spare_card": [87, 94], "beneficiary_not_allow": [87, 94], "change_pin": [87, 94], "supported_cards_and_curr": [87, 94], "card": [87, 94, 96], "utter": [87, 94], "encond": 87, "test_label": [87, 98, 99, 102, 104], "suit": [87, 94, 95, 96, 97], "electra": [87, 94], "discrimin": [87, 94], "googl": [87, 94], "train_text": 87, "test_text": 87, "home": [87, 94, 96], "runner": [87, 94], "google_electra": [87, 94], "pool": [87, 94, 97, 104], "leverag": [87, 88, 94, 97, 99, 101], "computation": [87, 88, 94], "intens": [87, 88, 94], "400": [87, 94, 98], "858371": 87, "547274": 87, "826228": 87, "966008": 87, "792449": 87, "identified_issu": [87, 106], "lowest_quality_label": [87, 88, 94, 99, 106], "to_numpi": [87, 94, 95, 98, 106], "44": [87, 95, 96, 102, 103, 108], "646": 87, "390": 87, "628": 87, "121": [87, 99], "702": 87, "863": 87, "135": 87, "337": [87, 98, 103], "735": 87, "print_as_df": 87, "inverse_transform": 87, "charg": [87, 94], "cash": [87, 94], "holidai": [87, 94], "sent": [87, 94, 95, 108], "mine": [87, 94], "expir": [87, 94], "fight": 87, "hors": [87, 96, 104], "duck": [87, 96], "me": [87, 94, 95], "whoever": [87, 94], "consum": [87, 106], "18": [87, 88, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "baseline_model": [87, 106], "87": [87, 90, 91, 98, 103, 106], "acceler": [87, 106], "19": [87, 88, 91, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "89": [87, 89, 93, 98, 103, 106], "spoken": 88, "500": [88, 95, 98, 104, 108], "english": [88, 96], "pronunci": 88, "wav": 88, "huggingfac": [88, 89, 90, 91, 97], "voxceleb": 88, "speech": [88, 108], "your_pred_prob": [88, 89, 90, 93, 94], "tensorflow_io": 88, "huggingface_hub": 88, "reproduc": [88, 93, 95, 98, 99, 101], "command": 88, "wget": [88, 95, 103, 107, 108], "navig": 88, "browser": 88, "jakobovski": 88, "archiv": [88, 108], "v1": 88, "tar": [88, 104], "gz": [88, 104], "mkdir": [88, 108], "spoken_digit": 88, "xf": 88, "6_nicolas_32": 88, "data_path": 88, "listdir": 88, "nondeterminist": 88, "file_nam": 88, "endswith": 88, "file_path": 88, "join": [88, 91, 95, 97, 98], "7_george_26": 88, "0_nicolas_24": 88, "0_nicolas_6": 88, "listen": 88, "display_exampl": 88, "expand": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "pulldown": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "colab": [88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 88, "pathlib": 88, "ipython": [88, 95], "load_wav_16k_mono": 88, "filenam": 88, "khz": 88, "file_cont": 88, "read_fil": 88, "sample_r": 88, "decode_wav": 88, "desired_channel": 88, "squeez": 88, "rate_in": 88, "rate_out": 88, "16000": 88, "wav_file_nam": 88, "audio_r": 88, "wav_file_exampl": 88, "plai": [88, 96, 97], "button": 88, "wav_file_name_exampl": 88, "7_jackson_43": 88, "hear": 88, "extractor": 88, "encoderclassifi": 88, "spkrec": 88, "xvect": 88, "feature_extractor": 88, "from_hparam": 88, "run_opt": 88, "uncom": [88, 95], "ffmpeg": 88, "backend": 88, "wav_audio_file_path": 88, "torchaudio": 88, "extract_audio_embed": 88, "emb": [88, 91], "signal": 88, "encode_batch": 88, "embeddings_list": [88, 91], "embeddings_arrai": 88, "512": [88, 91], "196311": 88, "319459": 88, "478975": 88, "2890875": 88, "8170238": 88, "89265": 88, "898056": 88, "256195": 88, "559641": 88, "559721": 88, "62067": 88, "285245": 88, "21": [88, 89, 95, 96, 98, 99, 103, 106, 108], "709627": 88, "5033693": 88, "913803": 88, "819831": 88, "1831515": 88, "208763": 88, "084257": 88, "3210397": 88, "005453": 88, "216152": 88, "478235": 88, "6821785": 88, "053807": 88, "242471": 88, "091424": 88, "78334856": 88, "03954": 88, "23": [88, 91, 95, 96, 98, 99, 103, 106], "569176": 88, "761097": 88, "1258295": 88, "753237": 88, "3508866": 88, "598274": 88, "23712": 88, "2500": 88, "tol": 88, "decreas": [88, 97], "cv_accuraci": 88, "9708": 88, "issue_type_descript": [88, 89, 90, 91, 93, 94, 98, 99], "lt": [88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 104], "gt": [88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 108], "9976": 88, "986": 88, "002161": 88, "176": [88, 96, 99, 102], "002483": 88, "2318": 88, "004411": 88, "1005": 88, "004857": 88, "1871": 88, "007494": 88, "040587": 88, "999207": 88, "999377": 88, "975220": 88, "999367": 88, "identified_label_issu": [88, 94], "516": [88, 98], "1946": 88, "469": 88, "2132": 88, "worth": [88, 99], "6_yweweler_25": 88, "7_nicolas_43": 88, "6_theo_27": 88, "6_yweweler_36": 88, "6_yweweler_14": 88, "6_yweweler_35": 88, "6_nicolas_8": 88, "sound": 88, "quit": [88, 104], "underneath": 89, "hood": [89, 95, 97], "alert": 89, "introduct": 89, "mayb": [89, 90, 94], "your_feature_matrix": [89, 90], "toi": [89, 90, 91, 95, 96, 99, 101, 105], "inf": [89, 90], "mid": [89, 90], "bins_map": [89, 90], "create_data": [89, 90], "y_bin": [89, 90], "y_i": [89, 90], "y_bin_idx": [89, 90], "y_train": [89, 90, 99, 106], "y_test": [89, 90, 99, 106], "y_train_idx": [89, 90], "y_test_idx": [89, 90], "slide": [89, 90, 96], "frame": [89, 90], "x_out": [89, 90], "tini": [89, 90], "concaten": [89, 90, 105], "y_out": [89, 90], "y_out_bin": [89, 90], "y_out_bin_idx": [89, 90], "exact_duplicate_idx": [89, 90], "x_duplic": [89, 90], "y_duplic": [89, 90], "y_duplicate_idx": [89, 90], "noisy_labels_idx": [89, 90, 102], "scatter": [89, 90, 95, 99, 102, 106], "black": [89, 90, 96, 106], "cyan": [89, 90], "plot_data": [89, 90, 95, 99, 102, 106], "fig": [89, 90, 91, 96, 104, 106], "ax": [89, 90, 91, 95, 104, 106], "subplot": [89, 90, 91, 104], "set_titl": [89, 90, 91, 104], "set_xlabel": [89, 90], "x_1": [89, 90], "fontsiz": [89, 90, 91, 95, 99, 102], "set_ylabel": [89, 90], "x_2": [89, 90], "set_xlim": [89, 90], "set_ylim": [89, 90], "linestyl": [89, 90, 95], "circl": [89, 90, 99, 102], "misclassifi": [89, 90], "zip": [89, 90, 91, 95, 103, 108], "label_err": [89, 90], "180": [89, 90, 95, 103], "marker": [89, 90], "facecolor": [89, 90, 95], "edgecolor": [89, 90, 95], "linewidth": [89, 90, 95, 104], "dup": [89, 90], "first_legend": [89, 90], "align": [89, 90], "title_fontproperti": [89, 90], "semibold": [89, 90], "second_legend": [89, 90], "45": [89, 90, 95, 96, 98, 99, 103], "gca": [89, 90], "add_artist": [89, 90], "tight_layout": [89, 90, 95], "ideal": [89, 90], "remaind": 89, "modal": [89, 90, 97, 98, 101], "132": [89, 90, 98, 99, 103], "9318": 89, "006940": 89, "007830": 89, "40": [89, 90, 94, 95, 96, 98], "014828": 89, "107": [89, 90, 99, 102], "021241": 89, "026407": 89, "notic": [89, 99, 101, 103], "3558": [89, 90], "126": [89, 90, 99, 103], "006636": [89, 90], "130": [89, 90], "012571": [89, 90], "129": [89, 90], "127": [89, 90, 98], "014909": [89, 90], "128": [89, 90, 91], "017443": [89, 90], "6160": [89, 90], "131": [89, 90, 98, 107], "000000e": [89, 90, 98], "000002": [89, 90], "463180e": [89, 90], "07": [89, 90, 91, 93, 95, 99, 103, 106], "51": [89, 90, 93, 95, 96, 99, 103], "161148": [89, 90], "859087e": [89, 90], "30": [89, 90, 91, 95, 96, 97, 98, 102, 107, 108], "3453": 89, "029542": 89, "031182": 89, "057961": 89, "058244": 89, "54": [89, 95, 96, 99, 103, 108], "039122": 89, "044598": 89, "105": [89, 103], "105196": 89, "133654": 89, "43": [89, 95, 96, 98, 99, 103], "168033": 89, "125": 89, "101107": 89, "183382": 89, "109": [89, 95, 96, 98, 103], "209259": 89, "211042": 89, "221316": 89, "average_ood_scor": 89, "34530442089193386": 89, "52": [89, 95, 96, 98, 103, 108], "169820": 89, "087324e": 89, "259024": 89, "583757e": 89, "91": [89, 98, 103], "346458": 89, "341292e": 89, "specfi": 89, "new_lab": 89, "scoring_funct": 89, "div": 89, "rem": 89, "inv_scal": 89, "49": [89, 95, 96, 99, 103, 108], "superstitionissuemanag": 89, "unlucki": 89, "superstit": 89, "to_seri": 89, "issues_mask": 89, "summary_scor": 89, "9242": 89, "is_superstition_issu": 89, "superstition_scor": 89, "26": [89, 91, 95, 96, 98, 99, 101, 103, 108], "047581": 89, "090635": 89, "129591": 89, "164840": 89, "lurk": [90, 91, 98, 99], "thoroughli": 90, "8561": 90, "001908": 90, "003564": 90, "007331": 90, "008963": 90, "009664": 90, "0227": 90, "022727": 90, "conceptu": 90, "856061": 90, "355772": 90, "616034": 90, "821750": 90, "926818": 90, "betweeen": 90, "859131": 90, "417707": 90, "664083": 90, "970324": 90, "816953": 90, "375317": 90, "641516": 90, "890575": 90, "910232": 90, "531021": 90, "460593": 90, "601188": 90, "826147": 90, "752808": 90, "321635": 90, "562539": 90, "948362": 90, "890169": 90, "090243": 90, "472909": 90, "746763": 90, "878267": 90, "examples_w_issu": [90, 97], "013445": 90, "025184": 90, "026376": 90, "inde": [90, 94], "miscellan": [90, 92, 108], "428571": 90, "111111": 90, "571429": 90, "407407": 90, "592593": 90, "337838": 90, "092593": 90, "662162": 90, "333333": [90, 96], "952381": 90, "666667": [90, 95], "portion": 90, "huge": [90, 99], "worri": [90, 94, 98], "critic": [90, 105], "60": [91, 95, 99, 106], "torchvis": [91, 95, 104], "tensordataset": 91, "stratifiedkfold": [91, 102], "tqdm": 91, "autonotebook": 91, "math": [91, 98], "fashion_mnist": 91, "num_row": 91, "60000": 91, "transformed_dataset": 91, "with_format": 91, "255": [91, 96], "cpu_count": 91, "torch_dataset": 91, "quick": [91, 102, 104], "super": 91, "relu": 91, "batchnorm2d": 91, "maxpool2d": 91, "lazylinear": 91, "flatten": 91, "get_test_accuraci": 91, "testload": [91, 104], "energi": 91, "trainload": [91, 104], "n_epoch": 91, "patienc": 91, "criterion": 91, "crossentropyloss": 91, "adamw": 91, "best_test_accuraci": 91, "start_epoch": 91, "running_loss": 91, "best_epoch": 91, "end_epoch": 91, "3f": [91, 106], "acc": [91, 99], "time_taken": 91, "compute_embed": 91, "compute_pred_prob": 91, "train_batch_s": 91, "num_work": 91, "worker": [91, 108], "train_id_list": 91, "test_id_list": 91, "train_id": 91, "test_id": 91, "embeddings_model": 91, "ntrain": 91, "trainset": 91, "testset": 91, "pin_memori": 91, "fold_embed": 91, "fold_pred_prob": 91, "finish": 91, "482": 91, "720": 91, "447": 91, "329": [91, 93, 98, 103], "88": [91, 96, 98, 99, 102, 103, 106], "195": [91, 95, 98], "931": 91, "493": 91, "060": 91, "921": 91, "330": [91, 98, 103], "505": 91, "694": 91, "476": [91, 98], "340": [91, 98], "072": 91, "328": [91, 103], "310": 91, "779": 91, "reorder": 91, "hstack": [91, 97, 99, 101], "vision": 91, "max_preval": [91, 95], "7714": 91, "3772": 91, "3585": 91, "166": 91, "3651": 91, "27080": 91, "873833e": 91, "40378": 91, "915575e": 91, "25316": 91, "390277e": 91, "06": [91, 98, 99, 103, 108], "2090": 91, "751164e": 91, "14999": 91, "881301e": 91, "9569": 91, "11262": 91, "000003": 91, "coat": [91, 96], "shirt": [91, 96], "19228": 91, "000010": 91, "dress": 91, "32657": 91, "000013": 91, "bag": [91, 96, 104, 105], "21282": 91, "000016": [91, 98], "53564": 91, "000018": [91, 98], "pullov": 91, "6321": 91, "30968": 91, "001267": 91, "30659": 91, "000022": [91, 108], "47824": 91, "001454": 91, "3370": 91, "000026": 91, "54565": 91, "001854": 91, "9762": 91, "258": 91, "47139": 91, "000033": 91, "166980": 91, "986195": 91, "997205": 91, "sandal": [91, 96], "948781": 91, "999358": 91, "54078": 91, "17371": 91, "000025": 91, "plot_label_issue_exampl": 91, "ncol": [91, 104], "nrow": [91, 104], "ceil": [91, 98], "axes_list": 91, "label_issue_indic": 91, "gl": 91, "sl": 91, "fontdict": 91, "imshow": [91, 104], "cmap": [91, 95, 106], "grai": 91, "subplots_adjust": 91, "hspace": 91, "outsiz": 91, "outlier_issu": [91, 94], "outlier_issues_df": 91, "depict": [91, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 91, "n_comparison_imag": 91, "sample_from_class": 91, "number_of_sampl": 91, "non_outlier_indic": 91, "isnul": [91, 95], "non_outlier_indices_excluding_curr": 91, "sampled_indic": 91, "label_scores_of_sampl": 91, "top_score_indic": 91, "top_label_indic": 91, "sampled_imag": 91, "get_image_given_label_and_sampl": 91, "image_from_dataset": 91, "corresponding_label": 91, "comparison_imag": 91, "images_to_plot": 91, "idlist": 91, "iterrow": 91, "near_duplicate_issu": [91, 97], "closest": 91, "counterpart": 91, "near_duplicate_issues_df": 91, "plot_near_duplicate_issue_exampl": 91, "seen_id_pair": 91, "get_image_and_given_label_and_predicted_label": 91, "duplicate_imag": 91, "nd_set": 91, "challeng": 91, "dark_issu": 91, "reveal": [91, 103, 107], "dark_issues_df": 91, "is_dark_issu": [91, 95], "34848": 91, "203922": 91, "50270": 91, "204588": 91, "3936": 91, "213098": 91, "733": 91, "217686": 91, "8094": 91, "230118": 91, "plot_image_issue_exampl": 91, "difficult": 91, "disproportion": [91, 95], "lowinfo_issu": 91, "lowinfo_issues_df": 91, "is_low_information_issu": 91, "53050": 91, "067975": 91, "40875": 91, "089929": 91, "9594": 91, "092601": 91, "34825": 91, "107744": 91, "37530": 91, "108516": 91, "lot": 91, "workflow": [92, 97, 98, 100, 106], "histgradientboostingclassifi": 93, "cat_featur": 93, "boost": [93, 97, 101, 106], "xgboost": [93, 97, 98, 106], "think": [93, 94, 97, 102, 107, 108], "nonzero": 93, "358": 93, "941": 93, "294": [93, 103], "46": [93, 95, 96, 98, 99, 103], "7109": 93, "000005": [93, 94], "886": 93, "000059": 93, "709": [93, 98], "000104": 93, "000169": 93, "689": 93, "000181": 93, "3590": 93, "051882e": 93, "683133e": 93, "536582e": 93, "406589e": 93, "324246e": 93, "6165": 93, "582": [93, 98], "185": [93, 95, 96, 103], "187": [93, 96, 98], "898": 93, "0000": [93, 94, 96, 98, 99], "865": 93, "515002": 93, "837": 93, "556480": 93, "622": 93, "593068": 93, "593207": 93, "920": 93, "618041": 93, "4386345844794593e": 93, "issue_result": 93, "000842": 93, "555944": 93, "004374": 93, "sorted_issu": 93, "73": [93, 95, 96, 98, 102, 103, 106], "deserv": 93, "outlier_result": 93, "sorted_outli": 93, "56": [93, 95, 96, 106], "96": [93, 95, 96, 98, 99, 102, 103, 106], "style": [93, 95, 107], "font": 93, "18px": 93, "ff00ff": 93, "bac": 93, "duplicate_result": 93, "lowest_scoring_dupl": 93, "idxmin": [93, 97], "indices_to_displai": 93, "tolist": [93, 97, 98, 102], "perhap": [93, 99, 101], "second_lowest_scoring_dupl": 93, "next_indices_to_displai": 93, "wari": [93, 94, 97], "your_featur": 94, "text_embed": 94, "data_dict": [94, 99, 101], "85": [94, 98, 103], "38": [94, 95, 96, 103], "9710": 94, "981": 94, "974": 94, "000146": 94, "982": [94, 96], "000224": 94, "971": 94, "000507": 94, "980": [94, 96], "000960": 94, "3584": 94, "994": 94, "009642": 94, "999": 94, "013067": 94, "013841": 94, "433": 94, "014722": 94, "989": 94, "018224": 94, "6070": 94, "160": [94, 106], "095724": 94, "148": 94, "006237": 94, "546": [94, 98], "099341": 94, "514": 94, "006485": 94, "481": 94, "123418": 94, "008165": 94, "313": [94, 98, 103], "564102": 94, "572258": 94, "574915": 94, "31": [94, 95, 96, 98, 99, 101, 103], "575507": 94, "575874": 94, "792090": 94, "257611": 94, "698710": 94, "182121": 94, "771619": 94, "data_with_suggested_label": 94, "suggested_label": 94, "withdraw": 94, "monei": 94, "lowest_quality_outli": 94, "OR": 94, "636c65616e6c616220697320617765736f6d6521": 94, "phone": [94, 96], "gone": 94, "samp": 94, "br": 94, "press": [94, 108], "nonsens": 94, "sens": 94, "detriment": 94, "duplicate_issu": 94, "fee": 94, "go": [94, 95, 96, 99], "p_valu": 94, "benign": 94, "curat": [94, 100], "bigger": 95, "make_classif": 95, "5000": [95, 104], "n_featur": 95, "n_inform": 95, "n_redund": 95, "n_repeat": 95, "n_class": 95, "n_clusters_per_class": 95, "flip_i": 95, "class_sep": 95, "faiss": 95, "x_faiss": 95, "float32": [95, 103], "normalize_l2": 95, "index_factori": 95, "hnsw32": 95, "flat": [95, 96], "metric_inner_product": 95, "a_min": 95, "a_max": 95, "create_knn_graph": 95, "assert": 95, "indices_1d": 95, "ravel": 95, "distances_1d": 95, "sort_graph_by_row_valu": 95, "warn_when_not_sort": 95, "50000": 95, "523": [95, 98], "991400": 95, "356958": 95, "362": 95, "619565": 95, "108": [95, 103], "500000": 95, "651838": 95, "999827": 95, "031217": 95, "933716": 95, "627345": 95, "998540": 95, "530909": 95, "296974": 95, "646765": 95, "942721": 95, "332824": 95, "803246": 95, "625202": 95, "999816": 95, "474031": 95, "706253": 95, "655108": 95, "997703": 95, "131466": 95, "912389": 95, "639200": 95, "4995": 95, "998646": 95, "504755": 95, "746777": 95, "680033": 95, "4996": 95, "894230": 95, "340986": 95, "816472": 95, "640711": 95, "4997": 95, "999100": 95, "428545": 95, "592421": 95, "658949": 95, "4998": 95, "986792": 95, "273710": 95, "618033": 95, "4999": 95, "986776": 95, "273524": 95, "618084": 95, "instabl": 95, "proxim": 95, "analys": 95, "comfort": 95, "explor": [95, 103, 104], "third": 95, "parti": [95, 108], "newsgroup": 95, "alt": [95, 96], "atheism": [95, 96], "sci": [95, 96], "fetch_20newsgroup": 95, "newsgroups_train": 95, "header": 95, "footer": 95, "quot": 95, "df_text": 95, "target_nam": 95, "enlighten": 95, "omnipot": 95, "19apr199320262420": 95, "kelvin": 95, "jpl": 95, "nasa": 95, "gov": 95, "baa": 95, "nhenri": 95, "he": 95, "nno": 95, "ge": 95, "nlucki": 95, "babi": [95, 96], "tfidfvector": 95, "feature_extract": 95, "x_vector": 95, "data_valuation_issu": 95, "147": [95, 99, 103], "500047": 95, "500093": 95, "499953": 95, "1068": 95, "1069": 95, "1070": 95, "1071": 95, "1072": 95, "1073": 95, "concentr": 95, "seaborn": 95, "sn": 95, "distinguish": [95, 98], "strip": 95, "stripplot": 95, "hue": [95, 106], "dodg": 95, "jitter": 95, "axvlin": [95, 104], "xlabel": 95, "ourselv": 95, "make_blob": 95, "center": [95, 96], "cluster_std": 95, "n_noisy_label": 95, "meaning": [95, 97, 98, 104], "silhouette_scor": 95, "gridsearchcv": 95, "silhouett": 95, "cluster_label": 95, "fit_predict": 95, "param_grid": [95, 98], "grid_search": 95, "best_kmean": 95, "best_estimator_": 95, "underperforming_group_issu": 95, "328308": 95, "tab10": 95, "domain": 95, "knowledg": [95, 99], "dataset_tsv": 95, "ag": [95, 106], "gender": 95, "educ": 95, "experi": 95, "highsalari": 95, "indiana": 95, "phd": 95, "male": 95, "bachelor": 95, "femal": 95, "kansa": 95, "school": [95, 96], "ohio": 95, "57": [95, 96, 98, 99], "california": 95, "59": [95, 96, 103], "34": [95, 96, 99, 101, 103, 108], "63": [95, 98, 99, 103, 106], "47": [95, 96, 103], "stringio": 95, "sep": [95, 108], "easier": [95, 99], "simplic": [95, 102], "ordinalencod": 95, "columns_to_encod": 95, "encoded_df": 95, "salari": 95, "573681": 95, "underpin": 95, "caught": 95, "whenev": 95, "generate_data_depend": 95, "num_sampl": 95, "a1": 95, "a2": 95, "a3": 95, "375": 95, "975": 95, "non_iid_issu": 95, "796474": 95, "842432": 95, "922562": 95, "820759": 95, "873136": 95, "887373": 95, "825101": 95, "855875": 95, "751795": 95, "835796": 95, "ylabel": [95, 104], "coolwarm": 95, "colorbar": [95, 106], "strong": 95, "evid": [95, 98], "inter": 95, "mitig": 95, "risk": [95, 98], "deeper": 95, "tsv": 95, "tab": 95, "pars": 95, "annual_spend": 95, "number_of_transact": 95, "last_purchase_d": 95, "rural": 95, "4099": 95, "2024": [95, 108], "6421": 95, "nat": 95, "suburban": 95, "5436": 95, "4046": 95, "66": [95, 96, 98], "3467": 95, "67": [95, 96, 98, 103, 106], "4757": 95, "4199": 95, "4991": 95, "4655": 95, "82": [95, 96, 98, 99, 103, 106], "5584": 95, "urban": 95, "3102": 95, "6637": 95, "9167": 95, "6790": 95, "5327": 95, "parse_d": 95, "lose": 95, "intact": 95, "encode_categorical_column": 95, "placehold": 95, "dropna": [95, 101], "category_to_numb": 95, "_encod": 95, "gender_encod": 95, "location_encod": 95, "focus": [95, 98, 99, 101, 102, 106], "null_issu": 95, "833333": 95, "sorted_indic": [95, 103], "sorted_df": 95, "nice": 95, "styler": 95, "combined_df": 95, "concat": [95, 98, 106], "highlight_null_valu": 95, "val": [95, 99], "yellow": [95, 96], "highlight_datalab_column": 95, "lightblu": 95, "highlight_is_null_issu": 95, "orang": [95, 96], "styled_df": 95, "nbsp": [95, 97, 98, 99], "160000": 95, "820000": 95, "460000": 95, "470000": 95, "960000": 95, "620000": 95, "550000": 95, "660000": 95, "670000": [95, 96], "370000": 95, "530000": 95, "710000": 95, "020000": 95, "320000": 95, "990000": 95, "rarer": 95, "fairer": 95, "randomli": [95, 98, 99], "class_imbalance_issu": 95, "countplot": 95, "xtick": 95, "rotat": 95, "ytick": 95, "filtered_df": 95, "xy": 95, "va": 95, "textual": 95, "get_ytick": 95, "nbar": 95, "nimbal": 95, "get_legend_handles_label": 95, "title_fonts": 95, "aspect": 95, "anomali": [95, 103], "enhanc": [95, 99, 101, 103], "artifici": 95, "directori": [95, 108], "subdirectori": 95, "nc": [95, 103, 107, 108], "unzip": [95, 103, 108], "199": [95, 98, 103], "111": [95, 101, 106], "153": [95, 98, 103], "110": [95, 103], "connect": [95, 108], "443": [95, 108], "await": [95, 108], "ok": [95, 105, 108], "986707": 95, "964k": 95, "963": 95, "58k": 95, "kb": [95, 108], "005": 95, "189": [95, 96, 99], "mb": [95, 108], "imagefold": 95, "load_image_dataset": 95, "data_dir": 95, "root": [95, 104], "image_dataset": 95, "img": [95, 104, 106], "from_dict": [95, 97], "darkened_imag": 95, "job": 95, "015": 95, "label_uncorrelatedness_scor": 95, "image_issu": 95, "nimag": 95, "237196": 95, "197229": 95, "254188": 95, "229170": 95, "208907": 95, "793840": 95, "196": [95, 98, 99, 103], "197": [95, 99, 103], "971560": 95, "198": [95, 99, 103], "862236": 95, "973533": 95, "stronger": 95, "frog": [95, 96, 104], "darken": 95, "concept": 95, "notabl": 95, "preval": 95, "warrant": 95, "programmat": 95, "plot_scores_label": 95, "issues_copi": 95, "boxplot": 95, "refin": 96, "instruct": [96, 97, 98], "studi": [96, 103], "mnist_test_set": 96, "imagenet_val_set": 96, "tench": 96, "goldfish": 96, "white": [96, 108], "shark": 96, "tiger": 96, "hammerhead": 96, "electr": 96, "rai": 96, "stingrai": 96, "cock": 96, "hen": 96, "ostrich": 96, "brambl": 96, "goldfinch": 96, "hous": 96, "finch": 96, "junco": 96, "indigo": 96, "bunt": 96, "american": [96, 108], "robin": 96, "bulbul": 96, "jai": 96, "magpi": 96, "chickade": 96, "dipper": 96, "kite": 96, "bald": 96, "eagl": 96, "vultur": 96, "grei": 96, "owl": 96, "salamand": 96, "smooth": 96, "newt": 96, "spot": [96, 97, 103], "axolotl": 96, "bullfrog": 96, "tree": 96, "tail": 96, "loggerhead": 96, "sea": 96, "turtl": 96, "leatherback": 96, "mud": 96, "terrapin": 96, "band": 96, "gecko": 96, "green": [96, 108], "iguana": 96, "carolina": 96, "anol": 96, "desert": 96, "grassland": 96, "whiptail": 96, "lizard": 96, "agama": 96, "frill": 96, "neck": 96, "allig": 96, "gila": 96, "monster": 96, "european": 96, "chameleon": 96, "komodo": 96, "dragon": 96, "nile": 96, "crocodil": 96, "triceratop": 96, "worm": 96, "snake": 96, "ring": 96, "eastern": 96, "hog": 96, "nose": 96, "kingsnak": 96, "garter": 96, "water": 96, "vine": 96, "night": 96, "boa": 96, "constrictor": 96, "african": 96, "rock": 96, "indian": 96, "cobra": 96, "mamba": 96, "saharan": 96, "horn": 96, "viper": 96, "diamondback": 96, "rattlesnak": 96, "sidewind": 96, "trilobit": 96, "harvestman": 96, "scorpion": 96, "garden": 96, "spider": 96, "barn": 96, "southern": 96, "widow": 96, "tarantula": 96, "wolf": 96, "tick": 96, "centiped": 96, "grous": 96, "ptarmigan": 96, "ruf": 96, "prairi": 96, "peacock": 96, "quail": 96, "partridg": 96, "parrot": 96, "macaw": 96, "sulphur": 96, "crest": 96, "cockatoo": 96, "lorikeet": 96, "coucal": 96, "bee": 96, "eater": 96, "hornbil": 96, "hummingbird": 96, "jacamar": 96, "toucan": 96, "breast": 96, "mergans": 96, "goos": 96, "swan": 96, "tusker": 96, "echidna": 96, "platypu": 96, "wallabi": 96, "koala": 96, "wombat": 96, "jellyfish": 96, "anemon": 96, "brain": 96, "coral": 96, "flatworm": 96, "nematod": 96, "conch": 96, "snail": 96, "slug": 96, "chiton": 96, "chamber": 96, "nautilu": 96, "dung": 96, "crab": 96, "fiddler": 96, "king": 96, "lobster": 96, "spini": 96, "crayfish": 96, "hermit": 96, "isopod": 96, "stork": 96, "spoonbil": 96, "flamingo": 96, "heron": 96, "egret": 96, "bittern": 96, "crane": 96, "bird": [96, 104], "limpkin": 96, "gallinul": 96, "coot": 96, "bustard": 96, "ruddi": 96, "turnston": 96, "dunlin": 96, "redshank": 96, "dowitch": 96, "oystercatch": 96, "pelican": 96, "penguin": 96, "albatross": 96, "whale": 96, "killer": 96, "dugong": 96, "lion": 96, "chihuahua": 96, "japanes": 96, "chin": 96, "maltes": 96, "pekinges": 96, "shih": 96, "tzu": 96, "charl": 96, "spaniel": 96, "papillon": 96, "terrier": 96, "rhodesian": 96, "ridgeback": 96, "afghan": [96, 108], "hound": 96, "basset": 96, "beagl": 96, "bloodhound": 96, "bluetick": 96, "coonhound": 96, "tan": 96, "walker": 96, "foxhound": 96, "redbon": 96, "borzoi": 96, "irish": 96, "wolfhound": 96, "italian": 96, "greyhound": 96, "whippet": 96, "ibizan": 96, "norwegian": 96, "elkhound": 96, "otterhound": 96, "saluki": 96, "scottish": 96, "deerhound": 96, "weimaran": 96, "staffordshir": 96, "bull": 96, "bedlington": 96, "border": 96, "kerri": 96, "norfolk": 96, "norwich": 96, "yorkshir": 96, "wire": 96, "fox": 96, "lakeland": 96, "sealyham": 96, "airedal": 96, "cairn": 96, "australian": 96, "dandi": 96, "dinmont": 96, "boston": 96, "miniatur": 96, "schnauzer": 96, "giant": 96, "tibetan": 96, "silki": 96, "wheaten": 96, "west": 96, "highland": 96, "lhasa": 96, "apso": 96, "retriev": 96, "curli": 96, "golden": 96, "labrador": 96, "chesapeak": 96, "bai": 96, "german": [96, 108], "shorthair": 96, "pointer": 96, "vizsla": 96, "setter": 96, "gordon": 96, "brittani": 96, "clumber": 96, "springer": 96, "welsh": 96, "cocker": 96, "sussex": 96, "kuvasz": 96, "schipperk": 96, "groenendael": 96, "malinoi": 96, "briard": 96, "kelpi": 96, "komondor": 96, "sheepdog": 96, "shetland": 96, "colli": 96, "bouvier": 96, "de": 96, "flandr": 96, "rottweil": 96, "shepherd": 96, "dobermann": 96, "pinscher": 96, "swiss": [96, 108], "mountain": 96, "bernes": 96, "appenzel": 96, "sennenhund": 96, "entlebuch": 96, "boxer": 96, "bullmastiff": 96, "mastiff": 96, "french": 96, "bulldog": 96, "dane": 96, "st": 96, "bernard": 96, "huski": 96, "alaskan": 96, "malamut": 96, "siberian": 96, "dalmatian": 96, "affenpinsch": 96, "basenji": 96, "pug": 96, "leonberg": 96, "newfoundland": 96, "pyrenean": 96, "samoi": 96, "pomeranian": 96, "chow": 96, "keeshond": 96, "griffon": 96, "bruxelloi": 96, "pembrok": 96, "corgi": 96, "cardigan": 96, "poodl": 96, "mexican": 96, "hairless": 96, "tundra": 96, "coyot": 96, "dingo": 96, "dhole": 96, "wild": 96, "hyena": 96, "kit": 96, "arctic": 96, "tabbi": 96, "persian": 96, "siames": 96, "egyptian": 96, "mau": 96, "cougar": 96, "lynx": 96, "leopard": 96, "snow": 96, "jaguar": 96, "cheetah": 96, "brown": [96, 107], "bear": 96, "polar": 96, "sloth": 96, "mongoos": 96, "meerkat": 96, "beetl": 96, "ladybug": 96, "longhorn": 96, "leaf": 96, "rhinocero": 96, "weevil": 96, "fly": 96, "ant": 96, "grasshopp": 96, "cricket": 96, "stick": 96, "insect": 96, "cockroach": 96, "manti": 96, "cicada": 96, "leafhopp": 96, "lacew": 96, "dragonfli": 96, "damselfli": 96, "admir": 96, "ringlet": 96, "monarch": 96, "butterfli": 96, "gossam": 96, "wing": 96, "starfish": 96, "urchin": 96, "cucumb": 96, "cottontail": 96, "rabbit": 96, "hare": 96, "angora": 96, "hamster": 96, "porcupin": 96, "squirrel": 96, "marmot": 96, "beaver": 96, "guinea": 96, "pig": 96, "sorrel": 96, "zebra": 96, "boar": 96, "warthog": 96, "hippopotamu": 96, "ox": 96, "buffalo": 96, "bison": 96, "bighorn": 96, "sheep": 96, "alpin": 96, "ibex": 96, "hartebeest": 96, "impala": 96, "gazel": 96, "dromedari": 96, "llama": 96, "weasel": 96, "mink": 96, "polecat": 96, "foot": 96, "ferret": 96, "otter": 96, "skunk": 96, "badger": 96, "armadillo": 96, "toed": 96, "orangutan": 96, "gorilla": 96, "chimpanze": 96, "gibbon": 96, "siamang": 96, "guenon": 96, "pata": 96, "monkei": 96, "baboon": 96, "macaqu": 96, "langur": 96, "colobu": 96, "probosci": 96, "marmoset": 96, "capuchin": 96, "howler": 96, "titi": 96, "geoffroi": 96, "lemur": 96, "indri": 96, "asian": 96, "eleph": 96, "bush": 96, "snoek": 96, "eel": 96, "coho": 96, "salmon": 96, "beauti": 96, "clownfish": 96, "sturgeon": 96, "garfish": 96, "lionfish": 96, "pufferfish": 96, "abacu": 96, "abaya": 96, "academ": 96, "gown": 96, "accordion": 96, "acoust": 96, "guitar": 96, "aircraft": 96, "carrier": 96, "airlin": 96, "airship": 96, "altar": 96, "ambul": 96, "amphibi": 96, "clock": [96, 108], "apiari": 96, "apron": 96, "wast": 96, "assault": 96, "rifl": 96, "backpack": 96, "bakeri": 96, "balanc": 96, "beam": 96, "balloon": 96, "ballpoint": 96, "pen": 96, "aid": 96, "banjo": 96, "balust": 96, "barbel": 96, "barber": 96, "chair": [96, 103], "barbershop": 96, "baromet": 96, "barrel": 96, "wheelbarrow": 96, "basebal": 96, "basketbal": 96, "bassinet": 96, "bassoon": 96, "swim": 96, "cap": 96, "bath": 96, "towel": 96, "bathtub": 96, "station": 96, "wagon": 96, "lighthous": 96, "beaker": 96, "militari": 96, "beer": 96, "bottl": 96, "glass": 96, "bell": 96, "cot": 96, "bib": 96, "bicycl": [96, 107], "bikini": 96, "binder": 96, "binocular": 96, "birdhous": 96, "boathous": 96, "bobsleigh": 96, "bolo": 96, "tie": 96, "poke": 96, "bonnet": 96, "bookcas": 96, "bookstor": 96, "bow": 96, "brass": 96, "bra": 96, "breakwat": 96, "breastplat": 96, "broom": 96, "bucket": 96, "buckl": 96, "bulletproof": 96, "vest": 96, "butcher": 96, "shop": 96, "taxicab": 96, "cauldron": 96, "candl": 96, "cannon": 96, "cano": 96, "mirror": [96, 103], "carousel": 96, "carton": 96, "wheel": 96, "teller": 96, "cassett": 96, "player": 96, "castl": 96, "catamaran": 96, "cd": 96, "cello": 96, "mobil": [96, 108], "chain": 96, "fenc": [96, 107], "mail": 96, "chainsaw": 96, "chest": 96, "chiffoni": 96, "chime": 96, "china": 96, "cabinet": 96, "christma": 96, "stock": 96, "church": 96, "movi": 96, "theater": 96, "cleaver": 96, "cliff": 96, "dwell": 96, "cloak": 96, "clog": 96, "cocktail": 96, "shaker": 96, "coffe": 96, "mug": 96, "coffeemak": 96, "coil": 96, "lock": 96, "keyboard": 96, "confectioneri": 96, "ship": [96, 104], "corkscrew": 96, "cornet": 96, "cowboi": 96, "boot": 96, "hat": 96, "cradl": 96, "crash": 96, "helmet": 96, "crate": 96, "infant": 96, "bed": 96, "crock": 96, "pot": 96, "croquet": 96, "crutch": 96, "cuirass": 96, "dam": 96, "desk": 96, "desktop": 96, "rotari": 96, "dial": 96, "telephon": 96, "diaper": 96, "watch": 96, "dine": 96, "dishcloth": 96, "dishwash": 96, "disc": 96, "brake": 96, "dock": 96, "sled": 96, "dome": 96, "doormat": 96, "drill": 96, "rig": 96, "drum": 96, "drumstick": 96, "dumbbel": 96, "dutch": 96, "oven": 96, "fan": 96, "locomot": 96, "entertain": 96, "envelop": 96, "espresso": 96, "powder": 96, "feather": 96, "fireboat": 96, "engin": [96, 107], "screen": 96, "sheet": 96, "flagpol": 96, "flute": 96, "footbal": 96, "forklift": 96, "fountain": 96, "poster": 96, "freight": 96, "fry": 96, "pan": 96, "fur": 96, "garbag": 96, "ga": 96, "pump": 96, "goblet": 96, "kart": 96, "golf": 96, "cart": 96, "gondola": 96, "gong": 96, "grand": 96, "piano": 96, "greenhous": 96, "grill": 96, "groceri": 96, "guillotin": 96, "barrett": 96, "hair": 96, "sprai": 96, "hammer": 96, "dryer": 96, "hand": [96, 99], "handkerchief": 96, "drive": 96, "harmonica": 96, "harp": 96, "harvest": 96, "hatchet": 96, "holster": 96, "honeycomb": 96, "hoop": 96, "skirt": 96, "horizont": 96, "bar": 96, "drawn": 96, "hourglass": 96, "ipod": 96, "cloth": 96, "iron": 96, "jack": 96, "lantern": 96, "jean": 96, "jeep": 96, "jigsaw": 96, "puzzl": 96, "pull": 96, "rickshaw": 96, "joystick": 96, "kimono": 96, "knee": 96, "pad": 96, "knot": 96, "ladl": 96, "lampshad": 96, "laptop": 96, "lawn": 96, "mower": 96, "knife": 96, "lifeboat": 96, "lighter": 96, "limousin": 96, "ocean": 96, "liner": 96, "lipstick": 96, "slip": 96, "shoe": 96, "lotion": 96, "speaker": 96, "loup": 96, "sawmil": 96, "magnet": 96, "compass": 96, "mailbox": 96, "tight": 96, "tank": 96, "manhol": 96, "maraca": 96, "marimba": 96, "maypol": 96, "maze": 96, "cup": [96, 103], "medicin": 96, "megalith": 96, "microphon": 96, "microwav": 96, "milk": 96, "minibu": 96, "miniskirt": 96, "minivan": 96, "missil": 96, "mitten": [96, 97], "mix": 96, "bowl": 96, "modem": 96, "monasteri": 96, "monitor": 96, "mope": 96, "mortar": 96, "mosqu": 96, "mosquito": 96, "scooter": 96, "bike": 96, "tent": 96, "mous": [96, 97], "mousetrap": 96, "van": 96, "muzzl": 96, "nail": 96, "brace": 96, "necklac": 96, "nippl": 96, "obelisk": 96, "obo": 96, "ocarina": 96, "odomet": 96, "oil": 96, "oscilloscop": 96, "overskirt": 96, "bullock": 96, "oxygen": 96, "packet": 96, "paddl": 96, "padlock": 96, "paintbrush": 96, "pajama": 96, "palac": [96, 108], "parachut": 96, "park": 96, "bench": 96, "meter": 96, "passeng": 96, "patio": 96, "payphon": 96, "pedest": 96, "pencil": 96, "perfum": 96, "petri": 96, "dish": 96, "photocopi": 96, "plectrum": 96, "pickelhaub": 96, "picket": 96, "pickup": 96, "pier": 96, "piggi": 96, "pill": 96, "pillow": 96, "ping": 96, "pong": 96, "pinwheel": 96, "pirat": 96, "pitcher": 96, "plane": 96, "planetarium": 96, "plastic": 96, "plate": 96, "rack": 96, "plow": 96, "plunger": 96, "polaroid": 96, "camera": 96, "pole": [96, 107], "polic": 96, "poncho": 96, "billiard": 96, "soda": 96, "potter": 96, "prayer": 96, "rug": 96, "printer": 96, "prison": 96, "projectil": 96, "projector": 96, "hockei": 96, "puck": 96, "punch": 96, "purs": 96, "quill": 96, "quilt": 96, "race": 96, "racket": 96, "radiat": 96, "radio": 96, "telescop": 96, "rain": 96, "recreat": 96, "reel": 96, "reflex": 96, "refriger": 96, "remot": 96, "restaur": 96, "revolv": 96, "rotisseri": 96, "eras": 96, "rugbi": 96, "ruler": 96, "safe": 96, "safeti": 96, "salt": 96, "sarong": 96, "saxophon": 96, "scabbard": 96, "bu": [96, 107], "schooner": 96, "scoreboard": 96, "crt": 96, "screw": 96, "screwdriv": 96, "seat": 96, "belt": 96, "sew": 96, "shield": 96, "shoji": 96, "basket": 96, "shovel": 96, "shower": 96, "curtain": 96, "ski": 96, "sleep": 96, "door": 96, "slot": 96, "snorkel": 96, "snowmobil": 96, "snowplow": 96, "soap": 96, "dispens": 96, "soccer": [96, 108], "sock": [96, 97], "solar": 96, "thermal": 96, "collector": 96, "sombrero": 96, "soup": 96, "heater": 96, "shuttl": 96, "spatula": 96, "motorboat": 96, "web": 96, "spindl": 96, "sport": [96, 108], "spotlight": 96, "stage": 96, "steam": 96, "arch": 96, "bridg": 96, "steel": 96, "stethoscop": 96, "scarf": 96, "stone": 96, "wall": [96, 107], "stopwatch": 96, "stove": 96, "strainer": 96, "tram": 96, "stretcher": 96, "couch": 96, "stupa": 96, "submarin": 96, "sundial": 96, "sunglass": 96, "sunscreen": 96, "suspens": 96, "mop": 96, "sweatshirt": 96, "swimsuit": 96, "swing": 96, "switch": 96, "syring": 96, "lamp": 96, "tape": 96, "teapot": 96, "teddi": 96, "televis": [96, 108], "tenni": 96, "thatch": 96, "roof": 96, "thimbl": 96, "thresh": 96, "throne": 96, "tile": 96, "toaster": 96, "tobacco": 96, "toilet": 96, "totem": 96, "tow": 96, "tractor": 96, "semi": 96, "trailer": 96, "trai": 96, "trench": 96, "tricycl": 96, "trimaran": 96, "tripod": 96, "triumphal": 96, "trolleybu": 96, "trombon": 96, "tub": 96, "turnstil": 96, "typewrit": 96, "umbrella": 96, "unicycl": 96, "upright": 96, "vacuum": 96, "cleaner": [96, 98], "vase": 96, "vault": 96, "velvet": 96, "vend": 96, "vestment": 96, "viaduct": 96, "violin": 96, "volleybal": 96, "waffl": 96, "wallet": 96, "wardrob": 96, "sink": 96, "wash": 96, "jug": 96, "tower": 96, "whiskei": 96, "whistl": 96, "wig": 96, "shade": [96, 107], "windsor": 96, "wine": 96, "wok": 96, "wooden": 96, "spoon": 96, "wool": 96, "rail": 96, "shipwreck": 96, "yawl": 96, "yurt": 96, "websit": 96, "comic": 96, "book": 96, "crossword": 96, "traffic": [96, 103, 107], "sign": [96, 107, 108], "dust": 96, "jacket": [96, 103], "menu": 96, "guacamol": 96, "consomm": 96, "trifl": 96, "ic": 96, "cream": 96, "pop": 96, "baguett": 96, "bagel": 96, "pretzel": 96, "cheeseburg": 96, "mash": 96, "potato": 96, "cabbag": 96, "broccoli": 96, "cauliflow": 96, "zucchini": 96, "spaghetti": 96, "squash": 96, "acorn": 96, "butternut": 96, "artichok": 96, "pepper": [96, 97], "cardoon": 96, "mushroom": 96, "granni": 96, "smith": 96, "strawberri": 96, "lemon": 96, "pineappl": 96, "banana": 96, "jackfruit": 96, "custard": 96, "appl": 96, "pomegran": 96, "hai": 96, "carbonara": 96, "chocol": 96, "syrup": 96, "dough": 96, "meatloaf": 96, "pizza": 96, "pie": 96, "burrito": 96, "eggnog": 96, "alp": 96, "bubbl": 96, "reef": 96, "geyser": 96, "lakeshor": 96, "promontori": 96, "shoal": 96, "seashor": 96, "vallei": 96, "volcano": 96, "bridegroom": 96, "scuba": 96, "diver": 96, "rapese": 96, "daisi": 96, "ladi": 96, "slipper": 96, "corn": 96, "rose": 96, "hip": 96, "chestnut": 96, "fungu": 96, "agar": 96, "gyromitra": 96, "stinkhorn": 96, "earth": 96, "star": 96, "wood": 96, "bolet": 96, "ear": 96, "cifar10_test_set": 96, "airplan": [96, 104], "automobil": [96, 104], "deer": [96, 104], "cifar100_test_set": 96, "aquarium_fish": 96, "boi": 96, "camel": 96, "caterpillar": 96, "cattl": [96, 108], "cloud": 96, "dinosaur": 96, "dolphin": 96, "flatfish": 96, "forest": 96, "girl": 96, "kangaroo": 96, "lawn_mow": 96, "man": 96, "maple_tre": 96, "motorcycl": [96, 107], "oak_tre": 96, "orchid": 96, "palm_tre": 96, "pear": 96, "pickup_truck": 96, "pine_tre": 96, "plain": 96, "poppi": 96, "possum": 96, "raccoon": 96, "road": [96, 107], "rocket": 96, "seal": 96, "shrew": 96, "skyscrap": 96, "streetcar": 96, "sunflow": 96, "sweet_pepp": 96, "trout": 96, "tulip": 96, "willow_tre": 96, "woman": [96, 103], "caltech256": 96, "ak47": 96, "bat": 96, "glove": 96, "birdbath": 96, "blimp": 96, "bonsai": 96, "boom": 96, "breadmak": 96, "buddha": 96, "bulldoz": 96, "cactu": 96, "cake": 96, "tire": 96, "cartman": 96, "cereal": 96, "chandeli": 96, "chess": 96, "board": 96, "chimp": 96, "chopstick": 96, "coffin": 96, "coin": 96, "comet": 96, "cormor": 96, "globe": 96, "diamond": 96, "dice": 96, "doorknob": 96, "drink": 96, "straw": 96, "dumb": 96, "eiffel": 96, "elk": 96, "ewer": 96, "eyeglass": 96, "fern": 96, "fighter": 96, "jet": [96, 106], "extinguish": 96, "hydrant": 96, "firework": 96, "flashlight": 96, "floppi": 96, "fri": 96, "frisbe": 96, "galaxi": 96, "giraff": 96, "goat": 96, "gate": 96, "grape": 96, "pick": [96, 97], "hamburg": 96, "hammock": 96, "harpsichord": 96, "hawksbil": 96, "helicopt": 96, "hibiscu": 96, "homer": 96, "simpson": 96, "horsesho": 96, "air": 96, "skeleton": 96, "ibi": 96, "cone": 96, "iri": 96, "jesu": 96, "christ": 96, "joi": 96, "kayak": 96, "ketch": 96, "ladder": 96, "lath": 96, "licens": 96, "lightbulb": 96, "lightn": 96, "mandolin": 96, "mar": 96, "mattress": 96, "megaphon": 96, "menorah": 96, "microscop": 96, "minaret": 96, "minotaur": 96, "motorbik": 96, "mussel": 96, "neckti": 96, "octopu": 96, "palm": 96, "pilot": 96, "paperclip": 96, "shredder": 96, "pci": 96, "peopl": [96, 103], "pez": 96, "picnic": 96, "pram": 96, "prai": 96, "pyramid": 96, "rainbow": 96, "roulett": 96, "saddl": 96, "saturn": 96, "segwai": 96, "propel": 96, "sextant": 96, "music": 96, "skateboard": 96, "smokestack": 96, "sneaker": 96, "boat": 96, "stain": 96, "steer": 96, "stirrup": 96, "superman": 96, "sushi": 96, "armi": [96, 108], "sword": 96, "tambourin": 96, "teepe": 96, "court": 96, "theodolit": 96, "tomato": 96, "tombston": 96, "tour": 96, "pisa": 96, "treadmil": 96, "fork": 96, "tweezer": 96, "unicorn": 96, "vcr": 96, "waterfal": 96, "watermelon": 96, "weld": 96, "windmil": 96, "xylophon": 96, "yarmulk": 96, "yo": 96, "toad": 96, "twenty_news_test_set": 96, "comp": 96, "graphic": [96, 107], "misc": [96, 108], "sy": 96, "ibm": 96, "pc": 96, "hardwar": 96, "mac": 96, "forsal": 96, "rec": 96, "crypt": 96, "electron": 96, "med": 96, "soc": 96, "religion": 96, "christian": [96, 108], "talk": [96, 108], "polit": 96, "gun": 96, "mideast": 96, "amazon": 96, "neutral": 96, "imdb_test_set": 96, "all_class": 96, "20news_test_set": 96, "_load_classes_predprobs_label": 96, "dataset_nam": 96, "labelerror": 96, "url_bas": 96, "5392f6c71473055060be3044becdde1cbc18284d": 96, "url_label": 96, "original_test_label": 96, "_original_label": 96, "url_prob": 96, "cross_validated_predicted_prob": 96, "_pyx": 96, "num_part": 96, "datatset": 96, "bytesio": 96, "allow_pickl": 96, "pred_probs_part": 96, "url": 96, "_of_": 96, "nload": 96, "imdb": 96, "ve": [96, 97, 98, 99, 101, 103], "capit": 96, "29780": 96, "256": [96, 97, 98, 103], "780": 96, "medic": [96, 108], "doctor": 96, "254": [96, 103], "359223": 96, "640777": 96, "184": [96, 99], "258427": 96, "341176": 96, "263158": 96, "658824": 96, "337349": 96, "246575": 96, "662651": 96, "248": 96, "330000": 96, "355769": 96, "251": [96, 103], "167": [96, 99, 103], "252": [96, 98], "112": [96, 98], "253": [96, 103], "022989": 96, "049505": 96, "190": [96, 99, 103], "002216": 96, "000974": 96, "000873": 96, "000739": 96, "32635": 96, "32636": 96, "32637": 96, "32638": 96, "32639": 96, "32640": 96, "051": 96, "002242": 96, "997758": 96, "002088": 96, "001045": 96, "997912": 96, "002053": 96, "997947": 96, "001980": 96, "000991": 96, "998020": 96, "001946": 96, "002915": 96, "998054": 96, "001938": 96, "002904": 96, "998062": 96, "001020": 96, "998980": 96, "001018": 96, "002035": 96, "998982": 96, "999009": 96, "0003": 96, "0002": 96, "071": 96, "067269": 96, "929": 96, "046": 96, "058243": 96, "954": 96, "035": 96, "032096": 96, "965": 96, "031": 96, "012232": 96, "969": 96, "022": 96, "025896": 96, "978": 96, "020": [96, 99], "013092": 96, "018": 96, "013065": 96, "016": 96, "030542": 96, "984": 96, "013": 96, "020833": 96, "987": 96, "012": 96, "010020": 96, "988": 96, "0073": 96, "0020": 96, "0016": 96, "0015": 96, "0014": 96, "0013": 96, "0012": 96, "0010": 96, "0008": 96, "0007": 96, "0006": 96, "0005": 96, "0004": 96, "244": [96, 103], "452381": 96, "459770": 96, "523364": 96, "460784": 96, "446602": 96, "103774": 96, "030612": 96, "110092": 96, "049020": 96, "0034": 96, "0032": 96, "0026": 96, "0025": 96, "4945": 96, "4946": 96, "4947": 96, "4948": 96, "4949": 96, "4950": 96, "846": 96, "7532": 96, "532": 96, "034483": 96, "009646": 96, "965517": 96, "030457": 96, "020513": 96, "969543": 96, "028061": 96, "035443": 96, "971939": 96, "025316": 96, "005168": 96, "974684": 96, "049751": 96, "979487": 96, "019920": 96, "042802": 96, "980080": 96, "017677": 96, "005115": 96, "982323": 96, "012987": 96, "005236": 96, "987013": 96, "012723": 96, "025126": 96, "987277": 96, "010989": 96, "008264": 96, "989011": 96, "010283": 96, "027778": 96, "989717": 96, "009677": 96, "990323": 96, "007614": 96, "010127": 96, "992386": 96, "005051": 96, "994949": 96, "005025": 96, "994975": 96, "005013": 96, "994987": 96, "001859": 96, "001328": 96, "000929": 96, "000664": 96, "186": [96, 99], "188": [96, 99, 102], "snippet": 97, "nlp": [97, 108], "mind": [97, 99], "alphanumer": 97, "facilit": 97, "seamless": 97, "classlabel": 97, "guidanc": 97, "labels_str": 97, "datalab_str": 97, "labels_int": 97, "remap": 97, "datalab_int": 97, "my_dict": 97, "pet_nam": 97, "rover": 97, "rocki": 97, "speci": 97, "datalab_dataset": 97, "number_of_class": 97, "total_number_of_data_point": 97, "feed": 97, "alphabet": 97, "labels_proper_format": 97, "your_classifi": 97, "issues_datafram": 97, "class_predicted_for_flagged_exampl": 97, "class_predicted_for_all_exampl": 97, "grant": 97, "On": [97, 98, 99, 103], "merged_dataset": 97, "label_column_nam": 97, "datataset": 97, "fair": [97, 99], "game": 97, "speedup": [97, 104], "tempfil": 97, "mkdtemp": 97, "sped": 97, "anywai": 97, "pred_probs_merg": 97, "merge_rare_class": 97, "count_threshold": 97, "class_mapping_orig2new": 97, "heath_summari": 97, "num_examples_per_class": 97, "rare_class": 97, "num_classes_merg": 97, "other_class": 97, "labels_merg": 97, "new_c": 97, "merged_prob": 97, "new_class": 97, "original_class": 97, "num_check": 97, "ones_array_ref": 97, "isclos": 97, "though": [97, 99, 108], "successfulli": 97, "virtuou": [97, 101], "cycl": [97, 101], "jointli": 97, "junk": 97, "clutter": 97, "unknown": 97, "caltech": 97, "combined_boolean_mask": 97, "mask1": 97, "mask2": 97, "gradientboostingclassifi": [97, 99], "true_error": [97, 99, 102], "101": [97, 98, 103], "102": [97, 102, 103], "104": [97, 99, 103], "model_to_find_error": 97, "model_to_return": 97, "cl0": 97, "randomizedsearchcv": 97, "expens": 97, "param_distribut": 97, "learning_r": [97, 98, 99], "max_depth": [97, 98, 99], "magnitud": 97, "coeffici": [97, 106], "optin": 97, "environ": [97, 98, 99], "rerun": [97, 98, 99], "cell": [97, 98, 99], "unabl": [97, 98, 99], "render": [97, 98, 99], "nbviewer": [97, 98, 99], "cleanlearninginot": [97, 99], "fittedcleanlearn": [97, 99], "linearregressionlinearregress": 97, "unexpectedli": 97, "emphas": 97, "crucial": 97, "merge_duplicate_set": 97, "merge_kei": 97, "construct_group_kei": 97, "merged_set": 97, "consolidate_set": 97, "issubset": 97, "frozenset": [97, 98], "sets_list": 97, "mutabl": 97, "new_set": 97, "current_set": 97, "intersecting_set": 97, "lowest_score_strategi": 97, "sub_df": 97, "filter_near_dupl": 97, "strategy_fn": 97, "strategy_kwarg": 97, "duplicate_row": 97, "group_kei": 97, "to_keep_indic": 97, "groupbi": 97, "explod": 97, "to_remov": 97, "isin": [97, 104], "kept": 97, "ids_to_remove_seri": 97, "assist": 97, "streamlin": [97, 98], "ux": 97, "agpl": 97, "compani": 97, "commerci": 97, "alter": [97, 98], "email": 97, "team": 97, "anywher": 97, "profession": 97, "expert": 97, "recogn": 98, "vital": 98, "leakag": 98, "comparion": 98, "leak": 98, "blueprint": 98, "divers": 98, "parameter": 98, "tldr": 98, "answer": [98, 99], "subtl": 98, "faith": 98, "danger": 98, "inevit": [98, 104], "xgbclassifi": 98, "123456": 98, "df_train": 98, "s3": [98, 103, 107, 108], "amazonaw": [98, 103, 107, 108], "clos_train_data": 98, "df_test": 98, "clos_test_data": 98, "noisy_letter_grad": 98, "018bff": 98, "076d92": 98, "c80059": 98, "e38f8a": 98, "d57e1a": 98, "grade_l": 98, "notes_l": 98, "train_featur": 98, "train_features_v2": 98, "train_labels_v2": 98, "test_featur": 98, "preprocessed_train_data": 98, "preprocessed_test_data": 98, "haven": 98, "features_df": 98, "heterogenou": 98, "full_df": 98, "reset_index": [98, 101], "749": 98, "583745": 98, "291382": 98, "5837": 98, "748": 98, "604": 98, "510": 98, "227": [98, 102, 103], "719": 98, "690": 98, "444": 98, "547": 98, "647": 98, "2914": 98, "611": 98, "687869": 98, "610": 98, "687883": 98, "612": 98, "688146": 98, "609": 98, "688189": 98, "613": 98, "688713": 98, "2913818469137725": 98, "came": [98, 108], "full_duplicate_result": 98, "train_idx_cutoff": 98, "nd_set_has_index_over_training_cutoff": 98, "exact_dupl": 98, "627": 98, "678": 98, "615": 98, "292": 98, "620": 98, "420": 98, "704": 98, "431": 98, "459": 98, "672": 98, "564": 98, "696": 98, "605": 98, "exact_duplicates_indic": 98, "indices_of_duplicates_to_drop": 98, "4a3f75": 98, "d030b5": 98, "ddd0ba": 98, "8e6d24": 98, "464aab": 98, "ee3387": 98, "61e807": 98, "71d7b9": 98, "83e31f": 98, "edeb53": 98, "cd52b5": 98, "84": [98, 103, 106], "454e51": 98, "042686": 98, "12a73f": 98, "tree_method": 98, "hist": [98, 104], "enable_categor": 98, "booster": 98, "callback": 98, "colsample_bylevel": 98, "colsample_bynod": 98, "colsample_bytre": 98, "early_stopping_round": 98, "eval_metr": 98, "feature_typ": 98, "gamma": 98, "grow_polici": 98, "importance_typ": 98, "interaction_constraint": 98, "max_bin": 98, "max_cat_threshold": 98, "max_cat_to_onehot": 98, "max_delta_step": 98, "max_leav": 98, "min_child_weight": 98, "monotone_constraint": 98, "multi_strategi": 98, "n_estim": [98, 99], "num_parallel_tre": 98, "x27": [98, 99], "softprob": 98, "xgbclassifierifittedxgbclassifi": 98, "test_pred_prob": [98, 104], "test_lab": 98, "test_features_arrai": 98, "134": 98, "798507": 98, "370259": 98, "625352": 98, "524042": 98, "097015": 98, "7985": 98, "000537": 98, "000903": 98, "001743": 98, "106": 98, "001853": 98, "002121": 98, "3703": 98, "752463e": 98, "784418e": 98, "09": [98, 102, 103, 106], "477741e": 98, "134230e": 98, "153555e": 98, "6254": 98, "143272": 98, "146501": 98, "161431": 98, "5240": 98, "765240": 98, "771221": 98, "801589": 98, "801652": 98, "810735": 98, "5240417899434826": 98, "0970": 98, "na": [98, 101], "test_label_issue_result": 98, "test_label_issues_ord": 98, "2bd759": 98, "34ccdd": 98, "bb3bab": 98, "103": [98, 99, 103], "bf1b14": 98, "4787de": 98, "865cbd": 98, "32d53f": 98, "5b2f76": 98, "28f8b4": 98, "df814d": 98, "f17261": 98, "1db3ff": 98, "ded944": 98, "124": [98, 103], "343dd3": 98, "homework": [98, 106], "8d904d": 98, "e4f0d5": 98, "d6d208": 98, "76c083": 98, "695f96": 98, "745c23": 98, "13b36e": 98, "5ba892": 98, "9f0216": 98, "003628": 98, "004006": 98, "004031": 98, "007930": 98, "013226": 98, "015255": 98, "017692": 98, "019767": 98, "036197": 98, "054746": 98, "055110": 98, "062675": 98, "112695": 98, "121059": 98, "171280": 98, "181689": 98, "208001": 98, "275028": 98, "346032": 98, "396350": 98, "401493": 98, "474349": 98, "mislead": 98, "breviti": 98, "indices_to_drop_from_test_data": 98, "df_test_clean": 98, "acc_origin": 98, "tediou": 98, "train_features_arrai": 98, "train_lab": 98, "318": [98, 106], "601": 98, "740433": 98, "344154": 98, "588290": 98, "437267": 98, "146423": 98, "977223": 98, "7404": 98, "162": 98, "000072": 98, "348": 98, "000161": 98, "232": [98, 103], "000256": 98, "205": [98, 103], "000458": 98, "000738": 98, "3442": 98, "588": 98, "358961e": 98, "336": [98, 103], "490911e": 98, "269": 98, "122475e": 98, "321": [98, 103], "374139e": 98, "311": 98, "358617e": 98, "5883": 98, "600": 98, "592": 98, "593": 98, "594": 98, "595": 98, "596": 98, "597": 98, "598": 98, "599": 98, "221": 98, "222": [98, 99], "315": 98, "332": [98, 103], "791060e": 98, "243": [98, 103], "540": 98, "379106e": 98, "396": 98, "397": 98, "398": 98, "399": 98, "4373": 98, "165": [98, 102], "550374": 98, "627357": 98, "627496": 98, "627502": 98, "627919": 98, "43726734378061227": 98, "1464": 98, "506": 98, "393": 98, "508": 98, "9772": 98, "402": 98, "401": 98, "aggress": 98, "faithfulli": 98, "label_issue_result": 98, "566": 98, "568": 98, "571": 98, "572": 98, "574": 98, "576": 98, "578": 98, "585": 98, "587": 98, "590": 98, "near_duplicates_idx": 98, "117": [98, 99, 106], "122": [98, 99, 103], "146": 98, "155": [98, 99, 103], "156": [98, 99], "173": [98, 103], "224": [98, 103], "272": 98, "277": [98, 103], "279": [98, 103], "288": 98, "300": [98, 101, 108], "342": 98, "352": 98, "363": 98, "365": 98, "366": 98, "384": 98, "388": 98, "394": 98, "404": 98, "474": 98, "480": 98, "494": 98, "515": 98, "536": 98, "537": 98, "539": 98, "542": 98, "outliers_idx": 98, "143": [98, 102, 103], "159": [98, 102, 103], "163": [98, 99], "193": [98, 99], "194": [98, 99], "208": 98, "240": [98, 103], "241": 98, "242": [98, 103], "247": [98, 103], "287": [98, 103], "295": [98, 103], "299": [98, 103], "307": [98, 103], "350": 98, "361": 98, "378": 98, "379": 98, "392": 98, "419": 98, "432": 98, "479": 98, "484": 98, "485": 98, "489": 98, "492": 98, "504": 98, "511": 98, "522": 98, "535": 98, "543": 98, "567": 98, "579": 98, "591": 98, "idx_to_drop": 98, "276": [98, 103], "df_train_cur": 98, "clean_clf": 98, "clean_pr": 98, "acc_clean": 98, "inaccur": 98, "hybrid": 98, "quantit": 98, "hyper": 98, "default_edit_param": 98, "drop_label_issu": 98, "drop_outli": 98, "drop_near_dupl": 98, "candid": [98, 103], "edit_data": 98, "percentag": [98, 99], "num_label_issues_to_drop": 98, "num_outliers_to_drop": 98, "dedupl": 98, "unique_clust": 98, "unique_clusters_list": 98, "near_duplicates_idx_to_drop": 98, "n_drop": 98, "label_issues_idx_to_drop": 98, "outliers_idx_to_drop": 98, "train_features_clean": 98, "train_labels_clean": 98, "itertool": 98, "finer": 98, "param_combin": 98, "best_scor": 98, "best_param": 98, "train_features_preprocess": 98, "train_labels_preprocess": 98, "depth": 99, "survei": [99, 108], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103, 108], "037843": 99, "614915": 99, "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "magic": 99, "liter": 99, "identif": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "offset": 99, "nquestion": 99, "overestim": 99, "experienc": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "170": [99, 108], "214": 99, "164": [99, 102], "191": [99, 103], "206": [99, 103], "115": [99, 103], "201": [99, 103], "174": 99, "150": [99, 101, 103, 108], "169": [99, 108], "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "172": [99, 102], "157": 99, "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "noisier": 101, "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "zfill": 101, "row_na_check": 101, "notna": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "275": 102, "267": 102, "225": 102, "171": 102, "234": 102, "262": [102, 103], "263": [102, 103], "266": [102, 103], "139": 102, "216": [102, 103], "265": 102, "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "231": [103, 108], "293": 103, "235": 103, "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "283": 103, "303": 103, "316": 103, "323": 103, "327": 103, "226": 103, "228": 103, "219": 103, "239": 103, "209": 103, "202": 103, "230": 103, "215": 103, "220": 103, "229": 103, "217": [103, 108], "237": 103, "207": 103, "204": 103, "223": 103, "149": 103, "140": 103, "246": 103, "268": 103, "273": 103, "284": 103, "136": 103, "145": 103, "297": 103, "317": 103, "192": 103, "324": 103, "203": 103, "320": 103, "314": 103, "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": 103, "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "toronto": 104, "edu": 104, "kriz": 104, "170498071": 104, "86603159": 104, "67it": 104, "plot_imag": 104, "visualize_outli": 104, "txt_class": 104, "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "train_outlier_scor": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "unsur": 105, "price": 106, "incom": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "3d": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "367": 106, "305": 106, "560": 106, "657": 106, "view_datapoint": 106, "preds_og": 106, "r2_og": 106, "838": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "2400": 108, "52e0": 108, "1a00": 108, "1207": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "inflat": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "2mb": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [59, 0, 0, "-", "models"], [61, 0, 0, "-", "multiannotator"], [64, 0, 0, "-", "multilabel_classification"], [67, 0, 0, "-", "object_detection"], [70, 0, 0, "-", "outlier"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "regression"], [76, 0, 0, "-", "segmentation"], [80, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "metric"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_underperforming_clusters"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[60, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[60, 2, 1, "", "KerasWrapperModel"], [60, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[61, 1, 1, "", "convert_long_to_wide_dataset"], [61, 1, 1, "", "get_active_learning_scores"], [61, 1, 1, "", "get_active_learning_scores_ensemble"], [61, 1, 1, "", "get_label_quality_multiannotator"], [61, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [61, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[62, 0, 0, "-", "dataset"], [63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[62, 1, 1, "", "common_multilabel_issues"], [62, 1, 1, "", "multilabel_health_summary"], [62, 1, 1, "", "overall_multilabel_health_score"], [62, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, 1, 1, "", "find_label_issues"], [63, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[66, 0, 0, "-", "filter"], [68, 0, 0, "-", "rank"], [69, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[66, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[68, 1, 1, "", "compute_badloc_box_scores"], [68, 1, 1, "", "compute_overlooked_box_scores"], [68, 1, 1, "", "compute_swap_box_scores"], [68, 1, 1, "", "get_label_quality_scores"], [68, 1, 1, "", "issues_from_scores"], [68, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[69, 1, 1, "", "bounding_box_size_distribution"], [69, 1, 1, "", "calculate_per_class_metrics"], [69, 1, 1, "", "class_label_distribution"], [69, 1, 1, "", "get_average_per_class_confusion_matrix"], [69, 1, 1, "", "get_sorted_bbox_count_idxs"], [69, 1, 1, "", "object_counts_per_image"], [69, 1, 1, "", "plot_class_distribution"], [69, 1, 1, "", "plot_class_size_distributions"], [69, 1, 1, "", "visualize"]], "cleanlab.outlier": [[70, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[70, 3, 1, "", "fit"], [70, 3, 1, "", "fit_score"], [70, 3, 1, "", "score"]], "cleanlab.rank": [[71, 1, 1, "", "find_top_issues"], [71, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [71, 1, 1, "", "get_label_quality_ensemble_scores"], [71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "get_normalized_margin_for_each_label"], [71, 1, 1, "", "get_self_confidence_for_each_label"], [71, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[73, 0, 0, "-", "learn"], [74, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[73, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[73, 3, 1, "", "__init_subclass__"], [73, 3, 1, "", "find_label_issues"], [73, 3, 1, "", "fit"], [73, 3, 1, "", "get_aleatoric_uncertainty"], [73, 3, 1, "", "get_epistemic_uncertainty"], [73, 3, 1, "", "get_label_issues"], [73, 3, 1, "", "get_metadata_routing"], [73, 3, 1, "", "get_params"], [73, 3, 1, "", "predict"], [73, 3, 1, "", "save_space"], [73, 3, 1, "", "score"], [73, 3, 1, "", "set_fit_request"], [73, 3, 1, "", "set_params"], [73, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[74, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[79, 0, 0, "-", "filter"], [81, 0, 0, "-", "rank"], [82, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[79, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[81, 1, 1, "", "get_label_quality_scores"], [81, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[82, 1, 1, "", "common_label_issues"], [82, 1, 1, "", "display_issues"], [82, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 86, 87, 91, 93, 94, 97, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 88, 89, 90, 91, 92, 93, 94, 95, 97, 99, 102], "creat": [7, 89, 90, 99, 101], "your": [7, 83, 89, 90, 94, 95, 97, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 89], "basic": 7, "check": [7, 83, 95, 98], "intermedi": 7, "advanc": [7, 89], "us": [7, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": [8, 95], "cluster": [8, 95, 97], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 89], "cleanlab": [9, 10, 83, 86, 87, 88, 91, 93, 94, 97, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 83, 91], "mode": [9, 10, 83, 91], "can": [10, 90, 96, 97, 99, 101], "detect": [10, 88, 90, 91, 93, 94, 95, 97, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "input": 10, "label": [10, 24, 26, 31, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 70, 91, 93, 94, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 90, 91, 93, 94], "duplic": [10, 20, 90, 91, 93, 94, 97, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 94, 95], "iid": [10, 94, 95], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 84, 95, 99, 107], "imbal": [10, 21, 95], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 91, 95, 104], "specif": [10, 22, 107], "spuriou": [10, 95], "correl": [10, 95], "between": 10, "properti": 10, "score": [10, 95, 99, 101, 102, 103, 107, 108], "underperform": [10, 95, 97], "group": [10, 95, 97], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 95], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "valuat": [10, 95], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 95], "paramet": [10, 99], "get": [12, 89, 90, 101, 102, 103, 107, 108], "start": [12, 96], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 97, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 72, 73, 74, 97, 106], "prioriti": 31, "order": 31, "find": [31, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 91], "dataset": [37, 62, 83, 87, 88, 90, 91, 94, 95, 96, 97, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 63, 66, 75, 79, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 89], "token_classification_util": 56, "util": 57, "valid": [58, 91, 105], "model": [59, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106], "kera": 60, "multiannot": [61, 101], "multilabel_classif": 64, "rank": [65, 68, 71, 74, 77, 81, 99], "object_detect": 67, "summari": [69, 78, 82], "learn": [73, 90, 97, 99], "segment": [76, 107], "token_classif": [80, 108], "open": [83, 97], "sourc": [83, 97], "document": 83, "quickstart": 83, "1": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "2": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [83, 90, 99], "sort": [83, 95], "3": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [83, 97], "error": [83, 87, 91, 97, 99, 101, 102, 103, 106, 107, 108], "train": [83, 86, 87, 88, 95, 97, 98, 104, 106], "robust": [83, 86, 87, 99, 106], "noisi": [83, 86, 87, 98, 99, 106], "4": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 103, 104, 106], "curat": [83, 98], "fix": [83, 97], "level": [83, 96, 99, 108], "5": [83, 86, 88, 90, 91, 93, 95, 98, 99, 101, 106], "improv": [83, 98, 101], "via": [83, 98, 99, 101], "mani": [83, 99], "other": [83, 101, 103, 106], "techniqu": [83, 98], "contribut": 83, "how": [84, 97, 99, 101, 102, 108], "migrat": 84, "version": 84, "0": 84, "from": [84, 86, 87, 89, 90, 98, 99, 106], "pre": [84, 88, 95, 97, 104], "function": [84, 89], "name": 84, "chang": 84, "modul": [84, 99], "new": 84, "remov": 84, "common": [84, 108], "argument": [84, 89], "variabl": 84, "cleanlearn": [85, 97, 99], "tutori": [85, 92, 96, 98, 100], "structur": 86, "tabular": [86, 93], "requir": [86, 87, 89, 90, 91, 93, 94, 101, 102, 103, 104, 106, 107, 108], "depend": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "load": [86, 87, 88, 89, 90, 93, 94, 95, 106], "process": [86, 93, 104, 106], "select": [86, 93], "comput": [86, 88, 91, 93, 94, 95, 97, 98, 101, 105], "out": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "sampl": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "predict": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 105], "probabl": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 105], "more": [86, 87, 90, 99, 106], "spend": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "too": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "much": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "time": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "qualiti": [86, 87, 90, 93, 94, 96, 99, 101, 102, 103, 104, 105, 106, 107, 108], "text": [87, 94, 95, 108], "format": [87, 94, 97, 102, 103], "defin": [87, 91, 94, 95, 106], "potenti": [87, 101, 106], "an": [88, 91, 97], "audio": 88, "import": [88, 89, 90, 91, 96, 99, 101], "them": [88, 96, 98, 99], "speechbrain": 88, "featur": [88, 91, 104], "fit": 88, "linear": 88, "workflow": [89, 95, 99], "audit": [89, 90], "classifi": [89, 90, 95], "instanti": 89, "object": [89, 103], "increment": 89, "specifi": [89, 97], "nondefault": 89, "save": 89, "ad": 89, "A": 90, "unifi": 90, "kind": [90, 103], "skip": [90, 96, 99, 101], "detail": [90, 96, 99, 101], "about": 90, "addit": 90, "inform": [90, 91], "fetch": [91, 96], "normal": 91, "fashion": 91, "mnist": 91, "prepar": [91, 95], "k": [91, 93, 105], "fold": [91, 105], "cross": [91, 105], "embed": [91, 104], "7": [91, 98, 99], "view": 91, "most": [91, 108], "like": 91, "exampl": [91, 97, 99, 104], "sever": 91, "set": [91, 99], "dark": 91, "top": [91, 107], "low": 91, "numer": 93, "categor": [93, 95], "column": 93, "construct": 93, "nearest": 93, "neighbour": 93, "graph": [93, 95], "drift": [94, 102], "miscellan": 95, "acceler": 95, "knn": 95, "obtain": 95, "identifi": [95, 97, 98, 103], "explan": 95, "vector": 95, "perform": [95, 98], "visual": [95, 99, 103, 104, 107], "synthet": 95, "result": 95, "predefin": 95, "slice": [95, 97], "i": [95, 97, 99, 105], "catch": 95, "valu": 95, "encod": 95, "initi": [95, 101], "6": [95, 98, 99], "run": [95, 97], "analysi": [95, 103], "interpret": 95, "understand": 96, "evalu": [96, 98], "health": [96, 99], "8": [96, 98, 99], "popular": 96, "faq": 97, "what": [97, 99, 105], "do": [97, 99], "infer": 97, "correct": [97, 98], "ha": 97, "flag": 97, "should": 97, "v": [97, 98], "test": [97, 98, 99, 104], "big": 97, "limit": 97, "memori": 97, "why": [97, 98], "isn": 97, "t": 97, "work": [97, 99, 101, 108], "me": 97, "differ": [97, 103], "clean": [97, 98, 99], "final": 97, "hyperparamet": [97, 98], "tune": 97, "onli": 97, "one": [97, 99, 102, 107], "doe": [97, 101, 108], "take": 97, "so": 97, "long": 97, "when": [97, 99], "licens": 97, "under": 97, "answer": 97, "question": 97, "split": 98, "did": 98, "you": [98, 99], "make": 98, "thi": [98, 99], "preprocess": 98, "fundament": 98, "problem": 98, "setup": 98, "origin": 98, "baselin": 98, "manual": 98, "address": 98, "algorithm": 98, "better": [98, 101], "strategi": 98, "optim": 98, "9": 98, "conclus": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "twenti": 99, "lowest": 99, "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "re": 99, "One": 99, "rule": 99, "overal": [99, 107], "accur": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "major": 101, "vote": 101, "statist": 101, "compar": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "without": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Spurious Correlations between image-specific properties and labels": [[10, "spurious-correlations-between-image-specific-properties-and-labels"]], "property": [[10, "property"]], "score": [[10, "score"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [70, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [72, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [62, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [63, "module-cleanlab.multilabel_classification.filter"], [66, "filter"], [75, "filter"], [79, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "models": [[59, "models"]], "keras": [[60, "module-cleanlab.models.keras"]], "multiannotator": [[61, "module-cleanlab.multiannotator"]], "multilabel_classification": [[64, "multilabel-classification"]], "rank": [[65, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.rank"], [77, "module-cleanlab.segmentation.rank"], [81, "module-cleanlab.token_classification.rank"]], "object_detection": [[67, "object-detection"]], "summary": [[69, "summary"], [78, "module-cleanlab.segmentation.summary"], [82, "module-cleanlab.token_classification.summary"]], "regression.learn": [[73, "module-cleanlab.regression.learn"]], "regression.rank": [[74, "module-cleanlab.regression.rank"]], "segmentation": [[76, "segmentation"]], "token_classification": [[80, "token-classification"]], "cleanlab open-source documentation": [[83, "cleanlab-open-source-documentation"]], "Quickstart": [[83, "quickstart"]], "1. Install cleanlab": [[83, "install-cleanlab"]], "2. Check your data for all sorts of issues": [[83, "check-your-data-for-all-sorts-of-issues"]], "3. Handle label errors and train robust models with noisy labels": [[83, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[83, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[83, "improve-your-data-via-many-other-techniques"]], "Contributing": [[83, "contributing"]], "Easy Mode": [[83, "easy-mode"], [91, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[84, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[84, "function-and-class-name-changes"]], "Module name changes": [[84, "module-name-changes"]], "New modules": [[84, "new-modules"]], "Removed modules": [[84, "removed-modules"]], "Common argument and variable name changes": [[84, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[85, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[86, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[86, "1.-Install-required-dependencies"], [87, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[86, "2.-Load-and-process-the-data"], [93, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[86, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [93, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[86, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[86, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Spending too much time on data quality?": [[86, "Spending-too-much-time-on-data-quality?"], [87, "Spending-too-much-time-on-data-quality?"], [90, "Spending-too-much-time-on-data-quality?"], [93, "Spending-too-much-time-on-data-quality?"], [94, "Spending-too-much-time-on-data-quality?"], [96, "Spending-too-much-time-on-data-quality?"], [99, "Spending-too-much-time-on-data-quality?"], [102, "Spending-too-much-time-on-data-quality?"], [104, "Spending-too-much-time-on-data-quality?"], [105, "spending-too-much-time-on-data-quality"], [106, "Spending-too-much-time-on-data-quality?"]], "Text Classification with Noisy Labels": [[87, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[87, "2.-Load-and-format-the-text-dataset"], [94, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[87, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[87, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[88, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[88, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[88, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[88, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[88, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[88, "5.-Use-cleanlab-to-find-label-issues"], [93, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[89, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[89, "Install-and-import-required-dependencies"]], "Create and load the data": [[89, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[89, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[89, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[89, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[89, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[89, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[89, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[90, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[90, "1.-Install-and-import-required-dependencies"], [91, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[90, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[90, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[90, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[90, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[90, "Get-additional-information"]], "Near duplicate issues": [[90, "Near-duplicate-issues"], [91, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[91, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[91, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[91, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[91, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[91, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[91, "7.-Use-cleanlab-to-find-issues"]], "View report": [[91, "View-report"]], "Label issues": [[91, "Label-issues"], [93, "Label-issues"], [94, "Label-issues"]], "View most likely examples with label errors": [[91, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[91, "Outlier-issues"], [93, "Outlier-issues"], [94, "Outlier-issues"]], "View most severe outliers": [[91, "View-most-severe-outliers"]], "View sets of near duplicate images": [[91, "View-sets-of-near-duplicate-images"]], "Dark images": [[91, "Dark-images"]], "View top examples of dark images": [[91, "View-top-examples-of-dark-images"]], "Low information images": [[91, "Low-information-images"]], "Datalab Tutorials": [[92, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[93, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[93, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[93, "Near-duplicate-issues"], [94, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[94, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[94, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[94, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[94, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[95, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[95, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[95, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[95, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[95, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[95, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[95, "Explanation:"]], "Data Valuation": [[95, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[95, "1.-Load-and-Prepare-the-Dataset"], [95, "id2"], [95, "id5"]], "2. Vectorize the Text Data": [[95, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[95, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[95, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[95, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[95, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[95, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [95, "id3"]], "3. (Optional) Cluster the Data": [[95, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[95, "4.-Identify-Underperforming-Groups-with-Datalab"], [95, "id4"]], "5. (Optional) Visualize the Results": [[95, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[95, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[95, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[95, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[95, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[95, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[95, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[95, "1.-Load-the-Dataset"], [95, "id8"]], "2: Encode Categorical Values": [[95, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[95, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[95, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[95, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[95, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[95, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[95, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[95, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[95, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[95, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Run Datalab Analysis": [[95, "2.-Run-Datalab-Analysis"]], "3. Interpret the Results": [[95, "3.-Interpret-the-Results"]], "Understanding Dataset-level Labeling Issues": [[96, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[96, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[96, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[96, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[97, "FAQ"]], "What data can cleanlab detect issues in?": [[97, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[97, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[97, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[97, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[97, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[97, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[97, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[97, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[97, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[97, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[97, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[97, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[97, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[97, "Can't-find-an-answer-to-your-question?"]], "Improving ML Performance via Data Curation with Train vs Test Splits": [[98, "Improving-ML-Performance-via-Data-Curation-with-Train-vs-Test-Splits"]], "Why did you make this tutorial?": [[98, "Why-did-you-make-this-tutorial?"]], "1. Install dependencies": [[98, "1.-Install-dependencies"]], "2. Preprocess the data": [[98, "2.-Preprocess-the-data"]], "3. Check for fundamental problems in the train/test setup": [[98, "3.-Check-for-fundamental-problems-in-the-train/test-setup"]], "4. Train model with original (noisy) training data": [[98, "4.-Train-model-with-original-(noisy)-training-data"]], "Compute out-of-sample predicted probabilities for the test data from this baseline model": [[98, "Compute-out-of-sample-predicted-probabilities-for-the-test-data-from-this-baseline-model"]], "5. Check for issues in test data and manually address them": [[98, "5.-Check-for-issues-in-test-data-and-manually-address-them"]], "Use clean test data to evaluate the performance of model trained on noisy training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-noisy-training-data"]], "6. Check for issues in training data and algorithmically correct them": [[98, "6.-Check-for-issues-in-training-data-and-algorithmically-correct-them"]], "7. Train model on cleaned training data": [[98, "7.-Train-model-on-cleaned-training-data"]], "Use clean test data to evaluate the performance of model trained on cleaned training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-cleaned-training-data"]], "8. Identifying better training data curation strategies via hyperparameter optimization techniques": [[98, "8.-Identifying-better-training-data-curation-strategies-via-hyperparameter-optimization-techniques"]], "9. Conclusion": [[98, "9.-Conclusion"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [59, "module-cleanlab.models"], [60, "module-cleanlab.models.keras"], [61, "module-cleanlab.multiannotator"], [62, "module-cleanlab.multilabel_classification.dataset"], [63, "module-cleanlab.multilabel_classification.filter"], [64, "module-cleanlab.multilabel_classification"], [65, "module-cleanlab.multilabel_classification.rank"], [66, "module-cleanlab.object_detection.filter"], [67, "module-cleanlab.object_detection"], [68, "module-cleanlab.object_detection.rank"], [69, "module-cleanlab.object_detection.summary"], [70, "module-cleanlab.outlier"], [71, "module-cleanlab.rank"], [72, "module-cleanlab.regression"], [73, "module-cleanlab.regression.learn"], [74, "module-cleanlab.regression.rank"], [75, "module-cleanlab.segmentation.filter"], [76, "module-cleanlab.segmentation"], [77, "module-cleanlab.segmentation.rank"], [78, "module-cleanlab.segmentation.summary"], [79, "module-cleanlab.token_classification.filter"], [80, "module-cleanlab.token_classification"], [81, "module-cleanlab.token_classification.rank"], [82, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_underperforming_clusters() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_underperforming_clusters"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[59, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[60, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[61, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[62, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[64, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[65, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[66, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[66, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[67, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[68, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[69, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[70, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[70, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[71, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[72, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[73, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[73, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[73, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[74, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[74, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[75, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[75, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[76, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[77, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[78, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[79, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[79, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[80, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[81, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[82, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/improving_ml_performance", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/improving_ml_performance.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "Improving ML Performance via Data Curation with Train vs Test Splits", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 84, 89, 90, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 89, 90, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 89, 90, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 68, 91, 95, 96, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 83, 84, 89, 96, 105], "benchmark": [1, 38, 83, 84, 89, 90, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 98, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 61, 62, 66, 68, 69, 70, 71, 73, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 75, 77], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 61, 70, 79, 81, 83, 86, 87, 90, 93, 94, 95, 96, 97, 99, 101, 102, 104, 106, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 59, 61, 62, 65, 69, 70, 74, 78, 79, 81, 82, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 10, 88, 95, 97, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 62, 89, 90, 95, 96, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 89, 95, 98, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 61, 62, 63, 64, 65, 70, 71, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 95, 98, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 89, 93, 98, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 59, 63, 66, 69, 78, 82, 91, 93, 94, 95, 98, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 59, 61, 66, 69, 70, 71, 83, 91, 97, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 60, 61, 62, 63, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 70, 71, 73, 78, 87, 88, 89, 90, 91, 94, 96, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 61, 63, 66, 69, 71, 73, 74, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 97], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 59, 61, 63, 70, 72, 74, 77, 81, 83, 86, 87, 88, 89, 91, 93, 94, 95, 96, 98, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 63, 64, 65, 66, 68, 69, 70, 71, 73, 79, 81, 82, 90, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 32, 37, 39, 42, 44, 47, 57, 62, 63, 65, 71, 73, 74, 75, 77, 78, 84, 89, 90, 93, 94, 95, 97, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 63, 66, 68, 69, 70, 71, 93, 95, 103, 104], "trace": [1, 89, 90, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 87, 88, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 95, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 89, 90, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 89, 90, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 89, 95, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 61, 69, 70, 71, 75, 93, 94, 95, 98, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 86, 88, 89, 90, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 60, 66, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 68, 73, 87, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 73, 97, 98, 101, 108], "better": [1, 5, 10, 44, 53, 61, 63, 71, 73, 74, 83, 87, 88, 90, 93, 94, 95, 97, 99, 102, 103, 104, 105, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 60, 61, 66, 68, 70, 71, 73, 77, 81, 86, 88, 91, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 61, 71, 73, 86, 88, 89, 90, 91, 93, 95, 97, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 69, 73, 83, 86, 87, 89, 97, 99, 100, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 61, 62, 69, 70, 71, 97, 101, 104], "amount": [1, 3, 91], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 91, 94, 95, 98], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 95, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 83, 86, 87, 89, 90, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 88, 95, 96, 97, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 10, 47, 53, 56, 57, 71, 91, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 32, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 96, 97, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 61, 73, 93, 97, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 98, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 63, 71, 73, 74, 86, 88, 89, 90, 91, 93, 94, 97, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 59, 61, 62, 65, 69, 70, 71, 73, 78, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 71, 75, 78, 95, 97, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 61, 62, 63, 65, 66, 69, 70, 71, 73, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 62, 63, 65, 68, 73, 89, 90, 91, 97, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 96, 97, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 61, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 61, 62, 63, 65, 66, 82, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 61, 63, 65, 68, 69, 70, 71, 73, 74, 79, 81, 82, 83, 88, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 73, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 64, 70, 89, 90, 91, 93, 94, 98, 99], "yield": [1, 38, 42, 98], "between": [1, 5, 9, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 59, 61, 62, 65, 68, 70, 71, 73, 74, 77, 81, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 61, 62, 63, 68, 69, 77, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 60, 61, 68, 69, 71, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 91, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 70, 73, 83, 86, 88, 89, 93, 98, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 61, 62, 66, 68, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 68, 69, 73, 75, 77, 81, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 70, 71, 75, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10, 95], "python": [1, 2, 42, 60, 73, 89, 90, 96, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 63, 94, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 86, 87, 88, 91, 94, 95, 96, 97, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 65, 73, 83, 87, 88, 94, 95, 97, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 60, 61, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 10, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 70, 71, 73, 86, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 60, 69, 73, 74, 87, 88, 89, 90, 93, 95, 97, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 73, 95, 97, 98, 106], "astyp": [1, 98, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 65, 69, 70, 71, 73, 75, 77, 78, 79, 82, 88, 89, 91, 95, 98, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 69, 73, 74, 91, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 84, 95, 96, 97], "choic": [1, 8, 44, 53, 55, 91, 97, 102, 104], "replac": [1, 56, 60, 71, 86, 87, 89, 90, 91, 94, 95, 96, 97, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 71, 88, 89, 90], "05": [1, 10, 27, 31, 56, 69, 73, 79, 81, 93, 96, 97, 98, 99, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 89, 90, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 89, 90, 91, 95, 97, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 73, 86, 88, 89, 90, 93, 95, 96, 98, 99, 101, 102], "max_it": [1, 87, 88, 94, 104], "10000": [1, 41, 96, 97], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 60, 61, 63, 69, 70, 71, 73, 75, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 63, 68, 78, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 73, 83, 87, 88, 91, 93, 94, 95, 97, 98, 107, 108], "impli": [1, 10, 37, 62, 69], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 61, 62, 63, 65, 68, 69, 73, 77, 81, 88, 89, 90, 98, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 61, 62, 63, 66, 86, 87, 93, 94, 99, 102, 103, 106], "maximum": [1, 10, 70, 78, 82, 95, 107], "minimum": [1, 8, 10, 21, 44, 46, 63, 68, 81, 95], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 68, 73, 89, 97, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 89, 91, 95, 97, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 60, 61, 62, 63, 66, 68, 69, 70, 73, 74, 75, 77, 78, 81, 82, 83, 84, 86, 87, 88, 89, 91, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 89, 95], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 60, 61, 62, 64, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 61, 65, 69, 73, 78, 82, 83, 86, 87, 88, 90, 94, 97, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 59, 60, 63, 70, 71, 73, 75, 83, 84, 88, 95, 96, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 60, 61, 62, 63, 65, 68, 69, 70, 71, 73, 77, 78, 79, 81, 87, 90, 91, 94, 95, 96, 97, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 60, 63, 65, 66, 68, 70, 71, 73, 74, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 88, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 60, 61, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 86, 87, 89, 90, 93, 94, 95, 97, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 60, 61, 66, 68, 69, 70, 71, 73, 74, 78, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 59, 60, 61, 63, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 10, 17, 41, 44, 52, 53, 57, 68, 71, 73, 86, 87, 89, 90, 91, 95, 96, 98, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 66, 68, 69, 70, 71, 73, 75, 78, 82, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 60, 61, 70, 73, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 61, 83, 89, 90, 94, 95, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 89, 91, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 89, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 60, 61, 63, 65, 69, 70, 71, 73, 74, 77, 79, 81, 84, 86, 87, 88, 91, 93, 95, 97, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 60, 61, 70, 71, 73, 75, 77, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 98, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 59, 84], "produc": [1, 2, 5, 9, 10, 17, 49, 61, 71, 73, 75, 77, 83, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 60, 61, 62, 73, 90, 94, 95, 97, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 68, 89, 90, 91, 97, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 62, 69, 87, 91, 94, 96, 98, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 60, 65, 68, 73, 74, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 70, 71, 90, 91, 95, 98, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 70, 73, 78, 86, 87, 94, 95, 97, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 29, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 88, 89, 90, 91, 93, 97, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 63, 66, 69, 89, 90, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 61, 66, 68, 69, 70, 89, 90, 96, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 60, 97, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 63, 66, 70, 71, 73, 75, 78, 82, 86, 88, 95, 98, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 59, 60, 61, 62, 63, 70, 71, 73, 75, 77, 78, 79, 81, 82, 88, 95, 98, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 61, 63, 69, 75, 77, 78, 79, 81, 82, 86, 87, 88, 97, 98, 101, 102, 103, 107, 108], "ball": [1, 96], "bin": [1, 3, 63, 89, 90, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 60, 68, 71, 73, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 60, 61, 62, 63, 66, 68, 69, 70, 71, 74, 77, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 61, 62, 68, 71, 81, 91, 97, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 98, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 79, 81, 82, 83, 86, 87, 88, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 60], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 62, 63, 64, 65, 70, 71, 83, 95, 97, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 61, 63, 71, 73, 83, 87, 88, 94, 95, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 60, 72, 73, 74, 83, 84, 86, 87, 98, 106], "wrap": [2, 38, 42, 51, 60, 70, 73, 83, 86, 87, 89, 90, 93, 94, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 60, 69, 70, 73, 78, 86, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 60, 70, 73, 74, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 61, 64, 70, 71, 83, 84, 86, 87, 88, 93, 94, 97, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 73], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 61, 62, 63, 68, 70, 73, 75, 77, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 60, 66, 69, 70, 73, 84, 95, 97, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 71, 73, 75, 83, 89, 90, 93, 96, 97, 98, 101, 104, 108], "four": [2, 10, 96, 99, 108], "clf": [2, 3, 5, 49, 73, 83, 86, 93, 95, 97, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 59, 60, 70, 72, 73, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 73, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 59, 60, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 32, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 87, 96, 97, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 59, 60, 61, 62, 63, 64, 68, 70, 71, 72, 73, 78, 79, 80, 81, 82, 84, 91, 92, 100], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 61, 62, 63, 64, 66, 69, 70, 71, 73, 75, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 70, 73, 83, 86, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 61, 63, 71, 78, 79, 81, 87, 88, 94, 95, 97, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 61, 62, 66, 69, 71, 73, 83, 86, 87, 88, 89, 91, 93, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 62, 71, 73, 78, 81, 82, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 60, 61, 62, 65, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 59, 61, 66, 68, 70, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 32, 44, 46, 49, 52, 53, 54, 63, 66, 69, 71, 73, 74, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 63, 68, 69, 73, 75, 77, 87, 91, 93, 97, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 60, 61, 62, 63, 65, 66, 69, 70, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 61, 73, 83, 86, 87, 88, 89, 93, 94, 95, 97, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 61, 68, 71, 73, 87, 88, 89, 90, 94], "loss": [2, 39, 60, 71, 73, 91, 98], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 73, 83, 91, 95, 97, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 60, 61, 66, 69, 70, 73, 74, 84, 89, 90, 91, 93, 94, 96, 99, 100, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 60, 70, 71, 81, 83, 84, 88, 89, 90, 91, 95, 97], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 59, 60, 61, 62, 63, 65, 70, 71, 73, 74, 75, 77, 78, 84, 86, 87, 88, 91, 93, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 61, 89, 90, 91, 95, 97, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 62, 63, 68, 69, 73, 75, 87, 94, 95, 97, 102, 103, 106, 107], "clonabl": [2, 73], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 61, 66, 69, 70, 71, 73, 74, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 100, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 68, 70, 71, 73, 74, 77, 79, 81, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 73, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 65, 69, 73, 79, 84, 89, 95, 97, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 61, 62, 63, 65, 68, 69, 73, 83, 89, 90, 91, 93, 97, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 63, 64, 66, 69, 70, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 73, 83, 86, 87, 88, 95, 97, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 73, 83, 88, 91, 97, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 60, 70, 73, 87, 88, 89, 90, 94, 97, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 73, 91], "independ": [2, 3, 10, 62, 73, 94, 95, 98, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 60, 73, 74, 77, 81, 83, 86, 87, 95, 97, 105, 106], "neural": [2, 39, 60, 70, 73, 88, 91, 97, 102, 104, 106], "network": [2, 38, 39, 42, 60, 70, 73, 87, 88, 91, 94, 97, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 70, 73, 86, 87, 88, 90, 91, 93, 94, 98, 104, 105], "initi": [2, 3, 10, 14, 19, 38, 42, 52, 61, 73, 86, 94, 97, 98], "insid": [2, 42, 73, 97, 99], "There": [2, 3, 7, 52, 83, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 66, 68, 69, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 61, 73, 87, 88, 89, 94, 96, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 77, 81, 83, 86, 91, 98, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 59, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 63, 73, 84, 98, 103], "everyth": [2, 69, 99], "els": [2, 69, 89, 91, 95, 96, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 83, 89, 95, 96, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 62, 63, 64, 65, 70, 71, 75, 79, 81, 82, 90, 91, 98, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 74, 78, 79, 81, 82, 96, 97, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 62, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 81, 84, 86, 88, 89, 90, 93, 94, 95, 96, 98, 100], "erron": [2, 3, 37, 44, 47, 57, 62, 63, 71, 73, 74, 75, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 61, 65, 68, 73, 74, 79, 81, 82, 83, 86, 87, 93, 94, 95, 97, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 73, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 73, 83, 86, 87, 97, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 60, 61, 63, 69, 70, 71, 73, 78, 79, 83, 87, 88, 89, 90, 94, 95, 96, 97, 99, 101, 103, 104, 106], "x_train": [2, 86, 89, 90, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 73, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 59, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 87, 92, 100, 101, 104, 105, 106], "pred": [2, 44, 57, 86, 87, 98, 105, 106], "x_test": [2, 86, 89, 90, 99, 102, 106], "might": [2, 5, 10, 52, 61, 73, 78, 86, 87, 89, 90, 91, 95, 97, 103], "case": [2, 3, 10, 14, 37, 49, 52, 61, 73, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 60, 62, 63, 65, 71, 73, 83, 86, 89, 90, 93, 96, 98, 99, 103], "adapt": [2, 38, 40, 57, 59, 73, 104], "skorch": [2, 73, 83, 97], "kera": [2, 59, 66, 69, 73, 83, 97, 103], "scikera": [2, 60, 73, 97], "open": [2, 41, 86, 87, 90, 93, 94, 96, 99, 102, 103, 104, 106, 108], "doesn": [2, 10, 73, 83], "t": [2, 3, 4, 7, 10, 18, 28, 29, 38, 39, 41, 42, 43, 44, 49, 55, 56, 65, 70, 71, 73, 79, 81, 82, 83, 89, 90, 91, 94, 95, 96, 98, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 60, 61, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 60, 66, 68, 70, 73, 83, 84, 86, 87, 89, 90, 94, 101, 108], "made": [2, 5, 17, 38, 42, 53, 73, 86, 87, 91, 94, 95, 97, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 73, 89, 90, 96, 97, 99, 102], "inherit": [2, 7, 39, 73], "baseestim": [2, 42, 73], "yourmodel": [2, 73], "def": [2, 7, 15, 38, 42, 60, 73, 87, 88, 89, 90, 91, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 70, 71, 73, 86, 89, 91, 95, 96, 98, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 62, 63, 65, 66, 68, 69, 70, 73, 77, 78, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 60, 62, 63, 66, 69, 70, 73, 74, 77, 79, 81, 86, 87, 89, 91, 93, 94, 95, 97, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 62, 82, 91, 97, 107], "state": [2, 3, 5, 38, 39, 42, 48, 73, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 70, 71], "et": [2, 3, 37, 39, 70, 71], "al": [2, 3, 37, 39, 70, 71], "2021": [2, 3, 37, 70, 71], "weak": [2, 69], "supervis": [2, 10, 89, 90, 97, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 59, 66, 69, 70, 71, 73, 75, 79, 81, 83, 84, 89, 96, 98, 100, 105], "uncertainti": [2, 10, 46, 70, 73, 97, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 61, 68, 69, 73, 83, 89, 90, 91, 95, 97, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 60, 61, 71, 73, 83, 84, 87, 89, 90, 95, 96, 98, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 59, 61, 62, 65, 66, 70, 71, 73, 77, 78, 79, 81, 83, 84, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 59, 60, 73, 94], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 59, 73, 86, 87, 89, 90, 95, 96, 98, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 62, 69, 70, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 86, 87, 97], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 60, 61, 62, 65, 66, 68, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 60, 69, 73, 83, 84, 87, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 70, 71, 75, 77, 78], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 70, 71, 83, 87, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 63, 73, 83, 87, 89, 91, 97, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 61, 63, 66, 69, 71, 74, 88, 90, 94, 97, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 61, 62, 66, 68, 70, 71, 73, 88, 89, 93, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 70, 73, 86, 87, 88, 93, 94, 95, 97, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 63, 70, 71, 81], "tild": 2, "paper": [2, 4, 10, 61, 70, 79, 81, 96, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 73, 87], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 61, 62, 65, 66, 69, 73, 74, 81, 87, 89, 94, 96, 97, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 73, 84, 97, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 63, 79, 97], "clean": [2, 68, 71, 73, 74, 83, 86, 87, 89, 90, 96, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 73, 88, 95, 97, 98, 99, 101, 102, 103], "messi": [2, 73, 99], "ridden": [2, 73], "autom": [2, 9, 10, 73, 83, 86, 87, 90, 93, 94, 96, 97, 98, 99, 102, 104, 106], "robust": [2, 47, 52, 73, 90, 95, 97, 98], "prone": [2, 73], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 60, 63, 64, 66, 69, 70, 71, 73, 74, 82, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 61, 68, 73, 89, 90, 97, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 61, 77, 81, 88, 89, 90, 94, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 65, 68, 69, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 61, 62, 66, 68, 69, 70, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "tutori": [2, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "repo": 2, "wrapper": [2, 60, 86, 87, 88, 106], "around": [2, 68, 89, 90, 98, 103, 104, 108], "fasttext": 2, "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 70, 73, 86, 87, 93, 94, 95, 96, 97, 107, 108], "along": [2, 49, 63, 81, 89, 90, 91, 95, 97, 104], "dimens": [2, 57, 75, 78, 91, 97, 104, 107], "select": [2, 9, 10, 27, 51, 61, 71, 91, 98, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 99, 100, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 63, 66, 69, 71, 73, 74, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 73, 86, 88, 93, 96, 97, 103, 107], "By": [2, 37, 62, 63, 73, 89, 95, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 62, 63, 65, 70, 73, 83, 87, 88, 89, 90, 94, 95, 97, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 73], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 61, 62, 63, 65, 68, 69, 70, 71, 73, 74, 75, 77, 83, 84, 87, 89, 90, 96, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 59, 61, 70, 73, 84, 86, 87, 89, 90, 91, 93, 94, 95, 97, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 68, 70, 73, 78, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 104, 106], "consist": [2, 3, 10, 38, 42, 51, 57, 61, 95, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 60, 63, 68, 71, 73, 74, 77, 81, 83, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 62, 73, 90, 94, 95], "close": [2, 3, 10, 41, 47, 70, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 71, 73, 97], "equival": [2, 3, 38, 42, 47, 70, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 62, 63, 73, 97, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 62, 99], "certain": [2, 3, 5, 10, 38, 42, 60, 69, 73, 89, 90, 95, 96, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 81, 89, 90, 91, 97, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 60, 61, 63, 69, 70, 71, 73, 78, 79, 81, 89], "filter": [2, 3, 10, 41, 43, 56, 62, 64, 65, 67, 69, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 91, 94, 96, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 97, 102, 103, 106, 107, 108], "particularli": [2, 83, 98, 101, 104], "filter_bi": [2, 3, 41, 44, 63, 84, 97], "frac_nois": [2, 44, 63, 79, 97], "min_examples_per_class": [2, 44, 63, 97, 99], "impact": [2, 4, 10, 89, 90, 91, 95], "ml": [2, 4, 5, 9, 10, 16, 73, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 100, 101, 102, 104, 105, 106], "accuraci": [2, 10, 39, 71, 86, 87, 88, 91, 97, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 63, 75, 77, 79, 97, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 61, 63, 69, 75, 77, 79, 87, 88, 89, 95, 97, 98, 101, 105], "caus": [2, 44, 49, 89, 90, 95, 97], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 62, 63, 64, 66, 67, 69, 70, 72, 76, 78, 79, 80, 82, 83, 84, 86, 87, 89, 90, 96, 97, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 61, 63, 64, 65, 66, 67, 68, 71, 72, 74, 76, 77, 79, 80, 81, 84, 97, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 65, 70, 71, 99], "control": [2, 5, 9, 10, 17, 41, 44, 61, 69, 70, 73, 79, 81, 89, 90, 95, 96, 97], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 61, 62, 65, 66, 68, 70, 71, 73, 77, 81, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 73, 95, 97, 101], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 60, 61, 62, 66, 68, 69, 70, 73, 77, 78, 81, 82, 83, 84, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78, 107, 108], "statement": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78], "big": [2, 41, 63, 69, 73, 99], "limit": [2, 5, 17, 41, 52, 63, 83, 95, 103, 107, 108], "memori": [2, 38, 41, 42, 63, 69, 75, 77, 89, 107], "experiment": [2, 38, 39, 41, 42, 43, 63, 84, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 106], "label_issues_batch": [2, 40, 63, 97], "find_label_issues_batch": [2, 40, 41, 63, 97], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 68, 69, 70, 71, 77, 81, 89, 95, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 84, 99], "label_issu": [2, 41, 44, 63, 66, 73, 75, 84, 86, 87, 88, 91, 94, 97, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 73], "clf_final_kwarg": [2, 73], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 61, 62, 63, 65, 66, 68, 69, 71, 73, 74, 77, 81, 83, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101, 102, 103, 104, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 63, 65, 66, 69, 71, 73, 74, 75, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 63, 66, 69, 71, 73, 74, 75, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 99, 102, 104, 106, 107, 108], "final": [2, 10, 73, 86, 93, 95, 98, 103, 105, 106], "remain": [2, 73, 84, 86, 87, 91, 95, 98, 102, 106, 108], "datasetlik": [2, 57, 73], "beyond": [2, 5, 7, 9, 10, 12, 36, 83, 86, 87, 98, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 60, 61, 62, 73, 81, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 60, 61, 62, 73, 78, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 70, 95], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 93, 95], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 95], "torch": [2, 38, 39, 42, 87, 88, 91, 94, 96, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 60, 61, 66, 69, 73, 83, 84, 88, 89, 90, 91, 97, 99, 104], "tensorflow": [2, 57, 60, 83, 88, 97], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 60, 63, 66, 67, 68, 69, 70, 73, 81, 83, 87, 88, 90, 91, 93, 95, 97, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 77, 78, 79, 81, 82, 84, 87, 88, 89, 90, 91, 96, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 71, 78, 82, 86, 87, 88, 91, 93, 94, 95, 97, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 61, 62, 68, 70, 82, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 73, 88, 97, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 60, 61, 62, 63, 66, 69, 70, 71, 73, 75, 77, 78, 81, 82, 86, 89, 90, 91, 93, 95, 96, 98, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 88, 91, 94, 95, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 61, 66, 68, 73, 79, 81, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 60, 61, 75, 77, 91, 97, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 61, 62, 63, 66, 69, 70, 71, 75, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 60, 71, 83, 86, 87, 94, 97, 104], "eg": [2, 5, 10, 57, 66, 69, 89, 90, 97, 98], "repeat": [2, 57, 61, 101, 104], "appli": [2, 10, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 65, 70, 79, 83, 86, 87, 88, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 63, 70, 74], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 59, 61, 62, 63, 65, 66, 69, 70, 71, 73, 75, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 73, 81, 97, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 61, 62, 63, 65, 70, 71, 73, 78, 79, 81, 82, 86, 88, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 60, 61, 68, 77, 81, 87, 96, 98, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 61, 62, 63, 65, 68, 69, 71, 74, 75, 77, 81, 90, 97, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 61, 63, 66, 68, 71, 77, 81, 89, 95, 97, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 61, 68, 70, 71, 74, 77, 81, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 84, 91, 93, 95, 97, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 60, 63, 70, 71, 73, 74, 79, 81, 96, 97, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 68, 70, 81, 84, 90, 92, 95, 97, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 60, 68, 70, 71, 73, 77, 81, 98, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 60, 61, 62, 63, 66, 68, 70, 71, 73, 74, 82, 84, 87, 88, 90, 91, 94, 95, 98, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 68, 90, 96, 97, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 62, 63, 69, 84, 91, 95, 97, 103], "observ": [2, 3, 47, 54, 88, 89, 90, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 61, 62, 63, 66, 68, 71, 77, 79, 81, 82, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 72, 73, 86, 87, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 61, 63, 68, 70, 71, 75, 77, 90, 95, 97, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 61, 63, 66, 71, 73, 75, 77, 78, 83, 87, 88, 90, 91, 94, 97, 103, 106, 107], "label_issues_mask": [2, 44, 71, 73, 84], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 63, 66, 69, 70, 71, 73, 75, 79, 81, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 63, 79, 84, 86, 87, 97, 99], "significantli": [2, 10, 91, 95, 99, 101, 105], "reduc": [2, 41, 44, 57, 88, 97], "time": [2, 10, 38, 41, 42, 57, 61, 82, 84, 89, 91, 97, 98, 103, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 60, 71, 86, 91, 93, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 73, 88, 95, 97, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 69, 91, 95, 98, 99, 101, 105], "caution": [2, 5, 97, 98], "previous": [2, 5, 14, 57, 70, 73, 84, 86, 88, 89, 93, 94, 98, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 73, 86, 89, 91, 93, 95, 97, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 61, 65, 68, 71, 73, 79, 81, 84, 86, 90, 93, 95, 96, 97, 101, 102, 103, 108], "still": [2, 41, 42, 57, 70, 86, 91, 97, 104], "extra": [2, 38, 42, 57, 60, 61, 62, 73, 91, 94, 97, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 62, 65, 66, 73, 75, 79, 90, 103], "overwritten": [2, 73], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 60, 65, 97], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 69, 71, 73, 78, 88, 89, 90, 91, 95, 97, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 63, 71, 89, 93, 98, 102, 103], "earli": [2, 91], "stop": [2, 91], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 70, 86, 89, 91, 93, 95, 98, 102, 106, 108], "f": [2, 7, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 60, 73, 78, 82, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 61, 69, 70, 73, 75, 77, 87, 88, 91, 95, 97, 105, 107], "access": [2, 10, 14, 38, 42, 73, 90, 91, 96, 102], "hyperparamet": [2, 65, 70, 91], "purpos": [2, 52, 89, 90, 95, 97, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 61, 63, 73, 87, 89, 91, 94, 96, 98, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 73], "yourself": [2, 5, 41, 90, 95], "altern": [2, 7, 10, 49, 54, 57, 60, 61, 71, 84, 87, 88, 91, 93, 94, 96, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 60, 61, 63, 70, 71, 73, 77, 78, 81, 82, 83, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 61, 70, 73, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 104, 106], "offer": [2, 5, 9, 10, 87, 88, 89, 90, 94, 97, 98, 99, 102], "after": [2, 3, 5, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 61, 73, 87, 89, 91, 94, 95, 97, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 70, 73, 86, 89, 95], "label_issues_df": [2, 73, 91], "similar": [2, 10, 37, 38, 42, 54, 57, 61, 65, 66, 68, 70, 73, 77, 81, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 60, 62, 63, 65, 68, 69, 70, 73, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 66, 73, 89, 90], "were": [2, 3, 5, 10, 37, 42, 52, 62, 68, 81, 86, 88, 93, 97, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 70, 78, 83, 91, 95, 97, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 61, 62, 71, 90, 97, 99, 105, 108], "num_class": [2, 37, 41, 57, 60, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 78, 89, 95, 97, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 71, 95, 97, 99, 104], "trick": [2, 97], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 61, 69, 70, 71, 83, 89, 90, 91, 93, 94, 95, 98, 103, 104], "account": [2, 37, 61, 65, 70, 71, 87, 94, 97, 99, 101, 102, 104, 106], "word": [2, 3, 56, 81, 82, 97], "remov": [2, 10, 32, 37, 38, 42, 44, 73, 83, 86, 87, 91, 94, 95, 96, 97, 98, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 61, 62, 68, 71, 73, 77, 81, 88, 89, 90, 91, 94, 95, 98, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 60, 71, 73, 75, 83, 84, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 61, 63, 65, 70, 71, 73, 74, 75, 83, 86, 87, 88, 91, 94, 95, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 64, 66, 67, 68, 69, 70, 71, 72, 73, 76, 80, 83, 86, 87, 89, 92, 96, 98, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 71, 73, 98], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 60, 69, 73, 75, 77, 78, 79, 97], "test": [2, 5, 10, 27, 42, 49, 52, 60, 73, 83, 86, 87, 89, 90, 91, 93, 94, 100, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 61, 70, 71, 73, 86, 87, 97, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 71, 83, 87, 89, 90, 93, 94, 97, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 65, 70, 73, 83, 90, 91, 93, 94, 95, 98, 99, 103], "save_spac": [2, 10, 72, 73], "potenti": [2, 10, 37, 44, 56, 63, 66, 69, 71, 73, 75, 77, 82, 84, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 87, 94], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 60, 61, 62, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 60, 62, 63, 65, 81, 89, 98, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 61, 63, 71, 75, 77, 82, 83, 89, 91, 97, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 63, 66, 71, 73, 75, 77, 78, 83, 96, 97, 101, 103, 107, 108], "prefer": [2, 71, 79, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 87, 94, 97, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 73], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 60, 61, 63, 65, 69, 70, 71, 73, 74, 75, 77, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 71, 73], "mostli": [2, 57, 68, 73, 98, 102, 106], "longer": [2, 35, 48, 49, 56, 73, 84, 87, 94, 97, 98, 103], "info": [2, 5, 7, 10, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 73, 81, 90, 95, 96, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 61, 62, 65, 69, 73, 78, 81, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 73, 96, 99], "unless": [2, 38, 42, 52, 73, 97], "our": [2, 3, 10, 60, 61, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 73, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 62, 63, 68, 71, 73, 75, 77, 78, 83, 89, 90, 95, 97, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 61, 62, 63, 66, 69, 71, 73, 74, 75, 77, 78, 84, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 106], "label_qu": [2, 61, 73, 87, 99, 101, 106], "measur": [2, 5, 37, 61, 62, 73, 83, 86, 95, 96, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 61, 62, 63, 65, 66, 68, 71, 73, 74, 77, 79, 81, 83, 84, 88, 89, 91, 97, 98, 100], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 61, 62, 65, 68, 69, 71, 73, 74, 77, 81, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 69, 98, 99, 101], "against": [2, 38, 42, 89, 93, 95, 97, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107], "ad": [2, 38, 42, 90, 101, 106], "precis": [2, 53, 55, 63, 66, 69, 95, 96, 97, 99, 107, 108], "definit": [2, 7, 35, 49, 73, 86, 93], "accessor": [2, 73], "describ": [2, 10, 19, 61, 70, 71, 73, 79, 81, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 73, 96], "clear": [2, 38, 42, 54, 73, 87, 94, 95, 106], "save": [2, 5, 17, 38, 41, 42, 69, 73, 95, 97, 103, 107, 108], "space": [2, 5, 10, 70, 73, 91, 93, 95, 96], "place": [2, 38, 42, 52, 57, 73, 86, 101], "larg": [2, 9, 10, 41, 52, 73, 91, 97, 103, 104, 107, 108], "deploi": [2, 9, 10, 73, 91, 97, 98], "care": [2, 10, 38, 42, 52, 73, 94, 95, 97, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 73, 97, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 98, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 73], "__init_subclass__": [2, 40, 42, 72, 73], "set_": [2, 42, 73], "_request": [2, 42, 73], "pep": [2, 42, 73], "487": [2, 42, 73], "look": [2, 5, 7, 10, 17, 38, 42, 57, 73, 78, 86, 89, 90, 93, 94, 97, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 61, 62, 66, 69, 73, 78, 81, 82, 83, 88, 89, 93, 94, 95, 96, 98, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 73], "infer": [2, 42, 57, 73, 78, 82, 86, 87, 91, 101, 102], "signatur": [2, 38, 42, 73], "accept": [2, 38, 42, 54, 55, 71, 73, 89, 90, 97], "metadata": [2, 10, 42, 73, 91, 108], "through": [2, 5, 7, 42, 73, 87, 88, 90, 94, 95, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 73, 97, 99, 108], "request": [2, 42, 73, 86, 87, 90, 94, 95, 96, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 60, 61, 63, 69, 73, 77, 81, 82, 83, 88, 91, 95, 97, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 66, 69, 70, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 73, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 70, 73, 97, 98, 99, 108], "dev": [2, 42, 73], "0487": [2, 42, 73], "get_metadata_rout": [2, 40, 42, 72, 73], "rout": [2, 42, 73], "pleas": [2, 38, 42, 60, 73, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 73, 84, 88, 89, 90, 91, 92, 93, 94, 95, 98, 99], "mechan": [2, 38, 42, 73], "metadatarequest": [2, 42, 73], "encapsul": [2, 17, 42, 68, 73], "get_param": [2, 40, 42, 59, 60, 72, 73], "subobject": [2, 42, 73], "param": [2, 10, 38, 42, 60, 70, 73, 97], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 60, 61, 62, 69, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 72, 73], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 60, 61, 62, 66, 68, 69, 71, 73, 78, 82, 88, 89, 95, 97, 101, 102, 103, 108], "unchang": [2, 38, 42, 73, 95, 108], "relev": [2, 10, 17, 27, 42, 73, 91, 93, 95], "enable_metadata_rout": [2, 42, 73], "set_config": [2, 42, 73], "meta": [2, 42, 73], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 73, 97], "alia": [2, 38, 42, 73], "metadata_rout": [2, 42, 73], "retain": [2, 42, 57, 73], "chang": [2, 33, 35, 38, 41, 42, 46, 73, 81, 86, 87, 88, 89, 94, 97, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 59, 60, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 68, 73], "pipelin": [2, 42, 73, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 63, 73, 75, 77, 78, 82, 83, 87, 94, 97, 98], "updat": [2, 14, 38, 41, 42, 52, 60, 73, 84, 89, 91, 98], "set_param": [2, 40, 42, 59, 60, 72, 73], "simpl": [2, 38, 42, 44, 61, 71, 73, 86, 87, 89, 90, 91, 93, 94, 98, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 61, 63, 69, 71, 73, 78, 81, 82, 84, 89, 90, 91, 93, 94, 97, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 73, 79, 81, 82, 108], "latter": [2, 38, 42, 73, 104], "compon": [2, 42, 73], "__": [2, 42, 73], "set_score_request": [2, 72, 73], "structur": [3, 70, 93, 95, 97, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 61, 70, 71, 75, 77, 81, 91, 93, 95, 96, 97, 98, 99, 103, 108], "channel": [3, 88, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 62, 87, 90, 96], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 62, 63, 84, 97, 99], "un": 3, "under": [3, 10, 38, 42, 62, 69, 70, 90, 95, 98, 104], "joint": [3, 37, 44, 47, 57, 62, 63, 96], "num_label_issu": [3, 41, 44, 63, 78, 82, 84], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 63, 102], "don": [3, 10, 83, 90, 91, 94, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 63, 99], "off": [3, 44, 57, 68, 91, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 63, 66, 69, 70, 79, 81, 82, 89, 90, 99, 107, 108], "confident_learn": [3, 44, 63, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 61, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 75, 78, 88, 89, 90, 91, 95, 97, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 89, 90, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 86, 87, 88, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 68, 69, 75, 77, 86, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106], "As": [3, 7, 83, 89, 90, 94, 98, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 60, 69, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 102], "approach": [3, 37, 41, 44, 60, 86, 93, 95, 98, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 71, 87, 90, 94, 95, 99, 106], "know": [3, 10, 89, 90, 91, 94, 97, 99, 101, 106], "cut": [3, 68, 83, 86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 69, 83, 95, 97, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 65, 66, 68, 69, 71, 74, 81, 96, 97, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 77, 78, 79, 83, 84, 88, 95, 97, 98, 102, 104, 108], "num_issu": [3, 7, 41, 88, 89, 90, 91, 93, 94, 95, 98, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 60, 61, 87, 96, 97, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 62, 63, 65, 71, 89, 90, 100, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 62, 63, 65, 73, 86, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 106], "fashion": [3, 5, 75, 86], "2x2": 3, "incorrectli": [3, 37, 62, 63, 66, 93, 98, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 63, 71, 83, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 61, 65, 68, 74, 77, 81, 82, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 63, 69, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 61, 62, 69, 78, 103, 104], "done": [3, 10, 60, 73, 89, 97, 99, 102, 104, 105], "overfit": [3, 10, 66, 69, 86, 88, 89, 90, 91, 93, 94, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 61, 62, 68, 69, 70, 71, 81, 86, 88, 89, 95, 97, 99, 102, 103], "baselin": [3, 38, 44, 87, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 63, 69, 73, 81, 97], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 61, 63, 69, 77, 79, 81, 82, 88, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 61, 70, 75, 77, 83, 87, 91, 95, 97, 98, 107], "practic": [3, 86, 87, 90, 91, 98, 99, 104, 106], "complet": [3, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 65, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 69, 79, 96], "again": [3, 60, 86, 97, 104], "simplifi": [3, 15, 97], "understand": [3, 9, 10, 37, 62, 69, 90, 95, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 70, 71, 86, 87, 89, 90, 91, 93, 95, 96, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 60, 86, 87, 90, 91, 93, 94, 95, 96, 99, 101, 102, 104, 106], "speed": [3, 44, 87, 96, 97, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 65, 81, 88, 95, 98, 103], "enumer": [3, 38, 42, 88, 89, 90, 91, 95, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 81, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 71, 75, 78, 88, 95, 97, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 65, 74, 86, 88, 95], "eqn": [3, 47], "margin": [3, 44, 47, 49, 71], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 62, 99, 105], "poorli": [3, 47, 86, 95], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 73, 74, 88, 89, 93, 99, 102, 106], "exact": [3, 10, 47, 52, 86, 89, 90, 91, 93, 95, 98], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 63, 68, 77, 79, 81, 89, 90, 91, 97, 103, 107], "percent": 3, "often": [3, 37, 47, 62, 97, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 69, 86, 87, 88, 89, 91, 93, 94, 97, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 60, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 89, 91, 95, 96, 97, 98, 99, 105, 106], "becaus": [3, 10, 47, 53, 57, 68, 94, 95, 97, 98, 99, 101, 103, 105], "littl": [3, 41, 96, 103, 108], "uniform": [3, 71, 96, 97, 99], "20": [3, 7, 43, 82, 88, 91, 94, 95, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 91, 104], "bound": [3, 24, 26, 38, 42, 56, 65, 66, 68, 69, 103], "reason": [3, 10, 23, 38, 42, 53, 70], "comment": [3, 56, 95, 108], "end": [3, 5, 38, 42, 54, 69], "file": [3, 5, 13, 40, 41, 59, 69, 86, 88, 89, 93, 94, 96, 97, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 84, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 99, 102, 104, 106, 107, 108], "five": [3, 66, 69, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 98, 103], "confident_threshold": [3, 10, 23, 24, 41, 70], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 83, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 69, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 107, 108], "u": [4, 86, 87, 88, 89, 91, 93, 95, 97, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 95, 98, 103], "contribut": [4, 10, 19, 95, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 93, 95], "metric": [4, 5, 10, 19, 20, 22, 27, 29, 32, 45, 51, 52, 54, 55, 57, 60, 69, 70, 86, 87, 88, 91, 93, 94, 95, 98, 99, 106], "10": [4, 10, 19, 20, 24, 27, 29, 32, 38, 39, 52, 69, 70, 71, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 70, 90, 94, 95, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 70, 89, 90, 91, 93, 94, 95, 97, 104], "knn": [4, 10, 14, 19, 27, 29, 32, 51, 52, 53, 54, 55, 70, 93, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 61, 65, 66, 68, 69, 70, 73, 77, 91, 96, 98], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 60, 61, 87, 90, 94, 95, 97, 98, 102, 103, 106], "lowest": [4, 10, 61, 69, 90, 91, 93, 95, 97, 98, 101, 102, 103, 107], "fall": [4, 10, 68, 77, 81, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 62, 63, 66, 73, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 70, 95, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 63, 66, 69, 71, 78, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 70, 83, 87, 88, 89, 90, 93, 94, 95, 98, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 63, 83, 87, 88, 89, 90, 91, 94, 97, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 61, 86, 88, 95, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 62, 88, 89, 90, 91, 93, 94, 98, 99], "num_featur": [4, 5, 17, 38, 42, 60], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 68, 70, 93, 95, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 60, 95, 98], "nearestneighbor": [4, 5, 10, 19, 52, 54, 70, 93, 104], "cosin": [4, 10, 52, 53, 55, 70, 95, 104], "dim": [4, 70, 91, 107], "euclidean": [4, 5, 10, 52, 53, 55, 68, 70, 93], "dimension": [4, 27, 53, 57, 88, 99, 104], "scikit": [4, 42, 53, 54, 57, 70, 83, 86, 87, 88, 89, 90, 93, 94, 95, 97, 106], "fewer": [4, 10, 44, 57, 70, 95, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 59, 70, 84, 88, 89, 90, 91, 93, 94, 98, 99], "exce": [4, 52, 91, 95], "transform": [4, 10, 33, 49, 52, 55, 57, 70, 71, 86, 87, 90, 91, 94, 95, 98, 104, 108], "rel": [4, 10, 37, 52, 61, 62, 70, 89, 90, 91, 93, 94, 98, 99, 104], "adjust": [4, 39, 44, 52, 65, 70, 71, 83, 95, 98, 99], "closer": [4, 10, 68, 95, 103], "highli": [4, 90, 91], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 69, 95, 96, 104], "convers": 4, "neg": [4, 10, 68, 69, 89, 90, 95, 96], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 97], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 73, 75, 77, 91, 94, 96, 97], "55": [4, 56, 95, 96, 103, 106], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 88, 91, 92, 93, 94, 95, 97, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 95, 96], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 61, 69, 78, 79, 86, 87, 88, 89, 93, 94, 95, 98, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 59, 63, 70, 73, 74, 83, 95, 105], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 59, 60, 75, 77, 95], "pip": [5, 7, 9, 12, 36, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 70, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 83, 96], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "image_kei": [5, 10, 91, 95], "interfac": [5, 9, 10, 54, 83, 86, 87, 90, 93, 94, 96, 97, 98, 99, 102, 104, 106], "librari": [5, 10, 42, 54, 66, 69, 70, 83, 87, 89, 94, 95, 96, 97], "goal": [5, 106], "track": [5, 7, 14, 15, 83, 89, 96, 97, 99], "intermedi": [5, 9, 90], "statist": [5, 10, 14, 23, 27, 37, 61, 62, 69, 90, 93, 94, 95, 98, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 61, 68, 77, 81, 84, 87, 88, 91, 94, 95, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 91], "face": [5, 10, 13, 17, 91, 96, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 61, 62, 68, 70, 89, 90, 91, 94, 97, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 61, 62, 74, 78, 81, 82, 87, 93, 94, 95, 97, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 61, 62, 65, 66, 68, 69, 89, 90, 93, 94, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 69, 88, 89, 95, 97, 103], "local": [5, 7, 10, 13, 38, 39, 42, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 70, 79, 81, 82, 83, 85, 89, 90, 92, 96, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 86, 87, 93, 94, 98, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 61, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 87, 89, 90, 94, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 66, 68, 69, 70, 75, 77, 78, 83, 89, 90, 92, 96, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 86, 87, 95, 106], "pil": [5, 91], "cleanvis": [5, 10, 95], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 79, 81, 90, 91, 97, 100, 102, 107], "load_dataset": [5, 13, 91], "glue": 5, "sst2": 5, "properti": [5, 9, 13, 14, 35, 38, 42, 95], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 62, 69, 78, 82, 83, 96, 99, 103, 107, 108], "empti": [5, 13, 47, 61, 90, 95, 97, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 61, 63, 66, 68, 69, 71, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 83, 90, 92, 95, 96, 97, 98, 99, 102, 103, 107], "real": [5, 17, 83, 89, 90, 95, 97, 98, 99, 101, 106, 107], "world": [5, 17, 83, 89, 90, 95, 97, 98, 99, 101, 106, 107], "interact": [5, 17, 94, 97], "thereof": [5, 17], "insight": [5, 17, 69, 101], "best": [5, 9, 10, 17, 48, 61, 71, 86, 87, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 75, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 66, 69, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103], "lexicograph": [5, 48, 57, 88, 89, 90, 91, 93, 94, 98, 99, 102], "squar": [5, 57, 73, 96, 106], "csr": [5, 52, 95], "evenli": 5, "omit": [5, 68, 69, 91, 95, 103], "itself": [5, 33, 38, 42, 52, 95, 103], "three": [5, 10, 37, 61, 62, 73, 78, 86, 88, 89, 90, 93, 96, 99, 101, 105, 106, 107, 108], "indptr": [5, 95], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 83, 102, 108], "th": [5, 10, 43, 48, 56, 57, 61, 63, 66, 68, 69, 70, 79, 81, 82, 94, 102, 103, 108], "ascend": [5, 37, 62, 91, 99], "segment": [5, 75, 77, 78, 100], "reflect": [5, 10, 52, 86, 87, 93, 94, 98, 101, 103, 104, 106], "maintain": [5, 60], "kneighbors_graph": [5, 19, 54, 93], "illustr": [5, 95], "todens": 5, "second": [5, 49, 57, 69, 71, 89, 93, 97, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 83, 89, 95, 98, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 61, 95, 97, 101, 108], "unspecifi": [5, 17, 44, 63], "interest": [5, 17, 23, 78, 82, 86, 87, 94, 95, 98, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 73, 74, 95, 96, 106, 108], "random_st": [5, 86, 88, 89, 90, 91, 95, 98, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 83, 91, 95, 98, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 70, 95], "mode": [5, 12, 19, 38, 41, 42, 93, 104], "4x4": 5, "float64": [5, 27, 38, 42, 81], "compress": [5, 10, 52, 57, 75, 77, 95], "toarrai": [5, 52, 95], "NOT": [5, 41, 94], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 90], "suppos": [5, 10, 66, 86, 87, 104, 106], "who": [5, 68, 86, 93, 95, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 60, 89, 97], "clean_learning_kwarg": [5, 10, 11, 24, 31, 97, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 84], "prune_by_noise_r": [5, 44, 63, 99], "report": [5, 7, 10, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 82, 83, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34, 95, 98], "show_all_issu": [5, 34, 95, 98], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 59, 60, 62, 67, 76, 77, 79, 80, 81, 84, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 69, 78, 82, 86, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 63, 71, 82, 95, 108], "onc": [5, 10, 23, 37, 38, 42, 86, 89, 97, 98, 99, 102, 103], "familiar": [5, 95], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 61, 62, 65, 68, 69, 73, 77, 78, 79, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 65, 68, 70, 71, 77, 81, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 61, 70, 81, 89, 90, 93, 95, 98, 99, 103], "issue_summari": [5, 7, 10, 14, 95], "With": [5, 9, 10, 41, 87, 94, 97, 99, 101, 106, 107, 108], "usag": [5, 41, 60], "usual": [5, 13, 33, 34, 91, 101, 106], "ti": [5, 61], "exhibit": [5, 7, 10, 14, 78, 88, 89, 90, 91, 93, 94, 98, 99, 103], "ie": [5, 73], "likelihood": [5, 10, 41, 43, 44, 63, 68, 70, 71, 75, 79, 95], "wherea": [5, 10, 57, 63, 86, 87, 95, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 71, 83, 89, 90, 95, 98, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 10, 23, 38, 42, 96], "non_iid": [5, 10, 11, 15, 27, 90, 91, 93, 94, 95, 98, 99], "hypothesi": [5, 95], "iid": [5, 7, 9, 27, 83, 93, 98, 99], "never": [5, 88, 98, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 71, 103], "123": [5, 89, 90], "456": [5, 86, 87, 88], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 60, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 65, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 89, 90, 91, 93, 94, 98, 99], "789": 5, "get_issu": [5, 10, 14, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 88, 89, 90, 91, 93, 94, 95, 98, 99], "focu": [5, 10, 14, 94, 95, 98, 107, 108], "full": [5, 10, 14, 41, 60, 69, 91, 98, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 62, 78, 82, 83, 107], "specific_issu": [5, 14], "lie": [5, 10, 70, 71, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99], "get_issue_summari": [5, 10, 14, 90, 95], "get_info": [5, 10, 14, 90, 94, 95, 96], "yet": [5, 18, 28, 60, 96, 98, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 89], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 88, 89, 91], "load": [5, 13, 41, 69, 91, 96, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 61, 83, 89, 94], "overwrit": [5, 89], "separ": [5, 37, 49, 65, 89, 90, 91, 95, 97, 98, 103, 105], "static": 5, "rememb": [5, 94, 97, 98, 99], "part": [5, 10, 38, 42, 44, 66, 68, 69, 88, 89, 95, 96, 98, 107, 108], "ident": [5, 10, 23, 57, 94, 95], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 83, 86, 87, 96, 98, 101, 106], "walk": [7, 98], "alongsid": [7, 38, 42, 89, 97], "pre": [7, 8, 10, 38, 42, 83, 89, 90, 106], "runtim": [7, 38, 41, 42, 73, 75, 77, 88, 91, 97, 98], "issue_manager_factori": [7, 15, 89], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 87, 95, 99, 106], "next": [7, 61, 83, 86, 87, 88, 93, 94, 95, 97, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 89, 90, 95], "mark": [7, 10, 84, 103, 104, 106], "regard": [7, 90, 98, 99], "rand": [7, 49, 52, 89, 90, 95], "is_": [7, 10, 89], "_issu": [7, 10, 89], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "whole": [7, 10, 27, 38, 42, 90, 95], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "popul": [7, 94, 98], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 78, 82, 95, 97, 102], "intermediate_arg": 7, "min": [7, 49, 68, 81, 89, 97, 104], "sin_filt": 7, "sin": 7, "arang": [7, 95], "kernel": [7, 95], "affect": [7, 10, 38, 42, 53, 75, 81, 94, 95, 97], "easili": [7, 10, 47, 84, 86, 87, 88, 90, 93, 94, 98, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 83, 96, 104], "sai": [7, 10, 38, 42, 95, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 68, 71, 87, 93, 94, 95, 97, 99, 101, 104], "try": [7, 9, 10, 41, 44, 60, 61, 75, 77, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 104, 105, 106, 107], "won": [7, 38, 42, 89, 90, 97, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 89], "instanti": [7, 17, 41, 60, 70, 87, 88, 90, 93], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 69, 88, 89, 90, 91, 93, 94, 98, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 60, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 60, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 89, 90, 95, 96, 98, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32, 83, 98], "group": [8, 9, 27, 32, 83, 96, 98, 103, 108], "dbscan": [8, 10, 32], "hdbscan": 8, "etc": [8, 10, 23, 33, 38, 42, 47, 60, 61, 79, 83, 89, 90, 93, 94, 95, 97, 98, 99, 102, 106], "sensit": [8, 10, 55, 95, 98], "ep": [8, 32, 69], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 95], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 32, 95], "cluster_id": [8, 10, 11, 32, 95], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 90, 91, 93, 94, 95, 98, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 73, 95, 97, 98, 105], "nondefault": 9, "Near": [9, 97], "imbal": [9, 22, 65, 70, 71, 90], "spuriou": [9, 91], "correl": [9, 91], "null": [9, 11, 15, 22, 90, 91, 94, 98, 99], "togeth": [9, 10, 47, 87, 89, 90, 91, 93, 94, 98, 99, 106, 108], "built": [9, 49, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "own": [9, 38, 40, 42, 54, 59, 65, 66, 69, 75, 79, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 60, 95, 98, 104], "fulli": [9, 10, 38, 42, 60, 97], "platform": [9, 10, 83, 86, 87, 90, 91, 93, 94, 96, 97, 99, 102, 104, 105, 106], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 60, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 71, 86, 93, 97, 98, 99, 106, 107], "100x": [9, 10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "faster": [9, 10, 41, 70, 73, 75, 77, 83, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 106], "intellig": [9, 10, 98], "quickli": [9, 10, 39, 86, 88, 91, 93, 94, 97, 98, 102, 104, 105, 107, 108], "fix": [9, 10, 61, 86, 87, 90, 93, 94, 95, 96, 98, 99, 102, 104, 105, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 61, 62, 68, 87, 91, 94, 95, 97, 106], "power": [9, 10, 91, 96, 99, 108], "automl": [9, 10, 83, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 105, 106], "system": [9, 10, 88, 91, 107], "foundat": [9, 10, 83, 86, 87, 90, 93, 94, 95, 96, 99, 102, 104, 105, 106], "improv": [9, 10, 61, 86, 87, 90, 91, 96, 97, 99, 100, 106, 107], "click": [9, 10, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 87, 88, 94, 96, 98, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 86, 87, 90, 96, 97, 98, 106], "free": [9, 10, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 102, 104, 105, 106], "page": [10, 90, 97, 98, 99], "variou": [10, 14, 31, 40, 58, 59, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103], "why": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "matter": [10, 37, 62], "didn": [10, 95, 98], "plu": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "class_imbal": [10, 11, 15, 21, 90, 91, 93, 94, 95, 98, 99], "data_valu": [10, 11, 15, 22, 95], "No": [10, 11, 86, 87, 94, 95, 97], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 68, 86, 87, 108], "issue_scor": 10, "atyp": [10, 70, 89, 90, 91, 93, 94, 98, 99, 104], "datapoint": [10, 32, 44, 49, 57, 71, 74, 83, 86, 87, 88, 89, 90, 93, 94, 97, 98, 105, 106], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 88, 95], "expertis": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "interpret": [10, 96, 97, 99, 102, 106], "annot": [10, 37, 48, 61, 62, 63, 65, 66, 68, 69, 78, 81, 82, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 93, 94], "preced": 10, "incorrect": [10, 68, 71, 74, 86, 88, 89, 90, 91, 93, 94, 95, 98, 99, 103, 106], "due": [10, 41, 44, 71, 75, 77, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106], "appear": [10, 37, 48, 62, 63, 66, 74, 90, 91, 93, 94, 95, 98, 106, 107], "now": [10, 41, 84, 86, 87, 88, 90, 95, 97, 98, 101, 103, 104, 106, 108], "token": [10, 43, 56, 77, 78, 79, 80, 81, 82, 97, 99, 100], "hamper": [10, 91, 96], "analyt": [10, 83, 95, 97, 101], "lead": [10, 68, 71, 91, 95, 98, 103], "draw": [10, 89, 90], "conclus": [10, 94], "let": [10, 38, 42, 70, 71, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 106], "head": [10, 86, 87, 88, 90, 91, 93, 94, 95, 96, 98, 99, 101, 106], "97": [10, 86, 96, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 86, 90, 95, 96, 99, 103], "680894": 10, "41": [10, 95, 96, 98, 103, 106], "746043": 10, "794894": 10, "98": [10, 96, 97, 98, 106], "802911": 10, "give": [10, 49, 71, 99, 101, 107], "li": [10, 70], "especi": [10, 86, 87, 91, 95, 97, 106], "veri": [10, 37, 62, 66, 68, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106], "rare": [10, 44, 69, 89, 90, 91, 93, 94, 97, 98, 99], "anomal": [10, 71, 89, 90, 91, 93, 94, 98, 99], "articl": [10, 41, 97], "blog": 10, "unexpect": [10, 38, 42, 94], "consequ": 10, "inspect": [10, 87, 88, 90, 91, 98, 99, 103, 106], "011562": 10, "62": [10, 95, 98, 99, 103, 106], "019657": 10, "22": [10, 88, 89, 91, 95, 96, 98, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 94, 95, 96, 103, 108], "056865": 10, "smaller": [10, 70, 102, 103], "extrem": [10, 89, 90, 91, 93, 94, 95, 97, 98, 99], "record": [10, 38, 42, 88, 93, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 82], "resolut": 10, "video": [10, 96], "audio": [10, 89, 90, 92, 97], "minor": [10, 56], "variat": 10, "translat": [10, 98], "d": [10, 55, 86, 93, 94, 95, 97, 98, 99, 102, 106, 108], "constant": [10, 32, 73], "median": [10, 31, 55], "question": [10, 23, 83, 99], "nearli": [10, 23, 90, 91, 93, 94], "awar": [10, 84, 99], "presenc": [10, 52, 54, 99], "36": [10, 95, 96, 98, 108], "066009": 10, "80": [10, 39, 86, 93, 98, 102, 106], "003906": 10, "093245": 10, "005599": 10, "27": [10, 93, 95, 96, 98, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 95, 96, 98, 99, 102, 106], "signific": [10, 86, 87, 90, 93, 94, 96, 98, 99, 102, 104, 106], "violat": [10, 83, 93, 94, 95, 98, 99], "assumpt": [10, 93, 94, 95, 98, 99], "changepoint": [10, 93, 94, 98, 99], "shift": [10, 52, 54, 93, 94, 98, 99], "drift": [10, 90, 93, 95, 98, 99], "autocorrel": [10, 93, 94, 98, 99], "almost": [10, 93, 94, 98, 99], "adjac": [10, 52, 93, 94, 98, 99], "tend": [10, 37, 47, 93, 94, 98, 99, 107, 108], "sequenti": [10, 38, 42, 60, 91], "pai": [10, 94, 95], "attent": [10, 95], "realli": [10, 87, 94, 98, 101, 107], "mere": 10, "highlight": [10, 78, 82, 89, 90, 93, 95, 107], "necessarili": [10, 61, 69, 94, 98, 99], "wrong": [10, 61, 66, 68, 84, 87, 89, 90, 94, 97, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 81, 86, 93, 94, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 66, 69, 103], "x2": [10, 66, 69, 103], "10th": 10, "100th": 10, "90": [10, 81, 86, 93, 98, 99, 105, 106], "similarli": [10, 38, 42, 89, 91, 93, 97, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 69, 101], "blogpost": 10, "proper": [10, 57, 61, 66, 69, 86, 91, 94, 97, 101, 103], "scenario": [10, 52, 54, 71, 89, 90], "underli": [10, 43, 54, 70, 79, 81, 108], "stem": [10, 70, 104], "evolv": 10, "influenc": 10, "act": [10, 68, 89], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 60, 62, 68, 71, 75, 77, 78, 83, 91, 95, 98], "problem": [10, 33, 41, 49, 78, 83, 89, 90, 91, 94, 95, 97], "deploy": [10, 86, 87, 99, 106], "overlook": [10, 68, 103], "fact": 10, "thu": [10, 37, 42, 62, 86, 88, 93, 94, 98, 99, 105, 108], "diagnos": [10, 90, 97], "24": [10, 88, 95, 96, 98, 99, 101, 103, 106], "681458": 10, "37": [10, 89, 95, 96, 98], "804582": 10, "64": [10, 42, 86, 91, 93, 95, 99, 103], "810646": 10, "815691": 10, "78": [10, 86, 93, 96, 98, 99, 103, 106], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 69, 97], "rarest": [10, 90, 98], "q": [10, 95, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 91, 94, 95, 96, 98, 99, 101, 108], "75": [10, 49, 89, 90, 95, 96, 98, 101, 102, 103, 106, 108], "33": [10, 38, 42, 95, 96, 98, 103], "68": [10, 86, 96, 98, 99, 103], "excess": [10, 91], "dark": [10, 95, 107], "bright": [10, 108], "blurri": [10, 91, 95], "lack": [10, 60, 95, 98], "unusu": [10, 103, 104], "discuss": [10, 97], "earlier": [10, 87, 108], "unintend": [10, 93, 94, 95], "relationship": [10, 37], "irrelev": 10, "exploit": 10, "fail": [10, 13], "unseen": 10, "hold": [10, 13], "aris": 10, "captur": [10, 37, 88, 103, 104, 107], "environment": 10, "preprocess": [10, 86, 87, 90, 93, 95, 104, 106], "systemat": [10, 78, 82, 101], "photograph": 10, "uncorrelated": [10, 95], "strongli": [10, 94, 95], "minu": [10, 71], "sole": [10, 73, 86, 89, 98, 101, 104], "review": [10, 86, 87, 90, 93, 94, 96, 97, 98, 99, 103, 106, 107, 108], "latch": 10, "onto": 10, "troublesom": 10, "spurious_correl": [10, 95], "correlations_df": [10, 95], "blurry_scor": [10, 95], "559": [10, 98], "dark_scor": [10, 91, 95], "808": 10, "light_scor": [10, 95], "723": [10, 93, 98], "odd_size_scor": [10, 95], "957": 10, "odd_aspect_ratio_scor": [10, 95], "835": 10, "grayscale_scor": [10, 95], "003": 10, "spurious": 10, "low_information_scor": [10, 91, 95], "688": [10, 98, 106], "categor": [10, 70, 85, 86, 89, 90, 92, 97, 98, 106], "characterist": [10, 37, 95], "grayscal": [10, 91, 95], "cluster": [10, 19, 32, 98], "slice": [10, 98], "poor": [10, 95, 98], "subpopul": [10, 98], "faq": [10, 83, 90, 91, 93, 94, 100], "get_self_confidence_for_each_label": [10, 49, 71], "r": [10, 41, 73, 89, 90, 95, 106, 107], "tabular": [10, 83, 85, 89, 90, 92, 95, 97, 98, 101], "encod": [10, 50, 69, 75, 78, 86, 87, 93, 94, 97, 98, 106, 107], "71": [10, 95, 96, 98, 99, 103, 106], "70": [10, 81, 93, 95, 98], "69": [10, 98, 99, 106], "subgroup": [10, 95], "wors": [10, 95, 101], "ratio": [10, 95], "miss": [10, 28, 38, 42, 57, 66, 68, 97, 98, 103, 106], "pattern": [10, 95], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 70, 97], "quantif": 10, "39": [10, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 106, 107, 108], "32": [10, 88, 89, 95, 96, 98, 101, 103], "valuabl": [10, 19, 95], "exert": [10, 90], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 83, 96], "health_summary_kwarg": 10, "tandem": [10, 96], "view": [10, 38, 42, 43, 44, 77, 79, 81, 83, 86, 87, 88, 89, 90, 93, 94, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 70, 104], "outsid": [10, 97, 102], "outlierissuemanag": [10, 15, 22, 29], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107], "howev": [10, 38, 42, 52, 57, 86, 87, 88, 91, 93, 94, 95, 98, 101, 105, 107], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 62], "versa": [10, 62], "light": [10, 91, 95, 96, 103, 107], "29": [10, 91, 95, 96, 98, 101, 102, 103, 107, 108], "low_inform": [10, 91, 95], "odd_aspect_ratio": [10, 91, 95], "35": [10, 89, 95, 96, 98, 101, 102, 103], "odd_siz": [10, 91, 95], "doc": [10, 38, 42, 70, 83, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "is_outlier_issu": [11, 89, 90, 91, 93, 94, 95, 98, 99], "outlier_scor": [11, 29, 89, 90, 91, 93, 94, 95, 98, 99, 104], "is_near_duplicate_issu": [11, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_scor": [11, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_set": [11, 20, 22, 89, 90, 91, 93, 94, 97, 98, 99], "is_non_iid_issu": [11, 90, 93, 94, 95, 98, 99], "non_iid_scor": [11, 27, 90, 93, 94, 95, 98, 99], "is_class_imbalance_issu": [11, 90, 95, 98], "class_imbalance_scor": [11, 21, 90, 95, 98], "is_underperforming_group_issu": [11, 90, 95, 98], "underperforming_group_scor": [11, 32, 90, 95, 98], "is_null_issu": [11, 90, 95, 98], "null_scor": [11, 28, 90, 95, 98], "is_data_valuation_issu": [11, 95], "data_valuation_scor": [11, 19, 95], "studio": [12, 83, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 102, 104, 105, 106], "data_issu": [12, 16, 17, 34], "issue_find": [12, 16], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 60, 71, 89, 90, 91, 98, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 91], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": 14, "strategi": [14, 49, 95, 97], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 63, 66, 69, 73, 75, 77, 89, 90, 97, 98], "recomput": [14, 87], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 62, 83], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 70, 89], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 75, 77, 98], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 95, 98, 99, 103, 107, 108], "creation": [17, 42, 95], "execut": [17, 38, 42, 89, 97, 103], "coordin": [17, 66, 68, 69, 103, 108], "At": [17, 69, 97], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 60], "vstack": [19, 57, 91, 96, 97, 99, 101, 102], "25": [19, 27, 38, 49, 55, 90, 91, 95, 96, 98, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 89, 90, 91, 97, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 87, 94, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 86, 88, 89, 91, 95, 96, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 68, 83, 86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 70, 71, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "perform_clust": [22, 32], "get_underperforming_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 61, 95, 97, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 65, 68, 69], "scalartyp": [24, 26], "covari": [24, 26, 73, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 71, 75, 77, 103, 107], "empir": [27, 48, 61], "cumul": 27, "ecdf": 27, "histogram": [27, 93, 95, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 60, 91, 95, 98, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 77, 81, 89, 104, 106], "prompt": 28, "address": [28, 87, 89, 90, 94, 97], "enabl": [28, 42, 54, 98], "scaling_factor": [29, 55], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 69, 87, 108], "50": [32, 42, 95, 97, 98, 99, 101, 103, 104, 106, 108], "keepdim": [32, 97], "signifi": 32, "absenc": 32, "int64": [32, 88, 98, 101], "npt": 32, "int_": 32, "id": [32, 61, 89, 91, 95, 97, 101], "unique_cluster_id": 32, "exclud": [32, 34, 43, 78, 82, 89, 108], "worst": [32, 49, 101], "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35, 98], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 70, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 88, 90, 95, 97], "datset": 34, "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 89, 90], "continu": [35, 60, 86, 87, 91, 94, 97, 101, 103, 106, 108], "binari": [35, 49, 57, 63, 65, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 89], "typeerror": [35, 49], "12": [35, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 61, 62, 71, 89, 90, 91, 96, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 86, 87, 88, 90, 91, 93, 94, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 97, 98, 99], "rank_classes_by_label_qu": [37, 90], "merg": [37, 52, 56, 83, 96, 97, 98, 108], "find_overlapping_class": [37, 97, 99], "problemat": [37, 62, 78, 82, 88, 103, 108], "unnorm": [37, 62, 99], "abov": [37, 38, 41, 42, 54, 57, 61, 68, 69, 71, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 86, 88, 89, 90, 93, 95, 98, 99, 101], "df": [37, 57, 82, 88, 95, 97], "overall_label_qu": [37, 62], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 62, 71], "label_nois": [37, 62], "human": [37, 96, 107, 108], "clearli": [37, 71, 91, 103, 107], "num": [37, 62, 96, 99], "overlap": [37, 83, 95, 96, 97, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 71, 95, 98], "vehicl": [37, 96], "truck": [37, 95, 96, 104, 107], "intuit": [37, 62], "car": [37, 96, 103, 107], "frequent": [37, 61, 95, 97, 98, 106], "l": [37, 38, 42, 66, 68, 69], "class1": 37, "class2": 37, "dog": [37, 57, 62, 64, 78, 96, 97, 104, 105, 108], "cat": [37, 57, 62, 64, 96, 97, 104, 105], "co": [37, 38, 39], "noisy_label": [37, 89, 90, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 62, 69], "overall_label_health_scor": [37, 62, 99], "half": [37, 38, 40, 42, 62, 96, 108], "health_scor": [37, 62], "classes_by_label_qu": [37, 90], "cnn": [38, 40, 42, 91], "cifar": [38, 39, 95, 96, 104], "teach": [38, 39], "bhanml": 38, "blob": [38, 95], "master": [38, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 69, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 91, 101], "overridden": [38, 42], "although": [38, 42, 70, 86, 93, 98], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 62, 69, 77, 81, 97, 98, 101, 102, 103, 105, 108], "hook": [38, 42, 96], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 69], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 91], "init": [38, 42, 99], "no_grad": [38, 42, 91, 104], "init_weight": [38, 42], "linear": [38, 42, 87, 91, 94], "fill_": [38, 42], "net": [38, 42, 88, 91, 96], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 91], "tensor": [38, 39, 42, 88, 91, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 88], "buffer": [38, 40, 42], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 60], "cpu": [38, 40, 42, 44, 88, 91], "move": [38, 42, 49, 84, 96], "cuda": [38, 40, 42, 88, 91], "devic": [38, 42, 88, 91, 98], "gpu": [38, 42, 87, 88, 94], "live": [38, 42], "copi": [38, 42, 73, 86, 88, 89, 90, 93, 95, 97, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 91, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 83, 89, 95, 96, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 73, 74, 95, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 94], "resolv": [38, 42, 95, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 91, 95, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 91], "break": [38, 42, 91, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 91], "16": [38, 42, 49, 52, 60, 77, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 71, 95, 96, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 90, 91, 95, 97, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 88, 89, 90, 96, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 95, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 69, 89, 91, 95, 97, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 88, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 86, 93], "fire": [38, 42, 96], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 89, 90], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 91, 93, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 87, 88, 94], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 60, 84, 97], "design": [38, 42, 52], "ordereddict": [38, 42], "detach": [38, 42, 91], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 62, 68], "complex": [38, 42, 98], "integr": [38, 42, 54, 83, 97], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 87, 94, 96], "desir": [38, 42, 52, 56, 69], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 88], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 91], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 60, 91], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 91, 97], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 71, 95, 97], "250": [39, 89, 90, 99, 103], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 87, 91, 94, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 91, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 59, 95, 108], "wish": [40, 59, 98, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 97], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 76, 77, 78, 79, 80, 81, 82, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 75, 77, 91, 97, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 91], "loader": [40, 42, 91], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 84], "mini": [41, 75, 77, 97], "low_self_confid": [41, 44, 63], "self_confid": [41, 44, 45, 49, 63, 65, 71, 79, 81, 86, 87, 97, 99], "conveni": [41, 54, 86, 87, 88, 94, 98], "script": 41, "labels_fil": [41, 97], "pred_probs_fil": [41, 97], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 61, 107], "read": [41, 46, 90, 97, 99, 104, 108], "zarr": [41, 97], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 97], "hdf5": 41, "further": [41, 43, 62, 63, 65, 68, 69, 77, 78, 88, 95, 97, 98], "yourfil": 41, "npy": [41, 96, 97, 107], "mmap_mod": [41, 107], "tip": [41, 44, 60, 97], "save_arrai": 41, "your_arrai": 41, "disk": [41, 96, 97], "npz": [41, 108], "maxim": [41, 61, 75, 77, 98, 107], "multiprocess": [41, 44, 63, 75, 77, 91, 97], "linux": [41, 75, 77], "physic": [41, 44, 75, 77, 103], "psutil": [41, 44, 75, 77], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 69, 89, 97, 98, 103, 104], "store_result": 41, "becom": [41, 95, 104], "verifi": [41, 54, 97, 98, 101, 104], "long": [41, 61, 70, 98, 101], "enough": [41, 57, 95, 97], "chunk": [41, 105], "ram": [41, 96], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 97], "shortcut": 41, "encount": [41, 44, 75], "1000": [41, 88, 94, 97, 104], "aggreg": [41, 45, 49, 61, 65, 68, 71, 81, 97, 99, 101], "seen": [41, 97, 98, 104, 108], "far": [41, 61, 98], "label_quality_scor": [41, 65, 68, 71, 74, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 63, 65, 71, 79, 81], "low_normalized_margin": [41, 44, 63], "issue_indic": [41, 68, 91], "update_num_issu": 41, "arr": [41, 97], "chunksiz": 41, "convnet": 42, "bespok": [42, 60], "download": [42, 88, 95, 97, 104], "mnist": [42, 83, 88, 96], "handwritten": 42, "digit": [42, 88, 96], "last": [42, 49, 66, 69, 89, 90, 97, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 71, 73, 88, 95, 99, 102, 103], "templat": 42, "flexibli": 42, "among": [42, 61, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 87, 98, 104], "span": [43, 98], "sentenc": [43, 56, 79, 81, 82, 87, 94], "token_classif": [43, 56, 79, 81, 82, 97], "encourag": [44, 63, 71, 74], "multilabel_classif": [44, 62, 63, 65, 71, 97, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 63, 71, 99], "num_to_remove_per_class": [44, 63], "bad": [44, 52, 63, 68, 71, 94, 97], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 63, 65, 71, 79, 81], "label_issues_idx": [44, 71, 98], "entropi": [44, 46, 48, 49, 70, 71], "prune_by_class": [44, 63, 99], "predicted_neq_given": [44, 63, 99], "prune_counts_matrix": 44, "smallest": [44, 71], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 83, 87, 97], "too": [44, 49, 52, 70, 91, 97, 98, 103], "thread": [44, 63], "window": [44, 96], "shorter": [44, 66], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 97], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 84], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 65], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 65], "softmin": [45, 49, 65, 68, 77, 81], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 95], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 60, 61, 83, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 88, 95], "behav": 46, "unnecessari": [46, 97], "slightli": [46, 86, 87], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": [47, 98], "propag": 47, "throughout": [47, 57, 73, 82, 88, 101, 107, 108], "increas": [47, 55, 68, 70, 71, 88, 89, 95, 97, 101, 102, 108], "dot": [47, 81, 97], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 61], "ensembl": [48, 49, 61, 71, 86, 93, 97, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 61], "format_multiannotator_label": [48, 61, 101], "formatted_label": [48, 57], "old": [48, 57, 84, 96], "check_consensus_label_class": 48, "consensus_label": [48, 61, 101], "consensus_method": [48, 61], "consensu": [48, 61, 83, 100, 108], "establish": [48, 60, 87, 106], "compute_soft_cross_entropi": 48, "soft": [48, 96], "find_best_temp_scal": 48, "coarse_search_rang": [48, 73, 97], "fine_search_s": [48, 73, 97], "temperatur": [48, 49, 68, 77, 81], "scale": [48, 55, 86, 95, 96, 97, 104, 107], "factor": [48, 49, 55, 75, 77], "minim": [48, 68, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 96], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 71], "get_confidence_weighted_entropy_for_each_label": [49, 71], "scorer": 49, "alpha": [49, 65, 68, 89, 90, 95, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 63, 93, 94, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 91, 93, 97, 103], "discount": 49, "s_ema": 49, "175": [49, 91, 98, 99, 103], "underflow": 49, "nan": [49, 61, 86, 93, 95, 98, 101, 106], "aggregated_scor": 49, "base_scor": [49, 98], "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 65], "n_sampl": [49, 95], "n_label": 49, "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": [49, 98], "get_label_quality_scores_per_class": [49, 64, 65], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 88], "wider": 49, "splitter": 49, "kfold": [49, 91], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 91, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 63, 69, 75, 78, 86, 93, 96, 97, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 70], "reli": [52, 70, 87, 88, 89, 90, 94, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 97], "manner": [52, 65, 86, 87, 95, 101, 106], "701": 52, "900": [52, 86, 93, 106], "436": [52, 98], "000": [52, 87, 91, 94, 95, 96, 108], "idea": [52, 71, 98, 103], "dens": [52, 60, 95], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 62, 102], "vari": [52, 68, 90], "exact_duplicate_set": 52, "main": [52, 61], "front": [52, 96], "consider": 52, "capabl": [52, 83, 98], "come": [52, 57, 89, 90, 97, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 61, 86, 93, 95, 98], "slower": 53, "decid": [53, 61, 87, 94, 96, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 70], "spatial": [53, 70], "decis": [53, 86, 89, 90, 98], "That": [53, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 66, 69, 70, 88, 89, 90, 91, 93, 94, 97, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "exp": [55, 70, 71, 89], "dt": 55, "right": [55, 66, 69, 87, 94, 102, 103, 104], "strength": [55, 69, 95], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 83, 96], "thumb": 55, "ood_features_scor": [55, 70, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 88, 89, 97, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 83, 97, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 89, 90, 91, 93, 95, 108], "nbitbas": [56, 65], "probs_merg": 56, "0125": [56, 81], "0375": 56, "075": 56, "025": 56, "color": [56, 78, 89, 90, 93, 95, 99, 102, 104, 106, 107], "red": [56, 69, 89, 90, 95, 96, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 71, 86, 93, 97, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 61, 84, 91, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 69, 94, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 89, 90, 95, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 70, 87, 88, 93, 94, 98, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 83, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 88, 91, 96, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 66, 69, 95, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 69, 78, 82, 87, 88, 93, 94, 95, 99, 108], "jupyt": [57, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 61, 88, 90, 96, 97, 98, 99, 101, 102, 103, 105, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 63], "keraswrappermodel": [59, 60, 83], "keraswrappersequenti": [59, 60], "tf": [60, 88], "legaci": 60, "newer": 60, "interim": 60, "advis": [60, 102], "stabil": [60, 70], "until": 60, "accommod": 60, "keraswrapp": 60, "huggingface_keras_imdb": 60, "unit": [60, 108], "model_kwarg": [60, 73], "compile_kwarg": 60, "sparsecategoricalcrossentropi": 60, "layer": [60, 87, 88, 94, 104], "my_keras_model": 60, "from_logit": 60, "declar": 60, "apply_softmax": 60, "analysi": 61, "analyz": [61, 83, 95, 99, 101, 102], "get_label_quality_multiannot": [61, 101], "vote": 61, "crowdsourc": [61, 83, 101], "dawid": [61, 101], "skene": [61, 101], "analog": [61, 96, 101], "chosen": [61, 71, 97, 101], "crowdlab": [61, 101], "unlabel": [61, 91, 101, 104, 107], "get_active_learning_scor": [61, 101], "activelab": [61, 101], "priorit": [61, 68, 103, 107, 108], "showcas": 61, "best_qual": 61, "quality_method": 61, "calibrate_prob": 61, "return_detailed_qu": 61, "return_annotator_stat": 61, "return_weight": 61, "label_quality_score_kwarg": 61, "did": [61, 62, 86, 87, 88, 93, 99, 101, 106], "majority_vot": 61, "broken": [61, 69, 96, 106], "highest": [61, 69, 89, 91, 98, 105], "0th": 61, "consensus_quality_scor": [61, 101], "annotator_agr": [61, 101], "reman": 61, "1st": 61, "2nd": [61, 75], "3rd": 61, "consensus_label_suffix": 61, "consensus_quality_score_suffix": 61, "suffix": 61, "emsembl": 61, "weigh": [61, 96], "agreement": [61, 101], "agre": 61, "prevent": [61, 97], "overconfid": [61, 105], "detailed_label_qu": [61, 101], "annotator_stat": [61, 101], "model_weight": 61, "annotator_weight": 61, "warn": 61, "labels_info": 61, "num_annot": [61, 101], "deriv": [61, 101], "quality_annotator_1": 61, "quality_annotator_2": 61, "quality_annotator_m": 61, "annotator_qu": [61, 101], "num_examples_label": [61, 101], "agreement_with_consensu": [61, 101], "worst_class": [61, 101], "trustworthi": [61, 101, 106], "get_label_quality_multiannotator_ensembl": 61, "weigtht": 61, "budget": 61, "retrain": [61, 87, 106], "active_learning_scor": 61, "active_learning_scores_unlabel": 61, "get_active_learning_scores_ensembl": 61, "henc": [61, 88, 89, 98, 101], "get_majority_vote_label": [61, 101], "event": 61, "lastli": [61, 93], "convert_long_to_wide_dataset": 61, "labels_multiannotator_long": 61, "wide": [61, 86, 87, 88], "labels_multiannotator_wid": 61, "common_multilabel_issu": [62, 64], "exclus": [62, 102], "rank_classes_by_multilabel_qu": [62, 64], "overall_multilabel_health_scor": [62, 64], "multilabel_health_summari": [62, 64], "classes_by_multilabel_qu": 62, "inner": [63, 77, 95], "find_multilabel_issues_per_class": [63, 64], "per_class_label_issu": 63, "label_issues_list": 63, "pred_probs_list": [63, 71, 91, 99], "anim": [64, 104], "rat": 64, "predat": 64, "pet": 64, "reptil": 64, "box": [66, 68, 69, 96, 103], "object_detect": [66, 68, 69, 103], "return_indices_ranked_by_scor": [66, 103], "overlapping_label_check": [66, 68], "suboptim": [66, 68], "locat": [66, 68, 95, 103, 107, 108], "bbox": [66, 69, 103], "image_nam": [66, 69], "y1": [66, 69, 103], "y2": [66, 69, 103], "later": [66, 69, 70, 87, 98, 108], "corner": [66, 69, 103], "xyxi": [66, 69, 103], "io": [66, 69, 88, 95, 96], "keras_cv": [66, 69], "bounding_box": [66, 69, 103], "detectron": [66, 69, 103], "detectron2": [66, 69, 103], "readthedoc": [66, 69], "en": [66, 69], "latest": [66, 69], "visual": [66, 67, 69, 86, 89, 90, 91, 106, 108], "draw_box": [66, 69], "mmdetect": [66, 69, 103], "swap": [66, 68, 78, 82], "penal": [66, 68], "concern": [66, 68, 83, 90], "issues_from_scor": [67, 68, 76, 77, 78, 80, 81, 82, 103, 107, 108], "compute_overlooked_box_scor": [67, 68], "compute_badloc_box_scor": [67, 68], "compute_swap_box_scor": [67, 68], "pool_box_scores_per_imag": [67, 68], "object_counts_per_imag": [67, 69, 103], "bounding_box_size_distribut": [67, 69, 103], "class_label_distribut": [67, 69, 103], "get_sorted_bbox_count_idx": [67, 69], "plot_class_size_distribut": [67, 69], "plot_class_distribut": [67, 69], "get_average_per_class_confusion_matrix": [67, 69], "calculate_per_class_metr": [67, 69], "aggregation_weight": 68, "imperfect": [68, 97, 98], "chose": [68, 101, 103], "imperfectli": [68, 103], "dirti": [68, 71, 74, 106], "subtyp": 68, "badloc": 68, "nonneg": 68, "high_probability_threshold": 68, "auxiliary_input": [68, 69], "iou": [68, 69], "heavili": 68, "auxiliarytypesdict": 68, "pred_label": [68, 87], "pred_label_prob": 68, "pred_bbox": 68, "lab_label": 68, "lab_bbox": 68, "similarity_matrix": 68, "min_possible_similar": 68, "scores_overlook": 68, "low_probability_threshold": 68, "scores_badloc": 68, "accident": [68, 87, 93, 94, 97], "scores_swap": 68, "box_scor": 68, "image_scor": [68, 77, 107], "discov": [69, 90, 95, 108], "abnorm": [69, 91, 103], "auxiliari": [69, 104, 107], "_get_valid_inputs_for_compute_scor": 69, "object_count": 69, "down": 69, "bbox_siz": 69, "class_distribut": 69, "plot": [69, 89, 90, 95, 99, 102, 104, 106, 107], "sorted_idx": [69, 104], "class_to_show": 69, "hidden": [69, 104], "max_class_to_show": 69, "plt": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "matplotlib": [69, 78, 89, 90, 91, 95, 99, 102, 103, 104, 106], "pyplot": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "prediction_threshold": 69, "overlai": [69, 103], "figsiz": [69, 89, 90, 91, 95, 99, 102, 104], "save_path": [69, 103], "blue": [69, 96, 99, 103], "overlaid": 69, "side": [69, 96, 103], "figur": [69, 95, 99, 102, 104, 106], "extens": [69, 99, 101], "png": [69, 103], "pdf": [69, 70], "svg": 69, "num_proc": [69, 91], "intersect": [69, 97], "tp": 69, "fp": 69, "ground": [69, 96, 99, 101, 106], "truth": [69, 99, 101, 106], "bias": [69, 95], "avg_metr": 69, "distionari": 69, "95": [69, 79, 81, 93, 96, 98, 99, 106], "per_class_metr": 69, "Of": 70, "find_top_issu": [70, 71, 104], "behind": [70, 99], "dist_metr": 70, "subtract": [70, 71], "renorm": [70, 71, 97], "least_confid": 70, "sum_": 70, "log": [70, 71, 84], "softmax": [70, 77, 81, 91], "literatur": 70, "gen": 70, "liu": 70, "lochman": 70, "zach": 70, "openaccess": 70, "thecvf": 70, "cvpr2023": 70, "liu_gen_pushing_the_limits_of_softmax": 70, "based_out": 70, "distribution_detection_cvpr_2023_pap": 70, "fit_scor": [70, 104], "ood_predictions_scor": 70, "pretrain": [70, 87, 88, 94, 98, 104], "adjust_confident_threshold": 70, "probabilist": [70, 86, 88, 89, 90, 93, 94, 104, 105], "order_label_issu": [71, 84], "whichev": [71, 105], "argsort": [71, 87, 91, 94, 99, 103, 104, 106], "max_": 71, "get_label_quality_ensemble_scor": [71, 97, 99], "weight_ensemble_members_bi": 71, "custom_weight": 71, "log_loss_search_t_valu": 71, "0001": [71, 96], "scheme": 71, "log_loss_search": 71, "log_loss": [71, 94], "1e0": 71, "1e1": 71, "1e2": 71, "2e2": 71, "quality_scor": [71, 104], "forth": 71, "top_issue_indic": 71, "rank_bi": [71, 84], "weird": [71, 82], "prob_label": 71, "max_prob_not_label": 71, "AND": [71, 94], "get_epistemic_uncertainti": [72, 73], "get_aleatoric_uncertainti": [72, 73], "corrupt": [73, 106], "linearregress": [73, 97, 106], "y_with_nois": 73, "n_boot": [73, 97], "include_aleatoric_uncertainti": [73, 97], "bootstrap": [73, 97, 106], "resampl": [73, 88, 97], "epistem": [73, 97, 104, 106], "aleator": [73, 97, 106], "model_final_kwarg": 73, "coars": 73, "thorough": [73, 97], "fine": [73, 87, 88, 94, 104], "grain": 73, "grid": [73, 98], "varianc": [73, 99], "epistemic_uncertainti": 73, "residu": [73, 74, 97], "deviat": [73, 103, 106], "aleatoric_uncertainti": 73, "outr": 74, "contin": 74, "raw": [74, 83, 84, 90, 91, 96, 97, 98, 101, 103, 104, 106], "aka": [74, 88, 99, 103, 106, 108], "00323821": 74, "33692597": 74, "00191686": 74, "semant": [75, 77, 78, 100], "pixel": [75, 77, 78, 91, 104, 107], "h": [75, 77, 78, 107], "height": [75, 77, 78, 107], "w": [75, 77, 78, 107], "width": [75, 77, 78, 107], "labels_one_hot": [75, 78, 107], "stream": [75, 104, 108], "downsampl": [75, 77, 107], "shrink": [75, 77], "divis": [75, 77, 89], "common_label_issu": [76, 78, 80, 82, 107, 108], "filter_by_class": [76, 78, 107], "segmant": [77, 78], "num_pixel_issu": [77, 107], "product": [77, 91, 95, 97, 98], "pixel_scor": [77, 107], "enter": 78, "legend": [78, 89, 90, 95, 102, 103, 106, 107], "colormap": 78, "background": [78, 95], "person": [78, 97, 103, 107, 108], "ambigu": [78, 82, 87, 88, 94, 96, 99, 108], "misunderstood": [78, 82], "issues_df": [78, 91], "class_index": 78, "issues_subset": [78, 82], "filter_by_token": [80, 82, 108], "token_score_method": 81, "sentence_score_method": 81, "sentence_score_kwarg": 81, "compris": [81, 82], "token_scor": [81, 108], "converg": 81, "toward": [81, 95], "_softmin_sentence_scor": 81, "sentence_scor": [81, 108], "token_info": 81, "02": [81, 89, 90, 95, 99, 103], "03": [81, 93, 95, 96, 98, 99, 103, 104, 108], "04": [81, 93, 95, 103, 108], "08": [81, 95, 99, 103, 106, 108], "commonli": [82, 84, 89, 90, 102, 108], "But": [82, 94, 98, 99, 106, 108], "restrict": [82, 97], "reliabl": [83, 86, 88, 95, 97, 98, 101, 107], "thousand": 83, "imagenet": [83, 96], "popular": [83, 101, 103], "centric": [83, 91, 100], "minut": [83, 86, 87, 88, 93, 94, 96, 101, 102, 103, 106, 107, 108], "conda": 83, "feature_embed": [83, 104], "your_dataset": [83, 88, 89, 90, 91, 93, 94, 97], "column_name_of_label": [83, 88, 89, 90, 91, 93, 94], "tool": [83, 96, 99, 101], "catch": [83, 98], "dive": [83, 94, 95, 98], "plagu": [83, 90], "untrain": 83, "\u30c4": 83, "label_issues_info": [83, 90], "sklearn_compatible_model": 83, "framework": [83, 102, 103], "complianc": 83, "tag": [83, 102, 108], "sequenc": 83, "recognit": [83, 88, 97, 108], "train_data": [83, 86, 87, 104, 106], "gotten": 83, "test_data": [83, 86, 87, 99, 102, 104, 106], "deal": [83, 90, 95, 98], "feel": [83, 88, 90, 97], "ask": [83, 97], "slack": [83, 97], "project": [83, 98, 106], "welcom": 83, "commun": [83, 97], "guidelin": [83, 103], "piec": 83, "smart": [83, 86, 87, 90, 91, 93, 94, 96, 97, 99, 102, 104, 106], "edit": [83, 97, 98], "unreli": [83, 86, 88, 93, 94, 95, 98], "link": [83, 88, 96, 103], "older": 84, "outlin": 84, "substitut": [84, 98], "v2": [84, 86, 93], "get_noise_indic": 84, "psx": 84, "sorted_index_method": 84, "order_label_error": 84, "label_errors_bool": 84, "latent_estim": 84, "num_label_error": 84, "learningwithnoisylabel": 84, "neatli": 84, "organ": [84, 86, 93, 95, 96, 108], "reorgan": 84, "baseline_method": 84, "incorpor": [84, 99], "research": [84, 99], "polyplex": 84, "terminologi": 84, "label_error": 84, "quickstart": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "sql": [86, 93], "databas": [86, 93], "excel": [86, 93], "parquet": [86, 93], "student": [86, 93, 98, 106, 108], "grade": [86, 93, 98, 106], "exam": [86, 93, 98, 106], "letter": [86, 93, 108], "hundr": [86, 93], "mistak": [86, 87, 91, 93, 94, 98], "extratreesclassifi": 86, "extratre": 86, "Then": [86, 87, 91, 97], "ranked_label_issu": [86, 87], "branch": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "standardscal": [86, 93, 98, 104], "labelencod": [86, 87, 98], "train_test_split": [86, 87, 89, 90, 104], "accuracy_scor": [86, 87, 88, 94, 98, 99], "grades_data": [86, 93], "read_csv": [86, 87, 93, 94, 95, 98, 106], "demo": [86, 90, 93, 102], "stud_id": [86, 93, 98], "exam_1": [86, 93, 98, 106], "exam_2": [86, 93, 98, 106], "exam_3": [86, 93, 98, 106], "letter_grad": [86, 93], "f48f73": [86, 93], "53": [86, 89, 90, 93, 95, 96, 98, 102, 103], "00": [86, 89, 90, 93, 95, 96, 98, 104], "77": [86, 89, 90, 93, 98, 103, 108], "0bd4e7": [86, 93], "81": [86, 93, 94, 98, 103, 106, 108], "great": [86, 93, 96, 98], "particip": [86, 93, 98], "cb9d7a": [86, 93], "61": [86, 93, 95, 99, 103, 106], "94": [86, 93, 96, 98, 99, 103, 106], "9acca4": [86, 93], "48": [86, 93, 95, 96, 99, 103, 108], "x_raw": [86, 93], "labels_raw": 86, "interg": [86, 87], "categorical_featur": [86, 106], "x_encod": [86, 93], "get_dummi": [86, 93, 106], "drop_first": [86, 93], "numeric_featur": [86, 93], "scaler": [86, 93, 104], "x_process": [86, 93], "fit_transform": [86, 93, 95, 98], "bring": [86, 87, 91, 93, 94, 101, 106], "byod": [86, 87, 91, 93, 94, 101, 106], "tress": 86, "held": [86, 88, 93, 94, 96, 103, 104, 105], "straightforward": [86, 88, 93], "benefit": [86, 88, 105, 107], "num_crossval_fold": [86, 88, 93, 98, 101], "tabl": [86, 93, 96, 101], "212": [86, 98, 99], "iloc": [86, 87, 88, 93, 94, 98, 106], "92": [86, 89, 98, 99, 103], "93": [86, 96, 98, 103, 106], "827": 86, "99": [86, 95, 96, 98, 99], "86": [86, 90, 91, 93, 98, 99, 103, 106], "74": [86, 95, 98, 103, 106], "637": [86, 93], "79": [86, 96, 98, 103], "65": [86, 89, 95, 98, 103], "cheat": [86, 98], "0pt": [86, 98], "120": [86, 89, 90, 98], "233": [86, 108], "83": [86, 98, 99, 103, 106, 108], "76": [86, 98, 99, 102, 103, 106], "suspici": [86, 93], "carefulli": [86, 91, 93, 94, 98], "examin": [86, 89, 90, 93, 95, 98, 103], "labels_train": 86, "labels_test": 86, "test_siz": [86, 87, 89, 90], "acc_og": [86, 87], "783068783068783": 86, "robustli": [86, 87, 106], "14": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [86, 87], "8095238095238095": 86, "blindli": [86, 87, 88, 97, 98, 106], "trust": [86, 87, 88, 97, 98, 99, 101, 105, 106], "effort": [86, 87, 98, 106], "cumbersom": [86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "intent": [87, 94], "servic": [87, 94, 97], "onlin": [87, 94], "bank": [87, 94, 96], "banking77": [87, 94], "oo": [87, 94], "categori": [87, 91, 94, 95, 98], "shortlist": [87, 94, 106], "scope": [87, 94], "logist": [87, 89, 90, 94, 101, 104], "probabilit": [87, 88], "drop": [87, 93, 95, 97, 98, 101, 106], "sentence_transform": [87, 94], "sentencetransform": [87, 94], "payment": [87, 94], "cancel_transf": [87, 94], "transfer": [87, 94], "fund": [87, 94], "cancel": [87, 94], "transact": [87, 94], "my": [87, 94], "revert": [87, 94], "morn": [87, 94], "realis": [87, 94], "yesterdai": [87, 94], "rent": [87, 94], "tomorrow": [87, 94], "raw_text": [87, 94], "raw_label": 87, "raw_train_text": 87, "raw_test_text": 87, "raw_train_label": 87, "raw_test_label": 87, "visa_or_mastercard": [87, 94], "supported_cards_and_curr": [87, 94], "card_payment_fee_charg": [87, 94], "getting_spare_card": [87, 94], "lost_or_stolen_phon": [87, 94], "apple_pay_or_google_pai": [87, 94], "card_about_to_expir": [87, 94], "change_pin": [87, 94], "beneficiary_not_allow": [87, 94], "card": [87, 94, 96], "utter": [87, 94], "encond": 87, "test_label": [87, 98, 99, 102, 104], "suit": [87, 94, 95, 96, 97], "electra": [87, 94], "discrimin": [87, 94], "googl": [87, 94], "train_text": 87, "test_text": 87, "home": [87, 94, 96], "runner": [87, 94], "google_electra": [87, 94], "pool": [87, 94, 97, 104], "leverag": [87, 88, 94, 97, 99, 101], "computation": [87, 88, 94], "intens": [87, 88, 94], "400": [87, 94, 98], "858371": 87, "547274": 87, "826228": 87, "966008": 87, "792449": 87, "identified_issu": [87, 106], "lowest_quality_label": [87, 88, 94, 99, 106], "to_numpi": [87, 94, 95, 98, 106], "44": [87, 95, 96, 102, 103], "646": 87, "390": 87, "628": 87, "121": [87, 99], "702": 87, "863": 87, "135": 87, "337": [87, 98, 103], "735": 87, "print_as_df": 87, "inverse_transform": 87, "charg": [87, 94], "cash": [87, 94], "holidai": [87, 94], "sent": [87, 94, 95, 108], "mine": [87, 94], "expir": [87, 94], "fight": 87, "hors": [87, 96, 104], "duck": [87, 96], "me": [87, 94, 95], "whoever": [87, 94], "consum": [87, 106], "18": [87, 88, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "baseline_model": [87, 106], "87": [87, 90, 91, 98, 103, 106], "acceler": [87, 106], "19": [87, 88, 91, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "89": [87, 89, 93, 98, 103, 106], "spoken": 88, "500": [88, 95, 98, 104, 108], "english": [88, 96], "pronunci": 88, "wav": 88, "huggingfac": [88, 89, 90, 91, 97], "voxceleb": 88, "speech": [88, 108], "your_pred_prob": [88, 89, 90, 93, 94], "tensorflow_io": 88, "huggingface_hub": 88, "reproduc": [88, 93, 95, 98, 99, 101], "command": 88, "wget": [88, 95, 103, 107, 108], "navig": 88, "browser": 88, "jakobovski": 88, "archiv": [88, 108], "v1": 88, "tar": [88, 104], "gz": [88, 104], "mkdir": [88, 108], "spoken_digit": 88, "xf": 88, "6_nicolas_32": 88, "data_path": 88, "listdir": 88, "nondeterminist": 88, "file_nam": 88, "endswith": 88, "file_path": 88, "join": [88, 91, 95, 97, 98], "7_george_26": 88, "0_nicolas_24": 88, "0_nicolas_6": 88, "listen": 88, "display_exampl": 88, "expand": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "pulldown": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "colab": [88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 88, "pathlib": 88, "ipython": [88, 95], "load_wav_16k_mono": 88, "filenam": 88, "khz": 88, "file_cont": 88, "read_fil": 88, "sample_r": 88, "decode_wav": 88, "desired_channel": 88, "squeez": 88, "rate_in": 88, "rate_out": 88, "16000": 88, "wav_file_nam": 88, "audio_r": 88, "wav_file_exampl": 88, "plai": [88, 96, 97], "button": 88, "wav_file_name_exampl": 88, "7_jackson_43": 88, "hear": 88, "extractor": 88, "encoderclassifi": 88, "spkrec": 88, "xvect": 88, "feature_extractor": 88, "from_hparam": 88, "run_opt": 88, "uncom": [88, 95], "ffmpeg": 88, "backend": 88, "wav_audio_file_path": 88, "torchaudio": 88, "extract_audio_embed": 88, "emb": [88, 91], "signal": 88, "encode_batch": 88, "embeddings_list": [88, 91], "embeddings_arrai": 88, "512": [88, 91], "196311": 88, "319459": 88, "478975": 88, "2890875": 88, "8170238": 88, "89265": 88, "898056": 88, "256195": 88, "559641": 88, "559721": 88, "62067": 88, "285245": 88, "21": [88, 89, 95, 96, 98, 99, 103, 106, 108], "709627": 88, "5033693": 88, "913803": 88, "819831": 88, "1831515": 88, "208763": 88, "084257": 88, "3210397": 88, "005453": 88, "216152": 88, "478235": 88, "6821785": 88, "053807": 88, "242471": 88, "091424": 88, "78334856": 88, "03954": 88, "23": [88, 91, 95, 96, 98, 99, 103, 106], "569176": 88, "761097": 88, "1258295": 88, "753237": 88, "3508866": 88, "598274": 88, "23712": 88, "2500": 88, "tol": 88, "decreas": [88, 97], "cv_accuraci": 88, "9708": 88, "issue_type_descript": [88, 89, 90, 91, 93, 94, 98, 99], "lt": [88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 104], "gt": [88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 108], "9976": 88, "986": 88, "002161": 88, "176": [88, 96, 99, 102], "002483": 88, "2318": 88, "004411": 88, "1005": 88, "004857": 88, "1871": 88, "007494": 88, "040587": 88, "999207": 88, "999377": 88, "975220": 88, "999367": 88, "identified_label_issu": [88, 94], "516": [88, 98], "1946": 88, "469": 88, "2132": 88, "worth": [88, 99], "6_yweweler_25": 88, "7_nicolas_43": 88, "6_theo_27": 88, "6_yweweler_36": 88, "6_yweweler_14": 88, "6_yweweler_35": 88, "6_nicolas_8": 88, "sound": 88, "quit": [88, 104], "underneath": 89, "hood": [89, 95, 97], "alert": 89, "introduct": 89, "mayb": [89, 90, 94], "your_feature_matrix": [89, 90], "toi": [89, 90, 91, 95, 96, 99, 101, 105], "inf": [89, 90], "mid": [89, 90], "bins_map": [89, 90], "create_data": [89, 90], "y_bin": [89, 90], "y_i": [89, 90], "y_bin_idx": [89, 90], "y_train": [89, 90, 99, 106], "y_test": [89, 90, 99, 106], "y_train_idx": [89, 90], "y_test_idx": [89, 90], "slide": [89, 90, 96], "frame": [89, 90], "x_out": [89, 90], "tini": [89, 90], "concaten": [89, 90, 105], "y_out": [89, 90], "y_out_bin": [89, 90], "y_out_bin_idx": [89, 90], "exact_duplicate_idx": [89, 90], "x_duplic": [89, 90], "y_duplic": [89, 90], "y_duplicate_idx": [89, 90], "noisy_labels_idx": [89, 90, 102], "scatter": [89, 90, 95, 99, 102, 106], "black": [89, 90, 96, 106], "cyan": [89, 90], "plot_data": [89, 90, 95, 99, 102, 106], "fig": [89, 90, 91, 96, 104, 106], "ax": [89, 90, 91, 95, 104, 106], "subplot": [89, 90, 91, 104], "set_titl": [89, 90, 91, 104], "set_xlabel": [89, 90], "x_1": [89, 90], "fontsiz": [89, 90, 91, 95, 99, 102], "set_ylabel": [89, 90], "x_2": [89, 90], "set_xlim": [89, 90], "set_ylim": [89, 90], "linestyl": [89, 90, 95], "circl": [89, 90, 99, 102], "misclassifi": [89, 90], "zip": [89, 90, 91, 95, 103, 108], "label_err": [89, 90], "180": [89, 90, 95, 103], "marker": [89, 90], "facecolor": [89, 90, 95], "edgecolor": [89, 90, 95], "linewidth": [89, 90, 95, 104], "dup": [89, 90], "first_legend": [89, 90], "align": [89, 90], "title_fontproperti": [89, 90], "semibold": [89, 90], "second_legend": [89, 90], "45": [89, 90, 95, 96, 98, 99, 103], "gca": [89, 90], "add_artist": [89, 90], "tight_layout": [89, 90, 95], "ideal": [89, 90], "remaind": 89, "modal": [89, 90, 97, 98, 101], "132": [89, 90, 98, 99, 103], "9318": 89, "006940": 89, "007830": 89, "40": [89, 90, 94, 95, 96, 98], "014828": 89, "107": [89, 90, 99, 102], "021241": 89, "026407": 89, "notic": [89, 99, 101, 103], "3558": [89, 90], "126": [89, 90, 99, 103], "006636": [89, 90], "130": [89, 90], "012571": [89, 90], "129": [89, 90], "127": [89, 90, 98], "014909": [89, 90], "128": [89, 90, 91], "017443": [89, 90], "6160": [89, 90], "131": [89, 90, 98, 107], "000000e": [89, 90, 98], "000002": [89, 90], "463180e": [89, 90], "07": [89, 90, 91, 93, 95, 99, 103, 106], "51": [89, 90, 93, 95, 96, 99, 103], "161148": [89, 90], "859087e": [89, 90], "30": [89, 90, 91, 95, 96, 97, 98, 102, 107, 108], "3453": 89, "029542": 89, "031182": 89, "057961": 89, "058244": 89, "54": [89, 95, 96, 99, 103, 108], "039122": 89, "044598": 89, "105": [89, 103], "105196": 89, "133654": 89, "43": [89, 95, 96, 98, 99, 103], "168033": 89, "125": 89, "101107": 89, "183382": 89, "109": [89, 95, 96, 98, 103], "209259": 89, "211042": 89, "221316": 89, "average_ood_scor": 89, "34530442089193386": 89, "52": [89, 95, 96, 98, 103, 108], "169820": 89, "087324e": 89, "259024": 89, "583757e": 89, "91": [89, 98, 103], "346458": 89, "341292e": 89, "specfi": 89, "new_lab": 89, "scoring_funct": 89, "div": 89, "rem": 89, "inv_scal": 89, "49": [89, 95, 96, 99, 103, 108], "superstitionissuemanag": 89, "unlucki": 89, "superstit": 89, "to_seri": 89, "issues_mask": 89, "summary_scor": 89, "9242": 89, "is_superstition_issu": 89, "superstition_scor": 89, "26": [89, 91, 95, 96, 98, 99, 101, 103], "047581": 89, "090635": 89, "129591": 89, "164840": 89, "lurk": [90, 91, 98, 99], "thoroughli": 90, "8561": 90, "001908": 90, "003564": 90, "007331": 90, "008963": 90, "009664": 90, "0227": 90, "022727": 90, "conceptu": 90, "856061": 90, "355772": 90, "616034": 90, "821750": 90, "926818": 90, "betweeen": 90, "859131": 90, "417707": 90, "664083": 90, "970324": 90, "816953": 90, "375317": 90, "641516": 90, "890575": 90, "910232": 90, "531021": 90, "460593": 90, "601188": 90, "826147": 90, "752808": 90, "321635": 90, "562539": 90, "948362": 90, "890169": 90, "090243": 90, "472909": 90, "746763": 90, "878267": 90, "examples_w_issu": [90, 97], "013445": 90, "025184": 90, "026376": 90, "inde": [90, 94], "miscellan": [90, 92, 108], "428571": 90, "111111": 90, "571429": 90, "407407": 90, "592593": 90, "337838": 90, "092593": 90, "662162": 90, "333333": [90, 96], "952381": 90, "666667": [90, 95], "portion": 90, "huge": [90, 99], "worri": [90, 94, 98], "critic": [90, 105], "60": [91, 95, 99, 106], "torchvis": [91, 95, 104], "tensordataset": 91, "stratifiedkfold": [91, 102], "tqdm": 91, "autonotebook": 91, "math": [91, 98], "fashion_mnist": 91, "num_row": 91, "60000": 91, "transformed_dataset": 91, "with_format": 91, "255": [91, 96], "cpu_count": 91, "torch_dataset": 91, "quick": [91, 102, 104], "super": 91, "relu": 91, "batchnorm2d": 91, "maxpool2d": 91, "lazylinear": 91, "flatten": 91, "get_test_accuraci": 91, "testload": [91, 104], "energi": 91, "trainload": [91, 104], "n_epoch": 91, "patienc": 91, "criterion": 91, "crossentropyloss": 91, "adamw": 91, "best_test_accuraci": 91, "start_epoch": 91, "running_loss": 91, "best_epoch": 91, "end_epoch": 91, "3f": [91, 106], "acc": [91, 99], "time_taken": 91, "compute_embed": 91, "compute_pred_prob": 91, "train_batch_s": 91, "num_work": 91, "worker": [91, 108], "train_id_list": 91, "test_id_list": 91, "train_id": 91, "test_id": 91, "embeddings_model": 91, "ntrain": 91, "trainset": 91, "testset": 91, "pin_memori": 91, "fold_embed": 91, "fold_pred_prob": 91, "finish": 91, "482": 91, "720": 91, "850": 91, "329": [91, 93, 98, 103], "88": [91, 96, 98, 99, 102, 103, 106], "195": [91, 95, 98], "533": 91, "493": 91, "060": 91, "716": 91, "330": [91, 98, 103], "505": 91, "764": 91, "476": [91, 98], "340": [91, 98], "906": 91, "328": [91, 103], "310": 91, "489": [91, 98], "reorder": 91, "hstack": [91, 97, 99, 101], "vision": 91, "max_preval": [91, 95], "7714": 91, "3772": 91, "3585": 91, "166": 91, "3651": 91, "27080": 91, "873833e": 91, "40378": 91, "915575e": 91, "25316": 91, "390277e": 91, "06": [91, 98, 99, 103, 108], "2090": 91, "751164e": 91, "14999": 91, "881301e": 91, "9569": 91, "11262": 91, "000003": 91, "coat": [91, 96], "shirt": [91, 96], "19228": 91, "000010": 91, "dress": 91, "32657": 91, "000013": 91, "bag": [91, 96, 104, 105], "21282": 91, "000016": [91, 98], "53564": 91, "000018": [91, 98], "pullov": 91, "6321": 91, "30968": 91, "001267": 91, "30659": 91, "000022": [91, 108], "47824": 91, "001454": 91, "3370": 91, "000026": 91, "54565": 91, "001854": 91, "9762": 91, "258": 91, "47139": 91, "000033": 91, "166980": 91, "986195": 91, "997205": 91, "sandal": [91, 96], "948781": 91, "999358": 91, "54078": 91, "17371": 91, "000025": 91, "plot_label_issue_exampl": 91, "ncol": [91, 104], "nrow": [91, 104], "ceil": [91, 98], "axes_list": 91, "label_issue_indic": 91, "gl": 91, "sl": 91, "fontdict": 91, "imshow": [91, 104], "cmap": [91, 95, 106], "grai": 91, "subplots_adjust": 91, "hspace": 91, "outsiz": 91, "outlier_issu": [91, 94], "outlier_issues_df": 91, "depict": [91, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 91, "n_comparison_imag": 91, "sample_from_class": 91, "number_of_sampl": 91, "non_outlier_indic": 91, "isnul": [91, 95], "non_outlier_indices_excluding_curr": 91, "sampled_indic": 91, "label_scores_of_sampl": 91, "top_score_indic": 91, "top_label_indic": 91, "sampled_imag": 91, "get_image_given_label_and_sampl": 91, "image_from_dataset": 91, "corresponding_label": 91, "comparison_imag": 91, "images_to_plot": 91, "idlist": 91, "iterrow": 91, "near_duplicate_issu": [91, 97], "closest": 91, "counterpart": 91, "near_duplicate_issues_df": 91, "plot_near_duplicate_issue_exampl": 91, "seen_id_pair": 91, "get_image_and_given_label_and_predicted_label": 91, "duplicate_imag": 91, "nd_set": 91, "challeng": 91, "dark_issu": 91, "reveal": [91, 103, 107], "dark_issues_df": 91, "is_dark_issu": [91, 95], "34848": 91, "203922": 91, "50270": 91, "204588": 91, "3936": 91, "213098": 91, "733": 91, "217686": 91, "8094": 91, "230118": 91, "plot_image_issue_exampl": 91, "difficult": 91, "disproportion": [91, 95], "lowinfo_issu": 91, "lowinfo_issues_df": 91, "is_low_information_issu": 91, "53050": 91, "067975": 91, "40875": 91, "089929": 91, "9594": 91, "092601": 91, "34825": 91, "107744": 91, "37530": 91, "108516": 91, "lot": 91, "workflow": [92, 97, 98, 100, 106], "histgradientboostingclassifi": 93, "cat_featur": 93, "boost": [93, 97, 101, 106], "xgboost": [93, 97, 98, 106], "think": [93, 94, 97, 102, 107, 108], "nonzero": 93, "358": 93, "941": 93, "294": [93, 103], "46": [93, 95, 96, 98, 99, 103, 108], "7109": 93, "000005": [93, 94], "886": 93, "000059": 93, "709": [93, 98], "000104": 93, "000169": 93, "689": 93, "000181": 93, "3590": 93, "051882e": 93, "683133e": 93, "536582e": 93, "406589e": 93, "324246e": 93, "6165": 93, "582": [93, 98], "185": [93, 95, 96, 103], "187": [93, 96, 98], "898": 93, "0000": [93, 94, 96, 98, 99], "865": 93, "515002": 93, "837": 93, "556480": 93, "622": 93, "593068": 93, "593207": 93, "920": 93, "618041": 93, "4386345844794593e": 93, "issue_result": 93, "000842": 93, "555944": 93, "004374": 93, "sorted_issu": 93, "73": [93, 95, 96, 98, 102, 103, 106, 108], "deserv": 93, "outlier_result": 93, "sorted_outli": 93, "56": [93, 95, 96, 106], "96": [93, 95, 96, 98, 99, 102, 103, 106], "style": [93, 95, 107], "font": 93, "18px": 93, "ff00ff": 93, "bac": 93, "duplicate_result": 93, "lowest_scoring_dupl": 93, "idxmin": [93, 97], "indices_to_displai": 93, "tolist": [93, 97, 98, 102], "perhap": [93, 99, 101], "second_lowest_scoring_dupl": 93, "next_indices_to_displai": 93, "wari": [93, 94, 97], "your_featur": 94, "text_embed": 94, "data_dict": [94, 99, 101], "85": [94, 98, 103], "38": [94, 95, 96, 103], "9710": 94, "981": 94, "974": 94, "000146": 94, "982": [94, 96], "000224": 94, "971": 94, "000507": 94, "980": [94, 96], "000960": 94, "3584": 94, "994": 94, "009642": 94, "999": 94, "013067": 94, "013841": 94, "433": 94, "014722": 94, "989": 94, "018224": 94, "6070": 94, "160": [94, 106], "095724": 94, "148": 94, "006237": 94, "546": [94, 98], "099341": 94, "514": 94, "006485": 94, "481": 94, "123418": 94, "008165": 94, "313": [94, 98, 103], "564102": 94, "572258": 94, "574915": 94, "31": [94, 95, 96, 98, 99, 101, 103], "575507": 94, "575874": 94, "792090": 94, "257611": 94, "698710": 94, "182121": 94, "771619": 94, "data_with_suggested_label": 94, "suggested_label": 94, "withdraw": 94, "monei": 94, "lowest_quality_outli": 94, "OR": 94, "636c65616e6c616220697320617765736f6d6521": 94, "phone": [94, 96], "gone": 94, "samp": 94, "br": 94, "press": [94, 108], "nonsens": 94, "sens": 94, "detriment": 94, "duplicate_issu": 94, "fee": 94, "go": [94, 95, 96, 99], "p_valu": 94, "benign": 94, "curat": [94, 100], "bigger": 95, "make_classif": 95, "5000": [95, 104], "n_featur": 95, "n_inform": 95, "n_redund": 95, "n_repeat": 95, "n_class": 95, "n_clusters_per_class": 95, "flip_i": 95, "class_sep": 95, "faiss": 95, "x_faiss": 95, "float32": [95, 103], "normalize_l2": 95, "index_factori": 95, "hnsw32": 95, "flat": [95, 96], "metric_inner_product": 95, "a_min": 95, "a_max": 95, "create_knn_graph": 95, "assert": 95, "indices_1d": 95, "ravel": 95, "distances_1d": 95, "sort_graph_by_row_valu": 95, "warn_when_not_sort": 95, "50000": 95, "523": [95, 98], "991400": 95, "356958": 95, "362": 95, "619565": 95, "108": [95, 103], "500000": 95, "651838": 95, "999827": 95, "031217": 95, "933716": 95, "627345": 95, "998540": 95, "530909": 95, "296974": 95, "646765": 95, "942721": 95, "332824": 95, "803246": 95, "625202": 95, "999816": 95, "474031": 95, "706253": 95, "655108": 95, "997703": 95, "131466": 95, "912389": 95, "639200": 95, "4995": 95, "998646": 95, "504755": 95, "746777": 95, "680033": 95, "4996": 95, "894230": 95, "340986": 95, "816472": 95, "640711": 95, "4997": 95, "999100": 95, "428545": 95, "592421": 95, "658949": 95, "4998": 95, "986792": 95, "273710": 95, "618033": 95, "4999": 95, "986776": 95, "273524": 95, "618084": 95, "instabl": 95, "proxim": 95, "analys": 95, "comfort": 95, "explor": [95, 103, 104], "third": 95, "parti": [95, 108], "newsgroup": 95, "alt": [95, 96], "atheism": [95, 96], "sci": [95, 96], "fetch_20newsgroup": 95, "newsgroups_train": 95, "header": 95, "footer": 95, "quot": 95, "df_text": 95, "target_nam": 95, "enlighten": 95, "omnipot": 95, "19apr199320262420": 95, "kelvin": 95, "jpl": 95, "nasa": 95, "gov": 95, "baa": 95, "nhenri": 95, "he": 95, "nno": 95, "ge": 95, "nlucki": 95, "babi": [95, 96], "tfidfvector": 95, "feature_extract": 95, "x_vector": 95, "data_valuation_issu": 95, "147": [95, 99, 103], "500047": 95, "500093": 95, "499953": 95, "1068": 95, "1069": 95, "1070": 95, "1071": 95, "1072": 95, "1073": 95, "concentr": 95, "seaborn": 95, "sn": 95, "distinguish": [95, 98], "strip": 95, "stripplot": 95, "hue": [95, 106], "dodg": 95, "jitter": 95, "axvlin": [95, 104], "xlabel": 95, "ourselv": 95, "make_blob": 95, "center": [95, 96], "cluster_std": 95, "n_noisy_label": 95, "meaning": [95, 97, 98, 104], "silhouette_scor": 95, "gridsearchcv": 95, "silhouett": 95, "cluster_label": 95, "fit_predict": 95, "param_grid": [95, 98], "grid_search": 95, "best_kmean": 95, "best_estimator_": 95, "underperforming_group_issu": 95, "328308": 95, "tab10": 95, "domain": 95, "knowledg": [95, 99], "dataset_tsv": 95, "ag": [95, 106], "gender": 95, "educ": 95, "experi": 95, "highsalari": 95, "indiana": 95, "phd": 95, "male": 95, "bachelor": 95, "femal": 95, "kansa": 95, "school": [95, 96], "ohio": 95, "57": [95, 96, 98, 99], "california": 95, "59": [95, 96, 103], "34": [95, 96, 99, 101, 103, 108], "63": [95, 98, 99, 103, 106], "47": [95, 96, 103], "stringio": 95, "sep": [95, 108], "easier": [95, 99], "simplic": [95, 102], "ordinalencod": 95, "columns_to_encod": 95, "encoded_df": 95, "salari": 95, "573681": 95, "underpin": 95, "caught": 95, "whenev": 95, "generate_data_depend": 95, "num_sampl": 95, "a1": 95, "a2": 95, "a3": 95, "375": 95, "975": 95, "non_iid_issu": 95, "796474": 95, "842432": 95, "922562": 95, "820759": 95, "873136": 95, "887373": 95, "825101": 95, "855875": 95, "751795": 95, "835796": 95, "ylabel": [95, 104], "coolwarm": 95, "colorbar": [95, 106], "strong": 95, "evid": [95, 98], "inter": 95, "mitig": 95, "risk": [95, 98], "deeper": 95, "tsv": 95, "tab": 95, "pars": 95, "annual_spend": 95, "number_of_transact": 95, "last_purchase_d": 95, "rural": 95, "4099": 95, "2024": [95, 108], "6421": 95, "nat": 95, "suburban": 95, "5436": 95, "4046": 95, "66": [95, 96, 98], "3467": 95, "67": [95, 96, 98, 103, 106], "4757": 95, "4199": 95, "4991": 95, "4655": 95, "82": [95, 96, 98, 99, 103, 106], "5584": 95, "urban": 95, "3102": 95, "6637": 95, "9167": 95, "6790": 95, "5327": 95, "parse_d": 95, "lose": 95, "intact": 95, "encode_categorical_column": 95, "placehold": 95, "dropna": [95, 101], "category_to_numb": 95, "_encod": 95, "gender_encod": 95, "location_encod": 95, "focus": [95, 98, 99, 101, 102, 106], "null_issu": 95, "833333": 95, "sorted_indic": [95, 103], "sorted_df": 95, "nice": 95, "styler": 95, "combined_df": 95, "concat": [95, 98, 106], "highlight_null_valu": 95, "val": [95, 99], "yellow": [95, 96], "highlight_datalab_column": 95, "lightblu": 95, "highlight_is_null_issu": 95, "orang": [95, 96], "styled_df": 95, "nbsp": [95, 97, 98, 99], "160000": 95, "820000": 95, "460000": 95, "470000": 95, "960000": 95, "620000": 95, "550000": 95, "660000": 95, "670000": [95, 96], "370000": 95, "530000": 95, "710000": 95, "020000": 95, "320000": 95, "990000": 95, "rarer": 95, "fairer": 95, "randomli": [95, 98, 99], "class_imbalance_issu": 95, "countplot": 95, "xtick": 95, "rotat": 95, "ytick": 95, "filtered_df": 95, "xy": 95, "va": 95, "textual": 95, "get_ytick": 95, "nbar": 95, "nimbal": 95, "get_legend_handles_label": 95, "title_fonts": 95, "aspect": 95, "anomali": [95, 103], "enhanc": [95, 99, 101, 103], "artifici": 95, "directori": [95, 108], "subdirectori": 95, "nc": [95, 103, 107, 108], "unzip": [95, 103, 108], "09": [95, 98, 102, 103, 106, 108], "199": [95, 98, 103, 108], "153": [95, 98, 103], "110": [95, 103], "connect": [95, 108], "443": [95, 108], "await": [95, 108], "ok": [95, 105, 108], "986707": 95, "964k": 95, "963": 95, "58k": 95, "kb": [95, 108], "006": 95, "149": [95, 103], "mb": [95, 108], "imagefold": 95, "load_image_dataset": 95, "data_dir": 95, "root": [95, 104], "image_dataset": 95, "img": [95, 104, 106], "from_dict": [95, 97], "darkened_imag": 95, "job": 95, "015": 95, "label_uncorrelatedness_scor": 95, "image_issu": 95, "nimag": 95, "237196": 95, "197229": 95, "254188": 95, "229170": 95, "208907": 95, "793840": 95, "196": [95, 98, 99, 103], "197": [95, 99, 103], "971560": 95, "198": [95, 99, 103], "862236": 95, "973533": 95, "stronger": 95, "frog": [95, 96, 104], "darken": 95, "concept": 95, "notabl": 95, "preval": 95, "warrant": 95, "programmat": 95, "plot_scores_label": 95, "issues_copi": 95, "boxplot": 95, "refin": 96, "instruct": [96, 97, 98], "studi": [96, 103], "mnist_test_set": 96, "imagenet_val_set": 96, "tench": 96, "goldfish": 96, "white": [96, 108], "shark": 96, "tiger": 96, "hammerhead": 96, "electr": 96, "rai": 96, "stingrai": 96, "cock": 96, "hen": 96, "ostrich": 96, "brambl": 96, "goldfinch": 96, "hous": 96, "finch": 96, "junco": 96, "indigo": 96, "bunt": 96, "american": [96, 108], "robin": 96, "bulbul": 96, "jai": 96, "magpi": 96, "chickade": 96, "dipper": 96, "kite": 96, "bald": 96, "eagl": 96, "vultur": 96, "grei": 96, "owl": 96, "salamand": 96, "smooth": 96, "newt": 96, "spot": [96, 97, 103], "axolotl": 96, "bullfrog": 96, "tree": 96, "tail": 96, "loggerhead": 96, "sea": 96, "turtl": 96, "leatherback": 96, "mud": 96, "terrapin": 96, "band": 96, "gecko": 96, "green": [96, 108], "iguana": 96, "carolina": 96, "anol": 96, "desert": 96, "grassland": 96, "whiptail": 96, "lizard": 96, "agama": 96, "frill": 96, "neck": 96, "allig": 96, "gila": 96, "monster": 96, "european": 96, "chameleon": 96, "komodo": 96, "dragon": 96, "nile": 96, "crocodil": 96, "triceratop": 96, "worm": 96, "snake": 96, "ring": 96, "eastern": 96, "hog": 96, "nose": 96, "kingsnak": 96, "garter": 96, "water": 96, "vine": 96, "night": 96, "boa": 96, "constrictor": 96, "african": 96, "rock": 96, "indian": 96, "cobra": 96, "mamba": 96, "saharan": 96, "horn": 96, "viper": 96, "diamondback": 96, "rattlesnak": 96, "sidewind": 96, "trilobit": 96, "harvestman": 96, "scorpion": 96, "garden": 96, "spider": 96, "barn": 96, "southern": 96, "widow": 96, "tarantula": 96, "wolf": 96, "tick": 96, "centiped": 96, "grous": 96, "ptarmigan": 96, "ruf": 96, "prairi": 96, "peacock": 96, "quail": 96, "partridg": 96, "parrot": 96, "macaw": 96, "sulphur": 96, "crest": 96, "cockatoo": 96, "lorikeet": 96, "coucal": 96, "bee": 96, "eater": 96, "hornbil": 96, "hummingbird": 96, "jacamar": 96, "toucan": 96, "breast": 96, "mergans": 96, "goos": 96, "swan": 96, "tusker": 96, "echidna": 96, "platypu": 96, "wallabi": 96, "koala": 96, "wombat": 96, "jellyfish": 96, "anemon": 96, "brain": 96, "coral": 96, "flatworm": 96, "nematod": 96, "conch": 96, "snail": 96, "slug": 96, "chiton": 96, "chamber": 96, "nautilu": 96, "dung": 96, "crab": 96, "fiddler": 96, "king": 96, "lobster": 96, "spini": 96, "crayfish": 96, "hermit": 96, "isopod": 96, "stork": 96, "spoonbil": 96, "flamingo": 96, "heron": 96, "egret": 96, "bittern": 96, "crane": 96, "bird": [96, 104], "limpkin": 96, "gallinul": 96, "coot": 96, "bustard": 96, "ruddi": 96, "turnston": 96, "dunlin": 96, "redshank": 96, "dowitch": 96, "oystercatch": 96, "pelican": 96, "penguin": 96, "albatross": 96, "whale": 96, "killer": 96, "dugong": 96, "lion": 96, "chihuahua": 96, "japanes": 96, "chin": 96, "maltes": 96, "pekinges": 96, "shih": 96, "tzu": 96, "charl": 96, "spaniel": 96, "papillon": 96, "terrier": 96, "rhodesian": 96, "ridgeback": 96, "afghan": [96, 108], "hound": 96, "basset": 96, "beagl": 96, "bloodhound": 96, "bluetick": 96, "coonhound": 96, "tan": 96, "walker": 96, "foxhound": 96, "redbon": 96, "borzoi": 96, "irish": 96, "wolfhound": 96, "italian": 96, "greyhound": 96, "whippet": 96, "ibizan": 96, "norwegian": 96, "elkhound": 96, "otterhound": 96, "saluki": 96, "scottish": 96, "deerhound": 96, "weimaran": 96, "staffordshir": 96, "bull": 96, "bedlington": 96, "border": 96, "kerri": 96, "norfolk": 96, "norwich": 96, "yorkshir": 96, "wire": 96, "fox": 96, "lakeland": 96, "sealyham": 96, "airedal": 96, "cairn": 96, "australian": 96, "dandi": 96, "dinmont": 96, "boston": 96, "miniatur": 96, "schnauzer": 96, "giant": 96, "tibetan": 96, "silki": 96, "wheaten": 96, "west": 96, "highland": 96, "lhasa": 96, "apso": 96, "retriev": 96, "curli": 96, "golden": 96, "labrador": 96, "chesapeak": 96, "bai": 96, "german": [96, 108], "shorthair": 96, "pointer": 96, "vizsla": 96, "setter": 96, "gordon": 96, "brittani": 96, "clumber": 96, "springer": 96, "welsh": 96, "cocker": 96, "sussex": 96, "kuvasz": 96, "schipperk": 96, "groenendael": 96, "malinoi": 96, "briard": 96, "kelpi": 96, "komondor": 96, "sheepdog": 96, "shetland": 96, "colli": 96, "bouvier": 96, "de": 96, "flandr": 96, "rottweil": 96, "shepherd": 96, "dobermann": 96, "pinscher": 96, "swiss": [96, 108], "mountain": 96, "bernes": 96, "appenzel": 96, "sennenhund": 96, "entlebuch": 96, "boxer": 96, "bullmastiff": 96, "mastiff": 96, "french": 96, "bulldog": 96, "dane": 96, "st": 96, "bernard": 96, "huski": 96, "alaskan": 96, "malamut": 96, "siberian": 96, "dalmatian": 96, "affenpinsch": 96, "basenji": 96, "pug": 96, "leonberg": 96, "newfoundland": 96, "pyrenean": 96, "samoi": 96, "pomeranian": 96, "chow": 96, "keeshond": 96, "griffon": 96, "bruxelloi": 96, "pembrok": 96, "corgi": 96, "cardigan": 96, "poodl": 96, "mexican": 96, "hairless": 96, "tundra": 96, "coyot": 96, "dingo": 96, "dhole": 96, "wild": 96, "hyena": 96, "kit": 96, "arctic": 96, "tabbi": 96, "persian": 96, "siames": 96, "egyptian": 96, "mau": 96, "cougar": 96, "lynx": 96, "leopard": 96, "snow": 96, "jaguar": 96, "cheetah": 96, "brown": [96, 107], "bear": 96, "polar": 96, "sloth": 96, "mongoos": 96, "meerkat": 96, "beetl": 96, "ladybug": 96, "longhorn": 96, "leaf": 96, "rhinocero": 96, "weevil": 96, "fly": 96, "ant": 96, "grasshopp": 96, "cricket": 96, "stick": 96, "insect": 96, "cockroach": 96, "manti": 96, "cicada": 96, "leafhopp": 96, "lacew": 96, "dragonfli": 96, "damselfli": 96, "admir": 96, "ringlet": 96, "monarch": 96, "butterfli": 96, "gossam": 96, "wing": 96, "starfish": 96, "urchin": 96, "cucumb": 96, "cottontail": 96, "rabbit": 96, "hare": 96, "angora": 96, "hamster": 96, "porcupin": 96, "squirrel": 96, "marmot": 96, "beaver": 96, "guinea": 96, "pig": 96, "sorrel": 96, "zebra": 96, "boar": 96, "warthog": 96, "hippopotamu": 96, "ox": 96, "buffalo": 96, "bison": 96, "bighorn": 96, "sheep": 96, "alpin": 96, "ibex": 96, "hartebeest": 96, "impala": 96, "gazel": 96, "dromedari": 96, "llama": 96, "weasel": 96, "mink": 96, "polecat": 96, "foot": 96, "ferret": 96, "otter": 96, "skunk": 96, "badger": 96, "armadillo": 96, "toed": 96, "orangutan": 96, "gorilla": 96, "chimpanze": 96, "gibbon": 96, "siamang": 96, "guenon": 96, "pata": 96, "monkei": 96, "baboon": 96, "macaqu": 96, "langur": 96, "colobu": 96, "probosci": 96, "marmoset": 96, "capuchin": 96, "howler": 96, "titi": 96, "geoffroi": 96, "lemur": 96, "indri": 96, "asian": 96, "eleph": 96, "bush": 96, "snoek": 96, "eel": 96, "coho": 96, "salmon": 96, "beauti": 96, "clownfish": 96, "sturgeon": 96, "garfish": 96, "lionfish": 96, "pufferfish": 96, "abacu": 96, "abaya": 96, "academ": 96, "gown": 96, "accordion": 96, "acoust": 96, "guitar": 96, "aircraft": 96, "carrier": 96, "airlin": 96, "airship": 96, "altar": 96, "ambul": 96, "amphibi": 96, "clock": [96, 108], "apiari": 96, "apron": 96, "wast": 96, "assault": 96, "rifl": 96, "backpack": 96, "bakeri": 96, "balanc": 96, "beam": 96, "balloon": 96, "ballpoint": 96, "pen": 96, "aid": 96, "banjo": 96, "balust": 96, "barbel": 96, "barber": 96, "chair": [96, 103], "barbershop": 96, "baromet": 96, "barrel": 96, "wheelbarrow": 96, "basebal": 96, "basketbal": 96, "bassinet": 96, "bassoon": 96, "swim": 96, "cap": 96, "bath": 96, "towel": 96, "bathtub": 96, "station": 96, "wagon": 96, "lighthous": 96, "beaker": 96, "militari": 96, "beer": 96, "bottl": 96, "glass": 96, "bell": 96, "cot": 96, "bib": 96, "bicycl": [96, 107], "bikini": 96, "binder": 96, "binocular": 96, "birdhous": 96, "boathous": 96, "bobsleigh": 96, "bolo": 96, "tie": 96, "poke": 96, "bonnet": 96, "bookcas": 96, "bookstor": 96, "bow": 96, "brass": 96, "bra": 96, "breakwat": 96, "breastplat": 96, "broom": 96, "bucket": 96, "buckl": 96, "bulletproof": 96, "vest": 96, "butcher": 96, "shop": 96, "taxicab": 96, "cauldron": 96, "candl": 96, "cannon": 96, "cano": 96, "mirror": [96, 103], "carousel": 96, "carton": 96, "wheel": 96, "teller": 96, "cassett": 96, "player": 96, "castl": 96, "catamaran": 96, "cd": 96, "cello": 96, "mobil": [96, 108], "chain": 96, "fenc": [96, 107], "mail": 96, "chainsaw": 96, "chest": 96, "chiffoni": 96, "chime": 96, "china": 96, "cabinet": 96, "christma": 96, "stock": 96, "church": 96, "movi": 96, "theater": 96, "cleaver": 96, "cliff": 96, "dwell": 96, "cloak": 96, "clog": 96, "cocktail": 96, "shaker": 96, "coffe": 96, "mug": 96, "coffeemak": 96, "coil": 96, "lock": 96, "keyboard": 96, "confectioneri": 96, "ship": [96, 104], "corkscrew": 96, "cornet": 96, "cowboi": 96, "boot": 96, "hat": 96, "cradl": 96, "crash": 96, "helmet": 96, "crate": 96, "infant": 96, "bed": 96, "crock": 96, "pot": 96, "croquet": 96, "crutch": 96, "cuirass": 96, "dam": 96, "desk": 96, "desktop": 96, "rotari": 96, "dial": 96, "telephon": 96, "diaper": 96, "watch": 96, "dine": 96, "dishcloth": 96, "dishwash": 96, "disc": 96, "brake": 96, "dock": 96, "sled": 96, "dome": 96, "doormat": 96, "drill": 96, "rig": 96, "drum": 96, "drumstick": 96, "dumbbel": 96, "dutch": 96, "oven": 96, "fan": 96, "locomot": 96, "entertain": 96, "envelop": 96, "espresso": 96, "powder": 96, "feather": 96, "fireboat": 96, "engin": [96, 107], "screen": 96, "sheet": 96, "flagpol": 96, "flute": 96, "footbal": 96, "forklift": 96, "fountain": 96, "poster": 96, "freight": 96, "fry": 96, "pan": 96, "fur": 96, "garbag": 96, "ga": 96, "pump": 96, "goblet": 96, "kart": 96, "golf": 96, "cart": 96, "gondola": 96, "gong": 96, "grand": 96, "piano": 96, "greenhous": 96, "grill": 96, "groceri": 96, "guillotin": 96, "barrett": 96, "hair": 96, "sprai": 96, "hammer": 96, "dryer": 96, "hand": [96, 99], "handkerchief": 96, "drive": 96, "harmonica": 96, "harp": 96, "harvest": 96, "hatchet": 96, "holster": 96, "honeycomb": 96, "hoop": 96, "skirt": 96, "horizont": 96, "bar": 96, "drawn": 96, "hourglass": 96, "ipod": 96, "cloth": 96, "iron": 96, "jack": 96, "lantern": 96, "jean": 96, "jeep": 96, "jigsaw": 96, "puzzl": 96, "pull": 96, "rickshaw": 96, "joystick": 96, "kimono": 96, "knee": 96, "pad": 96, "knot": 96, "ladl": 96, "lampshad": 96, "laptop": 96, "lawn": 96, "mower": 96, "knife": 96, "lifeboat": 96, "lighter": 96, "limousin": 96, "ocean": 96, "liner": 96, "lipstick": 96, "slip": 96, "shoe": 96, "lotion": 96, "speaker": 96, "loup": 96, "sawmil": 96, "magnet": 96, "compass": 96, "mailbox": 96, "tight": 96, "tank": 96, "manhol": 96, "maraca": 96, "marimba": 96, "maypol": 96, "maze": 96, "cup": [96, 103], "medicin": 96, "megalith": 96, "microphon": 96, "microwav": 96, "milk": 96, "minibu": 96, "miniskirt": 96, "minivan": 96, "missil": 96, "mitten": [96, 97], "mix": 96, "bowl": 96, "modem": 96, "monasteri": 96, "monitor": 96, "mope": 96, "mortar": 96, "mosqu": 96, "mosquito": 96, "scooter": 96, "bike": 96, "tent": 96, "mous": [96, 97], "mousetrap": 96, "van": 96, "muzzl": 96, "nail": 96, "brace": 96, "necklac": 96, "nippl": 96, "obelisk": 96, "obo": 96, "ocarina": 96, "odomet": 96, "oil": 96, "oscilloscop": 96, "overskirt": 96, "bullock": 96, "oxygen": 96, "packet": 96, "paddl": 96, "padlock": 96, "paintbrush": 96, "pajama": 96, "palac": [96, 108], "parachut": 96, "park": 96, "bench": 96, "meter": 96, "passeng": 96, "patio": 96, "payphon": 96, "pedest": 96, "pencil": 96, "perfum": 96, "petri": 96, "dish": 96, "photocopi": 96, "plectrum": 96, "pickelhaub": 96, "picket": 96, "pickup": 96, "pier": 96, "piggi": 96, "pill": 96, "pillow": 96, "ping": 96, "pong": 96, "pinwheel": 96, "pirat": 96, "pitcher": 96, "plane": 96, "planetarium": 96, "plastic": 96, "plate": 96, "rack": 96, "plow": 96, "plunger": 96, "polaroid": 96, "camera": 96, "pole": [96, 107], "polic": 96, "poncho": 96, "billiard": 96, "soda": 96, "potter": 96, "prayer": 96, "rug": 96, "printer": 96, "prison": 96, "projectil": 96, "projector": 96, "hockei": 96, "puck": 96, "punch": 96, "purs": 96, "quill": 96, "quilt": 96, "race": 96, "racket": 96, "radiat": 96, "radio": 96, "telescop": 96, "rain": 96, "recreat": 96, "reel": 96, "reflex": 96, "refriger": 96, "remot": 96, "restaur": 96, "revolv": 96, "rotisseri": 96, "eras": 96, "rugbi": 96, "ruler": 96, "safe": 96, "safeti": 96, "salt": 96, "sarong": 96, "saxophon": 96, "scabbard": 96, "bu": [96, 107], "schooner": 96, "scoreboard": 96, "crt": 96, "screw": 96, "screwdriv": 96, "seat": 96, "belt": 96, "sew": 96, "shield": 96, "shoji": 96, "basket": 96, "shovel": 96, "shower": 96, "curtain": 96, "ski": 96, "sleep": 96, "door": 96, "slot": 96, "snorkel": 96, "snowmobil": 96, "snowplow": 96, "soap": 96, "dispens": 96, "soccer": [96, 108], "sock": [96, 97], "solar": 96, "thermal": 96, "collector": 96, "sombrero": 96, "soup": 96, "heater": 96, "shuttl": 96, "spatula": 96, "motorboat": 96, "web": 96, "spindl": 96, "sport": [96, 108], "spotlight": 96, "stage": 96, "steam": 96, "arch": 96, "bridg": 96, "steel": 96, "stethoscop": 96, "scarf": 96, "stone": 96, "wall": [96, 107], "stopwatch": 96, "stove": 96, "strainer": 96, "tram": 96, "stretcher": 96, "couch": 96, "stupa": 96, "submarin": 96, "sundial": 96, "sunglass": 96, "sunscreen": 96, "suspens": 96, "mop": 96, "sweatshirt": 96, "swimsuit": 96, "swing": 96, "switch": 96, "syring": 96, "lamp": 96, "tape": 96, "teapot": 96, "teddi": 96, "televis": [96, 108], "tenni": 96, "thatch": 96, "roof": 96, "thimbl": 96, "thresh": 96, "throne": 96, "tile": 96, "toaster": 96, "tobacco": 96, "toilet": 96, "totem": 96, "tow": 96, "tractor": 96, "semi": 96, "trailer": 96, "trai": 96, "trench": 96, "tricycl": 96, "trimaran": 96, "tripod": 96, "triumphal": 96, "trolleybu": 96, "trombon": 96, "tub": 96, "turnstil": 96, "typewrit": 96, "umbrella": 96, "unicycl": 96, "upright": 96, "vacuum": 96, "cleaner": [96, 98], "vase": 96, "vault": 96, "velvet": 96, "vend": 96, "vestment": 96, "viaduct": 96, "violin": 96, "volleybal": 96, "waffl": 96, "wallet": 96, "wardrob": 96, "sink": 96, "wash": 96, "jug": 96, "tower": 96, "whiskei": 96, "whistl": 96, "wig": 96, "shade": [96, 107], "windsor": 96, "wine": 96, "wok": 96, "wooden": 96, "spoon": 96, "wool": 96, "rail": 96, "shipwreck": 96, "yawl": 96, "yurt": 96, "websit": 96, "comic": 96, "book": 96, "crossword": 96, "traffic": [96, 103, 107], "sign": [96, 107, 108], "dust": 96, "jacket": [96, 103], "menu": 96, "guacamol": 96, "consomm": 96, "trifl": 96, "ic": 96, "cream": 96, "pop": 96, "baguett": 96, "bagel": 96, "pretzel": 96, "cheeseburg": 96, "mash": 96, "potato": 96, "cabbag": 96, "broccoli": 96, "cauliflow": 96, "zucchini": 96, "spaghetti": 96, "squash": 96, "acorn": 96, "butternut": 96, "artichok": 96, "pepper": [96, 97], "cardoon": 96, "mushroom": 96, "granni": 96, "smith": 96, "strawberri": 96, "lemon": 96, "pineappl": 96, "banana": 96, "jackfruit": 96, "custard": 96, "appl": 96, "pomegran": 96, "hai": 96, "carbonara": 96, "chocol": 96, "syrup": 96, "dough": 96, "meatloaf": 96, "pizza": 96, "pie": 96, "burrito": 96, "eggnog": 96, "alp": 96, "bubbl": 96, "reef": 96, "geyser": 96, "lakeshor": 96, "promontori": 96, "shoal": 96, "seashor": 96, "vallei": 96, "volcano": 96, "bridegroom": 96, "scuba": 96, "diver": 96, "rapese": 96, "daisi": 96, "ladi": 96, "slipper": 96, "corn": 96, "rose": 96, "hip": 96, "chestnut": 96, "fungu": 96, "agar": 96, "gyromitra": 96, "stinkhorn": 96, "earth": 96, "star": 96, "wood": 96, "bolet": 96, "ear": 96, "cifar10_test_set": 96, "airplan": [96, 104], "automobil": [96, 104], "deer": [96, 104], "cifar100_test_set": 96, "aquarium_fish": 96, "boi": 96, "camel": 96, "caterpillar": 96, "cattl": [96, 108], "cloud": 96, "dinosaur": 96, "dolphin": 96, "flatfish": 96, "forest": 96, "girl": 96, "kangaroo": 96, "lawn_mow": 96, "man": 96, "maple_tre": 96, "motorcycl": [96, 107], "oak_tre": 96, "orchid": 96, "palm_tre": 96, "pear": 96, "pickup_truck": 96, "pine_tre": 96, "plain": 96, "poppi": 96, "possum": 96, "raccoon": 96, "road": [96, 107], "rocket": 96, "seal": 96, "shrew": 96, "skyscrap": 96, "streetcar": 96, "sunflow": 96, "sweet_pepp": 96, "trout": 96, "tulip": 96, "willow_tre": 96, "woman": [96, 103], "caltech256": 96, "ak47": 96, "bat": 96, "glove": 96, "birdbath": 96, "blimp": 96, "bonsai": 96, "boom": 96, "breadmak": 96, "buddha": 96, "bulldoz": 96, "cactu": 96, "cake": 96, "tire": 96, "cartman": 96, "cereal": 96, "chandeli": 96, "chess": 96, "board": 96, "chimp": 96, "chopstick": 96, "coffin": 96, "coin": 96, "comet": 96, "cormor": 96, "globe": 96, "diamond": 96, "dice": 96, "doorknob": 96, "drink": 96, "straw": 96, "dumb": 96, "eiffel": 96, "elk": 96, "ewer": 96, "eyeglass": 96, "fern": 96, "fighter": 96, "jet": [96, 106], "extinguish": 96, "hydrant": 96, "firework": 96, "flashlight": 96, "floppi": 96, "fri": 96, "frisbe": 96, "galaxi": 96, "giraff": 96, "goat": 96, "gate": 96, "grape": 96, "pick": [96, 97], "hamburg": 96, "hammock": 96, "harpsichord": 96, "hawksbil": 96, "helicopt": 96, "hibiscu": 96, "homer": 96, "simpson": 96, "horsesho": 96, "air": 96, "skeleton": 96, "ibi": 96, "cone": 96, "iri": 96, "jesu": 96, "christ": 96, "joi": 96, "kayak": 96, "ketch": 96, "ladder": 96, "lath": 96, "licens": 96, "lightbulb": 96, "lightn": 96, "mandolin": 96, "mar": 96, "mattress": 96, "megaphon": 96, "menorah": 96, "microscop": 96, "minaret": 96, "minotaur": 96, "motorbik": 96, "mussel": 96, "neckti": 96, "octopu": 96, "palm": 96, "pilot": 96, "paperclip": 96, "shredder": 96, "pci": 96, "peopl": [96, 103], "pez": 96, "picnic": 96, "pram": 96, "prai": 96, "pyramid": 96, "rainbow": 96, "roulett": 96, "saddl": 96, "saturn": 96, "segwai": 96, "propel": 96, "sextant": 96, "music": 96, "skateboard": 96, "smokestack": 96, "sneaker": 96, "boat": 96, "stain": 96, "steer": 96, "stirrup": 96, "superman": 96, "sushi": 96, "armi": [96, 108], "sword": 96, "tambourin": 96, "teepe": 96, "court": 96, "theodolit": 96, "tomato": 96, "tombston": 96, "tour": 96, "pisa": 96, "treadmil": 96, "fork": 96, "tweezer": 96, "unicorn": 96, "vcr": 96, "waterfal": 96, "watermelon": 96, "weld": 96, "windmil": 96, "xylophon": 96, "yarmulk": 96, "yo": 96, "toad": 96, "twenty_news_test_set": 96, "comp": 96, "graphic": [96, 107], "misc": [96, 108], "sy": 96, "ibm": 96, "pc": 96, "hardwar": 96, "mac": 96, "forsal": 96, "rec": 96, "crypt": 96, "electron": 96, "med": 96, "soc": 96, "religion": 96, "christian": [96, 108], "talk": [96, 108], "polit": 96, "gun": 96, "mideast": 96, "amazon": 96, "neutral": 96, "imdb_test_set": 96, "all_class": 96, "20news_test_set": 96, "_load_classes_predprobs_label": 96, "dataset_nam": 96, "labelerror": 96, "url_bas": 96, "5392f6c71473055060be3044becdde1cbc18284d": 96, "url_label": 96, "original_test_label": 96, "_original_label": 96, "url_prob": 96, "cross_validated_predicted_prob": 96, "_pyx": 96, "num_part": 96, "datatset": 96, "bytesio": 96, "allow_pickl": 96, "pred_probs_part": 96, "url": 96, "_of_": 96, "nload": 96, "imdb": 96, "ve": [96, 97, 98, 99, 101, 103], "capit": 96, "29780": 96, "256": [96, 97, 98, 103], "780": 96, "medic": [96, 108], "doctor": 96, "254": [96, 103], "359223": 96, "640777": 96, "184": [96, 99], "258427": 96, "341176": 96, "263158": 96, "658824": 96, "337349": 96, "246575": 96, "662651": 96, "248": 96, "330000": 96, "355769": 96, "251": [96, 103], "167": [96, 99, 103], "252": [96, 98], "112": [96, 98], "253": [96, 103], "022989": 96, "049505": 96, "190": [96, 99, 103], "002216": 96, "000974": 96, "000873": 96, "000739": 96, "32635": 96, "32636": 96, "32637": 96, "32638": 96, "32639": 96, "32640": 96, "051": 96, "002242": 96, "997758": 96, "002088": 96, "001045": 96, "997912": 96, "002053": 96, "997947": 96, "001980": 96, "000991": 96, "998020": 96, "001946": 96, "002915": 96, "998054": 96, "001938": 96, "002904": 96, "998062": 96, "001020": 96, "998980": 96, "001018": 96, "002035": 96, "998982": 96, "999009": 96, "0003": 96, "0002": 96, "071": 96, "067269": 96, "929": 96, "046": 96, "058243": 96, "954": 96, "035": 96, "032096": 96, "965": 96, "031": 96, "012232": 96, "969": 96, "022": 96, "025896": 96, "978": 96, "020": [96, 99], "013092": 96, "018": 96, "013065": 96, "016": 96, "030542": 96, "984": 96, "013": 96, "020833": 96, "987": 96, "012": 96, "010020": 96, "988": 96, "0073": 96, "0020": 96, "0016": 96, "0015": 96, "0014": 96, "0013": 96, "0012": 96, "0010": 96, "0008": 96, "0007": 96, "0006": 96, "0005": 96, "0004": 96, "244": [96, 103, 108], "452381": 96, "459770": 96, "523364": 96, "460784": 96, "446602": 96, "103774": 96, "030612": 96, "110092": 96, "049020": 96, "0034": 96, "0032": 96, "0026": 96, "0025": 96, "4945": 96, "4946": 96, "4947": 96, "4948": 96, "4949": 96, "4950": 96, "846": 96, "7532": 96, "532": 96, "034483": 96, "009646": 96, "965517": 96, "030457": 96, "020513": 96, "969543": 96, "028061": 96, "035443": 96, "971939": 96, "025316": 96, "005168": 96, "974684": 96, "049751": 96, "979487": 96, "019920": 96, "042802": 96, "980080": 96, "017677": 96, "005115": 96, "982323": 96, "012987": 96, "005236": 96, "987013": 96, "012723": 96, "025126": 96, "987277": 96, "010989": 96, "008264": 96, "989011": 96, "010283": 96, "027778": 96, "989717": 96, "009677": 96, "990323": 96, "007614": 96, "010127": 96, "992386": 96, "005051": 96, "994949": 96, "005025": 96, "994975": 96, "005013": 96, "994987": 96, "001859": 96, "001328": 96, "000929": 96, "000664": 96, "186": [96, 99], "188": [96, 99, 102], "189": [96, 99], "snippet": 97, "nlp": [97, 108], "mind": [97, 99], "alphanumer": 97, "facilit": 97, "seamless": 97, "classlabel": 97, "guidanc": 97, "labels_str": 97, "datalab_str": 97, "labels_int": 97, "remap": 97, "datalab_int": 97, "my_dict": 97, "pet_nam": 97, "rover": 97, "rocki": 97, "speci": 97, "datalab_dataset": 97, "number_of_class": 97, "total_number_of_data_point": 97, "feed": 97, "alphabet": 97, "labels_proper_format": 97, "your_classifi": 97, "issues_datafram": 97, "class_predicted_for_flagged_exampl": 97, "class_predicted_for_all_exampl": 97, "grant": 97, "On": [97, 98, 99, 103], "merged_dataset": 97, "label_column_nam": 97, "datataset": 97, "fair": [97, 99], "game": 97, "speedup": [97, 104], "tempfil": 97, "mkdtemp": 97, "sped": 97, "anywai": 97, "pred_probs_merg": 97, "merge_rare_class": 97, "count_threshold": 97, "class_mapping_orig2new": 97, "heath_summari": 97, "num_examples_per_class": 97, "rare_class": 97, "num_classes_merg": 97, "other_class": 97, "labels_merg": 97, "new_c": 97, "merged_prob": 97, "new_class": 97, "original_class": 97, "num_check": 97, "ones_array_ref": 97, "isclos": 97, "though": [97, 99, 108], "successfulli": 97, "virtuou": [97, 101], "cycl": [97, 101], "jointli": 97, "junk": 97, "clutter": 97, "unknown": 97, "caltech": 97, "combined_boolean_mask": 97, "mask1": 97, "mask2": 97, "gradientboostingclassifi": [97, 99], "true_error": [97, 99, 102], "101": [97, 98, 103], "102": [97, 102, 103], "104": [97, 99, 103], "model_to_find_error": 97, "model_to_return": 97, "cl0": 97, "randomizedsearchcv": 97, "expens": 97, "param_distribut": 97, "learning_r": [97, 98, 99], "max_depth": [97, 98, 99], "magnitud": 97, "coeffici": [97, 106], "optin": 97, "environ": [97, 98, 99], "rerun": [97, 98, 99], "cell": [97, 98, 99], "unabl": [97, 98, 99], "render": [97, 98, 99], "nbviewer": [97, 98, 99], "cleanlearninginot": [97, 99], "fittedcleanlearn": [97, 99], "linearregressionlinearregress": 97, "unexpectedli": 97, "emphas": 97, "crucial": 97, "merge_duplicate_set": 97, "merge_kei": 97, "construct_group_kei": 97, "merged_set": 97, "consolidate_set": 97, "issubset": 97, "frozenset": [97, 98], "sets_list": 97, "mutabl": 97, "new_set": 97, "current_set": 97, "intersecting_set": 97, "lowest_score_strategi": 97, "sub_df": 97, "filter_near_dupl": 97, "strategy_fn": 97, "strategy_kwarg": 97, "duplicate_row": 97, "group_kei": 97, "to_keep_indic": 97, "groupbi": 97, "explod": 97, "to_remov": 97, "isin": [97, 104], "kept": 97, "ids_to_remove_seri": 97, "assist": 97, "streamlin": [97, 98], "ux": 97, "agpl": 97, "compani": 97, "commerci": 97, "alter": [97, 98], "email": 97, "team": 97, "anywher": 97, "profession": 97, "expert": 97, "recogn": 98, "vital": 98, "leakag": 98, "comparion": 98, "leak": 98, "blueprint": 98, "divers": 98, "parameter": 98, "tldr": 98, "answer": [98, 99], "subtl": 98, "faith": 98, "danger": 98, "inevit": [98, 104], "xgbclassifi": 98, "123456": 98, "df_train": 98, "s3": [98, 103, 107, 108], "amazonaw": [98, 103, 107, 108], "clos_train_data": 98, "df_test": 98, "clos_test_data": 98, "noisy_letter_grad": 98, "018bff": 98, "076d92": 98, "c80059": 98, "e38f8a": 98, "d57e1a": 98, "grade_l": 98, "notes_l": 98, "train_featur": 98, "train_features_v2": 98, "train_labels_v2": 98, "test_featur": 98, "preprocessed_train_data": 98, "preprocessed_test_data": 98, "haven": 98, "features_df": 98, "heterogenou": 98, "full_df": 98, "reset_index": [98, 101], "749": 98, "583745": 98, "291382": 98, "5837": 98, "748": 98, "604": 98, "510": 98, "227": [98, 102, 103], "719": 98, "690": 98, "444": 98, "547": 98, "647": 98, "2914": 98, "611": 98, "687869": 98, "610": 98, "687883": 98, "612": 98, "688146": 98, "609": 98, "688189": 98, "613": 98, "688713": 98, "2913818469137725": 98, "came": [98, 108], "full_duplicate_result": 98, "train_idx_cutoff": 98, "nd_set_has_index_over_training_cutoff": 98, "exact_dupl": 98, "627": 98, "678": 98, "615": 98, "292": 98, "620": 98, "420": 98, "704": 98, "431": 98, "459": 98, "672": 98, "564": 98, "696": 98, "605": 98, "exact_duplicates_indic": 98, "indices_of_duplicates_to_drop": 98, "4a3f75": 98, "d030b5": 98, "ddd0ba": 98, "8e6d24": 98, "464aab": 98, "ee3387": 98, "61e807": 98, "71d7b9": 98, "83e31f": 98, "edeb53": 98, "cd52b5": 98, "84": [98, 103, 106, 108], "454e51": 98, "042686": 98, "12a73f": 98, "tree_method": 98, "hist": [98, 104], "enable_categor": 98, "booster": 98, "callback": 98, "colsample_bylevel": 98, "colsample_bynod": 98, "colsample_bytre": 98, "early_stopping_round": 98, "eval_metr": 98, "feature_typ": 98, "gamma": 98, "grow_polici": 98, "importance_typ": 98, "interaction_constraint": 98, "max_bin": 98, "max_cat_threshold": 98, "max_cat_to_onehot": 98, "max_delta_step": 98, "max_leav": 98, "min_child_weight": 98, "monotone_constraint": 98, "multi_strategi": 98, "n_estim": [98, 99], "num_parallel_tre": 98, "x27": [98, 99], "softprob": 98, "xgbclassifierifittedxgbclassifi": 98, "test_pred_prob": [98, 104], "test_lab": 98, "test_features_arrai": 98, "134": 98, "798507": 98, "370259": 98, "625352": 98, "524042": 98, "097015": 98, "7985": 98, "000537": 98, "000903": 98, "001743": 98, "106": 98, "001853": 98, "002121": 98, "3703": 98, "752463e": 98, "784418e": 98, "477741e": 98, "134230e": 98, "153555e": 98, "6254": 98, "143272": 98, "146501": 98, "161431": 98, "5240": 98, "765240": 98, "771221": 98, "801589": 98, "801652": 98, "810735": 98, "5240417899434826": 98, "0970": 98, "na": [98, 101], "test_label_issue_result": 98, "test_label_issues_ord": 98, "2bd759": 98, "34ccdd": 98, "bb3bab": 98, "103": [98, 99, 103], "bf1b14": 98, "4787de": 98, "865cbd": 98, "32d53f": 98, "5b2f76": 98, "28f8b4": 98, "df814d": 98, "f17261": 98, "1db3ff": 98, "ded944": 98, "124": [98, 103], "343dd3": 98, "homework": [98, 106], "8d904d": 98, "e4f0d5": 98, "d6d208": 98, "76c083": 98, "695f96": 98, "745c23": 98, "13b36e": 98, "5ba892": 98, "9f0216": 98, "003628": 98, "004006": 98, "004031": 98, "007930": 98, "013226": 98, "015255": 98, "017692": 98, "019767": 98, "036197": 98, "054746": 98, "055110": 98, "062675": 98, "112695": 98, "121059": 98, "171280": 98, "181689": 98, "208001": 98, "275028": 98, "346032": 98, "396350": 98, "401493": 98, "474349": 98, "mislead": 98, "breviti": 98, "indices_to_drop_from_test_data": 98, "df_test_clean": 98, "acc_origin": 98, "tediou": 98, "train_features_arrai": 98, "train_lab": 98, "318": [98, 106], "601": 98, "740433": 98, "344154": 98, "588290": 98, "437267": 98, "146423": 98, "977223": 98, "7404": 98, "162": 98, "000072": 98, "348": 98, "000161": 98, "232": [98, 103], "000256": 98, "205": [98, 103], "000458": 98, "000738": 98, "3442": 98, "588": 98, "358961e": 98, "336": [98, 103], "490911e": 98, "269": 98, "122475e": 98, "321": [98, 103], "374139e": 98, "311": 98, "358617e": 98, "5883": 98, "600": 98, "592": 98, "593": 98, "594": 98, "595": 98, "596": 98, "597": 98, "598": 98, "599": 98, "221": 98, "222": [98, 99], "315": 98, "332": [98, 103], "791060e": 98, "243": [98, 103, 108], "540": 98, "379106e": 98, "396": 98, "397": 98, "398": 98, "399": 98, "4373": 98, "165": [98, 102], "550374": 98, "627357": 98, "627496": 98, "627502": 98, "627919": 98, "43726734378061227": 98, "1464": 98, "506": 98, "393": 98, "508": 98, "9772": 98, "402": 98, "401": 98, "aggress": 98, "faithfulli": 98, "label_issue_result": 98, "566": 98, "568": 98, "571": 98, "572": 98, "574": 98, "576": 98, "578": 98, "585": 98, "587": 98, "590": 98, "near_duplicates_idx": 98, "117": [98, 99, 106], "122": [98, 99, 103], "146": 98, "155": [98, 99, 103], "156": [98, 99], "173": [98, 103], "224": [98, 103], "272": 98, "277": [98, 103], "279": [98, 103], "288": 98, "300": [98, 101, 108], "342": 98, "352": 98, "363": 98, "365": 98, "366": 98, "384": 98, "388": 98, "394": 98, "404": 98, "474": 98, "480": 98, "494": 98, "515": 98, "536": 98, "537": 98, "539": 98, "542": 98, "outliers_idx": 98, "143": [98, 102, 103, 108], "159": [98, 102, 103], "163": [98, 99], "193": [98, 99], "194": [98, 99], "208": 98, "240": [98, 103], "241": 98, "242": [98, 103], "247": [98, 103], "287": [98, 103], "295": [98, 103], "299": [98, 103], "307": [98, 103], "350": 98, "361": 98, "378": 98, "379": 98, "392": 98, "419": 98, "432": 98, "479": 98, "484": 98, "485": 98, "492": 98, "504": 98, "511": 98, "522": 98, "535": 98, "543": 98, "567": 98, "579": 98, "591": 98, "idx_to_drop": 98, "276": [98, 103], "df_train_cur": 98, "clean_clf": 98, "clean_pr": 98, "acc_clean": 98, "inaccur": 98, "hybrid": 98, "quantit": 98, "hyper": 98, "default_edit_param": 98, "drop_label_issu": 98, "drop_outli": 98, "drop_near_dupl": 98, "candid": [98, 103], "edit_data": 98, "percentag": [98, 99], "num_label_issues_to_drop": 98, "num_outliers_to_drop": 98, "dedupl": 98, "unique_clust": 98, "unique_clusters_list": 98, "near_duplicates_idx_to_drop": 98, "n_drop": 98, "label_issues_idx_to_drop": 98, "outliers_idx_to_drop": 98, "train_features_clean": 98, "train_labels_clean": 98, "itertool": 98, "finer": 98, "param_combin": 98, "best_scor": 98, "best_param": 98, "train_features_preprocess": 98, "train_labels_preprocess": 98, "depth": 99, "survei": [99, 108], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103], "037843": 99, "614915": 99, "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "magic": 99, "liter": 99, "identif": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "offset": 99, "nquestion": 99, "overestim": 99, "experienc": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "170": 99, "214": 99, "164": [99, 102], "191": [99, 103], "206": [99, 103], "115": [99, 103], "201": [99, 103], "174": 99, "150": [99, 101, 103], "169": 99, "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "172": [99, 102], "157": 99, "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "noisier": 101, "111": [101, 106], "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "zfill": 101, "row_na_check": 101, "notna": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "275": 102, "267": 102, "225": 102, "171": 102, "234": 102, "262": [102, 103], "263": [102, 103], "266": [102, 103], "139": 102, "216": [102, 103], "265": 102, "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "231": 103, "293": 103, "235": 103, "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "283": 103, "303": 103, "316": 103, "323": 103, "327": 103, "226": 103, "228": 103, "219": 103, "239": 103, "209": 103, "202": 103, "230": 103, "215": 103, "220": 103, "229": 103, "217": [103, 108], "237": 103, "207": 103, "204": 103, "223": 103, "140": 103, "246": 103, "268": 103, "273": 103, "284": 103, "136": 103, "145": 103, "297": 103, "317": 103, "192": 103, "324": 103, "203": 103, "320": 103, "314": 103, "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": 103, "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "toronto": 104, "edu": 104, "kriz": 104, "170498071": 104, "45958594": 104, "58it": 104, "plot_imag": 104, "visualize_outli": 104, "txt_class": 104, "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "train_outlier_scor": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "unsur": 105, "price": 106, "incom": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "3d": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "367": 106, "305": 106, "560": 106, "657": 106, "view_datapoint": 106, "preds_og": 106, "r2_og": 106, "838": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "2400": 108, "52e0": 108, "1a01": 108, "1115": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "inflat": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "04mb": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [59, 0, 0, "-", "models"], [61, 0, 0, "-", "multiannotator"], [64, 0, 0, "-", "multilabel_classification"], [67, 0, 0, "-", "object_detection"], [70, 0, 0, "-", "outlier"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "regression"], [76, 0, 0, "-", "segmentation"], [80, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "metric"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_underperforming_clusters"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[60, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[60, 2, 1, "", "KerasWrapperModel"], [60, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[61, 1, 1, "", "convert_long_to_wide_dataset"], [61, 1, 1, "", "get_active_learning_scores"], [61, 1, 1, "", "get_active_learning_scores_ensemble"], [61, 1, 1, "", "get_label_quality_multiannotator"], [61, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [61, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[62, 0, 0, "-", "dataset"], [63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[62, 1, 1, "", "common_multilabel_issues"], [62, 1, 1, "", "multilabel_health_summary"], [62, 1, 1, "", "overall_multilabel_health_score"], [62, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, 1, 1, "", "find_label_issues"], [63, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[66, 0, 0, "-", "filter"], [68, 0, 0, "-", "rank"], [69, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[66, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[68, 1, 1, "", "compute_badloc_box_scores"], [68, 1, 1, "", "compute_overlooked_box_scores"], [68, 1, 1, "", "compute_swap_box_scores"], [68, 1, 1, "", "get_label_quality_scores"], [68, 1, 1, "", "issues_from_scores"], [68, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[69, 1, 1, "", "bounding_box_size_distribution"], [69, 1, 1, "", "calculate_per_class_metrics"], [69, 1, 1, "", "class_label_distribution"], [69, 1, 1, "", "get_average_per_class_confusion_matrix"], [69, 1, 1, "", "get_sorted_bbox_count_idxs"], [69, 1, 1, "", "object_counts_per_image"], [69, 1, 1, "", "plot_class_distribution"], [69, 1, 1, "", "plot_class_size_distributions"], [69, 1, 1, "", "visualize"]], "cleanlab.outlier": [[70, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[70, 3, 1, "", "fit"], [70, 3, 1, "", "fit_score"], [70, 3, 1, "", "score"]], "cleanlab.rank": [[71, 1, 1, "", "find_top_issues"], [71, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [71, 1, 1, "", "get_label_quality_ensemble_scores"], [71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "get_normalized_margin_for_each_label"], [71, 1, 1, "", "get_self_confidence_for_each_label"], [71, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[73, 0, 0, "-", "learn"], [74, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[73, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[73, 3, 1, "", "__init_subclass__"], [73, 3, 1, "", "find_label_issues"], [73, 3, 1, "", "fit"], [73, 3, 1, "", "get_aleatoric_uncertainty"], [73, 3, 1, "", "get_epistemic_uncertainty"], [73, 3, 1, "", "get_label_issues"], [73, 3, 1, "", "get_metadata_routing"], [73, 3, 1, "", "get_params"], [73, 3, 1, "", "predict"], [73, 3, 1, "", "save_space"], [73, 3, 1, "", "score"], [73, 3, 1, "", "set_fit_request"], [73, 3, 1, "", "set_params"], [73, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[74, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[79, 0, 0, "-", "filter"], [81, 0, 0, "-", "rank"], [82, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[79, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[81, 1, 1, "", "get_label_quality_scores"], [81, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[82, 1, 1, "", "common_label_issues"], [82, 1, 1, "", "display_issues"], [82, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 86, 87, 91, 93, 94, 97, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 88, 89, 90, 91, 92, 93, 94, 95, 97, 99, 102], "creat": [7, 89, 90, 99, 101], "your": [7, 83, 89, 90, 94, 95, 97, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 89], "basic": 7, "check": [7, 83, 95, 98], "intermedi": 7, "advanc": [7, 89], "us": [7, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": [8, 95], "cluster": [8, 95, 97], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 89], "cleanlab": [9, 10, 83, 86, 87, 88, 91, 93, 94, 97, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 83, 91], "mode": [9, 10, 83, 91], "can": [10, 90, 96, 97, 99, 101], "detect": [10, 88, 90, 91, 93, 94, 95, 97, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "input": 10, "label": [10, 24, 26, 31, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 70, 91, 93, 94, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 90, 91, 93, 94], "duplic": [10, 20, 90, 91, 93, 94, 97, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 94, 95], "iid": [10, 94, 95], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 84, 95, 99, 107], "imbal": [10, 21, 95], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 91, 95, 104], "specif": [10, 22, 107], "spuriou": [10, 95], "correl": [10, 95], "between": 10, "properti": 10, "score": [10, 95, 99, 101, 102, 103, 107, 108], "underperform": [10, 95, 97], "group": [10, 95, 97], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 95], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "valuat": [10, 95], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 95], "paramet": [10, 99], "get": [12, 89, 90, 101, 102, 103, 107, 108], "start": [12, 96], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 97, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 72, 73, 74, 97, 106], "prioriti": 31, "order": 31, "find": [31, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 91], "dataset": [37, 62, 83, 87, 88, 90, 91, 94, 95, 96, 97, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 63, 66, 75, 79, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 89], "token_classification_util": 56, "util": 57, "valid": [58, 91, 105], "model": [59, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106], "kera": 60, "multiannot": [61, 101], "multilabel_classif": 64, "rank": [65, 68, 71, 74, 77, 81, 99], "object_detect": 67, "summari": [69, 78, 82], "learn": [73, 90, 97, 99], "segment": [76, 107], "token_classif": [80, 108], "open": [83, 97], "sourc": [83, 97], "document": 83, "quickstart": 83, "1": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "2": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [83, 90, 99], "sort": [83, 95], "3": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [83, 97], "error": [83, 87, 91, 97, 99, 101, 102, 103, 106, 107, 108], "train": [83, 86, 87, 88, 95, 97, 98, 104, 106], "robust": [83, 86, 87, 99, 106], "noisi": [83, 86, 87, 98, 99, 106], "4": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 103, 104, 106], "curat": [83, 98], "fix": [83, 97], "level": [83, 96, 99, 108], "5": [83, 86, 88, 90, 91, 93, 95, 98, 99, 101, 106], "improv": [83, 98, 101], "via": [83, 98, 99, 101], "mani": [83, 99], "other": [83, 101, 103, 106], "techniqu": [83, 98], "contribut": 83, "how": [84, 97, 99, 101, 102, 108], "migrat": 84, "version": 84, "0": 84, "from": [84, 86, 87, 89, 90, 98, 99, 106], "pre": [84, 88, 95, 97, 104], "function": [84, 89], "name": 84, "chang": 84, "modul": [84, 99], "new": 84, "remov": 84, "common": [84, 108], "argument": [84, 89], "variabl": 84, "cleanlearn": [85, 97, 99], "tutori": [85, 92, 96, 98, 100], "structur": 86, "tabular": [86, 93], "requir": [86, 87, 89, 90, 91, 93, 94, 101, 102, 103, 104, 106, 107, 108], "depend": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "load": [86, 87, 88, 89, 90, 93, 94, 95, 106], "process": [86, 93, 104, 106], "select": [86, 93], "comput": [86, 88, 91, 93, 94, 95, 97, 98, 101, 105], "out": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "sampl": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "predict": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 105], "probabl": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 105], "more": [86, 87, 90, 99, 106], "spend": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "too": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "much": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "time": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "qualiti": [86, 87, 90, 93, 94, 96, 99, 101, 102, 103, 104, 105, 106, 107, 108], "text": [87, 94, 95, 108], "format": [87, 94, 97, 102, 103], "defin": [87, 91, 94, 95, 106], "potenti": [87, 101, 106], "an": [88, 91, 97], "audio": 88, "import": [88, 89, 90, 91, 96, 99, 101], "them": [88, 96, 98, 99], "speechbrain": 88, "featur": [88, 91, 104], "fit": 88, "linear": 88, "workflow": [89, 95, 99], "audit": [89, 90], "classifi": [89, 90, 95], "instanti": 89, "object": [89, 103], "increment": 89, "specifi": [89, 97], "nondefault": 89, "save": 89, "ad": 89, "A": 90, "unifi": 90, "kind": [90, 103], "skip": [90, 96, 99, 101], "detail": [90, 96, 99, 101], "about": 90, "addit": 90, "inform": [90, 91], "fetch": [91, 96], "normal": 91, "fashion": 91, "mnist": 91, "prepar": [91, 95], "k": [91, 93, 105], "fold": [91, 105], "cross": [91, 105], "embed": [91, 104], "7": [91, 98, 99], "view": 91, "most": [91, 108], "like": 91, "exampl": [91, 97, 99, 104], "sever": 91, "set": [91, 99], "dark": 91, "top": [91, 107], "low": 91, "numer": 93, "categor": [93, 95], "column": 93, "construct": 93, "nearest": 93, "neighbour": 93, "graph": [93, 95], "drift": [94, 102], "miscellan": 95, "acceler": 95, "knn": 95, "obtain": 95, "identifi": [95, 97, 98, 103], "explan": 95, "vector": 95, "perform": [95, 98], "visual": [95, 99, 103, 104, 107], "synthet": 95, "result": 95, "predefin": 95, "slice": [95, 97], "i": [95, 97, 99, 105], "catch": 95, "valu": 95, "encod": 95, "initi": [95, 101], "6": [95, 98, 99], "run": [95, 97], "analysi": [95, 103], "interpret": 95, "understand": 96, "evalu": [96, 98], "health": [96, 99], "8": [96, 98, 99], "popular": 96, "faq": 97, "what": [97, 99, 105], "do": [97, 99], "infer": 97, "correct": [97, 98], "ha": 97, "flag": 97, "should": 97, "v": [97, 98], "test": [97, 98, 99, 104], "big": 97, "limit": 97, "memori": 97, "why": [97, 98], "isn": 97, "t": 97, "work": [97, 99, 101, 108], "me": 97, "differ": [97, 103], "clean": [97, 98, 99], "final": 97, "hyperparamet": [97, 98], "tune": 97, "onli": 97, "one": [97, 99, 102, 107], "doe": [97, 101, 108], "take": 97, "so": 97, "long": 97, "when": [97, 99], "licens": 97, "under": 97, "answer": 97, "question": 97, "split": 98, "did": 98, "you": [98, 99], "make": 98, "thi": [98, 99], "preprocess": 98, "fundament": 98, "problem": 98, "setup": 98, "origin": 98, "baselin": 98, "manual": 98, "address": 98, "algorithm": 98, "better": [98, 101], "strategi": 98, "optim": 98, "9": 98, "conclus": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "twenti": 99, "lowest": 99, "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "re": 99, "One": 99, "rule": 99, "overal": [99, 107], "accur": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "major": 101, "vote": 101, "statist": 101, "compar": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "without": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Spurious Correlations between image-specific properties and labels": [[10, "spurious-correlations-between-image-specific-properties-and-labels"]], "property": [[10, "property"]], "score": [[10, "score"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [70, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [72, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [62, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [63, "module-cleanlab.multilabel_classification.filter"], [66, "filter"], [75, "filter"], [79, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "models": [[59, "models"]], "keras": [[60, "module-cleanlab.models.keras"]], "multiannotator": [[61, "module-cleanlab.multiannotator"]], "multilabel_classification": [[64, "multilabel-classification"]], "rank": [[65, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.rank"], [77, "module-cleanlab.segmentation.rank"], [81, "module-cleanlab.token_classification.rank"]], "object_detection": [[67, "object-detection"]], "summary": [[69, "summary"], [78, "module-cleanlab.segmentation.summary"], [82, "module-cleanlab.token_classification.summary"]], "regression.learn": [[73, "module-cleanlab.regression.learn"]], "regression.rank": [[74, "module-cleanlab.regression.rank"]], "segmentation": [[76, "segmentation"]], "token_classification": [[80, "token-classification"]], "cleanlab open-source documentation": [[83, "cleanlab-open-source-documentation"]], "Quickstart": [[83, "quickstart"]], "1. Install cleanlab": [[83, "install-cleanlab"]], "2. Check your data for all sorts of issues": [[83, "check-your-data-for-all-sorts-of-issues"]], "3. Handle label errors and train robust models with noisy labels": [[83, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[83, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[83, "improve-your-data-via-many-other-techniques"]], "Contributing": [[83, "contributing"]], "Easy Mode": [[83, "easy-mode"], [91, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[84, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[84, "function-and-class-name-changes"]], "Module name changes": [[84, "module-name-changes"]], "New modules": [[84, "new-modules"]], "Removed modules": [[84, "removed-modules"]], "Common argument and variable name changes": [[84, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[85, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[86, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[86, "1.-Install-required-dependencies"], [87, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[86, "2.-Load-and-process-the-data"], [93, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[86, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [93, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[86, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[86, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Spending too much time on data quality?": [[86, "Spending-too-much-time-on-data-quality?"], [87, "Spending-too-much-time-on-data-quality?"], [90, "Spending-too-much-time-on-data-quality?"], [93, "Spending-too-much-time-on-data-quality?"], [94, "Spending-too-much-time-on-data-quality?"], [96, "Spending-too-much-time-on-data-quality?"], [99, "Spending-too-much-time-on-data-quality?"], [102, "Spending-too-much-time-on-data-quality?"], [104, "Spending-too-much-time-on-data-quality?"], [105, "spending-too-much-time-on-data-quality"], [106, "Spending-too-much-time-on-data-quality?"]], "Text Classification with Noisy Labels": [[87, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[87, "2.-Load-and-format-the-text-dataset"], [94, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[87, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[87, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[88, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[88, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[88, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[88, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[88, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[88, "5.-Use-cleanlab-to-find-label-issues"], [93, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[89, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[89, "Install-and-import-required-dependencies"]], "Create and load the data": [[89, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[89, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[89, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[89, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[89, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[89, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[89, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[90, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[90, "1.-Install-and-import-required-dependencies"], [91, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[90, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[90, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[90, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[90, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[90, "Get-additional-information"]], "Near duplicate issues": [[90, "Near-duplicate-issues"], [91, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[91, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[91, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[91, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[91, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[91, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[91, "7.-Use-cleanlab-to-find-issues"]], "View report": [[91, "View-report"]], "Label issues": [[91, "Label-issues"], [93, "Label-issues"], [94, "Label-issues"]], "View most likely examples with label errors": [[91, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[91, "Outlier-issues"], [93, "Outlier-issues"], [94, "Outlier-issues"]], "View most severe outliers": [[91, "View-most-severe-outliers"]], "View sets of near duplicate images": [[91, "View-sets-of-near-duplicate-images"]], "Dark images": [[91, "Dark-images"]], "View top examples of dark images": [[91, "View-top-examples-of-dark-images"]], "Low information images": [[91, "Low-information-images"]], "Datalab Tutorials": [[92, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[93, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[93, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[93, "Near-duplicate-issues"], [94, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[94, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[94, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[94, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[94, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[95, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[95, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[95, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[95, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[95, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[95, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[95, "Explanation:"]], "Data Valuation": [[95, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[95, "1.-Load-and-Prepare-the-Dataset"], [95, "id2"], [95, "id5"]], "2. Vectorize the Text Data": [[95, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[95, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[95, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[95, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[95, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[95, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [95, "id3"]], "3. (Optional) Cluster the Data": [[95, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[95, "4.-Identify-Underperforming-Groups-with-Datalab"], [95, "id4"]], "5. (Optional) Visualize the Results": [[95, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[95, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[95, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[95, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[95, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[95, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[95, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[95, "1.-Load-the-Dataset"], [95, "id8"]], "2: Encode Categorical Values": [[95, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[95, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[95, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[95, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[95, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[95, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[95, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[95, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[95, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[95, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Run Datalab Analysis": [[95, "2.-Run-Datalab-Analysis"]], "3. Interpret the Results": [[95, "3.-Interpret-the-Results"]], "Understanding Dataset-level Labeling Issues": [[96, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[96, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[96, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[96, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[97, "FAQ"]], "What data can cleanlab detect issues in?": [[97, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[97, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[97, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[97, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[97, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[97, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[97, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[97, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[97, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[97, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[97, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[97, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[97, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[97, "Can't-find-an-answer-to-your-question?"]], "Improving ML Performance via Data Curation with Train vs Test Splits": [[98, "Improving-ML-Performance-via-Data-Curation-with-Train-vs-Test-Splits"]], "Why did you make this tutorial?": [[98, "Why-did-you-make-this-tutorial?"]], "1. Install dependencies": [[98, "1.-Install-dependencies"]], "2. Preprocess the data": [[98, "2.-Preprocess-the-data"]], "3. Check for fundamental problems in the train/test setup": [[98, "3.-Check-for-fundamental-problems-in-the-train/test-setup"]], "4. Train model with original (noisy) training data": [[98, "4.-Train-model-with-original-(noisy)-training-data"]], "Compute out-of-sample predicted probabilities for the test data from this baseline model": [[98, "Compute-out-of-sample-predicted-probabilities-for-the-test-data-from-this-baseline-model"]], "5. Check for issues in test data and manually address them": [[98, "5.-Check-for-issues-in-test-data-and-manually-address-them"]], "Use clean test data to evaluate the performance of model trained on noisy training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-noisy-training-data"]], "6. Check for issues in training data and algorithmically correct them": [[98, "6.-Check-for-issues-in-training-data-and-algorithmically-correct-them"]], "7. Train model on cleaned training data": [[98, "7.-Train-model-on-cleaned-training-data"]], "Use clean test data to evaluate the performance of model trained on cleaned training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-cleaned-training-data"]], "8. Identifying better training data curation strategies via hyperparameter optimization techniques": [[98, "8.-Identifying-better-training-data-curation-strategies-via-hyperparameter-optimization-techniques"]], "9. Conclusion": [[98, "9.-Conclusion"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [59, "module-cleanlab.models"], [60, "module-cleanlab.models.keras"], [61, "module-cleanlab.multiannotator"], [62, "module-cleanlab.multilabel_classification.dataset"], [63, "module-cleanlab.multilabel_classification.filter"], [64, "module-cleanlab.multilabel_classification"], [65, "module-cleanlab.multilabel_classification.rank"], [66, "module-cleanlab.object_detection.filter"], [67, "module-cleanlab.object_detection"], [68, "module-cleanlab.object_detection.rank"], [69, "module-cleanlab.object_detection.summary"], [70, "module-cleanlab.outlier"], [71, "module-cleanlab.rank"], [72, "module-cleanlab.regression"], [73, "module-cleanlab.regression.learn"], [74, "module-cleanlab.regression.rank"], [75, "module-cleanlab.segmentation.filter"], [76, "module-cleanlab.segmentation"], [77, "module-cleanlab.segmentation.rank"], [78, "module-cleanlab.segmentation.summary"], [79, "module-cleanlab.token_classification.filter"], [80, "module-cleanlab.token_classification"], [81, "module-cleanlab.token_classification.rank"], [82, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_underperforming_clusters() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_underperforming_clusters"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[59, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[60, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[61, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[62, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[64, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[65, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[66, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[66, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[67, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[68, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[69, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[70, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[70, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[71, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[72, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[73, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[73, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[73, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[74, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[74, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[75, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[75, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[76, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[77, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[78, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[79, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[79, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[80, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[81, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[82, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file diff --git a/master/tutorials/clean_learning/tabular.ipynb b/master/tutorials/clean_learning/tabular.ipynb index 1596ab50a..36baab6a0 100644 --- a/master/tutorials/clean_learning/tabular.ipynb +++ b/master/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:20.536553Z", - "iopub.status.busy": "2024-08-29T17:07:20.536073Z", - "iopub.status.idle": "2024-08-29T17:07:21.786062Z", - "shell.execute_reply": "2024-08-29T17:07:21.785506Z" + "iopub.execute_input": "2024-09-04T16:36:33.494350Z", + "iopub.status.busy": "2024-09-04T16:36:33.493852Z", + "iopub.status.idle": "2024-09-04T16:36:34.726026Z", + "shell.execute_reply": "2024-09-04T16:36:34.725399Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:21.788700Z", - "iopub.status.busy": "2024-08-29T17:07:21.788279Z", - "iopub.status.idle": "2024-08-29T17:07:21.806586Z", - "shell.execute_reply": "2024-08-29T17:07:21.806009Z" + "iopub.execute_input": "2024-09-04T16:36:34.729286Z", + "iopub.status.busy": "2024-09-04T16:36:34.728744Z", + "iopub.status.idle": "2024-09-04T16:36:34.747897Z", + "shell.execute_reply": "2024-09-04T16:36:34.747378Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:21.808803Z", - "iopub.status.busy": "2024-08-29T17:07:21.808416Z", - "iopub.status.idle": "2024-08-29T17:07:21.929772Z", - "shell.execute_reply": "2024-08-29T17:07:21.929178Z" + "iopub.execute_input": "2024-09-04T16:36:34.750373Z", + "iopub.status.busy": "2024-09-04T16:36:34.749905Z", + "iopub.status.idle": "2024-09-04T16:36:35.046021Z", + "shell.execute_reply": "2024-09-04T16:36:35.045440Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:21.960601Z", - "iopub.status.busy": "2024-08-29T17:07:21.960225Z", - "iopub.status.idle": "2024-08-29T17:07:21.963941Z", - "shell.execute_reply": "2024-08-29T17:07:21.963468Z" + "iopub.execute_input": "2024-09-04T16:36:35.076604Z", + "iopub.status.busy": "2024-09-04T16:36:35.076192Z", + "iopub.status.idle": "2024-09-04T16:36:35.079864Z", + "shell.execute_reply": "2024-09-04T16:36:35.079398Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:21.965925Z", - "iopub.status.busy": "2024-08-29T17:07:21.965589Z", - "iopub.status.idle": "2024-08-29T17:07:21.973807Z", - "shell.execute_reply": "2024-08-29T17:07:21.973371Z" + "iopub.execute_input": "2024-09-04T16:36:35.081865Z", + "iopub.status.busy": "2024-09-04T16:36:35.081597Z", + "iopub.status.idle": "2024-09-04T16:36:35.090286Z", + "shell.execute_reply": "2024-09-04T16:36:35.089725Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:21.975916Z", - "iopub.status.busy": "2024-08-29T17:07:21.975570Z", - "iopub.status.idle": "2024-08-29T17:07:21.978067Z", - "shell.execute_reply": "2024-08-29T17:07:21.977625Z" + "iopub.execute_input": "2024-09-04T16:36:35.092459Z", + "iopub.status.busy": "2024-09-04T16:36:35.092118Z", + "iopub.status.idle": "2024-09-04T16:36:35.094778Z", + "shell.execute_reply": "2024-09-04T16:36:35.094312Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:21.980150Z", - "iopub.status.busy": "2024-08-29T17:07:21.979829Z", - "iopub.status.idle": "2024-08-29T17:07:22.497459Z", - "shell.execute_reply": "2024-08-29T17:07:22.496833Z" + "iopub.execute_input": "2024-09-04T16:36:35.096769Z", + "iopub.status.busy": "2024-09-04T16:36:35.096372Z", + "iopub.status.idle": "2024-09-04T16:36:35.623436Z", + "shell.execute_reply": "2024-09-04T16:36:35.622805Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:22.499970Z", - "iopub.status.busy": "2024-08-29T17:07:22.499787Z", - "iopub.status.idle": "2024-08-29T17:07:24.411694Z", - "shell.execute_reply": "2024-08-29T17:07:24.411025Z" + "iopub.execute_input": "2024-09-04T16:36:35.625916Z", + "iopub.status.busy": "2024-09-04T16:36:35.625730Z", + "iopub.status.idle": "2024-09-04T16:36:37.510736Z", + "shell.execute_reply": "2024-09-04T16:36:37.510124Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:24.414319Z", - "iopub.status.busy": "2024-08-29T17:07:24.413697Z", - "iopub.status.idle": "2024-08-29T17:07:24.424172Z", - "shell.execute_reply": "2024-08-29T17:07:24.423712Z" + "iopub.execute_input": "2024-09-04T16:36:37.513479Z", + "iopub.status.busy": "2024-09-04T16:36:37.512707Z", + "iopub.status.idle": "2024-09-04T16:36:37.522816Z", + "shell.execute_reply": "2024-09-04T16:36:37.522356Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:24.426313Z", - "iopub.status.busy": "2024-08-29T17:07:24.425865Z", - "iopub.status.idle": "2024-08-29T17:07:24.429917Z", - "shell.execute_reply": "2024-08-29T17:07:24.429479Z" + "iopub.execute_input": "2024-09-04T16:36:37.524923Z", + "iopub.status.busy": "2024-09-04T16:36:37.524600Z", + "iopub.status.idle": "2024-09-04T16:36:37.528591Z", + "shell.execute_reply": "2024-09-04T16:36:37.528155Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:24.432009Z", - "iopub.status.busy": "2024-08-29T17:07:24.431607Z", - "iopub.status.idle": "2024-08-29T17:07:24.439758Z", - "shell.execute_reply": "2024-08-29T17:07:24.439330Z" + "iopub.execute_input": "2024-09-04T16:36:37.530787Z", + "iopub.status.busy": "2024-09-04T16:36:37.530452Z", + "iopub.status.idle": "2024-09-04T16:36:37.538844Z", + "shell.execute_reply": "2024-09-04T16:36:37.538421Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:24.441674Z", - "iopub.status.busy": "2024-08-29T17:07:24.441407Z", - "iopub.status.idle": "2024-08-29T17:07:24.553494Z", - "shell.execute_reply": "2024-08-29T17:07:24.553024Z" + "iopub.execute_input": "2024-09-04T16:36:37.540782Z", + "iopub.status.busy": "2024-09-04T16:36:37.540515Z", + "iopub.status.idle": "2024-09-04T16:36:37.658571Z", + "shell.execute_reply": "2024-09-04T16:36:37.658063Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:24.555730Z", - "iopub.status.busy": "2024-08-29T17:07:24.555391Z", - "iopub.status.idle": "2024-08-29T17:07:24.558029Z", - "shell.execute_reply": "2024-08-29T17:07:24.557585Z" + "iopub.execute_input": "2024-09-04T16:36:37.660665Z", + "iopub.status.busy": "2024-09-04T16:36:37.660392Z", + "iopub.status.idle": "2024-09-04T16:36:37.663359Z", + "shell.execute_reply": "2024-09-04T16:36:37.662802Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:24.560040Z", - "iopub.status.busy": "2024-08-29T17:07:24.559706Z", - "iopub.status.idle": "2024-08-29T17:07:26.688998Z", - "shell.execute_reply": "2024-08-29T17:07:26.688364Z" + "iopub.execute_input": "2024-09-04T16:36:37.665583Z", + "iopub.status.busy": "2024-09-04T16:36:37.665415Z", + "iopub.status.idle": "2024-09-04T16:36:39.737444Z", + "shell.execute_reply": "2024-09-04T16:36:39.736766Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:26.692110Z", - "iopub.status.busy": "2024-08-29T17:07:26.691312Z", - "iopub.status.idle": "2024-08-29T17:07:26.702522Z", - "shell.execute_reply": "2024-08-29T17:07:26.702054Z" + "iopub.execute_input": "2024-09-04T16:36:39.740370Z", + "iopub.status.busy": "2024-09-04T16:36:39.739756Z", + "iopub.status.idle": "2024-09-04T16:36:39.751066Z", + "shell.execute_reply": "2024-09-04T16:36:39.750597Z" } }, "outputs": [ @@ -786,10 +786,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:26.704548Z", - "iopub.status.busy": "2024-08-29T17:07:26.704208Z", - "iopub.status.idle": "2024-08-29T17:07:26.733958Z", - "shell.execute_reply": "2024-08-29T17:07:26.733535Z" + "iopub.execute_input": "2024-09-04T16:36:39.753075Z", + "iopub.status.busy": "2024-09-04T16:36:39.752736Z", + "iopub.status.idle": "2024-09-04T16:36:39.921485Z", + "shell.execute_reply": "2024-09-04T16:36:39.920960Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/clean_learning/text.html b/master/tutorials/clean_learning/text.html index ddca5a9d1..0a081872f 100644 --- a/master/tutorials/clean_learning/text.html +++ b/master/tutorials/clean_learning/text.html @@ -817,7 +817,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'card_about_to_expire', 'card_payment_fee_charged', 'getting_spare_card', 'beneficiary_not_allowed', 'cancel_transfer', 'change_pin', 'supported_cards_and_currencies'}
+Classes: {'visa_or_mastercard', 'supported_cards_and_currencies', 'cancel_transfer', 'card_payment_fee_charged', 'getting_spare_card', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'card_about_to_expire', 'change_pin', 'beneficiary_not_allowed'}
 

Let’s print the first example in the train set.

@@ -880,43 +880,43 @@

2. Load and format the text dataset
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -1219,7 +1219,7 @@

Spending too much time on data quality?Cleanlab Studio – an automated platform to find and fix issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. Try it for free!

The modern AI pipeline automated with Cleanlab Studio

diff --git a/master/tutorials/clean_learning/text.ipynb b/master/tutorials/clean_learning/text.ipynb index 3eab5a92c..707ac8b48 100644 --- a/master/tutorials/clean_learning/text.ipynb +++ b/master/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:29.992566Z", - "iopub.status.busy": "2024-08-29T17:07:29.992403Z", - "iopub.status.idle": "2024-08-29T17:07:33.011464Z", - "shell.execute_reply": "2024-08-29T17:07:33.010881Z" + "iopub.execute_input": "2024-09-04T16:36:42.886651Z", + "iopub.status.busy": "2024-09-04T16:36:42.886468Z", + "iopub.status.idle": "2024-09-04T16:36:45.659157Z", + "shell.execute_reply": "2024-09-04T16:36:45.658599Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:33.014357Z", - "iopub.status.busy": "2024-08-29T17:07:33.013943Z", - "iopub.status.idle": "2024-08-29T17:07:33.017670Z", - "shell.execute_reply": "2024-08-29T17:07:33.017129Z" + "iopub.execute_input": "2024-09-04T16:36:45.662011Z", + "iopub.status.busy": "2024-09-04T16:36:45.661488Z", + "iopub.status.idle": "2024-09-04T16:36:45.665636Z", + "shell.execute_reply": "2024-09-04T16:36:45.665005Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:33.020073Z", - "iopub.status.busy": "2024-08-29T17:07:33.019617Z", - "iopub.status.idle": "2024-08-29T17:07:33.022756Z", - "shell.execute_reply": "2024-08-29T17:07:33.022302Z" + "iopub.execute_input": "2024-09-04T16:36:45.667904Z", + "iopub.status.busy": "2024-09-04T16:36:45.667542Z", + "iopub.status.idle": "2024-09-04T16:36:45.670793Z", + "shell.execute_reply": "2024-09-04T16:36:45.670227Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:33.024837Z", - "iopub.status.busy": "2024-08-29T17:07:33.024520Z", - "iopub.status.idle": "2024-08-29T17:07:33.068535Z", - "shell.execute_reply": "2024-08-29T17:07:33.067989Z" + "iopub.execute_input": "2024-09-04T16:36:45.672736Z", + "iopub.status.busy": "2024-09-04T16:36:45.672439Z", + "iopub.status.idle": "2024-09-04T16:36:45.792460Z", + "shell.execute_reply": "2024-09-04T16:36:45.791940Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:33.070841Z", - "iopub.status.busy": "2024-08-29T17:07:33.070505Z", - "iopub.status.idle": "2024-08-29T17:07:33.074225Z", - "shell.execute_reply": "2024-08-29T17:07:33.073749Z" + "iopub.execute_input": "2024-09-04T16:36:45.794442Z", + "iopub.status.busy": "2024-09-04T16:36:45.794129Z", + "iopub.status.idle": "2024-09-04T16:36:45.797668Z", + "shell.execute_reply": "2024-09-04T16:36:45.797104Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:33.076126Z", - "iopub.status.busy": "2024-08-29T17:07:33.075947Z", - "iopub.status.idle": "2024-08-29T17:07:33.079593Z", - "shell.execute_reply": "2024-08-29T17:07:33.079143Z" + "iopub.execute_input": "2024-09-04T16:36:45.799617Z", + "iopub.status.busy": "2024-09-04T16:36:45.799292Z", + "iopub.status.idle": "2024-09-04T16:36:45.802644Z", + "shell.execute_reply": "2024-09-04T16:36:45.802082Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'card_about_to_expire', 'card_payment_fee_charged', 'getting_spare_card', 'beneficiary_not_allowed', 'cancel_transfer', 'change_pin', 'supported_cards_and_currencies'}\n" + "Classes: {'visa_or_mastercard', 'supported_cards_and_currencies', 'cancel_transfer', 'card_payment_fee_charged', 'getting_spare_card', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'card_about_to_expire', 'change_pin', 'beneficiary_not_allowed'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:33.081419Z", - "iopub.status.busy": "2024-08-29T17:07:33.081245Z", - "iopub.status.idle": "2024-08-29T17:07:33.084286Z", - "shell.execute_reply": "2024-08-29T17:07:33.083749Z" + "iopub.execute_input": "2024-09-04T16:36:45.804763Z", + "iopub.status.busy": "2024-09-04T16:36:45.804427Z", + "iopub.status.idle": "2024-09-04T16:36:45.807562Z", + "shell.execute_reply": "2024-09-04T16:36:45.807018Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:33.086307Z", - "iopub.status.busy": "2024-08-29T17:07:33.086105Z", - "iopub.status.idle": "2024-08-29T17:07:33.089483Z", - "shell.execute_reply": "2024-08-29T17:07:33.089006Z" + "iopub.execute_input": "2024-09-04T16:36:45.809658Z", + "iopub.status.busy": "2024-09-04T16:36:45.809323Z", + "iopub.status.idle": "2024-09-04T16:36:45.812457Z", + "shell.execute_reply": "2024-09-04T16:36:45.811999Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:33.091333Z", - "iopub.status.busy": "2024-08-29T17:07:33.091160Z", - "iopub.status.idle": "2024-08-29T17:07:38.705758Z", - "shell.execute_reply": "2024-08-29T17:07:38.705081Z" + "iopub.execute_input": "2024-09-04T16:36:45.814560Z", + "iopub.status.busy": "2024-09-04T16:36:45.814222Z", + "iopub.status.idle": "2024-09-04T16:36:50.800839Z", + "shell.execute_reply": "2024-09-04T16:36:50.800176Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d66d126e12a34285a73db2c25b6f5bc7", + "model_id": "d0ca941c93c6491ab3017fa26813543b", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "34aadc97f3c94cefb91704a973340671", + "model_id": "c0b412775b7545a6b9dd90faf75c419f", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7aee6a4a05544816aa1035d5b2a40f7e", + "model_id": "e8c8680718b942039a94ab4625097f83", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8c0c9e8afe4f4e63aba0336cc5859538", + "model_id": "bf91d8bb7dd04805a5bf430e8ecd7eb1", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bb7bae5a60bc4f389f3e1d2a1d26cb38", + "model_id": "f8c81f0e92d44c4ab72fbb8ab1d2b9ad", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f44b52f1626e414db5f00b894ccf657e", + "model_id": "471d21b2b6d34bd19f68db820ed3bd11", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2e403dcff411413eaaf46d44d295a0f0", + "model_id": "6ca9bbeab065433b9d8b1fcfff6afb5b", "version_major": 2, "version_minor": 0 }, @@ -601,10 +601,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:38.708453Z", - "iopub.status.busy": "2024-08-29T17:07:38.708265Z", - "iopub.status.idle": "2024-08-29T17:07:38.711029Z", - "shell.execute_reply": "2024-08-29T17:07:38.710547Z" + "iopub.execute_input": "2024-09-04T16:36:50.803667Z", + "iopub.status.busy": "2024-09-04T16:36:50.803245Z", + "iopub.status.idle": "2024-09-04T16:36:50.806160Z", + "shell.execute_reply": "2024-09-04T16:36:50.805603Z" } }, "outputs": [], @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:38.713010Z", - "iopub.status.busy": "2024-08-29T17:07:38.712834Z", - "iopub.status.idle": "2024-08-29T17:07:38.715374Z", - "shell.execute_reply": "2024-08-29T17:07:38.714929Z" + "iopub.execute_input": "2024-09-04T16:36:50.808118Z", + "iopub.status.busy": "2024-09-04T16:36:50.807809Z", + "iopub.status.idle": "2024-09-04T16:36:50.810565Z", + "shell.execute_reply": "2024-09-04T16:36:50.810015Z" } }, "outputs": [], @@ -644,10 +644,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:38.717274Z", - "iopub.status.busy": "2024-08-29T17:07:38.717098Z", - "iopub.status.idle": "2024-08-29T17:07:41.474831Z", - "shell.execute_reply": "2024-08-29T17:07:41.474125Z" + "iopub.execute_input": "2024-09-04T16:36:50.812544Z", + "iopub.status.busy": "2024-09-04T16:36:50.812216Z", + "iopub.status.idle": "2024-09-04T16:36:53.497011Z", + "shell.execute_reply": "2024-09-04T16:36:53.496323Z" }, "scrolled": true }, @@ -670,10 +670,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:41.478077Z", - "iopub.status.busy": "2024-08-29T17:07:41.477163Z", - "iopub.status.idle": "2024-08-29T17:07:41.485113Z", - "shell.execute_reply": "2024-08-29T17:07:41.484564Z" + "iopub.execute_input": "2024-09-04T16:36:53.500337Z", + "iopub.status.busy": "2024-09-04T16:36:53.499462Z", + "iopub.status.idle": "2024-09-04T16:36:53.507298Z", + "shell.execute_reply": "2024-09-04T16:36:53.506835Z" } }, "outputs": [ @@ -774,10 +774,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:41.487297Z", - "iopub.status.busy": "2024-08-29T17:07:41.486971Z", - "iopub.status.idle": "2024-08-29T17:07:41.491014Z", - "shell.execute_reply": "2024-08-29T17:07:41.490460Z" + "iopub.execute_input": "2024-09-04T16:36:53.509504Z", + "iopub.status.busy": "2024-09-04T16:36:53.509300Z", + "iopub.status.idle": "2024-09-04T16:36:53.513290Z", + "shell.execute_reply": "2024-09-04T16:36:53.512794Z" } }, "outputs": [], @@ -791,10 +791,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:41.493025Z", - "iopub.status.busy": "2024-08-29T17:07:41.492646Z", - "iopub.status.idle": "2024-08-29T17:07:41.495920Z", - "shell.execute_reply": "2024-08-29T17:07:41.495391Z" + "iopub.execute_input": "2024-09-04T16:36:53.515250Z", + "iopub.status.busy": "2024-09-04T16:36:53.514910Z", + "iopub.status.idle": "2024-09-04T16:36:53.518213Z", + "shell.execute_reply": "2024-09-04T16:36:53.517748Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:41.497982Z", - "iopub.status.busy": "2024-08-29T17:07:41.497802Z", - "iopub.status.idle": "2024-08-29T17:07:41.500890Z", - "shell.execute_reply": "2024-08-29T17:07:41.500416Z" + "iopub.execute_input": "2024-09-04T16:36:53.520261Z", + "iopub.status.busy": "2024-09-04T16:36:53.519930Z", + "iopub.status.idle": "2024-09-04T16:36:53.522784Z", + "shell.execute_reply": "2024-09-04T16:36:53.522364Z" } }, "outputs": [], @@ -852,10 +852,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:41.502976Z", - "iopub.status.busy": "2024-08-29T17:07:41.502639Z", - "iopub.status.idle": "2024-08-29T17:07:41.509307Z", - "shell.execute_reply": "2024-08-29T17:07:41.508767Z" + "iopub.execute_input": "2024-09-04T16:36:53.524763Z", + "iopub.status.busy": "2024-09-04T16:36:53.524431Z", + "iopub.status.idle": "2024-09-04T16:36:53.531295Z", + "shell.execute_reply": "2024-09-04T16:36:53.530841Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:41.511409Z", - "iopub.status.busy": "2024-08-29T17:07:41.511231Z", - "iopub.status.idle": "2024-08-29T17:07:41.736232Z", - "shell.execute_reply": "2024-08-29T17:07:41.735628Z" + "iopub.execute_input": "2024-09-04T16:36:53.533426Z", + "iopub.status.busy": "2024-09-04T16:36:53.533074Z", + "iopub.status.idle": "2024-09-04T16:36:53.763114Z", + "shell.execute_reply": "2024-09-04T16:36:53.762578Z" }, "scrolled": true }, @@ -1022,10 +1022,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:41.738796Z", - "iopub.status.busy": "2024-08-29T17:07:41.738421Z", - "iopub.status.idle": "2024-08-29T17:07:41.912832Z", - "shell.execute_reply": "2024-08-29T17:07:41.912272Z" + "iopub.execute_input": "2024-09-04T16:36:53.765511Z", + "iopub.status.busy": "2024-09-04T16:36:53.765075Z", + "iopub.status.idle": "2024-09-04T16:36:53.973032Z", + "shell.execute_reply": "2024-09-04T16:36:53.972450Z" }, "scrolled": true }, @@ -1073,10 +1073,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:41.915253Z", - "iopub.status.busy": "2024-08-29T17:07:41.914898Z", - "iopub.status.idle": "2024-08-29T17:07:41.918811Z", - "shell.execute_reply": "2024-08-29T17:07:41.918301Z" + "iopub.execute_input": "2024-09-04T16:36:53.975732Z", + "iopub.status.busy": "2024-09-04T16:36:53.975304Z", + "iopub.status.idle": "2024-09-04T16:36:53.979372Z", + "shell.execute_reply": "2024-09-04T16:36:53.978866Z" }, "nbsphinx": "hidden" }, @@ -1120,7 +1120,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "004c18d96db448f0a5572f4be09274e6": { + "03deb05b33c64dc0a54e8a208d823997": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1173,30 +1173,23 @@ "width": null } }, - "0504411ca37340008c15ac648b392eda": { + "08a7b158dfc34395b3395e874d8882f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f78458024afb43d3b0de4b20e2095b24", - "placeholder": "​", - "style": "IPY_MODEL_60e1e4c3aa504fbab18aac526d3ba544", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 34.5MB/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "0583cb2e581e40049974dd4ab187e1bb": { + "0dce119c465141149bf9df31378a9c3b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1211,15 +1204,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_359e7d3af050412994483a6d8cc402e8", + "layout": "IPY_MODEL_7f64890f74a4460883f6fd36bc03f00f", "placeholder": "​", - "style": "IPY_MODEL_905d6f02518041138e02aad74d75ed15", + "style": "IPY_MODEL_d239ceb1b62046d09ad901f7528558ce", "tabbable": null, "tooltip": null, - "value": "tokenizer_config.json: 100%" + "value": " 232k/232k [00:00<00:00, 3.69MB/s]" } }, - "09b401682ebd41de80021f05e72a63c7": { + "0e0f3d73d7c5479e9205c608e6a221f2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1272,7 +1265,7 @@ "width": null } }, - "0a7b2f78309241dbbefd557f241d0afc": { + "0e2793623a60493a862948d9148813d1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1325,74 +1318,7 @@ "width": null } }, - "0bbfc0caed8a41f68d6d4f0ecd843752": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_48aacd399d814cc5bb27839f4188c244", - "placeholder": "​", - "style": "IPY_MODEL_a81f2c5c0fac49198311d85222938569", - "tabbable": null, - "tooltip": null, - "value": "config.json: 100%" - } - }, - "15f65373b8e047a9a00d478ff9da5397": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1a1b13f8dbc34bbcbb02ce4d4239d30f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c18bea0a5e674d4fb6142ef5c4ee9dba", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_dac3b39cfbe24c90a24b3a8600b340e0", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 - } - }, - "1abfbbe601b8476fa0bf19586f37843f": { + "0ef3b82682c247fa948faf46338bbc47": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1408,74 +1334,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0a7b2f78309241dbbefd557f241d0afc", - "max": 2211.0, + "layout": "IPY_MODEL_80c3f488d1da4be9ac5ed2301c9abe54", + "max": 665.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_89f221ec1a4147b5a5c40b4a3ccc3916", - "tabbable": null, - "tooltip": null, - "value": 2211.0 - } - }, - "1e7f387387624f8196fa6c9eeb76440e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1e9d58bd038442d685cef12dba73d9ff": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2160d45513d148b9ac50cc6177349b8a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_37b15fc917e5476789be11b496266c86", - "placeholder": "​", - "style": "IPY_MODEL_74f67f88503145e0aab846dbf0c0095a", + "style": "IPY_MODEL_08a7b158dfc34395b3395e874d8882f1", "tabbable": null, "tooltip": null, - "value": " 54.2M/54.2M [00:01<00:00, 35.3MB/s]" + "value": 665.0 } }, - "22dd5ef98a124bbbab753a48bc706c44": { + "10856532033d4122bcdaaed1284eb4e7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1528,7 +1397,25 @@ "width": null } }, - "247cea6d7b5045218efe42c97001131b": { + "12227d53e2d646929355375900c380d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "17527287826741d495566304df5ff184": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1581,7 +1468,7 @@ "width": null } }, - "2926097f31794b8a97d25ab56cbb0428": { + "1990965ce8594312b54e9f1c00118574": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1596,68 +1483,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_004c18d96db448f0a5572f4be09274e6", + "layout": "IPY_MODEL_ee87e3b4436347b6a5383c65e75e9abd", "placeholder": "​", - "style": "IPY_MODEL_1e9d58bd038442d685cef12dba73d9ff", + "style": "IPY_MODEL_54bae9fd2e14481bbe5b0f643c873f04", "tabbable": null, "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 9.09kB/s]" + "value": "pytorch_model.bin: 100%" } }, - "2afcb988e80d4e2c96e0430e6422f029": { - "model_module": "@jupyter-widgets/base", + "2655af5fee21452a90e51c6db94c46e4": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2b54721d99a34a8c9d3bd409f33d01a9": { + "272cb833b2554305b7a96f617f49e925": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1672,15 +1524,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2d38fd721eb9459ab1f7c033d377c4b8", + "layout": "IPY_MODEL_f1cd151c786649629c0f35aafcacc883", "placeholder": "​", - "style": "IPY_MODEL_9e79d23b602a4138bb79213e841f3f34", + "style": "IPY_MODEL_cf02a7e0d799494a8b1d47ea50b25157", "tabbable": null, "tooltip": null, - "value": " 466k/466k [00:00<00:00, 41.3MB/s]" + "value": " 48.0/48.0 [00:00<00:00, 9.43kB/s]" } }, - "2d38fd721eb9459ab1f7c033d377c4b8": { + "28f514e5bf6d4787bdd5690fe4bee078": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1733,31 +1585,72 @@ "width": null } }, - "2e403dcff411413eaaf46d44d295a0f0": { + "2ac3806b1bcf4c8eb279e2466714c8b8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_545604a2661c4f53a66e973c55afedd9", - "IPY_MODEL_cd7e56d70562470ca03a636175cbc711", - "IPY_MODEL_0504411ca37340008c15ac648b392eda" - ], - "layout": "IPY_MODEL_995fd222aac544eaa78d553cbc137be9", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_03deb05b33c64dc0a54e8a208d823997", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e8ec41c7814745f3ad67a0642029a11e", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 231508.0 + } + }, + "3745e78b80704cc090c10bda5d066aa2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "394b9589a3014e7bb5445cca8eee8985": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_75aa31a0d822490b9563b40f47d0614e", + "placeholder": "​", + "style": "IPY_MODEL_a4d41b7d98db470eb62ff40819374de7", + "tabbable": null, + "tooltip": null, + "value": " 466k/466k [00:00<00:00, 7.27MB/s]" } }, - "32b672e3533b42e68623eb085b0adde2": { + "39f7fb07719e477aa8fc556d47d84e6b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1810,31 +1703,74 @@ "width": null } }, - "34aadc97f3c94cefb91704a973340671": { + "3a6c9c08bcbe465c845f93f31d1e082d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3dc1b96348584b10be189236384780e3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6a6e9f8a7ddb4d769e55cedaf234486b", - "IPY_MODEL_1abfbbe601b8476fa0bf19586f37843f", - "IPY_MODEL_f46043d882ae4f25aac72431590c7c21" - ], - "layout": "IPY_MODEL_2afcb988e80d4e2c96e0430e6422f029", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0e0f3d73d7c5479e9205c608e6a221f2", + "placeholder": "​", + "style": "IPY_MODEL_4867f479572f420e8ee766d8a630e9f0", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 391/391 [00:00<00:00, 70.3kB/s]" + } + }, + "3e83d94b3da94796a2e3c3f58fee6d24": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_953835c1d8d944c98bcf5a100c6eadea", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7441a0948ec245db97cc388e4c24346b", + "tabbable": null, + "tooltip": null, + "value": 2211.0 } }, - "359e7d3af050412994483a6d8cc402e8": { + "450f2b21675f4297a73b23d7332995c2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1887,7 +1823,179 @@ "width": null } }, - "37b15fc917e5476789be11b496266c86": { + "471d21b2b6d34bd19f68db820ed3bd11": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d76db974adf74d138edf1e6b2ab6d1bb", + "IPY_MODEL_57a5f3444ac54c458f1b18e919019ce8", + "IPY_MODEL_272cb833b2554305b7a96f617f49e925" + ], + "layout": "IPY_MODEL_891fe5492d71411bb2cdd8dc16c38aae", + "tabbable": null, + "tooltip": null + } + }, + "4867f479572f420e8ee766d8a630e9f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "54bae9fd2e14481bbe5b0f643c873f04": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5509cf9ad44a409ba66d21eff990056a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a7d7861f63be4db6ba7a8d0991cd3aaf", + "placeholder": "​", + "style": "IPY_MODEL_de294e3144514433bf42ed005297e6fb", + "tabbable": null, + "tooltip": null, + "value": "config.json: 100%" + } + }, + "57a5f3444ac54c458f1b18e919019ce8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f45d59708a3c4ed1865126a090e2c4e6", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9f615a67acf544a4a764f0b3e57bcf6d", + "tabbable": null, + "tooltip": null, + "value": 48.0 + } + }, + "65c1d7542fa548e0988f724388914017": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c37ec7d4d9254fceb7235956e2388332", + "placeholder": "​", + "style": "IPY_MODEL_e0cff003b80f40c4b36e41b33d67ac6a", + "tabbable": null, + "tooltip": null, + "value": "tokenizer.json: 100%" + } + }, + "6ca9bbeab065433b9d8b1fcfff6afb5b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7809a77866304983856122c3264042af", + "IPY_MODEL_2ac3806b1bcf4c8eb279e2466714c8b8", + "IPY_MODEL_0dce119c465141149bf9df31378a9c3b" + ], + "layout": "IPY_MODEL_95626d032d85453a823ed1ac7db3760d", + "tabbable": null, + "tooltip": null + } + }, + "7441a0948ec245db97cc388e4c24346b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "75aa31a0d822490b9563b40f47d0614e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1940,48 +2048,7 @@ "width": null } }, - "3baa74d1c3824b4a9a549598fda0d7bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_695396025f6b4cde9904cae30078620e", - "placeholder": "​", - "style": "IPY_MODEL_81832277dde34775bf22cc95d3573180", - "tabbable": null, - "tooltip": null, - "value": " 665/665 [00:00<00:00, 127kB/s]" - } - }, - "41a9309f8e2a43c981e51849683db8be": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "48aacd399d814cc5bb27839f4188c244": { + "76146f1f279944d9815241c655f088b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2034,41 +2101,30 @@ "width": null } }, - "4d137b6355a94a098596e9b016aafc61": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4df6410e248d481ea7cf3112093f09d6": { + "7809a77866304983856122c3264042af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bc9080caf76e43a7872ea082fa7bc94f", + "placeholder": "​", + "style": "IPY_MODEL_faa165c6cb984ac4812cbf528b4671e4", + "tabbable": null, + "tooltip": null, + "value": "vocab.txt: 100%" } }, - "53e0ff33a7e04cdab9b26394a371448b": { + "7941dc7aeab6412aa976f20e33ff80c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2086,30 +2142,7 @@ "text_color": null } }, - "545604a2661c4f53a66e973c55afedd9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fd0aa74493c34aedb94ddfe184026989", - "placeholder": "​", - "style": "IPY_MODEL_15f65373b8e047a9a00d478ff9da5397", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "54698cbe60c842cdade75b6b21474325": { + "7f64890f74a4460883f6fd36bc03f00f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2162,7 +2195,7 @@ "width": null } }, - "57d98036d235422ab33cf4990de796ba": { + "80c3f488d1da4be9ac5ed2301c9abe54": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2215,33 +2248,48 @@ "width": null } }, - "5a1cd5aaf1784044a4687f34ea8ef2fe": { + "82648a3f7ecb460ba325d367b7722596": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "85c0898316a74865bea082bc59f6f7b3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_57d98036d235422ab33cf4990de796ba", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4df6410e248d481ea7cf3112093f09d6", + "layout": "IPY_MODEL_db55cfeea8484f5f9d3c5177c2bacbe9", + "placeholder": "​", + "style": "IPY_MODEL_7941dc7aeab6412aa976f20e33ff80c1", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": " 54.2M/54.2M [00:00<00:00, 251MB/s]" } }, - "5bd138371a7845b99f64db4566a1b906": { + "891fe5492d71411bb2cdd8dc16c38aae": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2294,59 +2342,7 @@ "width": null } }, - "60e1e4c3aa504fbab18aac526d3ba544": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "60f2d0d7a59a4f5fa2769907b95fd880": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6340058adb024b37b45427aa6f71fbfd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "66ed0be9afe74df8a9f4b7069190b1af": { + "8be7661bcd1a4e188324a63e05d0415b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2399,53 +2395,49 @@ "width": null } }, - "672d54b98cd9418aa7698c0deb1c0d74": { + "8d75886ef5da4990962359e01bf052f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_79ef87ccd5344b8eb47c03dd16ec00de", - "placeholder": "​", - "style": "IPY_MODEL_4d137b6355a94a098596e9b016aafc61", + "layout": "IPY_MODEL_cc1f79fcf897409fa4037c46d565b46f", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9519195c1c754f0297acc1aef92427b5", "tabbable": null, "tooltip": null, - "value": ".gitattributes: 100%" + "value": 391.0 } }, - "675f498779f446388d30f83da7b39f20": { + "9519195c1c754f0297acc1aef92427b5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6c890ff4d68a42efbd9cd123d4b18be5", - "placeholder": "​", - "style": "IPY_MODEL_41a9309f8e2a43c981e51849683db8be", - "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 67.6kB/s]" + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "695396025f6b4cde9904cae30078620e": { + "953835c1d8d944c98bcf5a100c6eadea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2498,7 +2490,7 @@ "width": null } }, - "6a0734d6da0943148c07b795ad47d81d": { + "95626d032d85453a823ed1ac7db3760d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2551,7 +2543,7 @@ "width": null } }, - "6a6e9f8a7ddb4d769e55cedaf234486b": { + "9d3c23e8dbd04ec7b13f66ac9c75b008": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2566,15 +2558,72 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8f09e4ca1bc04bf9b3540ac341b88401", + "layout": "IPY_MODEL_c86801e515064506acf8ea66a98816b2", "placeholder": "​", - "style": "IPY_MODEL_53e0ff33a7e04cdab9b26394a371448b", + "style": "IPY_MODEL_82648a3f7ecb460ba325d367b7722596", "tabbable": null, "tooltip": null, "value": "README.md: 100%" } }, - "6c890ff4d68a42efbd9cd123d4b18be5": { + "9f615a67acf544a4a764f0b3e57bcf6d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a1576db96088497882a37cc1fb9ced24": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_39f7fb07719e477aa8fc556d47d84e6b", + "placeholder": "​", + "style": "IPY_MODEL_b48c3c7a659e4ae8b39ca846e3708a7d", + "tabbable": null, + "tooltip": null, + "value": " 665/665 [00:00<00:00, 122kB/s]" + } + }, + "a4d41b7d98db470eb62ff40819374de7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a7d7861f63be4db6ba7a8d0991cd3aaf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2627,7 +2676,7 @@ "width": null } }, - "74b78823e59c49fc8a4c0c2862c80f5d": { + "ad0ca6ac240949bfb1878a2723127666": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2643,7 +2692,7 @@ "description_width": "" } }, - "74f67f88503145e0aab846dbf0c0095a": { + "b48c3c7a659e4ae8b39ca846e3708a7d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2661,7 +2710,30 @@ "text_color": null } }, - "79ef87ccd5344b8eb47c03dd16ec00de": { + "b50faf3c387846bbaae7dad55013e23a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_450f2b21675f4297a73b23d7332995c2", + "placeholder": "​", + "style": "IPY_MODEL_12227d53e2d646929355375900c380d2", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 442kB/s]" + } + }, + "bc9080caf76e43a7872ea082fa7bc94f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2714,7 +2786,7 @@ "width": null } }, - "7aee6a4a05544816aa1035d5b2a40f7e": { + "bf91d8bb7dd04805a5bf430e8ecd7eb1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2729,126 +2801,93 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0bbfc0caed8a41f68d6d4f0ecd843752", - "IPY_MODEL_5a1cd5aaf1784044a4687f34ea8ef2fe", - "IPY_MODEL_3baa74d1c3824b4a9a549598fda0d7bd" + "IPY_MODEL_1990965ce8594312b54e9f1c00118574", + "IPY_MODEL_f573bed877834059923a8e973c8bef5b", + "IPY_MODEL_85c0898316a74865bea082bc59f6f7b3" ], - "layout": "IPY_MODEL_5bd138371a7845b99f64db4566a1b906", + "layout": "IPY_MODEL_e4fbd562de564263aace68a6a30ea2a3", "tabbable": null, "tooltip": null } }, - "81832277dde34775bf22cc95d3573180": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "82b2301c67424053b6a0ea1424a65861": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d4609fb7bd2348f3aabb983249d77ce2", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1e7f387387624f8196fa6c9eeb76440e", - "tabbable": null, - "tooltip": null, - "value": 466062.0 - } - }, - "88591a4a537a477d8b31f17929c8fb10": { + "c0b412775b7545a6b9dd90faf75c419f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_54698cbe60c842cdade75b6b21474325", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b3fa7b73b3bc47c0a41148bc0ce66307", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9d3c23e8dbd04ec7b13f66ac9c75b008", + "IPY_MODEL_3e83d94b3da94796a2e3c3f58fee6d24", + "IPY_MODEL_b50faf3c387846bbaae7dad55013e23a" + ], + "layout": "IPY_MODEL_28f514e5bf6d4787bdd5690fe4bee078", "tabbable": null, - "tooltip": null, - "value": 48.0 + "tooltip": null } }, - "89f221ec1a4147b5a5c40b4a3ccc3916": { - "model_module": "@jupyter-widgets/controls", + "c37ec7d4d9254fceb7235956e2388332": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8c0c9e8afe4f4e63aba0336cc5859538": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f00cb3c8471649cd869389f44146769a", - "IPY_MODEL_1a1b13f8dbc34bbcbb02ce4d4239d30f", - "IPY_MODEL_2160d45513d148b9ac50cc6177349b8a" - ], - "layout": "IPY_MODEL_6a0734d6da0943148c07b795ad47d81d", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "8f09e4ca1bc04bf9b3540ac341b88401": { + "c86801e515064506acf8ea66a98816b2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2901,25 +2940,33 @@ "width": null } }, - "905d6f02518041138e02aad74d75ed15": { + "ca4f2cdb9c44425baaf76abafaae5eb5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_76146f1f279944d9815241c655f088b9", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ad0ca6ac240949bfb1878a2723127666", + "tabbable": null, + "tooltip": null, + "value": 466062.0 } }, - "95ed389edb4b4a4e95d66b81b122b6a4": { + "cc1f79fcf897409fa4037c46d565b46f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2972,7 +3019,7 @@ "width": null } }, - "995fd222aac544eaa78d553cbc137be9": { + "ceff41db18be47daa53033b7425fe56e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3025,7 +3072,7 @@ "width": null } }, - "9e79d23b602a4138bb79213e841f3f34": { + "cf02a7e0d799494a8b1d47ea50b25157": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3043,25 +3090,31 @@ "text_color": null } }, - "a7406ca71e614ffea206ff599eefac82": { + "d0ca941c93c6491ab3017fa26813543b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f40175c30fbd4a3f9514ff411e608fe1", + "IPY_MODEL_8d75886ef5da4990962359e01bf052f3", + "IPY_MODEL_3dc1b96348584b10be189236384780e3" + ], + "layout": "IPY_MODEL_10856532033d4122bcdaaed1284eb4e7", + "tabbable": null, + "tooltip": null } }, - "a81f2c5c0fac49198311d85222938569": { + "d239ceb1b62046d09ad901f7528558ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3079,7 +3132,30 @@ "text_color": null } }, - "a8c9bdc09b394d598f2b78b3d03c56a3": { + "d76db974adf74d138edf1e6b2ab6d1bb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ceff41db18be47daa53033b7425fe56e", + "placeholder": "​", + "style": "IPY_MODEL_3a6c9c08bcbe465c845f93f31d1e082d", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" + } + }, + "db55cfeea8484f5f9d3c5177c2bacbe9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3132,73 +3208,43 @@ "width": null } }, - "b3fa7b73b3bc47c0a41148bc0ce66307": { + "de294e3144514433bf42ed005297e6fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b50b6fd6f8cf4e0cabd4305fff38d0cf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_09b401682ebd41de80021f05e72a63c7", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_60f2d0d7a59a4f5fa2769907b95fd880", - "tabbable": null, - "tooltip": null, - "value": 391.0 + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "bb7bae5a60bc4f389f3e1d2a1d26cb38": { + "e0cff003b80f40c4b36e41b33d67ac6a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e25de84cee284b78a3a5abb9a94f8f93", - "IPY_MODEL_82b2301c67424053b6a0ea1424a65861", - "IPY_MODEL_2b54721d99a34a8c9d3bd409f33d01a9" - ], - "layout": "IPY_MODEL_95ed389edb4b4a4e95d66b81b122b6a4", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c18bea0a5e674d4fb6142ef5c4ee9dba": { + "e4fbd562de564263aace68a6a30ea2a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3251,33 +3297,7 @@ "width": null } }, - "cd7e56d70562470ca03a636175cbc711": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_22dd5ef98a124bbbab753a48bc706c44", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_74b78823e59c49fc8a4c0c2862c80f5d", - "tabbable": null, - "tooltip": null, - "value": 231508.0 - } - }, - "d4609fb7bd2348f3aabb983249d77ce2": { + "e7fc7b0cb31242daa2d63213b6d68c5d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3330,7 +3350,7 @@ "width": null } }, - "d66d126e12a34285a73db2c25b6f5bc7": { + "e8c8680718b942039a94ab4625097f83": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3345,34 +3365,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_672d54b98cd9418aa7698c0deb1c0d74", - "IPY_MODEL_b50b6fd6f8cf4e0cabd4305fff38d0cf", - "IPY_MODEL_675f498779f446388d30f83da7b39f20" + "IPY_MODEL_5509cf9ad44a409ba66d21eff990056a", + "IPY_MODEL_0ef3b82682c247fa948faf46338bbc47", + "IPY_MODEL_a1576db96088497882a37cc1fb9ced24" ], - "layout": "IPY_MODEL_247cea6d7b5045218efe42c97001131b", + "layout": "IPY_MODEL_8be7661bcd1a4e188324a63e05d0415b", "tabbable": null, "tooltip": null } }, - "d6c1cd84fc1c42e1bcd5215272692809": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "dac3b39cfbe24c90a24b3a8600b340e0": { + "e8ec41c7814745f3ad67a0642029a11e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3388,100 +3390,7 @@ "description_width": "" } }, - "e25de84cee284b78a3a5abb9a94f8f93": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_32b672e3533b42e68623eb085b0adde2", - "placeholder": "​", - "style": "IPY_MODEL_6340058adb024b37b45427aa6f71fbfd", - "tabbable": null, - "tooltip": null, - "value": "tokenizer.json: 100%" - } - }, - "f00cb3c8471649cd869389f44146769a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f5643b0fb091427e91d8238bcf9dcd89", - "placeholder": "​", - "style": "IPY_MODEL_a7406ca71e614ffea206ff599eefac82", - "tabbable": null, - "tooltip": null, - "value": "pytorch_model.bin: 100%" - } - }, - "f44b52f1626e414db5f00b894ccf657e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0583cb2e581e40049974dd4ab187e1bb", - "IPY_MODEL_88591a4a537a477d8b31f17929c8fb10", - "IPY_MODEL_2926097f31794b8a97d25ab56cbb0428" - ], - "layout": "IPY_MODEL_a8c9bdc09b394d598f2b78b3d03c56a3", - "tabbable": null, - "tooltip": null - } - }, - "f46043d882ae4f25aac72431590c7c21": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_66ed0be9afe74df8a9f4b7069190b1af", - "placeholder": "​", - "style": "IPY_MODEL_d6c1cd84fc1c42e1bcd5215272692809", - "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 387kB/s]" - } - }, - "f5643b0fb091427e91d8238bcf9dcd89": { + "ee87e3b4436347b6a5383c65e75e9abd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3534,7 +3443,7 @@ "width": null } }, - "f78458024afb43d3b0de4b20e2095b24": { + "f1cd151c786649629c0f35aafcacc883": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3587,7 +3496,30 @@ "width": null } }, - "fd0aa74493c34aedb94ddfe184026989": { + "f40175c30fbd4a3f9514ff411e608fe1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0e2793623a60493a862948d9148813d1", + "placeholder": "​", + "style": "IPY_MODEL_2655af5fee21452a90e51c6db94c46e4", + "tabbable": null, + "tooltip": null, + "value": ".gitattributes: 100%" + } + }, + "f45d59708a3c4ed1865126a090e2c4e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3639,6 +3571,74 @@ "visibility": null, "width": null } + }, + "f573bed877834059923a8e973c8bef5b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_17527287826741d495566304df5ff184", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3745e78b80704cc090c10bda5d066aa2", + "tabbable": null, + "tooltip": null, + "value": 54245363.0 + } + }, + "f8c81f0e92d44c4ab72fbb8ab1d2b9ad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_65c1d7542fa548e0988f724388914017", + "IPY_MODEL_ca4f2cdb9c44425baaf76abafaae5eb5", + "IPY_MODEL_394b9589a3014e7bb5445cca8eee8985" + ], + "layout": "IPY_MODEL_e7fc7b0cb31242daa2d63213b6d68c5d", + "tabbable": null, + "tooltip": null + } + }, + "faa165c6cb984ac4812cbf528b4671e4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/audio.html b/master/tutorials/datalab/audio.html index 087081a7d..133cd9c04 100644 --- a/master/tutorials/datalab/audio.html +++ b/master/tutorials/datalab/audio.html @@ -1347,7 +1347,7 @@

5. Use cleanlab to find label issues -{"state": {"73fab9bd205846db8303e41f6cc69bac": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f25843f8b9044a38970d7a2f6f55532f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1d5367df48804e979f572fa33d77169d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_73fab9bd205846db8303e41f6cc69bac", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f25843f8b9044a38970d7a2f6f55532f", "tabbable": null, "tooltip": null, "value": 2041.0}}, "26ab503a7bc9423cbc4451b628443c0b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dee5d0a511b141f09a3e0f809526cdb7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6fbb4e1f5fe74bb1b8d81d98e1bc7859": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_26ab503a7bc9423cbc4451b628443c0b", "placeholder": "\u200b", "style": "IPY_MODEL_dee5d0a511b141f09a3e0f809526cdb7", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "479d4d642c7e4ba48bfeecfabfc89392": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "97a60215313846198897ec54486ae998": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ff29970cf1d341baa232d05ddab20819": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_479d4d642c7e4ba48bfeecfabfc89392", "placeholder": "\u200b", "style": "IPY_MODEL_97a60215313846198897ec54486ae998", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007482kB/s]"}}, "ce929334dc5c43699c0341dda0672461": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "daed83e18f3844adaa82d3c7820b0967": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6fbb4e1f5fe74bb1b8d81d98e1bc7859", "IPY_MODEL_1d5367df48804e979f572fa33d77169d", "IPY_MODEL_ff29970cf1d341baa232d05ddab20819"], "layout": "IPY_MODEL_ce929334dc5c43699c0341dda0672461", "tabbable": null, "tooltip": null}}, "224daca37cb34206a36a8b89e0821d12": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "529f33a1cf8740969bef3f1e5347ecd2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "90dea4bb42ca40e28b862772f4bd9970": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_224daca37cb34206a36a8b89e0821d12", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_529f33a1cf8740969bef3f1e5347ecd2", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "0b0356dcb29649c7b6dc492a901737c4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "de1fecb1ae82443aa48fc5e8161ece2b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e8ba80d6e09249839cdfd1da5085ab10": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0b0356dcb29649c7b6dc492a901737c4", "placeholder": "\u200b", "style": "IPY_MODEL_de1fecb1ae82443aa48fc5e8161ece2b", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "4f54387387c6449e8a43d7cb98273467": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "78828249e75540d4b50a6894a4fdb2c0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "77cf50c676d04e2db4d9d33f18bf8540": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4f54387387c6449e8a43d7cb98273467", "placeholder": "\u200b", "style": "IPY_MODEL_78828249e75540d4b50a6894a4fdb2c0", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007172MB/s]"}}, "d58466bf0f50423f92e3ef300c69a45d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0ae0dbb6989b41a9b0ea2a5b4e9a3cbf": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e8ba80d6e09249839cdfd1da5085ab10", "IPY_MODEL_90dea4bb42ca40e28b862772f4bd9970", "IPY_MODEL_77cf50c676d04e2db4d9d33f18bf8540"], "layout": "IPY_MODEL_d58466bf0f50423f92e3ef300c69a45d", "tabbable": null, "tooltip": null}}, "2bc930006e834926abfde7b3abd96271": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f82b7299a92c40ee97bb528f6aba5e73": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7fde1cad6aac411182c8f3760c55bb4c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2bc930006e834926abfde7b3abd96271", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f82b7299a92c40ee97bb528f6aba5e73", "tabbable": null, "tooltip": null, "value": 3201.0}}, "6dd665b435b549c1be5f7072bb85a69c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "47c0baecd0e04ec4880d81156bcc4a95": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "918fb51978744ab6bc2517926b5cf549": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6dd665b435b549c1be5f7072bb85a69c", "placeholder": "\u200b", "style": "IPY_MODEL_47c0baecd0e04ec4880d81156bcc4a95", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "c33cd4a72e0049dca4344285df50b370": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e760806a0be44823addbbc7e8815321c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "03479e9660d64b7f9ee76846fb741dd4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c33cd4a72e0049dca4344285df50b370", "placeholder": "\u200b", "style": "IPY_MODEL_e760806a0be44823addbbc7e8815321c", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007725kB/s]"}}, "d5fe65bc27724ee58c543a54fd239f81": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d3a3325d4d7f4ffea01742fc86cbcb42": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_918fb51978744ab6bc2517926b5cf549", "IPY_MODEL_7fde1cad6aac411182c8f3760c55bb4c", "IPY_MODEL_03479e9660d64b7f9ee76846fb741dd4"], "layout": "IPY_MODEL_d5fe65bc27724ee58c543a54fd239f81", "tabbable": null, "tooltip": null}}, "f6acf95fbfd348f79e2188e9c71c995d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "546b58523d8e492ba5e2a542b4039c1a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a6b6f027197e4cf49c1c98180b349946": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f6acf95fbfd348f79e2188e9c71c995d", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_546b58523d8e492ba5e2a542b4039c1a", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "d245c87ad22a445cb7d31bc4605c9f50": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6493ec0db10f4ef39fd1d3317c51aab9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "160b320069ad474094c95eb56a994965": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d245c87ad22a445cb7d31bc4605c9f50", "placeholder": "\u200b", "style": "IPY_MODEL_6493ec0db10f4ef39fd1d3317c51aab9", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "a9e8873bea304dbda3093f230984d3f4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0e7a313a5c824026b683e120467e49fc": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ee50f9b046244366bdaf53f7c6e66396": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a9e8873bea304dbda3093f230984d3f4", "placeholder": "\u200b", "style": "IPY_MODEL_0e7a313a5c824026b683e120467e49fc", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007159MB/s]"}}, "681d0b92d1b24755b0bba02eb0abbd50": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0c5316a7a9cd43c097ff92a841bea9fc": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_160b320069ad474094c95eb56a994965", "IPY_MODEL_a6b6f027197e4cf49c1c98180b349946", "IPY_MODEL_ee50f9b046244366bdaf53f7c6e66396"], "layout": "IPY_MODEL_681d0b92d1b24755b0bba02eb0abbd50", "tabbable": null, "tooltip": null}}, "9e554e3457d84b11ac345780706154f2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e189805254a74de9857c999a79cdf12f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1377fb622eed42c1a25a3899bf228840": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9e554e3457d84b11ac345780706154f2", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e189805254a74de9857c999a79cdf12f", "tabbable": null, "tooltip": null, "value": 128619.0}}, "c2463a52f76943c292b43195cfb23d7b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "981b43a499d042eb8e78faa0f736fe84": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c38c052cc1384154bc8a020912174a36": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c2463a52f76943c292b43195cfb23d7b", "placeholder": "\u200b", "style": "IPY_MODEL_981b43a499d042eb8e78faa0f736fe84", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "eaaae06691264df0ad410b54ec706d02": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "87eb373f76f64fc387733e771c61c276": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "194eb7a4ab3245218a0515d24c812b1a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_eaaae06691264df0ad410b54ec706d02", "placeholder": "\u200b", "style": "IPY_MODEL_87eb373f76f64fc387733e771c61c276", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u200723.0MB/s]"}}, "3015b6d6dcb54f10a962550a157ec46a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6ee1d501331a43c4ae849fb6b3e25f2c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c38c052cc1384154bc8a020912174a36", "IPY_MODEL_1377fb622eed42c1a25a3899bf228840", "IPY_MODEL_194eb7a4ab3245218a0515d24c812b1a"], "layout": "IPY_MODEL_3015b6d6dcb54f10a962550a157ec46a", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"f338dd71eb524ac78296561dbed7b0e8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d129ec962b08471fb96c72e44225606e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "0b78f5e273c04dff97fe337955cc4d7e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f338dd71eb524ac78296561dbed7b0e8", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d129ec962b08471fb96c72e44225606e", "tabbable": null, "tooltip": null, "value": 2041.0}}, "3cf5ce3d2f4c42a294c18e44ef924562": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "71eb3debf64e4a2fbaf5c98d4735cd07": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c76e5b2a4cc34e9e997debaa73672b65": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3cf5ce3d2f4c42a294c18e44ef924562", "placeholder": "\u200b", "style": "IPY_MODEL_71eb3debf64e4a2fbaf5c98d4735cd07", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "4655001187994b728fd1fa6b8b328ef9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "687899e6b5e743c182bda60517db7530": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "db63d51ae3cf41958c911fd701a21f9c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4655001187994b728fd1fa6b8b328ef9", "placeholder": "\u200b", "style": "IPY_MODEL_687899e6b5e743c182bda60517db7530", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007443kB/s]"}}, "a131060cdc714df39db7a428b71fb35a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "226bb6447d5a44cea9e94358dd159d4b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c76e5b2a4cc34e9e997debaa73672b65", "IPY_MODEL_0b78f5e273c04dff97fe337955cc4d7e", "IPY_MODEL_db63d51ae3cf41958c911fd701a21f9c"], "layout": "IPY_MODEL_a131060cdc714df39db7a428b71fb35a", "tabbable": null, "tooltip": null}}, "ee64c5c53a8b47528b51b74755b7b79e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "513cf4e718144fc48ec82aacd56ff402": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e2da1a03754e46288eb7247703f8f4ab": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ee64c5c53a8b47528b51b74755b7b79e", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_513cf4e718144fc48ec82aacd56ff402", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "ceca2a5eda0d415a93e5ca0a6460bc35": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0bf1f495853349febe3427e3b2a54e79": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "408178d8f27b4eb99fc0acf8305e799f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ceca2a5eda0d415a93e5ca0a6460bc35", "placeholder": "\u200b", "style": "IPY_MODEL_0bf1f495853349febe3427e3b2a54e79", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "d63be43df5d748cfafe39e355c2ff349": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d48e147a1aed41bbbeb2ceb8d714f412": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9392f5c4f38244a68410a179ccb639a4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d63be43df5d748cfafe39e355c2ff349", "placeholder": "\u200b", "style": "IPY_MODEL_d48e147a1aed41bbbeb2ceb8d714f412", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007163MB/s]"}}, "9cf6b71cfe074effa55ee7d22561e59e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8463514a576a4d2cbe58591dc844a6e8": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_408178d8f27b4eb99fc0acf8305e799f", "IPY_MODEL_e2da1a03754e46288eb7247703f8f4ab", "IPY_MODEL_9392f5c4f38244a68410a179ccb639a4"], "layout": "IPY_MODEL_9cf6b71cfe074effa55ee7d22561e59e", "tabbable": null, "tooltip": null}}, "6eb9db862564486eb8efed0e8805287b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f68917a8013c424cab9c2748cc45cad7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c7b38c13c78f45758ec3e7301d923b5f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6eb9db862564486eb8efed0e8805287b", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f68917a8013c424cab9c2748cc45cad7", "tabbable": null, "tooltip": null, "value": 3201.0}}, "d5f1d875434f48b2899bfc45f162862e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "07f132495bc040ea8f3804b7c9e8e6c1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8389b95f92774e53ad789f89a734f410": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d5f1d875434f48b2899bfc45f162862e", "placeholder": "\u200b", "style": "IPY_MODEL_07f132495bc040ea8f3804b7c9e8e6c1", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "6befa45877f54c73a1043cbd36071f5c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b35790eac9564024837c9cdef51d3979": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7eb4f954cd924555acff85d540fff206": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6befa45877f54c73a1043cbd36071f5c", "placeholder": "\u200b", "style": "IPY_MODEL_b35790eac9564024837c9cdef51d3979", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007785kB/s]"}}, "fd52edc5a7d242ab8c17fe71d147178b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fb96e5912f5a4ce891ef1ff4b41d1f7a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8389b95f92774e53ad789f89a734f410", "IPY_MODEL_c7b38c13c78f45758ec3e7301d923b5f", "IPY_MODEL_7eb4f954cd924555acff85d540fff206"], "layout": "IPY_MODEL_fd52edc5a7d242ab8c17fe71d147178b", "tabbable": null, "tooltip": null}}, "fd8588b5d0384105826c2fefac1b48c5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ee4d0c7d7e064c3a88f1e8ac952a8de8": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7ed440bcb8eb4eaba3602749108adb0a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fd8588b5d0384105826c2fefac1b48c5", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ee4d0c7d7e064c3a88f1e8ac952a8de8", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "32295bf49bf44700a4b01baf8601885b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "df283cf7b7294ef7afc7c77637b8e506": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "19ccf5cb4d0d4b7eb8bf1cc16b1e9570": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_32295bf49bf44700a4b01baf8601885b", "placeholder": "\u200b", "style": "IPY_MODEL_df283cf7b7294ef7afc7c77637b8e506", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "66b537f699b748129a38e09178140259": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "460b69932fe243d2a4ffb3bd9084dd61": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e86cbdcc2a534e8cb6ffa972789c121f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_66b537f699b748129a38e09178140259", "placeholder": "\u200b", "style": "IPY_MODEL_460b69932fe243d2a4ffb3bd9084dd61", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007156MB/s]"}}, "bca35073c85d459ebda92a18cb82fe35": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "883c1af4d87e43fbb42a94f497c0e7cf": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_19ccf5cb4d0d4b7eb8bf1cc16b1e9570", "IPY_MODEL_7ed440bcb8eb4eaba3602749108adb0a", "IPY_MODEL_e86cbdcc2a534e8cb6ffa972789c121f"], "layout": "IPY_MODEL_bca35073c85d459ebda92a18cb82fe35", "tabbable": null, "tooltip": null}}, "947f7386271b4edba4a9119252a699b1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f97a5c3811cb4878a4d2a30f2594d3ff": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f0f9d938bce947afb13e5ba81b1dd3a8": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_947f7386271b4edba4a9119252a699b1", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f97a5c3811cb4878a4d2a30f2594d3ff", "tabbable": null, "tooltip": null, "value": 128619.0}}, "56bd5dde40904f95bb10fc1872eba1a1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d039d690692e428c834e1fc4d9957d05": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c0cf7c3eb7244ac8b96ce96fb0de6c02": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_56bd5dde40904f95bb10fc1872eba1a1", "placeholder": "\u200b", "style": "IPY_MODEL_d039d690692e428c834e1fc4d9957d05", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "0399903d082a471dbab93da6d061c59d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b983e77576114ed492360eecadd37985": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "af440f81578249c0b4658bdd9ec0eae4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0399903d082a471dbab93da6d061c59d", "placeholder": "\u200b", "style": "IPY_MODEL_b983e77576114ed492360eecadd37985", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20072.10MB/s]"}}, "0bd9a3c34bea44c0b97e8e40cd2cb5d7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5a293ec9f7e643c98c9d6d7a78c0577f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c0cf7c3eb7244ac8b96ce96fb0de6c02", "IPY_MODEL_f0f9d938bce947afb13e5ba81b1dd3a8", "IPY_MODEL_af440f81578249c0b4658bdd9ec0eae4"], "layout": "IPY_MODEL_0bd9a3c34bea44c0b97e8e40cd2cb5d7", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/audio.ipynb b/master/tutorials/datalab/audio.ipynb index ac2ee08e5..c207e9188 100644 --- a/master/tutorials/datalab/audio.ipynb +++ b/master/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:45.314227Z", - "iopub.status.busy": "2024-08-29T17:07:45.313757Z", - "iopub.status.idle": "2024-08-29T17:07:50.822059Z", - "shell.execute_reply": "2024-08-29T17:07:50.821392Z" + "iopub.execute_input": "2024-09-04T16:36:57.240536Z", + "iopub.status.busy": "2024-09-04T16:36:57.240126Z", + "iopub.status.idle": "2024-09-04T16:37:02.508553Z", + "shell.execute_reply": "2024-09-04T16:37:02.507910Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:50.824863Z", - "iopub.status.busy": "2024-08-29T17:07:50.824473Z", - "iopub.status.idle": "2024-08-29T17:07:50.827999Z", - "shell.execute_reply": "2024-08-29T17:07:50.827517Z" + "iopub.execute_input": "2024-09-04T16:37:02.511107Z", + "iopub.status.busy": "2024-09-04T16:37:02.510767Z", + "iopub.status.idle": "2024-09-04T16:37:02.514009Z", + "shell.execute_reply": "2024-09-04T16:37:02.513523Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:50.830030Z", - "iopub.status.busy": "2024-08-29T17:07:50.829746Z", - "iopub.status.idle": "2024-08-29T17:07:50.834755Z", - "shell.execute_reply": "2024-08-29T17:07:50.834166Z" + "iopub.execute_input": "2024-09-04T16:37:02.516080Z", + "iopub.status.busy": "2024-09-04T16:37:02.515729Z", + "iopub.status.idle": "2024-09-04T16:37:02.520401Z", + "shell.execute_reply": "2024-09-04T16:37:02.519982Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-29T17:07:50.836959Z", - "iopub.status.busy": "2024-08-29T17:07:50.836628Z", - "iopub.status.idle": "2024-08-29T17:07:52.427284Z", - "shell.execute_reply": "2024-08-29T17:07:52.426602Z" + "iopub.execute_input": "2024-09-04T16:37:02.522528Z", + "iopub.status.busy": "2024-09-04T16:37:02.522189Z", + "iopub.status.idle": "2024-09-04T16:37:04.464981Z", + "shell.execute_reply": "2024-09-04T16:37:04.464182Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-29T17:07:52.429849Z", - "iopub.status.busy": "2024-08-29T17:07:52.429650Z", - "iopub.status.idle": "2024-08-29T17:07:52.442318Z", - "shell.execute_reply": "2024-08-29T17:07:52.441839Z" + "iopub.execute_input": "2024-09-04T16:37:04.467875Z", + "iopub.status.busy": "2024-09-04T16:37:04.467459Z", + "iopub.status.idle": "2024-09-04T16:37:04.478830Z", + "shell.execute_reply": "2024-09-04T16:37:04.478255Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:52.444615Z", - "iopub.status.busy": "2024-08-29T17:07:52.444213Z", - "iopub.status.idle": "2024-08-29T17:07:52.450201Z", - "shell.execute_reply": "2024-08-29T17:07:52.449662Z" + "iopub.execute_input": "2024-09-04T16:37:04.481044Z", + "iopub.status.busy": "2024-09-04T16:37:04.480644Z", + "iopub.status.idle": "2024-09-04T16:37:04.487680Z", + "shell.execute_reply": "2024-09-04T16:37:04.487227Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-29T17:07:52.452398Z", - "iopub.status.busy": "2024-08-29T17:07:52.452025Z", - "iopub.status.idle": "2024-08-29T17:07:52.904496Z", - "shell.execute_reply": "2024-08-29T17:07:52.903991Z" + "iopub.execute_input": "2024-09-04T16:37:04.489721Z", + "iopub.status.busy": "2024-09-04T16:37:04.489383Z", + "iopub.status.idle": "2024-09-04T16:37:04.921219Z", + "shell.execute_reply": "2024-09-04T16:37:04.920692Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:52.906601Z", - "iopub.status.busy": "2024-08-29T17:07:52.906402Z", - "iopub.status.idle": "2024-08-29T17:07:53.921738Z", - "shell.execute_reply": "2024-08-29T17:07:53.921228Z" + "iopub.execute_input": "2024-09-04T16:37:04.923405Z", + "iopub.status.busy": "2024-09-04T16:37:04.923067Z", + "iopub.status.idle": "2024-09-04T16:37:06.038885Z", + "shell.execute_reply": "2024-09-04T16:37:06.038337Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-08-29T17:07:53.924303Z", - "iopub.status.busy": "2024-08-29T17:07:53.923916Z", - "iopub.status.idle": "2024-08-29T17:07:53.942788Z", - "shell.execute_reply": "2024-08-29T17:07:53.942329Z" + "iopub.execute_input": "2024-09-04T16:37:06.041320Z", + "iopub.status.busy": "2024-09-04T16:37:06.040954Z", + "iopub.status.idle": "2024-09-04T16:37:06.058858Z", + "shell.execute_reply": "2024-09-04T16:37:06.058388Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:53.944889Z", - "iopub.status.busy": "2024-08-29T17:07:53.944543Z", - "iopub.status.idle": "2024-08-29T17:07:53.947685Z", - "shell.execute_reply": "2024-08-29T17:07:53.947232Z" + "iopub.execute_input": "2024-09-04T16:37:06.060898Z", + "iopub.status.busy": "2024-09-04T16:37:06.060567Z", + "iopub.status.idle": "2024-09-04T16:37:06.063694Z", + "shell.execute_reply": "2024-09-04T16:37:06.063249Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:07:53.949733Z", - "iopub.status.busy": "2024-08-29T17:07:53.949405Z", - "iopub.status.idle": "2024-08-29T17:08:08.288437Z", - "shell.execute_reply": "2024-08-29T17:08:08.287884Z" + "iopub.execute_input": "2024-09-04T16:37:06.065550Z", + "iopub.status.busy": "2024-09-04T16:37:06.065299Z", + "iopub.status.idle": "2024-09-04T16:37:19.888301Z", + "shell.execute_reply": "2024-09-04T16:37:19.887692Z" }, "id": "2FSQ2GR9R_YA" }, @@ -617,10 +617,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-29T17:08:08.291066Z", - "iopub.status.busy": "2024-08-29T17:08:08.290682Z", - "iopub.status.idle": "2024-08-29T17:08:08.294750Z", - "shell.execute_reply": "2024-08-29T17:08:08.294287Z" + "iopub.execute_input": "2024-09-04T16:37:19.891159Z", + "iopub.status.busy": "2024-09-04T16:37:19.890725Z", + "iopub.status.idle": "2024-09-04T16:37:19.894418Z", + "shell.execute_reply": "2024-09-04T16:37:19.893957Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -680,10 +680,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:08.296913Z", - "iopub.status.busy": "2024-08-29T17:08:08.296733Z", - "iopub.status.idle": "2024-08-29T17:08:08.983956Z", - "shell.execute_reply": "2024-08-29T17:08:08.983336Z" + "iopub.execute_input": "2024-09-04T16:37:19.896408Z", + "iopub.status.busy": "2024-09-04T16:37:19.896073Z", + "iopub.status.idle": "2024-09-04T16:37:20.602181Z", + "shell.execute_reply": "2024-09-04T16:37:20.601542Z" }, "id": "i_drkY9YOcw4" }, @@ -717,10 +717,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-29T17:08:08.986816Z", - "iopub.status.busy": "2024-08-29T17:08:08.986596Z", - "iopub.status.idle": "2024-08-29T17:08:08.991480Z", - "shell.execute_reply": "2024-08-29T17:08:08.990907Z" + "iopub.execute_input": "2024-09-04T16:37:20.604989Z", + "iopub.status.busy": "2024-09-04T16:37:20.604734Z", + "iopub.status.idle": "2024-09-04T16:37:20.609848Z", + "shell.execute_reply": "2024-09-04T16:37:20.609329Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -767,10 +767,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:08.994063Z", - "iopub.status.busy": "2024-08-29T17:08:08.993672Z", - "iopub.status.idle": "2024-08-29T17:08:09.107043Z", - "shell.execute_reply": "2024-08-29T17:08:09.106388Z" + "iopub.execute_input": "2024-09-04T16:37:20.612364Z", + "iopub.status.busy": "2024-09-04T16:37:20.611869Z", + "iopub.status.idle": "2024-09-04T16:37:20.728927Z", + "shell.execute_reply": "2024-09-04T16:37:20.728316Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:09.109204Z", - "iopub.status.busy": "2024-08-29T17:08:09.109014Z", - "iopub.status.idle": "2024-08-29T17:08:09.121385Z", - "shell.execute_reply": "2024-08-29T17:08:09.120916Z" + "iopub.execute_input": "2024-09-04T16:37:20.731261Z", + "iopub.status.busy": "2024-09-04T16:37:20.731066Z", + "iopub.status.idle": "2024-09-04T16:37:20.743342Z", + "shell.execute_reply": "2024-09-04T16:37:20.742865Z" }, "scrolled": true }, @@ -870,10 +870,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:09.123615Z", - "iopub.status.busy": "2024-08-29T17:08:09.123278Z", - "iopub.status.idle": "2024-08-29T17:08:09.130891Z", - "shell.execute_reply": "2024-08-29T17:08:09.130337Z" + "iopub.execute_input": "2024-09-04T16:37:20.745337Z", + "iopub.status.busy": "2024-09-04T16:37:20.745143Z", + "iopub.status.idle": "2024-09-04T16:37:20.752883Z", + "shell.execute_reply": "2024-09-04T16:37:20.752335Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:09.133047Z", - "iopub.status.busy": "2024-08-29T17:08:09.132730Z", - "iopub.status.idle": "2024-08-29T17:08:09.136636Z", - "shell.execute_reply": "2024-08-29T17:08:09.136096Z" + "iopub.execute_input": "2024-09-04T16:37:20.754852Z", + "iopub.status.busy": "2024-09-04T16:37:20.754675Z", + "iopub.status.idle": "2024-09-04T16:37:20.758701Z", + "shell.execute_reply": "2024-09-04T16:37:20.758149Z" } }, "outputs": [ @@ -1018,10 +1018,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-08-29T17:08:09.138701Z", - "iopub.status.busy": "2024-08-29T17:08:09.138354Z", - "iopub.status.idle": "2024-08-29T17:08:09.143972Z", - "shell.execute_reply": "2024-08-29T17:08:09.143401Z" + "iopub.execute_input": "2024-09-04T16:37:20.760896Z", + "iopub.status.busy": "2024-09-04T16:37:20.760463Z", + "iopub.status.idle": "2024-09-04T16:37:20.766233Z", + "shell.execute_reply": "2024-09-04T16:37:20.765641Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1148,10 +1148,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-29T17:08:09.146089Z", - "iopub.status.busy": "2024-08-29T17:08:09.145758Z", - "iopub.status.idle": "2024-08-29T17:08:09.255928Z", - "shell.execute_reply": "2024-08-29T17:08:09.255411Z" + "iopub.execute_input": "2024-09-04T16:37:20.768311Z", + "iopub.status.busy": "2024-09-04T16:37:20.767969Z", + "iopub.status.idle": "2024-09-04T16:37:20.878983Z", + "shell.execute_reply": "2024-09-04T16:37:20.878408Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1205,10 +1205,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-29T17:08:09.257975Z", - "iopub.status.busy": "2024-08-29T17:08:09.257795Z", - "iopub.status.idle": "2024-08-29T17:08:09.360917Z", - "shell.execute_reply": "2024-08-29T17:08:09.360418Z" + "iopub.execute_input": "2024-09-04T16:37:20.880945Z", + "iopub.status.busy": "2024-09-04T16:37:20.880765Z", + "iopub.status.idle": "2024-09-04T16:37:20.983158Z", + "shell.execute_reply": "2024-09-04T16:37:20.982710Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1253,10 +1253,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-29T17:08:09.363068Z", - "iopub.status.busy": "2024-08-29T17:08:09.362884Z", - "iopub.status.idle": "2024-08-29T17:08:09.465174Z", - "shell.execute_reply": "2024-08-29T17:08:09.464642Z" + "iopub.execute_input": "2024-09-04T16:37:20.985183Z", + "iopub.status.busy": "2024-09-04T16:37:20.984843Z", + "iopub.status.idle": "2024-09-04T16:37:21.084157Z", + "shell.execute_reply": "2024-09-04T16:37:21.083719Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1297,10 +1297,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:09.467279Z", - "iopub.status.busy": "2024-08-29T17:08:09.467095Z", - "iopub.status.idle": "2024-08-29T17:08:09.570098Z", - "shell.execute_reply": "2024-08-29T17:08:09.569509Z" + "iopub.execute_input": "2024-09-04T16:37:21.086185Z", + "iopub.status.busy": "2024-09-04T16:37:21.085907Z", + "iopub.status.idle": "2024-09-04T16:37:21.185940Z", + "shell.execute_reply": "2024-09-04T16:37:21.185376Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:09.572711Z", - "iopub.status.busy": "2024-08-29T17:08:09.572132Z", - "iopub.status.idle": "2024-08-29T17:08:09.575430Z", - "shell.execute_reply": "2024-08-29T17:08:09.574967Z" + "iopub.execute_input": "2024-09-04T16:37:21.188035Z", + "iopub.status.busy": "2024-09-04T16:37:21.187701Z", + "iopub.status.idle": "2024-09-04T16:37:21.190701Z", + "shell.execute_reply": "2024-09-04T16:37:21.190263Z" }, "nbsphinx": "hidden" }, @@ -1392,54 +1392,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "03479e9660d64b7f9ee76846fb741dd4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c33cd4a72e0049dca4344285df50b370", - "placeholder": "​", - "style": "IPY_MODEL_e760806a0be44823addbbc7e8815321c", - "tabbable": null, - "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 725kB/s]" - } - }, - "0ae0dbb6989b41a9b0ea2a5b4e9a3cbf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e8ba80d6e09249839cdfd1da5085ab10", - "IPY_MODEL_90dea4bb42ca40e28b862772f4bd9970", - "IPY_MODEL_77cf50c676d04e2db4d9d33f18bf8540" - ], - "layout": "IPY_MODEL_d58466bf0f50423f92e3ef300c69a45d", - "tabbable": null, - "tooltip": null - } - }, - "0b0356dcb29649c7b6dc492a901737c4": { + "0399903d082a471dbab93da6d061c59d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1492,31 +1445,7 @@ "width": null } }, - "0c5316a7a9cd43c097ff92a841bea9fc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_160b320069ad474094c95eb56a994965", - "IPY_MODEL_a6b6f027197e4cf49c1c98180b349946", - "IPY_MODEL_ee50f9b046244366bdaf53f7c6e66396" - ], - "layout": "IPY_MODEL_681d0b92d1b24755b0bba02eb0abbd50", - "tabbable": null, - "tooltip": null - } - }, - "0e7a313a5c824026b683e120467e49fc": { + "07f132495bc040ea8f3804b7c9e8e6c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1534,7 +1463,7 @@ "text_color": null } }, - "1377fb622eed42c1a25a3899bf228840": { + "0b78f5e273c04dff97fe337955cc4d7e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1550,40 +1479,88 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9e554e3457d84b11ac345780706154f2", - "max": 128619.0, + "layout": "IPY_MODEL_f338dd71eb524ac78296561dbed7b0e8", + "max": 2041.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_e189805254a74de9857c999a79cdf12f", + "style": "IPY_MODEL_d129ec962b08471fb96c72e44225606e", "tabbable": null, "tooltip": null, - "value": 128619.0 + "value": 2041.0 + } + }, + "0bd9a3c34bea44c0b97e8e40cd2cb5d7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "160b320069ad474094c95eb56a994965": { + "0bf1f495853349febe3427e3b2a54e79": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d245c87ad22a445cb7d31bc4605c9f50", - "placeholder": "​", - "style": "IPY_MODEL_6493ec0db10f4ef39fd1d3317c51aab9", - "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "194eb7a4ab3245218a0515d24c812b1a": { + "19ccf5cb4d0d4b7eb8bf1cc16b1e9570": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1598,41 +1575,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_eaaae06691264df0ad410b54ec706d02", + "layout": "IPY_MODEL_32295bf49bf44700a4b01baf8601885b", "placeholder": "​", - "style": "IPY_MODEL_87eb373f76f64fc387733e771c61c276", + "style": "IPY_MODEL_df283cf7b7294ef7afc7c77637b8e506", "tabbable": null, "tooltip": null, - "value": " 129k/129k [00:00<00:00, 23.0MB/s]" + "value": "classifier.ckpt: 100%" } }, - "1d5367df48804e979f572fa33d77169d": { + "226bb6447d5a44cea9e94358dd159d4b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_73fab9bd205846db8303e41f6cc69bac", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f25843f8b9044a38970d7a2f6f55532f", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c76e5b2a4cc34e9e997debaa73672b65", + "IPY_MODEL_0b78f5e273c04dff97fe337955cc4d7e", + "IPY_MODEL_db63d51ae3cf41958c911fd701a21f9c" + ], + "layout": "IPY_MODEL_a131060cdc714df39db7a428b71fb35a", "tabbable": null, - "tooltip": null, - "value": 2041.0 + "tooltip": null } }, - "224daca37cb34206a36a8b89e0821d12": { + "32295bf49bf44700a4b01baf8601885b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1685,7 +1660,7 @@ "width": null } }, - "26ab503a7bc9423cbc4451b628443c0b": { + "3cf5ce3d2f4c42a294c18e44ef924562": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1738,7 +1713,48 @@ "width": null } }, - "2bc930006e834926abfde7b3abd96271": { + "408178d8f27b4eb99fc0acf8305e799f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ceca2a5eda0d415a93e5ca0a6460bc35", + "placeholder": "​", + "style": "IPY_MODEL_0bf1f495853349febe3427e3b2a54e79", + "tabbable": null, + "tooltip": null, + "value": "embedding_model.ckpt: 100%" + } + }, + "460b69932fe243d2a4ffb3bd9084dd61": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4655001187994b728fd1fa6b8b328ef9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1791,7 +1807,23 @@ "width": null } }, - "3015b6d6dcb54f10a962550a157ec46a": { + "513cf4e718144fc48ec82aacd56ff402": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "56bd5dde40904f95bb10fc1872eba1a1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1844,7 +1876,31 @@ "width": null } }, - "479d4d642c7e4ba48bfeecfabfc89392": { + "5a293ec9f7e643c98c9d6d7a78c0577f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c0cf7c3eb7244ac8b96ce96fb0de6c02", + "IPY_MODEL_f0f9d938bce947afb13e5ba81b1dd3a8", + "IPY_MODEL_af440f81578249c0b4658bdd9ec0eae4" + ], + "layout": "IPY_MODEL_0bd9a3c34bea44c0b97e8e40cd2cb5d7", + "tabbable": null, + "tooltip": null + } + }, + "66b537f699b748129a38e09178140259": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1897,7 +1953,7 @@ "width": null } }, - "47c0baecd0e04ec4880d81156bcc4a95": { + "687899e6b5e743c182bda60517db7530": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1915,7 +1971,7 @@ "text_color": null } }, - "4f54387387c6449e8a43d7cb98273467": { + "6befa45877f54c73a1043cbd36071f5c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1968,117 +2024,14 @@ "width": null } }, - "529f33a1cf8740969bef3f1e5347ecd2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "546b58523d8e492ba5e2a542b4039c1a": { - "model_module": "@jupyter-widgets/controls", + "6eb9db862564486eb8efed0e8805287b": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6493ec0db10f4ef39fd1d3317c51aab9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "681d0b92d1b24755b0bba02eb0abbd50": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6dd665b435b549c1be5f7072bb85a69c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -2124,31 +2077,25 @@ "width": null } }, - "6ee1d501331a43c4ae849fb6b3e25f2c": { + "71eb3debf64e4a2fbaf5c98d4735cd07": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c38c052cc1384154bc8a020912174a36", - "IPY_MODEL_1377fb622eed42c1a25a3899bf228840", - "IPY_MODEL_194eb7a4ab3245218a0515d24c812b1a" - ], - "layout": "IPY_MODEL_3015b6d6dcb54f10a962550a157ec46a", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6fbb4e1f5fe74bb1b8d81d98e1bc7859": { + "7eb4f954cd924555acff85d540fff206": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2163,179 +2110,112 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_26ab503a7bc9423cbc4451b628443c0b", + "layout": "IPY_MODEL_6befa45877f54c73a1043cbd36071f5c", "placeholder": "​", - "style": "IPY_MODEL_dee5d0a511b141f09a3e0f809526cdb7", + "style": "IPY_MODEL_b35790eac9564024837c9cdef51d3979", "tabbable": null, "tooltip": null, - "value": "hyperparams.yaml: 100%" - } - }, - "73fab9bd205846db8303e41f6cc69bac": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": " 3.20k/3.20k [00:00<00:00, 785kB/s]" } }, - "77cf50c676d04e2db4d9d33f18bf8540": { + "7ed440bcb8eb4eaba3602749108adb0a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4f54387387c6449e8a43d7cb98273467", - "placeholder": "​", - "style": "IPY_MODEL_78828249e75540d4b50a6894a4fdb2c0", + "layout": "IPY_MODEL_fd8588b5d0384105826c2fefac1b48c5", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ee4d0c7d7e064c3a88f1e8ac952a8de8", "tabbable": null, "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 172MB/s]" - } - }, - "78828249e75540d4b50a6894a4fdb2c0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 15856877.0 } }, - "7fde1cad6aac411182c8f3760c55bb4c": { + "8389b95f92774e53ad789f89a734f410": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2bc930006e834926abfde7b3abd96271", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f82b7299a92c40ee97bb528f6aba5e73", + "layout": "IPY_MODEL_d5f1d875434f48b2899bfc45f162862e", + "placeholder": "​", + "style": "IPY_MODEL_07f132495bc040ea8f3804b7c9e8e6c1", "tabbable": null, "tooltip": null, - "value": 3201.0 + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "87eb373f76f64fc387733e771c61c276": { + "8463514a576a4d2cbe58591dc844a6e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_408178d8f27b4eb99fc0acf8305e799f", + "IPY_MODEL_e2da1a03754e46288eb7247703f8f4ab", + "IPY_MODEL_9392f5c4f38244a68410a179ccb639a4" + ], + "layout": "IPY_MODEL_9cf6b71cfe074effa55ee7d22561e59e", + "tabbable": null, + "tooltip": null } }, - "90dea4bb42ca40e28b862772f4bd9970": { + "883c1af4d87e43fbb42a94f497c0e7cf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_224daca37cb34206a36a8b89e0821d12", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_529f33a1cf8740969bef3f1e5347ecd2", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_19ccf5cb4d0d4b7eb8bf1cc16b1e9570", + "IPY_MODEL_7ed440bcb8eb4eaba3602749108adb0a", + "IPY_MODEL_e86cbdcc2a534e8cb6ffa972789c121f" + ], + "layout": "IPY_MODEL_bca35073c85d459ebda92a18cb82fe35", "tabbable": null, - "tooltip": null, - "value": 16887676.0 + "tooltip": null } }, - "918fb51978744ab6bc2517926b5cf549": { + "9392f5c4f38244a68410a179ccb639a4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2350,51 +2230,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6dd665b435b549c1be5f7072bb85a69c", + "layout": "IPY_MODEL_d63be43df5d748cfafe39e355c2ff349", "placeholder": "​", - "style": "IPY_MODEL_47c0baecd0e04ec4880d81156bcc4a95", + "style": "IPY_MODEL_d48e147a1aed41bbbeb2ceb8d714f412", "tabbable": null, "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" - } - }, - "97a60215313846198897ec54486ae998": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "981b43a499d042eb8e78faa0f736fe84": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 16.9M/16.9M [00:00<00:00, 163MB/s]" } }, - "9e554e3457d84b11ac345780706154f2": { + "947f7386271b4edba4a9119252a699b1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2447,33 +2291,7 @@ "width": null } }, - "a6b6f027197e4cf49c1c98180b349946": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f6acf95fbfd348f79e2188e9c71c995d", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_546b58523d8e492ba5e2a542b4039c1a", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 - } - }, - "a9e8873bea304dbda3093f230984d3f4": { + "9cf6b71cfe074effa55ee7d22561e59e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2526,7 +2344,7 @@ "width": null } }, - "c2463a52f76943c292b43195cfb23d7b": { + "a131060cdc714df39db7a428b71fb35a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2579,7 +2397,66 @@ "width": null } }, - "c33cd4a72e0049dca4344285df50b370": { + "af440f81578249c0b4658bdd9ec0eae4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0399903d082a471dbab93da6d061c59d", + "placeholder": "​", + "style": "IPY_MODEL_b983e77576114ed492360eecadd37985", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 2.10MB/s]" + } + }, + "b35790eac9564024837c9cdef51d3979": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b983e77576114ed492360eecadd37985": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bca35073c85d459ebda92a18cb82fe35": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2632,7 +2509,7 @@ "width": null } }, - "c38c052cc1384154bc8a020912174a36": { + "c0cf7c3eb7244ac8b96ce96fb0de6c02": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2647,15 +2524,64 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c2463a52f76943c292b43195cfb23d7b", + "layout": "IPY_MODEL_56bd5dde40904f95bb10fc1872eba1a1", "placeholder": "​", - "style": "IPY_MODEL_981b43a499d042eb8e78faa0f736fe84", + "style": "IPY_MODEL_d039d690692e428c834e1fc4d9957d05", "tabbable": null, "tooltip": null, "value": "label_encoder.txt: 100%" } }, - "ce929334dc5c43699c0341dda0672461": { + "c76e5b2a4cc34e9e997debaa73672b65": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3cf5ce3d2f4c42a294c18e44ef924562", + "placeholder": "​", + "style": "IPY_MODEL_71eb3debf64e4a2fbaf5c98d4735cd07", + "tabbable": null, + "tooltip": null, + "value": "hyperparams.yaml: 100%" + } + }, + "c7b38c13c78f45758ec3e7301d923b5f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6eb9db862564486eb8efed0e8805287b", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f68917a8013c424cab9c2748cc45cad7", + "tabbable": null, + "tooltip": null, + "value": 3201.0 + } + }, + "ceca2a5eda0d415a93e5ca0a6460bc35": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2708,84 +2634,59 @@ "width": null } }, - "d245c87ad22a445cb7d31bc4605c9f50": { - "model_module": "@jupyter-widgets/base", + "d039d690692e428c834e1fc4d9957d05": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d129ec962b08471fb96c72e44225606e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "d3a3325d4d7f4ffea01742fc86cbcb42": { + "d48e147a1aed41bbbeb2ceb8d714f412": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_918fb51978744ab6bc2517926b5cf549", - "IPY_MODEL_7fde1cad6aac411182c8f3760c55bb4c", - "IPY_MODEL_03479e9660d64b7f9ee76846fb741dd4" - ], - "layout": "IPY_MODEL_d5fe65bc27724ee58c543a54fd239f81", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d58466bf0f50423f92e3ef300c69a45d": { + "d5f1d875434f48b2899bfc45f162862e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2838,7 +2739,7 @@ "width": null } }, - "d5fe65bc27724ee58c543a54fd239f81": { + "d63be43df5d748cfafe39e355c2ff349": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2891,31 +2792,30 @@ "width": null } }, - "daed83e18f3844adaa82d3c7820b0967": { + "db63d51ae3cf41958c911fd701a21f9c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6fbb4e1f5fe74bb1b8d81d98e1bc7859", - "IPY_MODEL_1d5367df48804e979f572fa33d77169d", - "IPY_MODEL_ff29970cf1d341baa232d05ddab20819" - ], - "layout": "IPY_MODEL_ce929334dc5c43699c0341dda0672461", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4655001187994b728fd1fa6b8b328ef9", + "placeholder": "​", + "style": "IPY_MODEL_687899e6b5e743c182bda60517db7530", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 443kB/s]" } }, - "de1fecb1ae82443aa48fc5e8161ece2b": { + "df283cf7b7294ef7afc7c77637b8e506": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2933,25 +2833,56 @@ "text_color": null } }, - "dee5d0a511b141f09a3e0f809526cdb7": { + "e2da1a03754e46288eb7247703f8f4ab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ee64c5c53a8b47528b51b74755b7b79e", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_513cf4e718144fc48ec82aacd56ff402", + "tabbable": null, + "tooltip": null, + "value": 16887676.0 + } + }, + "e86cbdcc2a534e8cb6ffa972789c121f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_66b537f699b748129a38e09178140259", + "placeholder": "​", + "style": "IPY_MODEL_460b69932fe243d2a4ffb3bd9084dd61", + "tabbable": null, + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 156MB/s]" } }, - "e189805254a74de9857c999a79cdf12f": { + "ee4d0c7d7e064c3a88f1e8ac952a8de8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2967,48 +2898,86 @@ "description_width": "" } }, - "e760806a0be44823addbbc7e8815321c": { - "model_module": "@jupyter-widgets/controls", + "ee64c5c53a8b47528b51b74755b7b79e": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e8ba80d6e09249839cdfd1da5085ab10": { + "f0f9d938bce947afb13e5ba81b1dd3a8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0b0356dcb29649c7b6dc492a901737c4", - "placeholder": "​", - "style": "IPY_MODEL_de1fecb1ae82443aa48fc5e8161ece2b", + "layout": "IPY_MODEL_947f7386271b4edba4a9119252a699b1", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f97a5c3811cb4878a4d2a30f2594d3ff", "tabbable": null, "tooltip": null, - "value": "embedding_model.ckpt: 100%" + "value": 128619.0 } }, - "eaaae06691264df0ad410b54ec706d02": { + "f338dd71eb524ac78296561dbed7b0e8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3061,30 +3030,23 @@ "width": null } }, - "ee50f9b046244366bdaf53f7c6e66396": { + "f68917a8013c424cab9c2748cc45cad7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a9e8873bea304dbda3093f230984d3f4", - "placeholder": "​", - "style": "IPY_MODEL_0e7a313a5c824026b683e120467e49fc", - "tabbable": null, - "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 159MB/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f25843f8b9044a38970d7a2f6f55532f": { + "f97a5c3811cb4878a4d2a30f2594d3ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3100,7 +3062,31 @@ "description_width": "" } }, - "f6acf95fbfd348f79e2188e9c71c995d": { + "fb96e5912f5a4ce891ef1ff4b41d1f7a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8389b95f92774e53ad789f89a734f410", + "IPY_MODEL_c7b38c13c78f45758ec3e7301d923b5f", + "IPY_MODEL_7eb4f954cd924555acff85d540fff206" + ], + "layout": "IPY_MODEL_fd52edc5a7d242ab8c17fe71d147178b", + "tabbable": null, + "tooltip": null + } + }, + "fd52edc5a7d242ab8c17fe71d147178b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3153,43 +3139,57 @@ "width": null } }, - "f82b7299a92c40ee97bb528f6aba5e73": { - "model_module": "@jupyter-widgets/controls", + "fd8588b5d0384105826c2fefac1b48c5": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ff29970cf1d341baa232d05ddab20819": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_479d4d642c7e4ba48bfeecfabfc89392", - "placeholder": "​", - "style": "IPY_MODEL_97a60215313846198897ec54486ae998", - "tabbable": null, - "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 482kB/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index 2335b26c0..2add4c3aa 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1291,7 +1291,7 @@

Functionality 3: Save and load Datalab objects

-
+
@@ -1566,7 +1566,7 @@

Functionality 4: Adding a custom IssueManager -{"state": {"5b87eb62ed214ce180caa1f921b0d9ea": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5d57d92b70144fdcb7098fca41086477": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cc9ecab385db43349e56648be16263af": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5b87eb62ed214ce180caa1f921b0d9ea", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5d57d92b70144fdcb7098fca41086477", "tabbable": null, "tooltip": null, "value": 132.0}}, "24bae2c3872c4a43a5fd3fae4d9ed9eb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ede416b2fa6d40bb94f2f110d2a17a92": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e8102209c403486ea0c0ad5d32b673a3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_24bae2c3872c4a43a5fd3fae4d9ed9eb", "placeholder": "\u200b", "style": "IPY_MODEL_ede416b2fa6d40bb94f2f110d2a17a92", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "4e3c3f0d367d480b8fcc7e684908d700": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "12a04c5f135740ce8abb43266b624fdf": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "55f93856cd4548a39c8c6e90826ecd93": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4e3c3f0d367d480b8fcc7e684908d700", "placeholder": "\u200b", "style": "IPY_MODEL_12a04c5f135740ce8abb43266b624fdf", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200711638.35\u2007examples/s]"}}, "c4f4ea12ab8d4b89a10654852ccbed0f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e39c809fe1e5418fa02e423f6239224a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e8102209c403486ea0c0ad5d32b673a3", "IPY_MODEL_cc9ecab385db43349e56648be16263af", "IPY_MODEL_55f93856cd4548a39c8c6e90826ecd93"], "layout": "IPY_MODEL_c4f4ea12ab8d4b89a10654852ccbed0f", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"dbf82dbb10ce4fdd9d4269c96540fefa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0faf1c44499b44398e97768f845c5ccb": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "93f3d5c18053458eb93c314d771e54af": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dbf82dbb10ce4fdd9d4269c96540fefa", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0faf1c44499b44398e97768f845c5ccb", "tabbable": null, "tooltip": null, "value": 132.0}}, "1a279b2d19734290b37981c20d38044f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ad50f86230454235974a7058b324c74f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5960f005dca9493fba39d83ebbea7501": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1a279b2d19734290b37981c20d38044f", "placeholder": "\u200b", "style": "IPY_MODEL_ad50f86230454235974a7058b324c74f", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "70f0831e295b49a19b6c248f561c7ce4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6c23ad5469464e2ba5f419bc7ec105c8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "022627ac4a8d42ed8ed59e0e2927f625": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_70f0831e295b49a19b6c248f561c7ce4", "placeholder": "\u200b", "style": "IPY_MODEL_6c23ad5469464e2ba5f419bc7ec105c8", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200713515.48\u2007examples/s]"}}, "6d467bcf5764448a8204581828c498fe": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a82b12c348af4b1cb24896bb4b947dcd": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5960f005dca9493fba39d83ebbea7501", "IPY_MODEL_93f3d5c18053458eb93c314d771e54af", "IPY_MODEL_022627ac4a8d42ed8ed59e0e2927f625"], "layout": "IPY_MODEL_6d467bcf5764448a8204581828c498fe", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index 161d64427..9a4d8b34f 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:12.945600Z", - "iopub.status.busy": "2024-08-29T17:08:12.945104Z", - "iopub.status.idle": "2024-08-29T17:08:14.174965Z", - "shell.execute_reply": "2024-08-29T17:08:14.174464Z" + "iopub.execute_input": "2024-09-04T16:37:25.182507Z", + "iopub.status.busy": "2024-09-04T16:37:25.182331Z", + "iopub.status.idle": "2024-09-04T16:37:26.371153Z", + "shell.execute_reply": "2024-09-04T16:37:26.370659Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:14.177579Z", - "iopub.status.busy": "2024-08-29T17:08:14.177115Z", - "iopub.status.idle": "2024-08-29T17:08:14.180259Z", - "shell.execute_reply": "2024-08-29T17:08:14.179789Z" + "iopub.execute_input": "2024-09-04T16:37:26.373791Z", + "iopub.status.busy": "2024-09-04T16:37:26.373414Z", + "iopub.status.idle": "2024-09-04T16:37:26.376277Z", + "shell.execute_reply": "2024-09-04T16:37:26.375845Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:14.182439Z", - "iopub.status.busy": "2024-08-29T17:08:14.182089Z", - "iopub.status.idle": "2024-08-29T17:08:14.190877Z", - "shell.execute_reply": "2024-08-29T17:08:14.190415Z" + "iopub.execute_input": "2024-09-04T16:37:26.378511Z", + "iopub.status.busy": "2024-09-04T16:37:26.378173Z", + "iopub.status.idle": "2024-09-04T16:37:26.386702Z", + "shell.execute_reply": "2024-09-04T16:37:26.386256Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:14.192874Z", - "iopub.status.busy": "2024-08-29T17:08:14.192567Z", - "iopub.status.idle": "2024-08-29T17:08:14.197020Z", - "shell.execute_reply": "2024-08-29T17:08:14.196587Z" + "iopub.execute_input": "2024-09-04T16:37:26.388633Z", + "iopub.status.busy": "2024-09-04T16:37:26.388317Z", + "iopub.status.idle": "2024-09-04T16:37:26.393336Z", + "shell.execute_reply": "2024-09-04T16:37:26.392769Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:14.199131Z", - "iopub.status.busy": "2024-08-29T17:08:14.198799Z", - "iopub.status.idle": "2024-08-29T17:08:14.384554Z", - "shell.execute_reply": "2024-08-29T17:08:14.383989Z" + "iopub.execute_input": "2024-09-04T16:37:26.395535Z", + "iopub.status.busy": "2024-09-04T16:37:26.395220Z", + "iopub.status.idle": "2024-09-04T16:37:26.576537Z", + "shell.execute_reply": "2024-09-04T16:37:26.575964Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:14.387213Z", - "iopub.status.busy": "2024-08-29T17:08:14.386830Z", - "iopub.status.idle": "2024-08-29T17:08:14.759817Z", - "shell.execute_reply": "2024-08-29T17:08:14.759249Z" + "iopub.execute_input": "2024-09-04T16:37:26.578929Z", + "iopub.status.busy": "2024-09-04T16:37:26.578586Z", + "iopub.status.idle": "2024-09-04T16:37:26.897183Z", + "shell.execute_reply": "2024-09-04T16:37:26.896618Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:14.762079Z", - "iopub.status.busy": "2024-08-29T17:08:14.761789Z", - "iopub.status.idle": "2024-08-29T17:08:14.785718Z", - "shell.execute_reply": "2024-08-29T17:08:14.785259Z" + "iopub.execute_input": "2024-09-04T16:37:26.899429Z", + "iopub.status.busy": "2024-09-04T16:37:26.899082Z", + "iopub.status.idle": "2024-09-04T16:37:26.921334Z", + "shell.execute_reply": "2024-09-04T16:37:26.920856Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:14.787805Z", - "iopub.status.busy": "2024-08-29T17:08:14.787620Z", - "iopub.status.idle": "2024-08-29T17:08:14.799176Z", - "shell.execute_reply": "2024-08-29T17:08:14.798696Z" + "iopub.execute_input": "2024-09-04T16:37:26.923342Z", + "iopub.status.busy": "2024-09-04T16:37:26.923003Z", + "iopub.status.idle": "2024-09-04T16:37:26.934083Z", + "shell.execute_reply": "2024-09-04T16:37:26.933643Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:14.801225Z", - "iopub.status.busy": "2024-08-29T17:08:14.800895Z", - "iopub.status.idle": "2024-08-29T17:08:16.940797Z", - "shell.execute_reply": "2024-08-29T17:08:16.940121Z" + "iopub.execute_input": "2024-09-04T16:37:26.936182Z", + "iopub.status.busy": "2024-09-04T16:37:26.935792Z", + "iopub.status.idle": "2024-09-04T16:37:28.937872Z", + "shell.execute_reply": "2024-09-04T16:37:28.937200Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:16.943337Z", - "iopub.status.busy": "2024-08-29T17:08:16.942872Z", - "iopub.status.idle": "2024-08-29T17:08:16.964195Z", - "shell.execute_reply": "2024-08-29T17:08:16.963617Z" + "iopub.execute_input": "2024-09-04T16:37:28.940176Z", + "iopub.status.busy": "2024-09-04T16:37:28.939856Z", + "iopub.status.idle": "2024-09-04T16:37:28.960344Z", + "shell.execute_reply": "2024-09-04T16:37:28.959784Z" } }, "outputs": [ @@ -830,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:16.966366Z", - "iopub.status.busy": "2024-08-29T17:08:16.966135Z", - "iopub.status.idle": "2024-08-29T17:08:16.984299Z", - "shell.execute_reply": "2024-08-29T17:08:16.983825Z" + "iopub.execute_input": "2024-09-04T16:37:28.962368Z", + "iopub.status.busy": "2024-09-04T16:37:28.962076Z", + "iopub.status.idle": "2024-09-04T16:37:28.979408Z", + "shell.execute_reply": "2024-09-04T16:37:28.978861Z" } }, "outputs": [ @@ -937,10 +937,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:16.986403Z", - "iopub.status.busy": "2024-08-29T17:08:16.986050Z", - "iopub.status.idle": "2024-08-29T17:08:16.999786Z", - "shell.execute_reply": "2024-08-29T17:08:16.999335Z" + "iopub.execute_input": "2024-09-04T16:37:28.981577Z", + "iopub.status.busy": "2024-09-04T16:37:28.981258Z", + "iopub.status.idle": "2024-09-04T16:37:28.996081Z", + "shell.execute_reply": "2024-09-04T16:37:28.995526Z" } }, "outputs": [ @@ -1075,17 +1075,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:17.001990Z", - "iopub.status.busy": "2024-08-29T17:08:17.001655Z", - "iopub.status.idle": "2024-08-29T17:08:17.022823Z", - "shell.execute_reply": "2024-08-29T17:08:17.022252Z" + "iopub.execute_input": "2024-09-04T16:37:28.998145Z", + "iopub.status.busy": "2024-09-04T16:37:28.997812Z", + "iopub.status.idle": "2024-09-04T16:37:29.016859Z", + "shell.execute_reply": "2024-09-04T16:37:29.016322Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e39c809fe1e5418fa02e423f6239224a", + "model_id": "a82b12c348af4b1cb24896bb4b947dcd", "version_major": 2, "version_minor": 0 }, @@ -1121,10 +1121,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:17.024929Z", - "iopub.status.busy": "2024-08-29T17:08:17.024753Z", - "iopub.status.idle": "2024-08-29T17:08:17.039444Z", - "shell.execute_reply": "2024-08-29T17:08:17.038965Z" + "iopub.execute_input": "2024-09-04T16:37:29.019103Z", + "iopub.status.busy": "2024-09-04T16:37:29.018781Z", + "iopub.status.idle": "2024-09-04T16:37:29.032859Z", + "shell.execute_reply": "2024-09-04T16:37:29.032412Z" } }, "outputs": [ @@ -1247,10 +1247,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:17.041523Z", - "iopub.status.busy": "2024-08-29T17:08:17.041339Z", - "iopub.status.idle": "2024-08-29T17:08:17.047239Z", - "shell.execute_reply": "2024-08-29T17:08:17.046785Z" + "iopub.execute_input": "2024-09-04T16:37:29.034905Z", + "iopub.status.busy": "2024-09-04T16:37:29.034581Z", + "iopub.status.idle": "2024-09-04T16:37:29.040289Z", + "shell.execute_reply": "2024-09-04T16:37:29.039848Z" } }, "outputs": [], @@ -1307,10 +1307,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:17.049357Z", - "iopub.status.busy": "2024-08-29T17:08:17.049030Z", - "iopub.status.idle": "2024-08-29T17:08:17.066758Z", - "shell.execute_reply": "2024-08-29T17:08:17.066321Z" + "iopub.execute_input": "2024-09-04T16:37:29.042309Z", + "iopub.status.busy": "2024-09-04T16:37:29.041977Z", + "iopub.status.idle": "2024-09-04T16:37:29.058945Z", + "shell.execute_reply": "2024-09-04T16:37:29.058403Z" } }, "outputs": [ @@ -1447,78 +1447,46 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "12a04c5f135740ce8abb43266b624fdf": { + "022627ac4a8d42ed8ed59e0e2927f625": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_70f0831e295b49a19b6c248f561c7ce4", + "placeholder": "​", + "style": "IPY_MODEL_6c23ad5469464e2ba5f419bc7ec105c8", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 13515.48 examples/s]" } }, - "24bae2c3872c4a43a5fd3fae4d9ed9eb": { - "model_module": "@jupyter-widgets/base", + "0faf1c44499b44398e97768f845c5ccb": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "4e3c3f0d367d480b8fcc7e684908d700": { + "1a279b2d19734290b37981c20d38044f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1571,7 +1539,7 @@ "width": null } }, - "55f93856cd4548a39c8c6e90826ecd93": { + "5960f005dca9493fba39d83ebbea7501": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1586,15 +1554,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4e3c3f0d367d480b8fcc7e684908d700", + "layout": "IPY_MODEL_1a279b2d19734290b37981c20d38044f", "placeholder": "​", - "style": "IPY_MODEL_12a04c5f135740ce8abb43266b624fdf", + "style": "IPY_MODEL_ad50f86230454235974a7058b324c74f", "tabbable": null, "tooltip": null, - "value": " 132/132 [00:00<00:00, 11638.35 examples/s]" + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "6c23ad5469464e2ba5f419bc7ec105c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5b87eb62ed214ce180caa1f921b0d9ea": { + "6d467bcf5764448a8204581828c498fe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1647,23 +1633,7 @@ "width": null } }, - "5d57d92b70144fdcb7098fca41086477": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c4f4ea12ab8d4b89a10654852ccbed0f": { + "70f0831e295b49a19b6c248f561c7ce4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1716,7 +1686,7 @@ "width": null } }, - "cc9ecab385db43349e56648be16263af": { + "93f3d5c18053458eb93c314d771e54af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1732,17 +1702,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5b87eb62ed214ce180caa1f921b0d9ea", + "layout": "IPY_MODEL_dbf82dbb10ce4fdd9d4269c96540fefa", "max": 132.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_5d57d92b70144fdcb7098fca41086477", + "style": "IPY_MODEL_0faf1c44499b44398e97768f845c5ccb", "tabbable": null, "tooltip": null, "value": 132.0 } }, - "e39c809fe1e5418fa02e423f6239224a": { + "a82b12c348af4b1cb24896bb4b947dcd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1757,39 +1727,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_e8102209c403486ea0c0ad5d32b673a3", - "IPY_MODEL_cc9ecab385db43349e56648be16263af", - "IPY_MODEL_55f93856cd4548a39c8c6e90826ecd93" + "IPY_MODEL_5960f005dca9493fba39d83ebbea7501", + "IPY_MODEL_93f3d5c18053458eb93c314d771e54af", + "IPY_MODEL_022627ac4a8d42ed8ed59e0e2927f625" ], - "layout": "IPY_MODEL_c4f4ea12ab8d4b89a10654852ccbed0f", + "layout": "IPY_MODEL_6d467bcf5764448a8204581828c498fe", "tabbable": null, "tooltip": null } }, - "e8102209c403486ea0c0ad5d32b673a3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_24bae2c3872c4a43a5fd3fae4d9ed9eb", - "placeholder": "​", - "style": "IPY_MODEL_ede416b2fa6d40bb94f2f110d2a17a92", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" - } - }, - "ede416b2fa6d40bb94f2f110d2a17a92": { + "ad50f86230454235974a7058b324c74f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1806,6 +1753,59 @@ "font_size": null, "text_color": null } + }, + "dbf82dbb10ce4fdd9d4269c96540fefa": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index c8c193157..c29ef173d 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:20.113969Z", - "iopub.status.busy": "2024-08-29T17:08:20.113794Z", - "iopub.status.idle": "2024-08-29T17:08:21.353606Z", - "shell.execute_reply": "2024-08-29T17:08:21.353040Z" + "iopub.execute_input": "2024-09-04T16:37:31.771386Z", + "iopub.status.busy": "2024-09-04T16:37:31.770859Z", + "iopub.status.idle": "2024-09-04T16:37:32.956552Z", + "shell.execute_reply": "2024-09-04T16:37:32.955990Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:21.356240Z", - "iopub.status.busy": "2024-08-29T17:08:21.355852Z", - "iopub.status.idle": "2024-08-29T17:08:21.358998Z", - "shell.execute_reply": "2024-08-29T17:08:21.358428Z" + "iopub.execute_input": "2024-09-04T16:37:32.959181Z", + "iopub.status.busy": "2024-09-04T16:37:32.958782Z", + "iopub.status.idle": "2024-09-04T16:37:32.961888Z", + "shell.execute_reply": "2024-09-04T16:37:32.961377Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:21.361082Z", - "iopub.status.busy": "2024-08-29T17:08:21.360811Z", - "iopub.status.idle": "2024-08-29T17:08:21.370013Z", - "shell.execute_reply": "2024-08-29T17:08:21.369452Z" + "iopub.execute_input": "2024-09-04T16:37:32.964036Z", + "iopub.status.busy": "2024-09-04T16:37:32.963696Z", + "iopub.status.idle": "2024-09-04T16:37:32.972589Z", + "shell.execute_reply": "2024-09-04T16:37:32.972110Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:21.372175Z", - "iopub.status.busy": "2024-08-29T17:08:21.371862Z", - "iopub.status.idle": "2024-08-29T17:08:21.376987Z", - "shell.execute_reply": "2024-08-29T17:08:21.376421Z" + "iopub.execute_input": "2024-09-04T16:37:32.974605Z", + "iopub.status.busy": "2024-09-04T16:37:32.974252Z", + "iopub.status.idle": "2024-09-04T16:37:32.978768Z", + "shell.execute_reply": "2024-09-04T16:37:32.978341Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:21.379156Z", - "iopub.status.busy": "2024-08-29T17:08:21.378839Z", - "iopub.status.idle": "2024-08-29T17:08:21.566898Z", - "shell.execute_reply": "2024-08-29T17:08:21.566241Z" + "iopub.execute_input": "2024-09-04T16:37:32.980858Z", + "iopub.status.busy": "2024-09-04T16:37:32.980520Z", + "iopub.status.idle": "2024-09-04T16:37:33.162436Z", + "shell.execute_reply": "2024-09-04T16:37:33.161941Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:21.569454Z", - "iopub.status.busy": "2024-08-29T17:08:21.569150Z", - "iopub.status.idle": "2024-08-29T17:08:21.887845Z", - "shell.execute_reply": "2024-08-29T17:08:21.887274Z" + "iopub.execute_input": "2024-09-04T16:37:33.164663Z", + "iopub.status.busy": "2024-09-04T16:37:33.164344Z", + "iopub.status.idle": "2024-09-04T16:37:33.478065Z", + "shell.execute_reply": "2024-09-04T16:37:33.477467Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:21.890078Z", - "iopub.status.busy": "2024-08-29T17:08:21.889728Z", - "iopub.status.idle": "2024-08-29T17:08:21.892687Z", - "shell.execute_reply": "2024-08-29T17:08:21.892109Z" + "iopub.execute_input": "2024-09-04T16:37:33.480446Z", + "iopub.status.busy": "2024-09-04T16:37:33.480100Z", + "iopub.status.idle": "2024-09-04T16:37:33.482739Z", + "shell.execute_reply": "2024-09-04T16:37:33.482293Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:21.894739Z", - "iopub.status.busy": "2024-08-29T17:08:21.894432Z", - "iopub.status.idle": "2024-08-29T17:08:21.928438Z", - "shell.execute_reply": "2024-08-29T17:08:21.927809Z" + "iopub.execute_input": "2024-09-04T16:37:33.484844Z", + "iopub.status.busy": "2024-09-04T16:37:33.484502Z", + "iopub.status.idle": "2024-09-04T16:37:33.517980Z", + "shell.execute_reply": "2024-09-04T16:37:33.517549Z" } }, "outputs": [], @@ -638,10 +638,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:21.930771Z", - "iopub.status.busy": "2024-08-29T17:08:21.930478Z", - "iopub.status.idle": "2024-08-29T17:08:24.030674Z", - "shell.execute_reply": "2024-08-29T17:08:24.030079Z" + "iopub.execute_input": "2024-09-04T16:37:33.520005Z", + "iopub.status.busy": "2024-09-04T16:37:33.519670Z", + "iopub.status.idle": "2024-09-04T16:37:35.560158Z", + "shell.execute_reply": "2024-09-04T16:37:35.559551Z" } }, "outputs": [ @@ -685,10 +685,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:24.033167Z", - "iopub.status.busy": "2024-08-29T17:08:24.032657Z", - "iopub.status.idle": "2024-08-29T17:08:24.051094Z", - "shell.execute_reply": "2024-08-29T17:08:24.050618Z" + "iopub.execute_input": "2024-09-04T16:37:35.562690Z", + "iopub.status.busy": "2024-09-04T16:37:35.562196Z", + "iopub.status.idle": "2024-09-04T16:37:35.580571Z", + "shell.execute_reply": "2024-09-04T16:37:35.580012Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:24.053115Z", - "iopub.status.busy": "2024-08-29T17:08:24.052775Z", - "iopub.status.idle": "2024-08-29T17:08:24.059061Z", - "shell.execute_reply": "2024-08-29T17:08:24.058619Z" + "iopub.execute_input": "2024-09-04T16:37:35.582599Z", + "iopub.status.busy": "2024-09-04T16:37:35.582297Z", + "iopub.status.idle": "2024-09-04T16:37:35.588836Z", + "shell.execute_reply": "2024-09-04T16:37:35.588392Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:24.061038Z", - "iopub.status.busy": "2024-08-29T17:08:24.060703Z", - "iopub.status.idle": "2024-08-29T17:08:24.066244Z", - "shell.execute_reply": "2024-08-29T17:08:24.065776Z" + "iopub.execute_input": "2024-09-04T16:37:35.590838Z", + "iopub.status.busy": "2024-09-04T16:37:35.590526Z", + "iopub.status.idle": "2024-09-04T16:37:35.596108Z", + "shell.execute_reply": "2024-09-04T16:37:35.595675Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:24.068374Z", - "iopub.status.busy": "2024-08-29T17:08:24.067947Z", - "iopub.status.idle": "2024-08-29T17:08:24.078268Z", - "shell.execute_reply": "2024-08-29T17:08:24.077701Z" + "iopub.execute_input": "2024-09-04T16:37:35.598100Z", + "iopub.status.busy": "2024-09-04T16:37:35.597788Z", + "iopub.status.idle": "2024-09-04T16:37:35.607949Z", + "shell.execute_reply": "2024-09-04T16:37:35.607373Z" } }, "outputs": [ @@ -1200,10 +1200,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:24.080224Z", - "iopub.status.busy": "2024-08-29T17:08:24.080046Z", - "iopub.status.idle": "2024-08-29T17:08:24.089269Z", - "shell.execute_reply": "2024-08-29T17:08:24.088724Z" + "iopub.execute_input": "2024-09-04T16:37:35.609973Z", + "iopub.status.busy": "2024-09-04T16:37:35.609632Z", + "iopub.status.idle": "2024-09-04T16:37:35.618044Z", + "shell.execute_reply": "2024-09-04T16:37:35.617603Z" } }, "outputs": [ @@ -1319,10 +1319,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:24.091410Z", - "iopub.status.busy": "2024-08-29T17:08:24.091077Z", - "iopub.status.idle": "2024-08-29T17:08:24.097920Z", - "shell.execute_reply": "2024-08-29T17:08:24.097368Z" + "iopub.execute_input": "2024-09-04T16:37:35.619994Z", + "iopub.status.busy": "2024-09-04T16:37:35.619821Z", + "iopub.status.idle": "2024-09-04T16:37:35.626826Z", + "shell.execute_reply": "2024-09-04T16:37:35.626375Z" }, "scrolled": true }, @@ -1447,10 +1447,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:24.099999Z", - "iopub.status.busy": "2024-08-29T17:08:24.099726Z", - "iopub.status.idle": "2024-08-29T17:08:24.109078Z", - "shell.execute_reply": "2024-08-29T17:08:24.108508Z" + "iopub.execute_input": "2024-09-04T16:37:35.628964Z", + "iopub.status.busy": "2024-09-04T16:37:35.628519Z", + "iopub.status.idle": "2024-09-04T16:37:35.637919Z", + "shell.execute_reply": "2024-09-04T16:37:35.637354Z" } }, "outputs": [ @@ -1553,10 +1553,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:24.111257Z", - "iopub.status.busy": "2024-08-29T17:08:24.110943Z", - "iopub.status.idle": "2024-08-29T17:08:24.128371Z", - "shell.execute_reply": "2024-08-29T17:08:24.127947Z" + "iopub.execute_input": "2024-09-04T16:37:35.640087Z", + "iopub.status.busy": "2024-09-04T16:37:35.639776Z", + "iopub.status.idle": "2024-09-04T16:37:35.656365Z", + "shell.execute_reply": "2024-09-04T16:37:35.655938Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/image.html b/master/tutorials/datalab/image.html index 09d07a845..a6d344ce1 100644 --- a/master/tutorials/datalab/image.html +++ b/master/tutorials/datalab/image.html @@ -727,31 +727,31 @@

2. Fetch and normalize the Fashion-MNIST dataset

-
+
-
+
-
+
-
+
-
+

Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

@@ -1064,7 +1064,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1096,7 +1096,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1128,7 +1128,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1920,35 +1920,35 @@

Dark images - is_dark_issue dark_score + is_dark_issue 34848 - True 0.203922 + True 50270 - True 0.204588 + True 3936 - True 0.213098 + True 733 - True 0.217686 + True 8094 - True 0.230118 + True @@ -2042,35 +2042,35 @@

Low information images - low_information_score is_low_information_issue + low_information_score 53050 - 0.067975 True + 0.067975 40875 - 0.089929 True + 0.089929 9594 - 0.092601 True + 0.092601 34825 - 0.107744 True + 0.107744 37530 - 0.108516 True + 0.108516 @@ -2098,7 +2098,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/datalab/image.ipynb b/master/tutorials/datalab/image.ipynb index c70a728dc..cb169fc85 100644 --- a/master/tutorials/datalab/image.ipynb +++ b/master/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:27.059101Z", - "iopub.status.busy": "2024-08-29T17:08:27.058926Z", - "iopub.status.idle": "2024-08-29T17:08:30.040828Z", - "shell.execute_reply": "2024-08-29T17:08:30.040273Z" + "iopub.execute_input": "2024-09-04T16:37:38.303462Z", + "iopub.status.busy": "2024-09-04T16:37:38.303044Z", + "iopub.status.idle": "2024-09-04T16:37:41.244865Z", + "shell.execute_reply": "2024-09-04T16:37:41.244308Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:30.043597Z", - "iopub.status.busy": "2024-08-29T17:08:30.043071Z", - "iopub.status.idle": "2024-08-29T17:08:30.046795Z", - "shell.execute_reply": "2024-08-29T17:08:30.046202Z" + "iopub.execute_input": "2024-09-04T16:37:41.247427Z", + "iopub.status.busy": "2024-09-04T16:37:41.247143Z", + "iopub.status.idle": "2024-09-04T16:37:41.250634Z", + "shell.execute_reply": "2024-09-04T16:37:41.250198Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:30.048992Z", - "iopub.status.busy": "2024-08-29T17:08:30.048517Z", - "iopub.status.idle": "2024-08-29T17:08:33.008906Z", - "shell.execute_reply": "2024-08-29T17:08:33.008290Z" + "iopub.execute_input": "2024-09-04T16:37:41.252505Z", + "iopub.status.busy": "2024-09-04T16:37:41.252330Z", + "iopub.status.idle": "2024-09-04T16:37:49.839843Z", + "shell.execute_reply": "2024-09-04T16:37:49.839373Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "02166c864ca449ecb48ca6570e5c3978", + "model_id": "319eb3c359274c29ba693fd30f98b99d", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "db7e223cca954fa69911aa2677ff4349", + "model_id": "1abdd5d51e71429c83f3161fb0f34a8a", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3a4a80e9a3f547d9b039302dbdd73447", + "model_id": "be064f9db0c241afa490cc2cddb76c07", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c2f58df60b6f4bb683e4db3d17f476f1", + "model_id": "39b7a60b22d9490c85820d3c8bb7afc7", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2c326980020e4183aef0bcca45f9b946", + "model_id": "33af8738fba94dfab36a8701ff30857a", "version_major": 2, "version_minor": 0 }, @@ -260,10 +260,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:33.011085Z", - "iopub.status.busy": "2024-08-29T17:08:33.010797Z", - "iopub.status.idle": "2024-08-29T17:08:33.014717Z", - "shell.execute_reply": "2024-08-29T17:08:33.014140Z" + "iopub.execute_input": "2024-09-04T16:37:49.842162Z", + "iopub.status.busy": "2024-09-04T16:37:49.841818Z", + "iopub.status.idle": "2024-09-04T16:37:49.846030Z", + "shell.execute_reply": "2024-09-04T16:37:49.845588Z" } }, "outputs": [ @@ -288,17 +288,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:33.017026Z", - "iopub.status.busy": "2024-08-29T17:08:33.016616Z", - "iopub.status.idle": "2024-08-29T17:08:44.567881Z", - "shell.execute_reply": "2024-08-29T17:08:44.567340Z" + "iopub.execute_input": "2024-09-04T16:37:49.848035Z", + "iopub.status.busy": "2024-09-04T16:37:49.847710Z", + "iopub.status.idle": "2024-09-04T16:38:01.327046Z", + "shell.execute_reply": "2024-09-04T16:38:01.326503Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "944d3d9122cd4a2688bd85cf843c82c1", + "model_id": "4bb198dfcbae4b5aa14ac1168e1b6695", "version_major": 2, "version_minor": 0 }, @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:08:44.570431Z", - "iopub.status.busy": "2024-08-29T17:08:44.570184Z", - "iopub.status.idle": "2024-08-29T17:09:03.080323Z", - "shell.execute_reply": "2024-08-29T17:09:03.079706Z" + "iopub.execute_input": "2024-09-04T16:38:01.329677Z", + "iopub.status.busy": "2024-09-04T16:38:01.329284Z", + "iopub.status.idle": "2024-09-04T16:38:19.893278Z", + "shell.execute_reply": "2024-09-04T16:38:19.892634Z" } }, "outputs": [], @@ -372,10 +372,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:09:03.083092Z", - "iopub.status.busy": "2024-08-29T17:09:03.082685Z", - "iopub.status.idle": "2024-08-29T17:09:03.088725Z", - "shell.execute_reply": "2024-08-29T17:09:03.088125Z" + "iopub.execute_input": "2024-09-04T16:38:19.896038Z", + "iopub.status.busy": "2024-09-04T16:38:19.895653Z", + "iopub.status.idle": "2024-09-04T16:38:19.901344Z", + "shell.execute_reply": "2024-09-04T16:38:19.900884Z" } }, "outputs": [], @@ -413,10 +413,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:09:03.091044Z", - "iopub.status.busy": "2024-08-29T17:09:03.090667Z", - "iopub.status.idle": "2024-08-29T17:09:03.094812Z", - "shell.execute_reply": "2024-08-29T17:09:03.094381Z" + "iopub.execute_input": "2024-09-04T16:38:19.903276Z", + "iopub.status.busy": "2024-09-04T16:38:19.902941Z", + "iopub.status.idle": "2024-09-04T16:38:19.907079Z", + "shell.execute_reply": "2024-09-04T16:38:19.906541Z" }, "nbsphinx": "hidden" }, @@ -553,10 +553,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:09:03.097052Z", - "iopub.status.busy": "2024-08-29T17:09:03.096741Z", - "iopub.status.idle": "2024-08-29T17:09:03.105849Z", - "shell.execute_reply": "2024-08-29T17:09:03.105377Z" + "iopub.execute_input": "2024-09-04T16:38:19.909304Z", + "iopub.status.busy": "2024-09-04T16:38:19.908877Z", + "iopub.status.idle": "2024-09-04T16:38:19.917613Z", + "shell.execute_reply": "2024-09-04T16:38:19.917139Z" }, "nbsphinx": "hidden" }, @@ -681,10 +681,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:09:03.108014Z", - "iopub.status.busy": "2024-08-29T17:09:03.107668Z", - "iopub.status.idle": "2024-08-29T17:09:03.136081Z", - "shell.execute_reply": "2024-08-29T17:09:03.135415Z" + "iopub.execute_input": "2024-09-04T16:38:19.919533Z", + "iopub.status.busy": "2024-09-04T16:38:19.919361Z", + "iopub.status.idle": "2024-09-04T16:38:19.945136Z", + "shell.execute_reply": "2024-09-04T16:38:19.944720Z" } }, "outputs": [], @@ -721,10 +721,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:09:03.138517Z", - "iopub.status.busy": "2024-08-29T17:09:03.138340Z", - "iopub.status.idle": "2024-08-29T17:09:37.733449Z", - "shell.execute_reply": "2024-08-29T17:09:37.732851Z" + "iopub.execute_input": "2024-09-04T16:38:19.947137Z", + "iopub.status.busy": "2024-09-04T16:38:19.946804Z", + "iopub.status.idle": "2024-09-04T16:38:52.806683Z", + "shell.execute_reply": "2024-09-04T16:38:52.806036Z" } }, "outputs": [ @@ -740,21 +740,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.447\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.850\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.931\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.533\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "30683b6059984426ba19841fd4a774ec", + "model_id": "e0d04f00652048319b15a7c8d92b501f", "version_major": 2, "version_minor": 0 }, @@ -775,7 +775,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2b84d19858824876b35a7eebdf801115", + "model_id": "14a337641dd1417c8844000cc271b2b4", "version_major": 2, "version_minor": 0 }, @@ -798,21 +798,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.921\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.716\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.694\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.764\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e3b91fd43b3e46c08a3c6d32e9efbe48", + "model_id": "c88ba26dbe76450d8c7a7ecda8dfca3e", "version_major": 2, "version_minor": 0 }, @@ -833,7 +833,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "245f60ab16d24a57b85ef53a5fb96484", + "model_id": "b8fa2ba849184558b5054c6e4a4e5dd8", "version_major": 2, "version_minor": 0 }, @@ -856,21 +856,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 5.072\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.906\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.779\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.489\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dd4fc8da52cc4c5cbd12d26954963ed1", + "model_id": "8a1c87dd1eaf47458965198d643def42", "version_major": 2, "version_minor": 0 }, @@ -891,7 +891,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3a83a86ee3254d7fbaa7f292d3461e66", + "model_id": "75f52856abb347d89314c3cc706909a4", "version_major": 2, "version_minor": 0 }, @@ -970,10 +970,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:09:37.736051Z", - "iopub.status.busy": "2024-08-29T17:09:37.735695Z", - "iopub.status.idle": "2024-08-29T17:09:37.752765Z", - "shell.execute_reply": "2024-08-29T17:09:37.752270Z" + "iopub.execute_input": "2024-09-04T16:38:52.809587Z", + "iopub.status.busy": "2024-09-04T16:38:52.808875Z", + "iopub.status.idle": "2024-09-04T16:38:52.825892Z", + "shell.execute_reply": "2024-09-04T16:38:52.825344Z" } }, "outputs": [], @@ -998,10 +998,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:09:37.755320Z", - "iopub.status.busy": "2024-08-29T17:09:37.754911Z", - "iopub.status.idle": "2024-08-29T17:09:38.245417Z", - "shell.execute_reply": "2024-08-29T17:09:38.244840Z" + "iopub.execute_input": "2024-09-04T16:38:52.827925Z", + "iopub.status.busy": "2024-09-04T16:38:52.827630Z", + "iopub.status.idle": "2024-09-04T16:38:53.283408Z", + "shell.execute_reply": "2024-09-04T16:38:53.282767Z" } }, "outputs": [], @@ -1021,10 +1021,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:09:38.247965Z", - "iopub.status.busy": "2024-08-29T17:09:38.247597Z", - "iopub.status.idle": "2024-08-29T17:11:29.864746Z", - "shell.execute_reply": "2024-08-29T17:11:29.864175Z" + "iopub.execute_input": "2024-09-04T16:38:53.285982Z", + "iopub.status.busy": "2024-09-04T16:38:53.285755Z", + "iopub.status.idle": "2024-09-04T16:40:43.226591Z", + "shell.execute_reply": "2024-09-04T16:40:43.225892Z" } }, "outputs": [ @@ -1063,7 +1063,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "edc1a5f44295433790bd440975c40ab2", + "model_id": "52daadd720d843c0afa302f1faa5901a", "version_major": 2, "version_minor": 0 }, @@ -1109,10 +1109,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:29.867387Z", - "iopub.status.busy": "2024-08-29T17:11:29.866814Z", - "iopub.status.idle": "2024-08-29T17:11:30.324739Z", - "shell.execute_reply": "2024-08-29T17:11:30.324184Z" + "iopub.execute_input": "2024-09-04T16:40:43.228968Z", + "iopub.status.busy": "2024-09-04T16:40:43.228597Z", + "iopub.status.idle": "2024-09-04T16:40:43.675739Z", + "shell.execute_reply": "2024-09-04T16:40:43.675200Z" } }, "outputs": [ @@ -1258,10 +1258,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:30.327596Z", - "iopub.status.busy": "2024-08-29T17:11:30.327051Z", - "iopub.status.idle": "2024-08-29T17:11:30.389811Z", - "shell.execute_reply": "2024-08-29T17:11:30.389255Z" + "iopub.execute_input": "2024-09-04T16:40:43.678201Z", + "iopub.status.busy": "2024-09-04T16:40:43.677671Z", + "iopub.status.idle": "2024-09-04T16:40:43.739002Z", + "shell.execute_reply": "2024-09-04T16:40:43.738437Z" } }, "outputs": [ @@ -1365,10 +1365,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:30.392151Z", - "iopub.status.busy": "2024-08-29T17:11:30.391806Z", - "iopub.status.idle": "2024-08-29T17:11:30.400249Z", - "shell.execute_reply": "2024-08-29T17:11:30.399703Z" + "iopub.execute_input": "2024-09-04T16:40:43.741132Z", + "iopub.status.busy": "2024-09-04T16:40:43.740794Z", + "iopub.status.idle": "2024-09-04T16:40:43.749267Z", + "shell.execute_reply": "2024-09-04T16:40:43.748826Z" } }, "outputs": [ @@ -1498,10 +1498,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:30.402446Z", - "iopub.status.busy": "2024-08-29T17:11:30.402084Z", - "iopub.status.idle": "2024-08-29T17:11:30.406868Z", - "shell.execute_reply": "2024-08-29T17:11:30.406399Z" + "iopub.execute_input": "2024-09-04T16:40:43.751193Z", + "iopub.status.busy": "2024-09-04T16:40:43.751016Z", + "iopub.status.idle": "2024-09-04T16:40:43.755783Z", + "shell.execute_reply": "2024-09-04T16:40:43.755317Z" }, "nbsphinx": "hidden" }, @@ -1547,10 +1547,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:30.408824Z", - "iopub.status.busy": "2024-08-29T17:11:30.408490Z", - "iopub.status.idle": "2024-08-29T17:11:30.912588Z", - "shell.execute_reply": "2024-08-29T17:11:30.912015Z" + "iopub.execute_input": "2024-09-04T16:40:43.757639Z", + "iopub.status.busy": "2024-09-04T16:40:43.757465Z", + "iopub.status.idle": "2024-09-04T16:40:44.265971Z", + "shell.execute_reply": "2024-09-04T16:40:44.265369Z" } }, "outputs": [ @@ -1585,10 +1585,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:30.914935Z", - "iopub.status.busy": "2024-08-29T17:11:30.914587Z", - "iopub.status.idle": "2024-08-29T17:11:30.922932Z", - "shell.execute_reply": "2024-08-29T17:11:30.922356Z" + "iopub.execute_input": "2024-09-04T16:40:44.268076Z", + "iopub.status.busy": "2024-09-04T16:40:44.267893Z", + "iopub.status.idle": "2024-09-04T16:40:44.276152Z", + "shell.execute_reply": "2024-09-04T16:40:44.275678Z" } }, "outputs": [ @@ -1755,10 +1755,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:30.925119Z", - "iopub.status.busy": "2024-08-29T17:11:30.924783Z", - "iopub.status.idle": "2024-08-29T17:11:30.931843Z", - "shell.execute_reply": "2024-08-29T17:11:30.931398Z" + "iopub.execute_input": "2024-09-04T16:40:44.278230Z", + "iopub.status.busy": "2024-09-04T16:40:44.277902Z", + "iopub.status.idle": "2024-09-04T16:40:44.284855Z", + "shell.execute_reply": "2024-09-04T16:40:44.284411Z" }, "nbsphinx": "hidden" }, @@ -1834,10 +1834,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:30.933599Z", - "iopub.status.busy": "2024-08-29T17:11:30.933424Z", - "iopub.status.idle": "2024-08-29T17:11:31.398085Z", - "shell.execute_reply": "2024-08-29T17:11:31.397512Z" + "iopub.execute_input": "2024-09-04T16:40:44.286862Z", + "iopub.status.busy": "2024-09-04T16:40:44.286552Z", + "iopub.status.idle": "2024-09-04T16:40:44.746586Z", + "shell.execute_reply": "2024-09-04T16:40:44.746027Z" } }, "outputs": [ @@ -1874,10 +1874,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:31.400844Z", - "iopub.status.busy": "2024-08-29T17:11:31.400634Z", - "iopub.status.idle": "2024-08-29T17:11:31.416578Z", - "shell.execute_reply": "2024-08-29T17:11:31.416009Z" + "iopub.execute_input": "2024-09-04T16:40:44.748828Z", + "iopub.status.busy": "2024-09-04T16:40:44.748427Z", + "iopub.status.idle": "2024-09-04T16:40:44.763715Z", + "shell.execute_reply": "2024-09-04T16:40:44.763150Z" } }, "outputs": [ @@ -2034,10 +2034,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:31.418744Z", - "iopub.status.busy": "2024-08-29T17:11:31.418557Z", - "iopub.status.idle": "2024-08-29T17:11:31.424086Z", - "shell.execute_reply": "2024-08-29T17:11:31.423645Z" + "iopub.execute_input": "2024-09-04T16:40:44.765997Z", + "iopub.status.busy": "2024-09-04T16:40:44.765675Z", + "iopub.status.idle": "2024-09-04T16:40:44.771164Z", + "shell.execute_reply": "2024-09-04T16:40:44.770690Z" }, "nbsphinx": "hidden" }, @@ -2082,10 +2082,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:31.426117Z", - "iopub.status.busy": "2024-08-29T17:11:31.425774Z", - "iopub.status.idle": "2024-08-29T17:11:32.215618Z", - "shell.execute_reply": "2024-08-29T17:11:32.215025Z" + "iopub.execute_input": "2024-09-04T16:40:44.773129Z", + "iopub.status.busy": "2024-09-04T16:40:44.772818Z", + "iopub.status.idle": "2024-09-04T16:40:45.529052Z", + "shell.execute_reply": "2024-09-04T16:40:45.528506Z" } }, "outputs": [ @@ -2167,10 +2167,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:32.218454Z", - "iopub.status.busy": "2024-08-29T17:11:32.217963Z", - "iopub.status.idle": "2024-08-29T17:11:32.228519Z", - "shell.execute_reply": "2024-08-29T17:11:32.228006Z" + "iopub.execute_input": "2024-09-04T16:40:45.531739Z", + "iopub.status.busy": "2024-09-04T16:40:45.531544Z", + "iopub.status.idle": "2024-09-04T16:40:45.541591Z", + "shell.execute_reply": "2024-09-04T16:40:45.541029Z" } }, "outputs": [ @@ -2195,47 +2195,47 @@ " \n", " \n", " \n", - " is_dark_issue\n", " dark_score\n", + " is_dark_issue\n", " \n", " \n", " \n", " \n", " 34848\n", - " True\n", " 0.203922\n", + " True\n", " \n", " \n", " 50270\n", - " True\n", " 0.204588\n", + " True\n", " \n", " \n", " 3936\n", - " True\n", " 0.213098\n", + " True\n", " \n", " \n", " 733\n", - " True\n", " 0.217686\n", + " True\n", " \n", " \n", " 8094\n", - " True\n", " 0.230118\n", + " True\n", " \n", " \n", "\n", "

" ], "text/plain": [ - " is_dark_issue dark_score\n", - "34848 True 0.203922\n", - "50270 True 0.204588\n", - "3936 True 0.213098\n", - "733 True 0.217686\n", - "8094 True 0.230118" + " dark_score is_dark_issue\n", + "34848 0.203922 True\n", + "50270 0.204588 True\n", + "3936 0.213098 True\n", + "733 0.217686 True\n", + "8094 0.230118 True" ] }, "execution_count": 26, @@ -2298,10 +2298,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:32.231159Z", - "iopub.status.busy": "2024-08-29T17:11:32.230722Z", - "iopub.status.idle": "2024-08-29T17:11:32.236833Z", - "shell.execute_reply": "2024-08-29T17:11:32.236266Z" + "iopub.execute_input": "2024-09-04T16:40:45.543993Z", + "iopub.status.busy": "2024-09-04T16:40:45.543803Z", + "iopub.status.idle": "2024-09-04T16:40:45.550571Z", + "shell.execute_reply": "2024-09-04T16:40:45.550023Z" }, "nbsphinx": "hidden" }, @@ -2338,10 +2338,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:32.239180Z", - "iopub.status.busy": "2024-08-29T17:11:32.238981Z", - "iopub.status.idle": "2024-08-29T17:11:32.438795Z", - "shell.execute_reply": "2024-08-29T17:11:32.438295Z" + "iopub.execute_input": "2024-09-04T16:40:45.553267Z", + "iopub.status.busy": "2024-09-04T16:40:45.552801Z", + "iopub.status.idle": "2024-09-04T16:40:45.753254Z", + "shell.execute_reply": "2024-09-04T16:40:45.752684Z" } }, "outputs": [ @@ -2383,10 +2383,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:32.440785Z", - "iopub.status.busy": "2024-08-29T17:11:32.440618Z", - "iopub.status.idle": "2024-08-29T17:11:32.448088Z", - "shell.execute_reply": "2024-08-29T17:11:32.447641Z" + "iopub.execute_input": "2024-09-04T16:40:45.755369Z", + "iopub.status.busy": "2024-09-04T16:40:45.755031Z", + "iopub.status.idle": "2024-09-04T16:40:45.762462Z", + "shell.execute_reply": "2024-09-04T16:40:45.761919Z" } }, "outputs": [ @@ -2411,47 +2411,47 @@ " \n", " \n", " \n", - " low_information_score\n", " is_low_information_issue\n", + " low_information_score\n", " \n", " \n", " \n", " \n", " 53050\n", - " 0.067975\n", " True\n", + " 0.067975\n", " \n", " \n", " 40875\n", - " 0.089929\n", " True\n", + " 0.089929\n", " \n", " \n", " 9594\n", - " 0.092601\n", " True\n", + " 0.092601\n", " \n", " \n", " 34825\n", - " 0.107744\n", " True\n", + " 0.107744\n", " \n", " \n", " 37530\n", - " 0.108516\n", " True\n", + " 0.108516\n", " \n", " \n", "\n", "
" ], "text/plain": [ - " low_information_score is_low_information_issue\n", - "53050 0.067975 True\n", - "40875 0.089929 True\n", - "9594 0.092601 True\n", - "34825 0.107744 True\n", - "37530 0.108516 True" + " is_low_information_issue low_information_score\n", + "53050 True 0.067975\n", + "40875 True 0.089929\n", + "9594 True 0.092601\n", + "34825 True 0.107744\n", + "37530 True 0.108516" ] }, "execution_count": 29, @@ -2472,10 +2472,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:32.449857Z", - "iopub.status.busy": "2024-08-29T17:11:32.449697Z", - "iopub.status.idle": "2024-08-29T17:11:32.640964Z", - "shell.execute_reply": "2024-08-29T17:11:32.640466Z" + "iopub.execute_input": "2024-09-04T16:40:45.764526Z", + "iopub.status.busy": "2024-09-04T16:40:45.764213Z", + "iopub.status.idle": "2024-09-04T16:40:45.959309Z", + "shell.execute_reply": "2024-09-04T16:40:45.958868Z" } }, "outputs": [ @@ -2515,10 +2515,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:32.643071Z", - "iopub.status.busy": "2024-08-29T17:11:32.642899Z", - "iopub.status.idle": "2024-08-29T17:11:32.647250Z", - "shell.execute_reply": "2024-08-29T17:11:32.646780Z" + "iopub.execute_input": "2024-09-04T16:40:45.961461Z", + "iopub.status.busy": "2024-09-04T16:40:45.961113Z", + "iopub.status.idle": "2024-09-04T16:40:45.965459Z", + "shell.execute_reply": "2024-09-04T16:40:45.965006Z" }, "nbsphinx": "hidden" }, @@ -2555,77 +2555,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0155f39e76b641a0997403416f227a84": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b8eb25ad27a645b4b1196d369517df6e", - "placeholder": "​", - "style": "IPY_MODEL_34368070659c4652b06234a5ddf214ba", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" - } - }, - "02166c864ca449ecb48ca6570e5c3978": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b899fea4be3f41fdad2310b7c2203a55", - "IPY_MODEL_e7f7e5f9e3b14be7a16a4c71b2317d22", - "IPY_MODEL_0dd17e06beba4539940570c8b1611024" - ], - "layout": "IPY_MODEL_760d2a4ef9f14d55b554ff1f53c49a50", - "tabbable": null, - "tooltip": null - } - }, - "0277bed58c03483d93a6c50e2b9b6722": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8b2b5f770cef4957b0cae17e5aed4562", - "placeholder": "​", - "style": "IPY_MODEL_4f15eed7799b486faac26dd4c03ad836", - "tabbable": null, - "tooltip": null, - "value": " 2/2 [00:00<00:00, 581.21it/s]" - } - }, - "055a2e65c92c43638c2d0e975fa33812": { + "0022417c77c54bd78bfd3a7cea985883": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2678,23 +2608,7 @@ "width": null } }, - "062b1634d54a44ccb33bbd31b552ae3b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "07a736b7838446e0a6062d74aa6d0472": { + "0141ce65cecf40918d943ac362a0a32d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2747,7 +2661,7 @@ "width": null } }, - "0aaafe3124de4c75bfcb92e44f8ddf6b": { + "0179924299be44a79a4cdecc3ed04e5e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2765,30 +2679,7 @@ "text_color": null } }, - "0dd17e06beba4539940570c8b1611024": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1ff6628d35674ed096c44c7819a6691c", - "placeholder": "​", - "style": "IPY_MODEL_d039b3628d7a47e2ba304fcb87558b1f", - "tabbable": null, - "tooltip": null, - "value": " 9.02k/9.02k [00:00<00:00, 1.10MB/s]" - } - }, - "0eee1fa4a60040fda1cd5335b48ae0e8": { + "04229d123f004c9ba6b4e82d3d240266": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2841,7 +2732,7 @@ "width": null } }, - "1289c374a6674e0198d82801b960ee43": { + "04d51f3a37bd41acb28fc4140bb30dce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2894,7 +2785,7 @@ "width": null } }, - "13e8d95a1dd34601a45ec583c686b58a": { + "09a9683625114e2e99db135163b06ca4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2947,56 +2838,92 @@ "width": null } }, - "1432df243741424cad3c2d8d81a50366": { + "0c21af7dcb2d444fbf62b722976a65c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d8c0f1a5c4704230a710b4e1f34aa60a", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_46a8aaaf91bc41ecb5cc7775d315eb4b", + "layout": "IPY_MODEL_cb4db10617e44ed7852597b4f6c0658f", + "placeholder": "​", + "style": "IPY_MODEL_de930b11aed94559b6e097c807955b8b", "tabbable": null, "tooltip": null, - "value": 5175617.0 + "value": "Computing checksums: 100%" } }, - "15aaefdc20954e4fb4be9541b93b659e": { + "0c47aef0907c47eaaedf291087d55f56": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0c9de8b16026487b995ada22a7ca529f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_af35b64a76284e4ea25c616ed38482ae", - "placeholder": "​", - "style": "IPY_MODEL_30b1145acc2e4346902e5abb2c35dc48", + "layout": "IPY_MODEL_7b2b42caf4e746468a4c818d86e8d170", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5d3716a8d48e48e1af03a3146e77ed32", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": 40.0 + } + }, + "0d024a28652841b8b8cf6a9b0ba3bbd3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "16046217f9024ce3b327598b6413db93": { + "0d458c2994de496aba51d52da7eea6c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3012,7 +2939,33 @@ "description_width": "" } }, - "175c6b9a6c7648ada814c9c5b7aab29a": { + "0dab7f632511443cb2d4077421f17178": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4f4783071cae4f53a6e05e869354c4f7", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_93d8212cabb54aaf9027643e0c5f66f7", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "0e004de4b55f4773b021420f142d22ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3065,43 +3018,7 @@ "width": null } }, - "19e9ad2ec0d247dcb24028ec3527467b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1f44333feca64afd9dd53619c7d357ab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1fcd9e48c80a404d8e16d8ece5130497": { + "13a29dac815c4abab8ee5054c8a72bfd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3154,7 +3071,7 @@ "width": null } }, - "1ff6628d35674ed096c44c7819a6691c": { + "143811f81d774487bc2a142f883ca61e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3207,7 +3124,31 @@ "width": null } }, - "20f26c11b8ae4e0ca67b76c332c0e242": { + "14a337641dd1417c8844000cc271b2b4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d734ef642bc844619743e54e7eb9f932", + "IPY_MODEL_562a16eb337241cc9d95976d3c3c77d5", + "IPY_MODEL_1e3826cbd4a74fb3a9ce78f2b3f4a287" + ], + "layout": "IPY_MODEL_b919f2d3fa084edbb558cbad11f2166c", + "tabbable": null, + "tooltip": null + } + }, + "15dcfef807544d3aa51f29c92aaf3371": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3223,121 +3164,193 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bdb6a0ce0bc746e2874ba1100a207920", - "max": 40.0, + "layout": "IPY_MODEL_04d51f3a37bd41acb28fc4140bb30dce", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_8659457b5e2c440982589324e760b3fa", + "style": "IPY_MODEL_0d458c2994de496aba51d52da7eea6c4", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 60000.0 } }, - "210abe0571c94b2eb6fc2c0eccf58c7b": { - "model_module": "@jupyter-widgets/controls", + "16c09ec9e1b5462b900750c043dcceed": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "23c305c6a1884467863bb8519da19306": { - "model_module": "@jupyter-widgets/controls", + "16e9b91fdf11469e939c62cba1bcb860": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_86258667777f4834904d2a4516a0c8d8", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a70f6afda7a1426db8b3edd1d7edb201", - "tabbable": null, - "tooltip": null, - "value": 2.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "241bc8357c7a446aaf1ed62561f866ee": { + "1abdd5d51e71429c83f3161fb0f34a8a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7005a0048df246e5bb1c1905e137fa1f", + "IPY_MODEL_8c297dc243924a5380ca75b96187a9a2", + "IPY_MODEL_7c9586beec5e4ef6bd9d8e0298fc948f" + ], + "layout": "IPY_MODEL_ffe865a35560473db7acaa29a0231711", + "tabbable": null, + "tooltip": null } }, - "242354652c904fe7a050d776f4320e6d": { + "1c5ecaf065d34b36a230ebd837a07c20": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f7747803683146dcb3f965ab87db1777", + "placeholder": "​", + "style": "IPY_MODEL_aa1330e5a3fd484ab8bde7ccdb0f1485", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "245f60ab16d24a57b85ef53a5fb96484": { + "1e3826cbd4a74fb3a9ce78f2b3f4a287": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5b8773e21e9045a38fc3cf6ff2061d0b", - "IPY_MODEL_20f26c11b8ae4e0ca67b76c332c0e242", - "IPY_MODEL_a620a4ab709944aabf30b10124f0c31d" - ], - "layout": "IPY_MODEL_175c6b9a6c7648ada814c9c5b7aab29a", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_314c1086d8364ce898c8f9936e83903d", + "placeholder": "​", + "style": "IPY_MODEL_687f60a5bc2b44c3ae7e1b75783a9275", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 40/40 [00:00<00:00, 59.82it/s]" } }, - "2609d164424347068454ab0a740d8463": { + "1f8ea27a7ecf48b8a2bd28d5838a3b37": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3352,63 +3365,56 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_abe6856ea06d4ef7b5e656e94f390070", + "layout": "IPY_MODEL_143811f81d774487bc2a142f883ca61e", "placeholder": "​", - "style": "IPY_MODEL_210abe0571c94b2eb6fc2c0eccf58c7b", + "style": "IPY_MODEL_9f167f352c574694bf36a8e30f9d3d02", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 9.02k/9.02k [00:00<00:00, 1.12MB/s]" } }, - "2b84d19858824876b35a7eebdf801115": { + "1fa0cf3d00a644b6ad96a96c39c0c669": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4ed09e7143db4ac39990f0a2233799bc", - "IPY_MODEL_f8f09ca8cc544d618d3f87d63c5a4180", - "IPY_MODEL_c139383a888345d4a1e7016c46401592" - ], - "layout": "IPY_MODEL_491a0b3435794395bb560413f263ae58", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e24703f8aefc42b0bc972f0a569e8901", + "placeholder": "​", + "style": "IPY_MODEL_2248610a21bb4f3ea65d26b18f72d60c", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 40/40 [00:00<00:00, 59.16it/s]" } }, - "2c326980020e4183aef0bcca45f9b946": { + "2248610a21bb4f3ea65d26b18f72d60c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e71a4b851fa4440aa1d6cd7180917f49", - "IPY_MODEL_54de349814594c9f8f3a74c0b3d65bd4", - "IPY_MODEL_68137c187954421998892a1b39cc9aea" - ], - "layout": "IPY_MODEL_ee8950bc16444c91889ce4ec4e91019a", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2db2296df0c54704afb18f0c6be6ea2a": { + "25f553a3238d4189a98f9ccd2122384c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3426,33 +3432,46 @@ "text_color": null } }, - "2dbf8565841045b194839dd51b538e83": { + "27d406972aee4b65a4c4b791f40952e1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2c07aca9a1094813b03c2dddbe0a5f93": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6ae9974c278c4c0cbec6907d83400adc", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cc8a737d11c44bb3afbb968953dc6b40", + "layout": "IPY_MODEL_313d41db989b4ef4bd52ebe95e120410", + "placeholder": "​", + "style": "IPY_MODEL_5aec3b49dac040898e4327896867ec89", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": "100%" } }, - "30479b03a99c460bbccd04f895c13bb2": { + "2e2c0b61876c4818b40e4bb9a74c3802": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3468,41 +3487,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_edc16b7386ce40dfa0266f9d5505e8b1", + "layout": "IPY_MODEL_09a9683625114e2e99db135163b06ca4", "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_da6d437c8bb04c09b41a93ea3c8cad18", + "style": "IPY_MODEL_a461306a60b44f338063b85e74df1e68", "tabbable": null, "tooltip": null, "value": 60000.0 } }, - "30683b6059984426ba19841fd4a774ec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b3aa1c4591074eaa95269b8548cf1fc8", - "IPY_MODEL_af52736584c84fd68f1fd37ebb85da69", - "IPY_MODEL_6238ea01a592424b9c79d90e82a492fc" - ], - "layout": "IPY_MODEL_3a6fb23c5c0f49a6bfd7d5116617af79", - "tabbable": null, - "tooltip": null - } - }, - "30b1145acc2e4346902e5abb2c35dc48": { + "30ac32a3eb5144eeaa93b2cc480f57e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3520,33 +3515,7 @@ "text_color": null } }, - "30fb4fef57e04f9492e81621f9a02609": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1fcd9e48c80a404d8e16d8ece5130497", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c7ac984677f04e989589e9c69a4c2a38", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "34368070659c4652b06234a5ddf214ba": { + "30c5ff2890a342eaa9a84e54e76a9b53": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3564,136 +3533,25 @@ "text_color": null } }, - "350d1a3e679b4c558f625b9eaa03c2ea": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "35db1575f3ea47848b941d9d3aac55ff": { + "3107875deb17443e918ba41745fe1e6f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8957a61d49c94301b1624e5ce62bf9ca", - "placeholder": "​", - "style": "IPY_MODEL_a601ff577450461fa86b58e7fa23f7a8", - "tabbable": null, - "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 76.9MB/s]" - } - }, - "35df5381a4da4817a02fc82e7a57a8e4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "366415409f5245bab9f80f71bf2b4230": { + "313d41db989b4ef4bd52ebe95e120410": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3746,7 +3604,7 @@ "width": null } }, - "39d7aa96bc3b4e4aa5ad3c8522fa6dc0": { + "314c1086d8364ce898c8f9936e83903d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3799,7 +3657,7 @@ "width": null } }, - "3a4a80e9a3f547d9b039302dbdd73447": { + "319eb3c359274c29ba693fd30f98b99d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3814,16 +3672,32 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_15aaefdc20954e4fb4be9541b93b659e", - "IPY_MODEL_1432df243741424cad3c2d8d81a50366", - "IPY_MODEL_35db1575f3ea47848b941d9d3aac55ff" + "IPY_MODEL_afe44f2bdc9841e2b632ea5127c4144b", + "IPY_MODEL_5d25821e62224cc6bcf0677e102c0cfb", + "IPY_MODEL_1f8ea27a7ecf48b8a2bd28d5838a3b37" ], - "layout": "IPY_MODEL_6084d7c2e2d846f4bd020a481589ada0", + "layout": "IPY_MODEL_933bf3a7089147c8bb60edea31f5c4f8", "tabbable": null, "tooltip": null } }, - "3a6fb23c5c0f49a6bfd7d5116617af79": { + "31e6839e780a42198137b352defeb802": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "338f85b059b84805abef575ea255ddbe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3876,7 +3750,7 @@ "width": null } }, - "3a83a86ee3254d7fbaa7f292d3461e66": { + "33af8738fba94dfab36a8701ff30857a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3891,50 +3765,123 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_2609d164424347068454ab0a740d8463", - "IPY_MODEL_30fb4fef57e04f9492e81621f9a02609", - "IPY_MODEL_ca44d1a0c97e42c0ba5c963bad3d2fbd" + "IPY_MODEL_e44982f2eb9e4791b08cd2156c548ca2", + "IPY_MODEL_410a39682eac4f738d95819a8ad29729", + "IPY_MODEL_5950dd3a54e0403db46b971f0bde39d0" ], - "layout": "IPY_MODEL_0eee1fa4a60040fda1cd5335b48ae0e8", + "layout": "IPY_MODEL_bff799b407884b1d86705a9be5706c4d", "tabbable": null, "tooltip": null } }, - "46147735dc3f4ab78cbfd74b1f806b38": { + "383e116f2e7f4ba28c1373459ab5b35b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "46a8aaaf91bc41ecb5cc7775d315eb4b": { + "39b7a60b22d9490c85820d3c8bb7afc7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9fd092569b0e4cb1b5c87ff215f04924", + "IPY_MODEL_0dab7f632511443cb2d4077421f17178", + "IPY_MODEL_6606dac2d810480c9a6abfe6040212e1" + ], + "layout": "IPY_MODEL_ad462a9af60f46638c00aee1663061b2", + "tabbable": null, + "tooltip": null + } + }, + "3b5a8e0b65d04c00a2928254aeb05198": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a4de1e27e08845ffb61131948a52daa3", + "placeholder": "​", + "style": "IPY_MODEL_637010f0d5ef45b3916b9ce7ff6a7b00", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 58.45it/s]" + } + }, + "410a39682eac4f738d95819a8ad29729": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_338f85b059b84805abef575ea255ddbe", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_27d406972aee4b65a4c4b791f40952e1", + "tabbable": null, + "tooltip": null, + "value": 10000.0 + } + }, + "41e648d218ea4894be674786d6e48d10": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "472d46a6df9d471299f43b7004fca650": { + "43b953da2af2432392c606841e8f7b2e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3952,7 +3899,23 @@ "text_color": null } }, - "491a0b3435794395bb560413f263ae58": { + "4768242974cc43e6bc10e127a929ccf5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "47c901ef0b8d4366be5d2fa1d1e244f1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4005,7 +3968,7 @@ "width": null } }, - "4ed09e7143db4ac39990f0a2233799bc": { + "4a373f8ac47e4756a8b00fb280811804": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4020,33 +3983,62 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e475a8fe6ee84b81b7c6fcdd3bb6ef90", + "layout": "IPY_MODEL_ced208e33e634e06b7f15bd47b70a0a9", "placeholder": "​", - "style": "IPY_MODEL_fdb4edb7a8bb4a7588ab227b2762abee", + "style": "IPY_MODEL_cca80cd9890b49babcc748d47b52949c", "tabbable": null, "tooltip": null, "value": "100%" } }, - "4f15eed7799b486faac26dd4c03ad836": { + "4bb198dfcbae4b5aa14ac1168e1b6695": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4ccdba32239b4df08f9f8d476cdf7d59", + "IPY_MODEL_2e2c0b61876c4818b40e4bb9a74c3802", + "IPY_MODEL_fd916e7ffc1548bbb5c29cf990a57996" + ], + "layout": "IPY_MODEL_47c901ef0b8d4366be5d2fa1d1e244f1", + "tabbable": null, + "tooltip": null + } + }, + "4ccdba32239b4df08f9f8d476cdf7d59": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fa02778a2cc040b4879714924186efaf", + "placeholder": "​", + "style": "IPY_MODEL_8b024a5f9ffe45edba4b3b4266313be1", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" } }, - "4fa9d3e77fa84132b629e16972ecc7b6": { + "4f4783071cae4f53a6e05e869354c4f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4099,97 +4091,7 @@ "width": null } }, - "536c195e34a3469c8721cef0fc99a326": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "53d10621096e4078bbe5deec2ef7c09f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7fa4854268024c4297e59b5e5972a504", - "placeholder": "​", - "style": "IPY_MODEL_2db2296df0c54704afb18f0c6be6ea2a", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "544951e7df3b481fa182d9b35e185488": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ce20d39ec6fe47ddaa2d8ab8440f7362", - "placeholder": "​", - "style": "IPY_MODEL_eab982631cc34ba8a8596e6ba5693904", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "54de349814594c9f8f3a74c0b3d65bd4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8e14e7a10be043febd5b5f05b264e8ab", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a0272fd931ac4c0bacfca76403ea1ee0", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "59d42367f0bc4da08336620c7352f5f0": { + "512e742019594d49b2d18335fc0873a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4242,69 +4144,31 @@ "width": null } }, - "5b8773e21e9045a38fc3cf6ff2061d0b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cc40cdf402aa4bbfa6075bcdd2db7087", - "placeholder": "​", - "style": "IPY_MODEL_804d41a62b0547c6a3419a45930219f0", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "5ed725f0d4654da98395d8ab6f8b8f3c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "5fdc766686a74da2ae974cdd770efb2e": { + "52daadd720d843c0afa302f1faa5901a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a349ca45c6e74dc9aa2bfb35f9724d4a", - "placeholder": "​", - "style": "IPY_MODEL_536c195e34a3469c8721cef0fc99a326", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4a373f8ac47e4756a8b00fb280811804", + "IPY_MODEL_15dcfef807544d3aa51f29c92aaf3371", + "IPY_MODEL_9d31520a5ddb4f4ca2cfb245ce9dd7eb" + ], + "layout": "IPY_MODEL_a5cceee0fd694167803fb7e58ac7a511", "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 281991.65 examples/s]" + "tooltip": null } }, - "6084d7c2e2d846f4bd020a481589ada0": { + "55e5ef22098548999aa147440ffd1524": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4357,7 +4221,33 @@ "width": null } }, - "6238ea01a592424b9c79d90e82a492fc": { + "562a16eb337241cc9d95976d3c3c77d5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_aaf1eb0282434241b66e8f2f251971e7", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_383e116f2e7f4ba28c1373459ab5b35b", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "5950dd3a54e0403db46b971f0bde39d0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4372,15 +4262,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e295e045b0af4a6984d0583f2e28515d", + "layout": "IPY_MODEL_13a29dac815c4abab8ee5054c8a72bfd", "placeholder": "​", - "style": "IPY_MODEL_9d13691cf7214be4bf6d73bbfa124bf8", + "style": "IPY_MODEL_77ddd926d9204425a0088ff2e947bb75", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.80it/s]" + "value": " 10000/10000 [00:00<00:00, 251849.65 examples/s]" + } + }, + "5aec3b49dac040898e4327896867ec89": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "667c7c2e4468430895d1457357b8f52e": { + "5c2293c88b074b72a9f12d308f76d09b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4433,7 +4341,49 @@ "width": null } }, - "68137c187954421998892a1b39cc9aea": { + "5d25821e62224cc6bcf0677e102c0cfb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bd5f78b5be0444f6a74c949e22a09963", + "max": 9015.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d01c367701d24317b1f240f0146eb42e", + "tabbable": null, + "tooltip": null, + "value": 9015.0 + } + }, + "5d3716a8d48e48e1af03a3146e77ed32": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5fab6c4a3ce2415ca661f381e68e6a88": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4448,15 +4398,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d112af36b217447a9be138aa2ee541ac", + "layout": "IPY_MODEL_ede4f31e258c4a39ab54822de2e0d6ab", "placeholder": "​", - "style": "IPY_MODEL_f753a03847e84059ba0a7144ad649a80", + "style": "IPY_MODEL_844975f4a38d426fa9fa8b4d36b1e450", "tabbable": null, "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 237482.89 examples/s]" + "value": "100%" + } + }, + "6280d471aa3b4686bcd78507f1195966": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "6ae9974c278c4c0cbec6907d83400adc": { + "6358ecec41264ff19792d78df6f3def2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4509,7 +4475,48 @@ "width": null } }, - "6f2d38a869d24bfe9927e015b667bf3c": { + "637010f0d5ef45b3916b9ce7ff6a7b00": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6606dac2d810480c9a6abfe6040212e1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7f660cc2fff944de9db3c1b9db79067a", + "placeholder": "​", + "style": "IPY_MODEL_dd5ad93143444cea9b477a6d38d462ff", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:00<00:00, 292456.70 examples/s]" + } + }, + "687f60a5bc2b44c3ae7e1b75783a9275": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4527,7 +4534,7 @@ "text_color": null } }, - "760d2a4ef9f14d55b554ff1f53c49a50": { + "69923747b3274fc3a875e6a81b98c06d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4580,7 +4587,7 @@ "width": null } }, - "7661386900684fe2a647d1ad8dfcaaf5": { + "6b85975f2bbc4da1b3135b1604afb19d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4598,7 +4605,7 @@ "text_color": null } }, - "7f0583957ac345dd8f16c7f03c81cb24": { + "6ea179cbaa5f4876bcadb8edfde1b69d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4616,7 +4623,53 @@ "text_color": null } }, - "7fa4854268024c4297e59b5e5972a504": { + "6f2d6c399239449a9899ea656784e063": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f07c4c03f4e04026ae5aa371e552f1d9", + "placeholder": "​", + "style": "IPY_MODEL_3107875deb17443e918ba41745fe1e6f", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "7005a0048df246e5bb1c1905e137fa1f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6358ecec41264ff19792d78df6f3def2", + "placeholder": "​", + "style": "IPY_MODEL_0c47aef0907c47eaaedf291087d55f56", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "70a92929cd554ad5a7c8cb2319e0c861": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4669,51 +4722,7 @@ "width": null } }, - "804d41a62b0547c6a3419a45930219f0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "83508f25486b412bb93c8c3331f78dc8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_35df5381a4da4817a02fc82e7a57a8e4", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_062b1634d54a44ccb33bbd31b552ae3b", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "86258667777f4834904d2a4516a0c8d8": { + "723bc85d099342e788f9e8b49ad50858": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4766,23 +4775,31 @@ "width": null } }, - "8659457b5e2c440982589324e760b3fa": { + "75f52856abb347d89314c3cc706909a4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5fab6c4a3ce2415ca661f381e68e6a88", + "IPY_MODEL_b08f01dc7102459b95765ff321d9a212", + "IPY_MODEL_8fba5c8c7b56497394f0a2d418758e48" + ], + "layout": "IPY_MODEL_55e5ef22098548999aa147440ffd1524", + "tabbable": null, + "tooltip": null } }, - "877913d07f6b46a5b66b61fe9ade5852": { + "77ddd926d9204425a0088ff2e947bb75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4793,14 +4810,40 @@ "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "782cd0a0af354c77b93a98b08827514e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_512e742019594d49b2d18335fc0873a7", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9237c3ec6f474840af49b5510a21050a", + "tabbable": null, + "tooltip": null, + "value": 2.0 } }, - "8957a61d49c94301b1624e5ce62bf9ca": { + "7b2b42caf4e746468a4c818d86e8d170": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4853,60 +4896,30 @@ "width": null } }, - "8aa3aa66d53b483dab294c012dd41529": { - "model_module": "@jupyter-widgets/base", + "7c9586beec5e4ef6bd9d8e0298fc948f": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8d78bd93294749efad258238e8e80526", + "placeholder": "​", + "style": "IPY_MODEL_25f553a3238d4189a98f9ccd2122384c", + "tabbable": null, + "tooltip": null, + "value": " 30.9M/30.9M [00:01<00:00, 28.2MB/s]" } }, - "8b2b5f770cef4957b0cae17e5aed4562": { + "7e1d6cd6445e48cb8552b90570d8595d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4959,7 +4972,7 @@ "width": null } }, - "8e14e7a10be043febd5b5f05b264e8ab": { + "7f660cc2fff944de9db3c1b9db79067a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5012,7 +5025,7 @@ "width": null } }, - "8e21989235f0427298336b2abd3843d8": { + "844975f4a38d426fa9fa8b4d36b1e450": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5030,96 +5043,51 @@ "text_color": null } }, - "8f4687566fbd4cd2989f41271e1c9aa9": { + "85195f3e658241b4aaeba328efadeb4c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_350d1a3e679b4c558f625b9eaa03c2ea", - "placeholder": "​", - "style": "IPY_MODEL_f759a3d80a1b4d2785b376e2042b63e6", + "layout": "IPY_MODEL_8b36f2d3f63a4666944573feff6995d0", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_88a909d2a4824e73834940bb28f085af", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 40.0 } }, - "9396c479eaa34c02b3d54c4f2047ec73": { + "8658bab11e2e49c0bb4c92644240b7e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "944d3d9122cd4a2688bd85cf843c82c1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9b3a9a2617e3445f834b659140d7b68d", - "IPY_MODEL_30479b03a99c460bbccd04f895c13bb2", - "IPY_MODEL_988bdb1ce4b14c2483135951f5b85254" - ], - "layout": "IPY_MODEL_e433d034c55049c08c874d37cec81200", - "tabbable": null, - "tooltip": null - } - }, - "94d40cc96b39429389af0bf7d48c7809": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d297bd7d5e7a4feeb1477330f0574f05", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_aaf3d3a8f8754d53adea65a1d87e0a5b", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "988bdb1ce4b14c2483135951f5b85254": { + "8793ff334f9042c4a3378e1a6305803c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5134,61 +5102,55 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ae99ca9cf9aa43db863362668bba2407", + "layout": "IPY_MODEL_0022417c77c54bd78bfd3a7cea985883", "placeholder": "​", - "style": "IPY_MODEL_242354652c904fe7a050d776f4320e6d", + "style": "IPY_MODEL_41e648d218ea4894be674786d6e48d10", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 6119.93 examples/s]" + "value": " 5.18M/5.18M [00:03<00:00, 1.53MB/s]" } }, - "98de88cd65da4b96ac893d4a4f55fd4f": { + "88a909d2a4824e73834940bb28f085af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ba40cd2b0072480daeefbdec26d51b3f", - "placeholder": "​", - "style": "IPY_MODEL_19e9ad2ec0d247dcb24028ec3527467b", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:51<00:00, 1239.42it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "9b3a9a2617e3445f834b659140d7b68d": { + "8a1c87dd1eaf47458965198d643def42": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d26fe91e72184bbcb6fb841ee749175c", - "placeholder": "​", - "style": "IPY_MODEL_46147735dc3f4ab78cbfd74b1f806b38", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1c5ecaf065d34b36a230ebd837a07c20", + "IPY_MODEL_bcf490ee6f0c45a3ba4fa11c9fb79924", + "IPY_MODEL_3b5a8e0b65d04c00a2928254aeb05198" + ], + "layout": "IPY_MODEL_dea3848bc67d44a5a7cb6f366d9ad5f9", "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" + "tooltip": null } }, - "9d13691cf7214be4bf6d73bbfa124bf8": { + "8b024a5f9ffe45edba4b3b4266313be1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5206,39 +5168,7 @@ "text_color": null } }, - "a0272fd931ac4c0bacfca76403ea1ee0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a1f09fe2b8f948faa4f2e772a9bd55a4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a25bbb2c5ade4c3f8f52f8fedaa7bde8": { + "8b36f2d3f63a4666944573feff6995d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5291,7 +5221,33 @@ "width": null } }, - "a349ca45c6e74dc9aa2bfb35f9724d4a": { + "8c297dc243924a5380ca75b96187a9a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8cde25b550a04bfebe1bf0b18ab1daee", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_976fe03aaafb46a986688b11b3501383", + "tabbable": null, + "tooltip": null, + "value": 30931277.0 + } + }, + "8cde25b550a04bfebe1bf0b18ab1daee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5344,7 +5300,7 @@ "width": null } }, - "a5c30c4516df44c6aee0680e1076de1f": { + "8d78bd93294749efad258238e8e80526": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5397,7 +5353,30 @@ "width": null } }, - "a601ff577450461fa86b58e7fa23f7a8": { + "8fba5c8c7b56497394f0a2d418758e48": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b64ad2cc1932429cb477b3d137dc7121", + "placeholder": "​", + "style": "IPY_MODEL_6b85975f2bbc4da1b3135b1604afb19d", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 61.39it/s]" + } + }, + "90d724e0f915428b93f193f05c8de6b4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5415,7 +5394,7 @@ "text_color": null } }, - "a620a4ab709944aabf30b10124f0c31d": { + "922d5087e2b649f48d475399d575ea1a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5430,15 +5409,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a8b05d7eb5304251b2d44a38c44a907e", + "layout": "IPY_MODEL_dc89999949e44292926b7510751ff2db", "placeholder": "​", - "style": "IPY_MODEL_d4cc15f9f1c14d1895abde36807ee4b4", + "style": "IPY_MODEL_30ac32a3eb5144eeaa93b2cc480f57e3", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 58.54it/s]" + "value": " 40/40 [00:00<00:00, 60.83it/s]" } }, - "a70f6afda7a1426db8b3edd1d7edb201": { + "9237c3ec6f474840af49b5510a21050a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5454,7 +5433,25 @@ "description_width": "" } }, - "a7b2adaba2fb4c0685701dbece00319c": { + "932f37f92945480081c581921d446839": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "933bf3a7089147c8bb60edea31f5c4f8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5507,7 +5504,62 @@ "width": null } }, - "a8b05d7eb5304251b2d44a38c44a907e": { + "93d8212cabb54aaf9027643e0c5f66f7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "976fe03aaafb46a986688b11b3501383": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9d31520a5ddb4f4ca2cfb245ce9dd7eb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_04229d123f004c9ba6b4e82d3d240266", + "placeholder": "​", + "style": "IPY_MODEL_0d024a28652841b8b8cf6a9b0ba3bbd3", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:49<00:00, 1167.09it/s]" + } + }, + "9d7dd109f84049a68e22e2db188f20e0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5560,7 +5612,7 @@ "width": null } }, - "a92ff54eb2604c949f95a70fab370e98": { + "9d9d5c5033a64a1290e83d5d2a44b5b6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5613,23 +5665,7 @@ "width": null } }, - "aaf3d3a8f8754d53adea65a1d87e0a5b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "abe6856ea06d4ef7b5e656e94f390070": { + "9e90235cd1084c3890f5f8d801589d4f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5682,30 +5718,25 @@ "width": null } }, - "ad13afc7fe8348dfbe9d7d7d76b291a0": { + "9f167f352c574694bf36a8e30f9d3d02": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a5c30c4516df44c6aee0680e1076de1f", - "placeholder": "​", - "style": "IPY_MODEL_0aaafe3124de4c75bfcb92e44f8ddf6b", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "adde9152a9da4e6fae33ec283a2d3566": { + "9fd092569b0e4cb1b5c87ff215f04924": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5720,15 +5751,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d999b5e873794461a8d82e2f4c8af4f8", + "layout": "IPY_MODEL_a1bcce5d7ec24b85a79966a254d92346", "placeholder": "​", - "style": "IPY_MODEL_877913d07f6b46a5b66b61fe9ade5852", + "style": "IPY_MODEL_bc7dea28f58b4e7a97d3551fec0d22b3", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 58.16it/s]" + "value": "Generating train split: 100%" } }, - "ae99ca9cf9aa43db863362668bba2407": { + "a047fbf4c3f34260b27c9647a5b2e28c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5781,7 +5812,7 @@ "width": null } }, - "af35b64a76284e4ea25c616ed38482ae": { + "a1bcce5d7ec24b85a79966a254d92346": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5834,33 +5865,23 @@ "width": null } }, - "af52736584c84fd68f1fd37ebb85da69": { + "a461306a60b44f338063b85e74df1e68": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_667c7c2e4468430895d1457357b8f52e", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a1f09fe2b8f948faa4f2e772a9bd55a4", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "b0e1db8d22bc48949c043b3a256273fb": { + "a4de1e27e08845ffb61131948a52daa3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5913,76 +5934,7 @@ "width": null } }, - "b37cad2802504b1e8464dfba647d36d4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a25bbb2c5ade4c3f8f52f8fedaa7bde8", - "placeholder": "​", - "style": "IPY_MODEL_241bc8357c7a446aaf1ed62561f866ee", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.46it/s]" - } - }, - "b3aa1c4591074eaa95269b8548cf1fc8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a92ff54eb2604c949f95a70fab370e98", - "placeholder": "​", - "style": "IPY_MODEL_e4422f219d7e4454b2946f1e31b7260f", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "b899fea4be3f41fdad2310b7c2203a55": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_efc4391291b54332917067627ffafc85", - "placeholder": "​", - "style": "IPY_MODEL_7661386900684fe2a647d1ad8dfcaaf5", - "tabbable": null, - "tooltip": null, - "value": "Downloading readme: 100%" - } - }, - "b8eb25ad27a645b4b1196d369517df6e": { + "a5cceee0fd694167803fb7e58ac7a511": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6035,7 +5987,25 @@ "width": null } }, - "ba40cd2b0072480daeefbdec26d51b3f": { + "aa1330e5a3fd484ab8bde7ccdb0f1485": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "aaf1eb0282434241b66e8f2f251971e7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6088,33 +6058,7 @@ "width": null } }, - "bca143bce2e948f29cdedc5d4e1e65a1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4fa9d3e77fa84132b629e16972ecc7b6", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9396c479eaa34c02b3d54c4f2047ec73", - "tabbable": null, - "tooltip": null, - "value": 30931277.0 - } - }, - "bdb6a0ce0bc746e2874ba1100a207920": { + "ad462a9af60f46638c00aee1663061b2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6167,54 +6111,105 @@ "width": null } }, - "bfa07680b1b945abacbec7ae89df6ad0": { + "ae21782319044934a85f11a230613280": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0155f39e76b641a0997403416f227a84", - "IPY_MODEL_23c305c6a1884467863bb8519da19306", - "IPY_MODEL_0277bed58c03483d93a6c50e2b9b6722" - ], - "layout": "IPY_MODEL_13e8d95a1dd34601a45ec583c686b58a", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5c2293c88b074b72a9f12d308f76d09b", + "placeholder": "​", + "style": "IPY_MODEL_932f37f92945480081c581921d446839", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 63.62it/s]" + } + }, + "afe44f2bdc9841e2b632ea5127c4144b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c84fef20ad284afb8e7929ac706cfd32", + "placeholder": "​", + "style": "IPY_MODEL_0179924299be44a79a4cdecc3ed04e5e", + "tabbable": null, + "tooltip": null, + "value": "Downloading readme: 100%" + } + }, + "b08f01dc7102459b95765ff321d9a212": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_723bc85d099342e788f9e8b49ad50858", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_31e6839e780a42198137b352defeb802", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 40.0 } }, - "c139383a888345d4a1e7016c46401592": { + "b12e1da007be48ff954eea3be87bb3d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_dcc31ef4912342e9b8aed49f11a11d0e", - "placeholder": "​", - "style": "IPY_MODEL_7f0583957ac345dd8f16c7f03c81cb24", + "layout": "IPY_MODEL_9e90235cd1084c3890f5f8d801589d4f", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6280d471aa3b4686bcd78507f1195966", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 57.80it/s]" + "value": 40.0 } }, - "c20c2eba24504785bb150f2a8d3c0f8c": { + "b64ad2cc1932429cb477b3d137dc7121": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6267,7 +6262,7 @@ "width": null } }, - "c2f58df60b6f4bb683e4db3d17f476f1": { + "b8fa2ba849184558b5054c6e4a4e5dd8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6282,16 +6277,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_ad13afc7fe8348dfbe9d7d7d76b291a0", - "IPY_MODEL_83508f25486b412bb93c8c3331f78dc8", - "IPY_MODEL_5fdc766686a74da2ae974cdd770efb2e" + "IPY_MODEL_2c07aca9a1094813b03c2dddbe0a5f93", + "IPY_MODEL_0c9de8b16026487b995ada22a7ca529f", + "IPY_MODEL_1fa0cf3d00a644b6ad96a96c39c0c669" ], - "layout": "IPY_MODEL_1289c374a6674e0198d82801b960ee43", + "layout": "IPY_MODEL_0141ce65cecf40918d943ac362a0a32d", "tabbable": null, "tooltip": null } }, - "c4ed50e54fb14163ad2c7e26be20b122": { + "b919f2d3fa084edbb558cbad11f2166c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6344,46 +6339,95 @@ "width": null } }, - "c7ac984677f04e989589e9c69a4c2a38": { + "ba6ef61aefa743f68f87f9bf5e51e7c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "ca44d1a0c97e42c0ba5c963bad3d2fbd": { + "bc7dea28f58b4e7a97d3551fec0d22b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bcf490ee6f0c45a3ba4fa11c9fb79924": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c4ed50e54fb14163ad2c7e26be20b122", - "placeholder": "​", - "style": "IPY_MODEL_8e21989235f0427298336b2abd3843d8", + "layout": "IPY_MODEL_9d7dd109f84049a68e22e2db188f20e0", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ea315a626b0a44e29c5921b180079479", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "bd34b1eea233405cbdb124abaab21576": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_70a92929cd554ad5a7c8cb2319e0c861", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4768242974cc43e6bc10e127a929ccf5", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 58.66it/s]" + "value": 5175617.0 } }, - "cc40cdf402aa4bbfa6075bcdd2db7087": { + "bd5f78b5be0444f6a74c949e22a09963": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6436,23 +6480,31 @@ "width": null } }, - "cc8a737d11c44bb3afbb968953dc6b40": { + "be064f9db0c241afa490cc2cddb76c07": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ec49eea6b61b432380e1b8d67cce50f7", + "IPY_MODEL_bd34b1eea233405cbdb124abaab21576", + "IPY_MODEL_8793ff334f9042c4a3378e1a6305803c" + ], + "layout": "IPY_MODEL_9d9d5c5033a64a1290e83d5d2a44b5b6", + "tabbable": null, + "tooltip": null } }, - "ce20d39ec6fe47ddaa2d8ab8440f7362": { + "bea2584514b246daa5ce6a066dd5276a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6505,51 +6557,7 @@ "width": null } }, - "d039b3628d7a47e2ba304fcb87558b1f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d0d2dce902724064a0d010a7eb343642": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8aa3aa66d53b483dab294c012dd41529", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fd9a861c0a264ea892e95a4deef9270b", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "d112af36b217447a9be138aa2ee541ac": { + "bff799b407884b1d86705a9be5706c4d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6602,7 +6610,7 @@ "width": null } }, - "d26fe91e72184bbcb6fb841ee749175c": { + "c13c549df7764497971abe4b3c3bae16": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6655,7 +6663,7 @@ "width": null } }, - "d297bd7d5e7a4feeb1477330f0574f05": { + "c57c24697b8b41ab8d7decfda27846ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6708,25 +6716,7 @@ "width": null } }, - "d4cc15f9f1c14d1895abde36807ee4b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d8c0f1a5c4704230a710b4e1f34aa60a": { + "c84fef20ad284afb8e7929ac706cfd32": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6779,7 +6769,31 @@ "width": null } }, - "d999b5e873794461a8d82e2f4c8af4f8": { + "c88ba26dbe76450d8c7a7ecda8dfca3e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6f2d6c399239449a9899ea656784e063", + "IPY_MODEL_85195f3e658241b4aaeba328efadeb4c", + "IPY_MODEL_ae21782319044934a85f11a230613280" + ], + "layout": "IPY_MODEL_16e9b91fdf11469e939c62cba1bcb860", + "tabbable": null, + "tooltip": null + } + }, + "cb4db10617e44ed7852597b4f6c0658f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6832,23 +6846,25 @@ "width": null } }, - "da6d437c8bb04c09b41a93ea3c8cad18": { + "cca80cd9890b49babcc748d47b52949c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "db59e010b5aa4414854ab3c75cc8a736": { + "ced208e33e634e06b7f15bd47b70a0a9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6901,31 +6917,46 @@ "width": null } }, - "db7e223cca954fa69911aa2677ff4349": { + "d01c367701d24317b1f240f0146eb42e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d734ef642bc844619743e54e7eb9f932": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ddc117b0a0054fb0a5cb8ca1c96a921c", - "IPY_MODEL_bca143bce2e948f29cdedc5d4e1e65a1", - "IPY_MODEL_ddee2c0864db488ca6c5d36007e6f41d" - ], - "layout": "IPY_MODEL_c20c2eba24504785bb150f2a8d3c0f8c", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_16c09ec9e1b5462b900750c043dcceed", + "placeholder": "​", + "style": "IPY_MODEL_8658bab11e2e49c0bb4c92644240b7e4", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "dcc31ef4912342e9b8aed49f11a11d0e": { + "dc89999949e44292926b7510751ff2db": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6978,77 +7009,43 @@ "width": null } }, - "dd4fc8da52cc4c5cbd12d26954963ed1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_53d10621096e4078bbe5deec2ef7c09f", - "IPY_MODEL_d0d2dce902724064a0d010a7eb343642", - "IPY_MODEL_b37cad2802504b1e8464dfba647d36d4" - ], - "layout": "IPY_MODEL_b0e1db8d22bc48949c043b3a256273fb", - "tabbable": null, - "tooltip": null - } - }, - "ddc117b0a0054fb0a5cb8ca1c96a921c": { + "dd5ad93143444cea9b477a6d38d462ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_59d42367f0bc4da08336620c7352f5f0", - "placeholder": "​", - "style": "IPY_MODEL_1f44333feca64afd9dd53619c7d357ab", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "ddee2c0864db488ca6c5d36007e6f41d": { + "de930b11aed94559b6e097c807955b8b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_39d7aa96bc3b4e4aa5ad3c8522fa6dc0", - "placeholder": "​", - "style": "IPY_MODEL_472d46a6df9d471299f43b7004fca650", - "tabbable": null, - "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 118MB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e295e045b0af4a6984d0583f2e28515d": { + "dea3848bc67d44a5a7cb6f366d9ad5f9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7101,7 +7098,7 @@ "width": null } }, - "e3b91fd43b3e46c08a3c6d32e9efbe48": { + "e0d04f00652048319b15a7c8d92b501f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7116,16 +7113,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_8f4687566fbd4cd2989f41271e1c9aa9", - "IPY_MODEL_94d40cc96b39429389af0bf7d48c7809", - "IPY_MODEL_adde9152a9da4e6fae33ec283a2d3566" + "IPY_MODEL_fb5e03dcdbdb43aaace465b0ba1354d8", + "IPY_MODEL_b12e1da007be48ff954eea3be87bb3d3", + "IPY_MODEL_922d5087e2b649f48d475399d575ea1a" ], - "layout": "IPY_MODEL_db59e010b5aa4414854ab3c75cc8a736", + "layout": "IPY_MODEL_0e004de4b55f4773b021420f142d22ea", "tabbable": null, "tooltip": null } }, - "e433d034c55049c08c874d37cec81200": { + "e24703f8aefc42b0bc972f0a569e8901": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7178,25 +7175,69 @@ "width": null } }, - "e4422f219d7e4454b2946f1e31b7260f": { + "e44982f2eb9e4791b08cd2156c548ca2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bea2584514b246daa5ce6a066dd5276a", + "placeholder": "​", + "style": "IPY_MODEL_43b953da2af2432392c606841e8f7b2e", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: 100%" + } + }, + "ea315a626b0a44e29c5921b180079479": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" + } + }, + "ec49eea6b61b432380e1b8d67cce50f7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_69923747b3274fc3a875e6a81b98c06d", + "placeholder": "​", + "style": "IPY_MODEL_30c5ff2890a342eaa9a84e54e76a9b53", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" } }, - "e475a8fe6ee84b81b7c6fcdd3bb6ef90": { + "ede4f31e258c4a39ab54822de2e0d6ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7249,74 +7290,7 @@ "width": null } }, - "e71a4b851fa4440aa1d6cd7180917f49": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_366415409f5245bab9f80f71bf2b4230", - "placeholder": "​", - "style": "IPY_MODEL_6f2d38a869d24bfe9927e015b667bf3c", - "tabbable": null, - "tooltip": null, - "value": "Generating test split: 100%" - } - }, - "e7f7e5f9e3b14be7a16a4c71b2317d22": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a7b2adaba2fb4c0685701dbece00319c", - "max": 9015.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5ed725f0d4654da98395d8ab6f8b8f3c", - "tabbable": null, - "tooltip": null, - "value": 9015.0 - } - }, - "eab982631cc34ba8a8596e6ba5693904": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "edc16b7386ce40dfa0266f9d5505e8b1": { + "f07c4c03f4e04026ae5aa371e552f1d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7369,7 +7343,30 @@ "width": null } }, - "edc1a5f44295433790bd440975c40ab2": { + "f2daf5e88ba6473ba8880eb044dea606": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c57c24697b8b41ab8d7decfda27846ba", + "placeholder": "​", + "style": "IPY_MODEL_90d724e0f915428b93f193f05c8de6b4", + "tabbable": null, + "tooltip": null, + "value": " 2/2 [00:00<00:00, 668.04it/s]" + } + }, + "f5b8d7a635e94cc4ab27efea1e48cad6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7384,16 +7381,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_544951e7df3b481fa182d9b35e185488", - "IPY_MODEL_2dbf8565841045b194839dd51b538e83", - "IPY_MODEL_98de88cd65da4b96ac893d4a4f55fd4f" + "IPY_MODEL_0c21af7dcb2d444fbf62b722976a65c6", + "IPY_MODEL_782cd0a0af354c77b93a98b08827514e", + "IPY_MODEL_f2daf5e88ba6473ba8880eb044dea606" ], - "layout": "IPY_MODEL_055a2e65c92c43638c2d0e975fa33812", + "layout": "IPY_MODEL_a047fbf4c3f34260b27c9647a5b2e28c", "tabbable": null, "tooltip": null } }, - "ee8950bc16444c91889ce4ec4e91019a": { + "f7747803683146dcb3f965ab87db1777": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7446,7 +7443,7 @@ "width": null } }, - "efc4391291b54332917067627ffafc85": { + "fa02778a2cc040b4879714924186efaf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7499,100 +7496,103 @@ "width": null } }, - "f753a03847e84059ba0a7144ad649a80": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f759a3d80a1b4d2785b376e2042b63e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f8f09ca8cc544d618d3f87d63c5a4180": { + "fb5e03dcdbdb43aaace465b0ba1354d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_07a736b7838446e0a6062d74aa6d0472", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_16046217f9024ce3b327598b6413db93", + "layout": "IPY_MODEL_c13c549df7764497971abe4b3c3bae16", + "placeholder": "​", + "style": "IPY_MODEL_ba6ef61aefa743f68f87f9bf5e51e7c4", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": "100%" } }, - "fd9a861c0a264ea892e95a4deef9270b": { + "fd916e7ffc1548bbb5c29cf990a57996": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7e1d6cd6445e48cb8552b90570d8595d", + "placeholder": "​", + "style": "IPY_MODEL_6ea179cbaa5f4876bcadb8edfde1b69d", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 4865.71 examples/s]" } }, - "fdb4edb7a8bb4a7588ab227b2762abee": { - "model_module": "@jupyter-widgets/controls", + "ffe865a35560473db7acaa29a0231711": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index 093f71f03..2b3e4b6b1 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:36.379101Z", - "iopub.status.busy": "2024-08-29T17:11:36.378930Z", - "iopub.status.idle": "2024-08-29T17:11:37.569335Z", - "shell.execute_reply": "2024-08-29T17:11:37.568767Z" + "iopub.execute_input": "2024-09-04T16:40:49.475463Z", + "iopub.status.busy": "2024-09-04T16:40:49.475282Z", + "iopub.status.idle": "2024-09-04T16:40:50.600717Z", + "shell.execute_reply": "2024-09-04T16:40:50.600182Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:37.572372Z", - "iopub.status.busy": "2024-08-29T17:11:37.571623Z", - "iopub.status.idle": "2024-08-29T17:11:37.590425Z", - "shell.execute_reply": "2024-08-29T17:11:37.589943Z" + "iopub.execute_input": "2024-09-04T16:40:50.603405Z", + "iopub.status.busy": "2024-09-04T16:40:50.602877Z", + "iopub.status.idle": "2024-09-04T16:40:50.620956Z", + "shell.execute_reply": "2024-09-04T16:40:50.620416Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:37.592750Z", - "iopub.status.busy": "2024-08-29T17:11:37.592257Z", - "iopub.status.idle": "2024-08-29T17:11:37.614641Z", - "shell.execute_reply": "2024-08-29T17:11:37.614044Z" + "iopub.execute_input": "2024-09-04T16:40:50.623287Z", + "iopub.status.busy": "2024-09-04T16:40:50.622902Z", + "iopub.status.idle": "2024-09-04T16:40:50.644227Z", + "shell.execute_reply": "2024-09-04T16:40:50.643689Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:37.616822Z", - "iopub.status.busy": "2024-08-29T17:11:37.616498Z", - "iopub.status.idle": "2024-08-29T17:11:37.619816Z", - "shell.execute_reply": "2024-08-29T17:11:37.619387Z" + "iopub.execute_input": "2024-09-04T16:40:50.646201Z", + "iopub.status.busy": "2024-09-04T16:40:50.645882Z", + "iopub.status.idle": "2024-09-04T16:40:50.649299Z", + "shell.execute_reply": "2024-09-04T16:40:50.648753Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:37.621962Z", - "iopub.status.busy": "2024-08-29T17:11:37.621500Z", - "iopub.status.idle": "2024-08-29T17:11:37.629175Z", - "shell.execute_reply": "2024-08-29T17:11:37.628630Z" + "iopub.execute_input": "2024-09-04T16:40:50.651279Z", + "iopub.status.busy": "2024-09-04T16:40:50.650943Z", + "iopub.status.idle": "2024-09-04T16:40:50.658482Z", + "shell.execute_reply": "2024-09-04T16:40:50.658073Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:37.631249Z", - "iopub.status.busy": "2024-08-29T17:11:37.630950Z", - "iopub.status.idle": "2024-08-29T17:11:37.633949Z", - "shell.execute_reply": "2024-08-29T17:11:37.633523Z" + "iopub.execute_input": "2024-09-04T16:40:50.660525Z", + "iopub.status.busy": "2024-09-04T16:40:50.660181Z", + "iopub.status.idle": "2024-09-04T16:40:50.662616Z", + "shell.execute_reply": "2024-09-04T16:40:50.662167Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:37.635979Z", - "iopub.status.busy": "2024-08-29T17:11:37.635673Z", - "iopub.status.idle": "2024-08-29T17:11:40.721717Z", - "shell.execute_reply": "2024-08-29T17:11:40.721065Z" + "iopub.execute_input": "2024-09-04T16:40:50.664512Z", + "iopub.status.busy": "2024-09-04T16:40:50.664201Z", + "iopub.status.idle": "2024-09-04T16:40:53.731713Z", + "shell.execute_reply": "2024-09-04T16:40:53.731104Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:40.724378Z", - "iopub.status.busy": "2024-08-29T17:11:40.724167Z", - "iopub.status.idle": "2024-08-29T17:11:40.733453Z", - "shell.execute_reply": "2024-08-29T17:11:40.733018Z" + "iopub.execute_input": "2024-09-04T16:40:53.734310Z", + "iopub.status.busy": "2024-09-04T16:40:53.733908Z", + "iopub.status.idle": "2024-09-04T16:40:53.743636Z", + "shell.execute_reply": "2024-09-04T16:40:53.743175Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:40.735437Z", - "iopub.status.busy": "2024-08-29T17:11:40.735259Z", - "iopub.status.idle": "2024-08-29T17:11:42.766511Z", - "shell.execute_reply": "2024-08-29T17:11:42.765846Z" + "iopub.execute_input": "2024-09-04T16:40:53.745716Z", + "iopub.status.busy": "2024-09-04T16:40:53.745375Z", + "iopub.status.idle": "2024-09-04T16:40:55.677972Z", + "shell.execute_reply": "2024-09-04T16:40:55.677274Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:42.768783Z", - "iopub.status.busy": "2024-08-29T17:11:42.768452Z", - "iopub.status.idle": "2024-08-29T17:11:42.787280Z", - "shell.execute_reply": "2024-08-29T17:11:42.786814Z" + "iopub.execute_input": "2024-09-04T16:40:55.680381Z", + "iopub.status.busy": "2024-09-04T16:40:55.679890Z", + "iopub.status.idle": "2024-09-04T16:40:55.698324Z", + "shell.execute_reply": "2024-09-04T16:40:55.697856Z" }, "scrolled": true }, @@ -609,10 +609,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:42.789306Z", - "iopub.status.busy": "2024-08-29T17:11:42.788967Z", - "iopub.status.idle": "2024-08-29T17:11:42.796597Z", - "shell.execute_reply": "2024-08-29T17:11:42.796106Z" + "iopub.execute_input": "2024-09-04T16:40:55.700341Z", + "iopub.status.busy": "2024-09-04T16:40:55.700024Z", + "iopub.status.idle": "2024-09-04T16:40:55.707935Z", + "shell.execute_reply": "2024-09-04T16:40:55.707395Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:42.798575Z", - "iopub.status.busy": "2024-08-29T17:11:42.798213Z", - "iopub.status.idle": "2024-08-29T17:11:42.807143Z", - "shell.execute_reply": "2024-08-29T17:11:42.806709Z" + "iopub.execute_input": "2024-09-04T16:40:55.710164Z", + "iopub.status.busy": "2024-09-04T16:40:55.709761Z", + "iopub.status.idle": "2024-09-04T16:40:55.718695Z", + "shell.execute_reply": "2024-09-04T16:40:55.718150Z" } }, "outputs": [ @@ -848,10 +848,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:42.809227Z", - "iopub.status.busy": "2024-08-29T17:11:42.808904Z", - "iopub.status.idle": "2024-08-29T17:11:42.816927Z", - "shell.execute_reply": "2024-08-29T17:11:42.816360Z" + "iopub.execute_input": "2024-09-04T16:40:55.720776Z", + "iopub.status.busy": "2024-09-04T16:40:55.720379Z", + "iopub.status.idle": "2024-09-04T16:40:55.728279Z", + "shell.execute_reply": "2024-09-04T16:40:55.727725Z" } }, "outputs": [ @@ -965,10 +965,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:42.819065Z", - "iopub.status.busy": "2024-08-29T17:11:42.818748Z", - "iopub.status.idle": "2024-08-29T17:11:42.827764Z", - "shell.execute_reply": "2024-08-29T17:11:42.827196Z" + "iopub.execute_input": "2024-09-04T16:40:55.730411Z", + "iopub.status.busy": "2024-09-04T16:40:55.730017Z", + "iopub.status.idle": "2024-09-04T16:40:55.738656Z", + "shell.execute_reply": "2024-09-04T16:40:55.738163Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:42.829876Z", - "iopub.status.busy": "2024-08-29T17:11:42.829562Z", - "iopub.status.idle": "2024-08-29T17:11:42.837238Z", - "shell.execute_reply": "2024-08-29T17:11:42.836667Z" + "iopub.execute_input": "2024-09-04T16:40:55.740541Z", + "iopub.status.busy": "2024-09-04T16:40:55.740366Z", + "iopub.status.idle": "2024-09-04T16:40:55.747959Z", + "shell.execute_reply": "2024-09-04T16:40:55.747500Z" } }, "outputs": [ @@ -1197,10 +1197,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:42.839340Z", - "iopub.status.busy": "2024-08-29T17:11:42.839023Z", - "iopub.status.idle": "2024-08-29T17:11:42.846040Z", - "shell.execute_reply": "2024-08-29T17:11:42.845599Z" + "iopub.execute_input": "2024-09-04T16:40:55.749966Z", + "iopub.status.busy": "2024-09-04T16:40:55.749778Z", + "iopub.status.idle": "2024-09-04T16:40:55.757509Z", + "shell.execute_reply": "2024-09-04T16:40:55.757052Z" } }, "outputs": [ @@ -1306,10 +1306,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:42.848093Z", - "iopub.status.busy": "2024-08-29T17:11:42.847761Z", - "iopub.status.idle": "2024-08-29T17:11:42.855634Z", - "shell.execute_reply": "2024-08-29T17:11:42.855176Z" + "iopub.execute_input": "2024-09-04T16:40:55.759584Z", + "iopub.status.busy": "2024-09-04T16:40:55.759409Z", + "iopub.status.idle": "2024-09-04T16:40:55.767867Z", + "shell.execute_reply": "2024-09-04T16:40:55.767288Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index dadcd7a7b..c369b887f 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -791,7 +791,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'cancel_transfer', 'change_pin', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'getting_spare_card', 'visa_or_mastercard', 'card_about_to_expire', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'lost_or_stolen_phone'}
+Classes: {'apple_pay_or_google_pay', 'getting_spare_card', 'change_pin', 'lost_or_stolen_phone', 'visa_or_mastercard', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'cancel_transfer', 'card_payment_fee_charged', 'card_about_to_expire'}
 

Let’s view the i-th example in the dataset:

diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index 94b2d2bc6..97c31ed15 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:45.779533Z", - "iopub.status.busy": "2024-08-29T17:11:45.779168Z", - "iopub.status.idle": "2024-08-29T17:11:48.629019Z", - "shell.execute_reply": "2024-08-29T17:11:48.628451Z" + "iopub.execute_input": "2024-09-04T16:40:58.594849Z", + "iopub.status.busy": "2024-09-04T16:40:58.594436Z", + "iopub.status.idle": "2024-09-04T16:41:01.338933Z", + "shell.execute_reply": "2024-09-04T16:41:01.338290Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:48.631743Z", - "iopub.status.busy": "2024-08-29T17:11:48.631306Z", - "iopub.status.idle": "2024-08-29T17:11:48.634659Z", - "shell.execute_reply": "2024-08-29T17:11:48.634082Z" + "iopub.execute_input": "2024-09-04T16:41:01.341714Z", + "iopub.status.busy": "2024-09-04T16:41:01.341211Z", + "iopub.status.idle": "2024-09-04T16:41:01.344547Z", + "shell.execute_reply": "2024-09-04T16:41:01.344080Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:48.636768Z", - "iopub.status.busy": "2024-08-29T17:11:48.636377Z", - "iopub.status.idle": "2024-08-29T17:11:48.639545Z", - "shell.execute_reply": "2024-08-29T17:11:48.638976Z" + "iopub.execute_input": "2024-09-04T16:41:01.346577Z", + "iopub.status.busy": "2024-09-04T16:41:01.346195Z", + "iopub.status.idle": "2024-09-04T16:41:01.349208Z", + "shell.execute_reply": "2024-09-04T16:41:01.348748Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:48.641703Z", - "iopub.status.busy": "2024-08-29T17:11:48.641295Z", - "iopub.status.idle": "2024-08-29T17:11:48.663938Z", - "shell.execute_reply": "2024-08-29T17:11:48.663379Z" + "iopub.execute_input": "2024-09-04T16:41:01.351352Z", + "iopub.status.busy": "2024-09-04T16:41:01.350932Z", + "iopub.status.idle": "2024-09-04T16:41:01.371702Z", + "shell.execute_reply": "2024-09-04T16:41:01.371170Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:48.665947Z", - "iopub.status.busy": "2024-08-29T17:11:48.665634Z", - "iopub.status.idle": "2024-08-29T17:11:48.669380Z", - "shell.execute_reply": "2024-08-29T17:11:48.668822Z" + "iopub.execute_input": "2024-09-04T16:41:01.374126Z", + "iopub.status.busy": "2024-09-04T16:41:01.373690Z", + "iopub.status.idle": "2024-09-04T16:41:01.377781Z", + "shell.execute_reply": "2024-09-04T16:41:01.377254Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'cancel_transfer', 'change_pin', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'getting_spare_card', 'visa_or_mastercard', 'card_about_to_expire', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'lost_or_stolen_phone'}\n" + "Classes: {'apple_pay_or_google_pay', 'getting_spare_card', 'change_pin', 'lost_or_stolen_phone', 'visa_or_mastercard', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'cancel_transfer', 'card_payment_fee_charged', 'card_about_to_expire'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:48.671469Z", - "iopub.status.busy": "2024-08-29T17:11:48.671133Z", - "iopub.status.idle": "2024-08-29T17:11:48.674361Z", - "shell.execute_reply": "2024-08-29T17:11:48.673893Z" + "iopub.execute_input": "2024-09-04T16:41:01.379956Z", + "iopub.status.busy": "2024-09-04T16:41:01.379537Z", + "iopub.status.idle": "2024-09-04T16:41:01.382734Z", + "shell.execute_reply": "2024-09-04T16:41:01.382205Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:48.676512Z", - "iopub.status.busy": "2024-08-29T17:11:48.676178Z", - "iopub.status.idle": "2024-08-29T17:11:52.298515Z", - "shell.execute_reply": "2024-08-29T17:11:52.297829Z" + "iopub.execute_input": "2024-09-04T16:41:01.384801Z", + "iopub.status.busy": "2024-09-04T16:41:01.384484Z", + "iopub.status.idle": "2024-09-04T16:41:05.425042Z", + "shell.execute_reply": "2024-09-04T16:41:05.424383Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:52.301372Z", - "iopub.status.busy": "2024-08-29T17:11:52.301006Z", - "iopub.status.idle": "2024-08-29T17:11:53.205868Z", - "shell.execute_reply": "2024-08-29T17:11:53.205269Z" + "iopub.execute_input": "2024-09-04T16:41:05.428052Z", + "iopub.status.busy": "2024-09-04T16:41:05.427629Z", + "iopub.status.idle": "2024-09-04T16:41:06.348646Z", + "shell.execute_reply": "2024-09-04T16:41:06.348110Z" }, "scrolled": true }, @@ -451,10 +451,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:53.208825Z", - "iopub.status.busy": "2024-08-29T17:11:53.208214Z", - "iopub.status.idle": "2024-08-29T17:11:53.211611Z", - "shell.execute_reply": "2024-08-29T17:11:53.211104Z" + "iopub.execute_input": "2024-09-04T16:41:06.351379Z", + "iopub.status.busy": "2024-09-04T16:41:06.350975Z", + "iopub.status.idle": "2024-09-04T16:41:06.353832Z", + "shell.execute_reply": "2024-09-04T16:41:06.353336Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:53.214175Z", - "iopub.status.busy": "2024-08-29T17:11:53.213781Z", - "iopub.status.idle": "2024-08-29T17:11:55.217193Z", - "shell.execute_reply": "2024-08-29T17:11:55.216477Z" + "iopub.execute_input": "2024-09-04T16:41:06.356200Z", + "iopub.status.busy": "2024-09-04T16:41:06.355817Z", + "iopub.status.idle": "2024-09-04T16:41:08.326773Z", + "shell.execute_reply": "2024-09-04T16:41:08.326129Z" }, "scrolled": true }, @@ -521,10 +521,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:55.221784Z", - "iopub.status.busy": "2024-08-29T17:11:55.220564Z", - "iopub.status.idle": "2024-08-29T17:11:55.247534Z", - "shell.execute_reply": "2024-08-29T17:11:55.246994Z" + "iopub.execute_input": "2024-09-04T16:41:08.329840Z", + "iopub.status.busy": "2024-09-04T16:41:08.329196Z", + "iopub.status.idle": "2024-09-04T16:41:08.352768Z", + "shell.execute_reply": "2024-09-04T16:41:08.352270Z" }, "scrolled": true }, @@ -654,10 +654,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:55.251301Z", - "iopub.status.busy": "2024-08-29T17:11:55.250349Z", - "iopub.status.idle": "2024-08-29T17:11:55.259480Z", - "shell.execute_reply": "2024-08-29T17:11:55.258979Z" + "iopub.execute_input": "2024-09-04T16:41:08.355171Z", + "iopub.status.busy": "2024-09-04T16:41:08.354780Z", + "iopub.status.idle": "2024-09-04T16:41:08.364358Z", + "shell.execute_reply": "2024-09-04T16:41:08.363857Z" }, "scrolled": true }, @@ -767,10 +767,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:55.261705Z", - "iopub.status.busy": "2024-08-29T17:11:55.261259Z", - "iopub.status.idle": "2024-08-29T17:11:55.265695Z", - "shell.execute_reply": "2024-08-29T17:11:55.265143Z" + "iopub.execute_input": "2024-09-04T16:41:08.366701Z", + "iopub.status.busy": "2024-09-04T16:41:08.366397Z", + "iopub.status.idle": "2024-09-04T16:41:08.370411Z", + "shell.execute_reply": "2024-09-04T16:41:08.369835Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:55.267789Z", - "iopub.status.busy": "2024-08-29T17:11:55.267464Z", - "iopub.status.idle": "2024-08-29T17:11:55.273881Z", - "shell.execute_reply": "2024-08-29T17:11:55.273336Z" + "iopub.execute_input": "2024-09-04T16:41:08.372360Z", + "iopub.status.busy": "2024-09-04T16:41:08.372021Z", + "iopub.status.idle": "2024-09-04T16:41:08.378227Z", + "shell.execute_reply": "2024-09-04T16:41:08.377738Z" } }, "outputs": [ @@ -928,10 +928,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:55.276103Z", - "iopub.status.busy": "2024-08-29T17:11:55.275716Z", - "iopub.status.idle": "2024-08-29T17:11:55.282363Z", - "shell.execute_reply": "2024-08-29T17:11:55.281836Z" + "iopub.execute_input": "2024-09-04T16:41:08.380294Z", + "iopub.status.busy": "2024-09-04T16:41:08.379963Z", + "iopub.status.idle": "2024-09-04T16:41:08.386336Z", + "shell.execute_reply": "2024-09-04T16:41:08.385784Z" } }, "outputs": [ @@ -1014,10 +1014,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:55.284483Z", - "iopub.status.busy": "2024-08-29T17:11:55.284080Z", - "iopub.status.idle": "2024-08-29T17:11:55.290321Z", - "shell.execute_reply": "2024-08-29T17:11:55.289768Z" + "iopub.execute_input": "2024-09-04T16:41:08.388135Z", + "iopub.status.busy": "2024-09-04T16:41:08.387960Z", + "iopub.status.idle": "2024-09-04T16:41:08.393752Z", + "shell.execute_reply": "2024-09-04T16:41:08.393284Z" } }, "outputs": [ @@ -1125,10 +1125,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:55.292501Z", - "iopub.status.busy": "2024-08-29T17:11:55.292181Z", - "iopub.status.idle": "2024-08-29T17:11:55.300591Z", - "shell.execute_reply": "2024-08-29T17:11:55.300041Z" + "iopub.execute_input": "2024-09-04T16:41:08.395608Z", + "iopub.status.busy": "2024-09-04T16:41:08.395432Z", + "iopub.status.idle": "2024-09-04T16:41:08.403730Z", + "shell.execute_reply": "2024-09-04T16:41:08.403294Z" } }, "outputs": [ @@ -1239,10 +1239,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:55.302719Z", - "iopub.status.busy": "2024-08-29T17:11:55.302381Z", - "iopub.status.idle": "2024-08-29T17:11:55.307865Z", - "shell.execute_reply": "2024-08-29T17:11:55.307405Z" + "iopub.execute_input": "2024-09-04T16:41:08.405680Z", + "iopub.status.busy": "2024-09-04T16:41:08.405503Z", + "iopub.status.idle": "2024-09-04T16:41:08.410937Z", + "shell.execute_reply": "2024-09-04T16:41:08.410395Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:55.309805Z", - "iopub.status.busy": "2024-08-29T17:11:55.309470Z", - "iopub.status.idle": "2024-08-29T17:11:55.314831Z", - "shell.execute_reply": "2024-08-29T17:11:55.314389Z" + "iopub.execute_input": "2024-09-04T16:41:08.413050Z", + "iopub.status.busy": "2024-09-04T16:41:08.412728Z", + "iopub.status.idle": "2024-09-04T16:41:08.417941Z", + "shell.execute_reply": "2024-09-04T16:41:08.417454Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:55.316839Z", - "iopub.status.busy": "2024-08-29T17:11:55.316503Z", - "iopub.status.idle": "2024-08-29T17:11:55.320158Z", - "shell.execute_reply": "2024-08-29T17:11:55.319714Z" + "iopub.execute_input": "2024-09-04T16:41:08.419859Z", + "iopub.status.busy": "2024-09-04T16:41:08.419677Z", + "iopub.status.idle": "2024-09-04T16:41:08.423027Z", + "shell.execute_reply": "2024-09-04T16:41:08.422505Z" } }, "outputs": [ @@ -1449,10 +1449,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:55.322296Z", - "iopub.status.busy": "2024-08-29T17:11:55.321948Z", - "iopub.status.idle": "2024-08-29T17:11:55.327047Z", - "shell.execute_reply": "2024-08-29T17:11:55.326621Z" + "iopub.execute_input": "2024-09-04T16:41:08.425011Z", + "iopub.status.busy": "2024-09-04T16:41:08.424833Z", + "iopub.status.idle": "2024-09-04T16:41:08.430112Z", + "shell.execute_reply": "2024-09-04T16:41:08.429634Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/workflows.html b/master/tutorials/datalab/workflows.html index 0c2f156fd..181eed3ed 100644 --- a/master/tutorials/datalab/workflows.html +++ b/master/tutorials/datalab/workflows.html @@ -3140,224 +3140,224 @@

6. (Optional) Visualize the Results - +
- - - - - - - - - + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
@@ -3503,16 +3503,16 @@

1. Load the Dataset
---2024-08-29 17:12:14--  https://s.cleanlab.ai/CIFAR-10-subset.zip
-Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.110.153, 185.199.109.153, ...
-Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.111.153|:443... connected.
+--2024-09-04 16:41:28--  https://s.cleanlab.ai/CIFAR-10-subset.zip
+Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.108.153, 185.199.110.153, 185.199.109.153, ...
+Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.108.153|:443... connected.
 HTTP request sent, awaiting response... 200 OK
 Length: 986707 (964K) [application/zip]
 Saving to: ‘CIFAR-10-subset.zip’
 
-CIFAR-10-subset.zip 100%[===================>] 963.58K  --.-KB/s    in 0.005s
+CIFAR-10-subset.zip 100%[===================>] 963.58K  --.-KB/s    in 0.006s
 
-2024-08-29 17:12:14 (189 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]
+2024-09-04 16:41:29 (149 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]
 
 
@@ -3582,7 +3582,7 @@

2. Run Datalab Analysis
-
+
@@ -3926,7 +3926,7 @@

3. Interpret the ResultsFrog class (Class 0 in the plot) have been darkened, while 100 images from the Truck class (Class 1 in the plot) remain unchanged, as in the CIFAR-10 dataset. This creates a clear spurious correlation between the ‘darkness’ feature and the class labels: Frog images are dark, whereas Truck images are not. We can see that the dark_score values between the two classes are non-overlapping. This characteristic of the dataset is identified by Datalab.

diff --git a/master/tutorials/datalab/workflows.ipynb b/master/tutorials/datalab/workflows.ipynb index 45e10659e..1a14ce756 100644 --- a/master/tutorials/datalab/workflows.ipynb +++ b/master/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:58.718767Z", - "iopub.status.busy": "2024-08-29T17:11:58.718583Z", - "iopub.status.idle": "2024-08-29T17:11:59.146531Z", - "shell.execute_reply": "2024-08-29T17:11:59.145994Z" + "iopub.execute_input": "2024-09-04T16:41:12.664036Z", + "iopub.status.busy": "2024-09-04T16:41:12.663550Z", + "iopub.status.idle": "2024-09-04T16:41:13.084540Z", + "shell.execute_reply": "2024-09-04T16:41:13.084042Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:59.149240Z", - "iopub.status.busy": "2024-08-29T17:11:59.148744Z", - "iopub.status.idle": "2024-08-29T17:11:59.280675Z", - "shell.execute_reply": "2024-08-29T17:11:59.280097Z" + "iopub.execute_input": "2024-09-04T16:41:13.087150Z", + "iopub.status.busy": "2024-09-04T16:41:13.086739Z", + "iopub.status.idle": "2024-09-04T16:41:13.215203Z", + "shell.execute_reply": "2024-09-04T16:41:13.214722Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:59.282900Z", - "iopub.status.busy": "2024-08-29T17:11:59.282658Z", - "iopub.status.idle": "2024-08-29T17:11:59.305884Z", - "shell.execute_reply": "2024-08-29T17:11:59.305336Z" + "iopub.execute_input": "2024-09-04T16:41:13.217480Z", + "iopub.status.busy": "2024-09-04T16:41:13.217063Z", + "iopub.status.idle": "2024-09-04T16:41:13.239737Z", + "shell.execute_reply": "2024-09-04T16:41:13.239204Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:11:59.308547Z", - "iopub.status.busy": "2024-08-29T17:11:59.308330Z", - "iopub.status.idle": "2024-08-29T17:12:02.115117Z", - "shell.execute_reply": "2024-08-29T17:12:02.114510Z" + "iopub.execute_input": "2024-09-04T16:41:13.242377Z", + "iopub.status.busy": "2024-09-04T16:41:13.241951Z", + "iopub.status.idle": "2024-09-04T16:41:15.980442Z", + "shell.execute_reply": "2024-09-04T16:41:15.979864Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:02.117844Z", - "iopub.status.busy": "2024-08-29T17:12:02.117264Z", - "iopub.status.idle": "2024-08-29T17:12:10.972806Z", - "shell.execute_reply": "2024-08-29T17:12:10.972199Z" + "iopub.execute_input": "2024-09-04T16:41:15.983269Z", + "iopub.status.busy": "2024-09-04T16:41:15.982680Z", + "iopub.status.idle": "2024-09-04T16:41:25.804093Z", + "shell.execute_reply": "2024-09-04T16:41:25.803484Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:10.975125Z", - "iopub.status.busy": "2024-08-29T17:12:10.974927Z", - "iopub.status.idle": "2024-08-29T17:12:11.155291Z", - "shell.execute_reply": "2024-08-29T17:12:11.154629Z" + "iopub.execute_input": "2024-09-04T16:41:25.806278Z", + "iopub.status.busy": "2024-09-04T16:41:25.805942Z", + "iopub.status.idle": "2024-09-04T16:41:25.977373Z", + "shell.execute_reply": "2024-09-04T16:41:25.976681Z" } }, "outputs": [], @@ -838,10 +838,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:11.157915Z", - "iopub.status.busy": "2024-08-29T17:12:11.157574Z", - "iopub.status.idle": "2024-08-29T17:12:12.510295Z", - "shell.execute_reply": "2024-08-29T17:12:12.509686Z" + "iopub.execute_input": "2024-09-04T16:41:25.979915Z", + "iopub.status.busy": "2024-09-04T16:41:25.979722Z", + "iopub.status.idle": "2024-09-04T16:41:27.310524Z", + "shell.execute_reply": "2024-09-04T16:41:27.309930Z" } }, "outputs": [ @@ -1000,10 +1000,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:12.512529Z", - "iopub.status.busy": "2024-08-29T17:12:12.512160Z", - "iopub.status.idle": "2024-08-29T17:12:12.986182Z", - "shell.execute_reply": "2024-08-29T17:12:12.985597Z" + "iopub.execute_input": "2024-09-04T16:41:27.312764Z", + "iopub.status.busy": "2024-09-04T16:41:27.312407Z", + "iopub.status.idle": "2024-09-04T16:41:27.724807Z", + "shell.execute_reply": "2024-09-04T16:41:27.724216Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:12.988869Z", - "iopub.status.busy": "2024-08-29T17:12:12.988294Z", - "iopub.status.idle": "2024-08-29T17:12:13.002906Z", - "shell.execute_reply": "2024-08-29T17:12:13.002292Z" + "iopub.execute_input": "2024-09-04T16:41:27.727236Z", + "iopub.status.busy": "2024-09-04T16:41:27.726782Z", + "iopub.status.idle": "2024-09-04T16:41:27.740061Z", + "shell.execute_reply": "2024-09-04T16:41:27.739611Z" } }, "outputs": [], @@ -1115,10 +1115,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.005087Z", - "iopub.status.busy": "2024-08-29T17:12:13.004750Z", - "iopub.status.idle": "2024-08-29T17:12:13.024384Z", - "shell.execute_reply": "2024-08-29T17:12:13.023799Z" + "iopub.execute_input": "2024-09-04T16:41:27.742084Z", + "iopub.status.busy": "2024-09-04T16:41:27.741764Z", + "iopub.status.idle": "2024-09-04T16:41:27.760850Z", + "shell.execute_reply": "2024-09-04T16:41:27.760303Z" } }, "outputs": [], @@ -1146,10 +1146,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.026753Z", - "iopub.status.busy": "2024-08-29T17:12:13.026407Z", - "iopub.status.idle": "2024-08-29T17:12:13.277368Z", - "shell.execute_reply": "2024-08-29T17:12:13.276719Z" + "iopub.execute_input": "2024-09-04T16:41:27.763210Z", + "iopub.status.busy": "2024-09-04T16:41:27.762807Z", + "iopub.status.idle": "2024-09-04T16:41:27.987337Z", + "shell.execute_reply": "2024-09-04T16:41:27.986718Z" } }, "outputs": [], @@ -1189,10 +1189,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.280198Z", - "iopub.status.busy": "2024-08-29T17:12:13.279676Z", - "iopub.status.idle": "2024-08-29T17:12:13.298717Z", - "shell.execute_reply": "2024-08-29T17:12:13.298205Z" + "iopub.execute_input": "2024-09-04T16:41:27.990095Z", + "iopub.status.busy": "2024-09-04T16:41:27.989628Z", + "iopub.status.idle": "2024-09-04T16:41:28.009086Z", + "shell.execute_reply": "2024-09-04T16:41:28.008517Z" } }, "outputs": [ @@ -1390,10 +1390,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.300783Z", - "iopub.status.busy": "2024-08-29T17:12:13.300463Z", - "iopub.status.idle": "2024-08-29T17:12:13.471108Z", - "shell.execute_reply": "2024-08-29T17:12:13.470505Z" + "iopub.execute_input": "2024-09-04T16:41:28.011441Z", + "iopub.status.busy": "2024-09-04T16:41:28.010977Z", + "iopub.status.idle": "2024-09-04T16:41:28.176788Z", + "shell.execute_reply": "2024-09-04T16:41:28.176211Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.473349Z", - "iopub.status.busy": "2024-08-29T17:12:13.473080Z", - "iopub.status.idle": "2024-08-29T17:12:13.482985Z", - "shell.execute_reply": "2024-08-29T17:12:13.482516Z" + "iopub.execute_input": "2024-09-04T16:41:28.179086Z", + "iopub.status.busy": "2024-09-04T16:41:28.178761Z", + "iopub.status.idle": "2024-09-04T16:41:28.188587Z", + "shell.execute_reply": "2024-09-04T16:41:28.188043Z" } }, "outputs": [ @@ -1729,10 +1729,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.485057Z", - "iopub.status.busy": "2024-08-29T17:12:13.484691Z", - "iopub.status.idle": "2024-08-29T17:12:13.493906Z", - "shell.execute_reply": "2024-08-29T17:12:13.493448Z" + "iopub.execute_input": "2024-09-04T16:41:28.190655Z", + "iopub.status.busy": "2024-09-04T16:41:28.190335Z", + "iopub.status.idle": "2024-09-04T16:41:28.199664Z", + "shell.execute_reply": "2024-09-04T16:41:28.199201Z" } }, "outputs": [ @@ -1919,10 +1919,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.495935Z", - "iopub.status.busy": "2024-08-29T17:12:13.495596Z", - "iopub.status.idle": "2024-08-29T17:12:13.526113Z", - "shell.execute_reply": "2024-08-29T17:12:13.525678Z" + "iopub.execute_input": "2024-09-04T16:41:28.201641Z", + "iopub.status.busy": "2024-09-04T16:41:28.201319Z", + "iopub.status.idle": "2024-09-04T16:41:28.226455Z", + "shell.execute_reply": "2024-09-04T16:41:28.226027Z" } }, "outputs": [], @@ -1956,10 +1956,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.528299Z", - "iopub.status.busy": "2024-08-29T17:12:13.527957Z", - "iopub.status.idle": "2024-08-29T17:12:13.530498Z", - "shell.execute_reply": "2024-08-29T17:12:13.529995Z" + "iopub.execute_input": "2024-09-04T16:41:28.228596Z", + "iopub.status.busy": "2024-09-04T16:41:28.228102Z", + "iopub.status.idle": "2024-09-04T16:41:28.231032Z", + "shell.execute_reply": "2024-09-04T16:41:28.230466Z" } }, "outputs": [], @@ -1981,10 +1981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.532537Z", - "iopub.status.busy": "2024-08-29T17:12:13.532217Z", - "iopub.status.idle": "2024-08-29T17:12:13.551762Z", - "shell.execute_reply": "2024-08-29T17:12:13.551238Z" + "iopub.execute_input": "2024-09-04T16:41:28.233191Z", + "iopub.status.busy": "2024-09-04T16:41:28.232860Z", + "iopub.status.idle": "2024-09-04T16:41:28.251385Z", + "shell.execute_reply": "2024-09-04T16:41:28.250804Z" } }, "outputs": [ @@ -2142,10 +2142,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.554534Z", - "iopub.status.busy": "2024-08-29T17:12:13.554173Z", - "iopub.status.idle": "2024-08-29T17:12:13.558538Z", - "shell.execute_reply": "2024-08-29T17:12:13.558052Z" + "iopub.execute_input": "2024-09-04T16:41:28.253837Z", + "iopub.status.busy": "2024-09-04T16:41:28.253519Z", + "iopub.status.idle": "2024-09-04T16:41:28.257759Z", + "shell.execute_reply": "2024-09-04T16:41:28.257200Z" } }, "outputs": [], @@ -2178,10 +2178,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.560435Z", - "iopub.status.busy": "2024-08-29T17:12:13.560256Z", - "iopub.status.idle": "2024-08-29T17:12:13.587883Z", - "shell.execute_reply": "2024-08-29T17:12:13.587425Z" + "iopub.execute_input": "2024-09-04T16:41:28.259740Z", + "iopub.status.busy": "2024-09-04T16:41:28.259407Z", + "iopub.status.idle": "2024-09-04T16:41:28.286565Z", + "shell.execute_reply": "2024-09-04T16:41:28.286005Z" } }, "outputs": [ @@ -2327,10 +2327,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.589955Z", - "iopub.status.busy": "2024-08-29T17:12:13.589553Z", - "iopub.status.idle": "2024-08-29T17:12:13.920885Z", - "shell.execute_reply": "2024-08-29T17:12:13.920275Z" + "iopub.execute_input": "2024-09-04T16:41:28.288831Z", + "iopub.status.busy": "2024-09-04T16:41:28.288383Z", + "iopub.status.idle": "2024-09-04T16:41:28.597994Z", + "shell.execute_reply": "2024-09-04T16:41:28.597431Z" } }, "outputs": [ @@ -2397,10 +2397,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.923410Z", - "iopub.status.busy": "2024-08-29T17:12:13.923057Z", - "iopub.status.idle": "2024-08-29T17:12:13.926548Z", - "shell.execute_reply": "2024-08-29T17:12:13.925922Z" + "iopub.execute_input": "2024-09-04T16:41:28.600027Z", + "iopub.status.busy": "2024-09-04T16:41:28.599709Z", + "iopub.status.idle": "2024-09-04T16:41:28.602809Z", + "shell.execute_reply": "2024-09-04T16:41:28.602272Z" } }, "outputs": [ @@ -2451,10 +2451,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.928781Z", - "iopub.status.busy": "2024-08-29T17:12:13.928369Z", - "iopub.status.idle": "2024-08-29T17:12:13.942357Z", - "shell.execute_reply": "2024-08-29T17:12:13.941751Z" + "iopub.execute_input": "2024-09-04T16:41:28.604860Z", + "iopub.status.busy": "2024-09-04T16:41:28.604546Z", + "iopub.status.idle": "2024-09-04T16:41:28.617110Z", + "shell.execute_reply": "2024-09-04T16:41:28.616570Z" } }, "outputs": [ @@ -2733,10 +2733,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.944843Z", - "iopub.status.busy": "2024-08-29T17:12:13.944458Z", - "iopub.status.idle": "2024-08-29T17:12:13.959537Z", - "shell.execute_reply": "2024-08-29T17:12:13.958923Z" + "iopub.execute_input": "2024-09-04T16:41:28.618988Z", + "iopub.status.busy": "2024-09-04T16:41:28.618816Z", + "iopub.status.idle": "2024-09-04T16:41:28.633222Z", + "shell.execute_reply": "2024-09-04T16:41:28.632782Z" } }, "outputs": [ @@ -3003,10 +3003,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.962019Z", - "iopub.status.busy": "2024-08-29T17:12:13.961658Z", - "iopub.status.idle": "2024-08-29T17:12:13.972409Z", - "shell.execute_reply": "2024-08-29T17:12:13.971932Z" + "iopub.execute_input": "2024-09-04T16:41:28.635056Z", + "iopub.status.busy": "2024-09-04T16:41:28.634886Z", + "iopub.status.idle": "2024-09-04T16:41:28.644736Z", + "shell.execute_reply": "2024-09-04T16:41:28.644321Z" } }, "outputs": [], @@ -3031,10 +3031,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.974825Z", - "iopub.status.busy": "2024-08-29T17:12:13.974455Z", - "iopub.status.idle": "2024-08-29T17:12:13.984415Z", - "shell.execute_reply": "2024-08-29T17:12:13.983776Z" + "iopub.execute_input": "2024-09-04T16:41:28.646802Z", + "iopub.status.busy": "2024-09-04T16:41:28.646400Z", + "iopub.status.idle": "2024-09-04T16:41:28.655411Z", + "shell.execute_reply": "2024-09-04T16:41:28.654853Z" } }, "outputs": [ @@ -3206,10 +3206,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.986928Z", - "iopub.status.busy": "2024-08-29T17:12:13.986550Z", - "iopub.status.idle": "2024-08-29T17:12:13.990476Z", - "shell.execute_reply": "2024-08-29T17:12:13.989951Z" + "iopub.execute_input": "2024-09-04T16:41:28.657469Z", + "iopub.status.busy": "2024-09-04T16:41:28.657144Z", + "iopub.status.idle": "2024-09-04T16:41:28.660816Z", + "shell.execute_reply": "2024-09-04T16:41:28.660269Z" } }, "outputs": [], @@ -3241,10 +3241,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:13.992658Z", - "iopub.status.busy": "2024-08-29T17:12:13.992306Z", - "iopub.status.idle": "2024-08-29T17:12:14.050241Z", - "shell.execute_reply": "2024-08-29T17:12:14.049616Z" + "iopub.execute_input": "2024-09-04T16:41:28.662875Z", + "iopub.status.busy": "2024-09-04T16:41:28.662564Z", + "iopub.status.idle": "2024-09-04T16:41:28.711619Z", + "shell.execute_reply": "2024-09-04T16:41:28.711087Z" } }, "outputs": [ @@ -3252,230 +3252,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3551,10 +3551,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:14.052949Z", - "iopub.status.busy": "2024-08-29T17:12:14.052381Z", - "iopub.status.idle": "2024-08-29T17:12:14.058571Z", - "shell.execute_reply": "2024-08-29T17:12:14.058047Z" + "iopub.execute_input": "2024-09-04T16:41:28.713769Z", + "iopub.status.busy": "2024-09-04T16:41:28.713379Z", + "iopub.status.idle": "2024-09-04T16:41:28.718911Z", + "shell.execute_reply": "2024-09-04T16:41:28.718382Z" } }, "outputs": [], @@ -3593,10 +3593,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:14.060733Z", - "iopub.status.busy": "2024-08-29T17:12:14.060364Z", - "iopub.status.idle": "2024-08-29T17:12:14.072297Z", - "shell.execute_reply": "2024-08-29T17:12:14.071693Z" + "iopub.execute_input": "2024-09-04T16:41:28.720910Z", + "iopub.status.busy": "2024-09-04T16:41:28.720526Z", + "iopub.status.idle": "2024-09-04T16:41:28.731222Z", + "shell.execute_reply": "2024-09-04T16:41:28.730672Z" } }, "outputs": [ @@ -3632,10 +3632,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:14.074432Z", - "iopub.status.busy": "2024-08-29T17:12:14.074223Z", - "iopub.status.idle": "2024-08-29T17:12:14.263188Z", - "shell.execute_reply": "2024-08-29T17:12:14.262581Z" + "iopub.execute_input": "2024-09-04T16:41:28.733373Z", + "iopub.status.busy": "2024-09-04T16:41:28.732961Z", + "iopub.status.idle": "2024-09-04T16:41:28.907204Z", + "shell.execute_reply": "2024-09-04T16:41:28.906655Z" } }, "outputs": [ @@ -3687,10 +3687,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:14.265384Z", - "iopub.status.busy": "2024-08-29T17:12:14.265183Z", - "iopub.status.idle": "2024-08-29T17:12:14.273743Z", - "shell.execute_reply": "2024-08-29T17:12:14.273131Z" + "iopub.execute_input": "2024-09-04T16:41:28.909365Z", + "iopub.status.busy": "2024-09-04T16:41:28.909175Z", + "iopub.status.idle": "2024-09-04T16:41:28.916651Z", + "shell.execute_reply": "2024-09-04T16:41:28.916093Z" }, "nbsphinx": "hidden" }, @@ -3756,10 +3756,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:14.276047Z", - "iopub.status.busy": "2024-08-29T17:12:14.275677Z", - "iopub.status.idle": "2024-08-29T17:12:14.623758Z", - "shell.execute_reply": "2024-08-29T17:12:14.623033Z" + "iopub.execute_input": "2024-09-04T16:41:28.918871Z", + "iopub.status.busy": "2024-09-04T16:41:28.918561Z", + "iopub.status.idle": "2024-09-04T16:41:29.350378Z", + "shell.execute_reply": "2024-09-04T16:41:29.349619Z" } }, "outputs": [ @@ -3767,18 +3767,25 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-29 17:12:14-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", - "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.110.153, 185.199.109.153, ...\r\n", - "Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.111.153|:443... connected.\r\n", - "HTTP request sent, awaiting response... 200 OK\r\n", + "--2024-09-04 16:41:28-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", + "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.108.153, 185.199.110.153, 185.199.109.153, ...\r\n", + "Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.108.153|:443... connected.\r\n", + "HTTP request sent, awaiting response... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200 OK\r\n", "Length: 986707 (964K) [application/zip]\r\n", "Saving to: ‘CIFAR-10-subset.zip’\r\n", "\r\n", "\r", "CIFAR-10-subset.zip 0%[ ] 0 --.-KB/s \r", - "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.005s \r\n", + "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.006s \r\n", "\r\n", - "2024-08-29 17:12:14 (189 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", + "2024-09-04 16:41:29 (149 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", "\r\n" ] } @@ -3794,10 +3801,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:14.626661Z", - "iopub.status.busy": "2024-08-29T17:12:14.626224Z", - "iopub.status.idle": "2024-08-29T17:12:16.635519Z", - "shell.execute_reply": "2024-08-29T17:12:16.634953Z" + "iopub.execute_input": "2024-09-04T16:41:29.352933Z", + "iopub.status.busy": "2024-09-04T16:41:29.352735Z", + "iopub.status.idle": "2024-09-04T16:41:31.255957Z", + "shell.execute_reply": "2024-09-04T16:41:31.255425Z" } }, "outputs": [], @@ -3843,10 +3850,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:16.638208Z", - "iopub.status.busy": "2024-08-29T17:12:16.637703Z", - "iopub.status.idle": "2024-08-29T17:12:17.304618Z", - "shell.execute_reply": "2024-08-29T17:12:17.303989Z" + "iopub.execute_input": "2024-09-04T16:41:31.258629Z", + "iopub.status.busy": "2024-09-04T16:41:31.258194Z", + "iopub.status.idle": "2024-09-04T16:41:31.875313Z", + "shell.execute_reply": "2024-09-04T16:41:31.874748Z" } }, "outputs": [ @@ -3861,7 +3868,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "782e971f14da458383f425f5d3bc7543", + "model_id": "11855cce6b9f4255a537a210fa57ef44", "version_major": 2, "version_minor": 0 }, @@ -4001,10 +4008,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:17.307410Z", - "iopub.status.busy": "2024-08-29T17:12:17.307061Z", - "iopub.status.idle": "2024-08-29T17:12:17.320998Z", - "shell.execute_reply": "2024-08-29T17:12:17.320467Z" + "iopub.execute_input": "2024-09-04T16:41:31.878079Z", + "iopub.status.busy": "2024-09-04T16:41:31.877746Z", + "iopub.status.idle": "2024-09-04T16:41:31.890193Z", + "shell.execute_reply": "2024-09-04T16:41:31.889705Z" } }, "outputs": [ @@ -4250,10 +4257,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:17.323540Z", - "iopub.status.busy": "2024-08-29T17:12:17.323207Z", - "iopub.status.idle": "2024-08-29T17:12:17.474887Z", - "shell.execute_reply": "2024-08-29T17:12:17.474218Z" + "iopub.execute_input": "2024-09-04T16:41:31.892548Z", + "iopub.status.busy": "2024-09-04T16:41:31.892233Z", + "iopub.status.idle": "2024-09-04T16:41:32.039148Z", + "shell.execute_reply": "2024-09-04T16:41:32.038562Z" } }, "outputs": [ @@ -4318,10 +4325,10 @@ "execution_count": 38, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:17.477223Z", - "iopub.status.busy": "2024-08-29T17:12:17.476876Z", - "iopub.status.idle": "2024-08-29T17:12:18.002376Z", - "shell.execute_reply": "2024-08-29T17:12:18.001766Z" + "iopub.execute_input": "2024-09-04T16:41:32.041442Z", + "iopub.status.busy": "2024-09-04T16:41:32.041235Z", + "iopub.status.idle": "2024-09-04T16:41:32.538172Z", + "shell.execute_reply": "2024-09-04T16:41:32.537643Z" }, "nbsphinx": "hidden" }, @@ -4337,7 +4344,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "22ce1bc5210545adb9df959fe9d1d2e7", + "model_id": "57561caff4de49ed8ad39ec4e2ea3e81", "version_major": 2, "version_minor": 0 }, @@ -4591,10 +4598,10 @@ "execution_count": 39, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:18.004822Z", - "iopub.status.busy": "2024-08-29T17:12:18.004404Z", - "iopub.status.idle": "2024-08-29T17:12:18.155648Z", - "shell.execute_reply": "2024-08-29T17:12:18.155048Z" + "iopub.execute_input": "2024-09-04T16:41:32.540650Z", + "iopub.status.busy": "2024-09-04T16:41:32.540256Z", + "iopub.status.idle": "2024-09-04T16:41:32.685512Z", + "shell.execute_reply": "2024-09-04T16:41:32.685011Z" }, "nbsphinx": "hidden" }, @@ -4646,30 +4653,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "04913c7b295f4a38aae251c092f6f651": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a8e38c103ff043fc8808e855a4422d92", - "placeholder": "​", - "style": "IPY_MODEL_599c1b1311a346a98db741df69a0985d", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "0b61687c1eaa47bcadf5c00bc5580f3a": { + "0f792337d4b94b79a7ed7826ad950afc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4722,7 +4706,31 @@ "width": null } }, - "0cba20f26ab947c483c60b3955f1b00b": { + "11855cce6b9f4255a537a210fa57ef44": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4f4f9fbe228a4465aa8431637253ebc9", + "IPY_MODEL_cc13f71e8eb84e5f80cd24a389085935", + "IPY_MODEL_44cf4cc73bba46e3b942876e659a319f" + ], + "layout": "IPY_MODEL_e424b1b21abc4d61b48321e8e49fa72e", + "tabbable": null, + "tooltip": null + } + }, + "12ca79d519064816bfd3bef376c3c301": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4738,31 +4746,30 @@ "description_width": "" } }, - "22ce1bc5210545adb9df959fe9d1d2e7": { + "1c0e0855d89c4912ac3cca58b9b071ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_04913c7b295f4a38aae251c092f6f651", - "IPY_MODEL_a119180eaf594654ae8e43788e5f1e5f", - "IPY_MODEL_4c125478a3424acd8956d9f6e2ca213a" - ], - "layout": "IPY_MODEL_64319a05ec684441a4f737b7497c0e9c", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ba9e6e1a8c6f48ed95c12f4d5aa1f5f5", + "placeholder": "​", + "style": "IPY_MODEL_f56e2a9c973f45af8ce7af8b864d8eb9", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "27c98cb49b604570bd1257a7e2c10477": { + "1eb522736c96413b83435fbd2d0ab352": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4780,78 +4787,46 @@ "text_color": null } }, - "3f021ce1cdab485687f2435e8e40cc28": { - "model_module": "@jupyter-widgets/base", + "383eefabde604e64a5adb5b00080897c": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "486be619f0824bdeb7ba1b0cf8c0cd24": { + "44cf4cc73bba46e3b942876e659a319f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_636d32c710a34208aed5366abe0cd8d6", + "placeholder": "​", + "style": "IPY_MODEL_1eb522736c96413b83435fbd2d0ab352", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 796.34it/s]" } }, - "4c125478a3424acd8956d9f6e2ca213a": { + "4f4f9fbe228a4465aa8431637253ebc9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4866,15 +4841,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3f021ce1cdab485687f2435e8e40cc28", + "layout": "IPY_MODEL_6f6791efd1a449b3a2ebcab7573555ea", "placeholder": "​", - "style": "IPY_MODEL_57ca3a1a06844f708bb7288bf4847824", + "style": "IPY_MODEL_6f73d26e4db04796b675fa2b7b306283", "tabbable": null, "tooltip": null, - "value": " 200/200 [00:00<00:00, 696.04it/s]" + "value": "100%" } }, - "53065ef2c3a94adcacc88f20a8b0f38a": { + "4f9aab7ca25c4263b796112cd40e972b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5113b13410b5494792a5c55b815df76c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4927,66 +4920,31 @@ "width": null } }, - "57ca3a1a06844f708bb7288bf4847824": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "599c1b1311a346a98db741df69a0985d": { + "57561caff4de49ed8ad39ec4e2ea3e81": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5b440c9a8f644f259f9db6f363cb92f1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c80257e26637485bb97ac7fc38e01727", - "placeholder": "​", - "style": "IPY_MODEL_486be619f0824bdeb7ba1b0cf8c0cd24", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1c0e0855d89c4912ac3cca58b9b071ff", + "IPY_MODEL_7f55b867a1a843639f73bcf1f846b39b", + "IPY_MODEL_a7a983871f5a46e3ae9180582117bedb" + ], + "layout": "IPY_MODEL_0f792337d4b94b79a7ed7826ad950afc", "tabbable": null, - "tooltip": null, - "value": "100%" + "tooltip": null } }, - "64319a05ec684441a4f737b7497c0e9c": { + "636d32c710a34208aed5366abe0cd8d6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5039,7 +4997,7 @@ "width": null } }, - "718d8bd405474436b39a588a81fb1c1d": { + "6f6791efd1a449b3a2ebcab7573555ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5092,73 +5050,127 @@ "width": null } }, - "782e971f14da458383f425f5d3bc7543": { + "6f73d26e4db04796b675fa2b7b306283": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7f55b867a1a843639f73bcf1f846b39b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5b440c9a8f644f259f9db6f363cb92f1", - "IPY_MODEL_c98ad304277e4d52b5b3729f0220f9b8", - "IPY_MODEL_b3f50354b6334c3c80af90c4f70fa5ad" - ], - "layout": "IPY_MODEL_a7cba9643a554291af58114587751a73", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9ad2a452ef454481afe910b396da739d", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_12ca79d519064816bfd3bef376c3c301", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 200.0 } }, - "7e0e2f6bb0ac41dc9f7174fc1c86be71": { - "model_module": "@jupyter-widgets/controls", + "9ad2a452ef454481afe910b396da739d": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a119180eaf594654ae8e43788e5f1e5f": { + "a7a983871f5a46e3ae9180582117bedb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0b61687c1eaa47bcadf5c00bc5580f3a", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7e0e2f6bb0ac41dc9f7174fc1c86be71", + "layout": "IPY_MODEL_af8c901c5a434cb7ab8a6a88e79f4b9b", + "placeholder": "​", + "style": "IPY_MODEL_4f9aab7ca25c4263b796112cd40e972b", "tabbable": null, "tooltip": null, - "value": 200.0 + "value": " 200/200 [00:00<00:00, 700.03it/s]" } }, - "a7cba9643a554291af58114587751a73": { + "af8c901c5a434cb7ab8a6a88e79f4b9b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5211,7 +5223,7 @@ "width": null } }, - "a8e38c103ff043fc8808e855a4422d92": { + "ba9e6e1a8c6f48ed95c12f4d5aa1f5f5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5264,30 +5276,33 @@ "width": null } }, - "b3f50354b6334c3c80af90c4f70fa5ad": { + "cc13f71e8eb84e5f80cd24a389085935": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_53065ef2c3a94adcacc88f20a8b0f38a", - "placeholder": "​", - "style": "IPY_MODEL_27c98cb49b604570bd1257a7e2c10477", + "layout": "IPY_MODEL_5113b13410b5494792a5c55b815df76c", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_383eefabde604e64a5adb5b00080897c", "tabbable": null, "tooltip": null, - "value": " 200/200 [00:00<00:00, 675.79it/s]" + "value": 200.0 } }, - "c80257e26637485bb97ac7fc38e01727": { + "e424b1b21abc4d61b48321e8e49fa72e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5340,30 +5355,22 @@ "width": null } }, - "c98ad304277e4d52b5b3729f0220f9b8": { + "f56e2a9c973f45af8ce7af8b864d8eb9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_718d8bd405474436b39a588a81fb1c1d", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0cba20f26ab947c483c60b3955f1b00b", - "tabbable": null, - "tooltip": null, - "value": 200.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } } }, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index f499d38de..327b4bd04 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:22.678292Z", - "iopub.status.busy": "2024-08-29T17:12:22.678099Z", - "iopub.status.idle": "2024-08-29T17:12:23.876369Z", - "shell.execute_reply": "2024-08-29T17:12:23.875750Z" + "iopub.execute_input": "2024-09-04T16:41:36.541756Z", + "iopub.status.busy": "2024-09-04T16:41:36.541379Z", + "iopub.status.idle": "2024-09-04T16:41:37.674396Z", + "shell.execute_reply": "2024-09-04T16:41:37.673850Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:23.879105Z", - "iopub.status.busy": "2024-08-29T17:12:23.878558Z", - "iopub.status.idle": "2024-08-29T17:12:23.881505Z", - "shell.execute_reply": "2024-08-29T17:12:23.881048Z" + "iopub.execute_input": "2024-09-04T16:41:37.677036Z", + "iopub.status.busy": "2024-09-04T16:41:37.676591Z", + "iopub.status.idle": "2024-09-04T16:41:37.679357Z", + "shell.execute_reply": "2024-09-04T16:41:37.678887Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:23.883650Z", - "iopub.status.busy": "2024-08-29T17:12:23.883315Z", - "iopub.status.idle": "2024-08-29T17:12:23.894950Z", - "shell.execute_reply": "2024-08-29T17:12:23.894472Z" + "iopub.execute_input": "2024-09-04T16:41:37.681562Z", + "iopub.status.busy": "2024-09-04T16:41:37.681190Z", + "iopub.status.idle": "2024-09-04T16:41:37.692578Z", + "shell.execute_reply": "2024-09-04T16:41:37.692134Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:23.896795Z", - "iopub.status.busy": "2024-08-29T17:12:23.896621Z", - "iopub.status.idle": "2024-08-29T17:12:29.124569Z", - "shell.execute_reply": "2024-08-29T17:12:29.124049Z" + "iopub.execute_input": "2024-09-04T16:41:37.694700Z", + "iopub.status.busy": "2024-09-04T16:41:37.694370Z", + "iopub.status.idle": "2024-09-04T16:41:44.638192Z", + "shell.execute_reply": "2024-09-04T16:41:44.637686Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index 49760c921..a4c19699c 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -831,13 +831,13 @@

How can I find label issues in big datasets with limited memory?

-
+
-
+
@@ -1702,7 +1702,7 @@

Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

Professional support and services are also available from our ML experts, learn more by emailing: team@cleanlab.ai

diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index ec1def7c4..6746ec983 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:31.435306Z", - "iopub.status.busy": "2024-08-29T17:12:31.434876Z", - "iopub.status.idle": "2024-08-29T17:12:32.602756Z", - "shell.execute_reply": "2024-08-29T17:12:32.602171Z" + "iopub.execute_input": "2024-09-04T16:41:46.756516Z", + "iopub.status.busy": "2024-09-04T16:41:46.756336Z", + "iopub.status.idle": "2024-09-04T16:41:47.881830Z", + "shell.execute_reply": "2024-09-04T16:41:47.881270Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:32.605542Z", - "iopub.status.busy": "2024-08-29T17:12:32.605054Z", - "iopub.status.idle": "2024-08-29T17:12:32.608529Z", - "shell.execute_reply": "2024-08-29T17:12:32.608061Z" + "iopub.execute_input": "2024-09-04T16:41:47.884583Z", + "iopub.status.busy": "2024-09-04T16:41:47.884101Z", + "iopub.status.idle": "2024-09-04T16:41:47.887341Z", + "shell.execute_reply": "2024-09-04T16:41:47.886907Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:32.610439Z", - "iopub.status.busy": "2024-08-29T17:12:32.610248Z", - "iopub.status.idle": "2024-08-29T17:12:36.028930Z", - "shell.execute_reply": "2024-08-29T17:12:36.028266Z" + "iopub.execute_input": "2024-09-04T16:41:47.889315Z", + "iopub.status.busy": "2024-09-04T16:41:47.889034Z", + "iopub.status.idle": "2024-09-04T16:41:51.189785Z", + "shell.execute_reply": "2024-09-04T16:41:51.189096Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:36.032050Z", - "iopub.status.busy": "2024-08-29T17:12:36.031366Z", - "iopub.status.idle": "2024-08-29T17:12:36.076606Z", - "shell.execute_reply": "2024-08-29T17:12:36.075973Z" + "iopub.execute_input": "2024-09-04T16:41:51.192724Z", + "iopub.status.busy": "2024-09-04T16:41:51.192059Z", + "iopub.status.idle": "2024-09-04T16:41:51.233718Z", + "shell.execute_reply": "2024-09-04T16:41:51.233075Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:36.079362Z", - "iopub.status.busy": "2024-08-29T17:12:36.079048Z", - "iopub.status.idle": "2024-08-29T17:12:36.123474Z", - "shell.execute_reply": "2024-08-29T17:12:36.122782Z" + "iopub.execute_input": "2024-09-04T16:41:51.236379Z", + "iopub.status.busy": "2024-09-04T16:41:51.235985Z", + "iopub.status.idle": "2024-09-04T16:41:51.273934Z", + "shell.execute_reply": "2024-09-04T16:41:51.273171Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:36.126375Z", - "iopub.status.busy": "2024-08-29T17:12:36.125935Z", - "iopub.status.idle": "2024-08-29T17:12:36.129100Z", - "shell.execute_reply": "2024-08-29T17:12:36.128643Z" + "iopub.execute_input": "2024-09-04T16:41:51.276680Z", + "iopub.status.busy": "2024-09-04T16:41:51.276288Z", + "iopub.status.idle": "2024-09-04T16:41:51.279333Z", + "shell.execute_reply": "2024-09-04T16:41:51.278859Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:36.131168Z", - "iopub.status.busy": "2024-08-29T17:12:36.130857Z", - "iopub.status.idle": "2024-08-29T17:12:36.133619Z", - "shell.execute_reply": "2024-08-29T17:12:36.133143Z" + "iopub.execute_input": "2024-09-04T16:41:51.281296Z", + "iopub.status.busy": "2024-09-04T16:41:51.280954Z", + "iopub.status.idle": "2024-09-04T16:41:51.283606Z", + "shell.execute_reply": "2024-09-04T16:41:51.283143Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:36.135829Z", - "iopub.status.busy": "2024-08-29T17:12:36.135488Z", - "iopub.status.idle": "2024-08-29T17:12:36.164835Z", - "shell.execute_reply": "2024-08-29T17:12:36.164245Z" + "iopub.execute_input": "2024-09-04T16:41:51.285743Z", + "iopub.status.busy": "2024-09-04T16:41:51.285436Z", + "iopub.status.idle": "2024-09-04T16:41:51.311389Z", + "shell.execute_reply": "2024-09-04T16:41:51.310854Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cad4caf07f124a1a9027592998338a63", + "model_id": "a719b1e1c5a54d2fa097f91d83e0d044", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c8ad193f70d74db4a4e52684ef1ecc28", + "model_id": "25ee13ad3c2f4f8eba001c8dd1078859", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:36.170675Z", - "iopub.status.busy": "2024-08-29T17:12:36.170488Z", - "iopub.status.idle": "2024-08-29T17:12:36.177363Z", - "shell.execute_reply": "2024-08-29T17:12:36.176818Z" + "iopub.execute_input": "2024-09-04T16:41:51.317467Z", + "iopub.status.busy": "2024-09-04T16:41:51.316964Z", + "iopub.status.idle": "2024-09-04T16:41:51.323386Z", + "shell.execute_reply": "2024-09-04T16:41:51.322968Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:36.179676Z", - "iopub.status.busy": "2024-08-29T17:12:36.179373Z", - "iopub.status.idle": "2024-08-29T17:12:36.182858Z", - "shell.execute_reply": "2024-08-29T17:12:36.182293Z" + "iopub.execute_input": "2024-09-04T16:41:51.325385Z", + "iopub.status.busy": "2024-09-04T16:41:51.325048Z", + "iopub.status.idle": "2024-09-04T16:41:51.328552Z", + "shell.execute_reply": "2024-09-04T16:41:51.328094Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:36.184876Z", - "iopub.status.busy": "2024-08-29T17:12:36.184571Z", - "iopub.status.idle": "2024-08-29T17:12:36.190921Z", - "shell.execute_reply": "2024-08-29T17:12:36.190364Z" + "iopub.execute_input": "2024-09-04T16:41:51.330395Z", + "iopub.status.busy": "2024-09-04T16:41:51.330223Z", + "iopub.status.idle": "2024-09-04T16:41:51.336522Z", + "shell.execute_reply": "2024-09-04T16:41:51.336028Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:36.193007Z", - "iopub.status.busy": "2024-08-29T17:12:36.192613Z", - "iopub.status.idle": "2024-08-29T17:12:36.242318Z", - "shell.execute_reply": "2024-08-29T17:12:36.241553Z" + "iopub.execute_input": "2024-09-04T16:41:51.338765Z", + "iopub.status.busy": "2024-09-04T16:41:51.338302Z", + "iopub.status.idle": "2024-09-04T16:41:51.382928Z", + "shell.execute_reply": "2024-09-04T16:41:51.382327Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:36.245296Z", - "iopub.status.busy": "2024-08-29T17:12:36.244766Z", - "iopub.status.idle": "2024-08-29T17:12:36.287675Z", - "shell.execute_reply": "2024-08-29T17:12:36.287052Z" + "iopub.execute_input": "2024-09-04T16:41:51.385521Z", + "iopub.status.busy": "2024-09-04T16:41:51.385117Z", + "iopub.status.idle": "2024-09-04T16:41:51.422891Z", + "shell.execute_reply": "2024-09-04T16:41:51.422277Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:36.290472Z", - "iopub.status.busy": "2024-08-29T17:12:36.290047Z", - "iopub.status.idle": "2024-08-29T17:12:36.423423Z", - "shell.execute_reply": "2024-08-29T17:12:36.422786Z" + "iopub.execute_input": "2024-09-04T16:41:51.425583Z", + "iopub.status.busy": "2024-09-04T16:41:51.425183Z", + "iopub.status.idle": "2024-09-04T16:41:51.552452Z", + "shell.execute_reply": "2024-09-04T16:41:51.551834Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:36.426228Z", - "iopub.status.busy": "2024-08-29T17:12:36.425637Z", - "iopub.status.idle": "2024-08-29T17:12:39.471432Z", - "shell.execute_reply": "2024-08-29T17:12:39.470781Z" + "iopub.execute_input": "2024-09-04T16:41:51.555335Z", + "iopub.status.busy": "2024-09-04T16:41:51.554558Z", + "iopub.status.idle": "2024-09-04T16:41:54.568700Z", + "shell.execute_reply": "2024-09-04T16:41:54.568034Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:39.474001Z", - "iopub.status.busy": "2024-08-29T17:12:39.473592Z", - "iopub.status.idle": "2024-08-29T17:12:39.530765Z", - "shell.execute_reply": "2024-08-29T17:12:39.530181Z" + "iopub.execute_input": "2024-09-04T16:41:54.570952Z", + "iopub.status.busy": "2024-09-04T16:41:54.570754Z", + "iopub.status.idle": "2024-09-04T16:41:54.628096Z", + "shell.execute_reply": "2024-09-04T16:41:54.627519Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:39.532867Z", - "iopub.status.busy": "2024-08-29T17:12:39.532686Z", - "iopub.status.idle": "2024-08-29T17:12:39.575220Z", - "shell.execute_reply": "2024-08-29T17:12:39.574734Z" + "iopub.execute_input": "2024-09-04T16:41:54.630324Z", + "iopub.status.busy": "2024-09-04T16:41:54.629893Z", + "iopub.status.idle": "2024-09-04T16:41:54.669819Z", + "shell.execute_reply": "2024-09-04T16:41:54.669269Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "5a9fb295", + "id": "b637ea6a", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "43eb24fc", + "id": "fcc1df9b", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "a05c6269", + "id": "601a7d65", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "e22ce93e", + "id": "5e9d920f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:39.577563Z", - "iopub.status.busy": "2024-08-29T17:12:39.577220Z", - "iopub.status.idle": "2024-08-29T17:12:39.584777Z", - "shell.execute_reply": "2024-08-29T17:12:39.584325Z" + "iopub.execute_input": "2024-09-04T16:41:54.671788Z", + "iopub.status.busy": "2024-09-04T16:41:54.671616Z", + "iopub.status.idle": "2024-09-04T16:41:54.679418Z", + "shell.execute_reply": "2024-09-04T16:41:54.678845Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "0d823101", + "id": "28b70114", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "06fb9ffa", + "id": "657d71b9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:39.586924Z", - "iopub.status.busy": "2024-08-29T17:12:39.586582Z", - "iopub.status.idle": "2024-08-29T17:12:39.605650Z", - "shell.execute_reply": "2024-08-29T17:12:39.605198Z" + "iopub.execute_input": "2024-09-04T16:41:54.681539Z", + "iopub.status.busy": "2024-09-04T16:41:54.681206Z", + "iopub.status.idle": "2024-09-04T16:41:54.700000Z", + "shell.execute_reply": "2024-09-04T16:41:54.699420Z" } }, "outputs": [ @@ -1521,13 +1521,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "88a79ebc", + "id": "b96be76e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:39.607676Z", - "iopub.status.busy": "2024-08-29T17:12:39.607338Z", - "iopub.status.idle": "2024-08-29T17:12:39.610365Z", - "shell.execute_reply": "2024-08-29T17:12:39.609843Z" + "iopub.execute_input": "2024-09-04T16:41:54.702045Z", + "iopub.status.busy": "2024-09-04T16:41:54.701717Z", + "iopub.status.idle": "2024-09-04T16:41:54.704754Z", + "shell.execute_reply": "2024-09-04T16:41:54.704179Z" } }, "outputs": [ @@ -1622,23 +1622,77 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "11bbac914d284dcb8cd774a9143a1a7e": { + "02eef24ed09e4972b001a6a5ae75fd1b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d31a3618611e4eee84f7f5e0b6522438", + "placeholder": "​", + "style": "IPY_MODEL_3c138714de5f495cbdcc170a1c83a426", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " + } + }, + "194b5ab9c8694ac6897617cfd4a40240": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7c5def0cd3ce41c1a2bb119bfe574bc8", + "placeholder": "​", + "style": "IPY_MODEL_700ed4943a764c2eb727336ed6c40a73", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1842354.39it/s]" + } + }, + "25ee13ad3c2f4f8eba001c8dd1078859": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_02eef24ed09e4972b001a6a5ae75fd1b", + "IPY_MODEL_b4e79d6a5293452f8124dc9d13d42cbe", + "IPY_MODEL_194b5ab9c8694ac6897617cfd4a40240" + ], + "layout": "IPY_MODEL_d50af9a53aa34e7586bf53ffb80404e0", + "tabbable": null, + "tooltip": null } }, - "2328049af2d241dcb69b9c4c6d2e488d": { + "3bd2ee5bd4574cb9ae99c31c8d6db603": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1691,30 +1745,57 @@ "width": null } }, - "2da213bd9b224be6a5ac7f052de94aaf": { + "3c138714de5f495cbdcc170a1c83a426": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_44f813c341a54c16b864aa2b865c3523", - "placeholder": "​", - "style": "IPY_MODEL_61a1c6323774462b86ea33ac15fb0448", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1240661.40it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4a3c2be825c84e6b9bae9c2566500466": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4c35586e39ee4749bccb6989f24c13be": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "34b618e7a5d3444a8d33284126186a14": { + "4eef2c8c74ae47b0933fbcf0002315f9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1732,7 +1813,30 @@ "text_color": null } }, - "3d5e7161191b424b8b56393f8bbc0fcb": { + "603c1c5317e24985b5140552ce393cf3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c3ba319bf6ab4cdd966425047521f3b8", + "placeholder": "​", + "style": "IPY_MODEL_4eef2c8c74ae47b0933fbcf0002315f9", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " + } + }, + "700ed4943a764c2eb727336ed6c40a73": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1750,7 +1854,7 @@ "text_color": null } }, - "44f813c341a54c16b864aa2b865c3523": { + "7c5def0cd3ce41c1a2bb119bfe574bc8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1803,7 +1907,51 @@ "width": null } }, - "514934945da14d98812b7145addff0bb": { + "8f12b48727b3448cb6b4e839f43f7f87": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a13b5731e63841ddbdf41c6617b1049e", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4c35586e39ee4749bccb6989f24c13be", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "933406ea42344c4092080ed53b31faa6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9ac9e315538944db842fe63b0842c53f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1856,7 +2004,7 @@ "width": null } }, - "5283739e39cf47d8bc7cfb45f9cf814d": { + "a13b5731e63841ddbdf41c6617b1049e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1909,7 +2057,80 @@ "width": null } }, - "6166de94ded042888e06a5b96a75e36e": { + "a719b1e1c5a54d2fa097f91d83e0d044": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_603c1c5317e24985b5140552ce393cf3", + "IPY_MODEL_8f12b48727b3448cb6b4e839f43f7f87", + "IPY_MODEL_bb997d46764048859303b5ee3ac89ea2" + ], + "layout": "IPY_MODEL_3bd2ee5bd4574cb9ae99c31c8d6db603", + "tabbable": null, + "tooltip": null + } + }, + "b4e79d6a5293452f8124dc9d13d42cbe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9ac9e315538944db842fe63b0842c53f", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4a3c2be825c84e6b9bae9c2566500466", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "bb997d46764048859303b5ee3ac89ea2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fbe636a8cce849caac942d342ab0ecb9", + "placeholder": "​", + "style": "IPY_MODEL_933406ea42344c4092080ed53b31faa6", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 916988.19it/s]" + } + }, + "c3ba319bf6ab4cdd966425047521f3b8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1962,48 +2183,7 @@ "width": null } }, - "61a1c6323774462b86ea33ac15fb0448": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7e5c9146cfc74609813d9c74ac22c0bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c526b040878a46baa88c1ad455d525d4", - "placeholder": "​", - "style": "IPY_MODEL_f9b5f35228e24c50b186dc5af9805432", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 815140.22it/s]" - } - }, - "86792d1244c649feb946f2c423167bdf": { + "d31a3618611e4eee84f7f5e0b6522438": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2056,59 +2236,7 @@ "width": null } }, - "a51d6d899cc6458e916e8df93ab20b43": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2328049af2d241dcb69b9c4c6d2e488d", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_11bbac914d284dcb8cd774a9143a1a7e", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "c1f71300bbab4029b4508e71b5d73f56": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f3fe540a57434540b34221dd462129f4", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ce24252a016c4fe5a1868f7568269be4", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "c526b040878a46baa88c1ad455d525d4": { + "d50af9a53aa34e7586bf53ffb80404e0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2161,117 +2289,7 @@ "width": null } }, - "c8ad193f70d74db4a4e52684ef1ecc28": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_dc1c06bd97bf41ceaad5b1925aaf1ec6", - "IPY_MODEL_a51d6d899cc6458e916e8df93ab20b43", - "IPY_MODEL_2da213bd9b224be6a5ac7f052de94aaf" - ], - "layout": "IPY_MODEL_514934945da14d98812b7145addff0bb", - "tabbable": null, - "tooltip": null - } - }, - "cad4caf07f124a1a9027592998338a63": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ec0af62d59c34fe3b3fd0ac269a03656", - "IPY_MODEL_c1f71300bbab4029b4508e71b5d73f56", - "IPY_MODEL_7e5c9146cfc74609813d9c74ac22c0bd" - ], - "layout": "IPY_MODEL_5283739e39cf47d8bc7cfb45f9cf814d", - "tabbable": null, - "tooltip": null - } - }, - "ce24252a016c4fe5a1868f7568269be4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "dc1c06bd97bf41ceaad5b1925aaf1ec6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6166de94ded042888e06a5b96a75e36e", - "placeholder": "​", - "style": "IPY_MODEL_3d5e7161191b424b8b56393f8bbc0fcb", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "ec0af62d59c34fe3b3fd0ac269a03656": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_86792d1244c649feb946f2c423167bdf", - "placeholder": "​", - "style": "IPY_MODEL_34b618e7a5d3444a8d33284126186a14", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "f3fe540a57434540b34221dd462129f4": { + "fbe636a8cce849caac942d342ab0ecb9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2323,24 +2341,6 @@ "visibility": null, "width": null } - }, - "f9b5f35228e24c50b186dc5af9805432": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/tutorials/improving_ml_performance.ipynb b/master/tutorials/improving_ml_performance.ipynb index 60df5097f..555c3d9d7 100644 --- a/master/tutorials/improving_ml_performance.ipynb +++ b/master/tutorials/improving_ml_performance.ipynb @@ -60,10 +60,10 @@ "id": "2d638465", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:43.121741Z", - "iopub.status.busy": "2024-08-29T17:12:43.121574Z", - "iopub.status.idle": "2024-08-29T17:12:44.294461Z", - "shell.execute_reply": "2024-08-29T17:12:44.293781Z" + "iopub.execute_input": "2024-09-04T16:41:57.874415Z", + "iopub.status.busy": "2024-09-04T16:41:57.874232Z", + "iopub.status.idle": "2024-09-04T16:41:59.016765Z", + "shell.execute_reply": "2024-09-04T16:41:59.016138Z" }, "nbsphinx": "hidden" }, @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -99,10 +99,10 @@ "id": "b0bbf715-47c6-44ea-b15e-89800e62ee04", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:44.297191Z", - "iopub.status.busy": "2024-08-29T17:12:44.296745Z", - "iopub.status.idle": "2024-08-29T17:12:44.300598Z", - "shell.execute_reply": "2024-08-29T17:12:44.300033Z" + "iopub.execute_input": "2024-09-04T16:41:59.019409Z", + "iopub.status.busy": "2024-09-04T16:41:59.019122Z", + "iopub.status.idle": "2024-09-04T16:41:59.023023Z", + "shell.execute_reply": "2024-09-04T16:41:59.022449Z" } }, "outputs": [], @@ -140,10 +140,10 @@ "id": "c58f8015-d051-411c-9e03-5659cf3ad956", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:44.302769Z", - "iopub.status.busy": "2024-08-29T17:12:44.302452Z", - "iopub.status.idle": "2024-08-29T17:12:44.587474Z", - "shell.execute_reply": "2024-08-29T17:12:44.586894Z" + "iopub.execute_input": "2024-09-04T16:41:59.025026Z", + "iopub.status.busy": "2024-09-04T16:41:59.024718Z", + "iopub.status.idle": "2024-09-04T16:41:59.677364Z", + "shell.execute_reply": "2024-09-04T16:41:59.676761Z" } }, "outputs": [ @@ -273,10 +273,10 @@ "id": "1b5f50e6-d125-4e61-b63e-4004f0c9099a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:44.589512Z", - "iopub.status.busy": "2024-08-29T17:12:44.589335Z", - "iopub.status.idle": "2024-08-29T17:12:44.595118Z", - "shell.execute_reply": "2024-08-29T17:12:44.594661Z" + "iopub.execute_input": "2024-09-04T16:41:59.679604Z", + "iopub.status.busy": "2024-09-04T16:41:59.679420Z", + "iopub.status.idle": "2024-09-04T16:41:59.685449Z", + "shell.execute_reply": "2024-09-04T16:41:59.684874Z" } }, "outputs": [], @@ -312,10 +312,10 @@ "id": "a36c21e9-1c32-4df9-bd87-fffeb8c2175f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:44.597127Z", - "iopub.status.busy": "2024-08-29T17:12:44.596802Z", - "iopub.status.idle": "2024-08-29T17:12:44.604251Z", - "shell.execute_reply": "2024-08-29T17:12:44.603773Z" + "iopub.execute_input": "2024-09-04T16:41:59.687503Z", + "iopub.status.busy": "2024-09-04T16:41:59.687095Z", + "iopub.status.idle": "2024-09-04T16:41:59.694033Z", + "shell.execute_reply": "2024-09-04T16:41:59.693488Z" } }, "outputs": [ @@ -418,10 +418,10 @@ "id": "5f856a3a-8aae-4836-b146-9ab68d8d1c7a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:44.606288Z", - "iopub.status.busy": "2024-08-29T17:12:44.605960Z", - "iopub.status.idle": "2024-08-29T17:12:44.610709Z", - "shell.execute_reply": "2024-08-29T17:12:44.610216Z" + "iopub.execute_input": "2024-09-04T16:41:59.696128Z", + "iopub.status.busy": "2024-09-04T16:41:59.695786Z", + "iopub.status.idle": "2024-09-04T16:41:59.700400Z", + "shell.execute_reply": "2024-09-04T16:41:59.699936Z" } }, "outputs": [], @@ -449,10 +449,10 @@ "id": "46275634-da56-4e58-9061-8108be2b585d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:44.612748Z", - "iopub.status.busy": "2024-08-29T17:12:44.612435Z", - "iopub.status.idle": "2024-08-29T17:12:44.618272Z", - "shell.execute_reply": "2024-08-29T17:12:44.617710Z" + "iopub.execute_input": "2024-09-04T16:41:59.702363Z", + "iopub.status.busy": "2024-09-04T16:41:59.702033Z", + "iopub.status.idle": "2024-09-04T16:41:59.707574Z", + "shell.execute_reply": "2024-09-04T16:41:59.707122Z" } }, "outputs": [], @@ -488,10 +488,10 @@ "id": "769c4c5e-a7ff-4e02-bee5-2b2e676aec14", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:44.620290Z", - "iopub.status.busy": "2024-08-29T17:12:44.619975Z", - "iopub.status.idle": "2024-08-29T17:12:44.624368Z", - "shell.execute_reply": "2024-08-29T17:12:44.623923Z" + "iopub.execute_input": "2024-09-04T16:41:59.709687Z", + "iopub.status.busy": "2024-09-04T16:41:59.709271Z", + "iopub.status.idle": "2024-09-04T16:41:59.713252Z", + "shell.execute_reply": "2024-09-04T16:41:59.712782Z" } }, "outputs": [], @@ -506,10 +506,10 @@ "id": "7ac47c3d-9e87-45b7-9064-bfa45578872e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:44.626336Z", - "iopub.status.busy": "2024-08-29T17:12:44.625980Z", - "iopub.status.idle": "2024-08-29T17:12:44.691351Z", - "shell.execute_reply": "2024-08-29T17:12:44.690670Z" + "iopub.execute_input": "2024-09-04T16:41:59.715142Z", + "iopub.status.busy": "2024-09-04T16:41:59.714821Z", + "iopub.status.idle": "2024-09-04T16:41:59.779287Z", + "shell.execute_reply": "2024-09-04T16:41:59.778730Z" } }, "outputs": [ @@ -609,10 +609,10 @@ "id": "6cef169e-d15b-4d18-9cb7-8ea589557e6b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:44.694274Z", - "iopub.status.busy": "2024-08-29T17:12:44.694050Z", - "iopub.status.idle": "2024-08-29T17:12:44.706703Z", - "shell.execute_reply": "2024-08-29T17:12:44.706075Z" + "iopub.execute_input": "2024-09-04T16:41:59.782070Z", + "iopub.status.busy": "2024-09-04T16:41:59.781740Z", + "iopub.status.idle": "2024-09-04T16:41:59.792168Z", + "shell.execute_reply": "2024-09-04T16:41:59.791690Z" } }, "outputs": [ @@ -724,10 +724,10 @@ "id": "b68e0418-86cf-431f-9107-2dd0a310ca42", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:44.709438Z", - "iopub.status.busy": "2024-08-29T17:12:44.709239Z", - "iopub.status.idle": "2024-08-29T17:12:44.731644Z", - "shell.execute_reply": "2024-08-29T17:12:44.731160Z" + "iopub.execute_input": "2024-09-04T16:41:59.794627Z", + "iopub.status.busy": "2024-09-04T16:41:59.794317Z", + "iopub.status.idle": "2024-09-04T16:41:59.814684Z", + "shell.execute_reply": "2024-09-04T16:41:59.814209Z" } }, "outputs": [ @@ -931,10 +931,10 @@ "id": "0e9bd131-429f-48af-b4fc-ed8b907950b9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:44.733913Z", - "iopub.status.busy": "2024-08-29T17:12:44.733596Z", - "iopub.status.idle": "2024-08-29T17:12:44.737316Z", - "shell.execute_reply": "2024-08-29T17:12:44.736843Z" + "iopub.execute_input": "2024-09-04T16:41:59.816977Z", + "iopub.status.busy": "2024-09-04T16:41:59.816607Z", + "iopub.status.idle": "2024-09-04T16:41:59.820497Z", + "shell.execute_reply": "2024-09-04T16:41:59.820024Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "id": "e72320ec-7792-4347-b2fb-630f2519127c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:44.739588Z", - "iopub.status.busy": "2024-08-29T17:12:44.739285Z", - "iopub.status.idle": "2024-08-29T17:12:44.743168Z", - "shell.execute_reply": "2024-08-29T17:12:44.742688Z" + "iopub.execute_input": "2024-09-04T16:41:59.823575Z", + "iopub.status.busy": "2024-09-04T16:41:59.822655Z", + "iopub.status.idle": "2024-09-04T16:41:59.828730Z", + "shell.execute_reply": "2024-09-04T16:41:59.828237Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "id": "8520ba4a-3ad6-408a-b377-3f47c32d745a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:44.745465Z", - "iopub.status.busy": "2024-08-29T17:12:44.745116Z", - "iopub.status.idle": "2024-08-29T17:12:44.754997Z", - "shell.execute_reply": "2024-08-29T17:12:44.754601Z" + "iopub.execute_input": "2024-09-04T16:41:59.832220Z", + "iopub.status.busy": "2024-09-04T16:41:59.831298Z", + "iopub.status.idle": "2024-09-04T16:41:59.843595Z", + "shell.execute_reply": "2024-09-04T16:41:59.843194Z" } }, "outputs": [ @@ -1205,10 +1205,10 @@ "id": "3c002665-c48b-4f04-91f7-ad112a49efc7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:44.756852Z", - "iopub.status.busy": "2024-08-29T17:12:44.756572Z", - "iopub.status.idle": "2024-08-29T17:12:44.760296Z", - "shell.execute_reply": "2024-08-29T17:12:44.759896Z" + "iopub.execute_input": "2024-09-04T16:41:59.846343Z", + "iopub.status.busy": "2024-09-04T16:41:59.845607Z", + "iopub.status.idle": "2024-09-04T16:41:59.850455Z", + "shell.execute_reply": "2024-09-04T16:41:59.849885Z" } }, "outputs": [], @@ -1234,10 +1234,10 @@ "id": "36319f39-f563-4f63-913f-821373180350", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:44.762295Z", - "iopub.status.busy": "2024-08-29T17:12:44.761989Z", - "iopub.status.idle": "2024-08-29T17:12:44.873765Z", - "shell.execute_reply": "2024-08-29T17:12:44.873274Z" + "iopub.execute_input": "2024-09-04T16:41:59.852576Z", + "iopub.status.busy": "2024-09-04T16:41:59.852403Z", + "iopub.status.idle": "2024-09-04T16:41:59.963442Z", + "shell.execute_reply": "2024-09-04T16:41:59.962927Z" } }, "outputs": [ @@ -1711,10 +1711,10 @@ "id": "044c0eb1-299a-4851-b1bf-268d5bce56c1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:44.876035Z", - "iopub.status.busy": "2024-08-29T17:12:44.875564Z", - "iopub.status.idle": "2024-08-29T17:12:44.882161Z", - "shell.execute_reply": "2024-08-29T17:12:44.881586Z" + "iopub.execute_input": "2024-09-04T16:41:59.965646Z", + "iopub.status.busy": "2024-09-04T16:41:59.965216Z", + "iopub.status.idle": "2024-09-04T16:41:59.970877Z", + "shell.execute_reply": "2024-09-04T16:41:59.970376Z" } }, "outputs": [], @@ -1738,10 +1738,10 @@ "id": "c43df278-abfe-40e5-9d48-2df3efea9379", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:44.884568Z", - "iopub.status.busy": "2024-08-29T17:12:44.884224Z", - "iopub.status.idle": "2024-08-29T17:12:46.947050Z", - "shell.execute_reply": "2024-08-29T17:12:46.946371Z" + "iopub.execute_input": "2024-09-04T16:41:59.973310Z", + "iopub.status.busy": "2024-09-04T16:41:59.972950Z", + "iopub.status.idle": "2024-09-04T16:42:01.911875Z", + "shell.execute_reply": "2024-09-04T16:42:01.911272Z" } }, "outputs": [ @@ -1953,10 +1953,10 @@ "id": "77c7f776-54b3-45b5-9207-715d6d2e90c0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:46.951466Z", - "iopub.status.busy": "2024-08-29T17:12:46.950279Z", - "iopub.status.idle": "2024-08-29T17:12:46.965874Z", - "shell.execute_reply": "2024-08-29T17:12:46.965343Z" + "iopub.execute_input": "2024-09-04T16:42:01.915514Z", + "iopub.status.busy": "2024-09-04T16:42:01.914485Z", + "iopub.status.idle": "2024-09-04T16:42:01.928989Z", + "shell.execute_reply": "2024-09-04T16:42:01.928492Z" } }, "outputs": [ @@ -2073,10 +2073,10 @@ "id": "7e218d04-0729-4f42-b264-51c73601ebe6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:46.969570Z", - "iopub.status.busy": "2024-08-29T17:12:46.968637Z", - "iopub.status.idle": "2024-08-29T17:12:46.972773Z", - "shell.execute_reply": "2024-08-29T17:12:46.972271Z" + "iopub.execute_input": "2024-09-04T16:42:01.932311Z", + "iopub.status.busy": "2024-09-04T16:42:01.931431Z", + "iopub.status.idle": "2024-09-04T16:42:01.935298Z", + "shell.execute_reply": "2024-09-04T16:42:01.934802Z" } }, "outputs": [], @@ -2090,10 +2090,10 @@ "id": "7e2bdb41-321e-4929-aa01-1f60948b9e8b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:46.976326Z", - "iopub.status.busy": "2024-08-29T17:12:46.975403Z", - "iopub.status.idle": "2024-08-29T17:12:46.981211Z", - "shell.execute_reply": "2024-08-29T17:12:46.980704Z" + "iopub.execute_input": "2024-09-04T16:42:01.938565Z", + "iopub.status.busy": "2024-09-04T16:42:01.937681Z", + "iopub.status.idle": "2024-09-04T16:42:01.943081Z", + "shell.execute_reply": "2024-09-04T16:42:01.942590Z" } }, "outputs": [], @@ -2117,10 +2117,10 @@ "id": "5ce2d89f-e832-448d-bfac-9941da15c895", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:46.984806Z", - "iopub.status.busy": "2024-08-29T17:12:46.983859Z", - "iopub.status.idle": "2024-08-29T17:12:47.017100Z", - "shell.execute_reply": "2024-08-29T17:12:47.016516Z" + "iopub.execute_input": "2024-09-04T16:42:01.946376Z", + "iopub.status.busy": "2024-09-04T16:42:01.945498Z", + "iopub.status.idle": "2024-09-04T16:42:01.975499Z", + "shell.execute_reply": "2024-09-04T16:42:01.975010Z" } }, "outputs": [ @@ -2160,10 +2160,10 @@ "id": "9f437756-112e-4531-84fc-6ceadd0c9ef5", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:47.019805Z", - "iopub.status.busy": "2024-08-29T17:12:47.019501Z", - "iopub.status.idle": "2024-08-29T17:12:47.550358Z", - "shell.execute_reply": "2024-08-29T17:12:47.549759Z" + "iopub.execute_input": "2024-09-04T16:42:01.978823Z", + "iopub.status.busy": "2024-09-04T16:42:01.977944Z", + "iopub.status.idle": "2024-09-04T16:42:02.480036Z", + "shell.execute_reply": "2024-09-04T16:42:02.479536Z" } }, "outputs": [], @@ -2194,10 +2194,10 @@ "id": "707625f6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:47.554166Z", - "iopub.status.busy": "2024-08-29T17:12:47.553241Z", - "iopub.status.idle": "2024-08-29T17:12:47.689524Z", - "shell.execute_reply": "2024-08-29T17:12:47.688889Z" + "iopub.execute_input": "2024-09-04T16:42:02.483488Z", + "iopub.status.busy": "2024-09-04T16:42:02.482601Z", + "iopub.status.idle": "2024-09-04T16:42:02.622138Z", + "shell.execute_reply": "2024-09-04T16:42:02.621454Z" } }, "outputs": [ @@ -2408,10 +2408,10 @@ "id": "25afe46c-a521-483c-b168-728c76d970dc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:47.693157Z", - "iopub.status.busy": "2024-08-29T17:12:47.692202Z", - "iopub.status.idle": "2024-08-29T17:12:47.700958Z", - "shell.execute_reply": "2024-08-29T17:12:47.700445Z" + "iopub.execute_input": "2024-09-04T16:42:02.624962Z", + "iopub.status.busy": "2024-09-04T16:42:02.624352Z", + "iopub.status.idle": "2024-09-04T16:42:02.631657Z", + "shell.execute_reply": "2024-09-04T16:42:02.631140Z" } }, "outputs": [ @@ -2441,10 +2441,10 @@ "id": "6efcf06f-cc40-4964-87df-5204d3b1b9d4", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:47.704567Z", - "iopub.status.busy": "2024-08-29T17:12:47.703642Z", - "iopub.status.idle": "2024-08-29T17:12:47.711566Z", - "shell.execute_reply": "2024-08-29T17:12:47.711061Z" + "iopub.execute_input": "2024-09-04T16:42:02.634060Z", + "iopub.status.busy": "2024-09-04T16:42:02.633654Z", + "iopub.status.idle": "2024-09-04T16:42:02.639992Z", + "shell.execute_reply": "2024-09-04T16:42:02.639480Z" } }, "outputs": [ @@ -2477,10 +2477,10 @@ "id": "7bc87d72-bbd5-4ed2-bc38-2218862ddfbd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:47.715001Z", - "iopub.status.busy": "2024-08-29T17:12:47.714062Z", - "iopub.status.idle": "2024-08-29T17:12:47.721283Z", - "shell.execute_reply": "2024-08-29T17:12:47.720794Z" + "iopub.execute_input": "2024-09-04T16:42:02.642378Z", + "iopub.status.busy": "2024-09-04T16:42:02.641974Z", + "iopub.status.idle": "2024-09-04T16:42:02.647674Z", + "shell.execute_reply": "2024-09-04T16:42:02.647161Z" } }, "outputs": [ @@ -2513,10 +2513,10 @@ "id": "9c70be3e-0ba2-4e3e-8c50-359d402ca1fe", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:47.724690Z", - "iopub.status.busy": "2024-08-29T17:12:47.723784Z", - "iopub.status.idle": "2024-08-29T17:12:47.729765Z", - "shell.execute_reply": "2024-08-29T17:12:47.729273Z" + "iopub.execute_input": "2024-09-04T16:42:02.650024Z", + "iopub.status.busy": "2024-09-04T16:42:02.649630Z", + "iopub.status.idle": "2024-09-04T16:42:02.654116Z", + "shell.execute_reply": "2024-09-04T16:42:02.653593Z" } }, "outputs": [ @@ -2542,10 +2542,10 @@ "id": "08080458-0cd7-447d-80e6-384cb8d31eaf", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:47.731696Z", - "iopub.status.busy": "2024-08-29T17:12:47.731522Z", - "iopub.status.idle": "2024-08-29T17:12:47.736316Z", - "shell.execute_reply": "2024-08-29T17:12:47.735868Z" + "iopub.execute_input": "2024-09-04T16:42:02.656447Z", + "iopub.status.busy": "2024-09-04T16:42:02.656047Z", + "iopub.status.idle": "2024-09-04T16:42:02.660984Z", + "shell.execute_reply": "2024-09-04T16:42:02.660484Z" } }, "outputs": [], @@ -2569,10 +2569,10 @@ "id": "009bb215-4d26-47da-a230-d0ccf4122629", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:47.738296Z", - "iopub.status.busy": "2024-08-29T17:12:47.738108Z", - "iopub.status.idle": "2024-08-29T17:12:47.814917Z", - "shell.execute_reply": "2024-08-29T17:12:47.814292Z" + "iopub.execute_input": "2024-09-04T16:42:02.663570Z", + "iopub.status.busy": "2024-09-04T16:42:02.663173Z", + "iopub.status.idle": "2024-09-04T16:42:02.737828Z", + "shell.execute_reply": "2024-09-04T16:42:02.737279Z" } }, "outputs": [ @@ -3052,10 +3052,10 @@ "id": "dcaeda51-9b24-4c04-889d-7e63563594fc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:47.817103Z", - "iopub.status.busy": "2024-08-29T17:12:47.816926Z", - "iopub.status.idle": "2024-08-29T17:12:47.825966Z", - "shell.execute_reply": "2024-08-29T17:12:47.825387Z" + "iopub.execute_input": "2024-09-04T16:42:02.740343Z", + "iopub.status.busy": "2024-09-04T16:42:02.739973Z", + "iopub.status.idle": "2024-09-04T16:42:02.752701Z", + "shell.execute_reply": "2024-09-04T16:42:02.752269Z" } }, "outputs": [ @@ -3111,10 +3111,10 @@ "id": "1d92d78d-e4a8-4322-bf38-f5a5dae3bf17", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:47.828396Z", - "iopub.status.busy": "2024-08-29T17:12:47.827941Z", - "iopub.status.idle": "2024-08-29T17:12:47.830752Z", - "shell.execute_reply": "2024-08-29T17:12:47.830284Z" + "iopub.execute_input": "2024-09-04T16:42:02.754991Z", + "iopub.status.busy": "2024-09-04T16:42:02.754640Z", + "iopub.status.idle": "2024-09-04T16:42:02.757462Z", + "shell.execute_reply": "2024-09-04T16:42:02.757043Z" } }, "outputs": [], @@ -3150,10 +3150,10 @@ "id": "941ab2a6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:47.832857Z", - "iopub.status.busy": "2024-08-29T17:12:47.832409Z", - "iopub.status.idle": "2024-08-29T17:12:47.842686Z", - "shell.execute_reply": "2024-08-29T17:12:47.842124Z" + "iopub.execute_input": "2024-09-04T16:42:02.759660Z", + "iopub.status.busy": "2024-09-04T16:42:02.759312Z", + "iopub.status.idle": "2024-09-04T16:42:02.768158Z", + "shell.execute_reply": "2024-09-04T16:42:02.767743Z" } }, "outputs": [], @@ -3261,10 +3261,10 @@ "id": "50666fb9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:47.844570Z", - "iopub.status.busy": "2024-08-29T17:12:47.844400Z", - "iopub.status.idle": "2024-08-29T17:12:47.852487Z", - "shell.execute_reply": "2024-08-29T17:12:47.852017Z" + "iopub.execute_input": "2024-09-04T16:42:02.770481Z", + "iopub.status.busy": "2024-09-04T16:42:02.770127Z", + "iopub.status.idle": "2024-09-04T16:42:02.776682Z", + "shell.execute_reply": "2024-09-04T16:42:02.776278Z" }, "nbsphinx": "hidden" }, @@ -3346,10 +3346,10 @@ "id": "f5aa2883-d20d-481f-a012-fcc7ff8e3e7e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:47.854472Z", - "iopub.status.busy": "2024-08-29T17:12:47.854122Z", - "iopub.status.idle": "2024-08-29T17:12:47.857490Z", - "shell.execute_reply": "2024-08-29T17:12:47.857030Z" + "iopub.execute_input": "2024-09-04T16:42:02.778893Z", + "iopub.status.busy": "2024-09-04T16:42:02.778539Z", + "iopub.status.idle": "2024-09-04T16:42:02.781991Z", + "shell.execute_reply": "2024-09-04T16:42:02.781579Z" } }, "outputs": [], @@ -3373,10 +3373,10 @@ "id": "ce1c0ada-88b1-4654-b43f-3c0b59002979", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:47.859416Z", - "iopub.status.busy": "2024-08-29T17:12:47.859115Z", - "iopub.status.idle": "2024-08-29T17:12:51.895185Z", - "shell.execute_reply": "2024-08-29T17:12:51.894624Z" + "iopub.execute_input": "2024-09-04T16:42:02.784175Z", + "iopub.status.busy": "2024-09-04T16:42:02.783822Z", + "iopub.status.idle": "2024-09-04T16:42:06.744322Z", + "shell.execute_reply": "2024-09-04T16:42:06.743807Z" } }, "outputs": [ @@ -3419,10 +3419,10 @@ "id": "3f572acf-31c3-4874-9100-451796e35b06", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:51.898749Z", - "iopub.status.busy": "2024-08-29T17:12:51.897837Z", - "iopub.status.idle": "2024-08-29T17:12:51.901554Z", - "shell.execute_reply": "2024-08-29T17:12:51.901116Z" + "iopub.execute_input": "2024-09-04T16:42:06.746831Z", + "iopub.status.busy": "2024-09-04T16:42:06.746621Z", + "iopub.status.idle": "2024-09-04T16:42:06.750865Z", + "shell.execute_reply": "2024-09-04T16:42:06.750427Z" } }, "outputs": [ @@ -3460,10 +3460,10 @@ "id": "6a025a88", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:51.903470Z", - "iopub.status.busy": "2024-08-29T17:12:51.903230Z", - "iopub.status.idle": "2024-08-29T17:12:51.906015Z", - "shell.execute_reply": "2024-08-29T17:12:51.905545Z" + "iopub.execute_input": "2024-09-04T16:42:06.752867Z", + "iopub.status.busy": "2024-09-04T16:42:06.752550Z", + "iopub.status.idle": "2024-09-04T16:42:06.755427Z", + "shell.execute_reply": "2024-09-04T16:42:06.754905Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index 5b136c65b..ea452d54f 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:54.886949Z", - "iopub.status.busy": "2024-08-29T17:12:54.886773Z", - "iopub.status.idle": "2024-08-29T17:12:56.104468Z", - "shell.execute_reply": "2024-08-29T17:12:56.103850Z" + "iopub.execute_input": "2024-09-04T16:42:09.669951Z", + "iopub.status.busy": "2024-09-04T16:42:09.669454Z", + "iopub.status.idle": "2024-09-04T16:42:10.857078Z", + "shell.execute_reply": "2024-09-04T16:42:10.856536Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:56.107011Z", - "iopub.status.busy": "2024-08-29T17:12:56.106751Z", - "iopub.status.idle": "2024-08-29T17:12:56.295335Z", - "shell.execute_reply": "2024-08-29T17:12:56.294795Z" + "iopub.execute_input": "2024-09-04T16:42:10.859602Z", + "iopub.status.busy": "2024-09-04T16:42:10.859180Z", + "iopub.status.idle": "2024-09-04T16:42:11.036049Z", + "shell.execute_reply": "2024-09-04T16:42:11.035540Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:56.297915Z", - "iopub.status.busy": "2024-08-29T17:12:56.297716Z", - "iopub.status.idle": "2024-08-29T17:12:56.309783Z", - "shell.execute_reply": "2024-08-29T17:12:56.309342Z" + "iopub.execute_input": "2024-09-04T16:42:11.038424Z", + "iopub.status.busy": "2024-09-04T16:42:11.038097Z", + "iopub.status.idle": "2024-09-04T16:42:11.049631Z", + "shell.execute_reply": "2024-09-04T16:42:11.049041Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:56.311871Z", - "iopub.status.busy": "2024-08-29T17:12:56.311520Z", - "iopub.status.idle": "2024-08-29T17:12:56.520091Z", - "shell.execute_reply": "2024-08-29T17:12:56.519498Z" + "iopub.execute_input": "2024-09-04T16:42:11.051824Z", + "iopub.status.busy": "2024-09-04T16:42:11.051385Z", + "iopub.status.idle": "2024-09-04T16:42:11.259202Z", + "shell.execute_reply": "2024-09-04T16:42:11.258640Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:56.522281Z", - "iopub.status.busy": "2024-08-29T17:12:56.522084Z", - "iopub.status.idle": "2024-08-29T17:12:56.547806Z", - "shell.execute_reply": "2024-08-29T17:12:56.547360Z" + "iopub.execute_input": "2024-09-04T16:42:11.261584Z", + "iopub.status.busy": "2024-09-04T16:42:11.261174Z", + "iopub.status.idle": "2024-09-04T16:42:11.287643Z", + "shell.execute_reply": "2024-09-04T16:42:11.287051Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:56.549864Z", - "iopub.status.busy": "2024-08-29T17:12:56.549518Z", - "iopub.status.idle": "2024-08-29T17:12:58.659802Z", - "shell.execute_reply": "2024-08-29T17:12:58.659098Z" + "iopub.execute_input": "2024-09-04T16:42:11.289979Z", + "iopub.status.busy": "2024-09-04T16:42:11.289536Z", + "iopub.status.idle": "2024-09-04T16:42:13.340382Z", + "shell.execute_reply": "2024-09-04T16:42:13.339824Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:58.662480Z", - "iopub.status.busy": "2024-08-29T17:12:58.661939Z", - "iopub.status.idle": "2024-08-29T17:12:58.679875Z", - "shell.execute_reply": "2024-08-29T17:12:58.679307Z" + "iopub.execute_input": "2024-09-04T16:42:13.343035Z", + "iopub.status.busy": "2024-09-04T16:42:13.342535Z", + "iopub.status.idle": "2024-09-04T16:42:13.360303Z", + "shell.execute_reply": "2024-09-04T16:42:13.359860Z" }, "scrolled": true }, @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:12:58.681955Z", - "iopub.status.busy": "2024-08-29T17:12:58.681645Z", - "iopub.status.idle": "2024-08-29T17:13:00.311192Z", - "shell.execute_reply": "2024-08-29T17:13:00.310203Z" + "iopub.execute_input": "2024-09-04T16:42:13.362391Z", + "iopub.status.busy": "2024-09-04T16:42:13.362067Z", + "iopub.status.idle": "2024-09-04T16:42:14.929094Z", + "shell.execute_reply": "2024-09-04T16:42:14.928504Z" }, "id": "AaHC5MRKjruT" }, @@ -729,10 +729,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:00.313932Z", - "iopub.status.busy": "2024-08-29T17:13:00.313214Z", - "iopub.status.idle": "2024-08-29T17:13:00.327251Z", - "shell.execute_reply": "2024-08-29T17:13:00.326773Z" + "iopub.execute_input": "2024-09-04T16:42:14.932157Z", + "iopub.status.busy": "2024-09-04T16:42:14.931170Z", + "iopub.status.idle": "2024-09-04T16:42:14.944484Z", + "shell.execute_reply": "2024-09-04T16:42:14.944022Z" }, "id": "Wy27rvyhjruU" }, @@ -781,10 +781,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:00.329451Z", - "iopub.status.busy": "2024-08-29T17:13:00.328984Z", - "iopub.status.idle": "2024-08-29T17:13:00.409424Z", - "shell.execute_reply": "2024-08-29T17:13:00.408792Z" + "iopub.execute_input": "2024-09-04T16:42:14.946582Z", + "iopub.status.busy": "2024-09-04T16:42:14.946252Z", + "iopub.status.idle": "2024-09-04T16:42:15.025582Z", + "shell.execute_reply": "2024-09-04T16:42:15.024954Z" }, "id": "Db8YHnyVjruU" }, @@ -891,10 +891,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:00.411870Z", - "iopub.status.busy": "2024-08-29T17:13:00.411399Z", - "iopub.status.idle": "2024-08-29T17:13:00.625259Z", - "shell.execute_reply": "2024-08-29T17:13:00.624717Z" + "iopub.execute_input": "2024-09-04T16:42:15.028128Z", + "iopub.status.busy": "2024-09-04T16:42:15.027669Z", + "iopub.status.idle": "2024-09-04T16:42:15.238127Z", + "shell.execute_reply": "2024-09-04T16:42:15.237611Z" }, "id": "iJqAHuS2jruV" }, @@ -931,10 +931,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:00.627503Z", - "iopub.status.busy": "2024-08-29T17:13:00.627134Z", - "iopub.status.idle": "2024-08-29T17:13:00.644883Z", - "shell.execute_reply": "2024-08-29T17:13:00.644395Z" + "iopub.execute_input": "2024-09-04T16:42:15.240189Z", + "iopub.status.busy": "2024-09-04T16:42:15.240007Z", + "iopub.status.idle": "2024-09-04T16:42:15.256890Z", + "shell.execute_reply": "2024-09-04T16:42:15.256430Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1400,10 +1400,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:00.647235Z", - "iopub.status.busy": "2024-08-29T17:13:00.646834Z", - "iopub.status.idle": "2024-08-29T17:13:00.659081Z", - "shell.execute_reply": "2024-08-29T17:13:00.658556Z" + "iopub.execute_input": "2024-09-04T16:42:15.258893Z", + "iopub.status.busy": "2024-09-04T16:42:15.258711Z", + "iopub.status.idle": "2024-09-04T16:42:15.268357Z", + "shell.execute_reply": "2024-09-04T16:42:15.267918Z" }, "id": "0lonvOYvjruV" }, @@ -1550,10 +1550,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:00.661251Z", - "iopub.status.busy": "2024-08-29T17:13:00.660934Z", - "iopub.status.idle": "2024-08-29T17:13:00.756825Z", - "shell.execute_reply": "2024-08-29T17:13:00.756221Z" + "iopub.execute_input": "2024-09-04T16:42:15.270535Z", + "iopub.status.busy": "2024-09-04T16:42:15.270213Z", + "iopub.status.idle": "2024-09-04T16:42:15.362596Z", + "shell.execute_reply": "2024-09-04T16:42:15.361968Z" }, "id": "MfqTCa3kjruV" }, @@ -1634,10 +1634,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:00.759739Z", - "iopub.status.busy": "2024-08-29T17:13:00.759326Z", - "iopub.status.idle": "2024-08-29T17:13:00.905850Z", - "shell.execute_reply": "2024-08-29T17:13:00.905202Z" + "iopub.execute_input": "2024-09-04T16:42:15.365198Z", + "iopub.status.busy": "2024-09-04T16:42:15.364807Z", + "iopub.status.idle": "2024-09-04T16:42:15.500380Z", + "shell.execute_reply": "2024-09-04T16:42:15.499762Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1697,10 +1697,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:00.908205Z", - "iopub.status.busy": "2024-08-29T17:13:00.908011Z", - "iopub.status.idle": "2024-08-29T17:13:00.912072Z", - "shell.execute_reply": "2024-08-29T17:13:00.911517Z" + "iopub.execute_input": "2024-09-04T16:42:15.503164Z", + "iopub.status.busy": "2024-09-04T16:42:15.502765Z", + "iopub.status.idle": "2024-09-04T16:42:15.506446Z", + "shell.execute_reply": "2024-09-04T16:42:15.505904Z" }, "id": "0rXP3ZPWjruW" }, @@ -1738,10 +1738,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:00.914030Z", - "iopub.status.busy": "2024-08-29T17:13:00.913851Z", - "iopub.status.idle": "2024-08-29T17:13:00.917359Z", - "shell.execute_reply": "2024-08-29T17:13:00.916838Z" + "iopub.execute_input": "2024-09-04T16:42:15.508587Z", + "iopub.status.busy": "2024-09-04T16:42:15.508253Z", + "iopub.status.idle": "2024-09-04T16:42:15.511968Z", + "shell.execute_reply": "2024-09-04T16:42:15.511423Z" }, "id": "-iRPe8KXjruW" }, @@ -1796,10 +1796,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:00.919315Z", - "iopub.status.busy": "2024-08-29T17:13:00.918974Z", - "iopub.status.idle": "2024-08-29T17:13:00.956318Z", - "shell.execute_reply": "2024-08-29T17:13:00.955832Z" + "iopub.execute_input": "2024-09-04T16:42:15.513964Z", + "iopub.status.busy": "2024-09-04T16:42:15.513647Z", + "iopub.status.idle": "2024-09-04T16:42:15.550349Z", + "shell.execute_reply": "2024-09-04T16:42:15.549796Z" }, "id": "ZpipUliyjruW" }, @@ -1850,10 +1850,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:00.958581Z", - "iopub.status.busy": "2024-08-29T17:13:00.958192Z", - "iopub.status.idle": "2024-08-29T17:13:00.999322Z", - "shell.execute_reply": "2024-08-29T17:13:00.998783Z" + "iopub.execute_input": "2024-09-04T16:42:15.552389Z", + "iopub.status.busy": "2024-09-04T16:42:15.552071Z", + "iopub.status.idle": "2024-09-04T16:42:15.593615Z", + "shell.execute_reply": "2024-09-04T16:42:15.593022Z" }, "id": "SLq-3q4xjruX" }, @@ -1922,10 +1922,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:01.001564Z", - "iopub.status.busy": "2024-08-29T17:13:01.001211Z", - "iopub.status.idle": "2024-08-29T17:13:01.105915Z", - "shell.execute_reply": "2024-08-29T17:13:01.105289Z" + "iopub.execute_input": "2024-09-04T16:42:15.595654Z", + "iopub.status.busy": "2024-09-04T16:42:15.595316Z", + "iopub.status.idle": "2024-09-04T16:42:15.693816Z", + "shell.execute_reply": "2024-09-04T16:42:15.692973Z" }, "id": "g5LHhhuqFbXK" }, @@ -1957,10 +1957,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:01.108842Z", - "iopub.status.busy": "2024-08-29T17:13:01.108455Z", - "iopub.status.idle": "2024-08-29T17:13:01.219741Z", - "shell.execute_reply": "2024-08-29T17:13:01.219092Z" + "iopub.execute_input": "2024-09-04T16:42:15.696412Z", + "iopub.status.busy": "2024-09-04T16:42:15.696064Z", + "iopub.status.idle": "2024-09-04T16:42:15.796781Z", + "shell.execute_reply": "2024-09-04T16:42:15.796134Z" }, "id": "p7w8F8ezBcet" }, @@ -2017,10 +2017,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:01.222436Z", - "iopub.status.busy": "2024-08-29T17:13:01.222026Z", - "iopub.status.idle": "2024-08-29T17:13:01.435601Z", - "shell.execute_reply": "2024-08-29T17:13:01.435091Z" + "iopub.execute_input": "2024-09-04T16:42:15.799073Z", + "iopub.status.busy": "2024-09-04T16:42:15.798843Z", + "iopub.status.idle": "2024-09-04T16:42:16.015067Z", + "shell.execute_reply": "2024-09-04T16:42:16.014457Z" }, "id": "WETRL74tE_sU" }, @@ -2055,10 +2055,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:01.437978Z", - "iopub.status.busy": "2024-08-29T17:13:01.437610Z", - "iopub.status.idle": "2024-08-29T17:13:01.655421Z", - "shell.execute_reply": "2024-08-29T17:13:01.654757Z" + "iopub.execute_input": "2024-09-04T16:42:16.017515Z", + "iopub.status.busy": "2024-09-04T16:42:16.017082Z", + "iopub.status.idle": "2024-09-04T16:42:16.225862Z", + "shell.execute_reply": "2024-09-04T16:42:16.225198Z" }, "id": "kCfdx2gOLmXS" }, @@ -2220,10 +2220,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:01.657848Z", - "iopub.status.busy": "2024-08-29T17:13:01.657478Z", - "iopub.status.idle": "2024-08-29T17:13:01.663871Z", - "shell.execute_reply": "2024-08-29T17:13:01.663321Z" + "iopub.execute_input": "2024-09-04T16:42:16.228308Z", + "iopub.status.busy": "2024-09-04T16:42:16.227913Z", + "iopub.status.idle": "2024-09-04T16:42:16.233968Z", + "shell.execute_reply": "2024-09-04T16:42:16.233513Z" }, "id": "-uogYRWFYnuu" }, @@ -2277,10 +2277,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:01.665915Z", - "iopub.status.busy": "2024-08-29T17:13:01.665595Z", - "iopub.status.idle": "2024-08-29T17:13:01.887112Z", - "shell.execute_reply": "2024-08-29T17:13:01.886583Z" + "iopub.execute_input": "2024-09-04T16:42:16.236018Z", + "iopub.status.busy": "2024-09-04T16:42:16.235680Z", + "iopub.status.idle": "2024-09-04T16:42:16.448694Z", + "shell.execute_reply": "2024-09-04T16:42:16.448152Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2327,10 +2327,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:01.889533Z", - "iopub.status.busy": "2024-08-29T17:13:01.889116Z", - "iopub.status.idle": "2024-08-29T17:13:02.961779Z", - "shell.execute_reply": "2024-08-29T17:13:02.961228Z" + "iopub.execute_input": "2024-09-04T16:42:16.450793Z", + "iopub.status.busy": "2024-09-04T16:42:16.450474Z", + "iopub.status.idle": "2024-09-04T16:42:17.528667Z", + "shell.execute_reply": "2024-09-04T16:42:17.528043Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index 21c5da844..c630f8f0d 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:07.379288Z", - "iopub.status.busy": "2024-08-29T17:13:07.379129Z", - "iopub.status.idle": "2024-08-29T17:13:08.557670Z", - "shell.execute_reply": "2024-08-29T17:13:08.557107Z" + "iopub.execute_input": "2024-09-04T16:42:21.027161Z", + "iopub.status.busy": "2024-09-04T16:42:21.026989Z", + "iopub.status.idle": "2024-09-04T16:42:22.153963Z", + "shell.execute_reply": "2024-09-04T16:42:22.153417Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:08.560315Z", - "iopub.status.busy": "2024-08-29T17:13:08.559785Z", - "iopub.status.idle": "2024-08-29T17:13:08.563039Z", - "shell.execute_reply": "2024-08-29T17:13:08.562482Z" + "iopub.execute_input": "2024-09-04T16:42:22.156406Z", + "iopub.status.busy": "2024-09-04T16:42:22.156139Z", + "iopub.status.idle": "2024-09-04T16:42:22.159307Z", + "shell.execute_reply": "2024-09-04T16:42:22.158851Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:08.565443Z", - "iopub.status.busy": "2024-08-29T17:13:08.565021Z", - "iopub.status.idle": "2024-08-29T17:13:08.572955Z", - "shell.execute_reply": "2024-08-29T17:13:08.572477Z" + "iopub.execute_input": "2024-09-04T16:42:22.161273Z", + "iopub.status.busy": "2024-09-04T16:42:22.161083Z", + "iopub.status.idle": "2024-09-04T16:42:22.168998Z", + "shell.execute_reply": "2024-09-04T16:42:22.168531Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:08.574969Z", - "iopub.status.busy": "2024-08-29T17:13:08.574627Z", - "iopub.status.idle": "2024-08-29T17:13:08.621464Z", - "shell.execute_reply": "2024-08-29T17:13:08.620954Z" + "iopub.execute_input": "2024-09-04T16:42:22.170762Z", + "iopub.status.busy": "2024-09-04T16:42:22.170587Z", + "iopub.status.idle": "2024-09-04T16:42:22.217387Z", + "shell.execute_reply": "2024-09-04T16:42:22.216879Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:08.623819Z", - "iopub.status.busy": "2024-08-29T17:13:08.623616Z", - "iopub.status.idle": "2024-08-29T17:13:08.641297Z", - "shell.execute_reply": "2024-08-29T17:13:08.640824Z" + "iopub.execute_input": "2024-09-04T16:42:22.219237Z", + "iopub.status.busy": "2024-09-04T16:42:22.219063Z", + "iopub.status.idle": "2024-09-04T16:42:22.235988Z", + "shell.execute_reply": "2024-09-04T16:42:22.235545Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:08.643432Z", - "iopub.status.busy": "2024-08-29T17:13:08.643093Z", - "iopub.status.idle": "2024-08-29T17:13:08.646846Z", - "shell.execute_reply": "2024-08-29T17:13:08.646360Z" + "iopub.execute_input": "2024-09-04T16:42:22.238015Z", + "iopub.status.busy": "2024-09-04T16:42:22.237684Z", + "iopub.status.idle": "2024-09-04T16:42:22.241487Z", + "shell.execute_reply": "2024-09-04T16:42:22.240915Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:08.648905Z", - "iopub.status.busy": "2024-08-29T17:13:08.648571Z", - "iopub.status.idle": "2024-08-29T17:13:08.662471Z", - "shell.execute_reply": "2024-08-29T17:13:08.661979Z" + "iopub.execute_input": "2024-09-04T16:42:22.243605Z", + "iopub.status.busy": "2024-09-04T16:42:22.243290Z", + "iopub.status.idle": "2024-09-04T16:42:22.256635Z", + "shell.execute_reply": "2024-09-04T16:42:22.256173Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:08.664485Z", - "iopub.status.busy": "2024-08-29T17:13:08.664146Z", - "iopub.status.idle": "2024-08-29T17:13:08.690511Z", - "shell.execute_reply": "2024-08-29T17:13:08.690055Z" + "iopub.execute_input": "2024-09-04T16:42:22.258677Z", + "iopub.status.busy": "2024-09-04T16:42:22.258352Z", + "iopub.status.idle": "2024-09-04T16:42:22.283974Z", + "shell.execute_reply": "2024-09-04T16:42:22.283385Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:08.692667Z", - "iopub.status.busy": "2024-08-29T17:13:08.692336Z", - "iopub.status.idle": "2024-08-29T17:13:10.692423Z", - "shell.execute_reply": "2024-08-29T17:13:10.691861Z" + "iopub.execute_input": "2024-09-04T16:42:22.285867Z", + "iopub.status.busy": "2024-09-04T16:42:22.285695Z", + "iopub.status.idle": "2024-09-04T16:42:24.216087Z", + "shell.execute_reply": "2024-09-04T16:42:24.215532Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:10.694992Z", - "iopub.status.busy": "2024-08-29T17:13:10.694558Z", - "iopub.status.idle": "2024-08-29T17:13:10.701315Z", - "shell.execute_reply": "2024-08-29T17:13:10.700750Z" + "iopub.execute_input": "2024-09-04T16:42:24.218573Z", + "iopub.status.busy": "2024-09-04T16:42:24.218136Z", + "iopub.status.idle": "2024-09-04T16:42:24.224781Z", + "shell.execute_reply": "2024-09-04T16:42:24.224222Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:10.703445Z", - "iopub.status.busy": "2024-08-29T17:13:10.703082Z", - "iopub.status.idle": "2024-08-29T17:13:10.716205Z", - "shell.execute_reply": "2024-08-29T17:13:10.715753Z" + "iopub.execute_input": "2024-09-04T16:42:24.226767Z", + "iopub.status.busy": "2024-09-04T16:42:24.226468Z", + "iopub.status.idle": "2024-09-04T16:42:24.239484Z", + "shell.execute_reply": "2024-09-04T16:42:24.238946Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:10.718157Z", - "iopub.status.busy": "2024-08-29T17:13:10.717838Z", - "iopub.status.idle": "2024-08-29T17:13:10.724109Z", - "shell.execute_reply": "2024-08-29T17:13:10.723562Z" + "iopub.execute_input": "2024-09-04T16:42:24.241592Z", + "iopub.status.busy": "2024-09-04T16:42:24.241186Z", + "iopub.status.idle": "2024-09-04T16:42:24.247396Z", + "shell.execute_reply": "2024-09-04T16:42:24.246863Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:10.726270Z", - "iopub.status.busy": "2024-08-29T17:13:10.725863Z", - "iopub.status.idle": "2024-08-29T17:13:10.728666Z", - "shell.execute_reply": "2024-08-29T17:13:10.728121Z" + "iopub.execute_input": "2024-09-04T16:42:24.249422Z", + "iopub.status.busy": "2024-09-04T16:42:24.249105Z", + "iopub.status.idle": "2024-09-04T16:42:24.251824Z", + "shell.execute_reply": "2024-09-04T16:42:24.251348Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:10.730677Z", - "iopub.status.busy": "2024-08-29T17:13:10.730279Z", - "iopub.status.idle": "2024-08-29T17:13:10.733950Z", - "shell.execute_reply": "2024-08-29T17:13:10.733379Z" + "iopub.execute_input": "2024-09-04T16:42:24.253838Z", + "iopub.status.busy": "2024-09-04T16:42:24.253452Z", + "iopub.status.idle": "2024-09-04T16:42:24.256894Z", + "shell.execute_reply": "2024-09-04T16:42:24.256408Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:10.736069Z", - "iopub.status.busy": "2024-08-29T17:13:10.735675Z", - "iopub.status.idle": "2024-08-29T17:13:10.738431Z", - "shell.execute_reply": "2024-08-29T17:13:10.737869Z" + "iopub.execute_input": "2024-09-04T16:42:24.258990Z", + "iopub.status.busy": "2024-09-04T16:42:24.258657Z", + "iopub.status.idle": "2024-09-04T16:42:24.261106Z", + "shell.execute_reply": "2024-09-04T16:42:24.260668Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:10.740315Z", - "iopub.status.busy": "2024-08-29T17:13:10.740022Z", - "iopub.status.idle": "2024-08-29T17:13:10.744394Z", - "shell.execute_reply": "2024-08-29T17:13:10.743929Z" + "iopub.execute_input": "2024-09-04T16:42:24.263123Z", + "iopub.status.busy": "2024-09-04T16:42:24.262788Z", + "iopub.status.idle": "2024-09-04T16:42:24.266861Z", + "shell.execute_reply": "2024-09-04T16:42:24.266310Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:10.746411Z", - "iopub.status.busy": "2024-08-29T17:13:10.746112Z", - "iopub.status.idle": "2024-08-29T17:13:10.774547Z", - "shell.execute_reply": "2024-08-29T17:13:10.773921Z" + "iopub.execute_input": "2024-09-04T16:42:24.268975Z", + "iopub.status.busy": "2024-09-04T16:42:24.268663Z", + "iopub.status.idle": "2024-09-04T16:42:24.296639Z", + "shell.execute_reply": "2024-09-04T16:42:24.296222Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:10.777035Z", - "iopub.status.busy": "2024-08-29T17:13:10.776710Z", - "iopub.status.idle": "2024-08-29T17:13:10.781535Z", - "shell.execute_reply": "2024-08-29T17:13:10.780958Z" + "iopub.execute_input": "2024-09-04T16:42:24.298825Z", + "iopub.status.busy": "2024-09-04T16:42:24.298377Z", + "iopub.status.idle": "2024-09-04T16:42:24.302894Z", + "shell.execute_reply": "2024-09-04T16:42:24.302447Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index 8fa07059e..71d46a48c 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:13.815853Z", - "iopub.status.busy": "2024-08-29T17:13:13.815684Z", - "iopub.status.idle": "2024-08-29T17:13:15.038986Z", - "shell.execute_reply": "2024-08-29T17:13:15.038442Z" + "iopub.execute_input": "2024-09-04T16:42:27.239726Z", + "iopub.status.busy": "2024-09-04T16:42:27.239555Z", + "iopub.status.idle": "2024-09-04T16:42:28.412171Z", + "shell.execute_reply": "2024-09-04T16:42:28.411622Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:15.041340Z", - "iopub.status.busy": "2024-08-29T17:13:15.041071Z", - "iopub.status.idle": "2024-08-29T17:13:15.237062Z", - "shell.execute_reply": "2024-08-29T17:13:15.236517Z" + "iopub.execute_input": "2024-09-04T16:42:28.414764Z", + "iopub.status.busy": "2024-09-04T16:42:28.414366Z", + "iopub.status.idle": "2024-09-04T16:42:28.605821Z", + "shell.execute_reply": "2024-09-04T16:42:28.605210Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:15.239727Z", - "iopub.status.busy": "2024-08-29T17:13:15.239451Z", - "iopub.status.idle": "2024-08-29T17:13:15.252949Z", - "shell.execute_reply": "2024-08-29T17:13:15.252360Z" + "iopub.execute_input": "2024-09-04T16:42:28.608437Z", + "iopub.status.busy": "2024-09-04T16:42:28.608049Z", + "iopub.status.idle": "2024-09-04T16:42:28.621489Z", + "shell.execute_reply": "2024-09-04T16:42:28.620904Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:15.255134Z", - "iopub.status.busy": "2024-08-29T17:13:15.254739Z", - "iopub.status.idle": "2024-08-29T17:13:17.899597Z", - "shell.execute_reply": "2024-08-29T17:13:17.899091Z" + "iopub.execute_input": "2024-09-04T16:42:28.623727Z", + "iopub.status.busy": "2024-09-04T16:42:28.623319Z", + "iopub.status.idle": "2024-09-04T16:42:31.199521Z", + "shell.execute_reply": "2024-09-04T16:42:31.198956Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:17.901950Z", - "iopub.status.busy": "2024-08-29T17:13:17.901492Z", - "iopub.status.idle": "2024-08-29T17:13:19.253074Z", - "shell.execute_reply": "2024-08-29T17:13:19.252410Z" + "iopub.execute_input": "2024-09-04T16:42:31.202037Z", + "iopub.status.busy": "2024-09-04T16:42:31.201637Z", + "iopub.status.idle": "2024-09-04T16:42:32.534841Z", + "shell.execute_reply": "2024-09-04T16:42:32.534286Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:19.255731Z", - "iopub.status.busy": "2024-08-29T17:13:19.255365Z", - "iopub.status.idle": "2024-08-29T17:13:19.259482Z", - "shell.execute_reply": "2024-08-29T17:13:19.259020Z" + "iopub.execute_input": "2024-09-04T16:42:32.537189Z", + "iopub.status.busy": "2024-09-04T16:42:32.536822Z", + "iopub.status.idle": "2024-09-04T16:42:32.540854Z", + "shell.execute_reply": "2024-09-04T16:42:32.540371Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:19.261405Z", - "iopub.status.busy": "2024-08-29T17:13:19.261098Z", - "iopub.status.idle": "2024-08-29T17:13:21.317331Z", - "shell.execute_reply": "2024-08-29T17:13:21.316688Z" + "iopub.execute_input": "2024-09-04T16:42:32.542938Z", + "iopub.status.busy": "2024-09-04T16:42:32.542591Z", + "iopub.status.idle": "2024-09-04T16:42:34.557797Z", + "shell.execute_reply": "2024-09-04T16:42:34.557104Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:21.319921Z", - "iopub.status.busy": "2024-08-29T17:13:21.319573Z", - "iopub.status.idle": "2024-08-29T17:13:21.327758Z", - "shell.execute_reply": "2024-08-29T17:13:21.327204Z" + "iopub.execute_input": "2024-09-04T16:42:34.560515Z", + "iopub.status.busy": "2024-09-04T16:42:34.560011Z", + "iopub.status.idle": "2024-09-04T16:42:34.567955Z", + "shell.execute_reply": "2024-09-04T16:42:34.567443Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:21.330061Z", - "iopub.status.busy": "2024-08-29T17:13:21.329554Z", - "iopub.status.idle": "2024-08-29T17:13:24.097931Z", - "shell.execute_reply": "2024-08-29T17:13:24.097339Z" + "iopub.execute_input": "2024-09-04T16:42:34.570323Z", + "iopub.status.busy": "2024-09-04T16:42:34.569985Z", + "iopub.status.idle": "2024-09-04T16:42:37.280228Z", + "shell.execute_reply": "2024-09-04T16:42:37.279719Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:24.100261Z", - "iopub.status.busy": "2024-08-29T17:13:24.099922Z", - "iopub.status.idle": "2024-08-29T17:13:24.103149Z", - "shell.execute_reply": "2024-08-29T17:13:24.102694Z" + "iopub.execute_input": "2024-09-04T16:42:37.282713Z", + "iopub.status.busy": "2024-09-04T16:42:37.282138Z", + "iopub.status.idle": "2024-09-04T16:42:37.285988Z", + "shell.execute_reply": "2024-09-04T16:42:37.285420Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:24.105303Z", - "iopub.status.busy": "2024-08-29T17:13:24.104969Z", - "iopub.status.idle": "2024-08-29T17:13:24.108822Z", - "shell.execute_reply": "2024-08-29T17:13:24.108408Z" + "iopub.execute_input": "2024-09-04T16:42:37.287931Z", + "iopub.status.busy": "2024-09-04T16:42:37.287655Z", + "iopub.status.idle": "2024-09-04T16:42:37.291248Z", + "shell.execute_reply": "2024-09-04T16:42:37.290676Z" } }, "outputs": [], @@ -769,10 +769,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:24.110940Z", - "iopub.status.busy": "2024-08-29T17:13:24.110614Z", - "iopub.status.idle": "2024-08-29T17:13:24.114216Z", - "shell.execute_reply": "2024-08-29T17:13:24.113802Z" + "iopub.execute_input": "2024-09-04T16:42:37.293519Z", + "iopub.status.busy": "2024-09-04T16:42:37.293103Z", + "iopub.status.idle": "2024-09-04T16:42:37.296465Z", + "shell.execute_reply": "2024-09-04T16:42:37.296001Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index 3087da8d1..656db3626 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:26.707579Z", - "iopub.status.busy": "2024-08-29T17:13:26.707407Z", - "iopub.status.idle": "2024-08-29T17:13:27.929509Z", - "shell.execute_reply": "2024-08-29T17:13:27.928890Z" + "iopub.execute_input": "2024-09-04T16:42:39.738738Z", + "iopub.status.busy": "2024-09-04T16:42:39.738561Z", + "iopub.status.idle": "2024-09-04T16:42:40.919102Z", + "shell.execute_reply": "2024-09-04T16:42:40.918465Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:27.932306Z", - "iopub.status.busy": "2024-08-29T17:13:27.931716Z", - "iopub.status.idle": "2024-08-29T17:13:29.129230Z", - "shell.execute_reply": "2024-08-29T17:13:29.128545Z" + "iopub.execute_input": "2024-09-04T16:42:40.921962Z", + "iopub.status.busy": "2024-09-04T16:42:40.921532Z", + "iopub.status.idle": "2024-09-04T16:42:44.104525Z", + "shell.execute_reply": "2024-09-04T16:42:44.103811Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:29.131841Z", - "iopub.status.busy": "2024-08-29T17:13:29.131633Z", - "iopub.status.idle": "2024-08-29T17:13:29.134883Z", - "shell.execute_reply": "2024-08-29T17:13:29.134444Z" + "iopub.execute_input": "2024-09-04T16:42:44.106929Z", + "iopub.status.busy": "2024-09-04T16:42:44.106730Z", + "iopub.status.idle": "2024-09-04T16:42:44.110188Z", + "shell.execute_reply": "2024-09-04T16:42:44.109732Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:29.136741Z", - "iopub.status.busy": "2024-08-29T17:13:29.136568Z", - "iopub.status.idle": "2024-08-29T17:13:29.143057Z", - "shell.execute_reply": "2024-08-29T17:13:29.142623Z" + "iopub.execute_input": "2024-09-04T16:42:44.112113Z", + "iopub.status.busy": "2024-09-04T16:42:44.111792Z", + "iopub.status.idle": "2024-09-04T16:42:44.118685Z", + "shell.execute_reply": "2024-09-04T16:42:44.118218Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:29.144959Z", - "iopub.status.busy": "2024-08-29T17:13:29.144782Z", - "iopub.status.idle": "2024-08-29T17:13:29.640180Z", - "shell.execute_reply": "2024-08-29T17:13:29.639545Z" + "iopub.execute_input": "2024-09-04T16:42:44.120591Z", + "iopub.status.busy": "2024-09-04T16:42:44.120419Z", + "iopub.status.idle": "2024-09-04T16:42:44.609650Z", + "shell.execute_reply": "2024-09-04T16:42:44.609066Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:29.642961Z", - "iopub.status.busy": "2024-08-29T17:13:29.642738Z", - "iopub.status.idle": "2024-08-29T17:13:29.648359Z", - "shell.execute_reply": "2024-08-29T17:13:29.647788Z" + "iopub.execute_input": "2024-09-04T16:42:44.612557Z", + "iopub.status.busy": "2024-09-04T16:42:44.612368Z", + "iopub.status.idle": "2024-09-04T16:42:44.617513Z", + "shell.execute_reply": "2024-09-04T16:42:44.616965Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:29.650165Z", - "iopub.status.busy": "2024-08-29T17:13:29.649990Z", - "iopub.status.idle": "2024-08-29T17:13:29.653811Z", - "shell.execute_reply": "2024-08-29T17:13:29.653376Z" + "iopub.execute_input": "2024-09-04T16:42:44.619427Z", + "iopub.status.busy": "2024-09-04T16:42:44.619125Z", + "iopub.status.idle": "2024-09-04T16:42:44.622981Z", + "shell.execute_reply": "2024-09-04T16:42:44.622533Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:29.655941Z", - "iopub.status.busy": "2024-08-29T17:13:29.655603Z", - "iopub.status.idle": "2024-08-29T17:13:30.532765Z", - "shell.execute_reply": "2024-08-29T17:13:30.532094Z" + "iopub.execute_input": "2024-09-04T16:42:44.624920Z", + "iopub.status.busy": "2024-09-04T16:42:44.624597Z", + "iopub.status.idle": "2024-09-04T16:42:45.487014Z", + "shell.execute_reply": "2024-09-04T16:42:45.486401Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:30.535273Z", - "iopub.status.busy": "2024-08-29T17:13:30.534885Z", - "iopub.status.idle": "2024-08-29T17:13:30.785223Z", - "shell.execute_reply": "2024-08-29T17:13:30.784735Z" + "iopub.execute_input": "2024-09-04T16:42:45.489297Z", + "iopub.status.busy": "2024-09-04T16:42:45.489035Z", + "iopub.status.idle": "2024-09-04T16:42:45.702626Z", + "shell.execute_reply": "2024-09-04T16:42:45.702067Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:30.787457Z", - "iopub.status.busy": "2024-08-29T17:13:30.787105Z", - "iopub.status.idle": "2024-08-29T17:13:30.791415Z", - "shell.execute_reply": "2024-08-29T17:13:30.790846Z" + "iopub.execute_input": "2024-09-04T16:42:45.704657Z", + "iopub.status.busy": "2024-09-04T16:42:45.704348Z", + "iopub.status.idle": "2024-09-04T16:42:45.708586Z", + "shell.execute_reply": "2024-09-04T16:42:45.708028Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:30.793442Z", - "iopub.status.busy": "2024-08-29T17:13:30.793262Z", - "iopub.status.idle": "2024-08-29T17:13:31.259811Z", - "shell.execute_reply": "2024-08-29T17:13:31.259155Z" + "iopub.execute_input": "2024-09-04T16:42:45.710729Z", + "iopub.status.busy": "2024-09-04T16:42:45.710332Z", + "iopub.status.idle": "2024-09-04T16:42:46.157861Z", + "shell.execute_reply": "2024-09-04T16:42:46.157294Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:31.264390Z", - "iopub.status.busy": "2024-08-29T17:13:31.263984Z", - "iopub.status.idle": "2024-08-29T17:13:31.575388Z", - "shell.execute_reply": "2024-08-29T17:13:31.574740Z" + "iopub.execute_input": "2024-09-04T16:42:46.161127Z", + "iopub.status.busy": "2024-09-04T16:42:46.160743Z", + "iopub.status.idle": "2024-09-04T16:42:46.494374Z", + "shell.execute_reply": "2024-09-04T16:42:46.493916Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:31.577837Z", - "iopub.status.busy": "2024-08-29T17:13:31.577527Z", - "iopub.status.idle": "2024-08-29T17:13:31.947615Z", - "shell.execute_reply": "2024-08-29T17:13:31.947052Z" + "iopub.execute_input": "2024-09-04T16:42:46.496557Z", + "iopub.status.busy": "2024-09-04T16:42:46.496197Z", + "iopub.status.idle": "2024-09-04T16:42:46.858145Z", + "shell.execute_reply": "2024-09-04T16:42:46.857570Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:31.950390Z", - "iopub.status.busy": "2024-08-29T17:13:31.950110Z", - "iopub.status.idle": "2024-08-29T17:13:32.400281Z", - "shell.execute_reply": "2024-08-29T17:13:32.399703Z" + "iopub.execute_input": "2024-09-04T16:42:46.861411Z", + "iopub.status.busy": "2024-09-04T16:42:46.861015Z", + "iopub.status.idle": "2024-09-04T16:42:47.297930Z", + "shell.execute_reply": "2024-09-04T16:42:47.297412Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:32.404955Z", - "iopub.status.busy": "2024-08-29T17:13:32.404554Z", - "iopub.status.idle": "2024-08-29T17:13:32.856691Z", - "shell.execute_reply": "2024-08-29T17:13:32.856137Z" + "iopub.execute_input": "2024-09-04T16:42:47.302316Z", + "iopub.status.busy": "2024-09-04T16:42:47.301930Z", + "iopub.status.idle": "2024-09-04T16:42:47.746611Z", + "shell.execute_reply": "2024-09-04T16:42:47.746072Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:32.860308Z", - "iopub.status.busy": "2024-08-29T17:13:32.859889Z", - "iopub.status.idle": "2024-08-29T17:13:33.076853Z", - "shell.execute_reply": "2024-08-29T17:13:33.076291Z" + "iopub.execute_input": "2024-09-04T16:42:47.748860Z", + "iopub.status.busy": "2024-09-04T16:42:47.748528Z", + "iopub.status.idle": "2024-09-04T16:42:47.960774Z", + "shell.execute_reply": "2024-09-04T16:42:47.960230Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:33.079045Z", - "iopub.status.busy": "2024-08-29T17:13:33.078852Z", - "iopub.status.idle": "2024-08-29T17:13:33.261899Z", - "shell.execute_reply": "2024-08-29T17:13:33.261415Z" + "iopub.execute_input": "2024-09-04T16:42:47.962862Z", + "iopub.status.busy": "2024-09-04T16:42:47.962538Z", + "iopub.status.idle": "2024-09-04T16:42:48.161771Z", + "shell.execute_reply": "2024-09-04T16:42:48.161347Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:33.264222Z", - "iopub.status.busy": "2024-08-29T17:13:33.263853Z", - "iopub.status.idle": "2024-08-29T17:13:33.266872Z", - "shell.execute_reply": "2024-08-29T17:13:33.266403Z" + "iopub.execute_input": "2024-09-04T16:42:48.163921Z", + "iopub.status.busy": "2024-09-04T16:42:48.163521Z", + "iopub.status.idle": "2024-09-04T16:42:48.166403Z", + "shell.execute_reply": "2024-09-04T16:42:48.165912Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:33.268750Z", - "iopub.status.busy": "2024-08-29T17:13:33.268577Z", - "iopub.status.idle": "2024-08-29T17:13:34.219660Z", - "shell.execute_reply": "2024-08-29T17:13:34.219058Z" + "iopub.execute_input": "2024-09-04T16:42:48.168421Z", + "iopub.status.busy": "2024-09-04T16:42:48.168027Z", + "iopub.status.idle": "2024-09-04T16:42:49.184503Z", + "shell.execute_reply": "2024-09-04T16:42:49.183958Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:34.222039Z", - "iopub.status.busy": "2024-08-29T17:13:34.221835Z", - "iopub.status.idle": "2024-08-29T17:13:34.376874Z", - "shell.execute_reply": "2024-08-29T17:13:34.376359Z" + "iopub.execute_input": "2024-09-04T16:42:49.187022Z", + "iopub.status.busy": "2024-09-04T16:42:49.186859Z", + "iopub.status.idle": "2024-09-04T16:42:49.405712Z", + "shell.execute_reply": "2024-09-04T16:42:49.405134Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:34.379144Z", - "iopub.status.busy": "2024-08-29T17:13:34.378808Z", - "iopub.status.idle": "2024-08-29T17:13:34.536905Z", - "shell.execute_reply": "2024-08-29T17:13:34.536397Z" + "iopub.execute_input": "2024-09-04T16:42:49.407791Z", + "iopub.status.busy": "2024-09-04T16:42:49.407466Z", + "iopub.status.idle": "2024-09-04T16:42:49.596081Z", + "shell.execute_reply": "2024-09-04T16:42:49.595586Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:34.539100Z", - "iopub.status.busy": "2024-08-29T17:13:34.538808Z", - "iopub.status.idle": "2024-08-29T17:13:35.142058Z", - "shell.execute_reply": "2024-08-29T17:13:35.141458Z" + "iopub.execute_input": "2024-09-04T16:42:49.598425Z", + "iopub.status.busy": "2024-09-04T16:42:49.598075Z", + "iopub.status.idle": "2024-09-04T16:42:50.231144Z", + "shell.execute_reply": "2024-09-04T16:42:50.230582Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:35.144434Z", - "iopub.status.busy": "2024-08-29T17:13:35.144038Z", - "iopub.status.idle": "2024-08-29T17:13:35.148054Z", - "shell.execute_reply": "2024-08-29T17:13:35.147482Z" + "iopub.execute_input": "2024-09-04T16:42:50.233354Z", + "iopub.status.busy": "2024-09-04T16:42:50.232993Z", + "iopub.status.idle": "2024-09-04T16:42:50.236697Z", + "shell.execute_reply": "2024-09-04T16:42:50.236249Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index 98fc3cc96..d101e9051 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -780,7 +780,7 @@

2. Pre-process the Cifar10 dataset
-100%|██████████| 170498071/170498071 [00:01<00:00, 86603159.67it/s]
+100%|██████████| 170498071/170498071 [00:03<00:00, 45958594.58it/s]
 

-
+
@@ -1130,7 +1130,7 @@

Spending too much time on data quality?Cleanlab Studio – an automated platform to find and fix issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. Try it for free!

The modern AI pipeline automated with Cleanlab Studio

diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index 84d5ac94b..17b8edea7 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:37.518055Z", - "iopub.status.busy": "2024-08-29T17:13:37.517881Z", - "iopub.status.idle": "2024-08-29T17:13:40.358016Z", - "shell.execute_reply": "2024-08-29T17:13:40.357398Z" + "iopub.execute_input": "2024-09-04T16:42:52.649194Z", + "iopub.status.busy": "2024-09-04T16:42:52.648683Z", + "iopub.status.idle": "2024-09-04T16:42:55.436647Z", + "shell.execute_reply": "2024-09-04T16:42:55.436105Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:40.360605Z", - "iopub.status.busy": "2024-08-29T17:13:40.360296Z", - "iopub.status.idle": "2024-08-29T17:13:40.692043Z", - "shell.execute_reply": "2024-08-29T17:13:40.691484Z" + "iopub.execute_input": "2024-09-04T16:42:55.439281Z", + "iopub.status.busy": "2024-09-04T16:42:55.438854Z", + "iopub.status.idle": "2024-09-04T16:42:55.755725Z", + "shell.execute_reply": "2024-09-04T16:42:55.755177Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:40.694445Z", - "iopub.status.busy": "2024-08-29T17:13:40.694127Z", - "iopub.status.idle": "2024-08-29T17:13:40.698116Z", - "shell.execute_reply": "2024-08-29T17:13:40.697695Z" + "iopub.execute_input": "2024-09-04T16:42:55.758406Z", + "iopub.status.busy": "2024-09-04T16:42:55.757955Z", + "iopub.status.idle": "2024-09-04T16:42:55.762158Z", + "shell.execute_reply": "2024-09-04T16:42:55.761743Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:40.700168Z", - "iopub.status.busy": "2024-08-29T17:13:40.699835Z", - "iopub.status.idle": "2024-08-29T17:13:45.580298Z", - "shell.execute_reply": "2024-08-29T17:13:45.579739Z" + "iopub.execute_input": "2024-09-04T16:42:55.764223Z", + "iopub.status.busy": "2024-09-04T16:42:55.763908Z", + "iopub.status.idle": "2024-09-04T16:43:02.719949Z", + "shell.execute_reply": "2024-09-04T16:43:02.719382Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 1835008/170498071 [00:00<00:09, 18329994.51it/s]" + " 0%| | 32768/170498071 [00:00<09:55, 286476.18it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 9011200/170498071 [00:00<00:03, 49669939.28it/s]" + " 0%| | 196608/170498071 [00:00<02:58, 952836.46it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 18120704/170498071 [00:00<00:02, 68523893.70it/s]" + " 0%| | 819200/170498071 [00:00<00:56, 2976967.78it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 28803072/170498071 [00:00<00:01, 83496337.43it/s]" + " 2%|▏ | 3276800/170498071 [00:00<00:16, 10184986.81it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 37158912/170498071 [00:00<00:01, 80139674.42it/s]" + " 6%|▌ | 9469952/170498071 [00:00<00:06, 26696954.83it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▊ | 48693248/170498071 [00:00<00:01, 91680575.44it/s]" + " 9%|▉ | 14942208/170498071 [00:00<00:04, 35418047.78it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 57933824/170498071 [00:00<00:01, 84570148.40it/s]" + " 12%|█▏ | 19791872/170498071 [00:00<00:03, 38238678.01it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 69173248/170498071 [00:00<00:01, 92724499.94it/s]" + " 15%|█▍ | 25264128/170498071 [00:00<00:03, 43164150.29it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 78610432/170498071 [00:00<00:01, 86030820.73it/s]" + " 18%|█▊ | 31064064/170498071 [00:00<00:03, 45456216.56it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 89456640/170498071 [00:01<00:00, 92342878.21it/s]" + " 21%|██▏ | 36503552/170498071 [00:01<00:02, 48033732.49it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 98893824/170498071 [00:01<00:00, 87030282.07it/s]" + " 25%|██▍ | 41943040/170498071 [00:01<00:02, 49560457.71it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 109608960/170498071 [00:01<00:00, 92579860.33it/s]" + " 28%|██▊ | 46956544/170498071 [00:01<00:02, 48811418.89it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 119046144/170498071 [00:01<00:00, 87203680.93it/s]" + " 31%|███ | 52002816/170498071 [00:01<00:02, 49276654.22it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 129859584/170498071 [00:01<00:00, 92794814.52it/s]" + " 34%|███▍ | 57704448/170498071 [00:01<00:02, 51159479.48it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 139329536/170498071 [00:01<00:00, 87311632.34it/s]" + " 37%|███▋ | 63078400/170498071 [00:01<00:02, 51312422.09it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 150110208/170498071 [00:01<00:00, 92708079.30it/s]" + " 40%|████ | 68222976/170498071 [00:01<00:02, 50084638.40it/s]" ] }, { @@ -380,7 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▎| 159547392/170498071 [00:01<00:00, 89415209.44it/s]" + " 43%|████▎ | 73957376/170498071 [00:01<00:01, 52172109.98it/s]" ] }, { @@ -388,7 +388,7 @@ "output_type": "stream", "text": [ "\r", - "100%|█████████▉| 169803776/170498071 [00:01<00:00, 92847216.16it/s]" + " 46%|████▋ | 79200256/170498071 [00:01<00:01, 51059149.17it/s]" ] }, { @@ -396,7 +396,143 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:01<00:00, 86603159.67it/s]" + " 49%|████▉ | 84344832/170498071 [00:02<00:01, 50541584.83it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 53%|█████▎ | 90013696/170498071 [00:02<00:01, 52277847.31it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 56%|█████▌ | 95256576/170498071 [00:02<00:01, 52267900.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 59%|█████▉ | 100499456/170498071 [00:02<00:01, 50251051.06it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 62%|██████▏ | 106266624/170498071 [00:02<00:01, 52102293.21it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 65%|██████▌ | 111509504/170498071 [00:02<00:01, 51385667.17it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 68%|██████▊ | 116686848/170498071 [00:02<00:01, 50685611.69it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 72%|███████▏ | 122060800/170498071 [00:02<00:00, 51228885.72it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 75%|███████▍ | 127238144/170498071 [00:02<00:00, 51336156.70it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 78%|███████▊ | 132382720/170498071 [00:02<00:00, 50654480.53it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 81%|████████ | 138018816/170498071 [00:03<00:00, 52212644.68it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 84%|████████▍ | 143261696/170498071 [00:03<00:00, 51472609.20it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 87%|████████▋ | 148439040/170498071 [00:03<00:00, 50790084.34it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 90%|█████████ | 153812992/170498071 [00:03<00:00, 51540397.38it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 93%|█████████▎| 158990336/170498071 [00:03<00:00, 51212796.08it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 96%|█████████▋| 164134912/170498071 [00:03<00:00, 50570691.19it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 169639936/170498071 [00:03<00:00, 51873138.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:03<00:00, 45958594.58it/s]" ] }, { @@ -514,10 +650,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:45.582739Z", - "iopub.status.busy": "2024-08-29T17:13:45.582371Z", - "iopub.status.idle": "2024-08-29T17:13:45.587064Z", - "shell.execute_reply": "2024-08-29T17:13:45.586613Z" + "iopub.execute_input": "2024-09-04T16:43:02.722295Z", + "iopub.status.busy": "2024-09-04T16:43:02.721885Z", + "iopub.status.idle": "2024-09-04T16:43:02.726775Z", + "shell.execute_reply": "2024-09-04T16:43:02.726194Z" }, "nbsphinx": "hidden" }, @@ -568,10 +704,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:45.589022Z", - "iopub.status.busy": "2024-08-29T17:13:45.588754Z", - "iopub.status.idle": "2024-08-29T17:13:46.101342Z", - "shell.execute_reply": "2024-08-29T17:13:46.100720Z" + "iopub.execute_input": "2024-09-04T16:43:02.728763Z", + "iopub.status.busy": "2024-09-04T16:43:02.728492Z", + "iopub.status.idle": "2024-09-04T16:43:03.272195Z", + "shell.execute_reply": "2024-09-04T16:43:03.271652Z" } }, "outputs": [ @@ -604,10 +740,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:46.103684Z", - "iopub.status.busy": "2024-08-29T17:13:46.103253Z", - "iopub.status.idle": "2024-08-29T17:13:46.591197Z", - "shell.execute_reply": "2024-08-29T17:13:46.590594Z" + "iopub.execute_input": "2024-09-04T16:43:03.274392Z", + "iopub.status.busy": "2024-09-04T16:43:03.274066Z", + "iopub.status.idle": "2024-09-04T16:43:03.795371Z", + "shell.execute_reply": "2024-09-04T16:43:03.794804Z" } }, "outputs": [ @@ -645,10 +781,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:46.593569Z", - "iopub.status.busy": "2024-08-29T17:13:46.593221Z", - "iopub.status.idle": "2024-08-29T17:13:46.596853Z", - "shell.execute_reply": "2024-08-29T17:13:46.596296Z" + "iopub.execute_input": "2024-09-04T16:43:03.797585Z", + "iopub.status.busy": "2024-09-04T16:43:03.797198Z", + "iopub.status.idle": "2024-09-04T16:43:03.800587Z", + "shell.execute_reply": "2024-09-04T16:43:03.800138Z" } }, "outputs": [], @@ -671,17 +807,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:46.598783Z", - "iopub.status.busy": "2024-08-29T17:13:46.598471Z", - "iopub.status.idle": "2024-08-29T17:13:58.885089Z", - "shell.execute_reply": "2024-08-29T17:13:58.884481Z" + "iopub.execute_input": "2024-09-04T16:43:03.802676Z", + "iopub.status.busy": "2024-09-04T16:43:03.802346Z", + "iopub.status.idle": "2024-09-04T16:43:16.096991Z", + "shell.execute_reply": "2024-09-04T16:43:16.096292Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b6b57ee9795545e1b957e77eb9537dc2", + "model_id": "ac3c97c855db4acfb6e63efc79dadb49", "version_major": 2, "version_minor": 0 }, @@ -740,10 +876,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:13:58.887358Z", - "iopub.status.busy": "2024-08-29T17:13:58.887178Z", - "iopub.status.idle": "2024-08-29T17:14:00.966725Z", - "shell.execute_reply": "2024-08-29T17:14:00.966166Z" + "iopub.execute_input": "2024-09-04T16:43:16.099819Z", + "iopub.status.busy": "2024-09-04T16:43:16.099351Z", + "iopub.status.idle": "2024-09-04T16:43:18.172158Z", + "shell.execute_reply": "2024-09-04T16:43:18.171496Z" } }, "outputs": [ @@ -787,10 +923,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:00.969099Z", - "iopub.status.busy": "2024-08-29T17:14:00.968619Z", - "iopub.status.idle": "2024-08-29T17:14:01.212635Z", - "shell.execute_reply": "2024-08-29T17:14:01.212055Z" + "iopub.execute_input": "2024-09-04T16:43:18.175070Z", + "iopub.status.busy": "2024-09-04T16:43:18.174585Z", + "iopub.status.idle": "2024-09-04T16:43:18.434321Z", + "shell.execute_reply": "2024-09-04T16:43:18.433761Z" } }, "outputs": [ @@ -826,10 +962,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:01.215200Z", - "iopub.status.busy": "2024-08-29T17:14:01.214773Z", - "iopub.status.idle": "2024-08-29T17:14:01.860391Z", - "shell.execute_reply": "2024-08-29T17:14:01.859771Z" + "iopub.execute_input": "2024-09-04T16:43:18.437156Z", + "iopub.status.busy": "2024-09-04T16:43:18.436716Z", + "iopub.status.idle": "2024-09-04T16:43:19.094057Z", + "shell.execute_reply": "2024-09-04T16:43:19.093495Z" } }, "outputs": [ @@ -879,10 +1015,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:01.862980Z", - "iopub.status.busy": "2024-08-29T17:14:01.862641Z", - "iopub.status.idle": "2024-08-29T17:14:02.156099Z", - "shell.execute_reply": "2024-08-29T17:14:02.155603Z" + "iopub.execute_input": "2024-09-04T16:43:19.096831Z", + "iopub.status.busy": "2024-09-04T16:43:19.096531Z", + "iopub.status.idle": "2024-09-04T16:43:19.435074Z", + "shell.execute_reply": "2024-09-04T16:43:19.434523Z" } }, "outputs": [ @@ -930,10 +1066,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:02.158148Z", - "iopub.status.busy": "2024-08-29T17:14:02.157972Z", - "iopub.status.idle": "2024-08-29T17:14:02.404653Z", - "shell.execute_reply": "2024-08-29T17:14:02.404083Z" + "iopub.execute_input": "2024-09-04T16:43:19.437338Z", + "iopub.status.busy": "2024-09-04T16:43:19.436988Z", + "iopub.status.idle": "2024-09-04T16:43:19.666170Z", + "shell.execute_reply": "2024-09-04T16:43:19.665542Z" } }, "outputs": [ @@ -989,10 +1125,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:02.407543Z", - "iopub.status.busy": "2024-08-29T17:14:02.407056Z", - "iopub.status.idle": "2024-08-29T17:14:02.495100Z", - "shell.execute_reply": "2024-08-29T17:14:02.494602Z" + "iopub.execute_input": "2024-09-04T16:43:19.668437Z", + "iopub.status.busy": "2024-09-04T16:43:19.668071Z", + "iopub.status.idle": "2024-09-04T16:43:19.760179Z", + "shell.execute_reply": "2024-09-04T16:43:19.759682Z" } }, "outputs": [], @@ -1013,10 +1149,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:02.497543Z", - "iopub.status.busy": "2024-08-29T17:14:02.497177Z", - "iopub.status.idle": "2024-08-29T17:14:12.680551Z", - "shell.execute_reply": "2024-08-29T17:14:12.679937Z" + "iopub.execute_input": "2024-09-04T16:43:19.762753Z", + "iopub.status.busy": "2024-09-04T16:43:19.762388Z", + "iopub.status.idle": "2024-09-04T16:43:29.993658Z", + "shell.execute_reply": "2024-09-04T16:43:29.992984Z" } }, "outputs": [ @@ -1053,10 +1189,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:12.683085Z", - "iopub.status.busy": "2024-08-29T17:14:12.682769Z", - "iopub.status.idle": "2024-08-29T17:14:14.935161Z", - "shell.execute_reply": "2024-08-29T17:14:14.934633Z" + "iopub.execute_input": "2024-09-04T16:43:29.995864Z", + "iopub.status.busy": "2024-09-04T16:43:29.995668Z", + "iopub.status.idle": "2024-09-04T16:43:32.179132Z", + "shell.execute_reply": "2024-09-04T16:43:32.178643Z" } }, "outputs": [ @@ -1087,10 +1223,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:14.937970Z", - "iopub.status.busy": "2024-08-29T17:14:14.937420Z", - "iopub.status.idle": "2024-08-29T17:14:15.141254Z", - "shell.execute_reply": "2024-08-29T17:14:15.140715Z" + "iopub.execute_input": "2024-09-04T16:43:32.181834Z", + "iopub.status.busy": "2024-09-04T16:43:32.181287Z", + "iopub.status.idle": "2024-09-04T16:43:32.396785Z", + "shell.execute_reply": "2024-09-04T16:43:32.396295Z" } }, "outputs": [], @@ -1104,10 +1240,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:15.143753Z", - "iopub.status.busy": "2024-08-29T17:14:15.143395Z", - "iopub.status.idle": "2024-08-29T17:14:15.146540Z", - "shell.execute_reply": "2024-08-29T17:14:15.146088Z" + "iopub.execute_input": "2024-09-04T16:43:32.399242Z", + "iopub.status.busy": "2024-09-04T16:43:32.398889Z", + "iopub.status.idle": "2024-09-04T16:43:32.402024Z", + "shell.execute_reply": "2024-09-04T16:43:32.401569Z" } }, "outputs": [], @@ -1145,10 +1281,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:15.148630Z", - "iopub.status.busy": "2024-08-29T17:14:15.148300Z", - "iopub.status.idle": "2024-08-29T17:14:15.156287Z", - "shell.execute_reply": "2024-08-29T17:14:15.155831Z" + "iopub.execute_input": "2024-09-04T16:43:32.403884Z", + "iopub.status.busy": "2024-09-04T16:43:32.403621Z", + "iopub.status.idle": "2024-09-04T16:43:32.411917Z", + "shell.execute_reply": "2024-09-04T16:43:32.411493Z" }, "nbsphinx": "hidden" }, @@ -1193,30 +1329,33 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0678addeb5354c0fbd249daa720e835c": { + "03d3523eeb4f4074b7cb37f688bb96b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2c89be3cf97b48e0aac1428e1d068c6e", - "placeholder": "​", - "style": "IPY_MODEL_466d8522075e44de80f286213329dd0a", + "layout": "IPY_MODEL_e50cd9891c2447b89c2c96ae5c584592", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_dc2f3cbed90542bea30156dba6e6ee18", "tabbable": null, "tooltip": null, - "value": " 102M/102M [00:00<00:00, 317MB/s]" + "value": 102469840.0 } }, - "23ad08a1e13d4e2ab14b6c6cf86856da": { + "495a3cb6c4b342819c23386f0258057d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1269,7 +1408,48 @@ "width": null } }, - "2c89be3cf97b48e0aac1428e1d068c6e": { + "550955f726ba444480184cf8a13d4576": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_495a3cb6c4b342819c23386f0258057d", + "placeholder": "​", + "style": "IPY_MODEL_f244b9fc605e47f8a8c9cffc04e521b5", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 298MB/s]" + } + }, + "6a7377f3d84e4e28b1c89f7743bc3957": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "701f9b1f323c4b1eae5d1ea1352c3848": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1322,41 +1502,7 @@ "width": null } }, - "3066dbed7ec24323afef9bc2dcf8135f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "466d8522075e44de80f286213329dd0a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7ca8dfcc9e8a4bc9866c4f90af9ce205": { + "a4bf76c669c944089954a7d90a0538c7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1409,7 +1555,70 @@ "width": null } }, - "97fa50438dfd48609bd3fd3292fc92ad": { + "ac3c97c855db4acfb6e63efc79dadb49": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c89c9b35073841c886912f519a58ee2c", + "IPY_MODEL_03d3523eeb4f4074b7cb37f688bb96b1", + "IPY_MODEL_550955f726ba444480184cf8a13d4576" + ], + "layout": "IPY_MODEL_a4bf76c669c944089954a7d90a0538c7", + "tabbable": null, + "tooltip": null + } + }, + "c89c9b35073841c886912f519a58ee2c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_701f9b1f323c4b1eae5d1ea1352c3848", + "placeholder": "​", + "style": "IPY_MODEL_6a7377f3d84e4e28b1c89f7743bc3957", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } + }, + "dc2f3cbed90542bea30156dba6e6ee18": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e50cd9891c2447b89c2c96ae5c584592": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1462,7 +1671,7 @@ "width": null } }, - "a1b5ce2ee6f0426ba7e4149a61ce24da": { + "f244b9fc605e47f8a8c9cffc04e521b5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1479,79 +1688,6 @@ "font_size": null, "text_color": null } - }, - "adce6dc3620044a98af589f7e9efeeaa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7ca8dfcc9e8a4bc9866c4f90af9ce205", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3066dbed7ec24323afef9bc2dcf8135f", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "b6b57ee9795545e1b957e77eb9537dc2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cb4572a1e29c40688f631ac891aae906", - "IPY_MODEL_adce6dc3620044a98af589f7e9efeeaa", - "IPY_MODEL_0678addeb5354c0fbd249daa720e835c" - ], - "layout": "IPY_MODEL_23ad08a1e13d4e2ab14b6c6cf86856da", - "tabbable": null, - "tooltip": null - } - }, - "cb4572a1e29c40688f631ac891aae906": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_97fa50438dfd48609bd3fd3292fc92ad", - "placeholder": "​", - "style": "IPY_MODEL_a1b5ce2ee6f0426ba7e4149a61ce24da", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" - } } }, "version_major": 2, diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index df55d12fa..3319fc622 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:19.347070Z", - "iopub.status.busy": "2024-08-29T17:14:19.346882Z", - "iopub.status.idle": "2024-08-29T17:14:20.597705Z", - "shell.execute_reply": "2024-08-29T17:14:20.597132Z" + "iopub.execute_input": "2024-09-04T16:43:36.768501Z", + "iopub.status.busy": "2024-09-04T16:43:36.768020Z", + "iopub.status.idle": "2024-09-04T16:43:37.948956Z", + "shell.execute_reply": "2024-09-04T16:43:37.948387Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:20.600401Z", - "iopub.status.busy": "2024-08-29T17:14:20.599950Z", - "iopub.status.idle": "2024-08-29T17:14:20.617696Z", - "shell.execute_reply": "2024-08-29T17:14:20.617249Z" + "iopub.execute_input": "2024-09-04T16:43:37.951410Z", + "iopub.status.busy": "2024-09-04T16:43:37.951053Z", + "iopub.status.idle": "2024-09-04T16:43:37.968627Z", + "shell.execute_reply": "2024-09-04T16:43:37.968158Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:20.619921Z", - "iopub.status.busy": "2024-08-29T17:14:20.619501Z", - "iopub.status.idle": "2024-08-29T17:14:20.622449Z", - "shell.execute_reply": "2024-08-29T17:14:20.621968Z" + "iopub.execute_input": "2024-09-04T16:43:37.970707Z", + "iopub.status.busy": "2024-09-04T16:43:37.970308Z", + "iopub.status.idle": "2024-09-04T16:43:37.973152Z", + "shell.execute_reply": "2024-09-04T16:43:37.972722Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:20.624547Z", - "iopub.status.busy": "2024-08-29T17:14:20.624217Z", - "iopub.status.idle": "2024-08-29T17:14:20.698073Z", - "shell.execute_reply": "2024-08-29T17:14:20.697593Z" + "iopub.execute_input": "2024-09-04T16:43:37.975225Z", + "iopub.status.busy": "2024-09-04T16:43:37.974765Z", + "iopub.status.idle": "2024-09-04T16:43:38.284642Z", + "shell.execute_reply": "2024-09-04T16:43:38.284071Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:20.700329Z", - "iopub.status.busy": "2024-08-29T17:14:20.699970Z", - "iopub.status.idle": "2024-08-29T17:14:20.882935Z", - "shell.execute_reply": "2024-08-29T17:14:20.882361Z" + "iopub.execute_input": "2024-09-04T16:43:38.286903Z", + "iopub.status.busy": "2024-09-04T16:43:38.286548Z", + "iopub.status.idle": "2024-09-04T16:43:38.464800Z", + "shell.execute_reply": "2024-09-04T16:43:38.464240Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:20.885528Z", - "iopub.status.busy": "2024-08-29T17:14:20.885087Z", - "iopub.status.idle": "2024-08-29T17:14:21.101274Z", - "shell.execute_reply": "2024-08-29T17:14:21.100697Z" + "iopub.execute_input": "2024-09-04T16:43:38.466846Z", + "iopub.status.busy": "2024-09-04T16:43:38.466575Z", + "iopub.status.idle": "2024-09-04T16:43:38.706751Z", + "shell.execute_reply": "2024-09-04T16:43:38.706216Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:21.103576Z", - "iopub.status.busy": "2024-08-29T17:14:21.103217Z", - "iopub.status.idle": "2024-08-29T17:14:21.107649Z", - "shell.execute_reply": "2024-08-29T17:14:21.107191Z" + "iopub.execute_input": "2024-09-04T16:43:38.708867Z", + "iopub.status.busy": "2024-09-04T16:43:38.708511Z", + "iopub.status.idle": "2024-09-04T16:43:38.712695Z", + "shell.execute_reply": "2024-09-04T16:43:38.712231Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:21.109562Z", - "iopub.status.busy": "2024-08-29T17:14:21.109244Z", - "iopub.status.idle": "2024-08-29T17:14:21.115478Z", - "shell.execute_reply": "2024-08-29T17:14:21.114917Z" + "iopub.execute_input": "2024-09-04T16:43:38.714637Z", + "iopub.status.busy": "2024-09-04T16:43:38.714301Z", + "iopub.status.idle": "2024-09-04T16:43:38.720623Z", + "shell.execute_reply": "2024-09-04T16:43:38.720046Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:21.117571Z", - "iopub.status.busy": "2024-08-29T17:14:21.117235Z", - "iopub.status.idle": "2024-08-29T17:14:21.119946Z", - "shell.execute_reply": "2024-08-29T17:14:21.119385Z" + "iopub.execute_input": "2024-09-04T16:43:38.723058Z", + "iopub.status.busy": "2024-09-04T16:43:38.722596Z", + "iopub.status.idle": "2024-09-04T16:43:38.725392Z", + "shell.execute_reply": "2024-09-04T16:43:38.724828Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:21.121825Z", - "iopub.status.busy": "2024-08-29T17:14:21.121522Z", - "iopub.status.idle": "2024-08-29T17:14:30.167997Z", - "shell.execute_reply": "2024-08-29T17:14:30.167432Z" + "iopub.execute_input": "2024-09-04T16:43:38.727408Z", + "iopub.status.busy": "2024-09-04T16:43:38.726961Z", + "iopub.status.idle": "2024-09-04T16:43:47.575755Z", + "shell.execute_reply": "2024-09-04T16:43:47.575208Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:30.170971Z", - "iopub.status.busy": "2024-08-29T17:14:30.170309Z", - "iopub.status.idle": "2024-08-29T17:14:30.177989Z", - "shell.execute_reply": "2024-08-29T17:14:30.177523Z" + "iopub.execute_input": "2024-09-04T16:43:47.578529Z", + "iopub.status.busy": "2024-09-04T16:43:47.578149Z", + "iopub.status.idle": "2024-09-04T16:43:47.585254Z", + "shell.execute_reply": "2024-09-04T16:43:47.584782Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:30.180040Z", - "iopub.status.busy": "2024-08-29T17:14:30.179858Z", - "iopub.status.idle": "2024-08-29T17:14:30.183700Z", - "shell.execute_reply": "2024-08-29T17:14:30.183239Z" + "iopub.execute_input": "2024-09-04T16:43:47.587243Z", + "iopub.status.busy": "2024-09-04T16:43:47.586922Z", + "iopub.status.idle": "2024-09-04T16:43:47.590560Z", + "shell.execute_reply": "2024-09-04T16:43:47.590097Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:30.185675Z", - "iopub.status.busy": "2024-08-29T17:14:30.185499Z", - "iopub.status.idle": "2024-08-29T17:14:30.188518Z", - "shell.execute_reply": "2024-08-29T17:14:30.187980Z" + "iopub.execute_input": "2024-09-04T16:43:47.592545Z", + "iopub.status.busy": "2024-09-04T16:43:47.592234Z", + "iopub.status.idle": "2024-09-04T16:43:47.595648Z", + "shell.execute_reply": "2024-09-04T16:43:47.595175Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:30.190444Z", - "iopub.status.busy": "2024-08-29T17:14:30.190268Z", - "iopub.status.idle": "2024-08-29T17:14:30.193189Z", - "shell.execute_reply": "2024-08-29T17:14:30.192741Z" + "iopub.execute_input": "2024-09-04T16:43:47.597524Z", + "iopub.status.busy": "2024-09-04T16:43:47.597353Z", + "iopub.status.idle": "2024-09-04T16:43:47.600367Z", + "shell.execute_reply": "2024-09-04T16:43:47.599908Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:30.195086Z", - "iopub.status.busy": "2024-08-29T17:14:30.194908Z", - "iopub.status.idle": "2024-08-29T17:14:30.203004Z", - "shell.execute_reply": "2024-08-29T17:14:30.202449Z" + "iopub.execute_input": "2024-09-04T16:43:47.602164Z", + "iopub.status.busy": "2024-09-04T16:43:47.601996Z", + "iopub.status.idle": "2024-09-04T16:43:47.610116Z", + "shell.execute_reply": "2024-09-04T16:43:47.609566Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:30.205011Z", - "iopub.status.busy": "2024-08-29T17:14:30.204632Z", - "iopub.status.idle": "2024-08-29T17:14:30.207398Z", - "shell.execute_reply": "2024-08-29T17:14:30.206929Z" + "iopub.execute_input": "2024-09-04T16:43:47.612117Z", + "iopub.status.busy": "2024-09-04T16:43:47.611941Z", + "iopub.status.idle": "2024-09-04T16:43:47.614504Z", + "shell.execute_reply": "2024-09-04T16:43:47.614066Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:30.209490Z", - "iopub.status.busy": "2024-08-29T17:14:30.209163Z", - "iopub.status.idle": "2024-08-29T17:14:30.333970Z", - "shell.execute_reply": "2024-08-29T17:14:30.333445Z" + "iopub.execute_input": "2024-09-04T16:43:47.616757Z", + "iopub.status.busy": "2024-09-04T16:43:47.616310Z", + "iopub.status.idle": "2024-09-04T16:43:47.740945Z", + "shell.execute_reply": "2024-09-04T16:43:47.740451Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:30.336284Z", - "iopub.status.busy": "2024-08-29T17:14:30.335759Z", - "iopub.status.idle": "2024-08-29T17:14:30.447188Z", - "shell.execute_reply": "2024-08-29T17:14:30.446695Z" + "iopub.execute_input": "2024-09-04T16:43:47.743100Z", + "iopub.status.busy": "2024-09-04T16:43:47.742731Z", + "iopub.status.idle": "2024-09-04T16:43:47.852984Z", + "shell.execute_reply": "2024-09-04T16:43:47.852467Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:30.449144Z", - "iopub.status.busy": "2024-08-29T17:14:30.448969Z", - "iopub.status.idle": "2024-08-29T17:14:30.950528Z", - "shell.execute_reply": "2024-08-29T17:14:30.949931Z" + "iopub.execute_input": "2024-09-04T16:43:47.855197Z", + "iopub.status.busy": "2024-09-04T16:43:47.854828Z", + "iopub.status.idle": "2024-09-04T16:43:48.365543Z", + "shell.execute_reply": "2024-09-04T16:43:48.364899Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:30.953233Z", - "iopub.status.busy": "2024-08-29T17:14:30.952869Z", - "iopub.status.idle": "2024-08-29T17:14:31.052110Z", - "shell.execute_reply": "2024-08-29T17:14:31.051488Z" + "iopub.execute_input": "2024-09-04T16:43:48.368337Z", + "iopub.status.busy": "2024-09-04T16:43:48.368002Z", + "iopub.status.idle": "2024-09-04T16:43:48.468212Z", + "shell.execute_reply": "2024-09-04T16:43:48.467642Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:31.054376Z", - "iopub.status.busy": "2024-08-29T17:14:31.054178Z", - "iopub.status.idle": "2024-08-29T17:14:31.063053Z", - "shell.execute_reply": "2024-08-29T17:14:31.062575Z" + "iopub.execute_input": "2024-09-04T16:43:48.470517Z", + "iopub.status.busy": "2024-09-04T16:43:48.470176Z", + "iopub.status.idle": "2024-09-04T16:43:48.478636Z", + "shell.execute_reply": "2024-09-04T16:43:48.478078Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:31.064982Z", - "iopub.status.busy": "2024-08-29T17:14:31.064807Z", - "iopub.status.idle": "2024-08-29T17:14:31.067390Z", - "shell.execute_reply": "2024-08-29T17:14:31.066933Z" + "iopub.execute_input": "2024-09-04T16:43:48.480756Z", + "iopub.status.busy": "2024-09-04T16:43:48.480445Z", + "iopub.status.idle": "2024-09-04T16:43:48.483242Z", + "shell.execute_reply": "2024-09-04T16:43:48.482762Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:31.069244Z", - "iopub.status.busy": "2024-08-29T17:14:31.069074Z", - "iopub.status.idle": "2024-08-29T17:14:36.743505Z", - "shell.execute_reply": "2024-08-29T17:14:36.742945Z" + "iopub.execute_input": "2024-09-04T16:43:48.485062Z", + "iopub.status.busy": "2024-09-04T16:43:48.484889Z", + "iopub.status.idle": "2024-09-04T16:43:54.084693Z", + "shell.execute_reply": "2024-09-04T16:43:54.084129Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:36.745868Z", - "iopub.status.busy": "2024-08-29T17:14:36.745544Z", - "iopub.status.idle": "2024-08-29T17:14:36.754180Z", - "shell.execute_reply": "2024-08-29T17:14:36.753751Z" + "iopub.execute_input": "2024-09-04T16:43:54.087081Z", + "iopub.status.busy": "2024-09-04T16:43:54.086690Z", + "iopub.status.idle": "2024-09-04T16:43:54.095241Z", + "shell.execute_reply": "2024-09-04T16:43:54.094653Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:36.756432Z", - "iopub.status.busy": "2024-08-29T17:14:36.756114Z", - "iopub.status.idle": "2024-08-29T17:14:36.819635Z", - "shell.execute_reply": "2024-08-29T17:14:36.819058Z" + "iopub.execute_input": "2024-09-04T16:43:54.097566Z", + "iopub.status.busy": "2024-09-04T16:43:54.097200Z", + "iopub.status.idle": "2024-09-04T16:43:54.160790Z", + "shell.execute_reply": "2024-09-04T16:43:54.160317Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index 400e982c0..222a5cc08 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -800,13 +800,13 @@

3. Use cleanlab to find label issues

-
+
-
+

Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

@@ -1196,7 +1196,7 @@

Get label quality scores -{"state": {"eef352d40fcc4b798a64be886735332b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "517ae781ff0d467c9a97e22c51392ade": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b5d2a5cc00394bc9a2320d5ed2c751c8": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_eef352d40fcc4b798a64be886735332b", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_517ae781ff0d467c9a97e22c51392ade", "tabbable": null, "tooltip": null, "value": 30.0}}, "0c259ceb33d348f28a73d7a752a83d1f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "18e897f0234744b995456435e96a3ac5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "30731e8ab0214e45a3e63558b35bb2a5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0c259ceb33d348f28a73d7a752a83d1f", "placeholder": "\u200b", "style": "IPY_MODEL_18e897f0234744b995456435e96a3ac5", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "35992f93960747699ce0688cd2406d71": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dfb120997aeb48e4b219e8fe2b040af5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e775fb19744d45c498549c471ea4d7ce": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_35992f93960747699ce0688cd2406d71", "placeholder": "\u200b", "style": "IPY_MODEL_dfb120997aeb48e4b219e8fe2b040af5", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007788.74it/s]"}}, "7f83bb546cc2435090cdacd91f10377d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f59b171099164f76b8305ddd48dbb399": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_30731e8ab0214e45a3e63558b35bb2a5", "IPY_MODEL_b5d2a5cc00394bc9a2320d5ed2c751c8", "IPY_MODEL_e775fb19744d45c498549c471ea4d7ce"], "layout": "IPY_MODEL_7f83bb546cc2435090cdacd91f10377d", "tabbable": null, "tooltip": null}}, "658c952d03924e839777edde3515e2a8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "034036b3b83d40a39150602a8d0d774b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a4f4b6731bf84c7fb0b112656e78d24e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_658c952d03924e839777edde3515e2a8", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_034036b3b83d40a39150602a8d0d774b", "tabbable": null, "tooltip": null, "value": 30.0}}, "e68e2f112a8341cd8780484bf420acf7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8d6ce753439846f1a50809b38187bb92": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c6435c6e8ecf4f97945154165f8b3710": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e68e2f112a8341cd8780484bf420acf7", "placeholder": "\u200b", "style": "IPY_MODEL_8d6ce753439846f1a50809b38187bb92", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "284040cc9a374386a6554aead1ea2644": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2617f6d87b1d44a19de682bf7fcc80b6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "83293389c8284d6490e3d5be49b65303": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_284040cc9a374386a6554aead1ea2644", "placeholder": "\u200b", "style": "IPY_MODEL_2617f6d87b1d44a19de682bf7fcc80b6", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:25<00:00,\u2007\u20071.14it/s]"}}, "cb39fc68582f495d9128c47c2ea12d32": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "797e70863dcd4d92ab00f88ddb64b07a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c6435c6e8ecf4f97945154165f8b3710", "IPY_MODEL_a4f4b6731bf84c7fb0b112656e78d24e", "IPY_MODEL_83293389c8284d6490e3d5be49b65303"], "layout": "IPY_MODEL_cb39fc68582f495d9128c47c2ea12d32", "tabbable": null, "tooltip": null}}, "b064f6633b3d4184a3197a07f3dd0f15": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3d6d6a29214f4d9180f1c432550f4eb8": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e2b81de6c3e44bf8ab68f9e5797e5469": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b064f6633b3d4184a3197a07f3dd0f15", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_3d6d6a29214f4d9180f1c432550f4eb8", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "d9889d1329d2417aa59e77528bf8c579": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2ed144768d2d4dbcbd8fb7a089625911": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "69c97867bb414ce4a71317f7b51a6fc0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d9889d1329d2417aa59e77528bf8c579", "placeholder": "\u200b", "style": "IPY_MODEL_2ed144768d2d4dbcbd8fb7a089625911", "tabbable": null, "tooltip": null, "value": "100%"}}, "b821863d99744529a669c67f13612d82": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0e8a6425bd35419282d9435caa818906": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2150c51d8b224467a87065c24db1f2cd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b821863d99744529a669c67f13612d82", "placeholder": "\u200b", "style": "IPY_MODEL_0e8a6425bd35419282d9435caa818906", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:31<00:00,\u2007155147.87it/s]"}}, "6a517b92b69c4fd4a072e89e82f255bf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "44abce64857e41b18d46cff97a645cb6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_69c97867bb414ce4a71317f7b51a6fc0", "IPY_MODEL_e2b81de6c3e44bf8ab68f9e5797e5469", "IPY_MODEL_2150c51d8b224467a87065c24db1f2cd"], "layout": "IPY_MODEL_6a517b92b69c4fd4a072e89e82f255bf", "tabbable": null, "tooltip": null}}, "0d685f3729224eedb7b91231659e2757": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c9e278bab6254723a6997ea8b677b8fa": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cb494b2cb783459b90ffc5c4a0e54cd3": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0d685f3729224eedb7b91231659e2757", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c9e278bab6254723a6997ea8b677b8fa", "tabbable": null, "tooltip": null, "value": 30.0}}, "bab0622575024fecabd08e4b1d63f719": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aed7d29c1eb147aaa4da525fbdcccfeb": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "23d394fbee8b47188d2d3834f6b58af7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bab0622575024fecabd08e4b1d63f719", "placeholder": "\u200b", "style": "IPY_MODEL_aed7d29c1eb147aaa4da525fbdcccfeb", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "681d1382b6af45c4acf9ca239ae777d3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "12fb5404efa9407bb436ad7047308f7b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "abb485abc3da4b998ad73c0d6ce9951f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_681d1382b6af45c4acf9ca239ae777d3", "placeholder": "\u200b", "style": "IPY_MODEL_12fb5404efa9407bb436ad7047308f7b", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200720.78it/s]"}}, "7176b5b5fb0c48329d6d4ff1f55374d4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3f1e3f0e04dc48ddb34e2479973f987f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_23d394fbee8b47188d2d3834f6b58af7", "IPY_MODEL_cb494b2cb783459b90ffc5c4a0e54cd3", "IPY_MODEL_abb485abc3da4b998ad73c0d6ce9951f"], "layout": "IPY_MODEL_7176b5b5fb0c48329d6d4ff1f55374d4", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"e0510c00ed0e44219cbce2a6b2f40086": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e6c27b6139894a26a0bec722079ebf23": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6435bff16ce643fb9bef7ba9bd3d5965": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e0510c00ed0e44219cbce2a6b2f40086", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e6c27b6139894a26a0bec722079ebf23", "tabbable": null, "tooltip": null, "value": 30.0}}, "50a561a211494999b82b0f7e14c91e64": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2348ac71446446929cc29942ecfe7f23": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5a5a125bfa6d43bb9143c6bd0d2f86aa": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_50a561a211494999b82b0f7e14c91e64", "placeholder": "\u200b", "style": "IPY_MODEL_2348ac71446446929cc29942ecfe7f23", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "48d0c48a036a4be79be623e6537e66fd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "812d1a37e5314b0c822c78f0803e41ee": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "af9858b2ff5445dc8083f3415038f58d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_48d0c48a036a4be79be623e6537e66fd", "placeholder": "\u200b", "style": "IPY_MODEL_812d1a37e5314b0c822c78f0803e41ee", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007777.04it/s]"}}, "9079f128e32b443da78013fe14685adc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c29501bdfc7141ceadc36d4bd242e947": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5a5a125bfa6d43bb9143c6bd0d2f86aa", "IPY_MODEL_6435bff16ce643fb9bef7ba9bd3d5965", "IPY_MODEL_af9858b2ff5445dc8083f3415038f58d"], "layout": "IPY_MODEL_9079f128e32b443da78013fe14685adc", "tabbable": null, "tooltip": null}}, "da7abc08e44b4fc5b2f705b29958ff4e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ec0acf0b2a504079957d88a2e9996418": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "01715a241ede47049c8175ae74204dcb": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_da7abc08e44b4fc5b2f705b29958ff4e", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ec0acf0b2a504079957d88a2e9996418", "tabbable": null, "tooltip": null, "value": 30.0}}, "13ddca1be3f6482ea8ea212b7da45a58": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5c2ce10a9a0c4004817b1ab6ed0c8eb0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b605408da9d943728fe5c3bc9ee69de0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_13ddca1be3f6482ea8ea212b7da45a58", "placeholder": "\u200b", "style": "IPY_MODEL_5c2ce10a9a0c4004817b1ab6ed0c8eb0", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "637d22dc96bb468d9150845651b0add1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "96f1ce41df2c4d8b85455ab3f6b77cb7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "388b17e8e5d4404187f690f917705610": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_637d22dc96bb468d9150845651b0add1", "placeholder": "\u200b", "style": "IPY_MODEL_96f1ce41df2c4d8b85455ab3f6b77cb7", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:26<00:00,\u2007\u20071.15it/s]"}}, "af326f92c44c4443a107ea420cf02f30": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "11fcea39be8443499c860e52baccfa36": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b605408da9d943728fe5c3bc9ee69de0", "IPY_MODEL_01715a241ede47049c8175ae74204dcb", "IPY_MODEL_388b17e8e5d4404187f690f917705610"], "layout": "IPY_MODEL_af326f92c44c4443a107ea420cf02f30", "tabbable": null, "tooltip": null}}, "1670ba26e32f43d890a0c1a97dcf3fe6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a971ef76ec7b42abb1ccaacaedeb405c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "77f18c82c64a405681baf0fc9ae700f2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1670ba26e32f43d890a0c1a97dcf3fe6", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a971ef76ec7b42abb1ccaacaedeb405c", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "d05ad05c204c4a06b2366a18a84d7b9e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "90af0231f6ee4bd28a9526a8d0f8d05f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ecb42f54e7734c42b48cb0a6de8dff88": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d05ad05c204c4a06b2366a18a84d7b9e", "placeholder": "\u200b", "style": "IPY_MODEL_90af0231f6ee4bd28a9526a8d0f8d05f", "tabbable": null, "tooltip": null, "value": "100%"}}, "1eeaa3465b3c47d0b8a2e4736187fdf0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f3905a545d1549e6ac839b142976faf5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "64725b3089ff49b28e2885cf3d4d9274": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1eeaa3465b3c47d0b8a2e4736187fdf0", "placeholder": "\u200b", "style": "IPY_MODEL_f3905a545d1549e6ac839b142976faf5", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:31<00:00,\u2007160298.07it/s]"}}, "4da0108d885943e298ab5e6f0ab72a55": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6e7b56fcef5c486cb1b301226a96315c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ecb42f54e7734c42b48cb0a6de8dff88", "IPY_MODEL_77f18c82c64a405681baf0fc9ae700f2", "IPY_MODEL_64725b3089ff49b28e2885cf3d4d9274"], "layout": "IPY_MODEL_4da0108d885943e298ab5e6f0ab72a55", "tabbable": null, "tooltip": null}}, "e26e8bb7c9764456a941ae60b6856b2f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fbdbb3005223478b896ae9e7d83a76d9": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e2d894bdc1954600a760c365637c57bf": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e26e8bb7c9764456a941ae60b6856b2f", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_fbdbb3005223478b896ae9e7d83a76d9", "tabbable": null, "tooltip": null, "value": 30.0}}, "5dbfb68e80dd4fe4b9c797dc02745c3c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8c7e66b980b347d396f3f67364cec683": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "32d1dd80bdc74f67bd45cefedf1cac1f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5dbfb68e80dd4fe4b9c797dc02745c3c", "placeholder": "\u200b", "style": "IPY_MODEL_8c7e66b980b347d396f3f67364cec683", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "f26e929230e34d458d38de9ce5771d22": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cd1edd44379742a4a8544dee6171325f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2735b6f48cdc42eeb0337efda4887b88": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f26e929230e34d458d38de9ce5771d22", "placeholder": "\u200b", "style": "IPY_MODEL_cd1edd44379742a4a8544dee6171325f", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200720.10it/s]"}}, "61a33e5ba9c84954850fa7bbe5ffda56": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7e7b88cddfbd428db2ec7d485c5c6665": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_32d1dd80bdc74f67bd45cefedf1cac1f", "IPY_MODEL_e2d894bdc1954600a760c365637c57bf", "IPY_MODEL_2735b6f48cdc42eeb0337efda4887b88"], "layout": "IPY_MODEL_61a33e5ba9c84954850fa7bbe5ffda56", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index 7a39f527b..260e00239 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:40.063403Z", - "iopub.status.busy": "2024-08-29T17:14:40.062940Z", - "iopub.status.idle": "2024-08-29T17:14:42.485605Z", - "shell.execute_reply": "2024-08-29T17:14:42.484974Z" + "iopub.execute_input": "2024-09-04T16:43:57.398115Z", + "iopub.status.busy": "2024-09-04T16:43:57.397950Z", + "iopub.status.idle": "2024-09-04T16:44:00.422408Z", + "shell.execute_reply": "2024-09-04T16:44:00.421657Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:14:42.488095Z", - "iopub.status.busy": "2024-08-29T17:14:42.487908Z", - "iopub.status.idle": "2024-08-29T17:15:42.347849Z", - "shell.execute_reply": "2024-08-29T17:15:42.347221Z" + "iopub.execute_input": "2024-09-04T16:44:00.424989Z", + "iopub.status.busy": "2024-09-04T16:44:00.424806Z", + "iopub.status.idle": "2024-09-04T16:45:04.882151Z", + "shell.execute_reply": "2024-09-04T16:45:04.881404Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:15:42.350509Z", - "iopub.status.busy": "2024-08-29T17:15:42.350313Z", - "iopub.status.idle": "2024-08-29T17:15:43.517871Z", - "shell.execute_reply": "2024-08-29T17:15:43.517356Z" + "iopub.execute_input": "2024-09-04T16:45:04.884810Z", + "iopub.status.busy": "2024-09-04T16:45:04.884607Z", + "iopub.status.idle": "2024-09-04T16:45:06.035210Z", + "shell.execute_reply": "2024-09-04T16:45:06.034656Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:15:43.520364Z", - "iopub.status.busy": "2024-08-29T17:15:43.520087Z", - "iopub.status.idle": "2024-08-29T17:15:43.523428Z", - "shell.execute_reply": "2024-08-29T17:15:43.522969Z" + "iopub.execute_input": "2024-09-04T16:45:06.037737Z", + "iopub.status.busy": "2024-09-04T16:45:06.037308Z", + "iopub.status.idle": "2024-09-04T16:45:06.040355Z", + "shell.execute_reply": "2024-09-04T16:45:06.039923Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:15:43.525372Z", - "iopub.status.busy": "2024-08-29T17:15:43.525198Z", - "iopub.status.idle": "2024-08-29T17:15:43.528851Z", - "shell.execute_reply": "2024-08-29T17:15:43.528416Z" + "iopub.execute_input": "2024-09-04T16:45:06.042624Z", + "iopub.status.busy": "2024-09-04T16:45:06.042293Z", + "iopub.status.idle": "2024-09-04T16:45:06.046099Z", + "shell.execute_reply": "2024-09-04T16:45:06.045622Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:15:43.530733Z", - "iopub.status.busy": "2024-08-29T17:15:43.530564Z", - "iopub.status.idle": "2024-08-29T17:15:43.534086Z", - "shell.execute_reply": "2024-08-29T17:15:43.533629Z" + "iopub.execute_input": "2024-09-04T16:45:06.048124Z", + "iopub.status.busy": "2024-09-04T16:45:06.047798Z", + "iopub.status.idle": "2024-09-04T16:45:06.051275Z", + "shell.execute_reply": "2024-09-04T16:45:06.050853Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:15:43.535858Z", - "iopub.status.busy": "2024-08-29T17:15:43.535691Z", - "iopub.status.idle": "2024-08-29T17:15:43.538397Z", - "shell.execute_reply": "2024-08-29T17:15:43.537946Z" + "iopub.execute_input": "2024-09-04T16:45:06.053341Z", + "iopub.status.busy": "2024-09-04T16:45:06.052998Z", + "iopub.status.idle": "2024-09-04T16:45:06.055696Z", + "shell.execute_reply": "2024-09-04T16:45:06.055273Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:15:43.540159Z", - "iopub.status.busy": "2024-08-29T17:15:43.539989Z", - "iopub.status.idle": "2024-08-29T17:16:21.544248Z", - "shell.execute_reply": "2024-08-29T17:16:21.543544Z" + "iopub.execute_input": "2024-09-04T16:45:06.057654Z", + "iopub.status.busy": "2024-09-04T16:45:06.057355Z", + "iopub.status.idle": "2024-09-04T16:45:44.136518Z", + "shell.execute_reply": "2024-09-04T16:45:44.135792Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f59b171099164f76b8305ddd48dbb399", + "model_id": "c29501bdfc7141ceadc36d4bd242e947", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "797e70863dcd4d92ab00f88ddb64b07a", + "model_id": "11fcea39be8443499c860e52baccfa36", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:16:21.546989Z", - "iopub.status.busy": "2024-08-29T17:16:21.546789Z", - "iopub.status.idle": "2024-08-29T17:16:22.218200Z", - "shell.execute_reply": "2024-08-29T17:16:22.217653Z" + "iopub.execute_input": "2024-09-04T16:45:44.139186Z", + "iopub.status.busy": "2024-09-04T16:45:44.138936Z", + "iopub.status.idle": "2024-09-04T16:45:44.802686Z", + "shell.execute_reply": "2024-09-04T16:45:44.802105Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:16:22.220507Z", - "iopub.status.busy": "2024-08-29T17:16:22.220105Z", - "iopub.status.idle": "2024-08-29T17:16:25.143584Z", - "shell.execute_reply": "2024-08-29T17:16:25.142977Z" + "iopub.execute_input": "2024-09-04T16:45:44.804935Z", + "iopub.status.busy": "2024-09-04T16:45:44.804500Z", + "iopub.status.idle": "2024-09-04T16:45:47.783346Z", + "shell.execute_reply": "2024-09-04T16:45:47.782764Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:16:25.145704Z", - "iopub.status.busy": "2024-08-29T17:16:25.145523Z", - "iopub.status.idle": "2024-08-29T17:16:57.114477Z", - "shell.execute_reply": "2024-08-29T17:16:57.113895Z" + "iopub.execute_input": "2024-09-04T16:45:47.785432Z", + "iopub.status.busy": "2024-09-04T16:45:47.785262Z", + "iopub.status.idle": "2024-09-04T16:46:19.370321Z", + "shell.execute_reply": "2024-09-04T16:46:19.369764Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "44abce64857e41b18d46cff97a645cb6", + "model_id": "6e7b56fcef5c486cb1b301226a96315c", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:16:57.116548Z", - "iopub.status.busy": "2024-08-29T17:16:57.116366Z", - "iopub.status.idle": "2024-08-29T17:17:12.559357Z", - "shell.execute_reply": "2024-08-29T17:17:12.558698Z" + "iopub.execute_input": "2024-09-04T16:46:19.372472Z", + "iopub.status.busy": "2024-09-04T16:46:19.372143Z", + "iopub.status.idle": "2024-09-04T16:46:34.869456Z", + "shell.execute_reply": "2024-09-04T16:46:34.868899Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:12.561798Z", - "iopub.status.busy": "2024-08-29T17:17:12.561592Z", - "iopub.status.idle": "2024-08-29T17:17:16.342031Z", - "shell.execute_reply": "2024-08-29T17:17:16.341561Z" + "iopub.execute_input": "2024-09-04T16:46:34.871907Z", + "iopub.status.busy": "2024-09-04T16:46:34.871709Z", + "iopub.status.idle": "2024-09-04T16:46:38.623774Z", + "shell.execute_reply": "2024-09-04T16:46:38.623174Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:16.344203Z", - "iopub.status.busy": "2024-08-29T17:17:16.343880Z", - "iopub.status.idle": "2024-08-29T17:17:17.838334Z", - "shell.execute_reply": "2024-08-29T17:17:17.837648Z" + "iopub.execute_input": "2024-09-04T16:46:38.626180Z", + "iopub.status.busy": "2024-09-04T16:46:38.625737Z", + "iopub.status.idle": "2024-09-04T16:46:40.106323Z", + "shell.execute_reply": "2024-09-04T16:46:40.105799Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3f1e3f0e04dc48ddb34e2479973f987f", + "model_id": "7e7b88cddfbd428db2ec7d485c5c6665", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:17.841034Z", - "iopub.status.busy": "2024-08-29T17:17:17.840575Z", - "iopub.status.idle": "2024-08-29T17:17:17.869860Z", - "shell.execute_reply": "2024-08-29T17:17:17.869337Z" + "iopub.execute_input": "2024-09-04T16:46:40.108795Z", + "iopub.status.busy": "2024-09-04T16:46:40.108440Z", + "iopub.status.idle": "2024-09-04T16:46:40.137972Z", + "shell.execute_reply": "2024-09-04T16:46:40.137451Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:17.872167Z", - "iopub.status.busy": "2024-08-29T17:17:17.871965Z", - "iopub.status.idle": "2024-08-29T17:17:24.053059Z", - "shell.execute_reply": "2024-08-29T17:17:24.052503Z" + "iopub.execute_input": "2024-09-04T16:46:40.140567Z", + "iopub.status.busy": "2024-09-04T16:46:40.140198Z", + "iopub.status.idle": "2024-09-04T16:46:46.220146Z", + "shell.execute_reply": "2024-09-04T16:46:46.219555Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:24.055411Z", - "iopub.status.busy": "2024-08-29T17:17:24.055070Z", - "iopub.status.idle": "2024-08-29T17:17:24.111177Z", - "shell.execute_reply": "2024-08-29T17:17:24.110679Z" + "iopub.execute_input": "2024-09-04T16:46:46.222415Z", + "iopub.status.busy": "2024-09-04T16:46:46.222228Z", + "iopub.status.idle": "2024-09-04T16:46:46.283593Z", + "shell.execute_reply": "2024-09-04T16:46:46.283096Z" }, "nbsphinx": "hidden" }, @@ -1038,23 +1038,57 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "034036b3b83d40a39150602a8d0d774b": { + "01715a241ede47049c8175ae74204dcb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_da7abc08e44b4fc5b2f705b29958ff4e", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ec0acf0b2a504079957d88a2e9996418", + "tabbable": null, + "tooltip": null, + "value": 30.0 } }, - "0c259ceb33d348f28a73d7a752a83d1f": { + "11fcea39be8443499c860e52baccfa36": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b605408da9d943728fe5c3bc9ee69de0", + "IPY_MODEL_01715a241ede47049c8175ae74204dcb", + "IPY_MODEL_388b17e8e5d4404187f690f917705610" + ], + "layout": "IPY_MODEL_af326f92c44c4443a107ea420cf02f30", + "tabbable": null, + "tooltip": null + } + }, + "13ddca1be3f6482ea8ea212b7da45a58": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1107,7 +1141,7 @@ "width": null } }, - "0d685f3729224eedb7b91231659e2757": { + "1670ba26e32f43d890a0c1a97dcf3fe6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1160,43 +1194,60 @@ "width": null } }, - "0e8a6425bd35419282d9435caa818906": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "12fb5404efa9407bb436ad7047308f7b": { - "model_module": "@jupyter-widgets/controls", + "1eeaa3465b3c47d0b8a2e4736187fdf0": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "18e897f0234744b995456435e96a3ac5": { + "2348ac71446446929cc29942ecfe7f23": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1214,7 +1265,7 @@ "text_color": null } }, - "2150c51d8b224467a87065c24db1f2cd": { + "2735b6f48cdc42eeb0337efda4887b88": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1229,15 +1280,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b821863d99744529a669c67f13612d82", + "layout": "IPY_MODEL_f26e929230e34d458d38de9ce5771d22", "placeholder": "​", - "style": "IPY_MODEL_0e8a6425bd35419282d9435caa818906", + "style": "IPY_MODEL_cd1edd44379742a4a8544dee6171325f", "tabbable": null, "tooltip": null, - "value": " 4997683/4997683 [00:31<00:00, 155147.87it/s]" + "value": " 30/30 [00:01<00:00, 20.10it/s]" } }, - "23d394fbee8b47188d2d3834f6b58af7": { + "32d1dd80bdc74f67bd45cefedf1cac1f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1252,33 +1303,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bab0622575024fecabd08e4b1d63f719", + "layout": "IPY_MODEL_5dbfb68e80dd4fe4b9c797dc02745c3c", "placeholder": "​", - "style": "IPY_MODEL_aed7d29c1eb147aaa4da525fbdcccfeb", + "style": "IPY_MODEL_8c7e66b980b347d396f3f67364cec683", "tabbable": null, "tooltip": null, "value": "images processed using softmin: 100%" } }, - "2617f6d87b1d44a19de682bf7fcc80b6": { + "388b17e8e5d4404187f690f917705610": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_637d22dc96bb468d9150845651b0add1", + "placeholder": "​", + "style": "IPY_MODEL_96f1ce41df2c4d8b85455ab3f6b77cb7", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:26<00:00,  1.15it/s]" } }, - "284040cc9a374386a6554aead1ea2644": { + "48d0c48a036a4be79be623e6537e66fd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1331,48 +1387,7 @@ "width": null } }, - "2ed144768d2d4dbcbd8fb7a089625911": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "30731e8ab0214e45a3e63558b35bb2a5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0c259ceb33d348f28a73d7a752a83d1f", - "placeholder": "​", - "style": "IPY_MODEL_18e897f0234744b995456435e96a3ac5", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "35992f93960747699ce0688cd2406d71": { + "4da0108d885943e298ab5e6f0ab72a55": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1425,87 +1440,7 @@ "width": null } }, - "3d6d6a29214f4d9180f1c432550f4eb8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "3f1e3f0e04dc48ddb34e2479973f987f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_23d394fbee8b47188d2d3834f6b58af7", - "IPY_MODEL_cb494b2cb783459b90ffc5c4a0e54cd3", - "IPY_MODEL_abb485abc3da4b998ad73c0d6ce9951f" - ], - "layout": "IPY_MODEL_7176b5b5fb0c48329d6d4ff1f55374d4", - "tabbable": null, - "tooltip": null - } - }, - "44abce64857e41b18d46cff97a645cb6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_69c97867bb414ce4a71317f7b51a6fc0", - "IPY_MODEL_e2b81de6c3e44bf8ab68f9e5797e5469", - "IPY_MODEL_2150c51d8b224467a87065c24db1f2cd" - ], - "layout": "IPY_MODEL_6a517b92b69c4fd4a072e89e82f255bf", - "tabbable": null, - "tooltip": null - } - }, - "517ae781ff0d467c9a97e22c51392ade": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "658c952d03924e839777edde3515e2a8": { + "50a561a211494999b82b0f7e14c91e64": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1558,7 +1493,48 @@ "width": null } }, - "681d1382b6af45c4acf9ca239ae777d3": { + "5a5a125bfa6d43bb9143c6bd0d2f86aa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_50a561a211494999b82b0f7e14c91e64", + "placeholder": "​", + "style": "IPY_MODEL_2348ac71446446929cc29942ecfe7f23", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" + } + }, + "5c2ce10a9a0c4004817b1ab6ed0c8eb0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5dbfb68e80dd4fe4b9c797dc02745c3c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1611,30 +1587,7 @@ "width": null } }, - "69c97867bb414ce4a71317f7b51a6fc0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d9889d1329d2417aa59e77528bf8c579", - "placeholder": "​", - "style": "IPY_MODEL_2ed144768d2d4dbcbd8fb7a089625911", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "6a517b92b69c4fd4a072e89e82f255bf": { + "61a33e5ba9c84954850fa7bbe5ffda56": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1687,7 +1640,7 @@ "width": null } }, - "7176b5b5fb0c48329d6d4ff1f55374d4": { + "637d22dc96bb468d9150845651b0add1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1740,7 +1693,106 @@ "width": null } }, - "797e70863dcd4d92ab00f88ddb64b07a": { + "6435bff16ce643fb9bef7ba9bd3d5965": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e0510c00ed0e44219cbce2a6b2f40086", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e6c27b6139894a26a0bec722079ebf23", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "64725b3089ff49b28e2885cf3d4d9274": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1eeaa3465b3c47d0b8a2e4736187fdf0", + "placeholder": "​", + "style": "IPY_MODEL_f3905a545d1549e6ac839b142976faf5", + "tabbable": null, + "tooltip": null, + "value": " 4997683/4997683 [00:31<00:00, 160298.07it/s]" + } + }, + "6e7b56fcef5c486cb1b301226a96315c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ecb42f54e7734c42b48cb0a6de8dff88", + "IPY_MODEL_77f18c82c64a405681baf0fc9ae700f2", + "IPY_MODEL_64725b3089ff49b28e2885cf3d4d9274" + ], + "layout": "IPY_MODEL_4da0108d885943e298ab5e6f0ab72a55", + "tabbable": null, + "tooltip": null + } + }, + "77f18c82c64a405681baf0fc9ae700f2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1670ba26e32f43d890a0c1a97dcf3fe6", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a971ef76ec7b42abb1ccaacaedeb405c", + "tabbable": null, + "tooltip": null, + "value": 4997683.0 + } + }, + "7e7b88cddfbd428db2ec7d485c5c6665": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1755,16 +1807,52 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_c6435c6e8ecf4f97945154165f8b3710", - "IPY_MODEL_a4f4b6731bf84c7fb0b112656e78d24e", - "IPY_MODEL_83293389c8284d6490e3d5be49b65303" + "IPY_MODEL_32d1dd80bdc74f67bd45cefedf1cac1f", + "IPY_MODEL_e2d894bdc1954600a760c365637c57bf", + "IPY_MODEL_2735b6f48cdc42eeb0337efda4887b88" ], - "layout": "IPY_MODEL_cb39fc68582f495d9128c47c2ea12d32", + "layout": "IPY_MODEL_61a33e5ba9c84954850fa7bbe5ffda56", "tabbable": null, "tooltip": null } }, - "7f83bb546cc2435090cdacd91f10377d": { + "812d1a37e5314b0c822c78f0803e41ee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8c7e66b980b347d396f3f67364cec683": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9079f128e32b443da78013fe14685adc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1817,30 +1905,7 @@ "width": null } }, - "83293389c8284d6490e3d5be49b65303": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_284040cc9a374386a6554aead1ea2644", - "placeholder": "​", - "style": "IPY_MODEL_2617f6d87b1d44a19de682bf7fcc80b6", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:25<00:00,  1.14it/s]" - } - }, - "8d6ce753439846f1a50809b38187bb92": { + "90af0231f6ee4bd28a9526a8d0f8d05f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1858,74 +1923,41 @@ "text_color": null } }, - "a4f4b6731bf84c7fb0b112656e78d24e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_658c952d03924e839777edde3515e2a8", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_034036b3b83d40a39150602a8d0d774b", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "abb485abc3da4b998ad73c0d6ce9951f": { + "96f1ce41df2c4d8b85455ab3f6b77cb7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_681d1382b6af45c4acf9ca239ae777d3", - "placeholder": "​", - "style": "IPY_MODEL_12fb5404efa9407bb436ad7047308f7b", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 20.78it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "aed7d29c1eb147aaa4da525fbdcccfeb": { + "a971ef76ec7b42abb1ccaacaedeb405c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "b064f6633b3d4184a3197a07f3dd0f15": { + "af326f92c44c4443a107ea420cf02f30": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1978,33 +2010,95 @@ "width": null } }, - "b5d2a5cc00394bc9a2320d5ed2c751c8": { + "af9858b2ff5445dc8083f3415038f58d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_eef352d40fcc4b798a64be886735332b", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_517ae781ff0d467c9a97e22c51392ade", + "layout": "IPY_MODEL_48d0c48a036a4be79be623e6537e66fd", + "placeholder": "​", + "style": "IPY_MODEL_812d1a37e5314b0c822c78f0803e41ee", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": " 30/30 [00:00<00:00, 777.04it/s]" + } + }, + "b605408da9d943728fe5c3bc9ee69de0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_13ddca1be3f6482ea8ea212b7da45a58", + "placeholder": "​", + "style": "IPY_MODEL_5c2ce10a9a0c4004817b1ab6ed0c8eb0", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: 100%" + } + }, + "c29501bdfc7141ceadc36d4bd242e947": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5a5a125bfa6d43bb9143c6bd0d2f86aa", + "IPY_MODEL_6435bff16ce643fb9bef7ba9bd3d5965", + "IPY_MODEL_af9858b2ff5445dc8083f3415038f58d" + ], + "layout": "IPY_MODEL_9079f128e32b443da78013fe14685adc", + "tabbable": null, + "tooltip": null + } + }, + "cd1edd44379742a4a8544dee6171325f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b821863d99744529a669c67f13612d82": { + "d05ad05c204c4a06b2366a18a84d7b9e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2057,7 +2151,7 @@ "width": null } }, - "bab0622575024fecabd08e4b1d63f719": { + "da7abc08e44b4fc5b2f705b29958ff4e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2110,46 +2204,7 @@ "width": null } }, - "c6435c6e8ecf4f97945154165f8b3710": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e68e2f112a8341cd8780484bf420acf7", - "placeholder": "​", - "style": "IPY_MODEL_8d6ce753439846f1a50809b38187bb92", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" - } - }, - "c9e278bab6254723a6997ea8b677b8fa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "cb39fc68582f495d9128c47c2ea12d32": { + "e0510c00ed0e44219cbce2a6b2f40086": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2202,33 +2257,7 @@ "width": null } }, - "cb494b2cb783459b90ffc5c4a0e54cd3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0d685f3729224eedb7b91231659e2757", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c9e278bab6254723a6997ea8b677b8fa", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "d9889d1329d2417aa59e77528bf8c579": { + "e26e8bb7c9764456a941ae60b6856b2f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2281,25 +2310,7 @@ "width": null } }, - "dfb120997aeb48e4b219e8fe2b040af5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e2b81de6c3e44bf8ab68f9e5797e5469": { + "e2d894bdc1954600a760c365637c57bf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2315,70 +2326,49 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b064f6633b3d4184a3197a07f3dd0f15", - "max": 4997683.0, + "layout": "IPY_MODEL_e26e8bb7c9764456a941ae60b6856b2f", + "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_3d6d6a29214f4d9180f1c432550f4eb8", + "style": "IPY_MODEL_fbdbb3005223478b896ae9e7d83a76d9", "tabbable": null, "tooltip": null, - "value": 4997683.0 + "value": 30.0 } }, - "e68e2f112a8341cd8780484bf420acf7": { - "model_module": "@jupyter-widgets/base", + "e6c27b6139894a26a0bec722079ebf23": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ec0acf0b2a504079957d88a2e9996418": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "e775fb19744d45c498549c471ea4d7ce": { + "ecb42f54e7734c42b48cb0a6de8dff88": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2393,15 +2383,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_35992f93960747699ce0688cd2406d71", + "layout": "IPY_MODEL_d05ad05c204c4a06b2366a18a84d7b9e", "placeholder": "​", - "style": "IPY_MODEL_dfb120997aeb48e4b219e8fe2b040af5", + "style": "IPY_MODEL_90af0231f6ee4bd28a9526a8d0f8d05f", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:00<00:00, 788.74it/s]" + "value": "100%" } }, - "eef352d40fcc4b798a64be886735332b": { + "f26e929230e34d458d38de9ce5771d22": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2454,28 +2444,38 @@ "width": null } }, - "f59b171099164f76b8305ddd48dbb399": { + "f3905a545d1549e6ac839b142976faf5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_30731e8ab0214e45a3e63558b35bb2a5", - "IPY_MODEL_b5d2a5cc00394bc9a2320d5ed2c751c8", - "IPY_MODEL_e775fb19744d45c498549c471ea4d7ce" - ], - "layout": "IPY_MODEL_7f83bb546cc2435090cdacd91f10377d", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fbdbb3005223478b896ae9e7d83a76d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } } }, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index 0590e7e5f..0f90af859 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -710,16 +710,16 @@

1. Install required dependencies and download data

diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index 65953d3c3..61fb82a09 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:26.339044Z", - "iopub.status.busy": "2024-08-29T17:17:26.338872Z", - "iopub.status.idle": "2024-08-29T17:17:27.941394Z", - "shell.execute_reply": "2024-08-29T17:17:27.940700Z" + "iopub.execute_input": "2024-09-04T16:46:48.653613Z", + "iopub.status.busy": "2024-09-04T16:46:48.653173Z", + "iopub.status.idle": "2024-09-04T16:46:55.007319Z", + "shell.execute_reply": "2024-09-04T16:46:55.006741Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-29 17:17:26-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-09-04 16:46:48-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,22 +94,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.236.100, 2400:52e0:1a00::1207:2\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.236.100|:443... connected.\r\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "HTTP request sent, awaiting response... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "200 OK\r\n", + "143.244.50.84, 2400:52e0:1a01::1115:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|143.244.50.84|:443... connected.\r\n", + "HTTP request sent, awaiting response... 200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", @@ -124,7 +111,7 @@ "\r", "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-08-29 17:17:26 (7.78 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-09-04 16:46:49 (7.77 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -144,9 +131,22 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-29 17:17:27-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.170.49, 3.5.16.62, 52.217.68.44, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.170.49|:443... connected.\r\n", + "--2024-09-04 16:46:49-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.30.243, 3.5.25.73, 52.217.199.233, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.30.243|:443... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "connected.\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "HTTP request sent, awaiting response... " ] }, @@ -167,10 +167,194 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 96%[==================> ] 15.71M 31.3MB/s \r", - "pred_probs.npz 100%[===================>] 16.26M 32.2MB/s in 0.5s \r\n", + "pred_probs.npz 0%[ ] 74.09K 352KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 0%[ ] 165.71K 392KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 1%[ ] 279.97K 442KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 2%[ ] 402.44K 476KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 3%[ ] 534.85K 507KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 4%[ ] 702.63K 555KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 5%[> ] 891.47K 603KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 6%[> ] 1.09M 660KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 8%[> ] 1.33M 716KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 9%[> ] 1.61M 781KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 11%[=> ] 1.95M 861KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 14%[=> ] 2.34M 947KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 17%[==> ] 2.77M 1.01MB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 20%[===> ] 3.29M 1.11MB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 23%[===> ] 3.88M 1.23MB/s eta 10s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 28%[====> ] 4.58M 1.36MB/s eta 10s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 33%[=====> ] 5.38M 1.50MB/s eta 10s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 38%[======> ] 6.31M 1.66MB/s eta 10s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 45%[========> ] 7.37M 1.84MB/s eta 10s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 52%[=========> ] 8.60M 2.13MB/s eta 4s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 61%[===========> ] 10.04M 2.57MB/s eta 4s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 71%[=============> ] 11.69M 2.96MB/s eta 4s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 83%[===============> ] 13.61M 3.40MB/s eta 4s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 97%[==================> ] 15.85M 3.94MB/s eta 4s \r", + "pred_probs.npz 100%[===================>] 16.26M 4.04MB/s in 5.1s \r\n", "\r\n", - "2024-08-29 17:17:27 (32.2 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-09-04 16:46:54 (3.21 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -187,10 +371,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:27.944256Z", - "iopub.status.busy": "2024-08-29T17:17:27.943870Z", - "iopub.status.idle": "2024-08-29T17:17:29.261156Z", - "shell.execute_reply": "2024-08-29T17:17:29.260619Z" + "iopub.execute_input": "2024-09-04T16:46:55.009754Z", + "iopub.status.busy": "2024-09-04T16:46:55.009373Z", + "iopub.status.idle": "2024-09-04T16:46:56.250887Z", + "shell.execute_reply": "2024-09-04T16:46:56.250411Z" }, "nbsphinx": "hidden" }, @@ -201,7 +385,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@0620487f86634df0f530d3659a564db463d09b34\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@d6fdc9f1c48140a209e3e9d1228fe6c945b2c575\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -227,10 +411,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:29.263848Z", - "iopub.status.busy": "2024-08-29T17:17:29.263399Z", - "iopub.status.idle": "2024-08-29T17:17:29.266823Z", - "shell.execute_reply": "2024-08-29T17:17:29.266231Z" + "iopub.execute_input": "2024-09-04T16:46:56.253361Z", + "iopub.status.busy": "2024-09-04T16:46:56.252910Z", + "iopub.status.idle": "2024-09-04T16:46:56.256144Z", + "shell.execute_reply": "2024-09-04T16:46:56.255716Z" } }, "outputs": [], @@ -280,10 +464,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:29.269094Z", - "iopub.status.busy": "2024-08-29T17:17:29.268683Z", - "iopub.status.idle": "2024-08-29T17:17:29.272062Z", - "shell.execute_reply": "2024-08-29T17:17:29.271604Z" + "iopub.execute_input": "2024-09-04T16:46:56.258147Z", + "iopub.status.busy": "2024-09-04T16:46:56.257877Z", + "iopub.status.idle": "2024-09-04T16:46:56.260950Z", + "shell.execute_reply": "2024-09-04T16:46:56.260396Z" }, "nbsphinx": "hidden" }, @@ -301,10 +485,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:29.274632Z", - "iopub.status.busy": "2024-08-29T17:17:29.274212Z", - "iopub.status.idle": "2024-08-29T17:17:38.249516Z", - "shell.execute_reply": "2024-08-29T17:17:38.248858Z" + "iopub.execute_input": "2024-09-04T16:46:56.263038Z", + "iopub.status.busy": "2024-09-04T16:46:56.262707Z", + "iopub.status.idle": "2024-09-04T16:47:05.313089Z", + "shell.execute_reply": "2024-09-04T16:47:05.312548Z" } }, "outputs": [], @@ -378,10 +562,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:38.252121Z", - "iopub.status.busy": "2024-08-29T17:17:38.251901Z", - "iopub.status.idle": "2024-08-29T17:17:38.258509Z", - "shell.execute_reply": "2024-08-29T17:17:38.257889Z" + "iopub.execute_input": "2024-09-04T16:47:05.315553Z", + "iopub.status.busy": "2024-09-04T16:47:05.315222Z", + "iopub.status.idle": "2024-09-04T16:47:05.320683Z", + "shell.execute_reply": "2024-09-04T16:47:05.320235Z" }, "nbsphinx": "hidden" }, @@ -421,10 +605,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:38.260575Z", - "iopub.status.busy": "2024-08-29T17:17:38.260400Z", - "iopub.status.idle": "2024-08-29T17:17:38.611890Z", - "shell.execute_reply": "2024-08-29T17:17:38.611365Z" + "iopub.execute_input": "2024-09-04T16:47:05.322601Z", + "iopub.status.busy": "2024-09-04T16:47:05.322338Z", + "iopub.status.idle": "2024-09-04T16:47:05.667169Z", + "shell.execute_reply": "2024-09-04T16:47:05.666537Z" } }, "outputs": [], @@ -461,10 +645,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:38.614285Z", - "iopub.status.busy": "2024-08-29T17:17:38.614078Z", - "iopub.status.idle": "2024-08-29T17:17:38.618338Z", - "shell.execute_reply": "2024-08-29T17:17:38.617761Z" + "iopub.execute_input": "2024-09-04T16:47:05.669724Z", + "iopub.status.busy": "2024-09-04T16:47:05.669531Z", + "iopub.status.idle": "2024-09-04T16:47:05.673815Z", + "shell.execute_reply": "2024-09-04T16:47:05.673272Z" } }, "outputs": [ @@ -536,10 +720,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:38.620291Z", - "iopub.status.busy": "2024-08-29T17:17:38.620118Z", - "iopub.status.idle": "2024-08-29T17:17:41.255603Z", - "shell.execute_reply": "2024-08-29T17:17:41.254897Z" + "iopub.execute_input": "2024-09-04T16:47:05.675875Z", + "iopub.status.busy": "2024-09-04T16:47:05.675554Z", + "iopub.status.idle": "2024-09-04T16:47:08.252819Z", + "shell.execute_reply": "2024-09-04T16:47:08.252090Z" } }, "outputs": [], @@ -561,10 +745,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:41.258858Z", - "iopub.status.busy": "2024-08-29T17:17:41.257988Z", - "iopub.status.idle": "2024-08-29T17:17:41.262360Z", - "shell.execute_reply": "2024-08-29T17:17:41.261875Z" + "iopub.execute_input": "2024-09-04T16:47:08.255982Z", + "iopub.status.busy": "2024-09-04T16:47:08.255203Z", + "iopub.status.idle": "2024-09-04T16:47:08.259378Z", + "shell.execute_reply": "2024-09-04T16:47:08.258831Z" } }, "outputs": [ @@ -600,10 +784,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:41.264483Z", - "iopub.status.busy": "2024-08-29T17:17:41.264152Z", - "iopub.status.idle": "2024-08-29T17:17:41.269679Z", - "shell.execute_reply": "2024-08-29T17:17:41.269239Z" + "iopub.execute_input": "2024-09-04T16:47:08.261330Z", + "iopub.status.busy": "2024-09-04T16:47:08.261019Z", + "iopub.status.idle": "2024-09-04T16:47:08.266724Z", + "shell.execute_reply": "2024-09-04T16:47:08.266178Z" } }, "outputs": [ @@ -781,10 +965,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:41.271827Z", - "iopub.status.busy": "2024-08-29T17:17:41.271498Z", - "iopub.status.idle": "2024-08-29T17:17:41.298247Z", - "shell.execute_reply": "2024-08-29T17:17:41.297765Z" + "iopub.execute_input": "2024-09-04T16:47:08.268756Z", + "iopub.status.busy": "2024-09-04T16:47:08.268443Z", + "iopub.status.idle": "2024-09-04T16:47:08.295398Z", + "shell.execute_reply": "2024-09-04T16:47:08.294831Z" } }, "outputs": [ @@ -886,10 +1070,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:41.300294Z", - "iopub.status.busy": "2024-08-29T17:17:41.299959Z", - "iopub.status.idle": "2024-08-29T17:17:41.304530Z", - "shell.execute_reply": "2024-08-29T17:17:41.304060Z" + "iopub.execute_input": "2024-09-04T16:47:08.297388Z", + "iopub.status.busy": "2024-09-04T16:47:08.297074Z", + "iopub.status.idle": "2024-09-04T16:47:08.301299Z", + "shell.execute_reply": "2024-09-04T16:47:08.300740Z" } }, "outputs": [ @@ -963,10 +1147,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:41.306677Z", - "iopub.status.busy": "2024-08-29T17:17:41.306340Z", - "iopub.status.idle": "2024-08-29T17:17:42.766771Z", - "shell.execute_reply": "2024-08-29T17:17:42.766235Z" + "iopub.execute_input": "2024-09-04T16:47:08.303333Z", + "iopub.status.busy": "2024-09-04T16:47:08.303011Z", + "iopub.status.idle": "2024-09-04T16:47:09.680188Z", + "shell.execute_reply": "2024-09-04T16:47:09.679587Z" } }, "outputs": [ @@ -1138,10 +1322,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-08-29T17:17:42.768887Z", - "iopub.status.busy": "2024-08-29T17:17:42.768697Z", - "iopub.status.idle": "2024-08-29T17:17:42.772738Z", - "shell.execute_reply": "2024-08-29T17:17:42.772278Z" + "iopub.execute_input": "2024-09-04T16:47:09.682437Z", + "iopub.status.busy": "2024-09-04T16:47:09.682099Z", + "iopub.status.idle": "2024-09-04T16:47:09.686196Z", + "shell.execute_reply": "2024-09-04T16:47:09.685639Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index 8a961a5d3..3b7d013de 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.6.6", - commit_hash: "0620487f86634df0f530d3659a564db463d09b34", + commit_hash: "d6fdc9f1c48140a209e3e9d1228fe6c945b2c575", }; \ No newline at end of file