From 4aafcd8a30e57e644b5fdc6ff8acecb0c7076cdd Mon Sep 17 00:00:00 2001 From: elisno Date: Wed, 21 Aug 2024 00:49:44 +0000 Subject: [PATCH] deploy: cleanlab/cleanlab@b9796a540c4b8fcfe0647dc7dafe447a3738499c --- master/.buildinfo | 2 +- .../cleanlab/benchmarking/index.doctree | Bin 3248 -> 3248 bytes .../benchmarking/noise_generation.doctree | Bin 81345 -> 81345 bytes .../.doctrees/cleanlab/classification.doctree | Bin 290735 -> 290735 bytes master/.doctrees/cleanlab/count.doctree | Bin 283717 -> 283717 bytes .../.doctrees/cleanlab/data_valuation.doctree | Bin 26578 -> 26578 bytes .../cleanlab/datalab/datalab.doctree | Bin 174487 -> 174487 bytes .../guide/_templates/issue_types_tip.doctree | Bin 4354 -> 4354 bytes .../guide/custom_issue_manager.doctree | Bin 31452 -> 31452 bytes .../guide/generating_cluster_ids.doctree | Bin 6318 -> 6318 bytes .../cleanlab/datalab/guide/index.doctree | Bin 12087 -> 12087 bytes .../guide/issue_type_description.doctree | Bin 250944 -> 264228 bytes .../cleanlab/datalab/guide/table.doctree | Bin 63584 -> 63584 bytes .../.doctrees/cleanlab/datalab/index.doctree | Bin 5445 -> 5445 bytes .../cleanlab/datalab/internal/data.doctree | Bin 105136 -> 105136 bytes .../datalab/internal/data_issues.doctree | Bin 77301 -> 77301 bytes .../cleanlab/datalab/internal/factory.doctree | Bin 64553 -> 64553 bytes .../cleanlab/datalab/internal/index.doctree | Bin 4573 -> 4573 bytes .../datalab/internal/issue_finder.doctree | Bin 46989 -> 46989 bytes .../_notices/not_registered.doctree | Bin 3440 -> 3440 bytes .../issue_manager/data_valuation.doctree | Bin 79832 -> 79832 bytes .../internal/issue_manager/duplicate.doctree | Bin 75245 -> 75245 bytes .../internal/issue_manager/imbalance.doctree | Bin 68346 -> 68346 bytes .../internal/issue_manager/index.doctree | Bin 5282 -> 5282 bytes .../issue_manager/issue_manager.doctree | Bin 80662 -> 80662 bytes .../internal/issue_manager/label.doctree | Bin 88614 -> 88614 bytes .../issue_manager/multilabel/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/multilabel/label.doctree | Bin 79258 -> 79258 bytes .../internal/issue_manager/noniid.doctree | Bin 90556 -> 90556 bytes .../internal/issue_manager/null.doctree | Bin 68181 -> 68181 bytes .../internal/issue_manager/outlier.doctree | Bin 78825 -> 78825 bytes .../issue_manager/regression/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/regression/label.doctree | Bin 108542 -> 108542 bytes .../underperforming_group.doctree | Bin 116536 -> 116536 bytes .../datalab/internal/model_outputs.doctree | Bin 78458 -> 78458 bytes .../cleanlab/datalab/internal/report.doctree | Bin 34190 -> 34190 bytes .../cleanlab/datalab/internal/task.doctree | Bin 57819 -> 57819 bytes .../datalab/optional_dependencies.doctree | Bin 3451 -> 3451 bytes master/.doctrees/cleanlab/dataset.doctree | Bin 100920 -> 100920 bytes .../cleanlab/experimental/cifar_cnn.doctree | Bin 407995 -> 407995 bytes .../cleanlab/experimental/coteaching.doctree | Bin 48525 -> 48525 bytes .../cleanlab/experimental/index.doctree | Bin 5365 -> 5365 bytes .../experimental/label_issues_batched.doctree | Bin 158466 -> 158466 bytes .../experimental/mnist_pytorch.doctree | Bin 555175 -> 555175 bytes .../experimental/span_classification.doctree | Bin 34890 -> 34890 bytes master/.doctrees/cleanlab/filter.doctree | Bin 94218 -> 94218 bytes .../.doctrees/cleanlab/internal/index.doctree | Bin 4532 -> 4532 bytes .../internal/label_quality_utils.doctree | Bin 19410 -> 19410 bytes .../cleanlab/internal/latent_algebra.doctree | Bin 85348 -> 85348 bytes .../internal/multiannotator_utils.doctree | Bin 46750 -> 46750 bytes .../internal/multilabel_scorer.doctree | Bin 183513 -> 183513 bytes .../internal/multilabel_utils.doctree | Bin 34042 -> 34042 bytes .../cleanlab/internal/neighbor/index.doctree | Bin 6725 -> 6725 bytes .../internal/neighbor/knn_graph.doctree | Bin 111899 -> 111899 bytes .../cleanlab/internal/neighbor/metric.doctree | Bin 38404 -> 38404 bytes .../cleanlab/internal/neighbor/search.doctree | Bin 32456 -> 32456 bytes .../cleanlab/internal/outlier.doctree | Bin 29778 -> 29778 bytes .../token_classification_utils.doctree | Bin 69171 -> 69171 bytes .../.doctrees/cleanlab/internal/util.doctree | Bin 212686 -> 212686 bytes .../cleanlab/internal/validation.doctree | Bin 41565 -> 41565 bytes .../.doctrees/cleanlab/models/index.doctree | Bin 4972 -> 4972 bytes .../.doctrees/cleanlab/models/keras.doctree | Bin 106237 -> 106237 bytes .../.doctrees/cleanlab/multiannotator.doctree | Bin 165197 -> 165197 bytes .../multilabel_classification/dataset.doctree | Bin 67275 -> 67275 bytes .../multilabel_classification/filter.doctree | Bin 86794 -> 86794 bytes .../multilabel_classification/index.doctree | Bin 4916 -> 4916 bytes .../multilabel_classification/rank.doctree | Bin 47085 -> 47085 bytes .../cleanlab/object_detection/filter.doctree | Bin 38032 -> 38032 bytes .../cleanlab/object_detection/index.doctree | Bin 3852 -> 3852 bytes .../cleanlab/object_detection/rank.doctree | Bin 149811 -> 149811 bytes .../cleanlab/object_detection/summary.doctree | Bin 166920 -> 166920 bytes master/.doctrees/cleanlab/outlier.doctree | Bin 98688 -> 98688 bytes master/.doctrees/cleanlab/rank.doctree | Bin 113711 -> 113711 bytes .../cleanlab/regression/index.doctree | Bin 3738 -> 3738 bytes .../cleanlab/regression/learn.doctree | Bin 222189 -> 222189 bytes .../cleanlab/regression/rank.doctree | Bin 19815 -> 19815 bytes .../cleanlab/segmentation/filter.doctree | Bin 28604 -> 28604 bytes .../cleanlab/segmentation/index.doctree | Bin 3788 -> 3788 bytes .../cleanlab/segmentation/rank.doctree | Bin 51266 -> 51266 bytes .../cleanlab/segmentation/summary.doctree | Bin 69021 -> 69021 bytes .../token_classification/filter.doctree | Bin 27210 -> 27210 bytes .../token_classification/index.doctree | Bin 3934 -> 3934 bytes .../token_classification/rank.doctree | Bin 60167 -> 60167 bytes .../token_classification/summary.doctree | Bin 79564 -> 79564 bytes master/.doctrees/environment.pickle | Bin 16801390 -> 16794427 bytes master/.doctrees/index.doctree | Bin 43029 -> 43029 bytes master/.doctrees/migrating/migrate_v2.doctree | Bin 28116 -> 28116 bytes .../tutorials/clean_learning/tabular.ipynb | 130 +- .../tutorials/clean_learning/text.ipynb | 1732 ++++----- .../nbsphinx/tutorials/datalab/audio.ipynb | 1422 +++---- .../tutorials/datalab/datalab_advanced.ipynb | 306 +- .../datalab/datalab_quickstart.ipynb | 138 +- .../nbsphinx/tutorials/datalab/image.ipynb | 3381 +++++++++-------- .../nbsphinx/tutorials/datalab/tabular.ipynb | 138 +- .../nbsphinx/tutorials/datalab/text.ipynb | 172 +- .../tutorials/datalab/workflows.ipynb | 1485 ++++---- .../nbsphinx/tutorials/dataset_health.ipynb | 34 +- master/.doctrees/nbsphinx/tutorials/faq.ipynb | 576 +-- .../tutorials/improving_ml_performance.ipynb | 306 +- .../nbsphinx/tutorials/indepth_overview.ipynb | 210 +- .../nbsphinx/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- .../nbsphinx/tutorials/object_detection.ipynb | 186 +- .../nbsphinx/tutorials/outliers.ipynb | 430 ++- .../nbsphinx/tutorials/regression.ipynb | 202 +- .../nbsphinx/tutorials/segmentation.ipynb | 1010 ++--- .../tutorials/token_classification.ipynb | 155 +- .../tutorials_datalab_workflows_86_0.png | Bin 0 -> 15325 bytes .../tutorials_datalab_workflows_91_0.png | Bin 0 -> 16007 bytes .../tutorials/clean_learning/index.doctree | Bin 3019 -> 3019 bytes .../tutorials/clean_learning/tabular.doctree | Bin 64488 -> 64488 bytes .../tutorials/clean_learning/text.doctree | Bin 233886 -> 233886 bytes .../.doctrees/tutorials/datalab/audio.doctree | Bin 333645 -> 333645 bytes .../datalab/datalab_advanced.doctree | Bin 203507 -> 203507 bytes .../datalab/datalab_quickstart.doctree | Bin 145956 -> 145956 bytes .../.doctrees/tutorials/datalab/image.doctree | Bin 454494 -> 454840 bytes .../.doctrees/tutorials/datalab/index.doctree | Bin 3367 -> 3367 bytes .../tutorials/datalab/tabular.doctree | Bin 121626 -> 121626 bytes .../.doctrees/tutorials/datalab/text.doctree | Bin 150907 -> 150907 bytes .../tutorials/datalab/workflows.doctree | Bin 425652 -> 406935 bytes .../tutorials/dataset_health.doctree | Bin 329657 -> 329657 bytes master/.doctrees/tutorials/faq.doctree | Bin 199353 -> 199351 bytes .../improving_ml_performance.doctree | Bin 372312 -> 372312 bytes .../tutorials/indepth_overview.doctree | Bin 224033 -> 224033 bytes master/.doctrees/tutorials/index.doctree | Bin 3181 -> 3181 bytes .../tutorials/multiannotator.doctree | Bin 137334 -> 137334 bytes .../multilabel_classification.doctree | Bin 68223 -> 68223 bytes .../tutorials/object_detection.doctree | Bin 140181 -> 140181 bytes master/.doctrees/tutorials/outliers.doctree | Bin 107891 -> 107891 bytes .../tutorials/pred_probs_cross_val.doctree | Bin 20514 -> 20514 bytes master/.doctrees/tutorials/regression.doctree | Bin 110660 -> 110660 bytes .../.doctrees/tutorials/segmentation.doctree | Bin 1994473 -> 1994473 bytes .../tutorials/token_classification.doctree | Bin 176661 -> 176691 bytes .../tutorials_datalab_workflows_86_0.png | Bin 0 -> 15325 bytes master/_modules/cleanlab/datalab/datalab.html | 58 +- .../datalab/guide/issue_type_description.rst | 88 +- .../tutorials/clean_learning/tabular.ipynb | 2 +- .../tutorials/clean_learning/text.ipynb | 2 +- master/_sources/tutorials/datalab/audio.ipynb | 2 +- .../tutorials/datalab/datalab_advanced.ipynb | 2 +- .../datalab/datalab_quickstart.ipynb | 2 +- .../_sources/tutorials/datalab/tabular.ipynb | 2 +- master/_sources/tutorials/datalab/text.ipynb | 2 +- .../tutorials/datalab/workflows.ipynb | 93 +- .../_sources/tutorials/dataset_health.ipynb | 2 +- .../tutorials/improving_ml_performance.ipynb | 2 +- .../_sources/tutorials/indepth_overview.ipynb | 2 +- .../_sources/tutorials/multiannotator.ipynb | 2 +- .../tutorials/multilabel_classification.ipynb | 2 +- .../_sources/tutorials/object_detection.ipynb | 2 +- master/_sources/tutorials/outliers.ipynb | 2 +- master/_sources/tutorials/regression.ipynb | 2 +- master/_sources/tutorials/segmentation.ipynb | 2 +- .../tutorials/token_classification.ipynb | 2 +- master/cleanlab/datalab/guide/index.html | 1 + .../datalab/guide/issue_type_description.html | 59 + master/objects.inv | Bin 38694 -> 38756 bytes master/searchindex.js | 2 +- master/tutorials/clean_learning/tabular.ipynb | 130 +- master/tutorials/clean_learning/text.html | 18 +- master/tutorials/clean_learning/text.ipynb | 1732 ++++----- master/tutorials/datalab/audio.html | 2 +- master/tutorials/datalab/audio.ipynb | 1422 +++---- .../tutorials/datalab/datalab_advanced.html | 4 +- .../tutorials/datalab/datalab_advanced.ipynb | 306 +- .../datalab/datalab_quickstart.ipynb | 138 +- master/tutorials/datalab/image.html | 53 +- master/tutorials/datalab/image.ipynb | 3381 +++++++++-------- master/tutorials/datalab/tabular.ipynb | 138 +- master/tutorials/datalab/text.html | 2 +- master/tutorials/datalab/text.ipynb | 172 +- master/tutorials/datalab/workflows.html | 712 ++-- master/tutorials/datalab/workflows.ipynb | 1485 ++++---- master/tutorials/dataset_health.ipynb | 34 +- master/tutorials/faq.html | 6 +- master/tutorials/faq.ipynb | 576 +-- .../tutorials/improving_ml_performance.ipynb | 306 +- master/tutorials/indepth_overview.ipynb | 210 +- master/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- master/tutorials/object_detection.ipynb | 186 +- master/tutorials/outliers.html | 6 +- master/tutorials/outliers.ipynb | 430 ++- master/tutorials/regression.ipynb | 202 +- master/tutorials/segmentation.html | 10 +- master/tutorials/segmentation.ipynb | 1010 ++--- master/tutorials/token_classification.html | 20 +- master/tutorials/token_classification.ipynb | 155 +- versioning.js | 2 +- 189 files changed, 12951 insertions(+), 12735 deletions(-) create mode 100644 master/.doctrees/nbsphinx/tutorials_datalab_workflows_86_0.png create mode 100644 master/.doctrees/nbsphinx/tutorials_datalab_workflows_91_0.png create mode 100644 master/_images/tutorials_datalab_workflows_86_0.png diff --git a/master/.buildinfo b/master/.buildinfo index 0893de913..3a189b6a7 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: ce5d9fe96839fc9c29788e3750b71c98 +config: 0409c4d0a00494f33d51f863870c3cb0 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index e9f16b267fa2a6648d9ce2060563b0262960f058..7c752d89b851b8df32a4af22ea4750c35524436e 100644 GIT binary patch delta 117 zcmdlWxj}M6IHO^KxnX>kWwxb$T8e2>vZ1+=g-KFUvWY>Wxml`-p`oR*iJ`Gcl5w&@ YqNz!uv6)%w<_^XHPBOG{axZ5D0LE7!wEzGB delta 117 zcmdlWxj}M6IHO@^a#l)Gibb)0nx&bkiG`tYlBH>)k*R5-iIH)dftiK5fr){IrKOp% YsdOjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= O*jrin(Trims-#%Ts-7Ul*f1{Ri< zX2z!GDQ1Z#Nv4}8FtU=NZL*_z+-4PKKNiw$1ZkbFYs1JtS%9OEEbZ-^EjjOjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= Oqve}H#VT}7JYph74VA}MMa|j!EMy0qcWBliuIT(;$bI*WoWV zNEy(h{q5MIx9fo$2~+Y^tyqy&t*%1$#S=pgT^}2vqi3WO;yh@uaWKn(Qb8kAP?b7GI-j`6VX|WV&SR-?nKKK?8|1iVRBGm zk6`kMh0VfbZe`D5a;=SdVRBwRy9AI)G|5XC`n!mY0nqjFLF#Vy4JJ>Nuq!Zms+1ju z$&bs}3z$4x!P>w%&`eVf_Pqcb^vzVII0(3iE;~W~Y^lwTiJRgd zmeZ-)EBS%Tk4#4M-TYX9D8QJz1dD?&4M|H}MfUWgAV{*eICAFXp7;MIw?9nUC9ws-)sV-iW*z zVN#25>^J|zx3yCGz15{6< jfXS2!*F@oF8Y+^{Dp+=v#K&PnRq|rvE1txk0NwTvO=`d- delta 4230 zcmbuD-%C?r7{__fd*<)cCbOmDMG7LCxJ`HF#+Fza1(G(c^}`u%PBZ%@Y8Tc`sZo$% zG~*N$1rpr^YKM685AaT^t4Na^R0xGa^vuA&Ni|K%RzNx1d4 z?ezF?&&kA#5)Jewag{ce&pPzk&wZ(wwp*Y7dS61drln$_VU5h)`pl2xFn4l!0oIoM z%7Qb$Th(E1!Jl)mcK6x{vQ3P2CO>22$oAL}U+3&Dnwp-bFcVDPpT?pv*`LX7!{m^{ z9>L^M3!8(<+{&KA0)*m zCOvtfQJS&aYt(%_Np!A5cAs j0;ZBGToZ+xX}CZ>t6 diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index 5ed75c301e5cb56586c150106733a62255e5891d..989fdfff68be61f410e84a3c4c50c8cced4ecd0c 100644 GIT binary patch delta 3571 zcmX@QLh$Gc!3~~_h6Uz^@mZGHmilQarb)?$=0+AKNlD2j28rfosV0Vomc}NA#wJO| z$p(q0CW*#oW~rO274c{!F*1<%ktqPjlEM#iktQ$M42)VYd zv0g!L2;Xt|!c2PPY-V)*Lat+LJ$94p*aN<8WH=U_e$NHYA=lPVVdu%U)iZhvxmsJ} zzmS`f7?T>vjU3KYTXMCYOHU!!ue-8ekrz4kn?(w>cu7ycz$9V6d0pMSAhNXTPxe!n zoE{s+D7yL9#oL_Zo3UB%j+H&>+NTFTX0(`YAjQbO{f0E-EixQ{WP*|!;}K)h-2ebn8myXJ%@`$MV)j5 KwgbCfElL2q&*jrin(Trims-#%Ts-7Ul*f1{Ri< zX2z!GDQ1Z#Nv4~t74c{!F*1<%ktqPjlEM#iktQ$M42)VYd zv0g!L2;Xt|!c2PPY-V)*Lat+LJ$94p*aN<8WH=U_e$NHYA=lPVVdu%U)iZhvxmsJ} zzmS`f7?T>vjU3KYTXMCYOHU!!ue-8ekrz4kn?(w>cu7ycz$9V6d0pMSAhNXTPxe!n zoE{s+D7yL9#oL_Zo3UB%j+H&>+NTFTX0(`YAjQbO{f0E-EixQ{WP*|!;}K)h-2ebn8myXJ%@`$MV)j5 KwgbCfElL0n1o5l@ diff --git a/master/.doctrees/cleanlab/data_valuation.doctree b/master/.doctrees/cleanlab/data_valuation.doctree index 6f3a962b680dc5f88f0bd8650d94d7603df60cdc..02b484d69de2806fc29a8d28a686666dc4a95d88 100644 GIT binary patch delta 477 zcmca~p7GLo#tqSoh6Uz^@mZGHmilQarb)?$=0+AKNlD2j28rfosV0Vomc}NA#wJO| z$p(q0CW*#oW~q~V7;liFt5MKl^HruDOyp^u{ExMPES-Uy*j-u3(>aM*jrin(Trims-#%Ts-7Ul*f1{Ri< zX2z!GDQ1Z#Nv4x~7;liFt5MKl^HruDOyp^u{ExMPES-Uy*j-u3(>aM`X11)S~HS zfY_2QTR86N_0-3@8|8@2b=>Wc<%pv}ayg?8o6Tc)*z6A39%+yo9g^MYjIvwg2Y@M3 zS2J5QoG#nAQAd?UgGEW3k^rrxI+wQ`QV-IvmXcW})`9Gkj^6KyQmAQ}-RXUZS|9iIqSmRT8@0x- z1yJj`K|g9eIy3}WnU?yC8s%XxU{v&VaNfRW0M>!zyII@FGIBGK{8jdD>?e{{M^BC4 zK(gv+`$P=2woj%|>y>m4wa%$eQ0wX=1B#Aj`cQN{+k$3IOut913p2=%vZAj9n|+H~ z&AG2AI`HB$aOfDx52MDKS0NNFdwm9IR!ld@zPt%y>kwqw`GaQYUh=V~LKw69l%_%@ zJM?)0dAyLkk0mq-H7B$xcB%Ng9L&5_`e?#XWvOIg)|C>+aJBV0G4s(Z32eg(a8V#+ z1=%`{Tm&bs3bum(`9|{K*VYRdRm*n~|HLv0ZK4e$7ggq~!5N%gBNsq9-}{Rcc3@t0 z|6y9eW0X!Ik63Y9)(ebnrFU!b4)*ZO0a^xrK`tVE+J(!FYMqys^W;fdzlj+bxv0{= z6KccHEg@RKZg#&a*nPaegH~fl*FX8JhSx@E8Vmm)Z;sQoij7C-(g2+R9-pe<+WGaH hG-uhkRP{~@_~`>02lkB%co5mO^*{34xqFs|=|4Cy+718! delta 4228 zcmbuC-%FEG7{@th&D@r@?1y;~Swg>VobK1V2uUfVHc@LMgGArAxpd+fO_P=M14%+M z#Fz0xFkFU7tRi-Z6NKFq)yT}ZT}kVz8@-Y4i|D-h7x?uL_&lHI`@GLNJJSkQtzdoG zLhAZ1N5e{3O4LSt9=A)Xb1FW!T<>}tvy2WUOn$yA$l3xq1nVVBGRDtEWCmEFh6AoLtd)qFr2mb*LI z>XBwIWSs>lFjZwNA$+)Ed3o zf?CfG1yJkJ;bFka^yFXEsEjlMM%7pc&#k*AU>!&<%-Tkmk(-I+`q;bipGZ~%Jvnh5 z$!eg%$p~rBbW|1Fd)mRBO_ZGF< zvR_ej@WmzI&@qx5L5-EKLMU4D`ZUn2m~K1!@}?bIhjx~kKWKyQB|mG(cVSk)+K?|} zhdwVLj~9~jvzRWU=9pg2E*5^5f|-|!AFUXwE*0&pW~In6Tx)$!Y76RPgFQTbfR=z?kc$YPcHwffR^3QTdHe*e-NX#cTvSQy zgxUyjdx++-n?0Zjb{|i4&Vqs{UWNDgcWNMmdVq~0VU}j-%U}9ilX=!F` RYMx@2Xp&^Qxtyh&2LLeT5hwrv diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index d47ee60d8bcf9b0adc9671e3f00c13b97623f955..6f099bab729a880a82f46b8dc5987a5a96de58bb 100644 GIT binary patch delta 64 zcmccfmGRD3#ti|Ch6Uz^@mZGHmilQarb)?$=0+AKNlD2j28rfosV0Vomc}NA#wJO| T$p(q0CW*#oW~rMS8KWx!%AyoH delta 64 zcmccfmGRD3#ti|ChMCD(DM=|7#rkQMW~L?*jrin(Trims-#%Ts-7Ul*f1{Ri< TX2z!GDQ1Z#Nv4|{8KWx!#$6N7 diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index 547b69116a34da5483c2118752a9efc76adb61b4..48cde02f4e6c93bc879e12d8aa5f17311610e537 100644 GIT binary patch delta 62 zcmZ2yxXy4xHltyIxnX>kWwxb$T8e2>vZ1+=g-KFUvWY>Wxml`-p`oR*iJ`Gcl5w&@ RqNz!uv6)%w<~fW);s97<5#Im+ delta 62 zcmZ2yxXy4xHltx?a#l)Gibb)0nx&bkiG`tYlBH>)k*R5-iIH)dftiK5fr){IrKOp% Rsd@q{G^1gGxnX>kWwxb$T8e2>vZ1+=g-KFUvWY>Wxml`-p`oR*iJ`Gcl5w&@ RqNz!uv6)%w<{rk?x&UuI650R& delta 62 zcmdlUw>@q{G^1f=a#l)Gibb)0nx&bkiG`tYlBH>)k*R5-iIH)dftiK5fr){IrKOp% Rsd>}FNhbRqKq^Z>L=+WFCNq=F48u&AMT`^%>QbVt zoxr7v0u~h!6|^#?QUqK86@^-?Xj?(8v|xS<+_dc^F(7OHlz8_vb+?jcvd(J)Q z-2d6`4STor+q^1%yGbc*D=lcWmd`04-C`_mHWZW=mK8NO8;bJvr6s1Kf`W2gQGu?g zS!c-C7Z>SuB_*cOzS;3ZZvLI(|DB@f&x4`I6X~$6!#iero5yK!cwE}C4yV&()4MGW zyGz?_a?dxJ>{`oQeXA+g)n+nSS}X=_o72%|a=I-hmsW2#YHj*vlg-s>*39lS4_x+r zSoQ0|i^tp!*LlBGdh{5hcbSY@hh6J7o3s^9Q%gmY5GGs(qs3+LxM-e9@3dJ=PHokM zNP#D~Tpp9FrYT1|PVd&Eyjp|auGQOI4z11Mn4@iRIJK^T1q`YMyxmO@zA9->LP_nl z7Ac|;`MXT+yx1$vCYMR8cbc>wyT$G{*^MY)(6VMrTbOmp;-(w)cDJ_0q<4FqXjf$C z6^cp|(?YG58*nS+ayi=hW{bhBZJ4Z`>oB7AwR83DsJ_c$!;c%=Yz~WCYs4+Jw`$!^ zy#+;R)y}uL%?^)SYeO@M2gJ48(s{8{?FN(9X!0VLc9Stj>+;}A>N4{k9-C2XKyX-G zsFWL*YtdV5TDL>nYO1cK(bw!Ji~uO$`#7X~4VODjn9K|&mrF!Slfi7a%)?Zn)wi`_Ccy~r5J6sqF=-zR z=1zyvgCWw@jv;U^rb>g>XlZG|7>9uqNexbi%N4L{H*;i!%<l&@6^uMx4ZIUCFFzfST_Bli+BYn(Y3z&DgnQ`IP-78d&osp2+IMb zVF@zju$V1q_u0{S>EsGkTPZiZPYaM1xm}yhF!o=7qC+o{>e(3uIRhljw%jbwH8G> z@H5Ebv(~~;-$s53zke-E@=Y!JNqGG*z9CZ35#QeIA(x+4u;wJj{yv)^WqchLAeZW~ zmXqL7H?3WZ2*U(mX|*H#^s>OjU>`_uCZiq0qt=DLO@tV}V=zj2#G@qh*{>_{-f%V; zEy-8aN*bdevVzTv9ZN+dr4*;>28(IF2*9!+mE8x{$iW7LD%CDhtM#`xSb(<( z4-hN5+9(|%!o^w_QwH_6Ip(VYdf?3OXP)@~48wVQ|{&ZU69<{f2Els z6g5~{K6y6Odqqz;-(s_28-Nf%K$x+xuu*Y=0Bdd!MK%m$m|QRgJDlzut)&Gi+hw#TO3Wi;INW?*#ykD81B)CdIOayXhCX|v@VCN9jP}e z`8IsB8X*Io#>j|~t5>fk3ohZSA3GrJaHt&VNe{!~+{?7v6X1mc(cm0M+GnA5h?wLt zkFu`7aAHn3=a@4Z9-xT&bReQu3(*t1i_SMaq6|PGC?shF&5nG&Z!`?#Bj1KtFRng3 zJ7AQ?K~JFKgzly zvqukpGKURRwhDxEtyO7-o`s@_);vm@N~x2gX0AsQ@O^tADIpjIwdy}!vlj-XHQPK+ zXM3Xzo`F}|{Ji4g@>ssLbE6Q42*@@LGNrEMbDit;Oco1gCLPL*DEUsxcxC4iU?PT&`ZK`~(IP~U`A zaLdKo5JJ2u*pP+V?|_dYl4K)|ou9>qz`_$2>S~&(;%Twijg6x2b`2lVl&9s}JxV4& z^|~^kSv2;6LxS7@w;Tb)xzxsmAvB2o;5_OFgSZX9bdcz!IC~@Sdr}!Fbe!_z>d2?P zk0s)sLVnZ(842C=q>{Dw!O&hM@WYcJ4W5^g_Bk18|A>*cN~zIxC-3Z1w;m$Y>_K)S zj4uy2qUd$8A(3ro&^SMW5kuhJBO|+zVsjy1wFPZ@#bL-v3BoTlVBti>iD@-WdfEW=XO8^RO$G<$*>^0;bmesOvf{Cf;2%&$M_oY6d9g- z1+Kb?b!Pn$rVqcMVY4f=3l=UMp(>2*XX^O01u$jpe(0$=O6#3PBqn9^l~bTsbVCQ_ zXWZE9kHNr1HLQdpQWVes6b5ncLFnhD7-BMK(#2912CFfF)pG-$N?lN{dL5f96KWv8 z2C#`aHx~~@az$0;>I^LuF@t?IV@D*ZuQk)!d~%%E1?4(Qs2C( zzFDyfnqZHPpIrr+uvfU;g_>$w04re6YX-W6Fq|0wm24@85)PSJmgh6|+j>@oJg7a=7&E$23N*wIc ziMs?oz7v;7FOrgG7D-8m7m=jONWSA`?4*YkiAu1jh%cF<%#3b$i=@P%q*gqc6C;OMwPH<4%QxFLS`0;T2U}gEs~cVyL5iM?8pIFqzbiE z3U#|&;5NBHXF#a8h2>SDkc46ckGq*=!L}lvcQex}k4VC;lJK`evKrpD6VfyR;?DI@ zPwU0cz*Km4J#66HUxp0d*{nXiX}O}|`|gHS^uE_^Y$N~Z9=Ig&uSKYmd6d~|Zl9z| zkh1}X;UuAvV0=?hBOYSqvCHVd(crknr@WsdR zG$gH91gpWtv@6OmzUmE_sX0Xi@x{Dw3ycQ*6zY4oz@U_xVuZOoa!?FmHm{RxsstOD zSS*qccRdJ+L1xPygxx`AEnA@-nv40#tq5f!PEW;#V$wqh%qGdgUd-=%2o?vabGE^Z zAoYfAD9UYNqJ(e%QYp$UlFu(yQG5@FiL&is>`VfBEuId8U~4fy|1b=MZIXD4B;F~A ztNCk>z<_?LQB=^);>xdKR-Z5v1o=G*$#A%suh@b4C-DUC`1Y(EctLVJu8K3~F&Gfk z&9@!)hr}WBbCMiBlH#0^#9v>C__oL3!vL|baj_nfN_-3Z4~Ib|G9&co_3uNbFTXAo zvP#sf5ZK?GClCPvxdpt-O9Z^3vV>rvl!k~eMSfUN2#61lv_)^aJ&-+zNqYf{9N7t3 zFuTNex?Ky6lJRvR#umxgcjTr){EQ!>0%q}l>4(t@iYKryRt%u~rd{v}+*%?#&6TJX zb(*Us=j9>JcOhr&HlrI(6P|It<1H{NxAKJ3P^=NpkfAtwGwz0i;4h(O-WlESf%F#< ztmVnq^Ci-gK2+ZzQIg-i2a*}QCaB~QKy<^$>V$sBl%Md?`=JERmiQi=u7eM8+6hIc zd_dw|5`VfRB3+#KYo3P76^JU8z7}5&DbTN!uYLx>kWeaIv`?uBoT)hFS(vWrL3tJD z-|;M*C%S#}lv2=@@-OBoDNrm)3M5Hwsoc8bP9-V2AwVc9jHps!UGeO62~Ri(_O7Yy zyyz16BL_hT=2G9`8TnvE$xs<+DHY9ff}u1*o1WlbatLl@32Rb%V55xxn1oPnf(bBnhc9+DpgGMiG0e4 z1=dRMz(=K2>Rg4t0~Jmjpdwh?%t`1{0rUj^`Z2I8$EEqqui}+^T3N7QNJuV=uvr55 z|M)6gtH8)IX{7#Sq~tOQ!bPv)z1`2^SUhh_WPQ1Is*(X?%0wpT1+nZ|PMJHtA&F?p zkg+J`llh6y@zQl(97_!&YmsDNE)%FSmI+ij%lPUy;A)M^fuDH;YH7g|`9zh&zv$2K zrUENe5eJ1t9N>TCuV7SQz4|I8^r}B^J^`=LL2@EX=WXkiH26)KblII!hR37~dr?{8 zuIWU)wM@7xY%LQA70*zNz)ATn@MjcRxT`jNEpbqNMwQ|x@{RxGJFrTDuLVKCQ-`Tk zXWqr4B&pn2^LaK5Dwj^$pU)e{GWpr#N_0YedBi^Dga7$ckfZSRskj?dhjZbqMMz4{ zT2d|oCw9rhSOwITOJ^;l#YUF%k?+B~f>M;>;%R)j=+}AEX(;asihK}$OcQf zZ~M+nn4`+r8YZJLQpOVSx4#dMD6ptpVyTRlHyXgaXOo3J96g@NerVZEuU}>BNQ?b?uMTscUx92-EBYWj%AZ@w-?K$yS;?e z)TTTynY~sn-3_M-cf(KNZph;Ck1;2HTrS;h8Hykqia0jXG9(C- zW%6e~#lj-JBIIu=6%qS52K?hbgRKgTs*pAsM>a~S@Q?Z&HYW%?yx&)lEoWx#Rx+WrLKLlFsSpq_@g-GECSF&CC|u(Ml&XW?&hPmgZsy;7 z4T)iF?oin*muxyhZ1{!QOydP#z!m(FZy=T@jz*Ui@}Vl9e1oBtzpb!$;PDDshQ0;t z06ba2kETIBe}gd(y{Slr;k>#hi{-cUWWP^*0WB3?h2jiRoU1(iw?(li1^%Kk`F$_e z8DvsBTj|A@XxLYY|Lo30K;`iY;m(&yYs=^s^8#L`N5`-~Kvbp7>HR8YfJms6sjpI| zzDhMfOeAWYOZgmW1V`~Kr9uXXm*dzrD6LcjL__#uB0x;6l$$M$~SUz8gBorc6 zOQn`erS8Hhn9ut)(n_}?7ZJP7YhP1R`QH$zzgG~MTb+BGCHJJ1)_ry ziNqPkh$_DNVP&FHB{o}EC1V3l6tMw6MQlI@uV%7WVQQ6(4X03mKx{yv>6n2}%3?q5 zYMEx>HCdQ|_GYoMFa~&3HhT*eR|Nw^{KBe;9klyL3}Htx*;VnZPq6zNJQOXt7Dc41 zkHsTFLvL;z${OfXG)SV%-C8Be+-+3?xLc$yJF7$i7AkSu$izt3_YyWJKrf2-m#ReZ zegp}qEO}AVzb2Y-j;_>&&t^(rI|=` zc++Mj8XBu*tijI><*ZS0hu+0DR;$i2fln=C6T*8hoG!ND(F%4oEUo6zm28x9yHsiM zpf z-`>Ek)NCidNG$Zw)(AX^XK6LUc&Z*Y(&Ni&j(QB{o2RfT30=JGPBmU-O=S}h2)J%R zd}B?7T95m;O=ZV=LR*+xPl&x!=b>8HR`XL=visrZHGJg^mXq8;uhe6TIbj{?9Rba9 z;1@zESW_c=qjguYM9ovg_LdsH<0^J1+#9rCsnY9ux zkD1td7+%XSZ@~aKvX*CE%O=9GS`j#kkRJiQrIlTwIYtbTO6ZeWD}W-NrPhW6Wi{#Z zMGfiG(p8lMsw&6KYy#+OLlOJ>+6bT=_cvM4Q@|0X&l|LSV4l<`!NyL*5>=m@RehT0 zvd4NaBYqM!V|l%UjpKWM$zoxJs^0BVy>+U3r4BY*^EUBECPKZNrF!C-H$uG)q~7(l za=UbG-M8zws^b%FOb^e7>9{{q$9MfR=dm|p;FT~P|4uRl<_R7BzgobG8Jtp;dw&so zwfDJ@ax=KHgk2?-`$$#pj8yJxRk_a=Gl%A1#2A?fo5+0oECk^8dh1R6%yNe2^0qhAn5Br3TDnts!8yA>lUzQIG$ zKPAqni>yTPxsWBfPT)vzd%KqMe_u7={Dus@zm~WCg8jTJj@}K#nx(837S)Atv;db0 zi=$ujdzZ3HVOd?sExsYS1Jfjo8amivxTj9K#YWW*i*IM0y&oiY5=MAdYhqencL&Ra zhw7x4JRt4z1hOYD8NQ57(L|Bh$V6zjQEDfit*;CBl6^F7L7jwA(sDMTtBPN%DlT8n zro&qy6%*c!R56PDR4GS$ynkZm?)LJdKLQ!pk64+V_yk$yxUi^-$9>xZu=#h z1^w!!UUBtezmw}puT7dn;?}cXs3b^5%PXGts1H}_Wx1?WYIP@@-L(>n=1uov*_pnE z)x-Gu;I<`N4d`V3O|PR3lr|M3W`PW+-fec7XI zbAX=T_z-J`-eZJmx{HvxgXvPz#zfkP77!iIb9~cQcA$6YBKR3;wHz|hl zSy$#oV@N-5;$>a<7LD=O?PSj@fD=Si8Twn+2G>e*e&Dz4r{c{n#uKgGNHKzB@l|sn zMw6$m{@yP3j*_?%XS(Qub`gFNV$q$;+^$|XlJV>DJKhIb|3*U- z9*J6K)6kb*#L+MaTWsq98uWO6W4)e+e)O|94Nh9oLBlcn`3D+4qv7KUFOIvh2ej^@ z!Af&lY1l}T-c7^5u(Gs%Lc=Vq8LZdP@EHvs({LT866;JFo}ytl4L4$dv3h7|q+u2f zf2QF$4RyHd)@mBI<4|RNn7(ovI%!x(Yp$WeO~X7KJj-J2`ne`|dz;Bc|JTq;w(LMV z@;T43$&fXc?|P1{5SHu^R_qWK>=4%L5SCjitkxkc)*-CbAuQD)tkfYa)FG_1R9I%I zFiM9oNQW>+hcHBkFhYkgK!;GiLnz*1y|D(B>kt|*720+PO*@2^9YVpSLb(p1*iw%< zi&P;*n0pf(K0Lr4P`m;OJMh0qN+i&qo=GIoAK6GG(BZN~!kYvKfdslkkVv5OcZmc# zRhCGgb4!T?Ivtcqpu+-*gcl_e@aG2t4gv{uh9QwaCj=4+RIf`Ulo1>R5~!b$NT4EE zB7tf~i3F;)Boe45kw~~Ih=c|7O(5Y-`bI$TVvxqK0tqYVn?M3ZJnNe@9H&7cV0=m6 zhS0Zk8m7`Pfd)d1bq)@mWqn#44mbW0nyC^0qqKxh!q^@?W_MaUH9dOht^MVX@iFux ziGIX(T9f+HuR&w|@B;qLGn^R1Q(k1hNm%1V68b0aFD8uTM~||67(doGFFk_~JB;ym z+*p47VU`S+j`f{uPUW44@kq_2&TE$Qu6v0MhQ_gYVax`^H7r&rpp3(X`57k+WLA}O z`5)LqSgcYm6qF40=Z&whB$YZPoybHSl37dr%kx}@=}Tq9j=PlIK+g8%TsCV1V2~L4pA~Np~lm8xJ%Oyzi&eLjZeI#{BJ2$d=>oajX3z5m&WXX!Bp}T4EJBy0e2#$R6;oAS3xf- zsf1|%!g`pm)IqXWfzw8+G{*C)oh~d^ooV#j;8n-u#bml;54hlhojUD<1oZ=rcpTz< zyT&EL6}#``xCFRr_l?+n7hJacE=+JkyHt8?sJf?J(JE2*gPkg~R5weC5{IdHNKEzF zH^iwPbm&>Q$yYnKr;4Z4YDnfT!C zvXkJjX^uuash*Gw=j~MCS8;TBFJ!^+RBbBUol2?QRjk-b*9by=XU9dU2~Eq=A6LM` zRQC?V*j9_J%r3TSu`4PYDpILnJKJ{fS?H@u=fd=<}ce1od8~Kwh6YSivQG(CX3Y8rWIgsz>jNmSS;IEe85?V_YInx0LN2( zWpfkN$!76}X7O{WbRkFO(KG%b>0LdlR^+jo6(g9)@JPeK|za^M|1xoN1I= z#jJf+aguHR2kdVPx24fzpK)-C(j@vYEKQO|4W{}xAxn*=;*F3`_9E4-T~Up!$?Ut1 zLVppH7*g2h&^3An8&+zYP%Rm8Ur=h*rO=UM5T|@v0o0^X+HqLWB)#=GjBb)nIl+c(4KieAkRjWQA%0`XI|fza z$skMICn2Uu*MgC(t073&j38adjjp3c*BQ~3NAHe?E=_hV_yVSjt_xp)Gqz27lW%ZF z|6rpaUAy|KQ4~gxy~D2l>8l_`iKk$9KvAcgS}LOFwm^*U-rZTyBV7ty*_#z~w)|^V z>G8zL(`V9%U!g1Q`~>#U<x|NmEL%20SK9{3 zUuLh#!%`O0HS^7L(23sb4;|@3BkY5-=~VTRn%S=CC0$=u&rS5GDe!B$E*;z7tT*-j z;Re6D2;C7v9U|3_I<8j(+ZAoH7&`q^-9+0jaf`mu;d^;xI`m|=6Dl2&95iFL>J=XE z;LM0E#nQOal+yU3E&l3%!*B(e4pUj-Zit3k9dzwqsyp27(7n8XKmL-X98^=oxpM3i z)wx~KTe2Ptb^95vig5i5l>w6-G~zPLmm0ZA4!sA=beQI2{{^CK0lAvRste0$_v&Zy zto}G}HLv~xzo)!cpp)7{sWTygvadiota4EK6|ln^3(d0zO~mq+Xm%=p$6sMCwljM} zEra65W2+NmmpiEPB^C9?H~5u;-4@()fPLWu2Sp>MQ0yV@rL{>Z@V+tph-G+a2&RaH zwwXU8dSWK*bWqVCXoUYVnwI}v-3M14v}-W*QEh0zm)rphI;bSLVsv$IN>(or_6s*- ztb9fkaRRZLZEwLCYOvvA=;fpl55pLK=o@iE4_Y!5LPMJo4yE$;coQYH$2{#I*s0{n zG;-~LM7r7@lhrU;IF2fF;f8Q$i#YFBeoqG+r+CNHEbEp+H`|BemmyA4VR%H9(Spw) z8|FBD-*1W+rb3wI)HVJX)qmd9j}M4UnUlJA#FT){vrfH-uQF0(q&755g%?>;R%=Kh z#hW;d{Rel1GN;Y~%`n92SK)Y3srn!z4_QX?AkxKudn8U$RPZIllSc55=9iu6r_Oj7 z8l0vwzjo@%RA-D)Um2r*Fh;GD%KSuRnO#?AgE2!tV~=p1MNwT8{uw&Ctm6DEcqu7P zo>^+nvbVJ%$E>#^=zpdg{z-vdO9l$`gvFo>^yO&m33s{ZU^MnngN&Mk{Zv;N=+adh zaht0}^v){(#2EHBOmGF2=@gePQ}sttPzd+Cbh*uP1=s0$S(c^h;_x&}YhUYUw=tX4 z+rQ({9X_OGvYa)Q_lE@R0jpiU+BXx_+8`rWT1HY!BfnSvPKmflsaJ#ia#7YNmo7bj zcn^F{!P_p0P&|EcBSyoAF1mUn#;5}Z!+wL|Qx{#BqVnnZP0Ygly7Kr_SKcm{sk}?Z z7rOGUxlH9Ls=31R=z{n9!mmbEXoe{~=GKMBpSti^OJQ%^4L4_)n%m`SsySeLtCO)X zqLo{|SM*&n4pIA!d&c#_Ts2%4Ori3JRNIK6j21z=qWqur!Hr7&!SGa0h4!|q;*X*X ze|-wRpx}WFGX_1Fp$llPv7TFynoU)RS?Y1RaM>z73jZ0d6NwG|IV}8{Dr4!&3_X^r z)y<+SjObsDXn7V-cLC83sko*|bf+a+*DSi-h`#?nh@MTuNi3=ps10Zkl)4H!``4!9 z$Ey9Z2_Lu7e^lP3!X2T zLl54T3V&xewpA*eYC2*Z6`aQ|G$;$JS&?59smR34-^lB9Ic;nO%T|4kS&)NY)2Cq= zPvxssEZmx@djvVI$9G8ggb?A*%+x(W7{iw}LNA+sT9jeB!uWjr8+bCUu3!sRue-v0 zW2x>6q1IcyZ4V!SGXS2}l7X&py~U7!JC20sGkt3xNKqS%0^JX4GR>~NmO%#X+Fhyd z9asljGK0Fo?o87S_K0{P)Me^!@DXEa-nF~Sax9f}CqB&5I+*&|T4s}OaQ;p#YMsYj zfr{7j$*1%#-Uffn^sShdtbPu%@sefZ#g;b4`cn#VIzpJ+Y{K!f_Qg!y3Fz9_D#agN zBsCE4rbA~`0v#WUH$rbWg$%=W z_V&Ly1`jEycT>_OKGSTt2b1AFw@hm(w4e{z*(g3@A2pcH zFhoAvHI1-|eZLha}FPo)~nHU}gFUr6+KeB@?(ps_%!^ymHNGy*|sD!Yyqy zc|10-B|2sFvsw;`Ory&t;3|OREUMWCciZ~O;`~aN+uDiv2<`39<(65Du@Sdru>;J3 z?Ygpuif2xt&HeBYxk|9BEmP#&Sv0By2a8BJ735$q^O)7iuDSd^9H6F&sc}?$i|P_y zCi7kK@&O#ImKi0w!j@*4cEg`3Q}JH) zV)MHWOL+n9#6tSK3=6LhawD^AH|9*k--T^!1{OtC)3Ix4^Zmq*Am47y(#gD6`!=7R zoQ`%|kyy#vbVe_w)Eso0XN$9ZCrf*DTqL^Vi`t_BlV8sJ__tYmu+HXVBx3&=eShucQT`m9K=-)Pp?&(4|k z&zSYEx7LrCjU^GSGCA975bI~-9V(UTZ|7NBHpK9L*)0Mz%AY(3-)IN<**aI^$H>wF zo;f9+v%FNYxz}mCXa@~A!WgDMiko0Ww!u3x+c^D+3S1X9UX+_`$})HxAH^6N^e%?- zjyqr=C$t7VE?Yaj)B>IR7>=@eWM$T-H;R$jI;r)uVcFX07U*6Ax?eUi=&odc9EY_= zKFUJA>2WNStZG8Ov?cPXe)kjj&k%UtAdj4`gKqIK@@KMW_CowCypc_@UQFq}y&0P- z3(C5kf~yeTGLZIVn}b!)r!dksPgMG|Deoy<34Q}fKYLw6O1ARIDUgD#YwhHb?CR?X;pa0v{ zI2hD=jVf}PtQTO>sA%nTcn&sOAl|er}qm0gy+@O2Z z&7zaV-u7dbi0gaQZd>pbHCF_!VfE)NxI*6YUFteYe+x4r7v{DcSox(kYltyRtBuN) zxuc`iho*^tFIoQWvJJ~x7sa|jAKHfbeEia@>n(BU=IthO%y&GyV3eOK5@0$S^O5R=z1Kr1n^(q1Ca_aK!M*Te9=VR-0C+ji zWb4u+xI)z$o%(1s{!?5iZ%==Ub&+*!MDWRspKH)B8_*|Y5x(VV1$woBX0y1&8uDg2bBbB%$bh%!FV<7*IGqrW#P63^3B`A zRlep6*&sUC3u(tEOix=OeT3XBq*2IuA!~$XrI5p7%E9~!rnm64;^{49iI7D?`tYXX zxmn0!Ax{grD5O!ye{!?)yd-3)kR?Joak_ZIgv=6BF62ugCxpB&WUr9@vhY43FEWYu zyuftMqW05@r`|t%UitmA7fNDit_qn0 zD+0pHw6F`77SLD-i3t&TYMcpC$oy0VAuHhZ0B@~XsJoyoUexx1`yagjf$G6(QHUgS zwTD$CTo)1@FriiZ{u-K1_!>j1;G=-r{gzts-2YXrvGhzp~yNivI@ZQs628 diff --git a/master/.doctrees/cleanlab/datalab/guide/table.doctree b/master/.doctrees/cleanlab/datalab/guide/table.doctree index 436892c4f5d10eacb1eb70823589214e703d64d7..0f1b609428473bcdc4a421f52d559b2e75881be9 100644 GIT binary patch delta 64 zcmaFxf%(A)<_)J=4GYW-kWwxb$T8e2>vZ1+=g-KFUvWY>Wxml`-p`oR*iJ`Gcl5w&@ YqNz!uv6)%w<~qjhf@Ek*6TZ&~0Q{mM`2YX_ delta 117 zcmX@AbyRDEFQZ{*a#l)Gibb)0nx&bkiG`tYlBH>)k*R5-iIH)dftiK5fr){IrKOp% YsdJuDknlb+XwuoVeU&!;3h*+uhn&I_JMO zrtUhUGzxRew|K)6_rWiL)#5?l4;l&eDF|+mLp;$B;uZ=}(V*|B= zHR-xoy0*T4NKDcKfGV!u!$0NCA%Yqz@4ZPyB48cIl!dpngiAfwSHkcz?(*&f&1>~C z-d?yb4^}VdC;WZ5dO5ET90JwZTPjvS#*cGLkTK{4UwQlpR__GAAL_tro#3nM51^`Z z;e)8^^{OVIOH`T21Kr>B=ON|A*SntQ$xnurmY|11ma3^ z7iYKa2m2;kn)CT?%Op1Flt{D(#OJ9>@v!w1tOicBe_=t;9^v2X6Ssy(IM{g?NSi3G z&Qb7li2ycx7w+wT0qdRvUxZ69=eLs?Z0e4%Eh76Z{-AdX_g*N@rET$9>H%DX%h1=p zo9Fs3pegtv;Nx4vgC_8INAu7GIO^NRHXEpmnTb{6;mL2nE@}fghPRTt`ObJ9ng~sE z`HY8OKAk}W;TQ=`JFkN$#h=qbv9_&E)ST_Z%i_@V0@zocJ^yt+s62b#;@@9efd)du zMfN+JFV5TmXTf*g=!{_I`QoRygBVn}#*-l0f8QrRYNd7j)%Sm)33|j)BCb_geCo$S z_@(Z8ae1ElxgVT^@ZYz&;=zm9UC|@#C7bL1*b4@U?WJif!d;@j!jdn=X@pPzTfPb! zsLN57PuOjfgR55yXxuiC*Z2}C%c#SEqiY?7WVV%lQHO)nizU--hGq(@qiZOM4RjgF z*jhSZ;6!OBk72vv&Sf!7!zM*&e36{$rtNA&72PuksX7;-5fdjG?^l^9Wl$5@%GFA5 zO0xl8KC^?Cz=Udf2VNk*e42U;IOcazNa>V!qp@&|Xp*qX?!*J`G*gqzpxOT4#6l;L zVI@BKcbGP+8wqMa1NO*{Po3(fO$7$ispuqIUW!naO7~KuiJctNnJDd0Ck|2v9$HH^ z4^f)|UTXYm88||}!F{n@j@QQsyE(c5*q99uyC6V@>toif=9mq~3sOB?a6$dP!|!UY<|7s4fxnxshT WuRycf@(P80P$Ksz{Xh2GmHz?o7iSj$ delta 5702 zcmbtYe`u6-80VS3x9Q#9-ENHS$h;{xXRW&1kGtLJWV3BJak*o|L!91ra~{*?OxMQL zoij?KFt_{`Z&=a(@SnhH@sQs?G7{=9LAW4^3Q{O2#5pMjVkLdwdnNYw=L_$@pC8Zj ze4h7xc;~-x&8ue{)g9b_XlQUKHWtdnqmjl~UBh5JlCF9l%mz`j(@oI5KYiyjxzC4jlsu%Erws} zju(gLx!(uCISB6^ldJB&irp2x!dx;r^4BgfNNg@mV-fBa1679gTAYUY#J`oRpn*CZ z6@`S|HhH*wvxvq`4S9txv#bj0)Zpk|M*%C>Mt{f`{nUpg(`klc3d$pED2WYp8Oi8c z+N)Cj3O9im|!CkpSC**eOiCUVuQrP`Dh z4ZQWjR$2lRs^o2Wk@fxa)T_ZUznub7rMw4?g>6KU1Z8d;9&o#viev`O_Wvdpx`;F@ z@mPNcX`{THpe8h6kL`Hm@g91rNMkxxU1VD4LsTQveH7ENlV>_vM_c8webkAE){rd+ zs9ghZDg0{7cbM+OeK8!4w?_%PIl4uz+OWPpMx`=)gbv_&aY*dzC4Vu<*)g3JSjHx2 z#_1(|8J02G7m@sAQfDjjY(DFspo-zhl+IQ-OmfpH+K6vOp2Q^=&e90J5Dtl@NJ=dA V6=;$5Z&1(!C32@!|6_k%`5(&9Lb?C| diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index d92ca858f2e1c7588672bec59463b2fe816eeae1..46a798947dd930f1a9d8664acffa2459634d2cdc 100644 GIT binary patch delta 2812 zcmex*o8{|mmJOkdh6Uz^@mZGHmilQarb)?$=0+AKNlD2j28rfosV0Vomc}NA#wJO| z$p(q0CW*#oW~rOo7?~IiNYyrZBBRFU2TVt}$kI9a0h7gK6TVtnYKD?UZMD#jaeSA1JJ8Qa;7uAzw9DoK0 zZ#L0xP@upC(PZikp6n~ZyE)$XIJsdLvH4nXGPzz4nJiZ+xcOUXD+ig*kJzjoznWaz zBR01s?qed`<}WGCmZpSZQ^mys7*lNIhbPF}#pF*&wf7?{WSHcx8SqRgbtvF)bhm8&qfY&Pzx z=O!z?PY>W=beilti)ZqwTdJFDXPA)}9bjWN`_7s}X5|J6Q`X537PD{eTY7?`(14io zdsVAASs?-qQ;;bvlj9F^ZPqz#N?tO1D1n%u_h}P(2^8uE-pT%D9Gj>8OX4KUC)di~!0nHSYib delta 2705 zcmex*o8{|mmJOkdhMCD(DM=|7#rkQMW~L?*jrin(Trims-#%Ts-7Ul*f1{Ri< zX2z!GDQ1Z#Nv50I7@5e>HrY`zX0s@BKNsmXg0xOHP=X_z|&4K&}naR_>dA=|+ z3t3vzCp*XpZ}ydlCeP;d%?>gb$gp{{qhb;}Sq{$G?4apMUexAnR@3fNAkWsxYTA60 z<9$5H(hUye$-WZ2o8x_tvyyFu#O7ez*4z!NE|ncciQiRnWy#EBz{r!>{ITE!CAMc4|0mP$o63vGw^(Ge zTxAR;NnWdd85yCrnX!2{8QLZ@HaBlBXjdYmL<4Fq*lgTW&rL@1W^B%wyr7MH@`+pO zn`>v7krUcbBQ}T6nnX_Jwee8l=I*7Z$?-Qx>yK3(;-vd~^TtCP$VnO-57liJILRYO zx{Z?s{}oJrf0JkO$y@))*S)#)4wC>`+G{8Cec;(__|}=6fEN4*(XRJt6B&tYv*5qy zoMbo}n6ReH@Gy#QU&g_Bmz)v=Xux)$0c2M9vD58^7)2*X%o5&iBEq*jrin(Trims-#%Ts-7Ul*f1{Ri< zX2z!GDQ1Z#Nv50Y7+aV~*Eac~VZr1D;sTpDv-k*+t-YB{omR5Ko3Be8VkS@fW-D1+ z7P7SVY&KCcBv0$a&FboIWW*0JpeJtD*Stwy98KJON+*z9Tkq;!Cd1av4-L1llNGv^ zo9(T7GRV?exH)&R3mbV_C+9Ba-JG!MlQJ3F1s{}c{&`M`oFoC%I{D{0$<4Pfv+|H` i^Jc*Ze_2V_Hd*jN-{!N=428+i3d!;Oo7erSW&{AY1W)_` diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index 29a963eb56e9e3b0a47bd08fde38ae6121d570ac..920a91f22a19825b5f588a80fa13290e4bf6c2e8 100644 GIT binary patch delta 122 zcmcbsd{=pcKciuRxnX>kWwxb$T8e2>vZ1+=g-KFUvWY>Wxml`-p`oR*iJ`Gcl5w&@ fqNz!uv6)%w<_5;O%tj<@)1Ul+U21bCYY7hkvRfli delta 122 zcmcbsd{=pcKciu0a#l)Gibb)0nx&bkiG`tYlBH>)k*R5-iIH)dftiK5fr){IrKOp% fsdju}P9~ zvO%J$NusftS?cBvMoD(kwN2hAUa;ATvz>`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8}~m;7P>* delta 1125 zcmeBu&(!;#X+t=pVPYkNv3{DRnW>3|p>dL>X`+#-X`+ddahiddg}H%=frX`| znX##PidmvblIi9SMoD(kwN2hAUa;ATvz>`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8}};OF};Y diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index 4b5cd8529515e5e53ab1dac4095fee1beea58086..003f03a9228dafc70b68fae2333c3cc5802d9d86 100644 GIT binary patch delta 62 zcmew$^+9TbE0bY?xnX>kWwxb$T8e2>vZ1+=g-KFUvWY>Wxml`-p`oR*iJ`Gcl5w&@ RqNz!uv6)%w<}#*VTmWVN62<@k delta 62 zcmew$^+9TbE0bYna#l)Gibb)0nx&bkiG`tYlBH>)k*R5-iIH)dftiK5fr){IrKOp% Rsdk=EeSN$Vg3-Ax21Swh8Sd$ImeBo5INoZJ_qe_0e^d z*!(K?6&WE8_xHg>JxXl9ll+Jh+gGPAB_q-{H|CtgL%khskx0fV046iwPC{q&sKx!}-B%q-z64{LIb&mX&dk zsnu=+6B&NpT)0b=oC>CJ*Q(8lhtfF7aIB(H!Q_TF(vu%t5ZpZF%mi|Z7pM`NA6(c@ zUfm3Gf!gM{`;9#0d0=zH8zoILv;yOJ`Z^Itw#mvZ!rNQL7+;VX+mjcVv2M3fU`!=5 Mp>5ArXUr7<05i`L2><{9 delta 2628 zcmccdp5?}SmJQL2hMCD(DM=|7#rkQMW~L?*jrin(Trims-#%Ts-7Ul*f1{Ri< zX2z!GDQ1Z#Nv4x~81IsyOVOxqvjlSk=EeSN$Vg3-Ax21Swh8Sd$ImeBo5INoZJ_qe_0e^d z*!(K?6&WE8_xHg>JxXl9ll+Jh+gGPAB_q-{H|CtgL%khskx0fV046iwPC{q&sKx!}-B%q-z64{LIb&mX&dk zsnu=+6B&NpT)0b=oC>CJ*Q(8lhtfF7aIB(H!Q_TF(vu%t5ZpZF%mi|Z7pM`NA6(c@ zUfm3Gf!gM{`;9#0d0=zH8zoILv;yOJ`Z^Itw#mvZ!rNQL7+;VX+mjcVv2M3fU`!=5 Mp>5ArXUr7<05C}a5C8xG diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index 84349eb3c0215c820497b8b6036f17398c33a68a..fd924763ac35218b11d01bbc8b05acbc923d1f1c 100644 GIT binary patch delta 2632 zcmaERn&s_jmJNZ7wgu*f@mZGHmilQarb)?$=0+AKNlD2j28rfosV0Vomc}NA#wJO| z$p(q0CW*#oW~urq`N_rl#rdU0$*Gek+8b{^$T*kLkYrlB_WVQ+7B zUB4u^0EEejzP`gh!hj(*WA1fOL+BK%8kZbz~FW$|O^QV$)J4pNPWoG2s?w`gs z`NKM%$tJNu)2E9ws&2O0c!<0NkUcs6y!2!pf1b_z_e>z8r~#%SxDk{0?_u36esB$W z^>6m(`16Z+$cjyn3)D6rzVk_gEbaZ%<9Qfaw^y+-zU3g#0AMa+-L50R7)EA#nBFVJ V$g$l^oKcFr04UiGY`Z;S1OUz~6kz}W delta 2631 zcmaERn&s_jmJNZ7Hkrv;DM=|7#rkQMW~L?*jrin(Trims-#%Ts-7Ul*f1{Ri< zX2z!GDQ1Z#Nv8TK`N_rl#rdU0$&(uuOg0~6oXcoPvMG}%+Luh{RAJ*)+sz$!rtEM zx_(J+0SJ>5eSMo(E5D>H>{&NwYc`OVctEiaiayrOhqR9}kr@s!BjWUXD0Rg_!D6#+2na0qFvnMJ9++wX#eP4M2YQg zezz&Hoh3+*OxrgLgxsLS=F{P`$;-d9HXFtYa*>`)fQ5elWdAhY&HNc6++=FsP$Rhc zOK}xHdD=JYwM280r*(2d5AWu%K2|mgv};UFA=mZ~Uc8$l=T9Zqc98bn%go5N-9L?O z@`rUilTBiSrcW1VRNZW~@ep|lAbWEBdFjbI{ydxa@0mbGQ3Fgva3dz~-^03D{NNh$ z>fh|m@#h!ukQJLC7pQGMeCLw}S=#%j$MZ01;IHMGK0Z_6X*miru2mm+p0;&K2 diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index 2c8f8a36913aa6d7476bb6fc3af7dc3673d88ceb..e179a6a868c436f15ee99feb0a019755dd0b317c 100644 GIT binary patch delta 2563 zcmex0mF3q|mJNZ7wgu*f@mZGHmilQarb)?$=0+AKNlD2j28rfosV0Vomc}NA#wJO| z$p(q0CW*#oW~urq`N_rl#rdU0$*GeYcNuR!$T*kLkYrHY?fMl{eoO@Zlm~`{cE<9FyNm|0Cao&1+?SDRY4E*O+9CFjcgK+oFf4nov4FiyNPrtY1`X8iSDkz;2 z+fzgCk!kzp2jQiZ*lZbfjZB*-gZ%wDb{@Hr)}UvwIWD<|oy;WDprM@8+3xF64&+#E8|+N}S|+qT6WmoZf6U3bbFFVoA2`dMcYQ z%p)@h+a@nqBe*$wMIU*^M%(5EYc}wb?(fZwy9CJ425fdr+#G!3iU#R6LRu`qpnCC9 lh}?z)D7`0q*jrin(Trims-#%Ts-7Ul*f1{Ri< zX2z!GDQ1Z#Nv8TK`N_rl#rdU0$&)|onQT7DIG53oWK$+L?#h|mz{E9~m8Fh6-J2Cy z|FV#$b+Q7h+2#*i+N@-2SKfSEz=w-`?UUEaa!h_N{f~STHm{ZSrOW}slh0~+knI4= z$@OmBo4;wErXUU`e=uj=JX61c-1GyCMz9ed4NowU?GcC(6HR+4aK+{i<{v3_!A|QH z6u1B!4wiP$D0Rhm$7Rf92IYfrr_D8PbI45(55nCy|MAWwHw-}9J^kL2>wl1Tsi1U9 zY)=ijN2cwYAB2}uVzXt`H8O3U4D$Eq*m>keT7#a!=D6e#1zM zFptb2Y@57bjo{|!6@BCt8*Q5xtl7Xzy1zF!?h+tF8?f0iadYsAD;lKR2x+kZgX+ac lA#xiIp!A;bjbroS?}8KXXIA>z$VvrB~Hd0i~u=Y3t|8O diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree index 3a990a0e9ead65273d32fde5714e5b1958fb85e0..f87402c6ac426d81f7f9d8811877f47c4860ddad 100644 GIT binary patch delta 62 zcmZ3axkz(EB%@)0xnX>kWwxb$T8e2>vZ1+=g-KFUvWY>Wxml`-p`oR*iJ`Gcl5w&@ RqNz!uv6)%w<}OAFVE{_05tRS{ delta 62 zcmZ3axkz(EB%@(wa#l)Gibb)0nx&bkiG`tYlBH>)k*R5-iIH)dftiK5fr){IrKOp% Rsd)yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NS&*73Oj delta 2506 zcmbRCjb++5mJN}NhMCD(DM=|7#rkQMW~L?*jrin(Trims-#%Ts-7Ul*f1{Ri< zX2z!GDQ1Z#Nv4~-7+;W~ZL;Hvn#uAk4WwHL)Y&)yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NQ$so?~5$)(xJFh6Uz^@mZGHmilQarb)?$=0+AKNlD2j28rfosV0Vomc}NA#wJO| z$p(q0CW*#oW~rO27%z~aZL(oY&UA|iM*hj)mh$65c%L(kb#v4xr+eBFp_b+kvg?cZ>ibeUSSA delta 3034 zcmZ3sg>~5$)(xJFhMCD(DM=|7#rkQMW~L?*jrin(Trims-#%Ts-7Ul*f1{Ri< zX2z!GDQ1Z#Nv4~t7%z~aZL(oY&UA|iM*hj)mh$65c%L(kb#v4xr+eBFp_b+kvg?cZ>i$$$WqS diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree index 8c0b9955fd00ff54807d3c9c5a23a165e0fcd051..48d7b0621255a4b80783b5260e580a87d34d2e3f 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr#6CxnX>kWwxb$T8e2>vZ1+=g-KFUvWY>Wxml`-p`oR*iJ`Gcl5w&@ RqNz!uv6)%w<`%|>JOE^z61M;V delta 62 zcmaDV^HgR-Fr#5+a#l)Gibb)0nx&bkiG`tYlBH>)k*R5-iIH)dftiK5fr){IrKOp% RsdJOE%<5=;O9 diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree index bc84b62d504c413998ac3d1e35676faad81be63e..83f411fb4dc054a215c1b4eefeb66270933722bf 100644 GIT binary patch delta 2706 zcmbRBnq}5&mJObah6Uz^@mZGHmilQarb)?$=0+AKNlD2j28rfosV0Vomc}NA#wJO| z$p(q0CW*#oW~rO27(bGsZSukRrs)Ta8TlvcvJ{eTD^UB)$pS{go2yw5vXHG^e6uXK z7%O?&H~$sr;vi4!bfARxdV)IhX z26DYEU?j1bUFRYb*^Zakyi31_OxrgL81XVwVDo>|6=d2BOy&}sJ1yQ*;_oP%4oYl4 zVz-tO+k>4dDG9oDZuOLC=l8xtp5u3HzT&r=ytKY|b8Sc{c_F@c^MSDE#$9ZwdUHqX0<+f-Y?o* zw|y&lQC&2-ZoAHAracRJ$#OhMyY%Gs*SR<6oNDDE--ylYuQO?qrG3`+8b-z+*jrin(Trims-#%Ts-7Ul*f1{Ri< zX2z!GDQ1Z#Nv4~t7(bGsZSukRrs)Ta8TlvcvJ{eTD^UB)$pS{go2yw5vXHG^e6uXK z7%O?&H~$sr;vi4!bfARxdV)IhX z26DYEU?j1bUFRYb*^Zakyi31_OxrgL81XVwVDo>|6=d2BOy&}sJ1yQ*;_oP%4oYl4 zVz-tO+k>4dDG9oDZuOLC=l8xtp5u3HzT&r=ytKY|b8Sc{c_F@c^MSDE#$9ZwdUHqX0<+f-Y?o* zw|y&lQC&2-ZoAHAracRJ$#OhMyY%Gs*SR<6oNDDE--ylYuQO?qrG3`+8b-z+3aH-A6LxWvSD`dbR;cIN9C65ngRH`- zX|h9`;O2zWo5|Jw;1ciV%U8CN>v)iMkGrqPwcTMk&*qQMn#s#9K)(aE8^7h@Bs1s~ z>e(hw_{zPR`FkOG9>|#P$HJ(w)s(S;ykaI}J5c{xUb37Iwp)7pdLhPq9tsSY4m5y! z`(1g)Z5m{m(lq_QJ0sh6A5X^H>i~xBql3D-& delta 3021 zcmdmUn03!#)(zf_hMCD(DM=|7#rkQMW~L?*jrin(Trims-#%Ts-7Ul*f1{Ri< zX2z!GDQ1Z#Nv4}?7_XC|ZL;9Jyy-XM8TltOvJ{eTD@gm~1zf_LRaoz`kf(j~03aH-A6LxWvSD`dbR;cIN9C65ngRH`- zX|h9`;O2zWo5|Jw;1ciV%U8CN>v)iMkGrqPwcTMk&*qQMn#s#9K)(aE8^7h@Bs1s~ z>e(hw_{zPR`FkOG9>|#P$HJ(w)s(S;ykaI}J5c{xUb37Iwp)7pdLhPq9tsSY4m5y! z`(1g)Z5m{m(lq_QJ0sh6A5X^H>i~z(leo6oU diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index c9f9a1e587d038e54c4bcb111bb1447bcd5f49f8..c951a7d3b30c84728ccb8fd686cecebd70c04412 100644 GIT binary patch delta 2688 zcmbuA-77<39LF0wb1d6LazUIzbE7%V*=EX2)T|UYNb<5XlddUYieah@yXR*yKP7oMTaDdlB`I+YOhuHN;cb&g*9f%Y|G41Qq#?e|K{0aou92` z=h1Oivj)azAu>$Y`W!8UGTJc}V|7E!C2%xW;Nc;&it{vDQjVQgh+M)q9z353Z4Ip6 zoDF3U6IXeT9(c5B7OTwY+OnPj1!iQGmQd@0^%S-8jy=Fik9Dn?V9yulB4GU8UPkqe z6KK!L<|Z`oOp6Cams;6ky2L^{2vht1%?SZu^V{egYtxl@NG1PzoLKhgtBsp1c|T(ZwuOdxJr z&7soBGxFN2b`?*py(8b0if?TiDY!k4+EqNcdzb}vU!dZ65V&!4mN+khj8iN=reont xJ-IKQkasKdDfDq``~k~IHuV4i delta 2688 zcmbuA%PT}-7{(jsjAJrJBn#pc8XL{!TxO0kh+=Ar4U$}DOjFpX8Brsbq%1TVA6byg z24!K!E3uNYv9UrC$(qf?tmJm`7kK6m`1O09@BQBIyII!XEbHUVI>+F^P{1E>g{(nU zktLU1^sBPZA%@T*%?rLl3%v6hD?cVSvWe>b#eB8^X$21h^=Pl z(@9p74#uY;GD^3`96f|G+A)`4bt9}^;3!n+;UTkz^E6Ugft^-_>VsYNN z8_FIfuIds!@TKZ$tTLlp>skgBn2{_lpw>D047Kv=9$=;C8gC}pGwGfOjKABEPrygiHBHT-b*C=2R7MkpKVy diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index ddbc74c7117485e5dbb39ff0302a18fc5582c2ae..20b7578279505cf6a45ce403abb32d4124b508a4 100644 GIT binary patch delta 2967 zcmaF)oaNpF)snYcgb<^!mX{76B6Y%zX@GWMlm%R zqFs4&Npv|mAq~@hB=#AZj^CV+IEzf1H*ZKL*H&PVDR0hC*CW$ru=cXd-DLV1teq>j zmD~suC==KmTI9)2Mj{18*aSzm$pr>1o8zkdILI`@-%Mb0QL{8Bnc5q=MK?$EvU8EA zeY5C{Cu9cQ=Jj*+$f;yN!6vXqVDsX|+sO>|%>ru@$Ox{@3%3@N7fI7L-`*!ehK=AN zVS*$7<}D|x$+21SW6NaAE4-UOUaTgkD1>R(yEcoLjO3yCv43;NlMEixwQg4Yn5{{= vHgIt9d$MkKmu4h4RRVJ)>-J{~jIYT|)sy7|*thqoF&-i#Lv05(k29D6cs+HM delta 2967 zcmaF)oaN*jrin(Trims-#%Ts-7Ul*f1{Ri< zX2z!GDQ1Z#Nv50Y7_X6`ZF-|2WBp_nmO|2PoGi#SeX}j=ViwZ1ZWiQv!%Dig$&5;! zo3{%{3X-mMGo#WZGJ*$aW6$IOm0hG;2-V3w`9g@j)mipF)snYcgb<^!mX{76B6Y%zX@GWMlm%R zqFs4&Npv|mAq~@hB=#AZj^CV+IEzf1H*ZKL*H&PVDR0hC*CW$ru=cXd-DLV1teq>j zmD~suC==KmTI9)2Mj{18*aSzm$pr>1o8zkdILI`@-%Mb0QL{8Bnc5q=MK?$EvU8EA zeY5C{Cu9cQ=Jj*+$f;yN!6vXqVDsX|+sO>|%>ru@$Ox{@3%3@N7fI7L-`*!ehK=AN zVS*$7<}D|x$+21SW6NaAE4-UOUaTgkD1>R(yEcoLjO3yCv43;NlMEixwQg4Yn5{{= vHgIt9d$MkKmu4h4RRVJ)>-J{~jIYT|)sy7|*thqoF&-i#Lv05(k29D6UIk$q diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index 96a79528b124c413903f9e19b9579b863c57c0d7..90b440b993034df4c517d2cb0a6ffdf40a23331f 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr#6CxnX>kWwxb$T8e2>vZ1+=g-KFUvWY>Wxml`-p`oR*iJ`Gcl5w&@ RqNz!uv6)%w<`%|>JOE^z61M;V delta 62 zcmaDV^HgR-Fr#5+a#l)Gibb)0nx&bkiG`tYlBH>)k*R5-iIH)dftiK5fr){IrKOp% RsdJOE%<5=;O9 diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index 0a585c1f4c409dd41f053ba82adedccdd78f7d85..408ba80f9a3779c21859c6eebaf7619ca4be75d4 100644 GIT binary patch delta 3483 zcmbuC-%C?r7{_^QXIgU;Tj|6SB!~#hbKG%j7ll^?g>smPC1KmtR-+#-+(m^AT_B|v zzKmT|W3>vQV9N*hLPTB^UP+=WF1m@0pe~BhIo{;$zWW0{&-eL$pXYfGr@Ub- zZx}N@Ou6b*MlQO7u8#51E}vg-RYNMrOuLVg-pH0jY zLG0@2-~IwR)^~$*sH)?%0lR=KwVho;RWl=H)N9N?i>eyN-vFvq3LHnTyz%k^n(p0D z9%xqE`~>elS;zaLR_%$hkUyM6n*U$MM!#;jk;J!_=$QIlof#W7PY+ko1@%QO$RxI! z@XQ{mq62LrHk!EequLz$7t-KBDaWY>coOvtazP^vJxtYt__>soK0hm?xa>BQNQZWS z>N+mHo;QK`zFTHqT$kwD+GFIipvR|`pyK)fYCub$cYid~flmU9Fhr5Udu;zhJW^;U z>$i*9Y!aY3)YB)jPt8kYQ+-=J7I)+pW*3- zy<+tk`-&azCLh;$Nrc_(MFZYMyfnlHa9r#;!#?c7`1qGe)+$ymu`n2d&vQVAg|sAtEn|t|WI8-7FeG7v020P#4AM9B=Y=-~9of=lguW&-1*8Q{6CD zH;gO&tYT~)Py2>g5 z#+f|BI}P#L1$A=CWTl|=-GI?AO$*xrvJ!s5GXrM2-aLi~SHgLEvwIrJN=Ns%{n-XJ zohPZ|t^}Y=&eC|-1xxKHG5I;-lgUqcq~An$>{4s(s@h`c_$h$YMoXCi3zCvPo1{06 z*wxX$LnU;qZ%5`)RrRz1yMR1(on1y%SI$*YugSn1s%i+m22`mMK8{{_>*Yl>-P_S3 z(5$xkY2J6Ti4P{M+7o4=KrDka|G$ileqHk*iEk~@J^i~rGd60U8LOiU8cbM_No+OY zojY1b2iinzG;!-ky*Ugm=D>kcfl~wUBeo{qo*<&V=i|zo` zbzFM2U;^=dH_W`eF45%shsb9^k54N><@I6IfR;Y*`)H;Ep9B_Rl;Wj#*#1X(ymXkX z-&V{}d^+BdEHV?#|6FRqORN@I`5=U+#l1u92s*h!q(P)*oL{@rC?2Wogc0g}mgidb zinU|xD|Wb>d`jab5%aKTEqD{D$|xJgak1wN`>+e+Q(vZ7r&ztjVqgeDEASXw-&tL} cJ>^ZH<~MmUag$B8LGJZmqh_)EfQ{_@2eJS56aWAK diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index e934fe26666a901e6065cabb14e54aa63aa09226..baa3c139b2bf4d4afd8ba4d0adc0297cd15f42d6 100644 GIT binary patch delta 3789 zcmbuB?MqW(7{+QbLU)geHE7q!&?&LRQ~{q_gTvUoZcF-~GFu>)g*dXR=>6*{_Q> zGT!Xqb!Ups78RVTw|TtWvAa<6c)XIu?XWjUoEKRoZk0S%uf=VX+*Z52LEK?W02Oiu zMVrP%M^n9s^e^s*#8dQHyIljJFNhgs41FM677cZ04XuUDNnAf+Heh8X=`2xdHjpOY zr-K6=hsY@!uC6bC6jO^G?f3XK96n51~W9> zNLRWXjM7)Y=ajP!bP3`mT6z93TRnQYk|8rf&JOumC)+5$tzsF9tC~GT-aP+LiPy0A zMxc*>Q_M=&ITl6=RR<{QVTyMEa&;kZ-(y;3ewbCD3mq@fD5h~%1@dz31k)>(QT8qS EH)+Uqp8x;= delta 3789 zcmbuB?MqW(7{+T-Ckf0*9mN#+iOATriAvEzrB)y1I6temrByH7~zFz(Tzx#JR*SVi_&eWh{YEY5% zF~R3K?R9&tfvPr}Su|M%quVCBszuRdsy4P6%vOuRWU$(7W}|5Fnq4Nh$ZxYHfQs59 zyi=y7BZVGB`WFvD;uL+BZLRGsyKieDXzgnlN39zU9ssNqwOi1N zo;IEXj67;j)3(DW(Q^immZR24^8jj99iKyMnmaKH1g1xxjv{c2%6y-YutIp64-3Uq z;P=Y`vk;!4j?Sw{!+G>)*Iu9|o=0nX`%&xji~CWl;&K3Md4~G>uK-pO!u6=JD`EhQ zf7%_taUN~AoUcc%VoX4-r-s&`)}Ht)fa1(;)}EEq|q`qjlJ&^JU2r+Tfw%Jf*IPc ztEHfYk$MGuSp(}vmmpIskIf%qtH&-m7&0Sj?~Xm|VH;y_n^>{rY-SIUH_!i5GA-=A z2I%A86ulHY!{SJxxdBq{Ff}^>d2S(Z-D7fTeuOom3!SNzN!kh41oE-gNv4z>N%pPu EH^gCEwEzGB diff --git a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree index 162638d05af40be12244d83bc365afba0b5427ea..96d7cc46b43ad3924e5e53496b68f8337f94c1b0 100644 GIT binary patch delta 4920 zcmb_gTS!v@80P4fbE~ad*}^V_2zGN@TRSOT5CTOh73ra+lv^(H5{ub|jMl6uO`Q2l zvm5o+OSSZ;22!a}gxJdr#I%eqP?kiLK}cn1J0s}PZ$0esyZrz8{_h+%`A#wUPH}s? zV0MefrmLwgAkk#bX>UpcGO^LzTt94@IR^0Z_6DA%t{rspWhZ_W0|a>o)QhM_owrx zViB9UhI>i|Ky^0RD?n8;+10$ERILJn8TQnYZl99&j2&QCg%>d|Q>eJLY6uxXhChV8 z>*>{zP1*O2wKeX@Z`!X)3VTkIPSld-dmYc+-wb4y!=C#{Uc;UyE;#%GP?Sv9lDjFH zro2+4Z5-qWM=1^(p7Iu=&rWt>;Cc0D;&31hVqnK9g96NfyGhN<8yzUznD)WeZgb=^yWz* zbLv0l^_6*8=eit+#F$9Jd2?ablyc%f<$p!OkHPRAckBf>XwXI*2yk~3zSwW1U z^UEl5^ndkLboOf(u)lu@H1z9R9!|m^CsrT_AM-#TC-hX5tK{$x^Z%gf{t13~xB|D6 zg^W9Pp%%0e!5c$u3IVDRX&o}bxfufZ#o-D`4sww?h>0(tjK(dYuUa7mB$2K{7r3Pt z-otT8FU-SlOLsn5Pz8!og%R9Kgn~-j^FwKig=I*`$Qjp%KBoyI8o-DA N=aVk9*CfnI_yd_P?XUm< delta 4920 zcmb_gTS!v@80OTb$E~(%SqrrY5iH9cFS|(>guqBjMS5r%=+uQa!7df4N4`Tz6%-#Ki0L^VC4y17lr zs;R84a#qZG!4$9zX4uD8C7 zW#O0eUSseRY+6?WTs7ay@5Pqg#2FjvF|$p)wO|Y|D_77SeqWe}WwMTXOSQDdpT?g{ ztk}$T+*{fYsb@h?oKffv|>^Vt#tB$l^5AlLMtw3fu?755NHSB5O!UL}WMcH%%)wd+j zFR$Ea>jwDVVTyrJFL;EX-8cbc zj(tHJ03%W8{)07Zp$I+9%Y!b94$>!3;y! z#2e)3|LBW!da?)D-(Lh;`tfBWPQst2Rw4&Kre>J#0lURhbtsIC_w69Mtm`)H*XG2>V!ogiF_6MK&L_Y z0LLi`*V5CrjiJ^=VIh87`m+gw7${B>hHx(t3MxCdDU_NbEJr#<$+#gjo+=D!0Uyer MPx?@eB+Q@n8znN$761SM diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index 3e180eba86eff50dfc492e6717eb6abf5a9ede52..0da3f63f472761b3ab2d9b9f004d0488566f9575 100644 GIT binary patch delta 1062 zcmeC{X6ox^+ThJ-SYU1#pJkbCsh^f&nv`s4Ze(GSl$2~@kZ5j}YGP<;X>4L>Y?5T0 zY>;Sbl4xvZmb$ry@je^r+9q%044wRtV?OCRH*e(pMTR@U78>%@l5XMTj{(t>_X-Mc z_T_!TOrG}5djtu7EXtH#cZnp64AR~Y` ze++m?PJ;LtP_?->xR$&Ss@l9X%#?*Je%@l5XMTj{(t>_X-Mc z_T_!TOrG}5djtu7EXtH#cZnp64AR~Y` ze++m?PJ;LtP_?->xR$&Ss@l9X%#?*Je}CYrC|(I6=+=cn5WDiupz})p0q5Hv@OeMakMH}wCne`e$@!_* zAA^ud zuFGR2U%33Z)JyN(Gl1BLqSz z747xl(FAJ!)^`WBt`ET0*Mt2?2rG$s%7;As>S>_XexkUNr~EENBY0@}BT%%k^UCTBHsv_2tTyuU%UeFM@B1+?hu@B)c7fmC%wqqYMCGlU-1Z@b z*!7^q<*j36-xg|_n>kQ`rhbjPc9Td{{^3+8Hc`?`|q xmwImBANijOtRukeQ&XRZ*GiCGTwH-KeC_%`P7#kFHc6QF$IZCB4Qj3feW0Z<<=3Mv#VOThXh9F*O z1krOD!4OfRV97(Y8@m}nH-=Y22)1=$5X7#$Gw8gcf57?n2YlYo^W*!z?_tG#SaE+C zbVa8pXEN!GzHlvTXsV(|V`)RRWL32kIhK_)JuWGdZWvljjb}7VNvoW9{ct9@fPKu=y*f%01{tIFE>EN&hp1TFJL5*g|X{*QEQ?fw*DSiM6G`l z3fk-5tw*T!>+n_7`tlBJeLiv<31Kbul!~&S*Y1ZKohOQGsXEXryB;1P)2*eJczt{a zFp@xzC&p3hAFBgEIhyIfma@e4$1$|ez3G0S*s~Fp=Z26NM0076^YqxpBvlPBQ7*{w zJRu*AeFWbtya$RFc3xhY$EKX5-!~Eg)?QDbc7b1clf(WyiK^RO+_^P{ z*v*K<)$Idh-!^KS+c;c;rhb8Yb|#Uioa0m~w@}aSWePp>u>X?;&fu((Qu!3Q-xrnC yKR0vF?&$wiU>^ZypIV3gyk3Fq;^GQ?@yj5RK!Hp9ZDI?Y{|3HuNtX8Cwf_UtC3^t? diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index e398ad450f0703748f1317e9fb3997aea2f12824..5b3a5088927637df4ca3f03a32f66f1094b82161 100644 GIT binary patch delta 62 zcmew@^;>E~3zK1ixnX>kWwxb$T8e2>vZ1+=g-KFUvWY>Wxml`-p`oR*iJ`Gcl5w&@ RqNz!uv6)%w=B-S}xBz+B6D9xv delta 62 zcmew@^;>E~3zK1Ha#l)Gibb)0nx&bkiG`tYlBH>)k*R5-iIH)dftiK5fr){IrKOp% RsdAg*W3#8}h6-0u~hf+c$SGwlV?$PWfV8 delta 1253 zcmdlng>A*jrin(Trims-#%Ts-7Ul*f1{Ri< zX2z!GDQ1Z#Nv4zQ7!Q-KYkGhzqtWIiOb^+})I0eFX9Ia!jVFH)FxdQuYXU2o`Zs?N z2xcNv@8k_)rkn2w7m%xe^9HfqWJD4uxQ)Sfvq;vHYd2WGjLa^I?9Z2TrO19?#pf*K zhW!Tt+09$k1cfQl?{0O_icI~}*K0FMZf-5L7oo@i$1cZu@(c*t&dS9oMTYmc1Cvji rBzcw^Z?`gMJWhtC;50iOs9AV>g*W3#8}h6-0u~hf+c$SGwlV?$Go@Mq diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 05635aca48ca725b194cb3c538ad8ca65eb721d5..37479052a52be5f7a5f38bba9e8d6b353b962dde 100644 GIT binary patch delta 13101 zcmbuG`%{!<6vyYh7i5uTxq818iVWUZu8O6A7&)d0DvBwBAf|W$H8Js$6pC7iy69t$ zmYV6PIg(o)@$TS|jYT>J=Aejl@opBWi4OMcZZq;L-~9u=-_JScInR0C_jz}ZHFh}G z*r6$bis+;Taj3;pV9WBD2CnLZZULL&Cx{!ZOWMBf_VK zMMh=?Ps_<%5WFB~;rz@jOF{ovEr+Ngq}47`nP_cPTy#t->H=L%mNl;PFu8S!;ed)s zElUhOmfUpBdeT^{Ko&`s;7)BU4}E>a-SOmMjq~b>g<|)yKJ-1IVPRNfM~G=o0c&Yr4Gs3he``)j6tOfX1zdjHO-xXQq_6! zDD{u|aIV!0lTqq-i_*|sEAn$u>4jxQsPvx|NocMO9}GjO6)PvA)bgTul)7#0Q*a+T$}5D*b8aQdD|t_e?a`2Yd2R zD(&|}rPeQDYULrA`rcu9=ZyZQ5v}lb9)gzX=uvn!l^x%XQtzDFh)O$FoJFPimGDV7 z``lWTYB_%eT~|XD+{0Zi)}qwXOPkPKD{G#i)G1fCp;U48E=uiweI`l`Xc&o7J$~Dd zQj>4OCtcX>ttd77UNo9({DTuHb;n<0P-;ozd6fF(G5n19`@c0PHRUa+BMTH>%a#Xbr0EZKQsv_8$}7N43j+C=#u6k{?x}+~XZ69l1S{FYR33 zl~$wNx>sl&ny;Y;6`h9~ z2GUuS*)WJ^0ZiK^65kn2pQGH~F*F?In&Kz|<=z-ZaVYo9n=}^Hel>zNpxW!B2z@2s z>d}NgPjT%S$_4hHh<%%KSYF}=0AiM6z9#lrlETw63y=Z92^_5e$-K5+M4ZK8wd<`q(GV4oLs0j@*7kJ6TN zjLKR#0qHOT5!l9pk@hfMROVLI)z0U2q`M z>keFksAy#!vI6#9H2e)E9uBtgAI2D7C4j!CmQO@*4 z137(CF|^nwZOWB_Xuq-a3WUWo&MN!RV(`XuirE7!0mofdqS14b)p~`^AX$`nt8U_E zvKk<=z0}>H3rm+6;Ab$7hlIqQYDaV~3MuyFrU3O|7ch34gNx`Nr`~qPfIl6k9`SU_ z;aall=}Z}1gmiG@%;xSWzXrH6rcgBjP)x>U?L#iVLQKFW&-hk!I zC%6jTPiO{q->Y5)?jsy0zs*5N2X8LiuhyYsLD+4U9a9bBQMuaO`ZBx>hNVk(FJ~M? zeURoVR@_lFUe=)AM5mP_rWei`j`P=ifL{-`sFI9pOFyTgiAmMk zi*9>WPw}u=OXXE5ni+j_8L-G(Y8)QcY`)j@|Fyv5+HaiFm zj%9b>LXTTpZ36kw8SVSdAYT00Ad4ZdN2a31VCnD}eb{g;Zq99Oxicj&2lp(^04%}jrJsaM(f^i7f7*@%VPBWzF-5019S8$P|Hno_4OlAaoeMM zK3X&(#YXlyt)E99|2XZUUIb48DR$#|)%s?10PyNtdJx?Bq4)I%z>epnC;C$)XQ@l! zOV9LX_(H3nr;7)tySa=+SDd9oC*ZFJ_74goAxqxK)pT(wa%+9J+Ww)!@^2>By#51q C&*(k? delta 13100 zcmbuG`BRl;6vyYh3viLkWp!T~6dByOf)~L|P>dWy1Qo>;L_|_ta7j&El0s1nQ7`(K zqorm#YL4Wsj)?2%kc~w;2Ik;`w76mxE{P8I+zH8ci3H#p}C&Pn}bR(EGtB%k5(k3xz>F+6s4Y7IUc2!6~?2~ZEK&Q z)bOGKDAlk&0;OKrkd9J+DH)7X4{we|sl}f@L8(F8vQTQ*&rPWG=bcMY>FwRq(Oe(w zS%^|;e;_KgeFal14#Cv-55qfWUd6v`j~j!n3LL*mjh9_vA)Y+V0F*RGL=- zpL8?NtwpKU^Hl`Z-EXzp@RbimUffYL^?+QEG5q0!sD% zeLqS~xdoqe5qGwt)SUYeDCiGvXirR-@F^7jQQXZh8t* zxr%5ESYobF=^vDv;!b|3R`aAasJ4fZdZXG$CaOoZ%l#=5t#fi9RifNuZ7Bn}J(4f& zT-J$JqulGS(K<9=Ls!a2xgp(Y3#y$MN=3*;oxN78deaz`yU0vOQ0Q zT+WZ8vnaD}0L=iH_Ddwb`v!f1a(l$mFqCVGBMZvCIh5j1?&-H^G^+i2IBh_+H%1Wp zO2Abk34Na8no%?d*neX1JCw`v5;qtSvlJsA3hdDLctbh_b&4lsk`aj5DK=))Ku|o9 ztEW>8EZ#MXRF9V5l-t8j;hqcWb>KJ>`Rmmrk-C%u#fvO0vMclXF>?@4!$so};U%6gW$qm6JB5$kuc0o~E1R zDZZ?wUx5lZI#(Jb8bPrzKPHc64bEaTegQbAa&}r?54j^9qRVRxfuSX`M#bD|11bx_WE^h7}ZMiEYFbL`3%`5A* zCipGIK4jQPdQbT9af~VH5Wv-ne$oIg2)8!sUEsC&&R5?AzZ^96l(EZ~gY7V0I+Va8 zaZi-)+w1{2$D)^`Cl5=nJ7`a`PmJydcYzcexinVK>jgG|I511E1hw2aTVFpM6}LL7 z=b=RtQfy@ZQ~G)I@sB56)C=J$AjO_Mw@TlP4gg+#TMvaBKfGRl0PJ{9eyTr1a+bPO zzVuvgf-kgs`?z^?hNoKsy5cMy+5>+zaC}e@iBsi`Ty;mcLeG|WtNkA;EdOS5&G$d5 CXONiy diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index 1c1061a6f2340801a7d9e2f93465e0b2a9c95b34..bd4235d77c303766188acc2196eee36eb51d84d4 100644 GIT binary patch delta 1676 zcmeDE&D8swX+tohZGpLAe3oUlrG8q9X;QMGxsioQQc|*sL87@?s)?bYrLl>ju}P9~ zvO%J$NusftS*m_YesZyXaeir0a_Z!RjY^X@F&;G}*%YA8pv}LSI@rk5I{E!>{>dU- zg=Fato;*QNX|p!>Lss&%Z=N6+%}Acs$sZ)tH%}AZ$V7qmPhwSM+P?XN#A!-wPLpvW z(`K;0gXPvyV*47!UP^3#q8v_%?a$O4DY5;MMlvO~KhU;hAv4KL5ai#y#$Y7}1=?R& zGE0)F-62$Jb7!zInL)SNA=HVBOq2XFqfu7HOutwEdL@1Dm90Dvk0^#A|> delta 1675 zcmeDE&D8swX+tohO=fadN>YkNv3{DRnW>3|p>dL>X`+#-X`+ddahiddg}H%=frX`| znX##PidmvblBs@5esZyXaeir0@?=9r<;j~Ej~bF}$mD~KL7RUub+D1Ab@Kb&{F6nv z3dzzPJb8kk(q?V$hpgmj-#kGunvp!MlRrqPZ=NQ+k%%eST7x#f-#w2J099i2NB{r; diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index 56bd41245d83182c4e5862aed514e0dbfc0f709f..27959d69c4e380b4dc20abfe8c8bab2ba4b7585e 100644 GIT binary patch delta 117 zcmeyW`Big6IHO^KxnX>kWwxb$T8e2>vZ1+=g-KFUvWY>Wxml`-p`oR*iJ`Gcl5w&@ YqNz!uv6)%w<_<)k*R5-iIH)dftiK5fr){IrKOp% Ysd9YcP3cG6q=sVZXGB8VgEX7nZd{?zq6ngg78MJEB}tP&RT>a;2uRaF z1VN&8(NPPE1TENt+7Vs^)7FomAS%5SuRREYCxt`>56(7+ocG;7;CX((otbxL^XqN- z^|ogzP|^`)e9|~)^d~07aV->$=m||x3{_K9EvCjp(E%;0>Ux6TfldNu z4p)+VsA+eH{lrbQDi@k)sJR&MnY}@ohkYZ>WQCtAexNt-^Nk%EF`X|4mT1W-bE+@Q zdxKAjIG^gf<{~YbmAr>9^|KZl&NuX+n~2^&^qH2L2?6!S|ccMHS$e z+i;NzZ`SXggME$!z6Wr{ksw`yZH@$I=i#*@L2UsH!t>VH!j|VyCJcE)aF4@Z$;m04 zL`V_mu823v@QLu~SoMocz%JZdfmXuLk!8rT&{y!Vg&KI-qcX(s)Eb0{ZL%m_9|=!y zy-4~8`0(X7a1&QDi^4G7PTR*U%l!d2KCZzLYJA;L`Uj`GXdN=_!geXZZk54{Yg?r% zaT_uyG$*#$?|?shr1O;Z6I>B@s#3{sKU6%JDYiN)$(T4Uy(QcOmH>s|3E|)gHfdI6 L4|>O?UmgDe6iU{h delta 3290 zcmbuB%WD%+6o)y}rt}df(NIi%MkLrSq?62}8KKak2%?J?6$^rrm?l`17K&K}q-h|6 zAkjMLRSSv)E!cwED;xyV)<;kfm2QgLE(F1qLZX5T?=*|7=gc4QeZSw_d(XX-Uu(;+ zwLMEi`j@5uEip1!qnqYU5{%~HKiD_K1EYvrfH~pU($$c37y}8%>>LE ztfcrr)2uUBky3NKdGy2x37xjumo5`Y zbNLmG@6CNoa~PCI8&e6rf=oU;o*w3b62oGn6za6>f&-)}-ERe)b^ z!z2~nsNXdUdtC_v58#R`!9)qRx)Pk3gV(MEwRtcJ&s$>)Tb@IiFysxvJq~{*H>Yq6 zAx)gSBHk#&C&Hs+*Do>wdvH$$S_wZ#wjs-uui#_zHSn`XWk}%3RZxg+vM5|12~Tgm z$ixo_;LC5|C9Y%^g<-0lwvSns`vYElT!X{Z_`0F=4^DN`I%L?zZBmHcDuW+aw@6ju zHe^s}j&E|_0e|k3E>PA_a7EmqN~NIlQ1M`<*~+ja^*55g|3U7)6&6 z6E!U3EIldOvWOLw*5}0RBwDG_))26mkSK-*u~L~qeZGc$F)A$7eWN77l?%BZlc!kA?-lk@YeIk{m`Q=%hsa&jXq*-?>8BErIA!Xv`M zBXYuXE!ozH?C{9QCAKYW08rHgrrCXEivg4J`XwH|wo6(GCbw1l`q{fYmV$I4A7=0I z{s~eoN8Z)GXCyfAAiL~WB)cxR*93M0GFwgHTAOK=VxKxP2Fuqe4;?)Z%h@TnJlTdV zR-t|G_${dPlOOkcxL#>dvP^q&L+95reHwmTM^49`XdtAXe zlxSZDZC*#7$5tEwg0(rMYH1!S4OlgZ=Gw5j0HwB;%|xkZUxRaPEl)+Mts6?vT<^RN z2mEOBuTkpst#i;^r@i$ON{!tP4MvV0j^B}nQfKabi01lFJ{zT8tqMn}4SQCi)UT@J zQ0iZ5=AzUyzxxKI=GDE5Qa9E6qSDxdm8kTWM+(qfw;g)}r8XQ7K&9m$z|>Q|JDZG_Nje9gO={y|l)AXN0+qhqauJo9Tj86|{N)~$n%;I9UDvO_f_vE1 z(T-Agb=IM|-n{l7lv;WH5K6t#-2+g0$YQp}zV22Tirsr>Hh|Sf)2iN+D3$fWSKaMz z{(w?v^v9yPK0VNaQuhyLfK)of*w-MIA{B;?i8MuHH&O1NjSTImx|2f~@;W1COj>GU z^UyNqo0$RS1_UxQTB^^3*ltuCG>V0w+OA+Wh-xdxut>Dd#p75f%I%-P7GtkDWu!dC zs!(o{g;k>YZk)nwDEG9LZ9}!+Mzd^usMwJ}5FLJnJ>j0ihSh8n z=uk|xYuE_I^=EJrE3gLmy1}t>x$kdbS-|bYYsN_Pc-D3nz#mq!tF8yF8;~$KtD@rl zoN=VqdgwyzORc+Eu@{KvPaI$#yrqscfd(WD?887YfAbvk=J~18OsYT4764u2TmWIS z310s1&NCzbO*3l;lOSR6sy`rhG%o*BkyydNYb+UVpq_3v95^kVy)VSxwCfhDMs}Xw zf*uuXnD*7gPvSfwZw#_Qt0EQvwhMy5Fy$*cU>g@R|FG#+$ zaF+B4#tVmU;lvlFO79?b*LRE%8);*P^b+DQr%XztoNQ?~(x|$)Vu@4*9Cakb82e|Vp`qKQUj?|nIeG5^DW4N(CcZXXN~MZg>8C&-By6nX z0lcGK==Uws+eoMAy(Yw-^y!yUH0nT`+oc8|XXhSox*|>UK@+e1my`%!X+rEzD<4R? z77)+VCd!vVExjKq&m9VgOIFAW$o4aNIC8A%;;54*RBZiV5C)CNp{CQ1 z#27rO;goz29y@i1*pKB-bc1u<;oxVoH?jc#&w>jFPrfW$GE;7=9Q7k~Jw!A^$7D+AR98QpaY2*=4+tXQO;nhk29n`<%WZiDvJ$`$UXmfL5y5D1k%7S3}utu3B+OJ z%}pl_9yDT~q1o+_{^zx&-Y_B5jkr81_6tKFdL!yR&xJ!Ub+#FrMuLHmrO!|fS44>Y zDWTtR7aa`4xLK)7!nC}wO&P+)v#p6rK384= z3g`%)gv(`Me$x~0xvh9QBlvr_vJq$kJp$pf6F3QuA62&l9WRjS)TF2n;GO=wNyR@N zZS_~Z(CLXrj#cx3b#}g=2(b^DLscK(t&Zkc)%D2J$!C4)LR$2U8Xf3*lXG1>HbsR_ zd0pH#Pwia}lDQE3@q&-l1k9k!HaN?N3eTub$dZZh%jqADY7}zA>Eh-lbvZKW>*AY# zRpViD`vn#G<+5YF%jsIH+5nU1UQ`#tIWM}bCc)&ic6A3#uIf-*Ve;s!D)KW8XSJ7h zsmOQRPVwyP>Uucm*SghG;Kp#0e|uZK1{W;su8REj!AU-JU%dyAN%ZzaINbve)qTKK z$LGk}a_V`cB7-Rj@hae|aFi)?SFft1mLC ztX7SX<1(~7e#4?&1+ET0P_Dq z7=FAtSsU*By148`?E_#je&|QSZ-&wJ%95z8CouIn=p>4|c7p57$B`$}-?nLy({Y1z vo)YA-lkzWU3BUv3_hDpS*P_DQ2!lizAG#I6iKjjCBcTY=Nc?sCJM(`5c(H6W delta 15985 zcmbuG`&U%g701`PckaC~2#mu+e39UzN^9bX439QS5MuyMiXst2RA7PuMFeYXF^VoD zCTdv5S$a~mWf3bVtf*&1z&%8tyj+PAQNKvf-_?(ml_229H9UiR|0U($*(xxLCiz|rZo1f&c35J$J~ zPmpRk^RDtgBf)`(IOKpr*?qaAI=Bmv*{g%s+D)qz$CTl*SiUZK_{h0f&Mvv-$yRK! z3LJaKZb7A={J77{{Ys0HWjRtJ+c9dEJtcCu<5KJ&5psNfj@^=|I3^?%BXpPi7Lc+_ z>1C&+_dHOmGgBe;D#yUgduB*l>e#a=6>04F{8C3{_G+Z5ozj!G2`JT`w-%r};`7g; zM8{HS^E&f9w)_APtlcS9OKhk#Xw?9kYyIkcl-g1{1ErpQ4bHWtEDfc$Y$!%^z4JO8 z@T1MYMyb=b&PH>c`qoP*HEugJ7&&`5VMjVjow4&Fn(IILER=e+axzM--?IXxepMBZ zQvXst2c@3*-8U%JR{JVS-Bjm~O5+YzpweF+$wzbDcI*w5T7NtUm6m+~Q;(g1sU@f2 zos)n1K3ZYzYzkT?=^T7EsSSrw>f)wyRQh)FMO12Tfp0qVmwQlZM(bsCUBCVc?qO4V z8%o{PQH$n!^V)wIjP74U;aEP$>oVbPvAgiym$mV`Qxh~ej`*qJ~G9bU;Ce{WfLBinGKtSwlT>hs*v4X+ZSPI-g-Cb-ba9X;0Ux^!{% zKk8*Sf#e@+jr=%gW0Uh9pL7Y$LQPP7q7I6McpV6sU%gKlHm5h%6$ zx}P|SBHjlhUPNQUr3^%@w{3fg=$p`qk`->-R;zRa7=~OMetL}bI`CDitLLx0AoY)HTnd&R{@Xyj-47_Mgc^kz-94M^BNDjsVI0cBbsZ*UgtZK?4#7$4r>m zMv;Z`ARuoNc`rw%SG`^Zhn%60LuH{{e%AYFZHzOrBT5YY@KOP_4? z_Q>IaY{;~N4kTijr-5Q;IYX%~-jMc`2M$K6C^9r4_x$4pF>>J$O#Qzwluq;{5T}hV zH=Q(i(Xf4nCXYkP9>1X2J*$Oq@u7Z$(gS}M(2tQdA3sxUvqI(p_WMn^Tn&D4rS;ly}jwi|)=+M!@|b#DnSG6r}_1 z%Zz@>hs^U7{6^6o4yP-X6WrgLJCCYqym^z-f=OxoW~DY6)AE8=We^w7wk9h6Tv-Ve z&>1`lm&?HXrYGKgTk&>9@b@ldBhUnT1j1z}a1tCps%{55ULZ55QBfbjJN6;&Zv#Zl8Nxk=pPMgG;+h~;-*G*88YeX;+ua} z6JT=N1r_<_vU9!5=vs?f50mFyR2RTGFTAWK!{qcfbq7qYY*$-g^2n0N z$amW=@vQ6WdN}9Ty3`Wj#&D5;dt1E*7i`j975VLhi+t$5dJiCz=XKFTn!=haUt`4V`vLdv90~5LU`=FH{v1wua&a+xLv1c^!f2uAQ5-vM{{C^Ne z0B=gshPu8kE`3q^09cG4`jPOPZgju0Br59-Onpu|iK4C@=RWgs#f$7u)rVXi#h6Uz^@mZGHmilQarb)?$=0+AKNlD2j28rfosV0Vomc}NA#wJO| z$p(q0CW*#oW~rN}G4e4Qkg9F+LPniU%z`XrX`IAtGx=;A&*ZJ_g=FftoZKLzy7>V| zGb;rKXl_>IuO`pylbAs+(Apd=IE{${7iewXAQH$-kpTxJw8=JLbAt>Y8wIutZ8lX- zq9g!?HruIY8ItXS3&H}MeZv(5C^A4O!-4!TI3O*xnK56JgKQUo47gby!$+n8Hk;43 H)iMGA0%syM delta 976 zcmX>#f$7u)rVXi#hMCD(DM=|7#rkQMW~L?*jrin(Trims-#%Ts-7Ul*f1{Ri< zX2z!GDQ1Z#Nv4~pG4he2ZSsDll+BjRH<(Gc5u|nUsW$$}TiFZA(p|RsEXOof^0ZDq z%OSj3mcO1nFPDL}hY8MRqQLgmB4Ol(8pQV95(boLUn=vGjG)`RU+D&UK~}lhQ8nF= ztl&!BY!|LCK%UmgcHzRC#WHNz$kcwITy`^SzA6WK+BY94FXbakYs%(RZ4Hb7dQ%z= diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index 90c3e03911b1ead7060590299b23dd8c90ad17c0..def484838a4b97f9f277105db0308e8b4daf1b57 100644 GIT binary patch delta 1139 zcmeBrz}oeIb%QsfVS%|}e3oUlrG8q9X;QMGxsioQQc|*sL87@?s)?bYrLl>ju}P9~ zvO%J$NusftS?c5(#sg&N+Nf@@c`j2o2bo$sxeJ)d((1A~kH3VKJgt+@Nl9$Z7u`!v zC~Z`C0c+nWzJQ55+c%$+>LXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@3wjWNX delta 1139 zcmeBrz}oeIb%QsfVPYkNv3{DRnW>3|p>dL>X`+#-X`+ddahiddg}H%=frX`| znX##PidmvblIi3c#sg&N+Nf@@c`j2o2bo$sxeJ)d((1A~kH3VKJgt+@Nl9$Z7u`!v zC~Z`C0c+nWzJQ55+c%$+>LXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@3_$o&s diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index 2bd6e27eba157229ec3f42fd38894fa1b216e6b7..22ccc2934edbc543e9510a0466d1b1547becb346 100644 GIT binary patch delta 117 zcmdm@yhV9~KciuRxnX>kWwxb$T8e2>vZ1+=g-KFUvWY>Wxml`-p`oR*iJ`Gcl5w&@ YqNz!uv6)%w<_5-YW-_$duvYK@0NK?b{{R30 delta 117 zcmdm@yhV9~Kciu0a#l)Gibb)0nx&bkiG`tYlBH>)k*R5-iIH)dftiK5fr){IrKOp% YsdS1}_1Im?Y; delta 480 zcmcaKo$=Ci#to^AhMCD(DM=|7#rkQMW~L?*jrin(Trims-#%Ts-7Ul*f1{Ri< zX2z!GDQ1Z#Nv4~pF*1>%Z8D=o%w|>QWn^ld9OK15Ii0nTboT-+F5Xne}*2y(& j!kbre?mhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi5|e)RSL delta 1690 zcmaDdi}lGY)(z2&hMCD(DM=|7#rkQMW~L?*jrin(Trims-#%Ts-7Ul*f1{Ri< zX2z!GDQ1Z#Nv4x~7(bJt>mhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi7kaOpw- diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index 82fe76d8c9e19c01f5359c2ec4e02fae7336ab5d..2c95266038f505fd2ab8966e979acd8b46f30aca 100644 GIT binary patch delta 1932 zcmbRDmTBHwrVZ(gh6Uz^@mZGHmilQarb)?$=0+AKNlD2j28rfosV0Vomc}NA#wJO| z$p(q0CW*#oW~rNJFtU=NZSqH!#LfE56Uozhk92oVUZ^`|^At8A4zje)*qqOAL5^D& z>dx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$*jrin(Trims-#%Ts-7Ul*f1{Ri< zX2z!GDQ1Z#Nv4};FtU=NZSqH!#LfE56Uozhk92oVUZ^`|^At8A4zje)*qqOAL5^D& z>dx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$WNz^o)H%z2ton~O98*^7MvEzPx;;hAv)XDY`;Ya4rc ztgN<{7|zne5XmmlMO$F)0gq9U)=e)|NJK=5C>2CmT~rrQ)_KNI+PnEqf57Ma{r-OE zcV0LTW0r?8%Q=-S50@+6peN)h+1Oa>^DE^`m$`jDzuT#nmj&F4;&HhZm)qy^JJnLR z>MAP>lr%Q`TT5D-+qU`xEb1*{*T^j;VHHW%^W2oT1Vi=XH>r)CG__zjKaqCUgrRK6 zp39$Sw1L6n__(!>V(xs%K88Cxcxc8^&{+m|@Z-6QQ=#A;%vo#WowE;MUDx=bsbyS2fChIQw)-Px^n}H=DCicrK+VFDbQ4Cyuee3O+*v7Rfg=4 zYZJ3ons{Dy9#(H0XT__nY`CTe4J#oEJv-W&j6^8VT~s?l~aJ z3Ielv&KbpmIkTO87B<%V4x{XW`t3HrI z+Vv+oEfQUnqyy$cD*WLD);8+>jdd4I6OY~GnK=o5RR#Gc3*+@Yn@PIfA0#I6XEo8% zl2kE^f9nY}HnJC!S+Ycb1KDItGRxW|c+nFgOOeOOWEoN*o4v8iwlJ1UsQ?VQ!3Om!!*V5t z9>~d%Z)b7&2Kf(|jBlkJV$ofa3e5WdWu6a`)89enm-__ycbQ5fWPb{Qtv97$bl4#- zJR%`fM#zPl56)P8l`Z1X2)VZio3Ws7v(xFlnY0Vos}pT71de4=lPJli)%l6X5OQ1x z!3G=_6$-7H2bd15roQyVIbCw?;-;78%}E?K&RMZ}56uCpjkB4Zv~XtPzDDTvY(-g- Y7}2Q*FrN~*9ivs)OQ>GR-{A`S1s`7p0V(#&lgo>2qGN^Q`r(ekmf zcValv!yri!U2FyJcEDrQlGcqCyAcr)n}||Dl)GJ27g6q>XAGt8<~#iXpYQkk`<>r; z;XI9)o<>Z+DP&cBO`z6aTNupW?)A7`g$}3R>sAWfZpBsL+-~<2uC%-Cg0Vju zQCxm^er;n-FhAJXvb%$bCo5A}s8yq z9#p>3KZ&A~bvKcbR6-}^L1pHL0~yFzDxom1ZW=*4tfQZIA3*BW(W2G}>KbX&09USr z)&LmO!`AJGE+HN5SBKF$S0CDo1`Zu@qOMKHf~f1Ilk0$O&U3>DQ-Fg-2?cm@?|cwt zId$`R`W1%>b7ma_CN|Ok9;123z=9tzlr{Zj4(n*vhqb^ih}Qb#<1Vz;8=w9IT(zMD z(yBezXrAb%BpEOlQsKBASlh5~E9=dhC7!v+OJf}TrXq474db=Wog`Ts3=o4jRZ7&P zI8}_|awUPrM)qPlOPUz0B0DT`X8Ab|Ui3AP0^~6=U4|5x!`@nDTN}wUanZ9J1k`h^A zvJVKP{l0?MixuaI1-Lq+u+}?FjAHaEIRhLR(+X)Kr;og_#op0r1z^Z^HlW=al`Apw zL{5f$JBvT=l54$@Hs}X+u1tVS%|}e3oUlrG8q9X;QMGxsioQQc|*sL87@?s)?bYrLl>ju}P9~ zvO%J$NusftS?c5oj6ccHRmc;zS%7&RITix7PA+KXpB%zkNS4J_n+w=3u#&EIb0N=b z^4wd$nTLNq6X`Zio+wqnIa;Wh99uzJ`$YW7wY69LG8tMoPn5buhBmN2h2>1hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGn5cv;K< delta 1199 zcmey>$@Hs}X+u1tVPYkNv3{DRnW>3|p>dL>X`+#-X`+ddahiddg}H%=frX`| znX##PidmvblIi3Lj6ccHRmc;zS%7&RITix7PA+KXpB%zkNS4J_n+w=3u#&EIb0N=b z^4wd$nTLNq6X`Zio+wqnIa;Wh99uzJ`$YW7wY69LG8tMoPn5buhBmN2h2>1hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGmb6;W^i diff --git a/master/.doctrees/cleanlab/internal/neighbor/index.doctree b/master/.doctrees/cleanlab/internal/neighbor/index.doctree index e19de58382e20fbea93a8b608b377ac23fa55fdb..8d2c8cf0b4d229c75c5e8937af10d9fa1725c1bc 100644 GIT binary patch delta 122 zcmX?Va@1slKciuRxnX>kWwxb$T8e2>vZ1+=g-KFUvWY>Wxml`-p`oR*iJ`Gcl5w&@ fqNz!uv6)%w<_5;oJVqpI)1Ry$Aia48-&$?}v~eRd delta 122 zcmX?Va@1slKciu0a#l)Gibb)0nx&bkiG`tYlBH>)k*R5-iIH)dftiK5fr){IrKOp% fsdWXiQvnh3jok}kSuGpNQeu+{S+}B*rOkr#o>%F1W6=w{dQ4kKm#4WKo-XxNh zY>#kn_P6TdBujhl=5iNLGW@^!qpPGY={8Px!8Ao_hi9FZa2{_Q~h xKiNsw2eNnZc0Msi^*Hi0*KB`O!Wc?sh}Ud?QpU()L%Pk-dXIm5(`Lq*i~yblIz|8h delta 1927 zcmbRJif#5Qwhe)dHkrv;DM=|7#rkQMW~L?*jrin(Trims-#%Ts-7Ul*f1{Ri< zX2z!GDQ1Z#Nv8TK`N_rl#rdU0$&(YA)i-ZptYtJL*_6p2U85%NVQwH#=jP)qNi5`P zoqU`{c=K^iSMsz+PgbztoSdL8ym<@XJ~pyk05d{jv%J_2@~Gb@NtX89&E+nhWcYvcM^{N*(rujX$jcZz`CO6Q=557hWLS&PKcm!0k39Qh zCd(;GP2O6pzInzHKQi3_He++|vUq3m+>kzb!wdG!-LI6$h;&dGK=k{3I3h#3{o8^1 xf3lOV4`lD+?R;X4>T%?0uG#*mgfW!N5U<((q>PcphIE^u^&bEBrp=5q83Ev9EQJ67 diff --git a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree index 8437b4e68b216b7aada272148b15484e5422bdca..899f6edd865b1847642740a4f6f410afa1d95596 100644 GIT binary patch delta 1023 zcmZo!!_=~dX@fVTVS%|}e3oUlrG8q9X;QMGxsioQQc|*sL87@?s)?bYrLl>ju}P9~ zvO%J$NusftS?cB*#${w^n|wheWOCIM{>j^z3rV*WqC*KEsC~12 Q?lv_tYzF0`swrKJ040Vk(EtDd delta 1023 zcmZo!!_=~dX@fVTVPYkNv3{DRnW>3|p>dL>X`+#-X`+ddahiddg}H%=frX`| znX##PidmvblIi9e#${w^n|wheWOCIM{>j^z3rV*WqC*KEsC~12 Q?lv_tYzF0`swrKJ0Dw&0u kYW*hWCr*~u)%*mT?RlQ>d0MzQ2mH+?% delta 527 zcmX@{m+{13#tq(#hMCD(DM=|7#rkQMW~L?*jrin(Trims-#%Ts-7Ul*f1{Ri< zX2z!GDQ1Z#Nv4}?7&nliZE`I071Ax6Y|B}?`8ta!3+Y-n+j2^?lCBMCW76i=d=>0u kYW*hWCr*~u)%*mT?RlQ>d05l4d(*OVf diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index 0e0986eae9c136de390b367dfd91f267ca15e3c8..680402b8a5e1281441130e3f36c9f6bea7c15bcd 100644 GIT binary patch delta 731 zcmccgg7MM|#tpuVh6Uz^@mZGHmilQarb)?$=0+AKNlD2j28rfosV0Vomc}NA#wJO| z$p(q0CW*#oW~r0w81IpxD_+!P^F^jPg=ATrG*jrin(Trims-#%Ts-7Ul*f1{Ri< zX2z!GDQ1Z#Nv4zQ81IpxD_+!P^F^jPg=ATrGwgu*f@mZGHmilQarb)?$=0+AKNlD2j28rfosV0Vomc}NA#wJO| z$p(q0CW*#oW~urq`N_rl#rdU0$*GeArSvA>W4vofvME5FS)0R{7ci2ib^25uM*hhQ zSPRM0-nID*n;sikTKhKdr*V^+tfWxB*2Ua*aC^Oh|NWZJ&DVA~S|@@(Gx;kh}Pwod-=TyXMiH=)hXUWzD@ NWqa0kU=cr$5ddx>@rwWe delta 1704 zcmdlyhh_5|mJP*>Hkrv;DM=|7#rkQMW~L?*jrin(Trims-#%Ts-7Ul*f1{Ri< zX2z!GDQ1Z#Nv8TK`N_rl#rdU0$&($~^e5kAylY6ZA(I28vNne?FJL53>-4ESjQo=q zuojY~y=(IsHa#}7wDxV@$y-UDqx&|0?bm81E!?@&B_X;WY`GS8ljv+uB|PqUF6z&PU9vsSxKRMv%hW_c@8e$ z?5lr3ge+ULC*N}x+`P-hm^_;y+Gn|a*Cx|;KQZ3TR>dad+78k#UK%G)rtR~k**8l} zRU+4RkoLRNbY;o3yoZJqq#x!~m4ZbF-%y%bR* N%l548z#@JgBLJCuckNofT!j&{b$nntuE62}Bq-joVO)GWwGoMR)J z7$SVfZhT=H6+?VM=fxaZShmbzoC$<&vL(!Iz>;M@j6pKzN;1g4EzUpS;SYG8&vVYb z=X`J4(FNn^g7HQnv+c{XRrvGw=C7@-URPOV%gb5ssI07VWc%`RYaBLPzTIK7J1Xr} z*}ioSpFKCXMrmf_fNIKGAcwe)V^R^!)tD5Qwh5BgNsq430!bTWcH&l~OH_ag$doB-K;~x-q0$du=t8B#*)6E_XZs~o zx;n20l|H|r4Lwu$MgdTz#Tfy}!e@H>We+Mnzxe=K=fIZjDD{H76`)G5XBs7bTVw}_ z;qG4Cz8|IDDu%ulp*cOh1Gz=vz~AiL2GlCOrITo#V`UWpF&uWZ!iQ2vD?3r@V)ZVR zI={OerKbCH0IEDv{{SUE3b+7b_+Y+k@}kr`2iBt0&bJPt)Qin^DD~>w{U~+5wF9ME zk9-PHrKN2EC04iZ28il)@XOkxZY}f{49KF6S5d0%#KRRJ^=fxFMh(bG(T;XldwL$F z_VkpY)RX6KqtvVv7CD}5-n>smfqtN+GdsPtdigi4JB-(lBaIYRZ8 zHp+sbQxVY6mB@{SNo3hJK0 z<%%n)rMrxk#bX}gtcMxtY$E#=J3D9CK&S><(qynNRxT%oa}(=XRt(i3nf7~FoDPg} z;x1pIq}$D8c#Y*?`@$*yHxYX#cr1+DH?NysVEK4LMX?_`&-1Wr;7q7tA3a4I8(X1a2XHDUc<(w~v6 z51r20znMeWu4 zWd>~VJ45xPik2B>6+b>^|KK&HQhAV-EF*>PRwiGwoPKm?@@K`p`z%(d{m|1NjK_dm zkQyWTbKqSSsy2aA%=`jqpj@vp(M$2X2wc8lePkMMMu&CZLA_|Sb1f}8_BW>I?j z)sLf_$J5MXejWX^s3w%O$XB6{&`gUaS==#cz;_0z`j5fvVj)eFv^0voL`@dhMp9jl PCqhfCfYkqkzt{f<{qHu- delta 7878 zcmbuE{ZHFf6vlIJ*A^+#miPB9IBP=C71{z_CaudHl4fj3MkWrh(6LdW$XE})gW*ZCH3!A$vXBdpe$ugHfP=_Ws6)-XWAVT7tB@yDcW$q7n_yeBj^PF?< zIp3Rhd?{*tDe77g%c-yR`)YgzEgR~bc@BF)j;+S&@a8%kUVE;s&YD+{Z?#(soX$L( zBj1QE_XVA$h&@=!(pcv{71_38MyN$J#9@wJx(9rM|j;CqR`mmSI4q%vb`_nKgn+KX|qWm5y55Q0dRM3#jy| z{5`1jnT;LjnHFyn09Be@5r8awrZ->kpwhEjTF^R&w(dZw=Zf0_sx0-)qQq}YYydIb z-Sa#4qtqK^(6=Hqr>AxzwzyhaIo>qSW!4Zj`$0+l^8e z_jaPx41X>_m4_Sdp~MFPH$V&@%y-SDDD_s$29(|qO3gWbe+@{z+}n#$19Dn)q8-+rT12UR zeU&Kn#K$*L>cUw+N?q)~h*CEXz*Ntr0hHQv#fjGHzxEd@{Z}@l(kO!OuzR=)p_W!O z$-Tt|o?SGwWMb4Amfo_Ip^o4vca9 zHeaJ;*i2-2ndM^p!X^GU5&Nci98H!nlM#yJ7N2`rJiT7a(y?#oBZKIA_BM7y-C}zy zOQXa#HiS*cBZFOsST^>PkV~Y0$YM#~%`RXGT%;OACqf6{QpSo*bmGo6_KfyIdEd1j*fcUfN)R*DE&k!q!nUxk74OKB9f&M_l88=({-6R|s}UhRx| zX22G|D^yRKXq#ge@#91G4_;FmRRvl3DpKffWbyT@=|^uCe^T7J%i@IE4?X?Ccr3UD zsVR~_4c=9uY7;5d#Ls~S%GEtadOm@dfXg?mk4)#S=&-(VKrfnXTuaM#UVs+y*yQ>~ zej*yXR!Yd^vl4Egv0{D@+*=_NQcY4L;SdHYdxamv`39<};ytK-;$RE~YIy`W8cIkX z^zox9VEx&L(!_K9Jf1S&;nQdlstI+y&kGG$2-?)mkD>?I^`41dJk5RRGDz;{eo!lp zNNyCJk=#TvgIos=6R9p2L9J4FGLeRd`2%n>hxPU^`E`&Vdc~PV{S=R-wmZBLJpZr@ z?Yqa@ff&L&%gd=@ihl+4fK>4W09AjrS$V;VKNoncQ0Zp+`gi^b5aF>Esa6eO7Nu`c z{Wuo$1e$xuucDt8)r69l`8xCwnq}6ch+9St_|70z{}Gs7ETwCbS4PpBq{#-`NUF=R PBxs2hlKOw}_xk?;B%uMg diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index 76388155a08b4e18ee063a1d31489abe8a385acf..837d2cdb2037fc41b2ab98d74153958c33fc785b 100644 GIT binary patch delta 1783 zcmcb6gz4@PrVYW2wgu*f@mZGHmilQarb)?$=0+AKNlD2j28rfosV0Vomc}NA#wJO| z$p(q0CW*#oW~urq`N_rl#rdU0$*GeKQ)MTwW!z^-vMFGl3BtOYpE0#DlCOR8{ssJ# zzp)gOZ9>RqPPPy>vb9HSX6C)dM1l5tfyrcQ-<%+Ph+M4&V&}=!Iypf&a`Q7uCGz7e za`SrW9!hL~B$q~s_V*jrin(Trims-#%Ts-7Ul*f1{Ri< zX2z!GDQ1Z#Nv8TK`N_rl#rdU0$&(9Ju!F=)W%4@_R0Gf z@K656Qb@K5A)7hbLfFXG9&J^!w%uYR@ULIZjKGmF$$}xS7qMkdG4W_GaW} zlMjAAo3FW^;ULfU%^&>ElJ9TR%?_bEn8~vlnAS}vJA?{v?u(p7i3?W8oA6NJg4OZD zn@e-@$#;R?=7b`77P4KSH#wn5WHW#Hb@G#s-eiStxy=o2DipY4vqHCuDA}IS-MoLn GJVpS_i}?Eh diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index 9abe197540a2948de2e3969324e3dab3fde2f090..d008d5393f8c540785a5918e610cf65d8f5442bd 100644 GIT binary patch delta 117 zcmaE(_C{@kH=|*JxnX>kWwxb$T8e2>vZ1+=g-KFUvWY>Wxml`-p`oR*iJ`Gcl5w&@ YqNz!uv6)%w<{HMuY-DH);E>@401`?eLI3~& delta 117 zcmaE(_C{@kH=|)@a#l)Gibb)0nx&bkiG`tYlBH>)k*R5-iIH)dftiK5fr){IrKOp% Ysd@40P?gTYybcN diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index d6c6c35932950405dd00ad23d71e8285b3658fe7..4d9b4e782c5c298ad9ba6cc21c320d4734096298 100644 GIT binary patch delta 4131 zcmbuC-AmI^7{__am%U}?R2G#^YBWsS@8{-TVuBZ18|W4+qKiVDZkZ+}%?KN$m=|J& zaDrnYIs)k`8yxUlNv#qB3#^E|5TP4GyJ*mbMG76~>VD7p1HRw$d7g8g=gZliFW8<-oL2-`c9_IgLV-RX?50l1Z) zyNslKUe;E)QH_(*;A7ZN7V2Usd4R+ljcn2WC=V?+u|Mv?y%O@0hVOfDau#na)#NT^ zDc?_R?lN&vA?6O1;c5-B59j9&<4z^|SQw=YkmQ7(C<8{O>z~A4v9MsuKm;)nqGSIE zOw1LJA+I@Ggo(A@IU`Hq9P-OjRNXx)OR+XWWhp90CuJ!vjYVZCA`d!cDSF1kvJ}@y z3vMWPUS|;vdci_^=^NaLvE;<50-ThrCW?rUTFBC8BY8fZ#JRB5L=6&vjXq7|A}hdt zJ?kyS0TU%vOl@6olXbstMC|X(S`i-1^X{AuiC|vYN8@q0$ojw3AQvMuuMFd2BtWLt zwdBOwS0ubpvxnbi3sG`EJzD`flHST^i$9id?f>tgVaIFoSytekx3Ac||2yaJw*TuwjN_+$PK#lpX_QGGz@`EpP!zz(o(D z$nyDkHGD#zyW4x+NkFEdpPLnUB6au`J0L?a+xA#J^hpuibAu`|gypo=3u)v4iDgpG z-#5S}E=NQQs-TQCQ!BmQ1aFZL8ISeEW$rl*%UBRmiJsa*py5+3V8A76W~u49aJh;L zM?WoAp@a_hfu3x>y1{3i!wa~`CLRL#csz8hHx3dg=OZ280eAv dpe40y7P>qJFYwRAz=hF*0cGIj;;%iM_ZP5<-8ldN delta 4131 zcmbuC-%FEG7{__a&ABZzH)T=jq()+z@7&(`E+%-PZsnAu54%l?@JfuB5Dlzyd2GFGT3Z&@LKuVUa?|xw`i`f57*9KF@Q`^L#nmbNcN$ zeaa8c&Z}LKa762?j(R<+TXVX?UNuyssv&ocE2?<3TE(qsUa!Zc) zjLbLrSX=H!1x`v^AHzYiP!mJR10-2*VT-OuIcT|!{n7gOOUMiBzVE}yS+d@0*t?X? zH~q}pyG&eEkZHjpT&+R&;o|I3+^NJA3!{_)k{UA+C1GL4_&D~8g#}X*?TCpG9s5UM zW3|Z`@|v?n*jUS*bFvhk0lzFo+1=x^6l+6NmZEfcT$bX>NK}@h{Xs;QqI)zfOL2oV z`DnA2>)4eS;e@mKr;w$4SZRR6c2<4zl#wLY_~ia4u|hsuBsnhM%T!kriOS zp7mI9z(koZpw%64lXbnWN9^y+S`i-1`|g4fiC|wjK$A(h%;H}vk&BVpR|au05+D=n zdF0gES0ubpvxnbia#3#UD$!_W$=Vu#>+VakIDU!O~j|N95`-(3du7 zLwcmjp_~}whxo_CFpYZ%ekx3=cu6TZaJw*TuwjQm+$PK#SWf^lnX(3}4!DFQ;Gzdn zWchrw0zM(n-R-^cG$7N^&+Q64kvhE71;`N0wmqgouN1*O4V)4~SWH`dkVX!WSSH2% zeI0D#azwPC42no2EvL5|;4Km&f_TL(2CvBJ5F3Ub>l)Zi!wO?IxeD;Vz*-kL%0m#!ZPzh%=FlO d$Rky24!S%7FYwRA%!Sc{8D-$(;;%iE^B0D2!g&Ay diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index 7f207d1570922bb14065eaf63451fc635c9fe83c..f1744eb80ad341c4b0c55ad70ec21a36e0200e92 100644 GIT binary patch delta 1709 zcmX@x#dWreYeO`nVS%|}e3oUlrG8q9X;QMGxsioQQc|*sL87@?s)?bYrLl>ju}P9~ zvO%J$NusftS?c5-#v5ela#VKMe3i*vo;n(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y+H=?!Ev3 delta 1709 zcmX@x#dWreYeO`nVPYkNv3{DRnW>3|p>dL>X`+#-X`+ddahiddg}H%=frX`| znX##PidmvblIi3g#v5ela#VKMe3i*vo;n(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y+Id;|c%( diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index c290a4e7fa0a5376492199b0be0ab19715ac3486..e1079847bd0b9622d49f28950549330667641f21 100644 GIT binary patch delta 1200 zcmX@z%W}GxWrHuHVS%|}e3oUlrG8q9X;QMGxsioQQc|*sL87@?s)?bYrLl>ju}P9~ zvO%J$NusftS?cCGMnN*PO*WKE+pNaCgqd_3L0Ts#vNw>WbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgV34Tc`j4 delta 1200 zcmX@z%W}GxWrHuHVPYkNv3{DRnW>3|p>dL>X`+#-X`+ddahiddg}H%=frX`| znX##PidmvblIi9;MnN*PO*WKE+pNaCgqd_3L0Ts#vNw>WbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgS|DQ%nE= diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index 4e8d48ef75c3b9e4722ffa5ea916d99217484f07..90012b1e1007cefdb8053ecd1fd66c0077534b49 100644 GIT binary patch delta 751 zcmeBL#@e-vb%QsfVS%|}e3oUlrG8q9X;QMGxsioQQc|*sL87@?s)?bYrLl>ju}P9~ zvO%J$NusftS?cB*Mm{pMO*aT+Oy8`;JfE3#D?xgTC#SL(lBYFgasZ#|<_R3ytYqrn z9Kd&kOfQ4%*4lho;0Y6%b_4ZmZY~v(WFuFYkNv3{DRnW>3|p>dL>X`+#-X`+ddahiddg}H%=frX`| znX##PidmvblIi9eMm{pMO*aT+Oy8`;JfE3#D?xgTC#SL(lBYFgasZ#|<_R3ytYqrn z9Kd&kOfQ4%*4lho;0Y6%b_4ZmZY~v(WFuFkWwxb$T8e2>vZ1+=g-KFUvWY>Wxml`-p`oR*iJ`Gcl5w&@ uqNz!uv6)$_eoB6Fv3_xWX;E^j{^UXqjm_5?MOckUHwUO!d9wri7j6J*VJPtc delta 139 zcmdm@wnc42A){Spa#l)Gibb)0nx&bkiG`tYlBH>)k*R5-iIH)dftiK5fr){IrKOp% usdMWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~v(k*jrin(Trims-#%Ts-7Ul*f1{Ri< zX2z!GDQ1Z#Nv4}C7&*w%wvp)MWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~vj8E3i diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index e451b72f07ae60877d0805dfee0a52104a0cb1fd..79c0e1c0d1f159daca5f6b1d0af5aef026598315 100644 GIT binary patch delta 474 zcmbQRl4-(9rVZYVh6Uz^@mZGHmilQarb)?$=0+AKNlD2j28rfosV0Vomc}NA#wJO| z$p(q0CW*#oW~q~F7&nrk%Yi3o@&=|w*jrin(Trims-#%Ts-7Ul*f1{Ri< zX2z!GDQ1Z#Nv4x)7&nrk%Yi3o@&=|wyg_K&uCa+ZWy0snQf_`mSUQeY-ny|VUm=TY+{gTZkB3dXlQ9{VrXoVWSne} XXljyZY-X0ac>-fEIokY~_i+ONyp|yv delta 117 zcmeB?>yg_K&uEyLoRyN4Vo|K0W@%<>Vqs{UWNDgcWNMmdVq~0VU}j-%U}9ilX=!F` XYMx@2Xp&^Qc>-fEIokY~_i+ONoev;H diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index c1b6573d67a26305f41b80a41fcbfaa55083c291..7caa8d5f589c4afdcc9355c8173926f9eabe3507 100644 GIT binary patch delta 1704 zcmdlyiF5NL&JFI2h6Uz^@mZGHmilQarb)?$=0+AKNlD2j28rfosV0Vomc}NA#wJO| z$p(q0CW*#oW~q}a7~hhiYoVau<|j;cOyp^uKGmIxfAR*_Lb9}1Z9c>Hk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^0Qj@*Y5)KL delta 1704 zcmdlyiF5NL&JFI2hMCD(DM=|7#rkQMW~L?*jrin(Trims-#%Ts-7Ul*f1{Ri< zX2z!GDQ1Z#Nv4x47~hhiYoVau<|j;cOyp^uKGmIxfAR*_Lb9}1Z9c>Hk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^01|WIwg3PC diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index ce4614745795e268d00885fb329128088e771012..dde1f1ccdf2e51a72797be19e217307c4c55842d 100644 GIT binary patch delta 2429 zcmbW&%_~Gv7zXgp^*xA~g}5ePQA}p;+-p8e2*V_?z*Sb$+%cMrg^gz8tIR?P>8h(N zEJkLf)QeNHlaigSg=xf6`B+#fSN?)|{(#@}yyrcg&gOw-^T2X8#-v4$6q@(NeU7== zE-fN?TwX=fB8oHYaYq$N^2v%ME1Dc}hP#xo>~=@>RYriy`ls|vVU>O->|vUo@|FdR zn#JpoT%(HO?-Gb^&{fqgvfiwJgMO^H*in;|sCma)lO)!ifUT*74U}YWyhN$d@{As} zv+W*jJ#Ak>TQl}!ur=j%f|A}`QIr-v;HKF4vrQ; ztqUZNBrG5eP907_RHaxtRgO_TmTso=i%AE@Y5Vo16r=j~Ydu*%cRDa`jEhX<0UHZp zSEc?347ISC8gPQ6AZs#$Hde`}d)N*3EvVc~$*%<`=!-K^-%3|fD`Sx(F}ZXG>b{*nFOS=(G>KB`5PCD)8! zmV8Q^SMy6@k0gbC9`B4>R@&V@x8nE9Ua37Qhkcr)uQ38tCNQq2^UCx)VGq;vl(QmW z)GXeBZrtl}MOjgwe)0=6b&4p5S__7bH=!!vr+ z)~0*3^|W~vZB09m!PcbW1|_|Drcs(N=cDvSc>^eA0>K>Uxy9+R`x_Y!WU8g)eaJ NhG}c~#jr5e^$SFa#B~4w diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index 4352ce60b1002ca04c955143e328b674f5f7f9e4..6650832b347eae53f7ec388a49bed93178b0d6db 100644 GIT binary patch delta 1486 zcmZo@W@~6>+u+M+SYU1#pJkbCsh^f&nv`s4Ze(GSl$2~@kZ5j}YGP<;X>4L>Y?5T0 zY>;Sbl4xvZmO8nP@h};>KByUOUc$7Bg*>g(SJX1{Pd>n2NS1cj&C5Ah$+OvY@^TKL z%_h9OtYq2jGTA|jb@Of^0e14VZ+4K1ASaGKsDW(e*eoiuii>ocH-At&L7uH{oAot! z_mghpWT=BDr|%3VQ}=?CvYUN&wUHOiE|V9WRN9=m|0a3fhG@TeFqw&L$182Vd?b|; z+s_}1A=CEF3r>o#k?HUWd$~3nUpPQUA_GS`NPE%kc0=-PpC-o0y1kf}(UeT8_WQ;YP^I1 delta 1486 zcmZo@W@~6>+u+M+n3KByUOUc$7Bg*>g(SJX1{Pd>n2NS1cj&C5Ah$+OvY@^TKL z%_h9OtYq2jGTA|jb@Of^0e14VZ+4K1ASaGKsDW(e*eoiuii>ocH-At&L7uH{oAot! z_mghpWT=BDr|%3VQ}=?CvYUN&wUHOiE|V9WRN9=m|0a3fhG@TeFqw&L$182Vd?b|; z+s_}1A=CEF3r>o#k?HUWd$~3nUpPQUA_GS`NPE%kc0=-PpC-o0y1kf}(UeT8_WRe2C{qr diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index 36a21198084dbbffc1fde9591c42b013476de555..b08daf3d8d9d0ed6f9bd462544c6cdaecd9a0640 100644 GIT binary patch delta 2066 zcmZ4ggKhl}whiu#h6Uz^@mZGHmilQarb)?$=0+AKNlD2j28rfosV0Vomc}NA#wJO| z$p(q0CW*#oW~q}a7P|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY DsUt_s delta 2066 zcmZ4ggKhl}whiu#hMCD(DM=|7#rkQMW~L?*jrin(Trims-#%Ts-7Ul*f1{Ri< zX2z!GDQ1Z#Nv4x47P|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY DZL>OT diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index 56b65bedaa94ae1be5975bc18c7c5852280c68a1..e3a081856a06b29fce075e255d7afbc3c00f81da 100644 GIT binary patch delta 120 zcmbOwJ4<#$Fr#6CxnX>kWwxb$T8e2>vZ1+=g-KFUvWY>Wxml`-p`oR*iJ`Gcl5w&@ eqNz!uv6)%w<`%|wMgvl{P3~tD+Z@R3$qfJ^c_DWI delta 121 zcmbOwJ4<#$Fr#5+a#l)Gibb)0nx&bkiG`tYlBH>)k*R5-iIH)dftiK5fr){IrKOp% csdFcE5hi#g7yq_c|D(h!0-FkT6^ua_FkOLUYyN- z;8XNYkM3(L36&JJG!+LMbwJVvF+o7BUHtT;1wo^)SgYg*T<*nsa`ARO2o7pOg#T2h~DJn;; z%uMITmEI$eN_Et6%f$CvnT-#{WKhX^=BCePmITg5rk0i?DYq#L4oBldrEE172qqH|p1j@>MSMoO8A-KpxR6d@^c9k^H|8+8{jK~nAMr}=so0eYL{Tlc%k zc*Rn0BF3Ly&+`|})i4_)hH6Tk}RDVR&xO790) zLpEUl=X9#}#uW3@P`ihMfkz+bgWZe3n#+TwA2oH$VmR~A}2A#<)5S{SaZ6I1*brdUiK)={$ z*GH->V&85p+qgSF9%Os?(-O5%SOUwp8W)hqm5!kmBHIM-_b!9bsOTITXCO-Fx=?gx zB!rz*RLq=@pssUcgre&%O`>RTyaPamE%6h;WFtkz-Rl+_>}a|38gR_y zdFtLlw2NZ*+fmokkIn$D!udD{o2F5*K<@y@Oo{5A+(PrbJhdHl?S2+RT?b#3qprc} zG1OI`O`@)*xgOMY&8te(^~XFswkwnQ*lunR3vVXv(6VR{+Sk@j<0w7cuOyL$EV*V{ z8B}6<#!b1>!0LE^r;<(iUCIeyv;L=GJE^2L7>_|--g;hBsO0m6nXRIDTnSj0qH@^E z%yf2K={p3e)as6#Ccf9oYHQ#U z$_4EId@nZB#|v!0u>^%;GEcLiYU2tdvlsxgucw!GHH=K+zln31xRpMwSA%H%NPf=> Qwi!=cj;jiizwt!YZ`kXSBme*a diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index f57329f3c2852b0cf3f5f57aaa6397c0868a850b..76bedb35b9b59e71740101f062494f6c494f40e5 100644 GIT binary patch delta 479 zcmaDpi}Cp^#tpHIh6Uz^@mZGHmilQarb)?$=0+AKNlD2j28rfosV0Vomc}NA#wJO| z$p(q0CW*#oW~r0=7;lrI>w&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J7*jrin(Trims-#%Ts-7Ul*f1{Ri< zX2z!GDQ1Z#Nv4zg7;lrI>w&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J7*jrin(Trims-#%Ts-7Ul*f1{Ri< zX2z!GDQ1Z#Nv4x)7*`sRtV@4#Ah*oq9%h5dk!<{vH!<~)X~gCpW`8C!^+K($C11Pl qjdq#FcIHO^KxnX>kWwxb$T8e2>vZ1+=g-KFUvWY>Wxml`-p`oR*iJ`Gcl5w&@ fqNz!uv6)%w<_^YMMkA87=}(@(BDUF=xt<#UmkA=J delta 122 zcmX>jdq#FcIHO@^a#l)Gibb)0nx&bkiG`tYlBH>)k*R5-iIH)dftiK5fr){IrKOp% fsd!f%(t`<_+$Qh6Uz^@mZGHmilQarb)?$=0+AKNlD2j28rfosV0Vomc}NA#wJO| z$p(q0CW*#oW~q}a7$1_MOP9@lPt%^Z~iMalaEZTYFh2VWNCGuT;D0a*{1F^7kSz@*LPmCAw#P? LYv|_N$I=-AZOqPU delta 707 zcmX>!f%(t`<_+$QhMCD(DM=|7#rkQMW~L?*jrin(Trims-#%Ts-7Ul*f1{Ri< zX2z!GDQ1Z#Nv4x47$1_MOP9@lPt%^Z~iMalaEZTYFh2VWNCGuT;D0a*{1F^7kSz@*LPmCAw#P? LYv|_N$I=-A&E3gn diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index fda1cb45f0886d5e108d37b1a76f223b62ffbbea..5f563cbddea9aa21856b1a73ad149232782c3d4a 100644 GIT binary patch delta 1026 zcmbO`n`Q27mJPm)h6Uz^@mZGHmilQarb)?$=0+AKNlD2j28rfosV0Vomc}NA#wJO| z$p(q0CW*#oW~r0w7+;aDYx+fQM*qz(m>ikN(;Gc`D{CQnT74$_bMa69ASk@~D4QZH zWoC$P?&R4-MxcSb4|9k3=6if?WCjD+jLjbe=TqngiOt3$6_mIE7@iWF{l%ZMkQ<)$ zQi7Wg$?WE*L_fFgPcL%y+X;$po>mdeONsvKwmNTe_2-KUY;L>c!A^<(=v%Iar0d@f IOp9k20jC%%9{>OV delta 1026 zcmbO`n`Q27mJPm)hMCD(DM=|7#rkQMW~L?*jrin(Trims-#%Ts-7Ul*f1{Ri< zX2z!GDQ1Z#Nv4zQ7+;aDYx+fQM*qz(m>ikN(;Gc`D{CQnT74$_bMa69ASk@~D4QZH zWoC$P?&R4-MxcSb4|9k3=6if?WCjD+jLjbe=TqngiOt3$6_mIE7@iWF{l%ZMkQ<)$ zQi7Wg$?WE*L_fFgPcL%y+X;$po>mdeONsvKwmNTe_2-KUY;L>c!A^<(=v%Iar0d@f IOp9k20jZ!QZvX%Q diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index 2a6ae4398e91db7fe0b761df1add81b0859ebf5f..b23babf75ef0454975a028a4c1ac20611e7ac503 100644 GIT binary patch delta 483 zcmX?gh4IuC#tq(#h6Uz^@mZGHmilQarb)?$=0+AKNlD2j28rfosV0Vomc}NA#wJO| z$p(q0CW*#oW~q~F82^)@>n?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5ditZk2wGU delta 483 zcmX?gh4IuC#tq(#hMCD(DM=|7#rkQMW~L?*jrin(Trims-#%Ts-7Ul*f1{Ri< zX2z!GDQ1Z#Nv4x)82^)@>n?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5dZ^_i{StO diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index c00e0df4318e1092433d1be7993554777212967a..9cc616e01193dcd8a0f95ed3ac84a10eae4f0f87 100644 GIT binary patch delta 122 zcmca7cTa9ZI-_BMxnX>kWwxb$T8e2>vZ1+=g-KFUvWY>Wxml`-p`oR*iJ`Gcl5w&@ fqNz!uv6)%w<{6CZ8I4HRrayTfi`?ev%*VL_!@(ov delta 122 zcmca7cTa9ZI-_A`a#l)Gibb)0nx&bkiG`tYlBH>)k*R5-iIH)dftiK5fr){IrKOp% fsdju}P9~ zvO%J$NusftS?c5p#-C*9y2u{6`8U&27P7QnBSV)Wf79kD&S|WqYu&8KKbwhkZIc!G z+cp;qEhJa#X;BRhvTV)YJX!7pIWeiopTGIHf@m)3wr+OpTS1PEj(s_s+a|O`kZ$AT Ni|nbJ7rabo1OV#K%Q*l5 delta 699 zcmZp_#@v35d4oHnVPYkNv3{DRnW>3|p>dL>X`+#-X`+ddahiddg}H%=frX`| znX##PidmvblIi3M#-C*9y2u{6`8U&27P7QnBSV)Wf79kD&S|WqYu&8KKbwhkZIc!G z+cp;qEhJa#X;BRhvTV)YJX!7pIWeiopTGIHf@m)3wr+OpTS1PEj(s_s+a|O`kZ$AT Ni|nbJ7rabo1ORCV#x(!{ diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index 0da26060a063241e4ea1a10bcc484324a61e3b0b..2336cb4c73b6b019e1e5b903969b93ebb7b375cf 100644 GIT binary patch delta 1014 zcmX@}mgUS_mJPm)h6Uz^@mZGHmilQarb)?$=0+AKNlD2j28rfosV0Vomc}NA#wJO| z$p(q0CW*#oW~rO&7@5e?wvlNK6X~{1-pCX`-QSdvXYx5JwS%vfu4Z5LVWXV{<-9Z1I!4C&2NNSDR9MRUeVc*jrin(Trims-#%Ts-7Ul*f1{Ri< zX2z!GDQ1Z#Nv50Y7@5e?wvlNK6X~{1-pCX`-QSdvXYx5JwS%vfu4Z5LVWXV{<-9Z1I!4C&2NNSDR9MRUeVc*EpP+-G$v{ciB2i6BbmONVUcS7&SJU1uIGy5CJK6MWRuOM$tj98pRfS zRMhC$QKQ%uOYFv;Xf(EH5{-%fbMMS9tNFd}`?=(OzUTS=pU>mmIk%j9`aSo~Ec1AG ziFDWG5~+BCWDY$`ygVeYdB~uwmP1+wrKdJcP6=rq+M-Eva!Qlnq~^`inuLV33~Le+ z)+9MBB{->Rlcca_&C+IFN|l-iZD~)ft|x67oZ5WYsLX;bFWhrzd59@E_~Wn^9|s4s z*`BV&=C1#b@t04R733D>r=+E3=9f?J5L7rc5C8vQJVB|sDFs2SomcXQ^T^Kka$~6h zP0;DnjU?>QpnB{CA3rqfMX@uRJg_l4Bi#wzY}3|@p6-usT?zMRd!#jDlQRP;C*=8R zqzmPW;s%apB$+v>X(QRTzCLW&AP+XRksqqu&{)eRCb+Y+{2Q`&68+fk{5;r@hD|ie zl>`lI{V4kG#POSJ;T|4rk34|(7G^=e+efCU>8_GM=$Bs>^@5e@DcvHT}Q})=GjcM>PdYtM6_EIUCX9!G#iF zNb_s4j-K8CB?ZJc5SOPF6|fplXLevw2*^iysfe9u`5CLeG4GYk+aSd9ql&`7QH1y@uRTi7Si>j4H7Hhi8ldfb3>r2%Cg^8}lW#Zv49 zgYxk8q<9(X%BL#}iwbk|Gn29lg3^r;)<8K+;crUkvUN%UZUYv3XnIe6p8g6RrIhRR+PyRc=cZgZbv zzU!f+wvX$hTkK|Ky(Z>f??kDtIwv?_hIie z@+Y2O;^Rv!E;k4S#D@rM$LMqe&J9ZpJ2OQ*9)%2_#}E%;J2ciK_2*OEkorln8><-@ z_>UODdk|~#ZfN$kvH^{->tP=d%$Hr8=EH8vY(Uq#u$B2H4Ge@>ra{4d6D6SPHthVt zUJ#bT*sCd8-kAl5puAAE2lBI+Qzno}Fg;`~HR$b0{O>mCD2X+jj5?3&|(68(f<&EHWSFc zX*GeW2^2Q+1c6o%Xx&U6VhMEoBo93&(6`rk=uI&J6Fxdg23{vn@0`;FdO@J6O=<`< zpFo2Wc<2g&9;mL8whaVQ4ZlvHhXne>{w9Ie5on_i4{-$geB&+BRw*vV+`rw$gD**= z>+(CKv5Y{s$K4~)76RFY{zRbN1lrq?hZYjZE$9JhJ4&E=Uq2$yV*=^6@z7QRO{jTH z+P)KiR1DL*k9tPHpZTuoF9u8cV*Fk;Y2|qT?6>y(W9kc?H+;dT@EDBBLaQ7Ify`i5a`BtAp|;vp+mOZ! z1nlq^5A7pRLTor``;$P6W7-pFJ%Rd{b|BC;0<~SqL%$G6Jtms8RT1b5V|N1GAkc#F z9t8S{KDK`S z`jJ4Zza2=Rn*?$_mq?&f1iJFFmt=?&|U(m=IkNRDgsqW z+g`~@L+xbqru1Y_EO2A*tx&U1r|8(<%AMImbL+F(5gF{wt*}b>U^Vl) z$&-@`(gO2Fl~4C$_bqfnro*u~0S;r&%yUCEecKw@(8_Gqd!vu2ENig^C&r~2F^$!% z45VtuvDG88gsz)sPxNOc8-m$Q6Z^r)Y9Q4YRn~X0XT8S-uoK4w(2xctm6+JlQ93qs zR5O=e%_l@sJbtFTApEUMn+ilabc_kWDqw|B5 zd-mkEtX*+?syXQpo9$x+VYa})>=I`X#5y))wGsMzP#iE3!gl;@2BwG#;t@vGb7T*f zv_#DTpql{cOCQ$HqhFce0y z2dB8P^JlcPn3nx!KYP4J!brBHtQ|HBBIj4D!>}~iw6B`T%CcbHH20u-gPuCDRiD|h zKGRfI1b48KoT9ue3oovio=?o%0XIAW6-CrMd}V*O<#M$}{9+g|hkg8II@^6_x;0X^ z*-ST3U~7B40%Ia?ZSn?Y(tx-i$jo(Y+pMXIO;cQ2?!)IYI@HXgjAhm>O^yZ>)kRx7|G2PA}ZXI$Q8)nD8D0c;wwSz{yNaMzV zz(sr3W3C-LbB=+Y4*4zk+>+%@6_|6pc3XFXtk;ipNK9^{#GD?3>5S~nc}nz4tF{hu zsKHA*<}PTsD_cF+3wt>`eAXvatutf9c&W#T2U%vHhm36cYBk`>;wd4KL5w2<8$KtN z?K0oMhE-+(qmNkCVk3KFz5(sKmM&u}w+4f5@jxY7lHQGB7tRlbUVpq3CveQcl%zl` zG8=~97fl7HJj5>EVq{M*l%d53q8%__6|8b$59%tLv@o7}YHnqtHz---A}_XTVJIF6 z=7jSJ%&kX74jaAEiM_E1Hnw1R^A-iMO*b?II?4fuAJjF5`-4FFU>VLVFz^02*0B){ z99iXvu3&}|mRah?R)XK8Z*I(D6E9xU6*Pr&58S^Ok=2H!`E1%|jO`iWuy~0Z^!LI^ zz6{GBCnK1mxS0)sKAenTC~tWJan+W~o5RRI2~Dq-524nxv&uWO8@~3Vwy~GK4v^s_ z1kdHp-uxQ2FMSiGSQ=HNKbBwgiZJ3-_f|BZZa^4m%7(9uWzVc^#_k^5j`jPZ31I(; z;NL5Y(yNCttS))NF*${hn-I`=8$BJ3o9S}Yt@d~=IzpYhK z+ut2fG^;%vfM7|UTIT}N!g&nlz@Oc)1_J7*L*)?sVu`EH{08jT+}D+jSQiQXai)X& z_azHa+Q^i&yu!@foC5Y)xjP8aTTp}>6-bt**u%f**^mwVx`I8LUzKiRueI*7V?#Mm zeu~Z97;KL-B&-DN@Yp4mZVaTXtUIVOm$loJ3Tt8%JG4T>zNwT`$*gBZ6kD&-$U<0? z;iL-F=*bS-=z?NBA4^2ASh7nt2C)y;sfpp%IQLPr)P^PyWn5w6b8Oz+Hb9%2y|%@f z+CfBiZHtmE+oH0^i5Dg(a*Hq9WP=8JDA9z2qwKL?;xr7;}I>?}mb>y^vcUAv3eLp#QzsB!?}w->UX?ih#u91C3lK#j-4P21fg z&;+L34(6E6w%Riuz(}@rRSDgq8Cz9V%m^$>X#4~iY=&f^O$P-B=H(17XJhxh1p~ur7#8Vd_RPLil=pOp3w!ARYmf6W zjAhv2-_hv}yJhUKBPDFyzBH7Zxm&|N_^ue;{0z_ztNvXa)?!do_R--t= z8^K;aUIGJfo`(mFKpN$~kx+qCJzOygQ_2RPRl#2vCQ}N?5hPi><{n*+2Rd9mI@EOc?ZHfeB3rH)dPA885!;gq??y$s}s8+ z7mUfkED7)&R``k`V4XC$0rJ4Oo z{%=sj6;jj_AP1$2sp0<$!bK9QFBm2FyB+lqmv^MpVO*}0^JRg8dLe=dGt?CKuS|Gb zLmia>!f%XJ(Z7Q5t`qe&rm)nFI`FR`RJl|6SjHtLYS_PmaH}WP9m`Z&pOT3IvDSy$ zTSvqkm^wBDF18WH5!{WbU6MK?Wlg^rxQsBWzZ8g!%cAt$rB>7|EZeMbs;=Hdke5VI zeKFNn+fn^-*}Ma_6O4g--i101lHm@-P(Q+a+?pQL&vsCj_oH6m`qDwvjyiJJ9zCsk zC`UWp2RUB9K9cgrWyp9c1*FK$nN0nNXBs<=8ltd$ zCJutOo135&v}_BdgToBUg{%0Mx==^C4B`TIQ46uqkM5-+urlNasezd0%p=qwTpm5a zmwspXvh;iEPh9``6>1(0fZ!yokPu>zzi^ky6_QNRkkoKzvW_B>51MOrk4oOo+HQlV}6|!Nj0vlV}%o zvqa*9)IL%Vly}75k*l0SKcuOh+`=#DUsX_+&8Lr2Q1<(Z*5dl1i|EZ5HZ7*@MNs-K zoaTNrH0x&KM;7SnTR zG{}9YJK8tP%M~R`MaDV7@>W|1i=qrbDDi=#2GIi03`%tpmDPo6m`{rSMj|^74odfY zc!FI^Ix?d&@;3F*Rpf_tZtxIQ)IsNJR5@p4do-b;C8OQ1u7pN$i}#`WWhML*zjK#8aZ*EjxLGz;UYnj)Hy@%R0bhab)q-NNlBS<%`$ zD5|N&0A|}L&%A0$3-olU$cPe;dFi<}^F=Jk1D#nST2u#&9AH!cf9S8TMI-8f2i5#3 zGI7jGQ3^&jdW~plU627$9^CG=qV?E`v)0#*GJ@>04I%@kY~Ci(syb74bF*j@MmBrf zzd+eqPV@q^xp=2&aUCe*_U#f~!FayfTX&++sQn@ZS5+lyg9)rBT9Qg@L_;x2zn>L- zU1yS7pBE|WE~N(-_~mfY<$pnOHCIHd>rRsM52D3bN;__fHq=>4(%Yf~bywVwyP_gY z(ybr=1;u&a7agoSNz;B7t->UQ{UTaZXDN+)EZS0c#hrO38i7gb{Ni7b(u|j)6Lpu; zpTF}`TK>9D=FPzpW)O?!WKd|os(n2a+sIQs$4=~rB3`+}`=}Wz`PKpA8+DRkgpXK; zPA(j#<1UNDdF~)alCBQ)65q#x^;2(gUDjX@(36eGufF2*IA9;~7sH9lPOd>?u_w-* zIyMns#`UIV;$1k$xz=9)p=z9O*^r)!r+iSOVvarad55=?5s4DnH1 z@574cV3PJM5L39UTFSFDf4R6BCb?#vxG^T}@Acw0xcswH9E{6=E#hvt9JN(!hsz0^ z_$n?3>=YM)=()3d#GV*_Q6&zvgR*|LxC@>y=a|?Tms3xPopHZqXT-NKJ(DhqN&dd! ziueE?H|)CjE^d#%C6;42>5e!`2Ia;_Vmpj)+jB8lL-SvVr{I3Ce;4nOL%E%nJOdG~ zS}T^|Ve9N9Rk(SGTyhpmwyi=k0Z(70mW1K@Uv(0)_1t5S+{5k5jgl3(y|bHSwyoJI zUb?shlVl2(=RF@ulmg1ICXx&{C>O>`lz8H`JtW6I{IJ5J;xSmR_?3$y>9U?KRX*ax->oZT{4=DNYgBJZuc%@w2*OCg%!qZhe3&++-VzB&O zHb@FE3p2JzzQ$%2woCF9*EiTFp>1S|1G_!xWVRt$wOIqjHzYnb25Ii;Ey;FF)|wwB z^RYXA@<39BVbNpBbsUXuy^-{GfU>33t_*w0F}>a27(QyU8|`Z20u5SkhRRNgG$_I_ z!X8x)FzHauZ%%P2yp7#qvx;2X+HJ5=PWUvdb^;|gxP#qs%v)F|J9xMQ!M%%J7FNv{ zF?Nk?v|I$%)e(){?jDHl&by;VgGN12pqV}GF4`s%4$ut+()j4mxtE;~9R~HbyCAa- zB^H7j<*nm1mE)TZGM8KG9B(O~K=HyDoJS z2?$n-9CJs)6Noh>KKAwyqPQQz?I&P@2X(OD zi|gG#wO@_P!=3E+`|{~pe_uNuj>XO6btjoZCT`1X6B@$EAv@$Ipb z?f2n!&6j+8%?!SMR2kpiYBo>5cs}3$-2%Qndm-N*SYdwvkALwKn1g z9kD0bpx1HxwOHRLYwSaC`SyGJuj)iMSXVa=47HKA&Nga%!rSP?=e&)MdtoodHab}$ z{RGo`Od};WTB?&08x1u`_hTD!iK-gWa$}(gku5r5OxqA8a1XPjPPDCqXAPAup@D$VJn1}Jar7A`&63zUICg|| zI40omDCw8B;nMK zTNTnZw&HSHA`QYkb^2O5+(sNIaFtZS^;se9fr)QYvzbsvt910h|(^bDx9 zT|NUgNnc_Tx^I;(`*0Ev(bH$!q+@J0*l9bY@W2%eWw-4f(`AnoUL9GC?o>&~+RDT) z`*>aacu&mdgJvp*$2OOO-+C-$n-K8jHEmNSRF$JmifmnER`v z?4iAx_rIcHCL835F(JTYLZ`RM?6@aAWh-D^L{h@|(MxKlaB0gV61ks{M7GwwY z8DnJC4p0V7k-5=@yyRCQX{rAwVbP zfTenvx?lG4Tx{LPbAi5-HN@iIb69o>t9R}(*=r2XIxX9d)!5~n%n_@p-!)kQE>GQ) z^#@6F{=djBs6L!a4upKv5qMkrcA$Y%E9A{>v3x)h%`54IR{k9(vy73q!Pa%kRZf&N zx1O9RX{1R`*sEwDC+v;zk?+C%nl_e;feh~B)^d2Bx0tJLD<6iH-J-Kx4o<{<(o6m` z7FXavIh<@S=0u6|8eE=FlJCLg>=gMXT((b>ueXtdj$B5zyceEiZ=rlg=!eS^VT<8z zu96S87|W2&@;3Xiyg)WQkbjQ_ zFzKNjvUd>JFLHluH#yJbL+x##AkIV43I!g1=!2>@DD2RXAQv4s<&}ISwiWCLX!vWn z4yj{gE?lI{p|QBGQz$s4%7K{98I8kTtnzK{4kql+7aKSbQ>pZEsJ12Bhs7-j)qE#) z;vV}sz^f%-Y=I8Xuq=JrI5fpZm(b0D7~O+thlg1I-}iPPMz*%E1Ci;3{tiT@;R$^C z_dtghSSQU>9h`00B5+_Qk01o|a=eh|Ajom!WQT^f#7RJx#HCMn&?szB0u1iUQS%)- zVz2A;l>=EbOp6>Q;NY@!rNbF)Oa-eQ@hXYu!spolxJiXvB2^)FQ4-TDhx%Zv}Jnew?pB*;i()ff|)T5`oq7FQF z=zzyd|8UrEqtT~qO;Gf5HV6B|&WgS^sDuOWIfU0BV*RdMh+bPcd8)}esQ4lp$c2y9+Sk_PBjQwJFrotan|5KiVh(CCwf{6dZ zSVc1|X60uJ;wQH!Du|zK|6D=*WW*G{Y*xybFTYU0?&B)O zHf-_F_VFq_eN^F&Mf|vi7q#;xUew7qcu`C5Dh6OnPrI*JhefD)thiyrg2H+Jp?G5n zIp=;i%WIIMGTN5q63|6+0gQ4Zrsu%&kOhrCQBBlU8C9!mQsPbR2 z^p`D_#L^eGQW8s_(M5S2lin{*Ns{5}cqOrP$AL;>>06VPB+z6GRuW5Zlc^+@t{bBC z#;kvwr*yZ;qOo7ApF}t#_Sr}e?&%2SLLh@*5LS;=3f6pTyz;uuD;~jqu_Qu?ny*u; zxbPAsSxpnCC`m%*TdE`pnS8pEBxJ#5O0vqzSS30Bx{Z``aI6`*K)D6SntFU)bw zYUMmzI3{OqX_d+XZ)!7t@@KlJwB<|zeuMY+!`C@3smn01-3ywn)m2xT6%=usm64(sF;@R~Fe~VrH(i zsJdgk3+MPyIZH`x=HM3<^Hor`vR8d0f%3jW1qsDwZl6lkUJj+iS@i(JPh3<}rBIHn zuY#9$H*?(@s>*06uluNCaKFZ(s+V|t{T3=%IW}|S+o*=>Y?E27_B3croN5L-)TCY~ zRD8E#02C4Ue<_1G>%wRW|$vKtL4Cg%47}iwM=|w`A4I4}acZMuVPQQ@L|ZQ&o3tcyet< z!m&eCr#tQ09iaTNQdM9FWj{`J zR%1I)Ry2X~2cptmj(W6fpvs2lr6*ZnL6 z5hRVysRm*j_~Lt&4ev|8i|fDzl`TIKdKXFFWmO6$==@dHhyUyunQ?Kz-1RyOC+&u+ z3#O&=R^7FA_cjFQx~e?(o(kTEu10%*QZ1`1u2=U}^=%Kg!F)X0`cM^t3Ht39)%>~= zalP-4*tphDsV-2_#N=L|ztI;V(N86Xj5bmkk zaYLPHX{&e4z_hGl9Bud+kPv)AxP3;)=eGO0Al&XQz!1pQNmqeE~z8#taiRLc$aop%o2N6A;I$ME)3LWjq zd#jvpn&T5lYWZY6V3^~Wx>zR0%>nL}j*uQ-nCN&Fr_q}~chnl8Jhad;Dh)~FFsD(*(2 zx;~~^l%@{HssATK)F&`+>Y-|Qt+ARb&R4I*_1>e@PjJahP;bZO>B;K-c-*XM>XA0Q zuqN;pih}2>#oQM&)it)WBOtjtOFh?iYbHpP$nkSm$+iV`riLK0M-#j~bZAM1t35Yn zq52nt&9>c&d%RhF*hUF$+p1O@ZJs&=Ri3`%fZ7an<=qOYrF+uTn&GB#Ku-qy0zaS?4zx1C%nIt^tbte6Yg8^=jEiQkjkW_PL;O@6Oa*V| zS97mCd48(vYkV;L*jEET0;=Y=`)jIkSsbA0gyX`IV9lhuY)8h_b96y@_Vw)1)z)^Y zD5|;UxY^Vix6pXhMM-AVO76+WnnFl5xYRb9mbk14=b6cf)W8p;s=24_HLdEx#G+0b zXKr5?O;eBz?cXu}3{S?m?^ue!yDImGE{g zSoi~14h~$GQq&3*;%%(Q1yyJoivUPisVB(yc*D<@Tx~n+_Y~rYLIDkmWKPLQj<>exAnJZzLoR0_xEVv0~w^l>r0vjLWiKM z8c!NkwjZM9lCNvJ3m6XF(wtE8eV0Aad@kZ|Tl}i|Rp`+A56vGGU)$leCO|;;*&EFi z4PWb`(ykDO)o8T0guVxK+D|1y2WRaMuGDk>(N08D?Y%SpAHe-!DnXRcbIRuQ@yo?Vg>#K zlUW_?Kl&)4JQ}{s63C4mpsg}d*ZCPIj??b6aUK*~^T>t!X1sO-gBF*?Yq%kEw4oyY zcEdbvxp3QKp*E1_YiCzz8wt0kmT1F;TleMKB;mGfg|?F7`^K%(azd^1TJ2H++41$- zkA+&MQkx^(&e?1k7XPhwK96DBHti{){l<3f2?4?G-P%+dRsG&u%Y{~H`wJZ^_G_mK zx6Kb~Glknt)fTk*M=aEQd|bOkK=$yIg_>q(EYxg0XBjs9dowkh>7w>Dk9XS@ZH<87 z)^%-`Fxh~cT2C6ZLVkQT`?hwBQ15MW_G?hvze`Hq%)h@&y96vGxH9%5I#IqXV$S} zQ(ZeV@92xxIwk6V*657(w9?f>>R_e`y53B8mY-~2bKORPs0l4~D}~$Ut#ob82sl8{ zU0~stwmP$=E^enYTk6m4b^U}6y*|~M4V>w$Gu!9Ot~#@Qo{g~x^3(1*vtR7!X&E*; zUT5};c71hbOZ;_!Wwy41EVHdivJA^g(QOcD@JrX3HGCvfCuo?XvazIcdxK+i&(S5@ z@$4Te)WKiPyv~8HCJV#2jnpLyw?1QZ31&5M%g5^A4@(gf*fzR6;Rh|^9a(K*^T-k1 zZ9%-dPV3Ueyv#z+>oyBweR)9_CEWJ7tQ#(LxN=?hQZT=pH!OIaZ(I6~xT_m!PmpbU zq%+5`(T{bn6#NX6{?zpl(BA(`cUi~Rp4I5h7Rl=LRl*D@2K_PNwyjaWU$|8}>xU}& zVKcn-e+sn=eDyyGx3m5AyM)_;0s2G2ZIeL#CgJwCAU&+*#7KNY^=IH)RCwW#chX;$ z^S3X$>&-#nN>9C)BVVgb)u#%P=Ci?iKlmH=c-Zbdz1cU%=Igf#Q?x78_afrea%)Cg zI%JO3=Li_?7wfMH7``vn*B5SOtR7y7Ab4ARrB4_7ZmiHRSM#+g8!duruu1=$pp{13 z^aq5A|K==g?%Sc~gxaaQ^sxfo2jA(71zn7)(T@>$liainJA6xjPZ+l6j()Z|nPHbuU#T?wAjo~O+OS!eBw1@1 zE7U&G8*U4=w;98i!qgL74V2Jfc0I!#p~GYkgByG)4y#~GGs87Ob4wx(Bh0F8Z+I&7 z_3LQ3CfqWe49A4N&$=6W3og*NufZ(rngNDF-hjDYsfJ(y+1zx)IsrrX48v7{p|;tE zae`P+6dLY2@Z{{DV0a}AJ3i6iD+pU$W-#l1B5T+yD7^b3!*u~~#A3rud#W9BT>dkI zwm(^>)Hg23OH0X2&rC7p<>%(5b=cZexHHylbKVP2H$v0MTv`_8Qn7T^V71^h9~6|n$pvf3XAg73QU_ky$({4jRqsR}`57KPZx_;u&nfgdT z%;WX?pA}sGd3j0sxN_et9T1YGL~-j3p(wGvt_>~gjBcqk9}}CVjR0)dhN9Uw9vPAI zRig$a-qg#(=1}}N3T7@!CX@Er2)6eB8;cFbqJPg=ZcmtB2%oLIlBGkj>kROHrf9>b zXv;c-A05*JB^_9%??QYbDL)gu3%mv!Ikv)rH0%*zhPkHU(3o3P0Jfi00G2G6cv8W~ zW&`ByM8Ma%4*1?NqcBvm!LVXra%UW03UG)pr9k)s?=+=kCqaAxFU}mCQD{m|Go@I2 zSV~eJ4g#s*RH+brEb%WbXLx3QZq88f!=!9HBsH@TsXs|{&*}KS&Ht}XiZp-q(NmqU zmn5Snn+;OBePxhoi6RdeJkZm7I`x3*DY5x!5Drt)3JOSEN=wPe$sAS$Y$xUA zL0C=2x-qLu5CsIr{M^(c2uKB^Am9vz574GSJWfxChyq~>hNk4_78Jl2gPM3{C%n(~ z|K^PQ*DH+FAfD&Hw*t@o|H*TY={;kTv(i!u3rxA`7P1R#)eS)#lwHeOQZ_`yyo}t! zT=>>*UIvH+j3X}z*0_|S?4*3th@?^I%%rc~ihKO)cnd7ym$&}^c7~3`Cq9&PnBpCW z7*3=oUnGRfd}{&Dryi3vKL{_7DH&-gLqHhVWneMMu`Ifocwx*egwMaivP0U@`jp4U zR@jR8b$rl}v{8vBxQxinPleTXa1nNw0C`e6e9o6gjExav=2sW8veUu}@6$H1cJ<;H zVC%$y(3U$iuLwPpF3?elwo{Deq^{LcWn`U0ofjG!(hEAntC|KMbnRQiTC&<8wAB!S zW-l^$hba0WGcvK`J1-(B>Y{3n|H{s-ZqYabUm0Z|Y*T=_t5f6(C9E&|rd4oQ%8yt7b` zGJ&=sOlA(w0aYiNAn8iWhLD(&i_@i~!nD*Jh%BZ8fYXqto1GDDJg;w5EF@rLG{hHd zvw4shLHq|-s~tn{kY8l$}v%zU@ zHltQ>Ju|TL7Zkvfj*^BMB8y3WJt8wZ8`4iuEhstzR?}>}qJq67kE#tCkV->DhQ%m1 zzc2t410zTAX)Y`_MakJ|1-V1t(IGf`_3%g4 z4GAdvuE810%5hXwT455&#FLU?13+?c1xT*|zMKuB$;?4Bo@p5LR|I2JcZSsob}}Hn zq!heTqX|Z>i(|9@fC25lW$>WsE~w;`t`QplCQ!}p`duwjbfM6&_yA8@)dlVErOT$} zU92)@r!Ghn#e}0#zrut#SvIT^Vj11Vk}OYegGxH-y|nMs0{bJ+a)S}ix#>8QM6Dv` zfYdt1MUs=A>+8kFj@E}2c=`4BGCMYQ)Iq7~UJ37}b}hik0|%!S4$8EQYxrM`B>>U&iQer}DCF(nli=4U1s6~dVTtdAkiMvNXix7^%69pDj~=89CzD+Al{ zD0uu5d)J^xH=i5i$m^uOv4bKp(Y(x~l74zuhwZh3K^t3y)uVR`Ozq29>;T_>+26(x zNpIS8w=?MWRFSt zNhy#=!dXaW3Q0~NVnURPJFu()Qr%x>)R{;g1Bmh=0l|4fW&w(L7;Y$rGo`}JoRmUy zIynmO5G-j#?Vi+>oL!U;=Qw~k0QRx@L-;#LS7C=RsvspPJI#C;gpYur9v5IQIE0&{ zAOv}Q_(SmX=?&UF&RJ#G=l?FA*SQRKq)%E!XoskSf>nYoyzQm;s4q3!QF&69D>;nH zsz-|HmKL<>xgi{kCL}>0h!(%G*P-eC^lI^aFgdjJFOetxvtVoRC-CI-kAkt?5sd9H zF*XW5GToigqsP7VYB=eGJQlS7UnI16Ym#QkhW~M{iIZ5^f#4hm&IGeT>9C2!$!a2A zQmFM;PNV4aFrJlEGGv5KkNQOdUU~N4X!)$Es2dNjL zzTd^5J=+^QpsM8}2?bwy?5+2V`d8UOn<|?*(SPwthF13vp3s?$a96E;S4$k^Q!)*_ zZL!pYlA&kk4MS;3SE~#}*Ode%u?ED0lJ?bOkgHxRC%K66s9+6$Sw+1s|2Kpdyt}a@ z=88l*^Q>SZuJ=GY8Gjf8a3(_)pppvBpTe#C41*`S^2*>Rz}I>kKBdCYty_iwk#izR zeei&I##PtmeQ_8`v!=l7-Pj+_i>H;fcsldqq4^;g<5zk&hp3Z+WWu2NEaL(bgJk(V zo7~(M)D>-dWB40&y9mc}@JE0&D7eU9f-3tmsdO&P(cch84MQPU3_0{r>nX={MQ75P zsq)jp9BEzAut$0?9uGd=v$Vhr!@krT=43MM1t~0T58y=$IBbqVPou6lOY4Ykj$r)d zX9T1$G-QURIf`AXmpMe0(tJV(B46@Y-;k1^SxfZ{6jVRGH;TV&P~p`@O&vxhg%TY- zy&YPb@-^crZ1)=TE@NI5%szpiLri#B<_6CpB7a&|-{~K&N;VNWsp#~Y5?|B?8Qf8< zhzUZbRfe9_J}l5sw&rIyHu$cb-qV#|n=X@Zv2C>>Rz#g5UC_-4d+)i!4RZNafi>v+ zYzX7QU0Y|EOi|a~>vjFzUg+_9!))s3_d4CE?et`&z9sVBXb7kO>WT($H26|)iIJfi zR_9GiyP>$odS6=JjZg0Fy4AWC{FN5X9YZ*(S)r{*{7HUGK>M~Uiqz`e&6rHVOanTg z8=@G4HytQo^0&s+f?%54LI)pQf=z;|77^YgpqqhF3?QpDL38_`FcF+P(tmVCp0o6> zsB*PlkDhNad_oWCMwp=oc0;o^8sg}|0wbBi^l8@97rf8NZGjOOjTymM$gU@GjJ_c~ z4FJ8~hyGGPRceh2@u*^*^$itKwP+|*?9{{!;~^oy+|Up3zfV7RWV^wWruPVh9~KBd zD$I7sdbV@#6Mo06Sb=cBLI}UU+u%b#?1mD5)B4fB2&f)dqxzjk<$m4ZE4RWjV6Wj* zObcLfMf>&|wxi!(8^Vz35^F@J@D29pXqDkB+`;n<1JB6z8^Y*%QD}dL)&*Cl?>7YC zk}z$?y5l{j6Al=9T1-bUZgk~<;TRnmRlB=#h`MLytt+QFX!un^$3&qdtv-hC8^xPe zf0!8WKzm178EM*FIWy3Cjve_DAUxb5DdkTBD!{PnxS=V=M8uT4T&BdkTJg9jSlu-f z<@M-d0qGbkq;zQ%pXs(cX>gZYAcVy&U*C4GYv_ zD_o-WQ51>{iU>hVmTHv9t;P^#jj^D{(BFdb&l*EL`cM>dIRiWK!vbO7Ss|m(2!u5` z`z~Pv&Vo&uxm=V6XdXnN-D!a4p@8NmYcwwjnl@-$w!vggjpDqa$bx3Wc^IyMzsz+W zRw_?NCJa?R*R-PL(Y4a2ouYX`J^bEaGSmvHcI&?pl_VRSP>TzO74ISr<`L7O(Y#Uv ztITz2qfz2F^+M?QXtb$ZJCyEjjV3XgUx{i7LldsT?#3)A z;x!`y1NNHH0wKe#F-(d^OCz-5$m6=f$C{AX>u{uNMpK!>_|OZZ(F7NrA6+4!SzwK3 zHBk41A>9fC=Xt}>l)@;8@0ckxyT|RDhQH~9(Y)1?o!Kc63Er922>4G}Y-|bkoGh z@L~oC+)?-vxrCd2-!OsVO70sLQM56pc26vSQH!j^$h1Vi{%mMX2gRU}hfszPq)`ax z)Kp{itO*l>)Dcx0+CPS0DE}r4CD;0qp({nVkKqNO?#7tJ(J|n?FwV3Hm(V4Ne zHtGiNA|u0`qFW1?@X?vvyS5vI ziB!609J-kSuPnwBWPF66yT|cIJTY;+@`HKh-*jU9D0Cto#7p)kI6lA@C!`xwpDuzS zI9V7LS8L5wF;Yh{iSkfk&dfNp#Fcr(V<0;da|=vF{M)G>6KyfMV3ahG2}E70mO7C$ z0(x~E%1d(crPo^1x>BHZxj<_(p4M~j%sPtRVO*#YRp92Lzzu$Rl#1iE*tP-Vk4F(thqBhwkH-;Dhxcug#xan3zq^NX z=+5uqlzeOOeY!r%GpU1Nn>{Sm98ZnidH<)n6aVK?^+v?~0X=qqw8EF!L5FpJ-~XYx z*8f2oCVytAMV8HY*Wc&Qq{GIN$Tj?wlLYl^#6(g9c#3Y0;o8uByYnhL;2fTcU zo@&QBqr_GaC*(c&{2f}zF3t)Ex1u$pq9`|%v;e{$*#z8lFxnweTV~0-m|{;olXKVG zGD?aLsKrOl5(vIzd8b-}Nfh1?!91nfW6Z=7bttbYzm~ur%Q;=Tr|N%b{v`p`5T5%9S1@ z%aIQfs5saIjgDeU%xH)_%xy3o31w5F;X~YJZ%V)}7lfL}Fd?+4CmOrT7z(E)CF?=! zm{xG}XY0)=+1~=a$(UX}HzbzH62XBd>1>vlJXN3sIzz(J6+Q07Xt;`=%nAy%sQ?$u zi)RApCOuI_JQGMY!-LzhWp9J1P&|>4yG8WmReiWO{4U_x5~h&PSG;@jQEUJn^^Yi) z-jk1F83ZREz*4P{=EG>5zzpcg2QUH4%{;0#AH@JYiDHXZYT6@ZZ+AT^8^9FNGkU%s z&!D3vo>6~et?1C@1SZ!a)MP%UJxYN5W!gX{3l5HOe#6NJG4K_^@?<8I`rbUwn?BhS1*b4QEZtlX*?K(aNwyx;Lm~nq z)}O2-@Dd~dn-7OPK}9EfQiy8sv6~edvXxT87bNgj%CQ%p2Rih!azp1{WGe;PE}ty` z67#!|(~rR_$Q(y4GZ>|SvokF0=AOVPaiaQJOh<|{W-$XPx@j+qaQ)?l0!ruz{`fWB z0UB{0b0C}X636rcKcM>d^rGW>@e6vCHCg?8@g^h5Vd~4r3y1(gXbuxcbwHKJnPf{f z;3uxSxT2vQ3d&{L)1!OwIpv66L>DMyIb-17<}&l`>8Vx}BE>og1|xcL`jLzyMKA1y zW^HzJMG>Qzp7hdQIOh@4lnTIykCUJz=P41RC^hEC;y$BUR4`jsH($~l1&bm$1wVC~yL>CyvLq&;~sn zEC~Tc?7s~`!Q>n7N~_{gWC^oSh6IXU@f5w{DKgi-NIz1k3m-%C9?c~`4V?YN;`AaiT)B--Qab=nA@YgvBR|^HMwg_CkVwsa-dc74_ zu3Lpk7si7Y_4s||fR)^jMyh89;+d+?AJR;DvXUwo1XTKvxBe(3R1Cc`4uE&ST`^)e=kYRS)sGeuZcX1#*v*@p$uj$6*uv!_4pZDlY= zh1r|+<_)IlI_4bRw>NPIFdQJ=ZSHsAvXj4ImeHxbk^g!oo=UG}iB9fq6%zA+rxGRt z6>ne$%D)#-_wP*@=y@;d_BDuG9WP2kbow#%Bw#R89nZs74VSl!z0uu|n^p3z@-z@Y%uhXi9V z8=^+|%_Z^s2RoT_GTO0^l^X90bo@=!=+4C-V%mu4`p^Y?{JtZQ<2LStDvmM*bWoq# z_(eDBW2L>8Fdf#O`ZzNt=nny7{XVs;8pXfeI!7d&EL(m)027f7vU!k4ANYN*&cKD7 zfZZtFOCW=sEe`6#pDiZ!L1#7@h60PVCo4nxSRF0C76^dRcBh#L0gEd##VORN;54YJ z1n8ZjjYeZ?V2Oloa324hp4Ep>;10d2P@fPzf(p(0|crQ)x#XI(eRHLm#o$##@1O=t-jRitm}@^p!sR8gosM zMtGR8#>~CIz}r+C++;|-7$VobKIn^!On3SxYdzhu7Sl69PggH7{p1pX1wc#qg_7`V zuD=8@tbqJ_vtQ^8glVoYQ!H%$#j|l~+mv@*h^k)L2 z#XO^w0hJ8dpy!U?WpYGxSzqge8>4^|x{}20;C;qjPFGmV!nw8!(fPPvnL~7CU)25u zOtqQFL$KXlFPNqD4wxLZ6L)!Z{rkXwqODKMp1eJtYC<(LP!UP+vnY~>* zE6?m7wFv|;M3|Kg)b^yG3(P(dnDytGy+2T^7t!K=JTb9DwLR#M`e9=Fp$mU8;k3RV zPYhJ1rf5guMv}%YnXFw*dy`?igb@ZbG)>zJ4Xj$`I_Dc>Al`tYb1;sg=L#5(kErT_n~64J6~;yMO3Pq$>xedz9IFIcsNfQn z#ut?6Xg>;_Il}5_po=_|h39)Zw7}7rX*N9CUxbqC!4GRs| zq~sj#8XN{Q%b}#m55|2kwz(zL@AL% zDUm=a;l7k`UP`zwB^;M#ecK-RDC2W=w7E1|xrG&GoSv7=k%+b`MEN6imVht;u zfJ?B3I49#as+btU(@s!D3}Fkl24VK@4F8-ewU)Xo0PP z7y?P!i6Jzz7{UU4M-1U_d`ApnHns+02pqm6hTw`7kL{p1tJq=)$M797geUmU6=auX zz?U}o(i~p~;Y(k9nT9W);|n&JtW|I+%Gxi;`58d)+VmR_>Z7ErUwL4iCk9^fK%qAV ze(y(d>8{4+6m95_&NMLgrnUXiCO_v8&aa*kPWys|+Qvfd0e2%q(OrewPJFEh=tO5i zq+V!3L!By(j!#;9cSj>hO$lW_r^E{sSKMgTwm^@z?5jFagSVZ?Z01n~Voj9AEz zK+8KDL&aD+|Lji(iBO4nf)Rb+(Ab}Pf&Z${3dR2ZAU(46+TI^|-qw1e8@@&vs{8^D zX8d~;H$sc!ii7FB{ZW#ykwN{YX*P1LmDZtp&)LsU-katYa0y1FR?>)?eGL)%5hB!l8Ni ze_r#DL0K(_vHC|z4zgWtU9D(4RzI=nM3SuyCp z8REbX8Su`KKor4hS1X2FkJCH@O^~Ci2?NMcmEtq&=3#f-Qt0u31wXtrHOtq~(+A+Q zzwuV&33CmHUa-J9)Y7d$`+6BWV?LK6;MWI6;v~xvY2{er5n;wT^nQ3Qk#2Mm?}u3t z{8r3UQEffHC;UATRNlwfnxDJ|=D0EIfi$|5jnv?9SuG%f&O>TWdBHMAne zk;g1eKqZyhNUH`l-yng5W7zAU2?4s#=oSg+OiQDm;^Tiz)y#UT_QF)|fjTcMj2a$e z=s%{?zB|>^8M+X3bA~RCPEJ4(K{`K0>Oba7w4N_Vm@lgAo%wV;+5!KVPygJdBD5Q~HBgKq=O!kHKWb=f{7R}aqTQO(gaZdinWQ=99kTu3g8njLPD)wvm14&g0 z9r&K$@ny{#LUINOyofHtOpsc36)mPD9?%yOThkT`TTcH+y3A zx2(}Wfo^i9?|(#(oyMxc$TPDIhT|Xs%n;|51X#4K?D2wKC?@1sbc}TmId+yRh=q2=C0*JIwtaK7O zM+;qg=q*4(${ zW_MTL+NQh^?bzf)tpuJ?ur3tved6(;M4fS4IpFHx5PAR-K-F zDZ`+pYZkFgLe`p!9$T!OHM_()NU|1T%p?w3F;H9{6%!{ebdH&?tOh~>x8Q2Fb&&z; zS}$sOoZ40?h;dzGDltLCN~F17f&e!grd{X20fO`i1VQ>VDkH|Jygoqc)0-xWIN+}` zipu2yp8BLCJvBh;(2HMc)H5NFT6Y}9oM?U27FBCTS%AXb?m$+yAE zwo1!^a)zJG382O@h(rl7!41)~z3ry5dZ4(`&Dv01%OP=Yhj(rbxojoo>WOWw-U-4EAk@nu20QF@rk}oilZw(Z6@5JX;dMaNI6h}`-)K$OsB6*9E{6X*Kul-}HGrFk~^$nkNE1T#R z42*e1+#3)xQ3=ZwZC;INrbc9PeM7m1h%*aa`WBlhm(0A(nEH%j6^S$mTef8))h`@SOO8Q0NO*>Mc&4}@l|(nPeG3$H~&&rH@du$!&1vMp0u z6a3HYWldFgnHWLQZZ{ZFjzH_-F%L5)bUItGQCn7CUDDsk=!;BgPZv1}4|}R1!QL^0 zf!Fl9sJtpBT!dbTND$pu$<>1_>RW?75tJ7bCZ1|*tuAWywXusMN2igZ>w zqVpUeKA9BLMtM6+sxJI*J~^hAdcnj5E(D`Cx)y?~S#nP3Jtd|pbMn)KV^d5gM!&A4 z{~FO(&SXiA{hed>(Aats;ukjrx%hpbjCoFp9whF39MMR%4f3H$+hdx`_#+vPBcO-h zYa;du1f%;5Vso$u)jV;VBvnn?m*y7^{`(OlMjt}90F zq8K=(i3>J7Whv2v>A=7aZO7@rZ1j+lF<4G>-FXeUqFp!#y$91g7il=_It{=mETjDFUZ|7k$gnbg zu$<^7df^|(@y~*0=9$ioUsPBTli-E^A!VJ;x$wfghGX7-U(Vb3Yf8JpZ2mj}!i4jR z>Wf}ji#XQT2YXJS2EWttAaUnHO7Dt&qOXH858HHBmCxi+Q`(x{fAlOn0D)Qx?oGM6}`1&q9azeg>y_jUv^Cqvp6k}DWZ*pn$Do~*&*yzYr}$9 zt&b@ihtTP2bu&jpEU#xQ?-_zl$m5LLbcuSc!7US6TUnVuL@pcmGHtV!*M`v1X!Q** zLa#7Fmvq_01=_f`(@r9M*`UT)X|Gcg;UDTAs7pYQ<%kraiZx965pEVytakiQA?j}? zF3|n?nQ@^ECA0OWQS6g}2PFe{uo4Fc_-N~PBS6vt;%Z?`E2Z{OxtPHJ@N$qftv{6M zH;P1g-XH( z>mdo(*MLjf6?0RWF_aFhsAt<8{jlt?FgaoI^$zzt5WxH3T0 z-V5FntsW3&($B8S?xA!BRo&}FekUh?406+VVj7Ais@u}Qb>>} z{TjY*xuqf~%KLD&6e5BlakB`gWune}R zV@`SdiwRA{^0U?m<*&XX{8m`3c=0T}`0xj$ud=NzRr@feFEEJhME1DUAgsUXoNLdZOR+K;+Z1;ITBOJzb&@v*~MO2ZOA6(~0jHChlt1=IS1fgMu+S1$=QBodQ-b^J*e- zo{_jV3=aeMV?$?P_eh%clmc9*3$Wf06kz3MwO}s&KgmwV1G2k$8QvB-^?XcAK;77v%ZR!ey`?pj$EisH{)q12k;o|{%W zrCGyi(~2!q{Ui(1-7Me~W2u8bo5-yzkQi-Uy)~Q`BmcL6wA{Kn&zT?(01g4VnYaS9 zaGuA_D{q2tND3ZV&i;~{S0y*6hszlEH%`aHVHqGHes)6`+gMQ}EP9%Xs>#b5hjSJt>nwQeYz>x_279qE#LNQi zY^?#Ra%XEDqc2Fb`JC7`otVeY)=-Iag%`15Zeq07!uXTr#~k0~~Ig zRPsWfIFjjhZHb;mt8Vmqv}%$Du^;~dEIJ)Viu4a+Qq+zd|IJ+ygDo8W!z1xc=f~Mf z;6@K;G9j2UVJBJNX%4a;!LgF8Teq+_a)nhmQoh2f;Zi$Z0{Njk1lmFF&`ZPRR^jTA z(piT8v{fifM9^7Y%X!}pKhW$wwhMJ4c_Tf|euS>H0EX0;jg)iKE1ZglpFC26oH9UY z&+yZca?kK42PNbAgfn=1Bzp6`SxV3;UbfhpcqH6LNg^LW@7r0oDHWV-pD@_Tl@CP_ z;54)Y&O06}XKN%fj+!=1M@xi$PEQGpaZ@7e1PRD>5qBe6IHf+eGEqe9Y{n=m9if>y zyP+d(1c^1=cW%Vt<+6u+5t+aYCL;#%YO*4iK%;mv<+RoczqK@L+$f)DpljUsnMd2Q6HD(byp#m>)j*}d$(K*O-N`-oh6Y)@} zYzgwZ0YZCvU%;5-p59j+loaZ7&R?jW(5$wjq-M1@QA5pY!>M(HW@gROk+y(+ z1k|h+9Ny5ZVZaP()(Bornl*%@pD>Cvi}^7w^dj75ixxT695q=_C(8~s1r(@V&>@p{ z(e~EXQBu3$KW%UAG;x61RmeFw49#JG%bUn%FL6$h)HmqV3r0!Jy1)r|Xx3B-a?Sw3 zjV zN1>Tn!*t|rM@tQB%i#?T8x2gMhK=Rbq+w2u{z>SWc_+$1?=g4Hl$~k~;GkWW0$1mf z1#L&k1+k;RJfpH}wA3>APl?9;CN5CR_HZta!w*~)G1JK8t5e(|<;yB&NmjP$tZatk zp0-ES_c;*{O`9ztE^`Ra6l3vdnPU8r;~~Af%bER)l!3b+b0qTHUVP@rimyQ$IGIs? z(J@Bm7vsiws+=~4sazHKfg-^KBkTEGi7{%7=VUg|O$sM73yB17baN*bJCBk1BKS`( zTz5|XvK^AvoO*9)W!5?!e@8FE^CjU20URft&7<9u4yB7Aj&rAr;6-f+)Z%2eNEt4( zMR}YN7&Sdx1l5o&N)dI&Teqn@yxLIKVk)2hbh)~)cu{#|1`UsSX^E8Mueuzkj+AoDoC$KA0M73JNsc-) zkfST*6D;1D37;RliFuzIddeqGbe?5hr8vjRypQ~^=Y3p1DDMM5DDSh8ciCfV%9H#H zkO3OdS^#k;evaJ-E?>eOF~JQ|-?|UTY6IEMX5<$axmc)|@~ zWPhfPli8nX930mW%Vfspe4R~9{xG}+67P6}O{V`sR*nUU;95cnpzY&i0%)ffwQY>r zVVxT0e;Bp(65%GF)Hax@89AVH~R+xwgSfXsIlY zJ>k-}2HBpck93^L+0r*l=HO&gl%?sKE!W^~yc#D$xDedH-V0ip*I)xXniT8jR@oJ} zNZ<(@T-S)lM4&rlRte)MPhnXg=JvHYlm*!`O|jHO8ufD#BfUl!CuS+U$;=}%m=Iuf z+awEf7z;DudOCa|;2BQK!;}go7+gc|<{ZE%VR1QICM@3L;ABb{8LOXUQ@(<6vR$G) z=jM_b(GFSnRyG>ZHs!xS!hO8?FE2X3Gdcm|We9+23r1|GMEJ8WV!PbLNWq|AhWB54 zyi|d-@g54M)Ev*2+GfzqtOGjIs^g`GRpsz<*2c`m!{ep*|0u7frM3r0KL9#q_Wlj@ z9<%mt*_l)T$5jeC!_-U9Tr3+ey?*#lnTu5>>ge_7a_Sr42b@J_!=n>f0^FOk-+LtW zg*x?l2WNIB%a5Z}KQIV{o5DdfAJ?{j%Z$ zNWh)8uuNcS3%?0`pivh8aC#Ldc&055NR0pWB6ZMBiqr~ZVW?Gu2~w>ZnW&)$S8oDS zt2WTgtX4YG+7qN&)#mVqTJ@SB)v6D#CbfE;qaQNCQ>_g29%^++cBTe^qgp{{Oln0b zi@XU^t>8bUEY_K*qbOH%>f4~XIc1>}Sqa>m)#|XMzFeoiWP((y)0}{ZS{;!fFBu?| zviM{Ir7S+>kfc@DIBVZb@R_oBO5(iY#otj`@jmp(ow5j+C{q>{CVDDVxruCutrLBw zERIQxc%8ag6i>TJkye2y46SMgH|%5DzlDh;YE=_XvI8_TYn6_)!9=N54LH1^RRe$- zOjTs^YSOBH9K92IWS*=H^d4GuTy~}|fTLDHXG~f}DT)F(Lyl=y_)jT{O(yE7RqHwR z-SERlibAKf)=QqxNEY&S7FJG_s`Un^;-Om4N|09#5b`VCN1#5RDDx9va2%v$H#w(w zY2ht{NSWGyqxqGdG9~{Fd zO6nHU9!2VRY5D-eV8*I{$uFTy*2!gK%vJ9}ev zhmgj*`UtTETH{}AxP%(9*Wd9d3UTAagB8>dNr6uC5CJ+?g1HRpm=mLM=oQi@s+7M$ zs!mKy7%zNpgQ0i#bi4dPVsh@3KS)f@-SUSnrdO$_&e!2ze~=b2LG+0V5*X@ylPaxM zCEIkuk~UyRj1)&4F|EZHqinVOU?|1qt2MfcIk!@4s&4`j8E>AMB#MtlXLNgwl|UWt ze&=TX`&X9pXCxd5d zN_2*t|CuCyA8Y%e;?KNJq<Hpt<@nNJJG#)?51NZjed;$>Ih=sRRaeow zS4anylaiMYCiaXNs6t=?>MNJ0!^ftAhv^i7zxf5(fYGrIfZ>WPjaROvO0X~4} zhQqh}gq%?tcoC`Kqdlc<5+>Uoj^Xk%#9|RIq~|mgFHN>pSG#jwaBLI0vJwWPcPdQW zY#ujM-2f-9oDY&Jbz3ujhz3{lMwAnGrr6YSPJqu6ms-ZPxBdquOtOfOZ1$flrHDOuu{wwGEEQrVD=~T@EYoabEgMAkG+VEL zjo4)KWN~qt?IFghL$bPpvswZ+VzqF(t$T@rzR|n6yeTL~AW9v+8 ze7YY zV!L(BMDgJqTgyNc3$*?S*5J5@MChWB%IY`Rij3s*$#T;9l9fOmO*$j~Ez?8c#hBzO zqRn^T1&W3r)yNXxrZ^+S=|@5W#nF#!6~#AmZEZ4qQC$3QDT=I=_*ii?#a>^$KF{`y z8Zd=*kY<7MSVHDvkvhofOZUWofvuVnGey*a|ElJJp&fh!q+E~^HANH`XzAkgs`3@m z{;&5(FfL~!T+MuOKc4- z@TNh=OSanTFy3kMkOxg6pUnCZ%t^TwCJY@mWZW3|j`vz;HdHLL?JJE8fGPOE%oI^I z*Os6T;G}6MW4`Bz^#zjXVD*|JeY;94Yz3;|a4^zcMUV46f=bQST7wojbB|3aN?&Dj zSd^Eitg~n_V%2q9jCz{WCUKpV;)?JR*I9A&8C!k-xd2gcrB}2V5L_c%6n<-q5-;Z4 z9HnOW`6=Q?C5J}g$!W7gR6)O#GR?4tOD)Rqsp9qZwkm2k zX9-0qem!RkS3-aW`d^)UQj2JLe3m1teZ52fJ=v#rJ+fJMH->U)fT}ydwstDUV%wz5 zd{P`dVymjo=3J00rqdd3EKVms{R#a~aAW`fcMI^{|6)wAH2PvI<) zKsR~{bfVtL>?cL>{P+pVLF2b~r>7r>PS-hZ+vI-{@Q8b}ZzYKDkJ|#&%bXDP{d`G% zzviRw%}Z^IZ|gmNn=?W^{@%04Z|FUIRqyfN#&1`TY1)N3h^F1`FiqmLyJc$0)9&V} zB7Bbq@4la~^)~x##qZjii=%hp>m21@uq{>FPh$pmd9RkPcI74EAKM;L+E0V;H^q0! zfE&==#tBd4aF^cGYalW&+zuCwPTD4`S&V{!VS{t?w}&;4Vx>A=XXZ4K_L41DX*NxC zd&yQy9mm>;{Eo4MqkV9TP?oP8v(*K>_1tj#BTCLRyce&FGL!x{6Gs>Iw3R?Ny-PUU zSmvx(X-%6d{-RBkJt(vp;L9yfuIAvi5VrJmS|U}>0Okvll;+b!PkVS>vFf%hxuCWd z7>97qx)mXIK88>DbJ1F7eJp^ESzZaV#${p!pK)4Zfh!QI`6(YUROBQr;#l;Uo}$Nx0YRe2 z8@9C>rb=D$3(Lma2o-s6+P11e)7hY+`eu}8B~VAkR+cnF#XI5JuqYp7oHh}jti>r0 zOm}N*3ffu6v+#AKYSTs52M_`*K5J_oXG0#jZu&8%Mb8sjZISbxZ9)7xe|i%}=4|PT zt9ra4dY^HMC$2iY$+5Qf^eB#97m4Jxy2v>lP${|-LR<|6UG0odAIc~AK&m4(`g2Sc z5NR4r@=cZLa*}kOx2;t97z>&t;S)xWs)IQfG%y2MiOxmt=CV?T?iXwUqH3{CQ~EIJ z2hco`R#CLLV6z9%eDS0{4j&ZTLX>IKxl;kMSzDU$XU%;w3uw&ha?jHAI`w z>s5|kiV!5jW%xugTsEC#sB#&K?fJ!K`3Bk$S5#pw5JyVYI1FEkQ` ztVHiiZrKt(6{k6)e2{TIElp%28zeN5x*ynTE3eYfWX3&>?D5gq!uXZepZar$QC#*z3-AK-4;Ga2pY#*_(bD)OOB&YTi6U24a~GZ6wOx`7hYI3$G;w5 zU9?EnDn}Q)5&z&u{DYT*d^s5vWSlrxYzr1!KeBc7;e^z>W?QZX&j2c})r|ZPD=#7c zBY1}NKLS{d&Rg#KGElUmgKq_h%+Ep5TAYM~vQ-%w>4fA7OS5Pn)SXpkNH4@P!^p5S z;^5?olmO|&kFWr&mmk5wr5~ZpaL>%rk3cx-M?8*C_|xS_SZ2t%p$b-TZS=_-fpA^nKqybbvggJ+cBM~nyZ=tmG=P4|=%NMqe7IlLM$&C2*Zf5l@Ar7iLANSs}2Z>W5 zT0KBT)K25$K9g;#Ktr; z|AkL9Gyer@Z1z%UtjSAx7J692K1h6Y$F|C>WUf%|F*SN7U~<_q4Nn9s(HY3yQl`2R zKj2n*QKi^sS1QhQPe&;VnD>TaTdGoHCQ2PXB|lTnKb4RnKL3O=4#_u(<|R7M&Pp?J z?dcKS0$Y>RTH+H)t>sKlzogd;>6a|GYfYu$y#Avt%ctR#MYhmo{9rgg+QP(bht^!g z|7;trKEeA&=v{8SyWMzqd+CpKTVC1xOzEdQGn2M1zTuGMqLcsx z$&%Q0m$Z56-y8xHCh%?2qt&#omS6B+b5U4Ri-|4)i4Q;L89?Xd=WuZ8=R9jDtMqda zPWm}DX2BEwbon{Y==01+*o13t5f-=x&G2*55P`ec?B_I_CHr@kTTzn@Sp!{l3Peo2n&P#~>0CV>y`=02aB?C8-MC;IfsMM$etF)R6>vEYpMLB{DfTP{quXE7%N zZ0BTzR?R!P?g7`GJv(ngs}jeh z%K(|9RjC2Crd6pSKGCYwaJHw^xyg+H+<%Kh_NUA zH(sJM?CdvN`fro4HA!$XK9K|`O9`^PQmt8T|81vFyC@@9NHdr74HWL zemN`A`%zZDnobz=O3^;ZIJfB5u#k;R0IhnE{d2@>sTC;ucLX?;WAuBxmJzoF8RlcN zg!O=VYel@6>|(JeMAsoGT4iU)mN+|ULW=9Xf75Ozk)fit)BvK%6?idI=o;(+9``G&#$typof ziZ)$s%t6R!t1t31wYuVTezHTUGe?|xD4?3KXtfg zQ)TcRk^gL5Lv=E*xfv1v2-ckWIjp%lpVxriRTZb7wzS3S?Jvf4K~~_@c+cn(dgQ}@ zOaX*m{v!vM{^R$C6-oaQ;q?7Be8QhD|1o8boaaF7W?Q<;ltPgIIIzznt<~qSoogh? zS-DqRtErrxBep$jucW@htIi<148neZEuQ+lTzC%^Fah{v?}UCFJf~`BDTsGv73)2w3o!-W^8&$kF1kausk8v zZ!fTLETLwSy5Eb&?viL6mozGJ34*6zExf)i!YI+BvsNB|oc=wom2wW`+6_)7o%bT~ zc1a|z`07U8?pjTEHxN5~AmKsfZqB;Qq$IVNBRACG`;sX9SE_+WCob0vuSX8$H-YMDLPF43{L##^ZZj=FFvWnah#WxU~7IQY}kK1eVVw>+}#74hs(W z<_s;)JSx&W6H=-vJN4e|<^*YEwwFZgsgim_dVD3$Zl(nhYE_Z_WrZ3F%uN*Q^0`UI zx+*Uca2ZNs(c?X|P>cE=XA2$2cw;`+7Z(m{5td1fYZe7QthH6tuRUPfi5q7^f~*Dt zO|DM2=8D9@TAX;Tes8--9I8c#e;(DU`~MB#;@&6wYpM^-V_J($L>M?!iQ`YvW*N}@ zeXgiG48A{gu^^4 zw2tbK```(aJY;&~0Urz8kJvD~H^=Ra)<=ic2~z6L6XDh4(!CqjriLOcdsKLEb>xDg zj!;oNXLxIuu*A)N+Pi9@2ajID3YUy-b_>fU{@M6!xEMA-OIMzoC-x7}9#o(Az``Y_ z`w-6-~_cXGIONv>fnGJecz8 zT8!-4J$Kit6%8M(#aLA9e6tFB*+R6044sd*&{5PIs--H`=8N7#wQ6b&4`42fC!_5Yp26K=BehOS?tIbQ3Hg(i_hHQ@ zrL&B&1~`1N7AadQjJ11Snxgmgd!{MhfTrY6Y2VU4Yq*iKiB6xSewj<}?iAG=qcyOo zuY2;%0Q8v=03esxSdgS(nnX!?x4Jo3UKWI+veIl!wyC;|aia z1&?qUn3|R&ibsdnhMUK3zJ{b>QUdRHb*|cy4 zEhxdIur2W6Qu;Pt#%s9h2ZEqt+X zb&{6K#Oh{2u9lnwJu_@BqReo@N01rjIQ1-bst2K>u z8q%yUxtOs~yt+n9Hj@YA=Yyv=eR82V^G0|RQP?1?f(5=3@v`(d3tl(5#d_}sgJAFu zI9dS*E)+G^!3x+93SElGe4To_EZr#Mhrl36A5Fhi$~0tR`|==7TM}8>pDEf`2Km=}8?`XewU3?NCl%HW z+BM~mh4RHN_)jl(rB&<`B*uKH)fCWprC;JASa`05R8^A~FEx6sP!B#xQ-pIuV_XUqP3m`mu_ zu*V6nP)CR!*|)4>V1T89_q^;KE>@ta-ZTWRs-DPyjvz`OQc*!*t@HNi<#Qfc7qR^&Va=taio2O zYUi!zwu0Abq8E#~;YkhEs=S8!05z9?(;BIbcn#bRvpNFpCO0s9TC>5UvnEc2TVNn3 z-oS1}TuCRx8mgT+go_H`N)b7qPmNG}@oGT$ghf>olB6m~~YPQs7Df7eai~ zDY}Ht(g~{17O_oJ;Bo0wu#>uIu{ijYmY^(NEO!wCkQuH;x7d)$-BMnn4AJsTJqH|AJm-}NLOP;!c==}^(F_Qk^e+j z*t@)jx&$?#WR*l-YkP$H7q2EIyLYvG-4c}yU`d}!V2Jc--(s^q-FP1KC~k?coB$^% z9{%H7U>A@s*QbM=5qQ&PiJH0unz%Nk$csMU36#v6(B>{jqmL6xij=Sgwk9QPiBF`2 zEthy6dLX@{?Ue(I<>oHmFmvIAtrx&qO(gzRH6^;U8*vvm;w};~I}702+}(0g8|Pzl zH#<1Byy*QB#H>RQiL2wJm!o+J4dRd`QZF-Ejm}%{iZbvp?w-`ji@a0X6m>46V4TW} z@j=*`vqazF-Fq6s*Hs*lrd;1Ja)&qjj5bHz%|UR-6~4ng_qJBawp5_1jsNx=BFdrDt>rlJl{XoDV#E z?Id$>xs%*?iQ7o!PBOyDo#aQ6A^hpuNzT`87KYbsv;DEarKq%%Ty1S~y4suf2m_Xa zb6Ra>@KTX>4)&df@>+;jdIqdZe}KL#l^ zcd2=RxPAfl$a({DJe4>XdE~RxMb7CsUP%%j9-lV_r>t ztPg2fxJTdnOho!J9~unXb#akSWAuV#$P3h|x174(TXT_-rQ_vBmQJxRGj+Ep`I@F$ z)CnfGF}XHY@9$V%L+OU>=@qIf%U}m|d{~mYgjZ947nIcB)v~`8xy3@p>f01kheKqC zfjo7Xlh-?JE}{;fx~`p2c{%IwD5Jxa@Hw$mCVciSl?k8S^jn@_H5m!+56a}h2hdwe z9$e+U1q0WU2k$SFH&ESM+OSlwj^EGPDS^QG)2%dje;F+Ar@q#z&|OrCw=}Co`D>X> z9>9M}9%L3b3>Md(u-6dKFkGCCx5vR(>t#ZrmtV?qJ(rNWoEZ(p(n-rp(EU2gDVGpp z(uD`aQ@!F+MUUICH`;0j+!|B!Ypqnb#sIfI2X^VQljSmm z&iqSTrasEyXi`tS?I_ixPHgowXi?Z5xm@NadVHsyRc0&~FQ?k8tFt(5lIXOOB)V8i zROJ#C>36ipO0ymkr;~L7PUg&z05^CFaDv{caU{T6<(#`AEEJZu_GaoK4h>?=u>Oq3 z#KphgfOd(5G7*1?EI)f)F>Yo{hh>>eMEnA?6JE*W!yueL!&HoSgOvYKTb$veLGFgK zv6yhN^%wAp|Ey`REyn!>5z0@zi{z;P$xFyl|7p2&)bFtxmnD}aU)|O4TxN~rZ~LI> z49k@%juhUSBF2PVN^ywbs&+~s5c^O_*^Sn`Ib}Cc?|60ty+q7z00d<>9^nu!0!DTt zi&q=jjr(B5?1nm-gSoI$NLoT?DJ1=Nx!c=KQGn5te`-m}s$B8upOEUv%atK%7^3Ft z`8^vlJScfW6`VTibli8?h6AnTO~_NMm2ID??&ie^8EZi54jY4%+ZTEE_~0nUgRV9> zgcQ%7M4S}QzJyN{&%TuF8PAeIkbC#taz=|unAyrdW$RuDS zuOTym8Y8EY%&U!@N=d2>u%y5xFhmM`KG&?kodfO3O4}7;Y@j_!X}3Zu@Q>I>u8Ws= zrzxk>nX^U;e9;r=A>M>?DjbbIIw&dB!Kf^3O*%LTpGXG>iQ*>q%Ixh%Lj^D9%9IL^ z99<|O`T&$Nr4lvHjW^qk7d|xtcztA4{%H^Qdc~^ti9XUQryhj5k5&5`btxipjVI04 z`MiY2aj6`OjD@U5=P!44sm-I62o1GQRrfIDETiIsrgQfSJ);uV3A#}$%wAJ{hC|ad z?;B92RsIOG&rr{D5Xw!wu|nPs^~wsF!Wei3K77CR^21>Qp6aQec>!Ga02t8K9x1wY zwYOFO@M`;u(Uy`ICGh7XdGQ?J@=9KCaGAWwS>d(@nY=(anY^g75}xp>)}`Ac={JN0AwB^3^zZwESG^6JO1*|4Kce8OZBl0?-4RzAI%w zb8dNXDFPbFoND5M!Wdox4AcJ3ky4veCW~MetdtQ9{HF+}a8A7-@zE3DMTS)Y%So(h z55_QNf!_g;1Z{*K;*ua&dtXW8_}oegUMli&w1{zQ>cM9*YuaN)>ltw03dAl!;&5+! zDdaao*|k!}F1t8$Ya*e~m@OBk_QtYLOT}CKZ4Kn1T zZ(6BeAKTao8^8VSX(-?bvEe&7>6$jVdO4A~sZlx6Kh-`^QC7*I#(xzvDU>vr(&b+E z=H3~SkX0mTl?z(DGZ3!91R}Nmz156R{?rBgCl?S2HW9hwg8hA^NH4OrwUAs*Ax(YW z5nMeZW_pfF8um>8Jl8KP2zeXLls?qB?_jik8Lsyo8p;8LOn9HkH-5?6{1$>8`G4$fb+sgPc>WlJUy{-kQ9# zJ*%X5_B^j4_MwJ?m^XM01u>{-Jcz;70)rTUpdjWW4&kC=1TkOpY9olb4^|3d{^VdT ztmFfh&|~re$FFj)dMOGpI=3O*KpdSX_BXVrDlzcd9qy|MM9sB%5~oE$One?QNAdwD zdIC9k6C;SJ$%_#()_~N57zQbWn6w}J2S+g;bhW{8L$Gl(HG zpde=ADjDprY-(TQ(>k`5+B#Z`zna=Bic=HqO+{#P`x12k?>CvqFkV7BHXu)$NFP?C z_cgaHSt=(wx3qUrXD~8kEKxoPJEx0;k&wEhE#eg%f|PD)o-~+Eyhgggc`TgS&#R4a zrX(c?tfb05`N_jUk5wMcGgLX4oHx4UC`PoIb;}kgJ-N5@MBjAK@UyyRPe(SmWmZ$i-xN23pzb2{Mb06h=JWqx<+_!Y$+`YmG zZ=!#3BmUKm_*aS8cYHI=cWARg4a)}tE`ODD)5c3^IK%R#ZmO(CXREYP&AmtL9SS_XOSRHVap4=7q~21{XC(IbkWQ*i^h^{{LcBZVvr>me|J#=SIY>-f3=KYd{~Cl z57fAZeGTesIq}p4yDF{^v3JYx(X_MyjU3?-5QW0lOaq|}voBVaHOv}lSq$POv@9xX zi!C#^NFA@-q$qM8g|Ls1Rd zHIHg=&A_MzASkNI;t(z>uBgTu%xjIH<~~R%sF}~fTu8|iETO~X3H}CJqTe8&5_rh!eq`5&ElSfY)*$xlUic14RW0b9H8OeUpA6*$7VO@id@1! zJavBuZ(;;H$9XYA#u|`%u)`o_uybP#e6Nx-p{o;)FGV|N5h*#8=kSRf%5!TxqaCsl zigx~3?T&WpyDh1&Pa`U2kU<)oIK^(ojhoscWjcJMu8m@!q<+EWK$i49FCkU@Lbs%w ztVZv8X@egZUjtNSEueHcIAlpa$T=-*(USBnoJbBrIvKWBno}~bkxuej7W1U>Y9r<; z!3Hd0;@Dw(*XR=XAw|Eo#!z$x4AL>(UPbA#RCFE=JTgtEwfo{> zO*#nrE$%7PcKLbS{G)xx9NZ0|otE*Ktf4&AqZpb}7$1PHHpMN!;p|Bh`ZZKL(0KaH z;Xv_E|K2skjYffM)#p&)E;}860FIU&hhYzaclD1ROo$VG7ubVsKfmHiIg9OIWcWh7?%yKTzg@V% zkuEX|APSiJVZ}&MZK?fDHFTXz=Fp?M`sJTB{IqrO7Wc8bRa6JBrywt89R&yC(svER zmDF_@*wq&`Kj;=LzVG3P6Zy;S)vO^1#b=h#b>jST`-)&jPK1BvXb*?O$_2%FHRqkj zS4ktqso$HFEBYqa{-8x|%UQy}wBUpv>>jMNPf)t96K$@>R#&_6Cd74T&ULSK^g5%` zXr0*paqM8muD?{Mw(G>mJo|=VM#?99ql#AK+iO_VNt}%{BNCIu7pv`SRk(Uq z*K?5h-1%`C%A|GT{WbQv!3@ABJ^h=uUi9Qg%{WS_G-bO7%a%~yJzVX z98ut53?Bho7`k2o^0e6?A~Sn+`j<&A~L>o)KS;-UePWh%-t73Q1_l_=1_JNkXrbGT8N<g8ZrDWQR) z@LhY9xbe9oQv4O<2rk%b5B-<7&ad943_f2hNQ1+u$5&6 zQc*^K>*%MxWx(r-GQtz~bu%n(zgpl`Cd7xqILZ$96D?z~40c~@RIOndiO;aoKGDh% z?PCO;BMM|daqu7n$-IGlb934u`*Jl*FdddDWnLn^Wud2(S&d6eO8ZqOl=b-&_CWE% z5&JB)7Nfuu%dA)@?5rvD#PZdr?2uSyE#!Wp%1R6vnOHt})ILV-$r?bM0Jnl?i1g1u zo^-=xCn1x|e;tEV!}rJRt<;fT?T4D%%X~3w#mG{=_}rEow9FaZ^wWbrh6SXq2JYXPsn#` z8l1LoR39^Oj_;cETrWG{lh;t^$DgsERK~0qbzZS2tK)bzb$Jx)@-*3HvkLZj)!slE zzFuA(Ih@0jhG!p#??i@lshcd0?tqM>@)`u;`RhfE*X%XaHM})a6A%4nuP2w6Ek4D& zva1Wxg4gY}h%8)F7tF|_c&bS`L!U{`ywAFv%|#^V!Z+-#f>}9}b2l73L(ce)iv_N3 z`pn)|`50y>xTM|kp&W{|v5CRKT)*h;>ckGS0t()?ukz4r{ETMKm>OZ?O0*X0=lpZM zsQXz|CG~GE70SB&!Ae{je^rR>XJKRa=k=K7NDFeJ9*%efrYrILSvaCvAVlmrd!iD) zLC#TEkt>>`^xO7+Wk}_vv|G;E`zq@caXC0OQj~iK-paRaU=~2B4+D+<+Ef&8LdKf& zdZ!+0OCGWt&S?=OP8a$|i?}QHFuxWXEaK+NoiwGz29cy#?Nm^h zHmI8D`d`SyW8jG2n@rzegi#{kPkX2cNrT&?u>0~lQ;rOk;HdFvd}>L$(` zs!W1lC5#PS1wz*p|7cZKZ}3u`{_oqXqUtPuAI$WKm+I&@46bF!QFY)%+J9imeU=w{ zXp4R|-qXB^p)GIoV$zm3u;hN)@}WyxKGd}Z3s76sn;aRb%yp(R%5CVC*E;HN50lwkdbreo1|p7kj9Ten(z+-o#Lu zVZ4}BW-ykRROZruIt7XBxYi+}=7mmSep8_LG{H>SC?^;!$d7BCq|WBZXxW<~vJxD6 zq_YG%<-O7$i%N~NI*n;UziIDD1Z*4ORXz#Jn-uhd`>_UZ6j>kI)7ccG!)9_e+#16K zAg35EOQXvW&3*rvU7Q|JDNr2Mv|7uHpEr&dj$nDyk@HU z8s`MYMGt6CV<*!82VNc}Lb&Sc{mLz?_*Z0}O^z(8_mzFHpYjc;b4t=M{7>8cMgTnS zw*9ISx=D2U4&HhQ-vms!Y=pw!isEKvmr^)3$sK*Z?pVajDWMw1z=0F8gk{%9M*d*rMu~!MMV6Z1$6-+Zk)WT98ij+s5+bVt#dtl0B z{$2YrwTl6|R-o;)>xd<2J7p#C7%}eKzHnD~v3;G=Z>%Q_e3_hjav)!W`n==0Vv8d=pE$#6_V3+{>z~0i7v-V3Rz6k(1LlNVNLH ze#^h&W{8Np2W_mZhQgCs?}J6pG?(6Mn@R7@f;&>%(F`>{Smgd`|JN6jxidZio27~e z7@RN_uYsjpEdIz|Tg9?js`!|GjG zp^0wWuOLp(as-MeLPG0`?42`x*Y^9~>QIJl7KsXE+eUDXX}TH0#6H27*u#3nr-;H? zpgRc>5n&=Nru02jGIiN!8tgFHFYuIoe<_eYy6kVvbF>h5ehGO<+%4zWrmi=Tl;tQu z`V|Kph?+(r`>pA!uvTz9AwCRr98gYe77Hsl($q7Y2@>o}Ot9yC3HE4^qgR>aE>CP0 z_aYosgHISdFlm0`Db43($BygL{6uv;sTLccWhg_@xSgXZWyBSr#>H6FGStz@qS&^G zC1H-%s(p*cY@kGMF#<59(iR`nL64}!6p?ux2o!FDwJ)?vQW>p%5nH4C8+3pw4;Va z8NWsR5#wm4PUH-rdMe|%fM@v?nxZLlK+7xp~gA7DKBr4o$5L)zc3>3kD`u;-uZtf#wyKXAuw+mf)|(hi zaJYvJIG1qfbuDnnX?x{M3^VlYmCx{5-(K+%AUJOVOjSpFzhztXL&~`x^z}{LC0l8X zde zloq|jcNj*nee6TZ{;hIn*2ge8_W=xEOmeKgV}m&rGWV_67GiY+$7r=XX9sg18C_V3 zYrso;=g$Ji!x;XR6SW$FQ4C`gXq!tJv`yYsH;LEKU3E}Hcj3+BH6S+qEH0^WIj@N!9Oou^_ zZ4;}TIXcJn#}Yo`9XW5?FWKV7s*gLh6M5eSH&9RUI?BwP#1hKP08{iC*KSq9FZzA7 zO%DY><`5LBUB%An8!caMlcC@-Y^85}K^h-FxAgutx$W>iM?j(A>D%L~Tc8%dyYxUI z0J`*#(ErKM2NlYEAV)7K5(KO=5;UQwNHDpOBEd==vk?glI-HPYmqs-WSD!OMV9JKh#`2M3 zqd?zY9EI#thG;ZCQHE%AVM*!5TkRcNGJF_a?!i*ejTz!-M_9u;ZFbZaNAJRh(ew_E z#p)t1UD_32$xCQgd{Lp?6`#jy^lp|FUr(qz8FIO=?Sq_iN1;3iyRVa@xB4sxp>wdu z3gtQ2S9uNf0czkVcqLJ%YIuZtnODO(*zuy)^I=I5xcr+An8R)`9xw-3I$-_<2XoPL z9Wakjf8^E13G@47jTT`qge9l}+d-f%^Kqf3tC^#C4eLsZIC3>5LQUb-Ky;+&*4b+IJ=h0;Vwqc7H;9I#QLM+eM?Ej!MeI+hs<22TFiXVRN`h zXpi1w+3L;tpxpFqPaKc)CbTcU?_tMSbvQ3Z$XEl?byuX(1Wz*86=|mf!lOA)x)!5a z(W&9t2tmd=2cO7T=WLg!hWWOU3vPCyTncYJ>eyml3Tap1t;ZY_)%6A!Ye}&)*0K^E zQyJLN5{g6QR4n4Lr zk%QPSKGNxn932PXttJd9e=2bOIg zg-r`)<lm;$IsN? zxE>av@^V3^aT7ibYoOj?&FM6*F9a7p4eK1t5HJC}ste$0lK=**Q9FTQm%UKmBd~<^ z{WB$Pr~EQ#J>HgdvGz_DJh#~CLmTmHpi1?f6#A=`IRZL5pR!YqOT}6own#QQ~Y-91*K^O5^>sh!nf;?gX~dNp_#pmeDzy%Ha=ORioTuYuL; zQOhp5cvayQ?!`+1IJ({3Zx>s=eDLm6cCpo~&s>NVD5PUeQU1xwZLkh=NY@Q1)9Us3 zF41J3qhFkYC4BYzo(Zey*gQv1i#ouA->#zNyRoHMxkiirMGkqA$Gu)n0k5GmZFm0(Tj^K0%OcK%Jd&#J;Pvh(P1(AO%@l`V z?BJ`&6(7g8?jSSk%B051#$7VV+{n=w`;D(bHAb0l@M<#jS2%%7yW~{F2~e0x_%RS< z_;DEZLu}AVTD5p5^;OGUMDsO#Jg%Y`u?W83zB1PlqVg6vbL&gjZ=6+Hx_Co<>L0zr zkrm9!#&(9B(Hw`41JH)pGkpqYCjZ!Y!BgSQ5vb@!-pMPIFPthV?q z+YPx1_xY+^4ou80;mj6DW<8W=TxfWexX~zTGBf?y-2#TH=-UEEFH0~h;zHJYlWp{d zX4}5T;9=`-(cEyEv?;D=-!5y%KEb@l9e9_TJRNUp*qz>TiXmahdM>>Ul zSdBh2wA=0I9?Z&_(mt_AnqY@L(gfS>ku$?mhJ{X?1TQl4v0vG>NBaAFcvH%G@7Tj8 zhNFO)wsUG>J6D83+c{hJ(996CkzsIm7VWwG$PS9oIb39Lh-MYT1;~NYLq~R0Z!nDb zj!`?2JuWrKRszfeqUV1fv==Qo=vZq}?|6V_#2aI$PYEV8BCA(IWYONkjyQ|*=N>V) zZbYm|I~vxoLAX418>8Kp-D{pWE=2uLi zFFWcuXZE+Ujya0eT8P7?i{xchVz}%=NQpVN04^Ce~D%Yo)!O=ITVEWUdqTic8NqX2vzg5^k=QIbUS1u*3YN zI-M7Tw!qnudJmVvZORZNip?h+sydb9ri|0uC%_q9%8O}+Sb`28p@h}@vQryb3MSvi}b4uZy@@3L{P zoT0>CIYWi+1M)7tCON2B;*!J73i11t>igsrRg<@+DXQu|)}u!I^eM{JC7Plt?UT++ zBF8|^OWZ!mmkPj`4gkJrxo5+Mz33Lrm5wn;%l$Y+OQxQUPh{%Zz?$#nKJZP)8MB2` zW-#n6$5ZN3&LEljLRO;F&3&nC%sfgIUT_2yoP~v`kWrDQz8M6AEAx5~%!Bb!V!$~_ zuRrh6tc_?DoERa#8v(~_pD_UBWyq|pOJHIjn-((9I~vGof%Q>N3px8dr-kc?ji!Y! z_lZsy924RMmhfp|9wUe!>f@VZKk+(JvtleEH3Ozd%|iD}H4EPlH7=DTHLJK^s#%Xz z*jn1JYuT5Gz-2h3Wfk^IEi1LZ9(EXkovIaRP4cW9`RQu4;CvGN| za19yGIww!V)6t2YycidbW@XpqLvJ?-Q42W%T0Qn&b3Cm+&5LREIEE#}vA$nnf}~UU zY0V+q{04_4b$%5~NS#4~q|P^Wb^e^UC3XH(S7&;k?t7O$Z^CvaeZHpa^A(PP^!a^V zpI-%FoHb9=Z~3MLV_D9eTUfD+Q=D)>a2T;+g|nKQp~Vn#H7zte>YUO|Ke zm;Qai25xi>-RK&6p}VtITE@7~9h-f;8vO7rI62S_;n^fmO~CD(%`!T(Vx5Chf2L@G zqpf^(JN`=;+Ww4!-1PK8)7kF;zRWvYoyc2LHf-DhId6}m|GJA-0*dr5;r-ym3A~s) z5b($sb6HbqX%8MiOY5V#Ud+X&(#{I;Y2X2I=Nm`8xPJJ98{0!z;F2JDY4key9$t*b zCQ9?sAuhWB{p-{_IR&z|KW;<#`z$Y}boyuC!8x#(crjgW@$3OH>U&3WFatnI=y!iS zgYCJAn#dUr-ZhSwO!O+2kcqY;N&TV2gKN7N2=9eK0v-|1*FKoZejNIRy2n zAM26R=uy}&j%G?P*n)gCJXY<+p^PlyJgCMj;R0SwNOKs{l@h5RD72V6^6|QUfK47j zF`=a+D0>dl5tMx#p*y(=8D~TIPamY*CSeV~Hm(WriWx_S6eXx1J$clG5s#kqL}c{t zlBJC(ZWjyJXN>L=Y&jr3RHk=`rCT&NI3{A49pR#?C?z%eE>fV$_8vabWP9%*O}4>? z-*5-9CBZ#a>N+9*bY#eARX1c8-hbB0d#e6f>$;~3O5{CNza#En;E(&BDlB35RAHTy zZe&p54hy=c3P{mCRsa0sD8-vPbXicy9DdmY-G~%`@8;2k13%--xAa=?YJ5wO-qx&x zCll#4ybgGjhYo7Z#1jW}>|qsdsM0?5ZA{ct&i^`QfhhA-34Gv~@ z`{TP{5#Sg5t;(?reE+N{&Of$}MeWR}VxpxKlX5lDqk3#d(Y<_Zh?yMB#F1iP{K;}f z^UB9|wuo9SVuKXuHW};h0kO6G2Ll)4RY+h6n&9#T*wM;pO+ABK;wH;aq!+XZm3|p6z%W8qd}x^(+HG*myEw z>hDB1IV=(#v3<;RJ$j}$ZE%=+R%J+Mm-$5BuX}QX`?|eXiZcGNm>nCNqE6(D!(^hL z1Rr-;Ugy;^F81He@g>eI^cJfR>F1W}^tevWQ7M*gaVqMX5Noq2>krE_-K2@(`V=~z%8Qbe+fqG10jB@_vr0Mc8i0wRRoA)q2f;GLb_ z%QMgA&d={n@Q-lr>`vR+*)}^**mTc!SB-WUG`?to3>pXZV9@xi1u|%S#sV2M?xlBJ z(?OLYomZ8Gu-Fpmys9oFW7#mAsD<(g!9-6cC{p=^fR?BsShO?o*esaMT5H;q3+3Bo z_!r+UJKic4zz5Z|9@Wwo@?%wORoQEldF=I97y58SqZfMg`t(wdrt{<3j z+OL!b$sa#Rgt@>)nZcf)DoSY24+QQ+&%d-#_WZbg)&cBm+78zNg+4-;T=C%AiKQ(D zDKwV83*{@=p_l9d{KGod0laq|>jJ;+U=2D=@RI8cjN zBo!QI)f@5Y&8^?D?i2y008MQYQbT)T5zp%sQiG*ZFzn3wS)TJDxeFv0YsS>rz%W0U zsQD`mL#v0i^6csEi}=l!*7|0;c!1D37OZtVrH2Oy&>(4lL?v?rl(YbD$iqe@b@wek z%K~46zO)_qKk)#k^+MmiwADg+dzjwV`l)%@jdu&LJYk*3_ESc|Bx3p8A$1#fB&BYb zS)^bs9Qa*$tM=ANEeASJtW8f5BJxmc4=GV(UAc>7B!ATo)&uMoslYKD{rV!fnQ+!+ z#WIO$WB5Bjj7a_<3eJz@$0>GRe6mf0${4yIMeDfa6pW$!c}Gf=<-3SJT`cTf|29IiX{_$Fq=UuyKy12-%^N) z+2$K7g|a0SjLfobR;MSGx@-%r=O%#6?u|NEj;A~-Taq25bqpP6bhoCO5aRoUi?p&E zAwq8ZgcM&)OvT*>-!%BJKR7J0YTFmd4CdK6*2a2{utU67unA=1f8BWqg>{Qhk>!di z)PL=ywu?ufu&(OFr$1x;kyWNF;q)-Qm-T7ppv7>C*vnjkxnkbzZQaZo(~8hOSx*ur zNWO$zsZ(58i=VY_E6#N;H`}5?IirD!gy^^!&SB=h5SDc})q1wLHgGYYvBcV$4fY__ znrD`P^ml{!jM-Kz8$_YFhsg|c`17<3>qyIZekH?Ni@igu;HleKo;1_jB$U1w_hx>e zW8V2(N_js0WoySUgHaWVJ7_UxN(?Ok=r8cfFP)^m3zv~EF6K!CDu(mV2f?muKFSlx zo4KrsY%%2t)S-le=~W1|kU~+YwCFeddBiK$;o9cKJpC1G0^3UKpj4ZDNVQK&rP&tq z%)!=FB9GeSE-WCA0>CM%S9$ghv3{f7RPs!F)!K^Prre-B)Bm!<*Gq&ne^S`KEbBro zUe8`YJ$2!GQ zkKbHwwes<+t#w#q$_$FoVq-Fh@C}I2fWojt#<%L~&riH=9pTq`iG>IEu9m>M&`Q`N z$v&icR!W0*mh^13)N(GvlvEIQgC(9erT}#WPA@h#=S}PPmQhlk)DhM;Y&>PhFfsV# zjF4yyg`z}|#>Ag@e9Jny_$L74|0X)?u?$)ZMf%u>NOPq~#f5v~3#&R^RHh*55yljd zNdeyWAyd*Q>#vqVV&()_!4f4*me^&`y&b?(6-=HxoI%FID4qEuGiWs|sg$@U8(apX9*KC4Ft73p0$mU06`*}S^AHmPy0HdVA`&XE{(|8s=FX1_Am~+v zj^NFw!fBgu?d3ZVrv_b#H%Tyv`MxI>RLbf(8Mfr?TPh%EhfaCwm}~A*HRWY~WKH(d zRx1<1DI(jWxtt=jwMw~bDHxUO_@ci*zcs@;v-m-P@qf>pOOy+o!?Y@DdjEfEI@d6g zUuIh0Ac|1w{D1`yJuARUspsWO<+RtizjdlsY?++K{g-)K{P>uLWh?*{2Cq>lN|Qg0 zYZaIAs~OfL7D?*}F|_i_e4K4WFZ=I_TpcEA(B5qA3h>Y@2+ntHQIJTE^WBq_7sK+~ zDRJ6SFiv?dER$1SDutjB&-oIVX+{5W8;9M9>|2L;I?+5E%jm7?A9%j_(L`qFZ|Dv2u-cQzsep-uP#eG<#bv>9WhK>QLuD6|10IsZHugv{CWY}oSo6N*|W3~D!1n^KE`SPUvQjC<;Lxf z9zs_Qx?~qpiu;F)JT`v7j z8U>>SgMCOaQcB>}?Kq_bK+{741?XB(f_(QwCJQx;>VpYQg1b*+3!(tgFs|ILC&K%B zM|_&B9?u)$imYNZSKE2I|94+MhHbV!t1Vg1(>7bXuw_&kpvq*@7nP-mnfa2Co4{lV zGvjx!z$D8UyGqYL+)Fe#+`~A%yqV3SB60)+7>Tk^{K80-eV|kkFkMYtB4aM@>Ts_v za&iB@)jHdJs0mqx?y$>L3Ovum5WVxHSP?JU>r*%<-EZy1S6!%8j_=%It;y~Z3i345 z3r*LZJa#n@GpjmMrB#9u7Qaq=U z9#Hl^NNarB`3mpivXo=Az5KNEDM+FyzHccG%|b*Qd1y9FuycPoXZx(x^gE)M9+aJ- zn#6-LyoMU#Awv-!z+&h1VZ$j#BS3x$W zgY>?k5PXF(_>gs{wmwUK*_vR(A*eu58Z%LW%ZeEJF$WM60|cp$ZY;Ze43bji~DeanzP`gp5;h>n7%h;*Jz~27+f2Xa_YoD&* zrOsHNXR|45;tEX5@WtAV2!hAw^zs^bca?(MgQeX8f~R{2<3sE zMRaH$MPUq~N-L!~T333SV}+GI%(1FLA%6%7Dq;wksN@eJc9jyx@cB!ibPSeVLDiyO zO!uVBpl-U065^BU@)6gquHvskG0)ox*VSpX32JDtFaAdw{NKG{twOq5o!Y)kaW%@b zwqT|b?CSB8pDtlpDP`!sGG7MqaLVjyf4pf;WtLJTNV@E+}zzMkigj;$gBg;)Lz1pcq$Y4)F_DXO30AR%iVlTGyCYXL#j2 z;E{C&Ybe^g{k*Y6t4oR%2kDy%8{{g!6^eJx9e7$jYbBmmQZLDeSoD6ZJs~64X^{B!JGH+|BCjn!DH56?x*HDS8$Qnwt zk!z?a;@6X_cn^QQf!)m z1vd_{S=d}!ZiHw2v`U6&%%@QCM5P~4O)x!MJ>E%Sb?flR`U&8LR#umq?mWQR?~;`7cJ+m*XoI*-#7jLzePFT1@8 zLgzaV!HaMnu|7+PueP|OUI4Zy@V9#2QSB}zu@@uk2`MqYeg&6IYM!cm<_jOg-evNcYpfu_G z>aCH!uO7u?_`XyC3*Yx51tXak{)^0DLI(YxAS3*ri46L`+(iT8%24cL6>Uin*yX34 zY-?~4YKfFZ@D-Losyz!&i+iFW-%w4Tz7)9P5Lh|u#8j!-bX(_e!BE-PT z7g6=i0qXEFWV;9z!(g;i;w%i$)e^-b0#}D`2p0ezS3V#U!a|du54ic@}d*hOKbVO7emYO%;j%a=nwhy9Jfv*>}p8^8dv39cZ?1Ud;*~EvC4J zzh?P4t6dYluO)hm5PF;VvqSvZCI0LYe{#g1{o>ETwS4c}71|N~s34h@YsIOPmFK)N zyhenHE9HGaCvdG$iKlMq)HWhT;8Laqzi@tm3LC7pmVTi6EN7>nHWm#^#L%kaIwPv* z!k_%1B}&N95-=B11v!hk=7O;BEOH?Kqe-p$yh$s)yH;wQ$h*|avQ8{T!J#ErxBLAJ z)f}@%CzTTHfbnMu;~&GSt^*XvoC89CG9!{ZRVF0>L%UBalHJ$jx%2drSu5Ml9pmJTn;(qwXo3^f1GQx}EU3J!x!SzN*eQ2Q`W<-e&Xv*!WdQhN=iZO_0 zI?kyvl-o}ahcPr86eq?IqYdz>D^KmDf6Eq9h2a{ed1z{B-l(%4t*uzc`*zl2*(zEG zcSp;mQbP+U^;e$swqA#iPSKw$s)*Xcb$mn@{S`Bdq8Iev^3B5{CtQw#eUf%{9S?t6ug9*_I%qPNeVNQ1G?`j{u0!j1vmW};FoO|gr>EEP z>>hdpZ-mbW`Sa>M^%wkt*TXt;aZ)uFx}FYNu?`L5H$QQ&LksBEx*m6)#Sa0)JUAyj zg0Fu@Z|Ic=TvD5a_t2YS*Q7UiY8#%F*-JlQVNED!s5cyCPpp@ttUUz_m08;S7vo*m zi;-5#AJhh%JAV&qWloy`164QLR0vir`e)Redj4d{8rz2^3q|hS?lG)qT{dVQ_Ovg zr@RXX>z}fw*<@Vf2SeJ@5`06_G+TZ!q#=PQyG{S5u+y|S`c*~|^toP&KYCRk$9fYA zJpTx%ycfc*UfFQn@J`=IZcl?Jb1&0|A{kbM_croc|F1Ot9X6IW!84bU+49Wg&1}A5 zn>|9DDz|1C1*&~)RKx6QEne4qu!RMx{gf^5{MS$j-uVN>lI4it*@HUR*$xT@+fbh@ zf;yPs8hF7=e;?xD(a(uqS{Tpn>nP8I!);}QT`oXroc+MHow)U<2;|vMoospbGqiD+ z0G<D{e4dq9iPJLkn$ zjMGYP;9vbxsR}E-fwaOMu|Kyg&>I(A0)=hBlMRL(VX7-&rDbA8Cr|nJ=_0tm4jjxc zNPCctC$xIBV2F?~T(tXq`6jz2o$bEX5N;sDZ)#lt`%Fh~X;VfiwZF;4T6h@x|j) zEAhMI^&VRP4ZO<)y*C?3YKm=RGC{769{T%$nkux`Ma~bwIQmCN+0?E!%fb6`d;<}CFdccS{J}~38?-eyz9@1{vv&- zdcf3&cx>3BSK@PQE2WLchQEpu?2umItVF0w+KE!FdHE0ZkJ)Kj8{=J0Y>-hACny95 zaPi3_?Qg0&SK@v7f$rC69Bv;>OX}3`x ze|Df?+%>e_DDPAXtZch^lUjbQ#SmL%GXv@O~zU2MZo4mop?0PwuA+HL% z2J$E`C9mW)7oogsX6jEfS}x^Hy<4V)#SmA7qF4@LuXFs6+pinsc`?ifFxuciq+v)P z9XA#}{Yig&*11{w=N5LE3W~mC0oR{kw`ei?j>{W)r%&~6<_5xd5Mx&H>E}0+ZFHy4 z^pX)K^7)QZF6hU9rdRa~-2~gHfpO8S+$Lh7;6>p3e+#CTv22p*RbH*zy2vw`c?QA7 zychP;*B5!+_6kqk5mheh?Jx9SELy`&GRFq|i#ay_{nuWf=k?b^`N^;JAl`Jivm{@1 zFQ^$Gf8j0Iw0xxx(E4oRxw#>+eD;1lK!cMYv9{Nq-{fQ1y|M|{_2%h6Zl3;P;kWLu zYrQt{r@z)4vR<@Tu+ztg61oiN0gQ>18{Ia^lm@%A^*lC%w!<|*pOXWMum%_ohTx`x z=>$?X$!r^GRbm3Np8H<6TeKCM_?RE``fL@Yjk;UzOLxC|)7_#U^|YesZpkJ-ZiKTk zTSECj-5vJS-6AE`e5JeW2wM-{qHjbZ@6;QPZ4>|WFUg-TZ)?XcQ(QPd;a2{yO>!%L zn}YH5;qrazvY)XbgaQ{E7I-z@_Z+y|>={v!T7Nh;6FH?FN2)x>U%ep5E^ePD z{3k-P0EqrDg&61o zOwdR0&aaexhTWib5&ad#{sRg@`~X4xWj2$}K>V4-UukVIp%3Rvhm`HZs?e&4-mzI~ zrxt}EdVmP@eCXd&nFi+oadVEFKremodg)i0blJ2C4CX!7>y;sL6Ssb}ncVs%|7za) zIU{h(ho7X?~2}3vYglxU5{*urLb%vd(ig2%o?r;PZ4W#JElkX=M!5xB8o~{za zhEud+2gdh)vC2Q|?nb!S3YE?Bov34t!|C*B7; z6|#Q4OCPD7-OO#f^~Qnci72q36W4_kck8L_8Yw5&h37Z(mV5L@j5b3hhZ#(%hxw-o zQ+j6=`$(`7wv5pKkS$Q`K5M}JP>?7={$V`0_d~6+(sN*I&*Erx+z`cVk=ue83c;we z6pJ?7ugw;V{0!C;6b@YoS>G=N#93PL3CyNKFbZrCQntv?Vwt*<<7cs&ZIQtk%_v$l zoXq!F9lw_a*%w7lLJG${*nt0{ID89k!~)F}TMmA+t|lmoxC|3TFckGd0Q7(hcB%)t zU}v;QrW-AFME}{sKBc_DAg2RIMcA5}ic{^ZX2<1do&yNT%F4N@U*f`S+>t+c%?w8d5&=Pkle&51n4!v#|D;Yq3j0uVqJ^clC}7R zUfaU1P-^o}H`LVwSDMVzEab{8x{b*($fzv`6{P zQ+fg!Kx#JvTwoVcE>suNB6*Fr=rqL1MN?ipdQiROHnqfiiCtkqD_HISXsO;En_3zw zJ!?{_e8X|zoE~jq-6>AgYsywRI8!JD2j}M(^q>6(Z&icyRSM4^oSJK^4=4N9R-XfN zz*adh2T+vQl`a0)qqX03Aej^2vl{!D!g1d`)fcrdWETd}E(EvTJTj=YCdi3VX(DHg zN>BiHDOG^#Qd%Ut^wX>QIhIZN^5|0ae%aI#yR_7G{TkatTcX5}6w{wqyP@~fj%<|^ z*)duNr9SLS>a$z%-p^BNvFs+MtDZ{k0W1&|OJ-gLF!7piL|XDzc?c4icx=wYT}SA?G$}Lr#iz zL$0kZpKgz{`8@?>7u(~UESbX56?FJ7iaob^b?&htwKYjGoToflv4r@a?7Mn1Z78rI zBKn3EAT#8@$c&O?7&TY?)}kNCBlD@71jBslGq+(r^;wjZp~xBkMei%Girg0$QVR)& z-0E40nFt!g1G*Q72kl-pJZO=ew89?ht1WDki9_?Gr5NK-Xw z4W0f`BX*ROlSymeHh#m;_6(!VaQ3kqOCR;bgHi;~fU)15PrTtjYkKf&et&}2Pp#`v zQTr2&SqrNq{%vu@TAkgebkTh7{Fk2nx8r~`_pA6+RG7LQ^Rj8{Cxvx`Zfl@_!`zB($iMLsBNvz-iJ zT+Out;tsXp3l(jQ4d1Xw;ZKzFWJ%DL`#lpEegBE*Wc93Dp7OA`Ri%~@R3M;* z!%CqZHYXc(~wfov*b5lTeFVprD?fz}0o@*@^S z35i$~Fc$_zKvY>V*DUd;j=0Ljd+=m&fPu#%zX%0_)sc9{D2J`D_VEr8&)8C%hCQeP z8s|cQ8U{29ZXuu%5-n6MuS0ZgR)gZPDHgU^5Je$=+9BqIj(qx$wF8pU>L>MaHGHLE z!ho0RzSu9Reys*|UVO1%oy5NN>-Ddbl+>_xout}zUaZ|Ov2WcveQVdNhmpH=`4o5? zr!CkauMu`uwoPH#6h9haP|4V*wH-TT8tYvYjLvbJv_GELVpxcFc!zL^&3JMa4I+28u?K5`{Z`d|?kim6}r@UMpCzf;D1JxN5A z>x%4k{sERJc;EgoH)G7#t6i!T?wW`&%S>$GH4!awEB91kl`Fz~s`K2Dw)Zn?M3&2{ zpJYq2XhV0(aIc}D3lZ*>RlByWrA3>yljP>(RDNN^mYMw2Fk54uI=FX;Hg6|CHMv49 z{zctF_ZRT=kv457Kfc1A#HLYd!q7vPi4r;?qzlcr(kAVc7eB2V*bcL8w3*m%g%0#= zwmH8U#&S)R{fDt!pazWP8Z63GEZ588w~FQR(h;tKJLQeRca3dZ&3%WL1xuUQvRUvh zGF~v2s{$>-Sgzn*GM0-Gh`Y1*6|J*jAdKMghoi&zkmj~@R+CU5v0PpVyW)1KSgz*5 z75({FEo@J*#d2Sn9Ym0#x zBGJ0D1GE+*-m4Iwq7Xz3kW=k#_1O&yF?a?r;W?a754E*rrFIj`K`h00%XM1>g&<{s zxDnu`gpYo~$h1LW_725eO`&^JGkZH2tt#ezr&e;8T&$hgXluk1?*^9Ap|V<{wHBns z|GHz(n(mUZXK|tm9ipYFsCXZtFRC`0wWqw}bcxAVy6%=csqPev#~LZSak(a4%?rEb z862`9zpc27!_H|y;pd4lT6>@%jy%!?Z7M=r$_yUQpraW}PF7nBzRe#OaOlqeMx64AYy8g0R0}dqUH8@0L*z z@GnL|Kyu)Ktj2w9Cp z%~r+Y_YG*w`De8__8p~;8k0lvxBtBV^QEfLIL9JHDzsldd)WivKEf8#aR6Ag92NeiK@vS zQ0l0_yHtTC_j)lo3#@vJVsd{gW&KTQqp~XQ^%$SGlqffp$tB*XcAUkDT90*n#_pBl z6UZo&%L*B18*9cs|+skjhYkN(bVEn&(2w@BlIBtyL*#R?~_-xA-SOrybJmqy7+zfSNA|c(82=H6B zR|WVjr_6x0st>3w*(<+;wK{*6RJ&z5E6ML*(GuuKG3BOTE7Hn5%kiOYwx%81D`zM8 zSIkaX6Q|e`ELyP~48vnu4lx?+!H2X5S$ zrrq1iQ>NLX**&UF>{^>(lP;Y8QC<1hUg>nZPPb*UT2vVH8NFu|eufepCFIBv0A$c& zZtj&cRJED5Mi#$bIS^Qz5g*H*rG!z7J)vR#IOs367)EC(kmrk1#ftHiQ&+n2=`(GN z=iZ45Evg2)yXIl&^ZvAbjU7ClCeyXXXfd<%4b#+u?pHL(+V!&QGRy(#&-a8+s zV7#A%q$Bz0&+qfHsfO1RaRNQYM3~Tnc{JgU5rH8*@nMC4a4+h0&Ey--+H`F+$SP9U z!a+jgl6Z!Y7|4Tuw$CMl_#-2 zgn~50XZK4(96}*zhyX!D9J5~;;y7BxFvL-O*crDsnzY}SAp$lu#AhiI!w~1e$Q1z) z-%v0b;#UOy0HpB=o>UH(rFTa2no(;#ByD4$h!S?-pL$<9h z`<+7Yvt|InkGEZ-5O@1S4Z9H2tql!H8#=MmjpRz}xuwk2RDG^mg z3mgd5#4j8O)ehi5h@b<(-L4IE(DxPl^4GW6E_!p_=|lLb5AA*U-mSKctfj#Y+%mw! z;N+&HM4>F|IS}~hG~SF?{gQPj$mOU=IUsxYMGC>*1qhCc*AA#rF`QO`wNK5Gvn&|R z%lp1twt}#2jy>ROcmP@)9w`)?F+4I3$l>uR1>@=GClvqJU>V-W2jIu?VZ!fW zlwNe~>U={o= z?Lj$QdQu1)2taVS3_PfY%OF}Me-hF9gAVeC$?FGw4HH0z!=x?6Vub5W0V)`-_YsBT zIGIEV@Pjx`%qM8Pr3laSN&yFAW>S?{zePZyi+GH=xB!I(l)`FB!8}vJ1I#!-U|mM$ zdCJhu?*M=>Z|b1}$oEm?C%v+Nv-y9rk6BayIVkl+&LvoQfZh^CsRuyQALIirby`KN`pVN1H9}m_jPLua`V*`Ttqvn!U8#6) zlQk^US>B>`JtV?TtUNI@xNd~^n*8QsXZr{$g_|-c2Pf1)f-rgpm-vOA!F9;DXNZTc z6rN$!728#lXW%kV$W_}!_AV6$=h1PbL~)RQ<}rAOW>>*Gd~qFOC^HBJjy~YyLvoV% zmO^k51rS_BEuj#1n+bU~EBly2JWS1tEUp=cq^XSrt8$xK8MU*3Be@!U##^>ZTyR@T zB~4Z4_wc4IQroA@Z-$^s&2KbiV_r^$UJ^d^wNRB+amqBzh-yxk7iB{;F-%}pJ(?e8`z)!kP^j4deQf;Y2suskWVjPqaq)? zJoZBtdKi$q#~EHI2OXBz?+yyVOK5=L^?N*pz(|UL*N3HATMo;M=zzoWb{}uD+tI3s zr1fEWll?S>AYp*uO*SCFn`|!{aFsqRgAd^*`$-=8FPuuelG!_)(W>$$`xY^ih-*DTIFu&$R@N zWiv?;hi@=9<&M`vOP8Mo#c#MO!@;pDwF>;fjpUTWv!1tq%qSMYc*jPMv6D|%VeCW7 zlksG0DJ{kz-%L@07s{Yxc(PTOKka9q&bHBt_#Wg}=)hM)BH6DLBIePI+C6Lf9Y3tz zW}Kj4-0vOZ&IG#(9J+W|PDSsETJGEY6aMz-u=%0{dqE{q0eTo;PU*?`@<4OZuzi2vt*T@dkai=%o+Q&2WP+87h~foc2314)vB=+mta}`wLMn(7w?Z)LxgLCM z^~K02)_~T%8A80j4Qn~Zd>0F4!280l>4Ka6yy zR!KO-0MbzcFZ!p^;urd-(ZHL?-d)f?H4U_%^5UQR2iYgHS(HO`NHa)@qMLr=F-$Oc z#-90_Ba#mew!g{d6EZM|RO+Vv2&###_>}f7s75?>-a9y<8~e3DwQQprx(_e>y1w}> z-+hdho`cqso+JG?V}c=`~s5=V$(l{+FAx3>fuHE3X293CB~X-DK& zaPC28ZwqbF=&|-pDV}*Cwgmf!aGwQ_Qm0s0eaf)$fr6GtFvmDQ*2a#<${2jzoQjfs zLl|*j(tGMVd9edaJ(8?&gQK_Ty#A9%(H=?kgVmj%8kt}z-c9i70^O$VBh^@ zSbtAWB(zsRY3Q(O9l>B=j%Pj87Tp!ZI1mBn*@7MP7aPPc^cNdIVcz}4#why*Fa9F0 zvi&D^j0%Rqj;Cn}F8z)jk-?6K2}E&}o>MeW0>O^$c;csyx7a@fxyK4|32{G258?A!)b^O(6Cs0J+0K_U2LI+1@)U zmjg9LHTQC0QGz{Qd+jJXHp_GT)C=~=KuSj~0?b7sl~KlRXCkA;!m+pKDU*^*SfE42 zgQE6Fok~sNl4A1Y~Vdu^Kx@>!K`&sVrx`$#UvxdmC-Pl!fh~ z2yph_sn}X&VoQC+D&!b&;x0x}#SF zHFQUV#V>S6gMoAJ?r30R`|n=d(WEB!N9=vdH@c&bXbHNb_hCWW%=T3B1OibUrSEtQ z?r3h0=mG3&f?T>IFXUYFphtu|n(H66nXRBr&>bxU?TQspCTJH{KpBfGC$pRawRRb` zFkfbi-qEeu#RApN8r1+<1aDC~>IGKpcaYp|V@UJgV{#i9L?O6?0|?~Htjnwvg4@9C zC6-nifN>kAnB~DM96eZFS{Lyr{VwshrVzvr5X{FJ92jM1T`1Tf0(IO(X0*3|#9Xu* z;vWE5+S%)sp#Ve=0NBNb^VAT(7&eiD1^SHk_STTq&W#)woYR7%USwaYuCBXs; zK@tGLjq+*=F_;Ii8$Yg8eOLreETfMZ6HER{c#BW$Hoh*RW}tTbcR9sekEj{Uk9M-x z)#r&0r&G*WY5`&`nlZY@$LyR3YaMy>)76SJ&49Vb^1N@8O0d%uw=vD!qs8dQ{t+eU z$6x@s(}c9nivQICUy}?!PD~Ofn~>vjvI(IOoNVTP>zJ(71hDYW2^5Upuf}oW{Td#Z z-tV{|?w)JVKUX_07tufmcbt@toNO2^lCOpO{8qIc>qSXIMA)q=m{3~hDW0qJfAf4mcQ%Of{x2)`elyG)QrK;+OM+= ziUO7Uu~P2G6k;fMp;B%p1*3B3Q{}GmsoWoxa)Ayim(o$nrA1P?E%sJ^iXEdQJ(R0b zoS0hXEBB&DL#13=nJAZoawD@|I90W{h28dOsWePm$~8rcN_|RLJQSRJ(6Ne@{{v9F z9V#j~>V_kU!coID{~+eu_zyJSKx)3AKXJnm`-e<<5KA!_ zSB>2OENwqvb@fKRg7>JnIE1`e}3Pousq0B`n)XbP9X|MRogv{S{dGHf8hikTz($P3*1C-Hv(&#s>`bjSn zF~tQNtwlDA?fDR1u2{nF~lVD|zHKKeBJ4eiyFy!ku!7?wsGAcKP` zgCiw_9=$OAshU-6#`Io89>cs$P{DP;?C2(p7D;uBkNxtcnRfZ5weE%txK}bQn{cm0 zmu^JUxK~;%2;yF8iTH(kr6s_<_r21viT3?o_DYjKu=im*3G28;N#06I6y5a0McWZ! zOiuGj_8-{^f?Ng}96Kp53$Id$JTZa~vUPF9%9K6-o>VjBLs}2J?H=v6Qn_-5q%o5) zGQfG}J?z{}^wz8YDE;>QWH zO)gH5Pf*Op1lfwBPsx=Nq?v!5Ac21j_A&7f6C{bsjPTNVuA?XA<>|(g#%@9!Q&pcK zj#zTlF;$n!LE7seo4BVxDkPxWh+nBlcu`7Al$8iVcv1SUkQ1%*J@E^z^F0u7b&y6HzAgLOWfWuMA2336$j^K+$juA>mNPJloN z4CG!N9^FdYlPh;0IkXxY=Pug0$Gq7N?mhsUIF1PSA|8CFZbO7q*FFJ)?z?Zg8H7)J z&bIq&cT`7C^G^)c?y8RbS@1(UGJ`TGIx?J=D1}OjDzvHeDJaFx3=qGtGXqX}=}Zib zt^0-D92G0W7P`-|zsxF&_U?g&ooOc}igx`I3_9`F~y&B;~PFK17-YNZU~_@pIDwSpv$&uOAIcIkBS z3%hi>w=Ttbh(73cV~X1)n2+U{U}jD}x-aw5eOUlqBt9^3@bPbimf)7}?N7;gQe_YM zh#anXEJh927twzhi5Ms1i!jJ(q`3FT7?fM$7X}xk|7NLQ%!Rjw`^1?&UIvU7 zM=N-Gvr%|Q^t_*l;e}(kl3)hagvE8kXaR~u)h^nSe1X}tbG*bU#Ys(UecoVIxX|B^g1o`ugJGUVe_po^Ql#w!F=Q| z_FuGdr}=~x*7|G$6<-7$SjGs+8;4Ez{2tmkx7vIW1%9?yRw|HTN;b(*3*EzM9>m?BQL3 zc7|9!&I$KU%e#Wxq^{d2wieka`tu769WRxWw<^qqo>Qu@7loWaB-BKZ8OLKR`BYwKrzpQiy>cz;67Q zvt=!n1u4l!Jid8~1sOM%BZv%YvRhPbwxxub#K*so%*mRjtp0*GhO{aGAG+(^i z*;|bM0N!VhJwO)?W%x=>!HW1_cOI8&XXKIsjL1Bo|0KpP;@=WD=5eV-Wx>r8=5c9q zR_1YOM!~pJYIGJ?N(DVt`?K-{09nGLc;E$cx;)Rv?Xwp)-w3!Z98W=7Eubs1yYv|f z#jf7ft{J58MQ!F;`C%IPUMGChC&mGhs{cgmJoU8w1HXuKaB45owNy9<4CCSx)^n)i za_4*u%&2pG*pGVcGJ4B6m(vHM?GEc0FYcHG9TWvul*dE8TW{cn{A!88w96rfosH$zd}*y~&?O zTerIK(L6X&d^Dc{IsC<=`H#=aoG4!WxoZa0&CiKa{X9gOijSVfohN<(h|BrL62s@! zbcoMQhUg!7GDDHev?#O$(Bbq^)aNDzBlHtdLOt9NRJKg1;5si-DrB=CX)_#hSJ%W9cKIO~vV3Qzf_60Uyqqeg4F(6d zYF2zbKK?Zaq%)fpAI47>cdYi?3wDCZQ}$7QP{Z)}-K&Owml`%r7aK}AMi+9rKxJ+} z&tpnC8nEq@3smMcPi1Z)Vs1K5vZh!rm@T~{FRDf#nn{^7da_C906u#TXw;E+Hj$72 zvPw0c%KOl=>&y|U#axiNRjO0&P`_3A%@*D)xXy)w(=q7xX?|mtSnTATg|uLhW2MLj z9Cbk^S&5>Yq0XNWCDefJf>o6h#Ck#M922edrfnaK756lgQaaDt5bAiN->uRIm^7Ln$S3nZD!QrcF`38C#h4L#G` z)@^+_FMyZC(~)Fhq3U#`gS1vW9r5C@UG2}y(~&ck9EZ(Y1aUf&VRZ~=_bFF+V*d{* zaeMv)MLPn40Y8i+RSCLChAloP47ex{>#Y=m2QvV{XUK6E)idOHTE)0wtA5ePQn$fH z`6QX{Cosc`C4lF4bwsiNiqN<#Ot~oU3cFG;Zg)HRBK6!wFWX(b@CGUHUe81e?1$d# zdC|M8^hJ4ta0~3uz29dqcf;+yOME_#-|XwKiak-FOuRDoB2OIQP>EN@0YBodue1<> z4(`857jsO!GLcG&qk4WcSjW4xSUkZsm*C|AMW*aU@Qv3HKZy2t4e_J+h1U>2g8IZY zVW2pDz_)S0T_89PLf%X_AM%5=|A2%0WH&~*QFo9^GVieb7pec96^pQgJ{ zn(jV|&@kQdm!#=dyae*QH-u=q;g@`jlFFBSnJ!3yrfZ_*VY*&a?#j6+^H2Pi=y-~? zrktR1nqQJni@Q(=`T~GV2yxbBeJI4;W>GCiENf07|2I}J)^^23V-y7#qlgcUbyVjG zm#X_~V=l?z)A>^Ma@ttXi5NaPLd$gctfp!=vbDTV*%A)ky2`WVJ4O|Gu$`D)G9-fH zQx+@Kha>0<(E>-%9PtZB&>ZMR7(o$q1i9O-g60A0MF*>|=o7pt*QS`TNVXiZN);`?BP}F8T2H z8lcADkS!FWk%EFmq87tVH0rK$FQkzS%#v}$wh^tc%_D86w^^80yT{4t5twn zyf11^BsE5_En3|$T0YY7U5lZzc7N)82Ef%J!cve6uBxlV9myGf5kK>&`_k^R7<$Inm!r|bUx8et& zE(ZB#VH9+bXHqMXPdr85iiK1#G062ro-Kc-Rm7xOo|d==Dm0UMD>l>WfKlbG@ZLt{ ztvGO*Ax3!I?gzMwj6)`*D96xn$C`?tURG2T};>&IgLb92)Y=6 zK+st`zq(h{$f!@Nh*c2NECnH*o<8XG z|No?8_?0n04E@Tu0>no7AT~)7^Ws)O7LK2WGYRD}0=;ywEA)ySf%h*L7=crJI+|)f zUy<|d)t(Mrn-BEG5DXO@(;@hPjtmTWp(V&3P?!isxE03)Y%V zEM5%w*WQkg*kP(RG~oTDMA1wy`hI8t$8)Ki-ZAj{`Z>qv>>42hmJ9FVFI|yWulFeg zuO0z{SFfe70z>Z62ChS0y#g3-9M4@LnL46qUBqI$Dl>H?QV3E8h#LW3S$a`{>+BT{ zSC;!N>W-3Dk$054uNZw_(O7LkG)oUb5TDw=a8<3hM3RmQ{Tz+-vqD&E1beCU=!X|s z93Qg*lxYyXBY*T!l_DIb8T}E&`cd3?efX$%Ogejm78`HG$IxPYBmTx!`9|DJ1Mxi)rwql3ao2l935G3!8DQ>=t5;?2jO($6F+?}yueCKP9 zDeOf;LAr|Tt zAWXC1J@O7%tvKoi{wP`~!MT*Jf}>@Eevrlz0vw-lpb429oynMot3I%Lu?$%2_QE{Y;ltjeSTlw~FjA1p*( zmn`Vlp`qJo1q+sneDVLhEqbaIf&)ydVdB7Wm`y2VbePw!Nr&mBfpD0eJsbE5Au*|j zsfF-qVFeU&3Cz@;RDJHw823Hb#hF z=r%@N_u@8;Ji>=&R;|NR=R{QD+lw%V~X?4 z4-?|~u8Ck?GpP9JUOplvioc@9cEAzs0RHH#Gel6Y$iHe^bvXN$kdce(x!2{QdI^Q# zq8cE$Z{K)b?c0B)Rr2@kmTVtJw&%L9Z98Dbh4oyD&^YWme_if4FH$fruFv`)b?dsX zvo0WoXI&;z9?M-Xx_5nbU7mHdo$BbqLT^BqxCa*MCg_Gd>vB*Co^=5P&${9%M6?MC zf)Y%&3Sm1D)%d)%q2>5*Usf&41Rx*1nYVDSyz#~BVUhg-3}Uylre|L{SI@@t>Gh*a zXdQ3Jwb-Nh$`!Tb8*)wlmC!2n+mor9jkK%XDOX}!Y@OuUvWrp0IQt5x_>?KTzT!#$ zz=>R{NW1!qXobUVu=s_;ZSW1>o773rg<_MM`HABX^Z3GmP}rnKid(g5?0tis(_BP_ z^2=)-0UCtP2>n~$=M!$j{a1c6^yCSozG5_eXVIo~2q9}FliGYukgF^bq{OY4dC)2O zNo`h;3UUFk?1suBf&Z$cHeT3v0Unuq04lm|LY4 zeA-Fr!hGgv85?LW%1?Gfi{(>8@xa(pTp*PR?<{``gKfaayZi&Ryc_aG=gX9F)J=a; zLUeOldl!@-vMRh!>!Oeodr$3`DG>kg4xfi!*6ktlTYc8q8|_^W^GXGOC_; zuAv+tw<|rkRe5j@K*wMnoI|t)^1ROn&nLa{oFh`=+z?$w7f`z?QcQ_sDgl?P(hcq) z0w?r{X7I7;9A7#td=#YrZ}r9<;V&eicINsH5uHo;?vJ~yR9 zd-kT07H3p}S|f~FMp~Si1*%Omsu^i$EzVX7F%De-jAtf_ zS(z3mm)1p@jw}4vDFpEY#7K+tF9jP!ppKgero{=rMfw}@huo6M_s+6&=sAWVyW`P-V!t7O!wfaBcFD&W?}bzICUEtaXzBBjk)PN zT8tj;Yf*y!7i`}%BThE0jx*GnTXKe4Lm@arVMd%I0LF}E6fFFpcKDW$LzlC+tl<-`IwAupNjW(&T11lL6#tVLA#`@K{-r>UJ))B1m|Eti;Ry9; zsM2uI%5H4|MwJ}L;n7H?;Gm7f3>jZ~mi(9l#7H<}U$$#2Z^_gS%Wsi1IV~wN)OgcB zrN*05h@tUb02Ug5mV!~^J^%D^4$+^V`U|pY6;yb)Kjkq5ki_KxC8;z{i%7`!$Wd)(AWnD!B0iaw8u4y1|(HHx$V2SL-_L#*r|MTT3*>?=d7!_o=!<`nyj z*fI9$zminJLz#fTyo@5u5CA0PO{|HQND*L(n$^b{#i~#$#=h7w>!#C7Y-{{qGFO0E zD9jZggc8YgOoYJlV|a_RkW5D!6{^+`0tIk+nXhOghfY@$JLbWwa_Fq1TFW=3RF8(r zlxSs7Q<6D!UiE0GEQvNGmbBW_l0*)jX%q!o(v-jCu$@97Xik_z=ZC-4t=Ru499N9r zc~|^WZ#^6gckPyW&_FHZfhvw%N>yq)&|G9>)S=~un3fL#sff)k$y4981ZZw2g^6`8 zn|K!aXU;2W&r^sYt@gK)w)o#37HuiUPn~xr@w{xmfPz*X^tTtQMw$ObndhDu8)s1> zQ_@OgbCHp2hn7o`Q*Vzd;ay-%xYO3ewh*}G-?DpKQV0k<((ieY6%+3Cp&;zpXa7sq zK~h!^Zy_@9SbBEUJqYlHmm#Y{X)Z^_GyuW!li&{wzQ zzHK3u1=kHfixRSKP?>nP|1DkDPTBy4-}+y|AM)1G!hKmb8M3qW6e(`u)}Ra-&wz#g z{5NG;?clWA#NLqaM+NxC1U(gR%LF}XGHD9#u-Ly6Jl!gFTPCex($D z^h`~a59V1yM%r`Ff22JRq7bxafWXy-O7rvfKXQRTidI7l8vz=Ci^hV}=KG*^@!2KX z>zEt{W|GDAoN&YoAJdHRBDkx^KeBV1|5KoIVXs@6qfnUo=Nr|{nEK~i)y+KwkF=Xx zQl_z+X^B#|po-nROw`71{zd%4ZvMq*H*X7c?(x#ie*`&SW_u`I?B*S$MA1#(`xv_U z#`P;S?awJfMt1Wbs+(_62zE0-jBb9Uy4i9ExN{pQcJl*Y-CX95uWtT>bh8)1UB^{7 zZzkOwL?dF-oxIDXE0twBpx8TdL}NOj>OfS)MjaR8(5~J}<-@L~B}(OjGIn(%AtrWp zWAO{Sy73(^BO1>tX|h;%>+uC4-kXZVw!4oH+tdfinK9x zG_I5g_Xcj3^2Ju?2sTkD2X#6Aj?CWkE-3++SS=PYdrv){8*+{Dy2ont<*(VCA2CXT zr11F;Og7$DmHj|CASryl;UOKt4NmQnRM_X2Et)u=;u!;?g3KIXq65m4TkImHiwo}L zoR-xt%2~>y?Ybj#`0To)a`=>eFFqivN)>0krT8rnm;amStjGSMg5&G7JRvh&&Ac}z zQhNwPV{(OB91`~YP)Nhf>+gI|yLyLfG0p^bl~RKtmK+*#7bK_d0YY^WMjRc5{VK50wo!NG>wIV@UZ6ob6vTx&dO#ic3T?Y6Q?JlA z!`{rsUbVribZ+gZA}Yc?oxdDk%xMztj-5U2JM=wY{W0AJt0SxSd`Dz>bi z;6VJZJJHSTyK=IG{xDng04fRwn_;4x##98{WMHD3w)bSBn|2h8YlGJJa0$rs@!^Fk5*XG}o2kJlw4{azR zb!cNQ!b6*hHDkLmT277!W&%%>E4I|8-;y?P-0@OifcDWnJPfgnmPUx71aD)RjITA>1s);q?QN^>*AK)?9a%kw z^{3*2C91>|eFgUoc(9{v03RJ*lr?~dY2x%xnNrqR#OG^SF#T`Pw8{5ndJ6a#vl`)3 z|3Sao>+-o{or#=vb^f4bLLHIbXbF`Z=l_MIW7pj0ijkE~y-}gO z)3eUPE{*)MVq1{xz@v3SVtn5vOp?x zMG2p>&$};EQ{<)B3&>jZ3@oqwO8%>o7nS~(3=NDM_y3nT+pvF8g`T6nQq@GE!)V^( zWjM}CYZe<(WJSWq$MY^$tiUXkAyj0vD4~jcD8;+)R-`+NQ3KlaaVS!&3%U>qlYo>- zlR4X8_UE~w$^QK9OLmC(5~?s#8M$*DP4;^M)QtIzQYmYw=I5xIT~f_q)KWp{FG|5J zYRaiA)$=KYDgnriYRB0$+U~JvI^7^+ z(ln%n3drg-&}p^!EeB;{@}d=#Ix2G+Rpv&oHhZH9vDvb`?8oOIxrfMGR8$X;sdSl1 zxk6nY^wi}7CFD=2OUPvA&RcYWwgr7AhrQ$JJw>i)abp!kzHh zqU{dG?{^O53EiD#c;Ynps1{_wE0+~H%z4hDwR|Aw3HTT13H$w&vb@>A*hHSY6uf)z zq$(x(j_>toF4E%hh67_EicJ90hQ~*010QhAb~K2}jHcB80daq?Kkzk!0IDRO5^=sH zAOEJauw&6AoK5TdfR7vDtjzjSrqGh!7bVmMz5rYb$Mh_8j>vKJ8Et|C^3ex{osYB*^Lmq|J4Y09s`jwm z!GJ!(QJ)Q_T%Zo8d+KnIl4-z0k_hQr+75J>9M;g&=I0sh+`7O?27IiTWVB}BZbWjt zMh|3iJTDI4)$oBldzv@HdBkH&3(1do_Q&wS)2oyfytueXO59UNQD5$f?<@dvbC$CzyHDGIs%hRJFC4q>LAz0vtlAmqs@=|kCGpTC zF_5qQ*cm4i1=V=OLsmJRJdHccX>pI_!O1;AhK_-AlrAO;s!e&s0dVtEP-G%4h9iSs z<`TSCpvaVJ1*3RD(OtC13yP=3FT9|5`jNb#7%vVeF;P&1dsz?y-PB_0&a6sbIKwP# zDCGdV@)c5|=oR(hHjV_`Yd{*JVeB13L3ZWXN3tuYQwVk?K(H&vQiw-adg0hL=8&G&uotjgmrRWG5PN5gV(Ordi@8P*sgK&8|unLh$NE4VkzE+YFw|za1IVo{CY-ijVD8hKoizNoKgM=2xQ~#V|JolB# z&Dm)R!TSk-ghW+&O50V8?|UU)Jvj5itZQd6K7&_&jxXrzsO3KL58$?y&RTp!*D>LY zw!tHR%Q7^;@O&5Jf~z=n>>tcSZotIVS)`13VwJP8zEdzpZErc{6m1VvMpO_e+yfV< zuA)5r7L&SLfk7;s;x|q!T+P}z2mDamj7{|ClDan zG(rx9)YH>RLhl@U3ncVTLgye&K~PXY^eP$!q^w{8>|z0~Vl1ejSFzFT*Z{BCPy~DT zH#55@XP%Rj`}%!IzWxypJG(Qpv$Jh>_x<1tXkWMj2?w(C!W1CLh~eQ1{4+5tyGDTl zVtTl|#$N>)*1Rx$l%#nuFWFinMp!CNX9b0wQznVkoF|={?(`WeK@0?;DW-iTpxS)p_E{T^mMGkF0v#UIHEz!;fv+ckRO;}b;VMKco=5A*=)!to|{U7svm*ecpEWzl$dl3dWQ)j*L~BWo7RngrCvQ>Ocy>x&q8 zA!8Gq0{FgwBOpBU3sWI~v{`c$=&A+)o?V^!!G&$#JSRlRTW4m=@-dDWTW~BGhPn~F z#5hw;MMIZl+GPLl?5T3)VS8p;G-luPr_V5p7}$uOyt;Xtaq1CTN=0-7YTS zbUKQfXELW;4hGA2w22vq*|a}`BO=6vAM$}ino~@C0k_k1g#5PlAUYeCDYLR$I zOFR-HaT<74up1x$KMCBtILl*|7aT&r<8o*S1qEpcwJ4|x;1Fs=K!vJ(e|1`k2?Z8* z^>(pJz)`Md{fl)5hsThyWs*afLj8j5Zq+vAnmqke5RavR>jZ<*7VkIw3Y?nt! zV@q~haWkjT_6I1W%I%yIDD%*N?S*1Fr~Lm@1sBI=M^MQ!G?{Sl|KVr$PUh2~4X%s{ zLg5)`+k>vev@#UK2cs@rZV*D@1)fZMpU$BrpATkHd!O=;dqpP&6LF(VQ!H2wR4ug~ zM;iIu2l$J8?gQm>VYfb=p&Tw!JAY|EVf8+`uT$}r{UPxKlc(KKjL4lKJiG{9 zTX9Ic)1j}eq^sXFh1J4}T;S_)E^z#;y}jADfpUSv=ksVr>XH_R5_$W7!%QLxJ7FkS z3Rk9e#!d*>s6d{JY#S*Ca{;hQOOu&rVU;$GC(|me0#nF^z-kG9+S|&jzK8J6zedWPi-$2^?x}9PJC)16GwP@nbYE^d!Fo6kF^u=6(1s&aZxDj)u z0s7d0JVZITF}Gz5m!xkzSd;KJ$L61*WAkKn;bH&Dv5~52Gp~dphGVPCqX@b zu}>B6a!tt=Z()kX7ALQq{)lE19n854ny3@)ux+;_wf{(4DM_w*Z-?EE!E>Y7*Xb{4Q0^_ zo+;w18re>VWb?h~87quPFl1n$ByN9&WP_FeB9UApTT-Ol^Q5z_@Nx=;1%R^ZiB@ez zTTX$oi!dmA8IdY9fO_JdBL2zDQDO+sN?Hum>?d#vu?GsUx5@YzM~3ioazI8;6Y@~} zAs{6ERnJnfn&%}UE3}aHoI*l?vhZGSk}OY%$P(K)IVc43ScI&NcT5pa^1LMEaV_L! zP9Y&c*^!dlS-j0DLHz6RHaPbrHexPG16e$#&_MQd z!z$lw_tl0d;F)ON$!VnKog7Y~d4~`Y`ZiL7bAL{zp|5u%HuMdXtNO#x_YE=JpyCo#N(AGpL2+iJW6OUY{68jYEgK|yU>o;hgSDzI&) zA>u;HXtVM%%&ZSon^oFBaTZ8IIw<5U$h3Kl$!+CdLmYI^oveyT2WJ1qvSPX0AqHB? zAkabI#zBuYM*stiHE@>&qv4y$o{i3EdH*?mvHCB|DJrKFTOll(6zv{J%=1rI< zQ|l!*VeVmXqE^z}J?PT_W*lV05$!i+$`~$3*)t@GE=3ovaksLn6kO!}Y^hR#B#?qJ z7X9#2^axN1cL*amC0MZqx?-1bGF5CIuh{ZhE9Tb~135IDa5=hS)+DOf?wj02R+WMk zD{E5SRtvl5e<2>TsD^dgrR%hdQ=m>)M7-Vv;#>>k?cxw8QGH(J^?6U#C!{YR?tuA{ zt`G>J3UML2Le?az(EMB6g9J}!&i8PzLKKChTi$jUejy@m#y6rhx)}qv%W(sg8pS+} zCgfyH(G#*P+nM{I**;2*B^`NQtfbLau3rorwsp&GfEkU?BYH)J@kqiLC{kHz1C-Ah z(FQ1os2kS(oI*GQ$x+o>(*9=wFF;z(kZ8>;FCrD{l< z5VSyW4%g5Es~9^CEx?n4#y76AR%9-#$Zc6Z>#~UUM0`~i7<6DyKzpLsP%Q0laF#&E|gVcMo( zgky#n!mU9;+<`15&^C2^M;!>_Hk6s8oT;*WqN7YyFfpouCPu3Un$Ib;V+Kn3xO}&m z$SEN$6h>|T1h7AbPy0lNX(8Ce6qz^a7NSS)H|rLffMR$H_2Y7>g?LJ!g_N{X+nt!3 zT4)>oq88d#YYQzL=QtXsafTd*cZxTUcT5#ea^ciMkF%6O3mvV8-V=D~?ia5!394}p z>c%?b1Yq={Yns@&|kYPVnR`_#)j_&8~ShyXH06t%e7t>P7mFU*$DZ z90ODkTn9!1j5q$OUZijQHSi)GQq+s|Ok|!0f2v=kV+wnbjx;~LgxvwFReF&QqU!P@ zJ@E2*h4pLFufuBgUZV zyya{BMX~Np7!{!K!-qHs(kR;p8X=y*ytUz{|>nIgFLgbPeo8QS& zwHc}0{yyzfWb=8Bbz&FGA?*j9B^g1jqLo%wCh}D0wCTpas%z&vJZA3eSo{$FIf8$V z;h(qg&pY_%J^XVV|9l9_ZcFudi15EAWWptmW~}ltO3brV`BZsy&Z68}6<@wPzNOrK ziDRZMyh&vKrH)&~ITRV{Q?_qeD$r?}Iz`BWMUHs@VR^?Q$NI+6F+hlkAzcSB74?qr zZ>C~x?7myL-M?k~3a|+~8>DVd0v6O?sCGp14a$l)(#v^j!%MOKS7{8)%l(|#4E@DU+ z8;B@RoKJ3Pu7d(Th)z_ZLlz9Og=r`MjWOy_`pGqphpbKO8{zCMci!N*QM8F=uAMNb z&?m2Y0b)|%=VjZnhMR3-)hSOQ%NB5h7cSJ-WrZ_6N0NQ#zMaunVMk=%}V$@^CAnUd21~KN7?JdVxD`?c=vE)p*(+3pJJPHW7VMx z!8qK+vz~v@JKS6oix)bRy<4gD2R9G;(z$Phdm zPKb6hHx?KAe)p^n^r>RXtBxpML7`YQfZR|KtF~jMNZ^i`j|qVxYtKPfE1A8~;S+}} z$#)gnH@}`-5b<6ttO8z7&J@QvdEqy%X~sLsJm&!SQc|b-FW3m28c#TqR1f=;CzrkHD3R;-WYt+0QA1i) z?=6mELqx|h&RnnRZeQvLVhRlvcb{6*$j)Lwv*qQj?ZEtS-+^IwFJ#p z!J5S?Iq!#eF-_%K$e@e;_^{(dglH1ax&Z34d55mm1%aHLqsDO;iQVn_`HujEkg($~Y0U(43<@;5R)nN*BU!B%Y zTpF$b-P5cofo`r}8(JU&GRmU+8z);upfOlYTGVto`1}(*(!T9!#|uWpeZXV=3vn$a zDfLjO4D*3_8U3uIk9dGnsM;qt9b-tm&dW0eqMm{irU-_|tD z`VaC4vF@NPct-$rf|Csu;mg`;(aoY8oRHoBs#1 zGHz11X1eEA*4HMb3J?p<8cjAuTx48?|H(baGe$?OOHlijbqTm%nIc!N>=`AO9di6? zK9L~zjCN&DvFQep+7FhuLaLD07Xq%Ke?^|{!$Wvu` zEyQlF3VKQ6+nB3>w{(88o?R7=soK z&MwmI5aQ;xYaDf26vC!8-E7oUS+x<@hpd{5Dcq_JnkuUrO|?}6KsViZ*?O^R=b$Ky zRS_~s0%TC6j60vv8f|gJoYqwOK62!X8C(mp=oD_z1cy^; zv|T50t;nudhuU?#uI!kAT>~&In|RrJvFj~CQ5L%rs1;!c72XP8#(T7HUcSO9dG2d( zC;T>DioCN|cCPtMQ`!B$u)=l5V4@*cRO+ie&K=;78%Q zPwE`PsE~)J0x(UFp-By@27Ti=ZAA1-R8vF0L^U<6%U`TvZB|ZqdK9e9tnVC;M$Aow zM?EJKvc!B|Kk|(^iEL!M92kY4DuAK48p9^4V|~=7;1-zDXC}&1zd3TmOs*LD$c>o7 zhq!5pYKW^y#38Pg+-+p87u$F_+>Y0aYC~Fia*Uuja<55X8=O4;{1Z^7N`7`UGt8G0 z<$-zGIpP(r1X=Yz+^TPev+5^T=Rk+U&U-j9BSxOQ@^mA_uc;UH$+G*kW%qOC$g-b> zTJ~98)u+j_1+oy}Ys9a-T)kPARQo9?&tlr`v(lrgZvM*=X+&f+1CPB8VEX|2A{bpF z+om;R9-G@NjK>CSngBytKx*nzTsglC`$apj7}IUeEW zIqWOlQ%!pk>sqan)Rj=aZ!qP7%*^&E<5VtO2{kx}JrLuS+cTWmW0E`PKwj7j|$LC6!Yt$fuCquFz!F>Foo?8+8$$G;0Q z%*9Evdy>;@UY4X{*cYK<+^Np6hLRM+-v3zoI;@vS6}d#y7~f2;^m}%cydFSIe7$p~j8AsHV0FGv zlAV8ur??X2cY9fi7FpNpV&r$3sm?9p4aQuO%e|sq?gLICmjep9+}GOWzTr8@<-X(| z@pJ7i2b{>|Uf~>qE*EQ4E*Ecu`UVao=vV;`bjQFE6m5lD+G_PU;7=ZB;ZGhH#+d$t z+T(U5k;gUC9w)!^oK963J6!;P(Bbr$U2V$c4x--N<^FA{$noL=`RH@5{h~Lo0L5(g zgqHO2EUUU_`D~n*Zf~t(sck&wCKsE4zsSWVfKuRMHtu49a(kd^_`YTV$fafU1N^LEWA$eRf{vwY{ZeF{`&4Y@Rd#A_-#m+-kkNddT39w)Bkn*a%KR7c+XwigKq-p36)~l;t^2hdHge^0gT} zD-Cp0nzOleLGxOj4TO=i_2eAL*>?9&E;g?R0r(c>22Q5A^M06mK>EkOG`rY5+FbT{Fxw&Ci`r&_2r#_#^~r?CG@J!>$1r~9_cf>P zXk^PC^PCs6wMUvf);G&#IAD+HOq44gv9~mxE!1S-L(aTw<}p!Ku>OcPL{1CHW9gQ; zp{2Y$3$8wFJVkd5e{ORH!{y_-DYmg-zB{UxA{vHkD43}lhN~9l1jEHE5D=^^Q)-)m zf@wUMiN9z(mUUzs_xui8tPhA!` z(vYy0GYQT=?|>@k^6zmn$#^SN#;ID}-UK1gZ&RZ=6OyqqH=)q{tpz(97aqX?SkEcKv{6{hk0H@8sp+>#d6^W2s)r`_}>%Y9|eOfxH4b*7t9 zCEl4X=Q>vGagVj}6zvtDYP9F^7d6`R;TrA0Q@OKbhY8MSYBXAB*=eG4ym+6>rIve}rD(a8 zuhm1#b(`pL$c)VybHy1ZLABf$y5)Z36lyu3P|G!Gsah_&CFoS`X}G6u)RMJaQp?&} z4j56(g{hwZbKP=BRLfOwXHFHJPL@5U=0`@h2C>kF@q64EW}B9(<9&|G@-{riwWl`Z zDcY7=SgEZy)`Z%y5B{Py>;tUBcf3EQIbRIZh7D&pw~I;KCU~<@%-|_x$4M=z`X%ES zMQc>ok6XghagoeCenp~88=u)mEMpQRdXz1UO#c-v2}xq}r`dk7o|nM;e-Ssegz%^5 zvQA13Lmj@qfsn8%_;uI**ZktBE~b!%`W=nip~mep|<{}~iTaBn}rFK`s!Q+ZDL)jVf@+7(FRUNV}i zb!=H~p^D`H!ILT0QnJ8VhcnbG#IKwq-6HsBTvnxsN&$reJt%m8q$y9P+Za(PaQX;< zkD&#I3Rk$ig!LGj*DmSCOuKLe2_>odz{1JLhq)9-V*uzJdu2k{pT4hK_e8yu!CbG{U2aG1Z`xlEkI@`2{20sbSFqUF~0!>32Dbbc>> zVSFWZ;~!FVH*T29l%THoLyGE(-=(N-oW^rdH%?Af-8h$1s4P&Z8$(&T{u`!3{`E<;(=kH^9yq(Lb|Wt|xH|79`v0E30>=D!9g41iqmK9(@ny|<5i#pH{k%hl#h{#H-IYd-J>>O@V^FtlAk=%KU^A6$THKDb`0G>i? z2Va_6J9K3ftxa7A4hlQ1`{7KiTsb^YKZ6nqF}1G1*iJ0$b^Q7y8xnYi*r=kL`>m> zLMJ9iou<&q=T4qXGkhI-Z_sf2@5mJ5e$KmMmV23ao~O{9w+~auy`a)T;Jmjj883C0 zm`BqTEXGkzq45mA6=;5wrhxO#ax#r%U#GE=>{sA|&lm2(Y}L;fcDKsNH$R7bFq9cb zW!cLBzhRMMcjx8QNU?23&^$}NvOS&>^APwu0!8dgQxFVKLB$X#q9`3?2Kpyez5r7! zl_#XU!RcySF@zVOx(rNbbs3YcMrB?XNgKkxkPWILdNKw$|C`;@m1+g))v6IX#I-D= zB-O4CQEiKPd%8l$yOZZ7t+sNl9#C3^Soqjqc6<7hXmmc{=G>rl zzMAQbKoA!1qC-9I;>@r#Fr7eAG%%gSUoN$VMy3TB3K#EcPN9_*PzV=q9jEM>mE$*oLMtm5 z=vR%2_n;*kzQ4Lxv##P4VhxlaCf-Y&O#Fdt;ZJaQpIEXX{|_|(Z#aec10@KD_d6#O ze;`}<6B1rxCi59;iMUKOO}l7LAof5YAiP$bf}D*wx$qo>E9o1=U>#a_*5U&&pWG{7 zeAbzvCKaAbO)BToL)V?7P##Sxli(MuJ5Sp3)8(trIkVD|u#$Xs`JOqtg#F_IF@tMM zS8D1b(guznE6?3i6e*^1{xrEP<0&+VEyWZXUz0L4GTvrOCY)Gq$y5`|Eu2CV3nAk@ znyCik-JFcWp7F3ec2;k~jHhMMX@Gk~Lj|T48j6hvFjJaBnPZ-+d?u1t+`tHqJ2Eh%K`$&)h%it(0=aAPSgXlni1$5N6^J)0K_ znwn<}np(r;EeR>3t<1|PE5i$xA7Ptbz8YXlD>E5N-mRPiS$U(fve?KeWL$#E+YQFW z(>G8y;LP~+|kXIwh(*a;Rzw7i|1N$|YmZM!<}c$bq&#+#usPAVBOyaC|>3|=up zAqbgQQwSY+{AyPR9=~%Tbl~xGsE`J5#0S`URxhCg50F6z9u^t)@vVlNU`Fbn7BiC5 zSW?Jox?k9w+d8I=gG_T+kYQ<&J7w_UHV{3p(jc$mC&BhYUs)sxfMJBa~B9n%u z*d$@+S(0)62Uy6!E~Fn2bl!fhBvovmuGl_Kp^Ck)EA|1WV8vvQcvmqy@cXRRYQ4#- z1%jwr7C}_4&=i{_+xeFT07yjC!*)I z<#eo$9}h3>$nMq?fL-IH(TLpBWHfFP=oMG(~}G{q(fI?s|!3-xABypZoRDsffP zfj*6Htf8qw!E!If^q%J8Otl@lhO11|^(su!)3w6Q+vZfG$_}2Fs&@yk-b1Q-;YO4# zs(xY<<3L-XTby!XW=>DTsdhr3743xHXZh4l=pC+A5GU_Dr^3lQ&kK-h-*VOd2xs|I zzh}GI{GuW9zT%vY4a)B-EGcB;&!L%cZ~2Z=+gMDt-n^(`lyyNw`ysw4W0s};P_YYA zXg|~%f6;!ZwJXeih&XXLfdD6fVK_gm^B(%6<)0NJBY$z0 zse5jEu@K-n9&&94?3eK|0qhq@0qmDA3kD+Ze(rDI{r}VA zbSRfkty&C;aMh-TTp8iYi|7ZARM>L`yhD7_oh#Fh=Vpn9?trELalyt}<8+xURhzbs zI9+Y!g6wab$jkrZu8^}Ex~>&mgaQU~xfL*whY2T@)Wchcn?1aJz44q2J+v*$gU6O00T(HJvxno6wc_n;gbG4&bM#i`{U*O}_fMV(99Jibk>&g>zxJ(MD zufr6+BcA0}?@Xq<)jN~T&5dKWQ8wUhXQmu@z}p8;@>l4M}vpDZb&lP#o(=o-5^(CVOTDz)l11cEx zYth65+-Tr}?nHn;VI=t*dlcZ${2!Ae<>-U17+KKVl`op}!W93ir7(TP=FjG?CqzCk zf>9T^Az0Q2*0mHuaeE}hwruj@e(BvrpU|wP57fYKIt=F&iqHVXE(+R<3QnQe4^Sxf z1FR`_wJ*hWrMSY94P#4}Y1Y?s3b6(X1%Ebk3b6)?g>|2F*BY_Qk_}luq**`9Da0Bm z#QJqkA=W^#uqHsH&v-UsaMHs7k-q0-3TOd2z=a}HwX_aIrY6W9CtN+^{mH;3pJ*65T35%&fRfZRS;XeZaNy#2{Ev7MM;ob8z z^JsM(lD5mcT)2=yz#(aOTevu9wprj+h+~DEOpCodFB@w*K{h;HAT{W80d$cGrRfvo zKSRA2Is!vanJ9<8nGtEaybK&^FzUjqWarA!)e0JOhVx`P;h9(Fs zLCoUPXjMNQQ)smT{TMz^F-vy&%spSMwq(Ru(F(900-vwo6x!dv3bR zDemAIs1>&GR=8iag5a$nSLS68FgHOq-0XlP+U!^)(Pk$!#U^9Fgvf~{nHJ*9y|mde zFZZg*Ohh4krS}uA813Ia&~^HNQ)ox}lUHrEf8i9W%n!UWMwZ&SSt>(!y1&zv0TEOg ziwLSrXo^jK*4lNCuq0Du-V3SBh_*04bjV^|fhyAmbioE{!ztK6o73{%jwpo>T^@)X z?iRy1nXcIn$zq*kLYBH_&ue7LiuV?^HwR{^7}G$`fqEg`+g+5U;#ik)GMVfWE?{Li zlTi!{`0u#RlY(+iy#U{@q08yFW~n{q)*4(lbFTL&t|5J!qE@IjMy+b9O;M|TSt@Gv z92Y=#d72A&McKvbwiK}f{s~uy@~4Ouv;W57@ zg`BSlS{1+a5a>xWdO}a~W`{bTGg~juR& zob#dD=zKNRCg*!7TRGn&TmaeSK`x+5*~O|hIUn#R=d9=4$?SocrTMcn_N)LLVhVA7tAy!ry z;}ASa9WleFasw_%-+SmWV|laz!zxBvrh8R@Xo^>T{Ma(@Q7D*Tkg{_W3{q|mb5Dxy z5=^T%hwaAdfBvN{8P^Pyz$v$`k1YZ_A6wPAW+jzZ^I!1bXG z+D1&_%cZ$FYJ=v_(daw@%%l5xSz0hvzEcmX-J|3ge!1=rS5IT6+;b1qe`U{MQF8f2 z*IDyW4&fXf;nK;HuX9Tt4`<1>lU?)byth55O?QwhK&CqrYP$bu(;WzyE&y!wH!oX% zru##i?tsN~t;X7;sya`DEw1UxRWLiAT-N*0c=*z5o2#?(!opng!qBN}{pwTzE}7_R zv3WqAqkh~lJy*G5I@bqn*|aC7a5qdr1p&YzE-}Guk*kq*M)Gp?W=CU~MHV6S1pILK z?w(OqYv#C2!(5)L@S(2aN{}(HV8*;&8Phrj6UYac624_K+n!QCw!BQ+@-nUt*>Y>B zEiYyDTac@}bpRad5njIjY`W7b6Js_3o38v~X_S1wG#lRZPIM*9(ouO00kz$AgZWmj zTreunA>QFCk%f;j3!eyQ;lj~yu#-95?Uq9xKOHI0jm}G`A2T1)WME5B9?VIR^Iy4={y94WKKL%r`D{)BPgH}8 zIvVtxd2IS9$_q1nWZw_NXODZ`jW)mcStGgYpNy#bF+@h5>bn_SCmIKPVG8fNsk*+& zdE{%#2*ZPk+z90pyGF^g%Uz$EOY+o3y34r$s`O%B>D8*ziG0ok`L{O)5Wb)tn-t%-7=kR*p8%(6Y<;)xmR`|?PSo$FJR|yQ_7_%IZ zqhgj}mMi}LISTsg{X7Nz^#Ru>@S`ICZv_oTXha!j@*2Y z%OL?DvRTz5*Sgx85r5~Y)zRP3a)1h11rR?eMuaP0<9xwsYlxFO@|lwt=7(`|SR>7^ z!^{pE=9uaEvSX#INThT5)UZ7S6K`h|JrViYfj1Lx+O>k>agv*nn> zgObQwlA!j8cJ^L`r6En97IEvTzo9?h3mY<0B} zN4b15<&UAJJfti5nl>e3p~OrHkh4Upx-PYYRk?z6`A>z}aJARx4Ct``}#1XFll z_vre<$5-iF74#gSf|si=%T5YPvRJlz>jLo4MChov`j*>&fdx(ZUFp5l3Sry5uGtN) z2YnPY+6`PYa?^itOK%KkX;>oo>*%HtS3^@13>y3h4&P+b`!I!@bcL?yax&?D@wBA~ z9{2qmI+a!hiv(;#vnI?TG;96=vntM-zvR_EYyO<4uo<>L?0U``m#5Rd*yk>Zln*`P znjy?qtO|HyR`NH~5NI?rzE}@4PN9QFpd_5Kdqe`K5DGyU z4gK-0@oTD}(stE9Br8Ym7r+YSY@E6^)nFFffyMur5f&zhw z*}W1T#m|+W?}bB3zFLtFJmLCFT+5Z9c3Z_#w8+XjevpM?Jtv=ZEfu#i=ISZ@M%{4t zaSAmYP^jTHatbwE7!~~+T1nqkS*ddT*1VqL1zv=hJqJeHlHFDuPxlS}49Tvtwq%2jQKatl$9=+QhZT_hpY3Nru&CI{FBW*wd z+>x&05(&DAz``07LcYKeVnu$@kd)AZMlgq5-wN(Fp4?zW**H7hq-Zblq7*DaUX+Tz z$cs`7$%|~OK(2-IF~{ z<=W%vE#*!BaZMEim>A_+eF{~}j^-3xc$&%=EaA^ghrLN#v28FY=BJ#dip(?nM#&*Z!IM5`Vw5L+ zsy*pPP9aYM3Vj^+Q%)gI3Ztz5l=h_8f}ZsHo374g(;_v!WW42anu$fqolYT3?oMxT z8HBgNQ?x;}j8dDk2vVp?z(sYFKr}Gy^e{_)`nGFdn1(q04m3npEFTzls3AJC6fL*1 z9_DsgzQp5|AHV0?CPpv`lJ0zz7O6WjQ#ge#ivWdgn=IfIxNS1WC{ou%1{bL-GDFYC zj1p@sx$qv#wVJc!6ygjN;(RZs&^;EQ&{|!!|ngAtGmTs?v zv8I0ze3Dz=Uhy0Hx(d&yuB)^uq7lhfJ=gfZM``r3>UZr^>-J?Q$qgr6#c6|(#vQ7i zMK%1C7wyW;V%FZYUODSA>vVtu?b=Khz7-!S{^26&ZB=tFjjnYx!xXyK0al=E9q0b* z`dAcOGUBz4f?{=WTfixBaGO~*|Fmm{5izh>AKeb-8SscwZi;mm%lN7lDdwnRb#D7R zYF2%-hAs{CE>`EZy?JqUZhMVrW6mp<$9{z!`vOj;bK8rH*-q^W&=SvWxd3V0Qq;}_ z{&a2&|EF_XI##`m5xJjunN^02~nccD`aIWNiG&MM&B#8z!;s9kuxeOvQ`Vrl;yjPX$@Kl6RA_UFnN zG29sNLg&pcWR3FgT&Xc!Zxdep4RFebzjL(~e{#++)0Lniz8gG_Fg0CwgQtxd-&#I@ z4peH|n)x%ePi$+}KB=w4wU6m0jZ(gc>wsJ%Ne9&6d2~Q+@jN=94ov~H$agOT2(KSp z?S+L#HxzP<)$wo^Snm_qE<1mORn=&&FI|rr4l3gHnBknl9DROk?dS`626CFYysFDu z*XrxDTPt6m%{c^peM4*I>zg>4Y`LBb*cR57=#HD^!2LN%GaObTuJS{oa>89 zZL2GiucOxJ>tVDG_`3OFYgzuM%PBtQLP+)FT*w#UR40EARh|6(pVrFXjW(gq^%v(F z-G-bioWBEG@^`K~_jfzzO#Tif$lrMh1zAG=-nNbM_x8LXRkU>*=I=hGlGU09`aAF^ zf4A@_e+LI7f44Xw`Fm)JO?HfM=UY9MT)nh)wX4%jh|Fnl>lg-Mx(d+@M!@wRpP2xI z9|9WOz^g!$!gZJum=uBtM)$TM1S4@jFF-MzyLp}Ww85*|nR54yMpJ9W5y;5g26++H z;5NpEp7Pw&!tRLdJ*$AvZbZi8T>`7<1@gy#!j7Jzb8ex zUk|esTM+G@EKAnTh>>U3x$L4rTi|3_lwHJ9v<7trvZIar&|6&1&4j=dNhWdhSha)l4-2v+1RZ0!vy3+0cQPFb3qn zi`vQq_c(hRAPM_dd0TbW$f7LyFSi)ekNo##ph2X_h(v|j~<^7^0 z)14FO7u-VBFO2u({vPgWY}H?aQmI>vY^S=#&?T8Rx!MQ%m1nwzTxoYVOFN5Fc`rH6 z)R2hgB_?w9@d_k^^qSL7d+A)BiM(`nJLaWJ+9@v`iPz;NB-0MD0rVD|0@tW*zr@*}|H6d`XO<0gjslmOr z!Wqt`S(&01fv;$RuhkIvG8g#v|3x5yds*ZK!M(obatN>s6eMu3&;monpW*TnxR)g_ zolDfH_vUs8?$zHmjxhn#(D1einwe0&n41M?;O#WDINL*tic;V&8d_ZKYa3eZt=ums z@gTNlS2;oMdBQck`s)D=bnV?5-79(PLD?{;gtWS0EM~Rw5Pebkq$k`*s{|exvsrC(%jo#4MG1DIFrpMpe->r zIvAPrv8O$k7W_KFvpgAbNmAQ|mV7#xg~hlzKi#NkEQ)czjU~v*-oanwWbY^^3mfBZ z2jwuv{a7dWOJQcR=R3Ra5@&;2xD-~?&pd@Jd$zrL2iB^MkCYLLHWVq z^LaECwN8sdx!ei9V1{AHaRa%2v{tLzHCeJ$E457P$9Yo#YBEou71{($p&<;+7DSF) zWXXsDs0AI=zI*|v(6mX&ag`kua@@_FOcUk}9oU3L|Zzlk!Ta6 zXpJfl)Ooet4L=e$Lp;HlD>Tb6;{1C%GSs*?co7SK0pYSO znQ*>vcUJR-n^S1MAV4@@X9ZQ(i<5CYGrG%Do84)0-Ev#HdT>wzobXWL9I6)BWFbPQ z(HXP$M^Q9mSVYl`VMz%h!p-GE2@$RlrjX?|BAlfpAxH`BF7xi|r4=2+U?CTPog3Y18rG~rG!`ZG~)VV`f&VbGx z=n3u2F6tHIY)&Tr(>ec375^CC9W?M83cw?RngZy!?Zz&21R>vez)g2P>GWX@=PkR? zp^3Gt(dh%QCcHNbYl@eH)yPLIRwEy=qy+Kap5gTi@ez&pW+_QN@+vPB^bwvh=pzd6 z?Y)p9+C_K~wa9Tn!{Xc7jLzsDd&RH3AbG}*+B1IS6!46tW_(xm0KI8f=8x3dVx|3g z%Q%+WHH>2r)?1Xyy5RFBxh9Arb6P}^IYU!y3hT|1OzYqCmioZEna?s;is4*As?<=> z2T$6Datc*yj;_>PPN7Q84z1LZS}Qf3RSHB=r7WVTQlTjt>CKXil`;k^c6xA>g!J|( z*N^J7Q`c!Hr%)Frq_>y5!s}H;dV7V_sb>GN)~u-!u3`xGX6$Db19?<2i#)1WXo?1W zvm{f+?zdK~`oPEl^m~{HH>~?PW%C$7uZ)J-4&&O5JFD$X^KQ)JXkKoHDSBQe(OzZ_%czjw zW^t{8$ZuD7Q^;@E@B*lqxe{bnzj?h`>1G{~2>C5IWozWO<(v~CzgbeKYh13?p2gJ0 zLoUm*hc+~P>BY=S8=99;5^ZQ+#$U9dc^No|ZfL4}cetAyVKy_{?sSh9C%C>8t^1Ir zXqlD!>bzwcsUEql8{(KNzGo6twC-#-6)d}`J4g&ns4AobHX4@i6=!)F3YLY@)BkNZ zb#w6DZq=*Y=k9WQ%=GR$G*ae_H8Z-a5ZSlLk}q`M=Q8NN7f;c)&@xJGtx#98e@>OME)}--!CRG391do zbXRTQ=M-uKpp=ixcZ)HcLTwO6PygudsttN{uWkd_X~4IBlD=sy%eQ7UG_TjKv9@7h zytziV#%N^DTcanJMy3UUf>jJh%hSp59o&28ElA;cDu99 z@0IyCySxeJ58C<%kR!ML!(0SepQmUmXc48hh#rta)^C8n$odU>gy{=3s&T-k04D$x zA_&TaYEDh7IW?`p$ppYW1wok!@M({^eJZT1M~(o`M975@l!@*D1SO;p1Z4{HZUKL) zAt*70K~N&iPf%=`08U2`lpv`Zf>M6`g!@7d(GZ1ig%#xukSG6(AXbEr^&38Fpr;bc z@U}VKz0bp&sB~5OHT*?aUEAROIl7|w2OhrDY5se7@wGy{pBA|x{Jh6Gz!^xKo1BSX~e|A zEEVWD^;cefp}k|eT))iGR<0Z7iIx-d05&o8X?L_aeW1*K+I=vhya%*JukwPJDO{$y zvR3wtyS13j(ow?_b4m|+;u-ffAtij@Hp-Oi_PLA2vT!9bFLpQumx10^k~k6bQYUGs zKdsY)9Z$RqjRHk8Z$7bPoSzTkcfJ~>wQKj@CNsz7)xT&Y04KfTaC zAS;~dIoJgj1R*rveZ~D(gv+NMCA)kCp((#BPVZfH=WFg(hB?qDkG$?~BL@3GJatiM z7QB|#q(7uAo>H+XLawsSD3(38y5S10PXTE@{b_Et+e zn`L`NZ>|LOoY|Pdrx%}(UT7NK+sT^iI95jDd!jz86>P8{!j6HXj?2K63d&s*+I;w7#Rp=uuDDKsO$ z1d71-T1yTvO27f$tOo~({ja;REO^&_xA>GvQ23f*Wcp9}6u#yq@3{wxbG!(yWNft* z0aVR(BC;oQ9g5PMJ<)*rp4s0%6?P{8$#kBVqSGyVG62auP9|1BrVur7p%8T~iqIAO zs~*iSM)!}GX&%U3&~@M&;jJXWNKUfU<*q`zBpAtAJr#_kpOb0lIHRXL zHQhDHTm(7rl#w)`h%u<45F~HA#&Mym2O1W@D`L$_JsE=JzfcWcoAF#PLXf<9qPL0M zdc?g#+{9@Rz8_VWo{zc+i?kquBXFlB8h}8*1VS*&uFg7{2{N-USidQ<|^J+ zx-ly2Yp&ARVm*4PiK<60LeG$y4+46@>lNv3WqC(WYdPVZd#5?0mx3Fc#VtV>iKq2a z9q1A$J=s+p(t%F;(+lOv8K*nTBkkce|Nb~nos0w^)#+wANG!{1A+On4Bm(gJ1+ zz>J;cMeEOOXOy^_Mw6MhPmikV_P5((n9X`Cs4-h_))~okO?xXB%=NVo*?h6L0uFnLD?o-jpbd8jx{av!xMB7m@h&}oG;Rsdl<1=@i?aK4U99%5MfWF8<5**fTVlEo?w)AWzGr2xw(;Gu=I!#xvLfe$^o3`dr+vwrg7I4L_N{k<1!k&3>qlJ zrdPNwWYhm>o4y&=V`+3QYz>i}^7{eQFxKmdsu!b1?1xq+2q*Xv+^v&UKf@I6sn6;P zK228LFMj1k{vR0hr=UD;(5h9PJbeu_qo2ZPv-e|)qbUveLb%`4SuW_{N-%T#)m(5& zaM6|ZV!qg95Dr28Sd7tUW=Y?&{ps@NZk{-SgzDf2nzLzFOyTCVp_&@qHnE@T{D|Hr z$}D9eZrAkl&}n2yu&j|NE3WXUPma=V2Kq9=WWg9p;kz?1yI}b4i$1l_9iR76;k(M7 zo=>b>Tsp_w)626^Y~gCrIo>9g0+pkw;gfos8k##B%lJ6wb>d+rMxE$A&`<8!klikt z6DWKLg!Lml1I^d^$%@7~9`Odxfj6U!SD16W3oZm7!VK9EAIQvXZvvxJxz3j20nQ+J ztLrSd6=Kt$<75n$z%}!r^ZgF3S~Frr-$elabo0u>pH3db7}bA&KXnAW4zvn{=b|Az zr{Z#jG4jz~Fg>m<%4%q)_LmFic~TY7S6Y7+o4X&?m>|C_*4w9Lwn>*Rk`5Dtto#HEa}^0@i^)nWcBP9c{A3c1|+ z{>tSx@Emj*Z*70I7`dZ=t?mX)$ld1i!a;Z23)0cusyLZqbB}4>2m06QYQURZ&BB{p zEsXvA^Wd>TH4ND)E{|&aaewtb>pM=N_gO%p_gQ~&N}vqEkbTT4|4RY7SUn1A7Vz~* zeq79A0#qNEHbAxTWt>7S3>4}E{~DnB z!1X)_4ZGJ!-@3q@e9M4Z`vEYbelU$QP#_-tlZ(xrz#qTX{4gieu=@bx|HJ_53)W>R z-PQdc?2BC4=3%JDt6sY}T7&%?jQt1U*wbf+fIZ#Rt*L$dOS6m3?*Wth!EA^4u?G8d zjQ!u?*jMb#Ze!N2J>4|64OD|fi-F(|0T-u1qS-(-067NMHb_K(%F@>-GeuZ*r%oEi z)BIBhs0nEhv{z^+?J&>N-t0XPJ83(!&p_2br(&IX{~W@MprPdkbH%A|mV}lXz_Spv z98U@Kv62A_T5c-OO*`NP^W9Ol@I^GV+(NKXYGJA@+#TPxmYfP&j#nTcSed2Nc0CHF zL17L4qCsH|SfaK;0TiY|Ve%r+$Cjy2ot~~!=PvW4 z8saG~iB22$4rB+Hdj=}Ruwy(Momn0ls1UvpUPv8RZUM&*xL-@Q9)c6ghJ%1FAqvC{Qu77jh~2u}(>`rCO6Sga z8&gL;V1b>=E!M#3uMZAvO{0(Tjr=?9od#7#`3Jk0^#QTw#sy1)K=+h-=Idk4|%@ zFyNG!P=XMTcnOAh^xGhXc=QJ^Sazgnx}lY6I5=FxAl4CZc2s)utk$Eq8{iIf3Ttr( zI)x2Q;n-dl8Xd)U06usW>jho#DAomSjZbcS4rbkgJheNf1Uxl}Z8Q`N*(=FOAuZt$G249-;tHhMgUc$O)rAYq*@@c(CX|BUO2c* zXhrv%CnibN+)`CkgG8lImfR~`1uH{lA*x7%Q`v$RCbGz1)Rd5K#2ypG1= zlg$$r>m4tKr#z?a`@~8vmsUS}LrY%Cv(V0j^U|J%wxOMg#N6cFx8g7I?pr~r+7=;u zp&af^`rPd~ZSixp2w8ZK=YFw=Yk*g{$ushn&*du+fdwR;wbZ2 zfP#!T%+mh2*(VA1}J`o{D3>~77Bg!}##{#f) z!iNy{q_MGp;UZUT}>L6+p2 z`ik^#OsWQw;7RHk?$4w(ne{Z&8sA=7oQ-B;?(EFKG!yqky=koKg}-R5>NPaXOiU5N zPoMD|4>LlU&wBn86SxKFlIb*_LPPz8p^`3{j$st7QRN$Tj-d=tU=o)z<_b(Aj5z<& zp$tr7EiZ!mCgVnV;4A1X^a=Lsp!HtxOcD3j$aS|h7ePrpUnAEu)?7u1B=KHoF7vIS z3Q6KLr_k;WD1;>O1E&yP0#ImohZGVL#T(Yn*UHvA^t!KLP<>IWa1BG3x9%=xXh9b`Cmf((;96uE;25HFO3-; zjh5mXo{fY-Ho}#-g;PilPy%vj7hH=&&_pwQXmFyjg!&7Xo=%b5|2osS5$$dtE0y*m zo=Is-u~qooGLknFp-k-K3Q=_b;uiUJxa>!ct`R1l;=E~YImT0HTs@2_G_Ecksu3o> zv1EdI#rRVCe)Ob@FFApx6#|%OP^QM<$TH?!w8S*a)DknkOl_DRLk5AJEa6K0Eq9-X zD->UXuicp2(kg)_6N}6su0$c1MGLdnkT=;{KTolgq?hg8c%fkEiDwKL<27)rqt4W- zJ2UfV7-DcpLH)j+7gX=tPnY674xjmHsm7F;%S+O`>Dgs+RXbN|G$#aYd9AkPb(~DL zT&-=nzBXH$E6UV`UzC8xoXvTFF>@_4gGds4EcxJQGc9OKjU-`VMYepN7Yf>vXAIg> zBS{04pdnG8Bokyfm5eYcK^~pZ=Ot$d-g65jji+rW+3fO#*`+&A$!c zs=ZeoMjK6KQL?wKu(&40r7s$$f-D#D;=zqo&M>vH%Hw3>4&Ozu=H8CD$8hd&J%0W0 zJovUL#aU`{rx4DNVJd`E%DGd}9(IBO?&di7Kq{P-T9v0T4k%AMHw$|TM1axAJ1j<{ zu4YLIf=FCtQNijS8brcUlH8+`7Ye!u&lq$M1tPIEq=@zoUPO7v7Z&f>E1uy6$uX*i zDaWYd6mX2C=3B$mX~H|4Lahd0G7Z?(I1$Dt2tMKvX3`5_5JHBu2q8m;rfB#GOERs1 zA4hiTmO%Mx03P@h<_!dFCm0FaaOSpDt)|0OwVHAYRjXjQs#YPVP_^>pdAoLXvlEoZ zfFk!sN%hLYT)JK$h3aLILiGww(FhWjWU5yjva{BUP$U*|^{7g7b(Q9F3Uy&Zkyta_ zR45WRaynJ)I##hw;VMQ5602FoKo(WZB8w^(nxYXTEXh!u&4$npnc1$cG&Fgn z@-y#9HSKZU5~n?gb)9MhhZh#k6fV4zDXQDbzk7r_FWmwv*AhNTk*gYcQ{^Xj0RruS zk@8rAH^&?}QpFH=BTK%xzm3U|geJgKtWryD>lMb)=L7oPcVT8Mh9$RD&@a=q-w`Gz$MU*p}RAOoV+z7(mXN} zH)a5N*RU|oJgOV=YSf1}U}p%LvDYo zFjDqS^S0a^XYV6^=L%3`{>)Oe0+k=sxiJ^Y1%I7xEPM3KxlY840=|LnMq&9Tqg0Eg za0<03P^d+7N2wOg=Q*%NjcmDUl2->5+mBMq4oi2XRs}xPs$pv9Z#+u1>Uq|xA;H~r z=}Yrw$R1PkBh8VcD6mU-AEQR89@-ey;tl%)v!d#uJVo18OD?s|z~a=fGw~NS>`Y)C zzK8C1d#xu?DnkFR$GcIiwAcr~W4fHBXt|Xq>eQZ9rCHv5LrBJ$Lh8l_)f5!2S_=*L z7(7+!pW`hTyJ}>8$eNYnAz?K2-wf>*=2pP8Ja3`86~GIrTLDW(1v_WRt$=q>4~m<7 ztQt|$cLr|G_jX9T8EL!;FSjTS(fO)Di(54_#A%)$+ynjq9*UQfe&S^E(DTeg|Ir@$ zG3E-yCuko07TP<$RjT-wmk-W^%}1+wFnKf-40Il1pCpZifpxcYw3-V!dp#E-e>`rl z$)D!J&ZE^_*p>6AZD2>nzu#yzA9DUQADY0Pwt*J*v<*BBlqhF=1sHK>+YA0^33%PL z>O%>iG85?!CCuY$lhyWn;tI{BV6_{Zx#9{=#t$VJm$6!1Gg^Ho!BQ*wPQq*~M^2&R z;`2tU?B6 zmJ6g1u2CHF7VxJU%LP-av0So<<|n+1-w;d3(>TWjNrY?kTraQl!e1FEXp|KkN`syn z>_b!q0&ZA`H?HZn_$a)>N|$*D;e|Q6u(t)TG|`Qz$M6`L4$&XL<3>8&9FDcBz0g8r&#q(OJkgWAZ^kCc(vc@jY4egp0F=dP?jbVemVj8ED zPTPmx87m1U-X3BPw*Wngc?7H9Iq}5?&=O59nLcCM{J9mg z=WX;q1Fg2&Q7k79^*(rk-ioS8P|dda(}>0q4~{W6kDr?+;Qv9#ph4v@rtk^&KGh`K z;}R3hyT_;(Fx^@|-$=e%=G`GawJ^YEFsnitoUk&W$CKMBZA0nL@Tl)|_(B_437^3j z|HAY%S(uxZYh10$?H=7N#TKTm{Hw;`Q%d*@#H2K**?g>mLrNaYDnwpI5EDsb*?Y<* zp&D}T>OCb-3HU}Gm)Fn$v*g4H&;Yq9&8nQEy^%&l*Rje;x{eJxiQK&jp7;Gd#v5mt zQ^(4t(Oq|TbIG9Oq0euVi3IN5mboD26BQa0V3I96Uc!P`bmp+K7G4z{ZGcVj)OPs{?-inDjjXnD>Y9wsN(=Q`B+^3t ztJzt;c>h_@vNDp!nW-Cb!tfi-1TUtR>Ti#gJATiaDkshMHcr4YYH{8VwKzLgE}8B1 zrJccK?hNm83*h6Wss?`VorWmky3_e)9lnqUeQJR`e6crD4CHL-Xmbirp(yKQOrb>( z8h*BWmdu*x-7l`RWW;MTmyc6%^~*Vh_7E$s@SXrv68a#od$L}zpDIJJ#f%X#2}c=MIsA`p-;5I(;63@1{+tEx5uFO8!WKM6?qaDE38aFsVT znzNtgL53MAEnFUi#;RsJ`kFCmXp|rg*f#xahT%k zW$?5l|NLE3^?UoMt9JMC{ODfzbW8t3f#!Ve`%sHO@1`%b-=#Ide6jMv-XWea#)Qsu z8X_%&&U3UlIp;-tGdbH^ITW>|Go1;nfV!PF)?Z6GZ?S!vp4TUTiQO)i@%*Iak|0{H zGqsF)((a1wjhzXN17YgH=mO4a;FI>Y!jeL#X!Dr*V@>rn_}(5=1OR|GkEp>rcwMgO zSUI8Sk34&>uAk{6hcCBx7U#Giya7_%)TNfvl3rXj!p28g7Itts$tjDMXQtZXQ7o;f|_CDNKp+i>MWN$47@gj67IY<#ehm4WmZn7U0Q+W}bn8B{pzBi!; zXa{v{Uo|nCHQbdYR{3Yumx1s@^&5) zylu&bH{ISeSpSPth&50WMT4f|D^4NSK=HAr>154q_8jrIB^$E-(_kI?IMkkR04LT! zflGQ#MO{uI)dt-ek*oLPyJ2^9& zTGM0fbN$q5%?F%J{yY;**5}Hfei2S+At(%wZpsQPNr;G)wY-lcgn@NO7_jP*O6xziz@gBOuJj?^|IB2zUXWg_q1trdv=g0Ny%m} z{48#y7kjn0B-0T|_~2-V=)!fyBNA&y;AoR; zj@#E-lPUO?S%R;Dy!N)eK#b-5DC|aMtHw2oQy}an>x;A1UAZSYg`!|#Fn_HDW@TCx zp$p7|BG{@x9681!jvV8kVv`%*vkw!NWHM|-HnysaXyYb3JeRHyJM`Ym2=z>}Hr3o3 z$arU~%0(ZXwA(aslG{Lbzhl__4yTaaUmJFR!zpC92782)6T|Q}AVqg1_u{$O{RM zFe!Q@#>&FTgi!h1=k^Ku7RcJf=?dc>p{{0A{~%q>^H2izr>z50MrUUuS#rOlo)S`W zCaJc}{_&R2puwhz`uhF~&T>81jW(`d!xTO@%I~i>u2=WRjq9`!uMgh%EH7K$%}Ubh zlqrh#x>xis+WM8fji&$J9{`P=WgYojFh}YG0ywha`ec}!HFl)P>~HLM+~VdxDOzH< zuY|jR+*fCSpZk6^Z2H0HJ|E1n9dlY{Ugg;9MXj`CxwXEdwGNUD?+YL~0 z*^VnnM{gti9ot4(n>oP1K%U8qR75yx(@27rDKlN*))mk;5n!@m&%|(9tE2NSxnhdL zAy?$a#mek2<9S+cPI9!qeSm^N-pTbMUq5p*U++`Cj^q;!2$YT0;JMbm8<#WW?BDDy z$`iX=3>RK`NjF#_1NdAZytq@m#pj^G)>gvL=cZSLvf7(CQ{~n;A zk*{;f?LRsJkd{#3xg zu7PsvZdYro;n{s#gvol7;WagMSMjigmK-M=Y8j#O$aVXOkgfv_gybv~;OjzYWa&IG z$jH(wfG5^=bmWvLlG+bcjkP^jqkm6l*V_Juw;d>t_H?$^22vm?!>5;~S$eC4r06iY zF~o66FMte1sVU-V&YrB?9L&lW0$3@}4)cwlSATa@lL^BBezd&()CR-!4O}-G0FLi4KTOyj_I$^lC?n!EjeTmiw5&_ z|HeQy^`dQoq5h*gXRJ>5c?vM3i!UFQZ+o)ven(H7yd)A(GCYj$UgVk}TX-8*FZxM1 zMra}SL27bkAEYK%o2Pj~iyGE)L}?*i1_6jKpd*WJ+&l_{PJ@C3drx3LU%0ew+rI^KwQLp++lH*pl zg?uh|>eEe8b4VhMVmC_SL*?PM4VtLwYfCS?Fiu3Bfm?-Af zt2<&ti&n%sDrq4%FmMrlS{uyTC3*3mU|tLx93XJPi=E_!Sd7_{udB)22C1PH7qfqX zcMBRMh`+dZyHAEb9JS^l`@3QBuZD98=OcsLR#Dz{X@gZgqA1h3MY+k2+FGT@K%|18 z?!|?ZV;>nDq(>MOz_Bp=b&@R$9aRXC`tH1n>IXu43^ov{;fFasQ^-!l6zrkJ$&NI~ zNbx?`gq~HLW+`9>jSR;tW@HGH=?Ipby*GKVxWvS$*D@EO_Kqbt7Qb=|ov8sO;$mW| zxX3B=hADuu-V1}(D~Wdp<9WfLFghy0uY={q$)gP%2?~EWVu*abg`=**AFe$_9T{9e z0lebg;}T8$;d(<@l~aTGre1xclchZZu(PJH@mvH)Y)PT3!(4#jZNq>p+uc~64leJ( zUvzMJ4`_;yEzE<QVa$1j#WT) zgSc>+9#cO`W`FAHA%-zAs=5aaQPn+>Q>eOuLe)KpQ>eNFDC-?KL_us7-0f&1R`DXl zY}pV6u~on+^p*!G6mNSt#aCv`y^bWYj8kr=03l&?8ba}=!}-&S7LGLiBt@7(f?_lh(eYOKSc5a6{lzQDrFP_AN{(m~@t6aLRkH+`;s%sK@xK=!qJt zD$mX-RCz!N|Jl`4L~#mLUI6X9b%v_W;%`-Xth1;u=V(__WXS^nR^E1~>MUmMPP{{Z zV5sUW>YxB#pEt}}dCY){?ZTD7x{SS!nRuy=JPSd^@)X01-s_;>yUFduAfB71{{$5q zxQGE2J9a38iVd7oLB(lH5mJwPeFX_{#?Ce>jC$1BF*c~XovUKboz?0s6L)9BKxcb^!E_u}9(%zK&x<3*X#&v`lOrpL4bcC_fRyuZi zA47@sA}xEEY7E_8_C(1ok2&s)-G}9QOmE~20n;a4t$l`ZtrPEX-6~!jEgPUpBNayN zV9u7#DsJ?08FAF<3BWn0ucMiGCP4lh zeI3rS`SbTBImAl=vTOe|h_`0P31#d=%t{UpQ3o{^lj-C={hsK@#Rr@voxGpL6gqi_ z$~O^De;TF^NK1GDnp|HQ7G!e$-(l>4G#kqqw;L1$>UU5MPW{B!j3YsyUL2;5t3)Bjt&c;otX{>q5BFqR(B4E+vkoBAf9FXVMIvR^rSil!cg;6PK+S6FTfL_@EmXtoq%==e-xwcB6M(z-jDQG;({Fo&v z)MI*-d2zUUl=&4W)1%BU$fUA&O@4&8g)Q87T5X~Sn(reIa%nT4bADq@By8*P5U#z1H+E&`mTCl$Ty>TJmByR=bQ3 zKA^Ct+o*WuGj@gQ-6ZojSWn&8`w$2Jac0_hRQhPpCa9ChMqQ|r=#Rgslj!da)=5;E z;y7XHB#J(p;(%w<)3`;{K}=#PhRpJwIpYwPzv@!B%xaX9BbG4%YJR%}svj4_8##sM zw?LuQ(GpIf`E39-y^FoLIvOGl@!Z7c06djl?`$lNa|$htfI_lAKRsTci!@olH;AOqV$dUIxh?y z{KL$`7Dt?)QHSUpS{y};fE0?G+W3p&ruK;7bK7y?)NK0zx$6nXJC+Di53OFF?|4SI zk(0085(07FZbzsNk59>y?h)#mu$^Ty)XICOd}9y12x_U|hubse>Iqf=ao%<#82s?# zya-M#@nOp=#?YhzU;+N7!6^tUS_&tP@ZWlgmluDrN2(1@LLHttLPY_g4#Ow}BPDKr z=3YWb1z;K7h=(W(@Gcp*=wZJ6m%8Mit>_}pfI5I@0r(`%}YJcTA#>oJ9TC-9*O zLcGtC5wA7w9-(et?dB93KnaBS-4W_##Cx1fL+9Jd;eoH3{tLL`RnwVRtn{iWp%TA| z<%|&&gwuT_i*UM+u{ecL ziJdtL7sbsBkd1b^@`NM6i{HjM>V_FNPazc7#}djq5zqM1Ly#CGs)rzYSWc<7^ax}C z%d8%O^z+kpy*?#J9Y{{&c}dYpK@^>@6!ohIf-7E&Rl`U9ag3`0SImi^CiG(_ zAYQR0E@|4#8wYbejfk(JIO^G6!(Y_1y_OSfMErZBdNKJ9%*F%-&sqXPQ0f=5z@h+i3V)u#mz=lvyz!4+2@30nAKlordCN2<4?;mrVH zP#dZ6iWAFZi}lM!fW^(rWNYk~4Ymcwi|%Ezbs4EP8~Skyt?Ge7h{Yp0g?0phLaTbz zu@td*fh8MmHq13xui+G84HWZ5!PA^f{DExYPl&~@Sh6AiB7^_CoI?D8Vj>oQ%*n(b z$QJ&DSX^SshWxJ>{I7Eg@dpZRmWWZj4u`qCSjNYiHavoa0gXqea%eoNYHVl7BkM2S zPKQGIb&{&;X`|Fo^phFn<90R0yh$Rz_I|D|kac2Oh(6~b=#WP2#K6y4LV^^n79~ESc zu>?5cwcj)>;#;&4aMffeg4cdQCJi?hnKay3QcT?9U0gctk+#7Ua=(FFY$-`#s)u+X zb03sv^!cX^C}!doANMP0K&tYB3R1NnI0pfD`;0Phi@)V1>0IKxz{3-+-pfOp^V*Jx}STEH+`0pgi+U4k;6JzBw7&E;hB?#$6a zf;TUacL~#K>S*;!Vk&25zLMBBTD_9k!O0}+>0q)7m8=@Pp%?&HC=6dolodv=o!=Qv zubt)PU(|Ymo<g5NQqkyhJ3_V$}h@mG7;8}_xi)Sf@EGeaU$2Is*rrv~V;r8osrm0TA4W+3s5W*{lh<2rstj5y*&R2=n(2v98)Gq4a0VE3K_N|m|+Kk8uqkd7>Fao zEaJ#8{}coN*pf_!EjA4!+~dn!KeFjt!=`UJh1xse9*2z474C86F)XCeGEI|XYC8k0 zAZm>XP-BRJtp8&e1~SPoi%c@iKgGa5wj`5bUz>)RZ#8;CFO6?C+K*BTkhY`La_J$i zJB{PrF~u0i74GrqF{-l}!}F4zFxLub=QL$!fWAf>jzx^6(qP7rmP!MVXe^bwk15rZ zmP*gE%xbB$ooi}hAiq9FVIUvn1xVf3f~fmmplTsZWOLv*Fp*#8ObHX&l0vJ~gUpKU z%nDpBS!PnSTH-S~=6PBz>0=>sjMRW{y^$J{VDtyVEBN{RZY7@~tR&C_9;1sp}G*({hk!BZePQi`5 zr~rC;U9x+7SF9d6)_+&$cHGseBTKHpNY#6+v7ytweoeg(cn!DpT*#kKq@%b%#F35S zDTZT|K$pyZD&B6(!4gy{Bk>ni%E+LVQoP(*MZW!$IR5O|Qi)tnl*q7tO7SZ(h2d8s z%}bbOj{|xl;a7qr!mm6%7+~Rr<}Am?Z`)bHkrD|>@>@E%Bxn;9CA5``;hiP9}ypQ$-#+hWxx>9BgVO-M>2h>(H)?St`(Revvov zR{J!CYnk8j$7<4D$r+{(?pV~Uk~2#aTbL9{dmtApJ0I7d8YeTWI19ucPNv0F&8p6a zLk^A8<$sdnQp90S$IA!WL7CAUCnSrbqxHAIoOwwJvQdpzb zc*(uEtus@usNt+x!y-oRvyJR7vnwZ8mtXwUv$iaLux7RVTxWEpHQvkPWOhkfJ;C!M zerP*g8?P`PL&p2nxv&y`I2w~CvbfO{FP-JjU3~G9(j%Ypu0B`jE4M+?eWoUd*wS zg8P596Z}ifq*8k8@${ZkYl(jXb`?T`f*M@X>fYUw zy3VcEI;4AdW9vDWi+8zJw3&a7r_hM^F6aYa7wB?~QGAttpxl+-L)QE%#lSH-AMKnh zzF}e%j!^)?-b>>Zj?o`6&ilk~ya>)2Y(a_uj?oGcI)SwqIs~XPfgJ+q6VwJfLEa?s zytEA+H-TZ^q;oQ{0y6DI0~gwh4x$KQ-o$_7Y+2d+J18%=7DUGjo>yJoDIPB~N7c`e z7Ychpr`N)jnlh}J7ca0=DRqgbFY16ye5g0Sk5`k2OXw9Im2Yr2nW#4dEJl=~-sFHE z3hgd2ij!&kz&nBVMdXDe(GmJ&$c9Icqy}vRgDwi?Ci}#UTOEm^H=w|%sSlXIP;Qo> zF5IMkTsgY%w<*=RORVI{G#nM!Z+TWws*A8lGf{4KaA~xZe+E-%DGzZ<3uHpMdBu_u zx8;k#d$_Y%#3{7XK`1vLK(a!)`4`VXwQ!Et!WXI*1g`~!Y;y{-;f@qYqWukvB--Eb zPce{fEXlOLaR6B0R>m_E)CNHT#5&&Jv$%z}3JD=1cA`Rvh@S|~;PVn1q4em9>YZYE zLak6)@zq1)6xYnCk-Q2RrwoXQHWSq#)n=l4#W=fl4?==yA`8bk6BIf`!sKe9@_b|G z7~Km%X^$p5MGkidU9=nq6u>K@_5^ThD~CDnv{od%Xl)0Nf}LTKz#t0ymM4~T^+6NW zJKjND6CB7Q7hwu-U;QW2%Pau;(#AR)m{<@`@uJkg`m`^fQtOl?{c&)>rsPb$H#ila z-{(FvJyh-*7I&9ywE~yH%J!%CSDDwp5u9IYRn2tW}I@g`S?eEK@~>8Y|lg~wox zWI~$DCbNo?LuKJ#DG{=~etpI8>nmIv^6MA=em!LP^(DivK9GoCc+m>+>s7~I;r!U4e=C2KtkH_!^NgL4x+BSU4^`<>JDx|0-o#2u4Z119g;k2xbLP1@*M!cj497V)ob|4%Vm?FmihZ>sA0sQNq&$ITY1?E z@z-Wkl%;{Mr~-4FPqLiv>u*m|pbzhI+2pfh+-DyspOu|)q+=IxyZS<0$)ld~H|V2= zBad>0$dQ-)9eKpC?iJ-o1$l7IOthFxI2Sb^aef+7Z?XaH5IxzijcK>bpBFptQIo8c z$pM;J`lA{3W%?sdm%Q;2yc6Dg173KSw~0kgR!uCDtAiHTZi*?qiG`zn0IY$ZLZ~s> z1bWcgSqaSY9x|)9^SnM{vbt9_k_*9lhBFG&=1GBU&g$zNUY@2g*syOf7ftpp_P1{U zGov53Z@rb^vyUF-!c>4B66Crh{7*Gy(Oz{hD-8O{}AX5TFH_UlP-eOJr6pjn2 z4H|S`9+xcOhdBqO7Tg3=cs$pdVhkBm7)C=!UXHrKTH|hco>Quq-p-Uo;Zq$vK$D$! zri!B1Mmlv(A2S6Z8C+r<*MK_1(cE`40{L!vKR~>JDzM4r(J3|Lg&CKs=GSwC%1*fz zp!Z%!}`0@36QBU1Wt14 zh&E;!vX>wQ;5#dz_pDe~f9NiOjg*N43L9j5TWJZe~W#PH&0-#V9x zzj?We^WtBoEQ=Qb1S?c-*aYw)6jm!DT|&;@oNSlr=X*n3O?Qq9sXx`gzet(N+8Vhy zaVl%=4W|ZZ?PkOhYXZJ#HPd;kdzWTQi=C?QE@HV-qo~s_E_bK@qbOv2)j{P8PK9t%~KRs3U zujWb>XL$~~xO9?7!KYIdjw@d@=<;YnLQ@?$(bsif;2g{wSigV@_;uaiIGJ`tO1OaQ zP>W^vr3jlA1kiOTivW7N62Ot(=cm%UaBYp$UUd$viaTwv1t$xhzLY47JEd09696}E zH}timWnz?`I8AN7J&)S)=*s8nn)nfpX^_viIYRAt@lxktk;0P+Fv5~TXLX#TQR{}X zS+)*Xo=*Kb;x9V&>j&ylC!J0sz7sx zE})=^qk*)obPf}PxP}yk*(}A-r@Z$XpdCM0Dm`9qX`4D;Ok!eGP>!3Xf^t5mP*4Je zf^zLN6_k?az@UWhe`X$s#<^m;Ely3fw@wQhn81w!a~$Vl2IkA41_tIUoJ`kWiu{Ef zn-(-UK?nt>MF<6F0RMW&PE(K<{nj}%#U(D7?7uioz3lpxQ|N#jDAbU(=}=Xr@wdhC zpbnI@4bFIRk(ard0(7ss7bwDas_mr><=nPQ39`ZWt}1%`bk$J0eebHHCrnojWh{!} z4W%!aYhq#8xuW#ktB-%lWHXC8{kpJP3$<~6Mp&ZT=(*Q@Sb~~KOZ-L6q$MbZPzJo2 z_{#Nxa)^bobhGm9-oI)8f5wg8-{Eezuvs4dXf)%Sn^{IYBz zCsQZ=0vB+2y1JIfM*;PT^_%d|NOtP)gCTfn^TRUy&vO3f1M#Pen!ulK-j>xr{MhhD z`tQ?atLL0a;?FYtf8+f183FX~zsq@-9$bF{Tfbw5>MLSqKv4LaANi;53|0ZDiof4h z2M%H(pt#Izn-DE57En745Odz4(-pc&x9NWEREOiDQM;WPdixpJI@9$IGgQMIil+01 z*@OAQ05!?t>eG$#?*65^@GJys!c%+=t2=ZJ2x>Bv=Qb}12QFfOnoIyE#iYl`^uqAQ zw!k?Rs0lZ~Cs_F<%a(_NsV7*9zo;iz3Z4ko6M(|h6D;2EeA&_ysE4164>+F?JGe14 zL_W<@3=Q(iIZ?|!;v6Ci`y@OiUSrG^sL9I^OZdH&_c(=4F@ZvlY5vVA^iBsTbb$F1 zQ;jJrUUfbYdjNIiA-jbuZ=#Ph;hNK=tHzOAUKv9L ztM-zCYEl)OI)py~^^s2t?O!cbXzd$$9FHl~>9`VncC<%LHOrQb;K2oLtfsf1! zl%LQ?EctQG6x#;#l7kKO5sTd>`p8z!lTJi8V+x&!LI9ZPBd^X>=p#pX0a`O2p2_;b zcV;rgkp`I8IB8ahBL^WbB96SsxDevV-kIvea`Q}eV)@iebz*5zn1}meO9o^bkw`fR|511x1VrM7tvVW*JP+ixSgdKa?5+=l;#Jp@ne@QPr|a~ zhZ>C{Wz0!uPtl0U!V6*v)z?Mllz)!cWMn};vX;>&fa)uL(QdrCrn%&FJ}+e zY_%R$q7#2uUtxZLbfT zW#W%CFXy#jUmev^Uxy#e)H8rcwzDJ?h(w0};}o*@lKP2aAJ0HgB)k1hdS#Y^0kN1w z7$gN)nEYzod)q!sVUPqCtA8*{VUYZ*jL>ubLcjRG2qo+hi%heZyvAiwF9}K#_K1Ih zZldaJu*cW1e0d3b#F7^~vD#&9-%2K|Uh#XhB9w|Kh@cm=2mB3BrrCF< zf61?S7Mzz9UHi^iR};VSbibm;&~7P8Pmin30lj>Uj7Ig!m_iLB6Kutg2)}pPIY!jC zWW;+;@pIHYr+7}GlyQO^Ct(1JtK&6|3sc5{NHWeMl8p0DvB@*P zINidMOva5gjWb`X*?=!z@v1yWO_=mK>b2SjTy?7YvzX$m`tG~j&*?wSQES=~o|nwL z!p;0|z&fOj+3z49%;RqVnsG3tz@xt^!ynKu8Y-SORitNX_PLPN5}nDI;#1Llrgq<4 z^-Qf5FMxV#_sTgAmvQO5<6Jczu+#=UO*1Q_rmBo)oDn@uv!u||w8qG~wVph;)UVy) zRa#x%$V_G7uxk0ZarI=wb{(q8SN?W351Bd_`ne+=>d}v_%XRfb>odKstnqS2HQDVS zXPlVJ^`IF6Oj1h?$^+2|NM60-GY??QfJU36FG$U0l7=wS9cxa^MW=0V8F1XXVJ3GF+oHafmaZEkILgX&xm;=yU;3BaWo9uq#iKYsBhb8mqI%tJ zZ(#vy5XbNrHHc%NSFoM1FXyTTF|oGms5S8E$Z}?+YpXbKDltxB27SX*$d~8msoCeJ zjAE!(Uf^H2!QDdPp#6_AS98t);=KQz$8gXho&YU;jf19#HJ)J41*+2@cgq4#z1wX; zn9&KzzksP_HW*gApOqIYwf&dkWWp{uPRw`$7r~Fm{ufo{G4L_holX$xg!*o-Upb(3 zeNHk^&zf?!H2v$wQ)mv*8B=J01&^7iXM-#mar&42gqr?ka|*513H5CH6AJZgCMQ!T zF!c%6%PayeIQz@MY^Ae5L^;zZLO#6Z4uWW2WD!L3BL5VHaArxRX;EL`fHR=ZPpFZ) z15^jXn;qr4k@ZI~#bQ0dn|=0#g3>w93mpBZ;b4v1@}06pa9aq{O#eukBHm}^X*27L zq1h2rGn)8B%?CYv0ZN+H#uTR6dfhW$UAb$(^OA>M^O=X6%@5>Z!Y^x&>QFcuI|iwY zm4RQzlN2yV{rTigt+pJ~2WD2q7kftN;8C3W2up;~CLE7&W&w@Uqfs1nOS$-qx}{v; z9{5CizsvPPfX--#+x3W8%oJCLbn{t?Avf>k3Rr%pH->X_c#&UEKE619vDnDOr~!E0 zd^NJ{;uPu)fdT_?l%&(N!}HZ?+N(Sp)!rdqd&gDnS>Fy2s10zVL3kZ!U=G6PK@B{) zzQD=E|1-}22O~NH48kCQj?>BtARrrk0Rh>FN(;cfzEGv}_uJ&kLB1(>%>^`zu8@E{?gj#;z1SeSunYpGJg&j0I}Ym1sThaOZM& z;A3kWPcZ_;kd|f3MB6ApTjMVZ(AL1ZOn_!?N*ONormj5!0`!lju0EnS_Y%zuA7v?q z+zQ!|$$HFLRbGEA?G72AA3suzVq#Q)dKahwoz5u~pg@VZ$MvY5w?K7w%Xkiq9c>A# z+I0)4W3g5(f`w^-Fq;dX!%M$jH`EruOz-dosxo^l@T<(~rNgJpSo&L}BwPAzh_9j_ zG-{VX4vLK09gh0(+I@&COts5X3@;nvvutl;ZmQjP@E6tYJArDKF4XL7>3T6h?H06h z^%EDlT&msAS&AVy@6`(Eer7-5B7lQ>s&;>4VpQ#x7`3Y}1hKwmNwo_Us@>WPRqfW{ zIjDBSW&Z=dh8wpqSnZau+6`c)_o`95pZM2q>GhFKtz2;mA>rPI)M)dQ?Gbv5g{sY7 zMVol7e#(ucTIDH*cMY-KqtGg<)UNo8Dzz(cF4JUbbmGq^eT?9FA7LZ(F6GpxlvAHF zoEDG6jll$2xr3{Px?f^A-N$YNWI$Mi4dZ;U2#|uX2(tzw+X3)TDJ%k}FjxendFdJO zWxU_@4gOP%ch%@s=^DI!Mz`B~;jJ0EO4JRH>gle)COjsk6WH3g=S{~qEpdyD_B1cR zlEUMq1hDkHnNhU!ZoJYv!_HHak) znX6q~3Hr~l4(RHdq61XH?n5bEWUYsDJz^KyKrY#~5D%yng27If3Ur*;iCR3b*sjzm-V@)UA^Unr(8CCUSAackV|MGB@5~1z6R}cHngv+jpEwKrN5_zO8JPZ zmt2+%pS>hjtCt}bE^6R6(e2T;Mg8zMpT#K`;st~TOTUId3XTaY5~7C%P*eS31a zd~%>`hj^ctqhqD_Y8I2C*m#H5Ro=|v0|OZDa0Bm=Z<7F7WZ%pu?C8T^{nBpEb)*f z8?w$aSP$S7Vht3!pOecez6TFKMS*APf0L5_E zqX8D9T@TPr0W2(k^p-L1sbht9UsJnNUMx2D`D1&d3~pgM*Ol%ynVsnXPQzPN%`2!c zswv8fB}9R7OBABO1TL9Q66mGe7;L0HAK@ByQ1DR zTub$k4NKJPx(!Rz>$)#~Pl6AE&vyM+FJ7Xc1m56&z(H9%aS^R8=^-%soWgFbyIU7OyO>>`6SJOH2Baeyk!dU`Tz#n z^P&~zV!f>rr-wbM9>e<_Oy5V&Sq9yVKI%z@CXmZDAjjqebL`YWj_qD6HA7~FT}hJ( z&t9skkOeBlyTc6c4&w@vck}$cJJ>LHz>@~Nz!qMn;@rBiRF2iHx$jI3l>_r#Ir6@I z*Dn3|lk$grSGstIYeBAkE0}BFSFZINRcd@4pPv7UD@KO@<%*OO*17H|ch^vCc(s`8 zMqd5e->a_~F?$$ewxR5~!Idli;KeG=vA-FPJ#3BFqSG5)bu>LLPk}ci*lFOUzaOG4!jprc%zTXQwyKkc}B%uMbb#ojhC%BFLpNN z(OOBh`UmC7XI!7_6Y>v;Kns)=PRATllKG ze*VW_S5+7f72<-Uh6|2z{m2EE{9SOwu=W-1f@@}?#RUY{)9bVTwPndWu6yK`)}2Epi@q)zdrnFsT%P6;yS+;Mg%GnbWLz|c1jQM);Qu*p@t_)Gk^`l7m+CLIr zGb;TsMM6Vas3oivfAVtF3)eVZo>}31{hBF;T452m1Lw6_gIk5l!)qHfp$4(}_oO=V z^P{d~di*j4Dv`L%zpceC3)0ry%c!l@FA`lSAhS}OLbZ@48|`&{V2ygcz(!xQ1`h@6PpP5VXi4DqOW2KkLY&{ zGmnusi)CJ@J5-0$5WL(Kxz4|vxox?Mf5`1~3PDdm?@BO4o1lL{7^3w{aVxb`z_DcA zQng7v<73xx>&6RhQZM<$HA-|^&J?FJ%XTaUXf#y3TkfG^s7$}Tel?lBH+iu9w5GD0 zuHf}ruFj!zm{|4sOrX$5P5;qdVV*IU-=gD2_t;SPjHp*FPq5_CGvb)t$q!BPwj z%KO>T6<@hN5EmI=b=v&7QHNJKh0ZsCLUs5#r%)XR(9ZiA)YVK!jEwpQjvK;OfYQEg z8e&#;g}TRCk5ed!fI{~;?VRE(^Ub%eBvF-9Zl(a;=zB{AQ5bCj?-pu z@>JE^u23OGXa^6hP$BghTF67{ZEmuOcF=_@a`BS8YqWpCj%E&ZAemlVHNwW(8MTT2 zBCvx&Sc2kdF#e)=8Vq_tJlS|W`N|z%Ui9;2SB7SZs-gxzx}r5P%ap!Q-JzPsQVb4x zr_0?T^pV|`yTWC`TMeqn_%@EoVigmk!fKgOs|B1wwF;E*pW(=G8K+RK22j?!6ygTH zQLIl`L0v;tqgLgm3iV9>bDq2OD!nam5#yQsiKe#oD$52FGtF9yns(_L9|%U`Y&A{JTt+A?)c^;n9bN?tk9>|k5C zk1Y7hRafr38(x`y@;}!gk7<=uZ=t%ZkEDBJ>= z;dO%q47bRYr6W=G8?Gk0cO`Zkjr9@WRUCxe$c@LBjkBjgh&IZ`@??6^73E)YG|z&E zIWN8MKB$S=JlU_L@fNI1$)d;*cdjOu-K3~-P1I79-cE7@j7l}Uk!9PC3@N^L;4g}= z9XE-usFg)OS9Zr*`zQs$;C{s&C9}kpYI2-jsjdvaKh7my=lW8Fy~0uqWy<^Ff+CCr zU$5pKCEjNeRF8Gq2%!s{LLmf{fuU}vIL#>(LIL#jo-#t{pcz8x)7-Jj=)Ga?%KCK* zrh4*Bm^)m*VMNp^WX>b%5SK=Grg)0s6+>E#Ix1}PH;$UP%+Qw9Dm z)sX5TfQH_tt5j1?SXJ7T_ttjX^fvw_r_hxZp!mwtZG`}y^ln|H zFcaXm!YIwSp1|{|>j_I#EJc;hExqkg8oe0KlIJ?R?~vVI_C(2{3GTaMx1wb{mh!l% zCho~&Twz?OG_Sa7{W7_Rc$o7yQBa2RWb=LhXr4@O_J^)k@B94=bQ5y|N65yg0S}VF8Mt$!YkYc%n?!*#WW+yVIR1HkQe{j%AfwhqyCj zZr|`kTL4daJFO}0Snij78@oNe-i2pYy~|y|6}CTYX7BO_N~YfB#2RDWIw`>>CpB?5 zj_rgr-n}%jsEHsf@ADKt5S9yTjQ8(f@=Wx+!5aJ9|(EwtpwH8$Hg(+_zthni6LwH|*__qBd)uz*q1b33U^+sjf6UGmC#Sq!$<29!!4A&xT%YHs@mLt&y*D3aycWLJEj{Fxl61d}Ste zay!HoUgl;B&>H!aKj%MbVpScfOiXA4QhDmwJKApsh7}Gu?do{e zPBGt1!+n9o2U6;b5DENzZHxxh8~HS-mVKB}L+)GRZd~IaGAzAFOwXtP2SxDtG{~gq z(-xWZeA+)nJ)gFu((~yrfdf9DK9^6EOzpHBv)i36S6m6ZOFY0;C1>1^DHdnY6YBm_ zy*eAn3(!sJe(*U5V{9#J-$=4gaQo;-Bw7-Co(x^OCB2Z>H*NfvSSuS)an%;nRTU8E502HBX{<*4neC5mFhU zpUzj$tSv!F(|g`JnEz>f{0*g1M|KT=QAc)71{)u{409h1(0x5T-2IoRxem(v0+SxL z*mw$cUp3dM?kkj042|;MEZ@YRnr6WxDMN&tF<0GJ0C8T|I@Ns@R8Bf3GI zrz-aWY`7d1qqqumDEw2Zeygh#UoZo_(6)>!Vg%<+4{QHhSk> zh$U1XjACh+v52K%#*#vxlFa@%^#SoESAdQvreg}#KqYk!ZYc?%Q<1^j^-58(@i%hPdDde8qFJT2(m=JA26clLV^)1`(`=MNDGvh7aoCQ4F0@k7Cr6{y_oLa&F4qBK;{A=Y9bbt=i>A z?hOi<`*{fZa?!;2`qne~={c}a}q1u0gBKPBfhNsbBQ1c;Z( z`uwNVCj}OA3WdtNr-C%WmGBk$GEI;^FE9&=U=u`X;72i>GX-b5E%G73Ces(EG_>ZU zCNShFYZEB^I$^eWhqEKI-U3zdL&9%y3fXnRu%BFZup|*YXhu%Fy?%4>4kYmCVMGHU)frNw|fIKZ>us^Y+{1xj9>#;kIT2k8%s4LjHwGOqgo1m&NVc_HUHSCz%~Ek z1*lH01*?;gO#$kJkT%Uh-mN;5pE*}T+O(vQ_kS`>_?(%5a8s5^6Rm^zq>Z_o)fE4=p^$|R^g!GW99mfQqRQCmoxW{2Dk zef1_aMb;~s!4`82r;mqBOTJjL*ZAtTGS4Rcc+Y{y?z2ipVGLDA8d-SvZ9 z0qG}>aGB))!z{&+S?)U@ufj(0ImTCc{gmPLFF1v~4wUR(X({3qr;yhJXy-j?c>N{Q z>vYqj)hqDSC3{1BW&Iz+|AcvT-SGcOWX}Cx#HEq{d5Yl+Lt2)t=4MDC|JTA_Y}Joi$0!*AQz$*9a`u^ErJw8Eo!g=c`t>3N>Ph2g`pN9 z%}dZJ#}?``Bej}K2T5AJ^muuCaMB$z>(1D6teM-(h)T6=v#ii869#w}A#MXfLbS$f zwRBPZE&N5-jVIvcO1dE$i5H{j^4>xGMR%|g@M;C!0$PH<=;p>Fn*+4r&BX1vp zIP(D_9c8IN$7w>|+*=(#6d+Rm4{(@u=8U_JKDeWF9!^P=RnEG1g!~KC%D6wfL5+{O zNO^8rhx)R{IRukt>8M~A{o~E@i&s*f@GFt|W7Pz?;?gq)=Mg3G|L>k|1s z=B3tBS&jc6Y^Dco&OseDgJ7)w1GvPCrRBwYVh3y6WP=ag-Sy}#a?XeDj*P8w(pqy1 zvW<~vM~rvh9)uO_9NvG2^yG~1U^~K0F#Hd~R2u-HMTuQ&w$XG*!8YJO#DNJ9u9EFcHc8kKt8qYK!y$Bym&n0IzRVVX#$5U>x{X#_clm~6& zYg#oRkSwl~&-V9jwE+-F7D=oBwOe6iO*`+dqJ^yAqMjqf1r;wbk7UEX*0Fm}Q|_@sZI=|8iGVIcbmd zG?(GCs)g!>Mimn#7PyDr8s$Sad~37{gB0Ex1*jzN$}Rcdx$h6L7wA&!(b+DX1%9Ee zAl6c3cZWwo&&MwGSBLXe&sKSgFC4xtS2!H}!JVXsbSY2)(4~Ohsuulp#obxc#}&wX ze{$a~CUD)c(zP+DwsG;JOvTRvCIG&of3`&qz3QHIYjrPMmAF^yBMaoeO56=(-xyD* z*2S#y+AC2dUgZF;iH>YFCo)tYTA-@^!q4uFVmnu!cBeN#=()v~ib}1q3ZlnogTP{V zj9T>6Z|>HbezHJ*an0RSoaU0rZ6|K#wojDXLO$D~%d;`s?K1uk_n>k(uf}nZ4;^ex z95ih*_zY48wGzmt`LP0aLk0-(-ds8y=ncmpflvH_NMrRJ*Nz+5cI~`kX{B z_8`UxS*|1IF_7gRP>!LGMF)s+Z`%TynQb2+xBd-_51v8Yu|D{Z`y27V)>5;!s7nN0 zc?!*ZAK0o+;aW2al%jdX$K`5A&{s{6HNQ$Bbh&%;o57$`JT&bQF_1}8xN-qxdk1Vq zT)A8^hUdl=oGnOhx_|J7?kN@vc@a9mnKrVvG z?dB9ZUjho9FTKJkbiM=>I$u((2|O)S{=15&tN7587tgQG8vMWH6ygsQ;BS+CcG*)z z2`7^fATuFRvTa=QVp08RR>NqjUioRI|LvSY{DDIHr*I0g)+)<=ZT;O7`(Au2aUai0 zOzwUfuRll06^Y3SqBAFxqwltIqSLk@^+l*{Gxwx*t~Cy9H9^~U5NKN%D}_xmNpG=L zUfk#zS&G?)rPQUxDX0ei>BDRrx7FB!z%0B0x5NbBY|6xJn`yD56tiv7(+aa~2`A%r zmIm0r%{})-mg(o$Knd7ktU(&l2^grQ;M!(?9)F8ntgju_)Zj~pZGA)I4pfTUHjQiP zLu<|R ze}n6A5BuMoLi@d4FQu%hbPbZ_zNJss7k}^!R2#nrsSWKJwYSJ?L(cX%J7`z2gmE4T zf@#m!BAE7k{ZnkR=65McVJuk<7KPbbsP+-EWXFLYJgrWxrbc_d63w1raYx(RcY$tb z?p>UM=H|zGJ`BlvMwdrxKA0kUa57=0ca_?sfkLm(GwLfW+*nvmemuUZ-tifAbk&hF zqoXSVm>>U)IwqUQ$>i9vL1fJirjIfHC)0SBgu5 zD1IG$+`^rhzb2%1O|Cp}TC!_=%Q){V*ixvAsG?TT7RAolJ*iv>T z5tWPHc6g?0!oJNvqU&!{5nZ2Cr~%VwK3Z;5SJpB)na&1UYzwkn>I59i_NH`atvQsz z0~-)Zm0%G{mEfOZlU>t1?+Z&Z-DmF70A?AZxmI|e*_shJ+GMkao|a*(yy-AKVH+L# zXdkE!I$;pN`<$f?fzEui*H!v#Z{<+!Rh52rMDqx1H%cd~1a-M{n}WK0j%!7Sr3iJY zZzpNSBD=zSb6RBc{@v)n^UAlXf>CU9(U~hL-Sm*t+tkwP^fmlS~lbzysZaFQge+d>Pw{2H=P`nAOT@EmTg{xr6n)NNf1fFT?43)*1YY zP*7n%nX0J>papmB?Y_3AskU}`o6P(M);K+ z-z|$TUuq!>ucyEaBH6*yvhHaRtv|h8VO?(Hnvv5Bf;oMUa(X0>VThBB)!^gIiSbul zD6y?VyDYEYHyVE5Xllp&UhMDp^@cO@w;N!WADHDT$lqs6MJOB_BZB4Mf5(T)>OaRf zr^qXAm{Low$c>AYE$?g)E^GZ9f2WzAo0A-^{}&p}Nv{m)>2uL6q=1jXfk zm){{bdARNlzmDQ(!~CCok?q56bYsp6?J68QR3idWmdH-S2$jci*9K8z1Dd$%ox`1nDsP2J+$3M?EvjWy^k{ z5+NP)XC%kVtn9SA6r$si@i3%X(+SY=+75Lk{tr_Z!&kos^Od$UKqLI=UIhBhPHU{d z9LwvXtA>lNnrbl@Meg)#lUEFHe9v7}f2V3akmz#}?cTvOhW5bUgSjZ~fxo>??STiF zLwS#HQ`n7<>{Qr|kD+8=8#iZo5ACF*F51hFeHAAh!B_f-N*+K|-mm4_ypvh4c_zvW zB`JU*y*$oVbYZyXD=lRDPBn9z4pjyKjz!CJJZ-g*r*|6IjoY|2YQ)JHFyapbCKgcjWzv$I~9QAKU@QH^IyT-TovAilo{YgPxQ>c#m?E! zpVxNEtCKv5Vb@HJm_O@1>le7c80K9y{E3K-^7NB@!AlUYC11lB0)UJa7_VKQC0NF=uBMjC zza@`W53B9(-cHX-?HyNZcn<_i4*1OQ)x=(6fmyP`T|BQ;p2freo9k(&RoV@L6&~YW zt^&FE`Cu-7S-CjauvzfOrJAyMz9+ImqBmqG1OY-bhQSYC5U}ul4^w%+yUhrxt>oZh z@r7B;I6fWk--CQ+7V-HA#*Ef5JxwgwDvZBPTjSNdk(k%N9nM)ziEZ1sXpX6x$;|2q5^Fk`kdPEZ;ZTol_i+M z;7}glf)?+OJ0M2!Wa@aPuJTM5BX~06u!XS{RJN;)Gc+7)sF-D2j>YMM)(ZSZ7qnJ@ zW{BC?1y8aGvvJzfMg7-!x@gwQJh~?JJ{tSNk0cA(%9+pzApSk$#4fH9U0~e7QVb39 zzN~<%^$D&d(_`R(C;L-Z5Ahn4rRw)(qkiAx6sljKQ2oAaQvB;Tfa=~u&nZC1-Wxov z#kXcz=&b;dN&gC}f4#G@xW*~;&KxN8&OBrnc){0$`^vaBdJ@9EGRypb)P!Du6_}CM zeUqn&p14az8eusm?NX6;2zm2Jd&U$7k%k}X-g6|mSU9uOdIEA zR5ALA9-Ftq+!SP)_=|!p6O_Wo<~+!J<(`Ie_}F}Rf#(-X$Q3=m6-GkQn@gtvdz7UZ zT=Kpve}Lt8fCJ#=|BkyuE`2L`pcuuZsL=B6QWZL#Q>a3Lf>@4WUX$Wqp#hZk4&SA^ zj_$ikyN>HSJooAwj0z0jp|-$93@FF9cQGi(z&RC^BR9Y&Sh*z2b{+*&6n%leD2l$gNfd#? z6h#epd%m?qk-BZrcaLYQ_>&t$k@Oo&F*L|4|0uLr7WPSql(P#x8$_+=fv>Oe)A@JU z^XmLNmQ(2H8Yp!B?dB9ZS_cXptyhKr@Ar%sZ7ezPRK1nKwFjpVSD-|^=(#tH6No7i zl9D^=z?7iGrtln8bi(rrN^BvgkP$%fm8B!}0FLxld0rv@z!7>U+2|0oW#iA4MnT2vzIdjS>m)=Oww~TTc?)&U8k}K`(pmjje(t-VT0dm8gc$D=&L?ir2W( zbj(wH*z>Ud-t!95>J%r_r0-pDVM)^6We?3iex5;Ey@chAlXC@WbqvbkQO|4O$I$x5 zsmG76mS@SeTpVWV6$Q2%^hhZCILX|i{*XQ5u} z1^IQcr-_Jo0kZi5kPl!oB~%NQ zWB!86DJM@n$bBUEUV@fQ<()R1jT6fQCb_d^V$o z)CX?CU(^R~d7w1*!Pn3%H`ll;O?5fq(wb(?~&w1<=cT`~}vL%sc}-4LjtR zMZLlzk>= zm@6TKSmoW2#n*hOH@UI8bGSU6{n`+@x^^)l8Gpm_PM93O=n!e zchpa`fY|ttGt2I*o0R{Ln$W85GYD4LKL{)B zyz<;Kq8WU+cy`kio8EU1c3*evkMB{-yWh}U-erAZ+HWlH2v2OVsf^kJiaqaNasbal z%RA1?s9bayE$^mdZVIRw_=^H+1}GJ5d3PSl;qva_51y-*&{7lgE0;YlhSYu}-2pSErbobgrl? zwVg?yj|?cWtDGxAyj0x_`uG|qU97BxDb!Da!%Qf#7)wUDSgF;ObCT0yL|slWuVvk} zS6$0$!pStYHj+nEVU(or5|_E?+G?-5n)N+uT6)nHuV!ftuv~k+?p}2>%OaOywW z)y>Q-P-Y5lra~2iZ)t&*VhQ6%fMN?v6(&%ziKfEzl>QXUub$GM@Kbob{`FpUg!&E7 zOS*n}GhIspRtdq1-G-d_eBeA|tzgB%SQ7L9f2`)5VCKNH`Y;x#Sg5OwHxpJ7G*;RR zA%(g&2mYe2%~2R^tQ-@P_Ep&qt>~#rX__W7k%6x{P>hC z=1wK7v8`MgI?KqZn|6x}85)NmvJI%Q&73ujLkD>Zb-4R6g*x26g$C5vIZGzI+<$7H zx*L3oQ)mz(sIl+&sowcACu5JNe+zXHaMS1-a6~MZby&o=x%JCUSt7DTlIU9IeFiBX>2J;ct-VkA#(?pXY~1JFDPc>jAi&0RH#N_tf1Kq z>nFfL2!-|bJ_BQ{2QN(z3c9|iT-=pYOc#4!R4&fpWExb4Nv%^_fVV6Yfnh)oYlE-^ z%nbHE=+RzOPPRxTCtFfXl(Bp+-_OYg%9y1jIe8l|WICB=G@Wd~jJ@br#vx1g&S(;9 zrkd{6I-x=AzWdwz7~>IjczWGmkDv~GI$vg$A08xz{`V!`1p@N zKBk8hm%y=+lO9#w!WgdGcGvalwMM-|{&Y_z4W#ZW5!!-O6iXwd{7 zF2|Zp)qoy5!yTuv>UbeDig-pdiWKzNEWaW~BV|Qc6rBthMK6g0&V&MJBUA-G{@KVW z5Ji*qL;DpD*^ z*9ocCL11M6D;kN(-%1NNlaYdZ1KOT3|)K#A1sy4aXFprY2UI>m`L%=HUgXr8!;-(t|d6DL^0+ zR+-uR7+7V=oGW6Lg|QT~CiKLY{vX=DJTRs!YTUe$Ah`(<8G?|AJ!W}h-xCzI2Cb!N zg=!i5R$5hb(Jd`nT-6QTTPnIpDYb94#ZpQwu~utoC{_FKoO9n~&YPL^`+iBjf0*3m z?DyVt&%N(lCGb+;``EyZ74y8Xbr&1=`xrm8u^NHMXk#@Jf6>NjBmnlmccKn57Id*6 z3EWu8AG_Mq#LJv)I>>l|l^A%_j}~b6qymv$zdIYE(v>Y>7*sTJ-uEg7_&KjpQ7RA< zq$>-b=c_^S@MvTZf<1G;R~G@EgYL#1qLL5UUD}rKAxdUgHN|3!tWbI=&1*;xP=o2R!i)H7%z6lq38dF^-%!JOpBmEp z+TEIKh1&5@`Z9fm(#3rQz;*E_gQ#@DOAMJ9I8tpXNEzv(75*Y!v;xq<$Hc7u_Us_K z$b1y!($~kMak;J+D>3kAx08$*{S8L=O1I4rws{N`j-&@%Cc!nW6Tf;uJ%r zqDVoIdrq!UQKT0=b}9blT_}olZ3T-W<*ZNAPG=ML6SVU^d*Kk16&3qhG4zW z#H(mOlktv-9n#1{ms_xxI+UJ_B%E0xhmWy0jXR0O+-i54WC$Vs%)iIjAF+t(oNx-L zT<)3Qli@&}M~LS*e2S{f<0a&@yp1K~w4mCDRvRKuPO#4s%S{b2va&Q&xuZ*Y4Y{N1 zs-}$8wu8?8ty)d&;ML^iY|YHW%lQQ$!oJ@M!jqO6qN%nKTH-bWP?7U#LPgG}e~C@X zr|k{HSutv=jl__?_GPBpMtqj3wh{0DVDBfy55TW?{E?qs{0GHYabDwNEb#}$ST$Zv zj3xY#2V+ivXksi5S|VeBiWoDYBF6knY_jrddwe)6W{idWU}miNRQpZw1gDP}8)z^# zkk=4n^qu^3Kd1wlX}p>kdp0k|UQ>)|lQX63zW@Ri{bH7ak9g56&3+ZHu=g+u(ih$Z>}n`fmJ?`zRkzS zU|+cTcso=1!n0tyz|F_M9M$?7NnOIRz&kj|qo*^T=#?tO6|<7r5=ky%e1wy=>W=Tv(bsQQ>Qr(Vu_cuMVsLB zwFlGf!}5J7Xsj0lE}>p_~a4*WkRwHIBqp6sOgB z6Jn}G&%{}Urc@(zm$p()``JD&Jk1AF84`XY9~aQPzpoh_s((=>Mn1R0o~+GYDc9|= zw-ImiYD!P%gHT#s`I-qjZ&szDT)3nPhi}xH;75&dJLTo!PlU>$bL?ltcN{oHgR<90 zhL!PQh*lUfKu#H>A1woy59~F?hJar2a|eY9Xk@5;W~N;DaTSMrbso%W`*~|W2FfV# zSu15XX@{NmO4^3c+Z-9j#A?v6)ZlXTqR24o7eLVLr`j}E+xJgb(mlY;SLfTKEu!cu zX8O5ImG&_eqp%i{i}u-Dh|&Sgk(-DjSWHF?9p&D%_6~V?f&B%M$eSZO46scBj+fK3 zAhMA0gfmPlvMLx$1_gIHOE-a~4@z`x;CoENU~9$u_Ldg$5XT#gtFj7ts^V&3Ky%Vj zD&tD&X!3{lg<>3U?Z;F(1$Q)KD%Hmn5or#`p8DDLwv=xbVTqbiJyZ#P!?d&6aa1j@bc2DOitX$Sn<*Z2y?h%=yRlDR3l z!R>e}a)Vp{sNCR(c@4S2P(yAokVS5A9^Cod;0wTAfE&zup;1)P_O8M`+=zIu8;re_ z8~i+yfPYecG&w*!7caLjvq#09$0pn*-j4;jazU54dWOBKMZCh9AeT69UqM~s8sa4m zl^o&sc?mhf3$TRdB2+j!!oPhBj_?nrhUf@?_oMO`zvDGNe=+Mv!KHT@_6MVApINWQS;XVkrsI1Dh7du75%?v;OuP0r4=Cx^3QpL=D2qrC&( zVC>gFGM_klHB$z;jwM$s9!v5XACI+HD<13cYT~h`Jb5G78D9ecXyUIbHZ=GHY{Z`l z8}a8~Vz|YunDHkNBs*O5@=wkwaH2H&Vb4pDpJ4lHshFA$cMYNv>mQflK2c zVY-jA;72vJN*IIaTYk)ukijj&60gDeoXfSVm2?m^Iz6jlK;y|1SfN0!Q8@F8M&pPu4QbdbF2N1#TvcF z@G4{0Fzu0783oTC20hBJyoQXhC{9!4R?fpQO4E{13vk35eeOSj}5_1#jT0UINU(};bIk{tw{dqBfBh2+* z%J|@xR9O3g@O-Z3$beqt#y}&(KIi?&T+OMxwI5T4bN=ia}MaaSUyzGNj!y+$H70jsr0cVHY#(H^Z1L-ekyjya3uxtf5u-F2HlJP8hC>Ee8gjNPo1$7 z#V05xL#7nFSp1V*6z_uM?M<4O)n;a9jy`Sw-Xds+J`?w+uuIX;+Pl^!J$ZM1=50Oh zSKym9ucl-rck#xurDN&&V+TT z#YzD)$~XPx{O*?2a~(1x?NY2vx@=#WKa-ZzZrTUQo>%RW5hm*7a@&Y*azIGc64I6f z+t=i^azKtfR`5pZ5s02^)gutS8FR$4dIaL3wQBV&6<;z;&bpG{%ZNTY%_LBQN=}ql zuK(m$uJj57qFXR8sY02|fB&{eSgcdls$54?*0L8MvaZ_)TC5+f)#S1%6`PAsxB%!Y z*F|e(%BQtDYRkX|@TrF$9i1)Z!hh{E@~^AK+WTwitq1WwM@NsOY`_w}gIlmxrM;1B zRT7v|zx}>`l&EBmp+kD*0Ym_wU3So(fku$7#PSq8mg4AS3!($h zgth8>l(zTa`ZjN%zDF5--+ozCTIU^uFjDCDc6DBY2bz{ja&}{f?#m6*xjbv)Rrt9A zEBr;7UBN*K>Z9cd&9OizO%Ggr)R)C84UkhQLG3qDTPm<~0Pq zw6r|N6tH)bZj;}Zbc_=nO-+&db_V!9yoSI-4c(o8lGhOUc4qKIJ*C*6#+wq5XVkDi^7rcQAN~PbpkcNGvWgUvrcxvW6;^F+P;gnH6eVR-E;>8pS z+ga6-&+GQMmVI+ z;v5Y`xnLcpS8_Brcfd6z?ryFmtZE-;rY#F!f7l%95H1drc1@JLgtrDN$)mixURpZT ztdMDmcl5MsEjF+WCV4bpm*{vv>#{-R!A=dpM0v0~ZD4-J|A7`TvtkhP(hI@QkOO|M zQYQ1^8jj*tZNdf_|5vpqEgMueY)Ugc^ta0O<>=QPt)%FlV5AxLmF@bias}<(4JuXk z`&>BWgS@kWMi3+!8}p>2uAm`oj3Bvuf@8?M66YXYU2bCR_~r$%-^JS84V0@@%;kiT zcd`;o_?UVNDEp^cE1B@P!(sJQ-z^_IQF*A?$ve`J+U+VBN!t}35UF0edMlJHWKpDq z!kJ6m4#;zRbpz$azQ!?=>~aj*-3ubSd-WV|6vU0YXb9>e$4Y`Kwb4&de{3K(&T`HW zl{edUA~y66{6Y~`{6^(4o-@fRGp>oFi$!~Iqe^Ank)tI!wcDs>>4)J>BuFqB!;K6` z#LU&{qvYNxj>qJzO^zrT|2gDgA3ZQ3OcvDKT5nY5)|%4*DYt1(rxvQVy zT?$2d6LV3REDatD3(Iu1a`dxki#EzPTRZBBk2r1;;fIC@mnspO$LX3jj&}-TYwsFT zdY7XmTU+ZdruhaBb2q9j!-MS{pNf6FU!jO<4@2V{l$miI9M4;{n;Ye#j*h0{Hb+ZR zx?xBuWD^-$bPz+68L=0q%Kn`ln^Y3?9-JB!BwYFj zXew8V%{f{h!i_+QlqmY$B$AhJ<4B-?TJ0h1MMRF*&*>4D5QA}U<$w8~R zS*@9urAZK3+lPe6?9!b>GDi+}#9OpZo7Ly_T@a*qywX(DVY6D(dMk#_10&-}$7==A zaof#mV6^3EX?pSa^VV81q9t#}3E8f)*+0Vy)ocKP{1o|}$KjSIuEdtt#)8X$xnxIf zzTK$my`J8r@KT%+q*SW9Ji(*B>}YZ|H7RZ{WZ|^;~HU8w{?e>y7Ky)9cn7Sa*;s zt$w|GXF=F zyn?Q@S>-Q|m*4kpUP|7Qj)($MT3hS1MP7-mSygo6#E<|-`wQ?vgR8b%l$UZW%=x8w zk@qVs0oK;0`*3jyN{If3W%hf)(chwdwMG8;B8YJ*r+~!xg(1ew{}yAKEcKJEv>Y(Q zQK`UU{A7!K~}hHpBWh;m!ms3DP;*{UqJ%GMwwefUhr z;sQ&!)K*z;wj)WD;;TN`58EX7n5P@&c`xTy{KH$S;64<3Vjx>ul zYO8uLU<^l20vllnY_bwq(B0cGwR>}UoI+;*TP3P+M*PsNGU^>ieKC~NM1p+7Uyx52 z%ndRGiLV8SMZ90(3GxFUE|Vb7z2|6ev2NQ6i_E)~YKfmYc9P^4Ly`ynXGxBpXX7j*i3wGiC09J?bzW;<#Q7hf|B>LbN3L3Nl* za5b-?j})N>a|wzsdClxc?7eJ3==6NCO?{jA7MO%_K+!6k4kqv`uk<={%m7CMg)-N5 ztRAWz*(RrtcUD*L0sIDk;0L{5ASSN6IUKd`J%CfZnD(5*zH`hFCwMU?^EQ{z_lX>$ zA!38{RGW1>l+d-9qWFuh#T4DHu3=Zl6Igl>U=19F;P;6eS2%8&RGYay(~)Emm9VeZ zOC+_HXC+WaYQ0i$wa(3Uh0d!NUkslg;I9Da44u-keY=sRk=Kxpp@wv9=QX6`AVhoW zY*%R_Us>(wF8cB=1gzI~l_qj1uc1$qp@xiXBCqlGdGaT4%zE*f{~~~LGL->Byhc{c zFf!RZ{G3ZV{-_|{QanTb1^WYCOt~!W;8&_G5()R?w`@9%$e#P1RdoJKjC`TlR zWvCdX1;nP>zQfjJR^Q_ES=qQ*dHdO*ALNM4EV0oMYB5__g-wpu7O{t;Ckxxb zN(?aRHwtcHa^@ySSy{PF%}L@E!=Q}nxS`V=UPC&C8qEJMj`JGQX%IR+$4E>SwarYY z8XQ~B-tI`zB7atzq}=}{;Sbd0F@(!Cxs4$*a{t?YhBn?&NLt+L-z%Coq1^wx#H)?1 z+g0v=J8$hfKFgyE9G|_R&4mk+;nm8>@Z||pw5C6^Q?xvKP48HnbD?s1g%Go?SX9DOZf1m}uOX(%f((5K%m1XEhJ-|@Pb z#(*m;diG~EGrY-b$cmsw|HWY!&+;0wq97!CCjYFaroVr2B#SS37XtR_&uVJ=f!EN~ z1T{1@ZQ(WEKI;xSDv3{d&3_RkcSU>m2@4>)ejKt!Oax!wIR&Q3%MH zC!}YNIVQrAhhV&e4Xr4(JS#EK_bysEF{V=GFUHH~vK_;O&X5=j-40`+<29sA`wm>_ z%E)Uc9i@exSF6Q_l^FDT>g-S^_3kM+ckjy@sHbjv?J!n5UZYk!gNli~2C1mk3rf7N z321iroR{WIpEG4nP32f%Wv&$eiz>AQ0(IQZ($6}&Xmde}xbSJ`95u9g@CPk?2$$Pg zS&oS8j7~(}=f!H_^Y6KUH&F{8D`A3D3m?|0g%5wJh3`M?%mxz0}L4rYqQQjvl4@X^ulnOM_mV}d1hJ2ZZ_s3oUol`XjIPrlRMD=S2_E&V>{F( zu&$RQdWyRNZEx;SSDeCk0*T&{Lf40&hAx4{@*28>bW>W&JB>SL03Mz?vB~B+aD&Zl zYKm8!96ROg%Z>(t(4m5$cQJK=D`wb*K5GNW^hw;4yaiD;`Oh#EXc0roY=S^3kCwPFNspzbnlW+rUQ-70wAMSOId>7$*7AGfkjjC}JSM@rmL zlq|R9tz6WQVAG{SwO?_Xafi^j@J!-V)d=x9hflYS?mtp9U9958zJ&Q3criuhR_#;? z^Zh$?6$gT~jamTV&!Je5Oj$)wIH+!nTW#4-Cn!ZcDH&d5)piqKy zmkK2`-^HGn`3UiQ@4}=_O0;W9yVN)TH5dT8hF*1-`Z^+dm--y5)GitIN3|5Qrf3Vu zO@|xHw<37M*K44!pk%;#W>1f~>FQzShcDS=Z_w-OI z<14BxGcH+DCD z8z+822wuCjyrnnLitSbjLW}XflpvIHcIvxT&d$2LnsRnJ4baVZs}!9k(6cX8txKRW z9cUovjP|h+vckox)wG9q%K>+)CW>AhK9SzTfS(qO^h?psdI*2f%hfC3|0g%ph>--f zq1#zadwREg)a^_ZlLMemG@!l|4C=JH3To8z{!}OQb@mWe291Vx5s)2b8u`l@+85Q( zj^GN_<{fR@SZ*xqd`7He{lWOFw3e7EBKiXAgzOlHe8^dhRKCpaQ)8tV6Z9}K{T-@Bh@sqrr4U)q|&8K-^-#i?VrRL$1SvHf!xzhmOJSzz0Gz|mgG!4W5e$(*7S!x>Y6#%t| z0W~ccRGNkX8co9{dC)X`f=P&`;iDirn1(H|73t?}rEPHF7|bvJueKXfDR7F@T;gv(zjPba|)7G69X|W~o^|vsYthh(%;G zve}B`>lUsi?4t&+|1@!4t$c-b%9Gcdir3-uVk*k47M+UADW1@<%Jl;o=Fk+wtC~57 z2~)9e%t!9!<_+&0YFD!4-R5vrz|?^b)O=ioDK0J>5&~|#5{mORGFSx(`34Xz9{7p6 z&15Xb;NH4N&T8pwZ{yRJArPD`Y57P&f@%3^g}-R|Xtg)5<>QZJXIwD9ymKq(Y0;PS zPQj{Pti(Xv+gdoms*$anadK4~=LRvBAyMnb$h~UanDxhqaLZm5K4{t2Ia0h9&~!$S zrlZ?AJBY;rO+N_Ibm56EJ;f^jrgG~XXswFV9o8|d{FHPcq_GF zb>Hh-uwr~W`D{c<3)XqapXr1PvK^h1;)Y@=U#}iAQHJXkUBbxW#c95-=|ih^1L&xM6h1CwKn_I+XQWSH7ymb4A`jv;8yke;S98- z#|Qv2trYOTS}F9ZwX`AoR5o`{0K6v*c;kb>qr~(`DQ++VDIMUboTR1iQz;PN41oNa z0eQZHEEuJbIs;yxvI0oC_K#7)U}qrJ83xtg1i=2_$N96^#tEYx(7fyv-^ z!6imI%gChrC8A{5NT)7t1oZklSTER<^${fx0Quh8nm)J=4wrCe{446Kxy9Va-;Si}TQFJ%~`_ibJ{pw^I= zcr~semg$O}oORYP^>xY218Uzf0-JhwOthLz0b+2+G=&54J#F*Z0rif=7rdHqeBzJe zTZJQn<1n7IK_s}u1R|mE*p35gTegcM!G+cWmk?0fK1L25Q2R5EL_K8#IB4oN;lQa| zn*cT5XNBd?r}O<*Iej1O9Re`R;=96Q8Og@G!uMDadsn#lFX~<4uwR%-)4RfSy-V!!3NpA_?MA&?Pb?<T~D= z>Nv!|Lsu~%SX+EQSeV-4PNj4J@3+u68p+faHNxVStIZ2n2S|#%x|^VWd^wnpE^i%- zXPS&(MmlIReg%KgWcJ(sMG=aaxe$H4Y-ll&;dHs&`q)B zyoOGxKVT(Zv1R0tbsZ^|Lqrbc7BQ1(AhcE5COM&4H6Lf8ql_F%rEp>yJA1 zY>lu7Szu%QMHbi?2+Qm4&jOG!-rAV`w$mDHGyK~e=W@}VlYzNiq-Tv9qsAt21VSv$^&OX}*Tsa|I5aFD`JliW`a8xY|3K(Bp=c zu4jMEi|Gt&z_8@}o?(G}UJze#h?H`5BQK%d={hW-c??8^yHokx)r1M+S5rewxq9HB zN=JHt*Z4Bo=NweqxU0OHHk_A1Oc+(Y0{|eZ8u1CX$lc81K2H1dARWsh4oX65!U6HO z+QPqto)I>ec3WP(v$hu?;I3)iLA7gI159D+&-#Y|sn^jX#@$$AVx02Iryf$NKfCh| zFIY!IX#>q^s81q_^eBUtbviNdwWT=FTs z>I_CcWD+!+8=aMNOJ~xiCGj+3qzUN^{-O!#%%MD%MESxJ=Z(PqN#^>cPPpWHml3a0 zOojXkAie6Qx#;d8H5c7vZ4Hvr_ZE0A8Y<(L$9ELvIa=H)*@B?+#Qw@&2zK!K+DLrL*`|~ z72>LmU%VJE1V40Gxf1X~a4A`DowHe7EONpZlz*5_OL``_Kc|S+l68G66<{qP`;L@3 zAM2sw5e}PHm9e~pCf89|LX&Ikuf{vUZu^~8jM))P~S?^WQv92dD>!?1*eZM+I> z>Pb(Hp5UD*@UTp@50$&7v;jnrUI3n^0Ks4qz zO}+6 zv?fd>T2qPdE#U4Pr=MtzoW-V|B-#PIlTWm~p-;5NTfigz`WRB>ebjPR4B1h+%16K5 zFWhoirDM-N5Wh;yl3!~~jro>zhy$@iik?@#v8`!_Z8dh;5vk4f72-_+U3 zQ@n;Iva!FZiEP?$fg_I2PDcKwCNcm{Vl)9KG5VL-=uux`DkjhP;orP-h%$3}&^MEl zL~ML(u<S znY|DPkw=vxB6$rBRC=?w_EF=_-a5RV_^5eQsiVQsKy~2jyjs-esUVZXtfORPBAxZ6BdAw_Po!tk(Oi1=4ovD7NY74A4{ajv z&#yK?J9kvQx_h1hhU@TEAJ@(pL|qLcX?kPVx9ldV$Xhmtfp6>zQwa(6m_hGOAHDdb zj@e_OjS2Udm?&vuQtKF$(8i=T{-TXZ?PGauOpe@eUJl%t$dWgmPl(po-@6N;gOir5 z#K4<=p8Mi1+%S#M_7>H7BZ)0mx z#2oxZikOq9B4*roUJX>l+_kRZVkt*Udia8s7--Wk6p{jxxWeSUjY%F+ zn_*CjsD50Hheo`H6ah7)i0ZtC6cL0@PqpJ}JVYM%jfdQ?iKFc2?CMS3p2wvg0jlYB zTn&n92%Kx96vsx|;3bAs3~Z^kC$TkYV+j5tZ43d>0iPJqJjc`YdLcnNYkE(2LN27I zav?nx0I3$FoYktw%M~SEkExGDz1t3B1!@8f@Ck<|YqiXTE|G048kEewU-Phhv$QKt z6MN)yF|MlOEyUr~J-BGiWY+T6i^~=UU-YT7U-ju|^x5}6 z_nC^f7A6cFJkGNet{YC7<5{Nun~GhZg@1D2y1)|l)&9VoKV1SbYsGd{*&G;Kv9(KK$#Bjnvvi^#HN zT?4c~U_4ZGr9iUN{q}V8o=rqz@VIfwSb!-NEzP#@KP3P2G#TGPkmcPXK_H)_a?A(x`$>s4GwItPRP zPJW?d3b%@K)_bl8_q040vTX>(s zli0>wJSw50S7OO~o`w{wOl7bk#(b%6`(rcYRUbJvpv7S``xVZjeS zVTGUcGqE!U6DJK5>($*^oMc0@`$=wR&19**dZdi+ey+HT=vuaf9MHxUR$y@^pEO1+{P2l|M(pGM z;%u&1v^0@pCb^uSCAJ0gn`G*SpZp1blbw*;?aI@xMzYk@;$a$?69jxxv@+Q$9at1- z3e$l_z-)wxT!YM{9s$D*GaD>>(DjCS@}+cOFLZD{FV=B#=$V~uyae|*7I6HZcJXI+ zRdg21_LMN$t zbfITUQ*Y8A#@&uQAktI3C$71g7QF;S$lszXR~Eb} z-NJ+&$+YRN{<&|cU{iJb(t#A5g6PL&i<*Te$6 zp)zkrti#&;6ufe`BQ{>NnJaOBkI? zt#O)X>Pla6B=>Rk6EE?e6moqYOUMB}dNR}Uh|6LT3rvmhL~|Yp|3qTNa9%-&IIi|u z37Nb$JVbum*Hzj2H7GN!PFNZFM_*U8$l%RMqf59(S1FAOu2FfrpQ~E5j~nCLD!@qZ7)>GnAEHSWYND6$dX`xIVYWo+cMmi#<&*#btgt z$R#XV%hNKsuUAIWe@d^~VxES{s~Ji+A1A=!+WJ$4B@IX+?LPRvM(|;ec=0|8>x8&lQ=ZTS(mlWy?k2Guzg<>dMhGUEy-TNY`BLB8Xy*tGc+%*(2ru$(8@FQhph; z^404pa_>}I1)1I8Ty4l+uZPLe4Z9X-a`duN$$IWId}da)LU{o{e9H}4L)aNVYdCEv zKAWt;A+y%GhKNeo%DYU_%-yn8ArYrlIHSxD5R#=G0}enX7JtkjM@S&oa7oHCYt)8NBNWgSQxMRSsKf*_SS2wYilS8K_Ke7^Fk=(^E3uoL#$%|85lf*uT zK}G9#gF5j_c{Z=1Xg$=-eyBR!gMU%f({j$JkNU6jX0(=G=EiXcO%fnPldC}2i%3^@%i@$PA>)jd5Ixp18=G=3Gk@ke;xcq!T&k{8iW5UG5AA4 za~C)am|}L_3$71?&Xr#mg3f66i%+;1CMVX=-LmIPur+CmM0sZl+JkiAC8V{sXVpE- zR;&hkku4Q2T`vqtgvaim)g59G!=2f^+ccvfA@%=)KXH(MSJXm3#YpsT5T`BjKa zb-Gh2M)0QU3$13L5-<-NZ3-}dvFBx^fIiNec~(C9nyXXXKrG>w(2^609|L4&A94+} z2+7OIiEZKEbq;SrdG$CjL%PVH`Y;e%(+Sct{6$8zOc{}l8-LRj{tj3@;y^shgC+B|+&mIb0uOrSeG|F^>AoiT)rjthl zpXr=_+f`Ya4sU9F+!tUvVdsE7GM&=r>D&LLao z0!_{Znyi4bNo_S8640dfj_ds(F_4cJKn%4H_V@Bj_LIg-$bR~qQ}fTmtj3_I5bWoa zc#6SQv5p{^JQLvb3u7Idnm|OX<_9jPc#-#`fJYwv`~n^ecs~kw%sa;d9&gbfM!+Kv zh`xZw3;?DA9=xft%v4axbXULJhzGV+cDWUQ;h)}!#|&tS5swL2!40)L7I+mz5sy(F z^bumGsd%w#a?yiO!Xo*<@&>f39{>U7RB56j`KQjQRhj{&!MovgDVp zP;KWq^=T*VOs*jnoSp5QEDUvI{_=_IQH!|E%gJMYvzuN3cU}=A0?G9ZE$^ECxt75d2H87`Y#IH5rrxMuY#DT!Tl!&_n&a0i2LpS+%NuJZTmjt z>>u_O8vN6?29!?4t03G~|Low63Uc0W)1-3sBHFw*x^Si-HnEAX%% zzF+8cUTt?NuJD?vU-{bk%MTZfH0@;{J_;*52*Saz!onx|hRc;3U7h8d8(p)t<>ysI z;ag4#iFO$m?V4bsP1#(KBRzjvex+ntUce9E3Q5A;<1ft54dy;Egh{c3)24nHJE-m7 zFWcA8D-;@FU~)9ToKTMgEa`mS1FZIWwHKHv&&;%nJ9vwWr2@7dWWm6 zNcw|uL}7#)ti(H7$I}=v;9c1&f2cqK_#?OWxawFZ{Qreo|wE$;V4oj)bBDyu^^1fh5)TDz+xC{5AYVUioVP+8hb&3wC4FQU zoDkN%sMnKgkGdWe;eP^UUT>ciUyPL)92LR|4Iv(H3j*8|`)97so61oqTs4&9c~hl$ z%bzq*nc`hYD=EIwpT?kF@QPkePRVxFj*G=guK1#iGo^U71yAPXq{xitFkfOcQuxBcW4kz&;$~KA_lY&fXeJ-wqGL4;H z)9CZIUQ*iy4RJo7illMt@NimbKIbKdfDL@9wqw|uRD2wNk&2Hi6|;Z{%;$8)oA0T; zkRZH3p_L1{kS^vzx)=b-8(P_R$+aj*XeHyaD_w+K0NCEKOrezsUP5XLxu8NT7FJ_W zl)kKB##73z_m%f`AzwA}xtmUF`+jMe=chhHlHF zi(inXE$>G`mR1*7kfjCvVFX$7fanXdxB-|7vhb#A8oEQK<_of5TV-kE@E88+4YIf| zC}T^&3T|xoP}N>l`GPEyuw8C323ekm5*B26kvE_q%QTQ(Zjj~83u-VCArxc*3LwbR zMfQ8FMSg=DUcE+YlP<7G%R+yiCUDv)(sJRZE6gH32ljuU}8i7Iu&X8;ev{^ ztm0TH(vo^_ZMfwE3$*+nkb!{~P8g_@0xfF`VQ59(cOAE$xS;l+CoZTx=z#vs!{n_c za0ojfQm-W2FLlL9r$wKjg3l&T~Yxoin+`*^@W&A>4W~GFWubNDN&n8gI#INxLuLI*afp*M=2hq8omhc)Ed5Y8W2uC^9Ip=)e=-azHQ%{Q zDzx%1uc6Qi)KF+8^fDV<V6-8k-Fbk>Sp_F8mkmwX%GEypPk^;mj_jR zW`RfEP>iiOmlG;gXjy);16N0Cg@ z^ck-WP&tp{R>J+(?#(YX}aiN z{t*?Qrk5F-p4~`a5@arZv9aD)#33Z_W{cDl%SsFi(!VRPN%WJ^P4(x5ivd@`lsbQ@ z*|r6*q1hH{e8H41f2m+fDsM)?lul9~#XTPFk-viM|0tMJM=l@DgDEjVc=aU7Xq2?^t7VdIqIq#eUc49ObUROZuHu?Ok* zHT*^TeNE|?g;QYS#&Aju-#vSwCCCH^%x3X-YbM%cF0}c%(B=m~^M+K`y#wFC+)aT= znt#`$p85N&mHwJojzGMILUEOqyaY97S%dWpvXr)72y^T1^8mNm>d35m$tz6~(FtlR1tSoQc>?#!?Doa*KPlVG^DG%$jwB>&rxxbPrz1lgC{3^g|x9*43y&T&wFEKw`RSff+rzY*bpHW zEmznGD0w9ai*Qfn@dC4W*I@B(0E-Do5@+$2!OacMqJBm34TWA7Y3~LqrM=rL&;C68ZGfs!YVUd!j{T09gt4Iki@fvXfFQt%aR2rvyFQvS8 zMH%pGpdXBscrT^Ew_JVol5*q}9loR(tk2alKuq`n%r~4h((~6`&#Qy!8BF;B1XZBx zDY=x>^%OaJ@na>lE5;W8OHLG-_ilgPe`cup<11==Pxn(!nfm4beu|kkygH+u@Zlq~ zS_FdO_fzUC0UxV-y_ihj=o-lWY&=}Apq03)qAKB6{l`_YtG;n%iIGuX>+T4TY3hKB zD-Ckt6_;;r&i9?5K*p@rtA^0whi_3Nq1V6?KH!R6Rb%U}A#{qVG&S|Zdo0iUE31*O zpI3M^Cc#Q+Ouh`l#WDH9mAuE~^Hewz%Ezr*<;ZU4(k3_c2aONF#e zh@YCG54Q!u;0gOXH;9rVpLkeJvnAxx=isA2`rL$fQoij~r8pb;v~+1D;cp)bE zQcYGd%dm=fU(r+I#$Yj5Z9m2xkG#z1(M-=v40#%e zAY6V8N=Ua2@E7T}0e}ve=_%^Mx7J=ryC`CWF`Nh$dTE^tvP~|?HUS_Z^aB1ye9@Yo zBPZmlxq3Ght~F+}T;R}Z9%L=tb;6sqaMuaUT6o^k8DV#Te{!?&VF}B|hjktb=Ny5Y zX?peIwKc#53E3*k-Gi%?Z(K-e!6K*fkP#(8%fy5sl!{~pel|*9s5Zkdy66+cwfKv^ zC`-lfPv{GtDtI}NE~qZRUv%Nog7-t{2HX(*MK_=B;4iw4vKtRY=-j1CTMVO8^nNM+ zQqf(Eflz$!bNoetmS=EnAkX3|{-On{4;l+iO6%|!m?UPPn_3*Ns6jfnQ?gsifcEn1 zuM=yD=_pT9&*W?1u^H*yo@1p@PkVGve&eMoo!dOCyOcEG!%bVK zuto=9-F*$;a!Zg|8BvvF#ivukWb&ctai$mO;X-Q<9fswHIq zPxK`1`ZYNq#~$0+)X1=m*Yj%`l!}iCX#J_4CBm*VTcjnf1eWk=kfUcg_{v{bIru7a z2)Vm^OF5Z#4X(^n4!%)4#^>{jQm&+gnF4{A?dm(Hbdf;*HmkNbbiVB}lf$qcmJao1G_zMKYK!{n%M zql(MXyTIWc{I%Xa-;?n<_`006T(2oU3|WO zA=3`(^^3j;z2xlI%h!r->`%>t>oRh$o?u2!gaSi5I4z|7FZT1 zT}d^QAgdYaD5F=43br6t_AB;FajJJ^`Ol$d%geRG7a+Vg?T09oewy$4X9bZsN9v9bBOblo{4k-O0 zvA%eT*U$?@P_y?Za0cJzHS_`z)X)n=Kn8)%UaLEkz$*Lr9^<+m{}8%EL0O|Ip_s>EM)|Tq4sWfuTx6#c`M-pW|yzw zql1}0>tS)&S?%9uAYJ&U_spv9KgwyZf=&2DcAw8hbY}I~BRyJ**G-H;jyaj*h^=Ft zdqa~8zb~ICB(J9t-b6W0_Hn2FlV@M@y1zL;l)NqnODM1clU~ZuYC|$F?$hgAMC89v?sdKC z@szNCjR&N74LzRH)!nAFOkPu=yv#YEzp7RLR|&5sZ%D$c`fnbV;s)55e8(ib_4oBe znbkY4#=O3kl3G0U#fQ6q3`%4d#-URpJO2`!{Na!uElkB`J`^_b=t3kX zWyYC!`PfctF|nA_1pAGKa^cD7I@$+{u)wX(l7BTh-O|`?7TNG)diDQ-uw}>eW`Tr3 zf=eOmRKHqW);X@1*EapDyvZ$`Dm5$QypaTGa9QG{rIfjtq_op4B{<$|DCvbPw0g)+DmRyKHv=jhfZJLjF}XSi9-NLg&~&0?&8}Aihe4Fxj%G`+$~sTgHUAYl>>O z*+`N=~I!ix0OuW6?eZW9yayGFDTyg*F|@8U$3O-#2<`} zPW%^vB=N-m{afn9KZvz^-n*rO7-`||m(2r&f*4NW9w^@D>0+sIlYan8`_H35r=OwiFxq~IN_W>Ev+l2R` z-Cv0^cc9p`^(l2nITfXN4LKEc?kK0i!E4ANt$int39JzS!@UlQO})hmTXcHTvpRIa zEe@cgCDw$FmRSE1oBX=0yN56ple-iFAYe7r?%Y=IGu{LS@v-|coK6zLNG$OR;be5R z1~TiZ#IaiX9hq?7QANDTJJ8JhT3(FJzk@N`c$x9KrL>v5v`L9}ZHD4bJkKD~Tar^1 zt(K8;dWE`;WNPWL;TD*z@Oeg)7U`RIZbXc5IyBykkm+D?AO50)#eD!A4;Clmxe4V! zeFZk^c!gwKCHKtELFR+>4+}Jkr7OYRO|Gu&eotIvoYKYT&gWT)L46^hJ1?wv0h-rj zDH?Sjl#v^7yiI=?U!ez~!E+1DSSI$9LFS0niSBss9KpM)IpWkE^BfUtnj>lUEz z^!$(BRU`aSUPB}NnY(I)Kg(-qgipGg#|WPRz;J}?*u{u@sS!RNy5I;0bTq!?fXg-Xv8wnlSR@-HeyxL51x7!JQMf5#r?zLbdxfGUoN%p-Q zTl=1RIkpb(Ky=r9AUYHlrckLFfOJH<}c zu*Oj~Zj_AtMcb=Zkh3;NI>h591aPD+=|%WF`jvXxT`{wEefJuRHWrwu=&C4P8Kvsy zg(kJ3ySxzG;Sh6|vI{`5OMB8S*t?2WH5!e1`P)1No>dtvp!lt%QIfr4o_3 zKlHAUNaPrWdA z`x?G5S6wD2R1(FJOgJW7s9ud|!5hvauH zF`k)Ap5+da(^|T}DtaBD%K;zgL&Xh-hh0u6a$j9e(C#zhV8u2rC)`t`LyrFS=_sqX z&o3lgMSwIZ8xg}B_vENn5S=n%q76|%)4%VjTL3|r_dsKI3*hC}?)<)V1yZOhN3?NA zMwrmBYXE;HdP>W6JtB+Cg{|F@R!`mg>PCR6y`htr^Q#l}I3E&|x#0nKTTQg*qNY`< z9hUI*jT6A`1oXbI?gTu-A<(`*tLU@gmiuhmziwt|KD}X?D>q>#11|;e60fzsS76C> zq1RA4cXZ#ePQ9=8{ZsGbzTdbQkde_UOjhdb-eLU&OprpLpK%e8hxyTcn#jpiwdMEK zO@KRH+{5y>#YZvp)IPi~!&BXD#fKan+4LrVoxOKoZSvoN5p|%pLpr*_ChS*JKfHcE z(ZAm>zJ9bBooA?#j@Lm9v?F~M8sUy~67YqudIiygXX1UeBdz|BdxTkav?D$8ko#v5 zU&QL0gXmbjCNH65_4p!k`nL^JD34X=imckJ@bm&JypeQ{bQhodYMp4=b#=K4GP!fb z5cza3cQetP;iIGWvOy^DG%I42d!J9MAba+9R~H?5AKYf=*{9ox$OG}I92vb=^sLyZaay}R8y2$!iDg05pxVr#)`2sG3X=uW(b zKtl}&J#VnPgBWaTg^<$>$m4hoL53QD93!VqjEoo4c{PEDY7SneKI!f$7MPkL{CNia z&v^~OhZ>@M1+O8{P~!!C<$Q8CTW}ke`sx<_%0*;&sQumZFk)!YRE^fc|3!**U*i=sojQy(k9dZ@?{f!OMfb`KFXI5t|) ztLM^bRXYSz&!{o(=d~u_BadlWL1v6`w-7Bkgxo;BwV7s>9mcv_3i#pUhn627h7g6J zktS1?*G(x~pEWfmY!5V+%cl(}FP|Leepq|Vzm_vW2^Q2|9~v2Rq0eXAptn#PZ`27 ziQkfym?FOBsE8EYQI+Klx%8r*b|2JM!xkW|iP}u%*|OU+?l#t)z|nwbYS$F-$*PZ| zT#mJ$HM#fomdP^J9h={WN5MS_YL)1v1>qvS5WF;cI9aZ{*{En{{VDDbE!Mv^>)ZO3 z!5Un~PO!BeC>Kt3XKArkId+=6j;LT|tkWSwS*b5~H&v5GHLJ9I<#zi`7L`ktjFrW0fhlg38Lte4#dnW?oMh7fmfT1be0 z`3rHI!QEz`5X;I^gRh6lc^&Gu6j}%yJLn=tU&!@QEXs|#?}LEyv4r7>Y$PcR01NE; z5iL4ca%9#LxKe|+>@lAs>{sD(_>jopehXlb(+B9u)`lTgIs3^v)kI@Xh0hzQAA;UU zO590*lDHqC?tSnQZ#bY}_dd{E8_DKd-POpw$b9Zox6rKpLzHLHKSX&J8PgsMlLNkR zuhw1&k(IuLS^Xu>3)#o?5H=gl3<)+HC4c4an*Z5|$h2!yLS(BY?nE(#Q$SX+2ut|T zdIltmQ_{o`H6^uL>i$4{&->BP%KycWT zl$l~mD4AlEX8>oCoG6lT4=mx< zS;ye8R;aShwQali6HoGfbglFLDtEj#CR8T;=&mBh@oM6A6z6pc@v2Vq{e1hDtKBsU zYCzhPp>leo#^uda5_dEGxqIBlok@QShg(Br###91@J}%FEc?kl+4@bWRj%*Qy_)zg zfV~XP-cL%Eew@LqQb%5xc&?OmcIqA`Gqx0D)iKn#BveLSu3tec;RF$*S^kWEVKDkB zbQzT5l#d?kK1iJ5{R(eToMgDr`SDINIoT0m@|{iYW!CUwR+-$bdsPupj15b)6iW#i zb=|xFD_e{PMWlI9$Tts1my_$p!6Sz6Y;ngI*jz%2DJh0H)g2+4oBHCNvWNYrswU>XUUOUiZ-W#KRxn(;wMS?=gWv(K-92GW@vhyr zAZx1UVVLwBb<^a49q#l9Qv+F{M{js`XtleROx_9CMP_jF=#JU*ti-!U7wnFiT4jz+ zb(btYXRft~rAUz?Qh&cxMcH^X>@%Ia-EQ#?LrRHetaHH-x-CkmCqCmySHp_hv!G@pM4DKPLZgtscg#+Atja{N zznHAG*Ih+B0BA8XItPJs-B0D%@Rc34_5XjgJ$HOm#q-{~0Lf+3!zH9AKmw$Y<0s352qMMbcD6&qj$8(=}dO11E{^P8Q0mpAWn z;p->y_YYilcFNAq%$uFvx9=0$jCH*wo|wmI7rdW>(sEajK+eQcM^`>(Lwt()2Z4gS z=|75JxSRfCJAO3S(%JmE*i*&xMmXnqj$uhVX$lA4%f3ZlfvkK#`+XMROEiV^??+nP z^UqtqWmDJnOaR}Oo6vy|`!KtNB@ixh!ee~Z3D2M)obVW5IpO&ff)fsqjAPlI86bO1 zxR+tnMElAKH~MN5jxz z1*e#jaZfQwrcLnzfr3-KQ2fFvUg+EW6u0q}Q+(zVFH@Y$u>^78)9lr39hC(qdo^kK z2Pd14`5ZP8A0ou%9B*^a@m>nTIo_tu@yir~a}1DSCt;2O*<+5qNMCcmI>&c<&hd;> zFt?|C`AYHs7wR0}FKE&^UP+n29CzpJi|iikKeQPqdW9$EY1#!Rn$mJlG>F$Y(e1DD zb5FEE{KAPg@FT&NWUsEgLY?Qxud;9TTBKdydN<{}XPq|j(yy~$W6?q;_bv!-_I9K# zI5*LLVy8;o?2RB`w=w-=B0c#{b}4fb4)Ru4FFb1;e!TWuIL=)`d*kM38RQURleUi^ zuS&91nVZ3OZ>(kU-QQ(L@k5gqwr8}f+*u0&V(!O=S$%B4-Qm{?u6X`%ksqJ`eRe^t zL$pvM3)cxIw$gBAcMEMsBMbAyTt>U#`NMl?3!Y(HFIq76hr#ST;k5D8bJ@$-PF=_U zWK}>ym33c_Xtsj_;P_z{KXN{y#Q3To#A78SfxSlIxNrBeA6cIq^^^N{i$u4^eLFm$ z_o5%aSl}p8cKGo%mkOiwobcqKjyJTJ;izJ^P2UmEzio%1JnSe^*8A~OFIkF|e*wu( zw(flO8GkD?nSiz1Qc(x(M2k)bu+<;Phg}0-$`CKZDV|z-CcW$A8T(WV#mA_H=j){apLtL3Y}Hw3i9WLe`aT9{abYTON2r3_b0o2&2=BMdQlXwz2Df8pImD&nQ1(5O9DX* z9uyth)Eoy%c>T3)I-A8WnHMDa!!LYXB>6X=7l0MwDj?cuS>yG2vH2f(UIh2C`0)L0 zE#dr^MZ@6OQXCX7?)90}xPf9qIT|+qFY za%EA!M<@S2c3O?Vh&ySWPzd0K$Eg8fTVjrfU(tX5fOpvu-H7N_v|= z#tp;GqRACON9ML~U?Dy2V@kTw)7pE*;bUBuSpHX_Sta%1A~zG7wtUrK)aCk zbXwdZ$cdIWx^0;gmC{~Ff_e8<41S@1UB#OBFHk)C*NhO$O0WKPbF2NUJ&*5Z3Fdc% zTHa?-LMWX>CD9gis3=Ap%1pp+hx#W)3g#b=ZQGvvwzt@sgYZJvitxg{#?D|XA%1iW zKiS?gm6cN*%+LBVnV3J8v34@LF}aGK2A-BP@Ml zfves}!*q;a>y*hK?OC0{AAh}iC%c})&{0D@(dW@FcwPOu4wg6ryM?xUpsI(Qb*S~9 zbS*MdS=@$cXCn5On>Pr8XpkGlFEq%FS1`y>CJpjfjO8w`26@vzWsnPwR0q|?Sq`$N z>6kIf@24$jluuKme1d@8M)^;QHI%(aI7n0U!n5XGFh#@u$QV8*(GtLGk5&(4|DlLz zk6)|ycuKWL?}Vg1K1S>jpBL#JE%Az90I%q1=@kp?^fvgoj+rPLVf{Qb0Q$L|9A6JV z@P2g{7Db!I>)}dhfGlO}5JYVEaF8ybWE{4xK22L8&#j=78rXxbD8%0}$)foo!kQ^KNrfzvP>EgD$e@M2` zY#t#ljm`_Znz?W`2oDh-xfEGt_TEEUQ~v-hx}i1wo@$9v)&%elX_kUmprf~@0hB$K zAV+>yJ%Qavn=v9)cw%ze1&xE!avR6o02z_?h~8)%Pl#V=98X-qI4Yo!nqm3MYcN{! z&)7vU&&Y-y`y(fXab#NVVsFtAp>e!VThKV(@-&XuNf)F1;eg6ET4HK&zpo+*b3gYBedMH(E^>@e8e{OJMUMz_`+OEIU7xQ zq5YV>aIYB^D6PX8=n+2-=2;Szd4c>Z@&C1fa`iGw(4?!EJjw)DFL<2iM%s*VB-ayj zKJDVMdRawbxO!P3T5$D}3!;eCOId+sp>cblx_Wt-Vqm@Ffk0B0c_L7*T;_>xx|NG2 zm%4JfecVwGOQ5u3uk7;MJ~&M-vBreO~>W7YhWVRE+;AR#<23ncXc?;Xjy#Y`u}%^v0$YsiQ9bx1b12?7F0=(x!-OERUWp;#f7qMC`QfB7?fK?Xi<9*rY@{Q3VO*0R zBpt~dF=m(H|sHrV%{_@1cwLnIE{?(nD?$ss80A_XBhg?=!<&uW)>oVGd8{| z?ch%gv0S4h1dAEWLzLKHVWv>WD(@DrGfh;P@3E##$F>W@Y7AtXUT8ILr9Vu{P^ii`_nvXW2vJ)-L^^ zJt&n-j2pm~%-PuAq|t3&T+(+L?~|Aw_Z zPQz4d{1g*8h4Vwh0uL$+y|VL@#dV4#4xMDJJ^zWHGCa7UsLa;eU<4)&2fM`0G5Cs( zpy!w58|q8H>fDBpp3ygj?QRt8kzfuAEnb`Xm8oJUX@vob2(@BZOY^sh+;A))ir0*{ zJn5D2v{n#aWXW#WG{G`QVeb%;`Ni{ji9BzzrJr&P-ty?sGn_xZ+LFRPrhVoNag9?x zM8kx)+1e(AC|?DO14?+3Erf^qS;P1%Q!M3SZwoB?oOmagcbW=seKuv85pT2el@Iv` z`}_$={PIPMm0fPa^moeCFQk!asPc0#oB+0zd1Yw`w?^w()_>5aJhq8+bnc`DUKr4$ zi!mhxYA4nGQ&`s!w`akO*AFWyS2~BtSChV;Qa5@u0rFA7x?x?h0qJ=6gHdI^UPJieZI+jPmI6Dz{CjIRwu~}H z#Vw|ayGtrgxMBSrmcA`?L*s%_BfsD`!ouK(nn#FeC;V`eXrY?AUX^~Hs;P~4T4u66 zIy`t_hxPF^%Uv3t7&UySqS4318ytoT{F|S+*da>khX$q|1uY37M?q=K1i^4I&<6}% ztoQgzm?_$USC#k8ueFuvkv(xOsYvAk8!)=C}_Gbx%cS#250e8Y$$ zv%(z{%uU(Vw1d|#u~vG+8p~HKj-u38N`tzozoDdn8WzNpDlCP)wB~59-tB)OCd-YAV_!?g&^SpI>K-PguJEU4%!h(+ycbK z2_#@Idhywh%xqUT@W!EREA5JMY*gjgMIlH8ASlQ46oPVW)X6cn9xkGo(O@0RKA=63 z`cakomlT530fN*oQV3E%s-q6_k7K5AGL=ZUZMdA5ND4v100F}J{uChSDgeOy4pgPo z&6_lh^`yO!aGpxIoI;Q=Kv3f06oQli;-(DBxQ<;*dmz=>D%G1P1gQeVaKPGwt)>v9 z3J^inU`BoL*-!W-n7w!mn6SK~VY;uilhFkB{Mg&^35@pSdj?q(l?$O*W2kFmi;0A8 z>hZDtg0J`!uV&zhH=XXp7o|-Ki3QKlN1Y#t`|vftI=eTVd(cv*uvc`Fi|2n#$G8?g z|IvTp`?|qJZP`IeS1e2#%63>7+!;;V#mXf1UD1L8Qhk-a2`c~OkaZtBbp=fI#%>*E z$YYioJc#5Yhy9V1=A1V^3H_wgf@`FunV2#oe2v%So4)s`1GxiwBI|{G?v+f zXL@@nWIBbQkg=<7<9lni`no0ChFII-)r>Ts$8()=Xzl(-D8}Nz3Md+X*iyl}y-~z-!;L&Sa}d zyIft|-ku+cw>lZcz$Y;=v_L5pWytqDSJqx$h4&DpDb}d+Dm>a-6R+X%r!CJJmA&mr z0m*w$s8hvMM)ULgEDh{6$^sWfFSqB0=PkY1%M^m^N^Oz%3BY9H{2A?qS>uK zl11t8h8LGB5oTE~YzwhgoS-zC#ktSnY$WZ8^N4~Cqk>g+w%Hmwyka@#%dV&0aZcu% z<>}YC6oPZI_3XIr#yepsTQkRXjb1_E>YytyqOEVk4;cLudEq%j59JOzygD+xi|59r z5toUTvoqJ+(CM%x#=!L4MQLir5m*sCMwp69O1U!ETzAy+xxT;0bgHyxQryH}`gP~+ zwpauB>US-@jfY@VYX(n>;;XAB+1Wd^C+cwPUd0sfCN#UhQ{AQePBlV`8O6W*49;7P_28^Q=N!+iFhn%m zeZrDwU^)a3vARgHhG}Bq(l~S$IOVzOcYs=>bcEp3Es-Cx0LEfTZe9)S|wM=1O&}I|_5RQLq zna`RcEcuV6kp1Kh0pf17KLvOQ-c1Vrx+XXzld!AoFh-H!ta_Bro3REw`g_Y$EHaXK zfk&p5Ch6-i;rgq5eq@7B8)cdrP={#&RXq{yuS?7?{@S51w{R=9kY|7ByXiKJ?Ogi-C=$Bf>T4NYbJ* zUvW#T)}R)+7swLH-?#{e4`&nV9M+)YBfRjdnH8xnLf`+va*5qWad7o;Q>0w%tfLTI zJpcsPB==JYt{wn_Ymz0Aas~Pv?SWJqRH}z41gQe#;7_oGq5vcc05{Rb)#nA;OQ0Lh z@PpA-xVL#tQnUi>aRr+Ht7Rnf?Eo5f=fNn0PX{?NGlifG0Ks)pCkhcl7<_pBqn_j& z7q~rWcVv;Hvgk)4$O0g!ylW@~S>)(hXe->gv@4RIsgkdy5F`%}B!4%BAo-bk^0>r( zi1tFt+f>SXDFi741S!8vAxL>!6Uyyzo%<>6iPVp&)W4$;qz(|I{tJa5^<#SKxYiAc z@|;uHIl;>(<0%9w0|e(Zok9d<1t4z2!n+8)dkI1vtR(~=*kc+FopHI@kP>3G8`v(=MXsD4iNYi%;1L3WOHf};NvI36 zZf6HbGj84S1CtW`pZ7c!uA@{SYfgcEM z&*|Y<4akTl)c{Kqo|(~7$V>{+ssX)eGYSa^D5MTS2pOsgsjiCCc-1hg+`EBqe)*fP zB&${wm>MmM0@FNM8z#Hyg%DmrQX%8ruy*46V$Jdr<$(w~om6RX9bz;e8fU#J;7-Du z776}E+NG)A87+$h6hjsXGSEzuFyzp6 zEId4>qa6ArF!Z?G_6;X3*0+^_G(t*7Cce6^!pf|qU52J3k!?*%S`44+uvRgO<{6vR zOdI%!6qi>Pq?lqSH&wf)$j0)=DE@nmjK!#XtSt-@g2-qa$)UE;na}>**VXW5j`fVf z<~5Nr_{Bie*;NF-~ekp9Z4i5Da!>zpNT1cfX959;Xfr7O$ zvStELOMc3vbPLyv*)E3!O!!f&PYm%qNq*O_`t)aWOqBM!pJ6(fGv$u$kxC(!SxlB5Rnzqg|9p zw0iG19!$zTdM~h=`NPh|jGrjB2I*nA{4D%v&J6bJ-yqVqw{?gfAH8PN(5b%smK8ro z@D10N2lB%cC${7Jds~y3f2@Zmc_0hHhWD{f^=KBOyL*`L7#90C@ZT!2+P&a+FSTxF z-LH(lW=OvXI6&3TLnp8qQEr$nY{8{Wjp0yyNN?y^W(`r;Ko5GwJaekiq*TUA`>v#5 z&Az9^s`g!@gNu6Lq*zi9yf#*E+r-*>O4|lTXl;}cwYEDc1I^k14PQK`Xwup|Tg*H& z?}kLCZ^olyPs1%hySGh9VGnrlDEH_s=5$k~HQS?E5UJheo6Da58~9t+Rul(NAz+Y4 zrzY`)O_d4kbq@l?Ttq?-c0!8%)z)6kQu+ArQhDoY>kbbpB43nI`OM#?(vw#V)Qc#r zOev3*H7>WA%^qyMNns&zdbcUA>oCRN5GRc+fCACTW-s(hF?NnqPqe1!;KIl{#t|dS ziqnj2&y9XGr1g^`8faGJQW` z9cxBd3)xr?>g66C7g*aj^c!g%Ven`d1n^Nj?|%}2()noXDlhouW2{Tqtyjj^LWXVt zIGLt6I++;_N#m?p2KI;tK{aM{sxT?o?`?_uLIl={U>EBB*dR7=8GCE1u54~3{AmcS3!$-D%2RpR3{12?2| z!zQauXyn2)YbTN)R7#BiWtkr|VNqxH?X2{U=k?orB(V}I0B%1O6D~?syte&h6v;^C zzejfruhH^@MsCuXC^H(dCsQ_>H-Q>(+9;Zg*q$x$k+LTO+wzQA@HGuROw8TtS+GsG z%!5a{M@Qk4#j~v=J(>mn+q13H+1kH>|I{37ffxMQmNFmSajvxwd+=`%seHOkm=_{A zh=wcUYX+!O0vcf3cYYkV}ryf*Q=RBrb;V}x<9_Saqghay1zuQi% z@EoxZ1AO!gtPm|jq^ZO)he|U978qqI3u+jl37-Cei6fw)VNf(_7@jTaqg>xC<}^5o zWw104^5sn5QN&rxjn=*fk9I*|$0F+}R`5RwK%oC{Ku7?ktFBlNEVf!%B_$yCB0V?> ztDLpO+QWkYK6{TZ0ka-Q383p>9zgkV%`9}yXciyn&7$FPpNho_yS)ijO!00`ka6i| z3f3%QLxP&(ZPLL-yuLR<3r@;I3EI=w!!AZky8uRL7nBjTix(&ZEnol|+66_EcH!Bg z+J(Nk(JnsnAYab(9mTBdeA)DzN3+1M3{-sh>~VhZ2KnD0QW;PY;f2WRr`!1O-LIOu zvETm&ksg5+BfStg@o&=z7LcfSAa5ht98?h-KnJMS0$(>3uy_yrVqUp(uD?H(3bUEj zll+oBWPqdcb;qap^UJ{%V~mzWxUKi*id<%+1QQR~$17Qh#58&)@~VRc77Q7yLo52k zYtNElZqv|41g9j<9x_#W5uTq|?w`g6QD$f+-lUI&ZP^*2-iTn$Veb@rIu;9Q&v%BD+owC>qdKITExama_ zgrB4;J(x(mO&qXzJW(F7c$9LwC=OUWoG1@i@I)%uaCVONL_MNR-&2|JfW=g9{nW_X zC23P6%W%dd890m-f`J1MSVSku0~Rb+2Zz96fL)HGy4pudk~SPXP@!4KIB6lkZ2l(e zcTC4jRGng*biGUm<~|=$Z7ccNlK7nuSckE7SKu*44rX;z9t{saXmuIb3lzCg{(xtp*?kV8 zEnjmoEF7EM6?Qea3&Gf7uN0JLlX(8a)_zP-a-(69k5rqdO6m6MrPH?5H3Lv5MP~rG z>G0$Z*xmV2$3q-m)G((>9y&~IOZ^Ykg}&EZNZnF5d2A(#J$1UFMf_XaQ%~v$&A6xD zQT)O^^^P5z+fyH~(^}hfPo0~0Sa%Y=8^Z&4Tc@#p zgu2{Q_rkBHtfRW89<|4Ml8vP}xc@n_quiyOMIpFL2@u@>TudRjO9>F%rM#x2+*7Zk zJ&@|ZRH_e92vP;e#V4%!{uF>j0pKRuxTpRm?Iq9+ukmGHxi`Imy|yF$CGCnboKR)B zNFgW#KyYN2DFlT82o(bNj3Yadc}2?Moutl^DFi741S!J_WX%=?Wdj^fXukf zT~0e7(Y`9t;S_>I0fI!QQV0_5+ej4mpl_lbkmwSX=xPcbH~X-~Ps zZGjnf?{Gsmb%)!~8Ge;_6~dI4Dx!3wU86DkgeTB5kB=7moa<7$Q$c;`-GIf8PawP|{ zKczH5lj=q%?XAh!u;T;kaij8GXR^`hy(jhieH$colR~oN89>}>k!eN_1>hq#B}HZg zB@`l_t_naff$5kcQ?oI&2R^t*s8nZC2vP+I<{6791gQeVO|>yMTTgole8U<(wmsYd zhvyxEzv#*FyyH&V6@}QL3h^9;pb!ATyyOstpb!9|LTE4ZeL=e-`Oj7I7bpbD0|dwT z7lj~sfVjzPS!F~Q%|bYm4(lQ(r89*fX@DSU3xyzQfVfFx^4FjCK&quG)nOEZQ~`oi zr%(t|1qh)k&o?fky^!)^mGUYILCOF@%9|(zDFeh!8S~1gX%D3Ogi7@l3PGv>!TEca zLXavz+*Gy1@_X71Nq?h~{*^+IG(bRLHL+~hmCOv%2e6wyW|rPvj%1b*;D4A|(w;K2 z{4-h0ETNm4S=t28h!mdQ#+Dun-mA|nFVoPv>{hrg9p6XJ(+MhG3!Kr`*232UEgZs& znO|sYYs;LJE+&;79+)(rmC_)(>SBHREuO^Y2nLg7Mi=q*G36UmKgy$nKs*+-Aeu;FKuR{H( z3i%_2XsNkxH=s(gw{is#P)Hquhmh*KjOYK3kXmk@)=eIa%<$xC=*Eji*u+80kWft% zY9^fQhT*|TQ?nYulaX{Hsk(lf8L6I(EGNuqwmyio%WS>8o6OcJhRk3!8P&s^lr72D zXHc4r*?I)+O@$ooKQy{weFxhbqjF<6lCyj7&sW9T-eW5%3(VP5L5A%RIJ4N*zakTVyDwAi<{z4PtTUX5U_ZO`gV#47`EpA*hhj+d~Io6G@ zj_sMmKBh<_WjA~%CLX?EjTZ!UgY-S$ra*9-6SFwm@UDQx^4X{TQrSB?Oi0=dZ=%WY zggb&mlzrV~;@$wpCtigNN!1&?`i^FxXjY|bfJ*(x3hPFDqH2>QoANmUid7SmukCF znU*TUmw%dV7@JM|U?7^2$`7R3(gJ1>h-xDp(rxqEO{85rMQWJA=gg6AO2U7FlzD2Z z+{KxcDhv1bWY}&{HlrB**ftM(<;qqm0ozI;sLJ3>+ciowN1~K!t2c>N*hUYDS7zH5DPO9JOSaesvu`PPRNU99;=U#jRdJbC z+YeU0N@SXxzeoaU;^XNAC}l~g z9`A2R<4}t)A`_^dFAh(`354x8nB;7JAtpGAn43DwI&;IC{>dknv^AvSBG~|!WrBV1 z1E;PDQNZ6CmyG&gA(o6Z*U}u1yechKi8E2(6T{1Q#=Gl$}DD%=pyv*cF zdqZ$3>uc*2yT9@7Ftv`PyUhhe3vbh<=1sUHsNm3~US@pzPQQ|@*&oc8^(-h-_Pg(N z1Cku>bUR(xrRFXn)E(lVx5VM_L-5aaHGAN)w#Dlta5)0*xUQyy+K8P|hBt%x(e6D` zje_~^iAm1fR$jw~H-Ht<;o(No1#!&<-kvd3ycC4*7YR9QUKamYL>Uz;vVV%S7cyvZ zjo?yWp$OQ8I>z_JB$o0m6}Il|MKMg&&9iA}M|e@)^Q0BvB6O~p+KRRJu>dnKEa?%* zYnPm5{J{aXH!8fbXvMWUb257j<~JM<2 z+m;4=PcZR)hXmgLYTLiqkEC6`^pG$&)Gy*^XjZ??Gp3XK+dSV(HzYjOJp$SA9-0_y8E&^%1}K0MCJN+ z@b29MvO-#VGYU+>D5m3#ch%7rw=K2euDVlg?UlUz8r!GFige@Jtcw$siga;HT`WJJ z9oLI%-=zI(m~E$WZ93mM+}4?0PX{bc@)_oe0q2Ds^8wTLn>%sRgjqAjPMx`~rWVc) zJ_?^NJut#Hrv=w!xy3W{%9Npg>0;K#)dULvY1d`k%(R60UDw^ZZrM5!N$`E(nN%>5 z1%$2@E!0q_$*I{I6c(aPN$2&WY;z3{=-VLTiHowt6yjxc_^ETy3x4XnpJ6DKq-+(~&%Qfvp|u z41YF;JhTPatX}8M7P@EPb#uy^bpH7yTY1aOK}yO&QZwH=p}>y;d$&y_@~rW;#JVZA zKo(1-LPIDLEz}U;%C2?bqi6^b8S?(Q@2A*yu|YaqC<=uB>^UdZdfYWrd%z9uKut3j zP#&7gZ^T?KY35?~GKV!kr^~Obbe;}*CG8+@RQqbW?RK__3Wt^5dr6Di8rHPl8hrUp zQ#wZR4Kr@mVZ)_A=zt$8#<-F}}k%QlL=L~%s5%dlT64Qre^cGV`MclKd^cpj5QFRY$Ai0@Y5X9UpLj1zqETX&2&7Kv{ zKnz>Yr^#y!KD^d8!^_0qd7bU4fJ}j}rWQsXvNNiXIZ2bqHoEYwW7?)FncYQkP<}eI zB8~I`0+@TOY?XBk2rqe`w!M zY&elf8dGyPcuC(g3vAD^ITQy=r!%_C+VoNi!O|%}pmf@vFTK&0z*bT)luoA^P&xgS zsognNW*07k#mjcu3(4QFl7EUqfc!wfN9qTnIwi4}C=?5`fQN-yAdi*x<4bH~*(bCc zlK%*}FSgnJDFB5RfLdD~`!9tcWq`OTgW!``aHeJtvRuzHrAp!`1gQc93)N{9BB&bR z(>w>oGDO_l05YSGd7lpAVrV54&6Q$D{!Qb4HH6$Kk@cCNb*L)$i!9m zU?zHh>na-D*)&v{Z)c;l4b2%jebV?xH&54f*uh}TbpdQu4 zd|#$KqPI-FP(Mfo)5cY=j;o%6aa{N!-?K0-{B-4WI=C2DLv!PLRgOy^8pJ0o$*9z; z4}d$4O3z)4O4ov;+AK$9cuIzcgb4vAWlyFo32l{a_>q`R;2-eu3cdg0RY#jQ*cO|q zTf2RBBlzM*+YldfHst5E>BSvcB>ZZOpW-H>_;Avq;lVHTs$gEUpzVbJ+3DbuhO0Rw zTiLw#W?Q7;7!T<+y1hT4EW>|LHm~1o%Ze42G39EE_%)dU5byIuSNx9kuuOh_vn@AP zGn8PN5QXTdttpM;2{}DN_;p)s{a6`=;jW*C9xBmGXcxG?+<{-iji6M?=sA8g_rR!5 zzWl(#kZ$I&0vmI-apD)|Y~!*qXN%BsHk<+smcU-D@(PVpvf-rnP z+iSD)7x&s0`s{_FN^5JNgT~kUp3KHz7}}&NaFAd8%4X5~R_52XbbdJfj4xl^V2f(m z;&86=cs3vKj4g&ePKCi8x%Wg1eF#4WQzCA*-;piXep@3QOV~FQ4<5mTTPny`8g)@l zP_~2mhS*E_g~u{YJnDH!4L*C$cDGNU1=MHwsJIgghF^`&itA{`*Ia@!@FOwRkl!Iqpt<3SuxdJ8T`-$!KHJWXrZcWBP4SvibZPfKzVTmE2Li^@a=G|U`i{?ywTcil7k(Nn%v6nr5LSIVqGI$ zw-TlG{WZqKFT7^kp&S4iU$=E+FHw%Dzx`Lz-&<0Do{#(Z1wG<;<=3_V9<Tyz`zfui9Ce&r`c$?P}U4B11u@`HsR z{iLX`7lZ+C+nkJ9i7U7fKK`^QHHvb8KH@pB-iXJ5`N20sN_p)EElu3#8qPP4NH=#{ zE%wY|+mlKUE3ZFdOJ+T(j2L$Ftj*-0eXZVOMmj%#)Yh?ufkSavdB{0iG;>fvFysyw zEi`Uetuo|hS^2W}Y=_t^ih}dBc!ndJ-9VdB?X#@>WP+=s9s$3f)Cxr_(=~B)n%-SI z+Qi#_WZUQSFi65btAkwX5h@d^d3$qee#)Dg@$nXP+?Lc*HQ#ULGpE=)vHPhYsOEo* z7OLhg>bN#qWqfvSES||erg*IgEy_n4b)D8U`!t;`O5h3GPMi6#&uohogN+~m3@p`X zBi@86yxg1$18mJ%YC`52Kc0D_%T4-^`fi^WGfFJsd zAZ)&;s;bn%RM^nu>K3K8;hEn+8G8lA6-%yWa-Y zDbJ*_>Vx7GzO}*D!kl`pvce{h@#w@vYk10Yh|9Ghy5~!NKjzxO@R_pjZ4dZ-1SovT ziQ;&6oQ?~p?StmV^`*CIOFV1q*TQL2j@o2AK1yZ4A^q$*q<7RIy(wpnFZr>!J9nOk zLyUfQGUctXazk6bC&8}nvH+V#&7H7U^O}pcoyJT%ly`>pNo3iSrO=rnL*RPZRLr+~ zi4OVSKoXa^<22*5ezb+PRC(R(e3Qf8k#(cO2<3%Vh!z?hQpm_U*=3{!1>VHQQQX$( zZnU05qwa7WAu_q|+PUKR>W^%JJoC}hZTY_c+7|dM2kt!N4_gwui^_oty}cQQu9ph+ z%@)SsU@z0= zJv~b*40f3(==!%dPcS^=ArW2Ao!kqHh1GxAwkbc^`MDrh61zl&Lbd zm)hf7YQg7JO`oG;pr%6|9-981jO$xK8(-9&*CzEE&yqz?cj3J?7Tl31+TGqSI8e=1 zo`FKb5+D0>O1Xn)m|b1i0Lm6M*H7Ski2&Dl(;O`0s#~hH5{IFMiq7W_O|+h&vfA>($3TC07Saz&**(2UZakV^CP^2W7W zT~}vYeh;&^xcIVFRpM4E5-RZ(PbF?5gS-!wn8Akz+V5e!| z9D|~sSQ6+ETJ7o|=;hKWKjF>cCcZtye$Xex2{AS%$C=E+;8&xk2<|n z$I?UD-qWExcDbu{Yi55ZPqexcnLiatXg{pGXrUq2*U77%%yt=^@~O4^>qNi06xT9V zOi?k+j=tTQ!TQl=RDQ9OA2i!tdW6<0Uny)9OQ-kI+w3MDoa6H0HQiht`R*?EP(HHZ zv_DVoV82UQzy)~Tu(*9 znYd51(3zO$l#77bPF^2lf1T~3C@qg6bCpLm!a8O4tdBJD+ELf}@t`bMj8x{*czd1l zfs_9y%azJLq7tAU-)l~fr@ZNLO&19Gvz|R2!j~r6Tbzd-R*m^El?GM#qo)erQb&5o z$uC-6`&qjj;*y#X2hnCU;&wUGh;<09He#O~IinzsSH=7At;zO7K7}9--@5o*rkF+E&i{Ox?#Y&Mr7 zYYJaTn^EC&RfX#iTCMO|nqWGGV`g?C-M-D|QILesKHDpS?W8iHu6H!2>jrPS#zn@7 z?k&&G9?X%U;Xx`0D*TXWp$flW9oLo|8KpO5**W`+;t5^XO)P=9c(zwE`t^QMLvuE&doBc+`oXgkP?1?Ngm-wX6JKPa+>N*G%-ZwXra=q9& ztcjuaZ$0C~Kex9$M+wfA3%p<|k(dA&iI^|?IKW$&q%RSYWhkdTo&-ex&bFhnv@uyc1Zz{I~E?24C5 z;@6AqHz{XwdEpROXLgQ`6X)%_D-H1%Z}Wx~;(L4BTU;SN4FZco{Anr-4$+k7F~l$B z5KpSJ2!+ik9=tUtil6M6Q_bQ;_kUpdr$pz;XCd&>sWKsLhKaw>*M3UroyW%xwVQdu z4ZYj563Q2&b1{J5vE(-0{;bOL5+UG8n9eWswFlJow@0`1k=QejALwt-Vm+xaLW^PJ zJ++vx4lgH9#*25#?LV;_C|)b#g>tP%U8lU+ZL>`L=kcy&xUT+m4F9syzFgUy$7fdA z)7VzZ95uMHISoGIO@sa+VBSEs6F+>em0NiC(!C|OV#7-EntbP zHm57!@@$c=2NJ-qsyI=1gMJr?khBkXxR;r`w!JYiqaD1MC+ABC2aY-$9m8PIP_KOH(tkZXj`5f;dS~;K!|efl<7*{;{QUKir1qQnCca{#{og)2fD@0qwk(-FN_l2|>KbooPKA5DsSs-o>62hF zy=!vI=si>`iZwh1&U;@Z5IXyu6hWa8M6kbe-MC22qhvZwo{V)myb3nlhk= zbl*X-xr5nCiq}HD!2!Iv%AFc@U9?NsIMKv^TLF%>bDgUlKQaK;C>K_`BKb+EEwr?b-(uQh7^QlqX@^NIWcnwnF@sJrt0E9`zk zuibd&=TMz}e5rk&5>UW9)!H2_sKC?p{R^6L{SF0QT>n5Ue4hZgr0@&p`h>J<_0g_? zkGKiS*zKrDsM}Q0LQUAGKt56p1tMr>@y)OGnZtTgyw>P8U!$(m?dtUFOgwrmDD%a7 zS0KM|AJhh6=#h1|+5fFfDyZA&%3)Ke5NNCun$zc8Z~FY>cKi62KElTo@E2FvyRk7; z22|iJo(deP4slq4i~$%s@1c0DQQ&%wx=w)?*7%}vP7)^hobqA;KYPEc2RlglqRw7u zPG@g=(^>5*c>IWo;DydJ=DJlackgFa4L(aHLJfZAsllh!F+QnkuyVWWdUlcGwMK*I zH0nAH3KMJq6O1<~kv)0&8@V0$h%tFl;NA8B7S+?kmksb?_oLt*-U~>bdZIsv>EBAI z+2{+Gbk263>B|>C+RBGgXixbt52b<$b%xqS3-#zAA*oAYJ*7SN+3DKA$|xGvOn2W} zQpl=lGuH6Rdh#8+T%Gg?t*zm~i_1bJc>C+(8+IoTUg~QSiRY>7Ar08K+XVq{nmvLi zZ?JFnxfvu92|)xuvB4hBZlwYWdp0b)(mbq^^PoSa45`78md1g_J>}8b#Z(Sdd%b9( zYF{YTeuGqd-JX&@Y%j%vLRCjTVr5=8<;9+S)fNaY2Ps&bMl!r`rNO<~)60pZ$M4ST z+^Q^bZ%=t5Nhd3g@H5X5J|SoE2K_AJp`_YcsLo%w-~PFBRUtpJ&7R4WLQfC+>q>)T zh3G+^o5hvW;h^v86;QG1cJnu_+v54HC;#n1JDkd;TE~IL2~p`({#Q=rPpSuvI#4o# zWz+GrCLVP!l{u;ZB;$du>wF|ssEp5iwbQg>gK5OO$A^&lE27AyG!ADT$OD8@V>jh>1{yZyd z@I+C7$JX7DIW-k3^Q#g&JLC=F^VeM7IN&Hg@rHmmdFeQ`Ho_`*XqweM<#vZ9F#hx# zU`!BWgZZLY@>t!QE-ODWB+A4OKV=`Oup*wZ7ixKdMIH{Tn2MUQs>mWQ=_}Uq+)M&^ z_}i^~;M#xOTAuiq{&4&C{ssREw|H zoZe@DUzu3MXT1w&0wz5rf7x9?z_;=vKxuDtv8d0mzIBEIKCS9i9Jg7FOPmgWYzv&hR6t7mHO zuB}?!@FKqH96a@cUa}_yP+`?;wt~)sXTL(FgyE$Yy7ymiu=SYW-`PfrhnyZ{E zk`?fCR1h3osLR7)zE=nLtvc`h{>bagl0`3fl@{M-z43%AU&(aw%YWqMvTO>*y|pnZ zL1}Pkc220Hxx6^v#rK?adF-uSIO(#rDrHHA%TM5*w9pFAVRe+U;1w${G~K+N-yUn? zac|kbP-eK~X5lP4Aj~bNU1=-}iY!nLo;llL;tTti+qCc zIK|P|uutmk#97yk>=)X-HG2D*=xv{e-ezxGWa1?kT<{gz6EM!Zk3%UW=D2;GPkb@x zGU1KVPAn0AHTok4l-S~C9>}T1UIGfdota+uiM_=yT6HMquYY3i&N@&zFrM@fE%X6w zE|w4AuwwZf;YUjkuqukz3OyzmWnEmBvW zHiySjYXcmieDg){-M^UAuT@W}xyAg?U*UMiU9y#>C~?ruw0ju!Ly)Al6x9+d^Pd$>96 ze&)>*;TTi@mOjOfyr)tG50p3jWEh!f#MZ9_ocZc0Ee zZcvJoSr7#`9vD&ldo|-|9eQ~=ERy)WJ*}m~Gxn0pZ=IYtzEmL^HIu7=w|IdZ#;2P| z?I2X;S^Ey9q8CqSTMS)+g{hJiL7&Cb@X5;>lK>UG{8*V3Vt_L4`RN~s_? zwCSEh>#YvW)l0??d@-mrsqfXSmLj*t4Hj!GblSr#e#(#b*OiBQ@inYCh3%j$QE?A8 zr?@Aj;=;Y;1S|N(-USiz><;@0qWjkWLRk5{v~TOeN_{V0cFEp_)l(r+sjqq}b+bC+ z4e$oRf9;#uaUF`deExRNI|@G3P~1w|^NYPmfy)@g?Q+Tryk#JUXQp;ZRqn{F{!r~$HHSn_x=Uj`-dZoLwR8vM@!!P7n1YCCP$ny5SVl-j${L= zTxb&WMGFlfRiJ1QLMnRWMU=`N+TS?e{b20kZ7+Ny`7g!shRb0aqO@iNh{q8r$P;Hi!C7j>M!G#O`%5RK04&+52- zP{*0pN6s|-tsCc}b|XwYJh>S2&ML!D(=+lgKkMK5V zk#)i~WDZ~M?D9`ocNs7d)?G&B!nvO5se=-A%)Rt3S$?bZQCGw^VXW?85+HJYV^ zqTJEU>wQOQz2$A0a3N9-pAqJW(O;HSRo*v`9|>~|Vy{q1#WhG32S|%MXsvHm(3-&i zV-E@CQF})O@Tr@l;UyC7VoSnIUexztA2GCk%6olyRg$I3>_wcKcl$J6xYu~k65eG= zJIjlfo&$3E&Ov6pVh?Xvx~c?5g*PnumdG2H-u0ZD7pPQoA{{$fut0K`8{o-a&Ue3C z+QLX!!vZKZ{A5dhlw&%Jr_FeIQ=Di)&rxr6)?uFdt+;(de`m4L(2(aWUTI)ilmOKGCX)KSmaGzfLtb&co;lil zldkC{eA#D?LjGcc!`DoQ0!;9>s5rPZn5#EZndvOJJHX7t=fKL%bA?=Z4b?pH3$LM? zSK@hf=m@wk?@aL&o|)uW-qZo=Iyxq>6;vl^|96lUmFJ!PUwJP}RK-8+(pIpfspnV+!DU7o>kcL9@%E`y4~eUc|4tuY_l1 zI%1TYLA~G%3S8v4JjIcy953OIr8p9lkAa!EWb!^ijRxvlDS5oqmA0tb5#;e3ZDTgX zrQyF)iH%{?dDj=+LVF>Zm-43HINon z{MJk^u=<9@5SkpX6pbw9r=Ea|E64Q7Pw}Tvyx$a{cv)#U{9jf)jJaqJ#4kYno~)8W z5EmeBT)d9d%Xn(SO66?-E@wNXG4!oq#T6A9qeqV)JAL}-(d%RooDDoy7y-Z&BL;@^ z6Pb?0*f7DD+QDBQb`Zx8ylxEUc(>I8osi-S&VP#D6#aVI1#&uh<(!#PRVPCTj}E?C zpr9G85x>xk)|8@yo4wsL_h*TG;7znRZf@%8{Nyf28*a6N!#_f0L7Ui4T2wJstZli& zgH2TOw{xL3Git3fjE}4?p2iLm7WkNh&GY(^P>II7WuGnO^<4@&@KskA_u*+{9rB$L zaVzu(`d&EYUc{|=MxFBd(nbe=%L&=`uciEq(@_}vjNngaWE&OeU_q};zV%hx9H#Vz zer|`s$K3e>XGz-sGlnFlOf<+68r#|NNNFmNetTRQzEt1UG8~pu6 zD?T|u1NbeV*$+j}Qwsa?`t3cEn2REboEXlH)z52o1E4>AM)}d~1it$&LukOSLT>fR z2j5J;J|xYME0AM(ZO4IW$k?r@i{e{B76Ekf1K-y88~Wm>f(-H4RCjF~lZO_T_sZp4 z3mreOo2h{H)xFEZG*zgd6kFPt7tPFxZ-{j{N)2qo6%f?>QF&i}wAk@5dra3=+|=HL z_6{lY?n&KE3ZNal%TYu+sr1&#PP6L+P0E_S;(N7^u(v#E6S>vTq(ImD%Df^4zMELX>)fg-ThEMxT(FM4DLt_E(0;#hJoRQkrq|_75@Ogg)D^-#-PH-Eq3JdF`En_ zN_?5jp1m-yi7S)Ohqh&n!Q$<5M+c>(jDK71u*b#;x-?k$QAYSd!vWKZPq9kcj7K5x zBDtZo8IM9#mdT6cnj+vuay6a^M(D`Dol!hT&jQaR-7&Mco3f;gAFhJpMlHpJf@lUm zvLV#2EGomSHoVEzns)--kY7r&_&c+T&U^V?^$2hUZx{R!n)wBSK*jHq zQ=;sHVLa@Bi$P%oFTst`+d*Eqi?=;hNFxqkb(_P^S6*MdnkDojvWZ9+s_9e>G%-Bn zPDgj%a6|D_mPNahl}tZ%C8Go5N~T|PE17;?^d?p^;Y|bpru@i);(mJWxRhzqHv=R& z>nt+F@cI=F7qKOEFdh2wqj%@F=M|$IquD$vuE*fj+n;C2!EZU^w6j}u-9_zFW3P5! zrm~-f?1_D<@D7y3oK=n@v)2iNNgU(o#~z@)#S=MBW2k;TQHRct#)pPCY+O=oXrnyQ zPkb?}9}z+QmLbI;t2!D?+=c=X38VQTAqPhDH^eWD=5K%^A)0$l`oO2=WLU=X`BNNA zy(E25;Aq2(r#hv&H4*t0?$8VZh4`7i^+YfJMfcU(z*yI`VHNn0>c!S7p?i)OU! zk6;Aiv#R@xa!fpbbMbS^v~nKza!xXvK~XVeOf7FFWZY0LLk7emEoAJO0G}e6SkCu6 z2nFehI%077CGUP`Z;P_3oG-f>vX(VEuz19;Y>w9kZ@jix^OJd{DLz;!hl}TD1b5Ig zYz#T(v4jy-fyj17fiNQ5DKD4VP8o;**^ZfNRl{jmeVZfJz&<1dIWFq7Sy6+*yFm9F zXGz1DI~;us?A-rG_^wN0rYosM_eWnF&}LNo^Icd!2d2G{4f44@eiK{U83z&Ak8 z9YK_@%K4HP@=Fzv%6sp_&|4%kV;+H8M)wLBvD+g&hNos9sTES%;JY0IS)r~!NE@n2 zqxOe)+V(l*_rY*23iv{h*d`qh(~*m`hS8be`&T)t*ceZKaT*ylnW0Effqg3^yy5)L z;+qZ1%nF&zXc%fTLorA)L;cci2jJWoS#K3`U}U{b{KCk38z`o^WCq+0lbO%fLO`M= zQTc(hC)PP?*cLiAjEfsciz>m2R(#+9w(|yY*!K+KJ?k9f*b{_0$GY^c3R#yvKp_xC z)Vef)2mI!UWxFU?)TJZ52wJnV!pIY+Mn&_W>fAsc^gCQ{{V7Fkq-#6|J+V^$9fhMr z$5e@ap^!#Q1;Fq8;fP~EK{H#dlzW#*M&`N-jLhxS+9`j0ouflL+%z%|;H4WJNlL^3 zSu=+*=wtOglo8gCrOSZk9>RW`n$LFM-vrri zks#vsP_&XBq(zmWRoQO6V+=p{eDMUc7s53I21p$`2cQlUJnGNmr%atbVeUlu{w3;j z%m7}w71G}ULPYw^%Ox^%eCFX5(^F|PmMB*})}qf*U95LZVv{H}d^|3pE!yMpM$wFq zM;M;_@%WK)?*RE^+(5DL$;byZ^JIK*fP6BJ5h(6t8lQ}72goPmS{*U*WZc^LA+Hw( z$QAI5x<2CZ_*`=g4|!vF;r(7EMqnf#jXI8vk4Cmi#{{aJ$_f}fJP-{x@~Zbl`C5FT zc|I@}pX1T%Qq(x_-r<e8f@4+UvTDhnv=2 zP0vFsWqy2BrF>p#9aMUMg71i@+t$0C{_V*a+*5c1Smm1!*_v@1AVfm z_=P^%v$8p#ymROOLtd!Whr4q1r*$9zv$>C*GHIpl4 zTp3W=m^DB06lBe>RPxuJf~>Kl*A)0{`V1_(o{EDq!XIGYniuBHNmb(48;)sJNO@Jl;6k=qfqdSc;9K?NHUs zXj7{G_h{YwIO=G1ygf#%c5OP^g6H8(L@|}CQR;G4>H!prQuk|4>TCXn)M|VwuHrNH zJNoK*dq}Nz)k&=#U7(f+vx3hJFkcKTON7iASeA-k7+988HJ=w&0p0<}hh9>`f`g7y zb`MnnMuc^wMPtPKLi?S@z)f4xeUsrXwL z7gWHrVuUBD-sT(%s9MyiisG31oq0+Ox}w6A&tX8pb)(inrIlQ*tuiCL3rFiz)HK}UgMES56r`{B!4C*s zb=AmqHHq*+A^7i31AH%UvJex!X^QxT-ZX_LUWUVgy8S;aU;X%w;|4E&wCAv6Fk42) zi+;42w5Z~&XvNooA>XXxH+~2kg$YL;cd&a1by;#+S1n6U+bIN}n*f25QyzPYLa^Ed z5PWW~u9np%FEZDxs+KM~ALv81DMri3eZ_f@@z+fltLEY#RP*)kJFKy*1Rv_O3n^oG zl4kOyKNc@zpVMZ{#asAIR<~|K*e8@^VjL75KK~>CUVidYamR)OC!8jO_?gAd(r#GR z{=Hhpi$5s@fL0mhyY^iZ+tQ%^Ts;r{$#Ung80aAUrc^`u-x0Pxq)O+3%f>BKLpR~EH1 z#l@)+fYJk27y-_}y!-U%&VxR8Y-QKzh>8fH5mi6gIq2#JC{Fb=@K5}m@+gYeZZodN zB2V2ZcnIC3qbh1VO{gyAbJ{scjR(+0&}iDR20QZL+0#Ol$yf8czi^Z)gJkEXvQ~o- zqB4b5_$PEy=!I6low@63jBfmmV0CDESwm#K|9~dzg*STp!xufV9Hos(rB+QDVmXTH zpLaj!tT0p8anA^NB&Gsq1U?3@v*H&9ud^^BZ^id7yacZAzJYpI+kt@UeokQEQb>!+ za>c4vBmm+-lmA6WARl%pa)Q|l^_uX3GQ|9OHHMftEyS2ah?y|!x^dGdszIjnKtA?6 zhch-@NJ)dtWvWe)t~cD~*Q=d@Wsu=;bVB^TiJdkJCp1Dwx#^|D!01phP)3JJiiFXj zKZxV?7S&+`Wj4`SpyL zgTD8z_=UdrEs*!-dz1P0OYq1ZkqI5$o`y&0SI5AP)x!TeMli!50z)tSlMEMNLUk+d zYq=LadQD*AlpoeXg9pjVY!Zcl^{JIv0Apn~n1Zn~>qXF-pg~P4vjr5f zk*+ZpdSYd^KZT=2xvE6ND5Mcn0Wel(fr6%1tjv0sNQRhS1~x7KVF3%st|M=4p zuPgv&;tVrLt`94}k$K=)kEJc@%)o$!S*Z2c<$?y<#+~99+QyxOnzN04m%U|`>*qWB zv2Ao{Xcb#Xi^{uINu_Z6BL?SevlqfOdj?6J-8aZ<<~Q;BvD4L{{L&!)wc@nK?h)eA zpuCaDE0=3alfeAmq|L3${L}$3bv^VtB`k^_4Z9EJZ!@rub?u@iTKi^xH|48A{INIl zJG0X|uqcOqF{qiieqoS|>n{lucU(X6R(?|0anVAvvyXv>xWh-s9FL(5cpI4e4(2z$ zou9%?g8|PS7x1Cdc5pMy!v}j|UjI&hC$G$py^|lWXO2~fCUQ1W8b92%*D{u=lS}Aq zw7;{Tk~^3`=I`vz@+laKCk`&|$WWZk$=+wMxE~|2Zk;id>6CYjIWvj;YOKy2EGu0) zDLmv?yEc{o^R!;u**Gd79s)agsU*iZeXxYiEFZ-n=JAkrOi)$N$;VVCPQ&tedl0kY=JqD@r&<_%i3^pN( zM+QYJK4`&xai>8Z85}G#m_rl^jqTOuChR?L#wL#pg52`RppF`RGK0$_gR~ijTdo`& zEHjvcI*9woAbWu}i}TRRKA3(yC=NkJAa)5bcTX5Xd`g)#`h1u{q~q`+K|R|@TUz}N0Z1Ck0~4KX z*}ar5J{fF@&i)4WC~e0>Fpr298prjh!u4LHNa)Xa2z{HgFZ&YtIY2 zb@JMpHn0E(4#IKtgZQ;?xtZ#o$c+{mKNMQfA``?fw8(^^UMvz1#y{A_Ip0fqJE5zy zg5?N&_tOn6(neZTzO6mcURT{KfWOtvIl=6OcumPrVU@9lp^ZlQT&lB!GIS{aF!ldv z`|iN1itJ(EeSkoQ5)uLefrMTHBoLBU1A$be3rZ(+c(l+v2}Nosp=3Z>=)KvZ%c`I# zqSDq~6$^p|J7sO4DBqbg^K#F9_dfTxu-`v7FEgjl%sFS~&dhZrM5YUQXs2vJ1jMAJ z=+dJprEF{PC;7oFEPw9u}QzYyPIX#1Ph2=eE(C;Zw{22%O z;hDhamOZsbh=EwK8{R>S(GAb+Dcvw2>Wxx7k<M7@tZ_pZ?L!J~RXnnOR{c2A+ha9HnkdzpJ;_x~NFvWAoD+Zck4yn^r8N$b)x0plT zGJp!-uY;;Nw^2Upro{BiTb zm`AEaSaA2X?InXllU~K+aD)ef!>C?-u?K=fTS1tP!={uIZsAa0Q;gxYCOc~I^UtT0 z=T|BxG+~n{B(9|3#}#MMVjKXIdWrASJtFWM8L{wI$_F{F2F9tRW+CG#UwrjCZa~W0 zY@MO_AcX79v;+lQ*NZ17J9130kbH~JMINz2z&FAM;+R6N6|iW}5^`PAD3*w0X9LK! z<5zxY5fUOwahySuK^RNmktvR4+Sl-p*jo85MG~&dc1^T=uzT@-0+X+A70*TqG{5^2 z+bawD*ecjQ6R44RaD-hp5EiH6K9Yo^7FP_ly~VeURzb~nT9#iJ>-oVp8EHEw9jiNU5HRvt(Qntx-G_kRE{~4imZ@D}1?p((_)}6vb$Lq)X z(h||6HdvIJ@5nHMiUtbPWnr>`y7rd72Uwu*(E*gO9^mcwJvJvlx4@C9fdbaRbpco` zZZGTPSilOXSOJz$S?_A4*uKt=sca90*GJS5S`6BCvh~JS6GRt9ZKu)&sN(9ku8RVw zOG%-iSGqb*v3F^4fS}>hOy^aTJ@J^MnvH$;pAo)NnuYX$CcA5Z7coE=O)3NITfC_J(axQ&Q43kSjn{1#VCk7y1pIcH2r==%>z(3_pw$iG831%BmT~ult%XXeeC@99Qbv51)4wGehBZh&#S;gUrLDP7e1?c-wW$tk18s?0Kxh1 zxhc8js0M1OVDH=%2ir|0hY=>13bg5cJxUW!9wFVk|I z>FB5`_cEa3e#U=LBos%?bVAOHVhj-jc&>;LM}|4(+kfa|UpFv1irt_{1BW{X+rHDS zZ(dlr12(y+X)Veb%+D{zgtoAKB@k77_?(ixCE~*sQR^t^X)CLp?;}r5zk@|Q>uq01 zhyi{{%4rtc7sU2=e{?Ro36zVC=_}oPzfq0?mTZ6*zCwpruRD|aN}mmQ=qq#pMX(VN z^!w~8)WCiV0tWAz*djfGc6NUyj2LtQJ|PLZfKlQXx`0tY*>Z`XK%9g*Fc#dt`JF?> z-tEit1>+q3*#fE@`hr|iq6Ek*ctBrpBipf>Z6t){ZUx>~-qW+DuiSZH!P>XFuk;o( z0al%J37P1K){gh(%_ch1B3BElwCB&JZ1N{MUSX$bi5|w@p~WIdYp0<3iW5Tv7AA&$ zM-9F2(GM1=%-c+XHHedxt)3TtX($#+#1FIt<@*x4naB$RVO3su&k6zaLIVOij4uQ% z%?piUiM%kfAAtDB36A=TMfF2ML@5q>Xc=7I`17fhBX&nWJ3qP+zLM*rSU9Im=oe&8 zo6=7vg~x>~{-p588E2~2qMuydXl5WLRyUgTlS_it`pG51DnMMUY#7BaP5`&gaeT}h zA0vAZbj8)soC*}hIhtmzFd?k$M{>WN6drTGgS136n;l?y_KuV^W&p`GbAu2IPXbW{1* zXG*ty3mr??uM}P%H}_~U_RC+PF<@&-m@cd$_mk2F$YN4t0+>W;p`^9;rJQGV`jf5~ zAgM~HYW0`RHfgD&o{hQxGeTm2*=$({Q4m@6IkL$0JLl8Q^4vLz=4wxJoIy5GS)UlB>BP5F8^zf%t`y zp#T&P78xwAvJyupN3$c;0vHbtkP^lAf#boqFQil!SKG{HZxHHoA>mbFIC-m$?Pd8p zyI;lV2n#uUFZGwfVR!%H;4pL@1cz(=`QmjD99|OCX>iy}*+Fpd6n|#DYVmS{huxr1 zddL5j7Gv+Y0qt2FFbr4^95BE{)!FxyW9W-1yI92mppoAxqiCPL=7?uiX)!t-0OVcY zFZ+lE#<{JIx~#D!hVwY&%?2LAP1UR*fN8X#f&m|K`fd3}$8nq1c7Qnj<|=qSl)WX=sUO12Kdy zf8XJ#h9VwYmmbc4*x`s_Zv?_&{fDQ3gxN|Lb~+lf4=gc`zn)Ufh=Iw1-iB&z%hZNN zS#P9-+1O1=RafISEyhL!K;HPxlol2kOWsWB%gSbvZeEO$d?qE)0s|GQVTsY?ElVCt z--7)I%>psBn*-$h%AiJo1tR3~gTVqgzqy-eZK+m7}*~<@vo2F}y z_HsPy46<3{+{u#Z-;Iw`ma<+38N@3RokwFSLk}hM;g{eogO9@FV8+$w3A9-BXU#WI z=13-T!=*|<6|){w{T&6WB~_mvqGB=6%lPs5_Fc{Skho3PESw!rr%7MS?e zBqfUP18*}se$m0?^)?pNeX)aNI`_z+;&jgTwxg<+Jcw6+8+Mk(3W;bsSDlC`R|Yq} z?I>wu?PSGEQO{grL|L1F;H zjW-wX`;{$+mZ`+jDQA3VduWh+XM2R!;5*y>q68a5ts5Q~B;VQIQ15IhF#yF-upeNG z-`Soq&=d|yr>Wkvz7C3uceWoIK*buI4yqPa-ybAr&VYg=QwLDAUWIYtcc4|Qg`@9m zY2WgT4;>VToqaHr;IJzpe&MhyF*w+;>;ArDvc<5g_<`dw7Af!z!|oAMqWC`0(L1p@ zGW(Ka4T~p)<@#IfV0l`oEv>=RLQsRJg}Trhaazb0%eRF()up2`gXOxNg~+}pgXLHb z2Oh9)S6$!E|FGE3KQeo=+BQ0VFu(D!qeWyB!HN#<2+A7|47L6fb|lWA#ke=9 z%Y>+;b}A*T9~;_gOT}YDZW~)dA#f)LA1rrrY@jvh7uF39;um%dmVRNpKr#4*{K3jE zzz@As=zifvT8w@nf3Wlm283e2U|S;E$^nY7|r*80xD81r*GdbU_uZ>(q{zD^RP;lR|XN_}c+SB08)~o*N=x z7aRjio%crY-0;-S?4k+mEP$1YZ^b^PHR#o#M!$CJ2U?8>A)y)%LIVA`xve7jm7g75 zSgE0)l;1()Jpbly>W90WNEA8+hQYjERs z;nlDh*rs5M0q<`8(eFV+<+q^P30%MDx>es*m!JQv>V5AO`?tgYS`?(^qid$NHHwX! zwsSXTl;&sua72}u3C#JiA04&XY-<&!|CI`htW>CY&k-FqNl>Ha>@buc>*IE!e?5#4)q6d#? zm`a;pEmPWt$>ukTQQZ7ZDQ9ec0OX?^rDmE0ufxxkb~e|Nhw+>4gr=+=#nfeP9Zcqq zRx-mkWgC+&tILe9`wTJ*yI0cfu0a0~ZS80{q`gh{`i|i$k{cUDM)FDE@k)4`6|Ia( zy`!-yQ~`|9I(4-=Her}pEJ=`?u$otJUSli%0!iKAwiJ*mIw!EL22c?zb^7Wp*`{GK zr~?WHbsa#_S_DReI9(J{$vMZyUNTS=fm%mU8OV!(ATGy?ZIxQc&QW+Az#o8Y!fk#? zYxKr@FIeM!VbyqI@R}t!H;m7WaHblW>tpxsFgbSrG)aIbZhi|ULFwT^#;v6U8>>2- z21rocH|j%k~K`nqJM>N@Hy)W$PZ5G+eY#)1vf9 z=S>@Xj3U6gd`H%YmY{Ht4d>t0a*i;H&Q{4Ie`Q;;22;ImD+U~F1srz5nv8AUcek8q0<%&lkan3{8$5yQ~mmnI!<`& z`5YA?z;0@}_SkT_Z27Nx&Y3oLks_eiIy>CX&(fX+=h25+T48;%IlT@0IS|1v_~f=vjWY6qsS4~iJz2gi>5NM7GuYrYdG_Vfjd)sP zXHTv22p%`Sb#;EcvD3w>jUeLUH}$HF;9Z(H(^wTljo4zTch72ax)C;lCm(~0$19HD z+j3f0=DlN_cUc<)Uhm|N8r=4Otf@1Tc?>m1ib`6CP7(6FI3AT~uV&_34xr$|Zw+({ zXkJC;4N$sxF7g_5r{>NK4Vq9uN9t-Q=yB8);Iw2*tn*v8&>*hS+trc=m^VUtyXKFj ze#D^;@uwposR(e7 zHKoYF9M4f2rM=;d6F6KldQ%o z7CNi(E3KW~*f>y2wI` zg-cGGMg|#X`$x(pr(pucKXJqBBG-?U*F~;35EI9I_3I*E9VuViouV)&Uu-?p7L4CH zD}H!eB=C{9MH(0uuUJK_B|ND1;v(gIu!1-Znmbay*qaUP;l*AAH7LPZwJ@<2|2W+_ zj+OC2vA@4znA96ZtzDP&Nr%|jm)e(AGr)@k)C6C}ho0P4l5bn)bQHV}5zGXm0Zp-1 zH16%xBg|o-DV(wnuh!J!l?-q1cfQFoDLguv69-_z)0GyZlgae))(4%fj0ostbOvgL zJWUB5Uo3Q_4x@z7CV7C+DMVCWQ{@?kZKMty7fU*|}TOmiXii$vShD6;fDo zLoyw8{sxAji+-(8NPvEAoA`x(Z5tR87PTxt_W(l)Zb%-)-+#=x*zy+o2iWQwx7PVM z&zh3z=1D!AYuRyX9CUL)Tc4W2dEZ_7B2Bu9}_m$>pjmv<8=} zpaz!1D)Tu{Icu})v>I3X&xvlLR{Gxp&|Z*CKRgQLE*?toc`?mCN|LWkYmhwD=&NmY zXf=|zgHLjH&;;d8AjIg|sbiUkLg8YYLy>P!YmhwD=;V9SY9#MK^5VddPy%<5S(x8< z#wSC-F|d-_UYs_-8Ldqp#YYZsrbV6+W}zYAS!yRdk9MwOf}0=Ba<<^^P6_ZS;Vfrs zHjm1K1LK)MLOB!!<3Ir|(c{1xQH*im8J~;;t#?9HTQ$h}n|5rJ3EVAk~wh_&!H`X$K03v1PBWWNLOcu4wp$^-TJHJCmnN25OFC<}E+8fatA zXi`XiCLnUOJj+&VH0jjHtorC6#%m;*8TIj>V-vb0`<&I8fuA1S_7J6LlZxQBbCf)_ zy+(9fbt&>H5MKm1+EWM~1i1L3CZnDEZEOhD03)2<-PDRm*61Sm23)d@O*X(nbPLyE z)#A{E(RLnJ*gw1|H$QcjjV%hq2-7iCXqi7+PFxBP)-G$VoiJK%^y@ys`3u_^NUf4i zP02ce=WllE_q^G%ivPz*Yl80w+(o4QbY1Ea_M(Blh_pJqiZjmvyjbiRa3}R)o;TUK zguP`z5+UD&bb7Q5`Og`Ii8R6WqohOxt!mwVu#DaHcUUg`mcj?P3ialP65ti@rgq?s zraK4lf)AZ3;@2qc_GlSVbz#&yO#`NWw=8vH{vHLM5F=`ZF;IdLwW9ci5w+r&;1Ly^ z5`J@_`%LFD%ZSSF|L_P#IQJZ9d479VZ}?8m2XLh2)GX%^)>w$yr|tQr`c7 z^P~t1!am0s88xED6h{qLjskC*DE5yQ3=euYQ!YPttaOQKM^f`xssUbj zLlb=4vC34!d13A{zsi_cSARxD#cU+i+*##fJW!HRLFtOZ<+Xo&Tkp05o|gELk*`Beb)TXrxQis{9uRUE@~O{ zblXUYlK%l`5rf4#$u9PHLRiinUKlHr`?qKfX5UZ)*|(d0Kx;7ZenIpIHEnnnphR-t z)P|2Dip>D=v<6u~ zjXr;9OREJ74XVW(d)u>;6;2>5Ebn_}tPBMkK^HZFIKBlY5QE3@%UfUq@r=-ohJr0b z*&+x9u&-z|<&I%sb0F483L>uJEh_(7Y9kw)OUrR+>!@nq+w5`T>%Yy5zTED7!^Tz{ z5JdW?BdAYbtQ;rPKOVCS=J-1U5i02jibElfKBMxr?6a z(tt0-s8KA2f}24}=}R}i(&7LUtGmE{94EaeF5Q&QCf!wEx~WKuap|UXwp_X~AmGxC zuCmHlOJ>VA2f)ZEx)Q)3Iwqa8!zeG|6J+`3b~&(ExiYaib5V&zx2vi1Rd22gROBZ+ z44ukQODDFK z)}RxE8r@GGqSfdpm-Fb)V2x!7K#A3xHz)wQ$5$2Qf6^MH3^lrY{ESv3e+nk&1|`H-GLO#CVO*QhogLE6!CcnTmq0ctRkJBnpBVc@J8mXXM>P zF=pfwvSmhI>xZFeK!@@iHOz8EE+v z^0nhtLS8_t@iKlm~VL=-c z(s3JXe*P8`9dR#_)@?kdmmCK%vBXfymc&{(`A2RwX9 zZX(!Q$tS*CYZofo?&c)mXACg9gT<`zY5<;EC91$5y`4IPZ8u0`lwJkaElPS=Dq6*! zF~A$8SMW!b^niyia&_qyKn+R*U*yt$!ZUw|?R)Q1m;fiF0y9M_f+eBeHtp&JIS5NFe4I3Uc)ea4d6ZNdS^MJ77S<5V)Em=^=2XD8>*N0&0sd0(UNx_JMY2 zqKtq?C>E~a9GDnnP3pyoG6W76D25QYXQB*&dknT%4$4#=8a}amn}jU>rZO z;wXZK9XQFi*ant*)Yw6oQ2oUsP9fMqEaI%3C>L?^fW276p(Z6b_!hh356Le&O z1Pi?_)yv!PNpiDSmC&?qHWvGz5n?7u-`wWksUNUp1HABVIs+9Nk|xPjpBSDWZ?BcSPD_0j52;z`fAGi>31fe;D^!Y{*@fy?kuDyI!%;|-DszpQgn*Px71l3$8Q z>(1sG;Ej?i_#7qqm|{U9O*BI(8FbCGQF!z(&aP}bg%N|JrcOqAc!~tMk+>V-k6)bY zY}(OD(n0GO%9&FP;-KlE_IC;J4CtUw3pvn1zbSs9gMJfi63juv@Vj*fcDb2Pf5!g~ zWBw{t3tj0aq(m{#+j{>_e0*(pFMj^6b1Az`2uoM`(ej2 zaQ&pspA2U-Tus@N6an4(++aGaoGjhCK?hrrtGzaRvOM8G-9Sv7@SieSy3nDMr3)Pd z#KDCISY2ETf21(|ef9<=fLXS#v+`N50!4ASKYNv{w$1*-qnN12XTkKi z8AK0vxX;Ax@?;*p##N17rsN@dsI9Oj_zx#bFTG_~`e9aK3hA=Ax^#4{s|~9{i*a?S z!W4Nb-$agaTN{`Dc2xuNm@u0F-v_>aPj3Gw7{wc(mac)VtifL);Ni3vscr(_E&r}v zS_B=6qywQ>>nXHAuhvWaLa)|q3VJn*Px0Lfb1k<_HXq>XN*u_4Mz|QioR|i0h%396 zu!+>R=p4t95~ag~oO$yz-OQE}!sr}r3$eBMiTv8twRuzcwuVU&d_YxKCfjZT-C_hi z`E$!Ee9R-R-t2FIpxX0OWcK&Jz9;~D^z3l3ZjUEY?Uo6;hW1Za#y4_ z5_qWO^{E=JI@+&Oc-K647~jx3tpdMV!__cyt{_j{^k~Wt-E@yg*W>J=sQ~A9)0mNt z3dH<_U>3pQ-7Oj`PqA>Md>`dBc=RQJ~!HR+K2%Anj7)iwOw`Xji<^7Ko4v97Do z2#dS0vp^4VNM#Vk(dFzPOwQ3(a^fy*3pwQtIR-&7j+j7ci^%OC=NhD8==ZELh075BG=V_0pk7>RYkuyca^iTO4EQ^@u(14vW}$^%ktBB=pJ_gt78Ba z39=5Vc8WwzlgloEg6>@hP_#m(VVYiaqet2r8%w4Xad6?GflOMA-8Fd{AKuE<*odG9 zJDrWX3C{~`#Bx!S1lMb92qlMSp*hcei93XF$U0QlAs zcXht1nd@Ob+T{u}^1MG(1BSD%B%V;9GUJ89W_t`&{R7%3 zpnoV@{{Au2>ndww*QwCfUHV(lucEU#zi=IFaJw0V+*Lc>W%;Z_k5}S_^<0g$lGCLD z9-dA*x^4jb^dPMqI^Cj`0}P;s)jg0wd`kVEL0oY}L+_Xh^e%u-akjOY^jGzuznC-H zOGD>8S+$qCnhC~jfVmX-kKlCu$rYn6f`_(qb!AZju*%Syc za9hg=KJB%%0gTN6BNY2}vB$df3`x2gtwGXIgQOeM8YB%h2GT1h0_kK522yvoDaxH` z1yc4Z%Kc~!Qid8oWxUJ4qWOGVrpxL2A~1@|0Y7-m)u`+opq6Kc3t-mrTj{QnJ`6hR@ilBTJ5lPqJ+-c3&7Gn zU2#U{m~ELr4PxVcgx+4RXKj4;QWsv;fg!rhV3&hkpps(bdUFOIbuWg+#PhR2F#DUJ z>*AcWr;Fhv&8epDQ(R`uAf;FRYW&* z8ZAacC(V?13YZb_NOI3W1Umroy^GS4ELfBu>T1S(mKd8Cr)@G~1n93el~8q*{;v#k zac!PSf0ZLr1TK#(1PGvxuB{Qpn3#hjz@?#MGv(6IGZX>e5+BhU-8@!a;`ysxt&D9h zR)=f{1eW?Fz#aol@kxN4k|usKW(~i(&LzKtW?Lo8@slw|Wz>C;p+zr`c1^UipD0O8 zU-ZtP?rXd`Q@)vfC)@P}D>;kwW$XgjqUC6@=mK^CWYUBISJX9TwE_{elC!vH zqALJiv?uBIDy7hXHf-AuD;hi5HPcqqf3oX2xEY&L)JJSPT8y33J&R|j!R*n9Ack$! zG?z2{mpc^l!6mRTWycHz8V1$TG=R52(pE+!Nx z@=3}Ry9zV}-?lBSc>snG_x2oDlKo#$pR_&A&EBV|7<=9gChyf*7EW}0t}BuBrs5`n zJa$J~Pa}Jb4Zl)`LROob-`a|6ilOGVO`Jvc6X?T8vC(FUyG5E8ZJh_x244Oc30F9T zqGpqkg?6br8?H&)lUCCJjQylVAgoq(HjjDI6;lkVPds%&YRhywe72l;{<=49A?rvf zq0T*M3F_RD$GrfKMcl4NlvdQ*&z5h>!uc)OYG|$x1#a-tt0-o%t1*1Zh7#A^$6Q*B zx&t6De<&@|jDZGN6NsQqpUvlN`FzGvT4K?1yV zW6At$&|hEKFFQxA?6WzfSK$yZJtv44i52YQV(Y&|s%&KcK|62&)f`vcDztME_eribx&UQS!gjt~xVx_DrYoG$K}18GFd$~av- zO`&k&^qLV0r;EJSMcIfrQ~U@Z#7yxA6E4)?bnbUrgOe_(!ATeJ)@O?0IiR{>rdTmY zlCDi_P%NlH(y_D#NkfgFG|uNNOzYb{N6zO~g6L{Kw`7N_sn#`zzp%sAKXSJan9knv zsRlTE+ju%{66QpEXM(wVdsY^0&Mc=9nZM@>E^(|U}V z<8y*IfSeo|GrI~D|1v&K*hYvFI$;}`!`tk2)iZL(37ZMjAU96fZtit`Zets%U@~75 zv$h?y7()R7@{8xvj$2`f9O$_~3~ggh(Zh#aRReh7+&~wvl=PcaJT*7if7mryJDVft zMmmC;Oi%=z8x?Ii;tH{`kEj^BKA+QKbZsBy@R7${H;f1Y!m0C+l$R1N>b3Y%pf`;Qmm_m| zXi0Y_k9yHHn7>pKzLN*P(sC9BLdDtbbji3rI`SW z^N{kNrMc~FJ0*raAnThn2is4Ju?K9=l`{|{LUDTja;}_#oS=x<5`PcU5^q_x1WrJ7 znQO=%0=#hoV&v_&#}&%bFDp(!Oz<3)`?nQB-}W%QG9nZ!S8A?QuJl~eFEKGGF*k@` zsx;T4p9R$p=N?ApV(x*`Hl$3kxdBklJ&YJa+%j*u+G?J;yyIK2?I4L_q8oJu6E|b7 zg&SS^Hsnzjje%2-TKv#SR}-Ff1Nx~!4$MOPQ`Y`A5%;fEGSScJY?0(*@Twww+Q#-S*QGsoPwc`01jn?0V~5nfL)kO#E~J#cCR`5{X~dpmrg4 z=$8D?YbhT2-3V|D);Pm*WrBT$%7F>CPF|(3AA{n0g8k=Qm0&+KFR&lql^w&p##5GG zd;}I20^KF#*CuAS=gR#0HkHf5%1XAMl$CMgOe2FtqVMCznK)W3Ol@n#qa)pFUT2b^ z{yb@JARS;j#q*XjH%@1+gE@-xYz<5$a3W1ahf!~ViMGMpN8L;76hRXz5~DEDo*;C< zM0=w6g^BjWdBGCxwx76mStQ!cF1vQHJZcS0v=@^S#W!!~10~wSc^7+nKHEVE%lvxl zJegl_oQL_fe9>~;1XcuKB7HtXYcR)!8q9Iur!^wSwH1jrm4{Mo8|802(P^Qb@2Pn* z*PRc1j9U$B@skbUr7ehGDm1R#Ll60G10(r5Bdb2mgX0~aK%SH zB_yGF@sm_EeIuf6KEU}idEAH?b+Yq)=EZ1VCO0DfN!f|)xaj+9t{-izBISp#7b}Po zn#)pDm1KR&(l=-|=gSOGM^L9cDFVlg_SbUhjWmAXdsj4zp$u_vO-{x1x>~|~{{7Fc zh77(NtLqPOB$12jsI~a{L1JIq`SKO7Xn^9JJoH!CTBD0qRz~)i`SPktg9Nyj;QV!% z!StTb|Ge&M#QIuG&@-3>!>lCeQX{>-l>|loZo2HYU`CiDjljp$apSuhUH@6ZxG%Nh z9#sFTKe`fvG2gCQV5hbIg~22^{9j2>>Sx!oU=qBcBzV(Wf>XgH_{V=G0bEyFg=hWh zDy4}IA#NPP=KoeT|M%9+zYfOy7c1t$nxBW!qh?Y^H&Om>KCDRBkkNK@rT1;23=#g)L6=*3weZGCkdq)ILh(G|odt59 zaE>Bk3%>PNE%<>|3*uZsw@H-rmmmPngp30CGvDi!uU}xC37OzIYWUETf!$kbs9wbw zvHWV{-hOZV-OfeU-WdxD-@h9a}$S|H(C8m4BEm{M1ASR}FGIpSV4yRh~VDWh2 zVwyvGqykvN3%j`6YEz*zKptuy4wDwhw0|+x1k-+9E|umkc#@|5yPs5P|6YoTEw(d= z4W71YF}bX6VpjO1O#2Hdb$wag1i$G?vaEiQBH_rxy#Ep{#*TdPNx5O(MDCnWfozxu z^1^<^zRD;Y5Rg~Q9u;aY0F&scKbQ+se-rIVbUcaFzlybEgJsLM>FE(PeS~p^D^-xM z;w+%rLMXvmKy~p8X93k02Ac(p8JQNsYec!XTTBH?M!S!&ctOOUlHyb#mXs*wd3zsd zDsY!QN@&ViK>9*C3uw2H%mN0Rzy<)Am<5cdH8=}^8k_~>&>EZt4B*F}@XrF;$=^5& zuu#m`cA=aFGyy(p#k*GncT25sAz#tJ?Tc(HsME~8DP@P5eV5&Br?7pr7&H4n?bGfv zv!AN=VeFUm+A zQ6=D05N z=I-Z$NuVu~5|mg3l>D7om*AmAK_n=@=)aMGwQwf~lc2tmprN${b%ROJ;=hsr6H8+& zh)9NsWd`Mp9uAE5alAXxC^9CNCi|M2y+|gOS(K=rSdLvJ6U%H`E&RVWI+&s}7Riup zXl#*GY9kimW_vAbk<2P};nceZDx5#7yyzZd~wItQ6NJgQPk zBU$NOi(vSRPoH?b?(P~ZGLRQ3rA|Itj+bW^sg&|f3R|2~UZACzUI3g-DGdmsRl;@R zYO}=a0E;W@3){LI+S&J%7>2f2I=EfzCt8dR|NSDFR2mWd*_Kv%u}mtI_ZQ)}6dq;N~TTC%UI;kxPChqFR zGM_XIrKHa8WYU9*8$;!j2JWJ_k*=&@zm_8flSy;!>x<;2UeCZd7TKiU?rJ0)1$41X z;}lf{vq>FPEn=ToOtZ<)7OQOX3yO&?b|shzu3NR3Oeam;K3*)-$&V>{J)Jbcf3TRO zljWAsF(TR-)5*%T7`t(~C33~yM6T=-xr7X40}Q9E@h{-#->RYgV==$d6QM?3OW{i@$jE(j*bWrrvu{HpGWMd=^14`?wCw+o^K6)GuX)IZ@~t)cFx*f$1H z5iL!i*HmW(6zr@ffQ!&U{GGKb6-l+UPhf~k=N>7F9qwLgV`Y{?jXxzrv%Qm--i(FP zVjMtamh$Y8?m-p^_eQ!?SRE^bEk1a~YUWU_fir=%3Pi92Aos0IZ()IM}|*?|bC&Ixb78WtE=#)Dl}T4St9 zcUoYeD%&hEvi>=;rUeE{^^7G3NL86%Y2UXL%6M#Dx`(}P37A=s?l6+Z^i=P4>Sin2 z(d15i#?zl-pHQMA{fpEw)kPo%OnghxVUqi>jeSQ^VJg#zH=p8er2V{9epl#MT8+{8 z$E871Bik|=jrWMr<)6ifPYQ+W!l^i#Mfb zT43m1wvi>;#rP66EYPr_-If^Bx1^7^z(CPDT4Eg7nx19E2xvd0IBkU@@LllD_R*A} z@LQF1bEysP@U^J@?pj3^x2Hd9voBqyvV=T}h*`qoWkH&zV42KX4NW7n1QW9b%Vd_Y zfRZoH63oKEEA#zuDJi~devabE&>${pc!?IHk9%&JOcG4opI#=Dgj|qVWLGAD*~_Hg zjeT`=hz6!8EM1yhf;J);+E9fiUQZh%NYj1kog!$c^E+^emzW;>DWu2r;GXz}>A^i9 zXT6tr>3OUOE-bF)4_08q=kgO`gt;wr~t4klZeT4*U^UOak%NAePn$>m1Yv5l+DGX>63Zy z7v(!YcqLkg_g(I8tj);dE4L;zX0s?PdYox_LAv$AJn3kVj7JQ^nPZ{g=TeNr~y~Z)dNBMnir9}M2Cf$EB zJ(Pcw5E{lGUGMfW7hxgCMZ$79E?O+-x0<($;L|t2B($3etP=r)3qT?)Wc9@@m*b)u zz^ZYPxzSx;o3NaZ-{|fV87HXHaZ!V^!3?|qiS)i~CM}k`B912CPrmH8KovHPlEm%8 z%Qw3>v8A*a6Ne?D1Z7mKLq<$-E5#Oyr1$ZSq8R%)*g@~(FD{pT{5ZwJK3=pu$hdxe zIqBmQ1fCk)s*gVdO(pvH5lRyK_(9+-`uN7>vX8F^7NUa_;VyJs23Mn++Gtqs8xM!l3kv!fm@$3qDxx(`lM_2CYV9K4aQVuUyuux83 zu0SP~w@a8nyQ;Q_77J*5)s)co`PVYq+E(Cwf*N#2Yq+1m1^cI?#@;^X1ITZvqamYI zdi0f0B0akJB|ZAeU><$(bM8Hsmrw0_07w0Tdjh}ly!&-lS4iL=Sr`+dNQsg>@4;Ao z!`y_X3<8NOWe{k&Qm&s^aP_rVsk}SDf_EoZ@kQ}ApI?jSD?d#yRkjb%Rww;0e3V{` zdyl)lku3y6>i8q61jq6-YVs3r+A9{le%uYG;)c*l%%aB~hQw$zEf!-!8?sW~8f`}K z97$-#<^&?x0kGin^qLkNUVhmf&sGH@2o8lu6B=0{#C`!ENZxLRaQSrGNDBni;n_e0 zArjC35@t_kC6L7%mKaB`rPnuNV1iad08={;q}Vt>uB@?@jiBaNok}z>4u`J<3J!;_ z#V;HVU(4ZO`DMi#E9KoEl~1{sS)@9VMec|B^;7Oi%(e>18T$4gL^>tLgM7OQqJ1}B z{#JT8kNqxvC#y>N;Q_4hRr1|&eOiO>j-f`s{VbkV<54N7#-madSIOaFA-J!?DmgrE z%i*E*YtHYUao5&*tm08`xicaw2&%Mgek0n;kIH_1u5DXh;bwXne&R;@P}bidhd4A< zm^l7E(;zfVHP(lc#5Cw-mJ9c!+)7`>#u)0vdx@m8?&jLmReao8cM~?9R_g&{@~R-w zaQ-S84SNVY|Kz0akLgvLuG4U%J?x{c1K(WtO)d=&%$r6FP&82qxnKz*@%2BZH#N$J zUEKt0Qmv@VPw5S9Y%7%;Q#>72tty#NdD2DqQFe%8Vt#PtmvpDS2!#5fX-X^hBCQ9D zG~*XGR!Y#GlNK>wvHuz%hTcx^8?FnW_NoFWKKFKdi*l5uonL&tK@`7oJH0KtL|I|V zdE(me5Dn1g+)3|Ylr+FRiiJ@}k;eXNq8atDR+jxFim^GMM`Id$<(G`pTBUq`_4UMh zEIc2o{i7IHT`J~d4=``=ugT*yPb+5V0NMZWB-&X%y!yORw>pC#gqX;FVxLH?%i?J< zdU}@6$G_`oWJG{PnT9<3TA3!SG)2HfxMaRegnwEk6X9FXC?XLynnB(EP-$IK#sxNt z62YuiZzpvZ+HjyM4n5rc*xk&==Kp7eoP7BTX^A}}o2{kr7}xNm`zBh9+O7pQ;&v(n zf@sz-lSKLXB6)7hk5%&EP9^+Mq6umih~dwU?9;*etW-w2ZTNq{8Uk42g64`prSxa- zQ7Hqgqc(m10~+aj#}M|F0aWDtx+9o_R?GGADYP1V;9zaS>L39j zcePxt8Yocw0Rh&>8}aj>RV{lTOIChkMQXm)eDig8YB?&ba-S7$Kw`(Kl;}P$R4r9j zpl!L~PB-b;&3<6Dokwfc!{8#=jOy$VMMov~1yi!fO3CrJ+>OIl3nJ9)!2R$o_v1l@ zK1;b8ghuB;b;a3Lq>00DN&(*#&iN6RVZW!vIFxlvwfpO97$f4G+Nz)2~E{(L?4LbBu)oVT)zaaem7Nx3J-iRA^`@^Z{0jSf_7Pd zCG>k7^YKC~9P_QjFC6o&)&v{#J#V`gnbKAdZ*T|RKz5=E;&5+IN)+F`b@xBLwi&@kxpimkKT1>vMIC}^O%{R zw)JSaYxuppux)4_t;WPoTt9Au6aVoZi!IlAYvk?YV+5Li7~j0owiO@sr~7`gQ@;_y zRX2g_gPVHfIlRa%f(cb|A{7=_oDa|v?1h-d>=nh>X~2wn8uJER3nkK+Hz}4#V{E5_ z==%@xY35e(%%Cr(F(=ljGzNa?0|5g&rZHdBVvww(c4Cc8V+;s-8uNFGAkrAyi$W-Q zI^4Eb+9lUlvaD^FEXNb#Mw5v3YuXQp6>xM!uZ0pE9ksIl_11AKI?+?~8G#4~_RH-SxFD`%LCXbsYb8kk|a**aQ-lS`;Ekj9T@ z9;RR@!G1;h@3aO;yT_X($mHQ;iX8AgDtm0!0)b^Ip7M~Rx1SD17k+O6|`ek z2*20zPK%R9|I_1OYijFQhPkP~MELV)CIlk0RP`S4(pD?$8{AB^*i zx3PniC8knG|JDPR>w0E1(4Gh8^I`Sk1p|!O3;%3EkSWot1v0mY68+PkOKpw!G$75c zI?KTVektBl-6%ovwiGk`US+@)tvuhcs|JyT1H_ewZ)h}@Q^VTlU zV%CZWA4hehOmQ67a`+6lXEqNRWI0e3XeO6K?$3c43s`>xX`_Ev@O?Or3jW++PYZGT z2rkO#QY)x5pz5FPXze)fljOCbz!&?LY*S-(%RFNtqK&arcOrfF{ViB z98gRf&v|VNm*;?Vga*<~6hXf{Jc0&kf7F6Vk16JJLJUkXpBKL{#e5!=4R(8Y{95@2 z;doomM9Wue%N}rs^-ep_Qg(qF2lLE#NQu%R?|;CmG#{1f$zfj+>N3UroRbvuXIhO3 z7*u02^(p*q->x?+w;qJ@C&rkFm02$cwC2snsop9s35P;I8s=aYTKO(>nS;H-i*v96 zqdXCsdp*C9>4}ZJEQFys*cmF_`0z(#dB^si=`4kcggMxoftbk@|G7%k^rJ7&6h)`X1FYyzbynlfT6DN#-7dz15n9X(I8#iUNY z?Od>4X6XgA1}zLVn5FNeHJIu`4VpO@AT~i3U2#fA2lf&L!$y2jk$#)jAZe&U(wArr zl7<>Wx-$PZCu1=CHw8n|*A?l9HU#zysKEriJgq^}P~#_!ogCkW2~ThK1XWQqeU-;ZiOv_+iRNS!urZ_(+uk;k=P!gAHGWrV=mt5N zLxVpV2&&Bm3B^&P5UO5YhPm6u;2;|NL)_?;GIh!@i{=;JCX+N^}u;`z+5! z_Rv#M;`d*o2ixuv+ux?PuNnxdg+HZU)zTWYJ=CD><7o}r9%|6`KpH!H5aIHN{+~O$ z+O6|B(UN0lrzJ#hAl*4)m=Fx@JzV@kdk+V7{;SUZ=`hbAHk+y_>|JX*Dbe}DFLd7J zdDl-nh4Yt}XB=j02&D9SE0syN(Hb-<)ZhZb=8>Khc7#@=U7;H7y6h=@=};wz5IlNy zM(zKj7f}Z~rxhg&4UTGa8oY z3*7nDOOD#CzqK5_|4NP#R&rdP;)xEoXcc?GW(eSc{UVy@P4zS@kt^i*vzwXVEHq&KMhQGhW|-kZ_dD1kn?)@4@+UqcIv*JDlRd%CgcO=RTaf}akrj>Oj7q~3gO zlrvZzKoR^B2#WO)zQ6(GaaGWtHITwcR_)DlgGizQ)Ywo8G=8%jF@S>WA$m(HfV0#a;Ccx4 zN<68+^B8*~kPn%8HZ4vTio-6v+pbk9yr>5EG%c$Q-7FVGbjHoi7-T_&&Y1l^5vJX^ zATmqHfqBbp@eA{o*_(qeh=4D} H!0qY3nFL$5c;Tg*csBR)R?6jJcC<*fNA8_R) z>0Nkj)_WJM-yb5><#NWp&2lfwF0hpNI&F5%%nJO_Zg?^AI)%l#>q#9pzn60a`@{rs z2_VE|>pNP5*(uaOb{fI2{N$*|?$Bz?PN5pJQxF5QehV}Bc5asIAIpJ>dIxo3zo&*) zZ41A?-{XngDX7x*kCl`SzJuZyGfuENTL8|Vq~XDol?Ofd{mvVV8^NL|NqnL0pe3*> ztBz2$62%y5K^y&r_G4S*3+)~h>*}c1Lv34vgo6QFWMHf&F#L%|?n$QRlM1n^aAUtT6fz0gsHA<-7 z91c?w0t!Y86Rlm;&KNBW9q#fqm|fB_4>t4 zaM=|!%b4{VPQ8}zHfUMX^9{Wc|1si*4TcG&( zdbTtzM)4oo#@BuTs}cqTJ=U1m+%1%z{_#tmOjd`I!*{w(Xo+B82bguoGV2;)(V!@i zHxNOqvrWEnHxL(Hr;1`IF1>TJe=XI}orkdi5hkt$*Ld)A!BMdF4 zNr~c{xBLM^%S&Z4^Vw&Fuzas_S=dV5wEv;}jdyHXh~T@lO@@nCw-twreqVa3YT9-_ z^-E8DyU(`ZCI{3m$WJ`fa8>Td+giDLL z+vU>YJX(X9t&Xe`*E!p98(htA)UqNa27EAhwA_xLiR62)dnU6@2AU#i)M+XcuZK1i zD|1CRJd@ZV1H8x_P4N4-%iI?5(8ZVl)&ap{7xT7(piuyowVnn`ibF6T8$gY`RS>wO zcmoP%tvYW-YaOK_TuT*e6Tz{vTCXJV*b@(jM$n<+HzJHTbTuV+Knc2K0 zxteA_gUQXS517i{_}SBm)e=Pf!w>yUbyA|3=jA=1zd3l<6T)X+ax7*Egu2XUTkMdF z1}U@#lUk_3x9#0%4d$~@gZXT;9hlEnwvgG^lt(x5Mrsj2UZt}~fAdt)Chp*8e)F`5 zY$}M-VNjKF0sj=sbAD{sjAzu&e2mSab+~45uFHV?&S}9Kp=>%OiFa9DzU%qb#+K1? zbSoQnNVl?))}UMAJA!z@T|1;(nJ7^FUJ%{NnjOlmzz@CQ^>phvEk?JpW`}eu1_a%$ zECcC;TUja)X@+c25Z%g0JEU9rgz`YQq9d!5j+dZ;VRvoKKb2dd#DEXFm8HzQao{7zcFW z2+V+`5fJyqX(e~^6`v($Xg@+bi8XW+)tfM)i#=8sgA_&u)mQa8?35mBpaIkk=&}k)iIO63^#i)BqZPb|*l|KwdaI(H z(p#OOHR!FNMxTPePpi>oLA7vMwr6BFz`V*rZr{^8WnQ%r7%9IM8wP&t_D$L|A=o&yv|N#g(=auwc$*l-#_4M#At+V&PpUAk zwz{Y;;I!0gYoaJdR{=)F>1+0$>JzmdyX0j)Pf#pznUC$Uzp%i-UFtp`@8B>-tRS!R zv2_-x>hq9~Qo?uyC_~h$4@4&J!da*-UY6nUAEQc3Qe3=!yUcgkdP)erm2M2Rvbc7a zoP?f9$%L0}NB=Xz!Cf-B+LM;qhn=MG*h!kFXC`ZJ@8V;kysg<;T3x)Q!gl5_%=G>) zxvRp^Q4VKhy25qQRg(jAesbvWdPXU5-f4n;8I6Ts0X#aad07p#KrgEUDtqjcRu!Ld z2-z*f$DUJ~U!7Z~m7KPM#jH{DbyQ|(kdAe|og(NkBi#yfvZ&oqf?h6K{6a4my*rqf zJ6O+~YvJW4*7x>cE`jeKwdmUtNQvT`S8)Hn?bsuUJ>awFiKY2x4ZK5GM?#(37AHNX zW$xy4Hzc-VeP|7gsfN5Tt5g$F-TAk~NR~;flb=d_BEmvYU&e0f%;I(zJF|?&-Ws*0 z1Gf71TIop>296v%a_sQ6i`M#DiVw5R00}O&2#d@REa<>*NqOQHE?T0DBX~liG~!ts zYc+^iDo|wn5x->ov1*xH;>=y6<^ZFt??^ctvft!i^m`0@l+3Z zY!#1DPrxHvJYsvoqm_6x=_URZkBmO>=qMgD`@$nvJa+eo$ASJi@O)$tJZg$Z_+as` zcx)H~k1gWi9SM(i;&IFek0SAi8Uv5|;<0foJhq8Pb~Zewh)0=;@TedjA54PBC*m=3 z3OvS%$D--*$P%NEPQ%@nmv~weSm1_q`!DeB&PT<>DPFzHQynTrB6~ zi-A|gN)4|0M2Hj+Cs!Lq$isXk4mzX{20PytHf8|7*RNL$f3l@_BfBWd{jLkwUC-?n z(~~%U^gyjhekR@-2VD-QHUp89cpRM_;@3iw}x#3 zw>e?muXVEtYuUql0(q6#LwIdW1YUqAcuBmOthNcImO=q8QMI7m@=A;zIdyX5Uq<=d&FU4R0S@w!IEv3c6XI^lXG9J^+Zy=5XLeDaQzr0}gipD; zd8H=Cg(6#UdSjkOdDsG>e&_AZ!;45%j+d^Y6;kFcLZ0sMunNWTuD0aA1pLe#` zt**gG4P>WE@qWfC?+xrBmG;UWaxuUw~}^Y2?}Vx26w#YmdLGJTI@dszxNy8 zHhDk>@0R9`W37tmG~dfHwQTeK^C2BcDew_FW}ff<-LLI~auK{uy7#M2Ei4E>z;TxR z0p4y!r!%~bHTD>x%scmJwUYIrC2`-j_wuL-mC97<2gPaxWYzVLfXDXopC9#ZFGs1s zG25;zil6G>9l^$0)5;D)3s(%f2^<>Vsq*q-@Y0>Ud)OjM8r21KLE++EJ_!xge%mXiIC1<&Lgx@Zpr<$cKJIe?p>nma_wsqY zye|IKLT_0O#*N77!^-UoXznk;(g#~4YoG1q<6m#pjK?hX!bVI1g;7L|w|mKt->(cc z_Z3qQ<-p}ru*wq&8T{VOS|NN?KWL>U{k#WCWB@-t;E1;+Yfm|&anknT@|rYG_kF@R zE$kutU;(Xi?<#!j%(mrt)Io0@o;JW+?S92Eh@`@;-23fCUUIzy0->RwIH)|jNWVp94dza$gzfp3v3pxiw zCmQ!nt+M=YkgW2_KJOvz&OTmu6m+5ADPOeEuhc>%_v>9K?)Ta7N!!uhjQh3IkNbF^ zF~IXj$`kEWWq*L3ZYnK)*e3_tsIlJNtcig79}F~GLwV zGu!)miEhA&mw(L@&AL;b!alYx0@*D`Sbt)kRh2qb;lK6uR^=<-_m<)nCf@%D>#(1H zJkjfB9Vl~Qs7l$Qgm$P*qDtC+X{?_nfmd2UaUY;V+2$HK_=g%8E7GPN*k3TsTb~`G z%+N~vh?R<@mBcW+`cliPy!mvm`+ob-uKhf6hBtxjq8!mQX97(FFAs}bdFy^L-X_>S zG?w{W{@Cq=WD$f;j!9~-y^c=429Ishu!(jOuD^+ZJ2NVdC|@>$#z$xeT&Ft$p`cmI zfxKY0cd0Re;=$43bG$FGr~{CrxKj;Mq9{GcmFuC)yguIHVDB*AE7$8`%?Wib zmSn0}@bfi004K4>l&{Vc=6V;iREmR}XOj=ejkewc^0?xbdERn-#XN63>t}-P6#!c} z-y6bL%?GDA*#tXYhfO~39m|%RAeQJ5aOkx%-}~B=Sm47&>goxWQ{7&+h88g)@pJR!^d} zDj(391V(iz=4)Ct^TGiv(mrJ+f|IG7_WA#iZu_NtewdjL9 z?kR6|7EP;hVK%#V`7->*a&LXjd5}k~_BLj21B}?%mUxgPEU5=^$zHp0fVW=bZ5n15 z;OOnt@n7JT|4W-{0lcQiH#U_-@UK^T8ySnCp*m_c;j_iZU`JK;gS_iKn9qN*3RIgy z-d6KHjSYD<-Bc?KAv+G46&K~UAy(lYQu)r`D^YJnxFS~VWB)?2|?hx&~R z(C^w>??iT*3a9J$n$qtzT8;X}W@t_AA031xzW!wzuuly2Lbpp)x38pbcIfT=YFVu@ zX*ac_02rZiMn*!pz>)}ln|oUsi&3u=0ean8@BM^TJrvlByX@!`Vml;zWH_xwwJN@5 zYiN%-1Zq7zqBd)0s26HAK16z>;}G^nR4Z;#gSz29y+5j*TH%MJUPewrufUQBK5UbB zp|KeC3O!`(kJTzBU11}sWY}IuL#G$(HI&u{bjR6;vVWhvvA#t#k}ksKO|;mc5}P8 zx%T=Y9=!v+$7vIv*C?NhI-fQ>4c?=ekI*TcUs%FQX`o>AORX!5jkjfaWR;{S?VCfq zb(N%g>^l>iuPB?JbvC`KCN(6TU1xJ~bFzi$3L;9^)5;x|uktD!CS4a3?~uc!^F4A{ zzPoGVeKbsiano!2ieEb;n0lbZz%;C`l%P z5C}CSp_dRs$%dA_yBm5<5CNrk2uc%B5F{X=XlM!2rHa2eg#t+g53(0wVhc1t=wc#3QJd0+`OXX1^Mu z_(8K5$54%(ir9yseHrOOa9d;ROlPIAzQSJI*61gG;kHJ>nwDb zwUj5UOR$Ac7s+&r^|k>4_eUf6=5-14S$C?vI2RQDmYKW@ErN%P@mmO#D+t6f*Yu@w z9}pYNC_#q}X0-T)4QBK*Y%pQ8!MKUvS}G?Zl{O~K@!511=f3H{64}dq#>RwVeAp&v zKeMPw*nZMTil$K7|4Lpy{{F!7#rT3P2~F7|B1g__d`M3De3>@0nY1+_ovo%c=$gyH zHN)atDL*Zf-<~?X4Os8@Dz;lMhHvi#{E`sL_q-}WIiWmtyh z+kOWUX0rDw4Ga`37MNQUZ{G0Pi!HIrdl}NvCuDG(YA>S2u_-Jtlz`i=FNXT@g@+Of z^RbhAg?Rp3lVy65uGC54;jl11^Ke2tcF?QXUcDHGa^FS~Pk$3wczHUdlAhif_-dYB zLXb#Le#ES!YUvuGe9?bk3yZBnl7nD)zcw4DNfE z=F2ME8?z6*icQvwVX$6&7Gm#WuVM@JV!*8jTkBO~m0rTl$e$m~f?fYZUS;P2XLv0lZZ z^^R1*)7-*$f63M#aV*}1X?uhPt#n~KC+im$@*llc%Ayb$$ zi<Zu*Q&ry1!-6J%&H{8){@Pm5;g)Th0REv^XvY@1(h= z3OT1$NVcJju;2`};JU{GZmJONUcgSx1fwirf-yx@h#>`y`qg06m#oYxvxm*vR3*@| zO4?I`=6b3kb`@4dZ9}FoBxV)ytVXNct;19m+GmMMtddn>lp*Xeq@dQtR#7*K;RCJq z&)6U;AFBe_3pLgI(Oj&G!g~t%^W}c_y2|)f{IZ|D9-Ck&BP@7_S}@IH0WX^0-jH~c z_9Ayb%><(?VS+g&jQ^hB-qe_kmi0DScBz2lnVbjy-_y z?(QGK%i8RCo&zr*?V~20lqOlB)52BjqI$^H9xwyua$V9}3O>KxJkVZQxwncB4}?X~ zzYLlP0Pj#~&vgK2Ggt)8Nf?YFT6WE^fPJ_+*)zPLKMxLq)yc5ca0c35ft6TIycDe} zx|+CJxz%o0<1K>iQM~Qp;suI$`Vx;}(%+1BiOMpkgz@LW_9SC6R@O>WW#O{*%TzbL zvf8bdO{g8s#>&!nhz6{d>(+w|Wdw}(+mG zi8)NgoYTeNy0tGcxNhxb4X#^1S}oVDpHL~dZvB8tv96Kp))^mJieS@{3)jAcVeexU zCS1^*qAgq-lF@20h>D9?Ka^7@wjd(pwn@v9SDt6CMtOpCu1cTh8Ph=F3iHs~qdGY{Qt;R(> z-wKi0)gBP!HM^oza(0yg(%rKwK_X{Y4TTPS*6@DS?Ulp9PUGxq1+@Whn$Q#|jJ~iF z-qjR0O>l*|rC^A@&`SJ5Uuc!-!xz9Q#r=?^Z~1T0_EvKBSp&n(IPqI~KP2&6?S4oi zoL9yBAsqzoWccH`A0kr7{Sc9tf=6pWfVdx`z`rkQ+FiLjBP7qVwlbd8fg{qz#X$%> zxG_pB(c|90RI!$ci>RH&at?*~5D!hBxOoYT4u1 z2SRfMVp1lawEiUaLO|OoBo*=n?rHsU-wfO*t%LaW+V-MKzn0um$G+P-FB6^{PV5=O z77%e9Z$($BYj42*Lz5v8wy{D%p0%Okdp;;;ZLC!tcXRH}hjhB7J$#}GCFU+_0D_7-{A=&=1!{Tf8NU1-#e$D=U<9he06<@nv z-QKei}Lw|AXBvAyEz_NrsE@zi#4CHT#T_C`TQDflIUp7|>H z^I47Tk=FYFe6Kq-N|;K0lrnMz-?w&5Fz=jTKUKWwT7jteQ$qYHCH|CIYvqf|q_hat z&C;em1=b3<%kV>kM^-Okkgm0KLBW%zG%U%>s`fTvlL%747=r=S0^aFL&(zv1&|sUb zQ(XwJ0)IShR-}+NEAmoMEExAv$}J#-Mlyg;ciG=plGchhEMxiB$kHK7o3*0zgr}t2 zREw}afpU>^$JMfeI(&NDYOQ&6W0(sJ5!|pH4P2|YqroH<^06I_{9m-ALkn+~;BhCb z_u{LY*eA60C1+9Y<;S7qP76$=mF;dH$C6H$p!WMd{9D+FCxfrTwH)j%c3YUPY;q*!D87 zx3c%Quq{-)h#r~mwy_tqu$?qrgb!uQTKQ^%&RV;$;LW;2J9{Y$J4IPwU>Y+2`_Al7 znv9%Jt>tZ#?Qi%Xh&iX)*#ln$6WiOH7zs>vYt7$FIexZO=knG<>#Tf2nKI>A$U5SB zOT=x8pmp*##jrJ9a&?;ms-Jgk;tXa6(c(5mahjrebV>!#WW&?eo2+r`c2W zICq@=vo=q?1Sc^d1rMgy2F*m9$AhUc@Qp^#!BpRjd3GmzV`~Zsz>6cVdzm^AO?8HY z4o1hK{5W0&p(&c`Y0L81NFrXd|6;Mu((ImvcK7BHPm>DqMKwk-ey5wgAfNEDHJZov zu$SV+yV=($Yu53D-R$vfEj0$GA*EQ5;0j_`Lgc0XY)IhF5$MBEXH>SaH`u24EtB)GRuMuNX+8H@yX zs7cS)iBM3-x)S;X=cR%U-lc~<*A6NSOFwTds9agczwc{r97Gk=KDIk6y=`4qY&~fo zIG@5#7z3G@X8R&LH!U!lRnC!YOn-YdBOC~0VL?D++eIBlJf-~&xQDn5GpypMKz?O_ z{fN?OJ>N9YUYWg0WuYs)vYxm?pY`$zgTSp;V8`NoX-``apY_?z2;R2JbAdV5X!4o5rM%nx1&IhDs95j>d$!`PyaI`&!`BB;E2vtN1 z^>E7u=?Kp?N0|GT{SIqnpc9U8+U!8}C7tED$q}BSgT!N>VYz^r{M_A=rIc*U(E5!t z>;IpA<20xvE;NL^W8Y}(!|*~w(Q)>rY%VRFUTfKOy4f;(!l@Qa;`QpI0ALs&x7Udkgj@CBb(j z7H^R6NUWea5c9NmBp}<7YOl|>(rmbd+MmCn7OF0~nu+u65thX~$_VH;(&^Fi<1 z(^wTsgY{lvqpWuu&GFQ`wE~bQKhIyD7oKJ>!Wz>;So?FP!Rnz_`-+=aXIjk2D{6cG zx~xCVH)t`E=6EOtWAwgBG~3JjJo3|NF%K8C1?7K9^9}M>&>SP>wln$5@i$s@FUGdg zLPCr5nf7=u5PqknjI2a4)&aR(2Eo6908K!u;SJq7i}@85^O6>VS=qrf5w7oR2iZXu%vCVGZ#M8)1!2 zIW@wqb6}a34!q^J2)~&N$xQ{lq5Zi?iY7d5c^=zeMA6Gd_;_wFr8M5eXZBJ{@s-?O zjJ-lc$!6z6cuI#&B--|;Bv{qGH_28vlIF;&-VhUQ*`&EU&GmM7!NgP1zLk&_ov=wp z+s1+)M%(|0U*f;+iUt$0qCszCMXMsgjWt#@O@TaIP3Zs<#L_B8+YCX16}?>i!irv= zV?`%?W?$i5(V4c-?L94Q50#FQb_Yq(q^GURTTQ1s)RO$jV*6lrf-skL>qA`1aj08y zcQEtZ5_^<|-KIohdE9cH*IEy&8~@M@Jp6qfz8fPxNFTTvRQG@i=e`xl!E@!8H*xr2 z{BTx*mcTXl$j!Xh7j~P06q!N>GIdZAJgg2mZl>ZY;oR7OhU`^ZO3-sy2&^r?%?QFp zIX>cBI2<;d7DNr+*enmVPoO!d0_30y(`gQ?BiOtYrc#e69kPdPH+wv1 zwso1kH7mS@)E%;CTO=-JX%6B7IiNY*vw15xl10;OExl+q@`r3Uf2`MKW8Vzs6IR(@XJctu6f#;9@&V03A&`Ucr_&td z4><<@Cl9Mb*fLrSS^uE1-b8bdHRK@cy)*||LyntuuO(pNh;`sI7ih8Jnf4AAjq^R4 zft<6p$S+pDw3XBra)ul?XFL_?yM>E=tNGSb(9)CMtQN^=A-PSpO~%wRP(+KVF+!C1 zuNG6&O7r3Kzc0- zmF-iMqa5y&K*%Y!!~U5`4nCf9Zijs``;L-9x2!$H^8+M%J;VdN@bR3kf`(3jYf&cn zbqsZvy|;yJHl*uo(mQB6AlXLQ?8RE!Ffynpt8{l( zWE;Td=_oxfg%%RYIPf^W$#YWGm6?3lK0#qMylBK>NlR6}&0j6Us?uC+S_dbq{(Qm( zd#vKz#+P5P*JX)@GU613x=n9dmNq;jP>oY!w(^q~?eU?yEn#vVSrrP4^+75Mj#>TL zFOnx6_lsqHD0^%ai&rZ`!DObEHYo^4Cro_AXI3+Z9kXw@urZVo)MW+!?juKiHjyS{ zU5?qtpPaDI_9BSlnJ4Y|m{NY5I9OaGGvvJeXA4t)HhU;~+jI0beyWffpuoPK$!KkJUBl>1p8xAFG0GSbtYOHV^FR#?a&PF9by)}8D*I+?B)_!s?87$0=meojvj zpD#ccX>VfJhCQbU-yH+DF^62WM;l4eS^EAv>FiFeio*tJfkGZqJO=dCg!cQ_?O7H! z&BQB_<3Z>tKg%OdQ)o6~9-CUAlJ&EnVZg40M6yMOe9^EMP`tmBcw0rEIdM?Oaz#`0 zwyk|E6C^>~F2e{Tiux9kE}x&nrVSr8iGZeUR8O3WGN**`V^8gsgJ`nWonnV|!khie zbpr!wD%Ql7yY}%pGPzEROV9Ahr0{)vUz38u9hTg;4`lzCc(gGU6z(wn1stuVmdFDd zSO0KtMNtu=>xmdNDq$D*7CEV74mcAi{;Dw?xFoKjG9bL6FDA#`$aqcMswZ1 zQCay#bB&gUY&`k)3u%fSe!-^b(>1j9xL7DJ!hS5_M13QLr0c$+02v+zq+}dw5su7J z0<2eb4w_8IT9avUtXDDC^1JZ%y=V zjAhUa^b7+jhI{mk_5TGudWL~so*evzx<(9NYEd7sb0&W9*7&*C0xgJ=}fSBRki-u%$RMYIgir!=3Sa;Q%f`_A1SOL` zVNMB4&#%4{L{l}F=rVasT~^bJJ-P%fF4%_gP6gER%#e(T9`_)cIkA+ZorQJqVu6iJ!b!;_ zoaU4;{wq`a1kq#-&oa};*w~j|{1H!DT;jQZ`j`>Skc@b?`PJy5tqZ9$*={eUi0O6> z)9o}HF&#G6zq0iVV7h#G;V5>_kS{PjMKQf9F~z{O{2l)aWVl*Kf(n8VR4Ryq`hp73 zK?O1dm6AzN%_(8LVW`@W8Ilo>pG|ONL^*b{=b~CleI}WKoG(~1yMM9Qwcg8K!$KoG6{z{C5+GL z(nTGu`nyq8MQ^S6@AzNU-o$7q#U$Ac|l?FkGJr$&3pUOtm z3Zw#b=z$8Mr&JPpLrTbY7-%l4;V91x$!JGbbZR$iz8zNXsF7NS71%+rL-4ITh!chE zK=4J>U-E%?(r><_a#`X?_1wk~E}hG%V}ht$Ev!5*r@B~WDi7_-C_Ez2V6A7AY*Zer z@kdWJ;*G~lUO}yCVXeKGVqG@hA=^=NnyrVGo`3;{mEMMYQJLK-2CwhX8jf|6#buVOt?p8Cd5Q#<7fbPlaq9TI(C@XW z8}mS)S-+mzz>*gR6&tAa^T41q+tu z;D8XmVE%xpASz93(dn&K8~cb#L1z|mK>;O~cWDsrO;(PxkBbKLbIsKf>@%OVNaJ1) zFUqs`JT1yU`+97!iC3+@KSlBv3kFnU%P1QUL@m{LMwONmW&HZ@`E1Uh{6e5yGsm#_C`XEOZPa*^AT<21 zB?Dra|1J_p+=d@$tBx?*f%8B#yfh^ch6|;>dWe<);BTuQN#6xQln~43ai`Nm@@O?ea)^>s7TXY1AG`+BH)ztJ0q|_2>Ct zQyVH-yLjSjs>;rLi8@O~-OxpKQC&Xq6I(Uj8G}vr_;y$IJ1g6*RiV9`sw$zo`Gjt2 z16FJ|adUK~klh|vDgs~P+V*K&T`_Q6+FeZ`l3K_r4Bm~n1{=7D8f-gLby?#1?3pm& zsc*;?br+}02vHJsA)9-u4qrl~pLk0-RJ5BvKar*u;bUj3C6z9_#j%%~tecm>SE;}O zy1;cGtF?Uz1gpY$a33|l61-d9;DwLd`SZGc)SAkK-Mn8PwGNx;C1pI7@{ulOdSBJ% zOA79^d1nOdHa5e6b!rfw*-ve0{lQ&_x8@A-=P&xHRg@LGdDZ@EG+X7RO$OCwv#w3c z0cuSmw56=cpLX-IBh{)AKM_9Kn5ix91Ga^3!~Y4%8J#QqwUb@*n$AWmI{#AVsmIdM6IrL+9MBu%^ac@W3N&n z0$Ix|#GpR9LGy+hT7zzo0G4!GT1GLRy_j@b9}ZK$Qr_FcYYkVwVjobM*nLic9P#q> z6q>_1{6_ZVDy{+5Y;w`nDPg`;3Nma*Bp^&Q5V1ds9(5mYCw)&Yhbg$L~ z;GJcE9x+CZP)hCPjxn&XT4t}Q2`DA@dU}NrrP5wc8|XY%twc0yBWt19ULN&RowBT$ zfsg1HPLEYvEB3v-+B<49<}hT7j-e41(^41Hf1KKq^tB!_aFMb4+u=Us1dmr=4(=`Z z>j%-7zpKXaZ#t?$tgn~go>cGwd>GsPNBqmaEcbnmgwaAW*Is@hqZyO*C& zRbOV@OZ+EP{1RP!wMlA6BEGGJch+9%kY{|V1{RC=_HJO05s9+*>>$@yvi9=fo7B4OJY|d#{wy{7hHm!!%_=>n zpqp(%UCT%_pk9nueP2zovVGd{S^U7^Guy{kzOS}oMfaJ!+Y-X>u5t(Xvis1vgYa~e z_!4c~l!XQPmiOVzVeB+DgtV=8vNnPRvAE*nBQL<6SAh3?&l2Ds;HQ76*0$Q+3W^`7 zpnV^I{X?||YwD$7B2h3&DkuhJGd@ydi9$(IA%|NiRY=Qgv#6$w~2_`tBW%Y5Z&U0O>%$;pZ|;8q(<-tpQy3Q zpHP9HfTv&dVxLXe-`3gBonvrx4|^OLdYd^!aFMsks5|kG=Blq-3+>lx58qO|vp{X6 zgze`s3snazvES_RMS0X7!*WHr{hpXUi>rww=(Lyh7_y&V;%c>s5W*|R7*dZElH;0> zK2__J0U~h2kU_bb2Z-%}2^kJu%F-Rl;x{ct6fAwmsT3!%x!%qMk z!0og^ebf4mH@K5Da3_1|1ruMRUNdyPOyIsO!5zP!m-$Jp5iy?d$`RZzNg)Ytug_sB zr;iYUTXto&Odu_XBQ1S^xM4pTAZ{`g6patAZyGJwsaqgMi3C}<1-_8g^2X$VY=b3g zN9$!k7MD514-A8s_wzkV)MR$sOD&iY8`XNEt5x_5wF6PBg9P@fTQrS@THZx>o+%cV z|5AP1TJnI_n$~`)Hdi7KaOEpCk(E1OYDh}i17u(neZbR*8houbC5`A6sZQww*oatZ z10T_IU;7&NRa`U~du|}W;VC7^(J?xh$Rl~VZ`B4tx?=zrG7KGXKn_C(Q8Mh8`%$Cb zlt#rHIz+hd_7ZgG+T>&ubdz#O9Tg>kskS)#|jp7IBXsH;V_q{s7`mq~$7%KX6 z`wwcOGVcI??*|w!F7Q&6Q$@eh(cki;+LFlYDAAvD09zTGW8mXKe*;ZM^nn1;rvy2o zzu!b2$(JrQpbuOK`dJ$K=P8*S6;Y#ZSO!?zi>l0c+G4<+X#n!5XzT>uS(N z2}71yl#Y=AYZ$WlYw=gqskxcx1e_6gfbkZKpJ)3;l5W z9S*@R@XKdO6ie&%_?;@P11&o}n}zU7L45kid;!dOj$6FSMlU*OjU8@Kk(anC9fD-M zE>>Cm!s}v{59M?(@YSEydEVE>c>Q10>p>1dubmdR@{pfOIaqU&Bs%vhd~whG)fLAf zaS24;k!;(Dl+iRyTbidUWuti3b~xG7jWFio_F8ctqEfmZf=#MPy-M@KJ7L%{n9|_q z>vE#O&(~ewscvNxDGgqK8GlH=^fu;@ywP>L+OT}Qb3R8f@AAEWVebBKbvBQZ;%%L| zCeq1!)PDSS0SBIA#u7h43GwNl?_d&&DxZ-8s!{U=&T-hYZeB=3|$5$*odK_N=~*L|n-4X6Zhc^Dkrc=x3~ ztyp{vy~k@WtL%5GYpVS z!I&vO(0Fifsyq$zVnR$-J( z?%-#nr@%|)CaN~b-+gExn$NtZM)Q=LYOoImU)_Xlps&pg6p&c&mKyGZAa?ObHn!Fm zLFjE29yg~s=#Z%59-52}2@;;(R>v3#OjWI2=b-?~=LuijQ9D`KB@YuQ2P zNwx+uo0F)WetM)w~!v|>O6 zEe-bJfh*mCOY-IO+lOW*KUUAdA(kWJ*+F>bCZlj%m~T2h&+3@S`gw_p&DSF^P^2RN zu7^Aq>Js5~bjL!L>P;a&eLC)l+<+QKvvFAjkI>IKBF}vD&9SnZ#(@3t5fZ8vAMq8i zLxx9`DVn02880CPakx8U6eq4pm{Y=dNI^#%V=|t|8*@ZXB1RvP7r3hWJ7N@enCg$% z<2lLwntA(aHkyaWuP=gmcuw-NAzw@Z{-ieEl{Ol}F}KW%iwM;%)DBF7MB%YPR3bev zS>Si0k85`YfDD15Wb(kIIRy^42RphlW3rg8CylYdM`TUx+n5T9YXVhf285ZC1-&DG zN(ENuzo7rUuw#Ld9uF=x`7cNli#V1WNilxKc8agSI{g>)TSFb;KIj9AIy$gH|4xr* zZ+kX>yD+vAcYls9wa4I6F&q!{&oHsmE~$O^yKFEY(rn$M{`0%$QC}MJ!K2_+rP&D% zZNq%&@7QSm)uFT*90){*q5`Qy{YnL)=i}uQAVY_uWYVF`DcZq)L$ZLy^1e`*EUb?{ zqTL_4>m?E!+f5Ccn>1UGCHel)?vE7sgERpVP%QAgV|NEVCm8a_e-l)i%Af*r5g{s< zB2<~m(-8tPM2M0}gv=@0eG;0ib#{24#OcK!Pb$;mf^Qhd`y_^B#QB;R&hnc#8R8;E ze=p{Ub?-l<8}_Ezh&5iM82g93NHNZkEuene4E0o>P%kf5F`UM4?PwE-MX0G*3iU!N zPlp=F5Nb*$p*E*z*D8$3FocF{6|Y;sW^t=xJryFx&K7vF-{?QT{(XoATL_nq>7-mk%!==eywV*(p1UF;V2m{w1U^>;SEq@Zyu3{>3biM>tj8jV{cc-8Dtoiak$4H$y4WrSF+9n0A>$}uE-WpW$=^_ zKPunjeXV?{Tt41GCa{buAYZnnDcT4y?O2|czQ%I9>Zrzh?kQI^vw_XA+|Ro8sP&Ut zcl#+@kBTQNd-FT93kL9SekoXfY*H>Au1UzQYl~Z!~$>lBeEq6ynq0)zbOmR*qm+La=cU9?<)fZaUsj${pidZaNyV z3N#x-QzVai$I!LK9P`lth9x>$<;n08$2dkVgMN6d+F>@lnAB)-q0kWJkj6ZGah-Uq$HKGbFz0B4OJ%-g-%ou3la0omt)0{8)S*_29b#>%R zpYkw}j~N{m!c)&g@KwhUM?mKFc8&rTCF>afE6EYd&QrUvw$GaFx*==Z*k~i# zJBH=ScTXPUA-Cd6vy)T-H0in7q+`US-?bXuzs&KnUZXd*JPl9p2(jySiGG1R>Gv`D z_`D3QfNa7=j+>e=UfC>jTn;YE(p>DmN*yQNSC!*A4J_<=uiGNWWg|9dD1ZoUAhe>< ztI%=z@-Bd2tk?4q0ldM?-T^%LHOB*Mx8qiBe=xcR>p{)JXxxRGHR!mHXdKhkk;`Yt zHDB#?Tvlu+Dje;3$81jr&7S1rvYAfa?&!-G)Wc@lj8ABjFF$Y8!?Bmmq^z)U>T9d> zj?1;x1+)xSA*Z%}C9BZj#IUy7DDRuzD5Cf?5na54seXgODncs0#^&( zQ81dp550>-GXhSSy!TJdj4Z9TYo$1jva+I-yKBX-sP-J}$Xj1g`h;vHAjbe#*c*;| z7NyAvo;1W!i#4Ny5w64&q{%0r@X{@eTc~1U^Rw*+k^(AnFSuOdZ z=7AGDxm=y(Fdt^5>^~tk+2-+b;~aH)mp7{wW3-gqWm|JX?6UPJj{9mUu|crFT=FE~ zfRDIFo#chbJ4S@>7b?)oTT68k`)ipnMy+aLRRyWLo#;c*Iw$22G>&Ft^s9A}c(Zy^ z4nLzrF>Qa1!|>C^CmhcG$P6pv_(TU&s-Bd6m_bY7*5S!QA~moQ)ztl3T(rDO-J9mg zsdWJ*fb|f`xWWy%>sP7ApOjarCr~O}s(y#sKJBEOPgC3Bji{eT+h7)ecdFksFc5dD zhk-rc#ygcBC*?G->q&9py9--GOX>=)^iuHPS3$q9y|lEL6SAE&1y_d-Jq!#nC5yd7 zykmRrq;|(P+dw83s?Sghuluwxdu6@~Wp((qkKRxX;Imra2E`hs!=i2l?)WaKDzls- z9tXDi(mvxON0^ZwS9T9I%C5jd{|ov~QC+JV>BY=k`Bj5|r4Bzta(PO{=s)6=3T-mP zQQ%SIHepSL5_mwRnfQeVRGOVKA5b|A+s~Kc2k>Sy9hpAjTa#IiRMwN4gYm5^Nzvq{ zZOT)8OXC?`BSX!h?JXilhPF3P$TEF06BPeVCX3s)_iE6GUSvD zYqRIVP#VJ;EhWQRr&C^GZM_hNVeRKrBCHkV)6yL+!-t4u+Vo$gN?~k+d6^Slil*uM z-0SyK+T80X&Bx&O+bI&OR-u3a5T+X^aR`vi|;!Q+@Y8cS&2`SX7 zom4yV8Ythhz;TQHV@Sp`XyT!g0;e^j{7(ZPcR)v@@|`9|g`W0pRD)1m0qsL||D57$ zk2x9|C7N{AiW+s*p6b+sZyZ%fk8QO@G6rAp4h+8UGh6K`8Aji>)Q+yF zW%Q+$1LwPjM^sl@o|fUaseywCzlo%_k-rzv{$H71Li!d=i6ZVOi#$VBwbpcZb<$-**aQ}ntjD0eLkvO0a^NMVK)jDB3R zekxjTsVV-chbQ!m)hA*fZBnG3F!ntVdSmQ+D1Kq=dw4ph*w^NJ#}*&4@8usL_7yq< z^lo3p*cV7rG`VTp@)Y~V@*d0Jj9cm#9Rm5;M)`Y%`4Ev3entkUI!hffGCx_&8hiOS&!vkI#e!I@`oL!=&F%F!kDS8|*CVNI3)k__ryVk(tR8K2e8LREF$|p3tUsVz?->Lc>rVs%>bs<(Fc2i1g%k_~ zcJT`Xf&FYwfgo(FV}p-CP-2^7EbAob4T0cglA_5?%ft7Rl6O01$U)Gdhb5B3d~i?c zcUH!LJHI%hWelLDWDIBviFZFsp#5^l|^vR--76@Lfm!bq9NCcF*{qZ?+?ra}eh6f#lV=mWyk&7*8AM)5CI0f>L zFMAm+pH+> zdc@J0)$vsr$CC!`7@Kvxwb)?58^@EYes|nsttd~E|Gjb!{g2PEIPs`Ay57q?+v=pp zD|(&t>3|K3rsz6oPrA1{Cx?^RPR3f=mf%|n(4AO56=lQuuuJ~c*&G8W=u#}RC8x*_3Wq4E=VZ4s{+#Sq zj?vP(w!eF6`{5bKdUk`BhHj;8AWhJFl`Dp1Pp|S)me#8%S;Q03+UI6#S(Yzrv1ie1 zE?D*~261z<9DSJ~1vkDg5)gjZLGbi0#wr!P3k`~-?yz@B6b4}L(pdb$-lcI?PQA;N zKOKjC^e&%WaQwu&Q7CYj`6@}#+v%{ddY@J=MwDNkE zxOx%BV-FU5g{65F{lHihkK+5#G-Ys>?5XZvb;Qe_ik6Z+RfjCEo@#{8v*WjvUYwa}JkS|7m zRkF!2-foNuOB5(9+5n*X#CO(W2w%~b4!3gUw zeqn_5Kc7>CJ^I42%{#)*J?qS19)JzWIP8lOs*{u5 zW&f0c_~qix&Fmu+U#)k1UjyoWnymx1$PLsIL%sm&GXm5P{|!*ud;%om(Nv>E0hBo< zjIS!?>}O0yLnr$-H1lF08M(%*6cxmLGAzxT}i&*+h zTFR(P$U7stM`$B;5QwL$sX%&kx5x#vv*QteAVYj8nLN5{P6^{_k-uqRluKeUR3}z^}LeZ!z2^FU% zU3st4P3!U0lzah-)Vd2>Nh$PLli{WCgn#_=^JP_>2iY!4f-8-`(iDA8XiWCZ2~S_p z!p>O(neZ{#zc-kD#i!XgCDa`)L{13}(hgR4rZ7Va)+>A$3;1(HBg2S>XIf|s$}ngt zMmr-wLpcih>MVl1D8ng3kNQd7kvy|?mlVJwivlt>}Ccx+P1|wTZh%~ zFpBXoit%FP{s{Pnn$C}XyfZK-*7+@KCg|N=2!53|k)&vH)4t375a@0_=i7Y!<=UZq za&2cU>qxlE&(ivkm-5O*@#ev6Wq8Lr&Oz*TN`oVoffwbQ0DUjYHvzt?>kQ?C4<;1m z@GF*0_995t32>z1Tc{YR%(r$1;doP=7Lo%MJ3I^o-+B*$BHHL=x%k!jB5xb-tP&1t z8~besRYXil;oCa!(e+H4jEB4u!pr1l9tq&S%T`ftFgO^;_R$o*t?m}d7+hYtDA$<| zO&YwxdKv6>epfY$U8Q8WXL0c&nbO_Ah@r&_CiB^!52~+ZU*yZbiZ8>m4RoUUW=v*v zmB33fXa!vYv2GVbw*Hq0+v1mWw&H1jE3o6U-zZ$t$QPPr6}gIa#vo2?jGP2>#Ky>O zSjqXhj#JqIYQrrB6Eb32K`VrS0n>`AeCteSrLYb{S!|-Oh+o)5U%6y%qR_HHpGdzd zDbv>SMowpsF!*Af$4EEhaclWR)$UZrt<7|{jB8@Cj)TwIZL3oDa*ghScNh5cX3BC{ z@f|-WMWjr7Go>W{uL|a+;3vaDz~Pz+)veQjHlts;di=9}{d40gu;kF6iw~bRq+cS( zPoTcD0klaKe_n_`_?`8HP4Ejp#Jx@Y!jHyY*v%I;ftWE-Xz!^|Q33A)LO<3n=669n z-0N%$9GQH`=^qR)BIlOfynY!SY z#X-o@Vh7?*+mVEF$i!;n`m51k2o#(!`gy$H^Q)H*$t8#r0 zNJYzg@r;x_`@(BgQqS)2OVhJ!65&}K(m_v=oq`XNozZyOy?8d1JkNM|9@BZ=NY;7w zm?e3N>=b-vD_(S)_{PT?adZ&RA$AgHPw?nYezDPrd*p4!776Z@br6eWxDr`XOtWx$ zY8NpE;y+&!`bG!7rM&k5Wp9a@NyXn)zLUs=+t_u7_v4U%G-laOg!p@HhVv{rdME`bMuoL*}FeUlHfL zYw@uwk^|w~kMr$ZobN_dK-IF!v&-Ds+Zn~48Ne6cxrh=fQEz!7YXdK2J-p0A`oNeq zj_Qr$q@PwN=enLyquN*GVR#{e*LEuR0lH4M<{YmAP3`A|i(g%@@M-;_!FH$85w+KH zLTwh2Jh-cwlfqaq8s25{Ht&oKNgoE1WOx z9$w!13;12Fn6eewc7qns+>~t~^dr?7zQ?Q$aQVEXf@`)Dt*~{RaXD*kuaBaQaWriX``IEY%`ilc3lp-%S-Td zs%SH1-*TSz8wm1vj~SOr@WNx_3a}I^9ve;noKPF7qZT~InVcuodSB(G#yXp_-c&rI zHdUlh)Ou*vbk$Hxcn6k6=NsrmqscZmHm=jTQNTt69)wp&E@7k6u8^F+LavbbaOae4 zXtFVNdhwy}I_DTWkK{Hj8uFGCob%avsua%6&yo~(!}uak4P!gIOL)o|xeqBRcdo*u zETTs^-#WBKFmEusaR`t7z*&e-I0cjLq+>0su>#jfd%;<{^_rZezql%oSo`M7v*$WL zDRdvSNXw5MQJ*<5Zc0wE6lIh^PQXt<>u6N37N3=vSecjQ&VnI=P;L~|6$;$H%1=*r z#`=N2FY!$o&f*Gmc{uY{`#Afu22@FG9Yf+0bJ;pZ@Sbnf$UxZl&%u-tt3dbZB!yifu$2Oo80PpTWSvC|A6XQ}T0IUztxufo*N9P*85+ zdQ;r`+!@1u^htr=y|^=|D_D}|ETe3^#s{Z4BiUwJ7#9rI=VZw)-ICPl&hkDj!R2A2 zUSj#&kRlfSly2ALGD7QXav7loNEOQn#u^sO2&YJ!A@!**BUrCPGA<+diC?&k;CEdv zBlHy=Aik|N0Qy^T&tlFj2thPT$a`cHXFI=O;ey`X4Pg){Nm3vWrwl*lJ_uxg?95`( zgr^JwKBS~nzyALP0T<AJL`vozQ))eCKB9W;t`RJ+^JgFD4LF8q2{Hwxd{sZ<~uShjG!#_u<#*G*2BX4 zA{oO%_3I=oEb=OiVPU~_85S1MY*ScRd0mEu)rK-6EG)mCLs-~yU516B*JW6EPmp3* z&^GNrE`|l8Tu)f|gNnki00m`O@TS19aM>q?DJ(p?F2lkTS{TE^gPbg}-tbt0VZoOr z7#56riLhWu!LaZt)QDJJeE+%(3zI>r2n)s<7GZ(97pYG@EZA>AGKK|J{KBxH-pDB| zoc_W&(MMSL@=NEqpw5C`^JMuxFmHGnPCLrA1?_3z&NsyVy!JG32TGxZjRm<68&M~m zz4^urXTiDCqCUZ{I#eo|N-r&x!;T5;lhB9KqYB@iARXb$hJ?Y*e-IbwQc;Eo^N&3<0%Eg%2T`$4P zcQ@ox$ziiiUmLU&H?(l(aGWM%5RA;o)y%=80y9X8TIOtMy$ThN4+LGO(r`WIvVaKg zXGaza;Qw36xE@1wfjY%*^M^e7|J(9upwJc0<%O+ikdOsa$bePS>j`lBxuB~AKhWfcKX0(lSt^%mTc_QGwZt;* zt1|eZS0>{3lSrZXO_e6Tr{TA?O=4TNjgsXazc-7|t$;TK;08Svx!EJqjcWGjg!a7J z&vE4tfb_#o#%CUKrYl!&!hP?!D(o6n2ob*YZwUY8%PEtKyW)X!06$&tazTFJ{kQ<0 zv7>fw#!e76QkC;J`GQ~LDzo!cHH0|-Efd7&q`jvR;>E0#$ahET+@qUnDb7O*xLgYG zb>oPu9fvxV3g8=$IyWiKTYSN;xbiHKN<{cnK`M`uc}Mv+w|uneTMKOw(mf9ycSh#Y zGnIz7_z!#H!dXMA5u(<^j9NWuUED3%us=KLoXXy$WO!>O>6Eh)dxs{A@tpGJEq?fv zvxN_WcKhS%vFW}DPM&sFHxkUg-Kq_r)va_con#_fV2R^VrJd85N9Ga5o&&y=zI({f?Z^@;-wNx>zrPCsXw&m5b zmR8*26OY90W_KtBR?zr2;%l?VG#M-C&Mlr5=_+p|$RpmV7HA33A}lM6h~N1!Hh?$1 z|BGwIOHRfk`mMkp{>D&Njwwh?#RM{~d~u8?}U5O?%&h32+7l)ue~4762X z<*7CT=+I^&g#sOUTdtvo-fLnu)?>)Z{o1fBKs8{n*yZu1joz*#3# zkqBIBPQcBO!1;32^yW88@~yXWKSCIHTe|2tstzKz*o@p5&9>1Ra?|fXBw0o2@`BuQ zox2-3(VL~;cOF$v-R6Za#8qTxs4&FrL{6Ap&e7RwKFBp%)<14*0|NM=yFJ47#0=MO znn4F8T^g!>g@{ufa;vTs*E^jE6LEHT3RY%HM%Q z*l~4?lZfO$V4bw*n1tM%S;qc2=#D(3Y|s*8R-Dj`Hl+ZeSS^k_cwnWw+AumVe%+dn zXIz9otDeFb|HG%wclUC_|cW<%Q%LtEdGapT?li8Xn>+i@?m4=IB@Gy!;dTE`Q_81NjHzg7TGxf@r8 zFK&LL4BumMO|ve)0}BDKHH~5`sRjt=vK-*tojbG_dPGWyj+Pt8cWt3n*F{^-Uw_m_raKn&iapf3;Uxv=hQjjlc?yIeZ z-Sy#y3wz3;Tv=Wqz*Rc8;Q8H^e&|P)LGY@G6x!e{LOZR&JqHJQ8n=@*qGUKySRc?h zhBcN>xCpKM^Su>eq>3gMh3LTxLlv*SHV+hSKK6 zPro!ta6>0HT6=t93*g;~xeh7^?(�R~2@Mibd4+<$&5rU#P*Pt!r)_beD$OE~)~e zcEgO?c4E`dcSWGA$=epR4QDUiBP}g2sQqJD%C&$s8qa%1Jxp4M`G&msLn1^zp78$c89xiJ#CA+C);`yRYpJ=+C-#K2P}I} zj#EqDll@KSVB4qcRZ531l|>e^Rb{izQd*3!J>IVu!}if+g#6cgd|Q~!WhBTmpAsY*?!wV5x$5wuF8I)Dj~dE za)5V#4)8YQJ-c2G$@_}q1`X{ER3k+DoJgTjVXd@pHKN^+mq~Di^8Jlm!`OXFtK1;d;+6`Y!-~*v-a~ECzmg+7^Oeja%OF z<=gfC@(~+wf>6_y`w2p&zhu8xiRyunw-hN9^72A4ZHycFm+bo%)Ut8boze=()B82^ zgOATOuEhG&tl=jbw6**tyFUX>o>A{&RLuju7_s33PxCliX^H=oX08tv{uiGeXNzL< z4C;xkpt(7q|AjB~#cWq{P3?I(kPmH<`*pI}f60m3Y^sr{2fx*j!i!IEB`F_ipxd7} zp2T+3f_WLY?I75J1Os+zotS{kFWb2MEXtj~_??Ef8tfjGiw+BmwLTs8nJ>t&Gh5X9 zMq$3_t%im3v>tNpFMcV>70<3wjS#Zn2LRcoDFE384YI$JU7xXXknCw|@FmbTO7sIh zF{5D>7DIDjX$Sh-?9gbX+JhVxOzS=1ho9Fo4Mgu&YEU6h29#?* zD+_fw1_bY1dOLt0>*{)->;QB++roI{TTP0wT~scD_iIkz{pJHa7=y&aVI)_6UaN;I z*PF&$AMmZMZME1|stm$-!3^Uj&Ajy*j0f7-{$h_QU0%R@pmV3-rLVIF@CSWd=ah(t zd`Pk_nngV%O%9_)IL}@Ny@+_?!F&8${h^OO?!Z1bc1fQ#@#oJ6UM|27-g4%8OQPgM z>5L_*ZUV(32_l6yvoN8o%M!|?zIN5*!xn)Tvef!j`J#2sxb#{_F|{ZKe(bvBkNfB=vFH-IPm0@&@GRdU`@aT)&aHzHY+x z(C&fxcvg`%`7&FNaKS~B!w-48H(fF82$hR)9{e{r&-jA#?UAnDxkYmCL)pUjQaupK z+h!zpNhG&RB%goVoAEN|o7Co6U2H*o;m&6M{Pt+q3TAyoT3{ZKR9<={yPWMND2IJ9 zE`ZM%<2vbA4Mg#>BU@Ht(Nri#%PNm@SkkfaZR^cl4X!aPdeJ11AAHA^+cP3cg-3Gh zu>w^Fqh)iELfd(iW?R`u+&RehAJ&zUb;gEvjdz@$PjFc+e(!-S{{GYYwb>LZ z6;Yd*6KXRNHS@mXi|+Ptp0U6c#j~QC2Js1#a=$<`{t=(>qb-7sr#c~cOGF9(nH zTaRRq-KJdAA#63J%L{@lbnb2hL$ARjBdk8-9O|-)?uKB_Gl*kJFwH9`mk~U}^aSsuW`PqZzv?nst*Ni?CLUf4;Nn zaJH4wR{uG7kO6Ra$X8;Wz)| zN?I@`&)M1#re4fwxTRQ{MXZ{1n?Gx z-@TvXM6vMSK6)fvTiTioYfGh9<~}++e`nMY@^otRu8@DPX3d9>pM*!ywk5-}#RXUK$buPsaxMZ}d9XH%jW?{LmM+ST>0o zi#7Z1zZsk6qh`}LxccUHs4@0${`Xh5N^C4u1I_&0Z01{Nre!3Lx(so*`_^V%*$PUP zhZtm8=H|WpHtx@6!XWkyi*n*`?)=`?fSsap5Ts-O2GT_zAaVFSCWh}Qp4$FKQNHzu zJjU-Mf6M4|gzARKJu)MANLsgFBKOWuww)~SDQVCcdxkCr*AJ!17<&Sr;$wq82pTQ3 z#juKI0zbi-Pw2NY+y}|#%?<0acr%FtG8SjRn8{nI*bB{Utc5RvvpZeBB%l>td=cOa zq6P_hj-UmfV!vqF&o#G^2dwX;*%)85$8}ptd&*;0!#djxsu1>D9|Eig>NN0PWBc@} zkI)HgY&~<^!lpju+5279*i@O!T=Twn* zaW_*&d1!RX1}RQSed-BZc)R7&dRt{aYue??yxIo%HFVeb0IsJk+F&cKTztxh{sx=( zm#HoY?4LOSd)F7R*e68*i zX4`kHxG3Zvw!-1os=VgthEsK@^NK&? zpWT8!tizxOrrN+CG@0@crQkFgAFP=4Qz?Rc&+yU!Z zxlpw7Q%+WH0Jq69Pay7Ox$L>L((*MAsh%jF01gS=Z#L@-X_jT6yG#N3=~(xLlXH#Q z1@NFhT@RHT;0R(v?-n%&>+4!hmOS=VU$_F<z8#+8VJ-R1vJSfPYMl z^-rzRvYu&^pUbW_tgI;IZmoHUfp8*hcGX0e1o@m+vz2zSt!BelfO7XxOxt{h|)qk|J{P05uL4a4Jk4T|C zN+UE+ssE3}F6*XiEPIQRL9)eckMGnoN_6rOjL59_49^ANPG|vi3jL9uv zkuP}5hqfv#l4^p0H5Mr}?uNgRt-I6<9`(rfIqPg75wD*WG~Z``MUq%b@$5#4@JPdi zf&t=Y2fly?Pafd2fkEOzw)SkGzr0AE(aB!AxQ~|?Qa}K=T&Z4)A9}59RqON@R^D@L zwJL0;K@;(8;71@>JRA7@Uth7v@r8#xJR6A5SRDGrS&-kVl8Dc4@)pl*S=N;=PEqyI3y$UF1sA0k7_aN$p@>CwFBjvd2Xyr3StSy4d2z2d zcPn02IRcU@B$i-DsB-8Sk3r3?)w`w36N7pFGKsVNs=ws-62ChqzB;P`zdXGWqEQuQHdPw?SRaT7LFHT4HlhL3 z*j~A74a9tF#h3hG=2)^ggCDv&XnzZlLhUan?NuV+Mp*N9HF)I23Qd$(Nn%t>r{V@+ zR{qxl`0dEV-~7f4lb1e^0 z%;gabTJ^i#5Wo);1UJnP?9iggQ62>8=uI*w;%V7X&lH~*GTNd5-mh+{63XRQlRbPBQ|+> z08$TedtwsDu-6E8`Dv<-e0DD|62Ai29_|~)H81vmw0(DARK@nNdp8gu6GBL`v{YIW z2qA%xY@>v&5CRER6r>0$0TED8M2ZzqstThb0`@}nsj)l|R8*b?uvY}1;zLD1eArOF zGiT=RJ$Lu6{+{^#mCej)b7tn8GiS=>4NH7|*oIXP|c3Zv2>04@JhbaM! zXOCx96xxqN+w6PCkb53lt)F7{WTMP^*AN#2&s z$k#wPd|<6W{K5y;3N&6i(bs_)?=C(F?`?^97t4D2?y;DFt$O?59bJL1FQstq^&}Rwd?VXH9^4sG|P@yu#piq^r-yHxwaS+5GtwEzD> zMS=d$<~v`tH{?I`Di_q7MLmmZR_vV4_DeEM%>_ zl$YG@%hHD1BQyKLVZQd-W;8zd>qbFQnG5xPR z;)K%<6ws1AK}mw|`v-fOmZ00)ElQ}{Gb4!)9(_cSaEE5=i@8Zjq7)xhy%cmf-PeOp zd#KIj+JE7z9_{&PghtYn4nTxre#TdEH5+Gw7pwdj1{WmoLtpzUHGwzR zS4jXA!F~x4fB7rz!Gr|9Gf?peyY>%=sxKG@kr*5-yQpguO*FwwS+%WHQg%@7=u>yM zoll$K3un-Asn_Ay9_V;f$br`2G4Ttn!DG;C){cMAMBh?NUvleN&gwl?6-m5TfAA%H zN5e^S@5R06g(jupaJm-=Ry5%7@HqN%=4_U;W5_`X_LfcK!7kfkl=`_?os*Ge12 znc2M?@I%G^Zv4&5eA(&Sqnioh@og)wXl-UI0@SdDVV&#;Z7C1{n_ztK7=NtB{h z+MXb+(rNoOz-51$vpt(f5%7iMtK-SNsDX^ePYaRtCu66*<*m?WHQ=Q``!d-q6EX2f zbIAyJn)V)AjC}zJ+X}*kW`xM+)>_OU2>PUh#`A3rCk3_309V+!3qVd`leG+JPOfE4_2QN5@8W6h zw3X(>Iwmbfgu@N^-r2qZX6~3diUIvMj3Z$=h19~n#Q?n7fai@3X7GU*RE%K-4aq!- zYJQS5-R&ES=1*WQ3VP^U=fLKXL8>6j8%ov!16Y%hsQ})j%9*~rqOv6&tE5lQ;mcbF z`>~PHEVCjklcjJbe7--Yd3ycb^L(}j+Qkid?LPulM23`D46&tD!4KYMYvQ1GL>ELF zqiV-IAqJZC`QjIv^!ad?5lni9Re-mh@7wAd&qv?ryUilLoAw;UcYSa24Q6-H=Ak{l zos{VIc-2{Xf>#|DH0vG&>4lkH4q8%6ER3w5TLh7HeMA2GB8aRX6v9wjyOKy(U%J@m zw6UF}h@+jw_aI-T#W=TjHss$N^%t2D4*l+Z(tfa^GCH4ABs4k)8pbh}-!_y+r(U3# zjLt{UGGTN+G7*ay9W4_-s}he z1+2G;s0iQ;qROUu66K_>F@c)-t9Yn7QO;_CA`D6lEoUNzV)5jv9PST0=+Mz+mV>a` zF*(=64hX1CR!dfH;|U>Lb&dD8>k6 zNupdA?WlA$;of_E&)IVuCGeaVT^(3kii>6;yHOmoP}E48h5rZvbhEH+0=$Rc8fqR4 zWU|&KV&V(2U2hI_xBG$F-0t3XENH41?z?Y1W;IsK)|GiX@)ZkaH-o0hZ^xQAM(j!p z2Vta72vDR9X3`qTU`7MpBA7XYCZN(m6>A{LXr}f3zW=aW2vr%)7@ebL{=!DQw5VUG ze(a)(ppD)4=LqW>$?&Jo%@uF4Crt3dUKkA2w>h>olJ-L23437xC<*RvB$sY?f{NyE z_l7hO$r|#8Mlw_x`zRzPzA&*CR?VQS;){by)Mm>nhO+;f;LV~c`0tgd0#5`iF$8a* zG(^C{XczDu%PVSGMq@Iz#e~Q<$fziVB0=io_0;tGW1D=}+q8C#Wt3uIs3?VEkSK-D zNqqpwiCyh*3pvn?dc-d@qn^g`(@;wi>mdzgw^@WJZ65bcV?$}X&=l5?65SM@-G>Xt z^Nrhlsl3tBK8X#C-9nI;Iq&0!>}$Qt=z&w(z@{g zo;Rs=8=f-Q-IS;N3eQ%rq=*s1+EVBhk?XEWu;;LK6b6&sP>sp%O|&M0ZC?s}_MWcD zV(`N(mcv>sw9B?CUUSHIUQ%R}Xh|!+;UB&>iMUPlT4TQVX`6x#(5%eK`rn(ziYAdF3D5~ZtSL^%0HHheKUTfjwp)Tr`m zzV)r}Urs85w9T5!6-OIN7~NraS^^_Sxx*4sjP4McglR%>hws}5Hc_6ihN1~iXdA#! zoQS(m28RN0pDaV5nY>{bYJ@ion+OVT82N&XeFkvF73~!!Ai;IoA90;$#r60*{*WEG zNtbA1i!O1&b6tv(One}3X{(fcau+pA)!>D9;R^fR6a!L5$`VwICfv*c&Mr-j(%FRh};@&$zqKZ&= zHd~%0`SJhns`SwR)NMgw%0%5 z?88q~u87nclUn3 z_yd$Y#01qEz>3UN1QtEz@q&IuHXwiaujZssjj3z~WrsPbmzl~*y-KSvC-tHzLEWig z_YzY%smjDA*-dRS&Y>jrLH8mfd8yA$gvAQZAgtDg2bj!Doiu@p#hU@D@>0j4qkjwb z1!dsk(WqCXK4vm46-O+Qmdc=GKo=RuQ767&XJUItW->G!=Sr6Ng>xk<*~$}t>-*kf za^MNN2H*K=`KH#g!*OzS6U3B1)hEZwvz#1PzgNL{?*58JteQ}lIi-HdGN*JttwFa4 zHHTLA_pnK{26IYKgB~%EEOSa0GS~S*6(Xn9B^l>jTVwIkbjYMjr%jnSaN-rk7tWk8 z?sj?F?dD|u{rA2;S$@Hd&c&{jJ$T9zKL4ceT6P;P#(n@~=fvL92k0%=woOeC#YviD`^r^BTnU5<96!WGB zDmJjDO^rbKwEi5 zsBiO#DirISrZVZ2*))MK|GXlkHHib52!LONFJ~8@N6cVb0La2fq&N3QkAI^ zYNnD5poL^;Qm~U0l|;%2b4*m#yz6()fet!9bmhy*SMAs!@Xlhz+|_mHb#Q=U+C9&=u+IAQcG1fgrRSx2VEYD6|$nQG)7M;ebEIuol_f zR5(CM>SNZILc)RZCc^TgId zNo%qRc&e4buH0}Mc0*$onRIE!KgslW(2ASM1S>SeY+<%gR+wO=CHh!-3C4p;uoh$p z*>Sw|7Qb-3^loM~UcU8R!Z&35Z?+gOGjja3>|Ck^93?|Zi9SlsHh|n`b53(u5U#rj zgcjC#P_sXX@+Qt2H%004%4Ymzp1)7lMM6kwrE7`Qa>X^jt$zYrK#R{h%7bPwm3W;? z35x_q{nkC+`)q8vsa&Kz7rf@}WWTdn0^jtSw>?{9su!DpyjdJe|3EWo>8}(hx~1Ru zy0>lGGEsu9SHakF039A^W9E(r#|FIt+_wYwYu@m7WY5QNe=Z*PJyzT|yyPSASDhQO2G;t`Fb@udH? z8P9VC@>bt&Z_Z5m`+zx1i2juQ{<4`&=9t8YYJdWbZNPyd|AVYWDs+jS#>BH*2Tz4u zT3#yuwu`@gUjZ_@WjTDEE$HmaZV}7C(cNJhF%VU12`Y}I>fJ>RH|ERHx zQY{9%JnEOKj{2DhMiw;p&|+w8wKgkN#x=7{HTsH%&7j5N46_Yh&KA9ZdjS`u%DsT| zWf|@Tn6)AH0`MrzyOa=~Z!<=_+G^dODr1bpCQz{tV1TMn{olyY*ar}(VjsW&R5ag| zl8JqQ7F06bPXGcRyW*PGe8Ii;cJcrkHI6!%w7k`hl;+Td=t`Q2U+7AjHMeplBE}P9IgXwV70X5tZxE<+|7B@JZD1&hZ_w&q3h_8=Nw>T zV`;evhO@?q5^CqosA67TL6LB-=O$`R*mO~h6BE>e+kMS~U9PY%Zw_alwbWex>18TM zDE8cz^4d$|TA?+~abhNi1x4kB;G%&&wX<;^fvhS#z zI7q)HCHf#e%X8|h2g3sT^-j(S4h!OSr`16HQVvwHsobf`pQ9zG@v16+->lO@AUZU^ zA`;3K=!aGQhBoF%13-Pk8DGZBrp0Ix9cgj}YC^yjXnC44*G`IrE6}pEIB^Ml4+>LH z$pS@>OVCu8q)AgnX)#uV;6bumXfTRh*Sb~DwrM3RQctCO}^g^J8EkAQzv2oM453`=BP`7*+NYu&BxenXNR7CA`;lQRIC5 zc*kx@Num^;7xWf7uS~yliG6LlI!L*WVqs{xhF9Ji*MmI*>K3W;T!E(BD{+`|_4&3G z8yBd`iQQ%*EJDK-k}!sb^V6jlyGE8_XlQQIVt*k|+2CrNugsAciO*$uGn{jGo(QS&@RP5f0!}AW zVnt~}g})*A;=8yA^T;6Qm24D+H)hfVT8yK0R0i%&5MdR$k+Ly@Dl{g`5Kq;ANL9Um z8En-YtaZM`7EumSf~HF~-2g1b8P^d*oULta{huS;ty-2e47zNa30^D&4AB&W%~EuM zX6^@7f2XK-@@X5IHqlmR@D;QCVGV?eYNrA=wG%f0Oe1!~a@YW%7EX5$(o9x6z7_JK zdpIh7p?f$A8nAW`Ut9%YGrhge^|wA|u!asYSkW_Rq(t`&cmMTtB;1J@$_LHy&v94~ zu1j}FyZ>88#O{y0#$Tv)aPS+h@ej{R7s61xe}?vyIABxXajt*5jTIBA#aWX={`x$i z<8<&J=lQ!bH?78F8}OYo>-)BT2OitV=paz^$od@opv4kMG;fE8zxOTd_Lp<-po$hM zNGNvjUl#bUO{TJ|gu%nt`km~2Dl|+il`sG_H0>0P?>`wDm?_|?vN}@&V&}8|;B|hd z#xAGjxTF~#K~*7^2^CK;E~H2(4K8VJ5XI;fpfAxYY`MsJz5QNC!m4q3x$J(5HSS{P zh1&Xfir?(uCngN(o@`P)-(Qs4O}pD6FFM~rso_QERSrBiZ@Yn4ZieZ%psqm^?OKNj z4=b6u4U7G+urDdTFeJ^5hAVq|h?j2kcjcoeJ6E$)CU6l68sKV^@g#gP4es9A4hjB! zNxdR>z=45a3o45~n}HY%wQeB?9n^ZIoEg=QoED&8oa(va7f$uu7V)O~nq~gA7E^ux za{mnG68O4b!l~Yal;~6auCtu#$EG=NWi^DbJdZG-g$x42Eo2aA!MZL4%@RRiNsEXv zz*j(SUhYrUv-ZX^G*kuBFB3u4cE8fu9Kh1Ha`g zDN?+GgeG!7;NjQj2sur%&7 zizVW|x1z|YL&|$aF-~#lA)MmB-{s$;9c{t4tnufwV-yS5sNX1K^-F*eQCD!OTk|L>}4f~>id6u=SLN!sC- zGV%j~qjaDEO*%NS%G)=I4tNaws3p_Afi#WPj{ZVs^afSp7kYy#klH%%>#{ALH%Q^R zk3(*F0#yOJgt4UL?{W!WKkd&D&&|wba|m_x3$`oyxQ}7^A|83OT`qs)18f#@)Xji~ z3jc6^E3l<0YM&XJ;9x>UtnW z<>>zou62IH5?ccc-S8UiN}W`}K6;KZ-qXh0tdYEP`S=U~BeUA$0neC5M~;1xF74ZH0iL zl8Hl9^Bpp~U}`=tq`rI2Kgz~_r9`3mqnW)88PwSFUt9C0Z$hpo8dimH8CD2vufKB) zLVJGkUcW0N9}rgA)F)&j^G9d(>t6r*7|hYkWyNL8et(G>Hmdb)ELx9i!4Xm9RG>Ii z6l0(WrWymqHgEg4+Gn)U@0C$Bj1;G}i4!T#Ya=7YHNp<*k>YWIOU8WAa8Vj?CY z#ffd?T5u?@Y!Fau!P+)5S~T_GiAc0~`6)q0}x~U=SvlAYa>I(l&75~HulD! zBkXA-L&jbo`JZM7Oz>hIX)x$08GPJEt|RyG(xgCNQm+Jfxs8khUj$v+vZwUKTWPj! zaiBN1k&)oBPvD4A(@ZiXqng)Aa&M9;rQN*Uc|FUa@HnS2$DB`#ak%AV%5ceOj3Sqr zDPvkeRz!j^0Gp{oDi8V(u_{VEO2}d!;t<1fuowQ08P!u^q*;Xu6!BN ze>7szqd*w|RXer|p)m^FA%0;LxC6wFjRM6vv*G`-JZF}F1kRbgPn(Yc;M=4`4*<{h zoY`~xos1tTPo3bfpkDVSNG`&zdb` z4Q%WTEf-z9dSWPn*BynMJc(Ik4q!K*$&{O~CM4W^&B;=muXz*+H#D-ittb%hU{L2Q zX|hfUF?5rK8?ddip-uo(iu$M>lSTGn=b7k=<+(vu zrA4pK62@o(TW$h1i=g&lmq-!tbw7ay(~`)k=v^s+L}uO*M?Tz-rNc^>U5?Fa$J0U< zoN>>HUpV8QfnJTBapE}6i63Fr8JlpwJF{OBfBh%_K=u}G8cw@6Nr^t~&i3-$v=5!P zu_J`AOvQZ(;}jmt=9BXScp(jM1wkR+3TluI&C`Q&ycGmB;#Lr3IC1Rb>dZpgx`Ut& zF^%_R;WW-OZU!YAH-jcko2ibBcFg8a{O0eKbx_DhXZLGVV7wUA`*%2s*wrMMxT`

udqM9^|pHUK9dN#DHvNA_mebjA;62$BAgp&6eh&qd+m4 zhhVle4?z>LhX?- z?{B^Y8++l;k#-2Au6R-CZ4)pfM-P z0uFwqCy>JX{2N}+v*(ccA>tI$B9-QXPhNmj+8Q)l zLr95kw$5_1aP{}joop(hE3H;tj@&@FC`Wz?V19a_hTRkcc3lp)rBszC(F!zhP=QZr z-AilGz(EaOdj!h1MKun7@W0L)J~}LoBc5QX&yklY_fTA<3N`q7fw8If0`@+wM$%BN zlg2j&EYwvu5xPRy&4D>+H^~9XR{YGMzO5U{iq_t3@tPtq62yKM5|n)jHA9-Jb7V z*zK=;AV%y5Ll^6Nptf8-IXmDpi;M@g7pw_4;&1%s%uOf(nfbPp&bF+Zwe-dDr1x4$ z-|UPtFTGGuqG|-4@iX5}%Z!plSmEP8CU#=ae<}{8KP!3j_UQL~qC6Y~<={KLrF& zc;F+&KT%9W=pW(sxvHu%nLC(`{9q2(a}lgvW(v7nFVqTeo<(BCG9e6>T9zSrC- zGILXyTMzy_-_APc5hH>ta-&mKS}Z?LtjNpd;i|4FuEWgt2T1A#w%*W4ainNVGnbzY zHNgx2XfRP5WVLxRGt!&aUJ`Jw-rckbfl)NQd6@60PipR(XJa!=M8z7zAgZE{sY-~F z9)b1jdJ2ydcxj$8m&<9D(Sx_-#W9z6TJ@lqz-0C)5r8Yd#sNAou{UP$HmJuL{ErwJ za0YLQC&PA7#-Gh#BE#J+T}4qcM27y`l(iW8@G^$z1zwWefOdl-w?K6j94L?NDg`6E zD!qPoYgZ4A{YV*D53-ZkRbA>sS+3(Y)~GERm5`gSX3c1ckkJk>{M#JY#b#j4`3O_a ztEWicE`XB-K`=*66VEwkNq=73#?^v9-^SIQC*2=xY9@f(%A&bxjoM3n37>o@ja6R!CF z--)(-$G|{8cEVI+rmDm}YEZT9=KJOcy7Al!d+S*CFW{)qMDs+p!WcD*&>Tq!&kuRTy2?Q7pq;Ueqp*xxAvCg~N-Ace16x1KP>ElxBI4dD`*c zd$_u4OWN`Eso}0{S&Rf|EN_k{!5!@^jHPh7#9&7xNZ@x?xH_5@fGYd8!sTY0DQlrJ z4P?e0CX>ujPFfM~*G{eiD?lS6Wo~q}>M&DR<0_DPZ;mGi=u$vm1q_%D%D-aUZVBwO=l>s_t+ z!QQUHti8a{lW2Ip@&|!JY2;B5+*5PX5*R*ePpyY2#yzzk+Q~gNd?9j3d-X!(Fp73) za_@<@_HicLnD#OO)ka|GOF4Whxf*K3Vj*^VdyUVGH_D*K(nqovvTn5#W&*nx~MG|m9X`)qWTnK97R7#vj6{8uHi;3Q0q z0iZ;vr(A`pX<@C|1ip2kt3NBD(nO7R6~j~f`e}n)4{BPk4)PsjgS!e4DJ*#hnNB*r zbLGsfb_^2|plus2exYp}-T`f!<>$CyCgJC}Ql1PX^0qSrt1VxbKiiYAV^_Nx^0Bi5 z@3LuBLul%zkP_Y0{ayT$dG;N?3_kTL$k;6;d}JQ&`VKOewTjkYE(>Zfmo@J$S6g-; zt;SpyRAVk{eg{mGtv={V=L?2RPvdWnbaiI`r0|$Dds;F27p*}?P=l$s4`>bYfEt|# ze(rP1+`v?Jf`TFGqe!|uiB=$Gs6fie9q9xS@8v^{P8lt-O6OzEk7X-Xn^8`<7$R|-D#DxU@W_7uTZyoFE#ytb!TgC9JH>;om z;T*Xnnot=9L61;HOALa zAcL>ZX;*0941C1xXttH|!8UD-$LCqurew-TUXMmb;!%#6M#=92 zyan9wy8!RRaN8G;+W{*L>Q~w9z=)@QKccmnqv7jD5k|UYgV7;<-N=s8*M)(%@O6QX z($~?^Vj%JTM*}_Ti>A09v9VV9WDels&=_(mZIY2MoLv^*TG_67{j{mB<~G*Jgas}y z-M~_*r~G{QV%Pc$((4zj3|wPl-e`<814DTnXFkt+0FDgDROILLUA559Lua^7v6??1 zqyz?da9QeeZbEwDat*2qsyVO|pF8?&RbVljYN9G!t^uz+PF+6izrlv+l9{f>Y`zIz z`1~07Yx1Sf2RwA3F#yde4dFmrT6Y&DH*0@|_2oJWA7vfXCJ-gSo1G2};DxhYWBBTi zTz>IuvbG7*2IA{ShA?V>(}Zcf7fbDyK7gbFtaiL4+t&hkC&K)-_pE;x`zst4 z)a#CdX2b^0yU+vbv8hkj2MV;`^LgTiz|gFtLL%xiJ|H6U%5|=OoGoyD&k_shgoTlp z^?o#F0tG=I(T0{7KBA>4Mj!EhKKh7y@DX`7dwGHK4^E1QwiKS0w7#^_w?O)b--R?L z|4;%o!atOli0S^}Jm7`?VHB-K|8Q!9G4z!LV030~O5 z82BFxq)ilf!YIc8d|rTi>@BV3(k)@@!l*frZ4gq<#6&=TS*3b~tJv`4W`t`X zdyqn5V1KWo`~?BqZgR?FX9H=)KLRi*=H-H02 zd7YwWLDt}CtZWLBn$WXrebW~Mg*H}B%Q5ORP}O<3ZkItBQ?`Mo2Rd6q{k4Fz9O@Q{m?)PC)`*9NM#W6Tkb$B6kI35yI_zHE<=H zYhorsID@8|;5R z1NN|zMC5PyUBAkmCL?vTn^M5k&2~_%NZmw$A!{?Rd8EHpjQXq+_~B@Q6wZ$4x!msfOU$Ea8$0?js5rna+8ROELzH*a>;Yuay}q}??z(qzh> zVi3Da2fQwhoI%x&^v=57%@DuP?q+n3Z+8b5)^B?!kYKa4xogid>g@BB%fT;wFR-6= z6~gEVT{O3yNr`T5{|0_9upl8U&28V#(%cTEHE6Y<#;}UxX*HTIs7BM(tFu+cW)6i% z^LV9Vw3yZ)Bd9_1$Y~AofEt~Lk+IoI!I1PuMS2IVLDEozq+h2sNE&K%(r9@tR9@E; z#)h!G9XdxW@AiX%PTJAV{K&z;xmi60RcdVuC>u=I{QmHG#xp+;)bRt)yH>DM6ad#^ z`O!2^QV@*7n-r1pVMO7Hq8Ov_{LV58&-o(I)@JWeq@wVAiiZ(vyP`NzcxjQ0!jB5( zrYJlIYD5&CV(>l7>>*1aa?PqMR5V$4vb_F zZsKSJ;cW;L-D<(ekU@CMA{m4y0$&k?CltvboQ@O&sUEU4Z`s%fgrbbXjghAE=I;~{ zSKaG)poxtgF<}W;ZD6U`{V+5|Bxv~B3=^pH>0ftyL#MYRoWOrC3E~|E^tmq)mFYhBZ{T?k`-~8lKKJ7;(&rwfHR!LP2L08qv%C-%!GlPwKE#CEd@FBh3iJvotB`xGmzA+0TU9syAVY(+?`((qr2PL zMQ%(CY8?E)KE7Cay9pExJ;T`IINok*vGjJC0>$L*MnR46cB4$h#M9J7~X2d5FG!6&0wIs!O3Eo z&k=aS#u@-hf&<0!vg60aJTD^{)<7a_z?T6)7-RUNZ)5&xMsPgq*p&`cVT=vx>WP-N zU8T4mI)X!4g$Z6*M z&J1p`xO%oZD|icAP1}YR^;S}%Th#l`Zq>AUF?@k|?`hY~Y!e}lR@L?hFYO1G5g+?_ zK>kK6X(2}4{m@upC6|IyRZeAcUa&-aqbpyV7o3oFzo1U7;&RFktzvcC;8gY=Eym}f zr}psu)q7)l<1+ZpcEN`1ZAu#-w&-Vbf62Zy6${gJzUCfiKh`yYZ`9mwc7oR9DLHXQ z&3061#NwM$zjl>J)ZP$ix-Go6V=$Qhg(yKCC{qobdCvs*d1evBF_5enShMir`KPQB zAg8Z#(X2PC@0gS%O3|uAm*A!Tk8cS+Z+Dg?@Hc;R7cn=*LaSb06343hOQcmdwZvBM z?yq%&8gZ$=*hEZR>hD}4Eof^XDlBM=611REx)-m%Z&@FDpUt5JFg!IHt}NG;CF&me z3U^zZc4rA6eP5_ITSF1C89ZJy9*ENnPexq~v)e#TIPF#tWLrb1mylh|5^hQz~z^Rh07Sr9&Ki zOiOn^HX;UWhyk|YS$IzG(pE6fFQZ_)?(ht?mCC?%F0H`8b#kc;TyLQ@7`Q?WCR#uM zOte_EzpfnmN|@v9(&(TSUiw(rx0N2WZY<>sdIyJRl?yJ^Jm*oiXr6~Pbyqg zZ>r>g8B@5OT8e~j2Okz4D2mbVESLkW5Bvd z-RLm*sHg9~2LZ&zug>M}7g?+BWbETnEa3OXYjNb2s8Y6@!0WalfYtzh=|$=6rnzcPIO^ zx&r=52^tD`I-UYv{y!){3GzgDX~UkNETR;kK(|Q+*w*oDw*~u>_N#iB7oeC5eA3&# z9Y*`EmLui6OBzhtD4i*shhbix@>eoy8hEPDUCSDlkpVAEW458hR?-wuB)PEUM}6*- zT6&pWR~iWFt`J2a>q_csb-N_}ceSIl5Ch||BJm63u%fc~>q@Y_xURf(QgD;Sx^i4y za3>4UreOqCNlNqx>fXO$U0Ku5{Q?_Bh|37-+%g$K4K3r_jt;6}S5OEHex?}^xJ^~k z-ZPXfpH2{Ctk&o-P}1cZ-9>5R8olT2;2o^WR4mr$zYTX6YQuW)E>{Qh*$7$<7V1K6 zNRK$KXIu|>#5>fTbr&dlELb}y*fy=dD51;qsvi8NIl)pha}2OzKuu!fi-SE!x}UJI zxl}N8&wVa*JK2r27~L}f%3JLw42(N@G_W?e2VXcp_zx@USGr5sBhd(ULH)bY?z^Kf zB6{4e^!Pl*L_IziPmg>44|-H*Q9#^2*9QlinF~E;8+ufrRFBH0X5A26sC^0C#Bo^z zLB*#OK}NROJlk>xTb4+BvVlLyLWTF5NFdgn2< ze#aE|<#zT6C48-u3HD%3E6C6kU1n>-w|xu=+v7X!P13$hfE)6SXH2|k z!ey6^n>6+Ix|S6d-L~>2cQ+!xifn`gbHbi(Q4&DVjk+nOj3XkC?dNgFBJe( zeK=SY0X0^ih8%5WaJ{EOu0DT!ICvA&oMfb9Q=8C|+O$3cdEW70-{vu7&IqMD`TBM} zlWagyESzFsUapV}>Y_#NPVi+KO4(?4IW0!r7CU+JreJm~0yaKu1^?-$V0SaTl?Ie) z>*SOgcyx1cBfF52Lk&!(B|;$Eg{TA4z7A5AW1YBiw80t8<3af%i=hL>40I4#JZUfn zuHG`Bm)M?5vVnm$YfWL?3nNJE6Ji>F0~IF9Qg@P4taZ{f{_{?m#@|H|(d}$^#&J8Z zIW6oLxE)C28_iM7o`LtjF^vyDjBK%$vK7LUO4*pk|C%D<5WqD4_p}%_{&lp*6}7LF z#-Fs(xPp1yiAzuW77(?v)hzWw@Y)Cl33U|4z0_0SeyGWNPUY@_4jQrRYe~5hsCIOB zfi7?@StfqrTC&U)FQ@<3bHOJqR*-N0Gx!Xv7Wk$dd_Pj6uOJ`%dsdK*cuCE-u)VOx zy@5?2Y~&v0SU9_+_9(ScF1en(hC+$;l$1)lRO#X_NZH`xZp|yfD_Dw~^et|{&aIq!wu?KX4;!k$l~Fdh z&g-=&xQu0+iX-cj0=Hb}b)wbiRXg&^giySYr_3$AYD0lW*Lvw$qJ*yXfHALp*xlYN z0WS7pU`?{)V(<9F?tj}@4V6wtcw(`4E-gmaQRC+O-VFXT1|c_bRZn~=o{t&r?#}9> z5$(XCzR@Okizr^Wm@vd_C@n4(Q!OSQ-Rz#JT?bkbYbgUktv)CMuBGbl*#c1jTS4V8 z+I0sl7VWYFAg|lz{?3dMC7rqa^DMX)3(M)ml4|>xzu?nN&vOg*(Hi`sRMJu zSn7NR!r>11A&Q34M^Dgk6PF?{XFQgvk{aQ4veu! zf=)Ju7URGGK)IwbV?+Y|%RO>QGm~Os*G%X8GeQ=pEarPGdIeWAhR~UE;0WfpnlUri z6|#!*j7W>CnHU6)?R&@)V|0I5vY9a=?R!qOZ#%`r_B|7)eXsm)?ZY*UnYmcQptzq> zrr6^nJaP?VMiA0A{+GM2{RAj%;J@6E;-HvlZjZ$g_cxD)rM>wzw)|75*Wo1j-v_~@$y&#%*%85?}zqtKPGyI({EWk^@;$nOaX!N9#h{KCM!pl6)GebxNXGZu0Cd|T)dRw>X;aeGfvqQ~tI z{|#|_Zj(@JK4?lXjbCOD&0yyeHgXSWXivEZRMS(2%(%ldEd~s}oFX2-XY*(chRjf7 zgv?85HHOSkjUhA8$B@~gp>=~mhazNl_Kbwg`x8Swv`syEqeh{rS%U;s8Zx^n8w{E8 z%;HnD7(?dY?N^;u$PDVsW&faLMTlJg?P2#x8{19GaclA=Q9`3ximHOE&sgYA?QLkO z2>lEMb^DVda13dGOb!)l{IPG{dF&8nh^KMpHw(45f73I8AN{X8pB<(3;3g_KK2m)I zy4dnK&W}Ci?*Ar%r-$XKKf-YwL#`&$cLQsV4_BIGzyk=dZ{5Y7(hJh}-?e8M878OUnoklI^p_*9Trt#48%?#yK6!tJG=_1ijxW@xO$ zL|NQDFes}ysHnGjG4ua7+&cO`ln+1W%& z3wwWW6WA`flon&}1E5^^m@y&?gKK-sh0paA6MJwz)PVJD9cLDMhzlP> z=v-+$1#?{Zn3?MfpZh4!h_txyi9z7lz9%g)jBOk3m`MyS7x7UTTB3ECu1*~gH(zK=XhC&-$$r?fG!k4(;2fuNE2UIQHoa1uQ! z@IpGqM1b$GHfp>}-%!{=qewl}m!W92W3OlghWh)&FAVkfK{KpBTy>K#w96vaU*-=z z$&OHU;3=;!Nr@ioZ~S{={ib|c9-JM79DOSp@SjsjIu?`Pr(xiPLRH#NeMrFHG6pQY zQU?4TX$=PaP-6uAWwaUteyGNPALwJiZ_(PiA3>8M;6Dg6R$Wp$-aq8hhE?*;RiRl~ zKMD=efd6x%GWm3H&4Ybsu?tMx@c`7}foB`=8#>f;#sqV-1b zy|OZntyotngYRJiPhS9Fz-7p#7AC-&ukGr2BAyKOx(v@)%kX488D9L~WJvDj=@Ut*1X(U(kP zBk*k3R|TFOXg&IeyuNYzylY?SA549YfoB%fh`=+WuM9j5>D0ail}-;lkGtXW46CL5 zG4M2y)wV%(-{`>eaTR!)$;!ZU3UpObplf}vo}M8Zn_?m_qECZ-o}4$A^o@=_=Tf9d z^m!vKMej7XuZ%uT@ECm>Ow?(Ot3ls*p6I5&o&r1DKxv@^e0~6&y?KNd;}8Hq8GV{D zB7xa<=qz!P=y{5X-S}L*Zro$ljTn9!Qmf<6f;)zvX6}0U`59#z5f{VH7zBBL6v2ys%SMAL>hMq4_L?iV47cIt)e!(Y0&lnk= z_sP(6sV`b}N)o|xDm$irL-8w#6&-@x+&D&jIi=pRW%>@YspzfkD!WtHl8xPc73Rr z?_3!Ah%KeXxc0kIlwiXeNFTP?FIQKCCVHl@dra^mmlFfO#xKXPz!TFy2H+-8?FXU0 zEeI)n#0gmOkX@_#l8Zez+t>~QBd>5fpKP%$Im{n#8_7c zo3gPyTIajU+1Jq++73UTv>fgR#3C3US2`VyWk<=x$CYBy@Z(BN17u3zNB};0FZt8? zfs1cVw7@c$RJyW;H(81^z#mf~`p#%Id{F{-nib3cR zBpItZilm1Pl}WS|`?3yNBobCJ)GiK6iz}#_Ev}NUTM(lLt!t29wVIn6Ar7`7lbaKUf*jd3=_;keG-(9H!K&H%0C`?xUWPo8Z$wI!m zk3j(FgrGQp6o!}6Of*eG(DLDO*cJTmU%kxeG9vtMa$@hQagJ9DhP0(^so;21=>l2;<6j-$J6{yz@jcM6@sPl5P=I(yU=GC+4++?= z{38Y27?O_(PzA`x1Zn$59^W&!=jVRa4%(Oc z43dMS+Ob2>#~Jjz_=Pj*c@WKd2EFr4=pl>A^TM;Co7e|bQk*>RkP?0Jtos`R>_>Nn zQu&ec)HGgoho_DmBW&c^>u-cQ254VF&-4gq@T>0hgjix2nx`8UoJ;nwoN@pr=2C`* zxOInl>35+lZ7+;gm6u)ge5gpv5A&y<4~@z?ELhXQw4cg?q4)(mL!(#;WsV0ia(+Mm zEJk@_4mxPTx=^whTP$7cxtsN-#TZ-k5+x|7N->!+#p@YED3USgYeX>)`okeI=%HzTv%Sus{yLwdR}!{Ue7bj zzu51ppZ!V*Vxw)80(xho>FQ$UCXgfYP{zl5LhvxboE7L8`B273CQz{oF&L;P z@7@nfp9m=E>I?uy>xD2TA?lxh*z=H${bZsja(M=V68Q(91TS8!e$4Yo;wnuZ#7^Ci z)JA4llly@}^^uM4x^X{#_r6dSYfNj5$1(Ey$;UC;(P|?*p3^T*4|eG%v*WY}IX;eI zNUYvH2MLzG73v%%fe6YlDeR-1b&>1d4izO+k>%qUys0fLj~t6Hv_idj7XzLf-y2Hg zmt5;lGxNX~GA02KzK}7Q@-bR?al97Jv}z%~kYUwAd?AAhEMLfo0d3e%4hYeWB1kd- zRR6+&fC~9Sg!Vj)4)G8oj8kjqM`0+6w;@b(VBQCzff>~L=!RZeFuw0dQ8Hh!GqJs6 zhtP?%_~Mte`2FHp{7*j&J!kny>mz@IA)oVED1(3Vl&2fN`C~{}d`No>J;=MHME4+n z8{^NO_RL|&2?v>?`4$F;*bn?qKbfMjkfH7?(3c3Y_V$bTg)yIn%C%c2X6MY>Q5#xM&XxjF7L$hXfaNbR{i<53kPK;(F%n3ZYhUj z^0ZioKl3@Pe`6W!*x@N-foKFf0P+o6%L^rCtPoaw z39GMInUKRAD}*hFA&q205TRV={%9>b3}n9ly2?^svNJK&L3OXs3fY0xj=Kd0PKLGO z7fyz?{c$o_exYiAzlY!pRW^$l2u5%+UwhM6$^6%sJQuU43{k$~IF=tLCHh!C+Yd@z z_Oj<$_68v=hwz^Me0q7f+%!&bs~Rd`tJ=ekP!!yyh8odiEv{yiFh)i@*n)<9(23AO*49)f_BeXI;pu8Gs!HI~-hfY57t?yfX>_WJ z;})G&(k(U-c=}Ri)X7jmTAnCDg(S#?X4@*xPeK;aBmyo=VnAbBP+#*ysKCaCQt2?b zGf-8^DF&7I+V9!Q##2m;1`eKrGX_(t__tmB9Lx6qQ|8v1sXOvjk|ciLOt3T;;v zJoWC&WV=knM3hr9qM|)JLW_k#w(a6u3&Neu@Q|x1;L{E_?##ARcnp7^t&-vIBOsdy ze;=%p;jdW%>UE0dt9pg^vD^VncM8N?vLK2KbgcKuk=>VBVDjvX-8bTTgnqUps z3IM+dU(Rl!;zX%I9UEPUt(w5@Hi3$e-e9kuL%UPSCs07XECWE%YDH<_O$t*NUHgS+ zpo3aN-498VTJ6{^@X-&wEPkOMdKtROdKvyelkf%$7qm1fd?ovgN`j8(V^X3!p0mhd z?PB3C*eOC&`ke0v$gt_V0n&k3aIHHEEfNmoy#cYAse2ZG)w)q#Y4SN>F{}9nDdFK+ zM+Fn=Pd*@A>-VRGi){SZxL{+R`(EEtmQzgzzL6F$td?o<&a@iL+l5+wbsU4_{w}5ACnPo!^Ts5Z07~>+BwClozqWvI;DpM5vqB?e#;5Zu()DhN7+Wi)^e() z4WO;XRZ>JHRPZpRH&iBaq~gL|x#5ml+kyN@Zn!2ZRftDN(`h1|JiS?rWzJ`Pz4jgh6ITD` zaj^Qz~E#mAp8=p)JB7FA~-p3pbSpTDi8^1+TZ#tkb|b$ z@t&ZIv*3O43unRmAiMP}*xfm7{g(Gxe7^+;_nD&b+w25wBhI6vq(q-be*>!&KD%3K z27kD*cNuFm2%4==UR#>DWrjNL(@ko@h6{DZUx$wLj2U(vx+m_%!l`t1gF+d1+#ejdW2GwaSM+x6AJ zi0wM!47by;Q?7^!~meS>uWM1)XD3w`aZ=DP$_U(b|f0}V+w+&rsrgM;gZs~ zrt(OR^aomuGxS@Ksb{#e839*F1}~N0H}N|3i!Y=8+?L)+HrA|$3^pNVnt`fJ8>_){ zsl28#u}OzMYT-)h=`&bh&KzGivHw$j!oS*B0VR#=g6A^5ZdO8z_upAHP^*Ctyk&WN zTOe%D@;X`HXarl0{DfO915A4jjfNKt@M>l(0;at#vO+kW9Qd$#2 zl(gzhY;moW7I;KStC;K3ZY=dqx3O`Q7sgIopB)BSwsXVz_Q|ygd~SDdJ9eoF=nJ@x zIjJ^I@N{LZ3@qLiR!9$?)|Gkl(+w@Cu>q|4M`hmDW*LklC@~15p-JKa_hmi2->}st znS}MjbizHf7>5M_@}df_-;9BeSZs|3)>bP;o2W-AI!g}H+mxb(ROVr!+6Rh;3bi}) zVvRh<0u#a-db1ovy!e}|8u8w4?;^hWCbfTM9z*RU`@^-EjNw;%ymOg0IR2PZ@V_hN z{XQ;y14}c(o6Wg`Z#GztBY|gbo&xx_7S}QMpFqE(dU-<{NF*S$jDAy)o9R@=BnNd1 zyr#FemIb0E$~MTTgTxd`T>&cUrH&P8@ka;aB z(SyvtfnP&DIRH-WZbF@7^mNBy5??+_t1;|?YTOFA9o{m1Z@_u%1qy)#b|?b#uWrzZ zXRcDi8)8!pYIIyYpJdUry4#>1L>6cc^tW0rp1CfZsU088v#t+&vu+doXvj5>3NSsr zs)Sef_s(WN(_##{=0;~gqKBs<^cxU`n9AK^`7w4B#g z_k-7|W`w7(d`eODr=uMy(Ff*SXzbjysKFS0B(1^S8mK`v z_ZT9>|CCwbYBqy{VNXs~q!-W{Bn>r4dKs-j(oka}{q_9th3p{;hNSOPq@ScUNE&L4 z>yR(fYNQX@p%J9e* zw8ZELq&?8_UjdFL;*|J>CgK#xeoMFm`I6MB!F<<;{l@Z-ZwRMajDTN8c+X>OC>c{Y z0veGLgE3z*FU(n6QYS}1_E4ERZ9P=>CaT;W16Dp%4wNvhL6t*|q4MFh8dVO}sB)l> zlQNEU(Kp&C^W6#*ywEzHfvx_y4GTb;RZl6EjeLOIkvju814zZ!=6+f2R0_>dzeZ zKdS$;i@f7mH-WF`E^y=*lM+J)zF}$jHOL_nXtW~!VRA?hr!}Zos6oB1odglz1X?Zh zYV-4Ld&2{?KEvc@LmaNTw}#vOA8m-b(b?I=NsMS(LK+052RT*?XdK5}{6a-?D@B$( zQ4O1)+b(KQ|J@XCrN-7!HW011;}=}!?P`BuSOQ;hnYWldMC*-I=Y7NCMC;pz$yBE> zm62%uxoO@`>4ue5TW!Fa|2)kbh>;KEMN0kW2tVQ@Ho(MnxZz813^p3C)VZoYkK|<PbkTN_@S7Z&h(8GaQ-n=x6uHa|x2FD$%h9y^eixYYX8Gaw^E#OPvmm!wH zzI#0Ol~(Nc-4o8Y?uP8y-p9=R#Ud#yMpRSmgXbxRUhN&gMpNZPg50oORpm+1JjrqPCy&deoL%02Oqql&aGlI+r+@3fcPZLc>SZE?=p|>L$jp|)} zV9iG^^!78$V5JI$a9pXvyU06@6;hd^RH0U{9Y;u22t2bY6hU1TFD>@^Z7gJ>XdXiC z0a)q~xnY~pPD1;f%8ZjCht@J*@9-}fv zb;19m?YrZvDwfB&=Y|B54Wy9>>D15@=_No2LT(EQO*#pkD-&MD&6_G&5H>jPAGJiDS4RohE1 z`d?jBK_YS?W`pVlme8Jpxeywac#n$i0~s4iI*PCeS!=fTwbne77!g$&$Gf)<)*1|z z$q-X;TW<=I454deBPPm)wktYK=z-Ie+r=-OrrZv%jKCI~&qI!|R>fqh1@sfcvBl%myy0m2Lyvna0DrckHDF$bwfPvX)H})9C-~=BqVuEiS zJ~V*W3kZX2Z%2hCNBgjadl*<;q&<2=%j#*5%SSRJ`HDeTg5~GVP7USOGg(>j!-N!? z0O>=;;yFrwChI8skb?2_^;g7x39mY5J<%8FGGDTz_@)4 z^}_AzTEq11>)>I4G8P3mJ_HW)6P%)k$?@To;AUi*@o1ekOm1Im3bU&1>lPF&KC@yO zCU>uu@({Z8qji7NTHtF`*ZILevU+P@gO7;K>o14O&1=;F#>u+M)F-<)h9oRU{_WP-uhhD7i>N)Ts580mJZ`H&%+tOWeQq^@KS$PTI0(~Vm=XN ziq{XNfKYz05;oTq>1GJ`A}AUrL-=DCvIeoos7@Hd&GP!On0>?KC@Sbg2saDp8q69d zCln1XWu;kocCgL7F5WDwABK8O7k>1)?(^8kHxRCu|40`u=v3i)0T2!d{ZpGWz!r;- zbnnNDYT7c1qI%ik!{kZ9(BZ^garevAQ(tP=9xjYDo+T(n#lT?})%OQuhfDhi5;1U? z1$17+X*F@+P+ac97g^cSw7(m{T!s% z3?@?whRapI4^7=Oz!W0N4jqnBw$ZXHP={1FRajPc;FM_vQzv9kC~Q+W3qL%DhYg<| z&I7*7>K#8rh@(MwIF*k<_xc~b^Vka%j6wI!l_Av(x@Z`t@8CX18RPMQgRggg2=-YO zxHzs}@@DrI)(?h59`nuajoDcRF9OMX!!g`?-_ZFfFAcYKU{4DQBif!m(Y;~h2?4>% z>pAd~&@w~rh*gE-OTYb3g7E7gy!a$+asK5c{C9uCgLrN;PvJY>>fSiYhwuP?_O0#- zs&rhKdX-hJCXRwP9|3hSh97glYAV1uV1bL^fYoP&K4A5w6gXh@9^uD=IX)_Z<5iCl za=hxH@G{0LzPX|FaNGrkvUt);DQk{ZT@@DMEyzwlAWm8}1+~Or)o6qqtklXIgB5@A zde#eUE9D}>T7+pkJyvbvsjX~Tm8pMa)wQsvX?fhk#(mf$6pY$GJ%V5RJ1a#cFh>|K zDThYL5oX9)SloR`+2P*pB?>_SACA~?(AGpPYAW=DkMeR;UEz&;yNjV ziLN72KT8U~*4c*Nj;MI0PH?8KdUGt~!KO^OQUC|fg-?w04aoqG< zg_#lmSiMoC*|3)b0R};ZpehJjjv756JpL=ek~Yo}Dg#rB9Y*OX#ZFX?n88Mv)cORq z9Z$}ZeG8AcC48f26)9JvzkCITfR9e{N51Pmhvh1~MMO1u>*jXx(mpo*Ubf2byBD&t z3XQ6dPBX^TM|@UAbB&U*$&0ytl$@}ZC_Gg?^hsth(PP_{&K+5~LZj-Tj|Qtf^eC2k z5cBKI?Ua`YKGA+mmocPIRy6HNhFN8IbVVN)oG=VMCw^fVdTx}jF!V*IN&G~t?S3C& z2@K@5>y-_y5^FgfBSTc{%%raF=u0FGtDb!S57<6I#IF zUVG4J+6Q14O9PCU&{{r4)63L>553)=fK5dBdUI4&_$o-Y#cL^}`I=-~kN8i7Oxi(=M_Gmrm zVnd5MaVbP0>!=J|GMm);+ls44lRb(MnNOL46xDa*R|^kcf4* z7q4Bkk~l@8Cg*LxgDDd2CPpL3zUGSVDRjWt)Jy!r*wkx`zu45Hy={Y!*wmndt$+=q zwZYglm_Ur!RB?;3>0sUT1FV2BmSJh?7#WrpQ4EG9z~DN&jAC$eeJWo&+UC?IkC789 zAKJPnfh9yl${AA?krKPw8fgc{@IGB__V`JHDUC=2s1%$~ebm);`@$GMQQ`ztbo?Fd*#SXfLoeI+$h8pG8%Jv*BABO_$V&ghDMPsqZM z^}hIpA?tl;6yL8>9dg>%dxfkD_C2*TMyqcK#E4c8S3g=MpUoJ{+oog&^RWK5aZJl6 zer{RbW1#kT9-kTF=)l4#2Kr43KYA>ol?IKK^GByR_BT4>ah-W)P5g9X5q;&kJm+P0ELl2)Z2E;|N;U>sB`N zj>X$Y@}qNXwfNyXZS&bZggeh~++$pf4|(pT`7l>pk{`?89cpXL)=?Vam(jjy_^~>< zaeUJ-+dpg%CBa<5!})SFe1>9hGz1KuH+y)5tsy&3(U^J$G^U=n=ZiDZ(R{~9o0EM^ ziy{BBI{$Ad2KfU9`Tsu3mc)LiXygxQgFjqZ7tMbfZ5zWP#+uD0NAo&krT$42gZu%5 z{Kw>h{%t54`2(8pug6E^+xoD6v>582sq-I9F~}bEr#r4#$oI7;tgaw1c11D>_m$rSHKut(Pz@8*#@&5S`4{5C090@ zV$djnL9N$Kx3ywZDH{0$n((j3TYO;8VasSSg$MX7HSfjK+1>Lysv7oHb$M_!;BYyFcf-Zc7xSR2)`u$=YZLUzan7@&ukyD_+pZ z3nfko1;n5Cu6MT+H%zS813rWpHQ?t7K-H{EylU{ztAzvEyR-&4Ia&Ol!VK$$aRGc) zjI{;3q~KwmYB|q$Y_rMFzkBb)e9bd9+B$@yS~yh&-FWWV!gk#KceiR?FrmlSI@-JA z~1?f{fkFI-XScR?ZL@A-)b%Bw;onXuj==g+)+Nn9xsJU~9t~ zP%y62BgV_kCvSpl3v3-(D^G#|QIId5@MOFX8E+Nadb1v$BwEDy%DWcYV0%pwf>Zi% zQ5a39Z-yxqf(hn1qIHg~jFQ)WOc)^8Qnf%QXTRxlXp+Y84 zonj5vW{>A**4Sd%Y>Gw?OUl=pT33z-$H-twY?Xo+9(F&!woCUg?@zyRFd?jlJX|b% zW@22F+pM2{(YVlIhO2>x4)fc$P$AI6T$TbMwYN5HJm0a&)`pM22V%}~sv9nFuxdy3 zsvV_hvuYn2Rr^T6i>keUqpE%OKUGc7CL@X;20znDONcZbFj_9ahU;}wrHfWlAXuq8Jt|dyjcpX$NA)s2@DaVC z9-(NnRxj$cI;NmSt&aGs)tmoIt@Mv03F)GxROzBt3IuEQut%+)S_et(->6<@t$xyL z^%F&7tqSh0-OS1+2Jk~O!;)E@iNtp?#Tq=(PX^((iN3-`+SiTZX}E}!ttI4(da3e7 zy%Y%6>zYTsvMOx-*&S3dvtAh!Ww*+p=&EjI9R~HnP&h)ti{`r1U%e*yte0oc(%dL58LK#m;G|$=vJxu|ljy6+A$eVZKN#jF<~Ob3-iSF&$_bf}o1Rn!%xT`eWs5?KKm5_dT{_ywx7t-|S(kBvxSif8c{SYkN6b zu>BN=6?k|Ozx1fBQl-K~n>i-5l2K;+By-m!(V_2}D5~gFEufSy=^mW`Ii(l&*;cAE zP<&H&?S5NhKJpz~IG>)kw?4Z_H518%m~#YTBw_^T(!@Ejyz#rXcD04;!fU9oba?In z9340{j-NYVi|71ZTfKNw`&6m@hlCxR_q5%|bKdiuE&eIW;A}B`yqGP<^0!KDF?`L( zwlJRhzK!vHRlkznw%b zfBT%RU6ZPI0z=`!zu?U5>^2h$W{jIWd%dw95^ktrTcOtkP^nq9C@3`vSJfBNu$O2^~|r>fSzCdV6YU&0rD|b?lbOn5*Y6UbJPB z*3z-dO?^pg=v$c4a!?qlrc-dzob$Skt+|W)Z-+Qm~Je+iX=M(5n>C0j5 z@|UTAyz4mecLFg*f!%Of)%}5MKSuJ0K2Ta^nbI)brICIiTxF-a z_!+5WSY^|YkSYEeCya0X91gwi{TQ^yUm;hGU*CLgyNz`al*Y;*8*%m*w(j0@^`4M! z^*L9MBt5N{RJbiabk)|IbhutT^lPQV=>=m<;bs%EC=;qXpy+ix=NnJwuk(^ECwi7B zjfv;k;uj{KXHW4=JR9AQy=*J?(Xyvrw#5ak0D4}UZ%bfhR0GlT5|(mH$f#6Zy#r_QSCg^<&+0%(1i2EhCD+|0HqG8u11rQXt-%ZO-fezu=NaHPju ze+5+OpgFJFnrqKb;X6LIHLyI-Emv)^;!j-C9H%@)yTc{D&}#ltH*aC{`&!mSm$JN~wTMSNWI~BYL{rO{jlvJS4sKy_8*ZVA zU+5N^+n-zPd&9Qehg;nJrmdk?-_8H^rmZQ96?}}If|>Xj0wMBkCv0(Agd3fK44*p$ z7<&4PC!iVHxIJ4tOByeV@RY6HjY6=sF&=joVDIL3xUspd4mVtBzecOC0RS6(AY~&O zT+4C$Sr(0Q%#S0aiTV^n11x z?IYa-KGHqFDt;tioY^phvOy2H=+6VLNDuIsSa~jt2S|m_6AvK%p<_P;?7ZCGFxmEK zcO8G+)QYtGF%wGLo!Z8`YD20ta2*-fbyF9yno%6QaV#Sc4$NYfV6DEwWiu%sGJmbJ1Y1G?^ zFzE%uC`5X}XSG8@1XOW?s@b$QNIY{1 zL#5Vt-DL&?;tD!;(p@qJ3;~vE4A2VL^` zc-)UKOyVam+bVoG#NJPA%>!Nqdj7lH){?zO)xb%?aRMd`!4sr2QI4}fJ zAmB3?T+Vs5|8Qx^V}!SC|F0;-i~^qvu;Kt?KDYI-{sv8*|5Qu^j`{R|jE1*Nh0=ys zW5fUDui-d|PDuAhw!X5hpM! z2*gy4|NSk@RF+M}NY>kHHX9;lv*Ys%^Jh;e^q$fN85m<;yJMi4#;))%JgGn^Nu@`S6lF6?Cwa+h{=s?TsVUMleXR2h!;fupP8NH4I* zWJsEMmkFiKOsiws5;Vur0gg{WQXu-8pv7kXLHxpI{=siE5B||-t{~|rTT(#nY0$R) zmt-_#A@HlJOJlPJ5s0Y@|K=xXR&5$KtDkhi)EW8XCzuNrKIUgzeJx>{XA4f01`Hr_ zdrZK+nI?`g3na_`?@VAnx-a9S=>^~ z-hnS%P{jCrEg-z6dp*eD$qR!LS%p~%nW~6hM<9g7r9W-c5`E*0s!W9og6u1JuL^r4 z`n!i}#Ek?q`Kud;=ARz|DW#ZYRz$Rkq3+q8i7Kh9z}L59js&fo;6k zC{Fm6x#Vz6m*lUQMP!5F*RUv4v%VYB?5^mGf&d%klK6#RVs zPHes^z}}VEyg(Z52O?0~{OD`eFdk9UUd&nwa%0ZmVe?s%JjErHh|vbLtZajU(=ohy`~6}e((wCk=j?q+8x%?-4klVvwLv(a6k>mp zt)@7SHkc#HSDHo4Hb|sQ&8m{>^h`;TA4uFK=&?n1i(l9xyKmegY0U;?SocqdkA6&Q z)r37}D)1%W0bi}O?B%7I_B4L5e_A-N<{ce=&exo2-)mg9k1$wvu=*!-LDWK?_eR60 z%HlBlUmAbCUeOlq9k9SV*%PhrKrJ)c#pLszJ8lc+C8LY#@snR<#PaP)_B#Bd=kr_e zq%Z0O^OK+FQAEfWd9m8>)A_M__7rxV+DFV{Ex!u;bn`yOQga5+ZDhaQWBJX(d$;0i zhhM47lVa=*s&T#_D!9!0BUEI1eo+#GAEaBu^=A<=GYr45NSC@Q+i!c_$Z+l3>Abw} zfVO;Eo;{zn6eW$2fXAm&TidJiGL=vXUi-~=*?S8K;mP(4>(`*+Og221-|=$3Zp?$% z;nSv9W9^K`PAv-M<+1jAtOI5Q@EKR~nz2Dt8MJGTU?@|W-o_p6-?)aDV1DA;ya>L1 zV72R{IcM;!1bZ{)q{@jczlZ`)E5nC3MfLm6;Ne;Q+wir&SSPc4DA_F<_+FF0Vcuh* zb#wXQZPq%xbzJXQ4)qS=?{UkYJgUK^hQ>#^l89X3c z8N8ygy$jn#RYF_7E+80~b&uUC>$*+1<^Cr2x7o*(>=tdg%<_>b!La6;k9z0wf)x9I ztN{i3XdhTWItZ>&{R!(RFyvdgMQzv^Di{qp!k;0hNJFZJEiR*yl(!m1%VUUAC&Hvo%UBE!Z0Sr z(S6a7pqRk#<(Js#9#ddoqcA095*8ccL*8awqwI6fXCsfzkXJ_*KLD1@FsUB$U zzdWt|KB?L}y0yEka?D}jvq&ETYd7W>S2?<{`V@>N51%DXt`OX+$+bGOKxo&_(CgM?mK>(Kf9EJ*#gq=c`=E7e0RQ+qM=N#@#i7xQb)zd(DD6$L zqM*{|6KP;c?Q59fi_>={UxWsWl@P8~<*aBZV&-W_S45zzG{}pUB>)6%gss?6(O-UlNyXul}+zKi@usUtJMc z!oDSp<%?_ooh4sfyG}9qk`Q3vC8Tbw_H5$o_>vG{@Fk(oAxy5#%8mA+uKTlD@R}{W zBy`kjZ_Fdd*c%ub30hcYBu+vbz`dK%IH?o|!`!JtB&H%d&*qoL*n7o)Ce))1cZ%wZ zudQFb%|4d(Qj`^UXta8^L3NgWV6!5YPPsu6IG!hc7dx5_reN?m{UwtD0*v`Ls64(m z?m9U4CFb@jjW1zLoGnkiPNZn_u=t|c`eE@B1usrT6wmh4i&xB+`(d30N!9C1a!)*4 zz|eq!a^(#2aX*a8r~6^ssa&jN>JxQBG*Al`fA-n^_s*dxJ^sxZ_X>~T%Km{t7?L#uoOyDTs2Km`uuenUzn83EA+Qv@O(WI5u1yINigpmoqwB;*m&u& zPBr<8nfCE)J~a{s$RYyyKM0VJ;~6D&X*B~r4hEqzlDD31pTX7=Ir5t0vO@es(}oLu zZ)g9aSnE0jzEjls9@T z&Juv2%|iQVl|alA;=Op&N^)}?XzjsM9|u|pFvbjMYa9o*6wRB-dV7^V-ETsOrAQ6~ zJt!830SpvFiu6D+RKW|Y4Jz^zD8?4aK%rVq1d1rPSvCCzl^!5pyhfqQ7a>)Fgumj5 z;oIiTYovlPj&v)+I0E0N-LV&zkw-5N3)h-~4kD~>plX|8b)5h!COYy?P!ZcpOJi8w zO(AAjRly>xe*7ZqV0{6sm6H~d9P&4Ir6Jq zF{@$X=kO}lZ;qVV4x<>H*#ZV%f1gA#II{%|&TI|VZ!RgCz)EN_e6zk-XT6$YkTqbC z^%jaj)_^fsUtVXQ%$}wtkn16x>&p~_Tmggk0SsPmZ^h0~G_nS?!5UxM_t7Bk7IVn3 zLwCk$VL9wX%<&v{eiI^b*r_pBZi%-L5IXGCQ?x42O5jP~Si&loa{CV&t2LMS4DJm^ zdD7Q3ityCQD8*zB}v#6Pv?ua*yDV5l&#fY zX5q*vQsLaW)xMQ=HESd{b+bDXh|y90Pviw}v#(>hguCo0uDP-YjG-8GD8QhbPNNv~ zCBUFB+2+d5g?CHbON*heE}6?MbsZf;C;~YH0y*!b7~~8XgEM-m4{Nxy=2m%WH)Fv_ z%Si`Ko$KkKuM27Dpl9ZCJU@^nAk;zIDGCV(#q$HWcW{>C&_8eYB!Ay5Lj035HT)Cm zfc|+^P@sQa6Ti?uuid~uZ=d@}_#V5($4of2PI^r~>QOrn4W0*_^x$ii_XR}|5VTF@oA6Sv*Viz zA=EFdR4UGwabu*Ag3XPQVhR@1NGlYS8zTw@rufQ=GOCk$KpUstH+LYLNu}Y<^ZO?U z*0=Djm+isU@n2f`>B|vG{N$7NMrlDF&mj+DmvsZw>fl|0bJfDZ&)A*pWzWKb@u6qz{j192BznClMknarm04M7 zPqOeMpUD(88W|;g>LuaaJiho@`&G59_~tnK*;m=}QCSVD%6e#{FOU^&4n1e@$3o|u zeM`PoSTLhWa5ODwbn*3I$>;5hS)v!o+S!4@TI_tDal~FPARf>>dF`h$0dDxoPtOj# zgQZfEw69?(N}3f>J4O^OayJTs=@&p{70cE6G6$WGCxs`{(i1FW8%; zKLVD>cW)X4gr5i0Ft}N)@Hfu1y%^A%@vAS`v!ZEVFzO0D7{l2hp*V)K!QvN&v%&NI zO+;sW8e5ZRAGJT|Bb>E8W?#UjD|Qe`Pd9-Wk?NUSk5ujX>6h#!(LT7li$Q%6Iws7= z(4oN_#1~(-r)aC@^V-MlgW`*YMl@DTA}Y$`q_~S$LBV2e-Sz)U?>L^ld2S$kfC|8m z{AIstFJ-$Fuvi6M{mIcodwf1m{n?Si4pB5*%-DvX-W<_UJ22nRy79UB{BoN6)Y? ziio>$3C&gsaeCr`TTa?rB$(CI^Qcs`l^5)so5UzcCP0qtoIAkU!ce4@mm(?t6zM1x z38jhz@E#A(&5FOFCcOBRy}PQ2Se)MW4OFOTY`!}N;>*JIDI0QXSZauW50w7W0#6x# z1l}R?q90)F$?$MJkqo4rzz7nuC%K}hiJD=Mm@a-{keGhAzaU|plVCalt7Fi@lf@HgfV5`#{NYZ%h~gTVEP4jbYS}_24^jR!8z_>iorQ9U~=2$I4yUR z$@4q36i#bS>6|Z93~~kxa{iuTkTYO(&NzAYVF&kyyQ?P8jrm<4+2f5FG%YM=(2IbZ zy5$nR0NM*@&Gah)n43PJ#} zo+2P3>KA?%E)Y}Wv1~U*!-QcXKlpTD!w7s|uU5hQuH&ZW&xY$0VC*Wt*AZ#iDVZLo zR8>p?3%bPcl9vJ#*=w{2Dx}lCPZ3qL+Rg>svJ~|FjG{rIJ9)3mbKBocq2DM~6;nl_ zz+%#_RG}z}sG`*sYQ#%Eog2X#(lVgceK$}jxsD^tuzq(+XYvN?W9PS1wCJJ+-B5~9 z=ngG+xY$GmEk2B0$ghPtoSNY*+dd9j$`;d77#bE7^W55wXkL=qAd#)2XuN?J(0Bvy zW{NST0~&qi07c)_XS7FkuE!{u$raF`QwMg6qEQ`#@MDTm2+?D{q3D}>OqDwSP%?!p zsuQ}=B$X^6km}kfFUV#BEHKPGCDY+>E(C9X~6pfMHARI$6 z3L*NozWh06e;;xgqm z9VKiPEru?0|03ctn<*MC188)aM=8b>4`_6m=P3H-E>o#E(C9d0 zC>kBdAe=@q3L!eq0tGD`2MC4ZScZzRsvFZH;zT@LCOK!zU>vq z9sWjMtzxm5F!km~6M|~{}< zy-ZcYl#)0H$=;-3FojEdd9gg1rw~BeZb&uGxET}10qiK1gBiP{R~@x2>@x)}5^vM5 z1`TIdC|Iavg@U~9#(4=I6k+@q~tc2%w z>envxu#i@@jec~~yjD@43J_i4gZzpI=QZ^q9&-zgOJr`LsfTnux6rV}j|!Yk2JN=KRPt31n(k@8BUlOYbPko50&IKsGQ%>5n*9lNfD8e zbXhk+>*uu%8pGg+xdt*ddz^w%vrQ%P8;lBphh|Ks8#nwfnkD=llxkt`dC56b!ZR$+ z`RokEc*xPej&$m0!WRT0qqKm0~5DF%kUJxN|O+{I`<*|8Buzr*u zbm->%WLrn7mRTygR2olBbtFaiBxOve;nzlIb>dr79jWoKDWIo&O_BOtzDE~VUVGHh zSYwk36LLOhR;fInQ>dWD*@*&Fp{w_cYKuzcNfR}&q`~JJAzc6k#xC&_>6=S|9)nHTa%*CQw?v+s?@08nEna4uu|!_2lIbP8r$5;) zUzHV?*%EiGs%!ucpAj@#6<&TP98gn@FOEVf5I73eRfS;uHE&m)K@}E(!K1V|9Qsc| zP`n3NObT$WQhH;0&@qNzbp_Q`>GAB*VQ4jRv3Mo?FK&VVySL*Hw%darUT_~`S;DV% z9T*ovk*1#?UZVT?^9o-0`M>>H|J5ZjX|A}Mho9?L3GalW!q0aq+{GjZ{rm!m5Pp7% zqS5Wn`xE}Pucr6#b49rB=b(x3b4^>yEqRVcEMTdpr`K5O$J6U9#jfSU(@DoRWtOKq z61*#nuHJO1boCT3;f?(Xzg-GfgNlc%SIO30U9mR0x&ndiloqOj=;~^j{qU~Kx7&ic zut8K;^m4Uem6xmFDleaSV|vre6?*jYZO~@a%YV&we9cyR@Y6rzaNklH&+nsX)6cgp z)%|>jf){?i)t~A2Exoy)H<80UNJl^SmX3b@GKdg<{t6Y2etyiK@Ke6p-NVln;kuuL zCg|s1>VE!TFOi@76Zzx+;^(GJ^mDHYqo0S|BmF$|9?woz`yM}?Ean~` zToI0bu0YVw6$tvd0>O};H`LLdb)mYVpQ{C{{9FZB`MKl9^roLH^yugJK$}rN|8ThD z7gpfGPxtew_eejVO3|jD-*b=d=l3dj;pa>InSSj(H}~@t>E|FF{oGqR`uQFZA^dzV z6^?$s+n?~Ke6_oWpDV(3KL<_F&rjSVQ@x}X2x zCHy;o!vFMDUk^X8lCAr>A{_l(fuNr&5cG2ef`0BA4>OvCWu#A{pQ{C{{9FZB`FZM% z=}kXZ=+V!ofVp%(hwPWU`d)jgRKA_^5X@}FhV*ur8jBO<<2>YK@~f6+At3@vCi)$C z(#!Lvuz9pF9v~>B5c2?m3KkQQy!cwpwX$Wrw578#Tdh!uUbAAEpMbS-nXffb`7861 z$SSaf>^4-Ym7jVA(mE6*_G(?)%w^ILc_2|Y1iq$2*F*9gIn9O{%RpH7;CAdOQ3KqL zJuQCWcI@e8{5gCv`!6*H?!SIcAiChP|Fiv9-t2A1URL8?;+~l0 z{1fcaub)HvZJFGDT|CP%f!#)nVU|1UUXtZ*O3|3d1vF;4+fxjE1)sUJ(;3W9fNQV#VCZB<-UiaZ=U5gxNf9m3RhHTH$^MzJVh}IVb$&k z4}D1P<=imA4Vsto8&Jpe8^iveQgRfb z+aKNL8pWd97~#H9%*04IaMn5$@c-E|Xg#ttd6N`VF^4QkIh~5kGu! zOXSkBsx6VcGDmC8xty;lbBvDvRfJx;CGrW0#qx|I-dHf0>II{|eq+HX3I;BjAMJtf6`k+ooBpZg;J zS}ylRoPtE%7by}Tx-SA^abLt+JnoA;vs~_r{M$pizAy5WKNVhD?zu1GOS0S-QACTx zX}nii#mu-ba)By@`ywV$EjbHOh;UzI40nvRuwN-D`o@o7FtIQ4BgL4`RQrC~bA&Si z0q%<^1eo(Rwa}CA-!I2WV9XW5+nB^aVYx3dbhD$Wg|+pRV{LiAzApkllzkE1%`+$% ztJ3m*xi6v+2+bl)&GdbdW^lirBkh5lUxIkvQcLiSHI(}!lf2}OyI<~)jH4J2dHVjy znEy?lzE84>GQ_Igf4|%(xu0S@MCtn^Fai9Zs)qX|reX9ZQyjGP#Mj%CQmvp8|LtE(EB^?A9S5YvWncF2D4?51XfnFqdjYas@hAMEuc~6o!G~-;<)8@1l!F4nl!F4nl!F4nh%mT;Glf}JlCC2n z0#gfCr5sdn)#N4e#`I>&L7~S*wG+%GQVurwUu=|wKkxX8b@t$=r`Fo9lrG+$qD>cf zuGC#TTfqw#x3BaQ35KqesWsZ}o-VFu??F1cxVLn4@d6MbTznQ4j!rk-pYY<9H+OMG zxbEVh3A*_Dl`^$f;U#jNKaty|$Q%2)DHHwNtHS8#{{|(5pC9%T{)|82$9>h;!_TW^ z>wc~XM?Y5}=;sOq{ak^dpPRdaUr>e7+11ij&aQ&1oc*^O)0@t&(4(`bfz5PhH}h+K zSID$d2M7-$t#mttQjuS4S*CVMeP~D#U@|o53ASFeG$z=(Q;3;hQ^8dUwn1ew!8Syp z5`AYtnV-IsSLSOJ#RQufw;Ic-EtRS#*eFOQ*t(QSOQe8A-4d8!qa&zHu+g=ZF`s~u z5)*7()BqD~8^te7ux%{!mtgzjEyq^x1RK9_%CWijhIIX<9G+%@`%kd4Jnz)70{TwNTq00#~|!MF$y83Qk)ch z^Hhq?l^?b^Jq|k?noOq*6-|mM##0k{yp+FXm3(iQKmk#hK)JLrvlU!ZgjRppH*>H$ zCQzQBXiT6O&2^MwOsxQo8I-pav^ZD_7|fs;-hz3zFKIFKmQS%|^tT^=rf4(@piyt@ zYT^#2ctE4K)T8K|drSCg$+bBpGr0m9y`>XHqdErR9TcMwqPGmB=$m_s!F3WPQ@El! zMHH>5vy@^KLNoDJPRrcTZ$KS0@n$r@K1yzi05m$zvlNYvV-Ws_ViZDjoc9#8a2y~s z90yZxK4P8w#WIl z7!d!W2w^l4x0l8=xL6>Sr+?>|!Q$5t=fydKd6i`oiUaewwD>hL8>dj+ayG63l|!;| zJrsCVHm)xP3$?6JP-f#)imGhfaKK|WZX_keY~0W_e#Z5QYh*SqN|318xO4%c**Fl3 z**I_Un2lSsMrPwmJf!Q{xMF`QtXSijjq@d0X5$pmVqG5ZRaP-GX5)5Kg)kdu66x7E zN>mBixMddhBBeUivtPCaOeOMg&ryVjFP)({od|Pr3XxDe($qmu>{PCixwxkY4`aRq zg=H=-?N3JoND`7F@{ID2Pyo*;!w)4Fm&{F1uf3Mw(9?eePlsz8m_p^Do}Q5V{(n(V zCgR$9$!WP(CgNIBjE5XO5!Y<(4b7k@;09AhSe4whG69!MF&-lH1f1)}BIH43ulAun z0;l*o)#G?jc|Mhg?tqE6QVK=|=dYECH-$hbm|%+16K_}d}iKEk$UE>!5TgD_7Y)2GH)l=%FNqa3R~`4rg%M@ z22y3_O%dvBIKxLdhQOHeb(w1jCTJ@W?AF)iUO9n%s6 zL4-(445q>{Es^U__?U8;mQaLa=FN|AJuLy6U|M2sxlBvU_Yzs;PvlZ5GL(wc({H|H zVp_th!kCuW3`&T!#8xlioBRoX#8-VWE#X79o|aIAV_HIiU|K?fU|K?fU|hiT+v`+U z5f_+Ruqq>=g2lAJ4CLo-%*0GfC`>Rd5d}6AX^C+7U*zCkk8^&)YOM3@AL#6V>dyWr z6=yno)H>bSqbWJw@e#4kkFzJOyScOLX(5n~&h9N8oxL-N5YFC}3P)$}=udc`bvJi* zMY!(lpb0wr$aT`$M|+7J?oZ@oDe}h7ZpuVw_o^^DdkI`^DV%+Ym+(dYgqQiMuZOc& z$=01+5suETK+xG02s*n0L1#B}aF0=i(c{(9RUWT`RgXVXkeOvKeG z$MlosFMg=Cv$ysK3{`j`wTBpeptvf)WT4RVaJ3#F-3Ie;0Tg29;Z$%{9xmqdalfhby*?x@=YTe%$DX0 zX3crhUnz~Er&V#BUd3^`7spBP(bd82lLAuQ%f93TQ=Pf;bAiUSeR}iF`;wRT?2)0( z`?4~_-r)|5bspU3mfN`2#X;gKxBS`e19(M``*C?wk9)3=SSTJ@;!>jhP^id#h#>Dr z#PT9{eI1B}Cy5urK#wzR(_31Xfrx_>8g}Lv+BvIvGu=>L(B4^RF|w_yQPEiU+5du^ z3*r&=4Ls_LNB=AE7$hEDEueBw@#w6!6k6`iW!{A{PkJh2^xLrJ+r~{8m@icbj zJQ|Bf_xA9}5RX1x0%|OF+u-T$oDPq4@wn6r9-oUxTpxHOi^uW4@OWK3PW6MwyW(-m z29Ni|Eck^Vnm9YcSoCQjm9DqmqtaT$dY+%|%+Z>)M1{34T8WZvq{gXU#am7-UI#R(pp4{%7~}Sgo=n5jfGS{5UG`&%9wFF+k}pP;$AOm3lE)qzjDi z3g3zA2?A5Q5rJF0%5O3SCdB}ew=BuvZdU0<`;;#0czOWe-Wz1~=qc^~wpYs z=#1j0_Ft*V!D9X>@@{|@HLnJ(vU3u{U0!^Dq`56$9YZ#V9YZu=?{%oo`~a-s=5JlmYB5E6#&zd7 zpN4<2`fU!P##fARrpV9Xo*d+Cq-jewz(FYZ67G@>0sPqFF?aE+jhoiw+gcaJ@PeVv z_MCk*u|97*)VbQa2TJ7rw4e>!OO26S(=}Gxy+N)QufQFuWwmEbm^gmMwEQX4*SnwE zAij~6#?KFPuBpZyA-ck;)}0``&a1UrG5Dd61kg7`BS!v5K&aDf1DWD8lv_6FAHy2y z+{4aMI`B3Z&$~FWn$0C_n5um!#aOoR(lyS`JZy2TVCyDOvwXwYT;B26!urB~$vkn4 z^SD*3fREa~bazV@P(jp3)77Z(W4byO_<1qwE5I|q-f;Mm#DdIcBv-7rMqriGLWacf?_XM&&ihZS*1Wr_ zw(To;;v{DaRcoy6NYC1)fz82nEWdcRsrVA&)$&@wm8&K@>szdgp*^?n8sCAH(pqAB zF7#Kym9jmxS2pldZs*in=naAML2A)h9@4g?4HLiR)X3-%TRm$vN7hQ4T_HQfu8*AW zvO|;(+VE-ZxeDI>yfcR#p%}B}p7mF;|9G_A_is;#;fp#I_ldmQvuhsGn?ezeP2pAa zF}*2f^W1%U_p)q~%_6=t2XEp-w@bs%%xQ}^@H5AA`)Lax4E5`m!NVrk367@G6ikH6 z|GS~!!OXEde719&&*1v_tp!(}^!AsL{M40+HTl#J7PjGg3Y|}|1WsBg?QIC_4G2V6 zt?d6w@^IFgaOco|&3UhRfnB402z9sO@}~Lzfq6lE?ObO8%cR8RU0nmUo*WOYSi152 z7oE|3`^D@bY=l>-J7p=Y8|Pxrxt?!nCC8l))@=*KWq~+Ij9U*ApIo;kiqY~St|x0z zTVk>G`(8tR)W7pUMJ zj%*h@Cm`5QqPe-BQu)JDXLAetofbd#;Xs%6Gc@%YTP*vTVlu`JOy>VQ;2f@P4B*!` zFG^;S8%dL7MD-u9)!pc)g7F(MGbSoHa|6sheyw!E*8?MMtt=o)d~it-m0#|HtL%yJ z%HZYBof^xc0&yC6=~$iMNYf_zhHamXJpAj-HoWgj=U;3XCBmjED08l~j)Pj{-nr1u zCQv*!Q@+1i%-D#{WCc&rACbV6cnc-cH zjE!)EF`PwA-^jbS@7sfK-`_Ae-ejYHvWnVC&ZHk$>s-wqqSX@K9Z#G}-#I3vGX5US zvjl5DfHR7Xi0|Ql*odfftaFB2*m24az2xXd=_N-g#_*D1*7Js&Tu|`BO+NBx;I9-n zX{Wspe^2PsPZOeqmnfppOFSXbJhj{0WVPV2^6VzOLGq#&jBO$w3l8Lpq4Z`S3E-)( zPoAxEF2XD1W^&HZV_1$$v5$Qt|#E(6l?b42b1L{p< zX3Vc}d0_J#L>F;j^Fs*z_-Z)S4#Pm6faqbMvUH2{yk=blb-9`m-H4UY(xNk4iv84O z#U|{_0U};k6xC}&dO^4hR`Y=A+M?pA41SnF8=E0#2h7*DD`02_tDwl+xUii{feXN+ z8y7ZYPk2zs1t5}@&n<55gDmyVyBf0NKFPFsoA`YXIXkOVqLY%|rB|g;;ULzj_J?8E zIZwg4k=c!SLCYpB*k=@Mu2au%;=6Y_$Es8w@}i{ayyZQx+xZ#$lQQ-gZvr2b<4vsx ziLuceAx?i`Y*u)UIS~)~9dq=P2Y+tjwf8z*s&JupoEe1lqC{;ol2~R64@%=n%frI8 zyiHZ!DUK7zDC1U@R|fEmx>K@PUs{!nQ-fTIev0dJga-W3g99QfkM4KoYTBR&dB%$a za-)5d@Vg&(W<}H4gwZEp%7l9xN7rODjlN50fV(AA#V_0~nff5^mP7}M$uEAA1ZSeg zxQd_CI(yLhpt{`8ADY{ZA3o&#fi0u8!s%iuf#_K|V8WU^LHp23CPDd6j%Y zDS7DI{yFR;S}6Pl=RnK*N+CQeeQ;-w9QFe(iL=x1KrivZff}2^GRDMD@X!DwJ`2EG zek$t+z!ZM;2}^H*!Sj(j!M6`PXR>CL7P&UsEV*`|7~~3=9nU(uhj<`Tc-UcQre(9q zSe)-pIO5D@BWY3OK2+!KrWoW782n~k>hwho**p)lu052g(q0HD*gHL_V$g!2telod zL928@+b9ME4FW~+lL-er5V{DUGelrhetHbDlCRRT$o?gr{ks%{^#BakqutA}-Eqpt)p-5Hxbh5Vi$=!JmBpHw#w@t$EOQEzX!YeZQr3Wm*(X^3CHOx@{xDbb-{Gj-Sq5R+$ zx$#XyIX`yRHi=I=?Hmxap+3HI!Y`LP`|-S)gJOJy^s#50FSFNaRWPK#LLj<2Ww-GC zBa!Rkry(`POCB0Dg?&i4leq3fsQZI0GOkZ~*ICNGqjaK+TfP>S?ajkF!;Jq6XlM~| zFar>{71TC*2NulcwpfM-_ z0}Kj&RK}q25oqfb6exiV3P-n)pde^uP#7j;!=F5D-K>uB9|$<@5ie0wU{JuU*%+!Z z1cj%yDO+XM>@JEiL%}3zm8(as!QS)zA~1%L^8|gkkvYrcAARf$u4aa?$`5K){4hUI z8?#kL0Y!6+0{01xX`M%sD(F#QBLT@Mut7jD3V`ci6ew%F@FVM!p#J6NqZ_iPDFxc0 z;LG4vmP0qP!;4$_webVnS%nRfzY6ZE9oWi`?Y<+99iYr)48Di8w|)TSj*Sg&%+69g zE=S-^cHxD-?fogR9e+oAlw-M_C95B{&SLktE* zJpvd)Vqves(sM*FEp|g?`0*S#pd%p1QWCywlPv@};4xc2fa4aB`)603yb(AzPL)9( zPitDMg_Z(2yerP$)$0gyQ?0d{28Ny1D3LM3bYrm?_;D6-RP=TT9ehXRw8d7a8IRwb z=Hk;QPHE1T2)(eL#n7V0ZtP+L1-$4GWy7jJC&%5`uE)O(<|jgn^Er3qMeqsVJ3D3j zk~5|Ha%L7}r&cz&>TF?U+er;Lth$roV=eB+Y>xtlRkybNU;OHi&SpLcPItfDm>u>c z2o;>c&~=1O*77q~ooo5%pPhAlFxd1ntand%G7u7n{Nmi@gJAXWT6ye(CxIfdH9z(K zFRgj(Z$2gV*l>6vyXwh6NR0X2*-4csqGbFwQI%0M%LhM0eo>>TtmjT zdH4&*t>RkS$X4-@KdQH-1+B+ldoH^UQ9tM` ztr;AjD9ZRXC2n~85L>qDmfRg?B!RBxxZ}+a24n|3z0mcdrmfU1vJxzk(JltQVfjnL zVE$n1qBvgiNI(PbtX~Wh$EQ1l@Xf7@V&U6gwcA+_L0R1Yev;M|H~k(5(?QCf7yOeJ zt{vGX_q?rvt`XGi}nt0RLSW(X2q8F|{%lzX5N&*b*DK*MJBZ^Qo> z;yS@Tqhv6oxcJrkt9L}fP)WONib;ko_MO`*bAnwREn3KSzC6U$k%ew2nxbiHZzraS z*^YbK+FRTB+KAo_eNpwPtBm=Ilxo1AAI`iViCFnh$PhgYFp4|1QW* z;6)Lx>j85>Gaf%P+rj2h9ns2#)XGbwm91|9w?k9oV)zPIkJ|*JMBd}U5#hY}tM1i0 z`CzDRE!ZAVF=ARgga1AJa=n01(@)cD=-#gHJr`%Up?A&pO1INYBhH7 z-{W0rES$=%O6JA*5bh4!0rTuB4PyD539gZ>Atfwr4O_kmJLKElsT6Z;%mBo|3(<{v z+m!GK)WXG-6|^p-1)tWlZc8cz zm2NvYE|EP<2@FZOO-}V(b;yCU1?L2vi%NbuoP~(fwFNj~_&wJOq+l9h0RcO78 z^R~!%XcD#KTqjN=cCzDnuM3~vE|VD)r#lq1smx1XeV|9f=o5k)&hJl(UpT)%2?Zu( zHetnLLW6nf#W0^0$&542TyuPQ^Xe2=0sBJG8?#^Z=1&L&aOlmYx9H8IMqjDVYqoIJ z*FM|9lUhL2{!FBpDU28&!reb9-W<4-D2y$o!3R7;;8ToI6oWni7}J{@D(D+{Gfufl;!JPuL(zV`8Tg?$52a-dR;c+ziXoco-dw1leS5Q^GCGSS zkly^6Xd3k9oq~_})9_|!J@jU164je8(&qH=W{Lwc%q{#xz4@RJgWh~d{6cR&w9}tA z|Je?LFr7zoh|OIqA8YTLWMOa6nxi|vN+7!QvIV!~&hV|aMRP)UVkcJ)J4?8mZXE4H zsQW{3gF3l!m0_J-BQ5NEN{FekZ+7B29PP`UBn=nz5a?`lPb_AAsHzxlt|ZbDn1YKn zOQdyoZDyTl3FOi4A-Vl=2gM*QU~uDLpa(|g^eydpX+tr46*)jd&kuXJCbOxuJj$4? z%eb3jPzGRdTM+f52cxO6Jx{ z;&H_ujiLeC;BRS}6U_?_)ONEX$|c|C8f4MgFQo`%KT}t~+ykSl4`_ouny2KINjYpU zEsN^!*7^UNVvs*z(4A&1_S76Olyyazbr8Eq>5=m}o%6R8gPZ|_hRF-Jrm*WCXkC3M zLuK$@3qtc))Gp7~4cjGKw;{!#5Wtv1Qa#YH?HJcG)3U2d1}4q@L>EY!kL3FYyBb-~ z?F``GzMhuEXi1qZKeiKtd^i-*gZyYA^W08(;O;{Krt|xkX`I45IW9fNQ$=ys(^|Nv#qud%aY(Q7jiIiZ7B*Xfi)7Z-UxQk(1qxU!CT8#ArNdnVya_56_ie>i zd6u^VWB&Ny`S59jVXg$;D={imB^67M_*sGst)d?YRMfn@#8t0y%t+Ta7PgD>$9#5= zalIPzRnG*3Ssw>U+n)*Ozz)$uxRG{%m#%enli7vmcHv9Vq1Y_q#+PjOmRdZm3rrCI z9ODX)Gg@*&lRt|vx{HPb0xC(yriBXQZGuW+UQ+8WUQ;9Pbs~| zy3$oC9>&oXQjCKKEo+T){mHIV1<*Ec6s3`rE=0M61w_$Sx1Sd%_V=!*L=v^7;cAdAd>9jbW zzjMQza^jSxn_?~p=45M2z*s>!DeNAK!A%tSW~6G@)w|_h1~mVfX|9%0rsn#|9^lT; zv=4|=#b7I@E)Q*H-3@r$MA_pd>|sw~Png1B@?K_&tPqTS_@VS0>^0n&`j466$}TtTYgQT|?x)M|{k}fQC4Pt?hkj~&ue`rVlrXHklGSD(f*t)l6JRF2_)vI_p zph0EI9M?x0YpHM(hkKhnBHgAL#h}~td<5Nw_dh6=M~_M8$g;%sQKDGeCm2vh7SUqX6^MwFlK|RuMYy0@VqaAJ1bnrRRWJT*YCtoYE#Z#n=NN~ z_?xacZrkX}Vi&wvpWDM{{*@ie&M6qt&h0n3%Ggx}ENTk`;w=givzki_e*kSI4pzSl z|8KHI@mC*oxvlI`82V~QH2_6ieOUOT)XfC9I*&^6brcMW-{M-q8Yy6%z(afsDL(j7 zRs8X-u1VIOhWHk*&l<`4cyY_n#b+oOA->->NR$jwz(PC_c!+N)#iyI%VVMDEEaJi% zkg2b3Bc*jjkJMU9s~Mxtt8hEYu^q18+5L)W(Ib~VDtqKIior0m_GCaa>sF|0d3?`g zwvFP&_@ixpl=PKHAFUdDa{J{f6Noff6%d3ySrKFoJ}*-KRfCTOzM1v0E0!rl*uOj> z(Y(QK*G#n_cKEZCQ~0Ibu1xDWsLJ%Sle@BysVE4Ui|suK^soq}Wmr_mFbK7N(&c1*J;+cF#y5ok?N1?<5Z}63*hoqa z3s88w+?+h53+cj-J@4wu>o<)HRk?U**->iwnunHOzUbOuwd~WIY12`d zdj#&Io(#|0&*DBrz1sbM>CxvF+ zC)aw42#+dtl2!W0qe|h&U01Ajqe=~4aoJgaFaFMb{KZ#XZ!;&w2>ubKb9a{fvo_>r zQjs@HOaXg_M7sj&FCh)zaDB&* z{NoDYXKP1A@YZia9()t!g;FZ^Ngt|EFv5ot-*%<4eF|9jp%BYH{>lkhy(vUEKwN57 zGRpcQ)T~$Ql6LGEr4~`uas)KhGbnHF!*wYzSxXLlB#IihB+d)oDO?G2i7BmIs6mGw2l=+S4u=s!{Y&>YvKId~4s#-uk6 zMret^{nTBBC6a=(qxn;ByGB%%HcilAzixs!N`?c=ZTra>*>wNSjL=OQ0TdHP;4i`r zBqAH{;Rt%EZ#^8r*91Y2I7-yT2|{hz74*@m^3waR+E$iN^~aHE)P6ZKjiMN=dDzRA z6s>4K51*6Ui2Xm>zB@3g;(45Vmr#;TNC<=)NPs}-gf2ZIQgf9eJs=1K>8J=OMX{oS zlvPmydjkRpL3%_4qy+&B9YmUR5K#nvGqdmVX74Wk_!2(;ftT5xva>V0v$N$r#fvF8 z7|k0#`6~(zXhuzbv9cB&v{6k4Ml_*mjI0Swat6?O=7a{d)r6*@(fCsCP->F++z&0) zzy@K!t|8Ebra>rRFMBw3o*~w2G%$!edlYu?H)~*=qSizA9!u@7BfwLsAP8tWAol<{;dFGE?v3~q5wObG@$lb-tVJ9GgaVuBUQzue~20@+tI~=wtywKn3 zX$=ZuQr85EnRXI}nS@-i!cRetGZ3rmDcIGin=6($o$A)Hs6Ssho!VTq_QN8jS2zRR zp|L@KVNr5(pNaA2;f2Alv#=QG#cBFSEe{7lCI9IToej$p9^I|`BXzYQp5^4ohsG^b zJ~WP(Kw77&Y`H$XqW#T<@YYE6u*zZ8KQ$4X>_SRH&eTa6B-yf9$YB<+<;tOAi~NUAma642&4Z_EguBo z+rJ@$S8x#%i{=2}F!G<&tRM&^QmJ4FG(l-1p%PesxRerpS!h1G+`MvF%$OjGncmpZ z#&~L>W=XJA%lzn8s>>!iXuNT))@G5iq&B>SM&tOtMkRZnMKBtsh4&BogchqIkj45# zVr4PAW0zi$mRS!i($t5`EI4vH!4MlXZm7OBrux?K63VacU8K_TKk*V$+>cywN0s7m zM+Q^!tjGH)y#WW(o5sOf<6h_FbM!`Xp%yeO(tnLBEO86=75rQH%YoJAh)W zT(~i8wGLKp9|>+hqF(ZEUs0|r<)|j?8CG}T&5~gF z{YyI>IzA13$4Wb@i(-EGDiGCclMpYJaXhMnsS&hcS=o<>pAghXdi(K-iFIIVEabqP zUfQIAuZWHsHSD6c8LErgY9%>c)LR4RbP-}<7in13MgEXjdGv5p5xpX{4l~oThud6E zp>_jN7biIC>tM7%TWfeH+|h_WTx<0IM4cLr?;jCn>x=tm>Nb|^6ZKL-D(qIyg;ztT zp9`-izT~Z;-P+F(!gg!x%MA@8->`q55u$FeZQ&R=%GH9_z+(@p;OQ`J8bn0&DxyJc%;TgKic z^2>&fs^TYJ0)v)Q9O4iwIlp z55NV{uY9Jlqkz!l#@N>uLDkeVB>!4|Lti!I2Q%0`OMdu?xw&=EvgT3%)5+CZ_=`@i z)>@j|$yL$JF)rZbY7@DmnPaYKi}=2So^){aAqFv-Pn(jbgR2eX`Sy;|a%=K1cn>yl zY^Z#rg`=(L%J{G&tU=hPcUh_~laFobcufrDczBY|Hdtm2@tqDGu#}x*of=SevR;)= zvcAV_;n_HN4=|7*9k5%@tI{dHB_JBU6S9$)&;dIru@2bn_A5@3t~cAavMp5y>_BKb zV3$kVtpj%5mYN6bcujS{uEkPyzz(XI2kh?PuWn1_jy8^lab55ae!wn;O9Th(eixz3 zpo-5F$dBpbQiKM^6>I1+b#X~U05|R^C$x9m zOk>}q&tQW1oC}gO<>|F4!rLWBmej!%O1E4_VVcnl{*Paa`P2*R)}0zrjM08DRsRDo zA=Mu@Reyq)km`?eja;xaLW@yLA?63#kORhZ8V6E{KO|OG-#og#UeQvB_?p{3hKsZ| z2_!-a(ZHmT&3+1Tb#t5($r@2qNR6+RE!N;AWGExX6{>7+{Wa{gj*LnWZFo7UrPbHW zBHdrB$PGMPE*W2_VvMC1^Kct_^K*mK~WVM>Sq4%ixZv2C3* zPqFNP|3-J;be52bt4AlvCPQF>s>^`u#@OYm6GEYNW+za9#pe?iVDZV1^@$Z=y@m2n zfb};1q5$h{&}s0CZhsDSd=@0YIx)Bi+Ue1gLf zw*kRCO#6~69q&P8emucZ+9p2YqLLfZE$6Q^Fa~QMt-xE(Gj#+C*4{l9dXK@{AQ|~l zul!;GXGXUXT1|3vfqWW=Thqc04$cWWj7=-#)F}|xYgjx_87HevhH>%sw0b3tV_;91 zvHXqGqKxGcD9OoKo?oFdmhZ2ijAhJsSe=J#z?7DG8dF?}mJO)NTWN-*g)@Pi&(3LR z7YL!D9o)+bNyUqfYoaQzO(AKeOce%H;w3b0H_ue#c1vDD<95?b*1q>+KJe)&GhIO8L59LO~ zwvrhvxn6J@+r9NZ4?=@7?=g2tqlJXfMN<)(!wZ%u(sRPuhy#GA!Hx_H^D_ z!&2hS&Yx&Z0U7Yalh1Q(I&eLSOZWOpb>JGMtL+T0$i^m1I4L@^~3BZTjCAiA(dKW}!A4Vff-g?mLHftRgm#Knm0Yfkb*@a;A z%~^-N!kN*W_##5soM^7YKK{mBhkeR1s6#*ehPm+))}gcxn+E_~ht1`9);jF1ZsPJ$f>5bVF#VOKc?8V_h4c9DZ=9i~BO9xJd)&F6(yG25cHhOT05jajA5 z=W&+lCMeU@DAPJjgINAvg)<_5*D8{~(>hE8BR;Len*2Aq-#SdEf$o0J?1TeWC(t^K z2T^Pt#-m$iEY><~7|KKIu;KWN)?vdzrvd9Qd{EGM@BKL|9j%JfOC)A^=A%0Oee(su z>F=8_2qJ`D5FCq?pMZaIUJyhGdqEJ((&^=g_W*}p5Pa`_d_nL5*?YC)9&aD32iH>g zgA%mg^f$iGLXW>3!nZBx;fyT23{7{cTVU3flE0th!T{D6^t50>Y%*+CZBk!*i>M!0 zQ+$O|lNLS!>w=WlO#Is0=L`zv=$_O1-uvQnLBr1FWT6IeMU4UN<;As*AB?rDf zM6sSRQqKTJtasEA-)mr8psZgd-&qgaG=T`y*Cf^vzxX5Ap`zU1D6XH5fx&ysDy+=o z{MD=Icv4dT_BOL1L^)ItJ){G+v~4nCWX6i8OG?|fj_&{Whs0)1elkYR`_|DYLgOHp z#13`Kw9tx$Wb=)VGWMIms_&&5B?PY}CvS9&wr!HruS_hSDZX=bwpA;$8X8m<|B1(c z%Huy3@t;cgPZIu975}NeIz-MZlisd~r2%s#P*{$<4V${zL&j7q&Y1xcjm_BT2^mqa z&;Grmb@5M_ws{SDd~?+*({&IBU8imn&Q!~Rm&N+)$-U6jyeTVBrxswm1#d4{agY0 z>NZEDd}^DcmUtHFlaY^IZ5jD^28D7m^5JtNPhsn41I=aa2d*S%O-=G0d8w^1=xi09w|6izvCNk}b zn$bq+8uiLz^`9Km{_pNDNgYu?JJOA-tL22BAz68qv%^uUNQpIm-F8WJ!~DWA(Z>1J z>Os4--yKhi>R8if-gs`eX!8?ZtD91xt1Y;ha8YjY@X*KjL^(yv^|_FF1RRN>9#M zqw<{J9CZv6O9HAbglhfUH3;Vgls$w3dLn0sUx}GGgknk@0(nXt<{}{_4lkW94HM6G zPaz2-O^l2>;Rp+v3S?#NLbb{Xj;RufL!jI7GiLD%N{2}i+qIC)IN>N8jVS67t(*93 z>Kb|Egrk1k6#Ro*%}@mREGzkU$H&69mO;SQQe~}^_Y~atx~#jn&6&`vD&eOb4QwLH zj}=^^D~uo#(0uA709S55?N}O7mZ65oD7T20U!DO^sl?zo5j2(AOI|G~N1k=`wF3^$ z>qX_6vyQp;2JlzPp~5ANvTIcikds8+rp8&qm^-|I!n8T(_$R`_n3}>2JMZ{fbYXBM z47?j2I;TRh(Bh9kk@?Zyw2HpZNjuik)mX;2fQnKA`QE}hnK}QmBf=)$;ngW`IcKd((9Gc_v{ZLpbu_du0?od$adfiC z;N`U1`D(3N?a&arYOPxB+*~6wt~u(*Sn4)+oq!K5)C2jn{L@j%{v+@iwrO;{*c-qn zoAWtr@p<;Tqhe4#lxflU&_dlG5-ThJ1wNvIX`wuGt;%mq2VT=0H8bD3;W%p(h1W4( zBGrYjQ>qK+C8RpKWK?0Dx@45di%D|{>zL+hty4)3@NKCs8Ckk3u1p3Pk?u4`R+6JN zXF!1fT_Oc6y34L%p?LI`K(}@3ErA{!nNnL_xpV{8snixqr`{6CMY^Ig`(=^e0HzBP z;EGD^wnia2;EtoB@yt5;>K#Xtn8+EC8pd-*FDo?|H`mPm%vp`~tEB_#SFJVFuNnj| ziO5H7&h6qu&QGOY2b4|{Uve-hYx+NML~NZrVmNCDL83hA+T4(~*`4ilB-(JWbQI<5 zLCbhx;94}cXy&{SXDdS-;*??2qlzqEz}YDFR|fXEbK$jeKmq3z!OJ8y3}uw(8#}`c zGh$XJ9khy+CD>Td*+a(%ahu9owL2ul?hDTHy+Y1`abqz+p)tj3S&Xk`k}eh%gpSAe z4!~)w?9yv%RsLoIxG?5#o(7M~$u8AdZ|OwZ-gP^|5x_>S`ZA+Iuj#h+GX6bxB`Wky zZtnNo1LTs9PBXsiw%&3fI`!HH3(ZrntvDM>EwwyfD?e5+zav&_Jr}Nrc!48il?^7> z=qTrUF;}aH=SwJsBsrK;NE*Z%S{JW3ht?$=13kmGkTq_#Y8*HQjjU`!DW!TqBTwUm z1|f!*2KOu^|B7*zG4`yN#fm!P#l8ThyBX6X7SpQ5oE82*Ow)@w`w5LHC9i7Ff3<=5 zlk)+8OVukHo(&Ma8#UtA68^Vp7dNP zXHOkWQ%BVe%HT@^57Xc&SH@>`DAZ8M7xh zsEir8COy$Rezl~G+1smS)i`Ib;#6XKjF0#w}A|0(SSQ;(eB(So%f|@1-?X~l)(@TKPhrX z@zNVY*nr>RD2R=PjKTqxQD|4**;p*YmQec_Zm{wQ84L>LXfV^#?|rpO$+GON=ZnZ5 z6`b20!KlA_@6@BWoi8tIZFV)t+)>dv(h$3u@G1c}q_VTQ_*DaA0&X|77(Z4Mh~SDe zLZv&&=@ozEf@RL+Kq6yy8<@$fI3E$W?yhds0%xc!S=HH46wcC>k0ND$S=HGLo|xja zX#Of!9Zpp5eA-z|B>173$Js%aH>-ol8Y+eL*+`5pf_M+8bV-veN|!VXAdSPd@jw>) z*2eH{WA4RhecjYtXx!;56&&KTw^ez!h}yDtqAN^pa67Bf_bM`7wVl)KM!zhTG3l4( z`&LC$XH4emdd`A20R6M#qGBVnjm8Fs;7aKTVxrbzlPZySe zb?s9?ngu;ZB?|aqxg_>q%%=$9{WlTVW9nl|tDRx%OsOAJqA^Fk}RGtV@2hTDv5S@L=_=L6z8myYy& zh3h%rx9a;AA7{ygP7PeW&^`=fN@LY8dX(pgPh;9`)@i+t;+^FPc6oz9Y% zce!iH{%<*Fi%M9_H+)j=pv8mEym$w*2%`ct9(x%$VuH(fIxBN}D`yv*k@~GX{gAVP zaB}XXybj+oBkiV?Xa5*fpVi=zcv<^l=e>OUDOmTm`Bv6zCqL(GB%|Ov6=Zt!5s*tW3WjAKY40p=3;6_ufFy~tnfQ#0 zLrVOJD{(1PV*H=*?T-$r&QABq`sM>8hcijc=OU02ze5Q3`1edDzC%i^DIaq>M~YuK z9(nwRcCK#W8WbJ=mv2?VN2`Co9e$sw`FDb8zD0d!jO^ic)|UCb&i6y2H-h$8S9Vnr zG4LzLfl&Ll!t(M9ux6oQHf|%iKUwgFYCYrS(N4~K_euHT8|6=(VG<7K5}@*n)ItbX zenAu|SyGxhbfX$_d)9M#WwWjjShV5GTsE8m0Ys-lPmc{8T3GdQl;cdm_pm-=K9TL>I z-Di8Twe(Y}Z;~KSjjuj5OqS{8+#j+O+i-3w9QOX23rnVw!AxbHGL;Y*?DENk1I1$H z;iT@68=m1REggOC+l2AeMp-ot=FYFUFl05^2;o-qIcwl2U^RW6Tg3^EMz+%NHJ3-6 z)4*seCrn!jK$!EWvx~SLtUeitR^Kv^sPCAYQ9=iACfK32dXOs+jqIa*P&5>d>_fvM zC3MGmlq=zwpAytOrm`RO-5?0Ya&~EqK3VF^X+0nYXwxP|Mh%J#iwzPSrgw*m_}!rR zLC(+gc#^hg3J-QJ7Gt>ZYKw+JKu%iLd~rX+%wqEBo6gd*zz}D5@f>5uH)|N!lp%e} zcWSf7c-;B4c$-yF-vXa4lRtprhdu%^<2z}4$u&|e38=Nus%4uY`+fl!BYH(8#ExJ! z8AIB8aqekm?!Clsc16m#x~{OoQ=z`~71#sPoo*{CI1zIj<~uoKxU*L@R#*Ejhw<0c z@8q4~&Sr5_@DFYXLlNMMl;~Z13R+KauobkP)4=2qKp2Bo4S~j_H%8s3pp|;BpgQ7x zj0=$F=rkdG6O*5EDFqRtaw*?gdkFHqG0v-^60eO36ZDXt zUP7tgMsTVHPj=%}XnR=he$QFoIQ*SD_#A?@Nx$YJ@Z~qD1HT#rO8xpn;PB*oqdM!7 zzzwN^qCb})Cq=GTq`c0kr=8_>u-^*x$pA`p5h_rU-s2$n*1%)~E5^YR>?J=Usd`09 zis`7!;UHGIO)AA&W>aSLeAj53)^F4kpR1nuoRg=X$TE9kBQK$zSkHT6M{Ye~UP1fZ z>9f7=c|7B zsKifll*sbbB{!+GT|rO=rtLyEu{?F{@BQ7Q211y7)X!`?)mhYL@9@3(VdGSe0$Kfr z5Zn}-+<bV*~+w3_?xN3tOP%%I4&WCE&ht}c5e47DG zhZAl1i&Cw&%_`Np5OYnGYR!Q38h#C};&kT+LFVX)88CI1LVVw>Ky!2~gFqS0(VyO@ zIXYbKdeb>cRADUG%p8PsdeUY!GhdqN94uOJJUm8WYa-p7d^2;y&1z=u8c@rt*P;^< zxiHIhR;~tA17>ATM9s?4o7Jq0)zz&0JpQV-Sss$k#&Jpb2cMN=5a824&C0G6=N$10 z2h$S$&c`M4oYo-qm!$bM;zh>6+@+t#Ks%{V@!GUyv0}5@ zX}~ za{kfuvU)|D*qVJFQC-~NV$i@Ii0@hv8WVt@C>KBLsw%>^uujVbf98CrD*!)1LhiY# zDD&U=G_h(D;jWEsnY3+nK4@fY#(8y=O{8d4FvMvFuf{`&(~K98{yT3``tQn1Xjt}c zVS|0&ExC1oIkPs~qB=n1Kpo%@F=ti{Y|X3_xg4ZGt)exvYGCR>nptPu1wPHJIzDQ# zv7G-4Y0+E)y>uoV^{SpgdUvxLpWg;c%-I3{jx(dcGYcWiE$Yj~10qh_k8Cj~)?*yQ znph8UUH`F#CRRHP4>I9&SYzW?Q2r;a%ZOh&vYJ|-bk#Sunlo$YR%UzTLN>YkfX{^r zZ&iEDNR?(*q>3|Z5UMy~SN4&u5yp5f6+WRa%*n$;LNX`?*^F%pIq)-B3|L`r+M%N z1~HjW`{+K+gN0;^Ok8O)7Hl32!a4md=mESt-EF1w39*>t(LDGic9yw9{dB9E2R8@Q z+Gy2+Z>40Mce=$9UI|YY+74Ki3?N0Hs9Ut!`H=XFSEWOYS3xLzf+q9_P>^pDqvMHC zLdO$h{7T^SZua4=Y+KdoL?BOdaV`zcbuOL@k_61foQRr>Cj%Q?A!Btl7pI^&bGOR* z>zxhb-a;^+i=X2Sq`A07Tjxij4Q~U@#qn8r-(nyWD52)!hZqNQF7C-dYA)`E5E^vA z7Oc6r@RH-&^#{4=J7*p78m~h`%FD9v1u!Q# zI~b<&!14z*Go<{0$2-c)zcx8zVmc!pDbPHu2ux|P31kW{s1}mLzIVnMi+_->eeX;V zO9Gg}bG$m!)fUqaH#;i^+Qu$NYzg$RX@cGD3BSwjRi83b5*l>&J!7+nl%QbW`Bqo zNortJ^PGLos$w1&gS4#GBQ1Zt&)HSyLt3UlaLIq;!?~>DaFJkSl#Wlip0YnXD~gSN z_~vEJKq1!t?0i`#LI;7mZ=+m|ZKzyw$*E56)2oo_%5LLdii);%qcXYSShr}S3wUHs zTy&i?r?}`ULf8;x-n)$6ZpJP#+x;BGD7@Y3HCvqQ8|A8Rhe2A!F5%nNwaWq=%?c($ zwyR*`D)c-A6Sgi&(Ci@(L<>Hm%7TZTPLaxqr0nXHTAbJM$qoJ}4{eVrEqj)6br(H2 z4lst(&X&WPCkr(ya(B5RMKd=aaef(U42Gr6veu2~Y>KWPXJHjnZqBh(AbNDBEi9JL zKt7RRw6_ADDJT&IJkQ}T3V5E|o?F1v;goYxkbtMwB)EtbY~)o-Y{-7Vre&oc;xLJ_bC_Kb+5qERIK^$67EPd?)6c?GnDx`?B~opvFF{ z20amTnb)8o<-ApcqMXB@+a3~yc0k*GgE+AY-JznK;=F_iK*?phr)jufL6S@h@wBq- zpdiQgjl5jSWo`xJ($HK3orNHCK%m2ks6c1tb`|JgbrtA%QKW_2<%%oLmT_Mom|f4xVlJ;u6S;&0GJZf*@)BAnFW#Zn$xC<%O)m>~SOb-@8Y}`66<#2O ziHfJOIuC@915Pg*2bx~|A?Ea=fpeypU%41Gy=e8|PW0nC3+l8T6I~C9KmHq49cb0+ zVA^@s4wbu~0S&}E1ygT1Pr{{{ozOg=OOOV|PST)kQqvV?z_~?IUd5eCd6jr|QeOF; zOnJ3;=B7NM#zrI#%F7{+dgFhnz$XWS+EOpHJ2+!fm*5bfQ!KNj-POWo;bNl;?aXO3 zJ}H=4G1S!rzQ4>-snNq#qs4GuLM?yMZ28N)gjzn8w|r)_@BiAjWUV5}6BT&q$)d>1oSib+Bd!iEMjCaJK?j7btX z2KJdPK_<6xnJLLyyU1AWFrHFO0x=2{#>upPN!2x8Ibn${R_-3-de8{n#ii>ZdU8G_ zSvM{jy;gm-h^wGYhMp58Wn59%mm0}&pd-z*`$IXH&hBdvGRdjClrz4_>!x&a4PcF% zp&I8K#^S7D%#3X`vV)&-)f5`U^1M$u7qU35B3aza=MELu@%{EJzwsktnq3e|C0yw` zB^viAGq}xzhy`I@<~&EiCi79*)I=NItv!gn?<1g2=R|-Ia@> zKomn(!(S9bR?E&UhTK!pH7Q68`A(wisCbAsjbg}_3}W)0Hs^lCkZ_Jz$k~-$9fg;% zU@>G6&gq_P6+=!*axE2uIUWUe1F}^N**9Ay%q9oac!t%$DD&-r8ndk$6lE^qH7H12 zXw_J-s$+54qOf>GY~|HRm`xxn=F)!VB}4#9=%K*F3&WDc?|#MReP5_U_kE!$$xUH+ z|GJiIs<_STE~(+_1edUhhu95$JKJt{X%SG9_#<872l7Kjt z6H#$&6JUc0JFKqa*tRH7=WKbZuB%F%2f;ixY{nZ%aV#7PoFN>%5i~T=dB83lykM}y zVcV^a0|wUjI}SJ~2qq=EG)x-K=rrIsUZ2KoJbhs}c1!wbS0EOh^_rF|76scH76se$ zpJlvPq^8jhnhf|AuZ*ot^Jiv0;EJ}1kF`SluoUU(@5Zi{Vxd-si-eDN%UMla zt8^@oJGJabSeN?Id=iCoHDmm3oE}Y=TM$AMIk>eI?N zM`)JM7isF$D$;~SdyyKLre4~MY;YI&sjXatbU`V)IhG7lTw8h)?HrG%$4q#SUNI1wQ3Gb$nbybowzzm9%g=+W{zwY>gnQa=WR@?Yx9k zc|xi3BrhOU9_OmOq^Yu~WtHarW1uTHH0xDHXbe)KyzoW$6X6A9jX^!j+Y9aqk#}16 zOcY^znC$_x0k%C>w;4tEsMr_AU^#Sf&m`spIowpfUt{LG$(d-c4tz?a_bexB`tj*+ zROO5sF-A3p^emqnBl92+=#UQbv~1V2hTR1`Mzrf$S$G0?I5>}2Ti3Wayd($>+(? zHLzvq?{hK8(6x$$Plm36$rBP-W`$R@=6a^j825wNuRSi=|?2h zuVPPE7ac+^p}X`q{7`dgg!#!Zt!?zlv9P_&wQ@oLof|1(;xbo79ZW({L{R2#iCpaC zDyb8p0e-9BsI)iD)gR7{XjE}jYPMGm@XdG$`SFPIk%i=mey&PJ=e<%q3d{YjybcXe z-o0$l=(|^CcfbXz^>@`^u3Sbfb$}PW_Yla7_6XPXcf}b`@0ADoyAs6s0A5dVUQ;bz zmj}2i2IZCX7+9pni_GJx$6WQqTuvU{2o*tbT_A#EpsRscmpV3S1lc^MvVTVrTCl6K_iYvalsJRcYdfiD>mMn zGb_@^I+BOF?ufGcxM!gGmD;DwuM{t#Sgp=J6|2?bC8UPh`0?$AQi@?oP+RlAu zDlMC1P%mxgy|iETk{#m-I-9fw0QjuxcN{M#k!ED=Q+d7&AcA>5C0!3u;3sB4Bv=SS zG{Jg|b7hG#ydsUk^z=mu4yN>(2BB!IwoLgF0^2&gDz&KQPt5L`{-oJmoE45$Pu?)+@8IfUW6)nTkz?Nb4zYF|M6Tz_j@e?F%7d-jj__ST1qoPd}`$_ds2q?wu zAxfF?^&C6S#h2@>!>rxS&ru4>OnrgBC^PlNPq}5Lsy^qM5+pNq^*PrHv5~ijGE?gr z#AH5A-lxn|xZF6^L-=5!P+Wi z(;6k&`;&~E=BgUE8^JtfvxZYpXRP`7DY|DNG`-6lTZaFuIbfFPc1;kah9Wd%p05p@|tXha1|^(9*#%zS9J>jXTF!K+iY zWe2JXc2sxp5}Lt(|5?r8r+5jCq`!fE`Yu-)mw#3xX=@;a=@v_B^S};rz!_ZQKr^@o zA*-Q}AB6t`E%3Pvji_41k?**w>BI;%{%g1gyyG2LbrJX9_%tGqnd=&^6Cv}Uk0;df z!#5WYnh-<;zMfEC?s^x(RISXSlybL}R=?+ZDF_i-&v@^aNV$2iywfD1rNj?EtMFm- z&*u5Ku^K@P=5sXb2h? zG6a8!c|cAB(~L>Uq7_^gvJb5ybq%edH82?oC5yJ)1%BFOn~>WlID5zvb5=*{B3r}H zem_d4rD%Lf99rdRVA{7Di8?gD?YkNL2siFu{>*jCChlmIv5#(=eRPwTP#?wos`{wd zugq_#kD{gRf^R>x+^@NHkNM0OGQjT97*O~4L(J~cz&YI`7oAim3#ezbI;4tni(p{Z zz|=GUo!xNqrsYDIvKty<>L@F_(btcN*;^V4iAdQE4eX;-NsPW*BBPeL+Ue~iBIMFj z?~aI>qR=Fv6otGy{8&jT3JsrxpcKXDcT0qfS0h5kdqX!~YiaV`&nmWD2Gaz_mKk8# zb367B2RTEUtA0g@Z?2+!^n#hLJvMQf*M#michAprFopjbgq$ICzjB5G`~953uCt+P08nXf1Q`fH9A(F%nJL2QM>qf=&7xI&rpORvhsP$F8Ne2Bkjeexlg3Vstp zyLL%0-0j>T2W)hCi&KdiiTH?S!JB>b!d=z|^MyNv&_^M@LeihZKRGYkBZR$dk7eof zCc{p^q37&?6+LIy^P}XvToP>FL4WE2o~j#y*YN4_foQsohyP5*dlGcrVkRCWr1OYP za4VK}bXQ@74~q@;;vF^~$Xrq{-o3EJ^{_aK@{>OHga7zG4{?Y=p&b2r+K78!pTUcF z6=im)J4$}K)pfuTjQYK={@_y!C6M^TvgS6|7veS(-FzSa7J~S?hYO${e2Y9l557em z@Y9C+HoZ8&9(z*MDiIe6ueU4`Z489B zFeKJ1|+{3Oxc~R2h1G2*rSPL!Y97#!g5W*-QMA{JtnGKaXsNS;!?KpmS4b6*o3LccNorGPA zf}A61r#eEoc0z$Gnvii&nb51JT&G1#jz^)u{L_#HX{&)D-C>7{a&mmn_#hbBO^;O+ z-GgE{5_;CrF(?bs;&|nI$U<0-(~LF6XQuRG)SXM^!sO5A;Dq59=UiWgyb40e^WEJK zh}XDy)FUtR9+9d?!p5Sp%!QY29r9p|r>u;6#9dRq^JI@`nRY%;o@JkUFl0`Tp>YEK zZ%sVZQJ*7(chnTKbrYeZ`Z{Z89_i~2v5B=D@xIvcD#l0CVw&s|mYIFk6=E|^9F#v@ zb2SntId{_Eajw5hN`H3HA3TCyxww3znI{sp7cJ*sbCs0N>#ovyFmwB1Q+x1#KkXTZ z{Iqw#Y}GHOnK!)QIw@kYmT$VhFUpHKq`V2)P8PJ70kELw2Z zq`4-C*jUgG=u~J=BPG0T*+9O2%T+rMnlc(5lGAUy>WhY)E!kNQgm62nXEq`EkQxxa zdCC3!Z0C()^4%M*$l2}OpNip}$bC`UCubLMJH!?)DQE~j zQB%WzTH3_0q0KN~nAiSKMucHJV!eD;2kt$8=Wb)vgt;{5<+C8c5%5qipA8RluhHWv zeEBSMRJgk^T$wn`jGp!%1cN{s#kcqV!me*T9xT^KxStW_7;(1q5QJxX*~6Kz^H9Vl z>T?|2Q?Mn=1rNA88a3dppH&@4id6p!M!Uo6{AdqeLgz=J1n+yx=FL@K0uWxr={~*{ zJRC$PM}a7PhWkztcNZ~*) zbQ!+j5oQ#mp$$uI4;oPHlb$weg7=!Fjhe{P?#6`^fP=L&b4fiA$FbCD+5*5f&HZRJ zR##gy4N!oD!!ojrJ0-3xg87(Khzm|zGZg7INy!~={hgl;j3 zw{Gq$)l~yhue-&-oVy@Ky$`~h6ye>OC50SF`=!^ z%_Yc;k_Sui7bOptf^?WX*pJIadb8;eEQ#^WrehV{p9EdCF3$7Xtdo2#(H)lAA<-Ra z6Wh58XrS7{AZA0R-7ltcT4nb@ae#4Pqg4>b>HCkUebQM;?j_sE3`ANWdH+IzNW0~lDtUJqWIC`MV=( z_Wq-uJ0o!RmdES6zZ3_#EaVfvFo;QM+Shq@#5Qtb=*lv3W!XNZ<t;=>xUhe7cX!{%g*F?^*Ub1*>E~G5;I1eHO zm%V2F~9W{|V{`tbJ^tus{yDKY?H3a#7ZQ?E(cNVL0YuSeYpR735 zWIoW;UDhV*@itgX;-(rHm&8y}wn*#~9|VJz#14N9quw!jwz+$-jzBBod6lc=VMVMu zvGgpheaVb{h}`|vV-v(s22zt-Izq^zp)+Z6do#s-*8UPS?O2uG<;5!;!+J&Pg=1_9 zGYg*g?eDE?2lcC0q^2CBSES_l;VSx}Q=IW*5+AgG1yx2CNvI?iak{h>{{<(x5-7ms zW+Hj)_Y+ZqPuWh`T`%$C)9~ZcrFPd|IX5pndJ!!fvm1JVd6| z?NdV}a};WRjpIzCO^&NQ9gsD@!<`)S7z#wTYd&&Q<+yC`a5oiII32RpU7=6sm)|(t zm4sU>!y_wz)!6BtsAJKJCxAiXakbT69{&G!yP}ZpbbnxsJTBwi?$*ZG<8q+eohZg} z4%CV#c`Kf`S~1zfTOB}^tG)o*ko?GnoVOPjq@}*xUtn5nK#NS+4niu|L5R>t=<$0SIT0Rb8X!D)t z%gT4I^eicNc6UD_3jPMfeZwV;1XX0qvH2Uv2H~Dw;5RidG+WxKfZW-`y-}3q$TTmM zlF4sCkW9~6$Nq*9P^^5mm%D@<+RNQhGzh3)C!l^YIia_EkZ=T4ZLe3QkR%r|tvM$Q z$OOze97}~HmyWBD1gon_XFUE2`%QN4>uwrX0RP~V%oWx-k|vo$eckzOVlr0rX_FQ- zm#PfC*VMh$U1u-%77@=f+AzkAXf+|6LDaZE6CpH0L1$TunkCQ^6*`s|%QylpY8ES{ z(jggI)U5qYEoz|sYEkng)-V?}pK|=15!Ch(R#C4U&iqX+YNjLTLBVBaPQ}&71h$;& zIx-@s`U`)NQ~d>!1z*s7J=pz~=2YrizMrPMzY|d>0N>XmDqF%JCi7`a^XynVML9;7 zMOcD?O?K&JPbg1XJk-5R)MpjcoAAjp;Y*(r)i|M+5%Z5Yx`@<(s_pcuYLU-sF^-l~ zBtV4#r{Hobrzmj3T;wCYWC*;{$KkJp6Y|_h_XBZd@el44g%IFVH7)WXNjqAe80CIK zOyXr=IbH5Cy9Yio*gUQE3?pf-@@F%Ua)>t(LJk2sM~9emxZXG;D7v4OfeBliR!UaB; znfU|P9Fy1bhd+@O`NMVmMgDO8L~j02Z=CysK!3=L8}AnI71!T^fUlRxA;KBNI`hQH!}mk+!I$?(rNx}!xwE*edCu%+O#i8CBdlilm?dpRSbTTCf! zOgYJTm`;A1fs~WqLT$xO2%hh`$J970t_={Y<&&k|e z{mArSt}eICa4!;Lx!~mKV;IC_eqTI&asPA0-EGB-j16=5Al%bm0L^2r zp=H&|p)zBZdxCh6BU4QIHfs7o8Py1)_t__v-(Q^Ven>12sJg_eYMU)b{sO&B?ve{@ z%UxauQUUJ5v6QZPfAY68ih`mk%jBHqvKw{0zN&CM1ao@$&D($ z?XG7Nr#bw-xRI|r@|!c|?~H@#M7J17Inh4|At!=9q0n(dgUC1RB~F<)uu7d`;?t@y z_7q#&Ry?I#2=t+DU=;xX-oT3FcscH4grA~inC&0zC32l`3u4Q^Ux`}oBL(h0(YO{l*}`G#z*$TerQLF9xaUv`^{5y2%%GS1Cexp z_$TKS9YWYCIxI`4Mcz%op;L6gicZnFrWp6S9Pk|qQ^&13^F<_`gDZf0EVNbgEoML| z@45$*VU%LKgew+W_!Phhf}*|rIBwFMFdRD{%v~L?8#ifbc}v~uK^@M>&? zO#8%LL(Ij-k+Nn(5BrYTy~UtVj&?L{=sgG35{}qal}C4<50isFb^quHMt#P;Q=jpw z_mRw_pWzR zfRwt$`^r8U?psFeY1w;;yQU~{ni&G^<`+G!285am`a~P$PpcDk7oK0HvBAR* z1x~|q{8M`y8DGA1m~5Eo-f15Jpy~&`mBlE|os=|;D`^5Lsg66|0!>2-fS4Ky3j-_%pDUf%2C1CDoJ^fZsL!2=QnPG@GUb+@(Iw}N&KuIyAp zY~wshJDa(7_9^Yy>q7nH@GkLlYMrhs)0TP)$*4go_mEe&x^N@tI}6T_ZR7%wvQGIc zYlGQ}wMto;4Zd}kvWc4<5wrydL{9sU8#frHYQJ?r#CA!}I0@0ok;^4Z8Rt)_^C4$o zLd`iJ62!lOg-ovODJ?HKn z1U21F&Ohs}q{frqH@j~bMwc^cJn3=<9A@UAA(_jzxr^FDCO`{h)Z?8Rh-Z0Q$R5U> zVMEGGXVjr8@D@0JT1mRjcwkp_r~6($80-_Urt#z%S#%eSXHRnGWDD;ggby&IK>!?J zMx4RV1b-(MaTKtEd&p|!XsV|1rJ`;dAur!?s~5AQ@DsN~QC&E`%=^*3L6$AnGa+Oj zFqR3`y%ogITm(|t9V~z4>X==+{d&67CCek=!o)y}Q@xXa4$L@w7b^jRh zBJh&?4|S>{Uglg$Yg4(_W-6_b$<6p-Tyg1G*rSk~bllze-ljLDEc;~WwDBMGDJ|fK z6@ZeqK1K-F*0W|y#w%^f!^b*(FTUY;c~;g6#zIq8;pc0HWmZ1rZf-M zMymgu?;KDOzXV(KqWcX!1g0;+p1tV)Np$D3rTpqi5&bwMtB=QP>n@|qd0?OLsfcJ< z`*w*iM;BHFnnuf&5AqZ|cav#X+%v>ejIhLrzkT#iRM6N$ZH?!(ReL*-1){OL{=%lxYvi~mqb&@5g; z2}&rTlTN$*O3d8kVx?8u>jNJ2M(Jt4s$LtU-2)_P`M298->K|@e9kG_@-Y52g@`=I zERBSK5)z_}Ux_Kizq$}~9*Sy-4R(iTY#blp4qK5+V;JME(W8lB79p%eAs;#ODmC(_YNu^@#RdllDSh zLbRcTa>$dOii{Vl{fbTbp$?bdHLy+>v6ojR9@!?3zgm9;)@oG0!=V?sHO?Cxc&*dGPWq>ZbZBnEJnIjam?U%4d3 z(?~|e7Y@76GSH%gO9fh?Vfy|pN)AVQZrF@hK<|*`fd6Nlgi?F@s8DKDoBDV7sAqs8}a(|4+DN}a3OXelsF}^rIr;Mkn_=3xT(N2+_2;m0u zDGK$V@zHq<4Qt7WSkH&zI7iECumdNRb2wnEvjD7ut`B}x!Xs=Ug)V@?N(}bY5aIAE z$H^$rDR6uF*XE^TgSb7g!PG~Jed`5S3=gcHD7JA?az-R$^97do80#+^ zr>ycG9O4^dzRhDKc&Uabdd|C^!kN!h@f@z#S0L3^JE>BH0FWgk*-Kr7aOV;rCpuT5i^^Wkzv;Om+HgFYsirSUy62fHKvd%) z#uQyGKZtInVkgw|9Iy`qP`NMaB#IGS7V@{pxt_=6qUYu^d!47C+|a;t4_6&kb|+Bo zK^Nu64Lu2B5SNMcI?Z3N1I#A&GxhpmBhPnYKF9kX==D9uG)J$C?QS`wiRTadW>D$d z8Fi|Nty~OJ=_anyJ;7A^Of%1bdmX|86`6HWe$^ZlnZ+d`MgH!u$aQ9$R-1~Pw8c|P z#(!ETSsvZuX{LTn|GG}3_?y%EA1L=a6C_8unBSZ9py#3ye@TvP<*6ddUt%stx-APY zUEqTS6p2=cyIGK%D#jxZKzJ8o(rGQFyNIX0+_A?KE+@vFF8IF~BuZU^bj&w($_n`5 zH#9Uy2p<}XgRD3-6osVs!=6`!hojKTE*tiGl0>;P(KTb_hw&*VUV@k*CtfnnT~K+m(-0@- zx>*j>!!6$oFN_!Gy4Ru!M~VoGX2 zFMTci{E$& zBIe%+kSF@dqulDtnG>j`MCGt2j<38V&bElMui1mCV3SD7Bk=GlKdeS2EGcYcKUy6#6 z&pqmK8>Ozu1&7*|vX{C7M?~H*N+KY#zsDiUGYr@yN$qEpyTWIwD|DJX(uUQ1`4V`M zXXL21MbnETkc73X3#w(VSh0IdKxv69^4Qr{jpX7NJ%!>LD-2y=vQ{9g{D&_2@%95Z zG-vE^Ix&W zS6}cN3zDYAgvb!Ai)>Fn=`5D3fZ0Y6s@E+HC18C!oD{i&yW z0ZKW7k4=s~U0JRh>B(=4l9N956qg4_dP*D7SCxxFvve1GjB_Oy^W_y%<)TrZ?xMt1 zCKfqc-_f3aq8JD78toZmRJp3Wtjbl>%K$KPjK?LCc~$f>TTR*bW0r`DHkw=|PZLpC z)$}yE<_S+~kxB^RZdOfBUIa-yJQ)yJSXmXO*`vbBv{J^;1qD*%LzU!$4}gE|4F#fO zxdMFU=?Y&hnlza^CZv0`g3Q=$JXjtE9_!7P9Hsy%8SY8 zpqPBlc8%%UhZr^4(?%TQIDUQ>Tq^Q2V>B@KO=)&acX+dwiCG?o+J}sFrC} zqlj}4uR-3r>zZz+5|XPWP;ptYc&8%ri%&h#a%c@mSviY$ zDjN3=^5+rZR3;EzU6homD~{BBy@V^4vgyzJqZZ|LXp?Az>(xT?n^~UPa{4}R1RUV^ zJS-AVAQ8FVvPRTrx{s2d#>(&hrLZ<%wHFhGs)1T&v^e!BOE_Qh2r_s&7^tImg?;=D@1zhDY)CjF81LL@voc_+eWcMHBCN7!CeZH@fO77#>wGt~Dh` zUfAEiR`p>qol%zfIoDjPw;0p8ROZHaJaz2G`+v%m^&WSwRWG0KTuM&*z+OSUW5GMr zCp}mgj18%=%aK0~3oGy!4GSy&q+ubJN4GvaP&6I5SUu14>HlJYm^1KPY1!`gI(1~t zPUZ8_$^@xk@CjR!s z=EB1_N>ox~1FxmVhVMZyz8RH|4ONgSjSb1yact-kcMcoJ$APW9wKSnpX88e4T=L#6 z{-_OD9rH5}sSKpwG&hbdvq`z1nH25n>A2eLyNre5HVFIlh#P9+I8v-`x~RzUD0+;)p`z3>H{|5$ZQZ$%z^sLF3R>wK`-K%3PK%Sa z*waPjuz}~o<*v=1P~#yWhMB^1n>}sgB9JGa2hK7jWxBU`!fhf|lZ#@(GgynGwdZv( z7R?et z4%+84$6}T_&d!(5mJk1%RtD`dM(*0k-Ef(G)U!!^$eTpw@+F6mxqN7v z%RE+MwsYG35~risz^F5u3BojeJ-3-$Dv-^*?Qb&|PI!`x!(=nDvgYre=5gzhEjN;P zxg3^}&>rt8UZ#v>u0Q?>UdJ*LPS#W&wu6l1HlmP`+`(UDBzKgN6c4s!2c9zd*AfrM z^3%^gqEG&TM61a7TS*mS#XmmE5%`NJNBlzr72E213vPAeR@a%+o=<{ay#6XrM%PXD zIs-QthoAF=%CRfU)|Ahm^{f(=Q6S$yMNd^!U=Xu4)9x4N$3+81UD?;9M*W%;V^EW4 zdi{UYkTl`EXSC?ZDyR&9TbWhP8zRe2qkn3|1G}~^B6u9Q{oY%7@6$tDVFeRM0(*rvTy%(4Z?W=QHBER z62T6?Vv{`7@sUrt=IJa>`c?B9$Ny1@(dh{lzOx&T^M}QKeK{^X~Vdgq!fI(LYlD<#`~kK7zR$$8%{Y*HJDT9t5h4NIt7m9$d~J zwIZ)Wac;A}Jt^?SxdtDRnjpXY$5T%<)4=#)u=&dkcnwGiw%pFgt z%@}`Ex|g-CEv6OdKm5^QeTNR11+PC;w|SG}o<=6LthTU)4_m#4@P^GhM!d#_0U3vg z*&LE1UIbR8ja!H>YRDxvZ%r9#_eSUh{KSpY8NO@x9uiA}k~bFKlzT(G^Ta}4>_@Ih z4mmn#<7!?xOvdN;7AVej&zdb0A`6Za`#43)nf!*PW7iclPL>dZ?gk6dL33L3+ADoh&8ZPs6ee%q(BW) z`|H$%%zZ_?&)AARGb>41QzjS3e=sSb>S#o01La~-?+CH!zfjH3{RN_)E$01N?D0p9 zOSk;AYyela+{SlMZ4aTc9>jizmtbqkEycZ0iff!2b@L^&n=kPaWwi}!bhV3Hkep2s z@gnk;Znyo7uv;uKSmG90t&wn3x=MNL82RCEOvfU5)VD^S^z9Fcl`Tqp8|W3$VBrRi zuN~yfBi`r~4q5dj|Flgpe!Qs?hr7U*b27BOxTNI9-4Vjv*!=eVSZG^Tzp#p89LJ!f z=aal`&#SiOc%(5(HLmzDhG%gwGqXc(DH*#1DNJrE8GDE&3`r%@7X^s-TY`6}vE`QZ zl!pfZe&7fs-S=F&y_V+FD|jo#S=LcOS;w~=e_;i03!y=1P*`sYyT}rjl9{=Umnnq@ zw-v^1ZW6Hf6&t*I=D|eoR+|xZo06HiRFaWN-nOxP9`|V!Vg?FvH@uNjDYi25q~JLT ze^H2=blZO|POo41I-IhXL#ucv1-W2cud4Sek;2Y4047ma^i)>lL8z)9` z44NT^-cfDh>9u0>@VFhN6}Zba@@Xq;SQT2X5CS74X8}LA2$U6I7J|RoFX*( zG)4GBV&$4<-qLzS8otu+sF-FT{2%AK51V^ei)~yUYRP7^C7XE(wWM~ z89ue9JX|k3*QK;5&r5Pjld5MY^YB{{!AuX)B7`Q))7ofE}ZygE*iw$E4_ zSEx4Hb1d&8)kra)qd`QcKH+1$mrq7t0dc40lS`^}_DR-5{Kl(eU=e=QU#dy3wu_dF zQ@sy}YrL{W`?5*4pTlfAI8~0FEk&P#a}cZmbJ+Q z`3OJV>`VDP>GD1oWEO1c_P!<>BED~ArQBc(4x!v&Lz{Fz@<<0qT~=a>HSOIz&5w`D zo?~EsoapsFEjlsk^u$JN5Ps=io6Mflw~TzdledoO$5Cj5E_+a^CdC-kr#(Qk-Re|E zw)pMo0&;X`?=Ufz)l&277&&<=tjXxzixJS|eto-(>AV(AJkxA2qV{be-sdGW=RisH z<}Mu!z`guaS9fmW?{3$%r(A!lU5w1Q?x|?>2YSEtNf5lTYVxURgQa8VWI4T6t1x;z zA+7n7g;qEtoCY16f}lOQV$D1zjoQyS2&=oM)RGW-9r_TGV26;0!? z=cFf_kRC!3l0blj5)vSU4xvK`5N@R>fFhw=K|nx2L6IV5tq3+$L_yT6f&wC9quCXu zD32nFfT)k%Z)Wz~d*;~#P}yE|=nXJ%*j?B3RvRH`alweE$)~wkgS!bH0Lc%3Z7B#>CZ}hAGXRoX~y2q&an$trQ6*{OoRE zC1kGeQJLtsEXpLmE+7@r_^mUNV4(i(>}Ym-kiNP~VD!yl%d( zylxXnAT6>N%8}D;4+#;%Mk@`!$Pih4(b-T$@)DBm?irBhvVajUn1YK>*wp8fGY&L} zf&A2|IX1(oH-g?l*O{Oz*BM7Vl+xRGeC|k0ut>Urq<=`5x`AXMXMj|`=hd)ituK+2 z+lCY;T=x7G79KXeQ8@v`@!3JIC%e2|i1G6F>utyN=^^rHTlZD?Z}mc3_4=1WqGi_` zZKp%mftd2pR9j0Sxxn<%#~PH?h|D&H$WyJIZTu!%#cbQSx_t&oe5vpMSAxnfo=Hy= z@WUrPx|)i_9SGr$V!2ZP#(GH!`mzwYeT1Wx%vqS%N84vDfH6>}-Ab@ELw|`-mqCE= z0576T!L%t@Xj}$ywQ7u)L8S3M@p|crz~REG;vV`hA#&jlkY@aqb7~HbpS%PUvPS!J z&hg6H`udg2idwFd?<}^Zu5Xc%>^U^wR-oyb;1saeGebSl>;1IQo}tj&bPGgp_+@%r z{E)5(ES$XdTOSOc`9gQcSqwOQp*LlC`udvhn@X|RR>xZ~iOGg~mr(iLVp|K*h4X=Z zo>YYp-sc@5h1DAZ-}dnD2uGnjRM9?4KK+R8J8>Ovj5*Ncnq>dhGtJgGDD<|Fk^RhF zhPv?$20fi*&!nqC^b}~Z)K;F#d(1l$l3^t~%v~+7U1odCI(_L&*Q(oLYhoAYilRS! z;%M-T4D6lTTkG849=IXXsfoi3sl?A|Lf#1tliI%UcH#?Ogz+*JZO>|)EVuPfZxeD3 zDsIninJdooisWVCjwy2};C?TJP<}JNtRSH+AzauiCtUzhb2OQLJRwZ^@uV!|^;Hm2{e- z$MLV)sHH3~^G@!!foPG#_=xZ)6o;0wKjSZ2%Ki)ltxMU1u)e6i@@o0r{kFA1?7;ZZ z>=>@rj^(@r*N$38x%wTWy_ThZ)0KPCtfp6enc>p1hHNamJZ#HRpAzu;Y84q4?$^U< z-X4Zk;!H$O3rcu~u-+rKfmxXd;a(wvaiG2{GX26rUPeo;cOoa(WvK;Py-sd?%oZMd zGec=)GuJba+B#W-5L#-1E?}uuA`fh~EfiaLMT&AahpR=_W?te;V(RO5#vQ<1Tf$o;I!rpLx@)q#Y;xNt~ZWQA~oT4$+YE0m^|}w;ejmF1 z0qDFby=fj>kehQoy3z*1tjpI>JhjMypk+N*FJw;C0W4mA2d0iqh z)F3jBmk<#sAtK4IK_ENBuh<|0br_Kxd2(QP@WzWsj`^7w(>t8 zMp*q%lZqH5O-|=K{DpsdvzYihAdC4sjwJ4qKITKq%wk?ZY~EpSW-)({q%3A*@h2}w zi=+LjG-{?X!=qFhlNcjY4}xJDvyRum(sal;WQ)@;M5-)i{U|?S&T+2jAewrKA{#4u zr6J#1$ID=SJj8NRMjEpnr$T1C7$M|RU~YQTn7!oO!?vHq5MG-cY&wIAfaG(fkr9`a@Grl&EWg}a+(|{;u z`z%Ds)mk8wY|8tT#Z1R8)ZI6ph{!O!3({Odvf;D9a zarz_cDq&W&2%b3W141scxAHXj*mj>LUgLO4m9HAAe3h4wDht1kt`9F9*k02=gF2WR z{+!pLB^VvQ`h@B9>nODZ<3rg<4Sx{DQo|o`RBF~lw-1w_9)|Npid6UF?qiD6Z%;S`Ng6TQYX6&LDMhBCO z(!@ZD(!>^0upENtL{4{T=^Zx~4b!->Kxo{|KWY134CCDRkDEx<`Ie@qPT9_gD&C6n z!oPe8TO(In!1y9PRFuV=Bh#%dFgcTD4o~Aqr-cj+&*rBg2fctJMGkY=@HEbI@}{ug zPq#nW{$uMLvI^**dUZfL{m9kg8-xHh^1AYI)8TL@R097?Cmq-bHzDJIT$7VTQ1~()wqu3LPCd~ZQN4-Pqf-EKOC(r zk%bbCD1S(*?E1Z}pOqzwOy4C9l%aWmJef+UYduL`NtY88M^U5=R|BCvk@Supx8y3R zzTlp$rg~Y7N}KkIVe{2Yn|7Dg&F#f1r+&H4L|9m$TfI5N8%pl1^Ge$Te(O73zdA;x zR^i`-n&IQ*j5lwJmJN25B*_yCZ5eXoPqzJ`D?nV8ZC%9$r`-B-l-XFw-5W#6)+9@Z zs=GDi>YDF+$iu(XDccI1F2x&m^`$ZLssF-MU&`6Q`JDI^LU;_bMD+zF*l&rUgsbuR z%O2jC9RKn+n$%@c?PUvAsnqXYT9lrhA0zkHbM}|p*1@wTAN^qq(e!U(i_juo%Sb?Lzz=GBq|n2dJm5`&6kz^>Bz#$F9=9|KzpFpJ@D zV`u0}>@#C$s9N~f=(!v2WZ$p!T-KnHsm z*lXf0<8CD{*C#G1J3hjP+MgGOoYV& zHLt}bX|y;cjmAq%X|m#!G})G7lqMsNNmCG4t2AkGN*W}D(pU(QG!{tZA4Ae)PM+Oi ztw_@RZIPx>mNl{8E2=nWB+@8g22W3n;w3;SRo>9lKEetnyu;(TmI~$l&Fp`OWxO@v zT@oi3hK|dO;RU3r4GnJYAP-H+4~H9dudfW*6bJi63#T--R5X`M4|2tAjZ@1d>oBPP z__|X4zBslJypI#5h2Y5}1RYdTj|OK)q&x(5mb|t?W05pLs>KDl_L~j9NlinjS5*eskhZhFmKmK1&aMG=d+;%Z59L6#pp4B#@wNzOIIzRhBEal&|v&dcAmgD$!M$9lR2tq5+aAXHLmZ@?`h0*VFYZ)g-N!CUR`mq<*Q~jd}Y7 zoT+cqBBdSjNt+fW_=`3zN@T(edsB9A9K~1OQA5Wte(Gg^*t+7QV;IMK!xS0JMK?pG zfeh>ol`i9m6@*GPa#dgZx8h2Mn4%=TI$qAa(owFDj#nG6^LP!4Yi7r*jn_MP31!Nm zghCoYZTJu@kT$+ z2*w+t|;Mj&`{^p97fJa=|+l|H}xjMx;cP+A2>imi7@;@_n`NICuMQ{ zR>9Fy9&8|EUw0)?9!!qD!yb)2{)5xrG0CKBa>=VRpj+C6sE`)do3^|w2sMDJU_W37FY1-F*eg1*!b8&=I zfG#w?%Q%>z_}P`f_$iVn?+j}xk`meIBBtUI;$_P8C(Qw@{7FmR1P7#+506&E%E{aX zYM)5X&)2KuPRw34LX13)h}?+<0tz0ChIKI?CjQyJ4`v1DTP>hYS%D zI2LpqDVE7<$Z}Y|a*sXBb83QpNT_~IA~_HF`2+Uo47xgm|B``jYUVsYhkUwFdrY3U53~z>*86B^mJ8TSMx~_-YS8oL{Yd%Mq z`Z4lFj_?!wMUL>3ME~9UbFf=ledR>?0vr4Pd<2jc9=ZgB|Kg}d!2oih)QCUh@4_r5;;^&lRY-WLY^`XxdFAZ zthFfF&@rGEWNK;uy&o?jrwk>OY;gFM7|8}GCeN%vHTaw+<%d9Z)WC;ePubVVTW+#< zQSO*mQrUqsFqthU+|pQfU@nrT?7(6WW{&-qtSb=0J@t2ttUCWhnXu)YY4kVQHD|FV zZ@P@tG2HG(22yVK0ff*5J`2Oo_-v$?q|CrhUYkt3CrNo-4=*vj?)yo~>wah{#clmkXW=zuMR$N~F9jLd)qOy1==P$@VqeLGOY%s^@~Q1gZY zBu!$nk|vRtn9>v`D`|=>#b~ly!qHoc$?lX~n?zvVp{{X8D^XtDYtIlCdL)zuVkQVI zU=&KLhuC@=G8IbKQu|IZlk-P{O*I6Y%1eSR08OeQ;L3qu7hW+ z@MNvE>u5Es@p9thEbei6swThQYZ z;izPb?4)FWNUC(KfVjj0CMDPSlx&72PlGwYu;hUxw!AZn z;*zWsHITA-T?$4sQrNU8NU3cQ>1ioy(VN6Dc>M~_TU_+Urzj5pN%nC_i(V&dqvpH~ zAzltCNQqr%KM*<$(-TYiebSAgN&8-k}T5}8PUo_ zj%lp4PZt&lP1p&B0JapL02r{OTI`s~I4yiPbG)?h4PM*x>OJ;%LiFdMCt%^57Q9lJ zoVzW)Un)1bUL{`vMg-3c)6u(kktjLugZPV__rVl$-a(hK&_l)DUG3GgCj9h}7dsqv zF;C)s=EHu>hy9qs9^^i?J{#>11%6!XDcoew)5K4Rz-#j8j)@Bl;&tjz);)-TuM>vL zlb=@BmkS=YPZA-ijGk{To*IN`jh?E$h`s$0`vsBC+ffLRlB(9!38`$?p*WygD@(OX zF(9BuA4`oCkK=KBs3xic>W#A2lMqhi$SzOXM~hhjb+7ZQ3;Ph6^1D-A6D0jA+7TWu zw`{RD5~~85E;pOfdcPLcShgSX^srQQyp7jZ;l+0_1$lVUBryzWQcUp*{(?Vc@m<%n z&(iTP9v+-yLqSCrul#BoD*s8d7s=g=?2)o+4LrC}{+kzeet;e)_E{vtuUl7LGo&sl z0?WvWT>sJw-K*=!a!uZVm?F&*)Cm{orPT)_{z1H?E0*Ip18y-lOH^vs#c`u zc?qpZ9Xsq@g#}C|=zHiMj2XU#hWPd3nCI+kL}nV0^v)u}TR%sBI9QIf$3LU$i&SN2keS zFWL*mSW6QOw??KhzcLB9g^d{fl~h?2I=*Hfu!^u$xanrMQ{9>@SLqoG%jcenZInc}cLq_2{vuIr3e=KI#S7R}om(WqHSJtCdIvY}yV{D$zI<7RGa*VO$O>nU`7+wRG+dqKQ=%e>k#wXX9+!`0d zHBH9>R;o6*0!kYp{YM(L^4$KBUDw1gP8}Dr9AUQFIT>Ogq#dqC>1u~70C9FY?Qn%; z0D(WZOzA2iqnYUEREi&o?wiUTpI7A&jz9!9By}OOL!sR*_=`fjThjgWGTzT1mVRbm z9`rKX2QM?E+V;u0XxV+r_hItwWA=UGey${nZ5mzacJhu*$2f^>2EC z)iL6fhz5Y(8zRsuFccwVC)dL8!EeM`pSJH2nY^NkB^oHdU!RwlNr<)$lzA<&6k`&i zSXSr4r;}#hxO)R-V$Y>ZG_hJMtYBQ>Ss$pNKeA9Ef8-BIl__WJi>(#O$fY2Uz&IAbLG^$78bP7B~Qh7jv`T{OnpYJVXf^b_JvQ;5`MthsmMqIO~R3zq;8 zch{TTk;8bGHBpP-w>Wp$F`k7#*h93CuNuI28r`&P@gLrVm^|grSjUlOCa!pL+EXArOH{NE8> z(X29Eia+f$#1uwHna))y37u0I)T_(M8E83g6SuH3wY7Y6hO(D8WvFHFjDD>LihBd9 zt+!M&zTkS6SEG#g)4po!${bGdHm^YD`3+wMMQ()V=qA1lsCL|}MvK@W8m$4D{H*x2 z3}wZ6ZDqybAhmT7n>h_>k`=F)3BT}9;~TBzEoAPQ$^t3cR3>Ll#%kQEJ2|gp)en7F z`LYz99JJ+y2EAd8!@pG`((qbuxEnhKu8vNL^qdZJ919W6cp+VrligB_m4{{zNfE7i z869*#Qa?OeZCKtCNQ!PRvM~HXqQh4%Q zmKr24@VeyrpOqJfIE>Tsdq8GBKAy%hH9k_GWG$H-6q#%$u8FzzSw7|{IyuLhsp#Y^ zXO5ziFB&<%(Ly2{!krXXeFroA-pB|M-H;6#VDw6@AzQH}HzYdGPkK?t10ZqeQB5Ys4jD^5<9>rTw zUie0yFLDf5@30tt$cy`lZ{XtE?jw8XPkiG^cztLeEd(KZ^BaCsxB`jX0sp(UW;djZ-MH;rtLq;kI>)KMO9JE)FXTem#H; z3~s3MJK)=i|8rb~|Bb-^O~8ljC*l9D#mBbkCGT7C4Pbhc_zipolwKhH2H%3C$L$v3 zV_EblSYv#vhF)yC2Y=B!JX!db2EE`hxdUExOxGqC;?+BJhvg2u4TkQV3B#Kj=thzc z@r!NxHhepto~JYXeeeti9iKac8|Soh{~e~pDan2puJLHSX~Sq?c!o@?&@5a6%&FsQoXl|BIsdG}mv#Hb( zq6I~|vd&0l?s$h&_V4I;U7Tdxq6`&TClJCTD=v^M?%_<47lw4r*DrwK=>##&j~v6M z6;&1b55}aAzJ7mTaZRny2}gSEBup%uHw2i3~9%hJk3`9OsuRaU*-DA_Z!tK)uM zPs>)H0m8rZ8Q_8iJ)`B7WsZKbd70xry=%5SQ06EU-LuVJms(H9IK6W=8Rn$5p)dfV zuDSB63Dc)mPnx#2W}G&GkE2re~+$^MXd(b#VVM5Oa=USha1oV?_8!A zg82BEU$?m}qve494x79$c~m`_+TZbDs6@^d-UQ*oJ)99z+q&A+_AsffjXok<7VmQB z$_qC-^5u!1XCmZ3&Y@AVC~aU}K2kFUSe-5ZI}l>5)tn_%WYY5p;WJ`|A?qE6PS1bd zJ5t6Ba@;N6;*I||ihaW*W>M^_@Db5+-C)PQ&t_ad%T#la>zcBE9k^Ah9c9te``z<5?2cthbM~!}v#nMUJu4x-BzjZne=u>m#vo0`~(>Z6!!NV5CV~!!15Xn7yM(EsZ2`R?mMj-tXhgr+WJ0 z6AU(Vh5F)CPo}wGT>lsk0}ii$R&cqmVcQlm#!=-l&@EV z5f-^@sKZDokgKHDX>cS18(b~FJfeF<2E&QosX*d|m8n5U)ilUer!#Us$%~f9CphZK z`zAQ97sVXI!oDsWM} zlKkBS4yGt4)W2mluR^(xSsaoOGqOTlj}RIrp}8uvpIzg4Mjl?LtZwC)(G~hK&>v(a zVwbVj@Lks^un>FT`3n8fT(#od%*y4(D(3|4VR`g^N9VwJVLRvmSD#~YRd(V*)VPtI zKx&ws;MC-)p(C1GAs2s#z44!>ItE(7pyCR=Lw7Y~L+Hkb>vPpA^%`Ijm(XW9lca)g zxC&?q9o9$*6w!#O9tF}v8j)d342XadN=g$eTMUuA^JyKi(z!7Y?ry={1B zdBZHn(_#Ua#-V-YsPG&iRkg8eHNLdd19LHSoC~t@MLf_O# zCA1%Cq%zE4U`B~o0;;{#NS)e#hnGN)<;$V3N3_tPn2v6L8cPR|YAfG5lKHNN!r-D9KuZU~Z6Rb3Vx+nZaT#w)7e+ z3Kr*;O{+^34n1|fyl`<$xQON`x9=M}S2W@fn!?!#p#cXyM*EXLE^>ULcWo?B7QhWp z-FX8TTy165kC8=s=f<@}DFYhQ5u6av1LWtUJL#p3+3}lF3$_jua@9S!)s2uxS!4d9ZkRythbzYH<6 z8A0gP{L)z2j3%ob(?o0@u;HB#WHX}jl+6gslVz(R9BdL$BiF1!Grkrg!Djq#z-GXV z=k3*uKLMixLlCU4X8bVZ;Cp5R+>v&B(#Vb>w^mrZxO0vs-W6j!OLUTF&T}MNG5AzrD#lEa?S17mb%5*l?QUWyN=G{WJ z9YFKT+Gt)dX{JBuXqr?D$yB&ib5yvDIp9c>MK_8lx#B@bBP~+4I^t+1qMHDl-XTvS zhBv82#N;ME5f5&36a*!Qv7k>v3?AQ zKAb7)tFk6)tF4TeXlTuIs`aM2yNR;3BX}`M#o{lecP0k4nV%xL>+*9j-wzCf*TBUHhZvv914;A^K}cShG%8B2-vv8$e>9cP?Q-OZzXIs~RvX=jWuyKmpfZzv zwWyiws|7;#wQ!H)8>@22zV2$O4AqvV%1}MtRGHE-oKqSCBN5^o0(c~{RqLux^x4g1 z!gyCBF^4xG(Qf<~(UvIDLST}~)f*;t)UR#E797`dTr_Or_fKl0KVXo0kQWoF`~HR0 z6TwMkAW8M82QD@CHdF3zUjXji|APCV*+ah7215lVAmdijAMyPM@AH3y(OOikSf%Os$QBIVJ}f*!>?ItUT(t!P)~f7e&6Bi+`9y zfPw~#fySUA+vk0Jp9s|WHmcE=QuOdFvQN>&4*W&Y!;btQ(E||A3C*whqM;o6fy0$b zm<-qE9cf1zuJ1mwOh3}lbMf{o;S|FWIM70;7tI<;T8&Hh795 z1b=M1vQYy*S@bzC+c)eLQ*dJM$Fz&66gf3>eS*89Y8vmJ~$N+0`kJ) zoJoV^m7l^U@CD?Tq(2LD!FwR!9D_nR&c5X}bzf(1Pj~0bF2~PB$;qEN4v2pkc1hD= z>@i1PXjB302~PhMcH&~-myan3-^S??1vDLH(WOZVdP)I)0CUh_}B{NQuQBUnh`W=vKu*!G&EZpKA5+JzFw&p%K9f9 zD?)k~gvsjX(i+HpCme-(d4ari!cinDI6@L?02j(-2(@ujLac0f%F%=gW!#?Kw?Lja z4O{(FPC3Slz8oEGGnxDu^?Mf3Vj{IWt7`OS&ENTQ+k&bLx%ErO9U*hP3_HGZw9s!U zkYm4bq|5uhawLnztStt$lK{qCr>*XF|G}BIFGoVE#`4deheE`XaC;}d)j~P zXr}2e6OXOLE{>Ggdy%vEh97&;GV)h|H?+cZO(dGJ4}vT%mo}yHiHi=0KBzfvd%#hE`$C&&1CYmJdA_1~PRMT{cFwxF z#roO&^~0**aocoPk*Gm*Wbz;k@R_`c3<~9B@}^y;$s1bWjF#CyIX;fHV3)hj9>Krxwqv!ta56SpCj9PrF7zXiPd2YO(=aJtMMagfDgvA|pNZ zx0|b*#((?EakVBQTd;QM50W1DZx_}=ov46@c%ni(pn7n@*YK1(XvDX*uWiKw<1*(b zl+^UhXONDm0V+~E)1s%|wS_vo)}1p#hu1o{poBfW8j!WYpDT{E_WrN?qmS}bFV{%9 zvcL&fZ{r!Xiy_Woq5Ak1Y9zqFcm~Z=FUqNDq04}Gd9kmvg}8%Bv95B&cnze(hd#06 z^>r=i6p4PRIer5^rVgF&<*AvzsDIW=cLQhRY^;ExPh~kDB&bYSHt~v)kX=Tw}yW~SL+Ws zUlvn&v;U30Y7Bj~mPcoz4^g8_>FUDr_R(^76Q__X8alt!*S3_!;qElKEZbRMtmmwd z((d9)+o+UA1Frawd1>;=9B2Q_Qr(J{a&xY;P^{pDNp;WqtL_d%bxW1%na7Uwx}($;reTfdn@Y-YamuFKI=$Tuy+){mT; zCE#CkRFj@!TKP@K(}tc-DLr|1GLtAqCLA> zIU!Q-+e-eY(Aiz|=M0dtdbeWpaab#wkI`Vu)Gcd+AwU|IjwY?0tSNG4T#owm9<5}j zVrRbS!I>cSP4HJ=S0$F-sg)<8jnl4)S-cH7{*nHU<9c5k<@j$h%@jI+Z9M%=PkifD zWWkMNeWSo+;;}yNqd|Vkc8!E@2k~gl#S-UYOAzN-*xm`Z0`28|fkKV5c&{+9fok~! zbr0^mUMosI*1?$(x*M=t!nh-hoVn?d7KDqM!>u6kFsVU??0!}A82Opo-A0_^twFc> za${9^3;l~$>S5pW0mXaHgtrL!0ua$_(tib%WAkt*hwmPwHlSgez~8=czjuV&mHG;U zcy)ca73PpKbr1ZD7ZgqZ#8p&*vZ}q2j6(Q@e|n$Z!`}fQc;aOQc;_5#nm{O7 z?rGiCnWc#w#OW=>VU_igfBP(6g}!3=xSR8|DCA(jmPY!6xAZ{EN=gBv^aFC(D{4y3JG+u{9IqP}W_jbb7Mbo(0<}9gUU_++=301kjuhS*wG3@4~NDV@? zW^SR})X#Z9tl>>)6L2NGVTHF(+yM_OY=-N-=%LFkyc$iIBkwkCiO*e`Ra4|suQ|tx zeY`4R++C>7sU77dgoMtiK{1_EI}uR4=UJ_%4#jlEDDb0R)11_Ni1?M)B_cl=M8aEx zUfK9I4#Pn)5lIdxCL&PmB~twH_*D7FbZ4eK-|U8VqE$cxV!EI;e2Q3|BHw-6*;91p zb%+}%_Trp0zMCK!eX3|wK%Y3(>UhQyxBp%?kX>;

ny-8)p%?+tmrHRNINR!tA9fTPwpMYp3hbJKf4-EgC(ele= z!gKNGV##3a-YC=G_d+{440DeI%hG|`{u8hqY@1vR)ayK#Yj z0_wO%@hk)1bD^I8h1M>D*=@;tRe<+{cV*fdA4KZPD?J{E%kF@N7-9xLi@-hjE#z>x2bN-F?4bch8&d+$W}S{;0caiq(|>HN1rI9-HADE-YZe zJF(a|jLc(Ct6=Wqxzzcs)fVwwFd=xt|51*W4B|rwVFs~8F8jxQB6JUc<&3C%T8h_r z6YBC;4Ha&T7?%irLx(LugLi7f$LcQ^tNUwTV68X-yuWrwv10BaxTp*tZ2{(J|N1x9 zMiO(sAjHC4!&%N1q48~iIqk%ZY>^1Rd=`h8i)+IMOJ*A%cT=NWd0D2%h*g1AG;bev zlXHTwKuEz6Z4|q|nC#L=2;AE+HtF;9fgCS5t6q{mKnUK%GkmV|Kbr1tLmwd24_*l* z9=fD+-&F1xy;LC(qHWyiNR@)g8TgBW$r){G4<^wC;xZ|Gfpc5XVDj0^TKtU0d|H;g zd7<-?xScD+j3sYnU_+Ya{}ZB*FLGWd?qS$jEE$Ao&E0L}ro}LCpW#g?4BFC$0z_@I z)b=}5fLVI!|Er*P{Q z|CY(T3Y`XP!67t*^ASQb_!bz5-gwJ1@lITZ_vO{e`t@w9;)R~9#Bg>)+VoD8IV+tH zhmL_lWt*y4HTtSbAJvvk|C+XH`X{ti#>w4QU4x2LF#h3Glr^_N$m)jP<=kbhNJgQ1 zTV-{-0113-`;IlvjUi$a=Z6G(z!2yGR>C95m)aTu&`wr?xo;1bXMbDe`#>Hug4_Xr z_#((17A(F9@(Xw=aWWj5J;95~Tpr{2zcuwm5hS1{cWA*%5hRL*8suV;24gt{Huhn+ z&U4rOPN9p~c76k@i8-K*L)(_Nc>MxCE|So6N2;f0lQUbF$M?6a=c(G{92qLI{jnvP z*o^1WGTLDml{WLe>QP>6RJJ)on9YGoBQuEs?uhj%}iZ0d8IiWFM zi4ZpCOJqi&>sftzJ9)U!l`m%U2Gj{t+p$4Ar=4%me&5RZ{$%QXKj>6eU$OGZqu0dGGVK8bI9&?aJKG1VpFk~Hz3|#;k>=0cnd{~B2UF7 z0NwQqEKdw+T;`B@xAH1Pw^>c7pie6MgEPsom3~@kLMHd#Cg9pq~Ee%kuQ2IgOIP8QKF8L=k9U7EpFrO z(DTdNzJVQddgpe23Cklr$SabIpRw=8mU7d1I61*;8>u7@uT25PjuI6r?B^xEP(g=c z%JRG)P~0Onw3h~t=pAsD>%ftjN&22wB^qZ88o%=rlLizMjmY-U6U@mQFXBM4mk6ZK zQslJ?#&Y^h~=9jT@2DG7!)v)#~ zV>N--L58$p7L=5tWBM)=oX%O#)yY72*uGkF{##L!+eQB#t;16HW z@rebOFX+%qRnQSy3KDn+8TpheN}0clD^>mu@KewMs43{MV5Oh~g~OnO3#Y<13xvWp zN?TdL7`ADC0aMdQzqZGbs~ALuGQ&lrk+4 zQYIy^EMSU(dzPvg*sDZJV7<$kBqhE{O3W0jz|bM(uTDcT=C8hHFU;z^9Zws^3-`ES- z-*0jS(FY(F2=zB*uq(?QLeHLS!tYtD`w9`Xzbw|!=O zuGr2hsO8&MF5FJDH>$rM*;ap|gIc~JeiVh{S3}nVAyKyc;Jn{jkwjV5!8&v)8TTV+ zha~v{IKbz(f8ZsAmy&T7FyZ}9;njA5C+Z;aA!Y3)GC6eNhW0psd+LvZ(YXYEw zFp{xviV$Y(OJv?p&NoCEuZWCk-DE;bJjESbE@Y3t+7u=B!Yap(Uvb6KntR~t{u&q% zn_hFJ>zz6(2|95UB*Dq!@rl9$rjO8ade1Bp<9KcS2rZRYWIX=)i*uYG5;U_g3R}9= zrH)NIswD{sP0OWa95o4jD?+%?o-V&R3pD+aj_QVj$9N0hq|zQzD)1e7)VFn{iRCp8 zo%9VInQh%*!GeaN#}m$8+MDuFp{qc=%}dd=YH#?X{{S?JpOt}TXeyVy$l&w8{U{AO|9Q*YMmB>1)ZR>*9WVi zh7gO^o9nI}T1c->#sU0iW~N8Ubz7Z{Lk0qfR)>Q)7IHxSJ2C6&>_i$0#UP1Rhe>9{ zV?2%Br<0^LVIPi(R%HQI%Q~qk+O3m3+GBW%#}n?_poQK74OQxQF-JknEa1$nP|RR= zVd}S`iQhPnJr~-0?^9kc<8N}7%eV+vxpWn@juTku)0ZEAM*CSNe-JFgjXI?v4KhtC zhQOUnMCwHAwko*qs{@R*o1<>LxiiJ}gbp$#p!oYbf}chORgab=2JuyanR=gWo=z=%6|AuX3~ zM+mVSqH;2p_Ox7jkT)W;c0WSMtU(`{%cb`kxekk$d2RCVFF-%io#MQNzN#wfuNP{a zWkP0EzBs~5$=<$I35bUED-X_v~ID0 zDX!Q7Lj^8w(6-6y5w6y9X*1U)5z~eB9*GmtMTrx^OHiEkZC$PO>@F(*n9EDa*Ja7d z(Jor`CBRwoi{o7-`VF1spmwenOc-Ow3~8V+78)ds1wz6!XyJOmS`mfOLXn)g2t%RX zhG=QQ(r;r><&b36?l(X+VbS_MomJ#e!}+Gpo`?|E*+!yui6Q81ya5TihzYvdCn&me zZ9W#MYu3aZ-Vny3dLUezMSQEP(v$P zR$rN+>VHRuU$L=HGsNL)Wak691@=k@hKq8%OOX}I@h-z(C-Zi9m1T3_)y{b%UGZ}2d+@&*@4FIY_7PW@oZiosDozA6J!Uqg#NyoVU}}$i zGAdrq`Oei>{5PP%C9?sg4QpYS-0%))t=urLrQGm6U6~ukipmY=b%S3!y2^rb*SM^0 z2Q zA718aBg!}!XK)BqRCibew#c08Dik*V7JA2S@=&Gg9xDl)^I09RE-At|dTZg19Q;g< zj?C&bgpkdL;p27iJ>`tV7sEUScGoyfEaz>=FD~t-5)w;UiII??OFAFvrZSa}v2t}u z=R^+{{>5#7}-BBNNj zN*=kpn^Bp5m69j~rk=Vs#NM4{1MIvp1$^5Ui+1|W-PJ%?z>861`dp6tcB{5@Kuyba z3s%ayp)jaBE{xKh1wy*ZpXmCYe@p@vukTqeMlKjNx>e$FEMgfY81a-*LP98#g%AaR z76|eFsvqy8rnqhp@jcjZB;G|2m8259ga%HOtlS70Gq3Dv(_9aW5?%}2!x^-r>s*2j&*N=6VS5J36CI;|gls?9kzAw_Dd|Ir2vAfKD%GErv9P0-vAPUJq;sDTw&vdmD z)&6K>O|(!|?)@S>3wd~crt4~Pjeljv!}K6LTo;@Nt$6(gSB6z!>H>=jNP~r3gRMLT z*P*$8l(Ru9+@w^vi5FN@IPL}*b}#W_KNY?Zg#Dehu)m4ew-7`2V>u*Dj&65TM_E40 z)mJ~>L#~+xapOrp`W1<$4>3Z$&y~EN_E1@)jk8@tbn!QDNA8WBRd^X2i4>sz-9tV) z*R{s4!Cpr%^~R}5%{V&nJ9IF6H2`e#1Ldg=>F#W+YxonBcAvUpc3i=t>8H(!%Os;9K@7^*R z67r#2T~7UlGWq+ht`Xuze>^c}A7{#pt*!yOw_W|EuGOIjp}yQ3pP4HT^OokA`iO%m zWP*w+WD0CSLDm`n7W&~bIqG)TwN?^-U6ZARd?!%IV0~k#glkpx&9;kK;eIH*#`fOj zu4y8>Cz~SFLm53)k|BeaSWLwWcY;}L$BX@ZO>s|j)aYx3&)T-f`hnI~M{?+HEab@6 zSs>(Y>i4v|N^&<7IU^*&_@2t$jOQhUpvn)yv#VWW#d2Pa5G*xRu#}frRIvLlS0}NF z7yGGTLl6}_jP--40Lh^WEaXT976?hO#7~0ob*`D>1I`FZaKw<{2rscn&}6-eq(!wHZ82mJ)N=59#MX7=(Qh4p)>QCOdsSOl1Jk87YP z=EW!g^S9s`ce%Rx24GvP8btd@33<0rBJEos$h?+2Jm-oY(YBn!MAwnR+kdybjI^qVP8L-T$MFJ#)5?IKP1QrNMFuE2AvL19*i>Ejv zB*Ejo)Kq$$mk^>yYeBScBOp4;s}rJw2BL$!gb=-53!+I6x#o*scy&VbqoLCud5J}* z>mPa!KK!(C|K9>?gt9K_qyf7736XN?;*J5?CN4!F)dn)^2r;5r;S~PhHVZ0bSf?3NUNX>7BWXJk}lOhVqs1;J1=kd}gf3$3c z1XX=2q%WR#ImI0R%8Z9uL3o(=fAY}613awpM_UUIA9=u1KjL4R@vtcf503@sK}WUY zfV8Nc2BZZ-z1coUZ}xfFwO;Q0(nYtyP)ELRbmaS-LrX_4+X+$I_q^DzBfkwIzz@L% zh(a=|BhT-Gm@c$08=Z)jDG{prI&#A+u3;j@zcNcUB=!xouxVI7a4_j8GAhv`GAYpl zAtl07zX4O?uidT}M1Rf{gX{g# zGEG8NpC+%_=ekPV>R*{@a#0W-mImiRN0CvJ7LiGl76@6Vvc5hG@B0J-_Q)_fNpH1I z>!$Xj+_q+7dZqbH=qHUxIY>Y36C(0yZVa=_g4R;~uLY`l^#{ zkanVzZJ$Gm=GfSN;uGEsIz;Ww=^yr0Cn{d=>*I?qM75-p=@xaKZD$;+V+|J}>7|Y} z;4iiN(ySl+qTQEf{c78NsrRnyg`nr^pReJi*R%4VD?t-w$bxq#z}&#;%D{#w z%P*6l1cKr6#9`OK$^ivx-KOb>DB(7o=ByHr3>xUaTgS39? zG{n63TuCzS`Qh;reiezE1M1&o)(_bCiHk7qv6b;12Iq+N0gdl68{^US1s}L>5>E%z zda|E7y1t8-z-TgVT7Y6YAOChhF@3KG#dJP?3{?BbRhb&3A5bT>TQm$%sNEu7OYIhw z_G7z6SW)d3{ffVa^^@B^arMX=f`9PcqD~0#js-fj(Y+1Kg0#xofp(#cPvIE$B}+HMW42@C}JR z{Z)FsA1hb;EWPB>aJM>vpjY-+dlA2amT`*(^7i3wV~YhTpb6s?R6gATp?vzsCtPLL zisU1jB09E4YYgP@2>9ufu#>)&b4D^PHe_1NO1MlL4VfNd%Q3Uh`I|EgQ&aVu)W05w-O2H?7%;d;{A2Z(}h zlpo4l(M}ZV2S*v#kLnT&gu3MKA6+}F6{$<$1bI`xnPbKVIn-b3a7?}a$_Wb?M;IJj z;@ps3xquL6S4w2cFRo8R;s!#OtrU$!{6N;fv;ijuvdz5)18L}y3M+q&$)mTsA_uY! zzDSM$!aCz2vNi*iR@?Dn!e7MkcT@Ov!vyJon$G&xg4JnYbq8RzbFAY6vC_7o1uLEM z4P}V9qVQW!ZJ;_LbwO?_ba#*&4~&h0=|+c;*05%B@3RvI#~{F`W_XLk)9r89dOc(- z=oxR>UU$*mKJ+=LB+G7v@8^1GZaAgJk&tSh?tVo) z!|~7=pMa`c2C5+Qap*Zb;+q!guCMFg1BGyRYw-g|K#ZK_jQnac;)rm!VT{yMsqwD| z%6lW+AB(R!9zRBms$ZInm}hwd*nPxA#Ln_=QvIQ?8t5DJbUg%judEk*Z&Y?DXG0uU z7V3(K;LSW^V%+b9>wU}B`Q6}^03QVktMjfT)Dd7L7*Ybhc;={-Wr1OnL2x zcES4}#Y^6nG?z~&xd)`u`6D9;@#3D;+;kr%wa*>1fb4VGUXye5t=v73N*N6}qX3-DS4x=X>0 z-{;Y%fFXENlMdP5gJ*N-oKGo+OI;x*frkJhQGUSpp{y*c8X&vxhx-xlLm@~d>&nfm zvF~P3D95?Dd~%)F1e@VC04>&nlU<1Ya=CFK_AW-0F2vSf1eV}icy%N8g=HmmQR&5d z+;%xM(;X)`1L|624)Kb488;^)DbMsQ_oteEs$5-$4FBR~$nwHdMbWZhj{CSCF-ZQM z<8CXW1~J9sLQ)HpWn;mY=iC{WpeGH&%Q1^(b|d$qI^2UvLZ5HpZWy8sGH$_!A7)3R zJ(1Urb0_G3m#Z7B|A2q-D&H=7?k_|~UYFcZPEl%JNH4%O^RdJxqK~BRaJbLewLGL(7j%emyVr7dq7ORmFzRYNkd=$%#^^y{F5D6T8nf`0J z=V-n=Q_~j9Y6n>8TLZYig>k=%G~Y(g8zieA99LgnxORAyTs8CiTsgFbyDrbp`{W3@ z+1nTJ!`c^#5BUo+hY2!kkm{SzR_>?7^SmuCkrF?}dBc_PthKG71W6B$!+?apjR(h% zmt%Bd+)Vlzi~zWqG%d)ar~wk{O7gRV)RpAlb1vxe`ZGjy&Cp*GvJU$*#8K8h^LEtP zz(~-sL%y5iPLZ#cx>MJ;$Vm3|ZR1|1>G2h69>Tvg4|7^hjh2tLb6?WiSIB!y+$Ewz z1?vk+=(MX)F&j<9o)zlWXc!K~yWGR&$@;zOIG9Za8|pdOpWF5^6qF1PyY@>WB>MTRa9b$4$QdwDyYP)U*g?Orw8dG$h*2}YGUnPN#|V=_fS z3%ur+k9_D@3Th)O)Tczzz1-_9PRa9BFL#nAq6b??q;bt}I0GA~F6RPM(&C_*->1nl zecb7KwBpj4xBZXMg83gqOV`2F1TL|m(v$kxZuiC?)=@y!vzZ5YgE z>Q@X_X|$?M)1zhKA0xrbjC41sh(sjCvG6hM2K1D zL)?E_>EL9{3aGk~lcF$>?jGjsgCI0x>Vv9^;JRzNd-yoEqeZ|8{6&j^6NA+vU>$lM zIv7e5j~eSxHq3p_I@221+)W&a@K0O2KBDo-#yMy4~gf z&e$QhyPL52p)>CG9x_BtuIhkdnp{JGrOMxLEQtvyrmMZ77}hNE<`;+87x>$!GMZq) zwWTK5`QQ`mzu3Dp!R|zK_@{S*;qQP62FkZiupim*kT}6Sd86DVy10vTXU?trK|Y#W z8!Y7*HA6mi6&Nu(r;pKw_P9K{!rfNCbBLN=7m*SV2JRZ-`Dd&f?x3^Knt5q_o?NlS zT`XSZBw$qZlJM?!j5b8>u6B>KHlj%xKwzZ>0j|AhQgV@jC7M?eL)fG|f$eBgp2S}? zDNhcmeNtYeNm(sVk9Xg1nVITy+5;2Z8^mv%7dAT?*x==IKBomgI7;4pmHS2!ITX+Z zOvu!q1L@U73{_i4+dj)nluzZhiI?mFw}(U7CTog}S+EWY18NK3_kI?IhM)6;50 z3VSc3WKQDrB-vx2D^Xtf-Vq_EJ>ZTCjRvH$=tz9F;OwaVmeRktARfHO|ZN zSM*Rhy~f=>D+2%EW9mmHpQN1`3Nb6Oo>v=}^EoXk_~|L`hGH;BNn1BpaR{YY$0J0I zuc5egQzFkzbX#fChPpC){21b3<8{`J4p@W|`@> zv_sxrc|0SfYw-E+z#drl;yi@2C!42IS{dV*-Yn3b=gc;j@>7K-jR{e z`&Fu)44?r!8QqY3N;zBbW6D{4%S8c$r}oul`#@&$1c=PAxxfciv1jmPdYo$5_ zaDAn3Y+x!jmQR;3xoTioj;CUw`z6iOWug0!E=N4$j@H+e)0^5$TgG(|A97k=;~%Xb ztdwsrcCYo;m!`M)rq%`xZgrRW8qiwGlq^OCSZ`IT+#Fs%nAKjvEF2q39Xr(1p1wd)T*f@icFiuOBNB3A}X6`T*Z^A&Rx!qlyXmVkEpc;=YdL{?J z1rozA9E$F6-z~fCBvq*s_W^a`zLh<&C4rwaz`Z~lUkipW3h}M!k}OXycOMKHGA2(0H5eWtd6GkT8%T?u!N)YgYZ z>-ZD~Hi%#5I{u)@XE@DOduk9;HO*|bhc4YX8VX(Drk77(Mjm-OKU4jp>pp71TWj>v z9Pp~>g|}4EOS~;;^ny)P^fDQLHMhwQ8{F-(n&BTjdPzipSIHE;P*P_m2UGMit)y2S z6J*yISLaOQI4OL&l|#sxEJ6r56VNk-FKais-xc@qiWI&`=mrd5BrD zDty_lI>NVT(079d@rtL(HWj{X#R^9Ff@Cm!;bc_!Vu4WjLYH`0z!bi$MRe-;+#;Lu zPz!)Lj9z}_%#r**Bg7&)HsDNck}9`@pTB{8u$G4j5}S^pRvn&+ueC$J8wbS z*vdKGX=;NanEBX&Jc4qo!XT=}9J}s@`o!KzCiq>>x<%k4QGj8(md;fH1@}U1I#NLK74k&^ z#cBLS0mW%YkbnZFQch@o%?stS^;_;V;mhLi+B1kxjkS}K( zbw|j;!|tQ87VPR!!i6DS^YtE1wa?j;QCDXYx&d#Oc_v{EzUB@*^c9@E+8E^!uee+4 zoO>op3y!<{%CjGc3 znh)LGWZH-BCqwT9O~?z!-34ML*9lH({SMF;JmtJTt!ILMkJEQ@A#42^cewoLBe(ni zeS}#!Z>Znql+mBKyNKI3ZL-EsA%sVSi=Ar2bRqnU8>WpvbvH{t(d?Y#r4I-17e+yf|OrHEod6bmW}3SzHdNsPTB=QhADs9XdyQFJoH&cYO>tqYxqsdB4alf98%lxN8h9zV7`Nh!Gj{T34%8PJ4|3> zsZC%#t3>dUNrDG*8DWFuB;m-_l(j6Dw!@?G(Szh0M^S_1+4$g2)q{D}fBZst;@kD2 zSr@kkNiGd)e3$Y(v(akMC)z1?b&z~5{mOT+U6)Dg;EY7&>Gjnng)L20O;PxhXTRbX z8CHxGE>jX1bY=MdA5#3is{mqt->X{qi9e_nngqb%%F6ooS`T`4AR}f zZ-ZpEy>1YGo{q<5vLAjW&bRy;C&~*oX zI9`PXYz3@ApRKe>A+wb>1|-he$}p%SW-B9TvB=Ni+rc{eaVbvqIVUTC z9VaX9i1o?J;uJYqSxT{EE}Zt8Z=7i%A+c6Upg<4dTm{hMT*ZJM4`U0piTWv7Ci1jN<-5-I&)saP+qk z5Hk9;Pv)rrmM=bAXcL?%4pQ}jJWO?3B0l!qUzIo8dec@QvUanrhbkwqZB#iW1io+r zyNXsvzE%i`lP_`FJHT6gVk$+-P_&_px=ASwf)D&u)yw+;a3)`EK1jJn)$Ajxc~e)7 zc(gfGH%Vs^R9mw@XbHXwGcyA2GX$84IXfCO3{xArG;qE& zq>H0HBz<4i=AHM#)FrGg#V4d7s?y?EZL>_T@o}O1Do#2{Ee-7*u&Sx{B;^;CAFHf( zRepjVm^+|CQS~b7Rv%`eWRUGaW?s35TF3^`5*S$814%mDVRBsdH-k4HQl%Pi5viV3 zW|;YtNVN&eHMD+yNKJ03sdi=aC>Y7*n)yF9)v?9~GFx?es|u3RG?X_5zcd)&L~d$4^mU)r|6 zmOn9Cts@Oai{_pX4d#A}%I0G3+KPsuC764~qTiy`M3a}71$a9VRF(H`s5WQ57FP@Q zvG8jR)i%t>P$C|X(yc&S1u*e~shYnqb;*UHC3e-dChAm^*BXZkCpA?Q*?Niyhf$%02RBob zS)rlCC}^Z4vC1eY?A}7xHR0l|FJh8f<)s$6w796bdYrvOkz%8R zjYHrAm>(GGbc9Leg^lH#n@%H9%mckX1z8TSD<98eTB!po=%!Rt@&{CS{2t#bMshA= zQL78=;aGI(290@xGO-($wN^W_KPZbX-B8=eL>{$%$1?CiMVMnzGOEDA}5!aK52T;Tnd2lE78k=osCh+B2 zdH2p>skw#{Bf|O;;WQ^g=XeXyjUtNoo}jkG#Z{M1*7WG!$pO!TTiizpyL55`N!ZX5 z$J*Iv)kj|JJZ*}j>ztL>=&q{l94+w_6JsUjGoWp;gj`gTpFUErkoKN{F+q8^y zh0I7z2V~ZKA+uFTIXZiWfhs=#dA^Uj)5MzE$Y>B!R@Zy6u_R|~dw)|{g`$7@sf`u( zENzQP6^4pl6pTIbtc_nEsP6O7;LT*UB}?acXX9jC%Wj;ktz|ccFIwPQc7Z^>9R6{xWeW&d%NAuBxaigv+TdC? z{3z*KwsSSMvT+>`GO4FRByX5yRZdCcPi^WMc1)0VEbD+hbme_MG?y`f3Q|?IlCTYJ zj`z_l#~cq*tAbSZ1iS3k^uk7OALSCZ?Zuy@sR5NeB3KHsBhNdpju&W=2mdFxCl4N& z-H<(Y;`;;o7|wdGj{CvC*Ixt*tcu>tA5!AQL%zMmz#6>IQPr2{4_1%&^n^XPq}X}( zV6_^LyrnkgQ@$!!fj=Cgu47f~4h2i8dPY>3S#UQRGDfR4f z3SuxdxvB|BE&F?sL^2*h{n>E`6@Fg_pE1kfYr?8Cg^n|rtNU&V{|I+e3(Y^>#wO{eB0c10et1$c5!TxTh)2Ss{VQEV786c zx_Hwzz$7avBU9y@JjJjyd$zjR%bM!L+x#;#lF>?X$08|J?pPdJ1%|)(r`y4`*Np5x zvSmh`xJLx-v@MH|#4qtDUU=Y7N8hZ&@61s{B2-a8eQaj|z&HnP7>`xq5dM^cMLHDG z$+hJLS_S7PN9L(7vFj9^HD7(6{Y)Vue(|ddRDb1qDi2+t)^}?V&9fJ%k?e7?t$tmg zwl}sC1FnwFp!Pi`${?N&@}N(K{eiIQn@hyp;<%5rjHr6CgTepW9lDY zZ`xyTEf>-e`p9&LB9!sy&?0pNi%KIZ1c{@0kHsKBECuUgN2T#Ii(#^2Xe9(78us-- z54U={Q=GV{+EqX>b?cO>Z}k*iT&k8evEj73Sm`zm<~2{K)!1NKfOBE^pj50fJxzX5 zDu)*1R>f2ve@czuD|5oC%UH7@4OfZ1z|!PrrF3m+YoUYFwe3K^k#jem|)YjLo+PW#VrF@hsHpl9O z>dMkqLr-hUGLS-L86c>viECkn*#O2lN0x7HEmkI-*rJ$ogwcw+qWFIb)j2Lmgqlvc zsVTO|Yn}R>!WvS{xNA}`9XHolJz9e52|j76@6{n4()_X`Yq2C+Uhso?m?@nkE#1>~ zLyBKmuTF&wT{+tO?t+lmjxrEJA}toNh%&Kz-P+8U(+ zeft;HP6mQF;`>Z9HDJ+{j&sC^(dIhu{JEFZ#s)+<-j!RL@-7qQ^-()kBvFMR!S7f0 zccYt~73E)pdVReK{K7C=Lw>(<&OY^kqNER&@8A62P3p?`Z)oIo;Dw|Fr{7ZrD>(h0 zCVt`cdm8v|o)Q)IhnV=`^c(X#hc)6yD<2$Gmm4Q8a0ulNTSX<)Q?ca)tZ|TESh`6b zWa|xh)`VMC`NmfuG;SvpNIvF)aK^U5G9TOVs#?H`XgiUQ@#rhC%6qJ!R=9F-usn-W z{dKjHc&D)|JMUWCbWRv1Y?RXaE@xMMa%=Rxu~A5oI*>het))C3ET3j9Hw0AX7!6>h z+MyOGHWk{!`1zES0C|@++^r%$(g+n{#jv|moa{H%B-WJH#XK}_h$PpMmLR#fH`Ew7 zLVyoJ_Hipk8qnB510RAcM(>z(?ij2kowSlnIv2yx7WWRFNoO^ZbV55V>6|H;*fE&* zeMfB(u}y$!qPdi65))0F0L`PE<6P02Ijj_OMa}v)9aR~dO>txXw4OrHbruQ;jv+8W z{iw{7W9m7+;WnhHkQQUKJ2XTdB{@V;I8MpbNgAtsI79}5k4d>aC3AKN33r!<$ldjs z&^7RSr1IVnc|=B_7cq{amq#uP5KI7WpMs593f8lwCzQI=cN!|o;|DiS!z_j3kZ$w9 z5E&--0-KN`6@{Hq;SzGqp`av(t)n&~hDvQjkP@nmRzsyW+K_UojTS?RHo6QoY9nE& z)P_JWv_a8JZ5SYW?nuG9HbznEx;AKKsg3p@s`HJ+Flned)S-={^pDi4Cbpa+L`5vo z6tRSqI23U=a*(ons674iA}N=O*hv-fimnLf@tX>e_P7V)trB~U;qeg{k_kB`p1<+E|*i4E(--E^gJD%GzAjWfBAQOR`f2ZzNZVltv-^2NYJG21``wJEJFJ0IbKd7-0tAsPd7@{3sxIx>0^#hz| zp%6WT3>;3(P#^cSvK;q6{s^n81~A&u_n=`R@F&BZ0^@7lhJb>vblemt<5f{{)XNjn9VJG}5Br)k zc-4FAf7oWiEnYW{*d!n{Aw1Wnq8h>|>)h0NXlO$}rQ z%3|xnqaKcxN)O9$+oDMQUA?6!pADBg7Vy7#eXa0KFMl5Xm-@B$BM_30i!#?|PpG)K zF#i`Q0{1T3=Y=R`M##O3d*!18_?7zRI=uZOHU0nnXrJh!waV|q`H07`2KPH9ip%m< zM!59S{o!&4;|}~Ub})uMf!>W3wHy|TS!ua@({P~75=I-29#=KoQFru)mxgk49iKEK)QI)+ZRi;!L!K?Y2hnCc=_Ke_N{eapY zN)1(X&Q(P_H5F~wRMf}coXxJ%cBNENp-HDe6@+82bvgJ9t*M;3z^lwiA3m~g-#W~9 zBr$2!koQPpROMl#qj7Q*p`o~dNnXQ5%YSAhzYt`OX3tRKsIWQ$ zLT&1AO`J!X!Zsc@FJLWcyHYA_tiTG(nV$2 zsIoG3WnFv|o(^qL2K?2gisrf{H7s=`UlL}n%T!7i^_1(Xr({it{_wvTd&?@BSFr-x zuGD&3u9Gn63E$M*Q`Ov)kF9Fns=P6h2Zfts*bzz`mGvL0tW#21=&tU5GOUu+mc6Pu zkWa2=4lk+7UKz>N2C*h%ddD9?bC< ze)ArF)n_Rb7p{B_7$xtX^%=!yzhv(lRt(zX2hE#;Iz#LHGUJC0huyq2kY@JHFjZi* zfn3On9wisDt{pPB3=wVQ1+V$ySLabYBHG+AB1!x~Eg?n#9Jv54Tw#i^l!Ao~MKpA6 zxrkQ5^{1^Af-|N~0)jTuaFl#U;`4^)aqKl(5htyOK!f6z)*(`&&06F7g)CA&93?;Q z@G&XZ)}KZZKYs~S0B=Zmfz0@I2h)3eb}w@Tdyh85wSVzcl<6M7Fvwhs{YFc1;&z83 zeIk)6^MS`h+PwZf;O7r`E7O1&XQ@IGT}lug{hNoir8>Ae%c z{9r9h9k!b`K}KI7j2_Y%{clTiG%>}pa;snqZQiPtxf?S;gi_&&E1lydI>-360BXua zQrtJWLUH44TkM-u^4tWzt~ISmc+rYB<}oJaRtD~u6kD}#izd&7(edXX4ekV|*j||c z!6~-4_=Qt!?@YN*GEKO2+$TYg?63j!!>8JtU-0OHOYt-{Bs`fS3lHXv6V3Nnb-|Fs zZ9r7i{BTtQh6;kK{C|t65APLauE--F&h+KeI+~lZSVD|AXb(JO#AHeb-K&#%A?rlj zp)>A~DV=efOn&h+Y;UaZY))Yow`zl+ctLVAHj0*jNoboRP>kCZQ{0Miy8?=Fy8?*d zc11CKqQ`FxDBL_gZ6G~L~ zZ~FXB%B9=Cmr30IKcENU_Cav@QJ-7TQ{I+}{LtNivg{UZ>~#K0*l2W;y!|AzzXD4& z==dv)CTMGomJV_kaOrUTfEgXX0Vz6uA&YSQR2I3!Yk=VLWNcq^q_HA8{!hUU#Wwy0 zkVhQhsM60|$ZVrYf1%dY(Nb$FDbcjnufO>VuSug}^-L`BP9YV@67K{mAL>rj4pTyRbHy&LYU6!&c%cls?$g5VfG z@MPc^J708(=zQ8GvhxiP?EJG9m}DEk*!jt$ot+OkcngkqV?P3O6RE)4nKH({nJH6& z=3|Ia;J`}|5Hj$Z6{&V}9h1^`48Il)m%#he7T~e97dPS2)g_LEz&1u+0vE%m=1u?B zO7}6u47wW-2s6OXZcQ2^hv*bqj3ImiK|Onn%LtXI!vzWa>=t(UdY~sRlW%mx#R;xm z5|=`Tr57+Kd%PGf-_f`{>W29(g8760UoO#lfR?l#H)K}{vfDbFXgosVrfK2Kz@adn zu;&OK+KD33f-e{^aU@y^W1L2SiB|Qou0{|pAO<6-lwodY@@hF&esYSZW}0KXJ3uXd zsFOL0B~c7`cxf#0f8EDA{ohNY%?(2JfZ!)nkJe-PjnU?otTjc0vsAaL&BsdXP8ch{ zHuc>Y^DLA16v0W~tQnDP8byJld=h14uFlHzY;zQ0#b2^AZY+N#+uV$eqj>O^Y1lY( zTehBp@wN&yI55tf?$)3tZ!_MU$o6?^0Jm_G+)0noMS}njNpTCWsu6AqXiO2}LinLH zlfM!(Ru1s+vCh85l$6F=(x;e`es4hK{CHI{P2OEUpjy!flgxj6Dfh=>MjBR3&BoKs zUBhU4;2;d?6DFj-SpdO=)KC1vgw!vq_=HrX0AgWa`3&4CyIglRbxYfZl6zX6a3Y0_|TG1o3{MbSB z=Afp4!7U4=^<@@XC5vRCqK(W#_ljRlv-s5c=9q|h@dwR9s|kRkzmCs0Z)Jxl1QXD3 z*G30u6-+=+Q3%Gt;{t*%FdQt?nSfSbWS-Bi(%P6xU50KE3Fu`~qNP&D!~ur~pl}h9 z9+GmIDgKc~Jf&B*^ptx69b}69+OOtdQd|Z8e9VF zXfmK9V8pcWm3;Fd);gOg5M^neEoEs=N;Fv_eP@|@T$?I^eCvr;e&Sadp0nKCTj`fA zqxS&PM#|SGo5*LE@_9j@%5{|F)};Ylr5i{abs6v zepkbM%nkF~6!Tfnm@%juFk?n2dP8(O?G4%O1_*Y0$3k;;V?{jkysXe1$9|(s;hAUJ zp4fT}H}`TuB8~I<5~QAutnGvo(PT_M@$L_Q!N2;3?_YjDRG?a zijK4ac18Pfy465eCY>`kQ?x;W=V4lplP80lla_=8o(xVHC%LON&cPjKJJU!LxvVsq za)--GM>m_-d#?mApFQPfMLuo|>^H8W?U2dkl*vs_CUdr$<05pQqvbeDX!8%Yng=lh z1jpw>jpNBqjztWwOx=|(Brtb>R6rFzVY|7n^5HoC-gfgq_A#X*oL{KUi1t$X*>R#H z<@21?d&{h+7z+IQ*eJMjcRH{UyY7Nm`_QH5h8%K*@S<0CnBz>!U67^xpuUwn*Yx4v zei$0gN9;1&+21ZCdREtY*PaJ4AmQmLH7f8vyUiad0pn#tVkp-w4igd@DI8jaXo?9* zt?>ZCgrv6kg$YUR@x>=3A|!}}bM zS6w#Ut-)m3zy!~#Jc79jzO7vhU0mJj1sL4&3fe&C6$#@>ULo4Zykd{|)oVPDK5VWV z(OvvO^NQvI;Lts;ZsAtz0SdSeY}qxcVw6@*7$k z1M(%%vq&y3krI7%s~L}b-P~XKeY}jof09Zv0{=E%_od1+Fq;-jTp+z%;<_`Q%+2r6 z#<;|FNSwl}JV72@tU7@x1zlj+1cJMc#I5WZkB{4-qXzW2&Sk)iflWvy0vnY|1~vl( z1KZp;&Gn2G(O-TJ1|!zFK7rxidI;Q`K4RX-QYn+DKg$HEKMN^w)8CW{Qh(D(C8@tj zRK~fk`WrWa=x-cttm|*1roYX!81=WF;@;yye}EqKXTXg56H*ENQK_W<3=q^`&tot{ zHGnZOxO~jqh@GcQVPZfl5<89WFsL~{78xF*q)b4)n?4Z(wWD$#`WVsxUMs}Xisxnc z_$zNghlsmD|4`g$`HuyJSbj5p_M~~AQe~ple)vRJ3#&AdSXdN%JjP(Xp%aPrLuq4O z`|T!5>+L{`QTuHu?&l?LgY^P>)V={TuC)XaWK<$?C5b^Rkrq9kAm`$s4a_{IlQuH* zm?9tsZCw7qJWVN>$dk{SW7%rj05~3Iq6}}=8J>C$QV!h{X(`82+Who6a|>pG;1F7* z@j7K9@@jfZbZN`Ni9Y^e)R7T3ap~Y3MGbyXrUR8cH}T;s-sxAhsO-n)KNaPxi5RM@ z7gJU9!rWBn)li=If)~tzR-638s5^G>0^tXP_dUT22Jidg7Y6V96N?Yt!sUwKefksg z29Lq}U@2D2r7C&FH69haQXiV4==9nTb1|u z0w(cQ2?-L_Jy6c5GD$}DtMFh8Z}6pgB#WbsF|@}_lA*o+B#)uJt6PK4dIQ|FDuytI z^=i=CEv(Z9GOU{>k+3e>$gn<1{HivIhg~)|h^Qj|pkdux031DlVI5Bf&7fcm>t3!c zr_w4I)>lvnI=6fQ!Qt#RiG=lUzBT{B_R`uImUe@pMOfcWN@Q3n`tXUlmq|G>NnQ^* zMJmXUbZioFiXVd_z$q$|Cdm(8yv;9oTf%r+%4lDs!HKo@yoMoh%8f}p{e62)c9SA@ zuH`E~Q0%`=k`rstD-XGx)lzvIxH^^^&fYdO7Pt>}tx}GM->MVk!wRZkpS9f!I9#ZXFl-)4L9?!-Frk zsL3W$l;{~RsNDk;Xcg~0s-_36&GH`AR#`NeulxlBTtZu;z81JLv_@xW->>G*LQ(gB zg*6mIe_)0n3`}GQ)WBqhV1QtTaQzlgH-IriXnGrtuDwl}!VG~{Bqo3Uwt1`z60vl! z0|viH)3$-3&K(e2`Pyp+6>-MBw_iJWD>R* z3PnnKgc3!sT_hmHYd0(E`EcY5Cgt-f(*1r(Ti}@dlvu)b-4gJs;`u4W#?I5GXk+Mq zA5M|}_pzbav9Jk-tQ(roR2TOP_|g5kqt@MT#8l1w)|l#I#7g*75;>yb!3r&M2-mAf z-owTJy6;VzDt&J!H(VVkuAVwB;dk9|q2nC}jG^Nl;f8DoMK(@HhE5lRl}^_nweEBm zQgrBa#q$?lq8WN!Lo@6L^tv0TO0T<_HWxjttf$=U(YZm73+h3SYru-Lf^(!psZog? z*!M-RYDe9QrZ|lfX9kxj189_=3kWgF=6qX#<&tuDDxc0Q4cL9!06D%*Iex5jyuO?z zHbT#4v_-(5Y5VWXS(-5eB&qwbI=pM3C6S#g{rOa<4soZGCTIi;PFH$TnkWT6THv{f zCPnuk`Dj7!@|FU{KX;8>DYZX))i_%jFId6Z$^`KXXDbt? z6+c@MnWUJlycuTM=5e<2N-1Y6c*Z=kvgJp%jA}`ro-8I{O`80Fi)a~n7%#c1r8V0` z=*T%rpBIzbR3uP`E;mk-Q-KxE(SHn4p z2RSo<63$7sKx?--32h+fBy*>cIf-Z^=OhoruPxJfqZ%+4H;O;#oMeFj80I9Y)nO<4 zZwdyR?HMuOwdEsP1?MCo(+MtgB!L2gj$}SqnOJHJu4OsNVrWIozUohx*;jp1qGeyW zh1q$!+^l()l*`1cBfmJzkka>=F5}7r=qK&Ko2k91qa<-6$y`zn_6s)mf>aW`OUyRZKpV#aW;%rCW!Q< z*rA%X`pprpoc|ToA3oAm{b8-5?3R`+NRDU79XHR7 zc-PjJb?kc=Iz6lF9xPObQ$usy&@0MpV_9KR?*HHTaYv6jPKS)(u;me>9Dv9pM&g$| zVw6*Sm<8u}F>YWrWy5ejtGy*N49~@DPT7Hb*>JpFzHGR5yL{Pj?RI&2K_UqLao#Q$ z5OTX*lx5%n`wh?rZz3z1zOL+1Cxzc~lq6pkAIxOer~u`_nD$i+rE8zzw&dgn4;AeTab2;7o~= z>**778PQUjTRJl;{K5QoCImP#9=i(nP4D9%D!XNFi56YEJEmRgD3bQ+M2Bqv&obss%|`0U7l2(awUg{e`=}ABd1vzKQhu%l8e`9W@B^tj8T>*Y%HaV zI$GtbqfCweky1x|Nrokx?WXNYt)d+|34@BBJ|FGRFORldR6fe(FOPxQ|9MIm^>mKv z=__JlSBE#N#6SL_pC8W~V+rAp$688qml(BmCYQgHWog6CQ0l0yUtP6zN)zR{rmbZM zt#RDHhb5cG9&|;79*N1@L_nEmoeFWAWw_CRz@7*PRLO z?8nR2cC0@9a*hzxW}TV(fHgJYrUP(i1B?!Dv1d%SbStS_i=4?VQ!MpaB&CQN>?|O3 zOh(LdW$s63Tw&MTv0Jqp@x+T!i zoFATJNiL}z19j#Mdfqm&x+^WF; zUUIW6f12FKkFPXO@-HciOK0+DXIWs!n=&9&?R^j+eD5JkA7#F#TXUXeB|AwgrWdBy zfe+ac&Ue+IUCL+CG#IzS@-|yfo0VFFg-!|v4IUbw z;LkrQu$=TdHp_?KpXytg?^|UFWhW?cRNuR<>ibZt&l~cgXL!iWSz(-o4f5j`R$CgC zbnG9Q#docNbm9o5jvBk-s<9#|&uf~-`Xu%C<^J7lo%qY^;MYHEEuGkJ6icZUc-KkL zpup4}&HZ_;b(T}!Rq{X&Pcm&WEF69r;*zNnPyg01TBGvZlgU;kRa1v zR9g!Hp+hxTFw#*emnVm6|4o)IJfOU_9EV^1Sa*t`)EevRq-D?;zHqc)i{(3Id>+r( z3bAG)B@4y|@9!D4HB)L!gmMTs14^o=(RqB~c1r>qP3fVYR=VnGl;nN5rYHV_r3c$d zo0Ud8A=@o*jzjbV;5X>zUOrgUshyVZyw3qKe*C1Z5&MXe#i96ttA4)J_49I&wJvvtTgHpIjrfC zlY&8EkuUlB^9uVc50pBydAa?TmaOhsm{q4Vg@!^q3JBFu_-vULR)+sYTDav4+h~?d+m%*DN`IY%K}Tp*1&6_?a)F*O zstP>l8(UR2i;@?XrOcqJS}av1MxDc|%J8_aY~}d*S4%#1n=+fPd=0E>3MGy@+bAGZ zXA?Dn#%VfR@ttiVJ4oA=T4(!p5(b?`)(ZFM4~t;x_Qh=e;Ty2Be~HpXWqn4K^_`2d zdftH{_#o9UxKzpTh1vY4BM=ZTP~xbp-(8jUktWGmOkg3I`>~1e6v4-!8aENpXqa>!s5!A{rT$`A-9}+(UPOIp36<2fWK%< zNu$nM&eeyX^6XsaToKmedX&_pn$G2cpTS;eQ%Vgsc{|oy`;2ycI>W~ozTAXceJP?A zRa(3zQX_uR-`bd$`y7VgXo{-TRyImfP#S@}hPBIy7Jr`qrR6K{)j*FgNwqg(Ybj+^ zSpikqR$XNn43AmupE42nsXc}DTqQST;mfyW^0V!^pYj4T!P@<^3U#Rl_(v{cu zn#ER9d%H20-}=c?joqNsP&5AXTr~5&rkQI}GrhjE{KBe>N{;pYQfnrBo{WaqTr|_? z7M!K7_M@f9y9?0c2lv=x11MqCPN#WfH1?gRr=*UJg+RV+mpz0x{HeqSrgWGmwbg-A zM{Nxe5NbzlHCbB0{~{XN!oz*}?VFaVY&LByj-_;-DImC8Sh~%tF+A%R%TTXX^I+Mb zTWDpTy{nK{ zd+hK(DED6TvBTxcNzKa@!^Dfwu+D$rrXTmuxmBKKHHB_i+O9@AZA>`LyqQ!(Z63X+Hn^A*6Ks zDEHX+dnos>%f83d*OAi&^4>YO0{E80u;AG1amg1Pcg*L$Pb@Xq4$1=d`WaVsY}4e~ z4F8J}@BOz0zU)iemD)jG(n%OphI-Babj2Bp{^(p-0b|rrB)thAt6>Eu?x}VJFM-*#Q_JqohdW#f%QBV0$6Y5V* zZ|A(M3t3ajJ)Xe*_6vI~YfHh-9SAR|Eq4?Q%}TSY6Td(jCopByv`BLnl!dLN_GPUb zlranV*JZ7-EQ|7m%Fd+9o<@}In4GmNX~-V2fZz24)sCPvQMF42gsOI^CPg~@4<=a{ zV7JzCcZGohJ zNp*B=0k>AN#<63R8tUi=0iim2N0Z=))DeF@#QGlli?%DRlK7futxfp0pwJKnh`6iC zTETjPx1F9)S*fv*CshQtYc6yhyAcb?*loDbIoH6%IW6~ADBl=nE%Dxem4#AWRVZCl zS33cr>Iz#Z2SzCTFTC8S%GOh?FKt&^bt%1c5(Z^mI|2)nf#KFym8lE)$#82!Hl5N% zW139$G*8zPOk{hN(3rf&FZAKdZ}f>|@I!a0sGdSs^<-(hkJi+)^rt>I*7iq0&XvFb$$BL-bn(S1ut$Nmk<4BZLskT)2=z4YsBL|o z@2zcJuKcl(x2|Jt#vV|%uqXaYd&0EHX|ZWh)|3+VgmQNwPpxZ>V0S4s?1<1sE_QlL z1t1ya_ zBS))U53l9w968j9@8`qmJNR3BKYtw_uG8MnUjv8H#QXUkjsa$@hV!lBsz{q=)&<6s zgYbRJHr%(lbvyfo3Iv^^J-B>>fI(}RoUbU=slsIbb_?qW_K+YZ7tcM=%lK=Nyw!24 zrF9((T1?CqZ*>GLmbW^}E|#}CYP7bFWA)ss)z+)wt&U$X}UqN2RYF+dP}45r)G+C1Vf0j3uAJ(U)&mp3XJ+|JrpVP?wa_2KCy zJb9DMHzmTMsX-JQUi-+R5WMy=T0n5Y4Akm)VWwlz-$_=Ri7lbk@s7lT#d!IHEubZM zQ4T+Oy=Afdxa~GtjB~0@i^-7QyBOzGUZ5oTx$BXlJ}OANcLsEhwzEZeqBDj0@z{~p zTJUw{J|nI5*eN$!$0)6jB`syZVm^A5HM+bzDW0Bbg?GNsdzbY?P4f}D*z~O#TW4=p>#=@4!Stv+x zb+ol%sJj%XurPkDo3)ISLZ30#21=tPJZFqGip9B6h@li(>l6ydTI+kHfOl35U5_6c zFhKCm%Do=ePmRjNM?~hrm=hPg^A;DS_p&k*%cMM^fsI%q4QvE0K?B3DgwI+cZ(Yx( z#i*`aD$G({82m!GuC5??pFofi7jO(@P#7bmFU+?L5R_x+5{DeZ{c2Aq=Ys8vi^QWB z%NrJ>7R&oGXDO>V=FSL+W6a@quYX)3uMq!4>!MiSQ?c&rV&NU)t4nY#f?cM~Ao_IW z7dCqPD3_K>5 z1?ZH+nz$kY#d|CgSFIMYlHi}e|mj#C{m0=})sr-OSF=#Me420G)UeH=H zUbIm%dqtnZ+v2MMc!<%HG}P=V6eKL5qkv$`Sy`kVQ7gF=qPQ3 zqv34M(4x$@NbysTo zou@ChHuD07%h;nc%_P%624jy0GLG1zuzcQkq_r*!%qJa#wEXjRT1w@7>9z}(V(D2-#%P5hEJ4#$WuasepWKGQqGF@kr%jfW4{$lIf9WK)#GT$!^H| zQRHbla*RBlL;!VZk;g#+BhS=)8F{9=QJ73A%+o1g_0<<#fc`?Q(vo=@jXre4dJ?)gpd48lDd1`WDrI{YbX!aY}71`u@5 zmBlY~&y|-I=bpcsY#r;tJujbPEoAYcy~D}Kl)vM&Ha!Vcqn$suRPK2_OC&gnXO1Oc zjZ{X5Wir_hpAK;)nN*Nox!*GBm3uAYNi(b#HrB01#xnVYbq+0oPS8H00>$`+`Q9~^ z+H8qi9elzX>fjUBK%^koYG*rWHJo#7)rcIXB{~r(Mk4pB1CgVybqaH>olH83q&)*F z@`tmm{n;g26X|@W(YZlObUILsUxfMHtr+EiVuu_!zB1egY|29z5NUeY`WhnvjhGTe-z#po19Ehiyh z%5pi^0UgPB(_GX?{gjbR3pyefHPFFa)Br*M)^&-sg|Q;~x4z3|LfQ+6i5u?Sm%_~c zMamdTv{RF4CoMsVf=`<2d%X=T9xpqx7JHYLqew@nNbeJo;uqGdQz1i_NxKs*C<&Pi zlu#xE1Z7HJZtZTYh%#+=k!k7*>k{^ma)vVfp~>_IEzxBvw?dOCXazAhlqp~Z>82_x z^loyMNy`faB_Wf663S$NpiHY)S$h~OqD;TJ$h3Dg%rCl8&QPXjS4hiymX_!;*&Q;a z(Q=f@N@dFUKV;J8L4uNy$v_EZGC)wKFYrxi}y(b#_K;Y7xx>1J&80HyYl*W6SRM&SEdpb|U8T_r8D~s$&JU!j)|+#foAitg*C) z?K4^tLvZAnp)sbFG9QsuEAoRcT2t92T2;pJl`<*0K}$#+U#Z1$w_+K`p?}XLcNhFz z-zYNgPQ6lDxdPCkBb*`;zXC}loR;WBpm^MVxYii$R*XcT*g*u7g<>>^$-)}oQzi?v zmYnZSUrFY>qM}S01_`QbR`Rfe)`k%U0!&ke94fd-8H(U$sMW-5lvj~6wEmY2#+RQz z3^QFb#ee;IiX zyg>SYPD{X-G~ihu4y>-c3_TZWuf-10Vsw!E3v^$i94X+33#`pd1w1Lv4nbOHTw7!X zGBuN7k=2ztPcMS_O)Am^~^lV3kx}04+gBoLwu>kH7Mc zwXRZo761AjYXcTV>!1c}t|A(2yvm`$hwoZrE9g>%$jl8$@cUmSRAuh8AffW(OO9G= zD9^3p`;J;`v*+Dtb)mHSJ87LfX01y!=%ghhwSg39u%Q8f3LJafI?uooZmiZg0pWWb zWdh8(6W#$fRF-sh5c9J@mCU%!~vQxTkDifbt81CL%(98#Ott^}7ifTcDclx@KNqRp{K zvWLGD;M%DbixzxnO)(j8aC}+l>f(SH=D(VZ0`antu_9W zEDvG)=ku_vZ;%dHsLjJO{o1ld6h|>Eyl@d_FUI!57PjlQpl6WF3;6b}YDe&1aCkCF znO-0h$aG2uU8`L{9Ih1-$XR~Qeyn8po`aAS&fLj1xM>%{8fQmn_9 ztQ$O}Sl@hQeVJXRT95s1eNj53Hc!FfTz%0R%mc2al;_{PXl=qOyS1vY z#@R|w(Bfz{=s0b`Cq}QUCr@2zU1X&58ksyL(-OpTEPHs236O}~X{dYYE2fSLG{)Qs zq`=&%7)4<2bPIGRb0=C$=1!li)^n%IqN2>5Rtc)&&jo8T63X%Wi*MHFxBsz*MEoqO z&^+oh0dOc7mtNp~h=KgU57vQf9pN2a0X`D3jX>qeo5a^E27tWqM#N-88*zlDC*OSC zrzC4O&SV`e>E?ZVAX`f*<1WLApCEaDlYn(Lj}s_4AoS)M{`4js^`VXMNJYdOq5-PL zTRMCLxx*(@bJ$gi6J5(U0)nmu%ogXSkKm3}=D;ZSgw{o0^4A*TOUkU3>;9|25X9W{ z_chX)+@sB;GZ7ngx1pMtuzj;edXulfyx?spaW2@X7W62zQz?JKqjXpc5cDXC;um_9 z#I?nFl$^WPnI50bT3R|EAs*3egYmCsg6D{$}mW zMiCOkDS4orF>-N|OrcET6HV}!@6+9G(`ri8}Il(l3I$Z1uli-FkSS|5%V zT&iPb2WfqDGyB#`H}eiHK}>l++ha^?bw2%?#5`G@~ln?#HhVCo|KQ>~zj#AjYc zQBL(|UdB-{$S3n>WmKVj=7qKbXVsg{^;q8v>d8adw1IR~{ahIwPEnv=j8trc*+v3J zzj#owS=kN()!g?N5dolJbc?i&D>X0a77f%e8^iCaP%VK1(I>*F!6y_?37Y70PK#gY zb50kc&k3Uk1RU-9fj<(*&qnyz@;u}-jmp^Ovnx~%-EDkLz#6*z{8IUd)W4u3UbUL06+xI7#kPr>|$4eYKwE|g~nib0D8 zeit~A22N{91OL2`7`Uh?4LnW|yj#c@1=tcIZV50o@Gq%oxRz3u*^Zc4bIK;}zkJ*$ zwS=)8wHVG12HMK71d8`~pzXDCT?j-wH2Ff1Z8+;m;PTMqy<=WJg|#dCRO$^ylQL?< zE0Gy#b>JU7W736l@kQi_&Y~TPs2wvfki-?3krXw?@?ipkb_*Sd>$*RL*k-X@S`lZQ z)3{tem_|!*{h&knG(R2`YKu||fD^F-vzpd{G+>yClPq8}hZ#kBQ!nTrF8364&b7}- z12J5JaVK`6f~~3YI+v@)MJ{xPDz8#P$NwinI9oLk!UY%u6Lloh^Crc7}_N~BDF>txF0 zLz{ue?aJ@j2b3|blMLP08N&7auCz8X)I~rX3}L@tt!7)Sq^^@am`)oYS2oI3<~r;` z1-KFi$%yHdlQyZ+_SlsM2-=N380_Y&3bp_qS;JOcnG3vEORLZ3)22vzHYL5{|B3XL zNLx2%AdMZDEcImS!nY5xbrk)E(^SKN!K9LU38FA`@b3vm(ZQb)ztF*-Syxi*j<91_;wFOGw!UDzCC;6@G87| zJ=-MavmO|7SS>np(|YO5|6V7Zc`Tz0(jj?7FFM8RY z6oR9zn}FbG167WTwcTffX&rR1_Vv=i+Gz<6ls^CM<;MdX+Zrj8*Yoy`;bD)dv<{Au ziR+2en6qAbSWuegVV@NZP)lXy00nAzn#-M9obxo-hV}9^*Csb=>nOF|>!piovR2x#CU>k8{1dULNN<=0@giO6IIi29I-jB7?r%Kn8ue0fMW31x;;9%m7BeU|BEy zXE#uwaOlsimk#}J${P0QBLQ*rC_41Y8>B<8x`EiA=o?-s)z$=FgYxpn2Y!`08=U$= zmtKB@bm@V#A-Z%tt{SjG^7KgO34MBBS{-@nB_Ix-X1BK8X2WS6+@2jwA*c%6o;85c z=)OG)2g>8x+G3RH8>G?Y7@CSb+Nm3e(Jj~@V*;1~#ss~8w4iRFfyQTm=($As_K-_# z*}z-1w?(sUZd5l>s(W>14(ecwiTJ;%ZtDQyz(5tdJylb2FAzcNc8mvxp^fo?Iv1jB zj0e{Rrx*{u6TdJXe7B*vcrdji$kd{E_7&ew{F@%O`QE=h_J&KcvHhzD&}Jf>K*pUu-ByinnrQP^;Kg|yU3b=u z_2Z3t+3G7VZ{+U|fJYJ!(RLU}_HQI(`p8DGwwo@!<6X{G0y8)ZDeNkHCqOIDSq_(1H9n@CMO+;IbHx;KXUm0|P7UseM z6pzF2X)1eelT_LBv<}khLTUBaX}PFOr-jkbKnpiU4T#^cRpOZ`wgJpg4;ARU$*91k zDy-bhqpgJk{qg_;Pw4znjvrea+nlX(tx&~T;hATm<;yxx%fQ_AnRC4H!45UpHrED9 zp4KIzp>yPcnj(4Hdu9BU%N_V(i>)PljTVbVC-!v*Xn=F#!>FtH!j3@!JkM&2E&m@; z`SO)#o>`Q!UOa{b7QOw%pejg9Y*!j+VbWlLph9w86!NDH6mpYtffn@xbj|(b>g)$v zf(Wj=AXt)Wo6E{=CQ>2-KX}(!9O(C>B?kH5O0&&jwP>-6{53WUyA<*>4ra-)o%(>KbbX$a*HU0Ird5Lec$@JiF^ zUNbjqXA$#g12p*@6hnR(L0PgHhnE+)a*@?0C{s7f#AzaJrzcM1He=#sO5=wMZSnlr zbu~l*-Y~Ko94|(88UhHH5ZP<{WPAW!$DEtT26X#3lxaQ2Um{?Qjr`JG`$^=-GHoN-uLLof?s=e>@e3Hl-vg@g4@TQYG1C@c z!x8>4zW)t2AeQYOZk9Jm{}^NI%&NFmtGETLnH~!Dx8d7js#FRqh8hO-+rXd<>a>;& z>YqZ_JA=BYD1-X5g6Qqdd`Y&gal|hIOoRI8RAQV6`i!%UG_f9(Rh$Tx{60`3Pn-Zp zg`TG<tSOuKm z(yC{uTZ3%Su=rNWq2Z1FO?DW>ws`S1&%)Dz{_d46TlnFr_M}RbRbT)|BVgu-dbJAY z<)^?R#cEf|5jtfpxKJb<^Oild5f1j90)ptlp7gxMKF#(LJ3(us&wF=^^m*^n5)6%p zjtunU>VJC$@OL4hQNGy1x6Xno@FiLioyBKcNG$$ti;Tt3ZsAAsY>kLMv=u5rPKMl+bTti zrWH}NsI5e_gssJirk#lr1chh@f+(5+a{mom6+UUUtzS6`)=u|)@!7a%SzpSCINf7J ziMn}xj?D#(x?x)}P?+9unkA1MTFzg2eT#I;I}t9O^7btI^j`mHiltfkHLP_b&OoMX@4Dnl4>gmdgmv^sM1Ipqk~O-C<= zyz(}!h!gFfDMX)W8^CA;xC{#R&GssQf$+9*(nz?TZI^18b(O!PieP^4ff80Tb%oL5x+1j zcG*_k+;{p4+e{C0-wrEn-!MCs8{=Yj&lzoc5~xPIG#ledCv9DL;#NyJ-e46B?J)#9 ziH&9gb_hIrn~aSOR@+XqxugPKyfV$=>931iL!67Au}#LuSJv24*hbf?3g0I8hF_v3 zV3OK_94Lm%QLR{!TQP2OLoseZJBU=^wt?&dt&6exLygE4TA~wyVjxn9Pg!TH#csLP zK}t}^Kxx8yn}zvo2ZcDioLv9iF2xC@C4y4n$H6gRS+JR2k$=6x){)h8t-+BF)N#;( zE%iyPHLZpunrkGw(h^-5D2CniFg|3ntsYBuud~tCiO{%s8rEO3Xf33XsnN)#B}gN3 zv&|{T`K`7{w$!Z($^jT0a^ONnF;;{*PZp?L<~+2P%y|aF2zTT>l|@CF^Smjjia+H- zc;CXCRe8hg-XRgAMHQO=3=#lGAK{_~KA?Y;vW@9a*13r#SqIk#QJI~#K=wAp3nz!V z^2md%3HywK(S=?V5OnG=nDoS8#4hNNyRkO2ZYXQr_Z$`Z4~XlV71*w(Rm zlqHlUPm?8&mY^*73d*`2@)eW~v>0V6q_XVPWx-ca^pT^bPJ)b(#XtsSF+i|$y1fI2 zW&oo=xw=65I>~ns8N_jcix6X)4eAKN$a$R6;5;$gqTZYMOWbL=D+I)B>z??9+19-s z#bsMtj@fcN9%o!q^1TD_{e$??QxYzTr-}gi&uN$2{OUw;G+GWI=K>HjtL+xds$tLW7CG5Vty*2tXZ7 z1b~Q01S)#ulV?A%E%Xit3^EU(m1G|9%uYQI2oV)!9#9~Dh418FePD}^s4V`VvENGo z9I-$BJ6j`;UxVQk4AS(BP+VKCF;o%D3wY9vA_UYJzCp=ojxUQQXpRTPFEq!4JJB3H zo^(^7Oq_I^^`R}_qhYQpm0@<_E6&@h3hQjdZ+v9i!#Y$xM z9kf#*0=}vWADDC_l4sk3YgY8gv9#E)fmdm+-P~p*H<;QtkcLTTkJdn)5VocO%ue(-R8ywIH zYM{vi1)O6Q!zj+N)&l}*skD}~)S0_<-&$Ezl$IK_8-9sD(6( z0lTHSwYmvYk4)MQ-QS4aGLR41E!SECch)Pzm;Ve&=3KYBv-G-XG{ulZqZtIPrP0t@ z(rDW4){Q1aRFp<@NcpufS`eaesNv(#%{T;dXv`0-1&#y`aHn&8}D1e-b^{PTb@R}wp%W% zenVS<(Q7a5eFfD-!u$SixvY8`dH~EFFYp-H#Eh4!h_WZv7aQ&Y2-<&)_=WZ#v!}R> zx99J+$sVlU{|~VGE~34oBhc!%W%g~;lR!1v`3p;)g@}7x;!9e?*#Lr=n0gWcYxFYu z?~$gy`+;o=%ODlxn@+>`NK+rYN1A%}bB(+4k0b4Pyh98I9$VAiQ*jgrKeB}uKC&h9 z%QZ=r*0p36yhRxO7>?uM!5sLNz+Q1B$&+f!+BjT_VHt-@GBlOLh1Qb8rR^RvTtr1V zT&{{=$$R*Lzio{o`inp4aA_|9j$Xpyg5L)Fk%D2kl<*-~?3+sb<)^kXylOqE9vmr; zD1I?g_+wGrf6wdN?Kc#DCEDH?57TrUn84G1^Nr)<8`#_8sXl(RfqjGXpiN%GkT|}- zp*_}EyM2tK_R<(TH`bmK3tyVae&1f6Z;F*1fpKb70vb8mr8Kg4;TK};N&LcMR)(*P zvsWtox_=X1zcI89?rg8Xdo*@!{dQwVYri;q5dXM=y?vp-J&He$u`}MTp*?{2=~kr- z|EUpRy&MO4@g-c<-OzV`FwX1sDCeWU>N_fiKL5F+a@@w zE>3`|H5NiD4&=ggu6f{rNr`-BQ)r%gU{XbP*Nt4IW)2)fn*omV3HF0tAusvxaph~) zWuY$-?k=`W8wQC79C*-93Pivk@%GOA&f?g%Qq1>%&MMD)H`G+qa%fGVHB+;~&h|R2 z1;yo5x{{z{EYGiZwm0R+V(h`Z(M^Bf;?$?8FUjNc7K#$R=pY?ih%!v$PpDAIeMx%W zS#E7+&^C*)&5vH&K?QveOsdUxxYgfE>mSf)px#b9^mfLr(Mj6qqSnZvxN`iPrfI=W z#ib7))Sm^=o^twn{#JAQr^2GqmDAx19fgqw+#9AcfqMaht~^NmLRTKNw>Vdx7-1jn z!Il3v!aj%97wsKRLQi1o5U@r(e@-cVIegHrEcdGiV+FIA!W!_oloo^zaqS++XEfg{ zUHhm=`!Lp%w!F zPw)cadCi;tt(C9$@{8VZ+yBtrfU@js0|xLeTm%5cdmm4K-(HiI*++Du6HxXM0>S%q z0wI^PS_%SqXxc&&##Hfy5ZvZlkAV=Jg{f8nuC6Qr= zUtb*iJYs8_7H;fobckQj-gi1g<V}^_Nj?t-m%t{2T5zn7rdXHI-znf(D<;SY0R^WZw z*jum$gbwkT9>`}z@0T7k@20&BZ`9VF$r5Q}Tx)2{uaAPGR(Juu<$mcp(I=+3RUKfg zihi*evgj9M0E6_4w3hUX<@Xc6C@M<7IA8pV+0XBHu*XD1i$ADetRMgm&7)t$uahpN zVDyVu-kx3>zlb^yWQ!0YSeA%0|CH7rx~k+QR9!;E`a| z`pTTJ>X`YO&hT-g>`lEue&HIWe|ddBagVPX5DE9FyPK=~rMtOK>j)oV`qqVx@+;`Q zuzyo!K6JJ4IY0wFq&xaUllwF?9gxn)=KxVWIv*&}Q^lYIPNe931mnW_!2jSF2YS^z zpgEstH#|`kPXfUsoDZ}Q`6Hz&Gcbql;xLsI-9`4ss4^(*>XmBNZVnKweNt;vGyDwj^d14 zwUc@^bP~l-LMO2iT1zKEYe^?D8|=YxdLu+sluqJz@oVD&zH@-RLBu-o2Xzv21;F4W z@N>M6C>WhY37-UZ*RZele&z#80{unM%Y+xQ16*#JpMq$H5gI|*HSKokOjgkJBSyCal{bVQL7#0EqGfh-6J*icbO zq=eq3OOp=L1*8T9r1Q?sK6lSNSNwfH2`_(K9%gsS&d$v4vpc)bB-(1?UIeVQAvX)L zI@4ZOOAj`iP^X?nz%Iot5uO#rd#RSbY$>TAbKVwiS~4>Z)&Zgh!>Yoh@r{DT zQ)#xtqxx27b?Jwb?G`IL>rv~JtCn;_Qh|si-4Mz&Hzc*B8>TLyZYYXlgW&WBTMAEe zmhcA2me|Ny0&H+YN(RPixDo$Uk6kQ8AUVAgj58tf19!}VvMqoTPn%|_Sik~f4C^&2OTb3y%_95XQ?@_^2c3ltJozSTu zUbLfV1kZ>o9m2Q1ZE4145>&jHCC@lDk0 zL?H=5&~DsbzLYN=Y&pobd(@Ab=?Dl~F2Gu6fJRTgUX2$XYRO{9+^Q!8>Z0W5wy!Ns zFza3c@(Z_gjVnw_wF5|?frZl>7Uma+S@yE~Zsg<<03xlXw>v0p7>^lYDaXtiARDo_ z<{U-7V-Oh+4E#O9a)}jotDfLVJ~#tkL8R!wONj1SD|0E|JhN+@`3qrVB{$X)X9^@r zszeFVTdT=EMp{>)!EXgKYD-zq-?fxBu{R8&{o^RZLt5vFWo->$aWG=)=OY7^3_m`< zHQX&}z`_r@zG$7NDpS2;nKJnH_bqQ2kkHIx9!&PDip%3FZ+ zW@=emv}s)2Ig~YKj3pm@5X_A-jSSiVYe3a65SlWCR)ny10PuWv)zO` z8EU*RP1%(phMMAh-vqxPUahsYH9Jd@aVB>PtQgK8nU3?+A1&>}eUQPSVJ{%dp@G(t zL&L8b`p{5BRMdusOn4Iim3zNae!5zk|NOBfIC7V$LWhav0^syd@k*DK{}am$6AKX( zoN%13MGftp<99kxVzY+7=QQE=>%!ro zmvX-n`;}7`0dWZj-=gBrxn*uB9sJ5^a!g@T*)2Xh3P9MbDcHyVc3R^22kX=ljxPWaV&YHAH9iXr7_>byiKj zvW#a2R(Rv^&95wV*e8^Qxb9a0*~ZSdG&CZJ&zVN*9;4B&OOaz1SSBh9f8}czz=c}h z&=S0MFKD3!KHW>f(6KOpe$pq<^edmU&|)_t363E;M=hlqPDSmu)Z+_&E)_t;(FzUX zzzt*Y@m9E%6K0Zt(@ZJ-tIMSEM6Dr2;X4?OkHmg(Z2MbCj$_+3@q}aBwO@U`gEjij z;_V#m)9);!n0XoCJEN^WqP-xh(U|Av94)>)efAyfR_^-1QjE`AWNFMoJUBOf*S~(a z7tSfc%iM>x@)Q|YGfVUH2P|z&QR0twT-FCE9NG#40XekMT5@Q63|8z~d=M4o(AE)o zF5_huTdGF}i~rE!>?zS0hg7B#e9GxoU{T^@U@BsYYv*8x4?{vP0l|;}ZNt%K{?C?? z=J%Ir7mtsj80c&7iH6aYfKQf5x9+%%!|mfWO(R4FZ6RO?MR$cP(?CfB-(q?#9hoq|gkn0|9At!fA_$xM+Y}pr8TH5>IG=vzGfZz^?1PZiWYL zu#9Axl(}wzzYws-JU5%+m}ZtZ`bHpMvK=;Nrf#&fV4DaFVt`&ar)*p<*J$6_Wa-Y1 zQaqg59|C2Hn+5hQ7i&Y|eCcLO0RL(;4BfXp>Ryv|P5VS=Xol*8B^v4$pdbyE){=($ z1K5GfP(?*)sKr;n)0XAD4MDsX)vM-4_hf!gQc*7*Q7y61^Z@&_^%e;t9QgukhssAMLe#=p_s%{%)DY zGN`1w7yL}X8uPTza~Fow@82xKpYF3b*hWH}*uNK^DH~Rx{ih#*8RQX)hUR||^e4>! z_Z4z!wC_PnC_nRdfkGUfV%SX&guiu!;H+-pyvHF}0r6W2Ep*x+(lxDg(Z$77ACjS) zYz8LMO=vB2lki1QW=km!(|}$xD(GL6h#lOkWrVr_h9uI;;dO0R3wR z`&pK}SiXu!@q*Oa%}rVIWJA6z83XWw{1&t-vWSx`I?w{0MV!XM=246XexMjnPXG_R zyxx*J!k_oJ3Y$WsC;~EiM>6`97U+!L(HNzB6eA-jb~3`xx3+rQLB$|21{JC|A}9ux;er7Ml@a0zgUX0izJkgx|607AZyEg1GM#-+Mb(4K zBm&l$=XzW9#UslgHjfY{QN#`9MKB4y`2}=OZu{*W6iD zl#Ua&8lL8_n%UAC8#z}%so#7;B?7;xwql$08-*1YIL=6lGv^#0hQZYu=#yg7V~S9^ z=rJ)Af*w;5f<8LTH1UKEGi|jmhba^QpY-uu!}ue>I-UJQ zCDk3~dji&&=h|V^F*geHFYop&%BL`EGq#$rAg<$ubIPjK#C7&lJanBsphw|4J603d zx#Cgn;%ezS_i2glI#7(RV_pLdc3LDBi$TY9QS_NSjnl=4D=rC4X<*i{N$+k5+LZ}lr^1?Lb z@EYkxaEh!DUsuxFon5EM=u1~XkHVKOu8~*z`=Ep7eGIUrdDB|byw^i-y3AWtl;&Mz zEj%4t!~2%9R*5_;z|_1qQgMWNXPqf!{nErr2rSJdaf5%s)x^fE9D$NNk`ilqRja@6>3qj5D$ijfNBqw)(fr7}%#gzT@wK8jV z7A;2qoIz=Sy;k~Xk+t$1D3HeeS5K;t>03!zvzFVAtEJdFO4W24z6(Q%ZYMS%)ey3w7shn-mk8C^(=+ zYa8OB>-hFs*7_`z5JC%1e9u%lkN|Z94ia_Ya^(WB=91Qn7m816o?gdV!9W6YRXn*B zTqlBHoWj=egH5}I@iB=>3(ei3dC^HpubXY~&@U;e40BMv*eWY+)!VXF3UqXKJ!^%+ zdZV=ONc03k>)R(;7(BTAlH(R->kdgZ*#ruPZjxUHGYhnn9g-Rv(ZnVtX^F<7tKJfr zu|f`8U30NWT@X#X`3#Ii_|H%wliF{cG>CiBAe1C9vSFR#jE;!o0u4AW+knU=QgL<) z;y5ns5>GfT>{{n*TnK4w{n+aT5mR!vKLgii>>XHV!T1T^$qquVSy%)-l;=_FamTof7E(0zo3a+ zQ%NnEIGjdIVInaFFYQPHdT0t`fQmE)T1%ROV?8kiQBj)0dhs-7J>Q*RtrWJbo{hHJ(lyASH-9s;^ zjIi@YG4PRbN|BFGwB~qK2>YaGk~N5JqWmFaBrI!ElGS7ix=!HQr{z|)x1MDG5V#m+ z8j8ex`DwZPLQ?ln%Uxg3pLDQBGD;7}n~=+b66#U=LgE$dK+F}zbP|sW23awOt;hzV zdVFgL6A*MC=x^N5{kM~~7pqDuVh&ry4KjzVA}x`(+O<^R)cpo|D`YcTjH6rQ4P?x2 zvq6s8U?F_`TYW2sxEiGmJ-`M(*x<|&9K8IXIh2FkF&LM?@@KoyZ4e~`SgCgVX3%^zLize4xT`ou|>lsLEqgdHgEbQo! zs`WO@w~<%`UZb3cLh!~t{9cg(toM7wM%nKr3|QhcSus8>9flqK97=_a#=ehm^}Y7F zA_EJw0s{n@>Q>NnqqKr%9-JGyb8aI!J1rqnw*+sTXCzxkGRhgJjP?3h8!|iPg>$Py z?h^kb1lg_&jtMS{-JWnJL+2eGG*=@epXI0bi%FNi%6++X=ftn%W5@j|gwh09*+ z#alhD5S$QmCY;VWgy-RCehQxW!qq{Q_@#l?m28XXYv<66K_+J8K!0Ji;d!uXT*J^3 z%8~WF+F)yy#=?!X0qpm2kg0~>fuV*B#4r%*{-(fCenfEJvz`YR>Dq~p%M9}8<4mdb zc+6{!+OWSp1i%c)%hIDa)^8IPBvLBV@(k!dFnLDnKptB!UvyUDP-`tyeoPRZ4_f2X z5=~XO^{=YYmGHB_D1)AfNpe3y8mBk#5;gL@CWR=t$z2O51Z*-chJYr7cwMx}DTFx( zI@k#9rPl$D$K`ReeV-rxi4$QU6ijj z@yza>s`0@eT8FSdDH<&LwP1fy2o9JT{;)>yCkVU=7Uw7ejI!<6zdq}WGva2b&ogJf zS(wKxm|TbD-|X~L%~`mUc+@A*2uhseV&aSMisU5C#HAn8NmrxcKvA4B2Mo3#Y{;q? zN(S%-6Rr1@`kQ&|Bx_yPkcuWcP^q^Wr@@|`_r_+?c{R*Cplz{F#=OdlO|ZgsCKIiU ze>K@!JXif$YcubcW-ZNXQE_n1r>lU_{*2wsGhc@fa8`rAqC@+AX8oQGAb8k6!wEoN zG*bp_=C_YpJMtn^td$H%FGuf6e_c3(;;Wlt19_Ec))UHin|aTfi1HScBep%t&YWZYh{e#RU=*rHA+9K7 zhKhX1sVb2k7-jg>jE&JO-Zxt8qI^Y-XfGweC{?#eFN6kZeU%kA-&)wDyuXEaSpZ5I zLuJB#dT)!5!19Ugr#ui?Ug6QF!ovBP3f=Sbs0G$yJY!)lBg=>_eAL(02sVPsgPk;6 zKxiio-2ww%=VqoY+;*x*bw2zX>n`>SMSD4B{*#N1!OCOK^a$YPzPDb>a~OE?7p2tN z>?q}qN<8FCiRYve_2?Y`y|pSI_d_n#w@*{wJ}L>S@2-GQ_3hD2Vki6+HXc-7-NyX4 z5_c7otkBV7#P@HK^Dlpa8BvDRqnsqGOd|x7{wE-w=?)v+i_^#SY;M{r6NP{UW(%Hc z-qy;F)0((hd{|>~nU?4*pcp>R(}>;kD8@8CD8_6gXFGmeWgWwUwh^;JCi%C?b`+;2 zIuj_4J?dz{DtZ)S+D3kU=WlK6L2)uVv&x#6zqZzz%$iXo|`LKhyvT9mEE9fQ7A7{~y8SwstM8;@AaVY0otp(T=$`x}|{-h9GgghxA7)-z$aS?LxqT<8M z4?+Ck@&%&#joYpmVpkq)^D(gH`Hdgk*`Y@V>9I#SdlaD%OEqZy3zh4vTknFBQfkZ0N|oqWATKGZjFDFi*6M~^u_g$Di9@Y z$$fdZUDk9jp|Z|y>lW5U;N!xBAzpSMV5lJUlr}GS@iKj{^+VQ&&?Q0A3%iu$-(-+1 z`@3}#8%^=hKi~aL2EXCI$y_fC8Z$hqO@$5;pYr&cmgqqPiZN(pcod@}!`N}(+D38m z(Bs7}S|8>4O=EP7mgtP27(?J+9>vHA+6s(J!^I!%Jd+QdV8G}HR6GI(MGyfaip?~? zVtPgVOKJNXzjM*rEm$DR*b%xNp8Ea93m&o7i%b?^8aooHm>4_YB~0c29D!}Xq5@Mh z84L)~1VG-zif$KgVq*>UrI)83shv|V2P=x!Zq*2)Rz#8+k*|~FevDB28Tc%qJ z@^8;s?Q9oeLHyne=aik>-8YZVP-Jwrlb}qIoOW!xOiuGb2YqD^V0-uqMUeZ)ncJm@ zi0aZq0(ZdEp6$HHC2Ot7odQffWEm9-J*4_fYkL+fkeu-p-zMgr_sglV>sl;o;9Y<+ zLCY^kA;R(lOA82E{!YHRfLe#+@D{g2GyLWh0S&*&4j+b}utOSt;0|f{4R%PwuS-ej zhF@!kH2l&#q~S-w6_L(C&LB7%K2@Vj;O#Pd;$y)84gVAIgoghKq}+-F+Mc7_h3j4o zKkJ6|Teg6TsvG`X0@j$n9K#>*=w=~4>Xy~UmJ$}k@V#(OS+YY8c%yGy2eaQO9@_k7 z(4(;V^*i{qG4Q3!jBJR-e|l6q0lg&#yz8_?ABUhAXZw#lip4mjKrv3mfe9YkQU0-Z zW+6L4IZm5KSqkiwOrmHBGTC$oCdWG^k7^#JQOEN&hf*gCoEZC11^R9#Na^9b6hZnf zhenCfO;ne@+f%U4+`*qe0N-6Az|?nV)5c@k$Jl?Zjp1Y6RA8JMr%(tqP|IM0igLNe z9Yb5L8SNDkT3Z;9M7nGXw#_HP-e=avUJ#D@L@-Ts6gMK^VpXnVq;NRH(Mu~8 z0Yl_{3c<<2T>-%m39hG44hrqkVr0lJD0kXD#>fJ@e8k9zT{1@Y+$m#Zz%Cgh{V54O zMw)lY7@1!zKz82cD?onir+(mN zX3)-G{fG^sa_Rx{EdthG0~qXzAvQU6;2R_U^7 zMa-hQ0m>EM*1bVXFtG)$=>Zck?d_sa2WZZlLFM0?eW^?e^gW1$WED@J+k;@?bS4 z^su0en(~t`q`(rF6g*i%E=@J1{BAxdM6Jjwdax|(i)Brn1(Kez#1ipFr!P7RUK& z(r0>;@KWmccgs*Rl9JFv$?)AWlsI;~q{EB6*3jxGT^5xNE#s?V>SVT`R>ZWcJrts+ zT^Yc7+SNr6AVRIc{xV=e+LdzNR}*i`CYr&o@Po{ex}|8}FE;RcCsM7)3=r&>om$JY z^p<1(lEF(bhEfluJtVTb%k2RO#?bQO31evaJ-%XS!zk6;QcBTibqZ@L@SUEb$IylZ ztTE5!Qc5QtlX@eV?34@O=-KwJ(~8W$QVu4Ju;g1+9RW>4>}l4lK`7W zQ(U#A2y${(caIFGqPh&H)5KHK9zL<0S}(G#_zw-IuL*!tjrd}P+YFq7F`VXn6+u(r z?g}bnGbmk*sXtQ)dd`mmf_@D;lrgm;jHR1tMU1KILB%4buBRp7DwTNI%4!Ma@E#uQ z=u(OurNu)U*pf|qe1z0#rGl$e zxBHW;N9wkz1#tt%y!BzX(*Qx^+pOsz!=(d^;Rdh77*4|i(FV?gOa2ZJjNwt@31fKF z?_Od!u#5_-kP;6|~Lo3xD7Mvxf; z8L3yQRTPZM!Ot))3pGVRCJu9@pNg^++@Az)GW}FMVEXCJCTb2Rg7IB_=Z#_VUJJ45 zgIh;!#S$*A31^C>DqQj6;>8!=pZkcp8P1jKijdL}VnC6usby{vwSzlSG@rVzYz;QiE0P&F@aO@hN*S=^!Me8u1`W3Z zKn1XvRlaw;Nh`=Br?y`7k@D8>GNZ7}8|pi3ksI@bNS(NL2!PVyw(iMcT)p*9o~(** zsxuU}!X3Yaj<2PWQhYyd`b`Pt87to_%GG$aYYvi#{*G7Q3^LNp41YU`tA1tjbKY7l zX5I;!vt?H;;#O;N%J89ZD^r^`YBj&VL2Mge7?JX3s4lOzfPeaTF+4=TE%d`HmozZa zqMeQr%59M;p}c*9+BCci(S&AtplbBfw|>|B6fn_GYdjQ{@57JFPX&bdsVGZ9=Fpl~ zQnvms9HAfovtf<8{Cc7quSD+S=R>-{ZT55Wl!cQ7!C$I1cy>ailIDHDBWmX8SThL3 zH?|IG!xP%WJh;I=AcOu=d!Ozv^#~NoUzWf4r$4)ypVvNF*~X_fY#hSpOi_dQmJVv2 zAOk}lyF8&}R+*0K28DGcl5jb?uB+|G2TiqgHrx04@$4pLDzVFL_LMK`fy0mQ?55gGpYky?)EG9& zL%NTBNH+tetEG(F$J_N#+lG!8m~^%YTr+y8%?(^}K`yE%ymb6T8M&7Kgs97Us^twx zQkAJ!-u2_Gm-?2nVIP05ms*Q$q9jn0a46NQCU@(yViI6vaI+xZw3iyeYtL7M3#WLK zJ)hN0V<@|7RXekDl(9kfU{(Drh^kpTCALRZd$7B1XmIgw=Hz^Q++14|(e6!iZO!;2 zo7%yw?Dykwe-b%+e2NDqS0oe~GVSqXcT=8}tTyEfQq%(88gnW|eV@JK zMg|(QbwgqP>szW_Z%pL@>H_n}&R!91#MD6A8XVQi=)Iy198|YBi%5>oN_|_6$iu#N zW1K)dsGuDAzS=Lph7dVa-DYAL?g)i-Zd%y?3M5O~8(f%Q=`=2g4;rq%p={VMV{Ftr z(<}0)!_`Q_Cd|ktZiG6(#C~^YLlBC(5FojX4%LNZfw8r6UOj%F9IDesLIgkWPP~NP zhT>jm@YpFzHQw!An6=#7&u_k~_6~YLNcg4CUsH;wz6U<}jDV$4HvQwLc4nw8?J*{G zTsYrw=%*0=^C-2GIp~1qVxj_eCZ#K z*I2bG>5~#tw(1A?ys?nWMp>eV;rC#=Q%-us0;Hwm)W!xR_qJ>FDHzOP z9)kC1!VP6eJq6zhnLwaqVmbN%ul)figCcRfnKE?(ERxRjiS_CP^)+8ui+p0``w;rY zzzY*H^}a4C_4)4q+1}#3*hlIXWyb-2<|CNS?IJ9-XxaW_bvZjg;3Qgh{zRQ=1{`Uf z%BSiH^Eu5Xm0iHQP_H=B$x%|M-~I=oHcnK(RGuE-JtnE8gPs%Snox@;spFa7L1LJC z2p>IJ9cTs|Db%yih6i$%rp_^k9hBapJU_sHOH&&%O4r?BqNS{l|6A7BCS4k)f3Aj+ zflTu<8boC1I5(qMIdcP$A+}nHvaAu69S;t@#xr-Qu{@()Y;gS%Ie$}fO_-QL1UxfD zA)3qQCd(CA^_Itlu1!@hm=ya#d0Yto;&GuDtttla@-tupcV;@olTQ!wu`|@_e9BHW zK!Lfh*fBGGEL!bl+BoB&%-n}i@zqQ85Ai8qtFZW0KTOh{u>`<#8v} z(&;nIA+8R8J+!-f*8q3yMJlokNgh>e9pd9hbZce;2N4ImpaU^i9-L0kmA49&Xu0w| zq3&e&DKcV_I>Hz;re$<%z+-<j_Axu>y~|8dJq| zh$nUJ+PZBfDRoAgPjVI1+VZtOsmbgRAuRVZME-ub7k()R55X6vY!SRh1zRXTycmYz za~{a}Q4Sx-cnRm%KdVRB1B!?HAa@VReUMv+WFAcYB_LaYKZwU*wSYg2)t-H9>&$O{ zY}?MtdDJbX*R_3W8^{`a)Tpo5z|0sQa%VobeOM^v0?4fIzTA{K;}k>gzWjVhUW>A+ zk-aECuuRRDAQ0s~%v(YN@n7w-ZhY2G5O-xTmBc0IgQ7n5$0Y*bT;RYB8f*6sP1s=C z9*m;d)rwXzkNU%pFIZ8mG#gFJ(Wl=1!$-XN_z&D3U?||6d?3k%Lp*q;S}A8iv@Kt= z5*8Q+gL+}Y5;;oVO;3KXJo1O*nC>%Ha7eSO~bKaF|CA6TjZ;0EB?U2 z!PvAr(`-%o=ruW76ozQ3wQv3(GR7E079llq$A7jMU#5RstA1x}$xN-u`cdK>TLU+s(x;)wqDHKz# zBxH5l1M^e1)D5>Gj~W>i%+)XI1`rp}zFJACh`0dexvjXr&{izoW0d&Kr9jhR9=A_@ z!46Qu*eQFpPT5OKpi^2Zmk!J84lmOZ?1~FMx*}V4g_~_=hLw#hOe``~zOVpekwOzh z8AB4q#pEcyV1|D+=6{5^#QB42f&v&Zhtvp0G0?Z)JEWFlMQDBfog0vBt9up?q>aE` zWlDwP=3=|kY7+x-`CfeL4;YYZc%^QvjYK9KR?CM8+A}*kk1S{-j4KTBjea(KuW(7} zh0cQWrb0%r*kv?9CX`#h#!l#1E$g#iY}HMyKNS*tH~ENkxnx>`y*uWJ?A>v+1S9_Y zM|=!s6OW*${U6;MF1r^vWA{?dw0q}MzSzBhf!#|nP-pv2!h3xtt?yEtA{r=Mnj&%R zUjsz%UkXO*Yfr8N}Khrjp= z-eh5s0G?_Y5yl7qrLHt59`)k|FPqD=_EZD-a@Y2#5BuzS6kqO)Gm>dHVW|QoSgei+ zNzdOtCkit(ql7sggd1oZ5yjwvOd!Rzp92MiPRZUpDo+f*4u8c-ShbchS zzpI~n!IW`2GkoQW167H;GzRS)6Ts(RSASQ2Jjw^&fR*9JR034%B427<;X|!Cx%khh zNadTOeA+FwH2a21BPJ!GJKXiSKx^7OO^@^L*;3dkiuV%rcwA>@(Bru^`2ygKx0<0S z$N03nYBbApj938b@s(pf%(K8TFXs8nKWe)iybHML@##^1dXFudpNy6R3#u?mh(=BE zk=CjQnhJMSu(f2hXaioN3S*B+y9Z_l6>b;~OKk`KRj-+Q9D_ageDRQ%K}A3vcJrmf zzEX#whS@J9g20;RxwfmmCcH3(WZU=vb zqj&kk_AC30;=M%ePSTkfw2M*n@pH94-|}3YtSmpq+r3cBvXxW})bOvqG`z`+mChVw z>yUdRU2=>MFv0rY5-JSp@{qeO7i-P?;TVroK#i9v%1cz^MV*g9jf4GT19gA(DMo9~3!aIV>zxR!>7p6axL%M2Cya+SG@RylyVQr z4UM=?4dNmn4D0ZJc_D^U9*33)yb(hw4bkV*4z0uK)B}XV*T_;wE%+C(NP@IDuJ| z;k8BH25v8-eWBT<9+zgfF3i@1-wFh0-|zQ0kiQmgd-Y{o;rVxLiTr?|{wUn`9V;W` zbFM(@wiiXfP(cWp8{5;FRvYxLKhK`zAIkR^vGrvQ2p_pLp7=+vDy9=W?vAYqYeh?O zmALK+dE&9=37J&yMb4BOCtN00!KAI`(t6UQikE*|bXYQgAd0@mb9o1Dv7*df~X3EM#k z%Q&?4gxm?(2v)GDV;G-T$`;4YdQ>}gLWZlGv;@Od;zhrAQptzRkN2;HlF0? zs@co2%^ni0_a(s|ZxWm@XfN$cf^hyK@l}7*hdidMt%Y*&BtLl5UWxtX!STE=j<+Sp zAlha)4|2R%Ij<~n#mdlVT(L4haJA{&nL;7V0LEj?L8m~G#9L$npRpq1Hx0DEX9VMF z)p)pa6B4VGu^{$@j#aZht7YqFVl^mLG>~eiq=8hUCHjIr_D_pbvVY#Bb#RrqInNvl zQ%k&E)nl_c>68~MaqA;(l^mo%EAfUA|0VchZ<^~- z*d9$xO_v)@%^(DtngODlngNWawu=e}fmt&(Lq)_t8)om#8_)hJzp=^DtsK#O-)3_V zPc)AVW2Y#&%(!j|#@a}!WD{7HFfc$#Zc^0$lB8x+SQ#?lyj9IVsPb_C@cg%bRwO2n?h#08j7Gs852eK2xZ28o)SHs4AXtrcm{? zJiAyvzkYdEJ)I-VpdsH`gbJ%?MbNAZ=!@<^r90%p11ZtQR3HKW);D z9~=NKylGmg;!3B}Vm=VX&&Ah|VIyc&*QjqA;!!`0e-&j${g^P@*G&L5x{=MNwh&L6gTRKr=whSPEaaex*hdnj=dzzKvGrKWT|EoZW$5^R;7 z69`&QP9PeAq+VW*9tf5=fp~se&SY(EZLK3a3NW2TG@+u2SwvRx^7a}g=Km+@eDtDG z73}p{0SXolr1<~I3s$t-j0kuaMaH3)Ih=Q(K@`xkoXrN7uI=Ee6pXWvN&QuE=U|nb(oOyKk)5pxi_NN?Eo(q*4W*+4P z5!AZ&nJth2#}qFTxMm*j{V7Mb_dO&S=}Ur-yh(tgnhy!&%tHZjV!PU2SLXdG$Flhz zEa&)Q`J-eRL>sM5J-qS6@xah(91jc-jKcc{+3GR_7^CnGDj7!M1A`j`22v=Zx9eex zFredJ8zv^7pq2lF1nz(uB*4i_gFj`suJor2*X94j4YBm$egVv2su-@RdlBo@!!3IhI>rbc7O&jz9pTV<}QY6Fa5W z85te_>TN3v(Q*9Hv0;IvnhcJSXS@c-iJ~F~$7yHy(qvob$XWtI<6=ol3*W8=DYg&U zYzjW#$CkrQD2o=`(kVIp&1wk+V{BV2AQ;=A-Fj@>N-JV)+jvICwvDvJEw&wnIwH0m zr*$y49X{hDwp{>4rgx~trU?{7Y+EEC^sNdcz}V(R0#|H%d`8B$rydeK^d*7+SuYY` zZ1W+37TZ7^jBO>(%Gefl7UXq01~xk4tdB-lk}QL0qqW%PjVH!7L#r{i86bLWGk`I+ zwWN|^U=p7`V1|l%aHC*7xOM+uX<&4tG=#$>DC@xU#AI|acvnTZSo#NWW#^r924ltO zR+4ldu}?j^eI~@g==QmI!szz-Szpnu*KpfMUKc!b@!dsOd+f>6M%ZStAE;{d>Fl=z zthFIGArbf;XB!DkZCz6=O07LB1K#hn7y}-ZV8F{dD;GAs2$iz(tSjJ!$}O7$qig}r zi6O<1vF|IeUM~~Fe*|-keNWDc*jI!f8D(o6xl({>09;6g#3fGLmocA%dQSHNBTa}{ z;Ewr0OTfJ>c};Dno8@W4r$FuJ?dG7 z(%}_c)GNBESCrJ5{#sNIPOpiJe$&R<#(7EcZa>cUIH;Mx*EFD|c*hfv?C%Ate`TfF zIho_#m=tTm<>rf$3qP~<;J3!xdNC^@Ome)v@Jq3r6FJ^}__`%>i{9k`;XZ0(Qunb5 zwk!Onr4j`#b=)~Qw!eQ)F3*1Z5$xnN`l(|f4o@*`4wVQIxEq3=*}cr8?oz!jW_IuK zsIfz@finXi!pqF=L4fYDy+kpjqr7&`F+_u9T`4;}Y+bWvk(1`6~3h91KxB9F7N_6M5ay z_0w|xCJuIGQ=Wl>MQ(T5^KMOgOl8O1Zag|tMby(;io*~dnXW~kGSL~o;#1|kJUT*= z+>eg5Jg?<~$5R?OP``2B$3WfjyvzkRr~`7rTjd~Y0JQ*u;wck@pdwcwvd@3&1v9|M zO}Eui*a#{ z$8bmsoK2}XIToH}>t;aEJ83bk@8YU}n5}1f6?45$gtlMWh8VbrZ&!C=`+Xu{!aG$2 zO?W@=hDHo>IdTL8Py=ud5ntSf6eeyrA1K$LTf`5S(s9 z+|)NR-k5LO%qr2^IOi^RLC(3$(Gqa)N_^1XP9>Da7x<7+ODWcr77K$mHRPEGyk%;{ zUqJT`qW0{^)dx*WgzEOE9XS`wMFy&YIZiwc5S%#9`r6jiSP{Fa9~I1H2*!$tzw#Sf zX#-d{rcwVZjdQ~igAFur;%O?)$DeX8k48cBA*+}_sa`*TZ}`r}*?dYJbv{Sa`5amz z-*Zy)mQ$8p;0L>Ok7g@qG3q?iht4-joinO)-t-3>Rk@b&4!m(ap7Pe#e-R}Z8- zaXB6;%H?>9;kF$A_XW8ef1P5Z#8-SseBYbIawT3k5RON>#AqZ2{%9ly2zK(A#kSgv zg7r=gy+|Ad4W;SP$UsATkp%WJB_aEGmS-Ppnd9{+VeH>p7o|_tq9xG3EtNJGW#)KW zT4H;rYqII0kKv)~MQ`pT&jslIq}{>*jInbmW4hTgkg~kGgeemH2|sDe zF5r8hDZd24B3BR%qBLjx&_$Uuewd1cIpYVANnM#UzArIHpAr+pGNY_H9@M4~Eo7(V z;^U6Mr2`+l5mH(4Y0M6Ihj+jec(z3*(FA>LpskL2+ zyyU|eD_@dXc!oGLZG){x&gLp8ZbfrZkOWi0;lVW@ljmX^2?(8>hF_AYv7zv{d#9@A zln;;cIh$b9D~aM_>Oc;^Q|DA;C6mqy)AI^}RzyO0RH@6Nke|p|q^%kIkz&6L zJyuk{*SR?r3Ez-w&)3X17vKeV*?v~`gXkh7{2*nHiu~P|B2Rf!B z+_)OVZ#Rth=Y#j#zB5<&OG^;1L?sd`HI?Jj{On#*Y-|1H#km_Dv{`bc(NcfOEbvlP z4x!PIHw1+Gc1aVLkw{@*3)81a|P9$!Y$UWV!`nlg-R3|db-4I|S@VY?zd z{4`~b>OAg4otOVpotX*t+C1UT)x3OgwQ@QBAgD{H=EEQ$CW*s?ali_B=&sa*q_z9d zsA15GJI)i&!D}kJOz>fTl@NMIOhBkp)VdYa(&y2@F{la zC6OCm>>pT@j=F3M4D?vLqiAyNE*{vr7P)cR4pYOI2q|!pd*$VsCVK>*aLpDUX%|px z7ztEZJu`d*1q+jkXycB#R*UE+oBwXP>DxPqK`{-r&6>c;s zTzhB(Wg>~U^UeQHmiBC$jd5$X&5zH!1(_1rdZTFa?+pUhT9s={b8;Tf@?HU&&ZSb_ zp3GNd5_lLb77NNIGhbN7-hiv~Ou@f3f5?W6h&}Hui)IhLB18RN+ z4Jh9|Freo`6V!nICaU3j9(ZdiG#b!Vcg&W06=Fb?o~CNi4t7p=#K}GY)yle{K)IVf8qX=(Yh$K+utQ%O_sE&xmsQBz)L=|eafa2!ZNl@xgs|e zCPSyYa=sUPR9kdKhM?871Wo3^-f~q;S7gff4v$iivSnIC%m(;i+SWObs+hKQ`ik7A zyG4u9_8_0jX?v#0;<l!&p@TR6Vf(nCM3OHLXBM_bLgOiJ%CVNiOu5jpq{$c!iMVmj1rgZhC($^>$mrCmh z2!<)=XQGTaLfvs>>ey~D1` zJ&_23=G+s(#P1pcg1Xcazd;I2QSc&#GerTq_iQzLdG?uy5EK7P2<}Y?%u?_ngqEcM z5@D9Y(yKB{A=88HFaO1Mtz;WS+b%N|LOl6$Qw@7@W@tMu1sWi79Z%$c8^D;TaDoa4 z{--778Y&__=6@T&msG%f=~ zH!cGhjcX$_a zGs2@7lfI!ClXO5JoIQN*Q4M98bWP44=F(zh4<$|ln7rUcw<%HAcI^_=gM6pZ`Ihpx$-Zvz76 zd{1Eob3FOb&7xs@TLHG;z}A)b{fL5b2J%2aa0UX(({m#WTnDgoW`tu&z;!wK2%sfy zlaFYqBPJiEX&n(Am6F$etms$0E{BudLJq^k9_T8*QE0fNC8 z^S%vW493%`WEhMwH_}iM@iFn6f^n}56TiRvUuj@&B&8voEyfVrC=Hv}DLp+UJef+4Z(vbFd*?0)f?f+SJEg0?fsLYIjDI5q1mhp5 zLyvz`Xhn>FlW)lQH<^~W#lNqij);HX(mELb7ToX=|CZd4@voOaF~q-N0zzNBKmv?^ zULrk!T5LWhKzqVJXl`!#qxn<8AKbc#XoO6 zG5#4^y^!~=9BAP8xNA7a@Moxp;ji#bP^8nn^zdh>sE0oa*27=9|CI)YKT1P}zfZv* zMQZp+@Hr9whJ%AU!=J%cG5k?yA?B%vzivVt41e9l6NbO;H+_Y_U)tEGcwKDIZ5)ef z3n6SlJ24j>0XMP~ZEGLIhEq-HQ{lk`tTiduVbsa~12&mZCpqJv+?4TgHZ8{Z2qhRF zC&1yCA1z7YUc^iJ;HE1+R&vfJX+0ShQ*L?(#c5`) zlRD)1A$3d?zvrTU-$nhthh0LVILry6@>EFaypM10Y>$(iH5YXfZnY0Trqybn_A#wi z;sZYwN?aaSA?3Ls{zUvR@p+N_;wN7GyeWRBil5KK&#U-J2k~=F{9F+~CB>!a5%4oY z`(&OZHxWsFiex@T5}zXar-=F~qJ26-d{?jSD`RFhvFM7+xB10X9$&=%7SjNnjHHO}8w_q(q-!TWE;GoVk29s# zI9Iq0f0f$7-*VPs}qxzZN~H&9 z6yH$V-q(IX*?Wus)X#pI?W58O1rTo9i|KCYYq*jldxch0&8+$Z?SGnB=xvZ6 z9Z=daZM2p;UGVmQHrn;g8eQRrf=t|3HFEq@a zUL(IxrxVfKOM768K3c2R~OtD=NuYP&8{pmyIe)g2x~*f!j5%fot6-e|)4 zF5BBFeQ)z_m+kdfe?ze_+~nJ6xFH^fJB*)SZja^}lT9JY+FKmHtk=F&iY`Zxltb{- z&Mb7jYJzJq#}|JblQsB#`*u?hl||E!V~qVrHjxUU>!<3GsYQ6-wFM%1p^(R|_>+OF zL(D)zs*9~FP*T9-`G9fuWbx%LAq%+i3l*Qw<`^^eFW+FY|P^mc7AZRy(^zT%bt_(4uOhvxl1VZviZGf z_Oh%V6+~DaaYZBkPz6E0mzx98`9>Gnqo&*uKz{wAAEWkF@m^rg&iq%zHGZ$UWgQT|o_WgmNW ze&B*5fKQoaFP4MUNTXiO)3W{2d%PXV;IAI?QLii9_4>Ki)X7q>S)ISM2bkC{iue*0 zyItpIQ0#)?Jpy=}dG>2ccD9Vecc}!Z&Rf3J`Bb+}h`~K`tv=;iHaGoXk7C!T45+>W zcihbKiq@b@n)(JTv?rQaDN)Ti)V@UZmAoUJ0Js^{*94qA>xXac1x$Hb0c&pE-@6HG zO@%-WzIn%ocXzsj-i-!%`%rQOpMS*;*}va{jZb}gH6L%d$R3(|wKl&a)!Lj2hHC9A zAk^ENY7K1!f5F?cp8sI?H?j9A;!9NPyE-?6TC>yY1n}&|_M6Jrclg<#?X}srR07oL z0$(~^B6XSvocxvaW3ZAHxx^lqdnL}j!wW67$FR9n5>(3>KJul)ymwuLPE26uBD~rP`y08| zp!xnC864rS?xd)}qIccQ@UGUX+nNRs^-E6TL$mBZv#O%1)5E>J2-UqS$Jo~l6~!1^ z`>qc!Y<^d~2-VQW*lvXjxyNc?s!e|>Q54;yZYAI^#!C?0*&&$X3-bc_zn0<~h9Ol; z@ePI$ChmduGF3?_lr0l4FRrtHX`J1_O{w*>wyw8-XkxReRM4{(x%j|Z+nEFmN)xZ! zx!Ewsp{`KA-jRG$P*O3tU)XM8KM)r3*gt-q%?sz0MR&P4$e%TCv;7kj+dvU<5pm63 zxl6P1uFSk!aJFq{cGRQVAwxCo61H2k8cd7f!*=(As+bH_!}z)1V0YjDA7VeqSoue8 z#TTX}NCY?0p&0IO4dcCcfDe`OsDu0QPzM)4ow6?-H7q}`x4|CFzu0N-$Qn>A11|F3UIVQ00XkFy7P~)+TmLQKpnRNvZOl8>YQL6gC*&Ip@EY=)$q_UH=DzZ4L zvA9Z0^ge=O9vPUt}hhisvOd8$L z=Dh;>XBN`FdIYB{>lfoqH`l7nUZ?oju%;U0_OwK248_WJ;ok>ab?M0q4eDLF;7{O?dd~bt z`6WY&C71iB-j&P!QQPwd$Q7u;r|bd20$VQkZx!NPy{NzkGxgdJPiz<;6#I{qq;>9-WwKMj2Ozb#?gI*INj|m7$sx6@zP;pJ9{yBTL znO*)5RBeUFfQnpKT(Xxlv3nF%Uru>`Pfp`sxep?^#z`^!J-z2+_zSo%hrg}&a4Ds5 ziY~skq;u~czj_6>qYOO7@JCvzRW*n^txB)=SrsY?ZWC7&5M2F*LBW}*+bpZ_HT&NR zdy`hj&En?wMAL2Pl=i^2EJa15c5g5=0>|5fR_y z8-K^1Y+~OL{;<7ThBqCXkcTIx^)AnTAw{@&&hg%p@9y)t|JYS`%xGSsNZsTXM9={t6xfBVGV+bD>e7id)t?Zz(=HoaNh zA6g=owv|R;3*uXKHJ;gDHL+?Bh^L~#S9%}~z7j1#gGcLY_CQ+S>$DgRzUc!W2H*Ap z8obN;LiC<0CRgn$@o7yR#hHO6CPo<`xU(PAU}UtRqSN#$vjJ2j2!+jg(~<8722v=J zIBRlzW*{LuH0pt)kCFroDnkN9c_}@x#GvHKa_Nwwa7#UNlvZv&;11>}&u)A0z3z+eBc1QKAO{UhI$uow zrhIAgcfo&&67e1ikQDEspcv@pM+-QbvS?Z#jYNbdQ>L^)ii6is1W||<{%#d?z+zcl zH$n-d$0M9N(`5r(u^}}t*fHH4|1a!K<}X}~Cxkc}vUYBSgPae{bVNhw}SJ|y1JOlbir+D*HKW!)|8=xO3jmqhsU zUg3`V>=UmXf+hgic^lJEzSQ3_ln;8_ z;?AlVwux9#Qmk<pjO~+(I%=5NdMY&J?w01)BS6Q$Q84E2 zuKySBH}OD-=DQ;uZP_tz2nPc##S}oCQo_-L{q0^ONbq)QX7QXmZsh^Jwd%_@%SY?B)yEj+A$$k$hK zjArX;vFK6~x~oV&s~^fyWhH1I9GyR_>gZ=aCz%xEA5?SHVt-L8u4tlMc*ujRJG!$A zwAhVFRmtRx&cvJBYNAkWX&*@z=^)KDWH~p1{i?nV{IcrDI#!!l#3Nlva_}qiNZMEt zS^_p!iErYyOPFIG`SHvlg`!yvT8>6m?GYN8=bmmuKE8*ewix_uH+qzzv#%Pmb-)vi zjPj&L)}HdhBS=tF9zmiga-xy?G&(;o^vn^h^m)Wn+d0YwQf!p8w=YSDqNF&L+Wciu zdD7Xsq&Sf`u*JEQ0fG~uqV*hc%mBvI4pY%5xj4l7utNY~rbAHVoJ6T&wPxPTFp5GY- z`0=zr??U@y%?*3ga@3Cc*hj1%D7E9w59`T3jDIZskTRux_#tJ6eF!yWA5s*(4`)4= zefT9sL@CpKN%^hsKGdbeJ~XhzJ~Tk|J~V)#53Otql?S`eP)F}R0~lW--hAxzKKY_| zG2YSG#I8_+*nbyg|6Qa7djCCf_TMvFj+%MoOEY<&xW;PtINDJ5-$kweC{x;hkxz&# zVgEr**?$zpJ&wjc5plFEt4YyO*6L4u*jghgtG7t1%Zj~dV2r(Jfatww0HY_)PIA;^ zJ*ZIFm4=Eyu?SbUza7F1V8s8dJ-o5J{onY=zhwt-d5VwI@L8K2o!K~w?i$(+l{wP* zqN5|y07e>9mo%uvrv0xp#&>d5GtiJZ^XGJvw6*P7osaJ9_>HZkL~&I3^@$wWf2Ae5 zN$!4vA*ECxEyiBn>8qEI`nJd>(jtK;j_i~twa6Qk8CoRNlom-*^oa7xQyEc|r^J*| z%IChMWKVsL3c8eNiw2fxiv|exWAC1hj?4g#Yn`0LDp7fKJ1|s4{HeVh#SHku4${ZH zQH3@9UrFH62?J$}OiP~_A`|a!g^99_5=ArU^;DWcFIoa-&{7%kRNi?xl9r%uhduS- z=i{Yr#h4Ooca$XqZZl~Bzzq$6a?=bT@pzsX#wjmh0E&=L+*wI6JHc();_~k zA6A#e@s^7BWJHI>(XLj z4yKy_#Vbzo($>04r}r=w6zqf*c;S>6OMb=| ze$k;Ojx@oi2GtY1g70@NX5?k-)1?E;OUZ+e%4~U49znjIxQG;XEHmdiAh$lnFF=8= zvBh@j!O|%fcFlAF(Yhupda&c20RDW5T#dn-NEbho9=4cbqK9pTh8|Z-vEOJ3s&w;z zwQ;|$QsHHV^~KK?(jb8opYvL8l^IyNEkS5?7g64^gDlmuvc@=yn%M&icSSJsT_Anu zYSC92Jm|YlVByXAxy=Ovh{q>LS#CY!OUFApu%PFpKGKVt=?DnACCH%ipcOpYQ8a>Q z#FY-==^r>&vJ!4M38bklCHdmdwU_xT6C8b&*ylX)Ls%}V7b(UIacj z(XrC}87K&sKbK8%v}9j+XEfzG?>yP@6`Mkf-89oiGMenkC~H-k19DSVQDnXO%b#=p zxg&)wC&k!&v2MwB6R6&DGgOu6(SXy@a%{Tni$^7PVe2{#+#H)a4m{ss|`w zmNzHoZOP=4l7R^F@y(;P2MOnKpMy<#ET{2atYZ-9sY_J;OSdyk(> zZz$?PPj~}+EXZiyz%!ORs%7<_>449aR-)B$vid09(UsMpU@_TMD!t%8b4PP82obX! zZ?MBLU&J#Hu?<0rxK`5Pth#sl zRbKJu)}P=73?6j;qRqr2x=Z>MUf~CCIgmcC#SU8R_(*A|F$w%eoiW`0K0@CGs;ZQ3GY4|)? z7w0`ZttFci60^-q6@O`%fhxC41@t#i8gB*6vjVaYFw2I0-_J>nPM z?A~MWc(=0!D;F2s5+R$m(s5e8X7$^v6?=y`v$Y8gFaO%7f})(xM=7w-ZH1PME#AfYwD$a}}qh6k>4#FmUS5cn}zw z2yDs(@>l2blH~FPR!b3((^kc4H-#XlV_PHJ8H&-{K~Q8QkSU`9?^k%(30fC<9G5(J zQ=46+0*J+PYhHV_zap$VU(WK5%Fb z!%04`o*b8%9K!Dx&zY{WR=)%X=TI7?^re zl+!%bcWHORSI*>Ruk}=ROjMmwRB~yz=wJkB#O|kbMat-=h|l2+a62u=X~K7h{ATtv zh2g4F)b_0^XYi??SIp%1pMX`RMn$Z!Qnv|Qn(eCb#~jfAQt}udIVehS?F&PX@kEu| z>pEExVX!l_CdMMavGJW*_7wIFg~$lhcjdV@TUa>XkXPP@)e8fPzKmClNW$!7*c{!0 z&j1^Q@x^~s6q@(g_})Jp?GvpQsLS2J^W2f@)H--#241T$Ufg0%Yt|-+Ws6WO3oMq4 zzqGflljW*uuBJLmj4x{q$B^b%-&XX~D+ZWz1Qkq}Q?HFgFhZ=+79mOFD_#?C?`xg_ zt^eWbz^A4?ALbo!rs67tT|-oE08MC)Yu%uTh!_mCDg}qq}d6cq3Q$DOrNiqD#dbaPuh<$ojWU(J9BFcC+l#CFH^NsXn>GoD+*!9V% zY^brs@kA@JjHnd{7_nJ6=|5;htu_)tBWlHH#Ek()Toq~mjulgSIO6sU7b9-7XbP~5 zI0m4iKaQhdp&(-vUzKa`9y}A4LBCKlq3Di8Kk6X}U|0kFkr9g2hI2_dM;ihHcE_F+ zBIbm(11s9tmW3-D-cG?N;?fWz!YzNlh`I?a5wRO;9MObYiDg2qIKYHYQMu5BT5Tkf z*V-PhSpX-_ZbJV2yN3Tnv!A!j;z`B)yUeCq6z7BRf)+ypns;wF&0>&RVhnq)y2;%c-!iWfI!Uzfh6ArRvM1=EIsl78;Cdrh-{ zWhGTw3yCyoL|}?Wq)e3&F#)14<%mWE4AdyakO>f42`c01mi9hOD-O`;m6SYcRI6=i zR4c{~0uy$bT^)(SfVc5Wcd_xA*g@b~xp@#aSWBG6<~|!YGNx6q6_gY11DA^u-#+m8 z7Q0MgFt>n4w!?+gtrP)u{n&+c{j}6Ic9;0-Zsx-g+=y~CV-Hg@Vlv{Gy|6EW=U+K3 zlO3R7Z~wvVFRTOTN0JHunrA`Ur=2h;WtM7tyPm)ZX|JjG)6m7LX1)9 zUDwh6Sr{8cYhwCBzew3l`cVjWlPe=tH<>~~IDkxy3^5_N;iImw3c(2>u#05ME&>ei z?P@P$8pD9_gR0txF!t7Tv$rwW3Q}YpD4WY7Wt4sy1%qG9w1p(ApJq!TZh^MdE`}4L zM=1jC|L{};;7WhnAVk&E{si;ViUHm3MG6z$&h$p|ni#OIhJ~kCL83ef27n_9er=V# zqgZo@htjzd*f*3TiY?AH&67$ECn>ltHK+?=pZnBcMiCFP)Bx}R zH6+rC0cuF0FjPZglvIO;6`%$sN?epYHh>S}dgS6OKoP2*UlCvQx0?nVNO@X{D2bB( zP(s0VDI!PuL+>c%4^t?Dr3iorC}Jk97@&x`6o!hJsT84M1t>y^GEFMN>>VYKtSpC7 z6_f@N`E_@}qJPfLiUfY^SbKrDc9{JpgI`f;%QKTJ=_xH-3~oS!Wi2`b#KO{^4l*^}3h=W@#^V@wzh0eL-eX%JMsA^;mmr zgJner_9*P3>Cw_L(WGe>o#p_^kfr&XO(dgHtl4|OW*zYvu@@WdWbHl2C&Y_I2`o-J;|FiFkoEd0_Hx^1P~q|2gPY)w zjVny~qqn2HC)-II1rvF>v0X?SY619MG>;!WD?`3l2@CnksrF*hj!v?%kITm9#ng)m z25yqTskXSN)VF1QDzWeM5@sFIB0l`lxzP>Dp@R<&q4u3$*0kY!Rus2P{!Fw2k2pUU zzwn6ja}c%eBhHu0?RRKLobt1M_f**5Vt)qcLmhMeN{W5QoR{!OI=sg5I*Vqcf8dEK zJ~&hdtI8;bN1D9%0sB#wN%8QADV51%tXv9#&Y{jJ0lYKY*`4(a0^|9Tz!v9NO&DMG z*Q|`S8O{-GEUk(>Mk*e53bA+q7q@D-%gzb`S-r7h$wk;sZ9nTxTB!SC=W}fThq#3d70f z@)&s1*4|0S64M4@7+Z&0@%XWtlEa)uWyclv)csxc%H4ig+1Znw|3V{J%Jc117i)U;9iIGQ; zuLQB(dm*;_Ew*?JSr=OjMNqah6mf#`!%zeWilGRKAwv;b2}Ti~TLxP=S`3axU#&S$ zsY8EL-*coG@}|`H%kAH4gm{1l#m8FR2k-3bwNaYJE9@)uV!VQmoh6InUr3UhR@%F0 zM6AA3^iOH*SY;ok(ZDl0<3?f0zUE@^Ksbu^zIms8r@+V>2`nrb_^Pj#N&tFJ2Z-Q#X2`uzoaRS@g>O|@> z9m>#5xV@Uk-fxd(w1(v{$EYwDYFX?$dlQX@beK^>YRh4MSZDv)VD%c1o`4Qx zG>{HsP>AI)O&UmtNugj2;52FwB7oDPK`3WYZ(0CLbQa2zI!kxT3!G&rAfT^M1nDbU ziRCM_*z%Pzl&+;wT3Pza$cOE_m{x50il>3}l`2Zi?<=M&lvb_=tq?yUGnINmMdR0Q z6O2Y$i8UH6qnt0)40H^Q2<#F|;f{;XF)%`VofueTgm!w23<_4pV1$d zuvN397lN~?hV8=!uq|pcr8)bUiX@c*_pr?OLn-4#1B_(aU>(Razl!Q+9)g-8HhV}T zBx19*H?l(WuLfWkcMEo&g3$~AkSv1Vkci~x&e)4Yx7=87dJn+>!?Gb5WX4GbS#hL) zAcOQcbn{>a?SmL#FjixL!Pxy&Xs{OqV>hRSgHMZ1sQFw2zs@lbJB3Psik~D(e9IG1 ze4%&f6ZQe&>^fQ#1F`etWM7_7Ay!|$Gfwv9)f9}4Tp6m75BM7yFz&aI<34cQ`<%T4 zqa1MvgOE!Ody+Epd#VXY8=tqY4o0$8wXcT6jNEO%UBi?)#MZE@B)cX~9`DSKRdUTS^yo_Lb7vR}^CD?6P>NGc!KWG5(f13qD3?@u9}Q)>3J}5|u_-T1sn9 zIib=HoQ{q*;=Jxx?L!Slk>on(^VeX(UP!TUkqlgJdmR!@Gz1JxS-MgJeL-|p;q0{b zj;RgF_@op%lPUH8rN_#mN960KK|VqeoY#*?VTE>b~$YWT@`8I^dILck+bR06=boBwYR7vDwc}^UrYjH74p^mS+o@x zt5|fn=pxg5EpLlZiAysnb=+2$9kJ&aY%wigeA2#&Eu|$mPApE~_Z+o*^}4v3UL@+$ zTwaY0Zl*U;ayVN(EJ|>;0`JDnbnJ2a7K6P+YvRgtHyBvt^6sV(9C^i4uD16Q)Mokv z3K!Fr@n2pX>8K-t>9Yhm@=i;T`)I2H>eEWV68F);EOB@Adx9M7{|w^zYY2|viGGea zLDt0)m#!K|%y!U9aOsMfyjn4uEIX09l*r%J>LBVvU%@1-6MF#yt5}$nym$Wo7aK-r?UmWXz*!{w|XakHc_OCyFWAAUW>69)y zg(p!ug@;0{>3DIXw9pa?#wE=4i6OQlw}&*5N-_nOXd;aznn)|Lb{ASPW)VM5#gQt8 zvs9*46!@DCpR*fUv9&vS;UCiAm`ALUM*ZMU_Fy9JPT;9R2VVKGHYWR}evB9SGntNb ze#a_6H z5;v}tCEd6VrMxi80T}386hrP@wGzv>v|{uvHzkU`)#tOC=xACB=ncI!=k0?GM)57* znonzoq>(ILi;|ETe&||vBuUrm)-KSsmWNX4y`WIB=T&}|YWZ2bTnTHePTCwdX!4VA zb?rZF0J@Y$RSZC8d=k2pSTe|@%nW->l<|}pmiodyK~c={7;s~P%uV{7^22%Um?%;6 zn%e&UouszEmo+5LX>EW145gQ-hI0E0%L=*u{S|78?eDLYE&4KUf15XyyVGpS2YorC zVTj#n2Y5i&Q6w~v+h1US+uslj1}FxDf*AA*#b9I*1Kj><3~>AVBW)A-p8DkIxg@!9 zIF`iseuupsx4%oM1gQ8$qQtkL5J_R)zZy6mHf-w}LOM%M*QR`TykjVPkmBLSZhb>J zKCGt@YkYXRp&TD}Q84QC$xuyx$=~FFxn4!-fn(PsM&KFDw;nI5%ia1T zLV(|s`FpvJPN~0$V!A{Bj9NzQ(B&uD9;Z^v55;WlagiHz%Mt4H-N|#p*<+MAZk+ef z5}fB=5G6RzfkWWNnHMOh`&r_2S{F-P zJ8LX)U#6Ad+8NK1X|ZqZtGeqqSr=Y z@KzTUM(%6=+el6m2OHrnOYerBj;;oqLkXgJs~b!6R#S*I;ohoLeH#U%s&5XZ>eV4t zt@eAs5;r!KCEeI;p}cTo0~lx=iXk^PT8Xu>p~XJqv}G?-!e|$f;>c)ac_g=PcwrWQ z?w*JS8Vm?!@37MKf1#X%rnzOA#I4I;H5s z!1&hbOj`E>6wor1g6w=!0V2^#Y7{;@IL@7#PK!lm{sr9G2IM65p`A z*EaoS^MxjIH})c}i&l9qlvUoatb*GyFOc}dGmt$&NkFUA-l(>Tlx}?!zjR`A#5*jJ zTW=KX2PzmI3(gtkh_|r@O^KJ`3O>52^s;CQu?Cc^rgH3VLBZIb%%&l{EVrrO%f#57 zWO2Al$F2Rn;__#368NEl1wBEVo;w@@It0tXOm4PMI?0K zpv4xi$xXduCp*R(IvU2kEoSNqPLvt>OhQ;wX{H}6Gx^WHv>6}IzUaEcx9o+P-dgrP zAOyu_?|ShIm%Zzo*1hcgt&YWRO}S$u+eKRo+aa~seUcRW7Q1UNX|Y?(hI$Hj5$zfJ#+wEo+JeL`r+^RN%WQN_DM zhnw=_Gpa`<*U_j-;9{*H-vAPH1z9t8ZbRyjasj!csa!yc+HwIIl>)!sXv(i}JG!U7 zDvId>awioG7m)Bp+P_$wK=Lhp0#*%;DGX0t;!@r1)a>Pv5=F=Q=SUxR=&QO|`CrYq+VREHMG2y~|*KO^2x9N^?X1^5q^xpRAjvO{P zfKCY)A7wF8c)<)uDH}kcxM#Mws4p4zO~C;y1_$t*`TTS>tIywt-n z%O$Tyb+<7bQY#Y6(lvFfnTBYKkJvGDel+EUga31)1ZO31co7uiGoD{qpFe)J;{-cI zYvVFwe~O#{_EU(pVK|whHVmgI9A|(NDIsQnA5!ED5S1b~43^01Z5H5(s|JlHuHLm0 zoc4?6IR-IWj57r~T6{CotNd2bD$51pr!_J0dND-Lv-!&Tj(nE&4~T$h>fQe!L1w(Y zw;e0`2Q+XI_;w1;3dVEXcm@u=^3Ki_{Q_4P<0%ca;}}t*+40!F9NTQO;iF$Q37IX~ z)f59QQqwGiMXqm#7O}zL#g8v-KiHfON%dlp;h{7@g=&%EY$j)~G0o&6V^<2t2<%o` z9fjN+D5N*(21iqa?WHxvN`t*XOVG3jevXdUi!Hx946Vd;>Gw4>@m#>6P^~;JTWKo4 zOSSw?o#tsGEWXJxM&pi-Wu+PYLK$1$rP07dfVGI|A*8`YL{ISx7ZE*E>sUm9uV#d` zu3U1O_rJ|CDjDA~RI`_l@HMB`_MTL1UUS-e?lwn%!*^Df=yUD7(H4^K}U5qr7*y>)o&Y^C^~Fn*=@fVez`FTedD zE~4Q5mfJ*{2WE~O6X7I`O6?Hqf+u19@s4v*gwQ8Y`IMKHqz>fQf6<~IziRs6R&2h| z8R~gXDnB>FRdQF}7g0m!l2U++0b%)^OK8@9XCB}4x+8+`Sn2q@PU`C~p8Bet4ySj( zosMTsb~llmmo=#@P35A5u9j%ixKRMFJf0oav$gH9)NpQ$9MXzyp(KPt_@3SMqKrrR z#+Ttxu69^{JWv07(#5QZgq*zRJI>e`Dg!)Ya<{F#PMy4dNjh1>r@q-d$$R_Vj@L}v z{?zch^3OTU{i%Fohsttq#{G^I!~7|g_gn{$fc-+-eEeHS!CfoQ=fbxHu*vvv#HV54 z0gY;WA4Su zHaJacYcS<5w3RqLP+J33GfL8=rmlRns*jQ@s6x%qVZa#~tkr^RYBO zd#j@-+d>)pT+Dnll)9d@)U|P&W6s5@>p`Wi2Pt<{*QdNAo)4wom~_#5(HjRo<(P4?>it8h_YbNQRByVFhYq{H zs)qigyzyI;7)igaNy44dr!mqwa??9QWse9nzu)m@paESb}(9l zFRq=_o!|AG<9D`zN(dTOfsDDN7@CYT<*rK_x3A~h-i}D&U%UWW1h*0DeAVizisU-@ zRW41Jk&HvTVYjt`q7>ib9A(@u6bJbvtD2{ncc=Rf?P7S3Eu-Uk#s}Gr`HoxR)rH#1 zF;V;uXM_6u>-0V`Y*!GSCv`gTka7m!z8AJL2ZE};tyj(OJS~~8TsO0^ zb5^>0vLEa{BUjFC9R-p$ zw^crCT;$w#J)hjb70YrdNwEa-UjBw-w84sLx#)zceMAWgsV)?2sF{ad3)mQnwCdx^ zQZ`bQ;2shj6JO80@@+?VgH_X-2UDv{&1o4j4lqrFyit|Kr^ZdK&yOa$+L$+H@I~!C z?b*$=&c^E5cH;(quD(;fYY;TwuFR0}fOZ*t<$gzAqSX==3<2I4572lUMXnqcSdz^5 zeB^piFV5dynaK~l;a+3bX7GK*vvPRtL03!mZz?1V5*6_H!UcqU9)uM6Xdq;K$*hh% zjzNRxnKA5`nW%n16Yo`0N-|vX&!cI`xQ2oc1 z`j1lxwhYfuf6I_@_&+EZHUGdz%k@&G)dsT3y!RV!yIyRWuX83bUsp;@n9nTA46&XofmU9? zbn3NRO%^nrR)VHG>Ng!GBA+|rSZJ_mR1!3nJ5%-*H-%t3;y!ic*%oDn^EURv9CibR z3u~Fzg=)icX(?N~jBq~KQP`ez5_N0>OfgMQW4h{HS0=}&-yWpA@|Su_O+Y}~Y6xiC zz>;MC)p5szOe;p)dOveaWY1H|XjZKvnsxc-5T(9*%Ol4f97uewkp8{JKxp5a(7^eX!P2vdgCot9Y(6I5nZZ&h1cyl!BA*uf5Q-9< zn{|W$8I*T5%JzEzq}ErCK=;_FPLf}&88#WTZeij&aCacQ06Ti!zg z?XsvQ{A`l*AahYE1J>f|*#g>2c>Eo%V)IWmTzq2<7ybkQZRH-nVMb{(-Efc*&Whcy z6*6G#o{L`?yXV;$yN{V8w&(brA=oeT%r(r(pKk1YIe7Q%-P^<&Zm?R~9&7u&l@u!( zmcMjK+h-T=)5Mv@W1E53zDTIc?QtA3LZ zOkzDpA!W0tR~iTT-U`^7;FkNHY~Pl91dD0`jr48ika~Cvp8u+=Q#1u2aR4CkmJ}k0 zn*hPYRUnKXGwMxiAa3^-A~9izkCuuOEO0huJt$a=%Bhw#YA;V|ddmu(4GlJ) zVx6m24IzMy+Rafm9D*N%`O0sj3)yv)CN9Pnh!R{e z!q{T181HGRR*d&i3|v+5mLWC;kF=Dh=-@r_6#cH2a>clU(y&&H%UjCR{sp}3YB2(d zwy^DG{*GI5#Xidu`CtJ!@<4Fp(R*mODMm#?^S`n|s_Wc#A zebKGtrYE{3E*sM<+p7Ff!ApJWY5Yq(cYi^;ci}+ilLpg-5C#jz{hY|D){%z>J8ueO z9jJh~j)wNS4#GD}YCvQO>RA9g4i?a6uP#7bSw^ zSGM9ejdreMD=8#^d?QJIxkmm4^9iI}!FEwpB>Ge3VdpPES-qCqm_J=I!9EJ-?Fso zC_=5k&BPiN`wtHL4Skc4T%&q#v^(LhKsA*%V4_f)4%!9fBK4RWq4rxNlyR;6jTgIU%(7pfathg_&`cEdt1_?TzA$9aN1Lz`r+Q=cNmN`&Pv zUgA16&jTT*nA*ao{D!R%bUL}MWeiWB=Ip>;C(PuswGQ@`ueFxT*3;9R8`x2b0?Vb< z!iUA;i09nv94P)H)F#2M#iQ?sQ*R&M#`_80=yeiLtT%b| z0}@A&U%TEJ&in6m3=~w=8BGRLwE!aW| z#RZ(e6AQTaxUs=GGC71EF1&Vo6Lb@_cB7Q!+N~Bkn!a`uh;r?=MF{q0Yu_rXgUl1Lp#ke4P5mYYT`PUG{fRnmg)WwFYo zE{I;^JGa4=)T4#-&Db1%yre2SItO4rXTik+%Lx%;Y6{t>&LSIFgXiDUs=$oMk!zta zO2S$T88F6)OBH9^$mrR3ZR9#=Agzw_^%EsTKJRZgiW%ifTG6jjHl7w^^b@lRwPIWq z#r?-aTw>m%7g~Fic7}flKIsWGRqXC-b zaFC@=>{kZ#Y5$YlPYC&OkbP48!a?@QoREX;{$4fX)3ftjU*o{DVTYtc(4wJmy(>e)A8 zcxsR!THCDo{CPqIQ*$vB)!fyNKeol`X1g@7e?s3!i*Z5+1f0+{1f0++j+>V!tuVNYS zj;XjM@E7IjpVN)sQOWqps8j8D@z^eft?8fE z%`xp|bYlz!ui7~`hgYZePP0vKuf82MlftoaRiPR;Pd3g5-I2?0M_DRY*$}`LkHs{u z!a8X|RYwrUDx7hJ*V)*{?k50_;S38mPVU$5ZcoA)$+JU$%3edEJ)Id`W;_qm=v=}=YAQ-!y#iaQvjUu^&+?a0@5_aTgo5eLHm6VRQ zfcwG85j=mR^oXC$BK1^L*0h(KbMyurA{+R+8aQaTp##jJPy^PzMo*+9V}M__6N|vk zc#T8r<+%8x69VZo*5dC5(O6vkEfK$P@wcP{F8&xj3gSCwyPKP9Ag}xlXa7bBQNw_b z?5!fvzW1a)=B=sTnmO+N2K?ah36&>vE0+t>OX1IKbxi|Hmd^Iy$q=wg+_i3S8Pfzq;Wif}ok%PA@Y|v1?&DDGe zAHL6-!}bUB4Y+#^Xu!h8=XSH`!4ly}ViRi726~3Mvb^S#i1p7+l<}I7><3u$%Ge=4b=^MrR(E z(IARnMx@T82qr@6eEfgMF}-&$6R?8A~zS7wQ$>_CRDYz=Vc-|TSpV4TX}SKwWt6u1!;*wGvhCfVlb$dCQk z)tc}A+}ZR}wP~&Z%In=N*$OHUD)R|ZLY28(HE^j?=7T4k-?P^!o>-?Q#suQMY~lG8 z<4<}AC-W!0n+dsm)iV%_i_I1Ly<&bWs$+CA>2)9wE{A{x&v(a88RIl&ct&vn;C^YqT8!&w?(AvfuDFs)3@!%e#P z&F`G>Y(gQ$5&JhIkB{i!Qit&E^7yL9W>>KxLA3_ywQv*r=UL~?%pO?PoSG*$gtI6F zH-rGeP3$5H!3`lmGPlnd0>U8WJAQy%oqK34+-j~-ls8cbQU(ZYH5;z|3BEV`6on#n zfKuv1ic2fmK3WT@zp1Dnp%A1F5J8<+KkFLAzNTO#4`53Ei;~hw%$85Q0?D73ct{xvk@A@|Gn=JT9Hb0jN_p^r(j}}5t%Z~e^QFQEPzaD8ZRAURkEQ@53@D0l z%^ugCY&xxgG(C#u0t!Kq0fHhgnj4$JmQpZM1~3sBqY)3%N=W?yMZK0nkUBunMRrpN z5(bDOeDJ*)$^1}h=`i*_t%Z~iDat1(1StaqDgQtrNEskh>qOpUj-X00h0sRLM1$DmU0H(ghEx`l9 zRUP>+F|NsaU6??I@X|l>F6OX68&D&7-l4c~b_ZpP*EV+165K66B}#C5fPod?dwVg? zHQQu|Xibs%Z0zTmC9Y;{zXs56ZJg{VZ*82Sb#SkIqGO0f&JP`BAYfTXys?q6Q=p=j zRrYr?RbtbExm~0{?h^gsg3uGi?EQR2Sg#74Mfy_;>reHMAw1N=EnP1>H4qoc8jH8b3fh8vX zYb?<^TFJpx)fsDgFR15jlIdCpZ<%_jG#n6(WMgf03$90=tAMG>z9nT>1*8*Pi(DV-McZvrKunv59VWZA~j8}|< zb_rpHyk_vM35k}xD&6Er0srfXS^ac&xJC`C`ayy4F!)GouU1h>>O(7fb1}j&3ab^H zK1cjd2iNNc>sm;920CIZC)y>v?tst-CknnxXvMRjy|KikPmuVRd*1 zHknq$5fg~U4|6s3*A9;ls&$HF9XR@y-9QF7`C_R3UdbGi8iP6r)N=x)i8HU`4W)9%# zzfTlVL>x%i+SrGh*X!e`qDhTocGE{oYxIif7$3S@^J9;emYCT^eENs(?yMzcf|h7r z6rxAv75Ob8zDqzXp>p0eDQZ{ENznyBbG&7lLtOCU$NtqYjDP-z>mlzW#V&Z)X#$l8 zEiF9i!aoW=~0!gRB~WRGCw-rbr;i$H6`~pl#bt_@}Z93 z2qoY9A$8o=CtskBH33k^H+Ir{+kz`yR~hWG&IA*6{AVX#lQXATG!+k9kWpr~G?O~> zny%HEESch=b`v^>n9ei!!BuiP&u?FyMY~$QlwNRb0S{LHNm*K5trKO1!zCbKSJM!D zGDh;RQ{1WM<(+wCGj}E%La|ZML7@a4>lZXV)tybez>*WaKx2zu5LlAT&y~BpdV@4C z=w)65Qi!g0EtL=5V2+e8cqMW}=TKcO*QZEgOzdi!VCV+FS#E$Aod4}~eQL7DsTAl2 zn>x#`wuwTp4Y+A}v9sK??4@8-?+c;S`<7q50ehCNQhMNsZlG~QH^AG?$0;Xt13*A~ zXb5PJz!G(HT`R`v6))8OK`D#rm1z~l(7ASo>qfoQhaSdX|2{I0#dIO6ubT#+I@2|( z4kE{9x@NHSe}Ml+HSD)F(QpTy{ZnLXmQV3<8?99oZQ!r{6gg7I$KBfgdm=Mf$v?n9 zFw0e?;|u<4Uytg=#{2{HmCnePI=XPDwI8~p`T4k^Q%z47eteFrJFB9!ut&JMgqR$! z?&9weup(^Cuezf!H_ck*7Wf>?vQ0RDr&(m0E(V(N#cN!B*)qyHgcaX*MGn&O{c#Mo zj^fv81@(xeW*opD!*=|?sL32(uhvkpOF!IM8`-&izUw&qFQtb)`al=iqYqGs)xW-^ z#n`_90sEJRfc-15B$=OB=&E5_alm+Ic9r8@SXav!9Ibm9Kx~d~!Q)+QSHE=w7Mb0p zVKsg@-f1PMoOinTm9sb(mOq^-f7DAsSE-i*3bFJum=>d61j43SDbW;wYSAcQmpgVe zE`e#q=xk?ysh`6tC_XxyRuS=cWDYIT@v%{PU44!67T@TCw>EF3w6Ik-s#e`dA+Vnu zWZn-D@ofA96oNzdy`e1e7+B(uib7oEF?$O#HTIL10B$&T>)gan5~BvYDJ#?=Am9|P zA)w1ld7^$x+q+%EAwi;kbM{|~3GO0~W)FlC^eB+^eYGY`go*k2B@O9RZpn+Tt+7WN z29_lAV=HaROe?l*_$L()ZKzd58%|#4>Zjw&uHjCr$9vsryVZ>A#wRa#O<)P#0=q_R zw-8;USvTw&xPiHS!=y$$Z?&y}Y>4~%%t9#Qo#e%S&*Ave{i_hx7fIPqb(C4j|Au(5 zcE@a7*a z__{~u$6~oJ*bQgK_H7yb{C)67QdoClXMa;|K!#8KcmX`nvvGcXzU_W^Y)TWs^5f(H z0;NJt)7QC12P5G37Fq|^*F=UDpmS(5zT&MvQh4pJ^8>hwP$zL!rK2aQ5>_qqH1rN% z?;2sSJ{l*H?u9xVM2j)H+^0LAx6w5;h9W2({kYMU$0kw?zm7~myZ%AfOr4LVm}vo6 zr2=8YLlDKLd^k)O**y7SR~EaDB8Z_51@alQHyp6L`oNQwt{9y_Kxq34={Qs=7}`$a zzdz!d#Xnw`9LIlq#I>5;OWEP1_3Wdr4(vf%ETphOMZUbt&=P*jCRYO;&GN)2DH>|^ z-tID6RpS#7tR5kSUE5tuN-9`gR#yWsSiMvA=?zw&_NT&W2VE46~tYAEAfJ^1k_ z;eiDTK*|6R$IqBq@dSk;b%1KrF}31tS`Dect_1&xLXbQ_@N^qfE54#&q%RPu^q5;= z^d#*vcOT4 ztt^Yfv>K8=C`t3*f0VO0QiVdKdX82{s-ilTS7ca3^$Ij%crW?J2L&Ku0TAgom|)S8 zf{{9aeblWCi{7*v%G|vdU-de8I0Ybi09fQFQ81DRu%Eohum~{%gv_u=1E&tku%JX_ zhD8{7qLyKiVr5te5;DVLsSq!%2cNvp)jKss6w?HYaN2+HhULk9t{juCppC*=WyQy? zyBVj&IIFAxRlEy}3k?BguYqhct&2Mas9SIdjwrRdFar(gzWjeW3WxIshh5=pITZkN zGhU}9Fe{{)Yp&r_i%+(IhbX7SvsVNd*TpG4ypX67Z?exR2JXf_?IjnTpK1_2N#mDZ zGD+h%T1Turjh}e@@2>8_2cuJTfh-&}Ro(P`yiK`3D5l zChPwX@ZUTNhiDpE5TZXD_YY7pwxXemowjjAs9t^)`fS$q(MB)%alYlpTrCZ@kkUmv zU)x*S`C1CGHWw>l{nuhnYj!6EOl_Rh&I+ZqKyMflKIq# z`OTv#Yc!FSS{Z{A4QYKGazuS` z9IG)9Rpg>*}TB%gBZ=*}|OHM+W^C zP+}tJXUx5jl5PSei8Dn|5(fS(C8sZ(@M~#zP4OSKl|dcVwrtm7L&e$hWYzK&0@uV!(ax6)u<%ty&6l*z|cx? zNZlkj^ff>1<%O<(#$ZKM1~f{3u{26Pg$UPF85aX-IrebCKxJweRu`W@5pX*U6=4Z7 zHHB#y=>C{;QAIHX3&?Ta+twXWAGNPhfRbe1z;r*L6AtJXw-n2Mv6ONV>Njr!NS(p( zyDZfQ^a=HtjwS~739SVCM2BMkFf00m%D8x*N`VI0B@Mt?z8iDMQG86cI8ZE;E#9R# zID_pACHWDM9AbXh7i6-9XqN#G~U=jUfx?t97yy8+Y{gR{S`Pd1fe5#Cp(SVZ(C zo{b$g3_gVJ?jC&1kkHpZB#R7-gkb5=@_vTG==49yT;x^wO9D*Yv9C0BA(aPvT3!fw zdVxH3kACVApIuZZ!qR@;Xym5?jQl|Z_vHq2QT}M;ioUX!RZs{@ZzWSK=qr;c{zdDc zHs^(q{uWD{m`h=4Q)LDLTO7tTw%CyZOOpBCME4_1D-O`^CZ*lYR6f-1BO&B_BBXXz zPMpRL`;k_HL)cV7Ja|<&uaO(lR*q0vP}3hMO@BZk*b>aCINMj|RD4gtsN~Zj8u6#4 zWRX*mSZQflW!-$hYr46cF^!|us}f2`=fGYCBI1%qL-2{HQYu=O$droK6dU_~c1eiU zYe!x@K<-d5r6O2N0B0BpQizm_(NsPhRfkLYg8TlIl2Cn3 zW!q|Epf_kG=naSK_J;CI_aKAaLWMzZSW+VU-4Y7Hrr-g@eI;^_u#SRJ%lCxRGR&w- z%K>`?l^z5fady-=qBme>#S4@ZdIKO}AJq`hEP*8|vqCGzSrjuX-lvpt5vo-Lipdo zs?iWoHGw7SP+Thx@Yo*xq{sH6Y|vx70i@1#z@UDiJXYnZY5dS*wGvcL{eFJs;GuX8 z<&S!quJkgULM**3p~a{dKp62{O-eKcpjtEvXfZq#*NV|&@KAgm#Yd0PDk44}ifhH# zs7k9*_^SMSxOL|lx5mYruk?}!h%fb$$D0Qz8$3XKN0j)&IGIK67N+@4Kfbqfbr$=M zRzCNqyTUvb$~wRFBkHihH4;GUh#CajRVTXo7-fv36wI*J|-093QP9mO{;w%#Z7#vtnJLQ#L*qF$%ai`vHL+5Xc%d`($q z2786lMK$jYMR&hcv)Jh#e8|&PXt!rcpq5Yi1U^Lxqn1yEBK*VuBQSbi^Z@C3F#`fU zFLFQ#&ucV5^E?~4953#lkrLp0??ak@^_P)t*>URg*1`VKe)3@d9q3|9;F&|{mw2#0 zh)RO}vcD)%{Zc$_Q|JvJ?1ngP8LbHeg*x4zJV1`;lPMVcTHJ7VfqC@+K6R|81Di|1 zsL9!(TD;h5v3rC&pG0hmrM01UFk7k^*5+j-k2+5<|W9mS_A#ihD z2&tppy@L??v*+rn8!^V+MX!rT?$+W<2|j@$<3mSpjd8DLhiI`i7k^BPF^Yd^fIJ)4 z5bz+|Vx@9BDJyt?LVQA^$9Q+^F!np8ip=nM-yBFh5}ExzfcKaT`MeqeYI&sycO_8- z)G{D6nBw;62*}})Dek_kB}MRYz*UmQ0TFJy%H4@|34xHr4=iQjHo)R5(<+j9oO5nC zx9806!Y;29Lpg&g@MC*pqljzulCJgh0P;-GzsuZv&B}rD)#H`r(1w|m0nWnH z2Esi{_f|HILWD`kuC|Ay?dBuasXffpB}SC#7$_eDT4#5!HdiP%Lmkla)sz^rSv8P< z>Tuu8R#8X*o1T)*?ZIsDG2!dn?tX@My4(GT!JegLkipXf`SeOK-qRE!tu4Ma6;FWjQ6{()ehI_sqKe`V z1LQ+S*j4cqsfX{(M?GXT7HWuGvHk=6gSJ0&LpwIZ%nf=-NQQ7LbE8VMA2Ttx zF>R21#E52Y;3G!1kHxz+yN32{gdlYo<)gb#0L3dt`#PvsjP}86Ncf7;)q?gc_~U=Y zNR*IQj0CI_AKefv@D(HR1HT>pzk0hTwmE&(19Q8=#U*vT03Rk!QzLuG4?~OAL9)>2 z^25*vu5}M*n}vYb;D-iT?-xBvN&${pDYGsYU1Jke^3I_>#mkl2Vd;|Hqd zv~5h8Dw9?U3_kp(?oIg6C2m)vhlqAa73uumLCX2P(2KzN3o26t^TzPU@BE^KIKO~Z zB423EWtE=|5?<)$pY-V1naAGZo^19R%&U{(tIItH^RntW!)@O|t25Rt%#RR~fTO-3 z9d*N+g)P|>K@1&r{9wybCy`QsqodYbqN6Ta>i%qKU4-wsc)|yxPPgITJ+iO~AMWsE z^G^<6o9Jz`%*{=f5 zcQH?zxVp^~V#wX`B-flK(RkDsCU*h=>R)Aqz*`M}l_gXIHTwQD*=dH=l2on)9F z4(9QBm7UnfwD}Okue^ z@{tj_41QRCDW=oJUjyxTV6c2y>z%=ngya5`vC9bxKB{$*A9@Lv%ZTI~KX$7xCj&ox zMC#4K@^!7-e{LVefB*8@#yt0a_jrEIarh$h%v0%BSxs00h{nqrdwQ`VDx}gXJi_#` zI((LT?R~lYw)D?n9r4!Ih9nQZwH43L_8WO={^rxP*&cX^SGU?zfpFb2LX^;s0xvoH z8{g`3q3jOcqz!IJrf^VX@$^>0_9m{TVZMM5CR zib<)%%-OTpa9R!N4^i}|Pzcfoh?TQ9je?QBK&14a-06OZ-9)P){l$v@T@-@!0fO`^ zo^apBHc~Ls7l?{JzF!@}WSA3}{$8GXb!laDPnPY)%foq}!TA}C;>Z-hhoRqz6u>=$ z^P_m5EKi$wsH_tI_6r$ayqxFVIjeK(^P-sc-c8ij_)_)yyWRWPVNG!HrRqlmG2f+C zFui}&F83UhzjYc;m|?jfIy}Kr&rEArkc^kgdr!!l%zn{`iH}_WC`vF&^yuaEBi9K- zpxn14!N7Lx5O}w!x>>Xa&=c`m4v~p?t!W($5@in|GgikTG8DG|3YmUqwK-a@kbxB* z6~t0H7!waHQR#PDF$S&ho7N+TkPo(wro`~5U^o?O3J4_*k3lHw8`hR&kv_?YTJS^2 z8fy%vM-P!_1QA1I${T#dx)~g2QTFmUYlu3|q7W2b9%l_v$5|AN%Djily~$E0o?%%c ztM_=9C}l38bWoXrCB7pmTG0v};Ag5|p)j#mPo_kOE9Ji7p2H}NTW0x?n&o3k5zX>G zZQh9snJx7*RqO62rjm5ky+S6UGu2z)#yPHUeO0$@$$DXbObl>G4_#RaKKU?$G zAHxPylv@Ln2+#$g&KG=SlEGA4TvVz$+1JJQ4|?KupHZKnh?t(Q@22+i^fcJZ8c%pS z&fKG%WDkYlCD9K6A})!3L?NQv!nc3?%{RW_8|!(B#9&h8tweNx1NPf~r%)Egdz|%PloqkMAFq(HxpP-=P0TNc@^8<%OW0SG4*J;_mR%DJbhGAbSKAWM z)iR$MQJPd~DN-eEfxtKa;GU$j#?5F@)rW@4j}|W(Dnqqa1!a^)Lorkv%DCNsa;F(A zV;Jcjc#HvG3TVmq`~*jH&(E?&@=tztU&UI}S~!ws4CDM4cN-mF2uhY`DpiU)7x@C` z07?@N@k&IAZ+RxZPvI^7&HbQZmJO2!kQEdIHGI`D(vznT^RKk#ew=HiYCn{ z&S7sFCeLASpm>~TsK zh22ESJ|%@kUs!NrVpkLB;>kJuiznxOY?F#??*O%oFDJHO`-7;xMX7yAsC7R%u}2WK zybn7UndgS_{4-T8*bhO(&QM~15n_LRHL-^cn##-0WT)twgr1ts<38@3$r6WC9};Jm z(1^S+m=`o9q3W*>^YpN_8V+X#UqiFnP)t-(i{Zqg1;eeedFwY5O9b7ta8IgE7rag$ zBPWj|4I{2p8}1osjvgk5zLH^b=<72~o+aC<20Q}! zHK;LY&pZV>OB_#!&ogq^4$4Z5r^yu6lAO1U@qDHe!6oIa;ZlKR!~F{Mo$G`cVtAhh zp26(H0KO%>dS;8L5GdYX8+gi0+evVc{Jx`yr_-^+5)ppkep9^3p4U5>?l*mvAVguE zA^j~xz%!)t;uoGFoga>8NXg?x_y}+RV$es~-Mc5zlWx=*<$3;p5aki!$Ic>n7v-&O z=*ckno)4!*vL+)y6yG)!Rt75S(~uNH1tH<`|E&-lgb3%Y8++!m)`Xc10M)_1vegI~ z0P54kvyJtlD0{EJX0$Ov-Z1VoLdJf^(h3;r7-`kOxX%n)14AB_Rt+oWb2F`mgl-ri zV?L`X1PK7diupW9!6Ig2+`u=EgvY@TY;WBR#I?dc&(WI5!mC)kK_SQjAXeDteF{bv zUWIapurEI1^QmBs0-< zBjwtn-bfk6u_RaTTmvuMBxt;FlMq;Du@r);z(CG4T8vQ^K)`jZhF}G9uA>MT$bpJ7kfUKB3k>9} zq!>OHXh#hJ?HE{+%wvi@?=r2}8iTe_%3=&krWJ_^Q%gLBIuYCrk3#dnN6zYV%wbYq z?v?S5{ggWD@-3yywRa!?1r4Bc z@kc%CjV6AJQ4c`CsE39i_cQ*eN0ZSi>XAaxu@5#HO~$hpqvgsP<_a10s7pLFp2iK0 z7g(aA9$K*w3!@(WN6VUocj z@~nir&$PO=G5L-ZTbz9x6AG0h9j3n48zWO+>yIJshpn}ZA^sCT#_!!C-8I#+m%3-D zkv}-jvz}=sIBcvN?-|QlQAW5ep%pE;dHDoSRS=Q>tm{9;zkQ;oa}d5t;kzP`NaMPN z0OcJot)Hfo!EyR)aJFzqU+_7RsSIE76Rsyd+?Pz(G^9DWH@Z52uiP7@*Npxk(DeVaim`pk%t-^KpmOyR|pESBQXnqx-}!+#B6D2KPpd>e?HDrTMDF z@hRrK!F+z1r?;%67LGm+)8MQeGwr4gR>?-wAaMgT?H(3fHo_l&vXLku$wmTJiF>hm z;>5jWM2=1Tz)ZXURpL&&=K2Xg#NHnkXOVac+CZ#I8;+2fc0vUJeU6VPo;rxnaC+LX z4}^f&;CIJZ2~3AcslXSzw91R$DjFZeB=hR5%J{qbl!x;wmuJI8q`Me1JR|uXZci+u z(veKH$&chG@T*cP<9MGMPkl&N`xbmkq^k|32)^blyM*Q_Ny5GGdBVO1GsY4f;;HUs zqJ(Z#s01WgDt@d=mP(`~{G*=P0N!WzCrizIYtF?aulV&ALxoUzQd*HR^tOxEj2C!q zF>GC+RmEpar!iJ!N2T&J9n<>Bl%7S^o*&IAW98CwDs3~&qB2A3%CT}}UYRi>-mDxe zGo;RR8WznTnB|#u5q?uV+jB$Ac;MwblS=11--WMSJvYM>$>#r>^yU#Xh8>fo@gw+;+X^9yWkhLqdJW$#~0X3PAz@v4SDx6pT440#W3s zfCNZ?p0jcZTR^KJ{ke+%QVK!(00H{l8K)2=EpQZROn(WXL5#2rJJd6gpPe&Z4670R zjwn}z?Q3ujSiNU3iYKEi2f%e9%Ch#Eo>4saW>513sH=i3uLv;&Dt=t-q$sD(|1LEW zMp-_&+4GaZ-lEdOZfhVrL`&p4f83@;OCjE@)rCGbgy-!kx|olP`Fu`&SL}7d(F;j7 zrw#TkDdMm;%jU!PdotONv>3N^-;U#L?|=U7LM$K5b#COoWT0AqMmPn|cINFriH^ukwr! zLV%BEiwBs8)`hU|PES@a0*W{_u)Zc@cpJVry-#8=uGGh@Kx82u=mUaAt3Ba1Xe{5k zW?+((?8dq(m#^`x(Wzso?HgfA^iY*qPrX2#$}M0IQgXQKST9O&GXx_LeqHVii%;Z~Qs`uFrk5@N9-=}cgRva2nCa>e;<+kFLaU3sD?gyYa z!rM>L;IIw8?Uddw&HQb={Br#t6pU1Vp;YTl@KeRF)dN*LYJ-2_sI8ZoI)Ue3IW3c= zPaxilWKt#&;o4YajPGW4Gyxqq@S1RPKQ7J}izmqQ#S%&t&lh`Bs-+X;`64tK&liE} z@zXQmi+Qw7U_yDsWrCt{TdpY@x8+(1CdY(5;(;&C)lmLc-=0T{MOO_I6?t6QwA>&R zc%OR@d<1VwfD*=5 zWjyK0W8G;n3Rp0a=XRaht!{*ReBC|IwPmGsVP$rkxlqT#P+;CM&!g-rih$+;HrNX_ zxdeiDxOaMEgVof9@xWc6ISnH~5sC6hP*a4s`|5q{8BdH6vy>1G|3B8gJkI9o|G)bl zTQkQpXsp8^A?pxP$x=#oZAciqx$BHAL`a3~!lA5@HCv^Tolku#rD)%yKIzj!^l4Z5 zz0UKTd*83~zW4U^;MX7K_B!Xap4Zu4uXD~@9M&alvVf8Somql3JQRGe4Ln6a#VH)YjZw~$sybPMlr2zIdpF8`JOsz z|11r@^c-Hn?0vZt3X9jd3>chWxknGqukaEK&Rbs0U6Ar0C6KzFf0CDD{QKe_cl`66 zk@HT`F|O#?{27(0vH3HOh2amk#*6jVVYAfU%yU7sNN<;@Q?_?(Y)06OsIFQ-cV8{4 z?(j#dVED6C!SH86)bJ+j+UgpkGb8O!nY86+v zn#|l1>L$u3LLgbQpd}V_m=>;1RB!)>xxEq)F4eA3QMtTZq`tTz5!R+{psbOt%=7H=97??CGf_9_)qTtif?2zi^x*lMV74hRqhD!41?Rl zd~x|{o4<<6k9LP{N+E1@?X;}yb24{v$|3qc4Er1JmEZ0O4%ABhW!Kg zr}^%Qjrw?q}O`sh?yT}~C_e=Sb6 zX`k5mPie9%7xng)RFp9XSd`s4fE2?VU@3+S(WRNteF{qLV@)D#2A2K>V!b_mzgIveCmX0;q6k?taBM$Iwn?o!W zxR#Sgh=33!j@JL+3_X4Xh#da74(plgssQCRf!#wGzq&OIvJUX)h#0 zzVJ)#ceaUO>D)dsOXCFcww^lWwW6m^c`c=ln##l#?#rAHn@>kUqMJ`-;Q%fY zgA$*u;!Ra1K3l~PHU4+E>woH8r967HLs}XSz~Q|N9#~}k!_DX2ru0ERuY>x9d|ros z`n`;|RE`Q~9pAl6ML4r$qf-7hHkig zD%(OH9os_4<83AvPNNEDP&uiZAX{$TRJBfBQkEpIK|K6NCelB~L@tXM(p|FK9eEvP z*_MrK$bEO@rOQSkIyu=n!(Yu=)la{Hu)Lps1K~%qAl^Vw=A|ga5Bd#+IpzE}iv2P1 zU+Cwi5ce>s;W#t*qBBdtCnvdR$!L0r&0*kK95p3V5Jf`7n8 zq>?E1TuH92=x;4JVU~hCGoTkzkfl>jP;=p_467!d%J@Nw%Kk@$lS9H5QvVdm(NAT# z;+r#7KlfAfjeaVl94BN9>L(1DGk1I?IWp6KXSo-cL3jn+c~WCGV_8{&HQ8_LpmOw7+~!g27*uOyn;+ z*_#yPN^GL>lIYlle@2dor?aPEp6z4*iysrf^*4}nWMwuXU z4p%Q*u)L0cNuiX@Ir@E!%{c{>0S^0|w{!HX81Hg@V>#brIdXf8VI7^%sg`;W<6M`< zX|i>;f7C_vQBwQilp|!{YTu4&B)RUn`fI~>?2i{QQqGWF<{chaPNv@F&yYXN z_`Zz1v4y|lMVi@Z(O;Ij&fi$H;LKs=J_^D+LNl$A)1-gF+3Wo6DU``^XwthhgN0+{ z_2VK@L;d+@)zpHzH~LHaoW=cRt5*K&<#ogTsSb@iG4ESsjI@RssamV9<>U?j4Yrdj z@91!mz3*XXet-F9SAShGpX&VL&O3_PGh=5ch7nwb*M2_rx zFYP0F4Tg`^jl10%IN39t*TBJT#RDzG_t>q;+bfa+8p&OFSJ#Q`J}4x!-t(7m z8Vr<+Q-@X)97UfIDoaGwO{_WJl~0v7t_ftNH&CKx7pHyXjY&TN>y2i#cL2 zhpS$mIY>dEnR$@MLOoGoL__)caDO*v%pjRP!hfe2=cQ1_rBGCFzDEy2*f3)Rt4d4| z4jeQ{=2sd~Ne&$8ALz^(BwrcnA1datir82%n&u+ZtP7x7e6;^t`R59~+`$m$ie>^} zYc!d1iAAF=Y=tr1m`RL6mPugEmSg<%QqCc-+ziz`5M-gkntzY=cW~YvBs+|wK->FX z3QTj8&wtx!ew0=9T66UM{x`*GR>5mUb2;l}QCqI8 zct<_oV4YO4Y>H677eWK_ufYno@!etSge4Ch+p#MW#SD2oBd?YXR^e)W#^`?+fZz3C zps|hbrnUQoz)RfI8$*T|Zy(0XPiz=9*empK5?b9zi#mPI5bg9i91-Tg0ggw9=xobOUaXwn zH_c0VkxLmF7ov;=o<$k1re6DZNF$_`EREo6UWoBE3+(#ZJ}#M>5`|R}zP9y8Unv_5 zU(*K&H*q=B)9M)DsIjjY79k$p|?Xams zna?YSb&3qt<6POH$^6t@tFtJ>Pc4W_;rVXW&3(LC(V9_bm3u$Um!c)-3tw$Pd{wHn z1usFWv^$lko0E6&5)7eTjjVl0R^y(yFzHUb=HVkEjuFu&9?O!B;FOUiB?M$iEd*sg zWJ#wEHCfW>91$WtY(#pDiKG&wi9~`YTO8oYUI>kPb5jb-rSr$8+tyL;h;zf+xft+f zi$?ae{9A2IS<`vbJqC$AT8M?eSWZs z5(m?zMa&(;$ew6<%bsX?3xadFFKzP=EF>P~ygln?^AMVaibdkHJN$!uVzC#svg?WF zu_uPAx6lW&Dy2Jbdc0%xBf$fSCaKq__!nq#T^7-V!-~8qtKIZ9?xvr1d z9oUr(&1kVgGkPHzvgNGcx3-1Q1D_cd>w!4oP?_d)^~PG-V11sT7_BYU35PCRTr7Ay zDoAv}ixUpHxq8kG@Vd&{zM)>#M!Bk~IhVG>qogzgc)}J@GNGh|$rih`E0ItA1(YWB%I4)L!AL9eupW-smF9&UfaliQFW6 z2|t06WG|_HA<16Sk0g8X+f~d98Dxq?$!ZJ55c%Hg6nBY_OKmvf-!5t^0?~bt8<)D0 zfvE!GQjcF!T&k-|UX+!yZ=29tT+68I;8X&B{$_q1oEm+UQpcS+3Sv9A`E_uronK!n z8_a7U6w}|WfgsU@f#Z6L3A`EzjrHsJ(+pk$0#t%aW!>KKUn!RGVinNwjg=?P`#aHR z!06BQa%H^=I0Phe|)`zQX|J~_Tn0Er%2AI# zHsHQFPK|&b)@t$+Od{0?N2M_v2J}GvGPxX$W=x|f709E;21FS)uqeX@UPy*Kf6~7}SYYUouXUgaGJj5> zxy%|wS84zDW1jMzQoV!T49v``GXE!k6`5HyP$siLRpWE?liXpDfEiyj@QX-QL}K2ers%`P0v9ty zyB*_?vtxxQ%IV_c1}iTQJmiQ99FC1)c?E%_=1`u6x~gOF8&QiR(L87FKsMxHHP1P< z!m?qBz_kewaQCH6B81MH19=G$a3}nZLFQy!AeJ6#gDbPP2A&WB zP7}&NwhfFa6lu95?1oL{MyG8=hiYz)BhcCq=n^A*!Wzm8F(GFQ43~uW zKW<5+Le5r2tRs=$u)tV{;tKWC7l4oShK27&i}!JSM2qc;Dq3toU{s_x-XfE|6=*2l z;Uo|(K5C5m8Pzy6>>BbFBsJXLYm#^tVFZgU2o^&HVLAEeh_*xnmy-%!3N-PFqIt}* z&_z=6^j;x_m!OZ#dO2{=shX$5k=1xH93Ybr)rO&NUd#c|Nh;*&PEvtmpp)E`XF5qc zUIh1UV~BOlvpNaULMNfWx|68yZx5ya`D0j3ksC*4u%R*{Mg?0K!bSkmmMC_SpDX~6 zv@Ec_^T@hsoByS_I+Su4w6@iZ&hy{j2A_ubh0`T1&NIVhbK=xk%5#&HD zeAlawaeR2ST~T?p1#!LlE3&fk>aRHoc=ea2SeaX| zHfc9qhi`RlprcPz%=fx>M!t6K3|>O6z1?Y?uf6&jUUK%P$RHn~D5t(L-*)PH`P!-L zaRk!6lXExKyeUva^yDS*={pUr0r~K0hXzK(vxydRauzLjfF!Bmj+WFIAiazNM-V)Mnc!0`#_NFvy2OfuD`_CX9+KXeRdf86z~%C`e%(&2R#PbY7DfMW57Tk z8UuaIOJJb)4Xv*{1|nK8kVVTi5Qz-~Sz^OLUPy+ld`n=ju)r|TqL_h@syX~spkpDC zHQeh!m4|Bws?19;Htzg3@Rieixb~v!crmQhj1ZL@-8|fOqsGIv8#U$_7#r^$ZpOyG zya;Bx#}FGf+!`B+7RE;Ui?I}cJIJOQIl77m8s9cP^RVx`n)nN@ht?j z7JXWvkZiOjc$H|yv0yX8!UGo;mePnxWHMjXi9z15HV#RK?@q^wTzmvRW|DIGh$8Zb zZtYs?mwbziz}LtN^411N`NTL&0$cM+=3E)kUmrXqX7H-6=8thOG@oHKw-7vbCWb zkjsk&m9_=x&jkDW#4Q$ATTzn(Z97tCw;V*bxl@CaL=Rry)wUl8L)#uBwQpMpZVS)d zLB5^OvCzVV1(hu{Z z)0Pmn1*)*A~fEft(A_VW6!1zzG{SYWTQfQ6vj`}x9!WQmc1tHt{q3l<#3(hiHI!Y(1ZIgE zyuNFJx*V)5P)Jpjd9&#eDGSA;jrrnA)+pVc#LA%k3^ zJLihZaU(68T-Zs13d5s|yZ#^O?VZYTuMF!f@-hlhsJy|8Tvh~34l0NVm`H@_k3JaK zo$~o8z3`B`x9SWM)*PRb9%=#e-6(6#@!=@Fe)*77#};7Q=x$AYqxHtD@Mz{7AV(!2 zS8{Ze95!Y|4hubt95uCmVNJZtxwzShx5$J_<%6SQDkC$|nzMzDBeMdnY<#zKE#vsAb9pMN1E6!?r30jv{8%4%8Lds+a&*kZxCx(C zGB?c%rXi8SqqnZXrJG1Osw6=o<(T?~M9Q(zi4rOE+GG!vS@Qx*;u9&0<_CTj-*TPY zJjzK1HWJKSb%}WtTn($VAmA6jGwM2pl7OH8x6wLzGBt|rHjo5tJeL96w z^gfnCsl}@ywqN5uo$P4JOF)215Zu3smms*Wa8%lWNF#-EFRuZrJq=YqF9B650o5_Q z1XLA{q3Whk=J9GEJZ(o_P{ zU+@x;RydqAQYhzmHIV+*kiLA3x1Fd2q|5OVkXATRGdCFAJtK(|B+8+j8?AFF97X3) zPS9v$-hH)eedB_^%aWK|4!^Y^ONjw6^ z$OjW4AZZehfUxm`LIs_zlaq)aT)kTUrXr-te9go0o?{B5*JnVjd95EME$M#ntP@e;&5RL;aH zH&(|yDvTvs(E$!Ik1NLNIlcy+1yaXT+l|pllk~BA&5+J95c9ZxtciKFKJn)Ht&)5nkrxMYwvvB})%Oc|@wCJ)C^m~1G_aVa2g zLKKiUv9!WU2zirrV|CtS11AVGJ!J?!>zWC96C$MZCKg33h8pFi*CSUzRK;o*L{+>H zlQyxy?xN&lOCYrQLd4Kd=&zeNSx^6?5+@tu$gDMFo^#1yfllbioY*p{1^T4j_3M!)@JY)8 z@JTPk_@o7Peex474;IQ+MffB#Cl(k!iOk9A3&3|XC-Fp(Il1h9=2c0AK<324cOAPl z$A@Fv6_sOK5ZAG z^ZuCakWzW^)4)wW@fjBpCi=*j=p$YN6a8XL^cydMiGDI_Ipb{;oiQdl!!cl@id0jX zsPcH`v&uxi^0H0&AU}71)p(Dsh$?JlQFU!a3cyyD0>v(xqbQC>qa#cvCMa6PO#h!*Uu2gMG>boqDkl+#xWNBd8(JAq1peECe_8 z(l8MMQZE()DaaS&CiP;eZSVxoq8Fh$HCCO@dLW` zEd=O}R7@w10JRALYFh|OZPpMb71NMttGomWg{ZOHQbyW}ByExWHcrL^Iu~>61e1%I zYO%Fj+2k~)Jiu}>i+O!l-IW{+br&0TEd;lzk&AhTV?k$ywI*08jTd-SHmR6}MrD%D zqp}ful2$owyrRWZG0~>hshCrom8YpqO5+=20Hk96=Jj0z6q(381_t=s7{Ef%?HxD50AZogEi8`(Oe*FaDYz-v))!|0BlbySfG=VOFqxRB0dywj4oe2x156gA>qM4` z8N}cQvi!wQZ z$~T%4;3v-FNwRe9U|sPzM}W|a zyh5*Wg>GCY*nmauOwwjPr-7u61)+Xzk~X_|Mb)K+RS|p9{HufQZ7}c=!+ZS#@E@)l zY-QuS{qQr6ulk{6RyIg5S2$8qp5oFc^Zr&z+GJ%n|DXo4X zZ&P}5qPz_*S2k@JToj+TDJb12SlTD*Dhg4jb~87%7}&@#bHycPZjOlS7)_n8Nx;S5 zVzSQHbZrv+Ky(y2Mc3#7jVxO0t^;Z%E?>lYJusK9{DOt$B;r+J0^DPF3rpflbA6UI4mp z7->)Q5=cuWQE72?6!%?RG%5q!muI`BWY#iE|~&1KluL z=Ycqi&I45^E8BUX8&pdm542l}K&ZF13pUGap};&3bR};w+@0y%IXz9jc1!S6`EAia zae3gD;LqZqrH0B1Fo*@HSq6pw%$(Qk$}A-5^UeYl@ED%;Cj|-OP~L zk60_2B~x_NYxjdXT{LxyUdc@5sEFNcC(GcD&9l4+3xcg)s(YvC^^u~g@d|gzhb{ zyIksSNu`!cRz)nAkWR9|gm2PG11|s{=_Cu^T`rB{_*gF46;;&Tg21pyCru}lsrw2u zI0+SX_f2JnT}Z8U$IvDYITBJzZhto^C5t*D?-m3rGrIZqNU*IFn8Gtk`#4{8s$CE1 z+iJW3eF_Ps_a4%H>H}VkKJ^Zh_Y2n%^p&-Tbay(+vCy6Vc*u08KY0`^{quG%5SH`t_(&~TVE89eOM@-|-%TyW6G3We^aT(>YRSTPoqQU{ zhm+eCm6KZ#*U6VYtet#0CxO(`7aFbfHD8s=m2pqgXPM)nD+{!G`t&?M% zF}(Z;F;-cmBfJDDl5fb1)aS3h<0VLud~JmNnbc8Pr08Vv<-^*$zvLLCeJ7{*BRWM= z@)55`rahuPvce;9>=asE=`0cv!%o*C<_?)8H(b(^8!qXEm@JY7MrP#j!#ax;9SHQr zoIAOQFi|%WQJJV4FM)}Ik7yHxc?nG9H)@R`#kq-wJfclBgk!)&bB&4S^AdF0*@o6q zuZf5lOk@#rO+<3TM3&qzkr!fa=2&2usPiK+6Crt|-^qHPiwG0FZA|nwFTp!m-%*Kr zC+ie1fm+`fwSLuVDKEl1S?-u_-nS#-n38Scv3IhHPh~!Zcd`fp?_^mBsu$vYyJ}O- zJ6Sb2B1YP(vj0JAIaGgYY`E>O-pNWN8*FT`f{ncp^G=ophK-MUY^<+8_2t6B#`jFs zZg>wb!Gwea-RP;>7sv2oOh_ZWT0J<`cFMe|+9~rmDrTj}$yQk8E#*b9)nYHzwXUr& zH4#-T^60OdpxZ~Y`454b;y@g|Jzjc;H9d?7NYIgZIzea2iP-@Oy5pQCHVVWV2|5eG z?I2`PG@fNqG@b?VCg?7k#vIO_+=_89*k3kHC+I8$cOt3C5!6KD5CRf(7J{3gtCt7? z2|5db6y!T0lg_eK@+RnR=adogbv@lAgSt%93A%y2s;f+ZgQ3j8X*xw?A)vL~1lRB+06SbyvtHKH#WHiQ-e!_ulMKtu^-xoLb6Kk8eQCZaNX+@@ z4ckXdMykgYosqheLQU$flrw|*9AaSSl}aWC#xiu7GtA`NcS1cGaBesUa zx}@9;z1k_qv9L$O=DE!by?MTg7lUXkMzpg_6dPzFilw+klzgMM%(|s{y);hCP0N*1 z1hXaH9XUN)&Bz@DYbWk&1`(PXMW7_ zRnPQPjHTo(v9K?m$?Sdq3}x@uBKF;LKlxuQJ7+~^k)7jlebx?ccCN%s0_&$w)i3?@ z>C8mgIozsh{y{Lottwgm!yr9>HhebF4A^p6(kZkx6L$9pUyN-pYj?=#d`M_M4i~Am!>jXt*)|gNc=Lo4> zQ-y>$cL+ycEh{W1eG`1t`E#Ze-%{WEo7aJae;5gi&2lA-|H50T4FAsxl^aR%lM@F& zo0))f-po#EvgG%{Nlw-*Iq&;mM^SwiGpXY2t0Mc?4)N2r^_U3JkEY#NHW6dJIS^90K?vDs`L&1ud{5Y4$pZoejE@=R@K>p+fbHuWN2quILI8gVRY zHhSovYN|8p_wo|7SWiZ8$ZQ>iRig?XMCc=+M+T?QPMf(=jhS>syVUl_{!y>`fM07&+nGysHIaw z4TS}9`@s#oBKm<<5&dA>40;jR0uz2U*)1*9T6DPp{8Iid#btRB%Cd>LOST+N1f9v^ z1|e|u-2x*xnm$KgeZOo@%-pd>nl+f}H-y>f%#80Y(jHTiV3D>!{lX$`0iDzuHl(KD z@6%I6V_0=(M2;NSKetsml$hB&N_GgnVULet56Lkf!yZCk9Hx(9H}o%4q#vh$Vjsg+ z5cV-_Rp!4dhyEF%zR-A8v8z+mk8OjiH_B3K@AFml z(=WX0zA{L^@PzCMb#ECLp{uKtD>w>MRhjWhT45X+GO3tSo~RtrU)}zpP1Snhn35kX zUYp~7b^8qlrE=x@GXocYb}aUlc6q$i=`^`%=eRUE@ruy=i&*6JuN=Bl?oAtCLU0+` zx7N#+3)M^cY7T{$&(ts9g;$CyGV9_MQQQmuDi@mX6Mrxh=~w4}R}j7k;>_7szEkI# zuY8NS9^1l0scyi2y)ahHWqE`OV9q#ZwEoGA7GXw< z?p@Pmx1J#(KffWAeX-{2Gf!r93N;XYxHQUqX_H;^$&UH7HeXq?OuEx!9(w7z7bb^& zVj)MmMBB}XwhnQyOt<|0dZ`6(wh2}6IeX^GZ`+2h7yCG0bkc6C$}}PZiO08BnCZ3$ zE0>cEZVq+7Sc5%3Pu|cjR9`&LWq`kZg zZnT0o+lMaqIakb=AKeyeD$31I)IZD2PhziX^U*(@k#iSy3=OaV=jHkGiJqaG#jBig%xW(sv)bD+ACpIWg@#|Oy$;To z=kEzs5eGSU*y}5=z4jShb{l&&d@^#{Cw}LMmu#0Vm)F}+YbS|o3z+&d^VQrymw$%viH)bXxYy1K|Q%S;(^t(quG!U)N<31CyHAc3r|pYiMB}l#BeKp<)9gtP=tWSozmK zrV|3o1ED9yevX1T{%*3cy5e$#mmrQ$C5YpH%u5i*S2!w;UqFUd-=O)4*T5(4iKqI+ z{Q~B9pn1m7EX7MelS-mAPh1=BChG7Sz^%DJr!I&qZolA)N*i7c3bkCI73#`MK!8f1 zP#<0b<_agOkh-Fh#Ez7hm{)QWDLbpF`R20$I-tEFw}g%B#>t8=WNo72WX_2Na@fY)8*Btb=ZfZ(HU&t-)EB-qpT0|bNTfDlQv@o<(_!cq4_5b0%mU2>) z)S~j}?%W5R-xta=i$Wiyq%We})u$yZC;$!)abnUVM~MUtl0JKA8|Re;`t@f{#{(vgkYXyb3a6-Hzn8 zcX}?8`KxL3c@Hn9NxFeN`b6nwzPsi2_d?gl$EyYr+HJ#om2rnYbIiZXB6)ZX?aeH9 z?!YvTvw==DMRAD7>|?pN*a+_MwT&ad z?+D?6w`lnC3e`>=;&r16wA_$D<7)E2+qpN3cM>7=dndPQ9C4%ZNiRYQNg)qb6Nwa_ z`EG7K@tYSzDSY;WTpA32y1Zx{pDQKq45muvGf_>Bzn9x34xyc>oT%>h&7oFtb*stD zEun6rK_UbaDGSPMUwCU-iSe>^qI&y3%)Lc^vNcpD0rgVt3Kf;hyG81Y+Y_N~+7`;S zu{?dwxT)1))F3EV9&S>o;EmfO>5lMo%I+vQoP%L7ztp2(LIg7kK9mRxqo9T5j)IFg z0=$vfU=)l)Fr(o5L>Q-gMHbqccr0NqDOi@kDo6Y$_kYC?Fq%bVsqP|6*83`Vgm{I) z=}^L;*<~Q|1c;Xkn-C-p?txKdj~~x>e~`a z4T`>|YA9kUR~j7ghT6mXLhXGbWij(+1s#`hv>5HLGZ0a|s94&!wd5J;>76dAMK0U3T7|dBG zRH3}g`FE&v0{j*KrfBqi|0h0u-S>pAl#P$X>7Oz-_u(a!L)6UbnfC1qbRu=j0-a9Z z$XQ@Ty-q=*D{ADeUwk$6S;|X`i^vmo`c@Y&a|~Q|`d2c09$Sp_2`S2+)&84$owJ{6 zrVg$w_H!DzY4Qz`$4!&(coDMVUne8~Gc}hwwK8LYKD9#B(ZS=X7hhtimt4a98`RU5 zByolcOX8^GEQC!xdPh?1=5o`1Mt@u0*|}KTecj@i-Em%^0~Z8#zg0n)-LH{VuYJ03 z!8gZ3^a+=KygChk)FlW&%G0+4S1QL|`m+x}f<*IO1M=p_(tHSi8q(_2w?BUBcGYVC8 z7A6yDwJXrnTH&ky4}nT84c}{<1d|cnLb+PJz-3UAkzElcy>VH1oDFvIU%LSON0*0t z+4$(8J(p1!&>T!wad zeu_Rxybkl>C!viAB29-s4gDy}KTg%7u>m*IRF;9M0wPUMUvvssQiR|xd9-e*iv0fb z&?r%hQP<(71pNG0J+8w|&WX?g(UPMeI@98D9i8dOOAwu*5=3Wu@e)L56po6{G<{r$ zn}+impc*z*C-D+cr4mq`%}YR4;TWn2IIZI~6s~WzTvaMe-xr@(y^`YX2A%fvsyd2h z1USM=Ai!=Tz{k7<0#Hd*035WPyDZXI{KTsvlt%Vcp|mGhi-YhPL%0+#0bweM5+<25 zWajsw4x$dP2AOL;{<7MdzMaRoVDE4(8mle*0T4r9Qz&u8l&dI14na)j*wPaQ? zvIZx+Tuesa?E!m!q(IqdP8Una?|uyZCZ=&P0%cPbga^tjOa#i7awJSIOB4jt3-uv& ztaM$Y9hCSi;1#hOe)b8o8>S!bFo2QphF?PqgayXXo>je4VL9ik@CfJ4C-kw6V;mK0 zt|Lz*nPxwJLf?2F@dTylvgOg=Lv=D;1x>KU;)z@D76jwzwkPz8XY&&U`MbiEeWK7( zCO=fWY^hO=et1+{@@Hs-u)rSGDlgTlRpF>mt>V%os?}clPpVz6M`Vj9RI?yZ?XQ?> zSgY^o6i)St?pzQo)jKcMOZCpY#9gWn!iC&_rXP z$(#)gG$EORX8fapOnk`_<;0`mhH0Du?9*XswCNG(kvVB?3KeWE629Fhp5v8arESJa z+jxm(c_A5c)#c&g!UAKh&^k3dTuy8fM%)?8466=0SN*hb*hYnJ zn_b=1K1~i4;lrZvGUmU~%C}6ny^ojR27U!9Q8(}_@e;M*^OckHn$u8w=0Hknd}ylX zGI@5Bzp3vDeJkJXl2>TIC5Ety#Sm8ULNesOlHuvX0zF^|9%EV=6pE8-F;OO*(f6{lxGQC$B zLBk*RDr1-Fy~<=m?EsyM5c>F0``;>9rQs()g$)irB+-gOQ!!6kY6i%ar& zWa#B(MHcq2mL*>0q@lq}|3vz2t${OwMhp7(x1x=;xL1KYQobV_VY79LbAa&Q{1b;? zW5VN>05RD2O{B8$GB6e@xm;T)eK~Vh>@Y+m2afkDqK%G=fc=;0?ErcH*;)Dbrg1so`12IRIDSEP_3#Lv*uX2fyThkA7-I}} zhZY!v_~`}V%jJ+O!?m5g%jMiF!}Y{|jtcd6CsY5`nEKmmh8wcE+eF4Jc5p}w0s-93 z;fdvXbNFSP0G}rl;8aWiYzEzt>VgHRArJf~t*GofJY3x=yh66B9llBwUE%fGlod(5 zHho3ZYnP1(^VQ1*3s6nwWEQ(zo~;wka_X#*Wv&iiDeA@vP%D`LO=AMos~fKMe>6c} z-S9iYY61+#PcGNn(Rs_^f4)U}P|kVHpJwe2up8woW7iwmH|By$cKAsSp%qDY zqi;0`FHf)=Eoc}%E*{}_aCf5*GO!V0=Gsf#jkazWt{_i+PU+82vcp}(LdHUGNfR*j zFIb_sq^~s&KPNVE6zqf6t=)hcD|}zN^bKPC-K}YTUKK*rS*g{#o|ixfDuEEU z@e=GH6^_~)Yt`tphiYp&fL8Q6i1TuAO`>1gA_VH=OU#^f7T7|F8T%f>w`#6zVzks%nclg9JmcVN3 zIKEBzqPLE4*S$Z6ii@qBF1C($v<;sT2RRs9#{&w&w~iJjwvO*|B+NK(DF|j9@^yFX zc!pQR{_6XcW`9LLT$jSkgRP?l_G}-DtCv%muNtv?`+SAw^_?q20-N?Qr?> zOFjByHTu>{y&8RUrQU~i;_NUu+@>JW!2$cQE%%0p`%;EJY4%~c9OZ0_z#!j~N!C## zp43~gr)e0$7OX$jROzDroP@gtoAIRHV9eshSgcM@#zH=+lR8hYlz2IoIAH%pf8G7p z)+hB2V>_pd9meKlba!jf9iof97tzB~*OHvPyOZ-a)l@fe-{r(1^s!{bKi5L1D7)ZV zE>XwE%cAbuM;dCKxOHDUk+>Q{}vIVwVwk=|5xjx*?*l$f5 zQmKgVNxj&;?a7#XBP%za%K`Tut02t1uaU>axWWZD2E%K8Vji#V?z?7jFnS>NT^1N4 zoxAUPYPH^Xt>dUL#Oh>**dA*)?7Q4audEKxSnS}876bxd*D*Vfb{(&-mfP}Z*YR4M z052yK;N6%2ujbRP<01s$`>s=~^}g$eI03#(Ccy780kH472mz|eNq<(mTwXIWT+K;e zBYTVt*A!*eFds(~lw6a<$1~T&Mw9$e;oARff`aEqg|G4ns}a;V>^!DJ3XHvD9Qt=Apn!cU7ZH-)?P z@-wgzVdnZv+ufBYJ~>v|xa-qvn4fugRDaXf4w=B&|2 zx@W9WAB_l$O>s5WxiyezO2P?Sg^7e6w^iT>daE#ajk{H-tZ?*J;RE$c{Vz^t(^=cf za^Cf{(d;!jTsCvOD&$*-p$ZV)lBvv-zNPjV2h(8IN&b~G=AyR`F!|moVIe-|bg_N- zc1rj~af*YnefVBM`1ZlV#P-4W6cZgo=-&znLnt+xyM3t4D`H(;{wcGrrXQ~Q7(lUo zu)y|G(RU3!1{ZE7nsH356dTLzmy+%tT0f?cMqb2Pk63-lH*atYD)2NfjR_Ov>@reN*-@Eo7`kk@o) z&UZQ3ojEOVbmq)WC2|BrQQM_r{knJ>GtChcYE%PT# zS51;JZ{srm|DkvKA70gKLw{*!io%>l4h_ zIZuW^6(4cE+!^~l1~wwh+;oXEcB!`XSWdTR!o}p_u1*;_bxpXZ_=fS(b9VyH{{ODk zbN8gD!fVBOj)H0X+*&CB*xjE>pBkGe~h^6Lp4^*~JLW!Iaf z3jJ`4+@*>I_DtuEWUKGUEgN%8HJv*R)+d=YZdk9EDetUvmnp82W|?BK#8hrUu+>Ok zFVAKTYwKHYVw;1x3{b3pR5AMDQ4H%83+z#Bf>vxI$An_{CsSBd7W z->72x0LbwNZ!T2u`TlTE3b}J>l#0%l^*W}xg_pQtx)(VZVLC!Un9f3=w!T_e5QOP0 zh#RK+j1$FtWmSaZ_+Jc%Y>H5Alcie0>X*X3>74!s);iGYywU1B=j3X21xJ8ZgaEB9 z1Zd@jWXP=j6${HXGfS41AHGCuoey3Kmk?GhoOv(vYWO&9#+v#+Iqd||6`qALi|cOzmxfG>_HC8 z2R_P@z|qmkT|VqqLSgx^NBzR`Vb6x7%ZKNW(c2yT7P`b8^CfSEUlQ+f{q*wTRKM#x zGpLbZ=A~URzf0!56MjJahY{Axg<}j7Rrbpbdbu#?-S7hO2dkjpoc(2kI{a0^S?I`q zRd!X8M}O>BS)TYSoFVfjwn_Qw_LlN;mAk8&sX z&v-?Q5Fc$cBLw|$eFvQzaR>`+&w8p4zO&Ix?{zmZ`Jq~^O-42P;ZY6Ky9M^BcGD)UT04%aRP(iw`LiR* z4ia|#NA=7cZ}EkC7DTD%yHas6539bjQ9rDTOxzeQ5GKQsoAeYvl9#xX;iDXk$&e5* z8CnRK3@r$zcnjiA@oP9y%nepWxDPUM78si4C(sPD*Q=Z+8t|oP1JVyq17h~Fz@FLb zbB+QDt=jJFWq~2#AzMORDLY1Opsti1*r=zlz2x9(3bQ&SrZ7I3kkrvW=uTl(o+dD+ zu&U}8rm(6{C!E5H+%QyzehW{GpTY{7{2ngl6U`Nc=zy>1F!fH#H4JQIm?uLRZ`Y2ul(?-5q19vZS z-mg$tp8Gp|tC+>>g4*<__2l&gF98)Q!Q{1pmtgWzIO=2$NigrP;T7c_zDN&oh*tyY zeTMW=UINlo0@9!H5|CCnhV-hG$Qpi#Kvba^qGwYh z^ogw^k=sQ*UJaCMZu@B&a)D6Y)I#3Eh;MCTi#Yj_FdrINFkCo+UWF+>ql7+gHkOT5PMLHT7v z`9od;%2Wb*zvd;7SK)BdSkYXz#oI=IZq_TB61)UVsU%7O;ff?Z11p-_$SbTBje7ou zBj|8NLu&Wfc`Svamo(Qa-nTt1Gs;A2XWpW~d`XkdJq}BnN6SPW^@%oIVk~L89qD$_ zOPc7IP^`30!`{fLBSUgGhaB9I-z7}}FeuUhp%x}GuUzCyk;D*LqTlIOEcQ^-_cDm6v4)X4vhMf^C2RujV=xUk0X)A!9Pvg}yomHhRI2=>N#ttL znqx)f?0-$9uFVFD;o+0p6CreKnh;^-fq;G}YEU91JTqj;hKD}7s!;;7NHN`4E%STc zeHzaRLrA>)^biL_tMS|Pizf*Y%!?kEo@fBx+A?L(4J>;C=C78y#`JBg{zqaWy=R7Y) z=Q_77$(VCF9fne$*^Q1lzfwgt=KRV@p!;HeskU9uFEzHa-hwfw>h>fY>Ti$DV3=Qs z173r$IJn)HR7Cf+R7Cf+Ab5iAX<6O=n!cv0$wzy`*s=W7`Z9|)}fA()?$Je0eq^?Nv#@(VIDr36KM=w13 zL^m!dlj?c1K!%hqQ&ZD>Fn%j9je$JGE!SE7mW!P3B8 z9KU0@ycfsit$*TjJe~^{$QBp3(@=oi$oMn`V(iTa!<+^WuV+O6vF61de5=S$6Y+C8V;>Q-Ki z!Rw~yk_=wmpR--66;)J&S1V2e4T24O?sIxS6yU`e!G`IJk{L zDxxtg710=8NQPWCKC)6+V2oh?2{eK&;}T*7vnu)?h)l3i(Z8>H&KkUAhl!CF#UV}# z?XXX`gFL)dPpN2v?UN#}J0F=Q_=Mx22|h?>pp%{^c*iusJDddd>Z|0LlkMuK{QaD{ z4RhHJ?sMt}#h=Mor0zf~V;aGA7~+9GO@Fgnr z4{BNVbZzyz-4v0}sOx-C0)GCy=T$!FSuvH@Rxxw>Og7pFkAqEoUY~POAK%XofzmvBx8vIg`*P#%@pqu z&&%bjBJDEs6qqLldUKhP7|>tTxWSTGUAI_KtIkCy2H+g^pNa_4g40#|z=C_8iu~z_ zjvS7|4jmMPA9k=%aZKXG`p5^O*FRvIxRr$orZ;bl9B{Rt<-!XwpY654G=rLt%in8Bs8-}wMa-bb zGxBQLV9dZ2-MvPHF95&m!9Zgh-;G*N;`ms9+WZFw@3m23OdcJ5_(1X zkhsPv{DKa>7Jb3v?Y-ya4>-AEu?rxoblu6A(envCjn%`QvDyrH$`8b%f)? zsV!-J%Bd}g$El~hpq=_*P6y|{=we#(CYwV|me{dPX58Wl$F?AF>_a;($CfSMq-@qs zE{O7L+C}*OM-P!b#|z-r2d=H(!#Vnb-Y31qi0c?Uj6oRb~BsXy>^X zw1Zh3;b2|}9iDEG*UlDAspi|R$eH78(SG~o+mSS%D6@<84fNZRyL7)T$xEOhB2#sD zA%sw|J}WkJ>cSnD`7XQcGMT@wb7PtJb!t7Q&aNc0%C);9HJ1@pq(K#81-n(MG7*io}z*I>4Ev|7zFxNP*sjO`$aj?HXmtv^*pcu-y7p5sogm@LgskYm0&yrM8c}z)80zr^QeNyW?Eq3ekDcAF2wCuIXIJDcXV<5DEch9E~8@LVq zMI59LNv`4`{Wx7n-a8rHTvu|$L5LJQ#*!Q!g9zGW;-pR#Oo`(#F&T$hE(fg9hy&j2 zusFEA=_zCVb#WY4C*!c)<$&JA%z}mGt48S8;z+)njO4p6$*9m|7ITV*=;P6jQ`9CZ zA@V~U-S3jo{aw>dQO$^q2+>0Sv8@q3`6ALdX*bAFY&ZN{c5RY(lS9spOUGC5Vg3pa zucaWChi9LSjP{9}cuktk^&|RDt37&fZN-Zzr*XB+%WPF8rNh+v2_I&T(miJ#V zk%K+EMf0Hw3lm@eXs#sAmU!Ez)}GiX5ewB=`!$4W_~w|I)eY5bQF0(uvsL{gEoctlEl$n9U>*Zz50}|u3-W;nQ_%B?9~CA zy1WDd6)JH9HZ6EDqACheMOBEt8?d>ZSA!T`4E-El0{T>ffK8Z}fV9Gil2!qmB<4ZD z=0h@1T)>7S=zz`sJuG0OaCE?Csp9?N9@(Kt-gTMpDKHP%9Au_1SXCsif=@hY39Di? zS>IK<=vYnEJA_!l=_2;=eKA@KitQYZ-nUIbc&x@kMeO4xj)bA=kb+>SBDZ3(kK?>1 zmVlp7tElAUC%nXsef+l9Y~B9g<(LG2*_&kgF0@Zi-%I!E*vF4lQBB`JauV(oRe7IY zAXM2$GDlq+<6uR3qIIHiu(rzpGZZnv#7%!OL$%(gr`5J`6mLvIv6D*?6BJRxylsi> zuJi`&(`(5goPk<#_y&MMeCj?=u468HZatYEjDyUSc`Nf#d4#Y>O|2^I9PsA8pvpvT7l8yztZ3*Frw?&0Xz9@-Vv z_RxZOwueXe>FwcLoDQ~!ZzO5NPpA>q&QKXyg*@DzV=g;c?65PmAXxi;NXRPW@!nn@ z@+iEY`6l{}Z@=z0K3?L6JTmv2ep8i~qu*58pQPW^*>Croa#T_En{u24tc25MZT9Ps z$4$H#99kvg(AnjHa0hWfxWnS$ZZ}9rY&R?&;fP*{33pgv*AYi?2@&qFD#DQw?y$h{ zM1(u0UI4xu?uaLXaL1AhAcAm*g&*^0`9^oW*?}wDb(AYx5RWVG->+TyAQu7QyS>R; z>NRSq#J+59wpsk(%N7KofWK8o(cffSxxacE4J)|7j9|x4To!or8ROAsc!?YBpwGf# zH&o&P>k8y-+0Poy%ee=kh{KsKWxIub$d( z^;MbOFz<}$%H>mvrF1-C(ysKwonf#^wjgjgY?24_if~w~B8=N!snT2;!(yNOHW^s$ zlMn6HE8zV!@u}?U0!|L|^E?HK&d+SKyp@c+Wk_|gonv4wq#H%a&Ai(+GbY3h2lU9X zfs=7J%x@pi8|HU;F{ZC$|HS3<1A5cEl-2~XOC7`tb1(hHrukRnCcksq(BS8PqMdTk zaukQiVFI=^K)1rixza&B!)G33EsC+P!oeh?Yb}=prg-9jjkCqUU6r&ts9T~<9EX<4 zICOM5L|Y+h8Z1i&8leZrk?fz0WW*&I724f6lLpv0Pd%tN&eP-QKAep1W14P?YD#RJ zi530hVlL@f!I#mg7Yh?-Ro^fX(VVO7nC2s++G>@7B)ea|-fD4r}M5A2PkP|C@=o zE3#eHKb02IKjqawUr74rbNXkLe>;5>PTfLM)uyA$G!#!8<*#6hfQ;uNzEbBdj;nv> zJx2fFqx2wHT2WO5{U54-NLf?mQ$_7kRAFe^R^b zW>7DfR+ zNJ0xFKxl!GP(u?!5kyKrP>Mi8C$w8bhoGXMC_SqJ0uL)b6)Z#rDUU84snP-{D53_W zC@=wX$F_1xKC8XwYYE}meJowr70T$r8;+{{x2P%ABtmFkOKo2V$kW{#E))j<+qC2OcNfNP%4aH9o--_&C(=oU{2FfP3sLC(rD1&v?le_ z8x9&YxM6B`lg2|ErlmD)&@in*!$A!Or)D>5nBAap;@@K^xx65gw<(eWo_kYKf;LBe=B64Mx^kZA(mroDfNwr$mr&tbZ;1RGx|c??W_AO z?-G1x3M_!#!MSVY%4@B+^7&s4?Vz>TDpGS9JaRec;?LsQY+ucoz*1_co*_Qu_#)oGzE8Dc4uR+DNN{polv1vac^as-;*0WC zSspFNsnL{eq`AGk4d>hpm0A)4(xbNV6*f!l;;45>~1W_T<>& zR#7mtxX!%DVJS|A)fJf~nU|!3x15$(jeY7Ns!RM@w~~6_?M2Gh1gs6?@|ys@cDuWJ!-Uw9yk*o44`6 z$(F}d$v7MJLRAzuo-6v3DuvVVn*yST8ONt{_fD})4Je+^+ZSw_VR_zET;eaEx0u6N z#C8(Kn2HG9F6aKCw8WVECvMm0{#9u?26*M|B*5!##{iF@0UpHH#w5j;$uSJrLXO%X z6IYz7Oz}bb6^nvWSX(MeyzOHKM4omys{&IfFo`hna8`BJi&BUrf(9ZmpQaFC%7a1* z;P&PlCN@eTUt>$;e4(Wcvs19hMQNk9^M;EoX+8)N+F4WCOiu#SC|-2hQppRy7vr9& zg7>Y(aLmM8nGyMx#_R)60^pr}(NaOh7Xe$zu(zJTqE&|Z^_eDh3ktYpei++Dnc^J| ztj9qL#)|LSp1;bHqT-|Z^G*fSVHYSqntzw>VQ&Eg?!YAb1|`r1@U?GSny3<>Hf?#~ zmXcwlx$5sNY}?M$S`MkiEoVb&6)btjlEqm34iekf-W%P8P*sqDS8fMiTh5wNu=rC; zb2Ce!1X!C=S=KhJF$H67Qg-k+*IDvZ0yI~* zQfN?z%ncB`-d0L@HY-gr}J9mNvxc#HINBT2}o$8QaMZ z^%@q#tL?JnYc+TB4ZAEIS#8P#-JQ1EGKi&7Fve5uo&2}mmQE^xs3Q?tPS&xyDl~EM zuqO$Uu34x=S~IL(m1Zm&6G~fS3oPGRZka^eoq9h;)_AodOgV;6XRC%<&c(p)9LknMUJBAM+XtpP(82(F#B#QPv< zeg=k~N}dGCLKRoL4oDa|%;hP4gitg^!A8H8>d8z4=_}8Q){~_$K~nS#0K`YFIHr;Sr^} z`?l=TqqND-mS*fb4^8zb1tgCs4Y*>-)YuOc9SxMQEHi;!rC>DB54-sNs}OVw0R~HI zcJBb*`BzISyHBamNxma1dAd@n3Z%2)udU^@8WAM zBQi{oSWmE~=Wq8l`PsOOCk9zFw6AyZ-zJUfsFm8mq1$ep|5{cIVW>Y@!C=k<3^kZB zi4KPJ2QEv)4@K)Ng-8`|hHKt%|khO)GHTsr>zenS)FGZ$(t2gevFl&9* zRv~Z?L4f4ZxZ8(Y%^K^epo`Vox!K`$*s~OjX72ed|2x9kDuNQ=B%=W@Jgx=uypq-& zHkOjPveh|epurq<{sr4R=4tQ;CZ>TST9tC-9_=_)R>?TS3p->?^9Ahbi^Q|H5U;jb*K`v7HKm+mwLhHe~^< zfQFdZ2?bL$^Fj(i1D^PnAF5z&pyFbjZrW^X$F5TXZ0A65u%h*4mB7P3jih~!e#_67 zv)AJ{)ntYeu% z;9&sWajjKV@~c_zY7=!klufeMWYfI3Pu|0qBv}VWOeQ6A)?84dy0x8&%_9Y5+Pnb3 zUejh^h8Ysd%rlmoORJ4HR29nuZ?l3kjhXBhUJ(SPXU7g<## zOW|+Io+t194&f%*I}!Oh=Plc%e9=9X!E6Vzk8ovdA&1qh>*HF`cDeO?bDP}yy$%V( zOYq#Wm1gcBB?R9Td?UWP`N1Bb8(t@gPkC0KsfY%(d1GLhb`LG0Zy?RBYc1vmlFZ{q zQ2F}akphx!_fg(D&g*0C%2^w0EYJG3N|}Ppde&N+x%ytYl~jGN*h(72ExRU#@ox34 z7q!lNdBX$=*2qu!hPw6HB)7d zN>%c7X5D?V9e`49BZ~wCZl^*oU~H#Wg@v2gPOZF`Y^VC@lX5@?xBk#Sn`d{lPE$Kl z{3c2DC#-L?rBrFL0onC+0s+g3J(4*u6@RA`n&8v?vEvn@c~K|p0`?i<&T&8TlYR2W z#)tbjKCa#Ew}_|N9*Tw=nmhN&4b79Z1Q|eyd|aEB;D)B45gVGo8XjCv$WIv7ot4;6 zA{06Qt#d9(OOP{^Am@s-1UU;Doilv=G?u3}7~73CqG-rEZNF5yEiFOTP=c(x(-LGY zXmr;2>iVY66ML{6iiWI*>8vNv5>pRrPq=oAudcsH3y`xQ(K+K&;XXW_vw9y__IIQB z(xC@C3r_;meV#be zT0zA}jqvPxSBme_X#8MUVS3j&GB1?z2c>L-SQe#nsfDXNh04Rm!E$n{*cdMeO{45^ z7kILO;4U!4z3JHS5xns0nE?fphgqLCu{S6>Zpbb^AU9+e(-PbQPwlAH)jm4FGm;!N z*(bCZ_hUaiU`)$QU-9$vt&Jj}eU!-2&l|wb-)Div>k2DQ^7{q z-lg=ydnzK*kC_f@SVcFaH$oudphxVh*vRAnx0X}EcrJdy0lA=@dqCb{**(shZesN* zL-cCOLFv^LT4H$h@q^N<9ceLowcSC(t6GnPa+m!d-Krn21&O%Hu1GZeI)X|ZSNHqtIHJ_)_0h1zG4zRhIi4 z%$rmY`Vt7Dxc`q2m96$ z!$%Q`;o}K`D~|KbfqdzLiBYP8B8Kv(KVFBOpn72lDLm3*`{ zR$Tp=d_ZP#CcwBSuKt7{CZUfbZ-{`nM&2#vG2682hvh}SniLl;RP8YFVg18Cd^mrO zwXv1}48$9X6)6K)0_$%mmOCtU3pwo84XPW*wFz$;*@qYxp9q;UZZ>9}@&Jk zViQ+LQTG80t(ASyuU=?X`MucwhamMMdSq2wXIA(S^po?g>0Y7} zd11cQ!LC09J$6ir>KNZ+^q6_ph#5?#ZvN_t@Nha=#|tTRNkgI=E~IpcP5KTXco(I* z_=R^-s(&ZnarjakoySWOu#AWA&a+|M@ut=8W67Sf1eVaP1OwM{0GI5|2?WY;$v)$e zmh2sQ%7@kvzHh1Z9riTgE|=^*zLQJ#uHTU*`&f#GOVph2dz$4p}utqNuu2lNar z=1LvItt9JDS>oB~{vTTVvT+n_bZO%$SafOHxFd44?n%&#&Gv=c@gr*;l{u~?#|m7! zTK7_`;K4`MKoeU@nHqY1K*6Zj$|HQkC)Q+@0H<%bTwhNK#Mr9=0W8<+s07%V?xVOa z=5MUEw(!E$SL)|{5#UTkQ6IIzrTR5W;L>L5XRuUP2(Z4VKeG;F=A$IqT`Dd69Ja|6 z0uS2;${tU#t#M#Gk@Cbrxsrh3gaHCyEY%C1TW8&4Vl5~pP7~9Q%4uRcEip#n%%gG? z?m>%j6z+PI%rl-nD%W$+I6Rl>Mu6zcbdZRXMMa`9@wZV)I9UV&oVh6kICJxa=<9R^ zjJ`6~>2oN1oVqF4IJ9rtV0}4)g5mJwkdG30?l*A2^eqnt`s9Y9bL5h^(Ylu@U>qeI z9hI}d`e69G!&3^r+GO2qVp}O!bj&8*F`H83+) zsKQlk=uE5f@LmCBc>G~lrXQr(=s0isb%(8$-Sj9Ld+!UB)Q{-Qb%D_;>6ir_YO@;; zL0WjMTa=p=ZFlSltPX;XlSmh~V~WBvj#`(wsZiGyJKF{DgU!CK&B{_zKMLPCX052w zw>)mGAG|nHzP>r;I2^aH{SbU=p0IjUe8dUZGi~t@q}@(ht1Bwts=4b!P(Ja!wT_z- zM@`JRWKmK-K7Qhq^#wO6+U@UFw$aQ+N&T2id|Aa!icNC(F?TPG@1J0jg;Q3dMVc1! z>@ZtJwvZNJj^)GSGRN`}Ey1?~n z1UPe12t=2GIhOOs^&HDZN{AYsqZK&D7j7mpk8lwV?jpCq;GLgdND4n;1WY^pY zm!qA8F1Q?hQvAZ@=#wY>E=T`+**f0Gax~{B>r^&`RtuM-Sp=dBp7Z=8El1n)*4!G% zfBPAhzmo}fxf~sTLM}(`C&+SiAw|PA*xVCx4Yrb&;2I1{aC!F$Ey0DDpb-l(VC`Ct zvRxDlId9WBAEPD68A_1z53~e13mTm>F7bRAEys33UE(#At2>G+S9kqRc&_fkPlDxf zbr*e7U)_Cq&DtW~CKREoyZ%(OsO#1rSp`Ar$}eDtg&Cx(6pYjS3Mb`q%afoNZ&B5T z=f_=WcnU&6gVjLi{O3v*bG>N9gX=@kWvOq-9W zZP<)b2yo5PMc~r)pdt%D_VD4K)}|&lR$(emzoOxCDHts>_9S0=$2!uBpck9v3wO(1 z>rxfhsK}d?04oB_qwZO&_#nu-2T8L3dJ>pHZ61}ZC8`u2Ro9nmO4V^w^;^mhS86*2 z1bZ8ZUwn1(y9d_hCiWx6#M$5ZlX9hYo|d?#fOWOMPRf+~;XfJ9snC=!i1V1@5V=;M$B1h^nj2yg)Kgy<_Z1&n?&R%(qXdmI52Y@8S7 z1=?O<3fO3Z9Vk7{85BgMKOJO?_CfF7QRS1H7;RHUM0(7GDr|8WI(t$ML#Iy4&D1L) zws;epMioMrPWoQDbP_EwT)NC#2C7+pH=d*af!9>%4Sauxv+(WQz+!=;~7N$64_ zK$j{6=u%IJzQ$9)hD&jcx1X{{mnzt3Qb$SKV5Wei9K)Lm7^A`MO?Leu zn4n7)Cg{@f-@9FkGm8`8TCsVv^Q4?vY=cH7HgA$nkwyV6ylc1sxEeU_-LyU>_ioxy zRN+?BV|>fww&wC-lg_8))Q~n*F1Bt=%>-6F&#T(A4l;L*KJMKcQv-PE%$CkK|CAGM zI_1_6H*h9Wq1XfEQU%53em<_wjKG57akf89eDm`?Ll>vylq#59&So;P1(X^bsGlN! z?Uan;*J!a3$M2q!ar{0l#tOepD*UOea0IQee$>P0ne^ANK;TCeZJ#nlphqXHqrOaq zVw&_yyzLCzPr*i~ag2g-_}PDoPp@pN?t=igdVcanU{A2UqY`-N7Asq$w{EKvZ3V2v zX%a&i{UH>BYLz%G)$+tmQ(>=v6oKE*VEnga=yE_~?(RWN-oJzo}ESIdcc*4D!Rb#W= z>;}2n4f0~Q{(pR}eMA-WNqDoV&hF%PaVSY|IxfC@#e+`b@v^=D(;qL}3ooF-<7ItD z3DzUTKTN!<5-R?gC652kgnx|3%LLkNM45%f=EC{GTw1&OBV@-KvvzBoQYvD}eoPg0I#|~ZeWSrM?W^h3`D#i9c_JtRt zgG&MewNG7~9`78(r_{5Bmlf=Ma0%jh0eRIzgzMl0eId_o8{dJiSUjaVJL=|q;I#4D z*-9hYcAwCVS-AMLD5-ixuY9YhHnG9}j74YZHB4 z(9<=|AE)_OjiH0{7SEd4T546!a7&IYl~p_A3IedOTW-P`KXOyta!YIF&+z%9Y^}@W z_>#Rj-S(#s*;w_*K_;nsM^6>_!P1RWP5xBqp{kJH+}6-%?WZ@lbx}3IY0F>DZCPvt z6^SbbFxTfTV2Yxc3;R*8+R-SHF9u|O7ZyjwoLXGdPm0y@KTZGxFtN za8y)V+q1+2+yllCWP;8dVdeM)EZujN2Yuh$Sv({ zL)kW}sI1n)=<4SEXJB)G*e?mZ^_wBV>>x#Q2j5zi#* z?GCm%K2*ruH?pI49V)$QObWZbQy-aoSSUtz}Jf#j`L%_2^uKRXR(WqcIaJe^yLW<$bPZ#qW_g^hofHrlF3I z2&#yFr%M6p-Rf(_?)~@-o2{R`&eg1otxkZs?OA!9tL<5No$J99wZeFd9=1YluGsesTBEPYOfV5xI51pgXj`;m2_blBs*`n+lip4opT2V*7SJI(M)ooHu|4Yk!RZgg}3OAfPD^P%U!7wqNvfOktr222r(T3@i& zX45O$;yEbf4#|37)%E zC5$f}X*;ZKIEOPSzHu4kl=Mjy&s-Vp->SQ0=;#xuPQ^9oI`IBzTRK}uO@+1j-m~JL z=>fAw517?!?KbusrF-P&_KR+?HGT}1#o-OuUE^$bwU|Oa`FC4u7FX!e-q6L-g?<`b zVj(s-Ir2vyjOqF)jja?g6J1p)ssq}tfq>AUVTH1>g%--j#$tQC%{oxJN3`7#lOaJq zBkStsFHI=PmmTRE&R68xV)%inwle&ly+;DCXtAa6)U*AG4=@E*dwSKXzV$j#vZDhVvug^lwT%< z^2qoetJn%k{D>AGtSvL-C?;>!ASJ9IXsWG>N!wY--}(cN-tMM?-NxJQ&v@TSK8}%Bk*DW_-hHW$Zi_(G7;0|kp#%J|cjL*tzx2XwJ!ehz86Q%mGTke z;WHr}mT_Kf{Rv%GJq2NGFxh;k*(Rcv=}#31)zJQz@%2tBjX zc0^;^MG~E8;QP9P?^8*JfnzU91DBw1xoTWxFMg9;CVj_^e==0nKw zDPoM1pOYwo*jzCKB40i%z%RudPYMlmdiEpOkWxg5@s~7m{XVN=1UwM&#>cii6MLUB z#f(l-#fsski`=osW@T?HrD8|)YYM?Vp|`=6BA=z;Vt`;iYyU-=&pJp6VV)xMS*E@J z6eZsSE#$OF^V6^Xfy{fK!5dnNOpl7|s7l3gTj{PE_@lnCZ3$qZKX?Xy;19BA38W<$ zCI`N@tzi`?SVV{^kejYSs$9Xxh{b2Q>r#A-SP+0m$gQX9#QUJY zSI(w-QfPyJ-~+bUvQ+}K)734uDr_z#Ksy1!$p1m+LD9*>+4^xsr8f9LTECN7#6BXYp(u5?$^Hu|HA`m z`8#Y)wR5`gE=#(!V?TKDI=p&1a3JsyUR4S|qY5t=yUSMA#LE6i z0vj2W`B7H43@t&4wZ66WWwj~TMc^S(e{D1JM|X9_%Vwn4(e0u517{`I_t@a#K_@E1 zBQUG`3(S`LVI#RWr9`DK?YDJeSrm*)_x_Q;a=`YqO5hPSwf%`2eb9ECO;C7>vtpJ* zuv*QdVC(@W{Kz8?+g?-&K(}iA$T3?YTR;g=Hy~*B9duuc1P|Tn_|Oge?UF}q4NPpc z!c-_X_NeVK_9+FUa;tyj!N+XNR02b}ZIl3&1A@%sw)9Gi1N8Ti#rLuB>Z2mlU~$YB zi7WpJ)UTe8`r#MGG(C)66O;d)v`sfL(TI_8o*1|3If z#GFKnzT_`^bICm)$!0^6$cUpqeF)NUKB7t!2ca`h1f;SiR224FK!BaKLV%sMCnOf$ zPPT1e3K%21=yq^z)}3+|4pI?uhF7o9)+U0|d%e>+m~wHy)2XsLciy(cY`-KQ>r{(S z3eF>`6pm+pT=lY?J10>ptY_k7 zKXF>`vO7-2!i4m=`o}>OQSo7pmzV-UkA+;8wZAQEZyJp*%69~YMbO0=e4A&$kOXe~ z&Gw#o;N>8m{drt@-uQQ0TW#27nIauQ6?f;JhWJz7c3GrI6L?W%^Jvor{@)^7Thh>4 z$qpg=vTSJClsDR}(=}Ur?d8idXE=uzyG76PCpuphz3sZKy+6@q_`%sMNCQ3KTbMDt z%OAFG+Q*k=vTcn|ssHsS^=nn?sT;O#KBan$uDT`qUlwoRrt?o;>JeHoOIklx z%tlZ&6gA{0nKH|zCCC6ujFj06v=~!bf>5NiK*zO7@Z@eckuqCG(UAWeI{y!83G#;$ zBW3m#EuLYrk1~0%KM-JFzz$QawM|C%6j{0dn83a~~6Aug`v?#i%_LE80&C zwvS-JKNIJn_U4}@{}@_={GkLdXH=yn$Xd`)!~7a*|AMukXvjKUXWfaGAZsW=!+acW ze}VO;#mHX}>imsY1FRGc`H#{0Pp2iwA4-6KbM`7NLDqssXN_q}Ke211DH#~nD@{qM zWSa6ibe--rrJ#{%%Jo74_7lGxX>T1LD!?>Nd4n`m`NcNe?B1ei{RofzDJ?e$bCnw@ zZ?P)KFSjnN;P+TZiisVhWwb^WG87_NZg&bD0 zleNlM_<-{EOqS?L9Bs(fFT2NI5$m!xF$5C?;vDM$)S!aBh^3P<{Gch}qJO@pq2v-v zFbys+9Vj;;Gu}(IqBmxDdlPz&bE;kfg4#e2EpDIi`#0?c%uW$;ia+j(oZ^q8CC2>e zr7Lp&G@BOV{AuPDKl7)BSLFO@{m(M7Yv^BE+8spVv|SO2({@h?+&rjaZ^{%f#?G3f z_OWa&)k(yTiimSVJoK;7OrDTf{z6Ur z7^Z*?GnM&;v;;Jhf{11ct_=q+6fn|94jUiDht#&Gv+Dm3lVtl)l^)G}z%aA8Y+F#j zj=hG7JxO^96Pr5l?t|8pqSp?5V2ihV7S7&S-mu9&JCqK7_ae7Pd3B9CN{-1}5r;VH`4nhFHXw!ewJ4P#e5LsmgVv*Am83fM4vrH7!$ zoL>FAB!c0s_o(CqE57NH6${%ZI&tdETfnHC&7I@H)Zg2ln zJ9xEV*yDE1#18)h13ifhoJ}r5Q-JTl>+hbKx{~odEl>binvC}M3zm9U3mjI$@&kf zjsnIaZ6Qt>nqe}{Gj|NES|-Pr#u(a)#u(b3kXSytJ4|>KFgEa#LJ$2Dh9j>OZ0TV? zZemNR%IK2Ub(g$OOQ1uo&6AR|Dw)?nWivjgmB>D&<>-@-|EZ!Iq))Jp{p(~^Bkd$b zh8YM(r>KJ6&p{lf^3W+jfc=9)Am=ArO`-hAGxo~brC<5YXY5tkPm~(9g{=|)5p>;% zpol*9>i(3K=^QgCz}GJBP==511G9;c-$;~Wza(qsiCniYAeVngKZ`fU!X=RvLtyWDLr-FJ_-nJ+V=I@|*0Z zKA|Nz%h(Ae;_2Dlv;^z6-Cy0lGwO!>0Y+m_lPv+HVM|b@xm&`|R1~%ZAi$QO5MWEN zEDlQ2?)}EQ4+Z-_poFgeNxSP$&(PmJ`li%w;k4Zv+M*{E;phoZ2z?_(DHDS_zL8Sn zcaOHi6g+$*MS%!MYXALBj<7J=;7#UXFk=)qnR{K48TcNs6cIO>`%><>T6{)8T&qRg zA8`II_XoyPT}yF*oM55T4b;Kg&xrO;$HigIyp5tv5s^Gob)v}b;I z>nC;y_&2YUt&0z-YR2ZkR>~227kzVJ69t3uV>xaPC}3k;J^s5KS5HzZtmIKYmAq(F z688p-m~ALyR*{5z0}4d=i5D)hzo>yTT(@i^=z?C~5qRHjZ)%P%f@{(npD2evR?gMR zY0*XUo=k-z5+LpnE?b1%2plH9^_IOduhi2PjU#FVrl-Us`(5F)M?CTS?(sY;U~m-a zPMS#dV~RuwHQ}idfnnaIQAI|!JbtO9P;@sEAoxBkrpsyai$s}`F7GVrg6Z-u;uogN zyFfktq{|nLw-52klsD(CCfKL5VIF4D6Xk;lSXW_=^N|je*5&p7cdryLdva0*et4q2 z1#=P+9JA#-s<7j<7&E4VP-IL&IA%=!=x=09#{&zmj47qUjH$T6w8s8q zl)#p`(!gu*YkUzukY`VccL*@el@6qe!I93Cf{runWi=Kqs9gCxT zevRWL6K?{zWYU5q`69UWg8i5e2}sby7s0$2?Qi-f2<2HX*&DDYd{O=OlD)G^1$oWR zJauldKJ5ZoUp)*%XWL7%5GoN*8KuvLS`DILv>Vnchl0^=gRb$zFWX;J2{7-PEpX9C zdX85Sg$c-6l${t-!eNLBP5Sb0$3EP<`+}_Go_K>ag-W?j1-jW)cx{ zsBTFhy3m|%f5@Tw&O7$gY#2e%uY&xcUj_Mt!$2I%Gg}OJf=%;6n`EHjjgfpWj0FY; zj`<%`3>>#t8yG9i6?;1`5q;2-dZ z-2Q&;k72{uU5bYMZ|nR+ZxF{Je<%_B^KTBT!s2KtvKMqZdwF4ma3;n!<`q2v!E0VY zU8G+a0lw~?SV1Fa7wv@tJ^tWz*V@zKy9qFzT{I)Yr#AZ`W986~3 zkb}ugT4F4Qmfetxq2;s~d#NRS?PM04KcuWf~6FXL%38prO>I5VVi%ziGxYj51-W47B9*%B|A+@H*Mh|KA?x>hZ1v;vn*e*RB;1*V8Zhj>C_ zd7Yj1PAa0|kgZfFbci=SIz#~rhiH9o%IuIUTCKb7Ke3-EKXk|sxk?^y@gt>Kn$O{xKUzd7?)~-I7gY6fMD>2upmcO6KQp!Rr(8trFQxT8=K6am!B!GFQ3; z+laN|RK+Ly=>w38K2fE*H+kQo!Z7&?1lZ>&1n3k`NGv~lk~Lup*a-1WlruU-K}4s# zaSXQH6)@7{-ti$%`WS(@xP*Sv-rdC_BlM2K2)#4nmb5R%-U$9Zpa0|h#PW^ z5^$RYCXU7?0dbASm`JUBTP{)(DX#F2DV}!^b@E}#Mr|>pYIF|zn}v#`3FqycDG+pgiwkh}W)+o*fukTA{#L*^SPdig>*cne zd!?kz!*HcU=aIzY#!Bg!PzF~@$HgyPDILGROVMN+o!Mxgu7fM`H+`$|F&EtbqmT0=JUpPwy>B#K^NC72GDxs{Pk*kEh z;+OdI#YH&{B6#7mKiA?RzuKeX?~8iV6~oWe5O~ELU;oGw3|#euhS-@;8x~c}*PdK< z{|#oE{V89MbDQI68Lk+{3J6^>c#-onMbNgV{sX0+)1#CH-LKn!H?dd#fl8m;Q!0)t zl;xBN``Od9!{FH-W8SThp{u zfZAwpfd56p@HHw71Md|9aRnX@#vlA82jdSZE)Gxc`LWd(hOKZgUM2AK!FW04f`joI zXO|#UTqX=(`Ag0hKt&vjFHizh@f=mr*xkHM5sk6<4+=)>;aIGI-BF>1-;rZ+#2pe& zSlLiMzZG<}zTahtyQ4%$ywPmR$OXM34!1ZJ2)eI`SmB(sg6R!(p|}F2_HsC&(r%V` z%@|O-idx`++D-hz0kzv5KLhG;-XOy9s*eFRxFmo_P=go)>JS3fRhaW~@dwoIr5uOZ zc*0W-qduhM!cF8)S9FYErS1~rxCqL{J6`rda4_CsV~IWp z3YJxJz$-M0I=F9VR7@Y^m5K?w6ug$;7;R!rDOV4h==lqU6bJe)lt^@D;hh8o``cXJ zy`Mwh^24my2#SnD+K{_)NE<>+jLvJyUDnhAyRQ!=04ql}3&dnXkVyRr7FK_9X#FB^zInetMnp5qb=Rn__(&2i!$vwGVZg5YI z^iO$Vbdwn3V;~8+`g+-qG-J500c^a6drBpT`-pqSa33XT5iLWO9 zpksU~0dSce$9Q;pFpEF`e2*dQMOuc#du7{@;tcP^>SCe%Jmu>##xJI2IG!yM5IV+F z@`AOGJJL0_>K~}|0hCh7(F37)Jr4aZ>K1aZI~J%a-qaXxqV1V!8XdgyAC} zYas%}Sokg#h0(W4KwQx$U;4O@;~?KN-+>Q;pp`cHv(i4pN;m|r2WouegG$075I^wo z`F%MCuDUPBKu`?Fz&jKj6}wFpGgi8#9*{^f2EuR(MvLJQduaQFip2N``f0zY@76`kgjvPZUx!xFvkb+Nq&PfOs}ZZ4kIzjkvGKAQtyyJ=++ zoX3cNriw>bCc!_(H*Q4XY%CyOw?SmgOcw!H{HBfgf#0o4izQBQmz zRH&EZ5dT~kH|X&;et&U36i=C^i?bYfF66Sv(PHj*pjd(7A~r&Fo28*6+&3&QL>LLa zE3==kbPnvu3-%|cvA2a0&~9%%Fup6Zl0czcG^9C$i$7Dq@52VWLi|NMZzRWYYi zv{40pkoo?B=)@}WgMb=KMd}94`4obBv|~uzTf`hjnI5{IKF~u~V3*Fh+#u&qfqoPI zvFEG>zf4_(klFT}a`;zGEXzTGP?-`rTcC;W8#aQUX;Hrk-#^aLRf~t0<@-!e<(m^K zL}}$q@RgrU%rx(XiYF|dk`^M=fgpKPetf8*)$tf>ULsfzl13%?`6GEJ)) zayUX^%+o&alE72!j=iim5y;ajP3g>w9G2qDpCA<4@xpx*N-`>ncVF~;%sQtdNMpmP zq%9vzO62o``Udj!@s5!JRw(10pZc&Fvs0|K2c``%jmuvRS>`uAzfUw3jJ;%f1OCbA zKH>cI1jjRFh6z$S2?L3|!$il~2r4?57bZt+W{aqtsLx($$BXJjJZBap&??IC*Iw1O zo8N}NGR~ALhu}?992sgQ)()81rIMFaTK!<2HdjmG?@V=Mn705kamfOI1Wt3bW;>`3 zre~&f(Y8X+^qJIxXD+K4R9ci`b;4xZ-Bf~SeCEuE-9X6n7|9t{g3phhP=SvtbflQi z>yotdCHQ&(uuFu3qo9jE1?dl0oO=jCrWuZx%z>t0{>ltT8y0K=MX&S9_lD#zBQA4E=5lJkkZ$x=puIbB;T3WyYQE28^{IvwUS~idy^kpaen}BHrLUKQSRK@;iYQ4>xWtc_9bPG zei3}ne5fVzmtJu^$MgQHl~ifbr|bW#HDurVq+L7TQC_9+Xqftxi<%*rpC6mlnq5#B z{ywcsWd%u}>KdU~p09ngM|45NLdQZ)D>8}hz9LUu6WJ)v58ZoV`3^1OJ`tlEy2{wEHF=_4b7FjOxZc;zz%DPV2^_ew!3ikhRpY%oLGHr0Uh0zE%5x^(Jr` zKNGfTFPZ^eRO^CygsVmZk{uCQj!{mYN>rDgENYL0U?sB({j^oH%Ww{(;hYn(UAd4i5_CbL(0| zi#JJ^!aTq1_V)X=gNUTJ31&J=Ff9@$-*4>uax-;8Eu%bl?xxnTt6?7?FR$9HO1n zcvXj_(a&x|6jpJfOAEF`*Xdjht&9VuILxk1jE3$%; zO?|laqN6@fxL>w>*Ioog7dGdWVh00JQ!4VxUpV%#Hz}R9aN<*1zL}dgI2y6{ zX~~wKCSl3>br2ZqXbGBX^QWdZaGyt*DnH#+URz*>yFIY+b%0_bk3DALy(a~Rso&&S zelD2xW|t`%DsfR);wCLY22cV@#PCQ{L;_F#1+p42r!ka(_smr#V)#?*9bH((01}ia zqHKVyXKh-7BA~=Af~C`9w;T;{AU?4k^S^PdX5A?o^6!HD8;8>ZWDfX6%aCbWN<_$ zww~gmkOE!EZd!supag_8XUAy?@=v|lz*Pm)0@;2npN1y*3&!r-9kWZl2#z)q)Njh~ zgwW^}<4&TMX@(T~_^wZnNY6=)C{ZFukjWf%U?BVwf8v(3UZj6(wl{;nv2TDzqxN7u z1VEn}2XpHerWAgEhodJ86YN}5W?T+U-wCUPGJ(PT)i`r)7E8-=_{!f%poynLIZyA(335AUXnSDKiC@)Q*iz}MkLR+b5%kI>%k3hkY=97B7nAHj$GgmznPNg%)WUT%3+7Pze@z6c?# zv2q6#Q)}?-7beyAun#6eUj5#2H{vEy3UdTa_}){F+3X&H%gHPz3IJWs(H}eG_{l}%OC^8`g_9d*sMftSb=1i+6H{NU-VGQ9gaM;xmM zf4Z$I0$QsRBqyg?6&eJU7HVR!>WjXb@PH6x3$!G7pcQG^2N$0I~3X++DZeC0~ z`(&!`VRZChT6EqqP#YV>yI+9xpT&#UXrH_y<S%JKlze!>B^oQ1`=q3eiya zlM=n5;;ri|aIfeWM&A(_NObd6(Zm$EsI4ho@N?bbgAOZWa!SGdTaGR!_9j&sE1R!ZHlLK}mHqun zzdq(qgQ2$8$VB!zL6Egw^G~(iC~F%LC^`szb^zVYm8x}2|0UH0@mO6dURGCupl^HL zg|lS}7-IvkQC^_hVQeUfNdMa35E}{@t+mkGT72U@M*#~CA@PRBGKa{>Fq0B$tjZy} zu@VUa8cT~0@zaQsfhUB84?}6?kVbDsAR8@3WlKvb5UlAmle0Nfz+kB^tQ*w|jilfp z>8qNvaRdd!Vr+X2czIuQ)@Iq1fwkSVE~*e@fOn551CA}QM2H+0paqI}3#3}NMcam$H|L1bB78@ITLJ5SPs@yC#M4=5fx` z0h6KbJaKApWj2*s0W)9|L;b|+OQDzni%~k!67bj+K0ijDU8=SQld9HDxGC%fA1?QLSBT5GmC>KOu zP^bt%GvM*E@0wp!2|!S1Zdupw(dw|;P|QfcjSl5otj>! zw|0f8>zg&4@OfRcpK}LY!D`ccSJ4cx(F+wgI$_KBdhSd zc$UB>5;zw_o@Nc>^PbGD>x<&x7IQeyG>?yAulORvNk0`NCjI|H(2q4LlryjkdSr^9lq&ge3byOMj)%OBIef61M zwKcl0&ZarnNBllWnpW|Zt-vivWGdR~_2^-O7Dyr@c>0G`*# zd0eXz&RgDuP@gu^iMd^2eNz(87~?Cs)*u{ve%1PazmePH(XF2t&NKQsEATtI9>VYe z?Zcs2-^g)hY8Ap|tC-rf{>1lq* z>1-nu^S1Gt#qe44qb;1VCT&4D|FxyF30p*ULnF`gW8}Ad8M$&R=g>#$iROg!O8^5UAxN(N_bGD7*{VUzLX^XTNi1D`AxSuPB73^s%I)z`t`H6P0 zF%>qRMC8wYjCI?Ou^RErr^m>vjvmdEBL~LrIjGrIx?4g}QtJUM> zJ31$_cxFVVJV5lwgI{?j2S1SGZMIZr?LeNjq;Vj3baHMDXb0l?p>K1mv&X3-*rT># zex`GoP!ZVBR2#J=3+B&x_VMBT_0ErI!p9i4Z1xyc3H#MS0z&)M=6YSznQZNikDAx8 zTuS$^M51Ol8p067>W#)L; zGNg34KC?9F)QKIZV4NNUB0uzee4HjOPt-?lEUa1oKjt%r)3xssWmCpg$9i@nu5j zAfA3C6ZVVXW3ruztRGbbO*q}tguV5;^@@<)LQ&aHgV;h!_sAxMHFITco*~EEhHIh| z!uZESoEHPW2FbkSxlYM!1JwbI_@zH1?(k*A^~0R~9?6KGNAPckJFBwKsUm2^69Pix zaIIdskI{(r_{I^=QS2(E!{&eR@lG|_4GI>`U%MK?4=tJid3aj#@3j7(4aK~zK5p04 zFuwektQcN2%K4=^sbnx8cQva9s{tqM)E=N}Nk2V68hnJp_xRR&JIpoq{hAf^=pAuo zP;CB9a}@?Z48_nBZ3TpSqGCzeRLhl=;XLn_c?5fg()~N(+|!Ul4O<|x4yJ%A6!167Wa4o2k4LDEO>*vGVWmh|fsbl&ap0(H z5CH=Mo{*pWi0Q-DHQ*Z>`<7ba8P_S!11yn<;CM(SzLY#vRIZdbb`+Z*n$?Uo^}=eT zU}duI6hofOF)*xia%1^`JZCl=NzqW;&{Fc`(0E#c44?$h#LT26kg%`G#R(}5it)^i z)H87h|I!lV4<*R|Yg&T*SG23t*5tvy#Z2dm>^q8z><^UU^PhJ% z4yOgk9SV^9@3h3w9*SMsgLTHUkVp~%$T=WV8YY&OAZsW=*41bUvMxN)sjVr}%^A-k zwRqX-;HAEjt1aZ*G?LGs1v*o5WDEt!xDPEcbcSNL&b4y8$NC7*oU)}j96_4JldA+& zGU+FeD4v+TCTd_@IC<197Ec`E*`qumGEJO9niUC)!3oja@|v?jrLw|$w1Jw5IfDzf zyypDb#O6_T-8tabDHQvGd69g;eCI4L{6vn!;%Z+6`3s!Qya;5Hd4n(f7Zy6V_`%=r z3;(Z0kdsm>00!#J^NN}jJ0}e-ycBzt2!r!Gli9BX!13tL6#>DcJK!`px-+6+5_i@! zv5+Vdis1dOrYN}s89)l;{#gEha<}u_+hM_T?wcBAc%2vvY77zv}b~qDw zz2lCgh*?6Ydu#UE#u^Q^a#3;%tQ=v_aSLqC3#_5mHj2;q(3!;A(_-BD&fwX{{qB5s z1Es~zHxsc=b7}!~1q3Jp}o4|8XXGlk??fYc00vpXuRHQdyq0V@zo;`a~YtKA<5x^w0EC z{f~01sr0y`ZW7LEquqx-N^JFpf1F#$Zc%m+$z8PTdMIBfB{Gx?Ui&1MnamNTVIllY zjVi2EY0?VZ0d0aj=4oHK({iP8hu6dX7~jFAWqb!yju_vC2Wv5YaLKevT3TstIy0#T;M z6UqybE3AND+I}KALH4$Ex%g z)4#i8S{$`1`1CVpj>c|Leln<`dg7GTbyA|AU)Z$HdCFWeTE;XVcgdrF)>yQkWmWlT zzwsOrE#o;PnzRs%XLL{fXz8AYv{;0)mg-N~W6|U)IS z`P`^F8nDK2Q>sJ44O)>H3#cbC+&p{>=Nu{*4B6zItFhHoFO0gZ4+5I8PbpYLof#1M ztq&lHtWbd8s`IYVxpq@DU$NEMknN&`(C;r@}3tD!|6oQ$AIg zyVKc5RRPU*e<$oQG1%I6CmwLp2s+~ys$wM35sGvY0FJ5RA{l&82HnEy#Y z16GGZQBt)s{OGrE6hgsA)mjJTRAZ0%BG|dd+06$59#6~kMX+nHvx65w7dFTjF4kMo z#-rZ)V_-_X@w}*b(82^?ggZ@7jOs&kLGS@*854VzO2lq#b{W}?%_b#!Hav}Gj)xt4%Gar}nQzBonrcD$-a@=`@Re_~~yJ?`qD#b{LRU#$2!|>eP{?TwS zyYPauyVfj5x~>JmB(6)3@#DJ3fzG$<8pcT1HKZI}ld9V00WpxU6EC@E(Q@?Nv;KtT zKy}2SNE#<_v@#~Cjt0`ud5Sc{d0+^19yNq?o&rJZ<9qE2*wqEwOpExI=-fsupXzLM z!3(6~-X~pF@Wi-WkCl$-fJqOfKS`#@#pbO*Fb*oj$U~E^nRMoP=O=78RSBKHU3dO= zQsUeB=XK{_B$&kc=luEOSHI3br91x=8hsW`7b-%)ZSpL`zXC)R8N16$qu=cLS@f*(O9$c)o zT2NC}a++!8y!5&z&X=O^aeIQ?eg1WJL?=!o+d z`f)ynez=<0RZgQZ$M5Z|%4F`Hlmj#R5;>rd-JCmIRR|g-ol5Jdo2e!^l^z<9JDmlTrI9M$ z*(m>PPy@y&ScFc5Ky*FS(U{Mu71*TQ%tbR6O!t!}~M zpxoJktg)vwt$tY^Sur=B)u$ymC&RT^M+z3|34-1cxgAvkP@^p`+)^@(Sgx+rC8aDs zls+k?pjpY>AsQP@`JqE``81}iTt1DX#sA0Ja|TvbEX_HWB#>+%Bq5=t(E|xd=$!fN(2SETAYsghfQkvtt1Sja^XjiHd-tPahVrKT!k=&+a!nyZ4^iThI@l zKjLL(r|j%(o7vstUp^Rf_=PTx9>E(pcY{zHxPaYL8>z>%2K?Q4$5lZZ;1+U`xuJpF zLv9SM!TK;7+!;~>v4TmoTE(vcq=?%`+*K#qY}J70H*^d#n>WDgjMY0D zI_@=ihtemSaC>7%A*%_mborMx=ub5oN(Zb#G5)P)5{3H8pKanOU|RW5{+A=${WtW# zY<@V!v4rJOb})j`YUe6{my-m@WRs=Mr2Yp(@*l-zg(sp7`<0@R3!r^m7K$We2&35V1r{R7Sk}hT)R$zWqc?d$?_V>$dN_`J~))`&30U7c272F1FCF0A{aA$;|M@z`bG-~u5!R~xXM|a zHs_Y*%2)gLMS1(2AU4yHodMDF6}pWbd1r#xEzJABP2-c@9UItCTF}1)WrHXfO@?pJYGBK~%HZh+bg!wD4C_6maTxcS8>-&I zy;7}~RUcTQQlofvFGs$vAGTfp#ebDJ;X_L~@s?1x_S)i(fdA z+}$|bM6x>Hu`0yOQM@^#lEIr6mLFL2#ghcAT4mjaE1WM*ulXdBALkKk*h#`&o(wwP zSe^`ey|HyN=ZoLtOio2LiyXOZH6_4V2;{6U zf{eLFfU{8U#DdG7g?w%jrJjr!Mdacn^bZ1%lh6(U!I1-6M;tfVT;jN$Jxj~s9Q0%p z8KioWU}TU=oHntYY@!nM?+`o*O}zAxpe*H1S)4%m zsfiqpf1zj`mM(@9Rx?Eo$5fa+eFC!TiPI;+vM_tvBt>RVQ&T`oI`kW`nz#lQYWSt8 zpe$T#DKD1F1EYxyHweT~m?jV$Kpj5;b7Lrsnp=j#GzbpfjmE+5Lj&WO`8f0y@%+ku zkR;AtJI*(@P2XE_9XfJccepoyUkyl`hLt16-Z{ znoClpzb~O2t>J7(s&u?v6ph2#o#A9XDBDYyg{w=Dh0UeOBFzP=hyx9!R2HtLH3*t} z#ym$Wy&!I}@DR;glwLL$g&=*&;}HoV=&K%&XvaRIrNhv7tBx3=)8ptiDb+u^VQ_hG z6I>y}17gSBj=ttL_@`LhH%KGik4xqH0^*zS#I9@ehaEj;hcv!$k)s*wM9ZV~^U}if zmOg2rdduFNv}`jQY1HCAld_bH`%Qx*jWoHUt)C`Ww4gAq?dQ_csBlG~!u<3S$31Kn zEeI|x!^>xEGDq<|b8ZPSIHFjp1s&OV&DYXg$%zOijH*%*41L zQ_pNuWuo{iF2@{QKWs^lvP6Yt30&LL#fx0q@BL(QOnth>vln;L`p*@e7ys z??Dwq$B3Ty!a^q~D0JVBr4ECAM-75Y`||~k9z_JIoM_#hSG2O9%lA%7PvEDPJO0gT zrvp#l+5#8j5$SSeZ=_o*`;4GcDO#x#){U0HrF$o>M18*a8b>J`PK%*9c%%hhMeQ6z z5l9aRT>8(W7;riHkY~DF_)8`0^N+4|tY_ELlF0lTWZsG0Mlr}8Fu=V&_gwE7!*6`l zp}%%&0vb0KKK{FJ055u)azXypivJOcLH>Y2{wutl(%HW#T2z7KOP&ET8sF%c%+AxI zDC27-;}42K8Gu0<_!=q8APtE!@MZ**@l^!x7PO$nkbg#o+*EI_wjXQ@c}#wfne;35hKz0a_cAm#SUl_B3}pk$)&59PTBJ6-0sXc1dN<>0fO z9dC0yYp~lX97n}UZ&CzL99x#g`;3D*v~07ZvF)x5m4~~B78j$Wv5Oyi(GlW3)IAya zWr(`=Nk2su@${0ITcV;V=#ME!7TX(9}W4$ zZH_@Te})3Qq!^M!ztW;sMgAM6A`wkxMe5UvfC)preH5KwDI6uO`)vl#+78(HIJa{<9M1avFBqmjMSk!!HNv?O%TB3|;Eqm>Qv6Zi}&?v%$v zZSW}jL|PcEAYVW=$2JYK-k8x;ZlyFUa6HRCvZ-8Jj-)KDrRB1wa%s7OqH&t{h7-27 zsoW`3VREMovg(PQayA2F zinp=F(v^RBR8AfKD;a(WE?BMG7;jV6#Hy2j{e~pP^^&-VK}qGcqA$V{!71}(-sM3@ zx<({V5B(gL%75vCQmOkEG0lj>g-{T#TKK8N5{hTP>F8&61zY*=SmaU`!V}G`W^%)m zMKIbve_%7^n1e|Px#c-+k85Q#3*(m~n}zkuf@ab$3n)kQOKXci2l$FR7V~Hsbk2%! z5}i;LNM6*@9Hxf6WC0@4J%dH!_I`ac*%dYfNxM0mv^%6UMy1KF0J3mvFRCfF_WPU3 zt^H#`%=d+3{(R`F;I>|8ueSC7Y9{;FdqFbZ4kzOiDI-+>0uk81G;8_$m+%?fCsLo0 z+jCZc++XgjPK0bsLCfoV}&BHkPsODjvyl->qa1FJ!C^#WL<2Ws^p9te^}q#}z7 z!$^e&K{rbHr(?HX5Zw@u>3>P-G13rBzxEZ!gF3x*!{$CW6vON0R~`Rlu`P&GqZ8I{ zA)T-`!AK|M_;zlK7V0_JR-}M@4z^i~Fg}+DJjKap-D=|9Tr&-6)N`;P8*M~o%U-HM zgpD@80nZd^P&Cor>ju{3W8ZM}WTUBiXeX^S+PTg#$0(f%dONOFD_Y34>Kw|)zr-_V z$+`wFR+oT%LN8X+tOZ??T+mUCqH1jVDKbmf23sw%1#PwJoo_k@8f-h&3fpa~YPYQf zquTAyjYG$qkAuQuc6x%~WwRX!*K9AyW(zqx?WOGova#K$Y}sxa1Z{r)9cUa4j1BkE z_NSY()ut1J_)2^_3*RVv>bX+-N($n2+ofun28&}7_avT8W4e6zt~S_XP~R7>gQ zQ3Ru`g%5`}Ybl?@Zb9(!f#?i4L+=c+Q_2C3K?B_hcsJZg5fthrY>->ev#hbE5Do%V z5sr0x>jOuBrhzR(jihR!b87{W{?iW~hje;j8~9oYXd~ZQKR9f849rOwb?nqsM)8`% zs#hFo&49TIzV9PGkQz%j6Y33I&l$(Fv1^GI0H6MFIv-$*?8`O~xcJ(OIxo7mB{x2S z93mx?_pp8Yt44g;Cys$N?*V$bzq*fd@^?PtE^LF~zPGRC##V8H%L z6{RMD{ncPz^>s`~_7+ta_gBXS#J9h~lQE~4&3M>6*HW&1&Qk(0l^S1%aj##bdj$-k zc>ViJ%fHyCl%fCpg>eQOUA}UB9At|YKH5^oX=R)EwKWR#ALs?$k^+hT=tK%@M7_Oc-UrGI+w+@NT1)WLMlw zwi<}f`OZ-qOU1+5NWAa;^mlM=#X-g5W2ZndsTz2~`Re~V zK4&jcusB?qYRyXOU^1n|gURsF{!fm#4fX-0#rEI%m>F%p*NV6M6~?OfC>qBqye9Z9 z1&guD1_d{#M0O4$C}Kuy;)|lJU>^6oqf9R=YD|oyPHw*4N+wd?Y$cAhChRWhet*OxZ{4v8h(>Aa*To4)q z$Fz!DLN$j{E`H(W;MV+z=`4yJOwd7r#VG_S1B*a*(B{lwluQH`sX^44-~Iu*-BZ&! z(ze{ETWZ_L-fT7HZ|SzOHGd?+S-@6Obbyd{vimKSLX0>0t~O#9Aig|exs+-e>QeGh zEglQ&)JmqhU}@aO31>vljISq#B}|&o5mqKm;ACwK=Dbt{iwshjGk2yGc~Q6vFp?j;q5WkB=B*}-HNgTnL~9lhT_3uTS0qWFn`pRUWS@ug#Qu z|Fx7MnjC|n`!nT&08K7&mwS(j$S-ZRwoLZYFZ%snWG= zWbXO8HdgNWo}f~@v{Lo?%3tlJ?Af4VPeK!m?`^(DF__o{3???;qZn{9$jiQx*3W1o z6Pus}9x7c#N-1;LuWciT_Yd1TJNkxqT22n{^V$Rs?={*22OQpOwUxvB8(GfM)N6$Z zI@~OvGBLAR?ap>iH&~ot;OiIA;fC^8Yt6arq0rYVu`HJG#Y3Ad2mpt+n5F`PJ@wjZ zW1=(DVEMER*ssX!*;ek=dlHOquim_1zA=`UPjj|p;|W>@Hb%D%(;ue+N3mD0B}ja8 z03J6QjwDU^@m=Xz{LB<*V@9RQn1%+y@uGDn=QzC}E`O~=%?(sH+^+{Snb6q@8w^?y zV;S9`O~v8I&TVBKX*ig9op^rwXBEw1Q~fW<8w~nFdD7+!J7#A-$aMum)Mgm(hI^ zv!weZ5{$A8o{!7Tl2d7Wf+vCWc3EMZs3*{gxwMw3fzOF>E^U(~=h8Nmqg=j-W+aqT6ft%8U(F;Z9nJLOar5p z>t*@<4+BLV+R8vtQ}|Yon1$2e-{O4Q1GF|`7LK`BKxE&B&j&kO@|~S0?=W9dwSSqG z$J)OTuJ*^n)&4o8P^Z(Lq722dVe_Cmkw%u(_TDVNwzy{aofbxIe+ks~;48K`K4XaU z1s0#J`;PEb%O@RR>!+dEwk0-lh%|BE8aXijEl9;4lz#Q<&#w5bU3)H18P)i z6n7UnM=}bM-z$sBme%;ivIedh=s+#k49DZg#nh+sg|8)HB_l2|R)|XAn!zr9;hMn? zpS=k@pjHi+7~vDEL5I`$pyAFPY&A6nE*0=u+7$#0%!LbG@mk?{iIc7s+KzOVv#msq zTq|tOmTQGuv*ks_VWZ%Y`$vO{Jz^CTvw5thFyFBXR!EZ%FJ8)FCQlS!lJMUVp#|l1 z?#T|E&fgW{a5_JoEvNIWu`r!)5MVl;FC}WJJ0kxY>uhhZF9||^MdC`PbD!a2*=K|= zPUpW9fZVD4A|Tl1H)P{+65cz{d5|?|2Vmal!#Ltp;i(MHPkj`sO}uNSw9rA`E48F3Uk z5sRtGCN76~H11JL#!iYfa-@2{wezcov&~3a8r3Ti5UL(;JSN1PY!uI}gvA*J z$*HDXnW7}eZwj1h=pZ7e8VKt}CuxJ3Wf`1no)`7Nx#pnwg>%h8sAJ$r(|lR}8Ff0-kQji9U}2IP5=ff}^>Yl=JJB z!GeOeyZ>c`dt>v78d1F7!;Ro(E&+)gWoy2(EV8YcpDXt11w8kU2GPYmNf{+>-2<2J zMfe5!{MnKH`SF#oJey3oi?7hgH~Eu72(?ej<#{cZ!me~`|8xAEh*x{`V2jK~J&u3ULwdi#vX;?zlk zKlP7pM4)=i0KW~io4{oV7{3klC1P{XP8`B#=|XlNm4;`0 zADSK6(1?AFz@zx_Gx6#C=>8$i*jofH+#;Rl&hFEU_c<`69`vnU%aaprK+0zyfX}y3 z9;AX_P!?E0L9usEq%#CX^y5Q@vY!Jf%-3@H8#g(J=>!-=epQr3^Q$A*!8N?8dPus# z>g7Q}U+=_a3(9Ip!KfV+3`vwj-WZVFD^Ngxb zl5OylZ@AStfX$>N!*5*Ci>EJ&ubnJPF0sRr!y5Lo=I{p}TbY(8Kh|4zj~Nkf)uFD$ z4(AvCa37#*51LpM9GV|P=F z_y?TgodgWxL>1OObmgO57C-*Nkd;XxxZ5Ai<2cyd0cMAP>j@9nMI0gfho8dhyFc zR$QGD|1$jnr$uIfb>Dmsc+{==EhC`caBc=jL85oVcEWNMHiQ^F}S zS1Q7&BD~k#&cT1B$FgHXdgyxKW+tP(+#STVmrLT<_F@N!N33)=gLYN#NNFzbYbY4t zL(*Y; z5HW!7eE?GLCkbQq1_-oDU5*+O<{}>X%HL$+dU3Ja}A7Ly;ld>)w4RtuAT|v zMXLHJtt)tWkh*$eL=cb@>u6y;T&pG!PY@}e|>$lcGH;jN)yR5taiUzt4{P>B& zG1c!Ka!xatov`P)b(`5y2ArpMlmX{IUv%EhuA#+n3%9%@&-)k#zm>U-(pVKm%fatU z*t$ZQdZ!^tv^@wNm)R@J=qUDxQ`ugM#bxp7Um9ley^lpUjgN?ks?S-vvZmD<11JwvQMCrn za-%2~9m3a&Qz?ehWvq7NY`~Dj>IV%WgHZa1Z56= z=Ik63gcTMtuHz*?I;XK}iuKv%FZ^hKC+Q5YQCh3n0F8e1UJx49@=<>ggvOQwG`iA{ z6#dt(69FV)^utSgeE#kZ>rw`%52Iqj2hxU|JdU*U3j+w70|8rzS}&@ zP!=o-Ee~1_-D)C5qgw$62ZsuZu}lwW^ebl&8vP2;KEJ~EJ0Ca&Yqu&|7M*KdXX0Gj zDcW)_D1(YT6of{L0UC#?=P24|qrY&krxfcqDXmpUK%;w|4npUiaAp~b_*@Vc^#Wq_ zuHPv7uf5BsQe2mi-sMv%H3&^r$_l~~mDEtxotE+0E4)vEU~8!IHOVN-!?GKo(W$0V zG&+@!u##dlLUgL-!RYK6{lMTppMtR}iLdy=xq@+86n$!A7vfX*P_*S!PzHT!e-IiC z1!(lC!xZha(O>w~A;tPVN^4aS(CAZN1fg+w@KOI5ghs^xjZS6jO1$H*oyx~GnUV$T z)FKG2>C_|OTRY1%5EEe9YKrzd!e2p@Z^02f7GQpQU4Z%M#TV)ZWZ0_|K(ObuBntPSf{KYw5C({AT-fQxz!+A#%Hnc zZUu^2Zslu~sg#GMC7{u*Dk&P>%15}IVl+Z@t98L>@v&Z1q0oedl{oN`9AckfFYg$| z^UoHx>=qxtp?t{&l5k;Z-eOdA)zmmSX!rbg9H3N1?pF@|*X z2Qk(gu59zQZZd#+OIlQ6Dk!7}F@};=whChGOe~zsPEuVlRe;~CeV>9ws=z$iO@8QF zBY@^|KceLdB z+g;fSKL|(?gv<+7ItDcO^LAIO5E@{BxKno(Anrm{umZ##q#nTm;sPMF0>mN2ssOQO zstcZ_#Z3Y=3^Fo*{>P~4Y%*17L;I!0DSkq=+oy!;UfBJqg~bMQP*QA%McsMX4p%-~ zL@}0Ut)XB{LP0^Ev9)l#P9gM<_p1>t(=qeAE(Sj=m2?SpWX(Ukqy$;>$%^p$wTz26qoj|B(d7*j< zm`aM`#v`sr**MA$gE>cY3Ukd-Jw%_*A@0?vUgl~rR)(u3yN;qU!nO*fcMm>mv%ZInu+hN;x>J5s2Qr#8 zlx^V#CI=usqDj|VO_f}Nt=5H?6huYys%EZQNt&Vj{R4x^)l^#yLmm(iG(mYs`3}^@ z=B}0ody|%g*|Nxd1JoB^{dt38aEQ%a8P(GK9Q4@Y&0t?rG#cd7a0dA>Q}#!-w6*IACwo^%HD$R$GPA>f&H+!|Y2$SUt_>q-qa_~xWqEzA);|NJGC_Ges%d=gjx@?R)uNWH@r-Ly9>G>p zrNuC%7ex9$E2C0$ur*xY`ZwtDWTB=OM(AIYqn!Cl4|)9Z?U_**SvBQ{-oC%5^!EJ} zV|n{)J*BrFrD*i_Bhvc8-Tz;}QRGf^cN5+oZ<)WT?Ed??F#*nHr5~#q#ey|JkN*}V zV5$s~+k z^#HH;RlO%iuMes=dVQB(((AhgDFBhG@Cx(`sX&11TMD4-YYJGduYu9^HHhW<8W>$S z`-Owu*$k>Vy1rJ>a(xYKxxVvn(4*^X^yvC~!D+>fBIWwk&3n1(7;GD5h`zt2m-PKD z6l3}R-d@u8AEjvF`^F=eYJ+EhYiR!`!;kt(8)$%|eXs`T`zJxN^!<0J4#M~0I{GF2 z;B-ho2pIA$9dO78U92APldlK-5+wNIr3BaP{Wp4mB^Y}^Q01`)H0dpSKx*&6F4%}4 zTIdS#KuznAvICsol8w%<$+nzd1Ece65X<>BFgowP0j>dT2vr)LUn^)izXrCPf70Ke zN9Wh*h4UMmMDui&53Bpe{vLx}7uhPx6a9Z#Z|VQbD8};tO}(Z6bBad)-x#I^b^*h` zbba*!K@bkE-z0`IN7?B4PXbta{?oJodVX~n>4!tMe}L0l($VQb3(M(0=&gqRkAh^L z3M2DBA!P=P_?Arc_aJklzZ-p|zuWo*`um?@WXJXi)zw)86I=y;K1*GG6A1occemh8&UcZyd$FM4Qx4n%fCU7 zj<3<d@gH@<`5s9`Z=eK3MpRBRS)#2;2*g5fI;A7!OvZzv!x9^Jzio zEb4BKor1AK_{?2OJ!oZqm>zUXKK39z`dD??m62*~ z7}SeDRB9AIcG#82C`ca2nUyasF(%({2|SQP0|w-3juthx41*_f4vSjgiJX_kFFcX+ za(=iIInUH5XAt4K!{M_ryjxOva?mNA9`ISos0HjJY9r|7@`gn5DFRk4b%m!9-((jF zPkA!uyL^$}sm~A2t!%?;7J#5c5n+TknlXU{Xv{O6%a=zDLnvkcCSOMB-^uq!>EWnh zG9UK6Et;3U92I3YFA(wiQK{bu@fdefUx<8{=%YgQRTpiuSvFPV3eOvklSd8PP?i{U zU-?QD99HT{;po8_@frXsi-^}Cibe;%svwL5k0_8+KyyK29T$X%S7HwVqVaQ(%Aa{H zs;@2{M})SoM~z^!saP?h*aSt+vLTao3OpMf#GTd^BVpH5cG&w@3kddpXg=)y+m^T% zvO8!&oGLlg3Ibug&Ydp2ONb`Ib9Z|{BRqGvj}oDc9u8-tr$gFEoV!c3Th&m}RuC;t zDEdW%*>H^v8R~E?e?;O<;EpRr-0?)n`wS?LFf?<4p zz#9Mlr1aMKr-9KlA3V=G*^>K4@sifDIjkY&hNh|CH;nr<>x=GFM{}PVyxQM+2X8a3mgHddyo-O>x`Cj;0QQD)B{JriQ*TIfD`+M8v#46 zbcOg*3r}3-I>i=Ki&&#wB>^kX{9hbN9LqbecCBSM5$ZS=*`O}^#h?e zO@cRJ;yi>m+pmE!!AhL(rEGjP{2PgL^Pzsiar?@od1yIuI-b+lKOMsz#~kx`KXJWr zYAWcVPr~zv3qg`@qiY*`k7@_AQgeQMhbxnvpUiwF;#9}Mcf?~{H32vm1_hzP>WPKpYxKd9^bLW)r>Wuq#{|)jl-^bPljFyQWGy-Vvw+aa9b{s1JXj_s$GcyplH)z8NEiy$?WwL;;S3R+93KFLR&qRq zSd|>tN-;RJVv77T&_txjzo2Ne$tU4# zav`KmFhy?JMCGVKdOdO9Dp)!O(P|Iy1<_*Qmw!PIZZXw>i(o&7&EC}?AmgceyI>$K zlnxk316`~@TJ``HNXrQl-1bs}yM+{t!L(3g1mkB%X+h{GDt>l^g020d2FAXF@v}4F zLl{5%gp!HQV|;X}Cj4fAjG1VLlDodHH3=k5v}cG;M;EbM_gl)@i>&)==(Si2BgtvV!jQ2RA&^|xympH z*WkM{-S6?bue+jFh<7u}ueLu7A+lw++4tc8THAXH!QI54M{2;I2gRSg2K;$g{7EYYlQ+gPhhNmo>;? z4N|XJVsEG@QJb!QZSE1jP@DUNN~le;Uz=`zZ7RgCG4LW%^wPFAVX3_{ns(){ogH60 zud+*CslD5rZaFijcbYmauS@%`9j8v6)-kudOXnFK^YXfN=$O}`yZ9=8`lzeU3RJ{zYIp~`M6~K?Y+6zEI({SEFMb(y;ZLOavmWYWzfJr(&=~$a zDgOK?4gTO4Gv5=h{o>2u^TZo|_=v1WJmZA#&m9-9^xz9YQ@e=QMDWEK@u-CzUq2C+ zwhzb4_u>ye;BY|P%Ea5$Lps7QJd*rQKK#P4=bXOqOYFFo*bhkuD1tVhe4F6M4|N&Z zPCV4{=Nqo?*?i#(z8DfLqX)sW2sI;&IsDA;uDqJ|#7KAvCa+dg8+6LeZECfxK5^W& z+ogQ23QY&_=XaA)v@%m?2PW#!M%Z^2yQiEWG}uB0ANqQZE-*<#v;W_rk3-4 z@5H9p67*2$U%b3u%0Ry2Emu!=yI;eN1NoVgD~pOZ69@k)0i;d~jgi@$$T6e(dUmxSGcR$2YW|(~6y-rEqO=6x*1W zY?#v6JT*`(CGz;Gf4ll8SZb&v)Q1Q14yRl=rAB2#FJ)h5F7XyUIZKCm= zCCRA4>(zBn2r1*14_sI2GQ`4>SVgI$Sp|36lRtDZgEbih=0pDiPeDU${>as@W=jC` z(|JZR-@1Eo8ef0w>R8sA78TYon-9XREI)Yr#Cm4?LAbIqzaGfzopB8!+Nvw`O$PC~ zXI$fTkpbGOqMEjco?6z+Rx${N?h!*JDEKXUQbJpVtghSjG(b@exF&OuQd^DfK~|K}IV>XhAg{&SaMyA%Gk z^PcIQ*bZt0Y>GQ*Q#>$;pXt4%y=aQ6S3M25{Q^vtYg8Uq(3W+vNcv?Vczr1Y_-;lbrz}x_S(sW5X-tMgHA$E+?4WF>AI6jc< zb&CvM>g~egR@90%Zy6-^uU+`c&ts!aCop_!aW4PpLc>PpVzfgOp4+x{TeEVI2&NVA zxY>20leFekE0+a>;-b~}FTTi1iE!C=z)pcylH z6*syUClW9ez_I#&ugGlHipU{vw}lXIZ#h`L-L~yJ7}9!CI*g-t8!W@^od(Nrd*!l< z@oaQZvEf>=5;l*Pz$k5nR-!(ydC@hJT}O+dyj6o`n0F(^AOpbQm%pd|*OkR~Q8dPS z@pc`Q!Ei2Ui_h4HsqpZ_izo5($Kn$B!NV}orO#O$!PZ4AnlZCt`fc{i!LXapoSe=m zu~>v=m~{q=$ZQ_pb387ZAOG3aC>{!{M+%RLUr2lFqRy!;#lL7DsYeu!;srzUa(K>J zaFn+RTuys&fuwKJB6xSWM`N!Fq&Zc2`62Uc);$UHU}Ziu~JSS~OX> zvDP5Cu`G>n_hT9ucgE*V+uOuYEyTt;iIyW3w@11k(Rtu8tA3W{&HN$qGq0aUxhEU! zVagfJ^MEqX0~F&kPqyt4Smw}_+O61&6pxm9o>=Cnw2Te<1wRvQwjrib5mAtXrqSe} zX*39a^?6@fOghuR7>~p!`p;55gl!tof|hMy-LvCFbYtFjecd{I=edi~Jni83j8}c! zJC1+T=g&2KXRN!9E(B|htGYiyh+Nefg~ZQcXjiMc->tgaVhUBf|8z-2E8@(tvP)6* zWQbaWV1wPOHyD0zdVZYyd)ASP$M(uClz`+3OFSELqL2(0-lvP*tyPn^I)NTy!!=8ARO3y zu8=HyUkAIYzHKaV_cWhEq2X3!gq&%!Y@oTnP==!ZQRr6?k8=G?XyhAN7XuZn zKGfK~&M*^)@?k0N_AF^A@io*iekjo}eJE;(eXR5qd&fj;+)R|NR%a-9;w$zn20yIP z**C0Yvd$DN`i@y=DBqFh9;FlDT0V$*G$qD~X?eQ)URF%OxRbLeRajo596n@aPuypl zQA4HSE?R~Y5vyc6`dh|^X|!&|Ahwu_GvKMtv@pfhgxrwt+d3kF4~w6e%|ANwd`$Jr z&D`atdCgG1aQq5bUha+SloXl+uWIQYl%&n%%DrF_g@LVu>kC>Y-7XZuVA)pj3xj1_ zfjhhhoxD+O2@_z8ZpTHd@=Z97lQ6Ead0-%asFi!PETm>qUv=*rr~+K@Lj}0*8z=%? zUuNGWr0j%0SF8AwT|m}e?T;x5oRkL=FhX1Iz2E`hITJ5jC{Ob5LiR9l_R3uhM<+@W1R-=d*5j)$T!iaR~N!8%E<&G;-Tkd#D zjbpv|;+R>dh-|rYe_VJuF5=TR&~CWfrYiXw`U<|b1+o@xZreDq`s$AEHHNKAk=$a# z|8a}WVT%px_0I0E&B;Z)Ij~m!KD(Y-Q6#q65CH1xUUGRpF4aVIy3lT`8n>OmkJ1NqESV12R*zh2-xRDo35yPP2vZa zJ7RcRm!c9DQ%qV7g^F*#B!v)ak1m#5=*p|ydszmh!!2z}vD`v8ES6j7ogWpCVcmj? zb<&EJu;H`>?tqJ|5(`f+OX9x{bWdazv>3{pQ7pI6PKrSWfWdFTT}Ls{?cqG!qefp7 z(71c{DZ29TtP-}JmPP(s75|4Q2KfU9`9DQ5$bYAJq{L!xO!UrXZ_!f7`B*XEuzE>n z&Gg6^5WqNzpZ=k13-&Fgv$TgYn)X%ksr^~4VWbt2Rn1}Y+%!H$pG4890-$|dFoF=K zy)lBY;FHn>zH_E07ABcUzAk!Jv@Nzcia*}8BArn>89ewN22~L}C}~+1&2vY%Q{$nq z3Lf+mdI;JL-k~|E(E?6~haah@%P-@>2+`PJgQ@=3z%ZPGabOrcObiT3{JBx?o&!37#tI@$lc^`PEGCa`wt4c&V>%z9e}ihpw}Xo}>m@N;h`Kmc#`9 z+a&i~^V4D6KG{8seNF|V8~rgEb|2qRFuKv_!{mNdBfvSsl381}&c{%+6qd`HY=7%u z45wZRG?#w?xEx_pt@x&$}9v8@S)es}1q61m44 zK=AUrLw!rgL|+1I#2&BTFphh?-iTD6Vgebsg{3m^3qt`?^9~fH^RqMD)vS_ALqozh z7TYry1*0J=OZcQ&?u9ymFl35lNOd+%la9NrakJeg*=>|3m_%*Ut4jC{6>cZ1qG-XG zc!i3;P{we4Pk6-|yZaOKkrF;{j=Pxcr7W;AU(RtmSTzM>W%icvl=a@$v6Mi4U};CH zwn(J@Xt31b#D~!{8x5D9 z*@$4MXLcSgJ+mvpOV8{$oOotmU_(5UZ`$cj<++_&Wx*;8y^`{m-@Vcx_)$v@vT)!H z&H0WbZwEG$iWatIT0xA-{OoXd)xqcjD<7%Vow@!7eS*uK7J|Oi!!4ra9a8H|WQB-0fm%wUkFzZ7%M}9-$2IlV7x?{Nz`e*IlkFfI+F`;kp~#ycD(^ z>@CU=-QbvVgJT4v+~C_A+_#u#hs)1;enar&v!4HCtmCB$of&W(D<~ZG=B7T5V_RAX#CeLGDPD~hpNE|$JprvLyf<3gf#v&1W$~=oSJDJl%>Y^jF86nP+H6QcPr!HOVMcj ze^9P_1B?$`(fAry%lJ?sG(N46G`;R zcWgytGh?LRF*9;J9gMmHm%=MQuie%J5oic1LK;GYpdn6I*&_J1Tix}ThJ$gei1nu$ z;1H;lLHb{FJ$X7Q8snm644ep--{xKcZ>Lj+!Wy=jP}^M}#-%X$VXbo}b@XKNKes*> zSN-&6_m?JHO_4an9={!i$eSn_r@z%B`LM0-d9jp0b*s3Zo{sEJN`ccKQ0(aGxlI=# zroVV=k&&v_(!#{Bv$xHSkqvR)X^-4|OIdxg9#KWL+FO9wZ)E1KnAC2@YhcWujqexq!avcPODp$SaE_af_3Ta7baCKgEAO)iv z;eBfjY$el5N2z35IVHp4V)7_5R?m@@w82IZvuUJRn#mT_1iX8%J1>?(V2d^V;dK7z z9kbf7RaDfa6hC!e5EmRsy4~+?$2L+fIFL|zaujd9K01kMV03T{Ufo0Ku>)!a(Q>ao z;O-DaU&N~a25I_ABZj}f+ucd0#}0heDCw9TM)}(w56051idZJ9ldRhA+j0df;Qy7- z2Lt|R#V-u_pB*Jn$DR<;*aQ*qKMBbVILXR$7W{DtoI8N`k83@iLlA^y*X zVu-)z4}$Ln_~Q@p3kV7E3miy*KM;McVgFqG`Cdc~euB{5#--)_xxMbCtifo2Buc4b z11!6PS${Mycw$9;zI&g$gV}Pl$b)p}$KBl+KV7gYg4GvPN<$GG$>n<U;sA5e7{xTq`pZ_}<6e z&dZAkCvU9UAHz#m&Q9hf&w3cYvl?;=x&$kyP}Q?H<`h`OZT4$M%X~sW;hXG>7a33T zqffX!v3Cj0?-76QgTgzS*as(Al~Mc1&7;M50v~Cdv$$=NCRerY{L#F$3cli)`ILKT z@&sZXWpO*Olnx3%l!F3|$U(J#Tom6AfBX(AAjClh&W=){IyLOeMhmyx!QXfmT;UY; zk9U=StQn2|QA;QSiKAok4D8NLOIxy^1qXEF@0EXCBoM&W2Nz#A{fhhp?z6t+j^J$% zx?d~~#eK!)bKlkMToYdR4R;&9=OuR}hvTn_)!Poa8yPHl45=6}U@zj&->)&Xt_U48$y!;by5&vde!^?>X`?WJ)8N)}t32Ta1 zs8}@G*8-A6jCPn*KVe9FD?akl8O$^#fJB= z`S-=wGn2;RA?KPKKq5c>s(W~%eL$e_8e{oQ??9L`SYEoTRs`Q^_c+XUWBIXef)-UlBuCNChyUr70i`Ra5B7@BhQy z7LLcXFkcuWRyOKLEj00}lgkRsV(>BFX<9e~1m2&5hiQ$0s%^*iZk!aNBZC?;M|bd) zyNb~QGDpYXcYn^RXmv4Nh6i5P5iqn74$NDweCX`QSKc+Mg6$yO$uZXuLhakfiX2@> zo|aTmo4@ptdl!3*5@YUX-&mQbdw48K)Ex~fc0?;y!ak!VFvoO8D^Z{K`NTb%{Z5Oa zyr01##J2=v#!>f$ZwZ=!!LzPAKZQtWLyCrRy){2wvAmxF{`%D7LKBp=l7a1MQIyec zoRpDIF{mV9Fj-ejG047ZNlZUuoS!{@rvh_~lA>QdHtt)$g=?g0kN zpm4E9Nlh0J)K(okrld5t*Kxee?R5@hkzlbiGPhSm z3d-D`#Z%?Z2LBD7nA@8=Ugq|uUxKH4RH5u|@WkAn_Y%BR#>^>sC5NuFIvH)%N?D2; z8?$P6P)QiU*dickIv54cUA!?~Mr4i?yv$v^ zKAy~_{{}W9cfkNCPENjpNR?Fs85qH%GGqi#gB)7sbu$fuu>;Jf{XxZJ>_96hVh5Y{ zcoyp9xGp$f+cV3IpCAtbB~Bo{2dC(`38WUO6XX;PeN#@+$KQ2#A>OX`RaA5ouX=HI zwk{V#4tr$Vnh%Ya&w2N*>G_Qfr1H`J{U%8J_ahi;|I!K4{^bNO?LV1nJ_p!P`;SMY zvOmZ``%@Xx{u%`HM;gS+AFZe2(f(RNjNSA(GJ87Hz*Ym?r5fNK$_E=@7p=ygzi0rJ zx}!p{0ouh-zG(ma2{M2U_Q#m*8RoggVDD<>LoE0ilmMDoWody54^wMYC}!o;O=@!Y`PsRw&P3v!K3Uju8kIOw9ZMlF;);B9 zo#z&fW6dd#fWbOJg{6pwYOp>R@43V5GLheu;JJ@=3uF;*4MFuKi%xu1UypjTxcx+a zCeibzSv-+HR^Q`hC6wIqfbkP$7o14Z!UJGg1I*O6Y{tY8J&;Tm>NIi5L=JK20-~5g z4Am8bxg4H;ZxYuiC8!G2fP$GikbEM*ZGLU&84XX7Q>C%rZkZ_i?G}RZB|b#5@4!Tv zZ+e{It$dRK-!}Kx`5+V(=_VLEG1vFVM44`Sgp#5mG1vDlm`LRM{!P&sBY%f5{S@?5 z0|KV{fGK91G^VhRP^mts4mujGjvOL12=?=;bWe3G1=Ca?n?!sVgT%BXN%d)9(PQBu zY|E*9y|za)&p3nSQKo4A>`Bu6*#tw)KX{Tfe<8tJ<~IjUBBTCjC`;|%Z<4fsKT2!a ze;(Wh682v}(HOsi_})oK8!5Hby z*Z{PoXn-|LgWzb{W|Dujw9IG#9DnwdBgPe4mDcaTQJ$O(vd*Q;<_{@_JU(NM zpGxlqlZD50;d^K1M4M0v5q;QvI8+UXs*;tv>O|WHfypNI?%7Meci(@qm^f*M?|WlRv$e^91-gPG!}t1&U;Yg{PSXazu-cQttCl9^ zm~~6h2x!|QwdZ9eTKz0jdi(FtRCu2Yeprmacbjv#CYs4wQ2ywjD$k~8i5EI z5^q+_f1VOCkGoAh{9W`OVa5esr{_Ma`k2I_GbM>J(FPSe+rH zI^$$@#8M_BmV?ed*T<3W&oZ80wyc#-0CVdWqY#W07I^IdMw)Yzd! z1!};N1TGCYw46Wd@$_PpBG9L1l}n$hpww8g8MI-6}d^pd7HZ#;&`Qth1JOZ&M~>z|%{k2VT9wGbxrbQ6Bi)25A2;CP9tr!@## zH1&2*RV)S5QF|s;0xe2Qa>&Xg^R-(&Q<(c0dY9*f%~orA6hB{()Qm+>C+&^OMNTKJmN?z7 zUBSJcR%A*^meYqhoqO-~_l6t9E&!_`};~)nSwY z$Bu^QYRs2AuiXl*rb+>;cbcokFZd%&F7)#ND0( zHl0%9oLxpuF@Jiv#fW8!Zy)pw(Iw~$ELHLk+D>>U?xlx3zsBB36rjVztpqNYA~#Ow zD;|NkX$T5j{oNgk;@v%-5=JQkR(~n7MK$HDT*9x)=f1Lh4!4uq`T@pSb?R7K(ObR4 z+D?8TRK)G%hvFA*CqJAXVmk>u(`&Z2C&HPaM?HO#ajU6TnZ9lp1*eek=rR0ICp)9Y z$k#=_5X?V?KmL=Q0zyu93Y=Y@3IYk@{nK0FV@(tFF=#7UQQo0HV-R4jY&QZht zhK6fz?w=tZBAs}}wnP2Cn!)*No=)s5DqGmDW}TU!*O(tX@_6H?%3$kDz1vw+K>54( z|JYz@Gi3{bz+i*zoShoYvyXYcs5w|@m-qAX20Zt;CxI1GjnH%hXA++qJyX8n3Z{eO zvn_aT%X1BQ%f+_Ke#13HOZS_}ySxc`q<&Nt^uk#JLPv~zRmWa4dB$6w-ONi#z@9}3 zvqf`I5|>4ynFWuTRzlk@mDR0dGyMJhR_9l@_SWQ?>W z#UKN~V2rdQ#lYyV0+@it048Vv$4D2lB3cYt4_2%vQVg;dmwy-kQJz=Ws(1W#s4tH zAb-Fh|F#m{`#CWp8C+H;CcrK-w-dC~OCp2r(_Tcl3|XCKJI+z(zz~CIL_!lYA7B>fi&&z$hJ+ zfjjzG3Q>o>rp)&~6Zixso+^3d;79+K>|k+ zfm5YG(Y`Rz7l#yu(RZzG0cKHJX=brDmAB89F_+Eoe|VJSv3&1i2HQZj5)NzJ%rm-s zo5bEs5F`X?Jirfi@U~(P5;TcG-bbqRScQy0iYkehDDDDdiI*tuqNG*?@@R$Z2*)TI zBap8Vrtekg{Q#I^1X5!PW`XDF6TMjmh!o*#S{WJY(jXY>8Xo1f>jg0|f`^C=dw`ef z1(AMJE$^TJt6}gN-yHHkMq3PwA~TqD|#BykynZn$;Dt-bN;yM3uq8Zk$~X zcH;qrSZd!q79QdU&8K)fxp= zQQa2eaj5E*>%9Ao*rs!=ZlkJJc8hl^YeV2N#@2L>d=@GM1wISaGZaPbD(^@}DNsLB zl?F1%mO4ki*VIb>Q&$(?YZ`6WhQ?}JhIg0A=24;O-xYJDe^(HU@^5>0?_{3aqhTap zddq|qem=ckC-b^FGF@{6DNg)-HQeg-M;A6gS&^^tjg~9sNPk~JX$$O2Tk@T~>t&k{ zfF_&0P1%DKjsAWg<@y*D6NvyZk8Rjq(ai+53-gyZ7XLT4czc^i=g1HE9Sh>~8s+mI z;j^k@OrD^>(8t@DY3f-W2MmQBhZ;(D912k#=jAru9yazn)gWMD)>yV2rIqvjx^`aE zU@>zoKMP#bsV|{vr1*kC!(6Y6HKdfr=(WB0={3)GA|qz=5R$DabtYJE|B?bRIO5^g z(|O)KtS9A(Zqs$HbepaOqud7HcN#TU`pFoACw?+wF7cBxC`Cgo%qAX7}Mv_5iL)gU-6zT5?#@6^DU z0O~YXx7;sXy+_&eR7tel)5>yB6O7g29y9-?EcYJ46U)6#>-b54?HK=g0Y(Iv7_UrNS(IMZd!I;Ktc9 z2Y1bEnS)ya{}$=NJyZg2%pMXD-^L8ngO&F+zS?|sp8Q(o>y$u*+l*HN8{nOJc)1&g z%#xQ&+Z!*566%qlgOnZysX@Ht^$C%pKv(fZkns>NIOOfhSK8raY)}%DHgr2FW+;`k z(YC^t&Q{WO2u+*;TwCZ}r^UglGlqKMorp|9 z>)T*iF|ZZ{3 zSTUu;u*H!1GW0cIK0owNh~1R*oHCfr3@SF&DuyuV|ZJ*Lb zfN7wrDYa@@DNIgxQbjRDwe3vAWrwJ+ubhAMYR0xwzL=jLR_;B|9-?5e97=sqKxmwb zQo>Sdz1fcAyU5QkkawpK1+s{@Sg1FQpXI|hkzHQWQ-lPh;XwM}0&<7?odxm^^}D1X zF1ZMA6`eWx|KN>xslQnu?^1tz3Et{{_SydjZ@g0-Sqatg4THj*36?F?{cN)mmn6xd zZJ_Q{TU5$|v=J~^*pf=ZIjNa|pebRTBf-J~S`u8p$m~@q7mB?IMlE*^HZPcOj<1xv z+=&D)gN0)&tu-Q~6&G@ECzC@D6tTjQh*Pmb5P=H@DnhQzDFj#M=^SH)*AZa=_n$Vo znZQY`@Vd&tSRrLVVud>>J#LAC)QS}bQWdd%p$ITmsFj5&wkXAFC-reHT00smJVKe` zy4i{qzEvq>g>Ta`xT8Kn%x!*DDRdA z{zxU-7NSJa!Wb>IYHP{DXrU%6z%Z()W*BR0(_QukvkSC|cs})Nw--*VwO>fO5xQ)< zh0PGFh8*&=EF7L*YC zVFtX+Xcs%}8Wx7}11Aw#E{;jBE{CBqLiPC@`{B z5sCsMTa-dZwybWh0wRS_74Z`JWI4j<>Wavg@k|IGdS`?8CWCFIg3*UIFOpq(Gr?G! zZ5rK5U+3uzkD_Jt@U~1$9{6zUgUTyKg;10u-#g<=j?y?7rRAw0}T|m(h~yNb-NCNATTuczgaIYtJ1R zRq?dx z4r@p9b*t0EZMc}&xV9R;X)*B637`&Eob=ALwhZGAOTaoJc&26;{`uPUi)=Qfhh8}y ztRvntGo93!Ub$ae|D5#07f3zv!?n+m5n>0xQa@bvob_NY;)k%%A0|qhMkCS%jKFRaZ+_7X*Jp*l~SDu5~}qBst%}P5Ys}{R2?)3RYw~nRc9$d)oHuZ zpJSF{R9%&ER@LFV&i7I&QFXhN>UNPDpX$Wh4_+Uq-hS{V0g&tZ*Hi;{|Kup@Fx!VO zKRAPRYF!UJur-v2Y>lM^TVuZbz)}b6rB3WV6#ur93JbRLcviuU6d3T?^uNG8y@R7 z4ySi>Xe-kAl_QYNTtzWZI!>kAB&8D_`rgs>s$?lxS2;Z<1Xr;ukEPFN zhbbVM#sY|@dEt2aF)KcrW}#}WZnhRPC@Od~NdfKxHC4dPeH@qE)8={2Gw#6J;W8Q)829il*)D(CJS z>FXVA3n>y|pnv?yFKM9j=`m~*A&CK%qohE-o8pitDK2~lOeC&I@=q_M&tvaWKpc24 zkC$`SWm2OC-V^oXpVaP-$BAWGyc>^$VduR)o(wI&0|7CmY#1+R<8QE14Y@!ahg?cs z4!M>R?3bf2r#E1hV(ga}$IA)iE%*y(a(Lf@E%M|{yprA?UK%sO)V2t(bkb^0kgcgn zYJ9B`(V>nLAsh6|JqZ3G*o&++gO%NWc7q%>q??tlVLZxjGRy7e=ViPG#Y@&;n zn9-ujS-*{kRLPH%C%7gMDQMV8C*?A1bm92if{qCyYE++5ED|ePM3HdIIAH>b71^;m zu@{0NV64ajE4F>nFAML85RR@Qm$Yp(R&^*Nsh1AiXd-do_CUsT;3ir3qZh>Lrnsi825!k_Omm8UPo&uftR#7Q2VW%k^Xq{4W-}k5iFwJ((g( ze6yE%gLTv->HK3T0?tSyXdBWeS)G3vR;sn`Ac||Qb^AlRg={I4{IcO%cMAna*)|c` za^S5*12paQB)&UAug1<$;4#tqAO{ueyeZa&M7>71>DB7%@<%5v%jd4>I!dU}S>X#( zPLc_L^@+PaqgZ5C_?aT%tZ;M^nHB6GR3CZ~I* zD~`~_7M0_@^0+IoDx{pWC~h+UFps+{qi7i2Bh!$&xoTl(jM;Lf1<^!#u^d>B0ZmqSGfxg09$Qt>7aaKOu<^?;hV9NOsL-HYs5o!$?^JD-Qd zJp{bd5GxYBm^6MUb~1Tj!RNmqDq08^L@$yL(XSIiVxw11mKQ`gzUg2j8DGJ-`c@B65yIA55VoR{~R?N;B4?_bzm z-NBBLR>>oEM@0#)lGHaTs8qO0;(a|OLwHP>d%f!of}SsH<+!r^c9{DKc9|4IV0vzA zp11O6ZJYotzL-;t-!1C)I6sH~T6|Qvr1r*S`NA1WOm-Dh7IkIAA`5=E{trR3YjP#_ zNIJ0?Op5SY-IS^Y9h1pt>+dvc@K4?^)FQYZ3%RH?>WZtSNO{Tr|I&mdc#&&^Bk;@i z;gRl=4rhgQdEpiQ$}ii$`A3CNe&oHuaKmnSa!sCG(w(h!OqUa9C#ocIE=qee9VgE4 zi+RAG3*fuzNAw#ua%t+5>GB$E=_vQ`taES^aaYZR|3-V*gcxTV5cqa#{(204n0-x* z$>FJ@g!*91bb0BrdAht7n;z|ciFqj==K7=Uc!@y=f;<=P^|(`^j}RZ zi^@<}6JyfJ)x;onO^r^MR}+t?!;8u~|1Wy~wY&(2Ymm{FF~q!=`dW7mH#NKbZ^@F78$Ana4Gq>G@-$LtnG!FbEp zsP~TA=iq=j@UAsH-j&Bqd<4NBam%ob1na^|QwThNRKfyLoZqPIUc%~7FeH@VmS>|{ z(i$WHHE@8bI8TTfmc+WyY8YSC`7VIL15!R|lkyFDh7F^z$YhXWGJ)106R1HZeZ!oU z*>qZMG65J16Z~|=8VZY~R=UZp!0ogeWq@iQ6$~upVipW6^^JNmoGTSJ-LjyVIH|{0oCw3mj*?0Z+&;`aI<~tB+`91zf#{lz$z9lWdlHIgD}Qc zn@WQ_fdo;4yOiVUGRF42V^V>fhYj6P4%V51<3_WCM{eyqkQ%koe7GdJhc*}*_p!Sy z8%pZsMsr|p%^nLR#Ww#vH}5yeQ(NncfNGl${BYAr`N_Z(Em47~s?FS2U5g24m4uCN z?ykjFl5$MhI{}g(@7$&Yf9oB0f(;L|rrYf(+F}n+`PoyEQ6_S!V(MPSP^f%z+0?s* z`viN1(zLmuI>KbZH1`ATJTer}8vcrpjkj;*{?Ng`p!Cp0*OiH`lNxHG2g*bbNxd}D z{oG7cz-u+p&(uV~4^2e*NfXf$WuiLm-J4xiyk?(JCQ69)He!jST%M|^;^nI!b(d!p zLv9Qgz8sQ=mx}XNWvwU{ZuS6cZJamG#s^K>odV-+D*%rB%-z7s!q%PCeLC76Y0~&| z-gjLi2u<3YG*T{`GXezb=GHoj?P?>g6MLX$TBby6-He;OKJ#rrIy7v_{7L4vpQ-^6RGiada3!2oqoIuppRU>?lPMfP?yC z2VmhBJ1khp#<(=JHLFgsd~C3%SP<}I9kfLClxaQO&$E`4hHbP^;R=c>opM`G_Yu~G zV&bH=+vpR*S3K<=r1jLZdbyjkUKB)3P4E>h$3nL}su#E+7_6JqQ;RS2w;(f<@1q+! zpZSctx0Sc8D=AQm)P4&)?(mD_+~hWDYfsMg-tOiOwv5UujO<*btII0z!`wb#2=Q=V zcSB|=Mg^=J?u2(TwQtr;+oAI@;YK~Si=v_iw*8p~4%#$8)*hu~j@QDJ4RH5&(Gt}^ zRt<1hXXhzvF%U&qAk8_s-avO!Fe-12c1G}#pLdF3*Z(f5wu2yEMcH78(=lJR8P6ZW z19>M~Z@ax|d5c9-7U-Hy@gdCiNltZwQ z!GOb7dKy@TvJGoW{u@+o+ql^k;(rN-5V=x>L^1J>p(NFxV5AFwDoQ&%nWs#5w~|0A>I~orv{M8)MW`Kq zs8IV(2x?ZD^i_w-sow}bUx~+ULH{N^(o(Y_H0@a`D`#WHthCgUst|!u1Oc4-g?Ipa zjKd!WR``;}sK}@On@}GHoC}q(M$aJBepGDQPlN9KF?gXLs8}yw()joscUu-S1%OZ+ zC8o$2d=x2xI-#G;5&t5fHrM@-#S@ws0gtIJO3?7?-R%~({%^jQL;WgARdDN z1HbofHbkYIAD<%nxcc6^g`RS@>Qlt`-X}(uAWBh+P6cYx5#fh&L;%N6y^j;%W8mS> z`G^vd^AUBa$Pk+INNVFL!ty_BE2fA(n7~iOMullvKx{93`n~NG{K~r%WZ-KPnS{D_Jqu51f3*gZjxe>kO63tkhu^4 zVM6A!DKa5LiOD(0ltqQiEV5uirubBqkcpg1EQY%#d`ofoRFaV~`iK1EfySb~yu5Sx zi2N=pj>^bbijU~tPkxL3+FEy2&DmtCOvJ!n`R37u@oAws*EYCA9nStxhTohY zNR@&Kn7&ixynE7~fEhVeCSZzea?kpwql`~S!<@Z90{jX+{4hI`n4QBjL+cM-0_Zsfp;$Fj+QDoSUCiB!oj(>7F7RNxpblPH*qnW4aHdVfbbkvP9p?uX# z?q8fopb_{n`eRfMRO6xC)c7i@v6iM!<=Y>4y7T#)-2Z{VFHhxHcDU=Xm#HAA&G+rv z+^gEQTWT}s%bo7}4tAR&;wo*y2SXVDWQ?bY{7C&TK9~88LSkEg%B`(=rpb32=zwcR zkn7kbx;<5Xvp!IU(V59}wbIid(CF^SVx|#K!8Ky3X}S1ndWE__$JXNphSPVt|96{rR(ZWCF!~#oj$eBRGF?@kmFt#bUfekAB_qf z#h2*w@}`@H*2sxH=q}-4I@P3^mP;qaplY1K{!<}_vH64r$;buaoH}osJO(}Ti2HN4 zk>X+YXx%iKZ+m_kNy{Ax06Sm->%uNm2+UGlus{^&)lay)uv-)i`F#z(c4S;#_8YB1 z0#JjmEXY5d_$N#-DkBHgnC9{cI_s1>gT+x;q#r$9(yvKtkUrFyX}_kl+GGMS7A7^% zxV`KN3X4p-DkcMI4KR7!p?DlT>#oek(pr-TAX|7GKIcwnb15wHn5lTIpf%VKs1Xgx z`f+eswwczNJOISU19O78I7VDo&*H)h!4hTy@T5!tQUtL^h||)h$pqlxCEY`LQa4Ze zq5@H7{jLZp;9vPo`+1_APCOHdt!36P2j(8QkNg3Z9^;@B?6~hz5Zrnvyyfo6ZqQ;I zrdq=UVCED*FV4pN{3oa?7e`Ss!B%hv@kxx2>Lm|II0Pk}Mq2EdqOqrh@Q;WuqZwMC`vAvv}-geGlHCsHn((*^_+IW{YXnPck{ z3GN#ukhP~Z|WK<}y-I!imMQGA?zd*{R zbgQ7N?ablHdBWGuTeUdcpLPu=G?i$5 zy%5+QN6Mu$4WGqt{sb>_qZoEx#e?uNo$1_6>qy%F7xzSst)-lBBwYpe5V_h_v<4&o zp8F63%%;U+;Bl zk3b2;Mhl5>XCr>{p}X<220dL&6#GMBxR)|HmXyZ%eU`Msukd#weBbglhbNztRiTJD zv{jhRtA%)~b5Eii@6Z6#LOdNJp zhrFK7R??&Lc{;N`6xJkNHoqsZ!q&QCL%scSAiTf|1@#!F_Uwbe{=~?@jo!AkaP-40sgtboI+&Gn`5!$IbQ| z4%X-J;z;=RWORUesY8*kfiG89hgA#?x1q<2WIf;rC%f|*gp9KLsA1zUx?_juRJZnN}*cN8yPPf&1-iFBQl z%S_XEj?A0Eo`)x_8rU}6G@nY~b(q65BR%!3G6;VlmR6t^>CI90hH?|%di7Qb&tL~z zK!rq0&z&Q;7IR6Bxn3>8-x^-|QRn74FbqXEk7HX2l$=gC<<`i(Kv-=sMwf=ed+QNU zZ7_f<+L3aVlP4`vc6>J4v)uJI;q03{V_+2efRxJ_>g_rFN{pu|qZsxXO1;#VGLx2H zUB3CT=M#U4j&rl>CY&JomWNaWfoqhoo3DP&xUxsqT~#DydwV$ zdAuS7{ujq9>dYlw4!4hqqQtj-#N!p2URAawT98}Z~vIRv0cIO(u{;a32Sn#?MJqg9k@u7-zrn_L| z>{nB(Gx%Z7^e}Rk=eMt=R$(PFNimL`cjxlNTAuD!1ltUwh~EOMz$dSHzS^EGEP+xI z<0l!cs;Ti4byHt{CE&(fe!Up1C!VY0`Pz}EGhp-BG*4xIbC_H|V7rqu(FX(D-P7N0 zcYRMhVO3qSYM;rE)Q6Q&dny%97)9FT$-_T+GEV{-jP}7%^XF2OHVN2bMUbSy+l8 zEjj?Sq=l`Rz*hHw39K(I#tndpsZQ}&FjJOJEuM3sr>CydHIkqz_2Bn@$CGlYnUVAP z@!p=-7{!pIbmq9p32YWcz@ZutlKOfoSrJf`=8?ST=c^-mYbZJ@bY*S|-69q01h3%! zBYDMA%_gfCoB;om{XM;NZQ?P?5~oDKI68T9Nq)4KCxYLaJh@O1+0hLyDL1%GNubmh za+CVwT;0GFcj92rSSw4L8z@j}Oia8yvcPn5xm0@~B*W3Y(L9-W*)r7A%E8wzl9MTJ zj3O7vjZq{)R~sXI6Lakaa`{`A)Z>=Ok;waHc^U_%T$%$#u_FR!7pq@5?hJ79vjQ4$ z!wnJTCO1U1L~V#lkMJyW^&xzfbACL+QX*Kl)T-{Dzr@{lb*QL<5}w(M`$X+FtqI^elRrj zM2cn?QANZpBAT9fKBy;hPlo4Xc98NzN8Asl6t6?wPimASCe$eNw03bJA2W7*IrcWG zm$91jxp~J&(mUj=F|$%_?RA7y!5UzQ&OjNWGcZdDUa%QB-BZ~n8HPMj<&H(fU&W*n zK?#sCx$g|mW5KB4>>K`fsd#33np;K07bopmC?hUm3-CgVqY!Ez?>%S_=F4sVZ!jT= zs7qVQ3!^TrM2TL!O+W>1W(TApNSHmO)&J* zaIt5R)9F~O?x8pr1Ay;{Fe>R`E^Tlv_A3eRp_ucXdg1o{MZ666%whMb6c~Xp@1c~V z>~OgUSa=VGV$pjjbtwiew*Uk0p#)&GWbJ|h<2@7#Y#)M@{6AB z>{uASp(|&zL#go1eJUE>p$QJo;SNny&dV=)?mDyrOGwlv7x2PcVObx!g!E6$kedCj zhP0Cfo%egHOfk-0^5ke0{sxcg+dLn#+JC~Mb}l@^a~5y+BssMfgh`}D692f9kMDf# z(YPfSzA4SGEpdcKSoYlt3Zf%sAnGY04+f%oh+i0p>H&Pjm7rjODA0(!5_D+_zqn^| za|z_zyekf8#Ib#GB?x|~n;2*CCWg2Y)L-!FBOW2*+^+@?^GcAYoQ)OaN)Q5LEKC5W z{x0HUf_Sf^)c{ykaDSiWf5iVaK3 zRvfQioLWMzU+lir{vR5(7e89iUC2fGtNRv~B4vhs|H2IKd7jN#c+}HSbKYDcFId1| zdBNh7CXa>kwI@73X<N~os$D^2%NnqJT+-Nlz2 z^VH$`DFYf?zCd37vA-<7Y>Pr{HKqFB*~Q=o&kuQC0lqx(S8p|TmP&w{ zK1DTsL26p7u~gh;iO;&|sr7I5tQ}j*Z(sBzuw#@ps`OJ)LRETLsq}zS>HSNdrR*n) zCua5V&+Mbr_euc=Oa(YJ`5WKCc5{h{r6=%D?v*U1eZ55VT6L-8^Cjd`N05;v^|K}N zQb*KP&*Grt@y35O^o+@YcdNk#j^@jVznKY|#-tbkaLW0242S1m=9Fig`Nb*yqWI5y zlN+(lgbhi}1mT|AX_-vTT-uj>hz+E8nDXemOr~afE#qTSy(Rc#{k-j%I{<8=2?noV z>%x{&2+WWyv_KT+yEioJ!nRW|% z8dPKUN!qa#|LSCN5;G_)(swKR^JxvzhZ<~0?bFF++4Hp8WCAdLCRN6#MC9UcDc^XO z748D+Hd9>iNl5W>IEo;)FL7GkWirJTyFMzEKOF0=6ebX5itB$uiZ09ewws>#m`_EZ@zoI5X2*~Rb^UEhxSCI!LG@S<-$Z?KPPu?Ag2RT#gFOx}zsJotu4(8%eUQCq3Y6Mi;Nh`o*K(7F)F^^#N&?;~l>ZwHPWk9bS z)Ihjbu458`j7Ts1FH7F&D1((Mh6g+_hDUkG7@nmh;RnxdmO}a1LK{739fmeixOm}m zQy0aep^axL28K2O14A1D7%iD67%&EaDX`q|n$}dAA4^MwHFKVs?yU!J2%N%7)`e7rpYo;t$0&^Ae)2;eYSR*^HIOULA5ghY)(=( z=S?;+fjq2~(D>_f5T#2w257`USoI{TEZQFa~acG>43svicJ?DwreL_;(2;7VuVQlsLZA zN&DIK0=&pnCDgmX!Cs?O(GAXkf<&6(45^{{uItNXzUwnmZ|1wSPpGoL1z3^f5<`=? z!0~}{g%2pMEx;YJLXLX*R@mIk;pExPy^ZCd7Y6S|qJth##+b8(vS~$V6b^&5Q8KSZ zOJrUv=Z_-Z>JC?3!e1E@Z?-ihaO7LgnLsN1-6fF>J@`j zK$+fpqnLLFzmwz*buNT`FQ!@WbAY1)*bG_0^G0~bBCyy5+lCGG)dLF$bJ#cq9ZC%w z=r9{1y*)Ixk}^Su$pTXdhsh!})M56lkPfqt)SC|D*iEc@3_z*BY+oUVj_nlH<}X*3 zzr0IfFxG#WQ2x~BFF+an#X{Ni7ibgu3vHA17h0n7pdHG154!TMG~LzL@5LJ|3z2de z49>e!-maq<_S zo70t)%jR?d!Nl!4D+Zo2z)KnfgJIz9x&VxpY?nr4@#;;9 zfsMy2cIyaD+W0M`TsD3kG+tb>qZoEx>Z(s5uVq!e^IazhO~q?rR_8kGRZ=c_omj~~ zspcKeD2APvy5wWw$Xb1wXZv+h%1W}O016*QcP0#sy?6*Ci0^e8FA3rEnd|(K~bF) zKsAk0of=3Lml+nSV!+8-(zv=~r5tXkw&g0rQi7TG?E2n;E?TU-rey*ONg)=KM`|I}XZ90$8VsiJ$l0j(2b{u`u5xkqZFbo#;IyRl()wXeZm z;sWS51YAx5>#iqPf(v}+ZsrGRTK|&aQ{^$AQdD#G$ex#r(n8PM9WnHILbU{dSsW3_ zqQk&nTs z7UO}K3*hr=frnR+9)Yc>c*EZ5?_o155puhtv}AOn#UbY zE6XNOcnn!Tw_5hag?A&10@S_g6KmoAu*=y#wX{)KDdQCp&k|h11MlPvT`lE%a+D4#4k+tz5~?7tpixRKO*zb7{>OgGh5s`DDbrR`Jln;t^YiDozmMoUVa#a_wqhq z_o!mb0QR?}SSd5}-!VPU9$5pFe4#I7l{7JLqlh4^QXj6C(dv_ZysxqdiYLRcYh<*# z&>9l0t`PuM)da(6bz2I7(ax3@2o||O4{aIZ&fNG4C z3PDA@dI<$X(hC&n^|S^_Lk*JNMQcpbQ0*gai6-;o3+3E}hq56Q3ds*polf>Q)B*TrdHt+q$O1)_|CXA3E`H9V|OdadY(qI=?W zqrS!U4e77EZ=dugf05D5p>4t#_YFJAeG~+v;~$Un-ezZLu?fK+!k4;EWx*jxPNGOf3CC zjWQmYcb(jW3>Y&76j-hx zP0v=D0!vFsrr;JOifYD8!B6X8fdm(uexcQvDfoe^Sz9kN1zch#oX8Xe zvcXJ2sr52bP>V?RH65Yn_c0YvsvA}38ExYGm4aHnUH z%-rdLIz2f!CTHP|5c`;ADw8S>TYZ6I#l8em1t z7kUro2x@JRZcvNjVxKfG!t??H;@tqfDGWM8PfB_yh$)f;g0%RK6p+TCuZ6T}M`#t= zk+w?i*lCH{vDaDS{l%3@_$x!={(C7Ym)qRT4gA_#Z%i z2&i~+6TW{ve2C{5p-H7XOUk8m$2RZ+FL*N<#jx{I_r5H=%#owy2A}8TEZXQj?_l>R z6LgwymD7AnYN*o`ctJW%!54_TnUin67l_jo2UzMf&KIQ9I4Q2pY2tx^aGIJF2A!rF zA?;`gP~N(Jp8?9~GZxCG&p@NlXK16O&(IQ;SbA}rH`L*JhVWNr!HDl5QZCK%%nN+@ z4seG@O)6=@z`e`+W)01;N1fYz>By zmF->5D281+6`8k4hi=xl@X)*tzn96EG0O1dWy%O$?ZOLke7Zntl&b{`Pu^0VcbkBl z!xf+Mu{VYgD3<9(99<(hd9@if^$}9SQ;-XmiR#E?6ujxL|qhthWWT6l3i0GI*ni9jcXL&ee19 zs#I2Q6Y+6uPOVL{IkiZQY7XX+IzxR{dRf+m)MIlT$^80#ZzAtosYI046QC@eqx~j1 z-nXY{xQ83NN$ugr(JKEm;uuZHdNT=JF=Mg?c5M_we(AgGiGP6bXnU+N~&$l}wpPC0j~R$rs-B_HfZ+rR0@gdCRjAR0xp2wzh0G zU(ezr`GpdBLrYlD{2KS^iq^`dd(4ae4vE41uhz<7`PH>DSpGKrFK)K3qiiuEvs#q+ zA~G1vzvdaVLp%H;zqmTB5<5x}aNasdm32-k3%7CCXU9LP?I+rb$R@~y3x@M|z9=PJ z4U8s1+5sfQd!9cK9C^?49+gnOV(XfBnKMt}&7hBUUwLC#82qxvfLxo2MWZ(REt>L$ zw_LcnA1*7$>;jwl%rCqZT?GgoWh|Vj5=pt75C8*LKS3~X_0uXCM&qx%wSw_Lhv*&* zqvY3c2Y~XBCq>45?On%)Py~#$fKbD4c#m2UV0@qv0M+6Uii|bWI%AmE9~on1eAmj+Gl{PPd6=Pdfk3orEinJUK2>3mO$RZBAeIWG>p#`0*rXK^0; ztG5Zuy9H?a;;&|QCkWHjkS+ZBuihoBG)2LPe2FbGu~TddKY1>_533UZkzhiY7Zs8N zz}gcqaYQ{AF)%ovAFu<0^Ath2a-8<g@+=z1~^>cx7p9I2P>DYKQd zCmz6j?ZGdLMs1Y~$|#D53(7WI)q=7et@1A@wN{jF%2v6e6nes>0MNx1CHys4l*6{l z73H&(B2KMCD6uptq&5k9jYtXr4O~)MWHgtQ^Ayzu0aWKwsw)Di;+oPz71xw^+r?LR zfL_F!lImNU)>49|eWr*WV+FLO22N7R#DrCX5;2__X7wXmCza%V!}Q873kdmy=i8K+ zSYF0hApJc<^{dXj`3iVNi3LUmO~0@cim(9r3Gq7NdRuGzQ2CfD_;oAzFQf|YQ(_py z|CuU3%` z;&$4?5Id(P8fSJ+d4ZrSWsH5Z^GmXCb|y8dZ{h`lRHzqyb2zD&eRC)kc|3qw`sTow zWZxV}@yr0rd_{I4t;XJzNy)AZLKeFwkjDVao|oiMxG#XtZc67Ep@Tyq;A01}h=(0$ z;jV7g9U#2uKvXHR16fM217UK27OTY8a($9bSy96*fKnchl zMn}+(@&epptluJ+ZVR`__4_>dU+gfdZ6h9uJB-Sr#5Yml4g)_3-FBPwhxQaf7|zj} zCqAVY=NIxiD$1B!R{*v6MAA0t6G;>o$LrK>YP=p!tNi0NPk2g?Ae6^%vyIq58QlW@ znj`l7ZF0n3NNJ*|nRZcEN>TlzHqgOQ+ajqsYVT2$_XSYiZKr%JkTN=+g)%zch4r!3 zixYxG{rH-lhLW_g!C5ZrDMzSQd7IyaxCOgIaOGO#mMEbn%voAfFXhnkZs)rb^lB{s zc4Bnwe0jE$VW{YKw4YGQg+#pu8HQ8};}MDIL_(oWNi7qJ1%yl_ zjVLjkNGy>4W&>HVKvNTm1x9wTWILe<3y_}>chuEexh!?^76-n0r}y8b!s_Y$f>Bvn zPp`^G+o_bW@bk;!3nSrjPKXn7#!arjOtbjV@4$#^slnS5o$3hZdO|`0kf$ zN9FWssISnpE!)Y?EI2&x*F~UvyLj1y=*$JR7-mwzw*d0v6 z@*OMLOSq@0-bMnc1-h?s8^wDx#5-2thkD1#MtF5bl}TU6zb3exg@^xZx1xl6?N-#K z;xRwqfUi->25R^km4^?b{?!{ds#`C?!wVAXE(2zG)AlQIvhswHAs{yR=k4<4DZh~ts1toZ^Ra(?`Y>lkD?Q4=itHe4!uHN>4KM51 z+Rn*#fNIZZ#dv}NgL7=xy+!$iHhOnwER^H-XW0%s9_s=?znGAd7`P*rC$`l$uv(;C zT&`8GHUTtv2jIVdijpCO&>60RU4m29j;r%-6L)m=715F$`mz0>~;FTRc ziq_)^Lv|G8lONOTvb6+ET~sMu$7JT&5YQft!YC%Wk4*hx|+ ztQE`qrs$)zV}PEbH)WRss_#~c^i>zS+6fZ-I)m7r6L@vQ2H;y9fF;UT z-Suu-)J{89_0lzfN@R13^Wz61n>sHDkMV>@@-k2A1$=Tv^Vr8SitwkN)ca}m0?4RO zebnA5rqW{kggd;M^SUHc)kgtaR+NAGls->O37}9(I!@=Eqt;rX$=-ZT1BWpeRB)m;no zlS_-m^Y@?8$Fdbv?CY0}P7zt8#PqS8!@cz=C)-RaIh?j^=y8V=Aqvy-`EeL6t@#fpV%y9-OgD>|?2gebt^o3T7;W&V8Z9ZCb@Wc{_b z(XNenuk~SJ+V!2{Tzn!Q{aw+jv8I34m8ur4@r^5$V=MEM^IXw<`(QmX2=BXt^%~l* zJ9+F7Xwdxtu0K<*A-g2kb?d`iyyH;4Ld>7C{)sQ@tG~&g9tH-rC>RXdi43z!YHA>K zsGR6jJxbH!c8LztmS39?5lgV@%eGpu#A~^iC8g)dxjJ0`U1N#6Y+aL}HxGi2{`t&k zeR@Q2N8`VY)-SUTlq$MbJ5oYitMORf>10olO8Fl2^Owtp@X=}dB(480elraQv4Io@ zb|3JWj7o*8YkhagRk1L+Vf)Lbm* ziHUlGrp*bi=5~^S1q@wjHRi(kBwhJ4?bV zck!WKeHB|t@eAvE8aqWxaQeTj>usC>=%4;4IWNI~IOzkObB5m1N(Xyay$t;^=a&Gd zFYQ}{eNCyNoS#!Uze72b`2Hz+<)FgeoubEDnb_2<+7+mBEX6ZK^tO-R06~c^rHg91*s@d0hdG$GZN!FSIq|DLxJGS$bL3@k2C}uu>?fTeQ z-hQrrMQgH~m&w!{=0mq7JqgL;&?(@)eyeBM?_xUdxzdzE4qgt+W~2vqA`soowQ zwp(w)8U&Z1j$MM5J_$a$l@7b6uM6ejCzdQMn>DO2I?sR014e?p||+ z@Q?QEJ+;g|yy44WsQDDeG}IiMl+NW!OX;TE*yFNOo&&jQKc@F8j*?HP1T*SUXO3dEHpFgbsz&;{%_$pbl7#S~R zu%Poq-mxaHcT``c-QC0AKB`Y*-%%1~&wTn6tS5e@b^cEI<1szaJ}FzMj5@BLb$rJc zeXX}FYEHltr98K#d9KyVS0Umip--B&D12fRe{e$Iq*d9=H=fkptlD1ECv8I3qIG^D zgRLAaRA88Rnj1rlM&(V71PcB5yzP2vUhvb~#rUm-dP%L?UW_`C227F-sKm2>gMr|$ z8jy4K6@9Gc8bG8|lUUk0eKmWQl*@or|5x=nP5_sa7&}s^3@=jjw+?*xYkF5_I+Wu~ zHXuN($x^I7e=Szuk`q(NPD>etI*9Cnp|9(w*(xfaPvu4UoqnH%^3lh(=3_5V0KeWx zy`fjPIfsjqQmfC9H}wVDs=YkxO}&<_9)os2zNxokuTc&-(PzG;H*^9y|3p9B`JU1Y z7GFPjxTIBbTTk``b_&@s3trIY<<>EGUeJfL->ERzF@Gf`#CvC7)UUD7eZ*n$Y>3$r zrbrnmy43p*m-OAP5(HB@%*D6$#VnSTONZHeSs&{JaH)(YSM(fb0{n+=Qeqzuy9z5} zO3l6^o)$z7+-bjlRZq@M7xC}tgIPB!i_k@xE~LcN1^mKw)O$xv|Tf!nLIVWgadg8S{`jX%&Q1frGWpMIcMVCg~85Zt#RYs`1O zt2gFbKGX}@$e`n$cSJtR=20@}cwI&m?dAkwrLLd(a#%tBP>XEDJAJHobgoufM}WSU zhs7}3ED^SPjP0T%&4?8=XznL^MVllT694!Uy%9SZfQE1T?zb=Jxodi1hn11d*Jn%n zQq$!8a$UdaaDEK}Uwm~*cqFYOX5)^ptCiwaKiAK)Z>RwMs$`VoWxmjBvF~WH*_?0o z@$Fyem91D9wsU+5VXQp+Nw2VAWqzqww_=T|HMbo9>P!6@7D2JV8f|!&7nZhhf@C~y z;_;5W^4EH@v*Lc``5=NVTd*Kd53;|7+|cK^8WHNMza6;&Tw9WI(cjwe)Nk}wP5}20 zJ_Y&tZ}bVyu0Ga{_9N>uW>;Sn$Xev;8b=R;J#*DtdY>xK0h@klspUjkp^_d^ovMmSlHEtd`T{(l;}@H^OyKKX{=@s@a8 z5RXgZaalaBipRU+@xFL`C>|e+$2IZzR6ITxk1xgJYw`F-JZ_1{?fu;Kquw^(0rAhh z0BN^LX^;Ouq~#rd(l=`PUgr0H(pweH`!dii0FObb$inrqT_L9>i(mgAEOP4qqQ`1= z%L>{R#G|r!R1=RH;*lsGb;P5-cr=2CV&5!){r@EU;xC(ym+NrR;+di_T-?{&M$RP} z9pF%0IWzAwIVXy5xDRRH;K{A5-}M$w@OqV!g=`n3WWUlYr_K@tr;A5b@u(yoBgNxc z@#rR+(M3F#hzR*Y@n|gqi7mwAEwQJ3T|7P%|Gp<414OW+uXxNBj~U{zOFXuV#~=aR zUp!`thdxa_UlXg;v*M9YJo1RgPh#%>9v+#YmB*!x8#Q)Vzu{Guc1}GZ%8!c2XX0^9 zJUWT7vV(Xu5|8@g(NW0UUOYC7e>aLpf^fBX@#rNUJ@)6*$tOO9B4(o!W}yORVdH0G z!)IfoXJdnBV`FDwLuX+lXJG?pVdG|D!)9TdW@CG1VOwUW4hCUnq5QK@_E{jeE?5eo zXQ9BeQP^21=qwbHd~F16gsDxmQJmjKgTybi5jqFj2-8StBTN&ZjWB?LHhNnaO4vwG z?J2B+Ml$?HdQtpBBlQyIK^u9+FSHTvxzI*`h%#ZLR9xbQi(fABNEVN_;xR=$+~R>Y z%MriOX77t%9U2I;;5rSBmMH#3qu~gQMq4Aw&}fyE(ZDOkaN+LG^=wyOt~-oETM`_3 zp+cTwMb`T4<$4~YLVnTFV9~Qkeq5zah*5`E3Nbpfy?$~#UY3Uhc9Rm2vpC3^+54X# z5-6S5*rT~lQKB*ve?Px5gZ+<`%XRF<0>)4$fXjKcOQ`XZ^L_Xa*RiKwmb-IG4cDgWJnqe6HTXLPjb7|W$`IpK-;om4-c%sRe;ZjMiXUTOFK3R=UZ5kf zd@paZQ)iv5L_pE);Fv=3j1pSM9lSsxV=F5`X_%qlVmb01VZ~@Qo{W0DFmSF)i!tO3 z2>7w@wb4dMf*U$hM|F-MjDV76_>!(55{PoXh*6t0Bam`6{r@CZL=u}3W_-!I1Q5d| zX|ifpGOfnQ&AQ>va(rF;X3eyLIebjGQI8F#FygqYqd#BtsL`1B_`G|VHadqV)-am$ zH)BKVgqwO-H=cpd^*E!X6Zr7#W$lXbsN%*NHiJ?`wE>)8ZPot1+QN8tNk?6BTEl8* zIisC?nO}%7F0*x%E84K#zKP*F_Ry{=4romOMB zJC!z0u%Br$HX9K9Hn6zv#{@J`%t+$81rI+4#G}d^)p$|`qog+BfQU&K58V8Dp0HJV8yq=X?WjKM#rGO9Ua&a?7rQq zvayuyrfo2Nd%N<1?X((wdr}o+4m(AQ(K2ul(PtTpYi}ixfv#PKxb{^7nTu=xIk8wt zETfunlzkmQ3|;$k)vV8HHM;h->c%tL?+1AEc%u&cgI1$qf1`%Ye^7Y!7-CL!rU}Rk zH`d_qg&M{%7ITpFR#emHrkX6H@SnFV?r)C5T@s9otN~?;!G_L>Ms=1%i_y?{MySC- zekIYUZ^g2Cpn3`D|I-62{Iv(h)HYVIVF7}nsRkXCqtGB)jUL#e4)|?4EymFm5Q2}c z{RwEG3sxd7xPUf*}7-J(W%WVG&gCA^ROlC=xAI627 zl9E7ItjWVhRw%}gw=~+Y&ID4XvP>%{N-JB4@x%pM4ZgLNk?ibu2*Q~Kik0HqM?j+o zQ$lF<0f+dm)mTgnOiLekNa z?tIbLpfl}^C)hRu&apvTRD-tAn)U6CZrbrf{HOLX_?@IRW;>4B+wr<=$G8Foi}3gk z23@Jtk&OXfw#KN6jep&k$d1Nv=S^Q@)^#)ky)LLYAi4O=U)^08>eZ9$xu<`Fuyj|XvS9;?HtMzIvX{Knbf&PU~Frd zs<`o&Ez4=}m{A_yltKl;#?(5@bGjIbtQM`Yx>|?B($$hFh}nwvv=vXNR@nTko-_?G z6Ad6OQx!E1<0Y@$91Zh;0nSN#myC~J>1Nzzlc|_uD@=CY4RY<5sojkf=e)yk3Vqsu zX#PQWqbXZV2?=F67Vt&75z7|P3e?rQ=ZuDVUW8)4C{Oipe)l;ehHarxrn)v#b?s5= zDv)MWCR%AE#as}eE>$sCscRNtVegk!dKi73m!Ls7(7f2gXwTju;Mgx6mt})4(+X_R z^4>-`|E*WkNPfJhQA)dcn19^cD9K}b86`M-+HkRNDT>*;8?<#ltJdM(qR&%JOYnNV zEIqcdZ0F^GcB+aCf1{nT&lm%pkw;WJ-%m5Tu+m3JcSA2Pc|;DVC25VXp{=!qBcgfD zSS?!ZZxmdgZ}EIa?IlHi&oB4;O^(Q}itQS4{IL?eVP8wTn#gtmS6hEo6~(zDC!+zr zT_)nsY&hxJgN)bgXS~h&Q^~MNy;YNX(;95j*8WDLJmaC5-+rlYB>$to5yd7_D6?hb zY%QCjT2^eJQHA(pQ`sJ1X={(F==s;}v2|hP$d)dQsa)?Mqi1eY_U%DND$AxV!6|zu zDKUEi{K8;c3*Ilm8P6XKHWoTx0XONlFR~QhJ&lF%T|wb z*K7)UM=7YlFryq%P%EjRvqyOIVMZD|ONoia3Yl3I=qaMI;{@DnfSg_zry9RG@B8F# z0++U&+R=P`bX0+=EYDHm=cde$z}rUY+^-cnD*bgu=>oAt=+;u`2S<3_5k?30fJhMlGgHQLP~K^zkryS%kK!Rq<*mL~9w5i{IF~nsPYWOXTV}YNF90x32csh3WP9 z_}oF;YT&w$~(MnfC5c{{1Ad3s+#s&U?@maKiZ&Ml3X#epo3<_8=o%S(;h&GM-?Y3gf7ES^W_ga04uoTg zgOr%e;TMi2kMWc$A>q8W$JoG%5=i^IqS}~&ciP>I#iW4p>+yrhyiPF3zG02(mT3IvC18ji>+8f!)&V@c2;G; zLb#Vt&hk?rme!Ae%T;}EC1`J2gXhqnqb2Cw06T4}k-{vnHu=g3`2bR&f4J+Y@afAh_FxW+NV2xr?UD2fV1zMWw-XBHwhQPtt~ zMSm`;ttTq|Q@4=o*0Hl78gZTqf+w&{M^{ItEtoi6zB${Nk*lM7Chv{n)8`n=B6sAH zK*Ec~z$WK<^kZ!tj+cE&>~DlDUx~-(0`t0fG!omL`r@%o%oJP1Jd)2_YZT^P78>In7x=k_#`=5-f=TV;eAFVNL5-T?pIY!36mX&@PEz@bKRy z7bX6?3WB#&-h9Eh<#3%K{U`OQ_ruxXpGTL9Outm%DBoXnmj9Max4{uV`AQnXzizMJZ0JZ@)0`(ZB!s_6c}{= zs4}#K=s-25yo?r3*=j6uvhS#fc-+pDxx5zpjTW1+?C*}}oZn$gbXd_a1iowj@&v|C z06U+ZDH?yc%P_21Vnik?R)JM2y1W1snr(z=tURT>{;P~Bh0dc~doR^KY z8tYGqi8-ODiJKsCdrQK7$Cs`c@iYN9?S?aYPMt$WRR^0)Amk!{?qQ=fn?j3G7n4u$ zi%TcMdzfgA&;^m8mXu)p-;|)rQKPAYZKMRz5Zh@9GT(TDS3Pc&wZht%tDxSxzh*9G z;nD$mBaXry`7#EUBL%{FalkaO8o_Y4lV|78h~&Fllq<^bt^zOrkV=kIwuzvY-S1Hl zeBtGdlg2yj8(Ittl=4~U$5mn9(NfgJHz)YG(?+=f_&EN`X#;kECrN+tAw2pDtSapc z;<&kZjId+51T-|T5R9jp<#@*Y`6YPl_TvS)aXX_>04XVJWjhfKWDP$H%YF-MVYTw6 zR@4TDY6UqDJI+V{n6ciG#P8+Hh~|Bb>=>TVGb6H+e&y=H+g7pOBM7Y2nyKm6`LDtxGxqkguP4?MW+!Ff(ya zb@rXImlnGFj+_W;Du8mauvm!*Z)jxo#}Xbye1^XR*3`?Hk9RVDkh+ z-_il?J%^N-4TE1ei0tFnvyb$T2oA$T<6es5^FK3QVjBqrF6)T;k4xPUM(CH3q=0A~ zF4>lSse;zv6u+1{w+i3=GaR5iiFPfmwS&TYGg`4@f*UnKxM_mJPzOEdam260r+sOB zq`j~32MDWx3E!dkXpqwZ2045RUsR)wJH`7QJ5secX&_-POj16VhA0)D2Wg-+{gzHi zw6-erwD4B5RryX6!ZydsbDDSm#%Qk%JD#)l8)GlL749@{A)KeGR*v~i=;#w|@vgZ4i*r3!NhD4)l` zg^6bTM2DFnyu{B&p&F=lRcFc$ztDFsns(1k1$}HP=w(*{F>DVZIT{vK37UBI7h|ha zOFu0-XYUF@G|?$ueTZ+O#08vnZ!V9@1KIVA7%_d;3yRes0BepTV}Vn99ylGIk`fb) zQ)@qtP-V2%_%v_v_LOQ`n$)}24_a#N@jX!K(fK-vHv6>wg!sp&ZAbUnO&dQBC7B_^ z`;8kkaj7!gpQ^o6MJ34`=mA?Y21Eq+PM)4GqmuH+WbLZW4sQ!Fa_L|fppJB~_wr|a zrQK2Zz7BSa;$sJUH=z9&RQtz?o~7EKo3Nsrl?mPuKo;KCsV9$XR=ilwf`S=_#v)!J zYP2pnJN5DF#}6at$>8+)!$ML~86PiC)@r|E?XwAjQ7(##hdQaK>m6oR%6Xt-__Kg4@jLRIY271O3(Uyc~3Upt}%1})oF^-*mD#H zSLuBsGJaswXt7Xs1^*(n)3hL{s1(%BU6ut4!Ad zd3pWP8J*erU|9a6N@f3APTnj!qd7UYOif_6hOds!s1PJ(K|NZ=ENF>|@6*O2o-qz0 z_iJM^M*Kx|V;^sEWBDECJOik{;YutgA|4?nCIdb@Hsjec!Rvg?;RXCtrxeSn6qhmD z!AcP_wlGnr4a%noIqblHL4ONRY?ToshP;$jYmy!HdGvE2WHm zdO|`*YnDxmu`6vo!y^(iYFiPkOaD#>1DVNTJGhp3!&-9K9`j&%vg2K=v9AaTaxwNL zs56b7!)s@>b2#oU1S9y}~PqZrv=rJVII=N&Iksgg_cWxva% zA(dOnhNQI0XeY*vm8~)owUuXa4@lOj+%K_Or}A#CGgfH(&gQ;My{}Z7Em2{aI;KsA z!=ary%ljRg(lzKJ)uGAdwI7GyY@4BLSAb1!Yg9-);Br6vtaXjL6L8kdOeWgm62iJR zrE0<1BsV2K^JvC;rkx{hXP#2n z$;lb#wFU~`=RtKTK6+3bkIS-nP|0(D+k+~QhLNt|>w#r85XZhH#AXe(HER$ROKb^= zpY@l`iaX80Arr*T@X;H8%a3wD&+_) z{bkL&`uR02(TtCuxE%GGy&(&2*t9SscFo9OA1-!mL~t?3@A%kQDW^!-RnuO9zYX2N zC29N*9~&!WVFFAif3R5^e-g$q(#kn;7`0Yz1(@#&duqk-RlT`*SvwaOzigZspA52W zOyNYHLK{c#ZyZ~fA1vX7PM0DvxwkuH1`Ik1rU%d1pFeda1~FtGn2ms7jc1B^vt;6TY`t_PwN=plt^WI zqgIV+V5|WeFo9aN6PBksqa_o9dHnQG)K+aO9?ih2O@?QRRg0~BFxY|P7fKz-X03wl zfCMT*ctgFqocxJSSZaVWS%>RClX<#@a%e!>fi5!1Y!>Hfb4hW<6Brs~{|1F~qQbu*38bm^?O~5|cmTENUumPiT zlF!4hNNf`!%N-(L8(K&5c-JPieA)4^2J&TrXN-JhO%FEY_?x8;WceD*c0kzH6W&nE zmt~XMZ|b8>BCixAosE-(L$HkN@y5|J5ZA#rB{voIZXD{(xW~zH{AFiwE);x`uh?X4 z@h?lG@zGog3KqXp0jB!7O~m4x^!EK~YGE=i>qJw^|5FqFQy6rhlZC;7{2Cb6$N^-= zyHGg*I7bg8nbB-+Zc8RKo4iTK7qdL23w^dlnPm7y3}0gu9J9JH8defKg`T*hc4q9B zk|56s2k>+nh+%UHOQvIL$e9Mly2&GDqm9SrC}KE!+T1+;vQO1wc%GFajrN|6Pa}K| z=n#9ZEZCakFPAz1Fd9a($A6(=*LJo8V%^pzuK$viJa}We-~(EWH1ENS6r`J846ZWTV99(b_>54* z4n{UP!%PcHevWZOX~D5mZ)XJr(A_bJL%vD2;cLj%`Zzy+5G&TFe~eVE%;kLL+958`|y$XQ1A7@c4_B7fWsv7p3JV< z8g|sm2BX|D$AVEii0Jegxvll6(M#e=%H1 zem__hl;p$v@Grc489jMT4qoSDbO|rU;9unQ$o=>i`NA?5{~{aH58z*9tve3?B35lY z{)KrwDIZS9Ts93oIdAGnG`nAi=4o&g7oBf2xDD*gfT1qm7~EWoFQB5woE9Ga-%krS zK(l%utBrCt2kSKoVthy(gMUE~F%=)-YmPR|=dMKC3m3YWbHwU*>GaS4jGiMlct*|< zTlyU9fW|DFk%?B^b)YNC{E5#HRx{($qDL#37Ql(f`Fxlqe5|;g!9yy{{p$nX%tuX> zy)}4~@Cnl&U9LlK5`c8t_(S#;a@zR!t-(`V=1!(vI&GX)9V`|0FzwVJAFmFM;dg#U zPaCsf^t7=uqIB9=H6nYsjyY}2(nop zWprZ&5$O=|?OW)zo?Dn#6?W1?z`ec?7IVTx<_$zR@EF@dI52SwDmxf_QT;CF05h<3 z0(sm84BYs~Uy@e|1hCbw@A*u=7!><6aMKBq?e z$id$)S+vQnhB8iXy43!heT5t;XmBKWNI1YY#}EDD|med*xuc|8Df z@K-wkd+@jZRz`jBFq!ymAW;9{ueK|C@VAY&6CQBw^J~zi#+6L3MekjbybePMOD8AA5gzbKGfzuc4IfeuLtnu??I~$K-c#+^bj7= z1K9jWu%j9P6OyNhf^^!M6$Lr;!l#}2SzAfy#T;^0V5LLOEG#|byyR5yXP#fO74I}i zwX75<`6?wV9;_i|PC2uR0JcUs<@^RqE8*|EYzyJ<8(ZlqXVtspl=C*dcgZPd)w>!_ z-9@Kdg%cJ`>69~nC<&+TNrYt%H}iiooMPt2od_k*4LO($xtd3Wn3L$t>1Ku9V^eg} zOw)<(OixJcgr09xb3=|9P+3}NzF^tLs4`i)nV1&F?$1gO_;dbRIwWQiLgx0xj)sLl~Zcc)VH}ogZJx$@|E#M_AJlQ0P zZX=s-{IK`XHTQ)&sE@4~ph?cV7(6pI2+hvXpJhNDuVng9r=OYkB(5WX@~^Y}B8c2XH+oLU4q^{aB=LT^1h=IaYWE9WdXR z-)t5-n2yFj|5Roy{i`RxPv>qUohf%wm=np0)Jj>Whi%t>b{?{wes;bJ52XFLyg-lrK`r}}e`(g?|G>*6Oscn01FkQ? zXz~9-Oj`QX4P6POoKPn-we)43{ZVD zFu<048P$I#sp7z!R0k0G>op|xWiis|VQ+Y*n3dSG1K^7nKT1Q=J!}WWu-uqHQt#>u zHY`S_amrviFNxdLrPW#o5{ct2e}t>7S=kree{(1gt++XqjW%agLUo>6mG#j0p`i@a zI-{~PI)8I07v*PEwnHm2DsxfmVWD=YJfjls>D(L||1ZFv8y0HHKU1yUAy-u6Zb=}Q zQfwib>UB$~2raEs*#doXOQ=y@?|tqE?)Be2a{TBA(BNA`ozRJA03Fk

#Cw)=&$y zMX1b1)>}h4$Xd6uDf%t&PJ6VuZsl-v`BJ<&aK+=C;>x+gy5 zf6(iG&F+H_Q?5V@F`LxP5HM<|cM5w>E0dOR{!o`Z2 zO8Ck?6!o5mKS|dL)@MGo4~o+uYx(q7-))MjJ)zSO$^tJ&>bk+15|i(x;NS)a`9hO9 z?lD3>8Wl@#hK7jcxw^m=T42;G5c-{qGO)d#2<7Oy!bNddm6&lpOx;xrCKWeiLa{-g zUx=io;OTO5wjEtJIPP#4m#Q)q^0q3~qMihpt8E?+;}Pst)ktMcL3A zxI#h_vVP4AiSve>%Ah&gK4N-j1Rm$Vj2#{u>ct7QzFuFUVeBGkwG|(1~9gyHiZu3VK*tUtM?049JjKk~tPcG#q`(zOp$^Fyvok~7v1f1wVT zCSpVkmU-jhnPP)tiyjFL%p2eJ_=V>=*5=uvn>9Wagmg6hhJ229Dd{2KNhva7iMvCuK$W42iXy3+_W=9(6=bHbM_EScYdzWzOg-E1?N z-!Fj&(?hLv0H#b2IfY;K05WHUp3(szBXB#kIs+q&35N1?0F;YIjrE{#T0%z3cIlDK zZi6x3BUF-zv!576hcARfhXp%3x`xq*q)}BplJ7393q$Sr%)Sh)^xb7_Bvc>_VA|<- zm)^x8Ki_u;dZ9QpLtw$^{>-fjdRE`tc4 zVBR(XADAEfjO-~SJ<6`PrajL{ObX6%&5*b;F^FpNr7Q$;5H+tN^e%7u(sTszurb8PpHTjZ?pv>BafSZc7 z7r$SSA&oEX7o?EfT+QW*1j&UMQIG${l!;pDHG8afkKN<2nmwY`Uy{hKMH=*H3JS72;OS6Hj{iG}?7FltXx}p- z#Mj$tEW5qpAZpn?gz3=AZncKBTeYmcc-id|=PilfQpj$Pcf4r*>!Hhe_fBJ*J5Zu-#7?cv zy=y12xpftr+YeRkf?aUgF7yGkRd(T`#rFC*Yg39XKPQ20Gb!8DBHI+rUKx6te+dLi zol!z@Gj~X%K2PCcuL$I}Cz`xEG!TtKp-ePjb*PAcXQ#0R9+A*P|Cd3EH&ZFrwGMt6 z1hx4hlpW74u^d2PTcoa%MP{a&$x$tnFJ6F$#<_eU0-T>xfNOlE6=41=Jps-M*hGII z;C1+27N^zZ@;JRVi^pxn2LMeLj|~kq%`Hj!5|QBSuZ$)5L5aMUUuh+{`Bz#A=F!HV z@V1UD!vAQwd(k3%f1J6gMR-sG*laz8Hpr&_P#lOJxwuIz@2Z0HPM${uHwGi0+pOqPt$h-nClxUbN`OZ!IQ#MN0^{_`18aI$vuS5qL&)!|#XI zb9v}QS~$svv!^AJ+fZoDKIvK8NXlMtdQl7w<=*C0xHa zST-{JiuQ6GHXct@A6?M}5)5cIsB7&~$H6rK<^L$qmD1Q376-qcQlO_NOv_ZtS4}LD z8*n?!PKVj=a=RQ>n++Cj9*Z5s*=#lYEN-74$H2v@-@+2jK_WhBa%k#8-3{8c5~UTp zv{rd8uvNX5o2oE6=y|epT`iw4TC&%~*__%af0Dq$4=D>7$*#FAw1wNBLb5-W2Hiu! zL9)l!SW6_kHtJp-8bZbU%=XY+?zcDx^~HNjLRaaZhgR|Y*TzxujyOnMs>#av+XS)x zP~kRNIlrf6_r=@k4RL;7h@JjAl~{9Ep@!LDL~?h{YtMY6aDA;8W#qc-cDvu@^aZSr zfYswSd3<bgfmxCe7K}NFQ_$IWfam5Q?$VZ3i2foE1XhzZV zQ3;1i+83<)e*HFdImf^JwQ<<-n-&HIcZVwY^-1LUOdLcd&tQCrXkd1uQ8%daFNQSy zp04Hh#S8WiafTDYHrg>Ax6j~vI(JHU9)8!(L+o37Wd+CA|Hhc_HKZFV!Z&2@f$voZ zLLATMeq+q{x(P7jdR9Kh@g^9@Xsf7E945~A-Rs^p^R)qHailL={ZptG^KI?-ugPob zG$ZWBWU{Zgv89JY0w;_BlH!U%Hs-(n8TQ!&Y%|&T9Rald_;|J&01jj3p|_8OEW)E& zfHdeCz0|96fEq%xRoq&lScNs-D$ZqF0L7+wdr?_Owv#T(r1hzslHzb%6+PT`-?7j- zVL6K>KHQeGjA=<6rV|PdUg1gcQg?huvq@}W-^!I~!aGcV^!l2Dv{fRO9h1s7+oE8B zw*5h6TS;-S>l^jH_?LJ%i8tCP@pE_vo2g)N$YHwfr$S@-6B4|g`h-mO^(CN@_q4~Ffu)J4H&i&@HEkx9se~W%S6B?j?mwpt)dBn|n z02$}ti>|73jilYE$9(*8E4Cd#Ibl#juQz>*?mG|Py>4QkXnO6h*DIFa6f!e3eo+}G zWZ)*D;7wuWh~$HKM1xr!2hZrN;;XlBJRi>GxS14Op42D{PA2t{Z?%&;?%V&HNu8V) zCdbU;SrWK+)U>?GBBMFI@kX2$BB5WWhgZNBDPe_7OEn8lXn8k*mNzbvmK1YyFTLG= zb4K`c;T#@b7FR_C)4pSxiOin+79Fn@Uabbu2+RF?!a}~?b*>XWlP0uednJR-UfbR* zv}2peU@gBxyX%FAssS{EJ)k!j`3PsAp4knUnIwq@Zu(AbY_7+M7>H$Gc*YnT({&sA zauT>am7`d2GL-}14YjT5`Ut;aodKcC^#D4F`R{FyXIx04R>sqsWi6b8|*d?x4up2vU=|8V=(la5U1@n zj=2uS0SV{hyTfPbH1R(q$mnjpIr>IBM;9OPZi-J*vY;R~xm)-NPPk<^BNLi40)NIk zV&1s`r*uB=tNH1lEo6iNe=eR5Ti2r6%R*eH)4sNZG=|6H?wvAf;;e1zWNd z{-_BOD;LwutJ)KV{Mp^wsPE4>{%)G$BG#&B7!E`<-eatfEz;@Qv%wxRjj+CHbanV^ zj?dd;tZ;1;V0_nxZ|8U`jAOLExiSu;*0oH4fer0+{3QmJm51A_mo%)Qr%M{PMUl$b z>OSFSyx;~Z;^tDL8cqoVwgXxoZD_yn>%zDspgr_JFF>n$#iuV=`SKvXY)@RP$PI}S zJfwkI718+sGfOTI-Fid#N}hjK>Oj`3r`Zlb7<+Q?f?BPL_FSA=HDlSMpqGJGz3@7@ z4&`11_Th64CEHj;G+OmpoDvf0%^esX%^%Sa@)HYBv}#8JC7m3R>e{wNXLSy>$Lm zIbRxK-2PKka5p2-I?NcOFk{XyvA%Va@WM}dp~M5R-$#T;*W@F6jg8K8(&z;g7L3k* zf4E%+zi_Xy(RnigX4=^B;F|mkFpiPY*&K&a8=WBKI6oH1RI7_$kKGLWqEC%-Vf66HwWShxi;JdwO{-fb{)Bu{r!1wWy8JQs`I~OhA@KUUB zO1K^;{Ka;yv6~0=I>5#+*T7UrQTWg4G@;4Tso@=2`j-$<>9lZ_kiCz=j9fcx$+R$9 z_|oIyFMT*Np0UJ$;E=R;BlvTvBq zc0f$(7&(>})X&w-UZxaw}2q2O?}(aG$aD$d%as9_5Bink>9z`*r0Ss z=w@|UcoP33jBI32y2n9O_JmuH<{T;Nq1_mNai5OqX4y#7ldvtyoXfIeM^(XaQ)Hb5 ziqd#Lw900mY@oGdTZl<$ydS+dJ8Vkc>U11#_pXY>o4!mVQ z`g3mhfM8*V(sX#WPKPnr-Pp+qgIO?w^X+U48Dj8$bYwx;tA3Z*J(5gev=$%@Iz`J0 z*0j-qAlVci(?akt#7_&u%hdn`opQZ*hddd6SpBYs;%jv%z7W;#r&fKG`4uD=eSN=L z_p2~U2D-l*o>AS$(NrvJQTR)a-y(G&>;9)~2SoSRz#D4aUkx8t-+rhSuF^!(y6cM} z(ft(W>}G`~l@;Iy&*==GZ#CiIA8`VtMG9KKEL_Pq_}*CI?~s_C`8}bXD*QRV&G*L2 zJt6^Q*z)jXUW8GMl-nN%Q7JcH2Vm4!=>FJ$A&PC}sn$OizBOGK0kp(*S>tiX8wppA z{v^q^;t?czzi)zO?A(yz*8jlcsLcm!yP<7d?0#VeiwSYR)0h@T5@TPl3PX~3fQSrAhjhGc8P#K6sHP=~F>4N&4Pm;glqO@VbD$Z#DoOgD z`kp4~W5H;WKII!uP=`8MAW4$GAHOHzKa-?S0S@Z`%Srm2PLl=Bng*O!hr=p5eNISB zXZHoXPKU#9w~B5lNngeRnxs$Zv|Q@+6iZY*`%|8r{b^uCXK)#FoTHDckLLVR$Rs0i zD|rT$(MpVZxdH}?r|yO8a9g`|%bl8nD75;uw?E+j`kp56t8pNnz%K)SsuK7?15MzU zgP+J|@rJeGF1abjaFYan9hC%r3N13{RFVootuK#Zr7|4+B9YtN8en_D{@nF$_>LTl z=(qaKmVg5e`B>e4ztiHi1Y9OKs^<4uo$lCBN5Q!CY`fcQu{wSBfYoic`pg!O$L9)o zyf(k+@;V@C?O@b2wxLr&l*L=nyp#U{L2a+J$W zF{%}H{wO>s)u_vELsy{O-@nbeJ3tkI!Opf!bQFF(7;$my>*CxF)+REarNW zj|w*!hQ`gFL7tZg=%*Y5!h4tRW4zs>9t0}ij%XE&QI z7Khu3_TN3TNoM-AR75jvSgS>yZ;(d6`*oGvRS$>H>1 z<6yFbL|W}WuO}w9UkKA_@p>IjyU8blG{addkIU5> zyB%(;)eGY37Ol>J$!YdEtl&bxemHCaUknl$t>bc2jOs$w!xo6GlMaf;PhVh0U49F< z$nm&rCbMXFgN-v;Er5XAYO;VIb2`m-tJ@K4_zZ|-w!xFY>HkZ$0a+|#Yw7+%*e6_D% z3PvOOz&5n($VxFg>9}@Oy$d;z?OeEH7rT?uGdmbju>cz%r>d|SW| zRuk05ZZ+ARPP-kh5r`Hzz#8y)?2?@cm`tJeMY5l#^;` zAjQ-PMvM5GuFJ@3MhEqC%PjI_DA{9v4`3k5x2*jlpKt z;d5Ex=9MVAP$ANmcERZ~Oj%agwy#XI|2+rJZ@c|uX8~7LCQ^4W0#K5$G!7wKu7N`Kn z+dAp6=-LhyF7#~cg1j!GgHbd;xKoz}e6Al%gW2J9yWK7@erCG}x3A28NzhW=wraB+ z1TFW($|yHI#k{CB$C+F#J?ghpFv|~mmWw{z8*ZALf-36JavV07&Ej%-yjBPwT_%Y7 z!L6B{qStD-LDY}9&r6!%DCMs79KTmI1soo~*9Q&@e4xt_@PUo@nw);C)nQ}Zn%Utt zxg0L9#RF<-hqx4C7QfwV_IX7={3`{KDaH<ZcNTNC-!Hy1r=F2DX2odNAK+nVY}61 za*Co0EVvZ}5pH0>0?UitID}Xtb>-P$Mr{^*07ozop8$I-cBc*I%meRx?I?H)EEwn_ z%^t8>O^`_68L)t(3;5h3a8-oGgURdhnw{9X%C0QM&<=EJaKX^rrA_itEp(BVYCx)KWy1?{ za$P<%UO<{05DNm&VGU#PyB*-A%x*9YZg;G=W8wJpmR`Ttg9{dbgK*nmS#5Jb2?JL^ zG@0yZqi;c0Y~PKgE4UoES0j1?4hSTzTb`h+n%_G_^VC}(mfcJwZe%O0}-4)RU8z24v zI$;GQ8`MOrxYjPW&tZbq1H9l6Jx+@oEQ9oF-UDgX;z7HGBcAIdQNCGXjCV16I#24}e**-^N$xy%x!Kq#Ak7tuw_OQ;I>s zp0`Icswx_zMunhq7IwwvHu*d@F!F9EgvMa;z%n}=u*C5C{n!G;fcx0PCBKfx?u>XL z7EUrtUbPaXkWkI~&YhfR@tu*J6jULY+Rm^ju!??IFPmUr$ZCZpnkis|O$Cbx5xm7L zd4tRGq{2p>)ny4-+@MKzH^BKkKqW+7R!a`w+|}>=Ah374UC%P{IK0i-14Faj_Y?@;VW0c93Px3tX!J1aq*h zV(~b^+W5UrCoJ<|qYm~ftxmM;)%h)AuUud8JO`O{l8x(=b`+8iOZ>uPiwjz0`#>v1 z$l7D_*&VQn;Dvkm;GbO(XaGBXXwJK^3r9C0VPnx{4%i)Li2J>GSH}xMF1SX!&kcJk zcp(69?pe8lgFYc*gM2_XoSFhQnMI%5VTbKl(c}m?MMNSrVmfk@kM45eMVpwDd}P>e z={eJm3Z5@$-_2s}=3+dYA9hWF^Desu;vp9}I3Ubq@ta`p8}@o&nSpmAQ{EAbofuTH zh?@?9vhf7LKAu|FQV6KV8Ny0E8Otp4?g%W}l2Qat;g02Zp~f#4jJmY(e`(|Y(#AjY zWlE!_ z{}jmq|Npk}e=m2f=7xmsC69$VHzbfKM4O^<%L+rula&peMsM%rJze;C7D?nH-Sks# zA)sZM(cT&462pkkVnds+`XASb{PhH6y&07MB+irO`3&{0A6@IP;L8&D#>B+@7omOH z{IZm{CFbW_4xs((f-UOa4RB@cAM!u?P*=pQ4>mzBXT|FATeqR!>x1q1#owT}o-MqB zZ@v%hf3|Q~+7!5~b3VM$ly(c;)Oes^qcwoxOY*lug4>e(#gJyKB)>V_)hx+}H{oA+ z?Xr?d`Ii&4I_8guKl91`;0gE_DP{T~{zcNjO~k**MdOF?FLD8D68<&qdo*X>)cerv zejS>p0l$#wv9y8o|8SXn<@1G~)PnDS>N_oc<9AxhyxkufJ0AaUyh9wB?;7Lk9`M=V zbT1@pwR+${9(+iI)BkX2$YK@Y0E`7b{ln=K3!EoGy$cuSplvS|)aw7qblEB7(D=1Q*#tKX$JS)Mq6PE-}J5kvx^$FMGvnnEEno9?UaIH?-t(A^9Rw!cMEUQfDyu- z>k55BP6F7`b%i%$uwLs6I|=M)gz&}+ru8YNe;*)~v9iuFWGYjDNXf42Hxw@9gud)p z_=X?TSwq@cuY;*Od-uJ<;hb@W@<~;A5M~UD~@3qOBhk2Gs!g@+vcWV>!kxm? zY%}nImW+RiZ6$1Y`XG9EQ(-^#`;fBoc44jFyOTdH9H)L4vn)@cJ}(g~`2roOw7%mY zx%$V{-&SC+NQ9*&t1CV$T*C1O58~Uuw9VK#qi1sYm0Gq2OCxLwhi zfI;NC+8}ya4VN3|&n7|8MTcVhp@|XL7G-MD;O&J^3t2xvi)8tTRmy72v@mavss{UJ z@N8do;S)kv297BZZeyGAq^7}(v_QBD0?!m9KQ~ii*a1mh`vqrP)rd9NQCP@x1JTB& zMXixiBwXS8EjrL7(GT07LLB_U_X7KmLPI;%XpE}9DqJoESiCjD?KkMYnL+nx)q&;0&n z(CRzqb#BTqfk6SMTTDUGGid*}eB;=LLxoErIUOEeHVed2l^-s23U{;3gvGb~h;n}} ztk41Y{^!Cz!UK8$(~lIcRs(3}FO9?#c0M3OS-f>dik(#{p0;rQl< zNKyu-42m+!H!_GSCj)l^ZQNC4M&nmKQJdeLz|$`!@s@LDVeziZh&N3nr_brwiN6bP z;DmmMv|_wEy{MNkkZmSn-0u+LxT0xl0F6{0GLXtVeH371;#7X2?%Ta(=GFWIhe&+U zO>ZWCOYB~bO>(ya?Bf(xH#Rwy2upL~t@wRkZB#G4XreHarI~0nVZ{QrnXqE!A=KuM zsVy>D00`!Nt8&ro8by7D7gz{oWdLBfye1QDolQhaCWu=-^ICpw5`z9pgeC4j=FTYk zv=;x_Atl&q9~ZNMmq|qk)e}Pbf8zRQujRj^Lo%y=1-PXSFpZzo-N|k`cBElZKTbHw zvV-vTp2kH3g!61O;p@pmD7{J1?P>rlV#+#dV8@HZ0rhWMM3Og?vfFuRe|m%|yWQp| z#sg?8N`Pc&YU z4LY7-VJns~Inqd(8kuac$Qvcpzz!THp@2C9BF$usPL!wY!&-T2d018iS)P^-DXHKc zhqZ}}6q@go2DDO85UB1C7N6j6IIK-%q<}n-0P?`$;&J>PFp4^nkpeO)4x$zs5n$Ab zj9MPn;cIh1PQ};c*$(v>>xnZqnH@w=?kSp(rN16PZT1$uCmxZ97_2n-i|VBg%?SQe`Q!zC@2zWV^_BtZ0)kfCVM9dFQW1-Gp1% zW-^-tentm=EgG!`(D>M8dSl_ufh>LW(N!m?k0rA~YFj@hF;mV){V2;!jia3e&zRYG z^0%TYj-RiYjX7)wWHzQH%*Ldj)sEHxTfD?*um24APtqT~rg0JqVIOD++sNXjA#5Eb zjBy*2|1A2aCcp1zZT4Jcp4Upe-~F@JTYLl5;hg#(;a;`bbJzW>W8mJwxXJSLuN=o4 zj3lTXhr*F2N7Rbf@Cc(f8jjS1XLPFN_19i5!lm)1BgVeuR|$u%6c&6*LwE2x)S&Pw zYwWukk&bD6?<2-;MXtIXhmK9F9XZ7FLt#WCzamIgnYtcP`<2c|$PDmVK(X2m)T3{z zQ+n6Mj9}S+@&4tfIR7uiEVe*mn+P$Bq!7fC3Bf!*s+pbQB(qZ(pB=K+zoJ28WE#I* z>OeM&%h(QxB9sV~87DM6%7})>()X66kF`)Vx?o!v9UI#^qApLvcRQ+9$t&@2 z2EMQ(JX5SM+L9f4nZI6wm*>1M3r`qif;ZGE(DCR68(#z7ppI=QA*!IXYVX?4+)-^z z`am3O*^mrr8;Pd#rALho$?XzjBNP^Paz=HCxN7i~M~V3`>1;U+%-6y&2>@e*yGJ_m zv3}hn*YNxb7}&_3JRa{PZciE>T-ybx(uAoG9M!Sn?5xv7x@?OwvG9xdE?BS$(I#k~ zCGxaU%-P=>*()5tlPa4hk`8kp)1vf?p0Gv6G}C{Ufu=wAcFUOE9(gxSILm<3gqez4 zlgqNQ-H?QtXz8Ff>1f9dm3PPX_K2M2gj&C_XziKa4mH>|D;;(1U)fP;z&;}zD@)(t z>!bk)s_I`^p2@;W8!~(TSa_AtHUVzKx*B!(TCje*Ci0+qNKGuXT$;NC#AAD}jZCVM z*@Nj?ii(5%BF_tbn0ETz_NZrl8Qo0#rE!Qt%7$Y;3rY;fj9;{dIl;!*snBL_vj;X4XFV zm$UXMJ8OgZhR4(fzuqz9DXR<56oVhjyCZUh<2y?oz{K^gv*9NEPJGJAyfuaw)CRxq zF}1Mfx9E?`LV~04gPM4x%m_nBFB|;U+Rf| z9T6Eu^QT`w@1?Hz&yoD&$BaYB0}0)HJTmeuKNChaviLv8LE;vlRLi{=VAMMkLyzg0 ze3q4T51(yere>rk@~x4PAL5NH5m#*K-%gc`pxgc2=3atx*29~rF%(5PRU9^Pc7%TmI!X)F_K2F|d|bz%xbl(AozghxvXIylgW2u<%6ny1^TudUbK-AiC*)1!}khZ(~a- z%~ABdNF9OQpQ2i4K*P`pMp`%SSFP6FAIDhMy2%elzT}I4HP*VzC7u>iP|&)2{#ucb zu6`)8n}6b0V>N4&0N48O6)p^yjkb?`tR6Z&DRLYCB8&`Lr}qtQU}w1p%$|4!Wj+KT zpmYrX?k6v(R%?WZd=Z>d%b7XOKoL;yM_~{fnd8E!#jpJ(B1cikde{xC0QHOu8-|Pfc7g^k!oM7OIxL*cusH2?I$5l~|fvIhuoQ^G;I-P`?>m_XDEz-U$HkxgW z-tY{lVRjO4eJS!xE#7;A>?G=1!<`b-N1+pSid(^f;hyh<+YY<9dvF6iQ;>Bd?pV8- z*c-X)7q_b2F<KcrnEPnrLH*p&y20#t-8Hz9jX&5p;2}9;khA_pr+-oB3)A-j; z7~6&%sV>qh6c%hl-M1qsjsM_;v2Ey_0Ml|^q;49&1I96OLv|U4u#qwzM}OQZh4K6o zRMHryG)I@~Gqqg5_)Wy-5E{vc|~#FWwRJ4*3RA|KrG7 zAu9>!4SJy10vKAq-s#_yFWz$DC=L=YPApdHN1O0y2Fl+Ro+-*7Yx!v;ljjCdcv<;x zWZ{YO+kVq3f7jnGMEP^{84Bo;1@@is+K8%sEwapc_&2T7n;1u34!Hi>8ac$x!pOHm z$G3&9Yp=IYHA>=d83l)+YxR;>d!oM8k$cgQrLXqDzb0}^aWBJkJGeKY1Jmb`E!-;@ zq9M@mup7^oY<#d-@^GP`)y~M}0?Yhl z@{Qi!$%O8>91(YxN`!2H|70aXV}SpNPYa2jTI`Ap=Nh9qkAXnS0@dJmMj(km{goh4 ze_W72rSK-DnyQXu--Zx$9mPl{s27WohM=qAncAZ~^KGP}E;o{Nfkw@!%0{L;gZi^R zPnz|+f7gDb8vZ-|NYxK_uk|Ze|DGrULJy3jJhT7Gt&~aFU`bHB6@@eN)SQ`}gfr!o zGmL9l_H(37P3~pfMG_VKMnYpHg$MU?{fWp|HMtFOj@orK?|1?nIvvTV$!(9rWgF{X zhIA2YC1q{Avh#~{9{7siwKlC>ZxTwilW_4~=8O0&B-6qLT=B0$`X9`cYkW*wiJ%Ks z>%DyOGnp-!9;J=nm(z;#gmz3jQcmKv`~!7MFYc-bR-6uCHbbz6%O7nau%l^@G<3aK z{2SIRCSPx=AD-VCZ77?Uhjt$>R?0XJ$EX;%x!d5G;^xpjQ;J8RZ5hR1@{|5h2f7ck zoeuy6QelGskdkRD9P%08#+>$@EF7Bx~+Oms-^Jx~eqHggJ?oBk~P_h0Y zwZ0N(-=N^&;^2_l5q{Gj#?jkN2_SGRZ8ZP&AI8DkP#FZXL)k-k6+qN`2v14;lFp&2 zmUJl$_-(kj5)=KZm^QS0c4zLSmS?q3YR&bOhQ*Wb=G&h%K1v{$hHHCLYo&8eY7d^( zKB;4xYr>%a%{0pe?GjD1ie?fE-IhS~FiNyyi4i$?HtwWxj6YVIzWXUC2njiOHshqR zkW5SfAqUT9!zf0p|0!`0b<{H&VAQMsVS0QWqUGzwTibgj45XMoMF=_r*Vb%;3LY+A zp7{YYIBP0DW7-*0`N2uF9&BCx8(1*8xT`GJl`P zK~(0Cy9_nl5~bCF8Bu`)b0AM@&K}Zo_Tnwz`Z#No#hd7=ql~GUbrejE`%ks083DX9 zGBtNmK7t1#%RVqQBhk5Eig)l+q)z0;-y>`%#N2q{4Yj$s>(BpUZXP>sWNwyYwu6S& z3f6Dzh<_tm7DqkN=DeFkgbqu5eVf9|Vb<0pBJ^tl2r)K$l8Df$IEY$=Vu}a}%J;5i z66gMfwKt$gRx#wI7NCbcCUaF49X$)iKe zcyVbXK`}Y?PV2;6bz$89W^>NR6@yS<6lW4kdzUWlcTn23ao0nqjSWvDiS!8+R5mUf1WZsD3de%ooa3Hl5pWf1LbicbbML9v@}FX_(lKS>?P=H~~t17d!v;SII<*>w89 zn4hk9mXKv?V%*;7j5a{4f5tf6x$=y$5ZNWhcBJsK>AC8Ru@GIA076X902swch^~u+ zsDy}b4>0QBz5W@>v43H9Zm5}LiAR<@(-YV>m6FXwIk&q@PW0s$o-tnI4UvecIHO(T z%?0Gumy4#J(Xls^VbK3(Z*G!MND<>SJX+M5OQ89q1W_R|&i6^AWTZ6S-nf*ICEo8z zq{N>9f=vyVhN}J-m5M$DX671OXVgEp?ND!C&YSL}9Md=3%H%;MtBZXZH8@=E&I2`e%wEyw69Z7F5xH-I`lh{#aLr7}I0Pw& zphzZEl(sGzfnhVo`f2kkwy;tE`wHY-Pj>PtS0 z*XFTWphOH5O7TJsS&Q50F`1zzrd2Av0yQt~Hb|Knum}85y2#-SK#e}A$m=uP%mFBT z&GkX+xg02D0%g*m3a`)XhZ1E_+#2fgS{yFF&j!>7r1E_!Mua*kP^Tn2`GBc zQ2h@|+UA%|P$tX?Xh9Mus8-~(1-w?M<^}x4wUXVj{i~pW43vJhn=C+<-3nEza8)NS zlp%rgI8go1=7#dr@%k~XO@65JWb;4~UWXN`OSz$3BUJK(;zD*m)QBc^tT&v7B4pXg z2d4Q&q0CFtah1YiIa^9Pc5#@Qa+yE`ObD)37l6t*E*I2xggWt1bR6m|Lj4t7(dXDoe}N zGILT8MT#8dKyg_&lvHy%Jy2c>s++o@4m1?og7R@b8`L(Y#WIHs-wRcapwOYm>4Q3P zP>0I}#kKrU$I${xaNdiVZ;~GpHnldasxd#jc59CLPmGtCA-l6IbcQ_0?z3D{Y?xY7Vx^YJ)OL9;+XU zO^G0WUZ|sO0feA%b?;TU+Lj-xeEMBbR1nH&LX9a%pytK}C|$rXC{SvRK?O`O69KE; z0;Pq$CNE@LgW7IRk3)1r6+$1_L%$fH1;lbwjOZsdXj6@d_CuL5H2eOF4D{?%r5&%d zGX;&HA~Douf@-7|Fd7aE2pA9rrC6bes>=r@GNH!Yxb)U$kIiNGL8}MKE{YD28>q(X zF+p)wrzL=L%}|bz7RXF7HzsvSqZHEURKJ~qV@mn36g1%)hEmBsKh$luK%qJ)3h9Qj z+fa-ZN~ zs_2KJtxz@TQI^E=j(#lZrFJSda)wjl* zaK&-2D*$z_J>bZoNHLTFb3!RsFBEk3LdAJ80F`EO9bzcI1?4D{4=s7M6eI5g&xh)+ zDeaI8y5@2^pxBoUYMntHSGUa%RWLnfpB;Q0)G3dh_$Un02~}|eeyFwvNom0b1fX1@ z4~nNjxpgRuX+c#Tp@=Chmg)C^xqw36xQZ*dc_^&r!^Hbten@fXw^J9<;0ywnmV9LD z(x3uZl7W3_qqxtBavPOi(beG+8F%J$K}AQCO@souCM(qDbDE)MF#IJ##YCv~D^)<= zJ|7!(T&4~Razgn*7z|e#cR~S0DEkIQBYidrVN#kl#UxqOx@1c#sMdh`?G${IQ)Xx7 zrl2f;40vK zy9q44-v+rUZ2_AL$agO+mFv@b15T3(s;_&YX1x_^rGoeOm_VVSz$+BghWwSQ;V;C15dB%9P^Mcndu`6xPzO{S z$n|+4!KOI?6;Yw!vnOD3nf$gu019A&*A`t+{Q1N$;dP)vQ1cb)Dcit^fqXfA9&r8+ z2b5*>LX_$C#UMU|>dz^Lv=YCNa!ARw?JCV}ZG%dBQ0p_`bNL-sDCp}nyP(iJRI@fg zxDmT{Rq2HEY$&_ya6)(swd?Ixix+qdRsO)rK&4rzs);tf05LpKv}}h6hR@~~9X_bo z3&o*bW(Y9Bv%A0=dQCB?0l1#aO**94E%~%RpOzZ7`7#iGz%T8smDe zR+nh8R9M| zk1mRKsLBYxp$e!wR{i~aa0=kptR@pIzkCiTwQGTyg*emXbwJEwccCh4!R4{>BMPAU zCDfpV@DcuVSWMsuVdi0l0|lcUcCY|`C>8zP0#M5oqf&Sd> zGi#w%>CwDyqN$si)iyh<{-LHN1ceT8YfwcS7!H->{bneM?1WGfn?YctUvz`RwTe!l z$qVKM%2b0fxB8v1Js`%Q>gQr^dWuQW6uV3zl@7Iz0auc-%PN<~%rPY=2rs`opy}7m zw4oP9l#aTz6>@1S+M``f2LA@O81H*~uPjIQ1rs$PvPfjyRW3x+$zGhT4ij)Z>Nyg%3!pL7wz?p4T znXs>Gj)8MAWg==QE^3PE^gWiH_6gKjsj7Oh6F&#C1viK`=64@O3mQawWNd(Igk^mK zDCmjwNz3=1MSIoWsPE6K-jCGbA{tJM5@ z93RIanSZC_U!-2h4E&2EsSe^_B%50Z{~}3#!uS_COO?NojF=B+)GtFz=S>|>N`T=U zCHpF7kbgpHzUZeRKS#m-i|AJFONveXW-=)VLpFc~hf*Cx6s$h0Bwsmxhu#p*vmIhnL zv;Y$1^yKqrp>EEUnWLK-J#6#X%$Bj=vZDb`*u}up5-B7b(LT1BB1&@OI1N6U!~W?off0JZ57_3>lQp-7kLKw&KN4oO?Zbk~x0H#&KDxYQYXwQJPD zht8oRU86mPf+T&mqJ7S|fIic^N6UrEBz?7}eWB!ik@{r`JW`1kNz(9@Df*J|20NUR zgzH_lnTY)x=a9=B?W_hEXO4!2ZS1=w;ddWPv>y)uC6=f~4WJRL97>Q1H+%rG9owSJ zB>c((PE-;oqYxKAhy^R&E$mizZiufNdg77h0ve=7aHw| zy4CLzhK-y((=24`0Tei+W7Ghc{yb%FOo@0Am4?HWq`I2@FLKnE@tz8-IT4mtS9_{Q zbPmV=?=O6&{C}wX=xEzk3Y0wo3hlo!s#jf2X9^OltKFRh!RzQyY(MnCD%+w=F1qQO z=yKsvmX9P0=_ICwdHbGgqxo3|&vsuM-73su;E26UoAp-)ias&(Apw3U22vxEcT=p{ zo*{)nbeph(1=7gZ2pyo_Z%%I-+g3UA1joO{%mpKrqjaFiHA!}GhUBaM7bPiB;NX8J z)T?S^JAN1GxK+F;+Lstd$@OVZ;eQU#KyReGOR?5VXHMq$6H*8A#erjN2jt?wH}Hn~ zX87l*_nc^UhMb?1o3X5OQ-(JT2BdhCJ~8kXQRS(~4OR{9yD3_bWgr(*`bP_dcIN>? ziY#c=y0o&>e06JcrXp{=WDE^Uf--WP4iFFLQ-BgO(gmk25kOX?4;qQf%v zhvF#5ix;tTLuRWP+rrEi>b5i{YtR7xGlG$#Jex4943y_1c%~>1s(F8O3;%-zFYC_t zEIiSjt?-8W(#=Qb>75H%dGOT_18F5W8*>aOk#Y$&qIEw^pUyP%g77!sFRKVS>aVb> znUpx5?T)ajJ=>zt55KT_4s4AJAIOs3?r$R5-Ic^Y$^dP329PI`h_;0S>rUhqI>1!6 zM^21R&Ag5wjFs*FOgkgn*ZoaoyS;*3XPy3KR|1EX)vdB*vTgKi#XX_Kt7Q{P!ksyo*s@SB=2qq&iZxu3 znzQ8fUTD#*Xmz8-HQ|D`vpENg^ZaJ*;rC)xoi)Fy@F$D?vf0tRcygRS0B7~ps6Bt{ zT#aHig{B2%TNKvDa_2@PoY3|kXfja8=)aubIVkuLlv{mme$;Q|ExT1jKNb42W0NSV zH`Ah^ib`^WW3u$0#eP~4g=#`~F@Vgv*vmHK067g_M8&mcom4~M=qg*$#HS^~*&)e7 zH&(mOtl_-y7~3t0u4f6eZVK6gYe5a6j9t zGT1|GGa2mu%g~-PGuvgd08&|jZf9pcA{4O@WbM7HDmpw3UPlwY?b2Eg?(tWn5us88 zSH;6f`~RBR(g?LzSOCH~JjTM;qsP<`8b)j}WJLFWW`4>EpRnC3jM&aL6GnV;8LHxD zeWwP{47N>gFtVUx#etEvQEx|St}VH0822aI*S$4wg%ixvz2!3-CjE4t&3Ep6OtntZSK8hOdur z039}X_Rogs%fh`39Ca$A&QGX;_HBgyqH*jqB5Ck88uwnbs}301qYdgp-1>gBuNp!l zF270Q!Xiq2QTq>~uW-T>Y_~)<-yN~hDJ)}~34ZWmY{5s-_8Ji4R$kM48%_BndYw-H zWGCrEU5H0FMYGiq8fyN~qXr9qGnPJOk}}ZZ)i245A=pmnA8f}TmBd$07;Ikc=xc`N>*_Yk)R7DM{jQU_%4?8dEB zja9h_+fK=82&UqX;!)~Ir5pND*wO3R zia)`<(d%oV*{*q+v4XwPAvO5ngabD-Ihd55Oxm7e1AmCtuEUS!QB}>ShBEn76&Sfj zQ9mBFv6Q!thpc^g)bQE41NdR@p&M6~wb$lmW*J38RklSDg4m5GqIsOK0MC=G{E8J` z%r+BAhZoTmzej^=2#q9$Bs$q4sSmdN5&ceB!}h8aY*@!OlfmFcwBuy7yBdO^XF3HY zX}d1Ox>K-8s~SUtUV$EZ#7nRUD?CE=PgC(C*+WSYwLc{}m-XZijERAsoPcMHo{T#a zJ-{_U)!8taaqWcEpk!9yrKe3u-bRW|N&v^~2#8z+)w)1E3&M-!m#FqJK7&OJnU zMHA3!k}@d3*Giehhoq_0gd0c+n|%_p*N(a&*qE_94*IG(4;3o`$@B*Od{fyoDZJ|; z>RrF-Up7m41<$aoU~%utuS`Q93@Ga%tYja9xKii(BGbx<|6 zj8~*JQCLvI$i%Xo%lSEkTzv;sM@reNz~q#d-PN35mQEZLQ&m9Gyt`!>lxr!E zX9?t|q!a(dq-sWKd+I&vlt@-fAA-r5IKch*2=Q6 zd{zy0+|;-R15ae|p9C5F^S{er_ti!+*sF$C2CoK`)Xw1cm&<~={O}saGWfB?;@c=J z$lyKO%Pw!j=M!@EWw5i9txSRW^+efSx%`wG#zE4|IE>2r^TTQoA!LmH)iuZ)|56IC zZc=XHgy-?($Wo};W|!00u_Bbzl#R+NuS(%Z5aNz6?uJG*D=!zeuwyHJWK#|Fzvksm zVH5i}?ngdiS`~Rlzceo&lcoPG_Q2)kcW}Zn29VkMJH<8=eLGeIJ>Igs$OxcTO@?DK zz}i;jtJDA*1ut;AP*?kA)|CDc02bhE6rrzQF)lQgmAXnQUoVC(9Xzzq)cYwOaZhB|=FVhT2%? zOoNNoIB$U6;Sb2Ral>~p&Pe$nFy*xU{~+}v(gUYz=^4X=lq^D}Fr38s1atCjZB zltpWzHaE{!Rx8E8r90;IVR9WlC~-+jr6!ESoRyU-WolJ&JWQHLnOkx$K+IE^$7E>^ z`E?15dnZ2oa(2vF9m)^$U)40WZYGJ?9TXI-+xd>=10fe55gL8#CTFyZ!=U#&mv7=v z*EBY6SI37@8@KA3TI2SPhNo|8d73=cm>yF*#dQ#!XfVs$%s^mKS!^xYN>D{Jcm>X7 zXhpP3hOB2Yr!%{k&*5*#Fy{0P5*Ga^D144=XDUC#56{5bt`6K*jIOA!w z)V?(iqGoiT3@xL(WaxMimNhh%VOtn8^^c|e8DRmC5|?*o#mzPoOSvEe-DxWyt_ILp z%2DxIVmc)sA@os@RVENmMF}Qz5dR_Jr}91gJ&cTjwOmi9LXKk6oWR^Y61;3Jzh&Wx zwfs0kYc1Eq0Zn%IM;~GODO~@VOw9N=F)AS>A$6@gM2hY4_ZjxEn^4hiFAxP+n}N{rn!gC3H|uBDdD zmbJ8!S%bczj&E4LC6&yvk@8hWA975^!d#s!k?BnlKLm$(Tg0ZL^5=QM&Ag%g7%`fCMsRW0Mn67To}-4sxHM51 zFjd0kp4y0;yRbW2R#`rmFRG1fPnAC+6ti8DFVfu&b2&@?6dK*`vAiX#0V zziF1ZO=fpVyR!>RT43p(*h6wjA_@qGGlz-Ff&z*G6=elQ((WX-hze#96ij25)iYz@ zJkN9|p!YE=sCRmIhWov%x_hR&r)Nga&*%I5XYb|dY;`?VPd)Y2Q_u6%Q%}|R<030` z{?8Iusb1UHR@lTDJoYBDb(w~v0hTEcd`V{Y=)!v?IkfB+mdl#iTjK(u z4lN>tZ>r6O*W!nyuHU)#=T5>htpQz)SjsoR)QEYV%xXlald6#!j!>;}S5K01e3Ktt z`=+>qrxartHvRYW#Y`0J=tQ1>Y;BzdK;|^_50+4muN`Iq#l-uctpM(NV(ma90Oc}n z_8+&JLA>|+lK3^>US^;Ao-byj`MMK%=Bc&oi~y!?p0w)bS1`)6X-1*%6x+&4%a+E> zDSO}I+$>UtZ=6|vSIgQBHjfIfGl-K1XAEL5HZw?Bu~E;=G5^eCo8#M;&#LZ)Z1wW| zVzYXAP8w@!e)Bf-rB{sn2smUfy$d2)h}0Dh0^)?him^) zZd*m+Wb($qLjx>*z@84O-k5HUT*uoOx z>BscVL3~NJ6#2OWCKyKD4V8_jSNIj=)eIvQvC9c(g&S@PB!PAyOKi}Oynd-8Z|q!9 zWOoESZm%40ND`9RA}3Y=sca)iAs9r4Kx7b9laSTDLX$~5{m5C2ly*oMjMR|MK+x|} zyvQhsRG1M3SpoYk@1KoM7C6qOUv+8j@)uykJ}kS z0x*Xw;&33FH!^)WoL(d_c9YnP>-wfD&uG3Inb#s7qz*^U%OEBYc{>%FF-UeG2O6k= z?4DJ3EPv8gS)fxj)uBCar;?a261vK@ii<2budxgnu^s+Uz%4r? zvV?4#UY{2!3z41^X?p`MhnAW+zY~p2IE?&&Y7X3hBbaY~e8y~KN`4k~8*76@^3p7w zyDa~hJOs=+h%A}Z*x0({T9;hwlH+%U|I;Nm!*_6udPn{RbsOG&U`v(Ng`XL1I;z_@ zw|mmNdL?AZ1&vJw4vp%`{>F{H$T1f-MoV*Cre>Grna!HMEYJSRzAP{Nt(crYx6#?A z{O9(h{BU$+yYUDwUelY*IvnlYAz9xOk&tV~kZz}bJ+9qYgoUl?OU{}8b${W`Hsttu zjkUtFZOK*h8r{O84rI@~MyK$XV)F64#xd9Z4f@Q=dNhiE(-v2$+7|3d3$?$ZB&KkHe9<3H&ycF*iz^cM@u|2O@`B9?!ozgW!VPxKdy z@%S0Pde^gKx?gA^^O60B{sOhhww@PV*MX7^ipgzIVRlu}+x6#N-1u$>yz)HZ-o}%- z+w%*4%cS2eH(ie$mojrFBDz8%@Rv4+fB z-1wY0j_Zibela$qbTn52B$&O1=DOdC=5lI7LhixVEv(W>NWKi^}Ai>k#|QH{5|7`Y2pU*nRe;JVf`c(HY%nO^}UU zh<~nf#&oi6QCB-TytHwTvBQ>|n`V>`q~PohqIUV7A17&9+gP%0Z){qdjbaC~`|N|q zi<|lG4jqin5Y~%`Nsdk6S}Idltf3|50ouN-agp$#NbJiSuM{8VT3R`fu~M)$+i`*&Gcu5*TPmXCt+0Rb#zP?AAH6 zNN9H)q;@^t0J*JaJT!pAFhfOs_6LGvvM!U?ac8Y$p6#U?6T5s}5%X<{8; z!lpp!O#aZ+c(JkWq148c#gnY+ei?0SFxI8hRh?lN?PfcV4O;`Sr`Qeh`p)dQmfK)5 zu-ff&9+ud4#(JeTjb0tM30HNdo*aqP-LqcdsO-ufziK9ae-D|xuCaR9E`-QtuLF(n z*;mM;c`%%i-429vJXB&iqh#wH>pkR`X58@J$rF=Fxb0j?h6%_a(pX=b_l~*T~7~{{Xb^j~T#2 zx7-;UP1=9oSVBXUE52_WlD;?2uDjI6_)g(UGO%RS9bgOVZ>jt4X#9h%^Tj-%x+`tHt8uV+ zIaf~Tt|VOCg;d?$*v|@L&fS2x$qdm3ZIk`3qH>Y@qV0UH?Ttglja+%U4|bx%V?|6n zxmx8(epKvKznU+}&;Y*}rDK?F{RZ&kU6?fC?zU&7Npp7dx+G#3fL~EzEhW*$Y*=-< z(7Wy8`}}afxgcIe*wyxr_+qvpzu$!%+7X+;iN~9>8`hCx7k_`qgOqk7o~I5Kk4Wlp zZ{uAhLi?^6@yPXfd+r|DwcoO?xdrks*|2Pe>^u%xGc==J`Z6IhLrfPu46)2PzO!ov z#O$b)@GY~N)qCwHYVi7cp3cM5^(-h|&Hh!XtAzvJ8f&s}NYk7GBkIQAYrmZKuPs_C zEi2MIH={(m^uqVVC^m>M$qXOASP*AF{#yH5bw;>r?U@cLEjrK{h;j866_~r$o&m15 z09M(WUTYV3apNKxwtk2&W^BC+69Tp#lxcaWMaw!`jIUqHgO+|9o+pvY*nhcfb)TNX zyBuS4eb(mblX3QEdHSrk0A>@FL&%b^{`i1;37pQi|d^-bFMLr__H>KNexrmPo*z0-}XFV z7cNd9v7t@;&7|X0to4iR!@p>Jv&UBRMfR=gMRq@rz5Hck`XamST-vOIn4U5}j*i6i z;5I)RGU3Xt^K*g$BvxV@Q!Wa?9!joq{xxA>86RJB-k z^Ce8z+SpA!VKvmH`x++%^vm>yF){6jFX85F?RSlgx9HVt;cXLd{fXkB+rK8=XFtAi zy!FN38!r-$n0V_e9-i^myIH)oU!4)dX=M&v^YB-y(+`dP1+lEVnT&S6gpskVJG(|~ ztm|Kaos``omU)2gz6T}~c8eG-vs=U#VC)j{u~}fJKCt>C0iCg%#My|Q#RE{p+R!f8 zC1OKm(*$p|VzF;#Y${2qmxwRrn`NGdtN9W}flIrq_lFI2P5tP}3HYhVE2NgRX?nCQ zhxSQo-@eXGt}klZDBi_m!;F#Jxe|`uR<~`MTWb9+CAMoqHioA-Ky}SL&zG>FKGmJ9 z=+N}Nv94*Tk7^|4J0pywY959U_*OyED#G$Ge9RZK2}DKG_2$*PI`a^`m*$^52-Al@ z=uR5DG;I)h2-RHf)PrMXHWt)9IBQcwv)I(0T-2?pvk}NNsK+e_Ma>|7m>j+9yEidG zz!GXj2Rt%Rkb9(enyMSOO)jPgQCEOTylz{`SzomxvZbI~3 zf&)}Ja1&p`W-ZZ!bm`l)+@kI-tGdVcYnpGYYns@D+QjmRsoXlHf77*s_#EFV`kv^0n8Q;Sk>)R)il~zmw9Twv8bE+rK-tpGgdZ@;zP?(Q1;}< z#Z5-%YK}eG1?}EF)9ktbn;R#IB|W+7rp>AczHyt?+(Aw63bF>T^Jpy(&o-;RJ)(Vby%fjo1EO zdfC=0;RZ$@KBPR;T6^t+YPvOY+M-SWq>b6h8|Pi!nOuF@rZ3o^%~K!iEUfEk4mHm- zRhn)}^_-1)mP~l_`r*RGJ`RfCl;$wp`t zk*ii@;>OsW>TgV}{WZlXhv@x6olrgce8DxF+(M^b>eA3zyL~SXp0W0KS*-oVuV(E6 z6jss$GVu69XROB7%go|3FjE(%#^R~|W19X^F3jkao0Z3Fls;aC1uHk7(X^pLIG2su znqjwP!Q6di(>vwD#l3QKW?Svr=<&UboH@0ZnKNazhB4HfpLWKXm3&ENLhy@m=7nuk zH(qpo)0+Hlycut)*Qw`hXu3+glg_Qq#B@8e-^P_>cXKgmIPso9fl7-=!`yp&rH*WD z>L-X#a_teOC@Wi<)``#Y#ZZ*bBCea8!oriF4owMUfHJL>#TsRKOw~PX!Yxfi5D)TA zvmV>t+O%5ylrLtg`N3P8>V<>7$n@Kqsx6?l+}5;3{5cD1)$L77DU^6e)A2^A3HuY( zq^54iG_gksM^+{T08n#h(@G#2cC5Q9Ay0sII_jEwhi#%?zOQY-D(=rEj&sljbO7n zq|EKW)Z6zpUENW5s>FPyFSAuOYXpD1Bz>h%u2|+19w{Moz-717HtPo>S7d!9-J^Qa zUz<^x>a~VlYXikBy=bfA<0hN}fHg%IF1l!5QftCXog`YF%+%-vXyPW{f)wAHNO3q1 zDZW%mfgMDb!H+-D&B6#uMrd@4pb_&v;oS!NxBeUeS zm6pKYW&z*whbDU)+b9mWZo~C*82fx$qQ5TmQg>r{dHV4ArvzYEn(*(#b@2Dv@ z(?9=pKo&%xtqpwwK1ff1Y8G4bYpU|)rad+>2s-I=NezW6a?4NcM~HLzVz%ysrDXeS zO~;W}_cgWe%tL8rWS7^QYQ-fy7&9XQw(8X;zo{QFR!#c7*5nkMcmS@SnQdtomy+&# z{JluG*PBL&+xVJ#)8zH0vyDxgBvB7-Qg|Au&fV+YXu4B;lxx)FwC-gENo81p4XST; z<^kKE8UM7Y*Rx-|NxRJ<(cZu}PNH4*X44tA!y3FU(Z1y2nM8Z1)GX27DE;4(XakFk z%Q&4;0gGzSY+NALhtVKrD!`h3%1>dO%K_2Qn0aP!3Ecs zS_-vD8q6rvZcrydSXgG}yE&#AXxVsoO|f|bj$WwEO3y%Ep;rDsO^7}@$oI#D+O)a5 zM~k2G#j561My7qzG`=$rpvkibKWUmQ{+owjLg!!^Ir-D3E36>qDbdlQ*qh@u9b(OA zO*a~mGKr~6(xc;`e}%BQ(kN_LIt6EMqxvLKjB*H@k@&_58>mlR$bv7M#tGB4Ms$fY zjc4hV3gRlN0AeI|_(@GbvD)tApZ1&0h~U zP3a}9@10wLTBS|Ey52?wD&AWaHrLWN&BEq#RL)YME~S+EO~Pgw#|#$2hE4K5(eSMwm)sGy!<;u2X+L9R zOk@G{pT1~S&d%oW5KI68;{DOl0a=|@laXVhBgLzE0NMp>8jQyRH2aW+o@gKP?wDv7 zt1c^UjkY6w$3`V_E#HjRZ|aV*(Hm^Wj!lwpRhqyV+NHLQkDh50@8Da^Nby~KF(b(x zeaMq_(XE|%0FC~uCPZt*r+Em58X&q(j8+-DFk!aV0<(NfKq@Ci^~^Rig^&9frSL}- zha6J)Aiia!aBAt~=t!IJAFTmh0{_G}z$EaeeasU0V4wdj34CkYEXgxd7}eJ}rV)K} zk7*dbp$T3H9~XVIgK$FM+(P&sjpE1kH45P=eVGt0m1&!1Av}!8&qYn==7T9>zext) z&P~1rC9X43;+i~^SgcYaBYuhh;T8Q-dw(Cj#72glbbV*?V`@cb`uDXqVN>7S-o?Lb zIIUM3g!)(f*op~cch{C)r1JZIU#!BznA9$rm#j*SnwUyfgrqB$l2Bi0_e6q>L}g;Lw58p1G1mn5Hj=+oqD)Pje>S zWQs@*u{8nTGGdGTX-@PN+xaTEF0{_!!I{vS*3T@oCiF83Eo)p^JlY`ZZ$Oc`-h8H1 zT$xctjiXx2qh->TR;i=n1lQ{qMQ`W?O9_M-L+GQ7mX^{)jd`~BGYYRe`>7gaoVIHg zUaL?!OM_fNvHMNZYm9~qC0Ca8sv$H3fbF1>B!8uy=9uXB)MhdgEcN8o(I1LzKhY-g z*sBQ*jen`|@WuHWqD$Heo%_>$#99vBmIX6vMfBq$p}c=?b@9P8j8R?uo{@fxEsN#e zvm*Q3lma~2k6sY1NzV|}0_3GM{v0wa-sJDe=mmm!Bi}f# zPE?cC1X^q(U(Arau|MgvKKhLbfO;1<_&=->w^{)_u_5}g5x|7qE0)-m?kXX*o1zz% z@=}}Q<(-?N*NM;a9kR%Zy@REXy6{PYdJSz zdKdTI8l7$I!bH&h8bNtlkl3_XsDwixLmYDCHdVo;*&zf^xltK(QWSCs5DDM7onqD< z(NBaEHF$lin9jqqtwJd`>kkrX*bw8QJ$b~r-sPEz`fAG|pc30D4w`lfHlpiHBf5si z$h1o=R!79`5*KWbuI?agDrf4grMmQ)M(*`wwlmScXlOkG3aCfZwvHA!$bwxPI+ixj zhRxf=VmfY(_dB7?TC_($mq|MS@t7TT7j;!!RQ1TB_}TGDH{lXK~s~ z78HNpO!1@NAgVQ7_V&-S&QjMrAMI-s>ngYjW&(cNkDIR)kK>D(fWP+2jTZ=Y6{>z{ zfHJLjf4XYG1Dr%|Y}Z%6BmP$oRXR(MiTUXfQ0&Q&jL_rw^*Y)A%oDxHQ`2f;gT7Rf9h&Z%)n=kL8O&dLoRslidThj57i(ylwkz@hrYByTmcx zo{|nl$JmUO*~E4pv}KBT5f8y8cGd$8Zra7{JGWOGq39HGH#781h5UHfwg^Lh&y_7F z3OCu=-eGx3MbGoc1G96?0Rygahk|~$5(v1Fj|J&#TuQ)?tT}Q(4k6Es5>`?R_dj*J zt<82juB$!V(36YF*R!6j=SM{^OLJ)J8O!*db+nIM-QpDXsAvZ=?@eah$V)8dkO2?g z$34*UyWg#Ot+uwZ;6TWI4?Om4o0~C?ZQW9%?RNp|HEk}tWKOakV@tm#I2w-%(gL#o z#Y9iBg?`c1lDVHnM^qLf7imcLDjPZo2>WZ&1(nZoQYr2pY)t+1^-nSMCxZg)B2NVTL9!q#5o`NPps?fRpS zHN(mIzyEq<`zIk@*7UuANSmU4+t>G^UrI>K|8-fLk1+!mFK=;O_caPv*3ZT@z?Jpe z5N5uzo;JF&ek-D%R@T$TR@T#IRx9a$e)X!xHCET$Eet&A4Py^ZuA#A&yzsHSXX7pTEy7W1QI#EA%TR4y!KOcsdyaM z5xYlQHiatz5^P=6R(2qJr+E9O-uXFtjv)S?t3oAmIlim>e?qYuH^eu>WDv{15J596 z1H*+}1B40HP^FrIA=6T4iY`B_hDMJQA6E-~DHkPu9_i+`}OAjf&gxO^GRg%lv$DGEx zEb{y%bKNeqJxnw^QK=k88Ycg2CtJ_!+QkTLLb|((^gRWU?wh)@V{Dfoe!=(4G8=ry zmr$(RppL4w87ech+g4@xQq`%xs3ebfj-6s^m?jM=v#R?-m)M)ex~38JR7dnl{t>ZE z6IpX-;5zD*9mtntW>II>KA?A2!icFH+9u{6pyD=}tD$Ne-X1YLGj}Rq&S-lMU&1)z z)GBgEuh?K?T}ImZR&{SEiET61W$iYY>$XAP^rCrxV`bKG!dzJZ5|5W*&I}0Cd8p2i zv^smNj6b1?uyhpnR59ttT>{U*4$g*E(@{L$C-$CAc)W_b1thZcv+kb$8K{~pC{i^s zMvdU?d=wV*nw^hge;yRQYG-^q>cIeClHnM#yF9i-{EDX}Q(QmiO1RoDRmAE`b9|d- zk8Kc(2B5Yk-$`um#%ZF+m#}4sI%M05gQpoQ(`n-5?JRX1d|&Df;LECF?+QZo0F~4% z^GAl%Cs{zz^^yzcnS)}+EEB>c)^O%(dL2by+bhh$7US>@D-D)EOAdR_;8@Q#!r58_ zx^L$Uz5(XjnKHn93@~nh>I&DdTOJzzXibUr46s`)JXJXK77UNwS(;;>M~sL)C^qtQ zLFc(_HCK{p30a0u!%_U)k+F}(&0GzW*jTDkn{PwqHNGU%DybXAQG53fO9u*%nyCFS zPb`z$=>dFGsg28UL&z2>wn6x#iP*36@Qm1xXA%2>0md_z9LQ2aS6hF>kf=_4LKNt5 z(awg873>oAf5`0L$M{RsKdEELxX#$?Cw9LBSvKW}Lv}htF2BdC1VWAg5@SjdvRKLy zGFytTELiF32e0oV^d4yT!DSZ5dUd)=2Br^b*p;3h1I()kwx=IRmzze)#Y)9yiQ-hr-USz(;e~! z{1LCu8H_02i0lrlj9RD?W7N0uFzS=);QnZ0)Yr2Z^-&XHA2t*As2Me-)0MGYzQrxH ztu`~NP;F+^>dCR^go^6ijQXP5Uq2NRjC#?O*f5(gsya8LzGea;U8ctF5RR$N&8Tnb z5JpDrU2SGmq1wo(|1s0^=oz&|C+M$X)b|Q8>f$V#U#?Ql#Hba{h+A=o-A*sE_qtqR z8A*U0&amXbzXC3q$oBZE%KUX4Ub2_ICWXLD`kEAXs*#ZZAF6|Esy0g0HPvQ`dbx?P zmjY{p1UPC&{fkc5!i@S%7SW!zV$^Zu@QJaTg!l7s>sM;0@95l0z^x&2-fS@Wmw7n$ zJ2MzK)=TUs$4ber=Me*R;ndhL`sV=Qr#xKzZ@m>G7r&Lo#ZQ}v{e+p=N6*C{>(u@= zT>PH`T#W4S@+yN`;2gwe(Zs}+Qb_VEG*Pot@zNyXzL3}F3d;Tv{_Br8{pzD=1#2-j zK5-_0Z-Z{X#;hjA90*$kW3Kh?Gh z(e64k?XFR2mpOhT6VHmhFRUMAK7C6s+ZjEy{?@6Wkh-^?9XrM*Y#+p=E_a6@1Jm0K zL(V)m_PFrqpqyfNhFu4t^y0}HSIHW+#rtsqV%Ma}N-wb&o2i=rz|D%R#c8rKt{s$D znVnHh6HevZ@ND0iNqUe@`ItUFQ{m5`4y_g z*j60O*p`br%1p@!ZG0UE8^v$C!A$%XXKwo)Nt2dda1_5X)Ap!2c5s@s1vyq2JJ_rz z_y#j5j%E8?5PO%jTNf)QM_#{vk|hIrwJuLmfx)y_To@Z?6C#6iGwnDt3>jG;dsMi5 zFk@OvqE1eO7{%;~gU!lb+Z?`52a8!@Hj7bZZmn4rT z%_=C|k&j&++av5?y`D7K!pfb|Xa;Fdc7NY_sP;C>V?%PU@^xv*G?y`7Kw^l>X4hqr z^@<_Ch0Qu%r*cKZ2gqmkm5Gp_=ON@LX+km=+XYKwUkF0Gp(i^ zVeyWYmBIX#B-KipJ~a0}`H(i*(}t$^NxAxi5w@XbD@8&DUX<(~`BY6Yr7iFKIqJP~ zx7IyfY^sU@N7-O<+sark0s2Ok*G#x3i+qb!@^KsHBdcPs3+smFUQSPIy~b5gY?tDi znA;}Y$#{p4u*wL#=gctVv9%D_4-d_~koKiPj0>r0sCm0wY$7go5Q>+ZseAN$rk*El zH5{Grbm#Qw+NM3$FZH)*tgTJ_oa@yj@89MoD?RPZgKjM=$-8lNWzVKrFxw9^%KM^W z+`=@8NE^O!^4^=ogyMLR?HBsOF6ZId!tOZCEbnc@RHoH^=PYS+4rB}abZ2}*S2uTd z*8I2iXNt#DJhVk%BG?g)U{kp&>|i+c7KwRm;^|zu(S1JS+iXzN!BA-?Q8_=NygT~& z8)JKNo^_8uvzMEkvnh72xRk?7%`?4(E6Ge-s%CTSKAYIceKb*^NK4|w!>cL+Uy^B& zymYh5GAy~}Jtmg9n|72#MYsdsRF+|z!H})7LG6S;n0TgzZ-DX4t}LFp!^AUteooYs za3kbUU|CPB2ZCBmPZ%ixDeTw&R~yHX`-|duWS3^zh`xSRv>6A+{*jN!gkgVvmY*d4kcCGW&&GNrpdk9(arfKc+>pqVzke!oGm54@vpq>?B9rXmF^Wx&MVe9vhP|3C(!d+B z#qE&_v6Bs0#`j`w42i^Njyqe&2cq!F5jR|O$ol4+6La!?h7G))qj(=VQR-aw+g zW$oT}G=&s+zuFYGoM%c=rZ6B2jqYfQ6iGx?^PlpS3va+ z7Ocg*gFg+=ZS@?l5$9jS(^d~NalgkpI6XE|%ytyE6?j>t#3+H zEY%!d)pgx>*4Rdvm&vdZ`tsJ7iEUt<2vbJnX8KdL?k1|BVEXH(#eWojKZ42xYfe2Y z3nVrueyI={k(=8BX%Hi~9W%nrZNo+wJ%fXRmw}*1Z{^HPQ#7wc{ZWWB&tNuxZpk9_ z#w(fk`Z<(v_DV%IcxmhaZIL8KC?DIzEUhE02 z(>W@rzSx(H%)Qt*WPz~7zIJ5p#lAHSVqiL3gbrhD^JO=67f+^{5ZV0CGEsJhnX*T} z-q)l_n|HnU?Pamv8zw$hV@d6nENVjo8A?W##;La9b2zCQ(vw_Q8XwTc<8Z6GNWQO{ zLh{!<)3s9@$b0GOVhYL5vN%;p_&$3Rd!Kl*-myt5sUyD*qDJ^S45D9PtPJPDjw?kyTYCSg00LRgSOCEy4b%QD-Vei$5ryObgWWcTSMi)*1!b za3KHN1lc|ff&BW4D#)%f)9wnDc4irtsLd_I{;KsCRY7$bc6)7Z8TL^Y2$NwC*5;OB zpQk~LOt)60Dm{MZgxD1(sxC59_2`AzpVMT`E5yzjY9Yi}{OA{ET7Q~FYo@aljmk~y z?=>WBqZo^W)>b-8$*A0<|0$~lrn3whm7DZ!v@~wW9!pOY(ie|^u_XPcCek16g708T znU|&g*-j@D&dJtWPE|=_(pxG$?vO+AhLoUFcDW)rj`1pfmop*-5S1JBhkWX?FIbB$ z`-P)&FZ*s9kuIjl@ymWLEf`DQcDP^9;CyV!L9n6Gel*fA)Cxp zJ^EFzC(msQLz7-T;JF!7rh9d+@#R?cLJ!Go6Lyu@+U4lX6qkLY<4TdMR`HS8cd-&u zJ|9MKWHxQPO6f(&_=TU`Ut?mO zR7g|_*JaKAHR?o|#gwds6o)$?IdFvRl7dP=b~?hiKmf@VQ9NNS%&K55CZ^U)xg9BI zYQ$M5867Ec$?QnECPN$+!Unv5n}j+=>-twnDB;B{x;>Y*YM60#C=c(4wGKZ>^FEVK z-{xV|xmh4gItg-acGEN7egKMcyQA=a7P~!{p(tawXUrr$dhw(uLoOhmo}OVLp5&?n zH8$BSojkHxIx(f>BssT?xmF|Ei7IFgr6eflmJiFbT3|}arFqD{It^kZ`*hj7%Awl- zCPzv%-zu;A_pKI0yiKKqX_4C_9#=pKID7%wtGL1rto4A$;|cn_9z{lIJJ~yM?aImm zm4a%B$kTG}HNIXW%@eY5jXx@z*Z6HF(rg9ZzipAnwZ4DNB0rqPd|zfUA6w)d9J!hA zHoZfKt`W0E-p7%f+qP$cuth%1k$aKvPJ(MXt%{l`4 z^^gzFwOHuX`XJ{w#V2xJzH?M^aY{(L^Wztg4e|K-TpH!fx#Qzn|Cj4z=CWRpbN%tt zRF|pWA3vXv=J+X=QLioLM#$(ud{1&GdXqd90!{W znZPJEoPE^D`~lS7ML$wpngOt{Wi*K|1iW|~PjXsWi_d8*)>rncf2 zI}m!;n0$S2`HE^BWyss($WW#~i7<>}q^rB8=%2y(rXFIlXwM(!#c#7s(ctw{;)y&w zJHxDXn$Iu?<1zvbSu;fcSfj2U6X*CgeSZ8vu4Cc}3*s^H3ZA^|n0OIak{M`f!ooP7 z6uN=?XgVhTQX@GJuimzwcxn7hK}>LWT8E;Bu3+!9sXvHYkkt^SPrGY9Wv_xHA>3L^$~wB0m@()Nv>tX@<8P&*S+k@2kmy+M(}v z)mwi`9a$Q$6vVS>C;Gu8Bl7t_FKkN=wybuFA^sbq^w}=*#xiiO0gB11%guG$ppGi9 z43(K&xyf8vK*K-W5MN+yn4$CJxh;yg(F$P5ig>LN0I@AEi#z$cEUe|~o8ocWL)VpH zZzDD|g{D4WN9nqM{m%9~`oH=Xz7aa~A_}Kw{4}&+Vx1x_b+Tb0Qr59svJPm^L|>=2 zBsQ?2oW`z#iDn9)x~Sfe33C4*icSu(_aVMMNRd}71e&OMn*!$dN7JDDM zR0Va>Glbd&rTh@M-g9#l+1r?7+qdDoyez>x$A`Lgq_q?2)Td4HJ%VjAsq2>DU!uzF z{e3mkPEbJ+eOr-;FK#28%EoGaBt0YxrW?V*w-9#cRnlT!hy$_S@G1ITF4^G>_@U){Lk_1q;Bm|D z5ZV8)*h+h$O3ZZM0T$R?~b3>{@6Jehvr;-0oisKFZwOq)TWGF^7-l#GH)khn9l$4o)X)y ztJi_pUwl9m=6Z4)X!EoYUZ~;)@4&XH$?@dK_V}3=Sln9M)K|r#a>mY5^$CENk4s9w zs{R1s8kId284Nr#O{utVS$oPm{GQZRR)mCzYl0fcJIEqov2Nezx_1L7NF4)aRBB)j=$!}hBtbQeBhlbG3q|3>@Gu?HW* zH*OE6PxIP-M<$$@C{Js1Kl9*h3;xVw-hvN#j9aiZ*39TAFrr&BBQoqLu^*qPA+|FU z{Ym9Ji9wttKE$h!K;Mv$c{u)DU)v-)imaUUnO*r#jpTJIJa*-k`{U>Jvz@|5PtISu z$75-P>+fS^;QU|3xAe7z(r^`ItGI%H8z9r^8Cs_0IgQBS*yXKN)ec2%VzLo4RO_qo|0GMVp`OC&?-Sc3(D>J_4y*GE{ zwprvpFnAaF!Tg%xJ(g#9?^q7+tt^IltV`kso9&wd4AY{`-PdV``9rtFS2jUVa&M`6 zruqy_P0z#}o6tkay{G;;-H(w+zR1wf%p-68Mj{@_O+;a$V%{N-QP_$z@kbfCu{7x; zKQ$zVh^M25B_jx@DrO(*F^W+_Q^pjJmJ2>r^AR84H*tIcVcw_;^O50;#sEmcNr^Zc8)(&WOD2r zZ{i!ba}57%Q%v|)gV(LM!#q6OI^M_p8?S7?iFkJ!r>R?S)(ESwzF2?Lr$=aSRIAyL z2Kdqjsek=blZ$=1N7NtR&_c#MNhw1T-j2d}Uv8tKSj%fXhBRES8x<^-zd{Q}_pYy| zjhfT=_xD-wd>@Khnj8Nc3!_LwhLXvG6qjU3vHzPJCyDd(&|;oSi;RCe^^P-fY8#=^ zms?XkMekmP#g2NvH}OIn;TG1fwViuj7R1E{5vRjzS ze2?Ys|b7|HpicGSL;ru0fPOEyN4!$yjHnTH~usT9cwHnOd_ zr94%3PGUqG+yiadk!-Aor5-vrag{B#Hj=p6hBG8Ik@Y5Xrit&-&Z6q72o0MLe=ETx44q*`5o7ROt{3?i~Re_ z#0K$WuB!Ti*51X5!Q$6^G22Ey9z!Nvm8i1-xc4dm{BA5aXF9;Bs}qxq0Hz(}7;XGK z!s__>lI$T&>A)Xr)R4|^uc#J=j7_VOOz>7ylydAORrtp3B+o2KB!oH*Uf)W_@$hWL z4jXIUN~*>hw-Rf#RmY0;H{i%t-OS98vK#?I{aCY+cY!(plabez{B+IX4%E^+UtG$g z&s+P#5)8w5tMG!crd@#w9v)xS)aOewwADv&8tMK@q8E8(Sz=WIRcoADbIi=m(+ik` zU#l;6Ui1Ej(c)8dKxsip`TTLNBpaV|I*{4J+V)I+azkRLP29)THJO6vX2;&5?%@Ze~)X2FdgrMmC*4%>u;#V*#8o`>2P;X)59VIKS{8==Kg#4PA=wgGU-y& z)iH6p)cNtmkoLBV*{}-eQdev9Fqg(bZn^m%86spvb&51I>_7o*c9{=kjIuUDfcc2A#jdYv$4Jad{@Dt2F4bf7CWEa%G!DzK$W^Nj_ts@rwlnRrb+iyIfo z=ypNAnCW(BjW_Fd|FCFTM~muq!WDVY`oRKNRqj5xH?gFLumaub&tY)--H#SvdY@Fk z6G)yu$8}V%obuD6YBzjI_C!tTnAUEX7;O6TrfT6~hG53`_W-3>4((<)zGcKax%v-@ zO~UIMye{7N@$gK%KQi7d-gl2Tig#X|RwajsU60{Nz-u@*k=Uw}S$7e?N2CRxGLE^jdAwCEhcC%=ppWD< zBKOAwTWelUMC|#uw1ZU3303Alyo8d{lI%5-EN!>3E%|g)bdorOjw-!@&?C&_xsq&z z&LM}6+0rZ3ye~0J5YOVOn#9I=8aMK-F)fG8KX_xu)YY#i5HC81gC`UACoU2f@+C~M znR5*3_{T)bSeJRA*rT}1tN`L~CO$F(m=z%_>{`|~mZWTNC2DQrCazV}z=Bqw)D2b1 z4>g-`b22>1mf8IE4_6D19Ah*h9-{r`SZ4R*TV|Q1u6rl3-zMzW8qn9-YkUK2ojrDp zd7a&VjB%Y=+$VHFYCVI>S zez_+41d2OL_o|;^ulYQ&xUFzeU2bptiy98~DlGJ;RYwv%+X>gQeyzRj?`6T1{*XAY ztLXhglKy}_q#hox)ng>hxi^{Z?nohS)>JDw}Qw3(4&X+2% zrKZ!%0$9~_ezYau6My1RA$7$F9K&x!swS?It28_|zgqfga4 zVZcN)>FpC4<7AQkm2!}NKoF!?P$SKD2GYAHnn`b;sIt$0OZxfNxVLP)yT+D@AzUC_|IN)|6-#0lDh%Q zq}JY;OF9-nYfUHOFR$-OcGe`XETG0>M`TsgZ-W=II64yfzIZKZGa~5}YbJ3cW@iUO zxRT5=z%RD_##M5qo*9wsCWs1G*QAsuwSn`^sXocTWH&6eoVAORlX?D20-^L$m~wwc0;Nk*l5 zImIT&hSh*?nGGwo(UZg@Z(Fqn^c`yp-#|<69b*tDX$r_`m}K0rtPxg?1?zA6WZp&9 zB+lo`hV+JMNU!o3ne2p@)gf_q!Vja9U$qmyoRr&6*sW3ivq?rf;p0iFo$yE6rrAz- z8I`kC))y#d`fB~JLjJdNTwpXBNyk$0r}M3Fk~^MuKIiK#}$$w2#=snO5aoC?hBgvV82ONG4J0yurzT}d9CoxEFo zg&PcKEWF7VQ)9vQ3Z0m&RMs?0A!O0=p6 zE=U%NJdTrXwp1;-{KDk%;-5IA*@FZ2{ai`*urFuBPEDVa{L&_V$W=9s_)2ZWd~2!? z_TTU9?UZ_LZt`uLc!YzeC(P%G|Kv-UR&-`LC^r$D5M>u=&AK$1 zunEU&@cM$B$~Um>nTN;Njy12x;l~=+qcy^+R%HDRII^8%E!`A2t%!~2s?3Pk;rbOk zMkcLjkvb$!E9!Y=vff6b)AtsUQA?5)WN+VP?a8%^@vD&__2AV@k|oV|ZZ0F8u1a<# z_x^BqAM(0hbS^Dw^xoBnY`iMj3$=QaG1n%$kc)1(s~jXjea3 zly($>6C1pchYkLqvO(tHoou>3 zX(#)yPxdC2%adhf_VQ#2*?YmgeaSD^Cp(bJW%{36mgCQ-(_gp#^}ZsqU|F)LsFTx$ zxb;8Y*_-UWY(q~Xtw?r2nHQI8-{i`QiWIkudvzyWU()sWxOP5v!6o7Gohs@7$m`c9 z`~DyIj#Tx?QS|LiCBnzY=5~+2sS)}kl}gZ4e!d|&g>>7NC~Ce5#5uGg+2{Y7LWhQ} z7)W-mNP7R@b}PSsciTS5BHC*! zL8ku)EY**)RI>he!1A0VdkEz8X<)7YXH337dLw1q&iJXhchWKVmf1-NlzeNdh0B*@x8H-vCsg(%73-7!0)ddYokDHl zee08w_z8yy(@rb@#+79E(pw~l-WPhNZrYHXTO|I2t4o-Zv-0NTJn?6~7*0+i{9`JS zZ%Lk&3!ukw8FCN}AocRrIdj+VkMoxZMjGTk` zlI($2iC6&GO0K;X zS$)Gkx8EHKhC`|Dw>4u7Azw(5JYK)s;gnoT#Nn4DBLqc|9x5w%7x$ugL9Ku`6VL9Lo2A!_do^{LT7gZoHs8jYiTzL6D;_`Uh0Ut(y zM;K&D3dy*S?PxAZ9h|o69-G}Mxjk;T9Kvgp4p$(AF@^$RhtCu8xP3v%q0ZTYSC?VD z1-d2;?+`~t-j0#PZ_KJeBzkyd5AwvV%{9a2852icdd`3)OGZ=<0Jb0^-i($50aqXp z3@A?Eu6Sh`ufsUPj9+!kkvz37WY@t;+ok1j#^g6;}MRqxyo`A#e^7-YENA`q+P7-@ES(2LN zUiXfzVBcil>&cS~cHIzdmdM3#B)i&ywo~@|L+%J3ua{+?FCt-)2WU3^kb>pGIMpus z+=@GlM3zC!UeN7UP{$Jr%3fCluZ6f&{!>}i>-0Im$H>R;@VX!}6u%ct5|RV5FM{!@ zOY@DFS8lfz>YK8vT(IldJIiEp-v`ZuD}8d%CHZA%AdD3r!Sm)}Z@?)zoI%BfM_PUU z)S+FFe--YCI}{FvWgzI1kV@R)b$C5t$p`V_apG0i2a~;13(j4Bm(A|=dYwwx8}fT3 zJOC?ue3Fd!U&A4XOL2yMAu2kaf{@JLEvdS$S+;u$^t$l6W-qz=!{m@!r?-}0Z;Hne z2u3^(pA*6`?DQ%QWDj-+Acg%wJmRj+kIRF^!cJenr-USz6Ot|9$9y`25ycyk-C=&M z6_}rhY4zk~OrOtKy8yvL>9tm1RAj=O12q)^rz;p#oJzp$54+r$LmxO!a$sG!WIt}y zu3QfB=(+vuqH>2D`vF#DK=QeQA*{4uz!St$47*){aB9!c16yr&EYd(&QM?LWViCwt zM;Lipy-sh)9g>3H)WWOQVK2+yXV_0>f15nX9?aWeh_L1L$Xm@_>|vJ_@p$lHFx{wR zzv6R-1K4{*PLI>$h8cUPBgEy>(^f%TM%>uDAx^-OF27syOCfK>?St?P29VmG*j5sq zFQu^C=L!W~c#tjZ@&=J>*5#1^;E~*6f5ejl3xh8Ubsamk5v!{}uL}nfb#>VzemUS! z+CBbXOI<~)>|{g>vaZ50K2W&fqw;%A}j@AezWbm0y7gfE|&r<=`hyz=ckpdFRsc$BO-e~OV*UTl(66J4hMpg z>G31Su{VVc{}vmb zVp04Nr^Dr?Ea?OrVuc30UP*Cz!?GK<(OuZ<)Ex}cGf&S>KiT+0^K`qEzgvRcSR(UF z)^)JE+;UiP%3(LuQtV(J1#iMYn+sq8;ZHdQJ!5`RCH7t=5Ojrnc*fi1c4Fy=A?_hw z+#zUzUVqB}#Y(W6;&Dd2V8$Q>0c1V?jd#C2ZtM`Dki(-%`~p3aDlD3U9g;&(DarX2 z>xS8b5y|ZfM?hMK)8%x9eJ&TC-b0^CC=hXnQxkS!1a{f!k%M@f4|<2w6>%UTofERf zDS`hY$U#l^w5-$xgv$XPAEWTPv8=pG$nSSYJVCH2^3cm}iO5S2U;)0Jywg@$pl@s) zU7O{K0$oE~Yx?5&PNcHdg+~vZa~7p_M!zo{a75e@=(kRn8>=0vt0F0~1jQ&ANKH80 zyr2k@C>Q|qNDfSlOLj*fIf8hC&LEfuOt<{VEIa{vi!4TQWp!bX3)6G3Xo2r ztIXZJuCy}$pga+}%7)HF2P@ZJP>yaS%EJCJ=_{MmGqs zuh$vzr>gE){-mw4K))f?x-8T$n+&`vIJ!MFb+1$lp*n)}wtIsih3Wv1R}us{jDOkf z3^^ohyAc>9bWjV5%0m)(CF}_}6)5FEID|HWvL6HU`SH}>DF;fmwN+qVOlu1!T^@$? zoA$dxH`gdM?%Q*pu|^N`)H<)sgAY=&~^^*W&N z!4~xdT$oe8SBm&ym@5%~SPqhgk6>i0-VR7n$X4tUFsohOh!aUaost*3Sim20coo%N zQ}?jEeMclG**=!cqV_|cu91U=?qSD`BceSF5fOlt4mpF8D-guvtL~r|Tb7H>lSkdd z>`-k(m|L(gq$4~t3YtBLn#1G>IDmz}E#V4d(&y0nxEiX3tP{b2)g%nwV_zMLUB`m=v3q(@b_#i3@ z^&N$Crm{eblcUpumbaAT4n_}(`(wo^3%&f zm)Vs42TCgoj0&%+JV|OQA`ZxQh;(dtP<&uxML-z^+MUxMc7`>F9CX8o-{-)fu_hrD z!2_;fSaQOIqhe9D4%B4^VAxz9uOk3O6RS&6JRTV=9h3rYs&A`KMSuQowGFILxBK5A zh~lAp7iP&7jJTlaVu`!KuMS)&13YolpAsLL6 z!(o_?aIZ)KYTkj*VCuqqLrs1BU)zBpHWarf=<%YSi#qDy01bP*uy9| zw^Zx$AvaB9nVqtfABHP5T2NDxd`_QFlCZ8}S9(G~_F*W$6>xm|@sLu$gGU}+LFnWP z@-ut!_#3ucU^z9`38^{cMp}yG~`%lZdj_{9T6jBIYOCQk18uQBz z4|RS9JzQvf&aJ&QqFbQP%EtCM1qX;Am-txm<0KbhY`S;c~!aLw|`5kbL23!!u zL2tn4c1z%9>;ww7dRJ=yKbKL#pTAc!0S>~-0-c6P%ggIV+Z{o8(|rp3Mq$b2r&bDl zZEgt;&mdeg9&LHKkO@4jNHEZFyyAipEW=_8hrC`KNJQW=RTW&ge8PSQe8h0bVJ_%1 zK{%Rmg~K>?z_?SeXP&ZE7U)r3U*&mwB=@a8FoYZ&-R!FM)OviJ-6e-3kaLP0a%0IT za9}uaZX-eY3BrNp_M~vqgI%k@Tka{isNmUfK*> z!OTNn0Wl)^Jz*K92TsCZeZj5d!FGk620C(T|Hms~abhb|pybgPo8W75d*N!tff$$- zHnm4_5U`hi5El0OpqOA;$*>#(m_n%dP;jV?;KgB0N-jSL=VAU{y%BXi73!ARE6nI( ziwZAW$}or=P)Xs{R=jXz`+Rr;(+^b%MQNQ19z?JjWGU)E>{Hh}b~ZOuMJJ9H6el#9 zdy+VCX-9V2D)3Hb*r`a+OW^bJ!ubQ=9DH>cB^+>JZDAGa85)(tp1)5?T~`V`w{S#z zWq$;2HdrMvn1BM-6xM=A(FB9n1B(RP4@95h!g&~|3}aae!qetQeans@1-8!KTw0NT zP^50of#LRu%MINFdlR+Uu^qujgMAV7$6|spnX*+LginJWcKQ5t8&F(0J%+6f-@TU} zY~g$A|Y2WS{4b1wLy0-lHyPI)N+ z%Lb;lx>?nAxE-4n4vJiO?hz+`IJJfwAVklYy*RK9g#F-gIK3h7!+AS)g{eLz+w*s- zZC2Q7;qAwULU&laQ~@i)0fPiSLKlu19GYV8#nOnt3~@uSxg37z0+JL6Dgg0?;R;E? zCc#p{(Ov*H8eH%=b%zr!0DT-vyg!VyibzOS9fn)y6C8@=?-lPUe6drm$locQ2bmms zI@yk}m8H}=6>i&d2E6doz|d8&$-`BqKt;e~9Kmn|#uY4%*$b&Vw7|RG1V;xYDXA;L z@pAr|aU0i4exCFMjI|38j=Bpgi3k2dEQoxAA~D`^=9p9b5w;F(aol1xwh6)IQo z=qY@>5E=?j51=Ng-a_!B!vTX|!fpe-HiEa@p;`G6dk2*-j4Zh{NdwoK$19y~w1aIL=XUhu z9O|PS4tsD0?UONRoI|KC!~ER_p-P;LQ|0{K!hRpq2v69Q)$H=;pB;~J*%aVPQ|&@D)AYl#^1Op0 zOQX%IdT4h*H4Gr0Mgil&q3y+g^v;lqPx4lWQm1p)D{x zOyq}9fgdwWy|6(9S_EY{)q~VQ=<=mzdl6)0ci~hI_Lkzr!IlfrN7PXa?=}t6fLqY7 zI|IPdVFz{x8ngk|XwZ$r2L&vO<6DQq9~c$r)unm_3iL`n0y63P1}QH0!Ak+r1iuXQ zPd6+_{DDv*oV9xWNW}m3Q~Eh19E2V>b&SHpgtI;c8&nV>M}9azy?%$fkyXer*)TN3 zcY&{QoJJ2Hux?=y2XTB#TJBy4Z|^^8NLAi`Wlc^%HObehaU-i9;o_~Y5H?N)B0+(s z4%ZWok3CROWhg=lA~ihP^b~jino?f(8M-5RC&{GqVe`(%lag^k=BHaAZGzbgjEbJN z)Kmt1I3@By0rFAXovQQLpClR1Du>4pVV#P7OCxb$gwiMmtXdcLc{mI(SujK35y1k3 zd;IK1-TtCBS;*@EgCfexiFR>t2-ZZPqcZ^GR`VGa>XvO__WZpvclIcC2ZP^CLckup zm5Be5osLCD0R_w?A6xLh< zaJ{>zfdls%bzvcr1%40@f{t)ng!jR<(5SB9&WgMpN3=DTzf<+#3x=df?z_CXlO3BT zj+EiWrG_JRSe!Ovg#bUuB@|N+DD-yOk5gukUxGOW4G{+s&_yHeAP!HUAqLb{hW!rC z{RocJ@fB`TIJ$iZUP15!&Z8kMQ?nN}L)R_PA$*_EbqjQ8Tww!h-L+nRjlt%^X(~>N zJ&J_Q7FI|E!VYnvICsPzqY3f?4=}6230fp#{wXp=M-^a8lg(CuYF^#VQCVPAIG3He zzNP}+3iz=d>>LPcT>$nNRvOgvAUuVPnV>j*Mk9;D!3dliVMK=d5PKoR+)|)mLLlOW zJD*qe&DTv|j(sdByD^tI6GYgm2YMR>Ed2U1p1kvgJ?^yc@LiYzd3%qr^W_RCb9s6u zZ&1HB^Ugcm9!D6eJ|5nK;}VB%2ucila7>AP6sne{@*}nju@6uxaY6@Ibp%{0Bd);# zTNEd4ZmRP4P96EnZFk$s!H6>T7So6d*kCx9awBFFkNM&BGx+dIdIDXbPqIIOD2@VM z%Bp|EjUX4OQ3z{Al$RTUYLHJL5G*su{gCFKWkIoaj{|4_k{8wC{E)-Y6kxI#2*oF<p*6_9HORg-$Ubuk!lXv#zx~k~WN#JK-x_4!8f0&M{lTONwg%Z} zhxfMz*|!GSw+7k6b=VqY-x_3Z2<~qUvez#Tv|Jte zkiFqzLTiwHYmj|wkbP^AeQS_CAKBj;WZxQO-x_4!8f2d@roT1F{%C^iZT0I*g{jA} zmve?(_;ma9J4#4?&t5AUlAS7_R85SPkUQ(wPc87KKyUT+0sGwb3oEBoX0rKbC)WSG zNPThZAL8oX*{yg&BJp5Yw%QzyrqP+nZLe5xM=|CfB64n@4CaID!M**l0YCgw1kA30-?7ALYESX zNDG7xN(r4%LhmIBHPi$Glk8?UyNeBw5 zTax7N*gg8%qiDioICfTUbi?&+Nm|f?sS_7AoilM(>YRBwDK9=klH}>+h|lzXw;8)ygE=(7#ld%#;bd4ACKziJeIVrN4U;@iJ4W zkeMk|yv&rE>@O87lSo4UQaM&;G66E@vzKIOtt$z~6z0}6`s>GN@+Y1C+DHUR$)LZM z6Jb(T(O*-DKq;%~uK*%c${PA>9uX{ME&cUUYw~9u{k4$@n6jS!`mh7}lSzNQOax8o zzJdM>=|ui)q`!I-iBmSwU+hKR&GZ+0s%;DX#U7E{N`JBUF|z0{^0WhXhs;HzuXsw06zO zVOnyF1v!pG?*ky$p_8l4>9y`Hh{aS`E0CfZkg%)dA?z&jvOTt%Uf25E{eHpyAvM1A&BWSx`KH_!@-UE& zE4i}z`H_;|bNkX_B;0&U?jT>nD12Z`Zmc|2Bt-pt;r3f|f0kiY^o7F^ zz4~gL$WFM`wkL$;f|9_bg*dl{_wGF0L2iMOfZ8lZ_jxm4xme33FY(O!E!{1Vx0!w>&zO!) zD~!OgBh$mdKt^X0>&t{bLL2J+)1A9sl7?{}Q46*=!p)~{tPRW(Z$e35i$=fi#YsE1 z#5CNe0fvb`5?QlJB(5Oh-pqWZjWpx$h?~GGg$&sXMOHxJdMY-R`SlSzjdlrUc~dcS&=XRbjist2FCsIiJZ`;xZvI6L*+(&NUGAXd4E$Mr0BHx z_@UgCFpIp-hjZVQ69An65nH)GATxe&ipdA5A%yWh`ND+?(jawm*>o7W^cI0 znCGeb6cB0P6Rw(4&*(};N4-$2Qf{skc*eEh$FxJ`(8)gHJEl5_JSKJ{{*^xb zZTsDnrTCDkn-unW+ulj7tp!W;wvJr}pDa^qlmC=?Gp3W7MIG8lwV{Sn%ILmPP2koe z!O9r7bz`u$cZ*hP;o_Uz8v1Ld-nZ_g?e;?qyMYqO%E<(k=N^jtGoyo1? zk7D}Lz=Dt4Yb5;wC6Q)>l)lvu#rG9od(>${H5%=;$Ak|u8l&L8{B`?3d;;yJnaQt- zCU4J79xy$5-o!y{p&fMH)WlUb!E1;W|cdEJAE(X4zig&UOk zf;G2{PjfGzbqcwPgR3DuYj3mqitTMmUmke|AT)1StkD$@BK;cS!c`gMmW?lR+e-3& zT0a=ZMCkr%uJ{Yq^mh!_N;6pcSGj%BY29Efdf$Q?3q8jhn#EYpapXd7GD4RHlU;%g zn90ugnCy**G+FUD)vt#{+9ntR?!25kQZC=m(sYT6>4HEJeExFoQMo2eA>-d@d~jrP zj2r`#*$A*^KiuZK+*T$8u2bFp@wxU#8_BIjDnG&=S89x+jbwBf0USHPOgcCc3)4qp z2InU%a-~}JczHkMW?BuZ+Fr@MBTs?CvO(2EkOEp!!H>Dq!p!r$Q9tEQljN0vkany< zw`q!Qke(0tU<#;h>Cd_KY2!|^JNrucSc=K3r44fOXgwA{yOZRBzVy>;xl^SVIJw%k zpNHfuP@Vn6w!O2TN!zv%l@4+u&GU$yY?*N>j_ye|0PO5&3sWKxd(Tq#&NzIDLVULWr|8Q(yG6SMe_T zJvY@)E}uxmRy$8N5ekDTv>61`GQ`Z~Nk_WLj+0haScW^_$&JK){>&|JWRUROo*29& zHa$UZAad~|TyS_?dL7*BUTy^=nILn9smx@gT!P^lQMZjB>6a?#|%#^jGf(8 zJ_VB*o*qy1-Y%OLDNqRB-)CAS@qRcILRT;l2X#HFPn5E1zgP!d6I}lj6~)5!Kae~f zM7$G%^D0Q>k@LI=r25^zKcHrQzv1Ke9|XT&y7O|QD!>4M1A`C?T@(l@!s+t@Lda+_ zZ|xF>g935DL}W0TdD^B$4p0f3(n8|M{A z!75p7c>9LtB}(#WKuW_RNuC5#SVWBOj|Yb3o$xJ-%OA`uhk|-xwb<$KykuiBA#Oe} z6^G8Rp@6zgaLsCYtk>c5>ptmqqyk*Y4Z5CuDy~J;g1e^IJz{wE+Q`)NqIF?nT>R8ymiz%F@R zc$itGr4g?9MqXX|B0Za<{MH{=dTLu=V7&|dIoS3l^F4KSLWX8y@0OPk?jblXdL5fv z+-#ZO2p7ywkCFN_`Lr=e-vQQv(2L~hfq-W%v$v9_aB?*cCPH%FZw&D1HwOIeKqx_< znwmbo5wUH67!g}F@zsdcqx2drN6 zm8%bYXtwUo`xT)I1FcuCE@(8yrv3vrIr^VZjJ+$^yVBLQje)0d@wIw?gR7Kn5Wx7{NBO5DMl)x;a}He0h~{4 z-ckiG>6N}(9uJrbgSVSzl=N#vWbyjk#wV_2>%C=Bt#vUdZJ-fAmeXo20AvZt(*eZ0 z^Kjnh63SB;s0gwXGGGXjF;GO1B?JGz5G26g*lgG^fGPI2pxB#GE&)bPa>W3QxL?Y9 zyd3&=pf!w?SN1M^JlvQpHC^JPG+;C!g zGjHR!^M*;-@%q8?_}HZMDE{vXIcsw0h=X^TLkC$y&JvBQ5ptRj;)~@q28lr#GRVX? z6{(e=Zyp|Vp3t0AT(?dhp2=${$s1sO3}!C&$!{xfgUJkGHVndfALY$6A&8wI`{Pa@ z=RG1nDN+Sf_QbJlHK;Pqz7-RK2W+kvY~&)~)CNs{UJb@4EmVKVrUj7P5!oEC4ehyOfa3{amur3#8pIjG;FK+es z_d5IMhamYXD3A5A-7T2R%zt$dP92z^Wh4*`XH&F?Lhx<}rud5G!f|$|4%1o7x5c0u zgN?1X>R_EtoEB6edA#+~&nDj6m-4zvC|+Tp!gL&Dz~;BLa9l@QDENF_1xvkcHT_cN zy@sVDpjR>!OF-$-TrYsqDc|LN8i>*cTch*~iVv0# zHlp;B!3+k%CQ+UuN|UKVZ(Bqe!_4$?Di{QUhaT(g2jO4>(##x(1#=V@V~+jY9ALor z+%I{*`k`}!t?~IUMTRq+mf&;D?YuGm=n|{f9G}YuaJ1EF?){l}+7I0v%+R-%+1##* zO2aIvP3_*{R+o;5p|;<|;(JAlKRoo_)=bW!*E~wS4UughlIsr9JuKi@T}2&8|94t) zV;ndB>rnjk&inyZ3t7EN+g8dwLDd|%x`PzGrK{~J4kzb)9qJui#`Y?bhk&90vqr&W zhFL>~;B)0{dyNDFX0=o_h4pjW!4zF0JWaN-g*YrmIF_`Klg&oW^Hi&L3-D={iRg@=(mPNj0iaHCl>k89 ztz@fE7F`))4N!d*gMT-~2vFY);ls$Yl&1(#r$}Kqj7;x(v{4Wh>|X&?58!(fOVk=_ zbZ+&b*3JzldEB|`05bbP{&??dizj zhpA_LXjV6})d@f&hguI3k7_i=L1N3He2^G9RE)Opp+?KoJymijwFET%!z0xe&GyB$ zHgDM$wmeDR0_#h^d?W@Jy`Dcx-U*Xgi{CO7Z-}=&X(SL@{CTZrpah$S9&Kg2CGQ7J z1yuaNjFN4NGjC_u*+#>PMmQ?HCwn#}!}jP;?9(W^6Z=hFR-ap5zf70fH2EwzVpY zVuvvVG3{%AQQXiJr?;@z^ly+t*4*PFR<)BF;ka4(9m2yXPZ2@N4>O75ASxM*PXE5Pmk>%DW(^)4O7ro`a!yOYV{?C7eLs}V>NN+C zM}26T4zd*>STT$=7m-xU=4Eqnf+L?zfYR*; z5>eUV#s*Y+xOD^aBY7G~)c39)Wvk$iYAXy>WQc?e7%~J67oFud{QnCXR+Tok1g6tK zU8m&zMcsp-M8c?|FINd*!pRA?;{j;qaO+XUCdKm8hQm=sG;TS~7LBG1=R=FZl(7g5 zeF+5|TCfhT7ZvYc0mB*)3MS_8=;mPCJqn7kM?SZQf(gM>$)7 z6{}-q@P?VT#pu=H)?iVj$n`R3O2A@$s%^Q1&N6|_!Qw5E2CtZH`wd+fZjBY^H4+0> zpclC-(33v#mv82WJkbvi4;C+Jj^GoR;#=aUIC@{V5F9(XLxA`9dA99H4jBPLA$c9y z;neHT{6%sNm|Usdq3(FaBHLsXG6GjBySKWLN*I8ArAY)h7Xv%qn~QC=k=z;7C;-_N zD~=`L&UJkLwPT?;YPoH639C-zZDcyJdsN=ItoWVr{m8D3QK8N7S;;$Ho(e?f)4WL_ zMF%zVi{apJ)cT>`Ewvm2C3ztzD(HJ#(HC;#n>hxg+e#yO4IstLXHm|a>GEcnOnipX zni2S5ZAV8V!R%eTlVlGp%g#})8R3n+l+{5p7G~Uo>pFVKham-vhyjPvThS_#p57f} zq@oc~SKm1MhlxH6*2&40!bK`!;Ly>Ne%}&3+!ej;Bd-yu zH~Gzb!*G*|p{*NZ$^KWer2@4$Q8-M|2w%`0Us`jR+5)9Xh95D_J zZ%~)Ws*c{(7*;I@730Gcn4(vW-`Zj;u-Z4Ze5>t;aPtF?WZN!1k9*!J*0_etG~NJL_72_n5=hMDk|Y zY!m#YNjTw(ttKAp^$*8cXV*l6L$>4o)gjv`>`J{>7MEVMrF`Y_R7f_2p}&ZL#T>Ua zmgNz>U?e|oYmrBe+deO6fjaofr_CUR)X!$NgcCbyYo6yNCvA`W$Du`jDjg_#iZ)vc*OIzr;KH(A%POg(b>?)i&cUho%PY& zU^6<%sRL7V8>mh*Jvuu8h)sUAUc^5vQtk>-n5NDC_$lDC;gou12*Yz^n^I+ul)p{{2C65SxC&b^;+a@ ze8-j*X6|YnciLu?=Tc#m-iY@Uvp@>awEerp$rgD>-_>l^7iH<@Vl(K?P+h@Z8%Q3v z7duyXEF|MB+AWytX-Ln^wav#|8=f$(kyyw{Efr&)M>J)9Q#KI?>;oiX^+lfw8hr#M z5;XdNYXsIvUJTE;?2l(XlOOE$|Je4mKl<$naS2sN7aNb(Ux@n$X4RsfE9n9%y8Z-T zDEXXn7Z*xCP-4aKmG~T$QS)m_$647}LKzdNme|fkq2}_niPR9!Zfhr>M2dQcW)z&Tdk3?K8lyK+jh7V`QP+wyYKP*y1)pACrH z9A!#-MWmhDKI4P3WNb$T=Cob%G9tkWwqEZ&mDad8(s>mB3e$L$*iP$=GFhaGqQ-!> zFaBJsneor5#^*B>^O)Un)y}?n(!-ggA>(p^ z_6m4bQbrk^QpR2f?;V&Cf%lfNkHMSE*dy@$()MmRYG6j+hog9UP(~H$9yQY#u!&WR zo_^8FIfXyCbYxi3WpKu1eEzV#MuqxKqUw*Il00+r#3#ngnmQA29g-1&nndA(a`tNY zoNQ0T3x;M?!!MPyKZ1Xm^m1K%I>|E zACXa`92by^wUl%Y| z6VTWge;+08%D-sV2w}Lf0~}VJSGCIa?Q-wYdXr^qTDlyMC~_DWvJnJK0q~a}!kZ;K zhdP<5s+|FuK;*fjL4ovz2Ok7GF)mkX_?S=pJT~ zX>#tk;>T|N7Mh*yUkT(BTDE$sc^N3e=BW7i(u`~JW{@mUs%MK0lyEKw&fWXOMG2~I zVh1PjFAeSQ$$P9t$To`-dZyOfx3N72$u9y@zHT#PUB+s;2qv?2n}qcl6a7eOynB7d zN+TKD_B$jqW4QbwBx95F7sueXvGxT<0_y(=J^ zY((=1mB9i#epx3Ztp}nrY!_-1PI)Ny` zeY=Xm%+6y)%zT81WE>lR-rBxHLc_<3UkY`r?oq5dgwvAIap5-^5<*j%y6{V(PIJ(Q zCbffose~4f6+ac~G+vEHgTpUheWe8&IF{mJcf9|Hj6krd;E}O^2NX-N-YY!#rOx(? z@-x(3>M)vxV)-uiF7g4G%tG;*v3PeEdp{$A5Q?u^g<=T;y~WQ^qptR)k>>MgA|#tR zrjy0v+&FxutNm5^b0{NQI{5^ofGE7%%|0#6JkPtdyZvoH`4>PapwOp^PLQ5|Z9Dgv zy%7p7m8=_(-5L>v%b(p^8aM4@Zy*PPOn!AlsbqYxk9~^_$-vbS)gb|0k7fKx@UlJp zV{k%)^cY;O^SWL}27(_xH<8&(U@H#EEno#~Nw7UkVXkhGj4uwb?=Y4Xs`%2R3Y^p` zYeEDtrS1d8fBnAE8ZMa>HN@-&faGK&1dXNwSwPU^Bu|GRoci9_(%!cR*~2BYMB$?1 z&_c*1ee3fbq-1dn_jodIOosIz=w~1YTmP}hOZjSFEqq|8{S&K2AjdF!q5K@QGYi+< zAO%$Q%5V~{=6T*uBkW#DJ_!hga4n@AvxW4$yG?)G{+oOrP?FxB9Q6MbrZD%PPsYtg z*`GI-72J=^s$t`GSTRuQ+-TnEFt>LhC-_mRaYnb_r-E3x{VvG^Zf`c$o{p+1^u*!r zM{K==#sPBH@1Sv_!|$3o+(O{lY1>k&0Nd!?y~*S39g*CHR%k#@*QU*n$dAEfX3s9; zyyGU?$(^7gMUp(yq%iI{*}l_QRxp0JmGL9Zbs=)H4F=@Mhj@G*rR!dBzp2}g;XapFRb$M!qRcZsgt?T*xCX3{B&jV*DbwgnV$5% zxLt2zx+_{5C-(g(G@;e`(jPPILlF9MoOR#dRI%@8oR;+c2j4o>N5cK*lWBTXzvsfd zvF{w}t^d0=y2i|4J}T(o!)@3+dj}-_g%6g_9|+DY>w|*c8i_V2VAm>qJWiY>ofu~_ z9)Jer*DAmi-9c(xkX=brFNNS0=MFt9Hy%$?4N)DtcwIBOB}`^f-FQ5Hu-G1LBoG31 zlvSWwz#Fc(lslH543|dY6Vdtl?NY<22x@2vp*fi3fzV_(JIv+eYJV^blC#KsVm!kK za0H5+8mdcboTr?CGPhcBftj?zBrxfoI>~{hu>6D&cDW(D71E}OtOn-dm3BuYIV?l8 z_PNbLkBvEsO%HK;5}ft|`|K#`6jPVpMr%H4|J;XeO_6uaF(>K2C$=z6)W2y#jsiq&B^EPFaqdq4DYOd7$VAn1@c#y2DDV9NmMc92U_&faHN_Z+yj`jZzhIHQc8|dKT`(Cy3qQ zfC)w*wvd$$ed?O$5gA#}@}_XJgRWMAt`?hL=0mxJR-DK60-trRUbUYti(Z}}Zhh68 z!&$}hFHSIi%z1%4L`<&n33pST;>VmkQrNKTbUdS<2wdPqCIdl-k$>3}{87z` zG`h??s5(A0p?>*xKh$KR^|ZCQMx*sm=MQ_D;KH#4yRv>Oj6^qm!tIJ^b$XcQJ8A%E z_Tu-rn%TXQB8xw%kuH0fhpM+y+5A6|JeC+ntxp&_ch>mmMT+HkPbL>2$_uSI_O{{} zZZ2aWc2&Q?K8&-7VP`~hnCI99s;mKJ)9NgMVGH-V`epo^iuvae+NUs3kzo&Hz>s0* zL=hRbO#Iu(U}0`Nwn{#~C=!m*SXcNlkCLcQw$}yy;r}$*)vry-bB|W>I!N~-p&P}7 z{6xjbKXV4;gHY4?M?2uL)$%c4)0P(;ZA$;S3z6@WmaSlh$i};@dVW(0Rhneo3KnQI zS}S0^;*VN8h`?hXONXaI{x?y89@+?CH1M7grT~BE*UERxohIq=DTMGUvw&lV_ur1l z&ywW6)}(99NQ-GtxK}iHFbUN}G?iIakJ3rBB8w;;PxAEc%e%XF{%#3nC=ApnT?rYm zD4jM*9IlPWh0F56iFFI3{f+($`<_@&M9&L49e^SUUDtD5C(w0e)X(o#4!uXdh{tYE zG9Bf+6pNppWbC@$n#8)Uu)~z6*mXTebrue*@1}x53@!E`ml=fS0q6U4U5N;h4{Xgh zG4B>mcXbac#t`?oAwZ`U-zwh`fFdSacUs>lwbz)ec3ML_zAcCp<{aPR!5 zC3!9}isoGXijbu+nGS6INI|?~(W;|H3Spocsh9vZmEwfJ5sCRzt!8VE#QfRvGf)sV zPJa@l=qTV_-akJc$uEFRFiw93CbMz+3zPYk8wLVFo2H63utu&8Ownb)*9U2sr5sPZ ztcN!1UN2EWEP(4PlBWX~?mr~|V{~7kS8?kuq-VJG9gixoi2v1OWAADqEW<7HJR&0- zcXzZrhT3$B)?}Gpjiy-ZRiES$y#RO(9g+W2Y1E5cj%Wp5k1D2rbczwYx=rEZ?&g%I z2wwF`VL0wSKb*8DDi~}}4-H+X>J%!(yng1)o82w8zyy~WW3$m1 z8;UW;I&KWm#2&23?-d~J#_mt@&G&u%u2lXsCnYWH%Vv?2djf9V}cXTJPeLnF}}S&OYrByMrEb*k9L)(Pfjr)XD;_I~(Ac3m@gagEH| zWn2CTKlv|EpD-(h{^hU^E@IW>+c5$hs&8pPwN`7 zu6`F3NkAbNR|$0WCq4NS%c9p(th@RVioK7g7!l}L3P+%4DNhlBT%<5WAl4)tRI+~s zLFz3G)J(>{o|)oz!4$vJ3N5^QgR=k_L@urA7$8-~>9V7k1$d8QjtbM52xPs1+*VWI z{rJWFo(N~P+a8ST*SBTUe-A=Z9m;HwDKH)O;X`h)8Fl1X{+s?%OG?%O)BCnf*W*vA zv^b%>BSO1yOPCR zzSFL$po?=m-z-NZvOWHsO)rWG`XXgzchJZ7@ofH zo6cf4>^kKsqRICx&W%^}U8aKlD=@hUBEbkIsxeT<=~{2Wu(kbkYZtd6dECY77rh!E z<*z|##B}RDEghoi!SLNJAeJ z8^o=SI!_lntv19z5Wv|Gl4=i4{_ubisR*I~MhR_>yyUj3K))L^_+xT~@nOLwg~hmJ zzvdD)i}?C$g3)IbdbQcT1L;|_JK|%E{nP)ydho$zd?O7rz3vNo-Gy=q4evJB3pBhD z-{ofpplUN%!!zwOMk$sL!-aF5@ZzWt9Q~QAL-+&AQ*3y*g(zU%_$?|K41OYR9}WH`_rqyXd1uH{ITBIph#BBOiyY{lyE#lgai;s_=FlpSl_?EHl$bYR{kBe{9 zw$1ps_*Ua5cxRt~^-0O^y;SAiC7o*ph3hL&D|YXaUZ$)`&8pb!-ldPY*x=qJojAyf z*!13|k`&?hE}bNLuzQ!@B~mN*E)m^~_bxGI$-PVRcQi)@=8KITO`=MyMYwE9*G4s$ zF(T~TlVN~z=Tb~NN?C1Y>ddB7r%q@(b?)5x z6X!OakUTHB>4Z5`C(X-A37Vx`$`mq-Ua~|5$)p01zfY6B;p7S?!XcB@mzh$XET?3q zQ2v=IlyfE}hnF(dC;v=g=UW=kU+gxChV&OZ2-S%GVkZn5(_d_;(}eya-)b9_N@+@e zvIX2`^cS1lH>bZ?XAnz&5wG)0nW*DP55G;jl&N&Q<5VE(K8rPIaN*MAe|6zfBp$Ho zdLgUjiw5=|Ft-)A;H~9&?Zzr+xt?xFPSt6lTa@X5r<% z9jlFHnQ@x+am zPXj#Z@B_G5xrWL>$d+7TitaS*9OTH6*8qO};+YJPqL=o%2RkZD@^+9ZRNt6K7$j#A z770^yhU6FRYWl?C>^kYSl-J-J;=eL4)**Yw;||g_O#aohdl0QuX|&?$jXflfPgU4e zKM#gEp7NL8R_N8a%A1e@o2xuOTb!%xnau~*hNE8QqVqT5&GS^X2H|Al4?JhIV_ukr z{qK!-ER+8P24(h-yaQ5ny;Z*Cw#0;cFv;XlVagln2Q%rVY0+frdHoY#uvG3R;XCOY<2 zK!X)p)o)3VmievY9MNyB=4f-wn<=|6MOekRDk z=K8Et=Taze0oQ`!q-BnUxaTs*X7uVDHv0tYeL9DiR1U_;C!WJ6pR0Uqy>yPrT`)zK!VQJyCKctFUkIM z_0j?`y~Wl16_E3ohABEjygUQM!@=8Wbx`zNV@yZT$}D2K2FU|}^w}y$Q-s>6`T0LemR`e8WCBJZVjjv^}v+PdE1l&1sJ@h)I0NYOR*=4UzrBzXzQ zZf=iA=2FxXUeO$6@u7)-20W5P#dG}zRM}%Y(ETo-s_PJ+Cx{A+tamL|; zq4tVk_xlx12^DBId@008qF&SEl0Z3h#qPtbKT}yhu z2>2jiuwZ&}ej{m~I7%4G4FJA|40kzJl|^&riJu{LrPK?DQs)^zLr$NEZw}AyDo4?G zs@Xxkq4RiHs0s}twQ0yz;z6MVIy_b)S5>iB31so7(J|+rQ{e*_EC8>S6Poyuj^|^ty*Zwd9KBXK`UC3z-H&l5~ zRB)zLz^>KLm-oI=!8xY_+Bn}D1aQ`&@tLOi6AGv*_pp zh>@vqtuJ!@D#_W`Urqv~f;<})%6<#@ows|3I-5yo%mNy1u{iBYrPiRD&3fTWd$QZ$ zv8$wVNG4_XWXIwg3sY)(bG$z~qcBh>rtd%oY!-B6 zp*S(!ztA`fvJjMQRyNO5P5QoYDFD4e7u^?hx(h`TR$p#&oxs59!H&EX$(x$)yny&+ z&qHi^Pq2ia5URGwdOY>H;)t+C#_?3hBDNY5{(x5Hv-xSE$nSUJ)>f(~@c9sg2G;f3$?vYd&pM zuL#g-Ze}@q`k@VrtVdMp6#`v8(_I~)0m3l$I zS`zF8UBk@77Tb0@w}zRc1n!KTS@PQkQRq19O^^b-)G62bn*1@yqc|9io8~#Y$QNKT z1H+FO;kWV#&Kd{=EbOWr8HE*cWnc;rp@E$P3B4Z|m0oNNDZj;_q|oR}kvsq-YxA9} z5Q-2+J0@Eb?A$`ok_b?%t*5 zc#GRPRZgO!Y2iYA6qyK8bhTC5WSnsSQYc>KaqgGLfReoDnhaBzv&JmOS9Uq48OsXJ z8m~AD*38HBFvVAvsoG2M>}t*}g4Z@uVJzT(J;?)J^E~Y&PhdWydoBI@v|jR)kO6aB zmXF)kFV^6{($+nVssICk+Nr}zFzgCV8N&(=ni{; zg$3VpQi5Z_`<-JX^e5BW9LF{*p3!LVw+Ec(QP2`=7~83l7-8)4VsT>lo?<$(P()3~ z8i^W-35#5*b&L1DL%4&$*KD1Zh-T}sgt;B`kl!3~RtrMImRNU%PbmrwUSjMDla`1} z3mr%apQVMiq)NSkm2^*z*@{a6XdcG?&sXL3J}R%_Dubnkh}WEt2O#$n>rg4BoTGDc zS`sRMopSyZfSzAManU?fLVRe(z2{5_K(7@OEA=%REmo2$Z)-x{h$VNq_63WiYs@U0 zAzJp~d%C-tY5xx1w5QJ+R>4spIaii|u;kvv*N-*BS3hztlBK0E04T!#1q9bYg8Wj@ zxiEcID8BKr(0kn7a1?Qus>1CvpR2`X*hNKLd zdoLAx)UHc4Xm&~a-pk+WewskcSr05cO<(qV&p&H2KqnBuy!bUIE zmf=r+aXO7<1p{nQniQ;zHz{<>*+r5&`fzQx%P3IL>DtpK@kJb)=We|+FB zzyo%r?WSeMadsxH%>oeCk~}bC3%=*fM(8PpfeH&A$biAZmSrL=tX;<2lwqK4Au=0i zo9FEqP_Q+!cvs}&o8_Ntj+;sao8^yzA^94~|3HeawznZF7$wQyf=t2gN0q>U^vv#2 zFh%D`ezAU~NJlYtXsBRzdJIC#H4m_xilF_3iOxNe2ORKGKtV5rYAE!o1FA09E9Uzq z{FjRkxM$`7bJ_V$6^p#{WeZM(nR@^~Tdp8i?ni}D!Hxk!Z;+x3>OBxt&=|>&gG|BZ zA1gM8^gPyKip~+gQ@(($OVNv2(IVZ*=Wnj`uRyO}6yx@?05*U%kc@anf7P?!t;4}F= z$m1CNDNJD)e119JRJ|a_SXKZ_NjaGc>%!T+vL{pl>_FueYjXFnhEPAyAx?d|5P`VR>Wr~xlY-mmi51q10=pM4KY8tDT3g5a$S8 zR&Z;o`wpNr`9=zuqT84JViDd;IN)utX>{$qCN|y24Fjf=g)Iv@mq%}}u%1pPDGI&0 z!Z@8gNy5W8_}fQH_)I7F(74ht?Vn61`zQiXYmk7j+B(7(9`5>t(QPq|yp?+tOf4&g z;Ph(+KDR*VA39GewN_loYMpxgNdJQSWu+KO=5rg3PIgHo^DY=s(7&t{Pw5`PvnFT2 zTYz-BQp%yJiYtv_6TDIko7-kqz9m}u;is0bXl7y?QG z9(gXYp6-3RqB;wtkURykymu!RRF~v*kjddS6Q(eDO(zy9ySKWrtN^d-se4!%>;58P zie9~{RukiKbb3E4+09Hmr_KSp2T^$}V0I7512EfqTEP!=GczMs#~W`#dIq!4uM}Z+ z&q^cAn#;_G8Wwr)%r?PU)cE;g9_ZGYr=S)4VupdFt7oU6WEHVx=(m;jbe z6EWZhk6+^wKNOPhF@-5QbMMmm1+^tPp4O*A2AlJ}v!EbPegr0~bH1wh^umJ4C_aq` zg@IHEior?~gLU&U5lqpg!JQTtV5{iox&()^<;;lS{DJ)hWox};#IJQvE&Ms~A6 zie9JptEB}?{p56zDU9sKsak*{iWVS6=ZJfy6>OL7Adio7azTn-+S@0+z#+-IL8egu zETw)(&+CUNI!FA;DsAYJh~6YG@hKOLvQf)PT9HL_Dk6ETIe9CsDR{mnx}eaiP3a3r zOPiAP7Oqsu6$+N&iqecN$wEXroUCh}N5o^!{7ksk!O+WrHk#VY&w%4bhZbc zEI3mM)lIkVY`<2lTRYv@*+!;|4XrFG;nUfcCRJ)J=O2B$RF5=MYn0U44)sxa5LX$j z-8x??7*-mkl4qTaH=64`-wfr*=5$U=)^3*+6_Cp*)6!|En2*cSd}zKpRnW9F%1XB$ znB{0R#vXQRy4b@GGBfP}(Xlp$im2(AUdgg3q{c)22)pJ9y& zXB0!v$uMF#kWL}3s+IERYpj7lvZRhK0%a)$Z^N6I(_J^45 zcfKE96Fs)PSktep>{>5x2exEmv&bxvqN}g6e+i!-a3~aa{9|AluPwy&iX^*1dBGbm zE8c)C`3c!?s<=+d2LL6%xAUVgS4-Ioli956z$!c;+||=aAoK{YnAOF41X#PS5Vlw4 zo@ZA(ekFMRb1H*{=RYBN-1F>)n?I|$mZICb!?b-HTEW9$7(KAEyw zoc)enZ5*>(NXoonk@s11u7zQcPG`U5{^9i1u9{eQn&fFsaAm1+=bBwr@WwdTSlmCy z9gJ7Ux#ptRR$Gr@{mb#5={RRZdZuM9TvH|V0kfX@7*-Z(@aTBg=jfZ&)D zD;?unk!N{)o+Ei$v8KAn2rb4J8DWaNQzo9OyJ$BTjxoNC}_GPeoF#-o*aNN@Ii~05wTT zYLE3%dlXk2On#3muq%_w1LvWt7Uadt?(i7_II81 zmu%d^^jcX{3ukL|h5$ly*NAhVQDzn%DO&j9M=_H$6Bmm^pAL1kLo-(v+j;gF<~nEf zeZBE;7nUy?#HE<~B}ma@-5WQ;m4oDKAd`dc?=Xdd?zJ^|`4g^hjb#PU-K(ewD`Uz= z!W6xFwW$?ix8zlJs8?SLW0{B^6%JB-X}#t6#R9X(xVlSn15j2N54@xZ2ifuQKti(X zl-wFnavOAlDa;0~*W#jat_jAnf(>3atA=d`fED}daROgDc|^DmbmCfL7c`DaWYGnU zA$gz+nm5t)0YWPj2I?$vDP+KUp~-8-UTDl(jxdHHp}FjQA=V=AkEyP?7GZ}oQe4l< z2cdo0%HTeb0yNE==9(5}kym{>@9^~d0?!CWdk5+)e8N3N@_^Bn%y2!6(078-zJUyw z(a!o9?bKRh*KHv!>$)xS-kWXFb)$;w#C|4tohrBbh45bdiCXxbJNxS5EbOj@$Nssu z3ZB*KL!8oY@~??| z8*Xk&zcmWEwWap7B6A=Q^r<7F?TK)_VS%d~xkIjcFiv0K8ZPyw4ESx~rm$W~<6?yM zI_pGO4_?PTqz(t57x-`hrs&Z}ezD;|)u3Yf#lrjB8%aK1TEfi-MgygnxPr<_JGoMp zqk$+zsqO2Gqk*h-;%HzADd963SV*epuKQ zAXPIj9|@QT9)3H=<*)+KWjkDUxyyR!Xwp?ib_6NDA^aScQmcmIT{~UpufgP(v;LIZ-G4f6`syYr=A0w5Z*Yjq=u^BzoRJSo6?F1dsfW_-$&@1FK z82sXMlnP?edwWS9=!jk|a3u$zj}!)K@BIN}z&fJi>&4#NyWZFlSxCz|B8$A!Pg`|F zr832i=suU5K%BCD_NE+`3Dh)vGY!cU@$0@KtqRIeBJBR~;H*fhva)!fvn9V6CSMG) z-tCLJ`v{vrBqK)Fh26OQ)mKa7N1k)FtGvH-DeYRz@VeypetbSGr;0q%Qk!918?XqS zfU_gr!XmVfMiIqobcHohZ}sFK(+Rinz@MN!H`X6+WTZOh;lin~Rz1h!R z1*g5d)Zd$1=;}q*)c`$je7j)^YkclZoOj6eo3X6WjD9h#jD7-whS5EXSG)k4(blV^ z8J){CHls6C5Q}E?4$0%qh^>x&b;Pv}T~X-OR`eaDXRYXc;z@E(IatVkhk6oxDX|c? zxK>o@C5u)>_TOYDx#4^16*s6-tE0JgM_r>(lMU9(E@foC?9z~vk`Y>smtAk5jvJ`0 z2AY0D2=*Zvam>{X_1j?GRfcLLhOSboM>XJ2qk~V*6*rg+Mxf_iC|9I=Gt~>G) zqKz8x{GQ>%$6Xuc44ABMe|Vh=_&wYP9<$6*69x`ROMP7#~teWpP;E`{WL5HENP)&2QYS`QtR_v>E zD_od(ycw=}+SOeS*$85Q%?c}m6rI+4_O$D^Bu9fx0V6vq(m;AP;EIANI!E%0xuBb@ z^(t&unVNef26ftKM4=9}UJDdzOY%Tx9(K-!%c5Zl0~Lk_Lk0|nx@;6X^R^p}ow>Q( z{DZA|o~qLfnFv(u{=wB7#lAhAs{y7jd0)8dR6~x9)?aMrD>k=nG)`SG(apGJGM$w0 znYyf?M$x_%{F8;uRN(ZIRDRD#<gt9P?0#3cH!nB zhts0n3&YGCJPxky&XId=f?lSplifjz-mbhA>$txs7uSPK%&uS=1ydM04IzfB>#k=k zn{a-63~tnAPcJ#uj9_m)_vc0ec9ebW{n-Kd;)#td<#aQuM;o}07^wsh+^1Lx>cp{j zeM9$EIS()u0PBDmCAD-E&PY}U>&0MS^(BTk_Q0m^(O8e zrO{c1feKjfLIw=5Ufje03k`Y=%P+g@`jM~5>|#6%cXFI6UX_o7OK7yxJ)CSajGq4B z!ULG<(b`>D6;;`64O15sOIIcjd%~BxDr{yj1;+G$;MqsTG5zn<68{RNJ_VjGL1Fah zW)YaXZC2f-qEyv^?uq5mn9bHGwX-}&sV6usK`E5%MitPk&DJBvSAA%f&vN%EkJ2_< zqty2rjS;0rY!*?f8?n7l2hfFxXE5!7_K#Jbf$S>ALtB`uO1cl=FGu%(gXFyRttosnAFho1E88=()o^C8F zKuvfB?o?Pchh~_f3xhYTaqF+^e7VLQgYGf^*F@?&zkg6cEMVeylE-0!&aS*au64JQ zP?aqlXH=M|yag~|F!2{@RK{nZepg&?_{3l#GM!_UVB5xu4}ZyYk1oN7#0~7CUdIOF z!=6-BtsPSzb_XfC8sr!AVO#|^HpjC!x?S=RP?Y;{6ing0(iZ&oCU<9JS;2=b6(7Q? zxesBAE)2f2nfow$i#rjmR;;hOFP+L@;l33l54dmmR`+po-Lv368)U%Tw|0x@z7<=H z!%_=Dsplfi^HhuW#L^Zw`{?DfVF8`mBI4fbngZ%P`KRsf575Oe*07hTSocd#N?@0g zx%1@P22toZ{uW5lW7qq~EAALc4#)yQ5hrKI;C{#5E#+XC%wRJh3x9sxT}L3G*Gx4o za<`Qu%?MsCa>p161e|T6m>r79hvhR*xNUM9z*HEPH#4JT6ClV-R~O%T4fL{oP7>V* zplShHtwk$OXWn{NPPKNYM@8z4x}efh6w(nY=%J z0j99P*q6l@`wV3TKPM{Qf|YSUXT0lvUOoeu3Vt47MoIk~33=&)tM(a+rIWl9W6MPs zM&-mvKWYxo-gK;c5Ute0-#Fb+4rPUs|gx!<~NQm@42KV^P-E?LA#BmeGjhU0WFm}xN z)akKJqUsDDV@!)PNo!$}*3u*`-XyIROk0_{FwUf6mS!lJy0C>wIhH1rYiUxBr3vNY zX}KVvF<$z)yIBBJ9`FC$-A}MhTPU|8b{ms4p&S!YD96%-a!f=+Ibs`@C=_IJ8w#c_ zWNAXVR#ZQs97_|*wKgfo(pCxu+n5w&X+pWSCgoU~P_CUxIhLlBTd9U-9E(js6`m-t zjAMZ#mSl-yNi)C185}cRX&G_8t|9I>b4{F?Z+N0uz33hMAjH!{3BF1<(?ap6P){f2 z->y*4W6IB@3+_J3Pxl3PKjr7vDxSg0&%PJkk1Ic)yXYRK{0zM0epLB+J+Y=ly#B4bhh9H<2rAGM&dZPZ&Rtt6l=hvb>FAmsRTSxajmxE)9#xcr@7<5; z3|rsf8SBU=QesI?Uk|nn%HL;AoKe!{5no@tzc=nIb{CxihcUPsr#RzEL7WhPr z%Kqsq?&?aRk+KiCt#vmVsA6&G&6FT~$_Z)kd*y`gbCP)~E~sGFKwyVUpe z(-mpO?Z&u-{i3<`e0_sg;(8EmVjE~)O>N*&+it|K?ru7})?BF6--u9ae|1N~9A+_= z^A5>T%y#Wp*eF`lMiGXuH}uq3@>kx{Om_a3X0nREX-eK`q?v60Z?HYI;qBpIV^0Hx zSHkaF)I~Lc5!Hr6N9=7P^-sTRVOK~BDWp%_*2LIn!zU2mdnD*pZY_S<>nu5&;;7@Ccp{}zw2(Qo4GCbC(GG$ z7q)}8n6(3vqlRqopPI~*|I|<|G0p=V+KxLkswEM>`aKQSI^TohwBs_fLQmh*WIiVp zV$GHnYI7gT+>XmkazMPat6fm@crDVu{7Z}UqIget#l|xp zxO)a^P#qV`!S~=_#NnSm(AuZ7m8ZXM$~Y`tb`ykt;4Zymkq0139PXlJyyQ_LdB>L? zwP$N5c^(6m#nA`|$LHD*6Fw_>)Cf2y!4QnY2flSzrG-@Qj6xnLveI8LE~k-4?Ju^p z_4GH?#ZdZe8&7FG#m^|TyC&_Q+G!P>@zW%3=x>mibtU0DOA~=}{WXD${5@*Oy4!1( zO$_k#G}!D4v03aRr2b<8nv^R$7^GDC5>{$NX-{>aKnw16lBI(GtEDwDtC#Wg0%cor z!=5cemh90iJNoO4SHd-Gw^`Y8}(YKuw!joeY91y~@Q-o+txH){<@n z5+yg5)i@p~s|gxZ&LC(!7qqAx5p-!eP0-F=G<^B7oF_pE)z~0Suw_A-V95!_&@74} zA$7bQk)VTYFkn14Aj?`NYr?r?O}Klqr>cvc9L955ZyCWZe^0Quxt z9KxGSU(9A2W)ls=JVTjg_|7u^n*gdau>U52YVZ5s1dy#({Wk$53u5@c2_O%K|0aO{ zO#oRW{5Jtqddzlw()!;7P#JvxHv#-_0{Gtq&}0HQ5U=Rrkx{Q~w$sG)a;f#oSJy}B zC&iln4N^Ls#BmX;+DYALLJNHH4^JiVWO37M<93tmKaVvEqF+a~eO&)!w@C*0^jp%m zPx7#e@!RJ@{_RuWY=WPAjI0ADk82a(Vp4K^t5}@=>Dp?zd@oNNOpIFWsEW2{TW?62 zRf%sD$>RLU8J~u$(>vf@y*>5IYRqv`Z_i@mKda)3ahqlIB>RSJzQt*Q59?WdJgotn z1ARPgt810ScFI|klb*9YhYNH#+j=L|a*eZLCzM3C8B%X%N!x0GBSQ-XZze|_@b%`y zZ*WObgvci!$>~OQ^UvLQbfV|F`~wUgc1Pfn{+{*n4VbK-IZ7Ge8H#?$=Gzbqq{23Y z^_mDEHj5MH-6RjT+HJFVpl7qyeIGRkdE9dSZJ-u*XeI`vkUVAcfw#$EPa%?9flOf& z#7;$SNY9N3Q*@5_%rMVfxj$gY_j>dNDSBz|f#IHYk~|7z3iUs!)DP)d{ZTMQ=SY6B zO)7gT!9DPaXbE{-10KFzNUOBif-#Tefh`zopYXg9h_)*X)QvY;kOA9*v22^T@n+sO zlZ`j#a`US*Eb{J8@}x$Y+gsJwQwhg)CTFIOPWDWd-vIVx=8t*}r09yP#AgWcVcWRK zVheqsTlA*?p+>mv;^$+~*MeCuK&uG*4!LvFfCBiCKgtBy>2 z)IU^8TzJ?Mq3thhyPfSX1gBhUvjWBotD*hae$+^q;u}g5mSV`2d;{it(n^R}5_D|q zb*%-SB{C*9(YtKA^*RTn_*PSl3iIxY%U#mG*|!{WYGhc-$3deK|M>=xaERUoJ;H>~hN_AfR|GAi`h@;C*wQ zXJ2ITpjCzk%lY-5G^_4xa;E16xet|D8_>~>rH_FWy-x4O4W6b*9sx3i?xb5~K4gLP zd^ceC&7LfI8lc441MG=X4sO21Gf18cGlZ_ahZ#@u%y@I$V5_G#TAzdaZuQiYHvkq? zD)3->PldzU9QHDN*eXy|*A5rr+!{D3iv)2&4qlk$X&}2nL4oIE3Qx!1;JG5(6N`@I z;Dgzoc=<(Zp1l;FhfC(^J-N-ZK$6b_X8Z*Aq#RF<{4q>sqp99IJS(NMc=l(WT00L^ ztP70OTdDMP@s$d1m8&N8akTf(ot`L3z6&G}Vx+H9p@EbQ)nE$nOHiI?sT{gPh|#D@ zAVn`tez5_{@XGvPcV(OBFG;Qq$_nC)RK$Vo_y`Q9=oRdAcuvdh06)5WHX8T4w5E}q z0F&t!T0c?{&;GngEh9yCku3(Fc6#c{gG36{ZU^pD;E6F32u)(*L&}WDxH!5ooNjfV zj4YPy5C&{i5DT21NAmQM1wQWf{EW6M^eRkeL3%!3+abdAJe>49*_N&Dm^HUAM`??^ z;ZK^NG&_{=$_{Z{aa5C99ap41<*8FHE-E&*eSFLIajo&iXFPN9nSGwXpt!cJn#Hwi z*DNl!t@rrz9wgx@yFJY+>Sd!Ev~1Tb7S}xBX^$`N_LRX52WF7-Y0r47{QocvK_Bg~ z9@;EZ{QUt}i41KP?eX*yY94~4_Im30>T`CVr=w)5N`IWyZhJ6(@SLZ^zvlHg`kqCE z`2={Aj{-Licxnlin){-uiR||ddD`KS=RGz54Tm1+_6|0&HXYSDREcTKD(fWdd8KnZ z#BtqGR)pN@-1}siQYrJvXoy?@E5iupBRiO)H#QZp_8A9L>yD6qs1dok49=?R@6_qU zaE~E*U{;mm_54Y;?L8plGo^{{2;Nl=4W7l{o@=sGoJ_^+G?`49i(G6IO*rmphq`X! z7iwA{`o80y4e~sy3>R zGGLf`$j5DacN!;a=3+CCm7vmfO(ox1+pV2qxZTtgP|-Dc?$IjvnN&}mosG8!dN0i0 zRYpR=*c#M+S4>|HGgFWQVAJOAIwPS7Y&}c6??Y2Ke^*lpHN)0RWC0<3Oj-^bmdH>U zEFJ*6sn}9IEC_AM4-3K+-MMOn289rp7JKVQG8XMPnrjbEazw{xFOOt!NU;6I17n!l#}@k z<>q1W;NfV@15Gu~<3w=1`Tmnt;9#Y0YSfYpx5vkD&v3(mW#9!XcIBay#Y9|$QelxA zaro!MMIG>f$G3&z(doNFcRs$Y4!-(-?0pAZ6i558yA%-?6)9HaKt(AR>PWU3$1$Rg_u`tu+b+1?A{waA#3uXLdN z405+X=cPiOKlxm3L$A`=X};hVErpk7wJ1tNLwvuW0J^ue_8^{iZnVJ@(ojTbzO`8OEe!D9kOy3;R5aium9uF>mv1_`!;?Azt6x9a&c5{~+ z-kQ4on_X%!y8OqOdf8c1OxanJb8?K59J54+ftyJ5rh=I!(=LkU8bA?rAjONxQKG{3D_gxngCCfP;)gPWA!D}Q&$l4iMtbc zV0*O=nDWK0ks=D)mA0yh8!BuY($%ytceVYyx(cO0^Lwy5P&N+P*ev~)2&_C&sY{iED1H*zz^$WJiu*U4ZX5W0U|`kjAiXWMq6tJ5g`__ z7Eex`eNy;s9q{1Mu8GWMnCWp9Ku(-d8xS79mB~dL*#4@g)4lH&T$w~2CQp|#W7dwG z8ko1nvbT{u`gNB+z?>Jz{cYEa%oW6(2Qj`@?jn)mV;p|rzN#%2WaMe%z@p#bY|Jg9 zC_7njPG{}Rd`Twb4(qKA;DbMQP2mFwI;;+^YDxNRBqvk+Ioju|CpZZ(n6A5#KeUM2 z=z|gVQ6gZTZ)ici25QsRG;_WoC(o2GG3Vq-vUPe>wq(XMn38A8))knH(@gpKl9^cr zlO(88}2+nFMiy;4*F90^07`7XAN`Kzr!cT)le65UFIn z;xR=1jl!W{#76!YLfn$@7(ybR=dt@!J}dL(a|N25w4jc-i1J zCA4v)aP%~ovm(y`fwUBM^hBokqK(IPZq_(@I__scN7$f%95cxMXjM!4`o_Q`v@f{|xVF(dLPPs?=qu2T z`Byw15mdk%$o0LA*8gOLcAKM(Dz2sxTEr%ycZY5AG#j2Nf{%c;7o7LDCQvf4W1Ce1 z7HqR7hDl}VkqUUBH`M*YM%GaHf_42Qm{%{!8VUMrgKhMVBx@+3x5G*s*u)wIk0V=q z{#`5$>Eum;rzX5Ylj#_V)!hb`8ze-~9tTD}SQltr%|?&8OO zoo&{q|CY)!ldKtk3xQc;txxyZ6nMh5zlUkCCdW!nxHjD+oNx_8MG|RGprK(c@$CG` zN5!o<;ukkOPG9PoxWJ=gdbXb*yx`{tKew>v)2{|Gz_A=ZtGovIZL0Mn+8U(N4Spa! zTUkfZ`-7-_iU&lf@)dq6e}S)ZGLk<|Y@Z%iQ~3CopV~fSWhY|$nYLC71qQZjI-A%xbA6C`JNn=n_^nlm90|)xb-m|sw`oe8& z@!wF&(O7FcTymfs{*~CPx-pP+v`zq$2b&v$uKQuy@4xJ63hGx_W5DI|of+WLerp3Z zca_4Edr1LvF~poSn1)$6l;$aS0j1sBy)yzfBC+o1PSzFw-68-eLJRQV_%??AYg6E6 zYc^+Fzi;9^Y9MgvTdhc-x`%%u0TxO zk#38RK>3Pvg#rxITA%u_<5&W6j#%L?=FNc{=xbcv_F?NN>%{t_uut%>z9oquYx$1< zNYy|kvQ-0aFSI3t9WmP?z@?|G5#Xoqw$}TP)lOqDts8s+60gJla?G0kUn@g0{ru*@ zJ(4el^#vZT-q!HH%QEj&TRZ*NaoiX};oP(lj|RI*>88ARZ(( zm{YrfKP?b5ta~hTkdOe}xxG4*-oF`49&Alw_LDhik5S{~fE?)}91R;L24J^(UPwH1 zmc)i<8zG%%hFH(=>7dz0VsltLr^HHVKPj6t5}X7UUyF-(&bfaZYCTRd_lXj$Ja;*H z?vgp|)$b$VG-$0YgaKj3Ai$3!tjic4fPk?CjT|n1S*7iZlWrC_v)&eG#kV{~ijl@h7y(R>zMqBe3d0@yUVvuMr zBsB~Sc;4DB5L5)e%Cy=$8!qR0p!+c7@QEtz0lNii!4 zSk{hT-U90Atm~MU$sBCQcshRvnT+ii0>spDG~ojX>^Pa@<0U9KwMGqgI8!2<``Gkk z^CZM~WRfX9ZNo3T{?HoSS#0&~%&uy*Kb5)w)@+5NX3y2t?;w5y>`plY^L!Kj!;|3B zn$cvIrPd@t z6a8S=+t&C9Zpk(aod0%LyMefvZjvr*T7Ch$qQEXLm~;lXiU1RJ(+no~fsq(>1-g7w zfn-KLTuYX;?gjsZthAQo=q)Bg0hqAzk49kInMd_nz*I?RzXFk%7)KxMSny{fP;vKR zIH>p4L#C~FCAlC6E-_=N;fjXD!y1x-l^(os_EGZC!8y}R7#$LKKHC)^%fXfsT zV-8#(nU+%^$ukwq$eRY2re{lD&}GjsrAhi1NG6%4neyObNxnpfiJ+xzh#WQ=4`SoI zOb}$j?ay9|2bJ<4!V2@@eI>cGCG2WRR(}2rQ+^ssY10<7!lvLdV^T1)DdV`pEbGEj zY5JU5sCwJLYbIw*oz``XhyJ(@5mBGeKLl3lu13jr?KscA~Rzc*G!zz(y=hGRh<|=%z{X zO(uvK+$&#P8@%7Cq~2)Uq~-JYDVUiPi3y`xf+VKpOzQ|MH7{G2n+ux`k6@E^c{)RZ zDK9I(Aj`nDe;(l_Sz!94?TI1l@;iddb>ici%m{89PyapJ025w`Xv7Rdw(nUpL!CQS zghyk%7HCB%QX_XvyA3T8|+8nRoH<~XlnkJ7Jx%d9dC{CSq#JV$mem2 zkjHG2#|l1=|4GaB8SY4)p?tb4uls)p~`-q?K!>P&%a)WHepU$elZW z$!zL*ysYWeV%XD%XT=CGzbOyD;q*F?D8nfA;)wqjpgWS;OkiOn%OgAW@ z3}#pzDy2fL*TcmVonEIfxMd4(ouHb_G-jh&saKg`r75*= zANt&c%ptvc51LSeVJi5ggKJJEOBvSzoV>L-At|^}MzHtml6FZll?JYZnGI^WL8X*R zby}@iYtkvqYCWu5rPMv_Ao4PkStW(Kkiyj~y;7x@Y4uXMPN|Wr;7u+DmBO8|dEIs@ z$&hYV!8J8lN+p8^E`^?`g4S+Qo3%=_UJ9s&UI(jzEWEE8I#~1IWWnVwFSi2qj}%9P zg}+)OlHl#fTD4IpmFe_mrBbWbq^r|4(sW(AR--ei)7{gLu7{$e8;uINLaH|zl~Sca zDuYbI0~{u!9!3JGOvXlm+x=g5P|f8~Acaa}RI1fFrAcShYE{V5(v|57gH{fxMj+l@ z)pdgd+GtS9@G@p-qs@a;2CKW3VlRtIGHRf&n4wb}r7|US60J(3Hkg#@1~WvVR=S6& zmq0;`Dist0hC;mp#z(mZdc8phW1-%x(&{t@_b|$J0tP*)NhMWk)6FJrI=pvBqf;m# zkk%|$>$PTs96)bu%Q89oq`bfSB0yg)bpyn9$9S0AbY{%a%LkT%$| z32jT$p9dNBmfr~f1&(o7q=E@A+;0`$WhVSqf_gLWtLPu6gTKa?wrKhw52nQ!a;E0a zC@^)LGHqJNNqM^5$t4zZKIl53vb4 zJ#aR7FrhS&{%sDZH?g!W{l{F;d17fAJ#`_lpntE-1Dht6j;D{!2ft1%9Zs7Tg2B4d zRQkggL4mHcM|g`R5Opj#vG9I;?foyq?_?vWdiic*?W`s~ z(}N|JjjO>)eQC>>#s~$(rY^DchS$WbfPL+y_ZxztFWrx6asuTs@YqK#oOHp5fpTUYiS+f z38fj?1^IBt;67M2^Gn)TP^}bOP<<3zew>beQ9TqxrK4X3PDctahB`*Saof=Ez}e{c zw>jwdkGbe~>O%B;1(#`p$`o3T%|}ViFn|eXfA}IwK}s&RAoUhQm7-sy&|<91VoNG6 ze+WMITx`jJ +kP3^Ty3j9DRx#F7u>~oo7^|b$(iLhBmc+uGgWL0qEn|`V#WO68 zIYAkS*D?i}aWwk6gTCsbuSHO5OFi`U2z}K@U*AI=Sl|}7T9z!R2TKF=b!i6tiA7&e z&jia&r74*&LA_YwQOfCA@FxL%4ThSrG(=y2LhV=@p|1$26-#6EH6DJUx|Wq#uA#)H zC~*MP(~1tD>w^1fg;ns|l891s3*k?5`~`JqNmvYjHlVNN=&LFENkX}+(br|DSW7FY zSBnIteS-en{Sy3Xh<=h$nhSlUps%h_=av@e>mV}Z`q?=;Beo8st`ILHmssjAhq*0L zkzVMv`Bvx)zmVM;r@?Bmv_W6^>CU$33tw{C4t?QExZ0yHe7|4^^o4J6>xjPa^<8P` z3rD7GbVLzftI-LiMdS09QuGO@u)xmPsUtz*zUXiOCY9b~`k-`fHX81j=m#!u4h^Gw zZbK_N(om!#a77l8f^PL_lU16SfYs%_9AOG1tP;5_d^DT zOey`HnJ2_GwBd+w%7Y44ju+LR*$@@3D1TJ4sihw?K!^&45ri##q$-R*;&&} zC7GieaC?m}6vD_Ji^9A3ohTj#;Js5tp$l6?p!Ne!I@-X)Bv*49UT$%rox5p>J9k!T zcM7cDv?*a0lRv0@KOwC3A=c;8BEZQmBPG)1e-TfPD~a(8U9Bm~HNuw#=7JeXTr!2CiG!q;Lp{E0|` z3c`)(Ex3=is<*l+_;z0D0jBnLkA7VCs>1Xg!6h4OT5ERq%n( z6mcR%${N7HC{_@XGQgL`O)4y14R>%oDlA>cq!F0WPNY~Ld^8K+ZacfFsWnm3Cjom^ z+?1lyzv!OZ-PwyuLnx* z_nXysFyX+ktkmg_URGM4VqPE!v(+)6xU>(mfK0}Fn_k!sz9}y4#Rm{n1$Qqdk1E=` z)PhX$Db-Vh4WWs`3mqeh8iKtUEgFCan>WarT?7Y6yM%BOR=eAY66}?OF)K=MF?-2m z_zLzY<_$6h3$u4SsCcDx4ZkcBCe>#bDgIQjGr?7b+#ic}(wDbm4{q)CV2ckn)gKm6 z&NXr1n^mPp>D$}UzG*2~_;rkm5Q|$>i)|I|b(dr$nCM7eYW5C2$)scichlzmVjdUb3ADi$C zwI>6|cu#u4OLg0V?)$1+&?7M!-xa6B5W`$-6YjMb4D(y87-irsPUkAEmF9!}9f)~^hnDuwP(kYDPL!bARH-?DC00|Yf(R3*p#L0NC+ zE7)VQp4vLij*PqYFI!ZD-%kV7^ujbycR<+=rt?k+@9}%2N=gMH2A1_=RAdGWrajk6 zKaWgM5UGSQ9T`}5g&9ud3Ht)ilX*C358nx9WtOSFIXt^)52xh>NX#0B}QIg;uUmW}Gkg^BNYNCJu)fE=iir}aO4L3)hCjf4^ zTMjS#fvF&<0jw1JPEatSEQ_&|IRd3z6;TR07XcQHEUTc;?F8~?%0@F6NDTO%e)ltF z%b06qGQL@M)w5;OLSSjIW){_$4~7U6U90z4!f$gLI8C4uD)WA}xi4OwM)6JZUN_&wQD52C>?)EDqI(j|!B0FCq-n8!BK_#X0PW0^LT-pe8Iw9@dJ zSRVr1N^jgHY^B%i;_v7rWgwuZw_cSMT$;>qAnRF#H}L!K==^Y(u$OV&D*$)Xf;(+W z+1gP0`(45#l-^EhW;Dgt#RC==j!=i>mi-t?hgy;1$ZK4EFv)%}$7Yn7Lg_fG@OYUI zM&*U^9xs#q`&b8Rm+*AibxwJnWBsJ^*fZv2icg*J3lIJKQ?L$$-oDt^DpXuAE3SFs zjQNoHW$okXiB{ZOAuiYQ2{fD&Xq=UQviW(daC2-gEB|h-3`orzTF_a!pl6!#c-u2% z=42em(MFo6N!m4j(ynBs^eI$sPMAEEj z`C#;W%O)}OxgciJ-V5V36MPY6sa0qvD+O9zF4Ssgd{R6N-9t6Y|ERc_T0irs6=Z~! z8yg0&GY~WOW-HOF5NWzpXjy*=bq#KRyC%Usv8t?yqMMcmR`@VZ5sgZ@{+|0`Kigjv z-JvwFUq0^#GjVMBY>IxWG_YS9y)a&dC%;nCfhra1`!9jMN$ot2UuM%aS!#}-_Oe;w z3BO$OcG-;v;O(PjT|xcYFC~b2<_u1x7fbn`xu{g=nc1a$&&-1K{+?$}<7hvQXCCsC z_aG}T;hD2EVU(S`K#A^M0mtP@v}hLN!0RtN!ZIGj`R0DZ=%}sBJdHnUJEM8G zez_mkDgT8A^{dMm_xE+mLqh1DWr00+GN+gBEJheA=SG*$4yQ+!1@_!UelSzx%5R0y z#sL zR~g@P?PWsGEfI*c2GaX`p8Ezzy9UplUc6XD+?zb>LG%3G73Iq#>0g7`$)HfyaewyO z$89m@?c_x-4Bt+E@UxSf0;PT=RO*xaX>X3W0{dwV zz1np~ns>Cp{MGoNQXBlm~Xu-5gJoSp=}M*rs(}5XJBHgJGN26+sk# z*bBo~ys2F1phL?4o`b#_8pJ{2S*&)HpZ1Qj!V?Y}t}EZ%6y)yS676=+E8o}@3>+EE zSI=?My;sin)pyHLUj&=>cT0O+s4%~^^4Ie;^D5^)?KpVbWU^?#X z&E=~8-C7aazq;QO5-6*1GVBFf`-$A`nmwt`p00ZtRE zy%o{D>F&AVu-6*AA};yCDN}ae38P-GLGyRLaD2_f_ci&NpDED%lQy*>5y3sVE%l|S zB0pypLAWz)Z)ej$vVC_fxNRB2pc)7 zeOXxO)}03JZXHFB*%P=WKHvv)Y1Hnek@S>3fm`Bty)b+$>V+gB{Won7-+$Xf#{Q=N zzUt9z&<=B@F_8bl$tDqPZx?EtY=e&kQTY!XJ8yVZ&bGnlgQ)xuKNz+R{y2!rYu8~d z`i(t&l^+nQe7iv9PwKe!>eS%4bUmA}2gBH~trAWfle0TIk!^#OD|SaEf@k%dzlx4@ z8*$RLwDH^E6u94ne<>_u<6Bf6NSbF+Pwc8O9PJuhwMe(69pxwav#jL4fi8dzu-<*l zx!cf+&a(w})%POV`pjVwz)l}*fdK;ip@Cca;UTX{N)SJ90c@{=z+l0NmX9aaILRbe+-YQ?@)DgT@o|?MH zzg3p)trn@6Gs22-uWPxdbvXT5kUF6mwoYz)>cpMVVb3e!^bbKQqM08|U&Ws9!>Ca3 z@Ymg40D5Ir)Z*1%IKH+&@zeGhfwrI2p@%XxI5Y)Mk#*TaK5U@03;lW0Q+ry*fw+`C zK^ooXIFT|DIVz{kKK9G@9_gs&nj?`c-axWauT;O}7 zSha$8(H96*J6EXMCwI`h9^K+*S3(*gtTw^4{;+88;+5ZW5A~f;^WO?JPqw{Lj=(W= zG^dmZ2R2vl__vuOaNyMW!LV&_2S?z@IK>O&RsNONcXa^CBcN3aRR66&^`xR6XLdP1 zx+ZU(fasFmI+himXnp_n;-0iRV6|&|w7cD^Jssea0<(iT?mSMu83;4!xOuFIw}06c zL-dx%I=qgX(d$sVC`kVA`Rxpj{^R&9>>%)^FK4AE{5Eg%o^K-QH-i{X1h<3ngx7FB zE#Gr4ioP1eaN796wA#PtN+kVR5X0&3h4C5=npvifvU(MmPPtF7)Is>-qE)EaC-+*4 zV<335ITM?F@zCP!T=RNfL+0feLeetplk zDd6X0!MyV{Cl0MOZZE#1$B(KwQflN7Q}+S^nEQnA>TUDy1|xr^d$@!{vu-Yd!;+2b7*}Ag9n9%sG>gF7 zxMsTod+jJc7`Abp7ewbeFAPuT^fNBuu%nyn?|E!i{Te)$uJlu%la-!u*?L25@o`{e zPg{`XpFB>cQ!f5+_Dz>?IO`P1WP|knp0`fnXxHGaYvNvQNBN2Slh9h+-6z>%qT%k$ zhXZUu=9B;Ah}Ns{^u*pTuw9L&S|B*_o^W$+JG~DiWwGsB22_Uah=B9Z5H85*shby= zZ!}DW&}e=VDEND!f}h+;fA(lN=nT}{R|7dI+y@8GJ9Q_f@h7orBlVzrsPrM%y89xaZ<%&}*aZO*jc1 zycXtqaq(+mzF#d&s=y^`dmgt#!HV%~aRW`p|FYTkb`4v2&x0$@#T%KAp(1?lb9PN; z!VMw?=5YfR_t#r(ITUl3$VB@OoBL*vS8}qE@Ze$Q=6LteqD|p6^N0Wicw41pTS+!k ztCC;hR(GNJg)#Q%mRox>tw{*HTXpFE zqI5)JSh+2g4~2Frw)DxfT0|bsSHZqn)kEkWm3WI7aYWe%{Hh2r-i?`(GEV`oD@r$- z)3s`yRH;daH#JF(T7_Ju)9Ljxo!RJ~e&u*66=JA_r_l};#S$vs!eJdwN(FBX&LG%c zFGAVF_Jg_A3VI65wqDHEHv|H1b)K+#_@dawv@}VLf`H2Xhu;br4dvKb-`zP$2f1Dm zG9xdm!~$ijWzjUE;CWn2XZR0F09Vegjb-Md9M3Mz(N0?jNloekMI~_!+q8rXdf*@i zydTh`F1|(9UuBFZOpzcr)@9os=x9Vtg>833@dI!X?2&L>`Q9Vp_%FXB;YZc0kbFqU ze2Wbq(_K-cfF+hymEfUtYZH1;C78d@CZjj*0DJe@+QH|gKH6vNK)+uB>bz#l2-yLZ zIBiL_a?~D(A08iuXB>(xQn*pD*z!Jb~n)#5XY^an=iEdxNf}2A_s(it7R7WT5#!*d ze#u;7%flo?MF#mBtH z5Gh3IHK%Qs1o1p~%o$rrC^Lfq1pCg}wled{6fDuU^R}_{jJ@FZ^S0@H0IY{i7i{^= ztA0@9F51S2K=k0wp(Bm?U;-Vavf~$$PkdCSA(`TnDgxANGolH&bIJB%AT7ULbU^`V&`2zY$Nz-OjUi-4n}weI!r+p;MpdLI;w^I6OjRR@gyz-D3U zkQs=j20onKS)5@&cEi>qfhJ1&w1iIEHgQ{T*w%$G3Zeui64Gg31Q>QbvM~cceDv`d zhYvro^@v&hPbF**of)`*4(spXGW1FP`|=k0)OmV*EbG~y=7A|S!6+k3S#*8 zEn8L~(sM=1H@{=+CMb_?@0@VUreIzXDc|H%+X#Mn*785K?Pa!;<*~nP`pmW(GS&Wb zn~V=6PVxVfVl?=Ph8g#57b)g_ zLIi=iJud=@Pi&GL_^bqe;ln%=LCiF`^fKh3Z5s2Cz|NZFJwRQxHD&IR83HdciP1$J z*<;_?HiR&BUL(v*_mgcV6T?eE76!|J=^u4SGp?*n1>1kI^=JAD%SR)`uo=ZS5r=~vdsfBqVKHwz&h!ce zmpdPB$2=!Q02yrf8|;Jg7`)@&lnOTd23xl&BIT2Rx3%Y&$3%wCrrI&{Man~gns7_Y zNPpPvlz-SJGOI)i-~U4txle+fB0v}av^^4Vgbsx7_b<9`v0cS4DKL^rfsCXVW&fCB zE|DnlQ03ffU~Y(g1#^zf!3t4^+OwHEWHLU91p$5wwf7YP$O*F#V7?avhzqx`<^u@W zwurEey|Ghmdlbdg+fUdwKFk>fN+RsLm?$zsfHPYJ=VSP3o_ER1cd}ZwAH@*gp)Ca> z%k{v7a{yA92Q3=T0pLShi=yn$(ew}wf#=ZHAQAySw58cEJhUa<&yKZuN2|qS412UX zK;A3$><0t&3ZAQP|ClKvm56%<3y2h-r0@$zvSn^GVB1FPxU6RIh>4XdVMo3{<3zZaHcW3FdhzE0YvV zpqK$LkBCn{r`gxhSpvnFNqDT7;Rl3{HQ>O1#If8@%k1-LW;LN1wjKCVVc*1TAd_J` zFa~_3v|FN4X($8k8}(3`t@J^NeMxe%Vwc37?IYaV>8^@DG ziqEn*56O%K$xp|}xo>OiqiND&Q+oi~zm{>4m;_3#}7pD@hCruPe;$XMc@iW{|Alp7!*EVA%k>hM7+0 zV5Q=**HSVW_p~9v>Vft?d;mPk4jE*BiP=a3;NH`XLH02;gi>YNU*kg|kz4wVuZ0Nn z*w?PQfqAffRGW9*o_T8@P)iXY)?$AhY#&ZB$4P$hoi?+F+S@Uw$z-gE;|IZ?L+x%p zK=m+tA@c!Q76*de!|iD_1h_ujt`q?9t*doF?!XB9vo!NPfm+~-ZN)&bKh1vDzMcvJ z^+(yqF=1}POR&0+jk2$%DK~l`F@rGJ_G0Mpz=QO4|HvT&MFnB8pyzY;vOp2(&*$v# zF`Y<8a75}rr1;}i!#is>=#zpM>dJ+!G4_}crVoLSz3>JO?IJ*{3DEZklX=KYqfu#3 znC=ILjkWg!{jwZ&1z6Bz(z^JY3TC1Z0o}(9KAmXK5&*zAj=;1{_R&n97(jcyeXIz8 zZ=AhE3@Ulg%BBJ+G|*lzRyM(CUn3}sSh{9}o##Db0OL&dS$qIIQBryF=`PG+F@Vix zyNnMYh)g{=OCqa|9n+90z8VMJrmn#oO7NIwb;=tps5{_JUpszWGv>XUy`m5s0s7(} z!92FdfXA&(vh35tDR|5VfqS}AKa=pd$MBh3*kky}&F=0fcoU%gSP21G#dnQ}=RqFv zLYYDQu8}LF;f{wlgv0LSH$3cfSB-!PdG<=W>l?zIF}{Fi;ndri1%=B-YxC_5DSGf5 zs39V68u7v83SmHt8L(?L{te+~Bp=93F9_~R(OupG_*lC74dEV#{LwIS4PdQ6CnAZ_?|eJl^jl<)TtDX37GPo8_KpEdfbP~;Q|Qn`fem(@AIYkP_AlwU zLxBx;ix%ho^VSItbS;A${LY#T9*m!5??G(P8F&a+ zwZPhw;A=DKN`oFg;bewy0O{fDP4I~)nZj&BPi)C`psK|y#gZBd82~bN&|{8$M7(bk zgU`}!z&-~K<~Z*Mf6TG>BKBerJj8eXevr|>XWdq>CWBfxx-9{`JVL@!~rg5Vk7W7u$ueNpHe5GP1p{aM3M3;YBF zGz+!NF_I1*T4Zds&w~;{)ymcm{V68aR}KH-(8EzFn^_x7TuenK>?d$Q!k$hZz5?>4 zZT70rk9>sTC%BZ6*B0!(GN~1Fn}7tE`WA5bF!hOt07?Bzj`|HxX3f;yOLy9rQX%va zxEwxe{s1QQ2%#5D&SAA5p=%w%<0wMXuQ*!2KOQY~pJJfS=87`=lmL0|=yJOmuHTbf z;T5J%?h7{ibhyif%)xW&y~z|j%g_n@=CF6>7tL_mP0T3&qU&9D7r&&yfW8+qAiM!a zyfFk@E7 zmwzEVM zsV7rS@*)uCIA0jcY5P^0{zM?mha>_l%xOPij{ir5`SuEOHdtncmv1f9xYb-c&1~eb=t#1K}yD?eE&3W1jH?>UY)N7Xq!mYIpE~ zuqRo_@*Go-u0ce6ruZ{GeYl&pNG;%PX}dpp&rUIm2%Lh6p8jHxFf^yR7hSi1O*4Q1 zW#>J7^9kF@Jj5yu;OVcAU}NA9h3E73i2-DM45zz!0Lb~{eBpf{$Ku+f?9INb2`q#e zps?;f{E7Vr#atyyuuNCof^%gbk;$0ftB_wb|G@`9^D>)m+ZD_`AwVc92ntR66Zs(2 z*RE7B^NxKW^Oq2WhBOjCg~<3cP%AwDQ~Pix<``k-9;VuTW`9ZqVC`r2?o10Y0DPM( zkAgsnnVb?Y)u_ZK?p9yehlMb`Nji8=cH*mxpJFn}WXx~xW9}|r+tITMWR`&b5RQJv zv6?F}@f&+1*uf#OVft8KGs$G!%Q*(>-Loh2%L}M`E^3_e7}V?Cx0|TwjRYCkBmK-I zfiJn++b}zcbP%&+b!JCY(lgf=CTWwC=X+5ZztbUtDdz#4FxxN0L~lHXtx=42_lFST zQ~-!LaJiTXN8n#Pw0C2!ixn&U&aPufR)9c7Be)7$_ZTWV@x2{xs|N}g z>bTILe>ukPaOD9A$Uno8|1mgu+@m3*91#Ep{cJzNv?QntLft5i1PKmssB=EDJ87mf z0m?>=7k`7>eR`0|*x)-K2Sa|bNkjlP{%-HUj1&TdK+NnOGk+3O{(ul>Aq3SKJp2Rp z+S#wp zni)s{vJP{to?`$rf=ou$9s&!p_U{jIvcBVa#w3KG2c7`4V;qShB%U9!v=1{=2oQ}h zdn{`#7+Tjcwu$#)dmM&&q~TuBR8S|@F@h-;VnU?dv5wVz(x^I#^{hOuI!V=`>5e|N z*VV!sv_Q=AqNF4;+oxGiP0j+cN*~MwPP8F_SIFs{d3r9VQPOJ(%lVcOYfR|c2UZFcy1)ksC=LPZ3@8UW4 z@G9Yg#Df#;z>as^kJJrbm8hZW;c5!AJPx#I$}(!mypT0v71)~+N3#hMF38vIfgRp#Q<_UIqvcS z1pf0jr*4u(cDj&EAp{yAW33Dige65)sq`^y0KWaFhY=$I{KXCPh*7;=?&!kM?{f$| z{&JN>fc@n}mC#?@ReXO5z%3rq2gqB~J&?cDsuudoA6~vWe{mnmaGap&#?^rx=1)$w z3Dq8l`J4 z*S`ii(y2f#+JM216HFeIlxJ)dVQ( z!v)Vf(wMi&WbDJ$)!>ik9dr2rh)>2h%2tGc_8AThoLc4PFAo!F2qog#(@|p`514O= z0v!2qj>*jTWHKiIO*K%Dcl6~0Ao9c@Kb@2HOK5WF`JTYko4ChLaC}ZP@oy5j-`X=G;XL5>MiizCoDUwj4H87HzH^Ouq&X50K{# zDiNUo@!kpZhF0n?av6V zXU8)ACXne7$&z3)_eWMH-!iTH%UO=s(!n-;WnK5)3P)u+-SDlzn+nEr%8z@?yQx6d ze6f~}c?%%f8~%aNTUww;QzdVCmaKk!QzUYKhnVyZAZmIUMQlNP6k!OknutvXSSthH z;@5P)w*uF6Z6`N=#QN!$e`wAdFH;JXW{Ew%?r zrueFM-8tux0R2z*7RuR}VveGE^g14#Qjr`YQhb=;7dEUhVeDzK;H7k6U(w&zjEZt@qwAkyiPa~w1;nyA zV$7+a!~~ra4~slq;4TK4;$zl*EZP|#aCGriUFRug2+1U#FB?Rp5U85fcYYNbKhBf6 z?pcbx1kQ4$67`OUF(ywIO2N@<+$nH0-YH?cKqyBLy=HQXAgQuLWirLb2RNVL#1k@T zsJ#9(94W6j#gALXh>rk0raz82LMIuTyCv-2~W`H%o*$1L?`bqNQl zU7d2~Q!)?N&xg?XTJCHm0u}nSb2#&ZD8SRs5qtnag?=N-B5IC;tKgxpIl{9b(bwU2 zfTpMUb=&B4;JS^6c|_fg%y5nfrp9_rT4v7F8%LSpaocfO$OXncQQumC|Sfb8&jNM}_?Vfespga#0G=5Y)lLEHcUGuByM z!{qV|aHrw+G|*(6^BS`dO3mxUB+MsLe1-+ajdxB7kmtTR-nlh|0R$jBi-zxy+fF9K z-TyfB^3qotYv4w>~Ot!<-fZL?c#U%){p;lR)JM zg-PIdld~=#0iI34EPg;D@UYl#l2gG4z%1UpRoI!iM*?sxy1Pzxz6kGl}D$nhh>Z~2G zzjJn))5U1d3hY3lB2s*);1_P0XNI$#+2Ez-gJf6FIIt+!nMDsj3-0AQ)4*K4Gm?fK z9;}2Z)13x-=vm>xu|=E`NbKwZyIy(DuPA03!5e$9({k3mw7~fi#aPHJK^we83@x6- z+W3OAig}3y#lz1(mpOYdE6HTsL3rsbXfeyVf)5~|^^zDZ+$SZ4@+lTxw6>{)h8lt0wP1{P*}BIhuQ ziGLdk>=}GvH_Ke?oXaGV$ymBZOPo45p*v@Za||B{b0`;-=Qxaio8^#4MZn?uKpcXN zFFAi;GD*ys!NW^o7x5V~88bL;nX?<6`8L?L48|KCl+Oe$BosD52p|X?8^riQ2B#!- z=ra@eg*|y&IE<9MH#KY38vQX?^Rlyll2WIa8cb59DqUw%8dP$v+8~7|Ledo~lU@o> zgHZ1l$GL|-cWZ2DbE(XrR%;DvSW2mq>GU$AUaQg@HS%<$++YA#9>GCvRof-YsU)RB zAypbQTBS;FP--+%y+*4u8RYQNO|8_VP`anjS@&;BQUhr-7`E1#nWU(J?7roC76rS!>WMR2q{~YSQb{;UO8b0g9{A=nZ;z(d#A0DM<|! zWnfM2%d+Od2?8vD17*Scdg>vBUS zW`oQiH$(o@bsD8wYS!wM3S+t^JzcJs8&w7<>%GOtsibt1OsYWloEqdBrOc?*%Vk<~ zy3DMTtECFH(mkwT{c)-Wia^o=$ZI4B9)9C|PN9`))pB{7Mv+y}DSuqb{P`UuDMo3! zQ3-{Dm7-NDjXG!*QiaT5(knI4l5}oa%MCf9H6E^WKODSnD^*xSwU|;M!Tv*^n~*uA zSMNa+YA{1NzjO`CQm2gT08ZXooRCz5L}1Mai(7)BXG+4FOI3QQQfkzt%MC`Q5q{{? zH5#a*bhT2emAb3u8nmPq*&P#oMSPlTxio zmm1A_L%JE-hE@xG3VNtUYfwnl8nrvaQF4z;3QAC~!Y)-KMQ|tg;>r_f5JWpnls#QjfOlvU9 zWqLW-S6$r5ojZQXZYoKwHR?4ogH9vY!|)*2pirYxn+vS5a3Raa4TDaPzg;xk0 zV4O^ssnZQ+sRG5&c=zRZifxpn2GX2RHIbfPxLyr9l{-@vigdMHs!Wro6CMY7RT-ov zlN#EbQmd5d)l#F$kgikcN6w9`{KiO2}v~xcITOuEy4VrD|=D@G;aSiZvQlHL{s=ry!LH)VO78Z$H(53E@9NwDfJ^BM8172&JM!#st^8K=Tk=8oEX`6u+^ZyJR0D z_g=D(|MI(J|3-8v9M7%@G3%z6SdQ!ktD3kv(sTEN<4s(e@M?H7*NUE?`_}tCBT6i7 z;o->@D)8;r`yHY?7MSu2IvRBax)Mtru&}AC50wVaG<9{LCsctSo4TH(v#Y_-X093Z z!IR)jGgs%j{ozW@3f<(KnH`Ne9kW30*}KU=n&|3G&p89K6J1^5qb&AB*F^gDvw&&t zlF?h<2Hl#wl!b`BV#pc#oeQt7EVdx7iZM6EmOAjPSFt4xZfY*JOn_T8i!Ir3?_06u zAY2$Nwji3tmN{^`uh^o1^B={Q*YWQbgmZ?aF@95^jm3>d^!QZd8|VvPW_}2L!K+IP zYgrDXPkaI45%h(xOFD|a@QKl5=nJ10IF7#XHsllN3vaKiLSJ}MyBdArCD1p~7oIVG z3w_~f!jtF=Pez?WUuc$KhNT+v2lm8HofUzq8O{uR4<07Dn$vJvJVxSrFM__o+7t1T zz_kDQO9B}$ZfFQPv~V>C;j>oOZSX$g15fIpFGxJdn*#i@?84^PZ?kU-1jxg03Z%Ao zl`|pl_z1CY3e+M}U>;s4{rYYEra%+-$PTVKAxsQW1mL;g-#WSEOk*+`pO=mSOQkNg zNcnH1u69g&|MKn}nX4rw0#Ge?S(vW=0N_Q1%fT;?*P4frMXzKz27@n^u3`Lwm~&IQ zYY?L&OC!!hpor{=4S!ijsazA8d?5rC17g&!1$+ub}tnw%q?&F44C zWHR=fCSYQJ*A{+x#80fRreaxs63(&PLpBmp3988b;Q*JDVtSHPF!B9^TmzVaWHMGq z&vRgOrfUx$KtMf?rQR(#b#$7mA!)Qe&LZGtQE5%UUj+qW?lD7LMRary!3cNYw9ar> z8)hbvjt`vDIp@HN;jUDFh!k*ZIE+KZA`tHE5iU7AQ%hzcnFuFKU}YltWxccQGp-9v z83~E?wDTMo_N;4G^iCp&V|-}it*sb0kA!d$pr86W1yWPcCuZ{eM%)2CJy#8^CNbxBdG<(i*%og#}`CV#OfY0QhRuIa6GBDSF9yv??zJ z-5nb=gcZv~pzvZFiN_}nc)4J|@5=M;`>I>eR*cwpuxJNjpX&w)cNuJjd9Zf^ciZC& z0;_Xe-_Z0?4uNM&%^?y2-Y!*kUbtOq>v?vmpSN8q0L%DvQGmSh1+E22;`I!rK+8M> zJA&$xxQ?LB3>f|HlU0Lj{Tm|1C%5~~3|Ab@{7z&Fn&@$?-brx0OD%~^@gejuWAJXV z#rHF!JLjp!VAwntzMt_5y5S_@f)7ln|5%vE>L2e?$(ZA+M^kbZ-lP6bBs^As(+fiN z$6nxXX%c4|udJtv=XnGwfb0+(+I>>#`BF_Fxf1NX8OusVZ1taC=*okc!m{LU@*>@qc2S5wt_O~<66`(_ z9t&6zI=NtKb_s_;jqbMc_R>8*;?cwlK8pyXlh^n-OV1cdAjlhlK>K#P4)TFe!_wSq5}BU6 z!bz1pMy$$=_ujn**I|meNazyps`Y71&RxGnV#69sAX5n1 zM_zZ~J;?Zthi?Rm`ihiO5c5OQHKPXjUgT+R7M9oi!f$zUGzURaT6lG&560Dd&b8d<{ENKp`t zEMPT41o8o=TyIg-4urz*8D^giuH`t`%EH5Gs8`Rp)HJovt4S4c(#r?8%@3}}J1!eV zReRyslUZWXJk#z0#!B@@^G$38&@WvQ9@kkQqW!r-?FT=XC8qurUiAlcyUdHOt;~-E zIe{O0t`Q||J}ANuFR^}%A0cUQnIG`#T_zk+VD}8nBLZIOyRK*9t?=)$!)GaQlSd_th6_q^Kn6~Sr>i1wSd zH}NO}ze$oK&{H-kpg>Pqd_8^kf$O~xdYM2&FOmqbhNk;zDC-F|6ex0AZo1|N8Yup8 z({-9TOy~{Im?pW26hhbBuCgETE&3og{Z6QR#BEn@2y>Pw&z_9AOs3#nZD%jL=YH-w z05>m^S%QZAXRe+|2G~LR(SNzLH1ib+3$JL)VIGhvn9x_3!MU$po%m&a?|{%(2ovxC zT)gZ0l@9=4*BimaiIrtfRgq)`Li{Q!1RAcBV)^t6R@`HK5)UoVh4yrpD}2Y)AVvc8 zMABg%>zJs4b>F@3IzrJSIRqY;97ZC*2G{k9&?VEah`3|`mT^}^JP&e;Hy=iMFT=rd zbst#Nf-dsOweys{R}{&Wz>ntg#X9i4>o1DlBoGUb2(Va-{luDkh2M1$=bGJP9UyPw z&s@;#S=6_7Uo=Lto(4rd4!5JO2*nq`k%Iq~!-SA@qDd<|MN?t+gGSyiXgCB;vEi3xR(|=wOo?7t1IJ_|Yfz94ku!HkLzLzuw?VnJi@izs9e|9q!+h4=g&*gm}|m7emh*FV?X zbN7lu!~(dd3FZ;**{*LzES&1%;E{WtT{(aUkIi`MyF%|Yz5Cc^+>+FZk2Cm%9kY($ z;sSj342so~@=1l~Y4!yXtAZ7a=mt+6SP@l+zWgp;lNRlJHQ;UufJcfRxthT@%;7ch zsQXL3gA(K**R`=u!-EL1unS!AE*qM77U)3ic}!|pP1hEPb;6=JhLFDaePEAHQt8mE z-m1n*p|1KgDs=uoS)~v?;X9)$x`xq`tAU+=497zv#0zlsV6}E_ zG-%y=(`xkhNcegbW=1>)O!Y&wq}`^m?jgpCGoheszY1cWLv(Di&~;pP)kZ;jsd|t-k-%isza6WHN5%XIuq; zPOW%{4QaHt>56-Qt{+Uy>lF=Sz{VLhI{rE@ zDBtl%u$rg4T@yOK8rBgxy*yp9rdR_@fGT?3o2w^ zkP4~rRtTPtx_h=_AANy?_qf|TBs_MvgMK=wxc1oYRzvWBjo{{Oo?9c?OW{Gns*2{c zXFBRkWzkT1YfbaZn;@~}|1xN(!h~+)(Uc}udbAj$k1#v@+xH8z|_~LnxN!-=@PDG+J zK8cFj!PnAAh6Kh{?USfvkqmAW1BD+}oS{E^FL3Poh130Q78J&=b01Z7qQJw;6;FZg zJBu2LPU(3rZ}LKc{7))eaGp5%X2o#PzNF`xrrStYzKdc$d5`U^yzQsdYFv;%i%KdF z+g%L?!r%*BfZ}$=p=jCrKI7sx1vI`>A!W2gI^HBf$$<4vMK3V`yd7kq2*CPJD^eMf zf?!icW(;@b1W$rsLDT-3H)sx~@{nGA>#;eAg8)XI4fELc3x~_dFDmk>=l7BB8 z<(_u8!V*heN7$YM^=rSBAlgxG%jy2w`~05DmG{}6$}vPj*i$(G3zJPIj(e{mM#(nw ziD&Us2s`js3>|gd8@=%0CE|MEnht|`{GLh%RryM7y7l$I-hPQApUT2QZy!;ol8T@; zn67wFueB+zAm)GFj%*K zwLl}KkhSpSJ(siIYIvM>hVkBefrpv+^4mp%nko!ZQ}etvh4-k?iIr1mdNYT><*Q_K^ZZG}hHQYsfQ7kGL`_msawr1(g= zB`qr9lOG=unSush!fkFR;n^-Dnc~9;zHV8`u3n;hCm;D#oqXTbD~eQH1X;SgSDW37VQ1lC+}mcY z{4tz5j^Mfk?&tjB2gf)n+lParZ7OS;o~aw*A;}MRyV(k$*M1-jcFV=Izf7q8Cl7Z2 z;)HkynmHP#i5o1~xWDp1@QrJk&B2v7kH*0RwUv1ZzrFp8>q_FV`ew*dkv^duy-5FnwK z&`}UbBot{1ger&hs-O@QCDI}A=nw$`5lM2n+uVh!sOYB%HWVa)Aiaeqo!=|Fx3hb@ z7yZ5;e;k|l-presH#2WuXL5~%DJn*VoQ?sW{erYJWY^n$rjzncC?%ag+fMShlv!W6 z;`7~`5&Bvu=0gwx6LXfAn799~blHZ@Z&r}csv5@b}9lat8zr+b94C0PPJ=uM-QP~wu%WF@JRicQh&`m1F zTPsSGJ59N14zo2wOR%y+2J`^}#P=YC{=18d{ zvljp%f7Tp;HH!t+(+YNN6q3E~I zuw+~#Kinp3bz`dm(8@7csahD_H1h;Q0;w;BB&#grl(AXr3KYF2P}s&=giaAfMLIe% zDop%PCZP~m$ocVEH3aGS_^dX9aDXFGywP6Di-Luj$&M3xZcG zfUEMEuIrkK{a`Xv<&=|n^{=ZZ8vw))6a8@O}c!bq_wzt^1hgUdQuH zMb#4vXDKC$W$Jps0+Of38Pb8jvMLGasf<7|?MDy+Gwll}^`>3G^|yp3(148!Xkep3 zle~qO06X2^oEL*)|Img_HU9vpbnL{CJkCzq8~f@=g_pDXA=E)eps>>xB4F&q{h?^!-i^<{+bm?{wm|7Up!zI!93CM@?E2oFNWgL$v1=Ksp^6o-OajyYu?Rzj_f)aXF()P#_POfobiXY zH!$Ibg{8)MglE<{?7Uf-T%Y9J2)bn;mx@b0L)!d58;f@ZlCrQMpzcp|t2RGbXM&hlsdt>%?^va;tM6 z*F554Q`AOMMA@ViK6?_ClRlTSUqa$K z+KftX#Ui(6?(8n&7MRQ;w{->5DR=g}f)+v-7PXYm{6h+S+I9E6z^+ft%_P@d%X+3v zbRMRZnAr7~yk*GL9@`e1wJ-ZMa^1B~QO`mI%&xyL(A)Kw1^-x4!ys>fG}l2LCu9ye z;qz>D1+LU-P+DhkR+6XH*XmznFBOEk6orpD%AT^kV>vug(UxCk-w}k?tZMT)fLFcX zwtbyFQV^0oa6aY$MtFd=`dafe_XFil>&0t5&E2M^--B}G3$rjql@9RF@AHtpC5iZk`Vc%s>5rj1yT=8ZY!ZRg#*Ncl8r~k2%6wyt-rDf%7 z4=Zf39+INdlY<^s6u(w@G<%~(I7cz~(33Q|$uhWdCgu?y{QA^<<$J+}z)@ zr&!3M{nDRFeS;;xaNKtFoCw1;)HNPpt)85c_2e5b2_O7NdSYgQw+es-cKsqVMrg{& zwAd71(&&t;R{Aa@f#iW0q5GNaasoN)}5Dm8VF$MQ4Wm(21K?=)7hh%V4f zMKW&#!Jd9CBSyHc6YLcqg1zVwEZZj`+|7P2_+#N7aq^0SSk3|sV+wN9i-U{*yMlar zU(W}*h?LTyXnH)PL#H2gNuH*&!Q~%hcNJcy7<~AU8*)o^qb_F~b z&k4fy#PxOQpVfuIj2Lsba@Px0$fN88VY~;-NAL641FQ8aFP-HY)A+2u_o;jKpY%Rv zD%0|bN7Tu}X04Pr`H=E@kCa)jv-W9rp&;zx@QSv$AUxBStzOixm#Npx*qHbYUqg=8 zLe5FE*@pTkXR~;N5~DF0tbmr=^sD#iz@O#=x6|^4V0$?%>CM>6JvzqfH6FO#^n&55_AmM86t!w!OuqAL zFPErt-k9`%RQl*+FQwdIB>J^_(f|8J``=_9t`a9grlKQ#D|DG)oKm}ZIox4s&UGOi zCoIdkAyzmC+Mf;kLeKHXJ=8g)P?=qb{h!oVDHx}c`{t3hU2Jt zIcg6(gw|s+E*(Vjfcu)XI_IfC?tx+OiualU;hFauc~0-W2A$J-FJs<#C~1;cd3_F> zIP;!0*?vwR0&n$@4JKUc;eri0ZSbSHjv%~mL(XV&1fTHXBTi@`>&HHhjaVOb z2hRvxPs0eZtsVrEN!MCUPcmhvshj8QArl92^7#;$qShj%Y|kN2Q`QC; z`Ie0uAVn>Xf8UWaI?Omv>iE-^g zJeyu_d!E0sqNzYP9W+X2A5zE{>Ca^6%=QbK0Y8bs5hUC91Stn{&vJ3AV&1{x&WRCn@PxI%JM5;FnRtg! zNgnVHW%6?>3BrFkyy6`WLwM#La?k4rnxEqAk8-MNm-0;LWr3kd-oWIKs^CX^b3PGo zn@eb(k%Z`@_PERboTZlHe+A%UB||FW2m5o{i-CU;=9MUduBir3RLs#c~xz1We*D0+!l=BJ_dqZq|75*>$($_iBVhYS*Gpnn=CUlL2$*hY_ z`3u)Oob$65Ku6dDnXn|^gt3QJy+sIHp1;D><=Y&mAkGK0=uBdfQG+vMTJT+tU0e?! z`Spye|H5m&&zUK%hB-Qau*3|h^wE)=?qtOs!0PB(W(3Nj9LSui7vzhLL{{m#^2W!= zP~^wIv_p{}XuT%Z`W?yR*2)$`mj9H~QIOvMDTmB7UzO1)MtcdOVMhD&U-~ZnyT5oR zq#4c`v%uFyjPn%swgh8gWk?9N|C)0d-}ovg5dHcM-y;&A+Sd<%e>^8%tayQxhUO@g z#eIIuaeK<^T4{%wsH^*?Wp^-<6PXrB{eDp^)bauwuhci%)1PZl0TVI-jyytuyK>-K zM!LNH?;aDhGC zRb4f*Jq83R+z6j7YJ<{!aI?<v~RRDYTkYN^i}aeL1)ZsQGgP zV5R25PFvfc9X@In<-37loAS^ErU1J*`4sed^_~$kI?TvYmteo7(lRll&q*FIqn6Ke zPFm1e8G&Lz1rPxhe4e0X=|IUCSjM-5Ps1{D$@{uxAk&H@R)OrT%MRS${NFHFR zmcM;-0IDe?P*{qA2pCIcF6vndxTp>DjVWgCpa^bW^l;-H@26bU$NR}129$~7jluS= z0#6)**~>6r3%zUz`s=Nu?+k3su%Dv%FbP&b{E=aC?r>PM8H(wfR_s7{lBSz&0GZp0UxYpZ-AEsq?Inmt^qAau9meu^Dvq3}zx&ym_k*vT3q*+(2|Hy-Cr)q~(_QTB5}OA6s*i1)S!Orr}z2xTV; zsKT@VMHQq6(e_ZGh?#+bWcYWJTx&g`y1l75iE!@eSlNu}c#xthnIzP(7a%bWWb&by zSlgZ>ro&{`$E01t6=Lo64FIOZ+9!)^4FIH$b?h;M7DCsp&zGeLX=H;jJUf4epY$Nk zK1UGk5I5@w*`3z;FqzS4zl3A!+Ye{~bTuwAs8LFdw=c1XKS6}7n;yLE-9+&uOlHya zPnWQxkv%pD0?0>k#m4p~;&lkY?&l^D>l@qSwN)@y9yPXi7oS4_#tH%0+QeSR0N`m8 zduuWHGH7K5U}aPLuUY_gtQ-vi*jSm=z-||KP?*wWTs-TxA~fqFp*j#_miBqGC>OK##>P;UIh;o~Qc8#;W_q`H$|A1=QO z^Yw9@+SZ;Zl)xL>+8g;#Bir~E^u?J2ZxD;iz7bbq98G9C6b}}1Lh!(XE72uv?a4IL zf%}mP zAzGDg>qfuTM`FfNMPO&1#?vo$!S@9E#jXLLNWNaTu`3TJ(L{Fcax(p5hpnd2FSaFh zD*a-cTBp%3Hg!6kez8@cH|ZCfi+ziJF%_6WzgUMilYS8e!kOj9%(9S{#b-LSjw07G zk&b)JUUwynRIi)8y?~djAqP>8A9M$?gk%9Nxy<5s@J`H#|M8ue%3s|G!)=r8rOGa( zL@@=UUnGR`@lK4kERQZXUFPq^nB=i{Vsc)#Zx`L5BK}T{1X2hQELh!inY|NJ3IEmI zep5UQO7M4=@9*EyPdo~f*(GKh5A5iK4qwK1df3})p{N_ILa=fRRUS}*Rbw`F@>@^) ze01wF9^T8oSiB7?pkv>1Dgt?b*p174BIGJ4sq(-dHup(@_l$KF$nG)F40{8avDNDub4FA^H#?)~i3 z#ir&+uoaVN;iXhLg^zfYy{7L(`h?s!Ubx^IW zK7;M!#qltisgE<&{t9~i3NAIozS#h(V2J%4ajqBCr$g;26e?=_qDn!qE;5d_2oZSj zSN^4O?_u`Z;u;-nE4=8#SyuexFjDO+S@_`2Sv7F}indlfV7NU{OTdKTq&I}fIV0Z; zw@(%AI5}gw-^M>VfX5Y@X z9}GuzuBo$SpvJM@P)dz#vaF?#8o&33<#T0Pp?b9Tr8S=SX}Y2Qj2>0L`%v+i=yxxY z$Mu^{D15xu-a$ZFu>^0X6 z=5-*cd|n5psB)Fseq>)P1QpQwlt>ewJvTfOKiO=rCSCyPe1Wmx8h&$&y{{3(vn}>m z@qrPjX<)tUt_CXeuDQYrzn9+v9q{nk-x$M{? zK89GyTu_Q=xdGar)${l|KC;*D)|C~P_7Ovk%AV=IwmKfYp9J0-l^xZ zZi0_}L8?`Dmzz-Pqlxinhh#3iF0Pn$L+{RKdMH=sh98bu`wYi@Zzp4o$2&uC?6|ds zo<9R{#9_NAtfE|b%^a%=ktoZ31xHS%BC-zKtrlSilZJlVunMQVtm1*geI~DcAQ56Z z2!hK4?DaB;ilLuUGZmt|Q?lJpbLyaFH`uZQu&0@BX4#3*o6>^ z(|!iJTlS_(xn2WGlRTii<7cjIOx|r~;ELMTf#6JS!*A;2kf_t>jQ)dlzbohnI_A2EJs50GyT5(r3hgTW7}LmuXw?A z4a-fdDlGHBdF^XgRkN3TWBu5hnneyY`lf!tt2Zy9Jput`#sedm0-AS!lia;U^wf`e zPkp#)?h5e;ZCgcYY4l+E_GSR?cK1q0yrj?I5+eCa%~!hW@UKCtT6X|Ws-0(xFv*lH zhHPJm`hYFSk_fmqrcY%E_qe_(hZ}BF>?W@ECdmW+X^)n<^DU^J-+PYNoK&jq^wy%m z;@y2i!w2KE+Ytmb|_|cMEdM`OoC;N6&=EX8)g`)SpG2BS@ zaWWxa6D_CVjj_JsBLj2uMN|k|njZOo4%%L|8%4VZ;Ix-_4hb_Zg!7Ak%+KvpTV~J0 zL=D8}3vB4EZGRj8M1g+gubV?r$(4IAev>`wH& z0^mIw9#W|9h6Z^UP{OAZqjI048HMILI$dt7=^T{k=)lprqXo2pv2CoQv-B{y{g~Xp z(7HnX{t8t$Kk$HPb#qFgzPlMzXy6Z^ka%|kQ`8ofDvr;6RS5cqwvnvE^6Ks83Ayp& zF_6y3;olVEdJ}VBFoM`LF}Id@&IlrUQtoXL*1;E7Rc@Ed+(IImDMZ2)m29Q8S6lc& zglbcA*F+jyjZ$=gT=eFY+^leukuVaSe)lH?KaIQ^h~J!+TSlyOTa^); zH46$SDMbC*h`%LHIe4QSKJ(y8{c`enpJppURY%DoAeH3nyzoYDt;U6L#gJuuGYq+< zk3WLb{e45KLZeePUR)~nB*1DMDERiA5@Nui?B_PMG!PU^(*8?Du(g@56A)IJwS^gJ*@ zy0sv;mLSbukh?`df8REDZ5H|7_`4hpnY%vw%7JwhJW9Y-UfvYS-@-Z2_rM}GF$x9T zp*m>n`AX?gO2?MvMqBWX8AbNa6+NI@4_J7cA0$2HrJTPQwbGANUjJM7{KV5t%qKd>Bgc;Twt1LDhfVCD3#scs+zG~}MuxuebUTCK@tR?pr&d4maCova>3@tLT@ z2$ILUXEs^Aer;|~0nL>WC{{lQB4AcO_Kx1_N8IsPz2KZv+l){)sbRw4x(%EO?_PQL z9euC-DW^N?3yI88`wRGu-<>tZFCm?psp-!Nz1peiPwyC*D7x#a}$ z7OhX#8{O>VOR{D{c)o4_(&k)p!`L$b%4g@;<|+TXDn@qV0X@5ecW=#YU;r@tq+gs^ z-UwjD$GLG@05+9;2}_h%t_J5 zUxXA~xGq2cqLL=*n z2KX8HUdGlMEn66prR#|@I9s46YV}!en{oKe)SLjp$?(vLiK>`BF>g2+940q|{jRoO z%DT%3gX?Gw`i?1s6!z+vmQp&Q%kz1=x6y#)HJ}n^!nxuR&e8>YI$C|m<~)~;+AT@< zBOS*O^1o-^7nPRp7q{GF>O#WoZZVF!78HKZytAp~1#`Qm10x)?v&hb-mIqYZ*%Z6S zJDY1>`gdL@`3dRo#xfy5!TH$nRqH#}i4%#yJ<3CUNYGf`1T4&LfsZ}99EP)2II811&C-HIn&~O7%rAwF z2B{=paRtZY9UIW%dw5!cW3;#wl%WnbL>&$!%0gIpkMF4Z5EKRI*wM0s4IC5E$MHBwN%E-Lvojr`2(UfSumA?s>d(X64nfp@2UCO9O`L#%z#M%sKbey|uvl9L7}}nJ8s) zE)i0tx{%GfYbFb`{N!ZRo ziC6xvx8r+%w1-t|JOntRhrtD3Zw!-az2*q_$72&6Ma|Nk^T2Cdv#?cd2DJ3PK0HV_ zYJ>OnZSe2?v)$7O+&>#@uar65L2f@N_P5&Rx)}0_2aj5WJA_6f9TUY;=8(^fAk(^S zt}k_a-SLYc)&!tzoxtBPW(EiMs!d3&%Lhky>5;fEfvq?y< ztvycd=1}*y3T@cm_|`OAB|w`}n$SizDK*7shF!2)VWo*-&M0a0ILBCWxi3s-5%8OT z<3_D=8kcUGL39%zC&d6CHnxTL2u}L>8F|QdCUj zi}|<`CGfFlSL#T3vZJaXx|EBOTW%8HxaP&iM+- z<6REhVzJ{*$F2aOBtAIZq2Al&{{X}^?piuARAGz<&c_OSdj%LTUEpB%xh2FD#E}l1p4tP;>+vjKyM_sc#z)XF zMQtEy{6fb$L0m)I%yJ1c4d zbmQ9;!^%i-9RaIX$yc8XF;krMX#0Mo2Y!38j91VH4l+CuW}p~#F7t98{u_XE)W~@{u1&2(*?0A z0Oi}?wybju5^KO@w*9T=dPiqe^&xKw4V12zvB@=7e8}VaaDYnX7N<^gqySf>Kxyct z5pV=dQQ^rKv*Pg{D`r6>d*bcYhg!eXk5XXbmtG-xz%L#8*m1YGBz^1%@<&r-G|Gg< zM2LpDr-2Xk?&+0>TK8m3Jl|nqk~jV{9@=|*rHv2uUTK|&dc`ZP+U>ZEP~JoH@D9uE zcwVgnlP&?7uF>aH``I4~!XCJXSQLAS>DxVyPsPwjL>ZJ2of<2-BKYWD$4D_4W+=8A zQ3|B0TBK;7i(BCr`y2^EP+eG*?{keh;7Al3gLM8-XZyd)2^bHf1 zvErZff@$`h<0S$8{>WVM&v{@picfAQB218j-@>v=AfQ?INUQwpy;3M3ru~sHMQuw( z53k4?zVin%tSI@IBr6)u4y*Ws6crdRIO=#ThJ!ra@a4A52n1(37y(mMgbFneJU*Gd z<<{u2Rv8m$jV8)ikK_S&eEcUz1wWJ|BTyW17l?qVW0S{B9YJVQ4;Oy#;1>WNo01V5 z3b+KdGi@|x2Cw_wL>tkx$9g|J*+aIXj)zV-zCdWnV{>&33EHCQ`+oRX9}P}s1+>v1lnqnFBAUJ-f1qXD z1;@NFW0l207afny!l|m49RCsTfwp2}TT9{N06d`N)fRZxWk(5-{H5x*;;18UfK;`G z$rlR~ng`(2cuQRzcg5i*H}71$;@B^SJW=uJ<`G-UGAr|h$1p*lsEVAO_LSycb94~I zI-mqUg>&z^qn_9hCbQnA4u1QFqmH(`E`mywYp?kP(;+|Zc+)Wqb$^0Cx#@Ua>;W+9 zs8*f^Oy*Qux;_cOQL8J5;LoPE^~a}fIerjFnM1dcYaPy^QP(GQBp#2y`*w32BBZck z`K@Y~tX6=7c3X-1VWlEH*d)wv6wyeX)%W~pFh`##6gJ?(<79|P=KoS&|D+?U+QfCN zB4nxk8172$C&7*GJKVU^eaC4*;&>Dnl1q6|5HT0B>50BaTlGZSqd|56H1#1xFxE?D zOcT}7Ku36@cP0fMMr3D#g{FH$aq~xx_W0q3v>+T`cW(*$XR<(g;p4tWpZ(=F{hOnt zi~SqZTH;QR9hZ>xDRs-nerB*2-1aAqji}O7^ImVH2Sn5Bp}SA?;aKky|V{@$$AXRNS^2L0^qyXG*V)GEZ zRB)~pM}nd_fu3y`2UC`IUz?1c2H*)N4xl52193`qK&a?T-w*b9K` zXik%%y2~^t8Plv3BgloSEhH>IdP$j2$x);Uo%5_hM6!$IfJR^uJ z0l1FhxiZu;nc~I96f4CDa$}0AZbVACm7J1*_B_L5syLhAx?KWFiu*v_oOHJr=^w~M zI91Zi;DTy{{H0Y@ou65PeginadW5z;KiV-$Ugk;naD>kk15A5jUx7D3{#A?sA780SZi_MqG zf{-Mb_&%hb6j#$3D2NRKET8_42Pxi8c2NMo^VxT)47He47R@D8ucKnb;D^mJy z-86F-k_W~Q@5eg-TK7WaaZe;*by^(WFarEhP^8tiYZlfI>mJA@mTR2Y@M|&B&#vS_)UNB?YI$ti1 zzJG4svtRbWczSl>rG0V2bA89Ym$E5h$uu7b2jlB#>7Z z8aPA1NR&)3z39}P2{j>@hLRD+d4w$%tdz$Il{bY*JzjQ33Sk=S^e`gL>+Y;1gu#dk z2*s7+d?t>iWGhnyY{uGF443Wcd`+~$92!8;Q@>#&K`Ovi(9`*r_&&(v)A)lHqvCj9 zx2+}che@r=V%ix>uvf;f-V=sv-&$nh*v>DT?ZR2HGK`Erl$)8k+5=Al;n#UOk7FN z)d|cGuy=C13R*wVnNnoZrMy7$K$kK+)j8ZB4U-WlejpVhU|kA1=APOh4=!E4AmFG5 z&dQ!s!^U*8E~N;bIvMe_RL9dINRqCbobTaD>2ChCImx=gE&&VA_6!8?1E?WEvfKcl za9GmabRX+Xv7mjd-WIrRW?Feez`kC96(>5$;=vIHXuNnZ)B}T$z38l>+)zPYV^102 zSK@s;8UkNM@JgxDa!b!uHo3D!j+I#8OtMcWeg>Gpi^r9mNQg9jbsFhGA2L-tW&Cj z&rWf|ty`f;tBb~Db6qsfQ&^g#vg94;3`96MQ)&w)?gwxN$R;ha?fVdZXZFpKxc21@ z&GDj5_L|~kNV#VJ_XLDf3SIDOk^#t|u_3Lzv0;kZSW?z(G75??)&zyMNvyBMx6_=L z%zD#XbDU?y97?sKA?!@~JAd!!EV^Mb>nL&%-t-Z@@jE?$g%rfyPoiio zgr{5H4FCXd!S6d43gT6esdM(rW$U_#cxQAT6jkx)muM9zSSydeUj( zH_lV^;pdWs9(abBJ|oZgdQIgk`^z;Qt&l36>+QqY0=pDHSnW&-L~mNi;|=?az2Paj zy{1}l_PtZg8zxkJw>g?*!3P()TZ9dwIQ1J8$B(xIn&g@)d_AJ<**{oI5S(1gqCa zPt?>4FnqT&+=Bb8bb<|vhN~zY6i_Brr9VPn@D@P3z0_`-f%v!R#sBZOCRUf}*o|=N z0oTwlV~v%T8LjY-q!~S zq8_(Y0~A-?fmF}sv?H+($fRxwOlQ6#^9JF$gMle3Mtp1!a4_tJ?a6*x2Qz`zW)j$q zC3(QXB#062obQrZYtSwuMO=#acH3oJ6?78fY#kE@3j@DzMb*)Jr*SgHIi)%?Mes;zS=rtLEqILZt z0v5rMM+J^*BDmJYwMu79HJ_j|%R6p1LG?j#ecbjQCtHcz<}bb(h(8F+XojD?L(c83 zhxBUVwl&4|aoc;vwJm$B@3L4cg;)BecGEYF3o{|P>PhF>2;)ZgG$YOwq%6 zPY^FtfukVBTLtz9@@3)$r=0!Kh2r?qDd#}(5&+Q!QU_(dK3|*%QfEO?6+6EbxcX`5 zXXt5h{L5+Q9Pv3Q$R|zSJL60g{r!O)SjhOiIIeV-EQV+RbaM-z%TzornhL4mpU(D3 ztOe^~E2 zH(qu25U0Z&+8^TaFV?h%f>f0oJouV(bl4Q*ytCK1Y0_8L(Pq*TaMp4Yg)wn2>q#Ey z)c(BV%qTAXa>u!=INBqlQJjnmqG4UzR)2lhw%(r`tMXEkFgr8WgdH|{Y0Qq&aAbC2 zT={ZR_s7m{f_M&a&Q0L$$w>h??y0kzcopU`Z9M0Xe|qYiYyefY{Kx=2^O>`|_|yoh z=5yyVEfm#Z5Ow&=Hwr`2dDH<@)OK63L;Brp|H>*s+AP*C0gRYU7}NkMDkA9GiKJZL3^`&e zHe_o;_Vj}_|Rd)8w?qdDor@HZ;N2bB7!*POe+W4znYA7Bjk!M*#fdF8`P|jeQUZ&Fn=;2PhRC{~-_9s1nASg{31>eY)ZiV^&o-F*m=sr5}|q?T1bBQ!6tOqn<; z!$vqOW@}bnppO-|ApemBoR+dbL_AD06mL->Sc;1*N>(^6BP6_5bwZs2rx>szE7*K; zgbt*qsyMDvR@zvEYb|T#-uz}+XrsWqBz{u;OwRq-1pU zF&f?Wo>{DA%8wY=Vqqbj$ZK6NEUO{S(h84rLDoTUUtHp47MQH~56k-2L(rai7 z!ow>`L&@o`Z|I*ke_X4wwA%VT2_F``m^w0b)L49^^3{g;d1a{#8sd+Gt4JM4;oemU z0oP05%qmhGK9jMg^LZQu^1U+hwEEB#`(+=}#z-J%ynzu5IZrRW#CGpIEE zVke}_&@Xn5I+%X36MJRp7d!q@ZWjIIJILu5+nN|kzt{%HF#5&T%fjgwTUIMizt~z_ z1^UHi3MLi>&-g& zR)o}DY(SIc(3iOX&iLqBzv8HV08UHWA1Y-IP5)B=N&q zoLxDpGj0+s)fWeQDC|#mNF3Ool>8byD z86O=zxlWh?54N#{zX4||;`%kEPT~D2IBOX8#e_{zVxi4|wifasMJ1Q&D9|r_uvXQJ zwK8e>4diE%Et~lr8%;@{WUIjcqFFXlD{ebu)vN%DlgPOM7e?%=ipc2u`&j8<0Q#Cf z;kqvcy!bNgf0S!tBdJ>1L$q$j3;iPX>K}WFnz3KG@>^S$E7@^E_JmDqMunSY7H(S8 z7=PYa+9wu*s+hKf-vB9u3?@j5F!QZNqf9fSW-O{C&2K6VM8pHA#N(*_XQFUe3n^YK z1Cx&pCZ0Ax+SEdtBIp1TrKBpPI$0G$WD@{1Vd46@df1gHofqoj4XvbVVtt4@HDX^B zez{DbKfcpSY9Tg(c}rdSNkV=6L2Idj7Ko8~p|#Xn>zsZYD2EyS^V&;e#R)K(l8$U8rIZd5ImE1i zh|&@h&P6uj9}`mvH+exikCv9im0y(N#O1JBM$MELrOx6Sn9QhIUJ{q@B<z2fvWD1IY9IC-)T&jnO8CLcQif0oFYGR@7OVKcSe0X}P&7ur9+E?7fZaW$ z1hEmsc=nkTh0FJpW{WLha?~th=8f>}p3)?3d0qQNa0=p!q(JJ>TY3?Rufa-m@`>cQ z`uW7AYhqcZnkG&d=?ay8=qv3*;tW_FQ@Uw^_|gEWP@D#Hn3np#Mx4k(m@ETG8())V z3R(y%2A~_&IO!TPh^GB6ZiV=mufl_+dg3maOnnvF8i*rPrA}G^Mps6vv_#ww0T^8b zfbE6R)}SS;x&c{qF(VohswyA(V!e1B(r*kOJCrfc-|i zo-?orYlRuZr1}EB+CvINhe(%CbuF)WUN`X}EJ<`NSqQ}Mj3ASVO3}1vcOTJe1;!+o zvW=9EdP>n&h*6z+6K^tDA54b4U*vT`JeW3S1WfU6 z%w&9Q<)Tb+IFu!gEyIR@6cr428!Oq&^1d5O9MVhxhnMbly(GQ|Qzlf~lT3zUn?5+x zS6ftPGJ`lfkP0sF2jiuk0$OJ*@KggRCIpB_<%WDQjUIzjY8Nku_fL{O79ARDwTe9P zze7J=-TB0B{>?rZjecYds5>Bkpw-GDnSRdyJCaAVfUM2Zlc6|!s#IuMF(MEj3msgJ z{e?G8mqc_`MybpzUV$pe|}sF_3WY_WOvtt<>)qwGwvYc5g^Mz;j%xU)|=7UGd5EIWA#812uHXJH0`f z{4jfs>j%gz>nPc4T*qND>nMK^@r0k_y z0y%~HhLnJ5F9GUvcmpZ*vA4La7GPsAw;u*m)aJo;H%WYf+cv)& ziVe~(Xw(b>C3PFdVo09qgrxbIQoevX$Osgd(-tCNE+;NXzYiz|XMZSFCU1#oe2xjZ z%;y;ANe{M2X=KDit5h5dwUer5SUOrNdq>`amb0_aJjR>7;3-gTLM`^+ua? z!dVaDnQ+p*gp)>vqdsV3%sHk~scxJ{guxckV+GP!V2>2z=%|jP?;%Axj=tp_f&Eck zK9x>YM%TDDf~zJ}c{h~heK|5+59Owj7>yRaz)6g_Y}!xw_08)O&{C z%+)=)#*LXiP=!9zHTO~1wG(lWtP?Uv`8d_*<2Ku)_W+ve~I7=E%AK?K*_?72Z z^%wU*3UszNR<6he%h0(p>1QFYvLJp7({-@pjbK@{I@6Lj4~c(3SQeK4R$3b5pVv+h ze}h?SJKTWDETks|@v%mJm9-El%Sp>^4#=x57ApfokIZA>+b?ZS-nBwK~N;eO(8K7_Q@NJz}shE>hGg2W3xV7D8=(xILS zIk7EvKvl|%}c^-;_`yD2y{Ni)^YZf>8_LUdB321onGWYc%~Oy zy!2vSuz}T?P)uX62;)3LD063Lc%1r9!#unACzKZJH3l{!PWuW>X5Gx6!MIi9yxv*> zUDNz!Cf-Qj1YJdV_JdC<(d&cDNK%u$bR>qACDba~$hwoV(wgRZr3JC9CWnL(A!;ag zOD3RHS-yML3d(|JicHN*!Dsqy4K9MNTe9ExP5ph3TV^*5Y@Co5BfNyO6Y|uTEncK_ zm?%jHk_TM#SFQ2}2tznH@f{Nyf7*p{p+Hj=5xU~R4f5dWyAEZwd$)}#=EH5{JViO4 z>z*}Kd0M9BX|WHU7I2=xkUOPao-05gks1+;;foe(BL>Lt=Iku19eZyljY^mg&!EWl zWA6oJxru0o-szM?MT!2ap|>E@LS;r82~0z%a`{s$m(xDv@&}g-IGZ#nDX*QMK(6XY z$n(1MR~1Q$OvYmlPln*ld*mJSL#4|VF`gOf1^8~Cyqe^6N$Wf?1UH-lnd$-64r?Cp zW)RNnb?^_PCiq?71pj^zuDrL{mH0*4ha2m!Bo545B!~mcfhK2;tA9CsZ&2PyvA-rq z>o*q4yuMP7`;DHUEU;YSH{K}1w=QHau@zBhx#zV(_Bhir){5#1%3@l(V(+@q@B)$t zyv4gi^Twc^GCXk?OIM_Iu|ja>E;8`3)_L#-i3RxJt9f8NZ!FS(;x5+d9%N$-ozyY( z8>C3b&@Y@J;3^_V<`q^fw<55ZP>lW~yHDA6g1^hL$zwxZ-72@=U9ySH+6NA$D3N2_?R;{?{Rsd z6Gh>}S@f1);pxcXiL*c(^EOu$`m(C^7lf-$W`P%6Rd?Rm^7z)!B7Man52)5xvn{<<2K29*B4cNWPqB}F)k)L-&8A#oe5k2#CYA^6qb@}7yCH91;m zQLH#u$c=V4<>M(!}7_pD+!ran+MN6lEO`duQr| zR+o-bI!xTg&m<4Hjd%XY8!Fu4;K~5y76hkOgZ}VpwVy-&zru{t#SOYs$`y(Z)sDO( zL(SQ$Lh=Y6;5>rQg`MR~dT5<|7VqIoC}FRD|VdS6k6Af&6y8g;EmDTC_z zuV?myWm>$Qg{PI#B%M6Q`;f;NE)Ni23@^-U9)K2yn$MNKC)2Qi!xDE9{V4B00f@ZY z=zFeolNaDfiz|Zce)*$Ff3epCs`VG?ybXjYc~kbm1qEPw6v?E_{<1kTp3q8Er4!pRp6l%C>@)T zOAK~x7sRkIkggl{o-u-@u~ZRp$_0Ejd}BRq4RH+<;~{=FJx~{<023_;ag7c$$r}{v zIxKbqaD1!Oz?Q=j#g}0+lVhhaJiehTUJIZT%il6s` zY&dVs3Ms{g^CfW9t`6m-Ta{dc5$+zjuB7M$xb%~cqWlgJ#K{B}0aH{8lv>K-cI(%% zQ_4hg$-+-sp&f->>mt1GNgfv(d#EKR(lrtZ*R)c*4B?s7e({pp_hH)3$CzFgv=+fj zgohXJ3ueN?^_!N;g)8(caoF|huId7+A8zhctIJZ3bifV`BsGNQ9bruqqlLDSjjH;a#stR3pGBI6gZJg^T z@=y}t$J6EMyo~bX9Bdb#rZ}*^3!9AQur=OwUEBz3WApUuK#I4HcJpWR^kK%O@TCOT zA<+pi0PnL8CNuBj4CmfQ1EBLhePqeQ3OUO#MI{t3Y2;G94|`hVFV?W?;O|dLh>80- zP4a;Ixz*Sup=UC@;(s1PcxFi#!n8wU#xfi6d(J1 zPY7O|;`+|aS54^QI&QMyhzIs`ImDO>fG+08qCkpwojKf(Mffg7&Wh~n5F$nPc6AiQ zmH?ri^}RCd5FPLGVTv~yUwFDn_UcAoa{K~b8qk|oX<|}6NFFe$+`g_a5t<+)P)uqp zM8Hg{e+9is^{Ai?m6)$GCYvufn&j1a&6QomVptB&et%UxTzjDFMR79}CyRDBffSW* zsbHXMo<+;M>>Z;)lCH*$k^|l}$0bmjV zYb8(+wq~!XNY@#ilA9S)Dv=e_r%1dEF!BR$18lC=Vj)asr!y{Bz;|t~zFGh_)_HTZ z>qF5}k+7~980#eoz`!?L(=-4Qm4G0I!orOE9%Ehkh(It_v@~hAgPbv71+&Fp$2iyP zNQ{T5nY_D9bd3<3!DL$F%1N%SLOkv^i7=~yAzLtB7L#Cc$_**nX0pp>P;`(%(ScK3 zFKdhH8bo=56gCL$AVP4nsjk<|JjTwcu1s+btdHs6ERX{9FMpcrsvs@_nR@HLB+C*a z;M5k$dSD}RP-8`@BjPI5KH@j=A{!G4`9Mo3xb469M;#EEaa z)|+vB^KDmQnDIGKTqa_FyAmwa^&Hb@e|a6#{~aA6n*h^XuUNv#uJ|f9m(;ZkEK?F+ z3zK5S6&86e+15E2*PP=TAymbS=D0eQSWSYZ1<^zC+x1=1$QFi$cU?V;uP0Wq0I&P& zMm(BX5zl|uRS|tv5pR3f)o9icBBXR1set?v?BusISr|&URV5(lHi|9X7RJ6Ql62cl zR{kscs~%53OC`-t82m}U*ny67^o#9qIZwaXy8d7Ei%k?>pkE}cu35}>k$$os>k|E9 z-tIE}VoG*}e$A>VkrUy>0H4sm6l*2jp?nhjVMQ89B;Z>~u@UGvISBrNtDITaHvN6q zcVbv2BRoPmEKG2d7eN03nu_yWbuFZY@j&UVD8E|d7?3n>p6hr3YEX$y)Pd8<qNj{=%mdTDN&t2|XWPMew3JV{*I?^ky zL;IaqRSB!O~35@jFS~Awu07X3~#9dhDYG&Q81xmIM9@yy<@A3!NyArK# z!}4wYDlow86`ewG`UY35^}C|Wwb|%uU@a)R+|!K&-z}qZOUIO{prNzfW_NOB(!xB- z>ndNU0-B82h-+9hNT6kT8+xG15~Tv0583%aYe;3qTIw@hV6GEXB_FR12E|gc+@ZMs zRiU^v=Ofoi!CDREu?FzG0%MH@SwuyWgJ@Yo2HQe2k{qscSHY)0a&^H?6AMb|5%sku z>cE9+xckShYnp;oG%>1ZUcx`AQ8{ebt1>fTaI!^(l~2t=SbmD+(stJ&goah7 z5oJ6(Mp8wEistJp8Ys9a5F9o%XdmyxhHr5SYp7T0sC6~qbpbrA;f;+KAKvA1SXXLg z$c=runy4xYzWSMKjdhEfg;{Hsj$B&H`YA}I4T-i?W@iaC#c5Lj!L;YZ!n)W|Lfo>% zoKm=Ij_VXI^~IVXTqei$H#!7_3)HWp7Y@d71Vrks>D>(u{+(kLcxEoFXDCP9LU_-x zBp|IcxTyIQ$tQY47AM#|;4p`4KSEDrB=VTR`cR9cCHkwfen@bNG^hTgU#KDZIHjlC zRs?55@!6B8oK)y?wM1fc6_4#!;&FWBMt2`;9W@!B^>@!l(N%EiP3~y#^3tG9?kK_9 zRtxX~KAP$NibB!I*9vOEIzRNfaqGkwvgh$bW4SrfBWh?^6=sg$jGC(Klf1BdOqrfh zLz6kIp`lFkg2lvbh2e>xyH;7>1N=rkAw32?qGnwHQdxI)U|;b-^j;NyOid+gh8JoN zS@f71o{{U4H>Ri zfgL3kBRg+GL!`{}u6T>}cfEXQkgb|~QgQk8321!ooInC_HU}=bYSEX}g({yU35;RY zHt*1?eAwnKk`HV%;tClxqS96QfS=oDm%yqT94*mIqS&V@d3;TVQBH2qVOkRbX-hd|UkVrt6;gvPx_veDKts7|*ecZdLX7hc>BdF!cmw z%%+}9n3;Lol@kHF54Az)7o9@t+7@STn^kW`-TZ0Rxs)sxlJnqz1&VXjL={>ZeAkug zXI-x5VP;u39=PJIYe6crtgItvtf(s4_}l8W${H9FTz0hX(idlOUih?{aEwGiAT z1x;~nFPl_bHapNP)YXMbN07S*vQ`5)nYdy>0;Q0|RHur&r-+~+>`W3tan_ksi{PD! zS9xh)33r@eP0<3pfLoMwA43F+btV9cbtb@n)HPs)Mzs-uGgaXfbxmsMu|0Owat5gg zO#4}R|UAg16 zgt~ho>wX|n+F~d_0%wQ2J6Q8U2D6-FAb}Ygvm8=t(NgXSHHwVu<%ux>9u zLYi8^-CWQDQ4PPREzhVKQ^~zvQ&Oj+-3^+S>FA2eZY)@XBei-j1mVS1-HFy9kWToE z!8Z<0jI>6BR1cE`WO9UifC)%r6OieV?kgG)7Vs{PBEssV1xZFhkz9izQ93qz8nYRO zoz>j?t%CqYW{D#~0&CYnh7W?cMU!+pZKS&OkF8!rMY?qdM`53Kk#j}^01qX&qvp%w3?wfeAPH^~Q9EX2B} zAoRP8gjjLHxBI&UYH_qgpGWGA*d3`22n>ys*>9+ER#ZJV3u?UA!z@wyIG|XRLbI|^ z-=)6$2XYiAO1~E7i9M4h$kMIAVadeQh6HyTgz837d3mjcsem)R0AFe3CJ)`WVt{Zl zOof@}fnlzVh9ub$nQ;PnO-#EORxHXOB7p+p5eZCDoAYT?_opV~*L}_08>~|Zt6nk4 zL^V}nwDI^C zBmiO;wc@J64#yp0&7cOr2WkC2^nD-6=lV_$$Vt~*yC(?fl#E2_wN7Y}v_xM;=@p*b z><6FZ3N*mhV6lb%yy^`Fm zt@E_S<=I;Tb3KXlqp%8{o*y^S^Ke6w$*k*%WlL+&kseW1`MBb4CP!7>Kc%$zQ1=}q zAE^7v?(W3`IxHhm)cs2>l9njD8dG<$lVk@Ky?T(qM5leI`_Y~T>P}k_-S*P=n;xPS z|NgL-`vZYo!j<-ldr-W=^j^{}S+oJsjNeh@mNL)%*jVW6zK93oIYHR3ulp8xGLWFD zOs=i-3&-6P7Dj@n=TxP9phqZ;>E|9J2ypx0-`rq;u%0x@tpG0gd)fKFOMbdr}NB*IrYkn#DWp-`{G%Z zSlx_7L9~8G;xJc`|H`Fdag_TVYv~xZ=}9B=Nor9|R5_F$jB>|XtX0%Jb=d-hq4i`9 z064e?fCLpO4j#)jfNis-Mi7|QwXcVJW0Aq5QhceD;HqpRCWj`g&9;0vew>&f}4k~q$yOV%c#+diH%8et- zIV=f4>rQd+7SJ}vs*eD)o7^BOVDD+}x&o3Ipm6}&%LC(aK<$2-QwJ>}LefT{Z^dXM z(3FKsVy#r#eDbOi>r*2PCFU`i0r;#qKLjs(%l&E*#udlUp|_mj-ekS0)}pSZUQ-iQ zC6iv7>0XVjPt`mgpR$2k@#-F8DVk*TGzPDkMeutS-#hSNGi$g(@$Q2Tw(u@~r00Te z*4hTe2M#_M6GE}Ccu<@lUDNnpMpa7#xbt(|y+uHkJXs_TIXKgr1j@6?vfqXr>_b_Z z|DJn^hBlqU9xAsq5F9sGkf2Hu2fpwAxrjDO}(dz>;mcet&($HhcNIyweYWIkL>CdpS_ z4DPegeGeUwQ79f}uNFs3w4=J-!(>+HrUJLqh8oh%2fD^tPZzs?HR+u$Eg@=q8%RcR z=n*&7L<8xh^9xBrmbsrIYq1)tJ+KhB^$Pb0YXC^4Rw5L`&sMnWh@iBrj<2kA-?vr- z#hE&;!)|wNTA0X@&B&s-z>K*W{0S0vY|{&qv}u*wB3SF|QQcWhBJpB1*y2!CHD;PG zD>7u2dh`$+yVgC+L}L5ay5F~^fEt*RE;$)yt*Ry(NNh2e*wJ7*k1yNeiCx{X$n z&akK3D9UtOSC+n&{Z6A$>ek5RlySD0nnAzV8te-C#b!EJ(l0hjBR8HEv$5cF75ySH z4cQvGntrm*bq)Pu9mZPv#oXmO`ju6KJ(jaFWK3j$yeV*>=e?9Md);3Kpe$|yU`OJJ z|8Ym+nXlY2Wp~l)S?o-|h@-+)Iy6n9avrM)b@%6**+2RRM6@M?~I7lI6 zFe9P}54_N{A}**l$X{}O>n8WtCl^i(2^H}8pWW>N-ZEx*%j^{Wr7J(X$&K8NAsWWb3%|PO zh^=5U<0kyLyRXm~k3a6-ss++9Q`W4~O~1LjqW-n;_21k{;;RrpqrNYWI+CA&H~rA0 zY-LYV$S=@nB*R{yi8?`EcAH!aUp(PnC{BgQ*p~jxlkO$r+c24Jf}hGHR90CZxR)+ zLPF?CC7_Vp|LjsP@LFY|0OqKnj)MhrK^hr?x)$QDLib&4;jjr`F6%?pp}8tWAe- z@p$&-;3hyOH4LDRkxhWe`~3;6@R_so-V&PPgF^X*42TD_!}2giRe16x@A63qUsw5?K!_4$LGEev^JKXs zkLaAT6Ex_a+iF2S$q3|;w|EpHV5h_O)YcEZb4fGmw}OV5kjze9n&f@^5U`W=_v~m? zEY>rXKWd1zStp~y(f%$Jys3n2a~Q7!O6TW@Phm0( zY+n06_TD?bs-k%u_M8MTa6(Ojv=j)PKzgAELMI`ichZ5-1r!8?5Cnny zDG^fT2%rrLzag8g{S5#fluwM19y0>y+};|+15gdv+TQxO)CvMn4H(f!-*ucLK61v^wSt3KbGP9JQZ`oJDECw8_zDUF1fwUN(;#Z(d_BhaKS z))XE<*Ok+tE8+y}nph+%X}qT?xtc>ST^2|1v(r*SgNYX`!gZP#M4j{Us-V{0tbwR* zH*1`@OU9&3Q`;dX>JFcc&`(oE5fAMSP1$*R@ivW}4|VLEfkf!M<0+LL^(efDwQi7j zErK3}hijL0w58z%ChQ*=C_V|lH_F;PNW4e8^*9Mv;Zom{@8oEJTOYS>2&}W=cU=lm zsVx}~cr>mdSugKy{}4eZclEi*w-GFb<#`YJo?Sl9VVo!aW` zQ%FJ$SL28&309PBFAYaEXH4!O4S>Z&i*fsuHP%?ZJ#`rAbMd!YzZ@Vnld=qeT9#PD zbU@@obE});kA2KEXn&`~I#$=7eB{#g@x&DA8GU;nOg)<3Z(36x0)NFKRYHc13qwbT z@{Q@YN3L9`5hm@{LtvgyuE%belM!jZaq5IH$!gI2{08d~U2~QCvj**NZ?v}bXdjM3 z4@^mwE*rH+)+hM(nhU;d&^~xGmIOyWZBIS0PdlATh)Hb`^}rl};(`6piY?ZOQXquV z+%Opk`h`GGSn7sbd4Lf&j0OC}Hfvj+Lh4FG4o-=Zx}d6S%d@7^)=t9FEWjUz}~gF0so@c8y2g1qUoJxTRUw!iCdpi zjnHB;n;gbF1Ec?H+m#F>!RL>{TmGc}7?eL^NZc z72g-d*8mSq-r<#ndnyac4AN`2wWSY!U4~JN1D7+kFx;+d1!8JM(Sn8vpBeth=O55P+`n zF>>+%h6m6Yz!5V8FjJbJj#~Ey8E;{sy;kd1=>(*M?68KoL5XG?!L|L7EA>)y8rjEGA>=Pa0xZOK(4&N6B*v8lq=E zupZ|T=*IR#qXD9uE0882=+0-E6V-0~?~2kU1F}KAoe*X+8*F7HDwnCZmRidM5g#Mc ztutjhcn2b&)4@wo`srY66h9r9P)j$xjO#FwbZWb*PHo&)ix9KDl@O)hYWYf~UzrM0 zKPH<*_oMXpYBdf1K^E~}3>MD?)$dvJ@T2x-UMgLMWi|;^B@8!@K`K zu)O$twO`2+?0Xyuhw(cVC?&RDfF)o^XMCyGfPs`Cdg79Gz?D)h8no7}#`@zr77oY) zL|>Fy=ZRCJ&E+S^iS#EiP<*fHi*oDN;=+o=SH%M^;fgg&T0*=sZ9@nP*6}Wybf`BtiNGBBayBjc8QqN4zU^1J-C1_{Km^ z$N?}02>Qv|+yLO|ySsZ!K}G=n*R1P#03FE<3`nL2qd|}fpoAsYtcwkGKS_%%aISptv)_UW;&Z(H9Nq^BTO-JIOo2$pUoL2Q~l z{7~mDZz%^IEfM|p7>eP2{(91%iO(-#qLF<*`ty$Uq`64n|SWzd&=LXwRv7Q3^%*HI$iW-pV0 zW0_8`WQ!4mS*mP|WtydjLk+9g4hc(CFfSsVpu(ymrO#8w#IlK?Ppn=$lVc4g0w~Uh z5%5%0a(r2U<%*vTuMG|nQF=}bM_@7aJ*1)Hd#<9avZM8pE%BZo>QdF_K-KF!QJqIc z-8J>TA3#)e!Z;MmZoO;LpD9a%V}WcdCO1Q!6$~DrxiPQLj@uUQb zb!*!83SyNwK2Y?H0|=^|GW^II@S71;{ zZCgW}6B8!`pvvAijwyS5994Gk*tRWg>er%x+cbdUquL${OSGX)6^E>i_e`YyfS6C zfbi7#0^;>fQHocMFYN5%R)K(P&^cYC8FPSJ(V6GC>PO{3yE+#psqU$ zA2Xcb&v~G~-p=+X{$vXV8)!JIf2Kn4Q_ut~Q+`?>C`%bn>qN@cfRx#!<6X92n##77 z;2~NY6A!y<@Ftoz(N-I6E4=wA8a~vPgt9x^n@bls#efOVK8n}hIP~d2SKV1Vd>sV-ww7GQV=XA3m>7nZpee(H!_K16V(-3IT1=ie%eL zDHXy}7ugq-X!69rsImQulK;LMVA<8pHc601fu@KajdV(};iC~)Ougf%1h%!y0nnqG z8a-@L(rhDu=X==N@IB~6dPimr5==c_2rThr;V)IEY4kxq=e9M0U$bl`6q$q{8*!cH z0MYiTwkDSLy=~Qf#J6QEiW__bVxeyEg#^7D+?b%cL9*2nWK26JEd&&am?nwn6Ajnr$HSgVWP( zCq=)+3O2Bm58P>J4rJK=66;Yo5=yD<*es;b0Yv>KhLcX>S%4O||imHBK~q9IqP zk3feCivm#QaNA4L3evfW|BIHz39(W8sX)&XHR(_TBA+J{U!~(lxB1AU=4y~>T>!C@ ziA%m$&FrV<7~4d_a%HsbWkGbws1z%*LtNB~b|>nsXlLR>TalTCMP;&hh_jumt&g-4 zJO=!Gl>^0WMr7G)38GJux!DYmrTs_}RTdn!-^{kn6U2a|3Jhh49uR$jJ=x@|HzNpC3`jCo)wgHXK%_%>nzt}r%|@kx3k z$w>M?Fp>ghBqft<4rv4F+{8$xnHhj6STdlof6nHLKC5*FfNj)9T^8f$`O178J+CUm zRx%qmF}9M&+fys47J9tOBkX?KXv!3S?ThpD^fP*}M8j?Q;AvZ&DD5EKnb^fXBfFsS z?8-u0bwN7d1@?duEIn5=CI_u3vN=uSd^B!}tw=ftd!yU;XF-X^7|M9Y_LEc&>cFD@ zJ6N2Y=Sai1e*ao(dxLMU3qox&FR(v${++ZOd+7}#5*o}3M4gLm9i;oP0~-DAF2>Ps zuM&UEl$99XpIVrb2|I0M`Hatm>FrA^K6jhz@+v+lmlk67)95bz0DC z8Tp(o!AI;VBT&3kcZh&^Cv1nwB{q1YqQw(^@l|n%+Tg zQ&Uu`72kB=73`b(Z?FwOSJv6qi^UzxXY9{p2`^seAa*zmVC@g9Kp zQ`#~Q6xTM|?udIRoblZKjS9lg-9=b%{MK4k%XLcbL8qo&95`b6v%r5yDBM$SfBCrP*M>;aGhG<*|tfA9R+cr_iVDO4D zq(OK(Rk!b`pQ@ufKCCr_7;}J0q|0(Y^&@zmVc5Kmdb60LlCQ+C*eq%Y!g|7im+88u z{5`D_1`jOaF;u$8mWI+d+Jex*4R|G}{AXj~WrEbp?pKfpQfwp52!a84OU>4l{2C>^ zO|TemhBZH#QbBy$#|a zAMB5gdeix;cGBBVkwP)z zrj^ViwxKBURae`Sl?JDJZdePl6jWtcciO1Ii_nGxY%)5U{S9A3_K26*72283xy zL*o!OCHkx3UYoz@qPUDFo}nrl-i$V5(eh?gBn#WjjLbybz-cDpTOK0*nF)q7pDT-R z`k^uxj)u?1VjHU58R(R0wOBjPCc3*%q3GpJR^OUN$>}dhCR4 znUq4PRDx(4nkIu1jRQ;dleQR98VD-cHxjkIT;)5(5COZ`arQl1njmF*fmOa!%)!!d z5teA=sNX3jTRa=zb%mq0cDzPX4v3y2U76VPlemsej`RiVqz`OWL}4RxTk+(o*z`IG zPi=Z(XT427*_jO*%vcv>LM=TeGOojf(kXI@>Y?bamH%hU!iD3EDupW-q)N9ux2s&y zW3MIWZ0&r6FL|y$hwzlElO9~zJFA|G?)MrK&7Oan)Q!7fW=EB~=v|dh7iBOMSLNJU z6o|HdYFjFXbTM~On`Lj%kilaIHRc-LpImi?$cU$SxJczT5Q}HhztL5k@dd z>`GycPn?x6AU8zGrC?EBuM71;;GEfqG{Beil|?xe7TYF;C7QY_`mk5k2hWgcx`!O6 zFgbAksDBxr&fk9?yP~DIRy7C37149@qAvP{`IL(2Hq-I;mkox!WMoMzeEDCetcOfT z9lv({8V}*FD|i^rdKrJKJbI_$_zyvAuGs3JpRVF?x4fe9ck40W@h=o_cp3Wl6$pOl z-}4yyL;qHUQ@=G3A>G#s?y8qzgRaza_z^F{Gf?FBcm@h`<6)1*O^k;;V6*wtnhGTeCfAAIE6Ndx?6huZs@;ghTv4UnulP!7sg71v#$R>Y=vR@vuJqldTFm z^OH>y=XEuA49fSL=ddpDJ~nm?l>~8R*9!cB@||H75bHw=(sOMT__M8-xRoL>b_&Xe zeCMFsUjwHwyQ|(QjH^J(X13Mmrh#H)O?|Z$el4K0ty2biA>PKGVB+^!CB8CMiOU`; zaf))oZ_z=Y^)O!S5B7QWI=|X(36g&@)<-4Q(5;RCmW_++fZo-DC7M3tUv%2^L05~m zvwM9{tZ#)}E7ygKt&;iZzB%dFBpL|Ebs!oTbl28E6uZj^lyIOcL_jCbHp%*MAUyd$ zPn`AtG8koQ{!^0m!(5=!t*nu|-Lu&RacQ!-ZQuljG@EP@gT=P7V8 z1F*4Re-WqGrhvxrdRrBSkJlGrIq~s&L9#*g3rC&py}%M}JT33|+OPRYpO6tUQLQdA zB@h8yGr|%LCH_TKs|T-I>2sHdi??;EbpvXK&JwSwLqtQeU#r@0`iWJ$G2K*Dt4cSm zV|HcjR}a;?CJX5QDAFuIg-<30py;~xS*Y&Wx&Gu=p%g_3F_GZ3e<{J)yaZQY#}Z7F z1)v1A{h$DJ66}rZz&@5wef#T`sxDa1w0OKulDQBOHPZBM)JQ>4)*BrPv}<45Fmtzb zf7e(!(6lf+eTnH2l?f%N(8um^hhde1`n zf`h6idyKo-rMuoacf^!2y#-_52Bk&VTaz(wO@1W^!%;>PyYa|dV=Kzg`^!rzETn0W~%&ooQW!n zKYNh-laV?c5i6&dPt~8xlJ`lWnxrTIzS3C_1t-}PffgubDPrA}3S!*L9$2w1G)HX{ z?2U;oG(!;ySSzNqxBH9DDK6uw{W}#6rxrNvy%1%G7oC2pNV*kh#Wi!S5QdS?JiP5- zCNH2FgHS{)J`0+HE7TYeE`fytf~X@p_x9o{KrsfVJWNnh0sX(B^Q*Q5ps23)e6vls z{ax*E1{tR#X34JU{+gQXn*NtZvg^;qm+^3QwFJ&M0cpJJ~eIwD!R z>b-F^UA6dP96Fj}55{|tpQqT{il^HnzaI8Z__A!T9`@iW+pv^Y*2_a#qpmercnE)X zcftA=1ux^m;sS!XxWIv5VHX$d#n*I;3tpuEcE+1Z#RaGF>0WU`JpE0OfOORF5XsY5 z=tsyenmqC-`9;$xwDppT22Q2 zs+xrQY)|{!kD}}(Jgnqn*B}k`*#DS@Ix^kfu=aUE01cJMFYM^Oq@m{9G7bDDMNUI) zR!P%PAIz|ClJ0}9SQ_fTKnW&;E^7!vnufaOxf+!$pAEF%7bK~NMkKmA*uGE-fF(4$ z$-yD^R6#=bhuClO?a5(&BaD?r!u_hThzoX2H+DC;O8SUVJ<#i;uk@2*AbNW7xE;#) z-cGaU16*=}{&O89VLNP?zWYqTQ zarO>;TO#nS-XXIeM&9c{{vEH=i2)S()X}WO?Wq9F%{nTJ<$AodlV0#qau(|@%2BT z;@R=`nSxZSCols#BK2Si)umeK$VB_od{feY9c@759NPXpStbW>0}(jM9x6y3U@v5^ z10bu%m`U)CjO1GYb|b5Vr`^n(VxK7uf!$$Y50l2g5-R5*J<-0YSbe#+gip{*14bIx z3$>u4Y4+WMG#?_R$&;vhErG?Fdd=^NMm%nRhKJG#7C)lG(@en}Sr)SaCQZXFI30SP zDD4K7^zaGDG=$-K*()BTld0S}$1T}&Y643%GVm|5G0?9mcKII3$UoE*2c+7T5qAbQ zp;?k%oMV4SDuc!JA;+Z+ji)3v$v7)HAQbW;-MfMX?lU~3` zsrI&pB~*Kx^kQ!`xVALKWG8)F{3*f9i|xyKv^qKUF`$S{*KL^hg=v(HKBkCH9rl50F6O zw*kVX{}ADqYwaNS0M73&R6;X~?dm(mYGQA-d&AYt156CtN1!{1N$c&MXzDJ4L*78F z)_}*+-lw2SZ~fl%1FRGt8Qx8#K#!`8>oBp@|LsCE!oLncJvQ6tg&3=j(sDZfQpLKq z$bSnC?a~RMa@0&i*`QQVq6#9#QntnZv?z@Ql`N83zRf;W%7?{ts_FTHeTX==H_nfM zBQ_oirzhOF-F`rt2Z4kG&NQL7#cv1R`|xa!R_?S4dV9D?}{5mb&!_)(E#mozq zXndkes8msp{=!?lW*i~}u-M*EGY;T-pc!w!WWQTgILmM-nsJ)Pfi>f>hh`k;&7WGB zkV-d1P3q3RafPzMZHx&6@VReq{l3_5D%HxN#lko2{(?{w)w0;x#XgYJRC9V4nPmO@ z$PUv|^DX-Z0e|rwgR!kIL$Gok7;1Fb{wqn0WU&tfH}185zEuFYeGPQbY4=4<-f;8< zZ@7Mw1*dFyLE*6T3Rt2JW(vCZ4s!~exac8IRv*2*#xjP%Icbxl_Hoq`;4jms(X$ zzWbFj7MA4WcBdfxt_j!>u8s%X+>`bsL8y#`lh`tJX;-xV8mVxq)aZ4P%UDMI;oPY{ zZ0g{$C3uJ~1eR#Zj(^dUv}P!341Ur3<@LjExp2>z!JA=q6H9_W?N68R`mSO~BGz2Y-5Ogp=z}`}P`+>LTo~fcsP)fJAd%fHR z&skJc$*36$eS!f3HmmaEsBDCxM?bgkmcD}$(e@s0z+y5MKDZ&u@~>HshaeMsuqM0N zW;E0_roj(IeEKGv6Q6&fzZlq$yN*z;c0X0i4d?b6xSq}J`VJJv8{|lncG|Q zIPlzFx1T=htI?02+l`5(SNTGW>l8a%f}*+?(n}Vev)1r_`dMoTqo3`;cSWn)I_9Gn zuh_exi`Vc*{8Wwd6a+Wo#Yz42_hN_iGjKkTRCWagmZ+jtHZN13Lx+kM2cWmUvRkFi zq;tjjXnL^|7E>GD+z&;3W1qwW(Cwo)joJ?W*4~P5t5c!1W-1h9Ogx(U9h-D$&f-ft z4f;%zp`iwSg6n|>o%!BAMf_E#LAQ7uScAUw(4bEqUW3f|Sl#KU@o~A>sJ~uu>i4H) zbBeQQ3BJ;{{hB=qeR~CKPYiCNnmVUFk^S}BQ@{ViXpb4;D}J^gGFhRZj2re1W{c)~ zH|&?B8H7wl&*-9gDk#xdz`y7Oc@Twl4h*nl-?ASRrG=m=`_f*x&NQZ}vF?53AGMw`I+R3@`@_ zOEi{H`dy~ET9(!0{douIA~bnf+}LqFQ(wC5J@AKpw~zRxj70H(pYuqt{+{fw_kea; z1GtMbCS=nkj!B*0eZUe;BIuXOvs5|NJ4-&ep0PCJ@(ZmklOEU`R2Cb{NEDVrcqEvm zYN>jbd{TL*ZbC8Prm1nAqI2Jp;3-kQf{Fj%)3pys)mvzP#s;=f+&WUkn`L3KB@05M zv+{ECk|N`C<6@&?bE9ID@}sij6B2TwBlGg&qw}(myUBCKAr&=py|wr;aY8EHcLQmK zw0ZbvSrzkA(V;tKjnuD8WT)y)zrQRcWp&nvNLI1O!e5-7k_Y3L$SZv(%$hQJ{p^A! zWD7ds7~ZCo+o*%7&LZCfGpI;zn>^&UK^=bOLP(k9I4K^&G3$NXSi{i%54pnw3>1rc zN{^Bb=vH;dV0QTL*Rv#o{AZ?kjOvlcT_8nlLp341H}s8t)(MG5F-bWsm_ac8K4J5ms&a2iCrliylJQz*H8rn6}EA}yp8n+ zP@M;t4Sh%x?O_5Gk~eKfBO@Fpf#-A&X-#1)gTT{)UV7Zoq8ctYjy8)1=x-QKp{(fh zN2~KpLOu9oSWJ~9HysV`>ag(uIwe_QrX(iv z-q?+q74@t%H{H5)J``S~3CB=Bp2PJ(KQg;Jb_?P@8Hu7FyLlv7KQ^T6ed}}S5A9n` zLx{a$dp$!4x*Pwghhlup2AFU&ZcF1w4|VwXq13@d_?D4<9qk0EZU#^Q zx+xI?OUT&!lQvk&^n)4)(9XV&*U^Li4u2k2rwe=jp)OeNr8@issVnT9lG7WO5OVM{ zCD#B)BHvWk`#VOx(|ngp(j7xYDH9^4zOnKk$6#p!ET(FonStIOO5S* zwb!Z8cSd?Z^>s?V1K&1GhDfPd^noR`n`Fz~33z(s+v@uH!Kfc^`j)i7MI#^VqSM6b z19?@OLTK=!Y6ZBSs+y&6vSW!T7R&I8mM!Jsv6ekPP_JbL1OKy@9hz>YWp57DYuQ0Y zGN)xZk7F%M$;NZ_DUD#DW=D6n5eDkj?BKwMQL_rBYG3w^teLa$!d&`|bgoR*IzJ-G zpSyuxgB>T0d(yECe|F*fCmnfc+XP2d@q7xRTX$RMI0{8^5V?bxfFk`XRRxC>)s4_m zbzC>su}Y8{4g#c5)lZw}$d$rjG1bY2NScr3#+GbakpR5eNuxr? zXJ)&&RTn#UOT~~3dM&L4mJq_k;z4Lekt3dOiz(}l7ENeeEf};{?M~fOYRFV2W{IO2 zzT60!vdkLVloKqowiLFZWBct=$2c)+Lx~_fLjK3*`znK{g^tgg6)GR0w_qpa76?qa zal#U}>q?q12nDZjWJz38sw?|eU~hQdp#6wv9WU_hDeA8cn!df#(VA~c)x`ff#{=mO zY){o>^eTs4vo--1Lk9zX)a_i?<5-zR+}4!u=Q{~ zn2&3$b@=&;i82z!Q^xT~u%`?gtoM}l1~ZStZBUz#O*g1b>P{oZ5=j&$=IOY}<_Yn5 zGc%6orqyQ0ejo8^9XIoMB$%7=9^8x@%=>*4V(E&_xDJb*?%?z`{;(Mh%wHRgS#ul=9`AUZ-QlPrh#yhjz3g}l)&ru{U5+C0D+*`4 zpE^nfp(C#Dr&_Vh`2EzEWu4$|TtIQLLr++uYOCs6vWRP`gD$`1cwee91lKE*5Vg*_ zu!Q>88YuS_#~i*XHGJxiTk6}3HHIMnMUGG&KxdfwW`R2P)stP$AOi2;1In@_8s!jN*rX&2RgscEO=Qr zM6bJRRI(M_{d2$Lkg$&s?vd(Fn-S*Avfa(VvFf&a-O*IQw=giA$7@gxZm}K?ojvG4 z_!b5RgKt1Jh+-8&Ra~Kuqm6*Y#Ov*vAqLSCl+eTI?P{vGmYHul>Il;R$Z#o&tBao2 zn<-Za>{3-3)iAcGo`vjSkjznH-J!hq4;ZR~8G8R(xL(sV^yy*8t74>#L(#Md9tYO6 zdPDV^R%_`0jq`7J1k7h7Z8t1{# zuz$!<1w(a!g-3$jaio&8jr6bR0*xEKKjzpey$p+K+%WIlQ3-u>+_6mDhFPfkPJJF! z=cC>gt;I0uOSv)R8ZRz}BpjHw)v$TSHNeIqq;CfD8|~ zK6b)@EoyxDIP}mQ_W-f|FnU~Ucy;Vu17NzqYTS5!VoXd@bZk_7R(@7)Y)oE!Vq#KK zVsvbLR6;^bWK=?~WyX2OOM=g+VSecR;leuFBY@O%GS^(*~U@l;4`? zjuCSh<=I9z4VCZv!qKF_&CXPLq-EiH@+$X1*WWyPTudK^cGR?V z2p)myUgBt9nKSH1=9@&DlhRG8rm2%1SM*j%fs;yIsnw|@<7yfU;R z(V@ci0d-q6#guxYU@H;G79x>)Q&{5J^#vd7Zt;l!@Tp^Xa7^QIXMcaY;#eiBVCpv9Z}nSvm2sS&0cT zQStFPdFZ^oDA3|+x#U?PBql2-KPxdi8#l^}jZKKjijB+7PRL1!PRz|o%EB4`XRHXY zq{nTzD1>_N9$$5EiO#_x-n-65$;~%JqLEh|HA8Su(J^_^kuh=cQL$0^iP_PK(b1TZ zgsh~5$i!HS5PD_0Z%A|krY<)pHzqbWHaaIh5#Rrg%!^5i&CSbCOvuf$-2S=9A%rAk zMd#!uMn-2P=0?ZHM8#%deU44aj>?UTj?T+TvK(?3JA}{*dW=IQ(^o`>Mpw`!x{6z& z(UP-q2o_ULY;0a^Tw-owY#tt(y!@ERxR`{Z*UkBS2W->#Kz@B(2^dAa#Xxd~Z0+0jXfu?ex+Il1Vn--ZB1)x6$qv0$a#E-b8Ic%mEQKKrDP7?(OA zrAPm973gF<-#Xg6yy6>=X@gE&E(!{%h^g}zQB$;_`>GW5;7>>2|7UIg&)WW}*;k z2jAda8Tkat%Dxs^rJxA!0OBN#H}2o)R=E_1r7IKBjt4ga(Qmk^_}VbEvyr6@y0U(Y z-@=2Kkm7>A_$^s+!6b~MxPV|PrWlF~2yAh|YoyKWf_jwN76m5=1N5olN%D(6Z+w^h zqVHDTBfsc9?Dxqpx*>mx{Gw}s)8rQkP-Yjn2|Bc5$&nf8U~&`uQOXcYy7VQfS5_u? zmD(Gfd)~K__&JWH3Y~$L+D)B!OX;U!WQ`e#LZ9@ngHm=g7qbACcB zY|%P0$+<<8K82uk(Hhp#IbSM=#dJNndg#lKp-P>c{d_P8eo!O^p!BMXs-X_&w}+y( zot!n%EL-(@$lA%7>T?6PNG_{UPyBQ^YS!7gj_-wT4`>8FDj%JI9_6o7j_u+sko-nq zPN?a>Hk=A1q%tT00+IQZ(A6)*I+j6Qozq3B0ceWIB3h_xY1G|WRg~(&8bT2eS#?Gc z?1zc$jUG*R`7YrcKs!`5m8UU{u z4cSOQ$uP~>G1@uE$Ny)54?idL5kgUDrn8CfU0jZyI=82Z^e1RRWYioT{H0b0@y-Zx zP9D9k=DkNZj2lqP$7duq0iQaZP+pd^ejUwLf?5ARk3eg)oCy-_kGOmL>~sB~5!Gr$SZJ;C|0lmk1`>3^t!)bZ>aU}5@LB>{tCeCo~l2$@msJ#?}63t%F^#ey5ST;QF?CL9R0WHwgC!AZPU9g0X z!Us<}2Z>uoqR=_cH+ZAC1 z&c$ZjmCkeKiEj@_ar2!e-3_L%0!`C=3s%;qn^s>FHuhrYJhNaGD|wrEYFdI0)f3vT zyYWR;9}H*-ORJtDkYC8%BKXQe(rnCn+AwQo!RvCANYPOYUlGKY$v=M(gm=h4*~C1? zk$;wwiX!q)4EZOL{4<37Gm!jqiTv{!`Nu~7IfDP0U7+OBBV8;nSV-^}Q{2lb-eQWg znBrSbaV@8KiYboeS|CfQqxwOqqrWJ1HwlT9IyyB_>Zm4D>RJ&>D0ThGuUeEmI#PtZ zf;UH!WO`4LptctN_F8yVl%D%$W%PQZ$S`>ZtU3xM$A6uG4rU5fg(_%Kq4Qa>?kEsi zlCVy!GKz(=uP<@7^d;kk7bvxxu~_-$V&_09dKB(WnK0E@8GnY2BJ8S1D77Q)X|Q^D zxQ1H9|3PBo#>TpaK}d+&uj}k=ydSu3eixMXjI*~m8n7Ua7)1`^qR_3>Rv}a^LO0Bh zdX%Ug-fG;XBoag!$?w#$Y+33|@%7p8mVm-mzFNm}ZH04)ulVFBy73HB3ugZ7@CqeA zv#Bn+vDz72dzLC7@(a`ACAA>mmWgTEC^@yDStU&^IK9LC~&?Xw9?FMMxR2m|maiGa4Oy)!Cf~pqULqUvp+kIS_yj zB?h2}dRz}WiO3UqkB1|h=7iJ4DGw>96y%Je2`teDSJCfqY^xqQ;nqR&Y2cvs6Tu8( z4QxVV?zMZJ_>T8ZSWdoOzwyIaEv4PClnQX?Xf%624i~xhS0`KvN9li$3zMuy0O<#C zeC7$T=Abi7I;#ipCk-)k^d@-|RJdx@V<>c=vl?1-qp&)UMJ4mH9*Ky_Y;w@qiEmHI zq`lrY0+0?lqj&%^&f%H}+j)wRl8TRtXbv~OG1Nyl(~j6Q*eDNJG6w}&etN_CtsvGL z1Hv{9D9!^2&jRFiza4U0 zoVk2^oK|Fn)W@LdH}5!S@=bNJ>dr{#$Rfk4$STW=ta^CB5?KXWe5}rMqBsM{3Ji{% zV9%&Sny9XjbqJE&X>uOw(IIxMj93a=!eE;l4eUrySVV6F@{}mkB}#TV*Gv1MNa?x! z9#GeyX zg7}R*6f_Z@1~l6PXcQ9(KtpCO8fYyWg}!*#Nv~ni7yMmu-a64|EU^dm4Vd)ESkN2? zQeErN*V8nW=iityJXV8`y;|#irzkd*LFJn4B8uFiy3 zdYRC;4wFdZz%}fu#^n$2(#k{$CZ54FVH%-Kos?b9)R2ClL}OUNyOAk@_eNV$Nt41x zB7R?wrP*JcqzSU*XG=;oC=8t(^Kc!NBY|vgN&e6|O%Rs=X}-UzF9%PBIYlqbys`X! zHe+(>3)FDqI)&d?F*P7x0OjW`ji2+km*PDUFAN=E4B>nFa`FI6*~iY!RmF2-shb8F z*)-KX$W-_2SoOt!RB%y}czP`TR!ZH&1SNaEujTYVfbkLa;Vw|_C4?!1OELg-^_BsE zM$fW2DD3ZMq!1Z-3Ibo(KXlHizAu)9aTrXoC*8o_XBa?MH))Nlfu;R7&Q_u&^c!co zi1%h@eCLGk(p8D1R+1mbH^Mz&I`GZEJKs5*S0ZWcZaY10{%LS^J>WK6ch2(_@Rx;d zJK@zo4WyL{!e%)o2SELC>`OJ3@#n0f->Cy~tlc*f{a<>~xA&S6z)1G@71=YtWvr)` z8NWKm3DRsLdS#^Xgc-i^jx$bL086R6ojne%x#Milx2Jbr@7{5ClU5r6tpDA4k_RCE zIam{!k|hgL=#}O^e>k5Kq=T?C8vfq;(-|(k1B+?+dvF{Je>ngh4gKX|^Pr(AEYb8+ zR`Aq;Fq_)vL@hd^npKttfoy6Tqr(h3krfirY-&Gh2*B+u4Z$b_1oHEjna|Fb{)DVk ziO^JMLM9koDv>|O(JiW`8s>2Zm=)4UsxvV#lR6xu@F6wJ6PN`%YaTe;R2G|NvcQnc zu%OF4Pbe*7!D-IKIM$`1B$gNed(#>8bQSi%D}!Vg8%!zErsfPHArsG&hU>tT^5vth z9)dVUMxad41rP!Kj?&Ofy`86JKJ=s#WUO>*f-CMx_SHYEt%OYd9qILqY~_KM={ zD87a)@PI3L#cWu;hZU*&)MRTk_tzcW`2GSJ*Uc<9nV|5@LPLg}Ixd_Yxq23h-IVdI zmZfpW{P^rtv#X#11l9%6GsLAz3=U;&2_% z+r^K$CJN$U9bXv`0gZ(^q4QN;0U)D597+yy1y^}kuDr)XsqYeh3D*1@zu7cWdYVvS zq7fg;8Zi&Hp*vYe8@fJ`R>ER!3BMi|)0t~!7HS{t>SzE!7t^ok0sIMOOeKqv3(vb-TrbcYn3yWZ5-Qlq8oOF@c(sA;T1ctUL(x~htJCy`Kx6BHe2 z?Rv_f>9f{FDN-uLAh-Xujcd0-`%@9FZqhh?dml^#Iv?xX&;a6KTUUQ+h8_Y_G_;-T zalXBd`x{2wlVy7dl!rF{_!qr~@*D42Xl}Mm+5BR410l#{MqG>QG|z&9qFvj?Lo&SL zFb_a@Iw5Y!)=!9QvkjK4#-uZcX)84NlBIK)7kRdBOwO;2&c?Y4 z#k)G*euGFTZ&y5cyZ8@zGcn7!f5DbZNiJVO3Whb>)?h3wW&o(T zgR2SOUZ+mge-7&31zU#+K)w;c&aSR5Jb;cm zCAAnw9Z~kWutZZ@oTB#be!3$=6Y@Nl!|V47LWGHaFT-^}zazW5x{I&K@QQxF2;r#? ztj^Kv_p%&5;4>zas&-T3Iz_cZL`)CZMxZQxs$=P6NRm#s&oP$dZ3O>``0FC-lL$*x zKi6DeH2u}B{+8H&uEoCMFF7>U2l)iGg+dEiOK#@yy9?KI*zUqb(vyC7;T%Tj5lx;Y z^eS3iVSYh_6>e%6&{zWjHOuA4yh*P4n1|vzHs+uv;1Dvl1MCaGOHOaDOkSkQMtRL;#B%qnyUBM`G(V<|PkKAaR zCv~}k1)WcKsb3xyJLa+gwM8z~M-a({(uVvNPa`4|I0)V|4;qa^fjSC^?im}avSn4K z>vjCyG}xam_}`==0yKF+i6U~;q#gJx){XEZzPEHkeu#8uV&(_fuqlE6bGfcmK|CuX zQ0)9PL_qEQu!md^Fu8IOvat}Tt(&-dv~oP)hNisvpN^ZmkQkkX|HgB3eS&M5Ak;x6 zBVFoePo$c8KpK>pdmhZ-&o8FCz}J5N1tTGo<)wD_!d_K+kqn_PzKiHH^iFyDWomm& z5^s0CrnqJb!caoF$6H>_gsifz3}W!u_PR`SeIW?r2^`Ecsev5#09iM~g_Bc0NkBYO zO=@swR5*S|FFjBHnzucEAm!oapa5B%4@-tL&E-`q;GCqUwRGE(BZ(#CUn^svM|J5`=cAi%F zu8k`kU#B^=0Bg3wjBmasNWF>)xQ?k9VFqn}+BFUD6;p79mqrkr^5U1T=S9f>znabO z>Sl8qu2Qbjd9G3+S-K(W%eVpu1Br`WIaOXhU9EGP; zP~OuVW}_hP@=(exx*;HYfz|XQ@Xx1oCCSHyEU#1g&YiBF_-m2l!HAQy1N7{Qz#z0{ zUS1^>GN-6PHCRsgFS;i2fVyzML>2|~m2{`uvh5|;JAxDik?P#!IwM#TM}$Ib zn!~`q=(>2b{60PVRo9si<3mrS=~eb|mU*w?O@l#@6nYMx4oW<`*^UYa?9C4G-sola zh`rasqQ?bJfI43H$h<;q>_p)HUe}k>96$+s{;nzNJ|j>prrbaPq>+zK?`M+UGxzK|CNMP+ag{h=96aG+yt5SC8jiFk~8ZPm}(b)a`x4 zEH=3~UO#bMQ0Z3EjO<7+4n#k^=~^V-9&f%bP~OnrVDR|1$j@)N{uadvL}Xr;1~P*M~vNI4#8$6>U8tS$OV!ap=ZbZD;_ zp`}S3nmAnLf;11pYD^TtV#)+=h^}ue%H|>P$1}sxfL{w+OB?hM;=BoH$CAU1c>vl) z#4%TU=~W|uW5--p0|2_~dc+7I`Gjje51M#wNR z?Mt{0n703WuFE)Yv5Y`5?cX5+YT92-(3|$92@h@B6?o3y)nql?DH&aVG?}Qk@z9A1 z1B#8iK5*?6J5Dq=?|ZUZjJy&hyI_qkHGSOmxfZTYQsa#P%jAk7HG0WGEwnYT-khk zotJ1Mj|`LoiyOkPV$g;Vr*2T&8iCR);H|%M4fJVOfR8%-0_vk3@1^*nbM23|l42n? z8UaS3#$UU7Nl{z{z7-OnO>L2KHxUKw^Wm*PTQHXRE7uJyy}xmt5Tucy1wGaghZdmm z-?`qDhH^E0KT&c&1HJb{Zajm7YK1yZek8^Wfh8K9_!l*u1QhlB3)*KEXy&Qs3iw!R z1)wwq)=fsBzgt__376Udrj z`#PY=Hme^+JMQgmj@sRIg`m*XeL-v%xpK#~P3$_Uf@veq18aKEqe%qU5;2_u8_yk6 zRXA?$5Lyy;aoRIsZ3A#wt6uxB~gny7GdF- z8NmWo@N`EfvZMQyxK)N%Y+y5lr|R;|B)ttRnDo%<($qUgg}(ewg~rzz9bcy)T{>%c zm+=MmbROJyCHaXzV4?dt;8#I3H@QL{zHiBJ$zKH_*FA-=*!WG~zuB*DDM75?zIoSZ zD325Jlo$iFg?%j35XWHg z-p#ZcZmW;jhxY4b30AHLL>~@z548MQ&D}+?#0I)w5X2D_hp{dFq=Iv{Bt}nWXEMQ) z^(q)N*}$Ia5OKgk_~$z~XVg(3@m58%(j6AiWz=(D5~b&0@4C7Fe=1r)AzfWr8oIv~ zq~{^5wz_%|7Lx!#e15VeGsGPtpf;g_emXD`4>>~JR_SdBM&qGVVeTg|EWN!5X5)KC zWD&m2qP%)d+^>kz1&E(gJ8sRYXsHYq)3qROh=lO=4S5JH1iPt+5HC!&q&0Wr6MD}+ z=-N)00t84Ua$zzGYU!S10AOwD?k&|Z0vOxMjd%c|wR?or)Tr&-t=+Bowz`n8N+q`L zfS!&jkBJb`hi%+6XFhdy(>5Ir7yD1)?Ya*k#3YjGiR+kM)2Y8*Tlb$nVxEjZ@#5JK z0rlc(Q}ia(bIL<|@leQ{MjHM_gR`cU)Q1P2Ysb}7^lQhJDhJB^e=pYkx%k=?bH~(L zmhsCB6g#Go@$PcgL^tP_!EwzZqEB%6{0qm2To;bq-a6ysh~Tm1@}F);P;2uf(qvH z0hJ7$21>H_^2lLx{9SLD@{_y(cMx!(R44D)% zqlZ z8)ByKB4$iOeaE{eNHbuKM))#VoUsgl`(YX?nBZ=~x7PxR%?9oJPjnwQXitNJy$0<+ zE^vR&x7X;g8??`ztfyZml@E-h;w4r>wkhu8X7`Uvu3HmWmgXNJE%X%ZJ5ZweZ~TkS zwHMK$!lD4nsz%!e3esKBRDVo$Nv0Q~W7iT{mgY*+!RTsPn*CuhjU8#0X55-(Y39JR zEX|D}7|{tI+)&Qa%z@A>&9SgG>jY08Pz!i11*sakd%>$;> ziNf&lOSu6s-Mqs|n)7f<=IAJ#k2yXvHa06dF)1%9CN?`hDK;)TAwMB1Mo!W^9m|0v zX$C>`4>HzqkSX=6Ie_-B47yinr)iq!Fxo+yW^KLtjTx|En&yhQVQHH4rn5B7Q!(Xo znr6%&pQd^GbeaS!a5<@vLsCT-e?S?wq9&mgcBV_xtTCmCj?+4lCBJBd`XTv6z8ut>(e}>i-OIA}Al;ApQ1_Yt2M?!szy~MrSS84#7uoPtLHoDWK zCa{=#x+vuCBs4(Nko$2Sh`oD-;aqt&>i{Veme3{m@EORy)$Qcl(&@bQo2A*(<9Yxe zj1&d0p4Xg*DA`^bj=H{8+Cf^Phwvw4V9w~PqAsY`^X@L_h3)R@JOcW?nT>i_5tCPF zDNW(q;sfac(rZR-Y04LlZQaPonQAzR(U(Aki9$Jnj6yW^n+DX>00=&-YN*WF9#jKcQ0`vYs~WzalhzbhAZp^=Jzk)W+# zs=7ad7waw2{o*T41pI<(pIf_$Ih+t6I~M(h$q-zJM?t=EjWQ3o%Y<1BTv_VRfZ%kg zKjv}$hR=}4*>(kYbOjj)6wsp{le(J+-F(UpVJFYa3y>Jy0{?lQm;P_y?a!k;FBS++ zd3n);m*@W>FCoUfCduv-XJX#v`IJp^?Ldj92{>p;52$bHV{=dP zk-CB=hT}8+A)V5<_rWxvLnX87^AI|}HJ3ReIB0Bj7j@cQQ*_4A~^;ztzFOY6c+31ORUE?}GRI}3J2I#|urLRi$W&!1;3KIrP zC}Z_zF+Jqk(h-f(w-xH4DvL{d@o04-Sm7xGHvfLUxU_~K_M1g4Ue39mxi+CHm@`%x zfYJ+ljqnXoNo9Jj6MzS5d+OA`}61KTQi z{g;7~__gwvrG8Agg+RLaY*p;q=G@o(e<{mXxNTy{#r!=ds|g5Qn1&Q|3lV zyCD{ZL>guBtn=~jIs>VZxD-X6Ugc}Ct|(0wBsauN$!@t4lYI&n)6EFn5M_K;wH^;a z1^5MQOsR9vLQ9`3?Z&sITK2P1+oxBRcH!Gnybp}p&Rbm?&bOshm;bh@qf~1)P--e{ z!k!}R3^e1}(t-G+1e^SM1Ufz4U?4WSqBgcFWGg9MA;s&v7NXIPwWTekXjq}^X@^Nq zA;vvn=4dSRiaOO6mT&4Wj+w0f6F3*<^5-(9OcsD|WIH5rB z2VievvGE6B+h+3zU|A{KTUCQoOq6JwR)Id8CYkH%pdH&vPe@gs046{!t_Cb2)`?#* z)!SY=nQw|$j^m^-gQk6Vly>5q(uw!ru%{xV7=3%O$`dT%5l4nj>p%Q=T7Lm0Kh-e+ z5RLl*}>fkIv^Z6*zdHM)*3{kx8@sOCm9_$HW$}v_J&Gc zF8x{DB*QD_wgJLZb1TFjS;4Q_z_HF;By24OPa{oCiY_@!>RP>KW^Tux(3_i6C0jAK zjNPSq;ulX)b2BuN+f23>86;lqw%=2FR=iGm^@-*gKEIDlT$yRJXHUD{cYo&_z~UDst#vfZI&u!j1cZLoy$fZL$- zKX->nTw|KkVRh4SVbbe{5NTnfqj?A&7n00HkykG0OdWNES}<$+3s z6|sjj1(p!474zmG>HX3cd|SLA2t!%#m$s1>LIAodzyLqIU)q`npjzH4{c4z00s)jB zoTo|)cmSPhDG44SJM8BC+owyH4B0+`{RRB{P!XLJBRGxggquXDXeJQ;Q ziKD)u6qX#?=}ePwffB3NK{NVZt%EW@pHrO&r3-^AdQf2wn(|%Q6uv2SrBC18-CO#_ zpgmnZaa8G~9c3Ug`SkaPvgM*wbuLgd%uzTRm3FnYR2vqPp%tp4=dP8t=i6&BRJgvq z4@Qg%Lq~`55R{u+cdN9L;`I=?hm4=g7V_C z>kLAMN!&9G*MYbv_*U8H;uA8s;!b8lc(%-#t9K{E=JLx76IzKYX=+@DX{3k#-AMK~ zkjKVz)$!t7eHgTZaiQI$LSeBb3qtWXY9q6A@?&!G*IHxav*QvY6Qg7DqjPfNqhq47 zV{sCcCeJOexRvXz#gB=$x%x|4+Dy_{9X@qiUxrKZPu@<1x$N&)Ipk>IX-2<}I9_?7rEeZihgRP(PgKO|KuZ;ZZJuxFt9 zpMmJy&b1Q0x{!RQ%;QzOCXOL8N#avfw{VC#cG6oNP>q#)!qBZnd+MX~|CQarPbDxG zkG#4X7A23VhQ+mL&qzW`9n`t-#pfLPo@-WM0^=((0W|v8vTop&$rvVSz5eGV#YAW4 z=SF2k<>BuZM`vYWOTb?gPRPxVip)yN$EUMI|0`@o^dEJ-Q#J^s7}DfAO=b-*h5jy+ z9~ThqM}OTZOA$klqvYSqnu&_SkHnPzH-(?5ijr!VH&21yy~~N|6(%Nd!*FjgQz@$L zo6wLy%Q8X2293$5tZ)<*%V0f0Ye3#IeW&hwy0m7wF}C zWrG3@)=#O+kpJIUa&mHLl=*jAnmFhfI!Fo?alWV*=Ra4?nW{XgYMO*#T5epAggy1= z>D_VNdCH`sc$I~h4g{i4OZId?2dkG?L2pUr)5Vy1`g@$3yw}P^MKVm-g?#YEfez^V zwG2Z;ChvkT4@9VCEyR?0WZLt%->G5UebxpgcxGu$Tli{t)^oimY9J6ooFCTb)NRBd~m!v|A4=7S2OWg34q0wj@>w(WJ9S z)g6r>`8$q(2bB+$PC%^mwXGYJ0QMbq%cDf;BT&h%_-S3eE_VeHFolIB8cKAzez_JF z(fpM+={Rf8$F7s^OyZ&+aUF<@IyEdGB0f5wg;h#iRB1kdr*YBkdHT5MN318&hZ~Bs zj?oD}$b?wBA7oP3IhZlx83;ws*IQmYOcEv=PXxE?UUs2hL(03MUmv^NTW=7}}9)!;12wfL(-VbeWQl5l{e_P&M zT4_pbu?Mj;39$|RS`=_!C4dxqrFliua+_o!{i#t{lcU2VCoFNhuB3_c@fvB8Pkp{E zT^^m+xAnmVXkp%)jrhhH9m_{ZU+WtS^U+%^%6sxnbxVQ^|5W#XYRN`IOLAIufx0B1 z7xAks00XDnY4F8$K==E$F8@MoBEu`X9}3~A?n?{wy6?N-KkNSa2s4#RU7*+fzKm=| z_uDMJ>4#Rg!#b57hz%fzBN!S$<^p|`-d84EnPok+DFl{ig2cb*66R-hm&em)OFZaa z#nU~O&^>&pEeY+fh3S6Pl2=w9_7>Hggd-4{IQ{)nf04WWB!(E22_u_31Wnkn5s zc+maP0)wd&irAY8TU?3dp9xaX(|Q{Yh9zV=^ucYI5p#{H5l8A9`;s=yin-R*io5As z$X?9r8p{2Ve`TDjP?MI!>uHNOZOW(l0X`FKvlxTP@<$cQg3eqp2l4TAV(yzR~^gmckcHX3LvK6}6(9MvE4jZyH6&?t{J)`Z2=0IogK$@+g!y4~xC3whfzdHKL>JFzv3PgK{ zmah~~Ei_-#CCZ(?%i!^vZp<}X2b4Z)Z6ILpQE}vTNS3~T#sDcHx zlGa%R%zV0hS#@y~1vHlT616i<-a;(l#3PqT@FM0S6y1jcqESHwj$y0LF;HJuLdnw> zf~zp!W(&b*nM^baFF3y#HkHFZ_S(y?1<6MfX4M9Uz2cNk|9*0;weQge^&Smzp3&kP^CuwrN6W0YL>R zp(q_f%YbyGBTbPg9lO#+1Vxiwb~g|@b`a!uX6EkRxh2W-JfH7hzn8vV>dDzV?>Tek z%$YOYYi86qxb{x<;gIwZbg8I=e>v*7%G4oEp%w1iR&>D^Jt@b$+KZQ=Jz{CWynOZ- zrB*`$(3%cIZxq4PaFa=&9?i>2D{namv7MB&ApRTQV2&a-K7GI2VNI$e|?Pe2#H-aK8DqFbhwAoL8xIc4OqMJqw@ z*`hh}1X5gDsFk4qIhYBP<)Da{R*RbCmB1>8=SXV76VG#lX?lZv5w$R1Z+v;5V)?KVB*-722@mp0c#$lhd*^oS`gB#0+`dSB9wN6=TemGI~Vx z$_!PY$D|e~29~usR}IJi2=fBfieRp3icDU9USQG;RUjtH?dgnoxoKw<$#Wz%0!2ga zqvc#Xxl1MXcA41t%b#H`@2eId^2stqKBf|R`~OkoFUk@5o=W7~a*=Z!AaZ~iM6NPZ z(gr@sX<0znaINTBoizJ+`~N8MIbPy=c#X3tN%p`1yqW|#LZIP0J&=o=^dKRaw#P`S zU#f;9-C!ivD45LXq9wi|wy3#Mc>PR`{+l-nHj}|~IK}u~FIrfZE8l&+=q=qeB8Mju zpssu}$B~c=@{Emf;$;$^pCJzzEe3*A|h z?|-DJZa>eaJ8K}p#5+Y3Z^%Gye5cCd9cwk3ZF&zK&O7{O<-%>K_>rLdofkpcef5NAQwIYdvKRJbDd>r@ zeXFZC(FMN6SqhDDf1ib8eTri=vY^}5qO}sx{c5rt6fUg3sBylWECS^@oKuMMEv8GE z-nT8#b8mTF5M9pcNCYXv2epUaI3JW(t@t>yiRnE)XfU6i`k=0FDSc4;w=^QqG9;#< zTN%GS@Moo&zItyDv`A5q`Me;Cb*VY>g7m6h{4v_5D9C0$JuOJSsvvXT`j4Gy1-6*v zy`)s_MlZajbfagP{4B)y6ps!nZikbiAUe7(6Pk;Tkn1g_i#sa{?} zVoj!YnWT=Scbf`tD+LXH+vD$H75P(qeD*ybwj%YO1Eg&Rzj|$rkL6I~x0TWczb&7> z;bkjV+Q*?9(oVOn(U7*kN7_P=772KS34|O|rjR35LiYb(griNaNpPXo0GGXU}s-) zVq!+3)nu_{n@kx=#tdVoIU_5nF!f$RZska8dU{5dIV&l{Vznij^vSlw#O!oak`dAv zGt34o%*AyIa|h4bCPZ4Z^w!MmOsfG(lxWDvu$c_m+1aLaLwZtTy4hR^4>nHkn(n;9B z&c8P|7!Ph&91Yu$tqEr1@bN8P9TYQVO7p0g%uH*#A;Xqz$}~bHSizcX7Gt6{Guf7G z(`T3pQ+LlJ_E-LXX6zWas8(VAE3@Vb(<-PhLkwivCGEu_-FtTE*lkD!)~fir0_9m_ z1~tc@70(Qfte{l*WRpd4IPJ^jRiaE*Q#R;5D>D&_pKjH|PHl@Z-JE2~$jmfZ%(lV{ z{-gnBXC=aZ)-1ivoDH>XfdNORKG|T88xYbW0|* zKV!1lmJYX_8MCvKiIzM~ucB;e(~HtqkS%uP&TB!NT_n_9k~Jwk!Z>y1gUz-Y|o4K+faon%Z(GTWe# z8Q`11cVuK5fdkfJHDw;0i;sf?DL>Op*6J$Cl$t0w5FKfHE%CYI@72TqIE(!vZO~SX zN&0MkMy5H@2={~8()CueAtO24WYZ^^3!$w*nJnf^L$)y~+hWQ}Of+0t+|%sJudb|Qd9%wX-%>N>Ust3yPqT|Czf?H?%FKqe)kTtB;I<5l*^-@MOw6`g zES7BeUs94aJIk76%4XIY4h}Ls8|u`U1#L4U*=otifDQm!qSa!6r$Ot^3Kjdj>%z#ROt}8t=OEklDy(QgZutK+GhMO88WPnK* zV{*35mYA7g$g<+pdb2#ewIM6hq=zXPXpi8Apl>2x!)7poWk5A%V@I_WwF*!8%!BT& z{H$p!GelIBbE6f|$O7&05E_^b2}#LZ6EmBP8G7iwEg4Y2BqN+f$j(SK7{JD?hU`pB z;rB5U6Ft78Fw!oLjPG+OjfCCTk}7GC4Ub0}Hhww4vc-MEP0cwB^M;qsq@XUC;Gs z8P@bfgDpELSr2_xk|~|Ul9nu6hTdjOG$+~$qc@Yt!~}7zHQ53U9b#OV2!zs;=AV>g z(q~!Brovvr?&Crvu~+E2l5Oef`a}r0Y?)RF&&-+0nPAw4bQX1`1<%?gM3kQ^j)o91 zyxdH2qam!6MSLj5ceg zHB)c3CPMUKu|aPP0j@O}Tw0=`P-qW*ZA5lPR%TL`0nU^q=^?~7K{x`%fLM~H97 z-hqb2;>HScWpQIh`I%xG)qCQ`8aRAgaY*xI6W6@JXY0*IOQz8Tejo$lo^(*AA=6@p zZW;zKV!%T z9rOPV-u@lD@k7Rc2XCHP{|bgV|34nQ4Z*d(e>(_SXVYCj+yf@kf$vwfR`uwP=f*AV zSy9^O=sin&MV0W_Sm)yM@1pA7nB7`6x|Mx(sPi432n!|Nk3tHgZLx*B;T8E>7sMj0V9`B4r{h`>04mI*Af&*U*!musy zUVW4`9ZzXzH~CD29b*e3aL*d|qN?^Fh;?4Uf%9&KP1_Hbt4~?pIEQ32H-}))&FKZ# zCC$z0PdNl^ZcY|#C7zo@K<4I<s8S~oik^#m zjZpN&#p|;Jfu!3O-yqD%Gx79U9}lH3W)RK6Lh4TMiy85$_A|a{0jpc?fsCC0{eg@n zUG43H=aQW18Zez*s~bvz3nS?r+GHLgu81W`v~;eY+TsKzEPfv>=X(IShhm#c^8Av zo8DcBANRHE(e2qdp`YEPyUS-l*2Zf}2m$Qc#+$R*1KHQPPo+{|a%muL*WVs5RKlbB z+l{&^b0k&MoueFNAcGXb7G3>vAZswlI{yLWmoM0#6%5$_Mf-C) zQ#p`946?<40BLy1en;1}9IRl5)v0_ea%Uk|ccSKHbw`e@t~jxz3(B5@_YSl_uN%ha zO1If&(oD>FXwNPF^}U7=!X%J^(dX11gY1(~-W)t=Fx;g*gGZwq;m!=UFT#&{+x^ho z+3X6)8FSc?QrWk}?6?{ZWw}ii%ljq=t1z0vJwxpy1>G+03wEHjb2?c52RxhZr`sjw zE=!=uy*A5zTlu*wv@MD(QxMtN+kodt!UILNfIJ@#UPSeRjFT6ev?s1s8#3YS{3rAv z@`Eh<8r=h)tw`BeBPFdu!z=bHl`78_uOU7Aqdh@aZ7$dR=nH&%hS?kGe0Vm!0I?p= zp&#ZAw~x^HFkbaxL5{t(;=_Lmqw&)m`$%0o<=3ziWbAi`QaKxG%8G;LGB5CyE4id* zJa(l0YNeMwW!vy&hsy92=%J>%p?n6!GK4{x7I6^&11;h>olNRUg0{-FchePUB~X;K87t|F<(Cv(XjtL4u~1yyM@mrP04v-9{s&sPZ+H$Z z+=02UCTMS~lYdJDK9@bQ3XXi;9)N`mLBwKGSMEV zduASIdmfQ?Otc&13FsA>^di_`tpsmR0`Dd(1Ke=%g1^?Mi{G?o%0H#9D{3qp@)MDta*W9wA=JG%aSwxk`$N|o(FFz4dbv_3`H!=S@kM73iZq2?06W8`| z@4Zrdxw*u2A9fkP*%q;a$TkFzH7#k1g~fLMNVx&TVKS2=GdrWEiFwZym+fUtFA$x*gVRZ2+Sm7mcFII22@Lf-mJ&% z-m|x>1V7`Ad+pETeH-lq@V#yJTDa*Fdm!$xZBtNv!>fLN8o*JFlM_rhcenkCpEtKe ze0;6FBVN0}?uU;owfAn6WK1v`k`t0m2_{qXDEgNG{*nz) zi|dDbuC~|uPt0z^u1y2*iF|uMJbaBk=6|!eZU3>I&0A+5Br~z~yEgSFCT7NY>+N0t zTNC?py?vnYuNKzZd*T{~g*r5tdQx^k>Uk}D65l5(!=4&~EBk-w#G?Nj92fn2h{ynC6d1~ZVDG0fLE7s2<| z?1&7{;rjM7?{k63zCZICpp9Z2;W^5`j*lZ0hpAS3J9YY;K+^;Emn)$|ia?~02cUt- zyYrRD!d8ogkX=krhR7rwsUS9VzBjywiL5O~vh$c=3(iytYQjR03 zsnGAR-M_N#5%(je4}_rw8~{DA{AfNte%!uH{w=+jErkD;hNSQ#`ENafT>jMlyZl@70$}08&+I;eZXln6&OY}1!hQrn z7S+Fm2>_W)w5((K1fDFaeg(r$*|&6z*6obFscxoLf|9T7DH;j%f6T9fU-%lpR%oTN zf2|Zr5#^V%=EYYv9iGJU9I5hwq63cm5Wd3r%ywo`8{r^+u*KdA>tC8)J3*_5_+6ca zXM7iR7SewqrPmzeJyfS>=jz`*ZJ(_Bo-ekf!y=wdmHzz#eBq2eQl5YsO@5WPJLvB7 z38>LP0x~e>MygNLl6XoY>{--KsElprAVk(u!c%op_5$F&bM}XV5JFP27kJ~mzOQ>F z@tRV3T`<)@=)9#J+%!Tml|-|TE!i*q)d0L1&%E~7X& zpzwqGg(;Wql?B~wlC8(JQDd075U;;t|3o)a_6vE=M$%vd4ehhVg502km9gKC_HC6m zFXU$#cgWDleS=#U;sIA-re`bv3tYGphd;gwlW2!|HWdsKboj|WT%Lf=Y@N~i_QjuJ zf=LEW+INUlh&Ztjn-;QZ#q}Htr%C$A(V!yxRzdeG_XV5bzPAt$w%hya?(x6SrdDhR zr&MK;QoE2~lEdCXk$_B|)mDC62|)3ll*w`Oj}@h8D3;<@`K6$b9I4CBTL^o`sHEsklU5#L7wHH8ppxZ&?VfrO1rvx+uk3Z+vL7rc6D?SUT_yyHIB-D zk>}G)EXl{^=cA~3k94w{r>hDh@7oXP+so|q83 zMD%zOowDR!XOyhcqLG287a{#2(k)i5;Y*2IYb0i!;jUj{cDMdwt|@x^Hr(O{Td$(s zTK&beTjRQ!6b(?1M5JFsmU1L&uaTHd!M6ItzTFo+w^*8jDtf><>Z;I zk@!F9+eUl)Hu_lD>r^ypnsGeQUK!JjW8pW}xzXreK#tCpQN9S^>E0Id0JM9XxLDb} zjfHZN8&y2feFfcHSwZ-tstzRR3iIO+8Vk?KT@gx zm&Nj{DzqClz4xbrKxw_VM6&r_dRsxOd}VNC0ohmqJhzBe4|eqQMSb&?m)1y)eT%5; zUMwwKTH^?F9Q8$6wA`voYovsqsuI?Yb(nn71e%b)wMI&F&6`Fx&_+G-mABSd^5uhU zV!{4gfX2qy+KMe~li;X}bel*`c>*$Oj5~P_>2!rncz-oVr2JEA;zyL9qD}euhQZNQ z{;k4rtB5yt@^Z0fD=!-zuT;?$t5C1z<5d<%Q{7em7aEE^;5kItQ1Z=$^c8!n3eS*# z*hSuP1tv!v&i$}TfC59l_*iKPrwkfzK+bgWQJr%wt#9e#qwHI0@v)Is0=oDpOCT*i zTD21NYy(T7>I6k?;6cCVl?f`rhj@K<Z^iJ_}yHm5AIgX@AplFB`icb!AgcSDe>bP7<_muk- zL%SB=5UjdX*%+R}YwF_v=VGhgSwQ7MC-DR z*0)o7Ir8M+DqKw+v3_`M(C{Rb=Scd&cX~S%FY9D3WnG(R;?YI~DI+u)48O6ig{*+$ z=leP)qA6l}Ph>KQPY+#VD`BZJFd4j59+;4htSo`)w4-)mJeA#qRCZ0gw7=t|ZZoe& zMZBHx-zqEqexY=C*ZQ&3W6?>4vX1eERRj`;Wy&gi_eIBU0sW}Z)@2@m1`?mD)OC2N zJdn`V1`Q<2(&FQRtlCxa156}MALdZqs3|P-RJ13Ch#l@{9I z^Bf5hw|mNrjb27cuS2i8Lf-pVUcr5?=+FfCO=>nDuD|xXfTG0op58y4PfuG-wH3-% zBdn0Onlgl?`=84AEv51`+B2*Bv#$8T@9O@nvsZLa%NbVX+VOCdv7+pj(^u5)P?i>2 z&U+26<-@iuTI6zC&T>`44^yvI3P-bOLhUi}C2tyeA2x^-hwsBWuh8hjcrCGJ!*jSA z-8J;uN!@-@N8VOLdZbmhYfW_@^K9B`_JhEFABD*iC>lXn71p=%8J25~NMA8pm4`uQ~kD6k6JH8pkMA!s55C75brt zG@*9mSnW+CZyazLQsrx^of&Bb8ZCs^5^EtmhpW=LORpU*%RC1zyS7mGIjKKy>wyik zp`UOZ390af<<~m-=q_?Uvf~x>_Tj5Mn>MzK1$gx8YYj9K99w;@zwVAkg2FLtuGJ9a zDHP4~yr?=}M%Ds&jwCf6v(DQBdcaz-F!5UbN;#gfVG!oNR2Y8%{Kkx*PFtT_f2|J^ z;za)BNm`cbc zk`K`wtdxp69mSG*LMmZ8Ei4{dSh+S%Gc1hKO#Frq^OsU$8dkw14^cHsoU&?0B=oI-i569FtMUqC&4A}{mHSl#=iEr`Fb2M&b1Y}EA>&#IKGD)X zIZ}JKkLSx!Y?~RHfV;;zU(;P67Qi>3$g>@zUX#{m{4ndila|Qv-&io}1irP>MLeU68Pblho4TPfB zSJg&_S1rH^H#=*ge37#=130=wXC1Uw ze?*kl)TqJUY z6yVU@Z;71T_RaW9n){fS6-7Y-kT!?%dxQ zizC}RgWw%k%IMt}zN0#X`|HRTrwCHOv(8$Ao-y8T2aL%1CAEb%jFFiLb=d*5-j)6R zO+Ub#+`(B_7{C|-B*ozHiB<8_4xrdf#;rRTxKla;V=QA#CieI9x$DuwRK}PE^5eWt zpy~OH(XkbLK}}#KW4ulbYfNWnw6KLSelbFlS7LhB5{vmhWB(2!;vHY5)yIpT1H~R^ zTs>)Aqqg>{i)(ZN?rFx2A4V|S-iQ!>V2mn6uG7!m2o*{gBc=y1_5=q6iJAP$*ket= zj@bW#N5#+JC7nTmFLea=s#k7=2-O*5%L^dmn8Z2(td_$VcONmUKHb0_G-8auN$HEb zLDeKO#*jhq#b3R52jd>EfVioQTa*plv)!E`LJ!86oCJ)HJwR(OGe!hyvxj>?D;UNY zb6y4ptG0xecLTBB=+wcoH!aQ+qVlNT&R}5;WAr2q zgeKm>7;T96S>MYU0UH@R9PlK+4$kj?__S043M!P>LZ7qDq7=20M9|qhUAUGJKHmRL} z$eZniyNofA__LzH&Pd^J#(0morJ+NdFA2W*!2l3^7jebmL!E7eT8uG{__JvlH;qCJ zW28P0j1>P8AFQ9eIbN)a7VNh^{ouE|HZbhgjB%0poG&lj>@9R*j7vn9hi~8PBlKsC zSmM3TWPqE_V2sP8kLjH091IaG73oNSV4Pm|af+B1JO)oBjUnDKq5G|N0-S&&jGswA z^SIa1j^cL^JrQ;{qS7llxB3X1DFYVEX=m&|?pCs}pMB$#2H&I&bEXQ%7~=|Q*^|53 zQ$?&(gxwZT8tx39wz4uTTK6P9zKc);33Z52!wI#XP_Gf{eL~G7)E9)xC)5@~ttHel zLhU5fFN7*2)MG+@MyQ_&b%9X75vqt#s|a;#C3*MtM?(HZn0p9SWff4j2o+4IU4)7x zR3V|76KWr!tc3cVP@M>sPpCeG`hZYF33Y@}qX@NzP?HGtHKAq`>Ml^za+VYFL&Drh zs80#Chfp^Ob(l~q2=x`AHWTU+p|%q08lmK>uKCDda=T_aSrcYxYJs8B*3AXEcF zeL^Tbp{`6LWE(<0B2-sGeM6`LggQm2OhUN{HI`7f2{n~ae-Uavp*|W6o#O@k^TWC>y3Ak?pfx z-6PaNLVZN2PYHE~Q0EC%La3h!Whc~4LY*blpM-jcP?gsJb(v5>gt|zm2ts{ac^Z(- z2zib$EreQ2sE&lXK&ak?+DND&ggQy6k%an=P!kFD9--bQ)Dl81Bh-09Z6H(up>`AM zD?%M2)Sra<5~yi8rG)&BFyAGVgHYQEb(c^-5$bP3VM6(?1?n`RY7uHFp<)QNgHSC9 zwU3H2+Xx)ACILiH!qYC>fYs)$gzl=%lCrx4~bLd_%8HbP-SJtWj-LTw_{enNdo zsAGiMNvKmmO;}KQ{Fsbamy?TiR^sT*E;DXnfFL<^v@>0}PCSkQ+xxjf@u5*Sg7AsA zT{V$wE!oCk)?Fh&HDM5wQ@j>C_PR#E5M#v{=LhJ?THNc9GZg`Q`gQpKPxS9r_{O;# zt&npq7VOR>I_eO>WoLOZIC%a>ENZ?^iQQx!PCe$bkaQcTIeXym#yR7JUL>6brwq>X z7uI3J6K5w3$%F9y((5{WVuCYbS=60c_`6q~!RUEFoZ;-jN&6hlBNcUAhnMVvp^pdo z*YSW1@68kBeLjL8dQ%I!BYH!HI6;jV{lL`|*L>aCLfFM2Zs!q;UUv>eTU211)L^vW zohLe530F9+$~gp}#>mbv#!KL3r9?w+^@3c{>6x zp6s-urz+UT60A_um5QK}XiYaQI4h>MwiB*+8bEChhRsZ(}*`*a@N8`$@u;{kIeQt5DW#8-+OW@ z2_Ou^va~;{;-NF4fhct|G~XGB?fI|4eAds`b*O`wPpT@PJ}#=86xf=e$f8vRSsWi% znt;Y`z+)#~Z?A+Mx}{Wy|5*TW`UoZLu(Dx=iKVZhb)u-Nm6(CMK_ydHIKy$?tFQax zE|W@wz|ARyUQsqWZMvYB7U-0i#aGHK?u*(8hf&RhARJ}r3I@K!=_h=y%;%E|@>w{g z)QJ8P^Z8wwkKGFD8NAH-tniBx_+Ht-pq@c^%@-FTE_ zMUfko-nKq);J^WID?we|J@MZYrUhX8^wJ2_TZHV%Ll(6KPYw+}9H)GKt1`ZyJ)tIU z@%42-)J>H`7j+IG^kA(2q^ckOXQeX$O%rpN%;(?{n&#k-@60L?BH{dDwdXE{liMt@zd4NCv8<_^RAQ)b*SLQh(i@#BF)%>qcW@e zA@G!x*NXBA>bk4qj1O;8&&hgJGDr94Mm+XDbcZL--4wg)-zYTST|e09b&O`dwvRM*v4&*Hlpb z9+(F2E5i2TVeL6k*HqBl9lkINvEJ90VfRpBKd+6Qwa;ln(?#s5Ja*m>H~ewRerGH6 zrV8v06&S7Xx$iq0qCFzmE(wfQb0ALpOIHVXdih2W+O9&}qCyz8V*8$0j-h7PIou5*y&cUn^NqQ+Y(}@u+6MZ z>-&mr8aCxQK5$yNo*7PoegyUkjgYqJLm$EPN^89DeP?@^tcGvJARZ8cF>8m;>XCTE z$1u+Z?}3ruNf^Zenh3W&Ov;jsnEwgc%={081;C^JXV)GvGS4e%iBDXK^TS2Il=`4I zMSxvcLpr3Ql6Ns$l%8he8f%mb6n*#CEhcG3zmWlihNg|327(saEQD>5X8CN0b za)K6t^R`r}=Z)lH1;H0@J_ZwxUoybYlz=^lLti-bI82tE)I>c-xb4y5&EDXT>UG@- z(Ccpu^MMkRMo)hI17Vu%y8u5N@O=Qph$o>RzpI%A++U=~V&gdQB!NHH^2K{UfrXRk zEi6onz`{vqXG|55`#H?o_V_8FCf@bVAwQuWUUFO(q17P_E<)o9K;yrsH$&>MK%| zFFy4Rtd(67^ZAy`=gy3h8aSYTUj)ICr5loNJ{G30K>aXg@zB{bW^K=eHWcxa&PvARHX0dA-QxmDUA9 zIGR^(X-yrD2oCmTO6sqfVV|-y^t3%+{Bu~4Kfb!yrGxtzX@>9~thaD-wY3o#x-_<`u1t&u)FLW z=+r>1EF6fzj0)z0n=Yr}K#0FMnS^cb;)sJOoMSE%5c=F~3 z1>hk+K*O)GjfDZ#x3MsQ_!Vky?FI)`!A*a31|h#~$^f7$a7Yx-`x9@&OuGtUSsM|y zr5v^;GONH6B`_N7E*Co%I5^_%Y$k}jag;|pn?Z56B5>N*u?CzLTiT8WoMa-2E-5eB z#=6L;xYAg(h~o1R@BD4vh!;ZTG_+6pJP7Z!J7dspRhpfml-r;{U0f`{CHYOg7!>2n z=DjZRFwL&PAn&{i=8Tl}{)f(F9O#58r(gMmZ#yA4xvxriN6i1`Hg6w9!~D4}_&jvG zx4c2v*X@i)HMf%*;tO4aa#E2J0Q&~l#|b513RWIvVTrQ|N>-tmBota%P#zktfLc7W zXH=}ZH=ta@c)j zL9SK7z9Yio?F{DX<5DS%+K>cc)G3Ct;)G{p^py(a^X=q_q19_!_4)@sYdEeMs0r1WASYnY`-|O29z`nHjzJVsNCmu+tRxy6x-? zas}hB?>n2JMmv;M8N0&+z2yNwr!r^+Y^plImeob|hoKEb>>LR@w1X=Fgi=^ZCgr3O z`ABuZqyrWA6H$#5o@aBmh6|<1I5OE81zjnT7Psi@nGasiFuA^CO~D;!ORo}(|Da)( zCsi;W{--k;9aBkicn9A|lW?EEoXyB8qL^DSzVa6g@`_aHu8JkN0t>|Ad@i)KzNqp} z)6I0HY&(3sXGmkwDRkXQ{A=ri09O#|yp#D@iZk~K_?Zq&1P&^da#G1uST$D! zwR{S>^dB&V*Eq0Od9duKFy_uxfsN7zTQSnr3~l1D*7H~?0=Ty|Dy&u7Sa|-RkS2Hx za`~XM9O5Y+F`|;I0s2aX_&GyFZFjP!4_c)5E3bfLyl6y7h-kl+@X5+9YHctZQNM|bC{^-s%1K3GyS(N@_5X8KSG>@h z!Sv){Kng#6)YnxTbyHz=k+7(51JN`Jn1n5UFff|U6>S7q3(nU8=qwfJ^j&gWTjTFC z3p<%$+c?1{>!6Z1tCDY|oc6E|;b|STc#EpL5{2&>%0&(ZBx#J!t5D8pqdd7B;#q!2 zcw>;O2L!Q_#{1WBHA0V7SP!+aj$92%7Hd6$VKu`iYq$(p-|a>t{9LfhAT%Zne%u>J z812!zUCf|BRT}zE#zi$Y z_)FyYNbcd1;3?I>cW;K`kM3=%9uog*ZdS(d?BN+vx#PyF;{fr*vOBy+%)JWf6_(T&|Q{?7ky~fG9tf?znD3+ikfAW(g z>-`4P{9zZXr}dGZs#4DOUO3lQCmJ7b2D%Q~D_Kea-l+F@bbDhM_fKdJ;`$RV-%0oq zMtk(b9%ddOxl#qRmEVtd#h^}mIl~y4;A#vv>Jd1ugGkw{u!X&S@J-*E38HBY=LF2= z1T^TupF$rbmu)DMZO~ptnJe|hleg7wCStDOFqd+eQATh;iE94% z)4xAbguQ4M%dgUUkj^ki9e)+CJfNSV6BvQT(s3M7DuZwVsK3WFZ2 z5+Yd}Lf;Yu7{aCA*AfI6s7(DLVWjF-RC-3dJw_?Yk$oOfW^iDwT7xLllwgy!MQMBp z&U(<&Y~dijYvXDO12Ba`U|mp4A>rSJ!ZaUI$X6W1uy$ZFpDQ6gQ9+EIe=`}6NrCd; z;!^*f;xY+0l&RgS)U-YW+C#t{u%ByC3)+K&@ZYbD;C(44RaK>A94oc}0}lfu*?5$o zf@vnfP(ueB^%y$+dyQ!LtLX5#6-IqZ!Qf#+iB2zdzb5WNk*{S;-H$I^bLXHpRoT6< z-|GixaRZ-og`>6f^8xs+=b-HGsM262A_NWkF0Lr=5P5bNR|q;GCjG68s~$S4N_uEN zodbv?TQC`z9K00IMgv_k$;UfueL2*+ia5@LX zF8JH&kC%)Urvd0pe%F35=sgQ%d=WOh@M5N&EUAyr8B1Wt$dNj5w(D#iAKbP-1TbG| zX7IU22GG6szyk-k642kG(0|FYSl5YZA_VWbSf>VVVFUEvHPL_ZqQm%xHa5@=HLVe( zJk-+ZI{xVVI<@hv0j?#W=#4wC*T>CAyTWkPjXFB~*Gn)ac;f|E8rRJ<`@pMVy6SN6 zW$2M1#2O3(qnEKT$i=oV0oW1?fE^zQGgvPWKEG|LA7OAy8NEM{I$N?SDqt`Szu*iA z0i7cQO?w_dH@xD4OIMtAs^NbILwNC)5`IQG@I=8eLm^1}h{1m-gO7>@qZqotRSVa6 zP$w8i*<4XXeRApd%HhGlqtjh%Nfr(m0Noz8JIQo>tN?WU{7{9CpJK2QV$3+jCe!f^ zwT`ReW0_!f^$yVXf$AKf(^#CAVOLw7y8d`?ma8tRbwIgV5DXl$S`c_ZrRb{o=WK9q z&xyz#y~rL_w?XYycR%7wc&jEJ^5gYtc-N7X#*DYtxC9aqHw1rHBt{YZj7rws`4SL8}y;4Zm8d~udf?|Pj9TtmY&g5 z73gCLl(tilQ`t^Qkq@7!TO9|CbNS#!V`#ZIjB|CtqjF_sO#0AUM!E|ox1GBR{^l{H zw7=@op<$wkSzZx)m4eTDzCqnkeEde;Al&v%IHH&Sq0)SY0Ed{*zz@CVLstN=PJnsJ z6(Z7nf-tVBd?xm9dkOw87Bg*%dOg>NP z+X^$3qD^C>O@{Ma{C@14GoY{^ieT@{z@)<3n}=1w_Hkh~X}t@3mDuljv1zeEYEo=8 zLhPj=IG}3iM*6STc=x;#x@g3PG;mxLJyXcS*AwT!zR1#(@Pr`p0mh?)-T;GYV(`4M zU@>ZqDP&a@i5+ucP?J_#5{}>81l>uE_rm<~+&R#n)+ax))pxGns|#C&Mejjd*0i~x z*lr?P7lsBR1>^JcAYy>Hq82`XH7o>=o(DZtCkc{^FrLMZccI@PD;`1$Ub2oYX;O)o z&UZCL6GimbIP{?ju#F2ksLsNxnwYtonAAyqxDcGwRuS`E4zsu|U_vvX64$|77l9Hs zXrjZZ0xgM2mtDLB=5Nn0hB=FiVixDQEMQYxW1MpN7VJaL2lO+V=--r!9)q6wh}GQ_ z4w!ChyW5NS{Z92_@J~wt{gEd6pW5iewLV$~b{)^qQPYp`l6Oj8z!LI?DfOc8$LC-# zXQPjlo-r0UWFMYXf3{!YoI%|JmwR@J~`lq*kww+Cerp4)K`VrONB^x=XPA_ zYK~@$h_gI0rh=m#`awO|IJU8#AAamt&lkVE%H@Zqt6-<9V5y;vd&kup9S~vni?ETC zz=V(g0Sh32ZN(c_gG=0_LfoZ|cx;W!j2t3jk%%}d4ovKLBR55CjyIgGR~3JEVn;B# zs)D_uf~A}9`~FZb0!OZgPAuSKW(NK^Xp1;TfX%hg@@kxdOg7AdOu!cE;Cs>a0&(?N zP|2M+u;CE%o9UXr!FW|YLmpm_iuE?;AZPx^I2|S(%o_R23H!o zwib`s;Cdc~is`}q(DZ*&zeIc&M2N9r`tX&(#PvT#-Cb^Fu5oyM-eP+$|ZjzE%A? z_-TVcU%HbAH94eg+6{q2f}S-WGqZp?A=QdQH@S>tiknvKjZLg#Y5zn|s>2oOd!c9P zxusOx88L$5m^sHk4BPj*M#hm7ncTd==SS7^2HziL^9GlXvU!6{_=e3Jh)-V6f)l}H zPs1>rx*yKyEPaoY?Rd9a(q43WZ^A()+nKamqHG^9**MGF2OR12PY-O(4X-IKwq0S$ zyu_4=0VNpIt-q_cx@zP5S>a*$>QQh$-vWgEfY&)Vj3aiQboX!ehtR#D!?Ycvr#zmg ze+$AJvcv1(;`QM=+%vQ!7(G^jKBTgzqCXDF4R}tWD+#q=;IP$B_y}r)%6evwJBEk} z_cjDZ)WglLID=rT9sI7b)$YMzPtW`Z(X2SSJ4dyQPK!$4$Nt<+|AaGE&+)TYOUK@z z+NUS3=&s?Jhgp-4d`;Y_0n3ymA5QyI4tupv6?NQR7PV?;zNy!I0i^AAnrU&}$ZeF|MllOxRSH^jo1 zP-FT@umpYo4j|vpjj-Urr66+y@)I9oM-c`$&!80f;ODSgy1xkAhXbDfg=>P4riANW zHr&b1uyr)xD}b9R!sT&r&aYgr2~(7ClgfspRh9h>81g<54p!2<#r9NH6THuUONY}! zOM(R0z#%U?Z00Jr>^|pU+;jdk4E=u=v-pwA;)iptJ~)3_gbrdl(ClR;`gawhCnLY3 ztjen5C0C#kQo{w{v9O2@3{|UxRqP+YS#y;{H)g(Y0p=9UA{1PW;e`q;bv45&A4N3A z>yjDa>GL6#KUW6zuQ$)5&$SdxYP=jrXQ|3m(QKtdTtKt(cfawm_M1NU@ zPOI z_l@o#0fH|LHN!AiR5KlbtvSr1l~t?((t}OlhG+yciSlSiS0jTv*hFsBLDh~icV^G_ z9D?w{j%zY^R_U1Bojv^t+*z|@%qkk=R67^}J?sb=!MMru(3*#?4Q+q}i(J7%9QnN` z=Nw~>d3zD6;3~!7%KC|Dy_IO7!6FC6pibIyAfgAqb|qfUaY$Vyx0s8 zbea-$+ISE#uW?ihyzgOLRp!qoE0HH^BWHGsY7VoOF+TWwCASaSE9L?FK;&wmtsC-) zh5JXMAeP+@(!)kP&;=*`R_#38ZaC)q(=i;q#0>{_<+$xiLH4NbQ5GC|9Y#stDwRz*B zV5)x#6ccV7lEcMo!(F@$8?G`K+)xgV_B7|;ib}*amIB-$CEQEea3Ebhd~Zcmb=-5A zJ3xTR-qE} zfC>}*)g<92!@SO6N^t;KOdL+>6~p^0mlD{a0;Vmg^mlMowNJ2kEaU{+B1vo6BlF8B z=!7z=3jhuYkd;lS(O=-BI*4egJX+f%h+6VOAZnrZeeW)u!zP{zwN-()V&HH?%*jWd z@GFMU?O`U3xEXBkp5@ON&rk++Q%O6yc%0nxg%+P+Zt9<%rEvlU<+o(d1&$c*!V%S8 zSZ9ci#CsEAEB1b|0DHs&K>8qjdXBpp-j@>{i-%6C52GIlyU;F`?AuRx9o7C@u)w8z z3XbZkhktQkA`!Eiz0m4F_?kMEMBZ2i#EP)Gg>TWu|SzcjcV@Ea7cyd zgA@Dh3NYvUfnJV?m@rh9t2}QC*n>yqfh-DzNmF?iu((yOW`5Rz*rj3?CCV)JRR^)1 zN=$p%nDo3%^FX&Ag?_>;r6#u3kXcHbB)Dk-+F=KLZ+8^$iE5B9dG%B$4DDK_(^8{@ z+|ALmVm>L#d=4-1sHa`8m?~T#)kc|5%d+#K9%@HTcMFs&<}*r}kEc8Xg&ZaDD`f-I z=<;SQ0A4EszoP^`>w*H-LvU@Y z=jL}?2{<(jCR7&3l=g@tH#u>04qxk#YOli2I(%WMJEtN1G$E$}xlN`e`44?`ARU-& z{-HXXUW&jcBi-$h@F^?gKc9Fv?$hlmnXkq~;c25{d_-wG^U^knaGQhoX>4Fpk!{ zJ5wP&v$p+(K*CfF*mQ&|ItMvyuV-O6+@OiO32HCGwv%8zF-0WKy&BV$InCCZ8Cc8A zfX)dIYUXZ=#)uh=lrr#y8Bth&Ehr2ZeF3`(hHGY!U1kP!k!MxBI|8i{Ggu{MQ2aVf zke?q2aSW88KHk@*0Uve2E$14_f;TnFP!>I9e6)o-3VkhR^@Wtx)5kEW4HKe~1^pYu z6kK)%LFH+|pC}WaZd!30+|lR{5&l;RzSVnRI{KAS^>D(^?l4W{J7pr%dDg&0cO%r` zb80*&>T?=9QtP2snU~d|5uKnw;h!tx$1vcK`0*#n9O>-vM2ovRPD^&zLun#xcMi6# z)!h-Ftr-bR+Aw55T~)B1%Z6=?rih4>$?13)ltmg4S%g1%7J zRlpbCkd`*Rk*U!1QbmBaJOGU1+hhCvI0*D%9uc)tL0N!9sy*oouNMM$@dg?#qK)9u zsD0*la3`W+DxfSi5be?%d>ISZS9%B9t3}+EJgziu+BYb+4z_oKI$fd4VW~O?2$pA~ zuSCetdC2^S#0yijGqGW~c`~e;eWHRqu7-p_>P_^!2>A;S3A!AD?x`?tt1;*}qo5mf zs4+OTmzxZdQhR%1K3cJo*Uj(lZVjv4@H-#r!8YIC9%nuiu9D)ahelxC`?zc3p;2*g zMeHtjAem1g*>qE81C#79iL)xUIlgxWmWH}0v*}bpHbK4IEd-cSA>b30;L!G|iX(7J zuDhP_niBlg3c#TZL+sl1Ke@D-P#dVe;TzCHRK2!KovByPvxenN=Z@UsQq@ zcZHSOs6KIV`22WxUAP8Uq5U&ugH!FpZf+l3IKUkNQ!Yz}KqPTKy;2aI*m%&--I=uf zU>sQk#@16_aCe9O5DM@|6@XuU(cKW{UOc$L9I7OD+JJap+W$1g(Su}`(+JyaB(hLg z4PC%+?~4n=`IFo_n2hn@2f-yulH8uYG!1T#Rsi>vfQ2M142Dd|^rR3#==R9}3l?F6 zbE6UV?a#^It?+ZM>vYcuJw`F|a9j|(ryGvs4gqD=abJ&x+oOrd+}z@(ukdvD^+};y zQq&>l_7oOk?ttG^A?6@pvWQq*B|Ao-+am%= z-Ntf9DbvlbyiS|i0BmK7U~?0}Uo+1g_%*)J)%^ly?ZO_{7(X3Zzbc!S(0#4+;nlwO z`fxV%$%3IzYZ1ySLctVTZ_a%ut58h90rw5|B204AL-D3FfcOF z3q@;;hxUQn9nY##1RYA}&>(2@9 z#^`ksV!Q}(&IKM83K%a9*3noM;%F5j1OXoiXNXqA8|m4s;VBi^S1K@%`s+x27y3tp{ab{UDk3UQ3@iUq zLI2L6ksek?$qk#(nyAnlXsxutUuO+|)!187gC|b`pf0CqoK`T=v-sZW6scN1 zOndf}w}n!<3#Nk=k2polroC{Ah1L^c)&0m4=mBb&@4&U%JsZK=)C`!0%mOs|s(U)c zPenr@rFdTk-L)C{Qlq-ekF2E7sb~dRpFGVap+7~t9foc zL_3B#;FRmamH%)xEmQ&Ym*OU;NPIuFaWlHif%fTJ`3^W9S+exXI)z#)Ly zWTCYxgm*L$$hJ5TsRcwT6y^*E1A=tG_HYoD`mAqMfM2QssmIA#;cg7k2?cz_0k$Y` z4@7^eV184>P~ES@;AWbhq0ST@PuRE&rYlH|(pbg*XQM{=?(N1tk^>WBanM>>#1c&s zakH9S?b4{_lT|R=GC<6suapA_+5w+%HLAi^ZhI+ldz6h!L&STlVXQn$#GNkTdItHu z;kILisBg+4$sI^*J#o-tLbr$WaT4oU%0elpSSa+({{M|Ws)_TS*%iKLBob> z??beC?tJq=Tznd~Ql1ktgROer%wWVl7{VPbMMJ!;5S!fHxotNzmd7FzY{>H>(Gf{} zp*xA&pYew#@UKc>s^fEe!N)eiwgXVP4RO#OW*G@s-@i!{7*jx(LRWbkV8aKp)*VH@ zrLDW5X*GYZRd^K893GjVn0>sM!5B)Ng7a%OWj+nI{wOfJYh%(0p|%I0qGvM9JPs4) zc>BYy9|h8+GLVSJ9eU6m2iKQT>2`BS9!+)^;7%8LVYih7H~S+P*Zs`k;GB%8K-ehT z9U3ZVkvz83RNO0aSqc1|960q5^qzwq+u{CTw@-UFO)a@G3) zPGcN&1nTn25O*wW@_0}rTdat|Cyuz;b~SSO;^Tt)VbtTmV?&S%qMl(@V0`)!OCN-b zQ(*&t)RIt`S|?lJI*^~3gW!BlDh#(hd-usr$Il*zdH3-QkB+0qa)@oL(16buHEqmX z&S(jdTQwX(#m4vj4*KH@Uox*l!`3M$-Ob~S`g09vI^KEsIm{mY%|ZXgK~Ej;ZdP!( zX?|#)fnT|GsPP3hCW^bj<{-f+U<-3SxC^w# z*Dw(ob3qx9MFNM6hlY9ePW6)e4a5ZfM6ljG7+mTPo7iBkzMw|4C_MQT%o+Dop?1?o zedjcI`57YWG#-^&N&XqI)X6Hai7GHU+`fDk!1jt@@9|)HM_o+0(zNyt73x+MDh+RI zU4Vt&pDxfHKLQWxSrd&U78gS&%+U8L)Qc)qD(irYAZxX6S>5=2%hion*0#&tk;1pi z>Ujn@^6H_z{EAD^%O{I?CLYgI*RAmVVa>RuXrxzR$E&bu)qimr`kxFDdnk{cKzjQ8 z51K_wu^<|xf_+H^OKtSmA0SrC7hxCju#(8RyP5{j>rBx+73^#kEDcK<`~+diQ4#hK z58L>8v5Bq!qM5iYrci}?fT5yc=h-L}TpRVgZAnvWjqTT}`Jfn)7fE>S@T0Zt9%4Ej zwxQTv8;(NsDgjqYUlAF)!71(quX0g297V7t3|**X>;|Tao zHAnXCI>j7W#6>n{h75@G=;^mCT!w9!MUp|WGde9sW zWqZ~KP@0I`U5N}^t6_%ezWaIT(P^d%_|7VLxsw@+L>~ z3h9}^g9GmL6Gf#pCR~|K(9Wsv6PSA$Orc*^Lep)oX+z_a*k0uqG;#ZRap{~Jv{LFX zvZb~~qOKKjCC%`xC+_)}*e>ke9*&p%<4)t^wM7hvO9#%lFCLCc8VH|J`A#b3^Ue=J zCBd<^_v6Fx)Jm|?{+OnqhrJn4LBSnSK|51N*9!l!j+_4XKHiBceb0vBC&;jj4#QzZ zr%DOGF!AJ)Gz2F@grhzs2`KJ+)@9P~yvgIDQis^!130(xBjWpH2#DXS^m=l$l zp}LYOux6))`Kl%+^(z~ym$XAWM9i&9%*g>IGhwPr3v)x+n7SGz9ntq9=0zpu-5Mox zVcts%^Gw;8vw};y!Q$M7;F9*}85m8GC$MOpjH+3Z53^ocaF5D{^Q%?T8rE1STs#j4 zHDklMzbC**70!L2rk9mnStH<(5KO8Ysz-a>k{Fy{yCfP`;wb7%JnD%sK-Eu82*W>Z ztmTIWs8IWsiTW(;iKc+F6@YJ{St^+6+AzKAmvo1_@hHpz9;S78$zrr$1+zyR=1N3K z8@Otb!Z>)C_ajTDp&}K`Rc)BI(IstB&=nT_23+ClvTjVt4CH@Bsd8W7XsCR9gOWC= zt%%c#$C(ie@>o+vO% z&}|h?DZ@d}e$PT-aBwsfuFDz~otOacNqLWmduA_WJUql+$bc9#86VQa-9>GFU|x94 zQJ3h2TjErM%nO@;@P?PPF$EY)>Y^b(FfTk1_ew13j3Ie2zH_0(pWFe|T6mFgRZ|iD zfAD%?xP50Nnk!h~EML>!`7NrFdM4EsC3Wy+ zwJ_HaxJ^G_5bnXvwI01QsTZ$Q-;UTDDz z=P}0GhCR?;%K>;L%kQdDd)`-_7C|+nwFef&vc>|mp$rt5yat{+ar)Zy^5*iy;l%?B66vta^zu#A1WKPE@OM)QOrP}~3o@f9Z` z4F+&cgMndk(k@CU;LwIBR?EMlr=6y)){kUR+9@^-?*Z<;s)qzm);elxcY~07vBnO3 zBa1q>Q@J31cX)vh`$;f>A0CP9qe zo?j5k=S;p8!4rOk_P%^G(U;pc;-SZi*Ni3+k8d!bJ%M}kGh+&(*vo=KH_sHnxi^nn zni#-y-%j+ylg6;T424YR|046AJuxuk_0{w6V6uKBWq}|$S0>v@Tmn+CU`FmyMc`DkaI&;PeH7sB9e3?UMnbP z8mfa0lEJ=wfSA=Kgm=G949=Mj3+b;w_f?@CGVtaxGYZO@R_gf6Wc-YQz{fpxP1zC! zanXMv)|v&xV>;pyPl&O+bL;wnJZd(~>@x-XfD4;^6oxR7vk@(GLG)-FMLF2Akqepa3jAJiaEkCE%~6N?Zdqd9K> zpN~MS4zIVsEzqh-czShjH5@w>!7zm{Ef*G4WrGA%e+kMlt$6W0_v**+IZ~G;DQ`iZ}F09eG{$% zbms}zx{Xy`}I8;c<)u*6%+4X15jC}!|x?-Z25&2q$GwuFdR>Z_LgES%#U7EX3u1AL9Px>| zOs62vtuAPTRg5R3uN5S6K3(50@aENW;LaZFa1SLoJno3s>vx%h`HG7TL->&|8iw)U zC`$ldob*KEoEXTE_b}asu0z+l7(qLF1|?xMUJsL=Cy-|wk=;ZR z%I}_U7|H`$;PLkvMjF#R(SV6<1mk-I{7xf03@yckhq>HkuvLM=OY#{!ITx#l%K{1+ zBX_~#LH4TrT-`!kHS667uR*4Q$zP1fKPku#t0;$U(g`16pnCIt+Z_Yd)%*A@1=`ja{Qf+<|q_7dXnoW3MLJ&KD!`StBzS9 zVd6RQ);Kut2`NuOq8<<0Q&5^k{;3bt68ywohuWQ8UNa{th(B)gW`HS7`?aF_V1D9& zyQ0A27?v(DQzT3p_bK}j`n2!})l`8Z9!KrR@W~c<@V-tSokKpSdSf5n@e@o9SssB$ zD8MAfai0Qsg8+szb^;Tl9S(p|?h$Xbf=5+xlMW(tcuL^GB|GtGT;55`h~&9F1?ZRglp|e|Qw;lqn#)$dFEZ;@9iKpq71spthre z+fK!$VZZHIK_r_kaA(N4ZUf(o$2TbS;@6UreEE`rSienEC`?uG0 zpuBc$s{-`C2Ouq;IP?{a>Nf%Oiws0w@7>l(p?vHGEA9+bAkV6hr2VV^EAZ!Ee+|#$ z&Ch>@!Nv-V%DUS=DLAK7k{^#vMz>!m&`(up9Fp$F&wN`DV@lLf>&mEjIJXSX{SG^? zwF->dua0jF+IR37hth0f@f8`2>2#Hx%pzDmJ+QpVRQ9pX=BMWo&W*wTA zU_Vh{_o}cI%LkoB>aakE&6i>6@!qRv3({Gh0(MmeBh##NzMz7s1kXH=nK_J?Kj#)p zk!zVd27Jc+gs>-A`@I}X1!!MLNn>fmQgK$=1x)HGI(Q2s_}Q-@;Ji6WD5&dN=*?eD z$G93W9YIA?Bbi1;lc7ZN%`Hvi`P@@Yak2N=0w3%RP;at~1oyNl2;y@lBKibXTy}W7 zjUV6m8@%NRBf+6X6C|T~>taD&1lUA|8_A?}$J{&cw}N(fbi^R9mH!X!f#0!)`cB9F z+K7wN+#tT<5_ZK;7;$kySy6f*eyx`ak`QAPzxRx|84-G{5Y3@!f4-@4VOc(FXPU1r zo7+ZO_Wz)z?Qp@Mf_dq==2EP@MW6X&`Q|*w%-`qRl+032fQ#o^Xq28eD#}{R^Rssx=8`0;ac~9 zW8Zgv7E$4A+OHwX#bqDcoarB=RmQT5f_0qza0(gCabje5 zK^dOV0-m*dt?~L5;Xb#U~^`D=rG;b7jT1Kc3piYe$QlX%Qet73Fc0yRP@w! zoI)@l>C>3WT#3~aNOfFD99j6%JmZTN@w`=iOE_v2K}7M=)wFN*$^Urc8G*P>(UHp} z@Z93&%B;Tt?<;}Fr2{56N-Xyl1PkN>9dxi==6C4#~ti9+@*NcY^3 z76E+u#TGt1bRx*C^MPT!?vc#=|0c8F*Ib%?CdeF+$WT%iNudxv*AI6f?Dq)%u>wxk z21_Ap+ofqn->Q6NrF7Nej8^$&*+aW-akbyUo%Vkdkl{e#J-c2}e#*U~yu@e4m21di zKjY^E&7-Qu;de?!dCsBY;?{+5ebWc`)CHN-81RYB+sZq~r*&sgX<;ufFq z?af~N+*dlM75VtmSeJ+1GOo;mZaI}lBYapHb0g@SK$;5>s`72N?p6h!JuRggpIZ@& zu_g*q628&ac=c~Nb%j8_2j8BPQkI{NhB=JUVMhsAoG}gL1e=>$7|TalarMD)1$KxE zi?ZoCrgwF)909gF);y4{Qd+N2TT?g7#+&P!zSSX43J4r;6s8I5smA-i{vepY__jE* zFIKD&k1N<;sM!0oqT!b+n494BP!i!?9UJA=qN{l$Q$qQyf)o_5X=1#kpxRVa;&@{v zbD}AppRWY%#@yDmi-YuoSXm@%+|Ox5;Txd|eQ)NLJ}bJ9qAq+;RRqH4Dw&sPqdS75 zY5>>ef1oAuH{6QjU89F3%L$~#e1={1(dP{Q^o-rUboX;AR z>c{6q+5*_8O27Ase($;Mv_M*0zgOE_-DK8b|CC|zkitvshJtg=h2t1z6k{Elkm{%t zDS3ydzQ9&ly(Bm`VsXwVC|#J7U`|5i&gMk3e4INFf9yCnqjmGWdggf6@{T^)Pebhs*ZLf}n0u*a*Bvvv>tl)@P2e(ns9{Rrn;MwoOv8+T zgNp>DTk(EuXfDsz3U1d(++xm8;AdJF`tv}Jcn2^1qT3Rqc;WZI7|qMT#&TgJa~bx{ z9jc3ULF+EuFRgUW`BXe!*4P|@*PIRLM~g%!|6O;LIe_~#HJ4<63D)np@U;q5IB*c) z=YC5K=H=EQ9xgOeuo8vn$*vc3>7q}2u;bYnm*h!MLCqnkxVySq%kc@#9i~BoI`?|I zKabu3L6y;drA&8`+P9w7Dr_cz*J^2wWSsvNL&g$W3nKploWG0 z_L{(*BH`k;0vPo~b7j7JU%I?UG|?li>>_D7EGdAGPBTZbZGzSoi58^P0Z(dq>cfU2 zaj7I0<0*j8YX#X{5V+?gTpCn$|49wy(`WArFrD^D;Z%_nX!+BbgTk6NutS_Z>4K2v znM42;5(&J|vs6f`E#lF~9tmK_yD0T)mqsM70fEi!%q39dsS#i`?n&;Cs+hX;hZ;UA zo)*O4ZjX#@Rb=kn-F_u}1Gg_Z1WE*K?SMg#%fvL)o-(S#-$(Nm<+T5uI_lotdjzh4J;Dp-g;@p!JSKi)Jh$lhOydzvUju-~#jimrTe( zklA$@WWEw)zVt|D;42_=)FT<(X&ccR?!G< zGcN+%>3d3!%AQ=U`f9m?uiSk;;Q~C-eaTP26SZcM_l=IB1io>13@%mg9t2glzfX3{ z+Q?uoU2p1yeaKByoB8sO2gCEED+E#$0xrLNsbA{=et8J;no|Uoi82-P&b(Ke*y74o zu*WLc4g-Qxr?mFtKYm>h!nO$PTp1e{l*E4?jtFCe0{flx37p3=4w&l79x6D0D>xLowisis&T9OvtEcMUlCBZERzYQQ>oDGV z42G<0E34AqM*Ww^H}3j(x$v>$AfBFrKzE4%Ig`DwrB&c(W;k}qG8O193N+>3XJwn~ zvV{V5o`kBG!(*8n%=fNKE6?-Fw+ZIUCtzthTfv^8U^~pV8rvtZ_sG}|i*3VpDq!0c zFp|MflfdXT0d`piLj`=GwlhPFR^S7Vw(&LWX|dlFD!+K9!ls(*v%r7!$pIBJa~+cd z-RpUEsyPGuwD?wW4NUvib5N*F2~A%!H)M?kE~;jnxO6X6-+>4i!dkUO(svOy&}kbk z(Ic6xtKS<6ckWkj{LylFz`qs5dkUg!9aZ;yyFgxNCFa$t4|T^wU z^91;83EUAaRpxhn+k5jmIT(vGJW`leBn3y@RF3Tt6n07!XuX!S7Rh7WcI-hcTZ_b{ z-P+#onk%r&0{1rw_xK*n$a%r((Ngy27mpNvDv|=N*yd-pFA*%qdVYN6I;`Hj|CI(l zX*i)8R^{6E7-Rp^=$FzjFWiZ+#5;QS4%sLzd&iI^b7Z$@cxi>we8oCs11X=CG0F=2 zdK>d!-p=;n{Ev<12tIYaSw2|W_+M9EOPh{pANJ}d)FzJB86GJ!>`-hp-}|J!7ytNW zRP#RGgOM~$XI-ke9*l3`xY&SyoryeR@z2dz)~waB*T~r8>=;Q2WjjRh=P%=+_o?>* z`;G#;T!p1w?OR*SWlZ1buwTirjumnX_N4-LR0Sg*|J{l`gTHjJJ2KeirC1LCu*V$7 zFKokFu~0#@s)$q%`shP!iN!tAoqxGUk`0gpp>F@O-CUNHd1RacBJqtUK|cKmPOg)H zY%fFN+)E(;Vh1MtHVRsL5ol}|QZKIwv?($gPPz!aT-W|)q5_$%LQ-Lv7v#jY3CJxn zBt}_Bma715P=QDtrT3zz7X;8b8OYJoIR3BpH>VZIQ$;|=?#JF?vB$bTp2?6dGkm7~ z&0_`fp$bWv<-W%to!UC2sRo~S(Ba4FB*)W@7=@aea}L01Rn>m2`0`5Hw=Q397&;le z(n0jGkD$;~qTmw4oS!@R^1wrwF1mXpky$he(pi^pp|dvyiG>mgtnsSk974ADv@a;c ze-4j6&m)D|MN^=Gntm9a_*78XCsA~^ywQ(qvH;>hi$ca@qgYaD1rKVe5+_1 zsiNcmueO^B;KoMa+sBbsLw3jmFtS7c0o;X$e1+YGkpdW*At%S!XzZ+|f;?a%6;u=^ zo)gUAwZ2ANw?<$h1LVZK^EDPm$oqJ}MBb+;OqVTwB`}fhabl8WL%xFmkm>ONj7(2a zz>Zq23ha&mMwZ7348MeDmZLj(@h{Rk1oFl$WNct2-M?Xh@%3O<; zd#dMnp2|M|2XhY=`PAs?OW+%Wr>8{3H@7;LSFl!MD+x~C z16=mh6+~zo9cM$V@$8`B^%KD>+J^JI#sxt+Kbc#xy$YAR1(!RXx&j6*i#&e4HHPI2 zusj(oHxmnmjDCpbTMq9ews@~9xR+F1ETN`o2OEAz?k$*~{{=%<=Pu{ZAineDt)@Jz zsx=(dRr7vz+YR&8{?_H7aY^l7?;U54+zQsBB4e@>hHl6Xi4^y=~B z15vt1S73D_G@f^Us-Noxy!Lq1MC>zW{%#&`nxJzzPUrGb{{nHq`g5PoW%76>|c@GegJM{0F2%;U?TmuL<;j5@hEs zh?iz)=V<0$Gshx6GvIzzG%hW3cU?DEH6f(ZaQ~5Tv-8Z&5uh2+?i7tiam430%*nWj z_xzvcdO1fkBKYP4T_4r7$Djgv?jPoMxKoV2HB{7<)4mmj8xSXr8fZ!zHT>K!=EPMQ z4}7TrC;f@@(w&C4^KJ4ZGX5n;=QW^uk#wbd3@MCj+$4j?N8r|7#^W#msbQW{tuy`QL{K&}S zw&&Uv07?rs z_Z*bJKa^hy1Ng>mw=yT+7tYZ|7BTXcxsIu>)-26bOZ#KNH(KMMdv{AIp53i$X?{Gj zYboBpQCB~H{4dM~)%CwL@LfgwHjP!pnoS%X-rO29V@7h8FJFJhTmgsDh)!=Kox4_Z z6u;Z3Ya|K}yGBTKUiL_*n?i?%%IEhmRNm4_ykR6UU<(iFGQ*HwRhdd9r;mZVJ<%mnZW}c#3+U2|Az$$~@Dy)wgi+?9+d-v3&LAAj#;egIpm z5Lu%V(XO6++foxAo{;}1Bh%@JfhJ2Q_KgDdl>&9II)=m%1}vlnH2wS|W5tH)T-M>I zid(|jUkczI1(0@FtX`Jttg?w`)`0>m@DnX8Et}W#6(+ggK@9SaGv{jMj77q z0R%vn6{r8X!EVcG-|Ff|v5iC8q_p%!nPqqlUrP{sNl?Vh?oJUS8pCZ?W=;MxuJ*#) zarAowiS|X4Nbt8*W^)AkOpoY$FJ+YC9}g{z=vUI7I^#QJ{8tOSiK8+ z)L{WkSF$f(S=!Q8V~iez>xIXFCxlq!$|aNbg)3HL&rSS9Z%eEON84Mkhg<5hMgp#Z z1cwW`0{JTumae9HM$9@zV^Y=N=Orvn*ieBvNW#SS$552e8d&UGG#q8)H^o{?@bR@@ z!lgoymQc1*056k(DI-5V&QgcJh_sY8EisZ<^#79x=jV>S0Y@asu86u%t4K3T^1JpIzom zE^u^3OLcCGw=B`e1a_7Kc}RUrH1B79DVnF8fsfEir})M47Agj!b&_(%R<~4Rb-nnFpDk(HOW;mS z3guhgHv8vf6~^${Q@e%XweW%n1Z@fREOJF>6)&3b8J;wDI0niNtg30zVm0Enw~Tyl zaeg50SId%uLrn&(ZZ0g+61a6}$tjQe@QsC^b&up9*R-tE`%k%PveAUY-F0WkH`KDo z`T3<@?)@&4V5x>eO5*OQ%$>t1qcOpCE5pw`=;o(i;qkeV*@J@FPh1_>>l6|#)lor7 z&{i4RVN7kY@oDIIzKTW8dT;|vGKwSzHG;|`y(RVF$?6fTgtsyJ3iH;L0iH;J=(aDr~Ee5Xq`i8a|Zsv-y)y~uHm9@cDzi1enn)4XWg z>bqpbmBBvxBpbl*rCG#Xl>iZ!zAj6#G)H)hU&+(0m-dA;-I{z{qlzluQY}>&4gyn% z*2oAvaEPTOzdN-@HGVw}=b9QA(d!kBPV0&1>6S8Vgg_r^L`PY7NuE0vHFbM4diZjC zD0}`vzt6A1Gj|9&3=z*#9>a9R-ZG%26GZI*$5+IF21*FkGn#mfC zkO8X`?ajXR^yI3A|i3v24jCtSDm(k|{2^F?md%O&{o>M#5A zmQQ>51-TyR!38*mgDX>QrSgPsk`o_z?{G%SQ=X(PCw!j|nvZVvFD>xPv zM;p@zds@1gV)>vxaPrY8iPBWGt(RpcEA3}gLMcC^5|CS%W9q0kZYLT$LT?gQ1KzqX z#E;YK5Zc{kl zA~?_Wb2&#X#l3u>CC2o-j{U2QO?zUahgfha$ArRgo>8-xuVm{N6awc|0+b=xFc{v~ z$6q)0;{Fo%@VuQ_F@K|spQ%7(;AWpSi=9*WJWYI32Wdf6d@L43{|IURC3p-vgiBOi(##tRY2H!z!-*Xl z1XgrVENdwZSb4mqDytBnYdS7K*EB(rEg|Ue=PO3^_T%Fx7M9_$*|5`c0Y>eY!MSoR zTmm?$3Vc)VTaR+}KIe=yLv`zvUyTh4;QP*?-~Dk4!ri&|4RDPp&2bE#2-PeQOwJWd zo;{C#Qy>ukq<2;R@+1uYSqf{@1#43Soc$(uK4mi8`Cb9JTZVK5ivAq9(R|<(OL?|K z!TnIhB`aD!6|7zrxR+#HDp(_V67Hr+IH>yaA!|6hsDS^hg3~1T!E2c00s=`{2&wkX zbVOSu3&-j}FrKiZj~`z)9ifGn_Lp+-g*44H7^x%^4A!oE_Y6x}hO_q+b2Tu+sjJD(q;R!SPM)BX~gTXJ23?3y0Q9e58ph&as!uy~9F2E0e2}~SFb7~8i5uA3< zzFcTYz!J*PUqnvmuLMWhdG`VBCWu;f0EEV6{;05E473f~e| z0{O9m{7^xrV#%)WVDQw|k+t%m<<3wK#J;-14X?l_(dgWjl+9K#6pKpxOh59E#>zSfe>J{7;QbqV z#7#8f(yX{T7rB6uI_@wdE^gxp4Qqut)F#MsQkm^Y<-fOlx%TcZ}fJ z`EQ82A5S7!YDB|CI~rTPB+D<2K(`oQp8okLUJ};nN~*;kf9SSTK-CQAq5vjAK&-`a~nT!&QXv zx3~5W*MYM=0*^HU(|X|3Jy;KH5$L%_bh;!R`>mKRcB2CUGYcbh5*s{{c+W_J%{u7&D`V7{+P~grp;trfuC~#*Rac2~X zOYw95VZ1@ ztl;ls2qXf-^%>tUTnfXqKq4pR6&%0lFd%}rHsOkU?{H%%#=`Zb(&v~2wEYk!WGm9q8JSF&xxjVq;A;m$agX5rE&F$<3g=QoDJZwTh> zQMgTm-c5*pe5)i+STvvn_x~C}*l>lrA%eSs;m*|(?VeQs2D>NkicaUqxX1t@dirfZ zWxi?20AIfR1Zo6UDYz?CToUH#s>oz_{tl7Ow*vg63{EkWgK1yhf7O6UI!w)uD-^!? zFA4`=3<%-b-(yeoz94h=Kgf)EbSspvI+>4~S`;$4*MwHOl7KLnGx(Okf#GhCZNx|D z77`PoTL>w^<=^6SVVHY25AfqNH(3H$*$AVZL`5isNE2s+i+l6gr!5s(XF&l6AZRH- z6i6KaMYMnKvm?}K_4_yZZr zEBtxdl~>^3*roJc>n`~v*v}FA`fqI^s%p+F%$^};9VH0QuuxsLdSGdhc77nFdS6Ht z7~&a%CBIu@`PN@BZtf}q#hWmWLLHi-*Z+!L=6D`{6{9eQm%rqg`UwqpM+Win7cI^3 zY!v;fr(d|y&nhgpoP{@Q)eB$Ls95)+TRB9TMJQ`+SVhTRtg;& zlNT;w>v_74KGld$wN|;8Ee-H^lqcRNc*eYO#ZuSwp^o{15%XG0$OF=iTa$}Sc|sff zkIoBh_DEr)LV?Cb*&CJ!Y9Djm5^BOdeVXXc8%f2FL;0B?6{_FMaKjhRa7 zbN2J1&~bNhZ!H@|`HUospjN4s2T zsmQnfi8_`Ff4J>g)+_0>L0Xlszll}(P@PvcsHE;B2qGUtV{cs zGSB9BSJpu3hKjC6KW0s2D)q9IcA zHg;u7m(o3asZtUeE}JF>Yx4Nt2KnieRYWPHXhU&ho0cz?L`%3G?*g~Az)kanTZyl@ z0@Lbr4-!gNaGSeu$*y1$4!feC;rZz2AK=`y)LGJBdQKLFv6*Z|Dcx(Gk;DW{>){&?a;>0yliX$MIbww4HtMrjCkbHWbk-%17zSkLBUsR#Cb@=z7V8j_$`($_%f_;}+l|uW0QLx3Uq7&Sbehg8DW_pL=JVs2-o)w*a}Gzq>FV6Dbx2wKyOwCJ`; zAuvClv2-|UDi_tq12E@MQ#sj4>s6H&DH%%Al)NU<>Zm87N>JK7)y}Q3!%@1Te=mba zpAHdT|ToG*lF0l=Wa5@6S!FGLqJPxtUuSP~M7#KYl<3s@?J z%XK~-7Q~nP-wx#oiTOdS9qvG1=?I)#qwvr@aK>$Pt{RMd_rTe=y^m6Z5z^j=YA~vW z;+IO`e5jp|d*Ix^GzHG4G`=swD$b)MLj>CB?2sVso5a6_eUlZXbV@w7ci-)nbN|QW)QMJsX%aER= zl22%{f;En3e3oBE+iP-}ZAuy4uv(yaO{*ycNCc;K>w9Igt79A98o`>DF&b7QGeEo1h20NUhBn4yha2|ySrpe-w9r?1|yvKT4D2q#%3&^ zyVW~d6DZk|Rmc*TK9elb6njQmuzD%@HlC)%89SD*$TCmJ@@g5UK~es-ZZ&IptD)ja#mdnU{8<+V z$5{&Y2o;+$Vf|N+#%^#OYpe+`XKTE_CleT`J-h${btG)AV6RrOiSNw`;QN#g`<)C+ zd@ufOOah-cdsjI7T0uPFLL>)!Lbok;3>KjIs7{6A^ov$8k@qrY7yoE|u%?7KiWGhD z_Jq4rEgtQhU#RaF8d$5an$h||tro583;+>4`+e+b*Z6mA0^eIW&W|ddS>6;!~a zkI{;=e)E#7u43i8N!B{7mw@dd!;=34ENsFd?Tij$^A^^&+@-UC zpT^bW&l@2gKy2Oukz4lL`7x5eM)h|(CIExR8pR(iA@V#;1Tq42Co)~UKx*rH9&+csx&_Z<&G!i`0_$1w$#D)uWgzHXpy87C-dVGqs!HSsO18_eDxV7~)wyK zJk=4gL#l2OdpSLP3H2@@H%=QHd&(ViWYhi@azOB|aSfyh{$~ekk`}2u*p!O)?F2`` z1?{fC=xD9MVqtfQdOPNAXgdFFMo*2TdNPsnKsG8u1728?%_0G(_E&C9Sh$Kei7 zc;lUT__q4_w*eFpananNI{!@O(*%?b`W^Tei0~`j%&cO>b{6^ zI!T&*Z^rP=&9E3GuJU^P8L2gfhtveHyaxn;%jh-v8$^3WXZUxQXemkbke9yzi5Q**xqxdq`XGLJeu{FGNUNh+irp?S6cz?<N`LRfdyEr~K(h+-1RXCm`ICgkM2zQiez1BF5y&I>89%x^Z zhkjV#&uezynZR=5jFG`A0wF($n@z^!(E@6J($yZPh8CEZU`UO-`kHbAA`+=`#OQUG65Q-L?CQ?alf1$#YH+3&jc6( z8Jh9l1<(0i#SJH&1$+kyo}#+!37G%edPHvJ8Trds5zkE*cvB@js$wH{^8%+vxZa1r z9*8H#CwPW0Gu2vxr{olt;(?QqH~&x&`amK?=NffFldZK(n?1sBEE2vE`&odV_XwIh za57HSy*xFNKbeeB;fzQ49~5|8*fYh1^SM(Y(B~2`d78NC@H9_6BH<#mA{1B`uc;GU zO+IfXG@tuRekt8D9IA`sn=&Vd^Z0tWQD^K*>Do5`yU!-uV8d8J{6oEjOG^jMv7fm2;U8d zOFvJ5@6wixHRej^i8frA79|4yJ{9z6cJE@xbknnfG0W4PPgthsF(@RODOi840^j!z z&ZD z9R4$whj|y!5eZ5{-RgmdUa$;VE9Pz#9Gw`KUl9j4H|JeNqX%xXw3dh%hd*?ivJ;7vc7G11Q)Qr{2^BA&YAiVK)v5E3 zR1`oF@lY4r{J77bVnu_?byUv#6X(txr|Au?X&Rml#NW2n8jF*S5H3ntuj0gK{1s%y z=nkm4+8-%%*(@h_`eRPhD>|oRSFY+4oy=Z|3{8|>H(P`G@#oXy^gwyHM+!Ss3N&2M z7m^Py^O5BfGC`LQE%~&>is>&&KBuRm=z;cV?ocy>W^sX*quPN=mFdQ^#81Xj|=xgVWSJFMuu$Hz;Y)2(ytovaleY`jhCAo(8S;63sfagi z+5(lF&If3#Ih~;L(u;3rdgfPPA(eHuu9d%u!nVprw)`qf!+5j%FdjHx9mXT@3ZHWr zkDO1#xI``dq1!O7R9R;a=p;JdtwMAGW>?@%dE}P`d%p$Xjl*sVdl|%@bF8vym31?m zTv<0mG!t7$U+%KDVy{*<+TD0?pe6Ul@XfpRk2muQ{Q(Oix{ z-*0Wfid8Xo@tNr2V`mqsR?s!F>I=98C)|nY_7XfJ1qZrnY?u|p6AoA_v)T%9jVikA zT);G{h8)DG8YnRPIWdpzvDV8uKP!&+JA`C=9|f(aj>aAf38Lp@8Z!7{21r1 z0ZmFNz4H^;rYdB_rd_%i*HYV+s{F(Tfup#Mj$o$=_*iPMhh65RRxS&~0F ziX6i=1^%*N@wX~Y4@ez+^abLC@T!guo*xO-ynPH=gAktjwY9O7^$gU$NMlBTSrg{8 z6I?ZL!ZbZ@9gH*12824E5z20#(~z&|WAkA>od6T&=cBIUD}?{ujVPI(QL3G^HfPhF z0J~3GGfY#BZ6|qdd+BRyS+>F1w#7HrdZ?K-aL=7>9Xcif)@^2sV#l3rcYSNEWBP*H zO1a0wRW;?t@s{6NJ6GQ2?&n@Tp!&HfctKS7xd?vkJKTUd^?>f|0$~Zdvsq6O1P-3b)!)wDl~&b`I@WIios7?oAbOs{C)5SDE=+3^vcox zoy_~SlhzjF&sb9!wxVh8xJG+ag%7W0^g2VTIX%XNCAK7f?yR*ITjXjJ&U>7*HejzS z4d++WqoFy~oW20}FTTun%5C$`qugV=(srxbmWDyg;d33kA7^Bko)>WY>JJLc|B8U= z{xdXsPX;*kGq!kdD**N)0Dkzz+K82`?i5@&@B1r~kKxsg(hI5X6ar}p(xfSMU^RV8 zJ^YHK4rH|A__ZO36FUj$E<+qEz4i)po9eEprph_@(O&0E)sh>2>B|Qs+lH|uTr8{& zzw-DaeUN+UrZl*^9?<}qm`ty(Gg))C9%=8J2mQb3li!}L7W`$;7g07_sqnXq_@l6f zba&?1d)0VuJRI;RuGSHJ>{VFLUZwSJA-EmYoz_Drv#()4F5Bm;b(XC2NSC;<1100{a63Gs3@blpP$5q#|**2Y*sp2vqYlSR@O`eMo0i{1H{ zMv`TW^gppYYi`77@*f!ScdZTCU>W1%yO_xa7%^UP#~?F=Zb-vRgoZz`OBE$M`{vhY z?+M`D55ye=CQdlgbhEmK(=!+p{JE>Ku3%iIX^_q*5?6a`ICZ>o8B8oWe0~i+U_C75 ziVW1>Zf%4sBMd;ldIlnnzPmlY7r#Em?!#WlKs9bzhnk)mfgb$_(A{3R*nI9Zdt;xI)%Fn9f!xK6QHEKsWshocjVmbb;X4r z>z$1w_^Q8QQSTbr%hB08UT0Du-eY$xb*Y0p|3TL8O9`Rk1Kizn)QIqT(Fhx^zmY6B z`9s1v`Ow-C`*#LeUnv^L{;#zgo~JTBfwmwBjM7Ke-X_Mwi`(Q;`l4urGmnvn#q8%q zc-G$57?&v<5Rh^zZcAgUYU+z7NS5Z|Nd!!Ln?aYQELrDg*f||2P_H=(N&6A1q@X^v z+!gfEb8I=!aW;$KO;v0UpR;;l?v7twb zrnCG`AY%3_QE&SRuyICexbM7P08%ldWhy5FV00rDD#JWdVRQYoe$`?djo8K4p(kD6 zdb=+FxB&u>bux)(L6H4gg~S@21e=2EqqXyYFjcbno}^5&_>=pjJHa1?*m|-&JP@l@ zC|3VeKJXITpc|~Gq%qwVe15M?P~u-O=+L(q5WDct`C;7HNjDISNryn zwiGr@X+PN2-fhu0BFfer_nW%fKZ}CS7wPS#NaOXKFk2Jn{UP^DW2EhrT1_rvtHZV{ zRJRJM@7Hmc+T60Xir83lQN7;JR-OHzwEv&0J(rrSUCVA12I9Ni%y1GqW@^S1nB-Sy*yQLC|ST1-O%`QhWYs1q}B|3cv&vfPC@Nbt|ihf&QKh)31`P0pkkH>LOsqRfZ{j zAp`hTv9)1`6@WuU0Mx8%>%sD5fJ;?vec4q7;F1f#%{sSczf*4!O?IG)R33okk6@MD}#H-UG4s=f%z(4X%~~AtD!7DMb3+)c&DbVEM5+G zwZGfP7SGa^_9>`v(=G^fWTZ{CZR1e?;%fJOZ5YxJrQJY5w_k$3Bmxc@qr?YY#h?88 zDx6d81R<=EK+kouRbcNZpv#TSXp-pi;i~c?-Z>yaG_Gf>&Gsu09}B*A3BCYn=z%S8KIn z)m~pl{XEGQX95H6sI}`ERHjL3NhA2MZgS%ijcpA~8Pr&Eg`Kr8(o7xbd)i*Z%jDrr z;5MN-w@7u}$knl89L|?ceTqr`mcWQF}fOUgGXxoTS~fF z5o&(Y^vFp0fkgSfON8z&j>Xm2ZH<65ABTFPe1eqYi(TaMU5pJ{&hvozabJO6kx`V`%dB}%SXc03o zzXkiKKHvPIH4CS3v<^xF-cr8^LuLP?CO!F>t61ZIV`Shfoq;dwJMGhu>adIE{p?64 zS&YqZD$Pl*HPYAh5l$?mfyQx9zO$!o1QtT!ecklpM_=fs1s>c?3(1Y! z9VoZ^YdB`#e#Ulv=nGxnJsUdpO&C1}Y$(U$MuLF_GSHlnSgp)80?qmlpoOCl=WdfR zDrI4vw#A5%>yF`O@?AzFP4K;pad|Y>YTp_$PHKXPbw!Wb)b!mL*u7P5+iWa+Djvvo zR{-9|#up?EOpNqzGL@6OJZjzb?|W+hPBS%ieZ?9zbdF9MC%FxA;e3bjwkQ)yC|-pd zht9E*9S`qYo}ZZHrt?@{K3iW2VykAbsg=~A^aNXdQ>w8+OYMs^)-1_gSJhsHQbtIv zcf5*Z%}`_OL7rP5mwlSn?9AAu6qq~d}M6; zKvE z{||`Hr8hO=D>g6l!LvRtR&r(rhUrskEX_Up8ad}4vh0ge3wj!}%tBiUl#m#Db6#TNOe1$2 zC*7dx!>Jp>+5I|j9vX4}{tuiDZ=e(^rm@o>NAT!3G5wU~Cti0`GLCfP3th=ZUYr_Y zDKe1j(a#n}w5IN8Bwh%KVkF}jXt3B;myMT!zgUcTbPPdALLSxFO~`Dy+=O_kw-nM@ zYUJfDiI+DTyG!}@i1!0?M(0)}`(yiM#E;*GSNPZnhWZkxm?SV5;BfYf+&ptR%FNiOJ@N4XTPKtj~3iKMw#S7L6(VH?8{j^{4H&xNaNp5}N9a~ja zUTGcMM9(xw^LeY}oct~xbuQ|LOeXCbvZj(wzg&+f=!Js%w29N$X`~(I# z7$?`(Va65HV1GSGm{2or`G zF$Oy^$k5Rzqhu&&dF`$D8;R(a%b**!*jj0EGI}Vvft5|2k}+8OA-OReLKGaeK|Hut zLKDv(gLu5Q*($S3a`Oe-Y&A_6jm>}d-2BXw_v1wep2;AA+c7ylHiA5Kf{;|uA5AKz zMtZCj?TWQ<)KUw}C|^-ygeb(&HXdru{2)=xbgBHtZp_|qk3u0vSl-Q&e8PS=X*Fx+ zlolDnp52(92Ra)?@TPmPX^2P}&7_0_B4vD`&jvl4x!Y3LkKvv1UZtRm(yWgW5+O!* zhd_+%2}0Y(@@l@>uNa@(VQW>sBp$F0ry@qKV*+nVW{X6R`I zkKd137!kEQMMTt|C{n*E%m1syG_Aug7$MHNAWS{^jZYzi<2UdSE&i2eYD~W*b+mk2 zT9Mx#go_MAn(Kqwe;F!u0-GCsv|n>~J=nkbC_$J^ZCA^1{>~xf?`tT{t2Wp3%$1OL zkjM3|&#(oSAp^Ae9D7Ke6@U&!0E|A2Eu)DtK;#iyZX@wy`& zA;a|e%9h2RDlm_VfLVXiHkVas;WUPDKKX0gn=Gz{(IU#V@T}6`zp=GHE*C{A-kpl2~5daJO?HVFPxkrX+ z^&>djslaUa0Hf_sHXFaIzJNI|!&Ev0qd%j-{NMpbTM(a`zRNMx{+40RpS3k(_Y|1h zE*SF97`ZfSd1DQuRhb9BB@O-W&SUu0YN=~`;S$F_U-gzoZC7cjjel_?CKW0+yMXYn zqpN8IKXC!8{&q^!*3{HhsJ8uQOje`ihE;#D)np@;hQnIw7B(2mXxVAh{S`}sWir6- zUlHsrQ2-Vd0WjnG?o^?eeKJgs-(V(t6qubwz|8p_dxSsB0A()0^3E#&XIucJ5=ewp zl7>%t*KON@j|U3AiYGgD62TW-v5hemk*hHhSEKl#d?}t^&-T|946KoX+Wd*h`yC_Dau*OAm8=K0V9I0Hj^ykg zB#^(Bk+&7t#+ptLkQBZhGj#3I_WfDB|4FM4`%`Yb(qfx}!hVC)uesPVU6%Wo#HUvN zq@;)@@aWWS#6%d55xlp}R-SpK7>AeI89rUq?*0vbdR3uzi9~4_ zs%-~++KeYWKx`PCst}hI}L9fo9vDuOtO}{5%ZVc z4O~o9c;7aP|M;)1J4p1iP)|OZ9XAW*&Fnd3~__-VEZ5OKA*{H`lWLQ#D zx6-z%e1ey~3v$cHz3jtTr8LP_=6c&lA;+8=V3(JNv1uOqyxs?;v6&i_xZQ@7SjX4i z5}QIAfTWm?^o4FI?eu@2YikMAR>;~i&1fm?;S+w%&t8*fd)fQ)q5k$pyo$G7n8`o> z_Kw`@ZI_iYofs660EsgbPrK!owwL9xf%ZtPpcXwYzB?^o&ANkwg=5_EL;9q8!xqHsHQID_moI-UmEU8Ccp2>V$6Z?NMJvrE_~@+%?wA4Y}R&ohv5 z#40!dHkQ{3$4FXO${y}@l=&CqCqi(6#2DNShjU;2T$nwG?^t*+oL39Szv!>dXn(ab zwX>skVwU{3y)Uy8+TRM(ZxaOq55nE#I3S(x^R>6-rJ`(f-ICTs+WJUoX-w6;CoJBK0Bt9F1{l@fb-7|I;v=Ppr8^2$N~?R zweMmdrW)QvJjv1RCaWy^P z00%LqaeRmsgGcIyAR<3-dGd}Vz&7?=ni zDQRS{&cfOl2YPTDeayM|AiF*qgEXO7jF~bL!b$-EwaU%iZ^$WVt`C z`aDHMf#Y=GS?gfBqZQ1NZCq;73R#o)eBOxC<%oHyKWG=uN3^gvj9yc$i1M|?3hJ9W zr)*&xcemIf!`=)ttqb^C2FBiQrTq?9d&lfYl1g4+Pc&VS+Mim0N$i}`{z6&Zj#+;=UT`o+!YI?; zUK@u+3>>`X#GvU2vZU$As7p%i?vc=_kOgnixyxj`j)vBR274p4VQqAOdufhzYeSvR z_GDB{kch@D#|_zZQ%62QO0FfZtnyLoTJDdN5Om!KUqi{LZo+S}kv&%Um1+Ic~o z;Dp!aHq!czOtPBP_)LlcLJbx|pMhbetVW$X&QmFC*gS zMxIs^Pp$-)e@{5S!&0;DJ?$N_3vXcOQ(}khYv(?+&-JobHeHokckOMji7436`l7Qn znFDxmb;PykzS_rLl?AoeCs0yp|GxIx%)hgEO0AiS$&Gqh*0>4|cZLH7=|_hdgQpl4lOasbdJ5jTg~E3kjt(;*iSZYIV@9fBv2iAO~j= zHj8()3)c%=aWQPRn{IGv_9QSA)zRJf=)88i-27N8TRo%)4b5Aq&9%z$rBm#^*>Jge z%c%$khZvg=RGVv#*LiN2y(M9w$Tb}|Vi`DC;2C1;#p9{^4(Tolf}fv`tjR}4jBTDV zNU3M#<}`)=Xl(wyvpM-p=!2B{uT!afN(m|U%NUuTYVzgh=V3bRUJ_BCS0|&}G<9+} zZJI%=IGcp?8FTGzSw*E?d?!7Cjp3W$)NPw$``mf<1Z^oQD2DUu^WhxZD9zL5=E^KO zMgpL?Zj=Hr+`#vtg;)bGmD)9a-CmcyrL=oP5XMDkf^Qnpt=>R5`mxmfw>My`yOic1 zd2asjO-$E6NzG?2ve##4mF7QsZcfwxKT`9+#hBy%QkvhU{;%6w6 z?BO}t4b6Gu&Px7nW~aPVXZU$yDXil01>Nc4{i|heL%lu@%E&H{?4lQUG!l_j4{9dO zm@m;6JY&nBfq1>mF-f>gV}^uKW4^r+7G)Y?31PAug4@hV5!OZtfg-GR)Ijo5YYnU) zcn6EBV^Xv9RdATN`ox{^XFB153rqp*fQxrBk3OsIt+ZQ?gvcWJzpL#XOxKJMm;VDI zF2`O2uhdUit4lqCZ^^+>G4T_t+`9kV1%b;kSH6pBY_0au*eFxeTKjn9#$9-))*|-B z876l;oOoRYjIKIVeH}{cqxPo|0F1A>$;i>(igny~WJ$`s=pYbEzTU*c1K#e~` zgAd||k9JHwKIBIYZ391wYFqf>uRY;MaqS{M%4obZ2!B`k;iLVj9((!Wt*zsSr}ly$ z?%My9>kvP@w2kth;j0|Yr4tO!*4pE%yd-JTgR>*GVx`>*X&nK{(x6$SO@e48!zX}b zY0NA?_ya`0FdShx#&Ck+6vG*YUjfO|q}jt!-@=8o;|wPO>Dp=j_bkIXh6@ZA87?yv z^8@$+lBM}0rC-JsMoPJ%!x6Tc9o$?w=u+Pm!A2)T8HP}XvVdf1t*lWNO+*W4h+wF= z8=X+A%>Pzph-9e2Pz#VOO;-Z0!M|O~PzI2!amz&P_wbXZNzw*c$qPT;r1>!T0+OW} zvb->Uh(~j0@Bk!B+hh41He8;5516cRlVjOuePDp-3x;)oWR05}%ahpD;xL9}K(fXy zj^zts;Y(Z0@FBx8hL0FNX84q0EyL#w>lijNY+}e^NZ-zQjNt^sDTXr)zcQR>_>JKb z!|x1N8S)rzFx+Ig&2X3DK7-EifWZ@HyOO0#aB^eVzEWL4vb1@K(zT!Y8_GirM;MMX zoMJf3aGv2JAX!>F2Qq`Vvu816FucR?9>ZLQ`3&zfEM)kAA&cQdK=P!80mD;9Cr?P2 zI5uH?^3X{s^ywOhzjT5uY4wW{0T1kwzAWhjrYKAL0K2&KrDJ4Ck6_UXh_a+>xLn*d z*u~?1mh=&qi#v%&T-=ddF78n-7k4d}i@O%Pc=pJWKIU?9XLGr@)45#f z-2Gfm?uRZHcSx6ud#209UDV~`zUp#ur**lw*RqS}uq^4e?BZUWrIkuYA7v-^<1FdG zE*JM?my5f!%f)@$=0cZc7tc&t(#c&e?(HsD#R9I%JP5c*9td169uZtF9vWOO9wS_? zQWzQ7#nT-!QNYEchKu82gIzp|Wbv?(E>51yvSa{ZQn`2}ak+RTVHZzuSu&)!Ts*e8 zTs*e0i|4s4jmH?5i^mvt@tBh(gH5{2$-|Dz#lsG}co@o(@yF%jfym|Jfrwq)HL_$x zGF{Sdvt)cSMOiXXnJ(>Pls`Q2xaE?Gh)1#4L_DUwCgKt9H4%?@uZei{drib+A&b(b zLw_t$^3eF28V{7OiFnj}O~hlUDaw+;)aBw))#c*h)#buCtLk4B9gny!l80WGi^pJ> ziw9$ui$`Ubi-%{Ii^pk~iwA6%i$`v$e-%BC;VzN~bC-)pb(f2WcbAJtc6RaNCrgHS zmy1VucJVSNONM%vi^u%MO)Zi~e;3KqfXl`6fy>2ng1EjN@+A%^uz9ATco z{2#Pf=uj2-geI8QWGNY}9c_&Nk2S_mUaxmV82sC9UHqxm`2Tck;mcP`)&lmq^HM?u zfH0d$+2O<6^|U#7+z9Zjp~-FymZZbgwlC;nTSU43@;OcY;9tlzq6 zk09!%J?=&;H#+K8cq*&Xi6CRP6mJM+6J z{wqf>*uwh!D@U7B{4&HdZ|~m_ZPkl~Fc}}Df4_1JPX9vr3;%|HGr(O0R1z-wJ!iw)&XX(PX`X)0BE<7!{hfn&Q`~-Av&@JaAPMR zb{AmsZr7?=`wr7~lDr7A`lh|$>*oTx{S4T7m^E`$dGXsJ>$E)z#_Jeh=4n9dGk`{C zIsT|$0n^U`o-i!B066m-VCE&jPuBp;@&IAiIaoAg2`~BvM2{Js+yQ)l7qIyr;NSaz z6AnOYCt&^qz|4n$$VY(GKLK%n0S*F^(=~oy<@EjUIb_K%05@L(hQ9)oE`+uF4u)rL zfH#T&91P2g0)F=av?~V40hsRx^2*BrrtreQR&l`nQmhjM7!wSrQ5x`e89=9ybl|BF zK;KZnZ()GOH>oecrE8J08# zTxbqx*#httz@ZWH#-2jbOfyI1o);4U_)0x@9r$?4H(@A z@R;H4z8vCDMk*8fL3FM^Aa*d|NHUz5NC+CLGnY#LzTbU^$Jz^5|-CE06S2H^TTfb;JHX3qiinhUrHNY;2yfkQet z52DQZfYyrv2N))20ZOGW0e;I+;X}XzhWgonjmrQ7mjgUL0(4mg*vSy_DTi#lz40~$ zM=*9ZnC5E%CL@ybZ{R8;pU%Wjh%XSX4?Os7vrV!qEXL1d+h=LGW@Rtz_SzJa%aH#E&%EVXxtqT9}mdt0hrno@Uj=+MQ^~z zeE_511jP0O)anoDI1n&n5MbR9K-5Qd?o-c zP6TL^0rRHU_z?!+U64JU!M!ROTzdQ1GX}}Sp=}h9gyV#Sl|ih;thDfP_!7JtuLUqA7FcNz-E6yd;lQ5 zLLl%q!}XGYmqCEo(ttrBfRkkbN6G=Zmj^tl1Q<~TaK0L#M|D8ent**#fDfVpH*p|1~hI4xE=>6*9LH)9pF@ZhK_*Eop>R4p$p)ju7JDU05f_5TK5C=9{_lJ5a8Hg zK#v5#okT!F65zrJ!0?fPXAJM907`0r|1rdl0^~Bx9StZl2JivHBZl6ofD_}fg{h63 zh<{5?2EX57%$0!spD_8{AV0;P zs`mF9z*W3=X+L7`PK(|=nYrvSUpvu?hj`|l-)ys(jo1q0yMJiwzHEV~KtM03*8u!EW`Te}?Jw|5}w zneG7geFR8;448=RN$p)M__RaM0C)cayoYRQm0ti>GKBvPX#5fojYTZR9Ds)h;Jhbb zn=hbU0N`FAKo0^e4FU8H<88NWBehq~WJ zhSIc-=}`Eh6Cj`mYoQN{?^k^wI^CB=yj25_PZQYVcLqO^H-m$Q0U|WO+R=a;lL3`x zvuq)IJZ|VdUkuTQO925Z0kc*EhJOw?^Q8yM|M&*{8}l__z)nE!9`=i#D(SfNBSgRd z1js%PXm}Pd=r`6t{}zo$zeCjcI^fA2z>s`)J^|eQ3y}CXp!k36;e>e5F23S?V9XNV zZ>AT*%WRJ#fWrQOtPsGCFu?utfJ>2p)Ea>4QGnCYfJQNZPhtT(>Hs?9ty8-Y2N>Oo zcZDw)A@9I>gy!FoMQ07s%PtT-?aHF>RbrO)N%ur*P8te9eW5V_O~8Q!)>>uA8zw`v zdpMv%DxlD0CQlpWo@o&6oz5Z*wp>-cu&9 zfOl5`9;{>bYZb&2^}sO80WMdMU(^F*A`9=S$7kxXUOj$S56la!f}xrpAF9U&_1K~w z7-*U6c~Lz-Ru7EdEd5hG_NvD^^}yiE93~TfU_#)>MtMw{w6L%?LADY8?nb_Q92E-V z8NJ6*MmEMX<%Bd-4oK(A`Dmsbk7mm0Xr>&FX3E)UrtAP@$_7BD9E@hl>wl)a{b$N+ zf2O>3XUe;BrfiL8%8PKOyzyqracHKzre9 zWrCjzekr(B@QfhlGw81o{6_Fc!QTWiF@ZfIcvSEfACYFtq@5|VbEfPqXUe3TDf4Wm z%%GVvEzXzuDO0APOqqK!WkSi6Nh4FHiTN@qWXf=#DMM+djFFi#IA+RdmMP;@CXYqw zh@OX@Oc`@BWq`?)F(p$5lS~;VGNr?3N~g}0o|-9LG*h}$ru3jp=`@+rSu&+-WJ({% zlxCkP?LAXkcc!%BOgYU=&y)?lOliaONaoG(pwzQ!$fzMNdnmxIg9;?iE{OLLvCZKP9s z9l_pzWBY1mcI3h!8W-w@Mbtjrwfu-;_BqOUZk64?o78=uqo?IqZ+E!mItE)za;{^f z<@hz%@s{OivEK@97Y*6(XkswCXw7~{3(IkPzoWI~i22dc(Q;(`=xAvc&T{Pe$)*UmVSid|=&+-8O7FYAM&ue0-E= z<>Md?JM3s+gmRG99JYcyNH-5#RdA4M9dWd>)F#;-dym-s6h3Nmv^(l(WBFNf)X}7* zD!hZ7roQ+fKs$%)Ecu5W)hXxXAH}?kvOP#)$E-XbB<+~hU=C8wF{@S&lIL-&&<@hz z<5nX(NUQCR>&G2cV^z#6IOZGJLdDydSsJr>4^`2Zn09A(Z9nR96rcCyTq+YtiJ4`J zmCCm3G~q4R$I~d_yrUXr94ZrL?u=<&`(+|Z*nDkg_CHEJ z?TDeoKgxJh_>h|(CGF|=Kg+N?-@m zS7sS0$nppYqWFN2V)n#4c&oYoEE;>-(ZVio%UjNqW^v>l?eaM+KRJuS&Nyn@XMN~&ozqF28$Mn{ljEaqc{%b&T?gUZ|yW`@>)JvHf2SP!#)gw6n? z_1QpME;_o{)0@nP8r3#(CZj3ukFZiv_Hu5E(+(~FE3+Ch__#w=1NH+7X&t_%nU@?L zjGTz*Fdv4T-l@9V^2*`iRvv`D&c`GXyWD8)BgB_gqpUZjH7FZub`;Tx*#({C-EI`^ zt{XZrP0E(BdW$Gc!YPXug3}e%TSBP9juIiY%?|Yyr|t`|w&C;KUN}|azh!#mUTXil z)mB7QkB?^FI>K$G60I3tt_)pUUC!6af#`JQlbbINyDht}M^b)rxj>5Z4-czr4|xa9 zb+o=m%u?INCps!(Y?fg2klh&8Dd`!;z1(-pRyS)(Xiq--`SkkoTaG#u_g#1-Wz7$F zjq0K@gHML)oT00?l}G<4;G9xkq76!^i_}Nt+^I6>byKc0k z7%C~CdPIy-G!npfcfqc@hcX>u_q2(R?Hu>rD5?ZJMRbj5WcC~J^$#ED{ot@ioA6(G zSJM%t;|?g*ajN`gjE|^ekGB;c1WtLt?P|DPK9A1^M?X}aBJyv>7KnES9~zc^B;!&H zNp>UdI=t*Duf|7;ga33>O&%&$D6U7vqIQ)reBc=Umn)R&!4u4OD=BZmhmkv=a6BI^ zLZW&2z+qOEs2pIGCODu}Rprm8l&Y$>b5*T0FRX~DAR`8&VPb-+MOZ1ZY_|v0MVLFwEM2TK{yNE!06v2Eh`gtLaqA$fv ztl+8;3E>;2Zz5OE&;TWXMDJTxUl5h2e5hKzNMUljWk!O;_**lqC^hEu)=NcP;VdtH z%g=1;qH&)!<`ku4`4}}~rc|g*4>v`47EoDM6e>r3Xi;I^NKA_!6+P^^x$Fat`o&Zr zYf9a!S-^i=9PnzZi&6Pv@ShiaE2^%&{I@Xcjhkeudd~a7sj7!x`L&Vk=5bM`$Q(z7 zNGpfJ*DMYmzal>7v7-xZ-d5YsnEr&kR|@3nAQd)Y`YT6iwQu2L?0kp0))T!gP|*ej z)8Kr^U?X259~}&NNNLX35WBoOA3~3S?fw@$K3uL?mU22)Dr(o5!Y9;?Lukz-M{m2l zBOh1q3!ykKlts)(5nQ*+3|AQ)Us^aIp77cwe=BcB*5t4}hV3oi) zTJqG<*Dili8}d=nDr>n3l`ENzKzvP)23r;@`e%-Tc3-vl5Pnw-x6rrj@*^y-9LuqE zr1q)nAr}l1f}rxk`bAT&T|hH&msRGq`d% z<#wrQwgweAAOD|gDBdHUJF41~b&I)-##HtNlC|bPhnJnq;wu9On^V_{`1SaRURA14 zw{LD)uPzeydA?8((}Ml?uzQVb0r|=n+@g9K)g$^FS?(TZR?i5&YM`oT2UpLFIQs8} zBf$tsM0;4pqaUUI?HF!Mj3UqC3kvOUK|xK7189GhYTYUCyUOOgELwf}1_Qnw+!CP2 zF3YXj*ep6BJ9h+`*@=VhU!YEeUC{~bXI-dP2^4#pXSM3ICZ~+i6>d&IHzAJQEcc&~KEMn?btzD4r)t!^jTa6`%B&t9HSM&xuu#fUANjTLv z%Blbfe^ei+T<=4lzH|(=r|l8TNA$I)EuxBFU3+0q=?j(TZ<=*+jBjkHy5LPnZ3w%0 zr23$+-jD(sIx8FD3;Qcy?T8p$m~t*+ou2nswQAM^O!%0=;Jf3}23L<7s#u9K>PDLH zC8BpY8G22IqjA1z)Vhc}^DPm5xatu3EhB3g!=RA=GWkBPkh~W5-tGm%Udgvi>ZMRK z54{fMw~h>GquQx z^ss7H=;Nb77a7kz1GCJFYT*UxlH);-8PC3Z*)u+qEWM|-VJT_a)&iq z8YP>pjhYCjqIuU?!}rBfZK`l&Ghv)& zou+g8>QF>fjbMuZwz4^_h{gcEg41FKmytQJi@ZDE%2_m1g&woBdL?_*t7d{MoX&%4 zds-Y;#cT`WGcX-wbcPyl^7E>jl`dq943MXAyT?`OF@397r>tp_=DVrrieB@@FQKvv?RW2Tzet;(JX+mhb?QWY;grmz=&_Lh=5H zD&AK&hkfz1lgWS&Wi_xopk@WT$A}NXP5Y43IKVD{pXHUac{+?;zPmz6lx^o#V82+!e$7@PzIL$O|5KipRk~LntZ7!MD3r$yFKsG7Rq5}m;Z#-1Co)

NKKz zgmw4tl4%5~DZy%C#(G2)PUDiDHfFC8n3lT_PF1~p)TYJlqnE*Ys!>HE3d)7by$l&Qc%)%9Hs?j^l8SlCLtVPd9Ncz4RkwI zd#YLcLJtF@xgVtsA^N-m!SS`f9Y;AqBPs1!ZL0)Spv+D=PKQJF8FpXujziw^B+Exq zz~10MYx)*%Jx+pdg&Ty@n9^ECrw7{0r6(9|3oS0Er%;R*?OV|EzO!KGpEEo!nHN32 zKt?_SqcuKHS>^P}_9S&Y5Bbdt-1tXQMz}R7NrIkU09oS-tqd<%9dBHLJo^fJO0x&{ zIm=&Op-;-|HBLS*EznKT8qWM%+yL7EE#jeyb+ePTLjPQi`_Bs^fZqo-5 zdh1Y|hn;*=veqplJbb{O9vrrOPK>!$62DDBYg=v=#_ki=N*NPkLTO>0XWqtgN>ui- zN}bz=O2Ceo3f4d(eEe7;m#gg{^oG?ECkaHD7H+zLMpS?$PFodN+G! z-0nl(?>-f;q<6N-@6#g~q)OvQ`D7EHnkCsZ0du&JC1 zd`+d@1E{Qe!1HIkJ@id1cYnw;b60zrlzIsH`wxvW$r=#*TA8e8zRgq4bpr~R5L>1| znM`{O_Qqp_9T@9RsWW4J?D0NkjgC*abl{&guGD>IzPn2K^?w45oF`mP_>IFwvDUt^ zu(`}OcxpDK_nyJ2S_U7@YtNoivub+d5S!>fR{7|q;e(Gg%F?OuIsugaGSU%;K_#cX4H(C@R{%^SZG zd&Ch!89&u2NiA;G@v*Cv;A^`TixpXZ4w1*Tt?Ng7J?aJ+Wg~&t;XA#BaGh5=rYf7f zt#wM9bB8DefY(0pEkY+xAso>7@r|8zT!&$z^ffCr^)r%_JK=T^9j{@{Frw0hFAHyj z3XVHNh*d&IC#NPPn0s-e^dl=p7DqT|5n2B9+hq!*rBQLv9w<bpBzTB^_vXZN0J4mqosoFJ}MQ zkz(s0X#bCIdzfn*VLkZ9_7U9Jc7@y`S~nZ0s9XZ89q3{tKkGvMpn};u*9H9CZbc}r z9kLg(ykU7`>K5P2yMc}D?usDBtTCY*fzevT8-d3;>-*D?TlGB)=yZ>VPI`|bR6Yu4 zE;(1~7Y$0Alx?q?#eB1TB&~_nYg5dI+eOX3DN(%5H_n~C$S+o}Z?q+m|Hqfm@AfW2 zC7S8wDgIV{KU(9}(Df=SO3(R{`ulxoZLD6`UaBkk-ul2dxwNAwZmVlJ5MQJCLVH9% zE_3skRpc>z$2|-N?buhR9k+`W$Y)Ky{N8AwQII*24FYNKx3{fDi-gdD@5YZB#0@2u z#(sa>r$APx^QHOaLzp#>eZ|+8e2?CHDCZ)Iu0=PnmYu?e;DWv8KFn3V?i5i^H+Sbn zr4--3&wR^B8rnc{nz#RUK!N11;LG_@DXw->JZ#L^w;iSwjIZyn)l^f@@7UnA z&a#y+_6Lk9Lg{_cn${e;U9Lb5BgTMUkZSq%pw;ztbG;x*{WujGiD^aXbO!{Gv$Sz3 z${o_c#~RH=DJ>03FUG5ih#KC&b<`@fH-Aa+%fuoyuouF}AJw38!6yG3e`L^qvQZr1 z%Y;lCK0JARfsCf`M+j4<(ti!~HuiQmkH1SupH+n1IPkpm2Gt6tZ83kcFyS5A)KKqa z?@90SR}5iujh>Vk(WHHWlBo$sdoz<#8tFak(T(6w9$qbQrM0wCEd>(mzYtnJi;7Sd zcVgtIG;Q49-rUuYLJ3{ODvN1sW4*IIg3!f~-(76f7`z71jGvoWM;PMwIqQ`8&`3nw zu?GHBc6Wo~1xvL8e}hqfsl7uc9&BJ8Vn{%3`4f$b*{b5Y9c$oY9SaLxhd6JMw-liVZO{the`r?0sA%y%cMI4KIYt}FJJzhC z@s=lSzZ|fk_~OMZ`bUGBRiMQenpwNDqE>^yiCMFg3pau?yzW@nNQBM7$1+;yZz-?2 z9$~zU9^rgF`4)0)CaA!*?fl`4%JxyFGryx+Ev#)95l!dMY98+9yq2f5w74KT)&;&ZdEcP2t@VEPAVc`$p@>_?_?WfIX%@7E)*N3I zX?<=RwWyW93#Te*{?bUBbB7+a*4rB4iRj`zsJJ_dP6QtSL;3 z+rit3wz~QLBEE8%Y*&P~_Rd_L~`<`H%c+>t)NXVwGt*zT>!glrsd&OHNbKirO)|yRNC$mp|IOI5c znYtH)yq>Q+CDql#mv_)Zf?W$9@z}-}3g!H0b_czgJ*iQCkpHhZo$8>QSJ^~=TXD!& z`BR0C1xs<0KjbZ7(zgQ=zonyYp7n~S?g1bJV9*<-NbybDSg$<7Mg)RA7s#d9Fl6}X zu}Krn2}S5zOrI*LJg=$L>a{w^D+$^e#HD859};i>1wkHBTI#z2!5{t`aL1=Wn}{h5 zoz5Y4oy0+Rtd)?2GcW`?d&{bfMYn2Y4bsA%C=2%ca;khO&8t-z%1FFpZF!5%;d0Pv zUS8Gf>Mpu@-%-eJpktwv`u5kBb!l|c)hp1-8X6m`KdT}D%TptfpDWKtwNIm zT{|xhD!y%~Y!BT$U6yo}Z3Fo?Flo)*Ft>+Z!XEC=?Lh8p?@norRk#%>Zg;DKE#_o< z*6B!bJ@r0zzb89FzN(W^MMzU9<@MCfAz0$x)CnpFyQsL!7wb@P2sqyb?ES9X_ZrfW z%dK2*7~=WwuAnb;<0@)xFQYr%ARpC}a^A$6J)^h&nz!jaLD%W02A1^vR$kT&B%!wI z2fD)m>75i4+1j;+5xU<1&?5$^?vd}=v0(R@G6?MM!M5&E`t8>SpreDK5|=G265&nK$1A@YJv`F0|EO>*bgIjn!b>R6&+(ueR@o2g4VZBdl-Pe*s!(zjs4 zJwE~(eMZvpzSgU*C24TZ;}Ijgbs-?lr}$&LhGcnsK?V`yf7y+MJrPKG>U ziUdpPzjpF0Si&(=KtGy7B?jo`ZCnX%)-=dtrmK?A8lVT*!#qA7Wa30ywd99&dTmrs zn+To4lgVwM^~xgwyS)v0pQ%P4LaAeCC%03H0z+8xROqBm zy|5+C?%1iN_2M8Zd0@4V7RumQOEsCq<9ABcwXa;(FN99wQX?4c0FJN>TIYpLB)j>v z3hRvU|8!Kq8;967n2ev5|!@t=Z6}ZEbtdxuCSR zpPDhBSPiFIQa$IGSAFVEEhDk7{=G-nP^+GVdV&2i?f6=1Geoar#3=GB{JHSf|CuqK z-r-)ktUbv6ptR_12EQRocw>FXj_>F?}1YVh8!dO-Lxe^?_#{dh-eh6OwKjS z
4kIU@iM6NrHNLL6q0Kd#KqoMW+d9ZR2^mnxr>0 z-bzHi>pbM2T{3g>HiSmr^QCAmQOlv$4FC~&UWLlGYxMO{y`zygk^guN@}KhD$#*RB z78BQ_u8{{}&*p*6yJ6ko<=ffp;VC1}ml_zd?kUM6M>)wS^)%JDH@yrihrH6~oNNB76@A^!@&}Wu(2i$`QWLBk;W+yVII96a)NMqSThXUGsw| zz4aJM!=8}uaDAXrN+O@|1oH7u&A?|j=-H6|3%=`Zp7n~-JK(jQ&umI@W+@7P5R`V| zFD}I{#^@*VJAXkw;W;fBp?9`N`YyVXR`P`{yoOZ1OHXUY6VH{vYnd;Mg3Z6y)4DY& z^a`e5z2HWHZ#nMuj5Hglu;ox(TI5R=gKD5TzxJ@M%!^JV&{{Zt9wIFjC4^Qqa2n4z0LKfsI=wp|9`_9#3fsh{$q5zIB_g;@+${VEz+aq-ZLF1heik%9Lj2k^7%;8V`e;5L`H4F*JfV{9P zmAK@Lq=?JTYDQBQtzJ;j=D@&!XlVn=!>O8bHaF!f;rOu)KJMJutxqUrB=s>b^$J@U zHVL#56)Ad*-p2T%N#s-5O2J7wF$N2esKtHE>q}8EfWA$!EBN2H<9mqS>SB-?=Im&7v!uP8W{>dB5Gf?8Es`SN%dHKGsMWv_| zVIvEf%_uZYpI~HAcY#x7@SF@Lor}`g1*m~q zRHkOOLR^$NY(Fq+n##5;KO! z%YXX2GAev^wngDSihELfqkKeOY82$&V<}~#wH+Yx5VlxRX*@R|bNfK#b;m>gXd;!E zq_;NKW+Hc+1o?!iM)DRmp$Z-YqG(9yfa2DtIHLD1R5Wi`yik4ZD%-wLx%`K-ku-yw zas;huI4ImmrpT|ed5oG1DDiE*0$$Jux|*`kO%{MIvxtsQgWrg$gUsu#LPjnEsb$eu zll9v6FsHGNjUShCRxoso8CZhyCk_m<+Pe5X!zMW5mQmaky}q$YEAsedkRO0m4$cM- z#nEPU3VjZYcIYFnPIFU6haSm&Yt-hhUlMVJ0ES=aP$$B zpF7xt;#LpzE11MSYz8F%Gm4uDos6Fbm$C<3h%JL``J9JG^B711-pBIPFO(+78=E}2zl}>af);%-q=dQ3kO2PP26q4UqI4|@0c32t>rFm0^pf@joMuZY zAAQ4FGFO@6bv+wTp&dMihe_1SpE=E~PElC50}5w$av4QX;uIY(nt4O4BRo;Lu@fqj zzEhcd^=%AapgLcX-s*V+|Y)XhU+q^Js z*(^-+1DF=7E8jg7^uJt(8w^4kgK04?0sgW%>JQX^l?k-HVl3KEtMf$e+P zsGx{739k1d;fJ%`nQBK7Y0G|U7!h&9qYy_NH!`u%-+FPu23_)KYvXMv=ja!x*(TTY z6L6}aoJ{vUK`S!!hDMVR(bs37Qaz7iXX8zL@vTH3t3wJsi!I#vTx8np{2~v%2svG( zjM;hvqgF(|j^$CXgCn()-#W>12Fq+?03Vla^!&q;Myc`?N`2a?9*jqO3_eiQ^ zu6>066qFVQdpg1|tVKP3N^;%26qUwoZReSjy1&a;cWx({ixeR{-3EF7Hj}OF@!n?n zusdeFc}J4!n(aXRO#r36xJUW#>TQh~Lge0T#^<8LOiw*d5AM&LPx7=5?nLh%RI~w3 zm)_Q{LmL<~tte>Vv^%DPw)+8`s>1ehg}wWrD9yTrx5m&pdaThmgvfdf#auTJoSRrT zx`a5z)`R{iM!VQLG|S8rh~G(^4yR*JM{Fis@iwZL#VRc5YnW|ozska^bS zcM***4;89Rv*zjjjCv9II<{-H26l~9dl>h}@G8q!C3{g!%J2v?DWZs5_}Cwy<}D9&9b?X%kzNUCo$;cZVS*ZFC3v zAXASrV)}!Fx&xa^wl4Q48_-uV{lN6pj&vtek2f+WqR%@)#FASd4d3i9&`TNF5Uui1(6V6rN!3y8-O(+~0uz1> zn}s?(nNk;8t1FRTpA2~*EJdl%8&HWlqs=!5QK-mPr2H4M$4FZ9+vrfUU{tg)FQsL} zs+6kPiCJ)}>>TIp+*(X?7FnkSB3i=Mr(Ug~yhT=55xGAbq#CoDnthSsAhP~ov@Lt6OP1cjs9*864>q&3jxd#_ z3S=(Z%Tfh`T@8#X%UdO0k5nX1Lp)j4LYM>Tvt?;rcMMRHtebFL%OWEpH)w9%f ziM28kc>^}Y)%iEdTB6rAQX=w!u+63QHpA6IufVBNlE*2@|D7H#v9c_pMr^w4226Kx zN@(_9oFzmm7O+I&SPpe6be?Qm~(?-0ahfDQvV-!EZIXeim zVzw^!0h<+58DGhC-$I`BMz(HVY8P2NTOF$lGhwO@YSQV_lWJPm<3z=cZIY$KCYcn@ z^@@}0nscJii`iP)=df0$LWrVq-6osMP*M1XEty>`Pl?N{y+e`TW8-FrVcblWLd>B_ zP0WTS{6)5VHn;{ATW)O@iF^#3LervHUZ3LoP6;+QbcCJ8HqvroBTZ79H1h3Q)MDB_ z>o7`mPO%BKYWRk785SF>drWd|feGD^jjJt)rO~9fHx?Bl|CsHqeGYqTX3#Y$@lKIq z1xn)^Hplh`%(1D`Xo%lg!nu9^@JYS}QrU?OwjG4QHZ!OO1+spgO}Pzhr4kr-z~N4- zUlj4P-ufgpqhRSxt76uirn9LxRoNG~vcG9h)mG@H*$)vFhaos^CG5XR+O%mf0%!O* z%RcbkZ}tkkxzR&K^n_I$z0KSN(dnI2gUw;^d-n8BA85F?QI@drIF*W%Oqaq(*(*G50lBaK05Evv?{#XDEQq`zy0w4doS@6fVOta(60lh{07 zESbcD5DXuN>air8H!f-o|LIBC5|;^)A4w9{Zpk z17|fe+nCUI*xufibsSw>x++_dJ7I!P%l+DjXp;6NjDf*Un6?>DZ3|#wv95CQux;wZ z@l&&xg8GP4P#1>pM>ZPSNTqM37etfZW*b$6z(tFNE#-MN z)1PG6*;8yjU$NWBZM9xHT{#Z2>VBBFas|{m9%)wW3TD~nlZzFTPl~<7ESr3Cv0@cR zv0~%J7glmytQc!itRtO0cYyU47k$zd@mI{UwGQ<0&pyESf0x8MAEB z#Knq*48>+KTlUeU$Mr*De= zl3D)r&Bfx&sdTfBw=x}vPpMqAd}pIPpJ5i?+1Ob5bV9K>-{DUu?5up;px8Cc*2TvT zu8`$sy|C$G>|3tZyJ)%Jt~~!H5##2&iw_6W0lKhNb?uIDMg zN14s!-~DmXa;Z$wa(p}Ij-8d0S;gw?nNMb2e&zI3vCo;s>8Xt^(#J}cbvVg>(^Z$3 z!%5{C-uQ6R?pY2Z6?>Uk97NiJmcu>8%1PKi=#Z{t$w8Q6ud`nqgxS~u>E-bfs_1N{ zakyZk=etsEZT!1}mVJNaS9Z6c?X2uzgH6XEC;Qb+v0v@-EZfz} zv$AG0iKvL``u<5*mWTV^kwd%>*jd6LF%^2m` z$wBwU=8TJ#H-E+MV-|1zHdbDx6)Uf|%kYwo`ZouCdA(J%@p{X&$*yuG%X(vVvGT&I z{QkfZPsIzYiep5;|jd6rkV33&B%vGV4oSb2}Rg?Bm^ zE3Yw%m3NDac)@Y8@@g?DU8Xr%ndjrJ!$o_5FdC+{K6kOQJXb-ll#0M|-Nnj!PO-*% z&d$o(O|fU$yebxNcDj`-Vr!M=3R)Iv%CoUZv-_2`mSSZ|)BtNQmtR>CDb`pKc^2yD zq6fPoUdwsnRgjC7MUe6=Ynn3!SXt62Ru&>y(p>*i4=ozyQzv)wozF((T@H9FlU1z-t^m3g(1SU=guh*M} z^O9v`BdrR2&C6csJ2W|U*vK(S<42{Wj>y(TCzQ^t*9W=Xr05NL7av~4KtHOV54mmB z`z?)d1{KNHZql<2`gG`w+o;dQ%KI1n;t+3t;%^(MtgrR z{M0P{`mJ8yix-0kbODw4PH&GNIq(0S-p@}~h$Wo}2Y@?@dK&xulIwi@-BJI+@&YLb!C^{7ms?o(KZg!lHI7RgY;~-J^+vSJ^Cm-_Uu8u z9HeSLh~_LjDoV_y{9w+C0mb6U*U=EM`b8%!OzF=b5Y$rA_v0(8`Fr)cUQ1OLwsRJ6 z4Rjw4`v2Lh`$MPLK0O7GN&ECMc&z;q%s1zt(_$Y^T@)l>1QG{>Xnk9s3K z5M?AS{82B3{}JyScp##xRQM;oH2z0y6{+b@dP)3`C^fgo)bwY)GF|&gukVeEC0r%9 z`cb)`^>9VK>Gm%L97N;Hfm*SDm4*{7ftECP22;SyKz}-LNDn|W_?KE7#N~>52hdjk zrEv%JVVEKCta}{RdJgKNy~J^4fE&%8 z8CaUS9MT*4un4L1?C(P@r#eg1slzxGJ$Oj3tbFe5O^*)YSF^6r*kAPVcnrRbQg=J7 zx5WPoE~D@V9Y(jgLTeAB30fE~zrd1o_K4mNOz2TP36B}- zarG!V?-eS31%);87`oFH>TyM{LYI%}os|D_E!?R4-oP@{_PE{!^vNqo-}d8r&tj69 z5piyX7M7)00@ONzCVz#xU&Sff;uCs16~LS}NI=ldQbb2_Q#SG>TGAD2bP~&hT{D4l-?Mkyi@vHczgws+a!uTq1UCg!#)pgJT!UYl;q^psFX2DBa)*g zq$Lka8J;pMDsBAOwB+#e}YIiB~Tt(N1<-c;e7K1$WZIW)Z3dN<3_)^mDyC92ccjk=5t z4yAw#sGJi=buaq7;ms1>D#OdcE_ye(EYW$rmkK@RO?q@*PgB0L--OA}|0%v9?YW?r zHIncqtoouywwi*`QX2Fpr_m1O4o7i0Q}s zB|dh_a(?PTo&N~-HIg*7zZ;df99)TJU(~xRpZEIH!kd`to>>yr-Ehn75@s7!b!MOY z?2;a-ys4g5gZ{mwN1&yld)1^4modUfAB(~R-K#bp=vigy{AE25|D$__P~qR@e>Bk$ zs{Okeh1Jm#e#bZ@9W9JL_#NYu^tN#N`F9B%T`r8C{*J*?`duqL(BCe|FfgLaaBS>N2{Z}S$%BPRf%uMRlP2JqkB~%-)nk#{Et3Xm3m&of&_WJrZ>Su zI#(-ddFOwXYW?5)!~~;pzuuKb{=dBO8YeN)>@tao|Gzyc8(Q9piPDQK6<0q>22VY1 z1%`X6R;l_?B?`{dtGwQsk|9&ot2$GRa-bjmlBZWy4)mjEmIM8$;&r{cVpKmWOR3k* zfm?N^^0e)`9;S3uk19*~*Y&ch@U3nYd&3l2-D>O&JzQy7eQE0rJwgSg`cg&u`-UE- zl&lWb_zzR*x%8#ZinsdBl|Rh%sD9Hz@mB9hxoP%A)jN878v9Um=cXRz#STn5m8k43 zy`G}lO`*gV2~d8-X!*)%wCS!sP)WpGdEx1F{JtJfarbo} zO1-E16qE48SowBp>d<>A>gqk+LwOS`<$g0L|DLWXi5MmCI)j6br*aP6ySR}HF-N{* z2FLK0QWfjtj+xZVp(iSd*d1>>i-Qx-KDIQA?eRIYmhaKaP{19%z8S9A9(T^-2)oiD zT`#VJ5~Jfc=F)XtA5dJfA!f!IDE=gtsR#o$p`5y>Dm1Y!&VWMe&4t!6blB*m2@?`h zlg99O+!BNs7YFb%L@Ek4ik*5<>ivL5P1&18z5@r*@OB3}_6 zRQ;jur#y*)@o|f3mcf-$;@)goymuCd)kjIhn7HQ>4kSrQ#Ekg!583O`@{&d|AkKh{ zxbsTZNIRO_t9*U9r?Fv5qaW#U#n^$iH+}%G>bP-b%nS9WO;7b$q+2w_y0|BCl~jRY zO}$xY%7h7%xI}~&BjXH+Erpi+sSl!mALDCNA;rEp1IR=n%cP_ZA8U9OE8`4c-%?($ zJ=KeraA}CW@ph|e=2LxWnF$k?aS`3cQSi@|picd_9Ga$q2U@#=RL##c{Np}VtSkbY%#9DgaRcF3-HyS>k~Y2 zp`3TN>9gm0BY$?F9{1}aPm~E6Z6jTbh?C=Sc z@We_v0~FHCP+C&0zx7~WQ4ka5F}tYS-};n_A`yG!4DjMPJZad(u~u|Q-JQSn7M@>m zQuBVGsDJc^5$r%xKUYcha(!AM`<9J%(|iBuojqmmT{}YO|Iu4{u>)Sdrig#_5rIO9 z!Ey$~s?q+0a*@>HKP=Cl|BFr~8e*=z>(5+88P!B0*2x**$5+ZUVR%aFTWq{QctrQz ze;A!@Z?nC<*@3us4WOAX^=x0^#8A2CF)H^;UlS-2u}jW?potzi!yEByGAwXbar!C^ zF;30^jZbVEsX@*XN<++(GeBdNU8Aux&`)9!!{h+U?d7aZi7)j)8uCi-O$FuV&!^8QBl8Bk{(Cgf!Do~D> zv#i=T*cV;_!_l|pi+LJnDfFeMvy%@yP#+gDTlQ$eY4mpXN3RqeF+cw31}*k-F839Q zSQ~$Qhhn{*%lt$l7RCWa3cZ~JD7~aJFi=RbGtPhHTPF>pP?~JE5T_Z~QsVKzM z_&@hKicD3&;!%u?A9qkr2`7H7g9GJKRxyfgalrB(D!GYtD%M#{rBCdO&wF6=cdQ9& zN5T~A;xiu7RzK$wB@tud)gDo|;?BiNBDTZF{K-0*QphSwu^0}Zm|zv>0P+uTdRLZk z53sFp24vFvtx0L4Q-&o?#H*Q*FzVhk!1=DHaX>`}15oDdK$-u8GEZ;sti3d5t`EhP zamJ(EMNe#rzx9H1fsHCCYhp$GkC$9b(WZJ2=?#h(>*2|-xE0uVt_VNzFQ&r*w6%m$ z&Ppye!vWN?lo^%S2!HBEasBNR*gxWo9*BirS7+_z;m+Q;)hVHh zwQ&YyAam)~Mff~E+}WO*_rz!-3Sx2mUMVi87|Od?(N8JxSf>=k)c6+MNGOM1Ctk$J zIDoReB(gq~icw8zi=pxArK!Rj&S<2gZ)sToh&Qn?&VZ!6=Sqrcd@^bQnCY>YD$%tk^5GaF)T9ACJga_!lW;ZZ^mTjLkPURU5Iq@oae;|v9p*R=)) zI|)GykLQO|mrBmDLDsqL!lJT?!mo67Xltaij!(Ay=o{*z3;9-dPWKg6u|fVv6>?T} zPF1BZVlhGfqBf1`ilHW}hO;x}Mq@Y;P7IJwkEU7e!KGDqcB1I2C}!cr2zjj->RQ#A ztt4W8{74K(Fjq;$qfy&p%xF)2S5oZ8tl(6GHZE-ZMma}I? zcA)sv2Fm)$XUwG06H`fTL$Ijst?f)wq}VA3Q1~nCD4S$&%I}FTB;LhFdEXASuNT)cM+D!! zxjIXGiHUMR!JvD~bQCDQ#Y{N^ieeQlsptHFgT}>POgu_M%#<@gW2MsIcCC^p_Q?S> z+ryUj-dtIJUSgdbAk&#EWtVC=i+PD{a=_~z5qVL6tlK4VVx4?cA6ih)xk@EQ?2ZG6~)3Rs5WETbCI9RG&%4KYvd zD{5kx{MY^z*U&jrNyHR+%wSsB*f~RWE>RTA+b`HFH&JUNv;KQ^T2Ph#~TShjYl8DlRcOzH$Wjk@uBEOpLclQT+^Q?W&?V8H?(d zK*ZMgIE}r`;5o~$?6Sh9y&_Q%L*ooc#|&FKxId|simh=5XiRfy7;j(_h}auvcr6g* z*-NEEERW9|uLc`QXh3tPcLnh+Hpdy@+aq;sYD&sm+457BxL-nVGS^X5R>Br zrgN3eSAN9UIKyk9@_JZlh{bURXw0z1D`UTeDrUz6(l_b;DIcf*2G~( zL>i1PC0@kHIKyj!=C;OsAsS+CoB{6k<{~8#6XOGxbIQ`yd?kU1ZSkTX zao3om6vdu+=T%Bk)+nMV=EQek81CkrUr{7tKb!&S_8dED;^-892ffX;gsa$1x;qDW ze$I|+tLc;On4Q>xD*MlvoyI4R7@s_0Ldw|GZ22iv?b#~|h{x8v%XdGC zMy!ql)Fim3w^Nh4QQ?chaR!7>uZ3^Cu1X+cb{t>}gr}+?G)m#c=r{wySy?cgDk^ni zc)aIMe*5@XB}~kV1NeQTHX&i%#K5>B#k4qpnmh0{Tg=0#%5-XgGt5hF$IZA}m;#(p zA>=#I*+E38zp6B7pmSrOD2SPH1|(+_Eg9f!P1i;^6I4}-h8P@YfX3H04cUhf4KXy% z0F7-n4PK9{Sj6Nw12n#~X}Bfu2Y=iy#p*Z%H1^pvjwd+FD~(cYVVnUP_LQzk#OhnZ zIKUbQj?(NT=X(0ZH@c*sCUUVsKJPfo_o%SM>^K9$+G~sL+fLDJA(Im%rpFneve~90 zc>B=zY_bOPiIL`2zA6eduAF(~o0FCvwP-V?38e)L_=>>`y?%b?G71QGk zuleEOfb!a4JtIcQ8KAMj3Uy?F1Spos8E~9a!WmV@TjkGc8Q7yu@-!|>(u~R17c3IVvgbf%PI}APtE|1F$FbB+Vddx${C=iS$ef7 zE7ci<4GW3wU(njW_i0b6a~$5dbR%;2%80mUH??vfEZmT z)?2BGwQ>M;{~O)9pjx1FX(1aX)=Y%_le;6k`Y4-Ym2|$~mqFFAb>eEvjAkeNhxM=K#7sfsbvn>fi-+iZimT9Psen2%IeNWGc#H?tF$P z`Av2X@D+)eI4|PGl5QdPS3_aN&^drs?Y6}o89aRa*f9wcCSqb2H8FNx!kd~+aV7)1LGoT>(XLW)sy0BydD7G);6Mwt=G6H_K8k729iq9=CE0R>~P5e%jA zmXcUDXOLR5%BKcJO?7&zJc?cOAN?q9s&lZCh$-_%#aYsW{+{aeEiVy@4RZ#h+8tKA zMi~h~WmK8wZ0h+VkH<#?Xyi0!H7|CcX1*qx=IrV#l-M!P52XBQ&h~*K5!2-i2(cx7 z3V)O~-C0(ti{5v2nkd+cTBDi!!O6Uhc5JUx$4$`Y4C{3^-NEHDoI}7?o5m3I* zIdkt};rIFFkGYxGoS8W@cW&9cch3{*ywpwI$N8(L=L~$5^dR7UI@QR59 zF<)4go{sa!MGKLD<(#1LI4UsN-#lx-A;U%|4#O>{7(`Y?%+AP)v~Rq>e7Fz^V7|8r z&H2EeckvW|MQZxCKQe<9N$~Q?l5~`^Mww zL%?XKR3ewJYDQ&!{!X?RiB=xcg68`CU9GDUoSYMNHJip+lrAJXITG5k&!0y;TRQ=F zxl$&v$rs}rN}s=No<0MT2lgG7gabgzBrrKA+HlrBLk6WJt9KHWylouKndt9mo0BNy zsqM&2^uKP2gdQK$p4v|GceegY&~Z-CEc970wYmC^9F!8Dk~pHz0RBEvI+v*9k2-Qo zZKIP$amX#<5_Np(>oQ+-VlqDb36^l!#VG|6Z@hdLvCoNvCf?4C)0)H^ zNAi4Xo=kD4M&gV&>;8Oy_MhsHw7p4?@wa+tQEqN{_{iQb>^q4#{z)%8f&qyG`#F6| ztnr+^dDhxSCv#9iaa7`qBYE!1(`oodNXjIxI495dgzd_mEr}>zCs`e$lha*aC7Spa zFXfx#Z%b9*@kiMqNEGpyL0Tg>f4%LlKDSv3B))7g?R&?cXsb!o@RSrg{bOdh(=XA& z!-mt`8UFqe;|uHS3xO89RiRAD_n zc%W`A+BDOj#hObD@X3?t+nKoWkgg=`cd2RAa+ZI%ZJ<8~{6?ak*UI|Bu8~mRNGNr` z+rgaKcp@gvNsw<&Fxg4eZkE42{X5&A)%GQkzH_DWY{uKZB(67-=lkvFIqrUwaNe9e zU+TjLBo0f8ACxpmz8#egC7^d>{5CAr-`%<(F}yiJy_WP~uD?YjzAP7G3EX{@h-IWC|Bs3DlkaGhQbMQrWIfdTUTN zzD|yeL6N!x+Y0kGdzn9h z)|0eZ(RwIRzLD6o2z+lu2^H&Sh!XcD$TuhWe06O(o~7G5cDjd!IzP&yRfiFvdC&@f zDGw9O{Xkl|!rwny$|dYKC-9*^C4P*jw;KC9Tr4E&cb2<+lI>-Qg!*oKkC$~`O8CTI z@A++o)R17`HSvAzdVfzkw$dLNAy`6vBcXXS_;^7*s=Epw#iUR|eM5FF&vt*$7j7Y> zR6>1sdX0vD?(dl;F(qXn&K6Q2vA&T!Z!>#uxpG#h>R3qBZzPoRuG4E)y|a)eB=GmU zPy|}-A8Z|!VBbiB8hw6OA$26+H3G+-!oGmzCH?;c;Ah}=^Dln z-DhN9yv`(C;(eEipza_0lk9v*r0=a6>Ey@$H!P7D-y0&OF0K3o4_T$EME7nRB@;)H zYj80WEMdK4qGiV1dkHC!fZjKv?L-IPOGv52^S+vyC!;4Nuf=VIU z8)y#)3Bb*XdpLBabQ|!cqnJw+?joh^R8QD|M~Q+Z{x&D5Gl(i|#YyeI4eks`5boLK z?2ztn^oNmeBfiv-iV}mH6I2{%E1o>s#ACy6i-iQ<<^&cgY7uR#OZ06{P&mvM`a_#$ zvA#+O?&@_Y?`Hqo)?6ZPa{}`>t$D;2e{O3oVYl-%dhTWx_g+K%kigqVn$X5A{-K$K zNSJL-&>Cf0+ybxDt@T%eDgZ_}=t5J(&#`9B5z&%EZ^JB!JMEfl=*VO|@Qv?3EU_;> zKZunC-rmr{_WsT`chyP6?VnolG0-#Di}xH-O+s!zZq556*$zX3ZQp7`^S0y5NwJam z+DM)s%hdgI_oO4ywHtKdgQTx*Kmuxa>BbATk0laBdvp(8s=Y0dnAs1tHYaGYC%4#+YVO9@ozkd8#zsQ%sZz04qkh2>kGgsgUo zBp&v`H@Kw)>y`w-M&gdAHcs+-_K^73oS=t}c0eEO^QW_I%?9_*#zQiAl`UmhQs3l0 zcz`0k-{&GEa$?{~%I%cL;|28I?#Z>oU|4k+{Ct}ExdT3_;S7e)2-1)Q#XdF6F*)F# zA0!TT$_N^Gz+c%q6FmxTMUSHON+bw(`O$RmfZuE9OQK|Rg3%<|(d<5mdkN`D!eb}B z$xT*>tn73z0lVKG>&)T-zb9wEodUV4dNfTB^Vv*{4AUDf8lSHo-?>Li0YM| z<{rX@a%I0(S!l(Vc<65fXp6Cg&gKM7_otz)Ta~gV`Quw<%(&1iHWEgA+)^6!rT@(+ zArd&76WpfMZ`mrF#~K!2#69DMlq3GKp^x}Jarp}Bdjzlha0b5Qqj^XC^~0q|LTLZ9 zk}ea0dRCr#(mg38BtU z(y72PeDA>-6jh<2$NVW#QY3M+Il*)!o@kRjxI%6!`L#bT)cM^yP5jy)8_5|oQMZ@e zY$s8s6ZnenP`kGL{8tPmp!OR_sQx!tfkGsRHYXTGJXdH-b$7On4wpiSq&@K)dis+; zCw{Br$7{9!yOk@WZA-#vBcbuP{5fptgc@;aZB2=vUF!^GIDwB;(w0Qd-t!X;J%M*n zgq%LaUT33^PWXFx?(;0+7xt9W?0OE0If*6D2&3s>M>BH4#8K!bUArhsJ>@S&`G1Zp zh+#=RiLo7enGSuAPcA_w7vr+KCK7J@iz}3P3g5v?B?+<32}YjsQsXgQ+U3h=+m;~P zNT}>x4D%4R%R*77{H5uG|Hb8U8xO@ValN6x@jN~6AD;yOjmsKgTaiH9Ava#MC?&zR z!^Im3vpwV{UHjIb=cUQWd&b{2)QK@b5^1~dA5`}{|HKHfmKfVesMpWv zDgXEW+?GpNZ6uaU7wf*q)lw=+Ozoo&d4~+MM51Zm`kP{Z@DH^ONE~e>+HmGv?!#MY zLqceCg8hSY;}8CX%#JLj6iW#0_x_=cKl+E*1|@7Z5-RWy_LPkLbcqh02s!rlR-Ud~HYgq8oLfdox3_;H@rJ_W~P8UM=&fykZh=j!c zF_e1#j1LAvBp5al+Vmr)ZS&9A1GUcMk&6^c7;H{3v~iSp0oTw?=l#WOTM`TV_h`Cy z%k|;v`F1(5)TFA!!G;iK_Y3~swlRr)%?TPCh0sO#ScVD^^h5OP(o#p_UULGAOwXU= z$IFkZaLE^=9k+OG<)m4^;5AJrWCh*&#oxfg8LYPDRN*4-eWXZ&VZT~{R$avHln@Dn zJ-Q(IF5wn~<6v7X5wNcmV%)Qo7)tDGPT)*bkTWCk;u)^7Vsj}Ug3)CrhD`L6iuq~{E(e2(L!^&_l_@`Vu~ zd+rrnp~XysXYVXSXRhGcoDd0>-M1{2xr><)>#NsruBqGp_q-XsVj)4Zkx< z1Mm2&MM#-M+D1Z$zsHJl3(L{+tlct1*tR9;Hh$`iWjWF|DB-myzeyYK`U}1^sK4&| z>xMqzaU#fe?R)-`={bWDKEq)!@h^XMD*sk@zAlQ51l+#%4xPH^Zy7B_Vr+AQfyB~0 zgO6$wXxuuaq90`Gux&lvNk8^2p`gnztQ3`kOYz{5?z}Ul-0K$#*VocW!sYw z+kY&j7n9&cBWl z|L`}n4M@yvPSAj}M>ys-T|L`9tvd{fpFMGdb&2C=+r}hv_Joa;@Tb4CB@!rm>t^2J zH6&2BGvN{%zBx+>Gy0Ac6Ug0?6ce0%^K8poVzC^I5sD!)Lbe_bZnU{YvYVroc0Y-=r{u=nqw34i(9 zTO#4F&+p?U)i%HQBEhaXfiG$KO5-e893id##`SIkA1*Bp;iqH%ybD@>lqJhB{xHQ9 z$4%pSxt(smp#Dd=UwVYkIZ+GaLoo4DOTu9{{*qcf@+X7~kto=0zT%^x74=#W9~ogS zB?9)Aqs)6mi={-p<^*oFahu0)feI$1&zv}HSRx)>ik(Ei?)MG%(U?nf7ZEJcuQ@^W z^!Um!8E-hq_xVz4hf_6l2aoOHDO&&7Un(DGFr=<_NFjJ~BT+_Nn}?76%|iWL0pYM4 zJ@J=}d<}Z9umQo3i{r1mX`g*t!35=cVJf%MM zw}}=aA+b5Z2;#WyhA)3C7c&WsUFRaT{ujGghy=yXdzne|+`~r>LYN#(mJ~@mY);T- z(?yAf-|v(HiGs}u3fiNf867{InBFawFxZ?prOoNMKQVoTttzpwZ{DQx&-@*%0}}mu z_$^9(hW7@fd5L=+c4tv{(}pfR^M|^#Byp~9-v#enRtzPsH7DpP-5W{65^>uj1swIt zB`B*!XVaLxi~cn+p$B=FOg3a*GufzS8k66{1p8$wC8jaG!lhi|UeEo5PNXsYB7{i5 zYa|r=s_A5nB-Ztx8EECJCczR3Z2fK~3V+RXv_xW9U&VVqubHlvNc8GWx#%qV4|Zm3 z=oR)1(W{4~HT5%c22Qq-093zOC+B4n!^wxM-;*A*(sTw8T>Zk10oaLQTa`C!!a<9%|}(ID_6lq4z`0@Ng-T zz||q;DYwT=j20rHsyRVRO=;eiq{1|C=D0BW#bfe>UgyE&XigKtOaaOtX39q}L7SUo zM2o{r9*;N3$QQbwYaotwNP1H%k~1*gX@@_E&ZakmunNRR0$YF7f=;A2zWhQYiZv(j zB<--o!FZwMFt_&IBudU;YK89QOk6yDmcdkw6NUc03g7Sx(Qkle7 zf?RWg1}RN_Z=MC4%A})}IlO6ULb%BsDpAOy6DUmt9!+cwH^quGL954Yt5HLGdz1Q% zi0_Ms^?mG#B&bT?&|T~hLShe$Fcl*?gR0-zs@*A5XKxIhiZFGe#Z1Cva{^yp*TO;) zC_7v%Bt&+8FZnW>0hUNm?3DxQY@}&UqB0{gbszE!Oe(D)L2 z35CrGN=s0hPex>=5BiS?qqlRKh|tqK6uh`TKc}hW;S7e7mrmt0%{)uFhy!A`8#*Ej zRmf!u3xWZDx|PecjTQrmj?D>LZ$X)2Ow;Um1ia8Ig%TH=6BM?QLid8|7)WGnPGHcA z4Vp#U07X(=!eVdFO;7Wh))Y3%hoeupgvI6rwK_|)l#b<^<+A&tSZ^ z@41^1RzMn*7}%V+4O)vV?sI!Fk|5aID^l(JrkAZI@vb>>tF@%%OYV8B9}?~Qr+RiK z@^8JDxwNz*0j@bgov7!(M<@%y#9@P-@#!A?EXFhpJ;ys0fv+FNm}-%n!R~C9Aa|5) z?b?VdU}~2XGYN*x30jW~YTaHP+?I9}FbzV#=Vl*tq-OnuRBXp0q5d^G-2J?$jn|bme|^ypv{i9O_)>*mqH1t z9W$676fs?*g-8%>PGJ5z)jvNT3UwFzg;I`C_)(X}Wu>{ZT7`ry^g2)QX?Iam)595f zGLoJYHOb*pB(b&kzeOp(_)C13dI^dXt`(moiytWqOl8Txv-$?vYcdM+uW;i3H%T4n3?A zCO*_XgI6kPYDaPgEzh^GlVkd#Pt1P0sCC$JHArgBV3H@8t6sD+B zrsCpn$4BBEFQpQJ+rNg+l`>U4>v`ByH-u7b*Xu>8W@!^uh7tN(V*ATlj^j&=DT|L$ zh43YApEnT1gx_VBig7z=bZJvQR5Ein(#Fyz&Nf+pQz&KXzDA1W5r_R#%`rnAkg-A8RI;Ups^ zyY|zPO1OAS=E;7#T*+q18PYO5IZ@AnsXJQzDEJhW1wi9jc0t zGcQ`aTFrPv7jva{C+UM)rV;I|W=cjfL7o5X8f!+^Voh%H*Tg+qU9TxQ^^I zJW~7dkx;ti2^6AVs+;k)Jl9c*uVFs5nFe1|WKA>GX2zeOWi`z^wr2B_p;RH(lu0|X zIBsAHG_IVLhSV}8tfh6TVc4Ry&QDV*>g2&fVP1Tn2o<+pVKg_z6r(D&P5w|p-zL&U zPoOaQYMa+R#76VlcqpNU=}J}Vm}0@c;7g-Arb4hoRcUzi&JrHm__`D-A8W>ie$9<^ zy-wvDm@;%V))ezF!Q7Oj$hxMDEkE%sPX$6_)-^4q+`H^TD4o4?yBLMkGjCa=tXCzPj0X!Nh4w6dY8Lc{BuwidO!F0)aV9@RI+gFElwImw=Um*BDOZf#&X1-CoH zPQdD9`k^BtI9JeZmo0uk+Bs`{!O-+K$*sf~O#-^sECANnKHe(ylLG_y9 z)FR#49;VxjZG42?V+nZJ9NE;Aq8-gmch7Ae$h8a}y4K@*MQYi?l#679;iM$mheb58 zr720b!(8#SdXew$@ZqQC2%XLz1iSd z&9iqmKceIIyxyAncfgsF5oT{Kt?XbDtU;TM9$GbMXF00Y5krwWD>8W~Z}gq&bg83B zv1oWSnn|15farD8%cA93JoI0-)bdoO6BdG0%$c8Vb~9D!cqh}`l0A8-UU%G4)b4B= zS&}I~P3&&+(v#`9BZ%va4}I^|#}O~}uOqB#7xR{FUp+tD1)g8#!DI;!v%c2oio1pv zecjg8GndEK@(x&+nhX~x=2?~-)5rx|CBpOy5`;bZfv z(p$aEKwCbz5}95m)s`os<4h&)6r?rrSOntB)arCO9v3Ldd|sOl4}&)~6HIGcV?%8Z zRT#6N934o&Wm1e9)ul%Xrk%~yu1j%=xW|+dJIK6rG7-}zBxgep#Zdi`J@)Ij&3KLqLF0VX<^&J7c*WwMUyKtmv{@bq|_8#j^=tzJzG7#wZ~qb zpLorvmoALY#$X90OkEN|f4+f}x3o~cEyWDM<)Onsd{`EuXXVoau`~qz*ulGQoW}wb#3QgPca* z8DctQkR2M8;(29OIZBMbo`p7#F!?EGiir_xOzm*0pJJNYo$Bqu(=hO*3unopm;q^M zbs{bVo$hp^|Ayl56%;!J*PbrRD$={dFv_6y(@@t*hT*1_HCEro49C5o7*`!a2ZozB zY{rvfM;kxFRQx|(AMuhOlSZ1#FZpqQq$v>GbRnuW%Crcb&%61rw9$AE4NdbwZQ7n<@QyQ&dd_r{ko2 zSy_obdE2zI<-I4+(7CwLDC{%6Ejc%pX8X(_o5?nr2NGwi&z$V^wrBz#fJ=)pQ}BE1 z=#{zXuL-yr7j$N-(@D>X?q1sbE~U=H4a(0GaYH9YYo^%=Dm%$_q}n?)agrHr+gSUq zhqf$QS&WKJHcc(cH{U~d=Hf!IWU{Gk8;PAohu*GlSm>d49X>2c z3#OUswtU}w`fi%(V>5FWQ0?hvl5M#rjB}6rup&L0Zn`?1E%(s-Gd`?Lv){odKIwnp zV)ng@&3wIt+AYRW96Q5x?{wCYNpBuI$b>V;6Njik;=|47;++(9&5Z(%RVNUBqUvvMUD>^Di@MGxr<%gH+%Dsy^g}A{Wu%5K zv-)#!-z3PcWv|WHW!#90&NDe}4PC2=^YAf9YS@L@-e&9yEKAwuyHlyl@QwL+Ix01E z8Sb8si=805D-lV1K0bm8v5T)T#V#;8Y&BhhqZgRm7U>Gyw!qyHb_JHC@P($RZOJaf zQq*^$DPgPWT0FSWWVJ?Ei@z*1^=!tjMZ{)Wgxf{&Mi=DXMeYgFxC^q(Vm!wXE4v13 z+A8kyON*O}mXv0RiJ@e|qlr)Xocr-65AL9@m!nf;iU`7)cMd%!+^mSf;+52939c}b zDYME$tvB5%MSm~B8Aj0ecthYlGsk9@Z?ad2!b@>)@?!flmf~7`p1VAFms>1NH$h%% zw&5~-7;~GQy9_7jOwypP)%DcZFer~aLHO4HK!ah4S{W*Y_G zH_#a2ss}#DIW1~kGx}+{=@25QD3x1b-n0LQ(CHQCUHgA2idkza(%cVlz7)eAhiJ=M z(~}Zcns;q$$%j37VD{N4N?v8+tkJe3IPaUCw!Fz#_%xeleLuSKq3K}DM<1iQtIalB zUjA!*W*u)%(P4QHOl)6B8RW2VX0y_kr#xYkOw8#2n)RB)du z88p=LG-;nZ1RZa~{bqozWykBKJO@maB^Y$21IFi(v&0{vVYIpJw&wKOL41+O2s^!} z-RVsz(@}f??|u+x))!7G+Yg%78HB|7u|x1V>=sTm)eqrTPUztPwfWA(($9xXpAaD# zss3T}f&D*(x_xhIQ^7BA!z+bJ59!YL_%`*|FU%-QdOoE1FU^-W^UEWu`y(D9jXGl9 zv`&Bj2=}JLKaZoPUzwq{Q4byX%AB+net$yqj+*s0bM*;bJBRblsAHywB|}2!{4w*5 z%_P1;>Cc-a%J_|0Z5!|UN*HY_wqq<+I&LOeqfcL@OBYOU%6Gy{2^W`Fy&Cq)toZs= z{}L|Yb<7G+)WCEP_EAZsp~%JkPsv){JVKV;{gQzjyf%^goir%#)0 zHWMF0kylI;I{mFlwquH+I%mv#w)9RYKUXYA;b-y5N?g!A_wiX%_W!##(tn40bTPDh zV{*`rXiE9MH&ui7#tds|cf^M_WA{NDxFBi?_$4`vPjyc^Z|31@sM_t4^> z%w}tgebD-xnQb$6AEelfo&LH+KjYzr)U*5G=1bE*?1JfQ%kA_Z`Tv{w@QbGZ|2^~P zZ2kTrgh^jXMK0q|k{<2E$I-FNxEKhrvp+9r;#C^Q-ElPP2A&-YS_<@8mAjS6a}$qL1-+Szp54J`xTKr-peN+ZTw!!|)b5gW^(H=L z39_Tj;oiCZ<*wmy!`HW(>%z_VZjcLeaW|hcW~K#(YMQYa2ForTjQ798g&;} zmA`nB#}%VP4@^BOdJlJ6Ofb`>srxPjB-Xc!z`8** zd?4J@fSv|0&4Qbu-F)-*l%UD?@jO$|heavZL);Ypc^{9(gp9zCRr#2H`vETbLhNvc zzvTOnKk$j*01tOB)TjOUtb6$ne4((8$=Bozpvs>n*Z(nqVSnNREp6KY%=tgue(!&# z)JtwZ{2x9P2Dv@TBmIBa2s9E~LpZ<)^WC4GJ~TZ;#GnDi|AnLe1!s%@jddkt zZ57AaRezg$83e7Yg873M*P$IbDD5ND!5Y?zg<;-(Woh;!+?ZY= z`>I5xpJF~2{)2lVFo%g8Qzqn%5>^K)5oF-9m1%5V1HBcJ;Nnd ztWMws{by#n&3xQh7Sf^>fqKC{G^Ubi0>xhHdSaSD@!+m|zSL{;R|Cyo>h;>IfyTkT zHl&o-0s}q&@My1e!(akU-0qdiypcQ2M3j%Y+7szSO)g zG|<9+zqK`m&V&ZqMDn+NaPXHTxvQ;BX~F_|sJSOl(DUL~gG)VuTESlprrPor{ln84$nZej z;5O>h)9^q?&oQ2j?$g64F!yjZN{t8<3S)$EJV~Ox5$IPeN({FvyJN;cBTL$hp;egz zrRaFZKx5lV2ecyRySkBqSZnkPL~Sw!3eqQ$fi~8t_rx%&(EM@*DialG5H4+xnv7#4 zUlW=T9mq%TMFnbS5FC8yJc7ItbVsrT ziUj*pijHOpw0`MC+AwRNy*0YHh~Cc{m~Aur7DKWiFxeU(!dZ9Tf?s3kmu!J9*1HI5 zoik9G24xS_33B(1;Fj=!AxEHwHa9m%pyx}?Wz89=7}Q)7UnE2gy_^iFK5d~l2j_CS zxqO^^z-xmQgi&080ViTym~%_Gm^Ic>T+9VhT*A${#ibeGXOdQR9roqAK%-cQRH&fk z?ZTzKN(ydA3aFysNwk1!3X0|tP(wk%7y-2uu+%#`jb*Thy(m~18pR;>T_RpIbaUQs zOGt&r3jVDjps9kIZ3Hw|&^1m#O9k(@7tmV4pRWsO>i~>D&_hT&H5uAVKnDePEO=c( zrv$O+tYAo@fUXMC^%2lrLG?EU^i*(aECZi6UJ1_!rlU854|sxD-yR^z1u{SV-JG}L zJ5rpiU_h#XHx#sABw&z&Jxc`)QQ%Aak&vNE+I}ivxPl)x3mB>3wLJnxD+qik;7tXS zjth880V}^^B;yr0L!01ZvXuu5@mDsP>;f6=R5#}>a$bt3GkD1MA6-ks_U|${%HZ%7 zv6$@wX&}|jdHq+Vc%A|le4XZ7=v|UI^m5KIKE1Nk3GMUM#yS4sh?KB#|k=z2w0;a)g$0j1zW-de5T-BdI1|0u)-|* z-NfKM?)KLaY2^6Z%47kP3lM^Z$>%PRDctGiyfZRM@g4kF^MQEjtm7ry}*4cg!qAlwu#AvyjZ?#p&@$VEkuKuXNarI{f)>WVP z7bT9bmlZg^UQ^(>`Wu5k*t0s>#F1MrkO{l(=G@|Y44$%m;~ZiiaKQi{pY$uUqi9f;zT^#|oS#|5f0$@k&>>Q>TsB7+hj6PIZ%BLI8Y@bgCs`u8E8zgPZg2 z=qMF3D)^wXfJ_Q@U@b~37*bCx$|<-KE1;qPIsTyP$=y^@lhzhgSHLp5u&AYAd1C>w3Lx>x z7WEY@vKEaLRBI*{O%=3nYLCAbN+yAzk=6>z+d6Ry?pV-40ZV?ON+$)Epn?m~RRJq? z0`ySOK2AV91D`AiR=b5sZ#8LQO_CIJXfGB66fAEi;0*;Wt;Jvk8||VQs^C!vsWL*r zCmqxHxZlxApw-D>tO6)?G8nG_I-LwAC@9}qz+?pw>12y(3LaT7Ljhzu*7lY!)BcV zIc)HwL=O{@7jY7L? zaFp}=H|RjM%wjXQpu>1GT1T-)>=?rK@$rqDR8P(Rp3;q!QcX4@6wKv zMr*r3yoi;Yoc~$h7GBnK%e|~?3(!CTE7}4yQot&<08JFIh%G=f1*}{P&_V(0)dI9q zz;dtpfl63A7AAug zIJ<5rgN?i|!xxFg2p7n{9OdS`EE$Ui#wcKYSb(t#SQ8dtoCQ8K$vUtgZ>tGwzXD89 zz;dqulN7MfE5H;5tm_IeO##cf0=%PuWm^H>Rlo|ZeE%~`3Cps=WR3z>Vg;D1z#07l z26uTnnynX$#V(NPSmNeHZxszJRlxeH0PnlN=Vet@kQFZRvYslyN(D|Is~LR8onGB9 z7N594I$g^-C(u?}Zs0QpJK5fQTBBQvtRsVC7VR9SWQ# zcQXk7IJnOR(#HWe=VjScG;l}(3#J12zEHvfsUSxbupTPFQ3b4l3h=c8mOKSGu7Jf( z0ZuAlnNxt%3RvY7;EV%s{bf~Cknhxlg-ii{P{6vS06!^U*;0U?8O-GwF8iy1UtA!g zzvSk;EKUmhD+>O&CE!{&zWzxItW64&>uSPMqyRS*u>2^%Ed?w*3UFHitBnHORlpLX z0Dc9mD+&-$;A34;kOxXwRute*1uQ5E@K6EkhXVYqz#08x2HSW#Ry`7ne_bHc@yyM6 zSu+$3q=BZ9&sJc~P>|O^EMSpPfOHC26%-&;0n32`gehP#P=E{ySp5?qLIKNu0z@iU zl+Gt4lM+__gh^%vEcFSHRRPO;0%TX<3^o^oeLVUC5n_?o1v2{lZjSXmxq*TL?G>%bCrho-90eUE4 zRZM_h3Rn;mAVC2OU;^}3!1|W}eHHjv`Vyp{5>~zh7@&YPF9Ey?SmzR8AcIeMI#}cq zU_c)fHf-t zCMjT{N`NT}SdtQ8ngUj!M{N?3amChsa>y-9#s3Rq+kV2%P7lmwWofTbh><||~!pPb6%EcL<{>Bup%SCK?SVB2yj>d>n{R)set7c0lree5{m%GA>XJ8t0}_dgaQ^%1URLD1rq_jRlqul0B04jE+WA93Y@Y2!~j2C#QpbIcJ$|6 zB8%Y{H|J$7M6_^80gE64Tv5RChXB_Uu-YNObpC%c+Dl13_{tV1+<{yb4$i5Foz-RsaMj zpnwGc0SYN#(LaD947Tv}LC%dqaR>P9;Z{=1S>g}nr4_KEA3#|JEZ_%FUIFX%0aR4L z@_Yc56|fo~Kve~-zz0yh2VeihFV@}zsi`Kcx(85O0c-35#42E2J%D-&SWyq4fdUrL z18AgxMe_ifDDbgf9!N7KERP4!LIF$S0kl%!OkrCF-|?JYxFQzqT_8)Wqnq=x03I6X zq<~fK0J;G9Yzr)H2hvSVSlJGshXPi#1L&oIb?g8V6tIFFKyL*sSO?Ho0V~r1^i%Nk zjy?VcC}9~on0OVi3LU^e1*|s*FjxT#%K@Y)U_m*6VG3AA4q$`=7LWrN)q|fu$`rC- z9LN|oVP!agu?n0?9?#%cp7j;~iNypL$gEFtb6(bdLjzM3u=E?iGzF~k#?N2gQQ|Z? zlfg>v;}OKhU@^x9(#Kpk=Vfs>6wg<{0&V~c6|jCAz+wd~*#@x00T@54vw%mA(`VA(Q& zUlp)k8NhD}Sg8!)rUF(d1NdEzKbdt_B?GymCM-n;a8CgXkO3G4EH(ykUjeI(0sNtW z^~C`Gr-1du0RB=?$CoVRkrLJpgUMqBtQrRJQ~@i50sNdf_U#Ofz0jqie9;5fTg+_y_i znz%&#YUbu3p(VvF8Hk9}3=7)0Kwh&|`ZAEP@5lQ32~-0d#Tz#?OLRAYIgi zC9VLvDPTn_fF251&8JpjdchrPMpp#I_p$mLomVN?R>=G|aJ^?IIa5b}lr3zTz2^Q}wU_B>*6$)6% z31Fpy(|H7ZsDQDLngG@+U|}YJbqZLK31Gbf)?xzKsDMS705&UN zz06P@0q!Pd`1uUZkutx#wCjsnJz{*Jg2NbYm62Kt^ERw|Q z{|hDGHWia2&p~qmM-{O05gPeg0c#!s99O_1M*t@ku*MOCngvEsb{!qZGLID3$ zz*<58e<@(uAb>{-SR@GGu>zI{0(h!`)q(i_|34+H4g~ND;?Ua@9_s=DysCf&fdJAf zU@;(o5CyFK1K?4>!ao4%6|mY5KsW-+AMC)%c4Fg&ZdB6 zd;oGNU;!V1TndWY7V|QA#9b_3!4^3GxJ3FW=;pkv;e!?mD_{v9fT9Xmya%AT0@msQ zD5-#@c>qc?ILn+YtEIrP zk7e)+H*orpSk!lcG| z3LG!mGq}%gL1u?7UiY~~{OauHy!_)Rly_CY;yD1_6|ig$Ku-m%k^>O0fF*GN5*4rl z4nQ9TLvG^u14&Zi_%(pRHFk8zEwOmR1>)x*H|J%k8#FLP0V~@83{}wg4*|m!u$m1l zMhcMQpLJ|NMym;H*8se!;MU&)-crEIHLw`3fK_S$WIn}l7N-H2s1~eE129Vfa8XRVZ>sS3#8L6Zq6;<&fs^ppK9%Qy1>5wy4%fqSq=t0?p45QFaY}% zu=oqWK?N-J0&rLXi@X4QseqMT0KQVdVlDv30DLd_b(~Fplx5#iOisB#2KKF+6CoG0 za8?1!wE%ptfaO^LepJAcECA;e?BFhN{k^~hM~(i<V~F%di04VSv*jtFZWl_+26`1l*jL6tHdzz!L#-{6h?e$$w0quwRMe1f+>~fVlOVoAa_@3hdJRzU%YRKU_F0GSl9-U&cv1uS#|kW~TeoB(83z|tlF zITf&;2|#WK;Qp7DOhEFg3CouN)8!uwn^7Aq6a00#HN&OO*f=Q^4XR03{T# zED0a~rIfHN2~5f;U?~!Satc_21fYTf)*S(;q=3an0IDcpeG!0a3RqbLpoRr}|I4Bx zAhpzlVxi(bNU9gqpiKFH44?ftEfcEExjQ zS^;Z?0JK%WDj@*v6tE@;KnDdZ1Oo870>_Ik40fiF z34<%_mh)J9nG3|NpuO&db6ZuwSo$B{u*zGPuqS8CS z0voX3uYjdB01h%Z%nf`uN$&r@V1PS&-2cSIi^*3mktUD1IWKEzpoMQ31h_(Uf`F4Q z5c|_^&MiL6U>DmDxAs4{K&|?D>`jvd5k>2>wF;nG0knX%G+kxex^! zcufIIPynP;z@ifXp#tRm!#WcnVNCF;hGixMgu6ic$mr(0tTF-nC10&e9GbHPwWb8~|!7VCe>cSOqNF08mc>t2F>LP{0xm0F4wtlz~B02IqLfwl@ux z^G^$x$c(jeb6%EVK!r96P=P@^2H$fF4>}6y=mKe=lbiFh>H_S$FxbuZ+g=yY-39jZ zM^88FmM1XymMdiGBo+F&Ksrcrb6!?kKnML5u)+dBGK1yZK-DAx16?2u40dx~AIm48 zLW&aBO#m3CfE5z}Mlc9|h%(v*(&U?N&dcfuuz!oeDt2M0J?Xyf0*bL8Zh|I1u}!aAKa|B+8!xCr(o?q0T&eP+ArXef+rSSRRGNa?&G=w zr_-AXoL+7_0QX-`H}}-U=_a7S>E;gwPB#x3;Mto98*smmTp(k6?B-bafQ$cSu$b-J zofPm&qR$~x;Z+2Vx8+m5kn(g2AY;HScogJ1Djw z_*PoR&qT&wR?AO(E9DgwK(>H8t*jvHRRPr$K(l}?YAS$Y0fRaUoKEX8z#~-L4JLTx z{NGSboK~AKkm*>RES@)KfM((p< zj-ROt9M9$}a6DV2!0~K}0>?AoG9`{{D-<}Mty184_K^a|vo#D>^9({4fXBPe1u}!{ z-JBPC23)*J!3tj{AzPI|%z#ZkR{$vk2D=pGw0-PVuqTgL98i$ST0q&-aqGGTM-(`I z9+Tq_kNQQvfV(-aCJ;M&)VAPN#J+!Fu;~;aWIwmzQE;NMPe=wOUp5wyQNiV= z0x~IZuB%xTI5U`Cfip$96gX3qSAjD{F}?Zy7nuNOjtZ%XGe<=gI8#)Dft)>8^cT-c ztA#T~<D}6y)^TDXFgHgq?s|3Y-~eFhhK=RwMVr?rs_WC=BK zb8c~S26EyCv|&W@j1|v6Nx`|P(#UxQ*(M9Pr~r}Sxtl8r5YwH(uL=+r zp1}*Q15tnLB|AUwbpg%voLS479p4%vJ7Fs(6 z&T{Ukz*)|n9f0efvs$~UiL*F+DsYx!f&ynL_EF$0#eNE$y_u}QS&9P{*rn+64pHJP z#bFAZr8rW7vlPcDaF*g*3Y?|*wgP7=MQHsPFE9W<-M!GS$VS=e9Grl zs15K!o9hBOug-UK-o-1Wc##6=4Y2(Z1>bKJuuRs!G`ZY1xk62xK2|X}&z&B;D|J3n z3#ZjJ3Y=EgG1$aaR(&H?Hn>3i+~nrGyEfa?-&Q4Kwn>H06(9&dd%jCS(VYVJDhSyp z;DCZs2L&8f(BqJRBMK0UpBp{ahws0{(QQYB99I)W;%Adn3Pv9ja7F>b@UzAD3J`>! z!A}Yhf}g>813B+Lc&`D+F@>kU6I z(~(iZjgta0DL_bmZXt_;Bj*HUSAcl@Y>`XBh>HU9DnLYjwuk}nS-)6z0Hlzb+_)y7 zsDf(NqJ#oO;^!)*6?lIaP)~6$Rnv?fS2-#2Ifb1Cd*W9G&YrlTz}XYOGg!vw!xcV{^n2GO za)|id9ApWk_&x)9OmrfbfInRz_7B}0i(v9F9w|T!e+Ew!Kxcr#e-6O$pF5|JG>DjO z`&gV^Kw1S*8Q?mh3ZOB-AiaV&ty>WaATYodQ3@Q#Gb^y3`MlYbIIiVX;CPltf#X?z z1&(J06*!(1QQ&x1T!G_RDF%O~<@>L3#l+XLmN<_i%DXvM7~r8)QZTT9fT{|hF~Alz z6tKboKy3xXAtC@!R{^UE05tF^fuI1B#tJ^PpqYXZ*3Xs-9LL){2iDbg3=Z)6+FM>4 z?Z{vq1E>jbFP+^gKCk0zHlyDRBB-!e9+Ix}mf5vMh=3znI7bE!T4B z2=LfeDj3j8z-k2$5nzi?6hK0N!KVsNbP}*$!N<1KO$y+JTz|GIar*sSfz$6U1x~+v z6*&DKP~h}?n880hSSSdvXGdHhV?AnfeEdN_fXlye%e_z!U~p2wISXD;4q%J3YT@+p zg94|~a|)bBFEEg=mbUVjVtD`dl1s#|D{hWe#JP`O6*%9--B19r0JivDf%9$ET?JQ% zh=oz$d=vM;1wOC1fu|@g@j9*kt-xvIF#}nWPzvCF|8;>l{>;sJOAMFdR}nhj+P4`a zAe{n;1aJeMeti5%lfS$zB!ikjB7jXYDqw*CfJ_Ql8UP@R0>`cF4CGk)eV$n4QVXY- zyb5~zY&S7VoNfwfBUzV7BSl>xgDvjnyw34jN`cd9Sq081uY!V$i=@TM41D6~zQsbS zsR_dW^Vn)Ch_GJNQQ){$Pl3~FLj_KwO%yndHdlZ~DRoSsl5YtPlb-mN#cuZ4%?Ea~ z)oza3&Bu1Lz;6Dqo2Pbj$!_pt3U2H@ySZRD8|?}IFkZ045`K=Gps-psX| zZFYkn*f4zGZoaV_V>kG950`yuH+Sr2k==Y`H=o$e7Q6Y*Ztz1DuD8-|w(~_8*)MGN zXS;c9H^=Sfgx&CurC@o_ZtxQj&hhVvuvuX@{G%V__(wL_@UJVd;U7p~!#`QT=6Ac{ z_xzE=oA*B6@*DNo@O$yt@N4MU@T1-zi#exZ2TGT8V; zUTch3E`#yo@qsL9tRqzBZFITj#qtDZYhPro7uu#aIe0!@c^m32F}GJp$6JDN)ikzr z!Ty6%xG}h}APw=M`Ry;Vf2V#3i6>tmgHx3*vC-BSjB;168ehI_%HaMBF`v7fBHq<= zXBDJXZ|}%WtygaI@MQ0F3#sRXKmlqt0d4IFW@W;52WJb=%+x>_?Vk|HAnH@t(X=Hs zP?-Ll5XhX47tUPTlo}|qMKz|v9B=jpH_?A8%s-^J zrUr_IU3H3%QT=Iwy!7={^!VEgY(bf`vShCW(-wIGDg7lF z=UWi_t?Zd|FVHO2p6{7oUoNTW?&M1^lq|^jqqKy#jAeMo=@wadMNB+nns?WCbT1 zIQg2BeVn8ngybXsFB|_ig8!Sw$q7z=;N&bP<2fnLCh0ku%-MsS_?B>bkCW4!Z06(- zPNLW_4JQ*gdx?{)oQ&lpKNoz(|2^U494C30g>n+X$s%R}PUds6gOe{f`Hz$9oID!X z3h6BVcLpaHILXPCSMh&E_`lKoUn%}?4gXh=|9i;)WyXJVd(R5(JFs8!z@*{$0n5&n zGXl-hgzyD#R#BR`d_qx=z3$B_M2WGc5ORF^o0XULubY||Ilc-)-88NR1XuY2Gpi(} z44qRFC451I-OvFh^Wukd)4zs`BAJl-Iy=xb8xME99Va$CKx}SP zojHM48F^6SvAmKnSI;k=S-ky`Z!=Ox=@!$qae-Wft55m@PAT68peY_PHat|dZRZQ* zt5~CgbBb}B;~9V@-y&ecqsE2@to0Hn;B0_PK>F-XAAHLIBR=zs5v@-RREly6`OI%= zAT>}jvqSlYLK|#1HIPq-!#5XN;+qe&*(`H*roeLE?r=@kYe{LXeVIG-%FOnzE zzKh5E-+or-(Rh#T{BLgHa^o~J>C#VuGT3A|7pQ?v<8y(kb!TESTOUr-`tLN;7mnm! zMnXT!Ds8jnAf;x%kuj`O##|r}qnU%b(saiA~C< z_X}o_4i>%IddI8NDe6kPLXln}yIyVm^=l9#&qoEaj*fxx{ZH=~!zRbN`|Ml$b@!`c zGh^NTvQ7Cjh4;hSNaVlm5YDpyeGkPf`(L>Z?tj_3xc}wt>HfD88d%;v)Bjs{f9HSe z9_)#HwQg40v*$rRbZ~ypgA#e!p_YeRUV}Rsp3Gj{KTyx1(+`=CU)3}khh)+aD`H1BCxZWP?MW_kBX^R@Rqs0TQH-vb`h&V3JR zVe{v{2NiAIHECPlgd#gld=$=gTkn5R5Sx_!4|pb)?0-*;woH0Z+Dj^}IG6OOrC`*9M8@(Bw383JJ zA`nGXwnq?rNQvp^U-dhqqCdgKR}>fZwGYY4 z?B@1t6s_X>_V@_iPfrN1b5W!zaI2N{H`efd`$+ANrON5`j<2-Jq3i8;d$H63wp2E_ z&7P>Fx3*6WQ9k^&y>}iv@=i?vOPKHI!^Q;VM6#EsJ3^G<$yQV1q&iT%>i&-#$_<5v zH5q!n$!sdu>!I^;U`mCTVPO6vwbWQ#+LQXK@ESXvZyh*-=iMpP;2^3cL21T997HUq zR;Y)rZV^Hw1NiSZggx;4sr=9=`u%6&ukgDuD=Km(J#av@z`*`i8q{kkEvM4N5{-E9 z|D^UP3{I#9jd&cD;`HY~3`*sti5E2DC43-A70zT{Z}Am&UnBm4X#?udw?%}YbmBve z*k21#(Jai~KQ@EM4bY0iF|MaCo;H?4U-cA|q!q_tx{kHRhU)tJ3LmExAII1Pc1ahS zkmQT~y;fX+u|49H88#YyX^XU?k)2*<4JY+`S}Q(>S^a&I*A*-h#`7p{Fov~)9^e*V zay?YhA3Q3WsfCNLcK);I|E?6OA3@KHV?G=k`XC^{&Xv4krQ zyRgd|1KEDwWsM)qvo#B+AX_NUR$wU8_h=4FthJ(fdZN~v41tA$H*2k_@at@?746)^ zT3%^zofW4_avgtQcAXUsMFIWVQD@b`uOoF_*p@mgnn`D!6-`RYZeH}_-BvUbuhFlj z-PR;=JY4QU*MMl?Mh-%MhkG^%4TB3v2-Uo#q7UF|3yPZvH&$>YON~%Wc^z9YK6a$C zxZe8lbf_lkDsRE`tJYcY>(#5)MG&-Jwa$Ye`(4~E z_JZ!mI0ScB5VFD@6@=!#qoUylRV2Z66qI`NJr&i${Sy?Yhl?jTlBIemy1cGBb8Vr~ zU`Erj&cG~RwS}_z%fkjL+MCvUIEoMY*)WI>u#JLXZh&nBDcO(0ub^b}XNAR$<~m{( zqg9zba1{kzVlf-8pdj=*+&#gOER`s{!!^faz}Z?KAEa~y*k&z+!l$mXtQ!Mm$$ zIO46VY&z=hcEJwa9mTda#z%ou^$Hug+J*|YXtgZ^f})s@iM2rZ5vJ9`cL5;bZb~~Tpat;+qR4>F2;Gm=2M5HAD|9A$CL8!tLSaGoPo#5 zQu-YR^=7cAmJJP1a`xMH220(({xh|0RU&k@tRcXgj%u|{gkVXl4YmE*R$D67@s_Y3>KMdYT^VRSK5w<5 zW6%x(^}_qY7gg-^zlKF&FXY{}CFL1HpnN=kl-hv1pU{Fh6}=U&qWlCOlBLh!5tyv) zQ-)_L=Wg2qQiFL1Js~WHx^w5Sl0kPJ|1Or3tX!{-uv7?r(53!^4Z-m%!&Rq<# zqgH!D?5NdQq4xBQ=n+uMIh4iq1RMEe{F8WQc95Zp+#XF(7$+@7hk0@*#W;`<3I`X=9pWNG;{W%Y2of;tvy zvZJ|}Y_d;)pu)t3ea~cH0KYm-cC;u-l6?X--YNFO$Q_;3%fJ zE5Omtku0r}mHn^U73{R-&Ahbj&0OB5W;}od4uDv>B+@i4A>bt%^Pd)^i>wOBpZsjOUb_sbR|0Q}((<(%H#^P{p#F z(o#`p1Mk|=z)Zbs$7P`Au6@Kzu6*B#8rAZZ0p&Q6lQ$eukpmdRDeew%coS*^@@|e~ zY13b@_OM^F;@K&8`Y>hkkM<|WLiumSJE&#CYM~C5o7MEr%nczYM5q@I^SIXNA9ML! z&L8ZU4NvVK>=+Nh^}!ASf{{ZUGax7);=sN-KEyF$ngA@|#LKuK+R3) z7I1PCGG6u}S^DTS%G!9YErOjW&x%x*COG0r*@P@%Y!z#*&Em7WKF5JJ?n;gWwYWRS zfvf1OTt^C73X>p#@B>-nFIfXwU9JNas5#d$k}TjKg%@EM+oxqkZiQhi!e4w8AGCrT zU!ew70fjc90N~Chw7mzN1Ga36%K}zxLOE?Jl7Zx!;;#3gn?P$#aXR3pCiD`ZejI{= z+*V#2<=BbpK4gg_DVdM@TwyshB6J~ldyS7|yzr?xSZ=xx|4J;qVd% zn#7hR4&CrvC)9+mOQfs7UQH<3>qD}%y#so>j$O*l)hXlh9Uq3q@k+CWaZqmXVnf-6 zjP<3KB7IqTDXxSe>m9>Vc#f4qA>EwG5Zw9EIbdryWsb^k$F7- zHen~^?~VD;jCjMxiT3VaU&Y1kOHHju)IKDCKnYMN;i=(;wFvg!qhN5`s!x6NN;@BP*lv1 zd{8>kqY(#ybIk<`2nR9nRgzRXNJS#hP*Yq~k`KvJa|8;h4EWS>AaoRO}%SF_f;u?ri(U5jWx(@KF(JYifx?g#z!GvSNT3n8S3%Qin z1*fm6*}$1g?72IEESJ!JV96y^2K2au9tU1rLZ1U6E=RKTD?E(;?4C*KiqY*D{0db6 z;)_mHz(X%Oaq+wLq7zq;;7TW2*-4d7bf1bUo#<}8Tj|7Q^7~4jv;THy4(+%OYsF)@ z%?W3%&pE@n$yvYMnNFj8Q7g9b?UH_tp?qzDerKW{HpwEl6T5&CVpY@uU;a5%!*R;?Yd=Nhcn7+&JmvM?j~XxI0Nc<&34{ z54+F>PllkHl!2xe8%hmD{P@Fg${9(0&{reQMP25)R1D`NrnTyBc)mtl%+(y9_a*6z zOD$^*zCOy=h%aDfYCG@_g_wS?``0`Y$GXUi1 zA4MvPGplH856UW2k*aBN z>c}58q5 zGgNe-_qDO20|&CcqGNCZFHz_v7U2V-(ABcps9&>5zt$p~aZuRhijLGAp6k!O#7`j? zZ_G6~Wh4sC<$qJrC-5qq$H~&_14{OD9ko%UOfkZIC_IvtT%Q}Mqj3~q4HY`gABlBhG>(-jGUoA5J8hsc<|>Xb-rygc{)3m(UV;k4)(D z6(5rONH^hW@JKe_AIMHzogbkn7dsZ+oWL=g&IIGw+s;9j8%dp)tpl|^n{0oY(xQnN6EU20y~ zmm9N+BG9{V#OmqqP*F0Ryi?q`P8BWeQqejf z#H7@cJ}L_AtD+6TDry9dOUhRft|FaZqzW6NRb&PpOP*1d20!?q#FdH$ByF1u4e9J{ zTz2y|S5!XlegC9j@~LnS;8w^Q5Ou#kKv;};TG4E6}R}1 zZolQi4c2$JTEHe!UkVY19JL(?H2ULWYEMH=d zfHHXvx+lx@d||9P%8NgC)QzVh=jf@nqi$S=qZ)XfV;kIP(pNUP(O2Er;6{u6rv^6~ z&yN~-H8&{eZs3K*9dnN$v94;xR8&5&yhP?(W%Z650H5h>*o?+@gy|u zRTb6kRMCAP?4;BUK-5X-S77KQ)DF~~go5^{=mC&%Qk(@?I1%C3?!dN5kym@rn?Sfp zaZ3-XC?6;`DJ~DVH3_8wsV1R44Lt~GG%4=<2^B>EO(w;)^`MV|DN~vYG62UCaAZ>Q zBOu2lv=3M@34Qbr6@3ddm=tFR{!2p70r4eAvb1=Ia^kq#HjHdQyifq$9L;K64^ZR3 z_?oN9FBF7b=EIV4**$_b5v@H(g?b>uB*x4FAiyN_#iuH21jlhA7r`#t?`P==?j;L!af} zi93=l{=D$_{5#P@zvADSv-LJmWD=L=ZQ#ZvWC0FLLNl+b$O$Z%6t@HDFA3Rz_tN(S z5MB~G_M?g(14c`Vi}*=J9|Nf+#VxtdQ3Q2L zlZZA4192utvh+$$A29o{J8axrkfbCzJR3%kz)3aOD0|4dP}?4+cu|)Asa~u-JJpMh+q_gS&bH@L zy{L3YQ@xn;5(E=@^;sG*52~;3uP?H!gGJ9$y3S-al=CkG@c3qeMx27_LHvBjve8&t zXefs9U|DJ2q0zjESsHOZX6ehbm@G0TZ%FgTQt}@)Vhtr5<+b{CCcdWbOXH%RO!H!I zw554*x1XHu#TP28(s|l*=_GNw7kl<{x)-NlP=*&ZEiZ%TEXwfWB3z&0#Yyv7h8NG~ zex=AkncggNEBf^o*TY8$Tp2TfQIxnx^CT60Sg0ZokcU$0gcnqlSM5WxG-(|ll;TaM zICerV>Z_c}^d?t9mG?g2&4^UIs8tgbZxRjH4Z#Eb63+~OF~@VgdmVD{*S6wVjkp4P zrQb$VnQSODZARaUT~NIEGNV_MmtL5Oy|rSb798M4X2FfiiY6}x+nc;-tPeGLah3n9 ziI3_1CT}dAWBgq!ehm-7n5`={JoDSDUL4OWTJe7{Es)aISf1?}>U&zTx4Mr$0-UGB zewqwqr-ax(6>WV-MQ!k@Ev5blU)M@0_!+e{3qIDR$TIlcl+gFUUCI$m(>mUbxOTjMjCXVM&7FK(o?4;PL5j7wN zYq6FlVN-s7qif=me9Gi##igo%3*l2nVpa|MNkz{9MJmND1a4G98kdST0U0XAB>@X6 zNATY8wzBQbt}ovNspjT(qh1u{cH>;H$?f)iq_jjMJ_|e9|M*C0vql^Ua{Ts@QrM_& zT&ZSKuys^7&b@a>b))m}-Kg$l-YeoyT5(Y?w&L(Zv@Cg}yOURK2mVwdTHV%PMYct@iP$3VqHbI=(-(KAapNhxf@dr+ z%u+J2k@D~J%cP3{VHJpDEt#9*6}Gs0A-3V(mhLp#JN+Qsqi2HW!ZTlkW|T?O=PB70 z-Scp6y>PG_jp+V^-O2RH&H0`)-Tgo)O3b4-fk~7jSqfUNJUrMPhuh8I)^0Ss8Li!D zc;~cs>*#=LhDIz0-QenY87M`Gd~`f;i4uz5=tHu!vOw9_+O3Hg!nJRRAk#MQJD?5a z|1Bt!zOTUMvHk}thAVd*-48Np+6>`um}q4PCRJs=m+d>FpNmTNEukIaP*swhz!XZ9 zqKkkclp|UCrt+hSBQ#B5YWFx-X`nTGqE>6-$8)8fq!CT(!}Eb9l-NPFdsWo;Js*;# M&+Ac0SzeRzzm`1^<^TWy delta 1979566 zcmb@v2UrwWxIdhk-G%LJouv!dK$L1%1T3*23fK!$1PeCoonkMj;3!99gIHo0L>)U| zjNJ$tYb;<(>?I~@H1RuSb{R4Ee*a9a&*RK_Px-y|yyr|?4$aAwKR=u)muAS8f0ZL$ zA2@ViN>XA{)3N@8nl*0JuxVg$VzWjGL5&(EGz0U7CWO(ZCs$aZeffvMkxqkx9vu*tpmb$`d3k7~u(VYO?x$?pUhVP`WO4 zEtD(p95LCIeNoGUO^9s>Uj9)ZN?hNQ{Wj46$_8fHv8x+6vR;1PEF0Gl1pPRzZf=2> zKb=(vWNM=8u$le6*t`KX*fF(gv*#0xtUl2Q$__l!vL3$9RAZ3;&b=|4-@l&T!DgO8 zLx+z`9KOFd*#BWEuOZb_i7y zlzPV0gvG`nyL%lO9P0@58V5%} zb4aXBg@9L`o`t}17LZUTv9RCPGlAmXS~L5~uPqo;Kf{S_lWYV5?zP=1XUyB41V9ZC z{_$B2IL;G<|N7LEEv;XN@&oy^>-tg4K>4&*UTo|7CQupc8w4%On|ftk7#B5bviEAc z!`M&)Rp}5f8VZbz!*;1o4`CTtM`==PoQ1 z+!`5Bf~vU6{rH@LwrCGh$|PEwQFuHyKDH6@ziNOPwAOOY$TrA)6m}P#MQmYQmZhn( z)S!gX%d$Sxyed{-)pBRs#QW6J+Ppt-)cBF(zO?kREH6-C*x|)y*Yw9)v&ZVYS!16> zI~4NH`Du08rExIAP+US|QMEv6i|5XuYn$gv-l}vKAJF0T&44QKf+4|xgnrMBlH^I_ z*wk8ec^k5Mi9smNfy6(<70=Ay{95B_YK?8|Iy7zAEI&0kH`T2Mokbi7GWM--VI%80 zVn?xYK6vJN#yYV-#Meaggk@n&3o?LpR;a9#a+xqr>1A0s4k+8?gpm~9sK^;la5N87 z&u6)!0K)M`XOVdY<*N&*=?Ckwzxv{df+7WlHnc?GkJG%7;y8^Y#I``0271DPBNw*& z2W2>$vc8y5N1&fv||@QZxx+ z*6;!A6whRM{(FFYf9Rd~y3g%c55IaWJJ6FN(*jLy4>mZ_1$qNI#|e7FWXm>i&Y}rv zn>w&iH3b~1C0bA>>FUqU=EBAf`f7oF zsqYcS=qhr(1YrplAmnA(7;SWg3{e#X>Vxe-&BF;!IC8B^Oabt05de`0D_ z2BBVJsw{_4&(blucP}9?VCt=#8;1D_QcR` z3i0&A)Co+DXiup1n2NjXkJ}DN(~LOqGnx#Z)Dx^t%D3 z?qh1?PlWmvQ&Sh@;kF-1&kh?fwHZ@S=5EB)eoW0tcl-{MCo$>Uicps@HP~k}Zaa=C z`6og>#nch!Ex3)v)Og?Rm^zH9{29A2Re-6VyB1>V4W`yiFT&JqO!;k0C*&SXzOKC= zH~xmH^~VXd3schc1Gw!Brs}OCR34^G^AF;-KQP5MKa8nunELfFq0V7y-c>>sVajmf zNILF%1(V*3i!pT?Q*$LHm@2_kaRi~BU`pDbP>(RR=#Sy=Q1ZHisUG7a-y^CRQx;D5 z0Z|_@mEkfSQ#&x_d-TbNbkz6&lMX*?>`jm=$JCa$gnEIg*6Y8;ZM!jbxa~MO>Y0tH zhHZXUAgTgWc2u$wQR^^u=99Y$QJXNuq~5{Qc}!J&TBP*o-te+j43P1zJB4dP~+5?!_~v%h^5ClGsaABQd6@XK{@le4ku9oeLewp1h7*$+fT!YiJVxh>eb z86i|Ctnvp1)7^EfW@Z~KzaI#@QCGpXO{)(9nzN(QLZA*OpzV;vdaz@%n@YMYJ7qm~ zQ3kX?_Ea}JcGiqg)-T|Q`1^P{y(rKv*#$#;`W*TxJQ%Ot=YIKwH0WwL#>0@%JH4q z`SV<>#fN!DYxdaOX4DWiA+Hy^e6ErGWl6Zz_Y}a<0nNmse&;teWFMrphUx@C+2G=c zWvg7!PoM&pPhc`NvF>R@|z59_Z$i#8e&g1bChqd-1}-QKdLdpokSok&F~xDe6Mj-9m31&V`~ZX{0V za$j~mNPtSCurgI?o@bxAseC$k;>cTp>sq?BWA(9m@SEH@WXT9jGdTf_19w58t2qpWts4W}1wYvgs zaZs^D1?va8piNWabc?+T#y zK-oRm7Q4+ES>AfPAk%Y7Jp2}(=HFjy9L!OuQA1*mFzOWvIRO2ZLN@` z-B5U_$Bj-J;h!*e^2mWhN3psY?WsEKh$2_Eq6kIpHav6D>q1%csge6b%edISVNC3T^X!E+a$zhHk;242OiU3I78lOw}dL^S}WyX)btl77(Hm? z1Y6k5!{b=v{^_8ilvS|IfpKiwq3P_bgVRC5uot)j#Pxnn)s#$HdQ<_0MSCkG>@+wm34|Wor)Rat=CS*K7(|H0rAqd|56OH>sREkd zZqdqPPLu*|uBt``I2>|@l3YhRQh`V6BO%zDie$dJuGLN9iPbV zI+?)+{Geo;!A{MNPhtyB&j78)ys(4zK|3^LpZs&bu$#|L2I{dddaJ(&NXP3PI*=KGmU|}pft~?#QJaO9&5#X?z z)B-of9R<7S!dTGNmDDUPo5l{mIE_uZG>x4G%N3W>LFkWgSnOpt>N0!hav=35K0d?8 z3#|T1UAQws^@Z%PD+8#F?3pXAsBeoDSI1KS{+=(0{#MVhS?@JPW!K^<2orc?k-Z3* z@)@*+9X?hCruRv)fV>ryx~SpZkrcHCgpcphfqinXNCYS^n>*n4#wD?XA1o7r0R>Ac z%6|A>DsJp_w#m~xaYF~N74Pd8Eq!*|4(RBqdN%XTPvU_Z7CHWLf+j#O-if%m51=6i z6ji)WCm=ir+Y4w8~aIqo(dla9>cYqrMZ#5_+v6=VPEw%LtUjkxKqA zP`*yo241QPS8Dfvf$HH-jp1#2&4Wt#FHj#nsTkgZaW$#;ynsXNQak?(>J4w|FcFaZ z&X@Ym%Af(YO(qf+cz~ylTwyTPM-FcIOf_>gT2eW@w56ex*oi=3&xBFEcyWW;P!W7_ zaXV@&@jcfuf-07h=yQsqt`NTax>GmEl;)oFrS9|X6>-!S(MrCU-AK!ZeUfv2gQ%fW zqUiP%s?<)b)vSO30?NUX;e2k(eUXU>I$#SrG->KwOHQi zJD$|!DppY6yI@7Yqaw-(vSqY0_h1ioMYN3&EP$|f+}K0ZYT^pcqnHZdeU)&W>cWd( za*FE87d_6~iW%j$V#Q_Z3E$!74Qd|m`0=->XZFMvV;@k96r`wsK|Qnw@vo*DIK^8k zkRKNDfjTP%75;9j<@M+g{c_rxK8^M;hnAQ@-~rjdy%*^q9@{LTPx8~@nUsFT%ltw~ zAK`0{sOjHTVokno#Zy0SloRc&B(bx$CY>kwFJJ(I*>RLN-I+JY0DoG`t3ExL?!*_b zHK9N8s{9&4ujgZGbzAy2-(g`#`lM)&_l~4}IAs()kZ1)Ob*1@0+SQldC|W-ZtB#|i z_!t_INFU^jO$X5yUh?=9+Mib~ZxnrtFD@QWm+>7&O`!wj|K7$NT!(`xQ20}Z8(VzO z7j&LQ7yNq^yln%W?@Jtjc46lv&^Zr2T{|?FcHpkgrZdIt12Z{E7;tz-!&@&iq&iTL zcvQ-LoJ&8Xsa)>f0{S;CJYQW&pQhkBe-&*&^?TOPyAeHj9c?dx=TYC1`WYMO7j+>$ z<{Z5VjdS{$cCv@(;Jfq{)L(g@zKPDiJfPjtIJ-ym3Nh}q%KVK81H!RgK#d3E>Txm8 z=|U(4kiMpu{|6w3)%_vo8vjNYh}l15aY9x|oX-~sD9jRNe;rX zn-nwZ84BvQ z8zmFPV)Wl6NrHv|rCTKVVlgD!Bs-8Cg*(K{aeAl3jO4geC=qipg6&baNP?5o^?hRG z;2;Jz#lwS=bz)6X=dk1uGR57aVnhH)4KVF{iJG%3k+eX8+`3c(uMTs$zmG}wA^Yq- zA=&oth2wHg!u9`OD} zyaz`7DmgA%fQyeM-ys2}JdSMp$okBOVK;r+(-HoIy?AE`$0c&!x~6E(avE}L+N!?Ke(~< z5L)4Dwv-Olp!$x|S8{kxkCEaXN<>fTRYcc}leR|V1`U$lMdLaSk@iJ+8&aep=zMp$ z^gOCB7%5#K=9U89nOz$%#oL`4Q>6FMwn#ExnumnjuvmH;ZCggN(&b19=_)CO&UW7t zB`VfS8zUht+ocVVFzt3qKcaK%LTLaxk1djRM(2{fQaf}$$w_}k=k*7riJWsz!l zp3+b@#1)?JMaeXX>8ozCGh!~Use!Tq;P$OfM$qa-lN9b`Ul|2uC6^Vq2FQLBAutCq zPa~Pm4wB*E-8e+H2pJ%Fgp5Ic=`=i1?@Yh)~HzaUUj;w*0*#cLlt{{HUcssBrbHY4s-3nPf2uF;2d(Hm=raiY} zgKRAly~$=Gx_+yyE3$RMPT5!_`sE_o1{60_4#{4k`e7w9TBIt`@Ws>#I_}d6*=$Fv z7Ax<_x{FMyJY4!+St=6j! zb)I%pTtuvu;qB}OgRp&djG&;uQ#6SULKyinfN&R5K1CmcWyMH4py&mMMJBDA#v=(v!cc6FghB={!xvXdx9z`^w2 z38WTJOy?#f+U*iE=@0^!H^i<5^ff4ZXE1RuQ|wYvmQ5IMH(f-w0azx8Xas*>pXds< zP~l13)5&(hV#4w>EHCcDG`oAqjYVm8Yfwx^&$Kh47#%d*u9FDmxyl80{$j?3XWLyz zVdb*SZVBSQE!S=&3M=Q;c0EPhV&b5hDQV)|KOT(q?`+3$UiSD7NX;e+n(NE2Bw!?{1`>>OtDS?`eM@wQr6k z?Stb;yDovWUre;WhT69cCG9E0NV{(uz5un)8Bf~VO(gBlCz1AoDfWj^`-n`^ zUVkQOzdVbygE{sksJ-_h(r#Ho+Do!Y`;4VT{)m;NUAc<17p*4kn{krgHm0bpHB^{VFk1!uXrZt-NXPWcW`( zIN${d!ZWW)5FUSHFGoRmUM+8f#M2w(I0(y(avX${&GJ$dge@%c!N|z#-Q{gW+_y&; zyyONsH=(Y)u_I`ssow#-36-xEp$&Sm0SwD~ssKG^(+OOgaQR{}*HHR6xgQtMMhuOajCv*VX=0UVSV|ny;0HMnixG1|9wg#Y z2Ed#h3XUEa>cTmkm)}%FP0*vpeK+LZVsa2hOS>!6a+_|+UqI(_xs~#hDCh>N5Q$ynSPUBMg5+>k;kL@$anIy8hCcHQ;cEYIm=Zs4E1~G zsW2MgS=~^Pq=4tqAqsnhH#uA(Ds4lF{Xtkeg)=DrsBq>cwpZ-8=ZyePe64_cDg}oW4c&CHs%c%-%oHb(<*f{Cq75;Xxe%DmR3Am7Q6Xq)V z$>I6p5{1M`L}ZljQ?%nEwkZ4{Q*uSPxJY3T;aCnLB_c^0788j-mJo?=f3K*G%r8Bq zxQ5(&>x|-0L|?n0*pJ+pb4lTV+?0P)F&3T84;B5OeYw%k6j#JNw8aL^%TPFS&|Nbe ztZMaCE1Qapet&@AkoWBY^p72=?Woj)ivDsPH(sj>qQD`G(iP;Lft9I46%DzQCMDi| zU1gLZC?L(QO6}gNl}Av&X$_Q8C@+`UQVE|!ZQwMa%F!qm z(mN`ZaN2PTdMFsvB)xzx>uIzz0 z$;K-W1c{5PrXV#R-k{bRT{tGaGz;@ic!^&yMao<%X_@hh>^?~jz1k!8+4QNrs0Xvt^FdMF0>zEX}5aoM~)T-^eEV(-=A z_PkdvwS`zeg{rTJdplKV?X@cSG=BrbnPHlr>J>8E$PiT{6nGmtt8m~2bX7e;?sx62!h!axj|!Xb zWIq))-<()-ZWpI&ip-yuq;e8-IRR5f(|xI`JurKd+;e)4Dn?8aML@Z!Dj#k~mP#+` zB}D?@$#qz%`Wnr>C970;u^GHZm4UL-ubWim$YcjMtCYwkKkQU_AQL^@r@AG==b*Yv zem+WEGNVM5j9l{TkE&zHwA+3nE@^UA1@HQA;11tbbwFp?Llu0K0NWp{cBAuv7sOS; zuZXJ@zp2`x@m=4kN<~EY-f;DP_>MC1iq=`(M}${kTo2?v)KDj)b!vdGx*L*vcaZwI zsMV#hdN1>kxgjie&{UA5sOuql{YI;?y(dmm zV|%+zS2sp>?LI?|r-sigHJ%!uW~=ekI69Y{r_U$nmJ8MJLCOXWWUD8M@B=`R4Ib}Q zdx1mml}2vI3iUL-)i15Ks@sUN0mS4WW-Syr4n@Q<0}qOF3<~5=TxPL)ADSIaONn=w zGirBay+-B4it*Qo6}Q|WR_uCT-5)XE{;PT$vQF>k>N{eW11|5K`nWBFOm@&r6|?qX zJ3}Of8_Q^RA(?8rY964OuBfS*DI#KtVGh^TV8e{{(crL+4$}Oegl)^_8XUIwT4-?C zUhbqhi-gUO*5Ey`rk4hXZO;K39JU`5H8@S|8mz%#J8P&0hi%_snmS0?%v6oLsPJs8 zZVyJ(4p)I44~Lk+g}q@Nxr|AgZcrAKJIvgpG>t;c)fWsa3@qoyWNI2B)xMjn!MmtY z^EG%E6`iHQyQqoT8oW40u^N1D%V&jVIm#5p-)M?ZrWm_k_jpN@3ZgUq`c5wHGzj?6)1 zPZ4X-XDFUr$48n}5gRBQ3I`2-QUebD)z!>>e5aYM#Ts%;?X|0Aq!_Bv!gueaggNc}Nc1_D~wuM3XHXhp`fI|$qOR0Dd=rsKeV<75MfiuII( zfGJuzXX&n;Bf{_?|BALXr|YSGE@tMU!2k}f0kQ{ZMcl1M+~Y|&7sP3^;P(Lcdh0>t zK&_bjrVwigH!VqfPt58B2X}(s@oMGZ`dKd{_~bWP$$c88-KqieHupAjM<;7j;5Q{m zx@Oa~!~cD3AWb`QkU^k`Ife%#>9pYEX{{bCzNB*mp*ab$T>MP!Dfndsl#6RNPkRo2 z)q;x50__IAcy^(7HD8>x$X2YqMC-zkzR?@CKdVSFq)f{J;F zjspU|(rn@yoYk%%s(~vPvboZ4(c;q%<2rs z4dJ-!+JQWK-BQBJ7d2rfA1}e4-8GjS~4>J725}qh4rxib)3vU3C$_qmhFvz%ym^ z@7h1eyakg!iV71eU@dO*Uog>$(8q?bcelet-Zaf64q~RQ70SZ(mO4oOlQ7%|I|uab zF3Q_!3I`Dr7+9sL#qCf!1pPN@(lrjtd1-3v9K@_~Rnqj+J1qEb(#$qF4B@5un{g2H zsI*ENUq^=@#Z2!igq6+?J9%k(yE%w?ykCWt>+bN=f0IV(>9B>D=6Fp95u0m4+)%Y0 zwEWJ-!`mVCzf3MJz{jDC$I>@&5R-VStkm4k;pTsfpnZW3-FYjyG!!ij2Q%4^V(zkF zRl>@&_TXWJLom0Yxx*^aUMDchcxMn6(xV<{7vj)I%%c%v-3SL22<_q^ob1X>l4Xp}X=ub1~;~Z8xkX>toSq^9U&8}jO18pI-u4^1Zl1VXz)>ZP`<^J}% zlTM_zp{LHfHYtwyTKBz(*OWLYlfMI23tWrU89_!P2WRf$0G+7MR3KO%&LctR!;9KC zS?AC1%fA_>JIrf1c!X{M{5~4()~}4wfJ*HfbcNPeml46=JT$+#)s=+=mt zT~%0z>UlYX^w%!-KyGl+ftTIu$v~@Lw65H5t96IXA~H3E?hIb;yC>xWige<>(6J%_ zh#&)XQ&sS{%;~yyxFdUY-!LLX!qX-GjZOhZUV;bwI(EhZZ+q_3Io%8inTok(x^7~e zYs2Osb}3nyxUj3b0zO8m>$;;#5~F4JbouaC4N$nwc%n-bG0E_f%0W#I6RAO;x7L|9 z;GHh(zsTHw2zS9d!Q7Um`cBa6DjA2UGj{7-1CH-hQy^;$43%Q+g1nymE&flc*( zBv;~AoGbI2>R*dh9@w~Zel7IV$c}_N6r%Uxi@%53bT1CqPvqmYeLKCcXoWKlK5+&u z!`$Gkvgz8R6V!D`zt41a=&Wx*bj7V$*R;<1CHyANJxVWnLx@GF*Fvx60;2WncvUO9 z*;L)y!=`FbAN@7aJFJModNt^DIMB##9H7sXl8n(}pnjQ%WrWOOh-gg~Zo~A4`2c)8 zO8=CfXTMC)$BJ1c@Kh*C)5pn(&4F$Gn5DlWI=&#Hnk$~8&*XDibdLUks82eq zw@bNGtM%CwwH-a^fPbiz`DKZdax&7FX9d(2VZaQOc1!88}&cQz~xyX zZoti@*Z}|Bg?^8Sr2`_?0&zRwPeEPWuGdLHUfWiB?zaN{Aet0Yiu8Mwr09QC5C3`u z?ht-mUyJWB;b*-kU)+34-;GC5-_@VfkiL&z=x0kvG5t6FZ+wTD@AU5|Qk(UszCMp| z`lEiXp42924IBAk7K5RZ@2fBw+ROM3PKMhq)JyUpX>KD!iAe3a)r}41G+5^vt>@C3 z85YS%(KXZnlPRu!7-p!Y0_EB99Y9QHgQ(YBk(EPtKUHw?k%m1=K<%S>$ zDgM5~u#7K$v)bTCliKTR4ZeKQoNox_i^=N^34HPDMgv^;G1!Xl3>;q@ztxb>gBf-j zn)9`>1%{D)@#b#Zur+%OD|v+W`wTzw9qJq~oZ}HBM+`}P?WAHuf4=yj)Bt}>3NubS zZWziJ-<`1G9ynzaC-bZ!j|U67U=wG0xlNppmu$n1T(*fb_^ROokK6u+0bYV*Zr-;I z@TmYUuCFk7($FvXGpp-&4O990wDeik=*vYG0{L-+8FV1>x zKtEMFULXDsLY z)>Im;CS9R6!e3*<>b%h!!(^n`&SX5wb2Tx>u8=E$pO2Y9#WbT5G;lWBbMq}mYh?W3 zWW3CG-sWO7eb$+~?P_$96HsMsqcz$hy^Yprd+lqqMq8kt4Rb_*O@$*tMyscLHZrzG z@Yvux8XG(EZ0(yGck#uO&5WD)VpiaG-G~FGA`dqt&|(DMqVzI}Ep(X2nP&e0YPMryg(Y^O@yA++^scg%hljaeqxR z#`C}`d?5#Fq%XZkfP26Q0*0j*dZQmZ7u?smHvyTUC z%myE}jq*NfGxjefHe=5@ZZmfA37eJ%(K{PHl5*%vn{4lzSzsjG(tm$U9MyLz}HrKn||So*Xx-M@x_hxO+WC( zseYzHz8Dfq_%sKDT&WHrw5yS6r@%% z+GL%s-;Xiv4AV^>!F7SDCSQzVP40a7rmr#$;`{!w z*0dg8jUYp9-DLwCR%rTzcgvW4rei$gcKdB=+8;E*UpvLaE*vsN@wfrUP3gQZO3F-A zdEGi!*oJBEnjY}Or1worc^2ROY8t_dQ~RlDF)z;XkG5fR{x&7@9o|!BS2+cDa+J)> z`6|ta`1-dR^KIVl4|V3RFIA6o; zY9Yh^Y;3;Cd+wKTGkkbMT-(mB zyu(+nG2h~G=dLqX*n_PP%-w-vvpI`f@X!o@YOr{#*%jzc$wR=)8zv>#zTGSbPj{L< zxj~Q3b12%OBN*M7NuU4-J!^IZ*)vT#FzKmzDeXoYK>Y%98&L4f97+dt1h1Z%z3HHi zAaI$%7o;{Y)uCH-1o^MvS{u?4cp6Q^>1G{4X{Ek7R)lU3F@j7<;6kBUAqj%(Q~5_P zH#EL*xv?u9*Ae9Gg%An+&{*NnVUXDrQz9N}2Zw$&J`rRlL^5bJ^~o5I8)(0dK)=^D zoc4v4_09fZ+G}$gdI>LQjzCV3wBM`;1+NTFV9|c_RxBRqaKIb}!d@8MK$O<31iOmN za!HO=O6%x?lZM*#(T<>Uw5cxm?x49j2n(ee0?Q$DOM;Sg$gBhD>n)wDp>&ODR&g=pzUh89M*G>YL)awMoFIxH&Sxfes<%s{okLLF193Eov1%3ZAZ>GY? z_`C_Gh9Kr|^J>)k@^AB9NmM8J88wsTP^iTMr4|U4TG0syiz+go zO2NN_I-?V4u4EcnQL+b{4Im>=p#oWr`skzuov5!scACI6n;n0C|^8!Y_g*thZk`l1lK0{*Ch zmdO&r+Bq=&tgu+vYzM~0>m8Ic>(6(oq-u| z1wl3dYs^dyIy3?tHAD1pf)pY|ioi&%K$?m93~958IrSydK!OBz-hlytBRD|_HtK%> zlUkT}RA@Bx(f;rl|wy*+L{1A~`Yh%vJtHX@;0u1>)@vIa%>M zKFahU{SQMOdRqjUU^|GKTZDLAMAh698tk46Q~NWdbUzqCy-8i!sO?3v*-*B>bZaOfVIS>hOY6lgy+RLimo6AZI1Bgbt1b;hXec1i^+Z2X~g4 z?Gb!_N0S+hxNB|;7f}Y#$#B>zW*lnCj5BwjE+f|(L0&FA91UYqh#{e2?wd`h!U7xu z83sHFV{{Av+8^f7aAY-#x1~MMNs4}!>g5Xkt#nmMjh0qJ3q$rBcg7Bgo z6Ia%n=}A$m`3|;?QH|ShEreY&XPRn&-EEm4sjb)yxlN3<=si$SxK*L{*{l#l?-m-M zB$8}bj#k1Mv^5gcY!8JH09@k%ZU_LbU;sb+{eo?#TQ~(O-4JdpKn|A1AyPTu5hTBn4&~nP5C4Rgph^-T^e}!rY`?y8zE^Oal4H-Q?F}o@cCJ;CPfT5DwZ1R5d^`M%QNCLBJ1Y75EU% z1OUxUMgv|&GhfqPpvcw?qP$ThR(TAJq6A)_+g0@lhCg0{XLli)WCqj&#lT|{1H*bT-W0vM3(&`yA|#u-kSs!P=C$4+ z)Ot50P#Ss4^Mj-6^<|!-(L`Ts1LT2Iz_1E1dt8m9Act z7PSPC44~{PaGqmV;=I#|j1Nu27L)-9PE`i@8*)V%pkWn0&H}Bvk}MEL(8EGt;%+HK z@6?qffQDU30w4fZU_JprbesVE2QvrgL2v|``>+zteHtnly_%^FE(~Eh*sS-GOnq2q z2cm{D@o)~~qZba z?hb#MkXc1h+pwA-W0Ro~y%)-ZrZ`7b#3{5$sA6eXGR4mZFbaBGSKyHfV~8MNN8k&E z>s|4M0{noZ$_-bAC=a@V(d#XJ$^QFX03%0G&qp)szkvFShx#Od`XGc-MEwI)lW|On zO)t1J0GNkW?fT=H5}K+FGTSk(z#|my-JB*dWmE%H0iRu<-F~ylOs1rE6x`)UPip|; zCon4T`(&nE5`wDW#viw#>o_3{=RcLvQWP|<4QJ6bCa((TCB)%|OlQ=TB#sB7Ye$hF z#NzPFDNU1|Efn}wDU>EMo%tDLw1eph?_@HgaC!po+cEq#+@7!DJ|y+H$x9U}<;PBp z!U+k4bYuo9t(6cEC!?b?n0@pXXgOQaIv6!w{G0=wrkhu}^N znvLve;F?_7o2d!6Y6;z})A$p#lXX)=X+TLICf@ACbA20CwPhUw%ICxR5Ss<#5<~Jf zwf4OgMe>t=5tC?}Fi?)6j2|dj#01feqrn!HF^Fo4n0EnrJ)KolG|8WV(PVzPa+Qmj zGzkT_*4>yyr8_SMY{uE?$x;UX5NIrFgv@Jc4dBBvn2iTV1MlUK3)2sV9p2F=Lp-Za z^jOFQZB8x~yBfg2T*ixzh0Q2G5hQCGaiIG|ll-&Zv`kpd^tYMT6}(!_ECvm)=a{)=YZ&+_;5F*XXRH^zMZG~~5Mu&)on=z4={k5l z1T%SfGBlrV-#k5NkPr6}a#RtNJ6HmL0N|BTNq-ds4(2o6tQ}MPOAG*CQn<#zI($jt zj)t@XWuqhkRE)sX-ZAJBMQ~Z6s>i$VEBI%5%FlGO9I#97(ql z!gY?pS5V3-5b$gxbI&Rnx-_x1L51=3>Hi(Go~DPy0BS3fs`TU8!&bcW`erLL8%!Sw zCw%8^j2HNEBm*zJwlQY#$4KjxFB}D@{F3cVO=VMl@T3@Ucsmn~#<}9_AzKTC#j~<# z2h)k#f$a$LHXf=&Z-r{W1%qxugICX4BR791v(lbE#7h;z183~ z0cSX-JM|O6L6<6$a%47?4a-rb3&bERN#r}_8oDr`;!dC) z=*uz9K-ueLC;HDA(B~l25G`QH%I}0$w(AB0kLp7~%Mlq$pjlMQ8?PRUNM6Wtkdwx^ zSOvf~w>F)J?tX7*Vmb>0BZYyt5F!;4l3=0!`4>$LnD#S_-Lr?83(|Thpvvqlk#v2? z58dD^0d-}-?I^R7ZqyCzKgx8cn{)%C8OumIxSJrR!n*t{Ek-cBl!>SL2?9>N+3F9Rj=??E zNXY#K+|&(&sK|Hl&0Fld-;Oamb2wo6R%9+p&3gJb&Mza}=nvh5B%Zu^^6lJc*|tioW>HTO@9Y>unmF!0KZaFfgt}dy!6k0VX~w1c+JMXXD%tI z*121m(aLXm#(_PM>)g2ti6ulr^+X8d5~-8DRy9_|Wq?bd^uwbN%v7@GY}=qa}p;fL(Hc*WodCNe$4{WH~F<^yJe6PtYnuuo1hT33 z?TMOGc{Q=j{2ywi~&&$$@+AGj>H`WxsQi8Um+<=;v zkrL{A(oXI~mh;l=?n(A?z3W=slyK*PZE>lp5zfQ=^u3+wEEz2YidQzZt5p4pG8(L0CK0*pVXL`UZ&ZD3(R#fnuDyu2JnpYg_ zVO6}b#kQA#n&GRRr~!uV@bWeF1=E}If(r{=5`HE; z3W*}`oeqyf&}J+d9nPV{X>=F_m)4Yl=x_!dPNIWf4|woJhhNa)K05q}4rkFJ0%nbr z4(PB89k!!Gjb8BJiVk+@Ai)R3_$zd{2T4mx1w4*VDTI4L>@?UgADRdZ>S2kYgL;F5 zJuHi{k>+Cq&BMl-j}0>)8)ZH=$b4*!`PdNiu@UBB1I)w9&&P_-$4bw~`p(C?&c}Mr z$2!i(`pw6>&BuDp!#d4R*%btJnU9s3j}@7hBEe!J1?G)UapGmi-reK~HG|$&^|I`v z(y?P-c7RpbvC+u8*s-z5yV$XpQ3*SCA@VbJ>0lH{PMz`w?5)v(e z9M#{Vq3D6arg*;Tn^+4&(P?~B-lAYTinP#OdI8U=hMJ%_)}jK#<19u#!BW3~(dJ_K zxwbQ<2WR6f-_R?Cz`6YJ)c>F1x`7rz?-7nHaa$?+r5Cj63MyJ|M^4*af7f84WxU zZ>wyPV!@SNQ!K1{pb)z9qGKdzG0Y<7H?Yua@T_jC5V_M9TU|{|Cb>uGGs~BkU}rx74;V3kXIuu z^XQ^J`1X`~uds!hW(p>cDGU3MEq-4AG(BD12i>kp6G+Ch+0q9uT7m{O;lHVh|L727 zINcZ1O@Kp!qY~M?e7SQXaF}Zhrr-1dp8E~X=o~-SSX2F8C=U#eB>E4bD3ZQFpJEIG zcg9-WzhwKm56J&u2p2SHh&(TNd7fg^$Ea)d6$Dr{t82*+&%VT4a7gqTM}JUK&)5VM z)HC*?!~255RfhWNHbM|AYG_}9)gpOO*V#GN7DxnN!iBy~Y0kC>fGWw`Te8F$1kl)0MttiBqDDIQqhG_`@claV8zDCs-ih=}A-BK#qF2NE3Api~Py2$*Z;fv1 zr^4|GddGG&(+@xJQakn&gb+feOn^$V1cE#%1wU;;^Tw+mD1B+@^N;9gvnOb<5M3Ts z1s$F@kKoMPZR`MU&$Kk9yYwSd1)kHk7;3A#2_-=BM@3baAQnn+!WaxHRvJAFRf&b? z2H%T70+(Gd=mm|AL=^ab8fpyCI_l}K`=N{#qfQfYMAJqv%!v$}`uQ+Cb+YGLT7ZnX zmVWfAe(<;V9F5@RT#Ji(jSvmVpPOWX*N!&xeFybj>ev)`v@v=L7&#M0%d3PJ*wKYF zF6{>@mpa1t;C32j(m(VAC2Nho>XX&^!HcwN9xLyM(n}+7XWeHkT?uM&6-$9UZahnn z`PO0vQI1_3@b>Zpiwfaq9`E{*Q2bNK9tX@H)!9q?R}V)X{B=JPj<1CnI2>L3lW=tJ zUp*Y1LE*5^!qK~b^>D00FI{4Br6HHm7oZOKk!)Ch{76>a`U~Jz)qy)hvEjqnFKzOg z*ra5&wt=A0ofzx|(H;dD^)+w2@aP7#HRe-mJGQ4M^(Qe8&msF^&Ydol2FLuA>e9^Z zPnL+(&PJavxlTaco5ByHDW#yX1`%m2YHUrX_9x-KS;(wfxO?p{5xq+V}(wM(oZD6zLJAUp#m1C$=&orLI#mSAvUwWXebcWnZ1L>)ny!#&wwWRd>P^s?gCQBT&bO=sJSviYHzwQmr*V=hEqmv1Gcz^SU!|iMc9djUD(? z6>F-JSTwYuqi}KIxs(wu)fSg}M1=EIBG6}I$!wzs2!f^BZ1W|*$UH;Cq9P zzUqkT9H{naxNz<7F@UTjt(rRu7cV~o*rtk`KoozT8z^50eM0QQFCxuj-9sCABec}uBW7W~i;JDA%5#AybkVU>o+5v>ySOkO3_1TsQ?$_Tn(pViKM8l!Igtdlt4_@Z}w+;RRnS%+F zHiSvF>DZ7ohJnl#76u$S0B^C5jROvL_v?c@cMSIG@zwYxBNURp>2#joqC=MY0)CAM zBz%;Jl&Z$Bv6UZ{2VDl0&DR+H!Ocp8pE^&-YNXDwHfV9z;Hlm$tcDtUfNX#GLPx4W zA_pTbS+pSah(!+XGN7+H>AX0wqI;(hHSLnDFp zniF15s5^;wL2hh88ku;q2`PANfNv8$HjJh_#^blP)e&FtZC{;l51wzxQ$vt|Z%YE* zri!niF@)y}UTsIy9-GV$d^l;zR8J6c#0x3@*eWBQB+nVbW}M*Cstc3_ZT9&EA;i!)!aI8mL& zPyf3X&NS4n()6GyGl&_jaI`1^fI=vq0c2PLekA;l5*A#97oDGl z2u?E}FIqg+J%y;&G$YOZF0=+1e#v67CKzb9Y6+$liN>+WSgolu04BDk*4#3>*f^Qa zNFb{ZJm(}Ez0|X-aY}+8q*R$?NdlROE~Q2{LCo`9(ooMYl4>XsVJd0F7wnS~NFpf^ zGOLzI!pN{4pAUnHEOH4y?{A0i?8 zB%)~W1Jmtc{N)HaRtt&tWY}WcFubh5OIanTkQ+nE+F~WU(mNCJ>$>U!AtY8}dvzra z!uLneeOq{yYX@SLM&Yii1L3;4N)ticbR>-%6G_~_m72fQg{5xvwM6{tt@_3n5?rY+ z!F^tWb84gTQnwSqzxa>LBW%oZFhM)Q{Yp35ejo`Vc*a{>^}y;uqyVE&SOb_DSbbN^ z!^%*nFJ^OR!jmSAcs4`6)*uQGa1KW|(5acOF!DA!8t4FgdmQeFHahy!4f=pUxu+R) zjd1is`A4d^r1jy1RR%VF^*TC6N+19 z=~KdLV(BxG?L?ysz-!%YNWfR0)D@rgLpPak3bcJZu=--h%W!=lD1T#Vp}sC0j=i?l z*;rRfCqb{F_np;JSh78gLtdl5N~(H<0l$g~yJ!i+A5#iUTE(Q=P3&l5z*D>dlM{#m zSGht1#=|84PX-j=^21?}CiHUj0PB{g2hkGvz-FVPBY6JSqOd*5Ymp>)l1GSm+FFU9 z>V ziN#v>AVPOmO3;$GZzrZ>4iKOaJ<#;v)N!6dq^(XvyRPo38BoWj6Q#oj| zs;6=vlE^Xz&-kg_SIL4nK^dO@ODKvmnPm5BPvv;F?~|%O>WU@u{K3of8#aB6+E>V> z+R`+D4DkjDkKu|2N8qKY>Y-c*cxj3r%5@TA;I-&$G(>o7raLb!dN3zgP~!-P)~Ndz z7d!E!F*F%1L&Ar1W0J|kxp80cO|8y1Eg3(c6R=DmsKft}WulNJpjRj3hjeSd;PXv& zKAV&AgE|49fdne|ANeE+`S1_xP9&3ub*H}Ic3i-%qIJ4~O2*IY1k92NUdcZ)8)RdK zS5)Z7(qLl&{XUsoFMJU4!>hdEOk=DLRDge z+x)N9E`tO$Ffcs+Kia+nJgQ;~*u6<8;U=VzuzPnmBq7vL5_%Pafb`yb=qv;hdQT9g zh8{9>66r__Eg~Xd7eRs*#R7_;q6nx@-$Ug;b7pq$xpz1G|CjK;?|WvMnN#M>nKS2{ zDVJRju{Lo#_P;@gL#=T}IE?HPM+;A}E`>)^S$i}wmCZR@Em+Im;dWwUJZ!N)!>mz0 zu=keO`+8yTNwI_1{8;RIXlm#Q2CM873Ui2l@pUSAaYYIHAX1MJwD_($I(jN13Ty01AS|> zFih|l_dqY0h>ld=A^lN4hJU#CKS_rqp*KdG4bxbuyQ9ULaAvd!qyC^&Ov}hP0rEfx zLCd7?d4`Q4d!FUS7`1Su5;8{DA|+~!zU4{ybqN~k7&E`)MMdc`WV^H37_r^?v=^x+ zlvKMh+-8fdPC{yez}P^LBGWoWl48jnU{4nJLWFqaUdW^|VxFW?vN%stDA_si594Nt zL_BVc*bEs*;n8Qo?Z|b|MV>}pPpc9A8j61V7_+nOMlbm0`+lUi6Gf*+kMWGRLFI4@ z@_iT+o<4@ZxCL22Il#5>66N3vlxrQvw;#PJz2`NAlLQNI3l?BY`n;dDr}~f*F=Cy8UP!E4ClCv1X-<97~ig4w}i>tQO%oO^^v2YgW3+qN40r5t5m9 zA6tzTyN|8Ch_<9eyGWvZ=aCSdB5*hJB0AMWlrJ1YOtr->+_bSm^JY+rs2Wo!#Rc#W zqvlDRlg0|on?&Jt&D#k5{t=k+5~? z$`ueI*E#r$`*5F9+Ng6MQQFs~F!@d#5vHVb*-Mzy1p^la1Il}2g_*OABYI*|x)}oG zUmXO^oWA=OHBRilMN=f4Rf~hAX;$ihRUc>Ggqta_TX{<_-)okrjDTxBd=swSII#)W z!HZB^GofDNgpD(8!p#;4Tj|t@otq=6v9xGwD=8Xj;^vGKiZ+i@=9*xcWuk0Z%q)>s zFLyxVo;FS>+%$?uSGeuaQLb>gv>M55HIspR^qkDSx#b+*U6{tZ;FX`6EBZH?qr(2V zEgohoKZBv+iU)r&TlppBfsZEp*lDGQbZ()D>o8NoQd0TEr-dKf!u}(Q%?{j>Zzwj7z4`GQ~i-7 z_4I~;N1l3uYDhg*WYg2ax2vDfYA`f1|8#{Gi>$~;F6QWLouqzGt8UaS*PM->65dGp z*2QwBgx68OrPVl-QmwP9_&bpNFm*=`D(54##tdn zRh9S;`>3BAFR(KP& zDMf_By*w*CRT&BLnjJn_9ZjoIwD9DhkxuG(@lwH|IpJf-taj63d5P9mqRHxiFUdw6#?k-A=4yt|qYV@F>9Y4j(48 z5|%dwTX@PF1gPhe22T*n3jD=<(s0TVTI``_W+qG!UMbHh5suag0l-PcCI+3!66O7P zxg3k$6U4%@f)Xyd|{}TO}c`nTGL}2fzoW zh>X%;N))XVY>^m=j!7|ZLrdhnQ-q(^o8rKvPVx|d|BfxGN!AvO;|A{0eQevW6|KJUpVFtAbnW(2l2zctwJQ45lP@nm6|fT6POgUPeyf?se#3 zxRDd`dU%}r3nggM#XSP*Cj#X&PZBsuF7;)k^`bILnevr+zHTJewj=t zU^?VY@{+A~<&8-qNAfPE%TB`(v&2TM9zCj@}QvpnxJku&0;3HmF_o6 ziYpy4K8FO@JqjkYPS2Huq>5ZgSgKj!f>VjYIZ`oCLXaO8$OBW&x^_fVluQ*lk|wDl zN7BrTKqE?^ZK|+zJU>FH-YP(kIAB0=R!fs^F?K+Pmd5l4SKp$LhRHIuya zA`_#lmrfx7J^e8W0QiY5_=^fQl@i9$PosqA!#|AHOX5%QBK(RV z>`D_O4}|&1!@F5oIN3e&EaFum^ zKfI1o3FFOp9%|zC)BceP_&Eta`;-T1o4lpEfg+Gvl>0hmrm!W zos%<_(RH%m8ah9d$p2B7|ATK|@_*Fh|KM9~$Te}*h$YaP|Ccvhf{n<71pKfJ za^vEsKCmBx0v<3z0(bz1=R~k$E*{%MuQ+|AikToz)x{GX`UU+DVemaY{aE}1#pL=_ z`~$`0x+?x5d-?|U)b$qp84ORrBNIp;sc-_LT<>5d9QMZZ=6D*EqXM4T{QcGmelUvJ z&nul+>Ib6&SVF5BRn-3h4RLhl_cWI1itOCwPf`MP5r8stSna7Psr>)rMz}@}AK7S1 z?a_@J)UVelvF`B3^^@z=ub*76PTkQ74H`8}sF%>FapMMc>o*+PAi3V~`mFmxXEY1> zu|98;1VJODSmC`A@?F}x|Oe9+oV)h3%*i!4t{Bx|lx zli8Jn)(2`;QpZBy5ACTY(2^KORA)bE!$SK7H#9be^j9aA(=WKKO7V-wAphwXJXC2v znI*=DwPnFQ!eX55I99yZ?k6Um0SHfpPRz5usP?DSx#c5}C4E5R+mj&!gU>5te3L8f z0|@d%5$w-n)*g{mhD0<&k6VYS&rw$R7)Pd)64JWX3F}15D{SitYyE(&&?K2{nd@vF zUW&KIE{6#oR!?S@Q`Tn-Llbi{LSws5T9XRn>hF`*iRw|p18QFR!=yy#%EBHVjZFcz z+P!S;SMm~Xb9pk`IM?|sVazTVJ0}_Qjfo*+Gf!E&miH|#3mbMKR`ajwikQs)K4ooF z{&(-W019VeYr3SgR7y>jwhvSgY~PPVZ*ktfVX z0hVIprPy#OHd?B`iGs+G*9f3`?r>0bKmOx>x8O!>+dQLT@5M8 z_H79bu4xnod;v`*OwFzOH;q-0H zOK=uggtF0|3D4ro*R9o*4pUgkH{czDP9_Y`u#oHUq%Pd^iq?|gn>;0pFnWwLsAUz- zM%tm65k7^&iYb)q7p#%2WtLVhpS@*eu-;E$$>SZP`CrVBwrtufkomuBeNSOi*yVSv zHPwx@|LEbYpMw5d_*(eDV`k~eqehRMl#)DdVwP*i6n6iQ3U%0>_pH;4@I6NyHDEAG zSu-X3eQO1Eje#^j9(&R}cq^v}cWF70=I15jY)CZH1#)18^!f&VdDB{3X3VQ*6}+&#lq%qoLrvW zO^6R=8Qp9u3+Zq(ly$ja4KEJoes=(|rFkn&g&+EK#%-dqQ%$qr2Pw$!r64cG+E%L- zc`LUWD6Sykb4E9Ez#d9LZ40Cs(AQUE*jvGr4>!&D*BO`ljbwG(B6OVrYi zBWmice|@GFBG3rd_JY-399b%@r?Rb|S*xh64cvfEhK)6gGD+{J^7K@pm!;d2+UAM-wPS>r={r`b3up1n7f%JC`e=Ns0}MbnPC%AZr&58qnrs(%^?bH%VvGtIHz^}$u{ zOU3ArYFnh%<}JxQ>&z;&I#D-Sua+yKp*`Ob+4T>tfZouk~5F>Om(C3zZs#$oQ zMX!_&)5MG#@RN0dx`e{v+gQaB+zV209hhZ?CQcfF+|D<$_h1G0tpTjTFOXZg^|N)e z|6!oZLMPq~XB&R8hO2p$4HVzO!o+u4h|eF4{!=XPmvoJVJg=2!2?MnNHoC7C#uC0Q z`pEB_#?Jn3ZK&=u@WaJym)Tn5T-t~&QP-mV%EKsb3~*MQm%E= z*}27rg4wmqbH8{JnqnDabpZw+CV37?n(@T zwecqZ#s9e|%T<>bq`(UmtzyER>v#oKqEuesw$_QQVw`Z=wYT~sDP5mt>#qDZo#j4b ztE&D%Dp=wxwvk|%-E+j-hj}!eg~o^0Q<0s`r34?DF}6x<^#i4dp$3j8e4$jal~8_! zj+Sw3WAWcedy*AYnl@P`Wohst+spdqxRXHNckDh1LOKROXzb zyAp}Pwqey^65I#oIrUmPiI&J8{&yMZU^gqm0h*Unrw9Gf+k< zl@WaI);5Oy8e+@!soJ}X)!(6Pb(k%Lbq=%bQa>}W&o%lZQX<*Ud?NIs%Gq3zKCrvK zmnwb9GzxRWY;j@~{xgHMim(lHe$RQM(k~#)>dO5~gzc32h*n_==dv04Z`uSEJ!fh_ zU?fE`M|2O77p7Cbs)hm+yNi-TmxpJJK*Q4H2R zaJaqr2L$2#eMs*`eCJHDh$BC^hyx?Ah}SAwoFqq~Yn&}uSqYuy>-R}>kCsywas9>= z&KW~7ydK=-iD(4pMfDtK}7 z2grRAY8>71W@)y)nym!)1Xio}D4Vz>{Y*;!zfhhK>4Svp-l-GrilV4X#@9S7tGGjs%PqMJ~P zR7ym$D@|x^4u>W*f&W4inlQ`kEZ~r$vjBue4D?D(7y>%f!dZYAs1#e40L$9GTDInD zd&(A$Q5#YsIm+DnB($SN=bI&1sRWy*w45beGMKcp6Ks`~At?7aW#}wnP5N>cs5NOt zcoMz?EsM}z|xEHaAl*o=`J~_(Ha<=i2K1jGWpsXB9hCURT4Q#cQeR2x)jj&nS zod&jg&JCPFIv5KH$ND@#SK=tG!g=tV8Tv47qR#`0REk0JDCfa@91aKd0{?}BdO-{- zaV7M5@Z2onO3;PKjTqKY-Ie&vgZQck@l`KvA+AIz_EKM48TNM*TRR_4MS2+I7*;p6 ztyS-HbnYb(J&XU+67($Y&k~-+FQi6tS!~ZDx~VOQz1Q3}T@9X1IKf1N4|=Yk+0wJP zJ&WuPI4CT77QSII-SAHfu%7YL>>&(){nEnLR!yV`KqsoQke$72SZ2#q`Z$ZGRFnUR z?im#w=^H&m$K^JN$;)w}0K#$k0fvt|F1)$0>_a#c{GV>e1^S4NOAxQ1+Wiw539j8D z`7nZX0v(r>*}`#|L@Lm6QO3_MB(Xbdws2aI7j#;HiQ+gdIKXqCwFN07W(%ifxw$vP zD0}F%;6}+>L-CVvT0Fc2QIZzc{k8V9)IF43%!l^Q>P}vQ>lJ8S?o0OiY+pNAu3n`L z*HnndUkS4hdRIueZnxZS14=wgkU|*%o%a*)uWfhqNV62Pq#EHX>h& z5s9E90(@4_813Lz8Tmx32t8IWi|%a;6HeSrF$@YAu~~h=iOWX0$0-cH3Bc33t2lKk_1T0S;l$Ar z$)IZ$j&iriJ-jtaYcKzW(%LJeMVz={vpr5+V{qdUIwXpjAs^UX1#)h@tPjfa!Qjr_kdp!3xt|7uJ6FJY zqr-BVFsn}nbmxAeRX7=5F+<;`P4vk?kxB_j9>rvcu*`*G9A1V0!r@g|wDM3-|$=eM3^`^e%qah?S(74(T!Q)vU(--o-}3(F?J z*O+f~f@REi@^kh)W~mxg*Qf&7Urei~jGf0~>N_0jSc(<(t=rBvLG10hwnoa@c`Wx& zcwVz0Obb=BXhYmOUHv%9+vdr=Q?3tE`PlVv?O9G4A0K?wr7 zivoSlX6JwL0qy93($$oI;nHvQ&=~cp`9%G(BY!`ROyGPU!n?7%LJisvq>?eIW`Yts zpT#V<#i((Vibq3~==p^hh+6Y~Xa~EJTC^u8vsC7;7ox^lcRe;uJ3&wzT&Db*~RH>29Lh~FEZ0JWLG?u`ELzH&uEM~o}mfGPl zh=K$n_>Pqs(Vp;ZSP{mWV7)p~Rv>^YSS)XSa69%cvsF{(r?cM}P|h$x(=JHBxrFj8 z*@f>n*jg*=(^>pRNKCTF;0O`K*BNmn?y+?wvXX?Ri$)%Fqv27uJn<3OaYL_ienUcX;?}E+OX^+7niNkG7FB}QGZIzW} z8LZ!KTXi+_F*szum*_Ywec6roxP#;8w3CsM4EGWZ`N&vW@rI4eDkr&WAsTX(^J@y? zx$<#87?`?#fl4FU&v*CQ+WVb_s$aJScT&$khDoas))~TNBcDu`6AkMVCM)`6Qg%C< zFzEnJa@IHUXb+!r;a>Ks8fYVYH6h>sfUTZI{maZW0g$$k1MrC%of{mel=rR6vS~S8 zm&4HpV+f;qto8l7YuH2bvB*fVXT%+cvB53y89#&s$}I z@Oi7y8g&2C>$ES;Rv&@GK`j=r6Gv=S)Fj#lm#yXt3h`$;F7V+tUCXn@5ivN$kN^kz z%edZb3|k#gnvFOLia%ljTY3}}f0P#+$%U~o$rl?(j@c^tWCIsX0|&Thre5nGQHIjQ z(rf;qL9E8%U?(fcj|ox@V3;b71KKAXNs4Cy*x(bkLq!c+R-LrfSJWKJ2@c^F zIfPqi4TLQ*?0R&aP5v)KF&nzv5v{&L8{qhzEKG233c;D2xNWg@Ix0sOu*82LcmT2} zFaufL%P|}%Snx{(s0&{oLlO=K+GjCHiHs=stM5gf}c7%Ki+NN6AzngiR)6~ z)Ofd5O#>aeSS7t|ve@KL?qVjSXw&H@j>bZc&d=Ff?Rc{|xP>yz(3mpew1b(rP{jEH6u``aH7q z_H)egp$*O*)7UxbLt9hQg}Q=|BhRr_AKGG#4DefJWUOSSQ*Ob}|#kDE; zi&r~CZVn7&t3S8B;@=zk%&vS|w~E@A_MYG0PpL zH2}r)p~XIJg4$-?qjgoA6YT8%?U<2~q(G8$HGAH|Lc5l=v$Ornc2c{N7W@`@RW|H+ ziFl>s^DM6{Yz+*i)z}lLIiDXA$I33Ug{k9dHNLsh^5u|v?B9J_Oc*z}nWa)^H5oA> zdCC-cWd-u*O|)>1I=7KlUrnd52FifHB1^TD3{zLoHi*CAR7i)%p$=W|sITTyFav6S zttisRAb?cF7I%5*IKQ(1-1fd}i&joQ&t}|(rR>$`#pVM@&p2&uloo70^pB(^y3jfL zYOLjkkjjx4ISB5+UE;rR2kz4IUMK7!)4-2V*Slw1*u{r(W)|-zR8MX(RCcRl*}9C~ zhnt$WX-80vf2Acj__w7Re@AL$7oQM2fx|TR)o->ss{ads*qzDZ+iB%}5Ow*zfXX~T zjik->ArE^&=y4pa#;!n3Oup7YtwU>2#X|O%=vb(V0T}9#Z)SuJeWmNrfj>cadc43c z{b`F*dcGiZ2$(kN&~+kCeIppH-vG)U^sBS;8{U{M9DQjMeIuA6m16|rB5Ih%;ZO}H z^IxcjlV9+S+_(AWd2z0fZnwGXU{B}Db6Tg!bPvu956%pM(`y@e3>){*Hp$0c zaD~5Zx#~s^?;d|t$6Q*1W4KWaMwj)ZMsk$7qF8=MS5{C)3u3RFOAcq>EYb$4CkY9$ zA?$;w>%+RJ#<_eC_R|;07Vw8KaC{3m=U1(@`oPfE zy=8pYS9{$34O~P-iE|^N(b-VTNk9#3FvD4=z9E&=fre_&E;F=o6T)3)-_jGi%x{B8ympx>fY@bT z4XVg@nR#=u%e<7+=Kpl>GQTY+=?UJ1PP4VVz^#y;UFIRBwIp>V?EuCr7fWlklnsm6 z-=(z}brY?|m_2(@A+G4oMIz^dY~em1@KdRb7GE?!4AnSXSqaj{n-!c9+Nb4|GYHco z*}$Ky z?d7j{37RRGgRs3kmPLeWY3f7T5Hl@*E)vPIKWPnSTB?O&7IEw6CS0psC#H*?DY=W>m9TPd!6uiKo!5! zi{ah>*`;IDGqfK2eyXs(zvHX#_Z(UU()VD|cc6~rY@n|9-Mcu;shv^{#n|N>z001g zj&gUAIJ^24XfZ##`UMygesJr%+K0NQ5^ z{`)K`Wa5roB7%Q|#XVP9>s1WVAivd>9>6IN{(Bg>;gRojUP29V*CitO@3cfb0aA05 zwoF}0;qa8t)@oXD%&_EZkxmRA;%voV;NkC`7mR8U$ZE%H=aeJBMZ8vBJxUosF&-*R zjIRnYhEg#?AGefZ$+^){EcGE|f5D{+U}sxu!R*&jS|}@1#H-q z1NDJf#(QM9cLGGE=vvAb3)%J@t(kg*g7PIOyt*0mYaLWd3_sEWDhMBG>7dj`smP>4 zJdC<0so-NmxB$C2U3@K3TinG*i_DErV#*YZxEaI}CW6Rk_bFS8wXUlzQL8N_QW9q? zX$d;j)t1V$m81rsFjetH8SA39B_#0XeECYGL=ttiSxOTY{YVRvu;{f^1bU-sHTDN; z^n}G!T5U>LaMh&=3-G)!VF3s*VX=h5q8p8=5`kYPEV5}EJz?<})R?f?Pr(eRG1&Ai z6%lM!fR6Ko1#r8jsTNb>O+b|yz~)cY9Lifu<%vm-o|>CjO3&lVqS3iXtN3hi#+aes zqfKygCuF)dSN(z(b4Z5{DP1`NDfTb$GCSo)A9NC_-shMxQhmUGVWj$Csrmdq&LngJ zfv%WgSuM1sK4;jbCo#jolwDBOWx$a;EWjyMj+USbs>{TbDn)8!M>C%kC*kbTajm0T zjgSyi$_G(b)nzhm(v&vW6|dnkF`L@cYU~QsVA`ZFt)gOUL%M_>cj^r z*B8rp>Lix^w~JOo{gHxT^3OMjg(dk7aj+vxwAtz-3d2A-qSaB$FDF9s0ERC&1CCc~`)nC+Y>BxF-|UK9#T{VOD_21QM6Til zj5yC#@a7^{F^H4r|8(an?#Nm31#d#_dp<94kGsddx9F`6QIlyOFetjvTkEKdUoM`@ zOQF>m6OCJ5i03?GIflH!$QI@*IB%@e57y>QimNzf`f0&R@^X>3Sju^#-5WxgcwQ287f<-yM91{Qd*^A9hf!}sZO5$t@loCG@|nM7qV*a_KOr1${2 z3Ci@4z^_acz!SF+<7BshHzHpfpl219Cs99S z=yFtAGJIv#hfccyyKt=LyRWG3h(Lwsc}!jC%{e#7PUufuU;b9g=6J|p6g;Jja9y(FnnbZo2%C{g?IG}t;ViE zjUKB!q}8Tag)1SARbVCHv5Msy%V`9gT4h&|$z&j`@2xs%8$DDh1hWFHVW^Tw!3?O; z!SgK?;o$9tesc#8nC(1OtE_Zf!KO{sDk+^-2!Ah}EgVMeMK3^#EKXL7{o6wczm&?%g?!W^aGq`@c! z$co7{V5YXt=VaPmtjRQheRcj$F#DjTR)@WI6lT=5S&#x)N4t+RYBMcCHC(qs%&1kQ zMs_*#iSYFBIGk2ELa>V&<%6E<@Cq5KyiS|ziuc+IF_{WzwQy`#h*0HgTBC<5g(*59 zL{0Y1jL_tzKvZh-zv)^P<=+*oN(N~3BdN*2v{92YDG$alrNl~T>-N>SK0241q5WtR zJxrlU=o-0vh1lVx?xPzq_~#g$#Cveo@ZhW=aQX;N z-e2f5I9dKY1Sf4cyu0J5iJfT)j$xaXLKBlnjpV2}!Ab5~Ety?hq)k$X6T~7o@j=R! zypjheUDQ?#^H7Gceia1)1>rG+&V8)syC?82lVH z5y8;JH^(A0nG9&WLK6xgLX&1N-aItn%|&SP9skAu=?+aMuM{>tnO9I(=4oEw9(9jR z$I#>lTBV034_1oM8&25=PC)wqmhRk30c&X8)Li{S_@0jk9fM}SIyc0Ki`$_{VV zB4uFGa+L^7TCU26z@(1Fe>8MZL?L5oS1}41xvG$Xn!HLl)pVeE7*dm^zJ4c+eKi7( zLLa$igVUWuixdnPSdUVM0nz$y}?FbY?kAjQO2mQD=A zmA~M60s9qqL%YMZ(mN zm!*7PHZaHK`=wdFCuEn8t}=!+zfw@X9ELYCgZ`|8x}}BNF`$wd(=cS^U-Rt9D*E;W+s7>^(==N;(S4?_)KutHbZ|#o9H3V z544y=I&?@G;t)s?;za+^vrGhmlbQx2PaMieya76tPpyGp=ukej#vJ0{)WHx3$a+GY zy6(B9vc-8?SDzEC7{LXq_19apAa=1Oq!1wBS*dEAN%xwIvn-aDaNV?M?8*yTr!JAC zLUz44p^nbYe~)Y3)rJJSm}EZaxf-mIp-y|+9Ch)YU!@vwQ3TIq_ocPMOI{-)ol&$# zk8}!AeM=kcdZcewgldNXO&;jLM7;en1UfIQVIij=&{?!b=rgcv)aP)@f-%rpL90-o z!_3gjXcIlqp-AQ6fUt;O?&NT&m%I2c)XQB$FUg}ux?YB@5rGbMM%{?P*T+ETs0ZgU z56)u(r!mlp=@S#HG@QcHUe#KNSLCJ2xiMCUZxiA7_^MBl-{Y%3h2^F?f2j2;$9xL@ zGsTq$R{`c_xp>LaDJ~oSt18yH@N*gs0SSIykN?2W>%D)rNG=io7Fl}XA85lj5hn64 zCg7(f>hkx;@sa-({1?7#e~JIXSJLbAw|4RQ>RbF5z5v{kKjVl`*=F!x_ypkp@YOc1FeaeLfJ%r02^q(ayuRfHWJ+GZr z@9-kG%}5;O?5zB-hUG4BHfGl=)rttRWtNySY1-rwqq1C;=dtr|YT;9`32?B+Gu z@@@UI)DmmW@P2Cvd?hb<|EJ(y7waBht70ks{uW%pgYT&K2!58;{9j@Oi*6Gez`DeI z7tVgo3M;8r_F#`*E52S>k(2;s^z|ndJ#PdbL#@KPb+@am-`m>fU3_6*Uv%urZ`cR1 zYwu_`)YgP;c-FHfyBJg_&acZ_IN({XP8GEqsTRi)JFUeKg58@|EmRq>mdAH>**weq zGOXnVt!?--9Dw@ot=F=R7qk@yLOgoy?DT3%I|-jYDi@KT_rBKNqRya9U_3gEO$%U; z+BqgG3)ZrnOW=ktq-`)LO{a{mSc`WLmGNuY*$=c4giU{OT5!f%R{t_2LkzS`Y|5qv zHu++o-@ibMw*>7YEP$c85E#w!u4q|m9w~>I!O>aS2TXscEl??hStjx$u3p60z1DG+ zmG|MZGyLmnmnd$q<#LPdy|pr&T|cWxTWnlCYJ37)YzFce)6x>Rp6@EACeFMuN`5kO z-ltlGMR~9mV_M4tRlL0 zn3j)uw=aseJ;dbz%ta|->sa4wS~WGyK#~Vk4R{Gv__Dx5FMBJ?IuWl9{!+WBcA#K< z$qoOB4;%%1)&qvIROxj*?1j&%@UL<|V4+(yd2#MnRBIVj-2p+lgQ`d$BjfsMExY$- zl%3rhRH~|9ItVUref=ux0uwu+H7BN*0giJYh9x<#n^~iX#pn2FiCYPd6iW%lu&*lF ztFhBJw6Bz1>qJTe{z6K_DaQZsiOIq2ts7cdmhqkTvGV>p*5{^{s9vI7K^=IH>cD40 z2mHo^LCb4Cu{>M-z1FcP8-;J!$1vwJ_9*48b@<`Xw+wW-BK*ip=!m|KLztwTh3?#j zW2FC35LAM#W|05sAgBee5-s3j!La&8?4Zv5)k@CxGCik28MNQq)Bh0!E`M!*p;KO$TR* z%RUnx!AJ96%BT>+;8!hmn-?Ueg9)Ss9-4YtYs$_YEnU74Mp$kcM^=DqGT>qv|EpF( zrToh5ZWj0X6WQwK>4B`)Z(0>6Z!Pk?@AF^$pPoE#mdx|=3aW)q^8)wKdIDQ~l(B$T z;kt^CGJcUIA7%WK*5jIbHH+BSTUnUg4MJW-au*=+A;v?0XhnI5(X9-@@Uc4(U?RiM zgZ^di(k03lM%!p)9~p}IZJAn!Tt!^|P$z?fC?$F2r5wDv?U5&5c?snu7-oY?;+2>G z{TFV5)TRybK1BR_aSJ4#*0>)Rslh+XTbd1gsEzV}78;Nbj<%=maU9yL*T=!qlUXik z^@3f-ae((lVg<^w|7g)l(t2_G1$e+)5e6RgTM^#HKmVh(Qw_y%}12?lQYH500r;&$>|CGFY9V!RlC zuXSt)t7f-{D2dsu`y1ur)VkS3e{t)qHYssya?pAUt3ABAU8$bUjZi`$3Vv))usQ6l z()JkT{VeuFX?wKNHe1*o0FZV^K5tipVC8pd`BwzO*tkIZKz1q6K27aR>-lQv)KSRW zOC4yF=qUR{HJO&+HjU@yr^g~6D9kj)Z9!{XHf${|;k$cv;z=ZC*^=TP1eno?HR z6leii*dw!VI%O6Xlx9%4y^8Xkm(s|$_TD4-b)~r(ZeOPUM5|2tB44SyO`D*;{7Xwv zUmo(3Li8n=34MXTs4u}x>PsX8AkP}gFXx3bqA$_x|3P2E#UO+LZlk`)3Y7_cdFZ7t zvcX@pFQ_ku{-VB6`RV<%u&?(|rTPLZhSZl{{1@s=FIJeow9@QredtT-Z_&ZRw2Wsg zDFI$hO)-dxKNT>Jlu&-)nL4{Nl6jeyCJuWAZdwL9>`|5smiC)gj!Yc+INoT2R9BKO z9QFcrF|9HwiF}L>-jC475|v~#EkPyOz)K8D5?sMvRe4G32mD3-cnS2w@_~PhdW>Q~ zdvb*8#~Gm?DqW!2nrM3kVm0LBbO*iELssmQ>al^D&53NVp7Ma|VdyEU2bG-OLwJy{ ze(xBTGonhZ$a@?MT9W(x7iz|RUz&lhkVRLtSN8i8q>wbaM1B;5cS616@0E%v# zfPrVL4a6pN+knXjlXIM$7}|s74DV26=a`3}eot?(up@zGtCTUYz+=$iyo7rHO*e?$ z^F|v)HlklGFr^t3jw^iYdAx)xd~wCc4i2=(v(NtI>(;KV#xi13t7lgY z9jR=AQvL|?Hp&A|nN3uDdpGzpsrc}5_6Bz2F1*#7O);RqhwlQPgEzkT6UeXAY9#O) zC2&y?FwRMQ_89Q%ZzxhCkRGkfQkz7@D>tDN{AKD}lm_U4c)MKrmJ+%L==fXZbn-)d z1+P&nKna~nN`#?PxejVzl_;~46AeM%U+o^39<(&Jdu63{0PfNU5nYDLH4q& zR)MvWQBIDg_Myc|qWCr2h#Fj3g&$-VaTOlMOQ;Gr-Y8VK!A7CNXRd@?P^VHjegGu9 zm%YfL9_Dq@bTV!+<+iZ*u=sE0VoE%1uc>aOL~+V*B*IemY!qi`=t#2#ZK5i&=$7`X zEGMLF7@IV%Ly_4W+!hu`x8T+rc;SLO#Y?E**2*5Ol7c&M-rkJW3NPD^CA@BL&wuq+ zFHtm4M2;79s#1>PR`Zd`QGx8~KK4@V?z8sp?9j9J{r&<9P{H(blpHNt?vnuGiB(nqByh zy&JPvwa2n%f7*l9bc*JQ2yU)Um8xj|s^0ec7G?J)_I4k86Ll}8i?Z8EWp`A_&ScmB zT~;lYYh;b=OgJ(3rY$VA*vq|=vx&v^2hGbdFvR8grdgg_WzRNkV!1)#Fg*s?)75V& z94`0Y@RBDoHDI})rThk>;4A$RzhQlpe>btbTlQG>sm(;+QG9<>@da*X3w{etG-s_W z4{Ov={@NsRRewM)c&v2K+|B!&M6C49Cb1BDHTV)p@rCdzVvq~rC%SOxu(NI<&jhnM z!|Xr$_XD2U{&J2Q>Hsh9`)no?XC%BdT41eXoH(n7+eZ~=;`sI04Dm$sR`xOm;(VZ| z^Ab97x^5P8ztd(hadwWhZ&R01I3E3kN9z8A@DLX3aBdmkkv;Hpac{wnu8Z7TC=Y&y zdv77qhp+95+@Lv~x1ydZ*6vaYn=#RD zWAJcEId*-Vy+HYXv+(cXufD}}Z^yJUY|(i8Wxq08Af_4ECY%lX&R$Lp+G1Aa(p!i! zl;7e*8Nfwq!V)If;hI~Dy(lL-As3EZ$0z|?#9`S00~=f|s__!47RnZ(7LTBNlkBV2 zW)uW9;w!TzHP%5;BmPDW5gU(OOsE#$qVh|%_!^MA)uOzQv2pqq@SGV#F zHJypTLiU0-whiTu~CEo{gvdk5!QUP1?a9%Ydq^J1@tcX);kI~7n*{hiifUgJJ5!Mp}% zjem1Ab==6yO4+RN*Z!6{g7LlmG3kHHG>hI7o5IK>l0fCWp*vOFJ z)1(=9?QxMgoB-xwa``XJ!{lx)EJJr>p?zx?A2TuYrD9plvBH1_yh%`>Q`u7#Iq9 z3G~)hahmflT8*bUp$2YgHc(4!gATZ-h5Mj%?=T*V7|uw;b|`;W7r^k0v_`=U^z^%* zRcRajjPzqrC%qCAun{X9Gt+>cfZqSs2)VA@K1)yH)TPiIe{ zupY{mTl&aH`W^{!j5QC0?b*`i)=q)_q-(3}m6S!>n6la)r!3wk_LE@jjF#>=9Usqr z(yB@J;p$2gQ=Og1%+Ske6WlVMx(4=>w$NhePG^S>>3;Q4Z^BREG-CKv4&_FwH>evq z344r#;RHU;f8hi^zD=Cardu*@V4w?|E(4RPRuHnD_0Fx2uT^g48vf4K6g z?ZA+G?x4Qlhby6)FQJw%Sz4Oi$r28Btsm*57p`mD#0vV}Mth7{L1`|XgDeoS=!X#5e$~=!eSw>QwBBpQB82hSJ*`Rs^B^)R? zU3#|Ki4=)9G~4qMT&8*d`7*uj2Dyo;KgvK>P;}AN^m7*<8~4IZKeb<_G6Ub zF2I7ZAEjtvF&#@rh5I6j`|AdhxWC>lyjw&WN(oC7D#51zPoIa>2%-?M5F~YNr@ld( z^P`x?o*;tso%UJAV%(n}upMJg_yWNB1+dV!-OgHm83L;c#fVPUZC+v+y^Fi;uc}H8 z6uV~vj@~1b39OgVsUx6on`E`N2w1fS!Da% zUVB&&EtW@6AMLf*Q!7&9*l*gBA%a8u>>Z4FvEP5me&5D^`?cK;cB*OV;c5qp5N@DE%L&B0WFI?#ZDp9b%jBXR)G=Ag%g zj3q?{3{bbxrpVZ46Jz!AgO1q$Rg_aXEa({Ibx%_WWG|nx_m*JKI6oR6w^t|1Do-pN z%gLX9++NY59-}Dn7_qL{vh88o1ec_^llD*58?+dgBpp(o93YTlNy4ws9FPLpECd2y zUI0af52IXcQ^qh$_)cIXwR&XKzyYo3=PIAW%AT@Ui7d}q!8I%-7k=Ry7Lr?-6MFNM z{Uzg?wP1LKmh9Rq_JwLS4)0ceT(c^X63Ia3(PDY43)q%dVbyF&5bMESvs|%KburZP zl?rNbr5a?Y@dSHNjlo`{ToUa0VBXa*S1eUk&OxppgFV_xELG9Dg)dbLIelEJmgh46 z^Y%f`hP;F>Rk4&s_fnM)Y5iD>x{lW2S~dS@_ad%Ui-T4ZY;u{}ONwxrDzl51;Cye$ zEZgi2*#3V*eq zUKFdM0Y3(zfFHv`1Ag4LgYM#5W#}#%*VW&Rizq`0Vkx|~+%SkXmdjMl7okt?>4N5( zHWKE#(M5Z*YA8l?eKJ>=#a$qII5Fn;BA4l{J|oIdl-w$o>CQ{&@D*IIcu<-2qA=NM zv^`2EIYK%?R65dRk9$#=>`?{`+++`bQSjFNMV&V^*?VbIWNw#{x%&BsKD0B7 zau#s&lS$_(0CIPRa`(Qku}k~JUe%e)#{lP)Jf?PvV9G!FiM^jirA6>%sMyZRNy+#w z!MO4w3b!FUmuv}C>0DuGTL4 zydrz}bNdFLasIJlS=uG%UWNvFHxPGHMbI?&9;#e*{{qeM>*gt z`*yV+A)#CEgdM{8=F}Twx5(d^b@RcID}IMC#9h9D`vho+X)9rf!*>*JhzD>M&=3#b z!D?K$4{^rx5^9JeDVJ_T%y65}MXUJo9Tj1Q9z&W)<2s)di5OrGFTvRv0sY}Iz~|rE zH>>MtLo~6gb_kDf6|F(*Que03t7<4lWzO6oX5pM2ViwNaAw9a+C1n~K zG86xbX%}gbqAse8AMNech@F7Tt-6-9@Xl7>tzoyvVr`=3_xj16Wl<|qDAUkMYhggc zEY6s6`BQ$jJ1t7$PIl$pknZIT4Ln@Iw$6#(&qh+Uad#H9RksW6I0tAK+Vfv%7uxSE zJZS)`B@*p@ezm`E^t~|AKK7pdq&l2-3+M3=QX=`te7*PxU%1h{E9!RcZH5Nr8!U|HqAJH<{fFoBMffeAEX(M^7Avfft zN&YZ=Hy}atVc*T7f*g~b7dZiHKJp1g{AL*0fvd*B-ID`X)XKaBwT^Semvydo7P#Je z%U)4!OWWgu+G;nMOx<=%jkEK1#s&51-NNf`LQ&wg`G&j2oT$88s9Qxq$+xDWX-hCP zuusporf7c%ulgdjl*6IAE#tpX-Inbx%y~@>ckJ`hx29}ZImdK$2ju`)rtPFe63@&l zrqVUn999;!At0O`8D#4o>4StTZ?|w6W6L|L2sNRtgqm#HUAUUO%h^UXDcH^aE$4(Ys*~Caa6rci*aqa#Y>P+x!pk_ z;S9vN#>%6biNYFJ6LL%q8d6VkL5qFrL;uQ0-QGG@j*H+CMP8@y&qPJyMGcI2MBz zTS9m{CySo0#H%XBg2uBnuT2zZVE>ZZ{D;(L%D1qaRN{nPU6BWJ0;tG?_%BrCL3>b< z%MioK65rQai@8DXQo2#Xoj-i0WSj?^%Y)4&un{v{ajh`JLr?Y&VC`ca%*Tz~Dis~u z)P)?0TZY|BIY)F!Cnb`2alYvT$0G)_jCbxtuqBJ(XiQKgu(N9k32}?o2T|9WJ$Q>Y z;U8;oc4bE|buWbit-=T2Ejz_vwcM%NEjjY{srZ;k-x&G)gX^$afJ$74rOm_yoDJIL zvD5rItd+MG)9w@gi~kd^!?F)n-_+Qw>-JFR8eT!?;apzemaE6xTXh@0op+5^;XEwj zXMQ}QwNlDg4e0rtyjjKvH)Iy^DWIaMV!^ z#pn=5?Zw59A7lx2wDJqwEB(Qlls}ZlG+ttm2A+*sw^y8vSx*75Lu+VkIP$WTqC>}Gk(BK;l&vL@|7j$0VpRWxHKy~9 z2pX+1T;8u78MhCL(Hd9czt9?2+Glnvz<%O0Pf2Upgr<(p<Fh>Z58isfXP)Y< zmCroYgO`8!Gf%ZR=6Lvz=b0y7LY{fzbuN4(AqkM+Gf(_ST6%g?(N1=XXH?SZvkUmN zP&0m49k2XX=hyo13hq1n7v8WO$!}8O-MKmZ{1BcR%i~8H@NC7Ke8(F1!J~OL6So<{ zc^(DxT>W{Zg+cNO?wO*$8@7orwdm8#=B5ISE4%Xj3+bh}_~4O;ED;u`5r9 zbyRllV=;;F@y67WmQeO*cJ*p3dM;#B+qQF54PU`Q(J;%uB2B}!*HzW5>_t% zqt1@=7Pib@B7|)pbUh&dYG=o%7WGHU9Lnt8?m?y5&907E<+pvTYroLS>L0WX8n^qB z<4601{RfVZ^mkMvaw;S2|Bw6F(C&_1KFDV8khsKQ7!m86<`k!oxv^{kOplrCIPuW-5r^BFV{94yBm zw!e=f$Vi%xi#M0w@8c(X8?unA&cHZT2#JoBoR}_76K3@M=h%|Ijz!A&{cs!)W_1eX z-ZWg(_lx10N!#$@vP?Di@VWhkjhnoroU)(&+}|<4NRRg@Oc#c13ib^~YF+Bhl2ztC z=bk2!kLwx3UGhVXI#=}Dz2CwL`uB@f_fn=s6nj5B5WG*0Jp1y%P*y}It`M_<_fCBX zKC>7H)H$jAyMrCAEXt+*;#@lX)z76DJWLK`0mB?`E5FI1`h)fwBP_VCYt;Kk`|(t| z0#j^NH)lU~ImKR-Tc;=n;0-7HveLv&xbekCHD|o#1Q@@7)l7XhAOxB zi(3l8%+ZB)80pxn#_{IvRR)HwODM-k-Q^gTTn{EPhqv5jmL`ry*^5dAT5fu@Mm&vm ziC2lIu`CyOos*sG7aebToBwXg3Nk8(M*0{o*IWC^!&v=ak`H4IG_fV_E?D{sUhp-V z(`H5~c5#1!mO!s?!7N689fn{POWo*KE}xBaylYX?UlKY3fAMZ|!Z+{%qWTjYpDVjw zVj(Gx%IY544O9=VK#Q3764i_rY|;crsq9fvp)7r(qlhZPlIft4|#uI*C&In@BD2fJbWoOm$2tf;$LYZLqw=noM_8Q2(M`Mf>RB)Tx;M zApAd&Vp?6H>`XO*@>yIlDK!s>DK*?g%w2nxL4{{eX~EciLNA8>g8i)kSup z;{l;e4=a`ZMqNtaFgS{i4vAOR9bm)KVLe<=YI#o}IO0Ct8rhxg&>iX1g>efyKf_TY ze1=((mmXkeG8_$qC@FdBZkrZfo_#RHSwTHPDdFpn0Cs+4InBT!#_`@17U?~64-Q_} zf~n8%54cg5A;7+?D$BnLScB`Nqp6* z;z4nszdo(TQ}9s35A?Is{e%X4&hn$$UMYAwN`WSLc)u?NHsA&faV%xIBTOAd+aNAD z$ytq6Tn9U5k(myM0V|%{pG6@ISn=HcVp>f(R@c*-$FRMRwlfgW?;PaQHsbjIsgMrd z%)U?C8E_%9pVMl>Y#fVk7r1!0;e1FcN{Chy;EWdfi z+0+@pdx^UQJvm1HPxtG6FbyoNV#1xE;KoJZDJmIHx)S`T|ET>aTeu7i-T>Ly-n6*e z;^_Xy5`4GinT?J&)l}LLgwokLnwQ`bR6_W023!k%iKvzT(k90yfAs}3Xt)k4Pf9E} zl%KcV@t41{KIA5k!Njz3jbD&cg3bd;u$*zfAbs> zY|LH=nr^^9PCD$YVEJ@^7Q7FVv9~B`)!xl@E)4 z969UoXG0Gt=z!w9?GZtO?Z!$SU5X$|(H^lm! zx$Kj#IVKPh%P18nn0S^IalqaQN0K6BpQDUF%r&K}no4OQlPQwP6j~#MeYkl53;EhH zLwWu%+%EV}`o=Mwa4OGL0~r&ivSOTp(+D>1gk!gI1f@GvJwXW~ zyGJFvM`;bR+pTI!0JG*hmMQNYX3-;K8maHoHpuQflHE^qcCWnbNFnS7i`fZeOzg^v zLne0rIpug$`2*Rtv#(!qbW{IFsUpvRN}m6uHOTX-cVhzBr>7k+`Uf8Y&Ajr*_w|J; zhrmBQ%7m<|M}$sjM?CZK;2B3cVO_rS2GmTf%ZlGjtlxRfu~%tw#G}Wp)E1N~vfk{7 zP~m2@23e1;S0jLJI_Fs7-;=YxAU&$S+MBjQuDeUFhYGI61k9NlHIYuh5FvA*Wnx@b zGy)!VWsbrf#d6271>nIK=YabtFa3Cw2_f z05?uXgQ-6nq2-Y&a*gN%@d2m7qks>`l;mf zrp~Epaj=S+4`fW7%8D}vPTey<@F-C|(4p#&vp4f3ha{HUXH=10>;$f)BeYObX^ z3q9_r&zD=%#Fy^?0vXO{nC?5s3WbH7aI{iD2~6`|D)#LoKIgrx+b#Mt+uQEaaraLA!_<~D->R)6y7Ejo^-L)$|=;sI|Xk*$|OHoF-6EP^(dM5uN)=w{wyVnY`-em zewEg6w)J`c(NQt)KcP*K=PQ!uZ#)BTn)XqGVIX2+SXR7jWSGx-%OfFcebW0MGwG?t z!cq%h5!Y|eFed^<(QdiS@92LI!9@J zO!$QDDLF1%xZZ|rwxt!wratQj9}}~FC~bqh4kWye(|I+`{Aj^zTQ6Q^MJtXak!9?e z5~@hGkn8>`N)g#zF4$d8E0A4%^6xk%C;u+m2>FFeJs#N}*7-GAfEdB=axZ>m#bP7B zCNm(_e8N$mWT&*bxNE^>?uLR()th0)P7TlUR zK&vp>QpD?(kouIv_jaf=IA|ZiD-UX&Cq?2e&}+N|J?xs$t;L~ZS=DgoboEQx5D#iy zg`S0KcJ(T)fwTNSE59EXuk8Pa*5ESp;JEOJpE`kCyM7=dmgm#WAM4 z6b@G~ehI*OLY!34PEf(YVxUBx5Ln{`R%Q2bel%gYIQ0)m@sN=LDPEw24&bpbLkIL@ zU*5%8HmB3rT{Noyhqm{QkE&`OhuIrKNlr*YAQ8gWR7ik?-U%R9N)Ric0#a9jpojt@ zU_&J$NI8N$6w6~5un?LUI?_AR6N+>Q(gcCLGjs0lox8btKEH3`>mOu2W!jmU)8@=I zf+;%bBxV*Nv4c)xw_ns;rAU0vz7$y{wa{ZWOjzmU-c&+yW_x~COYEKS*Y`ODIq}m< z;W_7O*h6jNO^%+%YRoTctj6#fdUvsXx$_C_lV4PT*nfC64cH8w?l0MZMPh8&H0W}t z`u!R}CLx+28$t{$eqNYLNPZC~x(CbG-S(%oEx*Xa@K?rO_uu;HcO{#2I`;phfI&3RcS=L*&kf3Ft zqLhOmViD6j71M|%K2xE{CP_dx})s zGBslOMmE6Bb?%nwlDYL$YKL;L_)agzOp886Y_k`@t_Su@&ya*PL6&C**=pN?5nW7j0n2#bE zv<7+%f6*G~v7F-8KuucOms_lXnzynq7K1rMvN=>XL^L(j*!&6N0>5T_CIQ zikl%3GN)l=rWnoesMU}KX76h`v>KZ9guSI=TAhq- zZ!gIU5|d!d%e3Z^<-}?eaQxii6U`$XHnE458yDr>I>xGq9 z@5SogyiXC5dIpj-7)gR}a_GBEd548GEdp__)27SjA8%w_}0SyK=GN zcK+Z!e0wkqSwcOfUD0;^H~JlGXw2`d0dPh94)3M>&Nqvh-@!i0?*uP_Uuzc2m%G^; z+gD;S_dDNlQvJIkh_PuVw|0ztK#oofe-M9_lN&olRuZ8IOm|a;Td2B3xrG>3Yq$k1 zYKdBfxtB1P5WECkLP{yZ(uPWyBxs=ATIdoLti$Om60FmNlSjci(2bV-yc-4UIO=0t zE~pBuv;K7MaaN@Ea$T{63}7X=hHv3r_NAWoZ?vIHl<#_pcc7Ka5M4B*m#76Q43_d) z&x5S+g~{{0i{EEy)0U_Wgyhu(af%Lc9)n2E3LuiRGC`z;X@3(CT$uI&Ah+5YtI{yD5ZtF5HMt6cLcg=l{eHH~G~=iwnmo9@w@MpUa45^W+>ACme@}p62p96g&1hdi zW~`5_C?^iGmoJWB50wgujTT=_VzJ!{-qnV z4{R2M`Oy=btgrPaHd$Y*CpJ$Y+_`rS=oj)wS0+Ix354oi9%k{(Fus0Ij5iC*p*fOQaPqGrE2^Bf3 z#EP5)iu|=E1~Z_NrlF*F>`lwQ3dM3q`93i+;%r!1Ip!UEH8GMmh2Y!9a+14ZifuSD z)V#`PWr3WEFZS)%XUL#l0|!s_zO@Y8!;$m>Q3J6bsi>}ogO|x29%_0=*tu3Gf#RV*;UtecVNCs|CJ3HBlXcZ-qv6YMVt4wtNDO8=8&EHTsnw3h>e*#^=hgE6(FFu>X$ z*gq4;xrAukA`Z5xD9cT>CukRz$=Va`HN_>~hBiLuiV@(=Ww=VIFE>{05-Jb>Vt2@) zAKL4ekhw6V4YZlwOFbgHd|>Y?51xw+Gt-QNU>D1Ms-ZtWF>#A;{bbh4QDt*lPPU)2 zi5P6{GYR6Eu8|*~Vt-F_FPHgKz-;1p8zVy8xtyLc7ge3w%W>&izibHflWmSg4vI2p z($zI)xy+tsZ(@Od!TdJC^7=IUGePZ_!{)Y1y(Doz$4~3Fb_#XnB3j!;w&~;B;e{;6 zkKJch@mgW0m8^;R0O9F`nuG_B0ITM__OX4JO$_BUk)4fNuIy|yuQ8-GqBv=d=h8~= z7yWP*gI+zP5s)d9Ghs!7nPm00gO;mBAij>X>t~jn3Ej(qP}Cc;f_vi=wQrZp$^Wq@ zitjn?v^1RyPsp^dm(zC(r;I&Uk~K+D#>}SPwnY8?eFEvif?f~VT^if*NYpTvcJ+}mmpAPnfFVD7`dX*i4LW*ob=g= z3i4oIcZkgUyhMvNAITC(j-C>6y@K}Fa{2ie@c!m66MZ<&(Z2>*^(7kTHrn~+^wJ|| z(SPmzY@!x6^O-XYV8^J92#W8`l72-6p^o&B;*72^1-bDdC@%WS$u<&){*{wWAWQ#O zPArDa3pnIBtwk^S^*8qS&3>4kQjGl8{;_zGlSZFS7|Ba0ZvMqzB?gjr8q8{Rh0Xq~ z#M3fP52PD%_4oGi;zI^p;<-q)1v>ANVuKAM6dpe|Q&6&r?hnI@QRXZ+}Dl z#C!NoHMIG^vYX{^e^ocjaQIqDE`I_X?Iz1k>jOI3-gdfV*6>OXi{qB1o5+AH7}{;%&Dz?@&zGk}TMgsboKSm4ue z{~3(yO3&7!9s==I(OlN@YW38h7As&^^XaQ`q7|>Fd8FBjVy3VMR>&PwT@3~Hpu9Xl zn;iOl2d8{yvArZO1N|y^V86YRR&NEJc-p%me9m26MqIAPK>dG!F>{h-&jn7Ym z?_S06{rEQf=VA#bpZNYo=ld64Lwpzf5}K%O`AxbVPPf>`tBLPT|BLVa7JRpHI_*`w z2IG2MEf7GAn+Px%4=j$6@9nfdDon-1I7FrL0jE(pK>AE%@yjf_BzY} zcvx$;praoNm+Y~}K0}`GbZ><0zQ=w!%$aN0iS9H;?6uz~l32NN8qQoYf>!Jn^kx56 z>Qz}-PQ*d`S(`RESFPCLFTLf@^bQKi*?!or*@C75-;uX!C5!2tZ(O&_uNK0=58h@L z^)+*IWtVhU{Rn1qFoLrx$kuJ@#KQ_cN&@0g**ec&l8+MV6M7f|ans^`Vy<-O+nb7s zCL(e1{v(#~X?_9?dmHWDT=h&l_im*Ev5xmsSJ%f&v#(I3$+Y1$D%uQuwB~<1mmdG; zI8NGY+O!L~^1(kL(Bl#(fObXaa*J6X-BhwQuaENLlaoQNsdD?Ne@CQ2r(oc7vmWvY z_+d;^wDApH86eXWI*<9fOtT+zJTB9Q#H7j2_gsP7gR}O>g%dmZ<~rK7*IcP~?J2y* z*tI9EEJgqgSJD}WpoOc?p--;sxW7ujz`+KjYWHr!PD~VOTVti#oBF9V?0+OQR(D|jeaAjy) z8`p(lSdj>d*({DJDPjN-a{-kwe`j6E?TKJIvY&2 z2nlNFOD20wH5Ae^DY=~uK;tIIhhoyD)W^l8z^2oWwMvDSL*H~Z6n9LOh~b=$A#@ef zDDcF|lD_H%)g~0)zwJ+n_`tUG@lDq%g`=LS7I8ogagkxF@#BDM6OL`SAe8W_z_x_r zF&#&LQ!V0v8p83ism6~3s(mgW+oJ3#uv=PV?Eo`iqCO8#@#{)l}B3Y~k+xA-Xdw|?Y1zvJYi?`-yOs%<6lHHT06 z(mo#+9;1aVW96_xY@)ej+I}rjtY+o7YiTF5MwNwd%~iG>?BwSj#pb|H54 za32#+JbIK*mUqmR%|a?f;;+BOQI3SX*_lf}Rc{3As@@7Ta9$e*L-Gta5(qr-%X@HFOBTHAo6)N!eN~mLGP_@-I88$M!nTTBt z^*(0}w|;KfT{wCQ4=<)$zu46>I?NH!A%G(N`Etx^gCcn+%uzmuOWB|YHc|LNy8BGH z;8QW89hMN$p!Tqd>Yvjq+)+uBcaGRYG`LlwrS#LQ)duQm-kk!Pv%VZYGiU^GNFVnZ z#p~5Dy&0aSy|TKPVS0PD`p}PQnCL@4FRfM)5HE3vw0O^IoX{ZXKY(#zxk~Y34zH&p zkWY$3_VsFtvIyhI;LCJ<+ceYw8%0N$uu&)%a87G@6X&#sr%%*z?3Cc}NVMY{o7lq3 zaa+ucL60ys1H{m~sA`VZHgS-5B_$bC-Eprt&WlM&4z8AtSjYPo9jZ?X&k)zFI?yG7 z2?J^sBTj$3Ya$Lp+4QfhcLNFHL+B^quRjvL`J8YF)3iJO5w0~%ze#UutWkPXgV)d~ z=4N)TDEm4cb;>q?I=OFdc$#R$ThUn7TT_hUWUQgFj5LiUt%dXFhF6nI`@IwyWmvDi zHvwvBEKSrH`!Q27U7~$5FMN^c#;FPzOZ^e9spmqEV~ZH@KRW4eOHG{&8CL_&0%e@@ zRlFm?Cf?&fNxp9@`O4c@l(8z4Omuu3G;fV=lArNTWRe;Aqtb1~3HJLn#aZMhYm`NP z!U57)MwD+BCbuU$8U?Kdtd8bSB#HIB5e?<);xO(|Ln-)B%DS~2?KQwiR%yaWRtbFL zNc#DvL0oX6V^w+QioGJbEgHYUDUK838Yd-S{PZ`gZ}TR!J3XB0xFCYoGJPgaAzNRt zyj|PzoEElLO-$ju4KW(JwiunQwwA((%#7j+n`x^46fbD4I!-lISg$ZqYADSc0ZNmR z7*;*!PMTwfChp|~lG0?XRYsY?Ye;i8cTe3N)MG7aPGTspHhg)v;@BGi>_NU^GkfIA zA7869=Wz~E`SRxOdfHg1ZtU=gH+VIP^7Z0yWv{hz<@Bj?MD|9tSPlLT-4;_-Vvw)) z`C4_x_1_{WJ}nN#0)@iN4t*mIARBp_IZsBO<_$mu=4sx@@fk8)R~*vaN`?Vb)Q+s$ z^^l)}=8jmw5mNSM4aSq)nrS=@w`MA)IqFOc$5Na4o6{Cx7y5%;Q&+lZcfF8PHmCpX zaCi$|ZXL4@ny4~%e9%l(;>9>o1wli3t1$cta}S(&9EN`D4;(l~JwWAKfZ9skZd9YcTTZmC{Nq;b5YJ+;>rV~EWlfh4?OHV-X)xaMhQh{@B|0;u`E(9PJWhnJ2avuE0-hiQm0u4F_x{6MiE5@Q z*v`^6xcqwB&Dw(GyqXROF2{g!3ktp3daE7nxvq|Sz8x*^rFOJu*9GoqTO$p$qrHE< z-1VqquwBCvzN5Xs#6w@qnUZlgLc+<_3DKEz0GqqkkaE)TAbd`#XB|g9(Vf>SPYFpI zAv-HDW)aNQcfH!*-H+W&`@8c<0VfIYs{Ngb0CYb!inQ%uP(guSa%?M4WHe_AfRibL zL`i`&cQj3?ioHmGC*UvA-wEqUf1|nn`ud(#b+G7wDmwJhB3nWt)@c{W84Fj zP#7bU34vcrFpSX-p|Lrwdpa_0;!i|J)E`~1ZiRbZc%>w_!Yl7dZ8*jCY>XV-+fi9N z2Eg!p94YNbOBgh-R`99d!2Ck{^kpxMf2f74Wvq9R1L$vK06E@K1%4e{I zd)k#s(sL(Q2+>w-$jKk>fTQ|5ydN$zE6)n-cgxg|?g`+9F^w96wCF*SjQ~!4(|bDk}NaZJe&$IEpZJ2A9d1R{~bTm*H_Fg(lBk+%c-{C z)dBx^rdm9FpZU8wd|zs+@g2THXg0{Q146(2e)X!dWw0w$+TU_?61xK1)9PlMjwjz# zi+G@h4*4&cYW#S%nepU)R;#tBu#t^5@tn3ESlOspi8j?Din1G3XxWkcB#($URr~N@ z8@f#JF_hWF*we25(YH!(scy3SBtk-kqZ1@UufEkzpK!+Uf6^i zbSo_I*@yprVotW>H8GmAf>SAdIduF+l{Mi#UQ3&?w>Q#eOpd)TJyM&pk+$!GD52FG zkbqwfZJzxvm{TQf^hR}j@&%H?85+syqIE&|D~`S5J5w=Sw#Z*6mvo{ai>@S0n9?h_ ztID3=N7NC^I3~=B5X~C`wKUT&-I&vTisQ>*?e~p(x&c2U`Wl1xq6N9Rx)i zo1B;|4s$f1?0PuG{*5Y};@{wq2V}v5Mj>*<&^is^lfSTxbj2mx<=mwZ?0vCeqFy#9E;+XBSRhCa-4l@%$|)l` zzRu;Ct>hTSjTo*|)}*G%w1p>{!}DB#9sY9Zcp0h7b)<Gc zEYO^}Vj=HWTItHMOB+>$aieH+KtllyKJjk-JR>CM+z*a;oAw6;kS%c376&+T65w7g zz!O%A*mR-etH%P3L5@F0i!hl;xu0W@bF46&Nib%WYNy12kM< zIa!O~^r37T;FCL|ovET8$4t_yvzeJ~i_I2hyJfNC?b1lA)@Eh4wM@8CTAi?jt5=fF zM*L=_UTMo5heR*l?_ZJDGX@$iElI&+byql2ZQ8q=<WcR{auV1(Twqg`z@kj{ ziC1KB8kk$l*;ii4byP2*@MPMl_=+}NcyE~KK;iv2Pu3jVI)s~sR#JATL8HGMp zDKrQiJ%t7p(vm?B4fE)=15~)e+x5;Hd`!=0_L)AvLM4LWJaDnQaZMj$OQwntF*dXWR0zk1X0&S1`cso zEaCQ%x<#3J%`M749NQcVM1S57?W0-gDmyG3r?<46_nnvkQgz6%uA+d3C-=)$`6N1b;> zF7NlR2vC%I&=6eHPjB@^mu4e+iwTE{8!O?XkL!CM0~@QBXsL0zalJG;7xYS_xRh50vx z3b}CS{o-h=0Tz=?U(IVPAVVz7|3MjBVZYZWIZm|Y$Wd6fRN*JCy!!17qJpxnB4W@Qn~BTW#(InABrsuFdi)GA0zsGtNIwx zL0(O-{-6dvZUf)7sp+jEdtPvOv~yeWjI!$VKN2Iw1>PRCLVdi~c800Ojjie~ozLAe zH`Lig1JL;w9o5C}90(m{(?xgqHg(Y*xs44uZNS5}v3VnQo5cp4F1GV`=fDHwN~5IIl~5| zozERVac2DI3Df1A2;?1<-+bmcg5qq=fDe$8>jq>(vWt~;V_VjQP}bZ|5)(Q#%UDuoX2cFvye zbxjph8C<4;Wk(>bq^@^)%+pcT_7%|(%NRAb3!$CKyw7I>PQ;HtC#)!b) zZHy-RA^Wi4kZ2B5*HVxmlAIac9ea>v^uS+a89la>WyEmH@bv?f%5Ap}cAgG1Id<84 zM`}ws_NNm~WyF%?`too&=U6e^pa?Fc@JjtfR-!{K&CyXh+RU=#1nKg+hKctWaAr7f zZ&!mYc{L3-)C3sLm)i})`I@))8;U|*$3*}1ZFnP|!>BvTn2*u9a_M48Iiw(iiX45m-x-`cJ$B@;W4rF6kx zWGP*C6mKbj5dsksd&vV;oM+6_$+oIa_$>PK1_iol^k*eH`s`z+m`;v5WI48oOj;QNM!R`8rhLM0_|hg4#PfX^Y(uG&}KrX{K#f%-TM`c zpQV8S(!7fh;x>{4A^XU}IKkWe0&kuc;Q?r>29h!20*ms{Q@&77tFTk$0u0#+!|Aga;-TD5CZZ}k zEsWeXzFLD~Sx|9~sXLVmsZ#`eEe^hk6?k0!1p(Rcru2n?F)$3*LLt2)c97xPddV)A z9fLykc@EA>YRPd`ohj4*Of9E%+ldC;RO=4>SnK zir$jLJ%}aFC@jkahjy)3_JADouH;&*v=qARxM^09fGsdQk-zj%& zi0D!r*n(u|1JRrZA4(;h%;?#Oj-16D{6)@U4g_j6tCnCntpbN?TFtEGJa2Lql6FIH zra0dbi#ZQ8m;TI3bP}?Um(pQ8TifXsn;2lVrdq#K%?%MlyShSotua496Ph1R@oMxU zwbnz4FZ)waTAhYd-<~>d>gcI@)FsyXt;0}03+BA*cB)xpKA;L*X^l;BrmK}!@Gdof z>`HUS+RDi;nzM?19U|c>xR7Io`Qxc*UZP7=N0=EMy$eccKx6P14QR}+;&u=p)N>v! zGKv{;aee2zA`ScdeF3hBQdxIP{~7@Ye7bZ}#aT{54Zsya<1FmwplczNrepO#ke`RKVc_ zLQnH7q~L7@1me>?xC0+0pLe8J6}*+Y{Z88DSA}T5Gx9D#l(g(#tSiH|d9G+#qlL4n zy%pARRjA47(>J7%IdfY$XWK+BuUq+66}Rm1_%HX!XSGWAi4D9?eHk}tY{i(3Q2eqt z4$hCgJ>%gY+Fa)DlJ#0UKQhAuW$z$sWH?Kbkp&JRX_%{p{mRGyiQ~hs)2v8kt38P& zblnU>rLf{!ZJm?E9o~@M3*6kL-V5C1H8d^voD^J9_G{;i4~pEaKm3T=4N(2cjGqe$ z-_0gA`)-=pDlJA>`prLF0J&azA}%T)%V-qzLW| zQ8=}%8ta6QrVrOrL@y460;-=OAa%-5E31OF+w`zi)jIB0(bdO@YCXD|kF1KW=BmnQ zH=?T-AUbkX3-K2@s)f6Yb5s>OIP;4*s^&7iqw{^S(L^{ps&%YHN1lD8l+#VCmy@c< z!eOydvPoy>aFNeY7>?>Nq|^4ltlqy{d7W(wU0uaZtM;#Tc?7zUi{VX`i&+W!pwBi{4Hx6w12P~NlO&&shn!ZmUrvdZ-*t61xBr1uaSyYa zlc{@{$}%FN_BK%$!T3xF-{nm2n($Om%RLYUxwWiYwC2^cbZowdS=fVn)Y35toB3jE zCc9!Ca(ncc2-_a@9htg&FhV9ne$p(i#I6Pgs=7$!)KEIXOCwT-+r$g3+(;EZe2+>M z{wk|wsltbGM&8(iA>MA8Ro+%vn7A3z-I-XWKY}2M>e;0Mqg?Q6lCv1pGj-IntWkf= zQUA9Ds3(m~N(kdzQ%V(&%&k_tmRQb_V(#%Eq;}=pWe&k=Y%+gU-A-aFD^mGaUf3fS zu5`69afXW6F{+3Z2JFFWxW+0wsk5iEd~_-U2O=Zq)_)Jh9jh;>aaHs+0821D$TfsO z9^^XyA`fyM6bRO?f*%Q~!_tYpoTtnlWL$6ONfEvmy85)5Vl88M3GFSz_o{4pp{z!y zD0_R!-3kN~Wyyl=amh0G(OQ`zl|iQys2B@;-juyCfGM7FqAhPuYuoLY9)n=X_Re%U z=~HhF^^2ZfSi?~Z)N*_ME(1@;TMlqG(t7Vz%hJIITru)nh}N?MR4rvVSKY8pz?Biz1ro%1~A~Ds+W6=;@qhv#As|o3YD@~Eg>=v z#=R`2v99X<_~gB62{D=1(38VSZzXgO`W|GRzux8%^LafTeSNFMOCilm_A1xb8(aBY zTV|fCj_pfq1*x53des0Itr|?Yj8#L?;tsP?(uAp)vMxhqxj;En>Ag zY1tb~>7^#Mi*w5l+j-iHeGIz#?uZ3G@7{eB)%|{9;#zTm_drKQTe>s**h=Z-KDAQn z`IoDs2>t`8_9>^oz3mT+_E}e4_X>MpdpUQeNVRT1Kjm4`Ft9z*lm3U=Vzx8YV#GDn zP%_WFS3_N*i>cbb(S$ZD|KsXl+b1Du=<~uG*osi}(^0%?sznq~LnsQ$CAq{qrfNh{ zFlA^v;77+mJK3}4lU@~b0$UQAPjocjn`#ja)Bu{6VwtH1G2~8g24ctxN$M?j7ipPx zUn|w$>XpD=pk-nw4z(opG{Yq_ezqElnw> zMebMg)8Wq(BIFkzI2+pcqK@%(>`z?j{Oec>AgI2d=@(5;c}dA7o}S1uoR^a;g~c$q z`tG(aD^gQaDwdGz+Y2nhcQtcdw)pBc@eprG+uQs0tGVeuUPE(}t9-flwch)cEAPXr z$yfH=&s_Q7{mPX`Vl&^yR=M&X`_-Bo5YfbBLPQhO+yT#34dw9FnjkMiH`fJuDG zoB@CR`9GZhBwrMpI0zE!dR?sRd5s~~CJc7b_qlv6>JW^S!B9 z$u->lkO)5jVqngX%T>?NV(Lk9wewCSSKh{us|2~$$jR$p8{R*q@IHocc}FGOHCDnc znCDz7I&csq+y@RQoqd4UsP$CYnqO*t4yc=we!LomYwIm-ufohr%c-mbRw_$L6rKS9 z`2C@0H~{0O^4$aKn&Ew3P4M4g@TV&Hf}4b-AQJ#@+>~$}Mh1oNfC9{*@B>HTzfiJ$ z!|*HyXmFnt#_>RcWK5a>i0Dd`<4{QxK!T(-CJ7o^V=5-CNgLv6CJu3G0<2NbC1UDH zT630nBCX+V0<=bEe(U^M{LQ-L6^OMpkr-GrXRdJIR^5 zV#QoRjp`2d@#cJ;L%>EHny?uh7A@{M#`CZ+6%&UW3=Z*`v-;|9%l&Hqk_r<9ZmeqV z*Ed#84l!+|{YyhE@lE1%M7{lm?!&aMhvdpHoSsnLp1e;NIe8YW&MCU`*+UjOir&Z8 z5nHLvqIl2*1GZPT`>+=FCU1?3)EXW#NK{|u<;{u2_ll5M@V4h=?XyF$i*_fAFL(!{ zaUP>_z7>rV$9odkB%h*g3;x3aZ6EJxDNH3OZg^g4kp7+`U8_k_*0)!D<)pS(eEG&? zZEUapM7*@UI)%Szdv)qiaoekwYn?kSwpU{+R|}Ti*Eze1GKT?(Z`!3B%iD}Gor3JW zCErCs^v_ILcq9SN+Fz*ko`~Z3$dUH^xm=1Cepp>hx_Pxaf;z0i8+vX}sjsCUR`Y0m z-i)lOE;RE8G_*XdCeor22Z)G5e!@8fV*0*tx!oD8eR)`IG@Qd~Rnoo!A}~gv5)#b!8aJ7$U~-YCqIrp~JUZ6Q=*8Hb zGI9k50 zt5h}x$F9|3~=7KRsawj)ee!;e_$DjhiiIQ&*gv;}kCJbfsC z2Vz)o7VH<(wAx41;7ydC2(8W$HF$YQEg!s1oO~KQUZM+8$CDY|3b~-cYmL8X@LC@! zZt!deoqt#ip6ifvfOyg*54^N`l$Gdsv-g*H@FZQk9y#p%P(057vjOaXL^+!gyqX3O zYK#GVPanVuyczj|@q7TM6+eIgjt07NW1)y zb`^n?3E3hrC(im4&MqpnMz;n(ILIeLAGqwbK~JL6YXc=w8FPrh!ax3;I9S4R;_Sx; zlxYHzl9ciG#(!GiBYAp*zYxRNDMJ1gjKihC;1@7}kis2%VayW6PtC_b6AETY!Yglz zU|0$FfsMR$(^wAAR_U;PAs(*K@y!i%edJ?*M>`@D?Tp00Sj#q#cn^s(N8$hcc8>?e zcaF$;55mXM=AChN(JCF4=_!?)$*eCP5OUHd`sd-U?1LVq|3B19qcmm@`z9k zN>;9^9%Y$S1M0S&buQOx9i=2cTGCO-6=BZ|8U$j+1V2G=B_!|6t=~a@cHWsL9`MuE z7D(_$ckI-jmFOg7k1DzSQ39Iz7o7hH4p=3Cr2H`bk79gcq8P~VqIs%E@iJt!v#HFS zlpa-rCrXp|x}Kl@eT|B8NP)AG89%*>=M?!^-B)r}5uHq{<7zs+m%Ccdjmu6Ap1d7Z zuL$9?S~qT#Ujo)MJ@bzRG$*Qt{q*Cf0U4Yq^FJc!%>wb z<_8lhyrJBMCER;_dsICX{0h*{s9Zdy%{7;T7hQbRtRFK`8f1JOXhmWoWHr$5L;ktRi02vl2FkM_W<|X9F z>*lG8%M@1Q8}Id{9Pb5x*NB%x2D{sVqJ_x+7CJkN4h)S-5@Uhb`*0p5iJ3Otl_|RM z9=L>ww(dc<3FB=pDYAGETsco~YD>{x$YZwy1M*asn0GCkzLlpAucw=8@$edID46VX zQw<(or@bB8&X%XbzyP{0OUzT^*TAMk%@Q5OCQ~h5Ww2|N7Fz^vF|7yN9s}x9DUpGyfd`rHSd!S;2h|rHL7uuhPW4 z#A|7(GbEomrqTIo3s02LnL3bwX=3DWv*Sw=wnF~XXHVs2!31|Xt$)7C74sp|!nx|h ziKARG`K3wg(kp{AQ6HiwlY;tR$W9ag8k15~KYwCDryO0`N8S zz(A?CWvsS7rX>5*CYhe#8X{if-TxiQjxeJ$Np|c{pr#`i!JF@hM_h4o+s+daa`u*5 zb{X+sNRQJg+4Wx8Pk|zp0_Af~8_9NVplpAzk}YI>sON_tDI*r0C@+W9a+P#NtCn=L zba~G*5ry*3#S-o+XD|UwKgRN-?Bad@9bv=kI=>nNE|aib4M5mG{MX%7f*RMCL#oGt zoKw1l$Rl-K~u z`4-F37T(^wE?*^BdGlKyf}wWXYa?r6*`zPAHL5vX&2d-+xi0*=B@3NiJOCekA8;7gr5i&>|q8QnoDS zBnW>)=RzvqX%A`}P6~b)+)? zDc4@}euj=zHg|(Z`DrH^Lv*2%%1WS)W`bR%JU9VKrpX0Y>Xesxn^U7yI)HWz4?Ci7 zeNr9Kcj47^vI8{%=>U42G@d&@$J>L+sZ=i7v(Sld2XQq#=%jk?Y?=`$mkYqA%fZ$h zig7vk_DOX)IG$I-F1fFbgP(lTVv|gFg8-gx>`dT|8#@b;dt04Uw**P>cbcoe2K()~ zynx_A@Yq_j9d~F7764nh1qh^=T2+DoaY^vW!=eWsm6NdPywi z#gxXyR6;ib9ICDwI-Qx(hp<20EgZ&QbhmK$q`D?*iwB7G(ykBea(Y$kFIV()?KY`o z&g}lKNSnC9sUUT{!b)_U**ie-=)Fq6d`{Cbhe1oGYggbQ>o)U zyqeSzY68?T`A7xn0Ums&EWbO_AQ_oNF*$~&m;#H2B#4+qoBR_?Bhgai?rKG!lXhV;Xr}AoF z?@>ctHN`Mq<0mNEnjmE$7nFg7(s3E)SI&-?`2$^v>Kg6GKha#A5)!*q(S8DfqqzVt zW^*ZEN@jd3gEG4;6MFJ97gM`%pt|OQ6p`r6=pERFtYs(uB5T?C zCs|7jw-#SNz^Q!s?U!A7Cc}}1v7T0P(r{Np%p?&kd%ogYD9&?=$c#?25*=tMuE`~> z?|n%1^c95+1#{^C=z|`13h??2j0PQQ0xZaW%CI0OZ*N#o>?vkJHBS|1K>(X9=pRlL zSr8?#Xmd)1leFVV$bwpP_#IEFD|$X*z?KUVSZKu}pbQp$0X}B1=wAf>a~%Fq1>d|y zq3AsTZ$y(6Wr8wTya(KOjr52KMUaf=NTyjK!3-9~^Po~#e1A&0nfXQFf6L)7v4W4& zUJ%f&QdpQ6FwELQDZRH~;4W0N+rUs@+AFVHwOqLKL|sZ>aqyHf=-1<&)wM$)0W|1a zILh24Px4{Mb8wc!;y7oAEc!%X_dMQ&a#-*ZpHZIp)5u|Qi}#?&QtKXi4vPw>RSpa5 zMv`(^a2|XpK|16=oTs6L{D%vFk^gX=F5Z6thsu9EHo^6$*?+*3z!vh&Y}W+Q6hZkc zbYX_QPe)duQ;>bI^mA{#jL3FXk%K3?z7ic63g$E(IIU)iZoHbD2Go$#fT*ylvLMLo z(7dOW8N9&Tk}VH_w*J|6_-TvTkjwx;lCOAx10Y{PW;RiWKZ#cp{A>wRpPA zuH^&YXk7Or0B&6M7(^BP#Y@aMGNUhJYf{y}@E57-UrJR4pX$`YaM;JLJ!bucy-Eu? zd4?-ngr0%^KK-OwtvoBy@n)BHuL1{6b*1q=aZ1tQVR%SO=_=B3MqR6>nQHOQ6Kd#M zwUw#He+voKbPHJ>{`zxtJYi~!w~$@Wz)l#yIM&xx1z-q$R|5*&LRtvJTMbCWBpv(~ z6284N7tYdNy1zkH!TYFNNDZKZN<{mYQ{D-Po!-(FD?x+mgujFL-nQVM&tPbd)G}7TWmigF>Q%umpGTs0haQ3f*T_4vje80gtIP z=UL`4YoFC~XiP!m`mL`G4#MG+gt2GUqu3Y@f--1SIje%ogU(XKwpIo}z6UR%IKe97 znQINB(};NPhrr2o^v7T1I{Ke2Zcmx@gKJ+A*U?-~obQ@0#+t~)(8JeQiH z!QtqSLNe&eVbpy!)pnLeYy}!8F$ZX5V`dIobE&v&#KbvW&M5xMK07SI7n7wX4`CVk>U*BRI`|o2RrHCwUb< zji9s{SI&a&Y=yKL*LXEeq?ftc6`oZS^o&Gn)Tv zgH}aukMxui$2f5;i-zYMP@@}{kwqi*oXVn6ht;wy8nwP#K=Bi5)panwCZfSR&saMawLzQ~bM77e79+^M+>xzo1-TWg+kDvbtj zOpY$9h!`B_R2q#*t6Y)Md~`ru{83ZxruJ^jxU$&lAHLe4MetSe`%b&V10IE%D4S;b0pN=hB3k+I&jO6+HV z*^+q=h&0^UP@Lk`v}A^wfPMCjbH+aVCU0--v#)Xe2|8cgJ{w@u+IbI$Vw_aPo>yB) z`*{$7Z)zfwuXdi9M$&nUwK<)f0(?5DGQsyRZeuKj?A;BThzW>gtBsQ?XhXt$j#vA7U)t)bE86iIKS9yf1gX{b@^k*xwqv`iscoE`k0-gUFq7&V zAYoi=1My}z`x_T5xLKY`^*v4l?POO3c7KOAG0vtqR9!hiZfb8i7rT&!%)?(~A@j}` zzqbUOYH#`4F4tkRvH13ua6)tdt_+_|_PimMa*8O3a}_T^AwzD5ao@ob74w{TTEuE~ zQnNReYN9?a_A!_$?~DZ&@80v^@-Xkr1>PK$gx23@&a>(Kr2apyt`1kUH87q7-T}y8SRk^YEb})=(VH?k?~rxXfY+6F%{Em$)*?78a5dS$A^&# zKp|zE`46X%me@0~gbCr8w)ld2{!VPhhH7?F~j>VUtw>FL^kw9$u<}8?gxr4Liz=+V7pu|9%3fP4Z}g7L$Ug_)9la3OPQ1aOt4uQ% z_`KsT8kuH3<~{tbY3fDhnkHRjnPwJPw*StmJ!P8NVA+0+WqZstlV{of&_#7pa?w
@IVEnn&}tVO^yu?YO6uD2?Zsa857u+P>i~y#Pxxx7I}dh zI#~L|RO4p@s(mfQm6@#tMO$S(!nw$1v3AyEQ7kSc|YrG{* zPM2ZWBCE%W%e;mrCrUaKR-oq(D_}}T?lQE1xyxz=%3Ur;DE^}ol|QUNO-_J_CMOdj zV{$ST8(C+Xa=f(0+l44-9Q3R+rk<4N;(p$VZX!qFY+2gt`l{+PU6)h*K97=nZ?WXU0tq#h~#QQWXRQ2 zY-F8T%JBxsRnIzO>Pd3lz&nv#c^gBnJnPI}-p3Fw@2G@31XwL1T*^9ggM%R9UeSen zh1aMR6=t0YzpSn|BQFC@K2J%)4ZF;gHukcW($e*2MSy^5XDV_C#=frpWwozs$g2rK zI!Dl2ArRauRNfhYZ`^NkB*ts`Cx8TeE&mk9VQf$zMknQF}oz@N^FFkZ4VK z4AB-Xrld2bVp@p*3Yd!61SOqu{>4Twy9e%--hAhFq~2Njg;eTk$Eba*T9&arrMI z4jw)(Om#Pb)HAjaB9Qi2jX6FdumP5s2&9xVovx^qGnu>t5!m4hQ?+hZ1X9i!V~W>v z&OE>&QO+4t2}!&C6(!gPSJcJJZW6G*!QzW1wZY=6H^zmr!J3RXX@m6<{-O=mM^}p5 zU}=rr8!R?hkxkssif=jfbU6AYE76f>Z!Xm~>Un%TZGyTLUz-i>%O z9B*4a*`<~nvaVsUd&V`jxHnrh4L3le>@*gfdLyqX^S!0U6XVV&b#$3z8SRJk zx*yW(MIg05D&3E}J=$|eW&6k752{F8ee8V@ABRK~l#=H0qk2l3$6*f1vY)Oq9wEO4 z|M*kVU+!W7_c0#i|EQ~As)BVy+sc^)uDrv><+jaGD68`$L%S>$Z+9J=mULaZ`na2j zn%9~5DW)gkI?eS_Ys-S%E56vbU!Ng^dJP;r)m#5MW}E3Qv--MUFM);vY2Rz^>vC&9 zcU|E&p~aVw_hAY54UX&T4Qwo+#cVSN`n%r}-FQD3qmEHGanyLfCyajdD(W8ke?8j_ zNCTfn+3w3%2&4|e}Y{Kf#Q6f+j6yeqEDNkiO&<;0e- z>_yAN%re#u>GohwmitX{oP)-Bh>o9+f~L{SvVpeh+CdmCj8S~%{yI;Je=OVIxUPKuh%r^;DdYCJ_1eJz(vh_f4`pOYGd0Cn$kZDUs)$ zW6$s0P#XrKiq4>c97@vi^poi&Nz&re!3rurOV$mQpXFmDi8D8d(@6PQ$hPO0iZMTn zbAr2s{+4V((GkYc!3DsI2SOi%55L!Bc5Vmf6pAvR7~iWV2X z;qEF-#kB9=0O;@>X)XNqAIdx4f@i0-{$@%?%qIS=m`&t0#4O#!xBXkciNBZE6SoyG)|LN z-B5=f3t<%DG)emb1_h%{xsKq{;Gv+8fj3IsGn4b?UlwT7|5mws{uLcHV{8oFTxBvn6}54%4e*0@^6*4 z=MRYuTFkR|s; zhyGTpjQx;Fgs1U|#)duzOgECHB`WHs9}}%h_JR~KgAb%b3eOoU-9fgpEdZ$;x+fx0 zwBqPVw9Rf7)fT? zG$-vD#Jm10a`YOQbUEgv&vw6PD?0^HscbycI8u_{|^$4YuT4#FqlN&O+~kDisM z^%6%&sTK1BU7#PB2tN*6@D+iZoXmXt-A9K$4?Gn|AJ|O1yJ{ z<0XNfDNdj_tON>ajz}F-=k2`~kQ@$F<>28ZKs)V|Pn3KI(QA!+p_(DWwhyR~b7?-LSl5Q%QnLg6 z#o1v>=3U5%r6<`*krCH1r`wNp%E_>w+zWzc0dJIPXEx`J)Me(aV!YQ^w=BGuF)NxRnDLO-9+YYqwOkof{k<3GhmB0<`@@0*vA_D`>;4 z3T4X3^!?|0P~x3tr4*ia>6TpntGl+iWFia&81+wp-JI72c;*&Mxs!ygeCAea0mlDB zrfEAP$Bl9~(M71wrk`ho$dFa;fwI%#_=M@J+}S~${?XIyWO5=%svZ6*MlHMjZ>e^c zmv)~ElWD)EMwV8zK@R|Vlz#_)7&0Q|d?8S_?G@u%+kaT@ow2-MsbxFbKtXQrgIgrn zoDVm+lWjp?0CXwU@{` z^|@dO_)Oni5M$w_y?{oYB@No{{=>ZVr?aH&9qyNf`!-{U?v?DU1nS7&m*NQ;$nO)G z`Bq}A%)D9W5z&A_XLm|zx78g(TV9O^SwU&HVT1HyLV|!FCeiDceHP?;>)uwk1^2*T z{hTB$l+H&e6Gx&J#mL84(CqyY`p_$zAxGUEL_Y5bFdwzuW{+$x z@mf4)l&(y7Dm0-tHg|Zf-uHogcP(+4R~VPh*3>9HoN29x3G(uP-EJA7IYWbD@928i zvR7PHt;QXthro_m5C6lFgC07jWZaFAloBTH4wDl4nHsYKd%KJ#`eAe{Ph>QQsgFI# zQQc@Z!ycrD&G8qhVe>nrhA~_XefYkVYPx85n@bLzFUCcyXqDIZi8sTrpH(o)OyR@^6QSK zq)(KU#6u?7{u~KCSTTRp+lQ5_90|};J?b@gp+~*LEn8EL1aoU6N5Z?7T_{I_xr>n_ zVP;?#t;bzSITCmedOGarj%`WodX5Cnzn&vuF^5MN1;1bkT@-*;7&#Jl-Bmdf_V5n0 zF5Ypsm_5ePyL!F^PznE8xSlUz3s4P#vEp|QjzSLC-Bl;pzuZ+P*gpbzJi+F~tB5_W zMT}-6V(*?pC??adhQG-4s}&Zvl$jgs*>7R*x#c|Bq8|45nI5fM>aY?WdG?-C9ZpP= zWA~q{By*R#%E`iEu~9O&g6B=~Aj3n`2wh3GFJxDeZ3@+uq^sp)4~bru?Vk>4PnUug zEO;{tnJ1_uJPmxFfHzj2peCU8O*+gIj7I{<6MR^xdxF%LQ(|P(Fi#7623B%UkiyCJ zdjiUuAbAzu$xzmWF90ZIP56>m)0NC;g~cf1!a{Ws2n6}{P*MhkjPoJk+MGglF(W}W zAccY)Tu{3tw}a%jeM2b3R8AjDoUogf8;KK+6sp7td90QtPB>H?YiA2t5(N`~ltf`0 zf+KnBNfZFPN}^y*hE_(7t5PdPlr5tf`VLkO*+X9wX>k0Ue;u}jm`}e-k&CZNWi;u| zjI1aAAIYGE3Y-k?d*e9)lu!XFr-TaTF64U~1-9097pjB`yfJyjs3IcSUWkV+jU^>i zn9Af2q9Z@Jtq?tto=|}+tgitWjo;~1eHv*Yr}GT{BB%3=9DCWFDEPWnZJ(lIJ$WXd zlLP4s;e&gxa)!v?3}Yoa-qKu``SwW>GGa+`u#8xi++R#!D2#oQZM<}ybvF_-crC72 zwee--!dH_M#du!h-<}FNpIr3%Ufv(n_Xf zr&`suf--V)R&tabSTMV=p&TdfjAX&SN|Ca2W%xqV4PHlEqpZO0SB)lYYs7*2)a)IQ zcm0}~(UojI4GYI#q+#JUIqtGMA)2e0uU{6JZDy@rG9t-y)TC@`LE9+V^Q}lmNWKY< zB74$!2@2VkEEfiO^ehDNtk$QFrN}}6w{b5_|HxilekfC_$PRs-4~q5-gNojo==t04>4C-)QGc^A|gnk%1xSt!Kwu+|mU_4U%bL>B{wl)(vNETRlQ)b=zEg2QX2 z41*51Vx+weOlJ2YIzE}XIeywo8Tkm_;&mm=N5G|2J!~9<2xQ-VYE&pIQO`c7V+lDi z5Y&$JGSv4Pjqth)y0OH4q>J2D$z#L?()4-h;S{*NWk;9;gFw7sj~* z1;ca&E{)g|HB8VjT|qVQen6;JL6dD3$F)I9Bh%Bmi)VRDqO?a5N;5u4=%WqSt2ky*@@pSJewGP$puaT%WGHnEEltpZmSe8vHb>Vq%0_47?j(x!0EjNOC@w$?-wSn73G3}d7tm~ zyDcq<+!pNJ3o3e|;gbZej>2Ktvbwn?Q0Y!6Bv21`Es5}W!jnK8b zn(XpJ?MJFI{qorpXcNs|8^Lyp%wElsD+(Vi-sbNNSuwS~e*VdHNqA%}A!tE8T)V3F|QA;w+X#k(V%a4lph%vkx^%fL*;r*~q z$6b2SRoQ!%BF1N$L9YaBa^91nu>yV=(lXv@&I^{8$0xeQXS|v)&iP*$zgHLqw-)to z^A%uWXp$M9@nmytuv|GR-YwR1bm}bP&G0na>i>mvM=)&GYS$0rIAH+{`45Q8$crJ> z%v|mm8{1U_iIZ-bByQ-Isn|$>aE;R!V6=Jy1XEAat)OyD#H3riO@MBx1PGD5i=kS) zAE}n@86}yqU%nIx#w+Iyj;|vr|3N(tfpiQan`qfzhu4sfQT~I6%E=ug;@qMGuO{F4 zK)GUk(F!zPd+?TwXnER|a<`x#q+#H=bz)8%Ra2hI9w3w11n2L$JcMR@m z{3s8?X-+Az2>0AHekXVhu}FCk%9Mv~+sKM;p_OOqMm*jvjz>}6VgQYt2)A@b0W&db z!fY^Fw3u=tn2L$fe1p;a!KrPu$IGfMQv0%Mi_{hr7&miWI0v*v>Vze170?jAk=lKj z_Ck5(r3Uj3#Im=1F*^II70Z|z!PZaa_Vzp=dYfS3PVU+Aip);s{bbTk?hD?M$ow>b z%x{90!>H`2=S~tUcw-`QX>lZOup*IiBN!_LJvYK44wZ5vm`X_MKk4LuYLK5^kkUr* z<(JyO@wK4OEy1db_HTuViS}=0D!?z=zm=&_-2QFG`<{)a{hK;|`euTsr>KVgee*M& zcUEO3I^OIprMzFcdnDmSxn;1v_Qs_TV-CajX`I`g!9h>LfdHK}I)>E>*Pg1NP8yRCD_@sa z=48P6(o@mA#5X!X0UZ+##MU%AUi?L)<1Kb{PEPi0wHTdSA9?zTH%)l)P52mA;v1b( zyb1T6Mh9aGfI(t9gKiu|Yai+3^f|Al?LE}k?xZA$k9dtSP8QU9C+p)hGH{&m_!ss} z=|QV}gYtp&L~5(`L79vw_@KPTanhjh65pTzIvSK+*qR1qH~ykQ*e|{YM{}6M-XBUJo~rU1oZcE6^2VYDL{}&d>H#)@oN&hVu_1<74zE z$4+C!OMGJlh-r*kA{R79t?(C(QLBm;ZjD0e_)A6~BzR&+&+s4iL+ap%)S(EZ#n;p` z{Jqy?<~+}XD!fS-vJc|#@I05E;s1V3e}@12HT4YtF@*dG{NsOyk0tCGKGt~`W8~gm z07B330aFQ|;lqiSdg?ufAo{6$OlieWl~zbLSz zCSJDD#qwah1fg3RC!R^t5&cFyg`mT;2pm3gwj=QunREFQ`14E!*=AI|0WvG2#yvrB z_aV27{vD+ApV%hiJ!G5cd$Xckc`&XWT+4)obb5ysBUF5R|4PY?WaT}n4dtAQ7b?o` z<9dc_ufHKLed*b#&8#R_+)St&Hj87E^|q&JbORyFTp>^I%npzIn!spPi1uO&4L%Jj>#P|gTTHIQ zlwYnW_701cSb&;9V|8KkJ_x%3j*i|NSAx%ppl>KxIK&5~WoGyIeA#TPy;OW$M>u-2 z)rTxu_aqjqUj9&${A#OxtvJOp$Q4g#4b4EhE@cG&L`E|gU#pb}s<5lDt#G$93ce?DuUXZuE8`J8=i(_+lh zJ6zhHw-08@>5Id*;Y_&@-1a1CP zzCO|5;E>OJnB>qlLl}LP6)!83a%03JOb@w#Q_(PO6I4^zqF!?QOZNJ_*FLx3~VE^QzlqJqF;d1RNM_YL=Ev&%yWA$zJuCbeg;W7RMZgbp4^5CoXhwJg2A*O}n3GLf( znKClVBfjO5sl$ql0Q32neL5UFtX|qz&~8LdzASme{hxRE+x*l4_WboX%T^f z3o?Mg31HL}4&A^Tw&m`@+8g1r;(O-+Z9mwv-#H|~q6&biIx@fcZ8#g}8D!D2?5=Y0 zJN7%pm0TBF-?qKP0-mzs7WYW)$_RDtG=ow6)%~T@oxL`)-Ml6}|IQWUKe>9mKss<)(!yLI+l7-?uLkPxB&Wk7tk6 z9*<>rCwNss=#j8BWfmiZme8!mow8=E{{~(+sNT_9i0Ps6XS+TY-Q$%qxG_dJfxKMi# zby`kyP8_Q+r#RC=L=eG~L%Tprw9om6wH`lg9ny(l#4#TF^ruA7^hcJi?i!wENYJTf2@6KOkXyU>3ws|;T*X;`X>(*s&sT8G z=z5-waU>uIZNpE}k z<>p`8%Qt^&8YM725ZxA9hbyhOE3IoE_}ZQg=kBIL)E66SH&-PN>uN*EfZB#LbhdN+ z#Kin?ZI+PXXJE^12Imgb_inN#EHydRkf3{#SDnNVu03{C1FwUyLi|6g{hAQ9-E)a>T z_#>!PrvGd&ldFHVN17P~*{>h4bs_sD9!s?9$QXmGY0?Z1lPhxiw-2spy*T%ds^~9& zvp2PgyBRA<&bjzxaywDYlgT-EN6JTkha1(w1;&aet@7^oxzg(7%~T&Z+#OsX44BFt znN1SSCD0M9w`pw^cANj%KdyGxf9(5hVP60fn{RxIjC?hb;^zv zC7hcsMy}Hwo$BPxl;oIls{-U1lVaqVg;seh6SEWKm5m&3vjp@{tkKLOIIlUQe&oeOTg%Vo? zq|oZ;Xq1fU<``K0X;`?-k9GXks5gjH7(9KsV8fxsEkZc7q=kh;FRaQclI6Fd9%CwD@F9NMjga%eZM967WcQ@BGr>!x;qzv$5C-jzkJjQQd!Q&F70HpHQoN{X$6 zTyfH_uo!fo60(s@e>@XT9+Mn7a>_Gl$#UK%aP&`w-p&E1M9G8w+{xPgE#&s2*?D3E z*Us>|4CVF5ti0YM#j&`)Yw&fthu3jM$iub49$uq+_%7YUesGxsrlJk?@LRfv0em3X z!?bC!WM>*c#br7^Xmk$bDg>loxCVw7&xZ2i-&S7i?r>aFUoU>Id+~d&2zfCoIw(%R z(Y<&Il*65j!aZq6MJDEAtsZtVUdBFz2Y6aEwPo8WlVi#}u&DukC2eNB8l^Tf_CjZe zn;8~eHSm=?272LWJzDnKlJ6GdxM&(XMn&V;0V~Akf>q%B)Q%NT0exwQ?s)yTGHjh3 zTL_h>HYLaLolUzTTCROMccu;g;8;+(GcCOKi#$iPO?w#BpAJLcqg;KX>T9AybX(hi zmDM<~upU(p+CCTdV6-MnFSO4R@PpMM&Ia~j3a`TZqh-vqxxK+0s(O0j`jM#^ww?#O z)N2GnZL}i+3Dn=Oga3v8UY7di0?gg+%#QS|;_z;VkjvUTYPG+jWu+}ATU_8ukQWPo zy}S_h#LN73wkMj#SU7RTR%el1el#Xo0{=(?;*mf1tG6j(|I!`1eyW2ehSZ!AV}e}z zi)t0x&(U)Kr}@u|Jj}paQp4Pt9izri;I8|#7W_HRrj3e`HG6V%BDgdo`bNZra9nvv z$DKRu@DjpKLwu%{#K@OVziTPl)zD*w>dY5K>yNpHI9@mJs=>~5H<>cjafR@-WGw==f~S=@SPIan({8{g z8=&J^kI*`+MHj|cu2}CFsdZ?nZqp1jQE)RHDA8|b4c5lB#Df;Mn80&XB;<9Je*o}?3!<`!jA|zcOHObns&^0!}!pXk&E!B0Pw3g~R5Nt$u(O_ry%aIPR_H;`b zG0Nf5wxDIO>)amon6 zec`YK&Q%Wv)KlG0!QAS83jR{}Q$Tlol5+!|v=I8wML0nC!aGYI8|&C_4#KED**yX? z-^K{S(@DlAoKBP%4`mGzXSpsEnBTJ$U6+Pj^Mb%!CCif>2K-OF%bG$%G>oT5yO(+kXMX~b!tSQV%JxIl{2 zULj-+j|~;4AVS5dNfyPah0lF|>v4LD#c5MIC@GAT(FvzhnyC|$1+g->!r|5yqLC1? zf1@QlWWV92t@Rb01I zZ7hXr0uNVzxic+Q?+G8gX(9(qcf4ti-lfaEM)bzv=j`+43o{&7i7i|;3fw1Hiq5?u zdm{e8Z6RCi@;1Tu*m~gZWpY#pyE|5OuQ=UM?a*qDU z13f8XhhY(l*b@9j5nB=$I$|G*RS|or(s9rfthG-qaKzfgEUp4Y=5&^#OK%9G8bxM) zm@7waI+^u~xSnxW@pw&~ipM)l6pTlpP(0orr#jLNJVziNH5nIT?)(^58NA}K81Ydk z2IMuIB?V+<*UUEB%W>*)%qyIX0jcc?CF~umh%BC)*AC6FmQ}qhBTM@-PQ8)%x{jz5 zp+x;;CF=YVM=pv|FJd?|GOJw9X%p5s9@<7DU#4gp4>ijhnidux!ih2Q)Y5{Sn0Z@b z+t7wdnl`~*7<%uMQ%9I5l(6bo?CI6-r#(|K(6>MIjMS6dahW^3s=0BGb~h*+6A8U1ej1S$>ltbv10!qZ`TO2!09gVv3 z^3|;l0PNs~P-nA)rRW+|z15)IpjC3&t+0_C{dW2zvgZ_iBLF9Cug9x?=3^#O(k&aH z)XdEupq+_Vt^Qk{gIfKmPyzdkRlriKM{(H0yv~^!Ltc1-Y8)Z~%;qi82DgZ3Tg?j- z5<(1lXc@KoU{PgSeu8=fSIDIVdQMwz2vJ=UsN*y@!^6;(hJgq*x|(EBJG7`u-)rDE zY=>JRaQy8sFfBZBtD_aYUuZH3)Pr$0W>I#EHW_8Z%|1fHx% z5Q?Q3o{MHv49~+~6vOipELI~&uJX>51MYF`wusz;>m1|6ZQOwrxi_&CU2fGo4UF8v z6F;oE4tp^HZXzHS#crOD=2AOD)b{IE zfweZOurG2(*n3O%ve;cPMsghPd%*l17Ju7vY-Y@x}h5U z%9C}+qA;q^>#zt_=o0)z6}kizu--3t`w_>h78QErQAdqf$A!~%$_+e)I{J0W{F2p- zqHENUFObp{clakU5t0x$xBoIURz^;5(N1hvU4ilnxR#Y;k9j^)c}4W6YLmbbOM`yY-`sn4JiJYK4}R{Pr*>=%Vt$loe) zd#X#rb{SVmf3-x3JkFagEB@WF;4aaVCmXk62JmFMCDOCCq)Q*B0(9wPyj9+qE(N(3 z%nSc*?<8hh6}Zr)Aj_fvUDdkLszAlX%ye@BJn%^EfqBWz`u#_f;VTBV9Vp9pHEt(1 zaGvK2oWsO@m_m1{AS4yqlP%>cZD(t_!e+ON7kL5bfYfzw?fKRrRt~SWmYW-8w-H_} z=f9F#)Zdk-Z3kBZfRotDIodvU4bz@#t=`4n*IK=cUEdl$u;uM#t~}a>ER_tNaaC)ag}d+%MSec*CMs>AJ^py@*eQ^8SFNVIqd5=yDtKIa}&G==kfE z-5E_0xHC@n{JGsu zveT}NTy0~bLKmopEYbE}T^jHj)l{XCVja`3cJnsxopAM)CE@<9TV`ZL=V-?g6?*0g zPKMd~H0=vzQCyvo{yTsKL(t4fvq_Z`(_OI#kqvoPzXbeYqI~9Bz&i>d-j<}qhb2Kd zf6SBki=o6vCjH;UuU_JDo5dSFu7iuE9vAeb9@nHV^|vqRwnCmk|f@u&-RHk0uebvBd1 zmDZij^uvyKEjpXUM;s4{#oQ{I!Yt(}G=*85q+Wz9WE5Sq26saSc;Y(7ohB~v7V>=e z$c!h!6NH`k6fZ%2%413DO~>XWg_~%}A<5jQM9Jt+9IgBv3ooJO8gs#~{>28HYaBx1 z)V+L?B!B$GF(&mMOyRxCe6Anu;*<~1m>^E@WSVd^wBdsjlf+RI+ktIUW%R+OQ^apP znTFi+m_i|UPZ9%IY@Q6s{w4^w*N171lO-W_G&WK0&$%HiGg(vEiVjYq6<@mCywhqc zAum~NC47R?{UdY5hMas`GL}e{8H=?X6iE;rCXt!;!UUPoMT--4lL=nYlnieHhQX^r z;0d2MyZQPU?R=6N*Uu&?SdJ^W&gc<2;RV>U@jC;M~pntET*-%iRVTOWz9}U zHwc$wJ00nA?-GYcm`uVokDO2on?G<(80Q!A?^?&L8VDz_joq9bRYxtRn5zR}6OVxN z5jOEdUVuD&D1?WPS$TNJA8vcrE5FN`9y#M^BTOme!nX|<+G=I-i;muC1VL_? zLXBodJk*&vG&71zffVYj;_(-CR`DsJI;+*+IbN~otk!?;_(kMnd4GsfXVrnHU}t5^ zmobN+=A*~8NG^e`oj`v0g-&kpeu)8_ID~OmD=iCozQHLBHnD;ip&n~;it4f82L1Ww z_IQPvcwL=rR|jPyz{It6vfUM&4bc*xs*~-p6or&n%PBNn1B!u^_y!}duV~}5J*IqH z{HRFQ{0bX*h{suWNydGy%lVO0NDfd8EW|$S_PG&-gz%b^v ztN(VS`-dQ&Sq(uhXf6IBD9M=N-ie}V2wDffV5{WNqpmc${({4sIv8Eb$085&v4pW` zzu3SO$EWVY24mO4U&j zb9i=$NgWlDm%;EEro9fvAne%wR2>y@C@)FQ9hjz^JCIWh=T1-4oqGkRlXEXm3$YaHZ}o>)ysYx=MqY}1%kvn%<-mwr zc^SjOyr6P$Kd?wSSOFux&kK@&-_ia14yTZR*B~(B=`?i;^bIGId%q6l-t!jj#Y3R5 z6Hr$Ki3mT8AT&;angf&*LLx?_Gcw6)njWH^#HU-d6TDicodCrV4l!6(nU===X7-rWQrR)2SUT>8kAl&E};jo_L<1cv4`9*YP4oIPr2SoZd9T$pAupfS0D2s!msJwwhBYrU(e} z*>rWt|2!vCJ#P=?`@L56Oo#kip*9iz9AuJ@O)>*M7QxB=%qi3xtpiqiV<8a4e{ucD zu=BcM=Q+hNEHXnG)*>S)fNc@d*2rmb4Kp#rB7V^>8(`Npa_Vaj5KFe1#2U8MO(q;f zQ!*KN)-ce(K`iCUl9fXYP621<2?RLKuD0%4qDHYzGaa#R1L_S7o-hl=`$n+?f$jmlkP}nJltM z-Ed4{>OLLj%!DBk5fR-yGqo>!W{4rNQ0|WdfO1pUcI0f1E6tc3=zxf6j48;u4e*zE zlIkatGnKc)GXv_=^2{^?qvaW&{V_vmc{US8(ei8-{-WjCtW1mL8FGr}pb~ygx5$`{ zc71oMW#$q~ASZV@Ga7k)4~5Gw+B?fy(e+1t+T>@x29RG6MJx<{ z=!igTprDQj)FN*gO1J_331Ep~3d0gZnvd{MK+Kn&oH=0+0n78HQJuQHQ2(P=#Ku|1 zQC8?FFu-YD<|9OpG`uNFx2sR#FS@_FITn7=g}^CzSBEYUZN(b~bd6yto-Wg=cOyKb zqT|w4_=}Fe1nvsbuJ>GA%+oeiQ#d)j%$E&IsV>e>#5T0kKj)-_jV+n-NH1q;cYN<# z)o9L@^Jd&Tr18~02P}hq?=ORY^o!9(Irv3EZoCi%*ziMM;FMsjc-CGNq?8#qxa^&`Nqb-w_wVEmw6C~6 zDka$skI)v5*2+$v3lM9cLsFi`dQ~X1IzOn@*k#9I&RkK$<MdSziSu&tnW-GT;kh=r z;KxQmdcz~({}E6MyhCqzZnUd6nAd?(_-x0bZhY6;)$O|cGUsDK)ro*oNh6#eh)jpS zsX%Dcj$9T`q2q&0hdMq;WfXt?*VexW2460fCl}=EfKu;`axM`)m38F6TvXw+k@LEAnA3x#o|~1=<9M+RoeeNOn)LBsi{G17EE0JYT2hH(L zn8Wz7wmh6nJBdK{GoZub5Y+=4Y7aFk0lj3!Zg;xixp1zLskL_CPTJ)GTrJG2w$MhQ zO#ELzu2u;cgIA8aV;0^h0e4RyXd&k5SZ7mJ+6`hnR~nbw)mf=mhE0R7F%fXx3{IvQ zZG~J=>}(@5(%ebfe5WjnDr_Htndoo?q#x;D2-2!X$~Vg=~*%)92o0B~$CbneG zdlPd%3cJMxO(toAOWei_8e2y<=|-(}(N0n1C|+T*mp83r*fL~+p9O&*hAU|gjNV#2 z@%q4AEE_m{U&o$qN&(q_k+MzlO-_;p@X2FoQ z(0~tZp#`g2rk#hP_%)GVIa9+AKkJ+?C_f192T40-sO$NzX-Q@`Kuzg8W>60l#aD6x zMikdgPP@}tD9p(SAUJiYb3!AJ8(K@|uZyxo7W@jtFJ0zvxhW3A+PVSm_UPg^L3OtG za7B+aUp3Yv^-DSun@Ldda;MuYnj-EBZ~~9GHY=P*#U!o(Mcg>IYC+>T#R$1YpcjSQ zVopa_SC?L&XH(j1%iSRZZXPf=UwVB?1TSyI+kI{oZx3)X#ap$``%!n@7E1AkoHt{< z&2zJOd&#ZhZEqchyLEe^hR;h&S>A z#+!+^5pPfn6mOCDD8}bf@ z)?=0ThsDX#yQep*J=WSgSkrFts8t#KC2W+^=sp1Pu_&v3^(kj-xqOuyK&@)hQspx* zEDTDo-kg@KZSg1^t$%R8K)cbGW>2Xq)@p$}!ljscz|GP*zrIVf$H40dk@XmtOG~tO zFojQ^9tI14E9`Cam=Us$no8p2Y56ntoxnY)eHIWxtGNd~3NU5gGu^}Gbqn&_$#X|t ziE>{*H{g$Ta0BAs2|#qJOK2i{yp^5UNb^EKFZgG)TQq`Sfu1_xSNLYO?HXrSxxLUG zqeXcwe7oZ%K(sJq5`xygjrF(hZ{6R2o4kgw78$4^_xFFm(TK79yY6s5f>v8@3e8p< z;BXtP@UMY+Sz%P`7?fo4I>BWjz!Syr&!=;v<;M53Q)T%k_`X@sB`E*|_lWbxM&r@T zM-t#I-9)aM;pMT+%QKXhqj&^E@v@9o1%4?pGI}TAaQ57l7A_m&>ycg++atMF7~3tc z!4&T6Qs#wWUWNp<%2c+2(G6egHk=J&{Lb#RB5Q<9dOWjpAkv~0URmM2xe@Z%)6ON@ z4zB_zdyeZv9xh&AM0Kb~@yk|G3|K%{)whS(qI+=*mrPzf6zs((nR$BCHu-$ zyrGUfVV2}~B!Mdp9}PWk;ST4=Va>8Mx!|X$Oc9=C)%vw2S!&S`mu1oN=Upgt$kH9o zY`Hh}bTip=Lw>`eQOi=%sBvA$k8Vui(Rh(r_c!@5PnN#m?5B0eQe6ThnoK@9Wn8$N zzteeKn*cdBf<&H;T)papc-y>&kQ^O5ks_L$~a9 zBhh5p_C3xYwXHzJ8-m+7bHk{ob)#OiGHUP3&e`=f>T%tu$GKcG>OinjkLdc>aHBpq z68%OIz7Wh2Xm4_*N9|26g;5>%CN1VEz8hh{Kzz8!Y=sZkBAbOWO`IaKb$qz1f=6u5 zPwhQ&;^@4&%%cWzk190oHicpLg2WG+%BVT$7ZW0Is=$lO?(E)(m0op(FdGK^{8dP z{#n|{Y}xo-XOS4m)u5`r22*(JEX`Jpa9FmqO@O}l+jQ3yai^&qc5m;!SFc%uq0;S2 zj%}D+@UXMDHaMH6LbXc|I=!~AXR`raX?1a|eCd!gMLf@?8_wIVJ8!R*^8lr?NM@Y+ zAqUq54RhYsZ0Y>K=@MJH8sxmg!OnY1ci!XRJcL^mrLL9Yl&Rb$ao(4@^By-jPY!=# zXn5_*|8%ypX%RUJYcDc~H7LV(&2v=XwaT#wyc14u5zSVL%OUtmKXoQIDEJ!Z$o`)> z+lj_p74lyertsj?a#ZkLgsMe+z3!$Wm&A2llnC3!fa`i?c}K|bS2H^(n~yo4)u!hl z;9j=4g3C9&ce(Dp%Kz!T%2TJ~a9Mn$fsJKKjzZd-!u25+t_*hJMBTn|vey&N z0!c3ws!hc%i5u7HH8n0rjn#VlU03?w@Y=&)I~&=wmvaz#&naHv!VMqp(S7)il@I5= z=p0o2n5&5b+H0`;YC%~<+pFcOko&#}cHi^5`*tYz5!l|(rebtZmlNFbf7Jc4L;1rt z7{jZRJhu-vg4^QnBDwmTv?Q%Cn+8RIPgt|xIn;7Y%*j^gb#s1j?lteU(+6OlJ?G4j zXMcAzseUc1zv!6D+BZEiY|B!BMuXsM^*^4Y9vc?;k@Dp9j3)Brd$}{jU?xI6NbjGk z9;A;mQSd=JPG&J@?1l1+#zW*S|(;cRt>qMq~yeG_t`OE)$6 zi!R;NfbRH!s~sNZ($$PHPD!stxBljQDc)+5GFI+5?kZ6Wf55HVEOv7Zsakik6kUs| z27Jbcsx@PcTgc)+(i+LAPjY99_n8P)t?%g7`h|&t)e01<)^|7stF@JdqQ19t;mYUm z7Rl1{S#EFf2QNcM%fIHzm?hr!qH!LW=07nZNJpU12U25A6x0AHzki;aA%5lDD6p(G zP=U4G2(0~oJ9D+7JPNEH6^=NqO`ZxY(AFGS&v6k3uv}-8P6RCXY;e&IraS?dF3wS} zO>mNmsZuOLF;#}YD5lEtD5es4O!><_n@j!0`sS{;P2I%{$6WC?F`Fwuku;N~=sc?4 zZeRxiyC*GWahU4{v6OLFL9`@KRbiEhf>j8Vs#Ccg#S%`TDzwnicU_*U!V2&O^bJkv z%oiX6e{Of$Q++14iT1Rr%cairByEdcm)9X{-bqa7vaBGPp5+;!&j7fLC)4BabQ@7hwPl@nqdAD2J+K92TJ}8IQlHO2+4h8aj5y zx?Z-Zh~06nYO#N!bx>WKQqtK-iAkdwV75VC}&6=Nc$B4Zwm*Tuz=lmY05NDte=g%31I0GTT z89`2dWf|0Um7nwRx=K%BD*!k72Oheq0u+B)x~XE}Qr~hAT;Y6Bj!tuB%h|i#@q*`4 zH&w2LDuv!ELGP{Lwx$PV(Q~hY0t&4|n=|6&+F9P^ zfjYXK#wl=gn^D`>>AJ!ewyZ!uyIsLE7{``37N{lbodxRjwg9vF?{}!{0@oo6yedtN`Mh$&?LA(oMFryXxcCKr+eBDuPtM`9=Cf%BQ2lOwsp zFtFj5g_q{LI*20973#c?EZliKLIXRB`cKTXu9R50x~D5s>sKi6EpWNS0M3FG>r*H* zdwYh$NzRTXj&^1@zF6q$fNnfj=*ly*H_oad?C7l86n1o0T|Qz~d<6F`rJgHtbrYt{ zbU&dST#g6ClMB?1n18o{*;W(#KmFl3N# zL>3t2@WU#|-!4=^et?t7m2c|IKeF;A1v&A?Am0dwE*RuLLJL@P&Hn)}KDe%z`-R?6*3h#+`JK#^id-@1+Al}nqUY?#s zykA7B*3=6SkwXT%#%t>r$(YE_aq`gW;>KzRyEC%&PcLYO)}E#4>NEr~5Qgyk<%2IJ z!xi|o-Z(jYsOt(*%0#Fs)X+8rQXqS|U2SABK4`a4!#ALfn$=uU0$!zA4bP=!HHF|E z^Q>kuN~2lL(l#`!nLXS!I&}c1^0`bKt`sf5Xpj6>o=kI@lOAt9=Q5kbO(t#zY8g+a zn7t2EC}zQEn8CD{mF4ZPk?}dM7D)$i6PJxplUkcQ}@fQW^-ys8a z=~&k*7J+*6IM)Ud-xkW7A~J@h=yI!GZ|DjR4-jhRN46Efhu(U%3zx$uyCUSa39hCxda`S*m{h0GxIiI= zO~x|lHu|6^qDg$~sem(HKHC#7xF=M&3t(do_m#+r!hKa+2>0?-2PW`Hk7BX_Z49u; z?%^qTX|Z}F^cFR36&BgUoJxbj#jgJ`+#@OaGHULfpzk zs6CyP?bM#my(S9o=>UcHomX-S?K@j2>RSQfK>N;Ju5t|&+j$w_qK{c4}7% zv^94jbGQiO^ANxAWVJ&%JGki2raXatXUmOhkZRr@QYeDL@fSrYTu3G;=Ec!f~~Disz#h@nhhGa(l9P z%tS%(x&7^R@VVDG2}eHLE9l@NS<}cCu5Pcs-(D>O7h_g^2$Y06w+FN8uX#WgErLw4 zj73o0WI~-YCF3H<_OKF9x4+l6R};3o+pC37lMbMPKcZ<88HOn)S0MCUSY`)!@Q-Nf z4qk%HOP9T7Lj2IZ+`JAJmLYZ#;ORlGR9Twk%#GkI2=*Wji8?S|Scia$F-3(F#RQ(4 zR2*AJ#bU&!TL2%H#hYhW@dBjbe5T=zRvHo>-CbB4eEgox84(_xDTSOni)lXA(43ZS zrsyM_0^SA!ZpP+SlJGnVqyFjz{6+oM3t*A;+3QZhSO0-=m;18{rpL1czy05LU{G|nj*#q+N9v?5 zC)!zSDPN5xo zpui4&ygYerM248b$h1ulRN89yvp1mVma?pB!LUS^QN<}F11KcpToZt)eSnck22f2h z2!`%CmP@gJMrXgDQ;0oKh<(O{Xs7D<&x{wvXVGMA{}2e z>SWX;F$IF3DXm^CLeB@WK*;-VK;Y~1iw7TddEupD=5iQajy>w?p87q;5Fc3HVnL-q z2_v4<&wHapj)`wzIO)TasfQ}Y6zW95qQF@~ZHCR6WD`?(b{bVC zbW)?r1WuuMU<4w!xRc)ZUd!p!vn_(}w)p$rm7P@I>%v_AQHA>6O3bB?DjdArs7^Y5+zDQq{Q8CN*DpB5@arFbzy62Q$*=!nehup!%CF~{UqKf6)g;UC zD^K?O6>;MnoxuzK4lmfRI&K^cF3H?AiyV>p)=RL=d>t_P+!*C8Ae9^Pk2Ro~0 zh8sDVct4=?e$t9Jy)#@0dLcAiFzYgHAC$$zfmbsK7!6Mcf-`X>(8mArQWPLOPf&m; zAUM&5IopU2UXJ2J8xNkqP4!Wo)ZtO(>#o~G9xqJ+lGQ~8NEWA1fDjN|zb@)|_yA6( zO6=1`oso61Xm<2Gyk{4+O#~9ip(Y9B(DM7I#z%0*klIg}^3nN#8#w8v5bE3QybM`! zvu?%BoMKo}qg(MXCzBN$fi)gMZVhS11G*U?g3K_92=pAHZZaXfnUcwv6^1be!rRwe zF|z1{ZqW%&A&Us%?XNDdj#<(?Q(WM5GU-3MNlm+2)C?lJY5&qq0vTkINd}n|ofBE7 zW)dWUxtTJPMMn*b=pAdB>X~RIQ`|`{6S_kb;t|f!t}J|M5FUgnY!KGL+-7!Fy~mZj z0NQ7pAvbR~t<$cuGL%r5@@Z6;5LqU2z z9ah^F27E+u+r=}JjxPl3_?nfD1m9+K6FPj`4#o`xAbcB7Qoa8+ru##N?zEsW&3|Zn zpU=IRw`mXWPZUQhn!oTDt!V!08frze=%{PE#foP3G1v)@>jvfhgCyi`+j0 zWLqyN7k}+~zK;95$;TdbwUltNwy`YuFuk8x%GIEXSi(|t4XXAwup&raWv{}yVlCsY z_EPWCYh#m%g0%q@+l3sLxQkP$HY{}XRq3^HwNV?e(nwae9&eM?OnX_?%iYo*t?kw8 zr3!iTdbx%RGwOvW>s~>LR4)gy2-V9W{6+P0C}h3d{Jm>uoqFji?L$r{%lC$5_7mT7 z4X8>^u@qf+)hi9GlA6ms&E@bZoz+Y@ zR4tuQajKTi_=~Egb9ZVk5$v9_T(I2PSA9;KBQE*50WQ$mrJkV){R7+v1h@@Q+}KU} zj(~rruqHdc_6oeIOBbOp z;xD?hdL>>3q)Uc{cmPZX^P(;MqBF}YanqkpA(C)sj<%-Xz_mW@93)3z9aBepHU6ST zegc1;>Lz<#-)5GqEKX_N3>^x(t(RpZq6Ww}|8TVtH={eq$4k32;KLOx88YC+p=xFQ zo6Y{#x$Wh-0RSa&;@_?~ZRtw6I||-jCj7_sxVFB#-1{F_L8Rm&)z!14KjG@xMwYHL z+}CJPgsr=*jLyAT@KV(=xg*8)P}#S|l)B%DYHWNKgv>}4?pzKzXx>nhko|=Smqn}ClLCW5(s@F`B3sza>cB)8=IjFhz6;m z;c#!KSH$)J78DJUJyTdn0t>r7vYYP--fxzN1EgqfS7X1M{sFl z`&U`;Xe=o=Mzmw<5G1BN|Bb{_j@1Y(a!(Rg&Gx~>w#!a|x2Psys*W+2#JJxGs#%1`ytSo!z4(*sLI(s|Pu2)%)czA>RCtCC zV_E%?@Ik{OL7vNU!%NPK>9KOxsk|%*j2KxO?;aysaV20TlO@mn)x1l>?{!u1CG=D< znI|4iY9favxcdrMP~mBz$`MxP+4t>>L|0yfZpnA-sZIvk_LKw&Ig;m~-Rzr`-$v(pr0?IKfNd1R+y950QYM zS~05JI4ldxGs-!!;$) z$ovfV9dhegSkOWLPUp+fneGOO7bYPFUgRfSHm&SG!W7zpfPkfAWrB+Qk!PemnQwcl zy|QmP1@>fK2y0Z#p(2|UvwEV6(27G;M07D#L=>+G=uQK`k=lQIs$DdYO?x#a*~a!$ z-DCodG$qq!&FP-%PT)t_L;wouNKd*G7|FfGz{N_66}VU_H;FJZhJxl@i+agRTTcWo zX3|BU<6W|WEf{6&>S8s#!C%DIsC^~honq5A6eD<8b_6%u7}4$zRh>@&6U5Zu)hTU7 z?qv-g+13}!FX!ebniQgeZ5OJ@JCA$7pvwH-wqi4=*n8X*YGK_6*Sm%J=Lu=rI{|4l z7*-W4bg`P4 z&gfo2?)(n?h?rq#bbtCW!yw7%j4z!(GkOKY=?<;k-_3oktC`~z+jJXB@91r3gzd2C_l%V{Ct`3 z!Dg3TCT$<(W&`t%vTy|;UoC6v1#qcL;ph#zqc?C}$Ii6%eI{}M3!KEF4sP}cnLL%uv$=C08OLtca=8;YF$6GFow1AB+)3C37C zWXDMNk_LCEeS510->}5Nrfq+LmR*Yg$$c6Q zeY_*){L}^mPl3#|*LJpH%gWkwQ{4dV3ePm@gB$RdCS6UYxjWmmL46c(*^oY#VLhNv zh_D_FT&!kY;}w!w@yXN}`NfQS4{H*19<(m{_hwq3KJxP`+y$Z!SCFcBCZ=$27WYxj zxjQJ0!`e4{+zZ9^rgGTTF2CjysCBK91v`%mCb>IR-`Xr(>(YnjVF-;R31(`pyPe$E z%>lbR-notCvhCv=8|kY*2e{ma`zZLSN4bthgQ^MT{B6qlL9>gBCo>DH=emd2vsIDH zWpO)4b6X#ULiHe5i(I}h*yZww5|_-`N0gL0uCDGqD!lf+1#YKJ z`wKKc6sikc19D~IukidZlqZ|^wFu*wMfL8Tjkx_61PEeL{fjF^PE70@6t}bx?V%uR6~E*+jtuWS~U9 znKf9u*cZP=G|7yBd9J0j=Ir`<{77?)|>XLIyZH&Wn* zy3rUQ5T|RI{Xz^(1^q0x+3;pc7|2k!&`iSUy!8MRue;iJw6A{Swr^mEvAYIacIB(w zZL~5_?6^Bc0hNtF`(RJ;D01Ng(p!wJB%reK+z@Kj|NK3zL!esV+eiz&O~e>eE(3O` z!WM3(shcKD3R9lWZkHe@I=j6df6>|P_5IXUhe+Jhh zyVFF$s09i|?VJ5n)V|Gg1fo`ZJyaxp5ISs8D2DB$oTU-A-|J!fBPUbXej7^I?;*n$ zWT>z;3B#~$W#M$+BbeO}!6tpv-D-Om9n!MDdIjg~4>c4RTJRMdQ0Nt08xut@L+EQQ zIfdGcwQ$vD?t~E2cjc+g%znUKq?PtpZH6$|%KED|1L~UF%-trR`HJ%8b}fCM7{}#f zf1T#LE4b)rQ=Y(EIL=WIP4JSs+b|!CQ2VIFU(`M-`&0W!;O)a-?yi2SBY*iJ_qV2w zymrS%IG7WwxC+!TZe=Mtm#VKD+%RYhiICV5<))KauZV}37}YTD*XwkPiGpd#RqHjMi@OKKSO9iJ2Z)!pYWIhh*9u~5Q(=x@=V z<7H?x!&+ALvWzS(Y=F8&+jszY-5=~E$~GW`T`dM!h@yM7Ad2or*EOqL&S?|o831jr zkuOtZ)e+_jC9JIy7Uaat+Y;M`HjKVqWE&#S-R8E7VRd8;3MFf-m0@)08x7myPBGUP zHE)Z!_1y=R6agPGT@Ee8-@GH}u&po>&Y9sW7yaC=aC5VjcHIEg*a@U>$pF>Z@55^6 z1LRFS4y-`>R&XO#vtJp^WT`1nV6;5^>&S=%M)EgdC{G}L)tlf`5BISQ3Z##7V?}h3 zzQ+eJkUs0I3Z#!)=4S)$qe1y)6iS`WUi?L!&fWo`JDrtKNu}8pGUqw>F;l0b9^ejt z-hG?+gd0K~&xb5U*PyC_(?=MQz0waLM)+{|iL*?Mdi?Y~L>s;$I|CtrXlzXef_Q%m zq_bjeAf6TX6mgtF$HYLPV`3;v$HW#!_)bGK>Bq!FWVhY!0-Jt1%rmRg;e+5+f1oA= z0@c?AsNfGeLEX34{h?UIGtvoaa*8q9YzrmqrGYfs2$L|v zoVsXn0K!S{3!SnVUwg@DyQ<`T)W4?+n$X=NFKP?2Q_nFUhmJ931y_HU3uAXIkWzNhpn$UUHo(-R>9I5KR|0CwBX_vAt$6L z6epxM&eB+^4H&F87zS}NHHvVWwxr%E* z7tQ7mR?D>&CJHXsfI^;JZK9wjfkL1q^Erj)bJiND`P{bWkkcX!bK0j@a? zSBkcwb76M_)HRQeKd?ZO25QL*T(p|9eUCZ$!1}ByPhh3SIYJ3)&X<9^+h&y}yoW`o zIlPa*s5!hpIP|3H`$1~b6!Vq)w5egJNmKW)-A{-!Tn)PJcb2D6Eu0yw@BqGI6kWHf zhTZqOORknVadPO4^g$wQ2=Mf`7Hp;o7V>=B5QbWk$cxbADSn8Wc*P8n=i3yOgu#%chJv`O75$yNBvnKHywXlE52zb*1XI$R>p`=j`d?2Xmn4avCYFIo z&{&>Kz5Xanp)dj0&?Jb^N#^j3GzpqDL`{NbnJ9=(a`O;))%TXoE^g%{>H<~{3DMuI z0Y~FizRp<0KmS3L5^d=aSrn5!5Y}ik{+YxX<6qrm0w^&h)A%=Ih#FEx4N*f%*$_4U zy~A}SPrQjKCQlGJ$tkdoz)8;V5@g+1p{zS+WgWhj*NzWSW8deT8I66P=!(8+C`xbo zQip-HhJMaRirww55KD9b+C?0B22?SSCit171>eub_Ia7iw zF{PlZZSY->Phm@+UQi|t4Y->|a8o?eo-1z)%pQ8(cMVFTp6XisMLpHEV4n5Bz3or; zXBPd_!N1&pi?v*D>YwiCDbzo$9jf}LyBI~+sOr52?K6EUwlSUxOUXit?;k@MOv&rK z2=+?0eaf)}Q}WVK22*mhPF8qdk9AC-g)yaC!Dl5X3h+$y8KjNrcY&J~6l_YTr ztwVugz?FCz8DTkW&E(osa6@GIm9}uruebqO(u-wR>)!6VoZ*~8a)4q$mP}@3k^_%K z>c}D3lEo~i60uMhaWkio2%s3SCHF8giCAbMf}l&bu$)T76S|09oI)aiLiiJsbuo$CWEeunrSA*671CdMC zyqVfZhc(IM*=aaREm6Z!DyPs(bAmPLT%z~dT{)e4?T#fO#-x5FsyqA^RrZfb)N8jb zQP-J4C=E&`p@Bguk|+CdI1t}t2G>E&=PsfQsto-#6fdiAIIiNQ2xfuj@jL6{Fdg4y z1mlykf^MbwXaME%Gq6j6kT(yUaS<%E~A zilJI=0-rp#+`5V@wTLJ>%h5_zcL*}6#hPRWTC508?q^P+>G^ktbp(15+ep=>;0Wh23;yr|mbyKV^B; z%?#YoJ5#1M^#0AnDkK%4)XdEu0E>|YPLD%`j{t4_qc~MslM%S-lkZ*M=rY@7_}}Dv z*|W*u=f81~yUrs-I!#9vaHI4LSHT!)b4RGa&ab0D_J|OH-N{N81vbc{fi_rHnN~VN z4YVV;7-OI<2_w_C-&l!}!YNF!!JVvB8t|kV0v+xw#t6rBGgjzbKT~j0hFVd#`{G zbj}&!IcO2jcPAG$k>h5bPLwqxJ$=Me+>f;V{}@Zr)u{TcVUdlmBnoBuwb{3dml$_- z4dulVDzp!nD7aS*6xj8Tmo*X2-eI4Q(3d<%c|MBpPeWDu8LI%JB@eJJy3a8r!NOQy zEwIBHt^xo0YnZP>?eb(BKvQWnQq?t~+%z7k>be${<8}S8Nn2l0nyhJ&*foJC>rO_w zRM+t%A%*HX0e?|lCyWeL*K;R&KDMalRg*k3L;;rfcLr3sIV?q&TlIMZD;HjZ6v)y| zdCAqs)8~rbOoFQ59wSu+mzpS8!9X!8xO}8u!I$%VRKZh5hUh`&jI`*jsDgntRj`G@ zzV5&dE7%QA^;a-9;pLZm^0ifZwf=-CId|&S+8tHm)#^3r7^qgBth*PbQMGQsB2=vp z;xDS!2SZlt4bwd*EUNY48J>H^3tTu=>kgKp%dI-muxh1i2XrHwKHKs9OwW4p9uuQB zgWd+?@G8ga;I-!Vcqy**%o3;SWIJhOqs<=+eSNQiuLHL>3TJx?{kJxFW}F^mYFk;w zv0EGAqri5$wb62vYMXgi=OoApb3C0=UqhXE4Q}H~;?<4X<8wT5Hj#u({B6cqvwBCV zHET8}Q*gRRg$T}eqf~IV#3KF;7h1F0N9mU!;D;g17)ytO`nS0=MF}U9u)(2(jk6Ml zW2wz9R}Ax{h+t7=TIDD;lrH2_jG=U1C{Z_zQbVc9E*eVFE?Tpigh7?*r~XNxBz&Bt z%Owj<`bbGDroaA?l1Eq)`$)+@MyZdKJj2Og@ic9VGB&QxlZ9PiQf6sPn@Dc0Ch4ms z8<7pglzxox$SC#Ik`UsL=;A-DBmPh*@yGs;;^{LcCh^8+On&8J=`$vvFMYRN|WG=N+vNU?lCjX_8;x<#S) z1%95HJ#<_p_@Uz}WkNweu2NoKl+X+Q3E(PWN&r{MOEe$h&wv<&6bs7-mgh^OI?2iD z`Ssk6R(M3q%&;~9*K{7Q@DnJ?8~6x-o-y2s*P`ii_Hw)_N%uGp;zc&P9``LC#nWAY zV|biPr_8tGRyu9iAH=CEO^a)AVnfp>7|1X4(Ky?5EB@R8_2&l>3j-I*d5`bTl!wIl zT>1LVo-A=KdWgKba5RIBx|$_J1`Ly`YwJIT5r|mv=N|Z+#Vwv6B2C;8EGk2uo7Bu3 zCP!;>$NKgjaX%AJFj3n2(F#l>{fE}|sTJE6&pf&Gc2AVxvehF_p5nK)w*I!FsM^{) zJY8(s-qGq2C;T;lp(@V|Z7gd(>)lxTsyx@o?p28sId zRNEW8Ks*PG5g#i1ZqL*8ct}WI0aX+5?Pl0<@P6Sd3sVLBFk*swm9R08!Uyaxpur;M z!>6DbKHj{0jps?x3Um2m2{$z3d^?d9FBmr_P>|m6{u3A>HWavs-tg`jt=?zVf@SzV z%c63CsjOJ%>7@-FgBOtE6|z_f7fug(2anMo@@@@Qf-?;r0}YspgJajqtPLI=C9E_x zw{h)n>peD`wh(k~=Dq^|2125CpY$Z!wEM=$FYfaciU+tQMi5kw2@wR30xNjj8)h4$ z$!AWal*`Evc*5%!4Wx9McF!0&XoIJnxQA;(fv^)(czv$c>$3{9(?P!|F9^iiY(!-vsMJ8jcj^r&w`7*|;Bl!;= z@jNFw@*;F1-gc~-))$Ob)A}hddNSmyL(QTk{2DBV*C{Z>C_oeZ5He|kKkr9R?-mYV zVQfR~Rp?#3l$z-`htCz@67Ae8-ZsuzoqYI=z=vhkJpTs#h5xIgcU3v1?GXVFZX)7C{yqnHpruE*!0!i!_J9~ z<;+(+DO!hda_#dTm*`YSOuPRjrneymJQgqaz2NbXtn*#dl7z`7W4!|vM~4umilak_ z!sE^3c{oZ+{bZ-7ySbKu*D!4hQ~{o|JULdKk)5pdye)3z`cs%(H%^7gb(~^^$@+0B zOe80hf7ksl!#A4@@2){L(MP9Ob2bzyyT++V*~2M;NU_!aFDY+8t-$uI5iP67sb~on zqesgzf3%$7!pNF0{+FEZ3~MM_fW6#|(E{?UqQy2Iqs1LDJ~$>X{x2z!;{!424;C*v zj$*}R5yi^#(;2z8aVk_ym1mq+)lGhPzo)Y>C1b4E7NcIBcv=*}R`Lfwz3&z7a9o~byiWj4PX8!mP{mhNZ z5mc?4-z#gY%^t5#tY&f^bYeAqyi#)H_<)jhLGWpwlazd-j*`RQ_FS*+A1~i~+v5?h z@dBjYE1}eT->9c=-|=LpuE9QzMvMrxblt;w6&&#N6Q&euoiFN&KVc}2cLF2%V4%r@ zz2h=!UwhY6scDTS$o2<4Lq(GbEU47n)li^?Qb3!an*K%5)Rq@t+wYKPxF%BnS4sU+ zNTN{^HbUXf+|!9kv32l+mB2hNotzG?SHj?5u(Q z3K#dhgJW?8d#_ot@?M)eVH66b75-@aMJxQ#6VwWSALPusCMYo0!(VuMi~CsyHFLAj5{nQH>+o4w&E%e=o?YS@UXG@3 zTPCRK+Y=M?+mv^XDHU(k$@ba=b?@IpfMkWdWt}Eg5uRL=^5zD9~gl^11dcsRNhID!%utqiz`?z#r|@g{US~w_CO)_^ntmRj7;o-%Gk%t z4c~Z{iw!K7VlQ>}PjL#d2MVxHkj)3=xFe(y0?nANZ-Dx(GhOGU)O39YG+zI7Jpi_gWz}>&ViNqq|Mi3IZh%n0 zBhpovg-_LIVnQHlV0T__s!F>-L?Z)#GVYfH*sf2T1Y`P^qBlLM)yw13 zTGp93y5){{JneebIbpzn{`w-QM_(A0IzKYmK~^paGGD6gd3Bl zy2%$;W{wo5WSTV1B2{Gc$T==;#w1xWGdI8Xbgsrvy*5N9BDGU`tz&Xg&oBZ9~Y4<;D@;Z(2IYq$z*k4 z)NC>%)7+=gRAyNAWUV@NluP7tfdMNu zZz!o9CX>*)<&6vq)uQu_A0u8E-d_3v5bxAbn& z!~$-jS~m>CZh^*@7&T{}3l_i;TuQO}U*7jaPU_u<$(j#fBje(W+1c7{Qxu~39h^1o zXx{=(LPYUPJNyu$xP?+x4cG#uQTK4BH$euYiEo>tHo&({sYPH*oA%KZ1QO2@A9Hh! zPUVA85p!~i0s}O4Di>B|wUNaWy-r#AF~A5Po|7LgTjcku_h1bsq-h7i?TCeakZVZW z;lE%CpGLepMICRv4Sx|rc;dUTN^@K(8c$_Sh^7$r+}iXzHciu}21L7 zpK!S?*3nKzyTA__4(|hvazMO77|-L1ke3fn>{Do)8lqWtoND3Z6HaesJAS zLtR`Ma_AsT;SROyR;I&Wbf_O(e3Gds&dD0=(D8;S-J!L;vb>XQjaGsz1uT9umukf5 z@=)%(+sb`CQeX$5aJe@}M(;e;RQB8j@Wl;|(HnG^-oP~^m)2kkcj^dsG;A93x-r~eN2=@H%5gYcI_hewoO@^;^>T(x@;WpeA`d$S^B*L!pG zWbyeQ(qu*_@7-ZVF)hXy9sh26!BMaxFfGo)>I-)aY?I`gWbd?f6MhM={cD&v-lnYtJEyy|#Le7JBQ%y* zgy;_LuCVA1XsSh_vHg1ZPQbb6^JC=CQ@r)Lc>ps5!_+kGh6;K6-`Pdt2CgQBMh&L$ zKH)k&3KoOvIF?nmaoi)GHzD3`LCv@s^sihpGJqvg+n{)7jk!^|>8IHB-ax@2j(dB4PU;oR| zvb_o+Gk2OTCfHH{?!6n@@0D3~Ao1GSUy~cj>oN`@y9VLR^ITtcZ(KtqJK2#EUQ35t0FG|E;38>j1GlUa?`8WL=(;eIZs1YqN(SdESB?3m&3Elf4rqg$a{jFJdd388O3F?=QJeB^#LG=tpA!m} zop?I0pp072AIVfp9p8X)9CG!*Bb;SU2#$`|IQAF()=O1HN^FI|d{xHRNk@39ii zMqY8J9ojpbZdkjt%sP--QI2`QxlCMPbkzO)kHB<~l_A%qklgfxpm2q^%(NGVzJL#%?j@9*9p@B3Sb zfgD0t{Q&W{rB}H@wCVWwURmAlpJ6>ER!^jGZ$1y{QrO+n z{%Qa`Q;-lN2g~$&ao?c!c$YcH)p?>p?Gs`pXB+3yrH|Ap^3KU?+j3$#M@zTse>JQ< zPi*JKW^B|xUQDr3+xx57C`$v1je0Fu-RQ=(T|tm%{+`rGd=#v~-;HbAgEZKEJttmwFjsh*QLl1g*(E$NEvbC2B=4WRXIj_^cOooJ^BkDpdS4h z1L(uIR^!o1iTe#>n*zn2K)f^_4Z>eE9t{F1FwX;@<7A&t(w~rDuM4{Fy}UksqL|J( zqycCOE75fGUN7eCMtf_Dsy(wOp`zT@wsv2!jL}hJ#nJ)l5!a#tDp_X`PCN?-u+DpP zGo%I5otIZuop(Ga#5>K!n4R|+(xuM(y6lq!hi()yTW)K5{kVk);(d1_=kbg3?tjD? zUV@jg`S+(hWPAozEbmAX7dR9=sGspkDChZpfb5fAr-8s0+IJvh^`Qip@u6}a;|!<+ zVn=1}uH+(*4y1UB89l{V(=nrBAkg+Mz~F6Bs!T|TavHG%Rm^A=4u+QweT_=+(HlrD zR4L$PQPMyiGy1wk9Euq&g=k2rI%ZT1R57C=$T!yHn+A|?6pDPi|08*d8MTl%$HiWp zERBo6FU5>n8ql~nELdHN8MV}V%$EUFdC&wK^1&f%H7ZlgN{H$ z!BXUbhJt+jMMFV8s4!qCpwAh-Q<(l%(2Wxu=)%S+|4{l-v71XpL&A1eqUjg&-uh`7 z^+9T~%>E7)& zqHBg5X;0`~R2N581IBCGkH3Tz_*k@slQeTn*S4@oyQt0nO3ATzZ57A+e;{ z-tZ<35|ni5#j0tx^4=)=`~zW1PspohYo*KM-5l9sGQ+N(90#H2ne+t9D*Y^Pf~!p1 z0=Wl1?LbLcZFBYSL(at55U9up9t7=qeE|2*SKdsoZM>i@KkR%$tnBg@OhJ>77&rSv zoI35eD8=+qUQA~(HRmQ4Wty<)2SSJIx=V^f7UaIDu5-MY7F4IPgoY~6m|9SMQfrL( zhF7GwOkaZZ_+INv3j~u*|MP?nvbbXq;PUo0oI7oQDb)s#f{GZV-ZH&_7`=-xOgL@( z9h=2TdfEnb={=K$uK8vwu$Zz=TZ-vv+6Bbf$~gUmTD6^gLdBD`<~)-|varOW5lTA! z=pdcyr8jSZQp&5F((8tZ^zsCg5tF?@?98=IT1L^0qr^ofysSz*klsjU&l?nJ8|34d zf=eW?OdKx>;Fz*c?;NCVICt{~WR~qnJ5+Gm;b1IN3hKAeP<$P*nPa9D)Rq#``vxUR z?#hx8#u8H$NSYgpLFNLSY6M$3-TH zwG2$>0sy7Gy_Z=t@$?Z^Rc$2-HH|kpglGVSXizA_hYUU zLg)cP=(FD%YmXdkItyV3panbSn@(Z16!yfyN?_5MlxpoXz?`nZ4%|jNVzImuDFZSj_#zfN>I1lPH zbvzc4MRcNR-d1I=z06xt_F7)YtE};Zb)xB8ygIm^#{hs%ow>qOHv zh5$0}Xh_PfGDIo23Wu1=tv^I7_f8Hc<<=b%Lb+K(LMb<6h*B;PCFNR(n#$$HUgct< z>E4_Nf92|!Lf%#>cNlL)%H?%T>1?_k~dUJrPX5l(cIXSc_sX;D>2v3_?;d7#|N&F&Lk4FcJGO6tPRe zh*1p2F5nz9P5aa8YWxjKnV6g?ZgVnbZ3WaiwVA^Pn6p+WjA1sY5m zs`@O@Bo$j|`ueQ!FK%lsq2Z`6pwgX%QceGl^GAZ6(1M-d5L2+vv|txFm<0PIlwjY7 z6zoGS7|6*y?&S)m^ShTB=p*U6MA}mP9CQw>s5}gph0cDj%>++pW)dWn%ffAIn?AegPYutDBf6Zt}{+?sb#hz;Mnx zWa2;R4Xnc(WuP{f2s#7x&kQlpnw`{C@FE&4Y(FX~XsdPJ6oa-}mbDmdwfH)a*?_iM z4TnPsZM7QVFWPD~8XmaSQbF#|q}uld*=|AJv>u`>w)ZYD=qR!?E75fGjum}V1&<Q``%w8qgk2p-;UQq};pz}@BqOPhs)ozs^OMp#mEU^}U zktNoKv_!t!elUn7mS)%=6-PL6vP2;((RA}p6w4B`Wlqb?q2e?{tj>eq(w6wt0>SfO zfY|qW41BgR2ydQ+fJ6;|@rySq4+ZP`PAocL zAEPledN2N@o?HVZP0TS(Y8CoMnT;Xt-{dK(ek2&&-#ToY)e*mr$4!CsqGPKx(f z3K1yC=-Sh((Xivy1zkP{R0Ym3u}%8q={Ai+U(N zl#bYtEoE38qy7jLzk9JyyQ18O__!6ETNQl5OT6CnYSFz3NG+0COR7~WJk{9_fenv< zl$f>>{`%5Z%GLMUZyPg4$Tiva3^9v~Zu-cy5z0pvKts$_dbF#3Nzn|o%$Phv*0|rE zCMI)IS>C9o$D&@^tra_=4Gx9(9j~|6_hq5S$)$ z_Z*=fbw2>|;G^y!dIzNH#_@p%?FD|O!c3ISd)OCg96T3>P`^Bp>^|7V0ct^bqN z_1bn{v1~h0F6e20R#fLCVdbRKVa5ib=czVQB}aO1!KDiFvDnnI(*0G9n!@gfp>L?h zlqTutx06PT7Q6`^^*0%*j`|zIhYuf1?k*nWHJ}&WZ`?l;_AcHmI{i7A5CE8tm;nJD zF^3R&=+sl+pF< zmEx*lIrqNbn8DPycPU|x#CqPrPbbV76jm@&XUtj0!MMjVR*zJjX9p+^mK zq%}QGwW9SY@`KXy>fFSVh6Ex}Nm=opWB%eS;f&F&QL~$Un|O^E(>-rg_>>}!Ym5I{KO$}4zWM1^e7nIeOYlL zMlth{{!5Nh`mZ#K^k0ta9~`KlFQf_Y9dmaSM1q}oJgL0_l<3gGLdiUI2rQ-)IF@2M zVEKNeI%W6>-5#8~2S;2_w330VsSi8yLrg5&s_yLs=s% z4CysYac3P%!iake&@Ih8<3|;q7-jEiGggmM`63FqwC04fQrm3XC>7boZ6+a{b!gFg z$}(da=n}I)EaP-(_IVLYc>m9b$Uw}F{Ve?DSs>0@nqm~!XMIzO*khI%Z<|zTs#-Wo zCxAHEDneeIVE>`SO`xaJKK#xpo67n{E6W%iL|IoR*^3hE3`>V)#??_WF*UtvBqvL{ zsx;b9SC_REKWJTf6Fj70Mekrqqf2pgl{{Km1gL0T6}Fsa?`AVPkCv+)>9r#{HB&$L zj8+4{L&5Yz@tFye?XfabUaBH%&a_u7s&BO)t$eFJXM^-L*k505lq9y6^4k6O+A{M< z{HJ1yrCD+PYNFOv%h6t4DZd*21thBI`Ha1{d~{cQb(#H)eTK1Nv`XNxiF07;Z=KfP zo?!Ze0OAovRoH5+u+^L{DeM)0g{{yETZRhD2=hdql6B_Uhl&p@O^d6vceT=%`6(@{ zNw)~uc!?`Rf~QoL7dxef%byq6pEmvi%{5A|6~giU)QT%TCP>FT*RD=2nK0L$A~Od- zGA>`qouH(IFwl*G3lr zV)lh>#N_SHrh{}EqdHj6U~&%oJCo$J%kteIHl*kxF1L+Q{i_4#0^Frb1%CnC0z+Bp zt)PLKV`7r8%reeie6$Com{@NA+*kv(G3CNqj@}euDar=S_~nV z8Oybl%Q+j=DPHmyQ)-(n;c}if3%!C;Kj?~IT~`=&O)z8WjDH`>d}GaKxijLskp=1sVlOJmyip0RqC06g#^ z2J12%mK^O7mClfGdy~B=84`f?4MuyQv)P^^+H*F@zJsxZ>$1&Q)hAnyWqA>%TH0;3 zKTw3xml&C(u)`b_z1rR=|Ebauw&t?y0{h)^_ehu{nmz3%qg3S zTdx(jH<;q~90kSg`sv5AGGS6`bpGZdjc>&6nz8ctU2tx&hI2uBd(~fWE4AL1k5%ao zKC(0^hRWX8Dq9|)GB`!iarWqS`M>^H5@YQ*8n?l87+i0Al64_dcYiD0*&^k%8TNWs zpYsl!$$+ht%()F&rlxjFh$w~*!~Pg+$n3ux*aiGB2Xazk95TqA@1|Db4efkC7ux5G zI$R7`&lT1AY#DITWp8D>5uixSD<$V2w*O`Hcv2;U=*emNRA+lYj+kR_BCo!m5e-qo zf$9U#8&=e=ao>|F&%=G3G^(k>SbsI$OM)1ko>VCw=2%)#+JTz>?m64nWY6R2txyB4 zY-#wXj->CTB#%`ibOLm!P$P6raGY#MA9?-+-0AQUR>gjP^0Ixfc!%>sS8AtO37DIP z;^V~{if7C0nW+oJC5Bkt>3s2|y3@H~f#97EK;RRV9gVPYc;=ca!pAXRG@sqr#;NhR z{5X1LQqH)(77vx9=FXY1jrFy|* z!A&<$L6qpZ2bnY=A2 zl0(Vae$uG_4B>2UW1RLi3ug4S%0U$B*@V^aEni(aKeV?L)y9LOy-RXBaE=|XqK?un z5PWa|5Q;jw(*nUh36MWNvey)`975h6oCD?U3qT{_?WO2&6*7QaIAc#NMUju)#-ram zjPB#rJuC2R_4&mXHF@e}NJ`nzi_-_khm;MA{F^>xspCu8z%gpy163(^AB9cG-ACgu za`(~W$=zeQyL;O$0+ZqB`p{?gSFMgeDZ$xXEiB=aG`TI7VXFK~{29)IoBZB-S;)8n2#?UgBWvA+|64iCh^U zWL&0CriY}FKQ+N_l$xMk5|)_&8uoSy>V)AF)NE35LJ-XKa1b!l`_Mq{d&?np!<-YK z*Ol-j3U>f*yT;v6;r3Ha;_RyRP}?C?lMr6UZrnRT%~V|jaCg?Y9}dPhy=z6jx24vw zYMr`n5Rdb$7_YkSOkjw2-NgJ$srlcyN*a?Vs2PjWbWE9`y6*}!8K1Ida~lRr(=m%n zqB`R6_;${gnHm4LuZ)3Jg#rZgQPn&>ngTPLtI9l@)rG#y+tFJ;ggO`9i> zD2*d8<1ZRVUY-zo9C-?CgX2i|>-Iy|afA{>b-!VsDL&zX&`9wiE72U}6>pU`N$p+D z3>^!ePk35fXLM9x$j{(yn4#m2i9pxef9UQGAQTuHRDIn9Nh4UZ#e?Wn(_5SbyxQ;`YPP{oCREPS7)^qt*W`7 zFfQp`>YbCIgocNP_=|>zhLb|As=p}ZI1*$~_^PyHlE}vP-VR8ELMK+D=@#cTB>5zq z%aoJH4=0qAw?|j6D33)rri+1$jv5sDPEr^9k4;ipGlFp9d2|x%rGE;CL+0*t4MIv7B+DlVY4_MG{s=Iw{82 z;3t(FPVo%~!#b?5@ulKD?CK<)1H;Na<-m9!Tan82GpqBHR1S;~)JjiQ)FLKBJFlM+ zwUU!bQ(=`R|KF%l$_ooMa}0BEDl~=xdzA9R(tyUWrork`$_qeRvQ^he3#l-e z@gc83&ELi5S>h50P|J6zrELrTX(EsBEmJu*1Y_pPqF#z4S*uV`Ru&Y|dRMB$6}KGu;iK1+oIzSE(@|=5#Nq9FYK1)3ziAa-2bT(k@J+?4 zHeu)G{%!SaYiSF!ZJdlcUFuQMj5np(wlS7a-xxdD3~!Zd9F7s92d_=glqHVi#}oMkNtgyw>e-TZ`!}PS+_al&i}W^}W~UGaTc@7S19Gw?PZHfkQ~R%)i3R z$ct~6h&NsYF)$U=F;O8w26;Wzvis1LcgNr(1U~E!nvsg1%GpFs#Nr)iX(?Tul>iLAKd%_?-MpvN(K2^nt$Cs@!>$hDGIG_iYnBCqhj0L) zL%8f*bqIGKui-m{GrHuek+WBB$g?-3foE?S90QG9bigz^SM}$y986tiWUf4sklD$W z8{}M!ZbAT~x(TtMrqk&liuAa#I-X7&_c+?etnt!YYSZ65@Id$k9aFE!Rmapjy;TT; z$J79!W9p+82H~lN zOCPA5TL^t1$!76?braa}K1YG5I1R9P`v5H)tMd}FM@9GoB&NqI&mfww;^c>ghlB%I zdaO)_U9A~|(DT%u#?oW8<4x$?sMR#JBW*rS?MOqQpc}aeKn2Ff8@ZhiI^4#9X}HO( zEQge@~A=WZpk(M$`r>S+?QVRqVV(pm*A=~)X@fSD<27~_a5l{*RdJ*)CFVzQN1@8$8 zroJ+^O{2-(wp7-sd%2G@d>*8r@88B^{S_Vv+rq(GpIcFsI4J@(9 zO=+*9ryFulmq*hgrvupQ;54q4pRQzyn;t|KN}UopU7ZG%;%(_PsKj)|)(w*_TAg&{ zHHoeESYly|a$EJ8uAY+hBe+k*@^BR!4>#7mrKnsg7d5=}Sn zQ1Ld%GH2bTa2fSR&2{1&!>%UXx2LN~|LbD!1UK`7?-lJg279{At@S7j<^@_1*Fg_c*Gni1Pk3 z)YMsXw4+00 za;vZtGhq8sIyzOn!t0Sc9@B<>JDAVVPzIQA?v4#2n`hMwwF;UIeDE8;<6|9h@>s{j zaN|d9#`!WS%J@l}aTT(`&G?LkFHfC#xu$&8Cb7I&s}o6*8UMm2WX8Yo7n$+zkY*e; z#j!WQjLSvrOla!uLuA1UtVEN{J6g=4WvtH>{I{#Z@Dwiq!}^~1}nlA?`~ zGgUuKMpn21%UgK!8ITuiZ6aAR;B;(42AqMv$bd6u2I+@5wZ!m%IWMMa@?2xPL$2u= zUn_Q@58EOiwnYKhUV{ArgttQ$5l6GiblR$o??rhAqL3-F9e(J@_A}7N8`(Z}IU<+v zk1w(vOITz(!aNl6330)9c&g(+zv4d>M))Sa#-cY~3-IL$y?>dBSJ!l%{tjLf(&b}& zJY1#=j?s8*N5_USuv&L|XfG0h(>N_m_v83Smw-|`(Ri|}F8HJ8K zF~!mj9$r=Q#Q8UzXf~wCf~N3)jH(9lDXKbYmU_1u5Axu<)gamjq;y&XALZ`zLybzZ zS+k6~`KMz`$*)#89uvHQ+Pyxr((#^njq^sk*VDX&cCW9^QoGle8N_Sx7mH=_nR4f0 z2YfVhjboAciebmyt6lEy^;nY_R;p=wz64#g%BUe{7C2($pWTxo(t2YJSZlJXYWo|6 zVQfs1)^9wJ93^+GbhMD!zuK$G-D}}v_obc!65bw9yWy~>)Nc6pER|#R_&P@mQPZzl zH``O{X@{Ew=xImwr&LDK&%a1Z5=|Hw-*?!m%YuoHRx)>xEy4f_5ZWCpOK)^E6Wv%% zby1wHNj%OWL;@g`v~+6LeF-9mfr&)6mBh6&Ninkb+y}D7Gpwc}F-wz>96}@jLJw3n zFbH9XKFS3k?3=bao)9mwnhN`2jr|md5O#nN_VWxv*bfK6-Yh&JQpU}U?;>un>Wah_ zO~N*tnUP2Ugh-TU5F&BKj|9H5NoSSRCu@>t!_E(0+1$w?NO@+jqjVfL(Qj^$ z5&W+=&i)2?4{i{?#43D1I)(*am!|U;3bcQMOM-i=e0$uWu#vNMp#5kL#-)}mNA{WL ztRpW@%c^cnnXQ&veX$lDVE}mwxyyM!$u1N6*`sA5t6)ms7TKYV9ZxMh(JoW4>}yi=GiKmd@HAjp&J6K4r%I~Iyz#iz=}J8lq-%fifn!2ZHTA33)UTX2X{zcoewwE1hSEuxAU92=ro7*wVuIr(e;XBco9b|TL*dV zWk*%ffzt-ryHxNOz3m*8B>|X?s-?YPlCR7wI3*8&WfyMoZKrUN0^;^aaN6EbE2`Z3 zwrF|r=eUU2AWJ{b>#zXoklxbRHAkfq*u%M^R02EZ=u`qP;u?w1JRF}o&*3FdnHHBH z7h`vS!#N9Adx?}!Kpx*XyF_8aO~-AU@%|ijvIBo9sldIPI>9_%&lP##4|r2z+yZGZ zmB8Oz8nQ1Qx;1g%`oVv9Z3pdvCx+-o>8vh51wc8xB*Fj~-5}uym92b)(x{m1*Ds&Wx|$*zQAQdV|+n>9ri!E36Z`CRDDiknVgh zKE9YrwHsaL${)g<%|sW@(1@2@U84P!dXEyc!(5ee;3?kVzfUvx~Arhb|rWaf*m;(D*$ z*fdu~+;8Gsq5D=i>96VaN(TjVRmA-TON;-^aX?cYk?KS`?@a!t9k#iEg=86670?LUb$01}ub4I0vn@zWehGX{*D zbSV7J9Cavs8b(q)6b>?kd)}T?crC`6X0sk

9@Pm7T*xF6V=;04K2$5QHXzH;X?J zL}E4rNQ#ADjeM4oP?v!V^3-Kufdzt>fdHYeMlRqGx>pavsAoPH9+L$;3992qXrdII zoZwGP{nms*LMaE55NSzsFy6HTXRUgl|PY#_K1_Akcrdijmk})A_2! zx`hx(9cB|@^Pr}8)*;K@W*h>HEL)7PGeTc@N@n4r^6an4ltN&jh~-45;fuox^OR+i zEfBOUK*+KcID{-4gi%lQJefT{JzoBl>}(~ncoVv$XgW_ldF*0=AOirQCy%`>5M%%# zM^c?hqA7>`8w2E8e}r_c=tO6-x;35v%%W>G?^COiF>#)9t!N~}UF$Dq4@nOnDNuhp zX9xTX0`+fUP2O~>rH=36Bgd#MjEW<#T82%?tCr(0@~Y+Y$g5(xS9#mr%2SVj)11z; zF+qlwygssPNoQ9H2QRTIPCu!RGfieqOMgJ@R%6L4 z+Tib7AZT!aQ@~$qdL^G3Dj67&G%LBbdqCZ2d-d6XSuLhb?7Rb_C-E8yKI5W)xK(~V?tD3^7 z)rUjK?Sk;_={;Y$T?bHDfZKiE%z3A=dcGQ6YBzV*FxJdhqf2i@&VBD5PK|tz4$U_4 zV&!oi{hO}mbtpD!V+&`YP3-68{%v(^RAAe0TRKPB#4G>SR!3G^+EOSX7eX5r6+~Wk z9x;-aeS*Kp%Rc!RFY7p84`^+jM=cYkx(|1>gD+nG!nq{Zy2?s42gQkKAlGWq&RJT% z+a8u*r4|5AZ}+76GHiizqZkVW-3TC!?snQm7>AG>1>w{7fG$3WsOzZ zHbW3Ox6Ol`n$I?|yjW`mNm8fTiA~5FyYLrTV^>IP47%U>zaZ8a)6Myuc!LusYrM)z zG~K-7?i}b4=S;)erDWCtNO3ym0p~JtfzeS{|DP;SFEB212wnXHgs%Q?F$iA$8vvlI z`wth$mW$Fyh)N5AWv_G5<$lycg*1sn2q{1aX(odZQUG|7QpS$ESq1f$pzT8Smf%4S zA#womwxzcOLA2@l0Hnc;9lo~&HAg!mWc5d#PU*g!6(e{XS+KWu5`6C5>R~Z@9|So( zCL;?JX*)~aTL%ULO5suOF=zd_4^Ug&(@rq;NlM`{j|%{EL1($DchQg8yk;&d=5V}b z3Xc`M*bIMP&xg9 zo)W}8k9A4Kdg8PQZl>_~o#Ujyh+nY;hdOizGlfURMJk0y%pw4L9oak*iC)BxL~1Tl zc|2wzD(@2x%HvUXk&4_X!?950M#)7OxzWmo4h)A9*P(Y{8V?KGw6*2F!Z@Wch#rWR zhM$M<7Y#oT0pr29wz~#9Uk@_;yg0d((p5km1w$oZxwTk(R@r=C6&SB$S~(P z@eCuO`tz(s>V?>}Me>W`&IzJ`*PwpA(yT!bq|WR~xL+I!sJ7p%Mi0R*yz+pMr(b!X zzBm_9_ieK-4HZEo_v9`L94hXV-x)1q1h1}M91Q{!SSF%abC~!I$g z#N}c!A0h^GHYt-xsl`ym>xsThA~B0qkauMc1wZX)R9wtlG;uM#GAer;(P|gf`9#Vu zCLc9QK^4p=axpEv$mjcD;A)}-V@0PDX~T+GDv>UWRdSDP4yO3xPK^1mo{M#c4=eYS zPoxDlCB^AgZ=1y`pGXLjBQ?p<0VH!c$tnLwl9W`$Led;nmvB-vssfLcRK(JNM%9hM z>QYh>OI^Ay2@pLC&|*@NC)JTw35E-lL}OeFsDepFxO;hF;Nvu^yp8Q>R5^{mXjC~3 zY70K9M9y%YwvH-WM$~GquHV;`tl3OXp9vlLJH`t=C++ezE72U}73cYtK0d1?qmHBx z6t@_5wc`A3vDyigc^0U7yAd6B0fbJ@e&cOuClG{3&&|a$`)TI@krIF>@maN(t!IJY zp&3Bn(Cp4g3jjAE0BAkOnJyAJk%gl2gl?(biBMf+_uQsI@{af|p+`^f9L%C*jctk8mrY(xvqJ{Dl zY(hRY6@QUWO?@`>8OB8z)-WI4k@?QIt=>h4?PnG^*Nf*k8}!%4n2chTL2VStbRt=QKL!cs0SO6-tcmf`#HC^h=G=9|fA9g+=R<2y?Y!J5(DRSd4;w+fa z!@uz2Vl73rlB$Vo7L>lA;WA5rBX3uv#aKx!p@9mNWd;q$^NJKSTy2S@f&^Q_ z1X~+SFbv;ga?X-+VRv^aV|l(h<@|hoN_pA!u(NjDW2jj^tu*DThH2%5SjSjV--OL= z8&{+~#t}FvTVuiIn@kS!Vj86OV+oC;;Nvivq{ua|#kDR>uq9WsiFbK*no`c>t10CS zhu}U-CX^~UC+x?3J^WtgaN22opU-w$zvZimWjR*!PAn8YdnsRSw15yzDi%V%oD^kw zvHI$syt+N5ov19CqpFqJ9;89KFQJzFysd;(Ni9VRZ-qBjvAm8~L3{EGr}avjZWHx* zb?~QjnY$;of#7X$kK5Te1;XSew=~|&FTD0=dJUWC##@p?v!zmKHiwuB9U`?thjBQ~ z79Lr!+Sx=s&L1a3=+ia;Yw3v^Xpv4Wv`DABUl|f37zM9N%O`de&#`j7*fmwEb5mI` zl1ex7R-{s1$5g2VmDVV{IM7|fCid|*re1kN(yOgA3ROquZWeV0G06d0W*5NAXtV zFT9SQzsT%uHTQ{Wyou>9yq$8F(^hvW7?upLBwtOLE!J`jKnwt19b-IgiAETl}q0*iZ3O}fX*7z$?VN`z(9{X!&Kr=N=l$gTE|{D+$k;w0 zImJ611#NZCD2{h;3ac)2SC)*hy(FW*bG9;oOW5u_EMk^3uOTigU}%wBa9 z(?kZZO#KBy@6G3ujg|-TFUs&}&NNOna-=d$fP8jRQ^AYWyju&t=!FS0D=hbEmUcRp zRT1rU_&SVnPdlCANQ!nkIrxiqIyuWj?Q}l9<~$g%(`hO{z3%KGo?%R@gS}a-MAOZC zxfuJI8_wV4u`~KW3QyCXTdq#>wlYHMH3>kD&reDd&v6JHrv+ikBf(Dix-l07w;ZBG z`i|@Ks>tZiAufLEXDQ(-lh7N>)wvpF5_)sFI#-iOkFSBJa|X<-WL~UQgIv%F*~i#~ zOmZH7kx9;nG|4Z&hkA7pqasskzgx4dxWU<=Tb(PcL~~Hg_ZReNv4qTNnK@LHd>(Lm zx4rcK!gyZUs*(kQN1p(({q0N<28WQXg7E0EL2b0v5B|3D?NKNm=kvPu(nj6qagSm* z>OHTlV?zquIzKTbn2#`Gd9l_F(k1J(MjT|FHu#II)8_dQ9cF12*GmEYrHPEQxnL`2 z5%-~5eY-rwN;KKxd~SzcT|m4KB!aj*bFj!^*wsP!5N(nv76_UIAY_su96}}u!lP%f zHc2;7gQfeRNxFo)oW=?;1U|cxHM6hqVyzY=N!HkbO~@KM@fTTR zr?N&QdweOsIO}Mm&Zc?fz84!LuUIrCtyAm~AGV`DY)1oZ`zaiUL$;srbkCoVL#bt2 z&o-5bly-M7(#rs(oImhG=lr=0ExkE^-2X!oFT+2+oIhB?a{eI9L-|GigoI3ulAU2l z?^-r|`@P1fDZ5T$@&Z-;O^hT`;se|#MROMD%IKprFtA8dajesUPlke9bs z=_Jp#N=_F~V{3AS=_{Bk%wok*p_r~v2(Hl9R@Q>lOdlm*``#HXcYg^1Hk3eW3!^PD za8N$mT(K&9RCb)J zq|G?JLd6)uUo(4DVog^YTZvylSa~c9UV-1_V#7LEf9vM@3R(44>Dp;CHm{V?ZdYTml{0MGdE?3ucHT#Ju4_cElua{SQ;TNmqsH2ma%*i@ zhFHtVla*h?5^k*3+E^=qCA9MXOxFr=-qH>q*hS4PYG*uZd}xv&e^>^}fl&OyoO-TS zwi32g&?!Fp#@#@K!7rb0naa8yN?B!BQE(k9>(d6VNkvuGt(CHULsxBa%OW(qldD)0 z8RE+NT}$$-R@VKET=}9NXIpiN3I1BnT&21MH1w)~!s)VX?ZyDtU2)3qEdh zyJkgs=xg^v@f;(8`(3-ddaF$1*dUZWa+S)gc7J&{XNIm zM&F4;2t7cE`<@I!m;vC$4DbHBi&3nCdSWmwX36E0}asp%#0?rN!Z)ru9WkNt*QfF7Ygri;_xI61+WbDH4s5(3Nlp zwWh$`R9@-qDjkOn)hofB$PfP4o1APj7!E@#C05}*c{CPy=P`QDLCMKp-~#!QlfAfF zCnr0`!FYUSJ0k0(yMdV!wur!4`_0wrIE&b#+b!V7FI(C1n>CBL%Awv?PCl68x=Usm zwurb-kUK8qZq6>fXO2sD%@bepVi>SG%g*-~b#zxu2n!{8K)kzL>AK=KPKnM2f58$u z8-xz;yJnQ-J;}pGg*D73bZ}j6jXH%d$02aQyFbja#*ntjRV&Jz$L2;07l)Hw(q%zi zS17yOxrXdgj@tz$p@P1!ZM}z3wj(xM7nK6-^ES2_n$dx24 zmFd(s5-~QC7wd&Z7^T;!Zxyxc>H10x)6vR>OjtjW1z;2=*wCVHd*t%8$nh$Wb zio1&alg5yeYKXVc&dNp5rm zF4}()~eNi9Q@_^AA4Gw7I&NV zph<=H7}eIQB#=?gt`YL{+VDBpsUtEnP^oU2unv0*iH9lJ2duLG>7DtTqdPhDH=#%yYSHM(uSfuVEcd+^1HX8?iJAoE4g^qi!C|Etlr} zG*Djr6Er%tUV8B~YG0@NzMV6Nu34comT=chW#ZOaXH9n4+tR$4?rD3(N{K7BFms73 z!WQ<_I-T9{X-?QwDx~fYs?^1yl`89e{G&s8?85A{aF+D2I9)$i>o=G4N%~#yuiwc` z>ItM@mGaKE&kC@p0}^Rguo)jgbxdt|o>MWk@j(b}e66%$ok?sfihf%6j+XWv&Id_* z(_h*%OsG>_+LE%s~hF4d(>#NL$tM7#rV&&Gjat+6N^$gv$p7nB5 z3$T&$1nX#bt`9Pw?k;fU7Ii*NUa$I8GUtP|&;d($pGsuH#smA_G>5hxR)ALvbkqjR z3p#4MW34)B`>Q}5wFOz?cy7Up3ey|Tg`{NLGE&7n&J(V=Y|ki4XU|lKj=P2{GR_}I zsg9m`2~?)Dwj0GfYs)$0N}|P7;qlF`Gd5$-dbN&%zqpPne0Uq&!x$fe2$<9GV=jVe z-uFY8_p4y$h2_$tGP_a=B!}DSs#Y{ZuadyG!#KBIw%rA{ljk^FWbI%5tqrgCe6D?R zy|neLlPSNenewP8vw?Xm%}ZtX6m_|w*($j~t<-=HInNvG)lv0@y{-l}BXfhwV_26H z_UY2d*brjv*>nT-6~B%5>4T6~?rfwRl1NWVjc)uOxP#NSK^{5aN)!&xAZoQ@7cAjE znx-X9-k>rYK5l7(b5XIC`It$u5M=VYL6O|q`NpO`)xJuCp3{eO9 z8&XQLB!*WJdz0Px332S-Jc=2MUqGyZ$;1UhjjILG&wDandCJPut zak8-O#IZ*w#@(vMAu};?s7sntZ@Rv-o{CZ^=B>9}V?{5{7d*4v$PO%iJ?#g&n{iyGDr%oJBJ1C#*!Xk@saW4SV%H*cq1l&^1t8XV{ftf8Hq1T}Zhz zauX2qc|O_|0A$ync@wm2+Q+U|qDBC=Dw|aBw!;F!=cWLmjE9XZ z5aa+LH_y8gL=_Gp&kD|g@~rp$JS*-~*PX@#o0Ml!io*vtDbE6)t)BG}7nQ=bDaGNV zoIZ{U@tzO;n?7u*Qtf5DAOkIWhrDi#~Os>*W6Me|YyjnNQRaWj;Vw^hPltIIHlKrx)K(;uj&aTL#?1)y6Aewkyac88nuO~xVnTEAXt9)9WuDF(qHjIwC$IjZU zuF3D?5W2?(2;F1%W)Ql^1^`_;H{Gl*`Ng2L(lTMk&0Z8P4Iw-84;fUd*0noa3CJcwF7O@J;Y*0NlOmy!S6gjKS> z1?SDwEqF2*+uLPg=>j~nEM#T+5;>rRIX`SxV{8!3_`7S9 zxNa%Nkj~Z3YIis8*rIYg8Cy)xVCS6wY!0#c5nEKgrymfl_Y$1)J^i^^-P2s(ta9lL zZ<$c!t8lMxl@nJO`-O#nxjwLoI-F&=ifS#depoiVDqTZ65Jpj@v&R6R-Oz6wpqbkK1qKIdITLWALZ_=^U^_rP0&ujj6o zc7Gpa2uz4@PZO89v@{NW&q_4iyswKlv&x)u?sD?j;e=8uyVun=Nl~(yaQ74?wgL(7 zvW>=%JGQFlOMh*V*Xq{k8XJTi&#f&%$B+BVxf^)L58h0TA76uhf{Y&yd2w6yX$gf;+ZB35^6c{6!;yZCj|3U__kzs%0c792)P=w2A82*4qtf6sXKfG|jx?U4yTZ zQ7e;6$*2!flht<#G8hT9%64p1TdAfN2(GdLLYp}UhtOs&2%{eRHoci^JSwGw=)v32 zd(dv%)Mjpg1%jJ7fY4@cv;~430HpkwlvL4;Luj2JoCCGaj|NkC2OT^nu&2747>l>* z%^c?5dUl)I%mL5VQKu3o25# zukxdyo4JbH)be_+-F?O4Q7XOj35R>TILXkOiK%X_C-v(89) z^=z$ldAyq=TYSf`t5i2Z=y|>c=7u-oDZSnHn@@`n{oKJ|6hceyG;=VL{+1Nm4eNtbqS{nLv-8L0RaT z&!7T}DKD3$n4U3p+^&MD@7k_{sqfsb!qj(iW=R#>u*9MY%E|R6h(|fOPVyGh4!HZv zHf2LTqJ2M@fRrNU6(yiJ#?eu}*rS@&Z6>P}t8VOIo-_9UjpX&o z4wZL=utUm@AaT?Lu00_~bv|X(jm}mghLW9zFJaGtMPbziS-12Efo`}ff zYhFt)C*HN-_02&)@?sjzzQYn4c)|UBuj_RZuadh=Pr~TW&W5o|%|r%=&|`B-;uXJ3 zkJkwtj>Dj>hAe2}ro=FTPp}-j)JXU?GUJ_*D5qi-Y}EnD(u8Co>zk0u@?vlPDNO0r zk#nKedS4?6vWX7j{TzO_d3bB z@K>)+@5S3H^?uA-k$QO@Q@uRB*SEZlsbk)dbZpBdHK=4cf9+K1y-M!}q~66Isky{% z<;5j9gw#ywy%Kh-(1j!prnx+RcZj*%wL6FhQ?9RSyLFrd{4m*2aT1R|?6B=t@eA!Z zlxVdIMJqcPEs9;J28?6cFMm>9jVE@i*aZ(KVEcFz z)1!Dh)oZ~(^b{Yw$;|%sK5tDfbxym~ISwJ0qU>LncdLY1S2&o={9`E9{}Ig0lnLxx zUJ|D&6)3=_(+X+qOrE1r$jv7sp9ro&9}mjD-;@rG#LX$|RZ{&|wUP*Km{&Y%a%1 z^3C3(#)8=#LIP4ouyuQ2gM}HvHgGseSP)9WUBM*8)L_O+Eg}#l5iLZOFrC7Jh)Aiy zER{*bnWl)87VM9mY76k)PPN~<1U~Cb?kj%bywkLQ4NKUxuhW8+->XKW=)KGhNZ7J_ zLzuJr-XP|r(WuN`vZn~=$Y`@=>{WbT+vDStHd`HdP2#gHmM}iIhCQ|ymKc~AtPihD zJU$YN$HBpPq$FYH;G&a+J;bmAAxsj+i`1C#fabsLULXIo)v~O*Xsg9nd`uGBYOO_5 zwAEUNzi6wqZf~fq)_{5L^MP9}IeWglk2uPhR!PDRvJy=<@6%%Kr&h@Y*=eQZBlD7m z$mJu{@|sdmo!qOA{61qORk|>MP`a>_970EaLD=)W1=hn9R4;%Eyen-y^7~}5JJYze zR~`9LTCl(Nsw2O*5HDX}@8^WfR7bp6D+8&~wYYczO2`Oh@fR7P>>h!n43(64fEf73=1qdacYQQ06 zh#)+A>O*ZbL>#Dr8=}W@cU`0Z3(64lWm1$e;00xf`iPesq9!L~8iE&VjUY8L#8_-X zhIkTxks+Q8X^37c+!q54AxHmoDMg;@oY+<@q!`o_C>`=2-aCr7|iH*gA$? zKY7vS*kggvlNW7{)f__R2*RUhl{Uw0KXY6taMv@=Xmd~su(R46s}L_Y$1|LeX%1ej zHGG%`Q*u%bh&G`QEMVp^rVfhDv`0sH$7QRI$&kkI5CUYk~& zU+$CiZH+HEL@lXHmK$dL1CG(Tc8a)TKNA_(H@3f&eS>F?h}ci-Fk?4ZZ+BW#+wXG3 zG&nf{Vzkn<5Ht4(fyI3fx*G~hF)lT27m&8jNAT%BwG|rlo4c22$=M|Nn(bHeHRBLd zz8?FPd_6gs)^88&53$DVXO+#kZ@=0p03{O6LWzXS>e4SJk`tiPAOCbG2uo#JMmGj@ zxKr@T_1=r_Kg9FAHOVElT+#x;TbLL2>sy%p97Hnh2_@4pB~uvqy(~D@wVts<3k76I zC<__WVgbeZPYn#0pPX>76BZCjw!}}ej<2|fi<_KDlI;3^S@4%TUR>u8BH8U#x7}Jy zc(0gvDL(yU^o~}>8#uPW*Y^Gg4ubm*_W|a@)KeT-!g>nqJ1*AR5!T^=J~!;hTaW_V z9SGqR-42k$lLE`dO}*P_bwKSmnsXeq-)M3`?Kd0;eEiXVV;ZkX{7v!WufD8w(mkXo zaZ4xNH;UG*pm6Nl?r&|ziUTUva202gRI)sjN;WH%l)$l6X3wdVQt?$BV`w1N=W+Q5 zWT!G2qeMQ(if^&v1F9}&Rlq#q?JCLL=iFJwYX@XrL`EC&27}XCO(l^f)IFr zp1q(+L|g!rQ#kOhyQ)om&vDvT*6z$CsHjHeO9y0DY(_Kj8?Op(+*8OV-9lv<6vN0Ul*2xO+2RwB+~$rceESo3bDMaE6Z4azvZ6IhOCfnx zQ;J!EQhe@SBR2Ee{!&y?m^WxCfI=`SH2vvZiYbNCeNjn4j|a21R;|XIPWumcIz-)6 zMs>A?8w>OpF~uAsXislh1kj$IuSL8@f_WeIOm>;G#FiTSD~d;J=bQM8*3LJ9QS0kM z?`pUESMJk6*0`Rp-4{gpgV5f)?15d3%7)e@k`-$X^4>4jB6o>A^Nl+~-dUkDe8u@2 zcpMtfNT}s*5Tc&AgKD|E^IP{!QJ*)#6(xM?tIu&*?&2rc4A()n-t81nwL_4q<$rJs zdHZ{JUC}R~es90}xY(Vrt*aZkJc7ZKg?1qpo*kU&UkOeGud3&|k zEqTzleb$RzY^WByh4?Gspd9wIyHQ*m{)aDiOJjl8>hx%3<`wrWd9hMPX*uhl+j5FCEhU8D=clWt}7DxCCTP8zau#mT7Cr5+XU@M4-M&tM6SPv8UQl6TW}Sn^)x zwP}IzJ?Nr$Qg!h?hnP#k@Iz`zSn3cH9H%;4m@Ie)JP4P(6#|kHMa!0F-3^RFFd?pZ zZ=*}Z$((~dTsE+7YHBqrJ#!6ZVS|bvx#`Zb)}~eOH_FTCYcXFPWUJl|oKq69%^@XX z8xAo=d`yejhl5GPNB&L3!B!C;!n*pCJV20Sv=B693@oPAuceq|Y>7Da%HAs@trORB zR!PQHhtxW86^EGXL`yN@e%^|k)`}OEPU&NPXRv?5g7FmS78i^kbHwClA7BadGreH^ z<&a)5-sCMvpVv)&2HrH^aab)Hp#w@>G}?YPH7b7Kxadn3-^#=FAKslinwlEA}`c~oS5fJWOOUq3Q{2`ycM4Dm(A#KSS=$va-L}!+3s+t zm9Xnw?u6R?Em%94jp&1FAM>RroS;%=V z1$PUzd}O7H365DUAD41mv|=$El~;`x9aihEb-b#%Vp)X6WXO{T+46B8udP-rCT6{~ z-g8(jAAy3oVliuJ`t!jaxFV+IzKKnS&Z%&C;o z&n6mhf_{?drC6OK$`-A8Ra25WSZuLHROO7)WElxVZ9<83&pJq!T_dAqWjdbK%Lgywd~cR`_))lMO7pfh8%q-J z-i8D=!#}3R#K92fy^9{AK+0|7iQ~z^IDuaU5oE zLI}wK32Bg!kc7}-D@ZQ^1r!JY6p$I2K@hM-r3-@erXal+ zr8kl4@0>ID?mc(2dA^@F%ll9EX3FVvX68(zJ;sA^+ZAo@`UV$>Xz?le8~CEtkEE&i zNs;$|@hcRk%wg#8B7cyx>Syc~`%yZ&Kqd7HdzH~FdC^^5P8ioHp#)BCb3+FW7}9rk z>(a7)weYmO;pz6*Y$a%(y$%r9bfmHERy^|X=RqnotYWg z8o0c2O)|>m4XbQlXe&X!eHeO^spzJxq?_$Q?-8&)1SUN*AHK$fubu?5<7$@54I4Rh z^oTxvXOlz9$AO1c*W}qfC7j_XLBRE)Y~P_|OZm#l(g|{Zb-PRC_=dvcz0q2ZQ61<|9I6n^%TN%#uzpii!PP1Td`8 zFLm6roW?eCMQpoh?IeK0rx0q_v9B+jzL3fkZP#-362dNylg=^T#1uY{+P+-f3bX|* zy`Fugh+JVbU$9IyepujNCwzsk4&5xW5lZ4C2p|c%hHCM0bq&>*zz*K{9zYr11E6ag>#RF|CRA|8f+@qzvvpB{IslCdFbikK*&iu#h zk3)Uh3BBm!7c#^>mP?zKp&A7)4Ct#ruGU1vuVm&$+?8Ib$j;z7L^k9Q_`}C4rwcdB z2JoGe-;SpZ=S7OVraR&o&FD&?qJeqmSB`iY-o`#ev}OPlUoCaaPw^bW3^|0kWcW+z z;u)4rj6tpeo)$*OW!XoG39OU?|Dq254W2{bA&0=z+tu&0YyuCt26(!;{ySDc-CVzP zB?gP==K55zmS>YhA=>~z5u*Z3jv_`;uQ{@#yc0loW}pa`!tr`~UQGpx9)os|`z&_U za%5KQU)M{=^0BUp6)B_C3{E?^)wU0W4v`<*{x0@Ugok6Jqpn|ewYLxrcrqPz z^{kR@y4joOt589%>}Ibe+6Jo7wmYn8STJDElI+H^B#97xK*uEkyIxYY%&;5N+ft^J0;Ng38}t6qQ8RNl#j(u9Ke3QPFkM6IZEG z$Ad5etMF;m5rDGX2Qlgx_D)D_URpnUc!;(DB!Qz2_@x`AKd96pBJbY;cBf6-u}WPZ zy^FI=BaI2WOFM0=*g)eT)W#d5smU4*<)v@!{pIRi_DDHw>^V~{;2m_f)Ukad?z zWyB^<4h=#sVhV3G8&;_S#X9)qmq^=ILqWq&V5^bI;|n#1gQ21t8QoWyZ0n@0yQA)$ zDd7>?8t@tLWRJuPdL>-Y8Ei^Jdn}7Hp%`@ zFh;jS7uXI?01526zreQYoNUqs_Ej0jr=r-J2i<5x*C^WtG(L-a)xOE5+1JRyuiG04 zCr4?@s>T}DKU^aGooH`8 zDmrG1o|bwK!rr=>Xe{>j&rJJcHf_opbs71q9Iq+ESGWw{R5G-78-w1mzZs0ZP0$54 zffGOi`@~;hFX^1T0Ke$uBDYA_^s0kJo~7!8klD8;CN49XU1e}lIey7gMP>cjHSE&) zx4o|H*``veTxEw>2P|nt<%OjgWkU|F(Jv-H!ih8me1Hr1&p-m+{H}d!FaqAI3wSRl zfCPNUU%}=K%d9 zJPGhxFq~EWS+%vQoB-miEvE3cR!L`~0{j|xYHQuiM6TsL=O^}RHfFx-vRxf{#z6L)j{xqDt`WHje)u}YL-3viB9y;QUfObtdo z^78782pin3)7{~cGtQ(WYM-rA0h^CuScn0e0OMHiM=+ejd&7_atnLjz$*H2j^--X= zfeR)@|M4H+ad>oTcnO}O$%z{a>vO-t0c)DNDm-tIeNc!NzE%y8;g_xozqHieA9{+l z>Z)+(+JL57V=Xh)`cN~_;CNQylu0C3)vBzOWxlsJ7F9R}q|G*%!fmzUTGimvfhz15 zhPf-eDSBDz!Lpc4{=r@%D3ZFHc*y+AuT=vP?I(L*n>KZ=9I(vp6t8i_X6v5JMfR2w zSxkVzoOJedWORRiq2Is#6(UP3G%=Gf*hwaI93;AomKV) z;zvup2O`MtO*|GsLNxdpTj)_hD2MlQ*u`;<+7#tsF3R)&Ta=?@&0p-vL8*QJTKV{T zxcPrSr-lT0A5*v`?$sIlZLM7Miqj#x^mFVGrPr}GMA3zm7aiFmktb7hq4c^r8|@Bj zdBF1kEVtA;)k1(Si@*nMw!dxDTCbBKTkZ8lTTT&)d%}WnC(iw*rq@>iqbJu?@d&4dggpRLxUie)Of^}Dp?HV9u){t>ykx2OK&@OFecffhVQI(>D??AGDQFrfWb7D|#rAPV8 zt*v6}F(4m1;&~-2zbRg|R0Bhc@fPv-o0F-Y?J+s=3y=x)t90`|3`uBxtms-b+_HhI zFKD<`WUX2sn{v*6*DunDFCuR|Zyzgma7yUt;1-qw8m0y0t3j=TQNxUs*{@VeQkVIi zU?|l2!6Uz@AzExoO*bIm?Q#9ERq*J4}qXa@`jtBVz> zrSpe%5fW{FsfS;*`K8`^wfUthuAHjf4J*}&!5KH~x8p2>UtLSjN>^*gAUR=#9fFXl z)oaO8eLo44SvTz?L`P05skt3X(do&(5~P|5bM~RM!J;37t~A_xy?$AuB?mPOIi%s< zJO?$L5P(K+&U*d2#>em2JBXRQ4lU;9u2lz`4u4`Oq$pH$A=Ryi>u_#$g zw!dR9S9bF3iL-rgIAfmA&5_*&rb^k}qo6fzcSG;n8)%z!yQBN~H|ur>d|2(S4M#** zIMRLmyLd7#rl)vY`&Zp=DdW4skwer~4B}HJ_a{~%llu$5$mIS~CKu05&ZyUVJ^7Nn z-))XCTR`i3QCXioq+-0fjDKE;<8=|b0U#K?1Q}itmZC$?y&0t80n#@_0t2jUE@p$$ zctuMN+8pH2Mf@>5hqN1jJa6d@O1roHwA(!#4$w5;pu7rQ#Q*RHW zrQb#TtvMx1&v&s72hz$?#^P}jc%Cj+F90wv;_uBX)1p}cRrHJahix#|%i;qURTuGd z)(p%bG4gCv5h3=*p;;>PEHJl7mJCIbpGmnqn!>$=vMd9M2LA2`$;6`>|hR z9Zkg%Rzlq;abSb;V;3wr=*J+3{Ma2!4iHe|0Hlx~gY}Q1@a}qzs_A-uCE%8@n?7)iEPTyl-CAl(+>Zkq6&?^&v*S~6t zr3|{V2|FuA7C@)!Jh6uAJn>6)p1&4sV()HHo~%NWBh}Bu+Ld!WXOp+j!XYu(RDjkc z+Hra^Qyj5{oi@Y5K#J^8-Z4n@;~?o)k>0=ReWN7@O$u_LZ;X{2Qyry6Z=S6>NR|S; z)3SHYuexCkOLH_5Gg%2`Sh>II9i%0PI!K+2g_ay71M1YT;7Ag=JV$kgEXAZi?+if; z+=6m499h~XvY@uwX5DyzT&wZ4VGxz^(3-|Bo~-wS{#CbI%9#BiOJ+2Z_56u>svpEJ z)ers;>uLR~8dI;S?6_m`PwFb;kgATaMaV{gWa;z%%}+sYuw&}f>W(cUk)xuWJMkOU zPOs7%)lRROmuhqp?tI1U8|6-i`xn#WSpw z+OpJVquPr#n&%K?$RWs+SPnsk3?F1X+V(yxpmr<$XCv-bY9bc!oQWf2%^+VtH?ys+AxbemahJnc%N{Yg6zEnWNn2S^vE5cF(FpW2Sh z&}o%CI%Yq_SjV~sd!p&FN#4m{*2%rXLd(1-hiZ_$Fq-M%n24jv4`gJO4?qE0O|LxL4m%H9&|h{F_$ZS^=lj$rq7w60yE5$ig@r+-oI!{aCb?Xw6~LNu^epLS7M!01ocKrPH=@ zBei~;)LSk6c?C1<^7JMa-5aqRd#tP3m04 zBb(&0=qj03h0&~#8w(?quFU!p;gV}wh+pKI76RpXvX&3gX;zpQ*UVAe+MOwn)VI0g zJ@E@Ckw#5xSc;A~_g0XjCJ4~S$R({E#pIuBi^a(8OH*UymybC5h=UB7@)Cb+QeNt} zP3n5|0OWXgZ({9sM@vT&quuhts@*OJu^2r~oY`)*&A=M9+X%TN!%bCxtr7r7h@aqucf zFeeZPZwzzPQXITHD3LG?gYoHCn`O1(jtXK)K8OoB#Ge8|Y%@ZKc%?x~qOi~mhmO=u zpQ0`YOpU$vX4Tj;Hmk;-224X^FTwQ-FP)sNQ$;$nT9lSEJ2}RP8x}Bl^+PJAkX44M zaL<*^>PX(lPdZ){VOyAnaP$-F%~v60i#n1A73m1rjt^Tz#`r_M2r`d;tzN9G^OWOl zk-@>zu{9H_{wh)`K*ftCaz{JHirT#Vg)WY6S`)~A)=_58XH9CwH^N*BRawf>nc02M zI^5Rk6lFHi>2D&r6%)2pxyJ2qy)_J;qeni<`S{Su0zOQWC3f+QVZ24?daFs@EE|35 zXcfO+CS5t0w3P{9ovut>@ z1t}mm`x{`!;n5d;!Ownx$=uJr$|)s3`&2*2PH~VYn`?n5c`}Vb4sM~fKudYBqBad4 zm^8!mv!VMqZgYSUvK2TodIa*#MKFad2?WY~bIMlbn^SoW^lWf7cxDp^T@9{Q536le z?)f)FX>reGw(9N~K1{Uao||n|?)hP!<8#lprhYiGwki*8!9gCn%vR;0{ZZ&1x*w20 z9=bnAM0`B$hhsz_KFCQEALyhJ89M3Lw<;%{n-A!#en9600!n@wfs&uLP;UC^SPq+x zF~S83Ab7dtvk+K?SXDj}uCS-$`1iIbf6aBy{dM0_Fs9yV0f+wjF6xV{TYsWz>sHfI zmOswQ>lTtlrL!PD(|C)l^sJ+v_7~K6*3pLfOb&RUA*_yM^0ez?uooxN-H zU%Z^^zovo$0`y;T+d+ube!>c7tKu+J0~vAWSK;Mhz) zn(HX^t}0YQSqs{93w+;1p*~Nh&ZrKiP-g_Cqc6<>Fu zb==OT3pv}VuPB*}W%d3D41RvAz8+gUnKsywEZT7}>T>@EX>M)IcJ-3LSe{Lz`R6!- z$sl8R#ZYhr5?>Ec;N#`I|JDoB+Ci17731cNPpztbuwC7|J~toW_c-7$0s*Ew2m!t&6#{@|+3X%k`9(tvoYEOMlMnt04*yCZ z_yz;BY*i8ssYoKb_zs=y$Q{f8N#MnHFpb9T2q17D+4QV|MKES3+M3f#lbu%E)nup6 zcGY>-0?FcJhuf&xc}C}b{+^?)O=NQdseADtWNKUbxWCPgJeX$mwUy6dWp#7T*K^ti z$X?Gn%F4QPEjwF%Dw{6BY)N;vV6VS`ngbZW|JSs zhIx*6g(aD0HYSJqe6Gh1H9czs>M$a(EP!O7pWZA34^EFPJc-pWyU<`M&@b z=4W|(KXzy~@e{A0=7}Z>{qll5oe-$$BP7`@rNae6Ot0qa5#ue2*1e5qyP9Be|EQ}D z9W(WZClDOUMqB8mFXog%a&g|>KPp+FRVJs>!6tc z9p$@-mO9Fh03A;BYL2cRFJJq{(JVO<^LTIhH`59o(9JtMsB)}LEa0@$oniD2%?~@N z_mFd^s_vis*!Me`A6o}FvE%p%0T?qSdUodPo%&1(K1`)i&y-rUcvbBnsBCJbG;x?` z6N3F5!P!6v=yiv$fjE3?#vgurt;jAl6VrAv%x2empTifs)HKY(0KG4R43HzXAW)9@ z@C!A-*0ih$STRy)TruOqh0Dj-zGd8`0ArI z*k$S@*Mibq6Pd(O z(d+_fq=$Pg6=+T5?LcMe;a*Ewa{l>PcL3O=nwiN<)x?DB0favLHfa5Hi|{CK(eV5uw(S4UAB+&Hrv)zuRVk)PDZeW?g zQ%Dz6cdHv%Cb1lyxZJ&k?#U(e)k52S^x;zg*pyo#}(gbpQDksUswE){i)P-rpv~ER!U9&7%}nwa{@2hE>MFZf!Lp{s3c3qzQ7<%AEyBD5R3)dc72Zgp9wm(x!ocm`7}BB0yd zCj(pbitkij0|y(nNeExv@2a?)6@WW>339y2ofymEP$cttlTO<+GG`gkJnR))ga))m zyPRFcN?wC#U6zklddBy6P!66>+{-Hvsn8y+q#g@EDm~wO1y#d)`RyDSJ>P3dAxXoT zTaa^4o0)TvV}^E;%F(<+N!W=p^Ot4ANDZkNCD@(3PtSfX|!tJA1^pFRwzbD(83Q zs=EKKW-Ps~rnVI?Msg3U`jgHT`wJ`GII_TFdNgaUFcDCpVVggs2>B(|76 z(smc1^9+Ix83dhP?e(y1f)2SB==5rD8&*ou-fEAMPZyp;;30?hNA+hp1Q{|6$TYbt zz!a#9w)8u2Eh055QBD_6`)Ddf!K zIcYxBJHrCk*S&nklgVFwf+^%%!Nj3^sVL{IPj0S1)cZ3pPMyrkJ*tyg$#ZCGNe}hz z-=n+agFK(+e}90keFynYgP3rF`5G28dK-F5{kJ{p4HiH|J&gqs^)x#w_Kgz^yzz7_ zzRVl8mzkIvtN}f%4jw#Qsdv$qs=lLYhr}moiguW^IEOg%a#recuB~HLY z;n~6Ja#3DaJ;nPruSN3YWlVYUr+7c+bxfi1ib|*rfg>eU z^$hPiUXf(FT9@f+o@0hT4(?UK^TRxwM7p1g^lSi;QV3)Z=wyE9$Rq(DW*=sTK#KgK zLLk~7ESuopXYe)gM}Q_kA&@;lAcjEv;kVZ^{!k&1N*uHq0!jbFGzrc5hYEpMY=S}{ z$N+^vEC?tB(rat;8aCZjEaEdwg(veTb|2?7`J0OV#4fL^Ori|OH&w|k8FMl$< zrfW$?{$Ps;z^p6h4ULMl!H8r?jZE#kJ!);|lRawcGk=eo`YhqJQ}?_GQ&{(`Kd8HT zpYkzVc?Dv2qd&8I12Kz!#`cTJtXRVV(bQ)p<~Gw7!5duolmd`QGoH}>%yfuE8>TQ4 z7lb73hh7Wc(oN=tsm+w#&sLQG?TRd8?Weid4K$C87gHOQg&bEong3ateo&pQP)hUa{Tf(ZC< zw|zq=ypaML#Kj4EKlg|IDzr8Q;qqbcaE{1)CzL1a!a!_vSmal%LQ2?(U!;VM1uCIy zW9QWXN|@cmIY=Dm$SKx(n5F1=b1wv`gs7y`#pK*O)dz|j47$?96@ZMYCf9j#c3jyLyWkm?xL z(pg-#>ruI^Y;vJud(o4jP&(;)K(&s+mKt?EV4lbi*!Py_;J_PW;4PMK(QNzL+*mR}{Uko2x6T3u5GodW4f;DvBrT0z*1T zQSW0FQq%|dMT+_$kfO*9@|%4PNN^c8y{)^z2kA>6q%ZS9>H(LD!!r@`&@02ZJi7K4IliMaPCLIt)NgHC}=!CjcNQF$tE&Y~?}*Kq}n z*0i_cnh34TjN1)g6soU^(GH5B3`LJaoy$J_A`jObiKZsi4k2$FUqp^xS)!s`-No5J zOF4)qqBFImgBVwf3xOi|Do9F*_t7nKO($oC5ZKNxkBn**7Y(~SA4LF7@Xu}7TquXH zEKyZ~sjGvjt%HGV9n5vu)(c>&;ub^WfsJD9jR=5x9XBfeg?}0Y!whN%9cnurDrDu$>rHNpzDE(*_%f5w3D7}P;J)B!qF$kw5b+(A$^*!(f9i?eLWktp>6_~#8Ph$%XV zNjeC~) z5dx>2P|FrASHJplgn)c~@CU6Lu1j%A=lC|sa0$qm$j;E>jRtEz91`et0W7E-pEkO8 zj`skVefQZ_yh#YVHvVace+J;6N$^JrZO61~rR0(x&gZo~I@`Ms;&UVQ@AO8+^PAjTu_-A0XuIbRna zS?Xc%c**kgLTZZBHP=K&w?p+hL^lo2L6NN-;XJ2pJR}!Sbiyv;k4(9im2$aUA_KmBe#sPM>S1Pp_QP}o9t!f_ zSm!gri?7^aWrO87auQ!tOyN$X>|tet@jwvTVDdQUSK@I?y$2_~_9ikeJ+i@{Cx8u( zJ&ZQ!5-)KAOsS3GQk!Z@4a~1^@KPJCOKmhqPEvcvUuq+CMur~FgG(9hHnGT3hYlEK z`djJ(UnO-v8?->WlMK8U-AUHskh+ts8MG_BlPrK6^=2MY_a}^f)j3`80_wDKyVsmA ziyNF4T86#HQ)rTU}$Axz1W5)vsQk_yVfXP7~+7G9~9!D)+c}h*!h4NSj+mcY!Wr^}LxiqSmh0(cD5CG_?1NwUukrRu z`Vlo(kH!q%<}Na!tG8Er6i>_){jr=egrTK}EyWY<+6a)$EN7Y+#j~MJJZ&4Mm>KpL zL>s6l8+Sy--iQ=hfdd*QzUi!9*v0{>EUWbgsPxjxOn*lDa*}WalDGLS=Rli~JRL?a zZRNa{0}I`UArT@!sy=gI>Lxz*Lj_y8{_7)CUmUd5rQ?W8N`|||PrNEcJ@YVyqMl%m zv@J(_$GJsp=LIQly&1%cZxnClIi#{)GvR{Wp}&N}73J?b%WEf&$a(KNtB6y)ASv${ zQ{L*y14`Qh>2AY&&WbT6Kl-^Wz)nGIEB16S^wj!VtRGRBJp6sr;2Ae_tZu02!Fw8 zJIea?2>=6bu`bD*BUE4WbV{0>+22`qPR8jH^2jI7!o2a~H|iV$lE;@`hH$E=?|Ktc zxc3=&RQ34%;n#N!`$uLX^~`Le)nAfYVE6%3f(UlFq zIDeQE(L6$4TJ;z%0tlm+P!|ymDnp^2~ zl3du{6(Jiw+pf@#&>%lOBbo5PoVXlC}~0+)NvTA0Vp{LWcScGg_!GP{3gXjzu@_-~y_ zp)UY^^4L&U1@R)M)KtLpTme&*0!mmEAd?#;rBgeTGrn_HC~OyK3VoCzbolTS`hPHm z3w^jQhao^_7uOqNp`{9q53l*RfiKKDhU{p32-Zn$@E^SmUjH9$@Y+!|KJ5IH^FP); zliqZ!v&`9ET<5e0t>Yg!N*Jk8uXJ^+(m4M1R||J*S-e}JpI z2E(O=tDUJ@yW?`(YUsYRkEW{uK@EBR;8JYXDb8bK%_*L+FiIo@EI@gG?T%t5jn8Z_Po-kGk zFY7s$qcfKKpePBGsr_9=WzC6QqU4f(F1z>-L#B3b20-tXU_ZFgd`Y*m?c)n50K<4G zJO1iSm9Jm#A18PzHH;sAoD?5V!+5%^Y&jyQLt5*O%W4~)5ctFtuKZDqzC2L=OqzM~Rmf&e;uqP>No6zf+-8h=Baf@*e`$;JgMikv zD0u4;=)S{cyKT-@;y!1IOepLG&|*wt$b|0eCUl#X)#=TBpyU*l+jlrKMG~g~-CKMB z%-+Nk%z6qaK-RN(m$SUG9$rdW&-HxP(*%)|^|U-8C+~JXmYj$w+-8PmoJ`>^~beF5Fl7FY#)R>-@y8Yy^saX;VEQ6Z=6uU ziq~0=PEpVnwEC#bo4rUup$6b?}8I5SaIZ_^I`F$U%fu@1yr#HE4K4$ zv~ha#3ANvR!wGdXrT{Q1G_mZ29-82#lvPd!&0}Z+is-g@7r*ddBQ&w>gzDE8UgHFvfc+E9f*iN!!n&Y$6CWF2(EN!39UEfkvo zBAV23WyxVDoP{2Fg8I@l8-S(&MO7q$vvZ%bLjj6;C!IZQ!pUi+0L9|ooq{4lxmVTdq3rSb;M^K04dgLw&8B?Me!L1LPokM7T12*)`#QwE2* z49+VV#Bdn^MfggmoK?ZqTsFQ|_$3!p0Q+?T?B^tr0Pgz>V6V>WZ(IN+PbsNDq9Fj9 zy?|NJ?4|EX6+y@Wb})hvz(&2jfCh{pWS&wHgyyG!QNtUlMsrGk;H;BBQ5>F%An+8U z6|4`k70iotmCJj7zN@-Td*+m~d-!#I?D`mOyp&9}gGHYE*wu&q>%0pS+UdZGiYUzB zOqn{Lc8WR6cTNSi`~HQU#UkAj=#GCY>hJK7si*Yt0eqMOCS`w#Dcss$(e*kJ=<|gS zR$1yn_~7mCu0p#{3vJqR6Cc^pxKpYj^^&6_q|jVPLQey76&pCq$uLEEQWxbC7lc&< zNwP$!tI(@#7HUI|8j^$$KS_q3_LJlxowNNw9>xU9U;)FraljYr?TJvh^y5yeRt0qo zX;7;IqoY>!^eNSQ(%M(2)#zvlg5=tGisLY6{XAKh5F(;k z|4OVv!|zr2MZ@n^pj5nbz#J*xKcPm-8=_o`vjX|82O#iR<(vlpnmUiWceViLo z_3tc2XC(K*VNUGt8WbM@h4;*9NmDIHoU4kOYVlHPP`h0zES?6nG*Q2g#L`qN?2J-g z<#<=~aWN6;nVHWJY7w<>-yInVJYLY0S;0Z5pqH{kc(Bw2BzZ|*}(Mw zVFPu6c(j3`n_aaG=UhUr+zd7V1IFt4+;l_Pa|;B^>Snk)icdLtq`Z$9dAicQNHAei%P^fL!--d z4CLCrlfy5=ai*xwrIO+UFzWplz+f=<17$14bX$>*3|C4qvJ~4{bQF~}?W}U}-y$j8 zSms)2^M!SJvMyG{Mh?F8Sx6y;$KV$!Jmzcw2Tz-``TW{|1knTvs-*fLrTHMG<%47d zRX(WUnjavjGP$NJSJcP)hJT}=N;959L6!PvRZ!(2mZMXYyErJ5c~)+7xLy-aGQcdJ z5&)mK(^(Zy`N!#MCHnf+>l0r<6>B_YEU!kJKc15lLtN_4P1{KQ`^V~O1%Xp>m1oZC zaTShK`5@O>6<2{Gy65>EzwlopuJVj-Se-C~8NZwLE#oo7^s;>$g6^E zLWf(r@F5mjjjUp_;lDN*)dr_=T)^RO+TItEoN zCNt!Rj0$reab?Kt=<~(p`Ak=!# z(%(#^c~A8}^>9jq$Ki3thh4iubCG2VqP)Rzn6tpwInVzI#PiM;u6~7WCdB0woy#el z0^)LkKbMnqh9+<>e=-vdE{{!dHbZSqsPvc?{imATl>p*#au>kPyaGtTkjaHVRmkKL zCk0zU^f^eu9ry`!@TAJyn!H%DHMm917Lly^lgUx2C<;$8jQiK1jQcsXv2Z!GgDYO& zhY|CaGHm!I!*(8lP06j>xz2>v`^yNMG=MLwVP8%OacFh^VwU{~)DLLc684AIl*{iq zqh*iIg^g60bf<)P{?a2T@L`fgs(%twxPd$WQU+cVNcBZf23qRj28{C4(h3K(^_Oa60$7AL78k(W zy^-=*x~sQL>hAhh@O-uBHok}J86nOw>S-t*&Qc(cI)xvCZ#NNgSx=a|muJvb>?G-& zik;N7c72n@HKv2h4OS6N>z^(zPiB?%$kEV)h{>E0(*8u2@<5R$ z^>+=74*=c!);Tqm_6%@UQ?qDZN{wL0D$OPOH0ND_bkf}DYxpv>X7{>UB)^4OTwUWB zPkJEbCzhmddw9veTArnhZxYR+=@LR7XcD~>tB{s=;TLInm(nr|q>y4Mkn++wHHp43 z*tImEzVm`=c(2G|LtV4QdCmxF`7BG(dB_b8)nD-eV0v$pZdWU{@&Zb&$MdN*`aF9#IbA>G!) zFVbzj^Zr3HQ@1B|-FAP@wJ?D9&3@k1RdnEFkY=)2icUf9w?P@fbMnX-*ErFa0mksh zaX!G5j<&J^MA*vK zCXT@{#M|qWCqWb>F9e*VWx7UghZ+ z3khnchm{pl98nXI= znl!?%W#7r+(9^)Z+GBE-%fX!7oYbv{7Koub&Kb#&4eNm|CJ)J`i(Co8Z!t0GPtlHo z3UG_bQBD+18AC7nwUt8`^krZ8^~FSDFZvQ`Dzo>3b&JWi(7FIe#YE~OM59%ij6Zad zHJgVo66Z0TbEridOQK`X2e+}rWZQjFvF+w05!;>o*>>n0)_`9h+x^T$gKe6@f!=8b zw*uTI9!>cX6p2xi07mHj0Yr~cl6NkuD9L-A7S%q0$_6etn(`HDhx;uKPlZHy3KS+Y z4{~Ek9>}YuO))MmOyrIdV~te!z!mW~9@QOMc=zsH<-uQ0j|*Bw#7SJkd7>vwy@OON+gv z8VH~wOWAYLx^?6sIczQXk?9LuZ-q7n3RD23DW}D3Dh)5Ort;XO08RpSkr2cLIb&gA z!=+59buZ~cg%2hic)>ZQ8>VoZtgUnE1|l&MGR#tiA|ZLG8eV6xS;vqLwIi@OYDdd2 zs&@1PSW!XkDDR?gE6EaTA4EGyLh@YYWy1(p3-JRdh(_e!vJ{|<8cnc!3qbSbvMwe>M8oa)%aB6D?F9Uy;da7h|KLZb z3%KoX={nMK z{axPp04TgoF8el=gvridyU6#&sOd8=uLiZ1FRQ%;G^nMmC7qCLnm+f?bqQNb%E*B$ zUDcDDU>;XwHO8X~i^!ETToD@FL!)NRRsC!9VKvZW)sgc?6^)4JfOKIYCp2q*39FFm z$Ke;LewLLEa`6B(#W+^&L zL2o88FprE60Nwkku6o!}QdudSmr@FUBcH-oAf2S}Ur6Cyl0U^1uI5>c6&@zp%F~s? zXZqLOWGRCR@6|FoGLEI{!a?#$-zPDT^nD7yNZ+UahrVa(`i5;JpXYPTv}dHVxXD{)16-}06m^uCZ|?iO)eQSlNN zF9yBy(^}0dtYdC)CI8fqLL~r8#td(J+VBna;(HV)>1fFncAwcdEEx*WD9T&-xF+3a zw*7*uSYE9It{hElWZ)$QV=7Nct{1u+lI6}~PbbKzzeaBC;ytbunSLEfxt^qOYuqd?}{X&k7SLC20u4VzyO=#F0mMM?8I)~mwoD+UN5idI& zb;XKX934HRcEiLJ9TIXCuC)7abYuC_-k5ZGbjgX5a%iJ!5dl#zIp#{UqNbTkJ}Q3! z!Na3ta@=uOv4jAE_d<=g=eMgNhkQC9T1JgYj*|a^DCOnjuFOI#j2`Rh?jVnzag{7# z!6mN@Oz9%Ge>R}B%Y^Tn%5(ndO0j9r0(W@*9Q;BADp@xDDEVR8Ywk-$Ws?`m6_pjv zx%O!9UzN$p?n>fA&b&FxeD|vA%%HhMYo7xgyofGUHiEnE{)rBk*%x5!>bl_SP&j)c zl2f!fSEb`3gp=oR8p!6C`Rnnmt7-~86X?R(`cdKjMr`Nxz$;Xej?1p<+PysGB0LqVE2j}2f6-XT}j@c8NLu%ne1P)qt5H(VD*gKNy}X$_${PoXu02G`Uk z$~r8^u(sJjTHCibU1LRO2AFN441mx3FzOpm@%EJ3Yoy5X?#Xi5Lp6~gI=g{*#kVCHn zjc?i^Rs71b;SHaGwrlDMAA^!|ouZx-$5hvXPr*6L`qAfKTrlHAu8(r4;ck zb?{H|90CtHCirJqHi3s+ANVgSbP*F+0ZH{=ybgCeRca#M;5oz+6ys=~J%pTr`(i>bxbrq+*Auk~soR&%Ck$kOO~VvUeZ*WpEh zkDjj}w(xxNPQPAfK6lS`@=hg)4hsJxOT!1YDKA$>x+4ndccW%oNM8*|Xz}PQ62qBV z!KuT=BY8x)zZI8wvgvVeT~{9W4$mf@ZgQTA-XNYzT6ih~GYq(JCkUoWTbV){mD9FR zi%vT^;l}^s)4YPM3YIfQxpW0vMNFX(2KY02x+?Y3(1-JWj&|3wiRQdGUBuSphNO$w zn(!QYKxFk>bxO-^m68)>_PR2ma$}5pvexy6l3#aT8s&#?gj_Qg;i)fvM#<36F4j~^ ztR&~jXV%b6T|c#*d7?{zR-$L=n68Yw7Y^F`rYV~`Dja%a3`aXx5~NGwOcpT(C!YW zjI8OVA5mJ-zo|vWaruCq<5F90xa@VoRko`4|43aqxw`y~a`KB5w;y$MrC&pZdBSHS zqqTZB@G&iie5JhmM`8b)wKQrv)&5pZry9?prgJpa{cdOrNR~aPl}i<^cmeV@5C6?P zXa~icRo)+@yW40@|5lGA0VZl17EET-$e;Xa1@|anO-{&2lkILs3ppV5Ms+zZ!(BG? zc^`!@LZ+9SR_Q_pJS1cb z9uji4(-RlT!Bc9f>h9ITQkdBK)Q_$AYPi#EBK)Sm^@QG3))UHe%$J)|Z))o0rgWZ9 ze5KrE##7@aH4Llq;Hynq;!R~dfQb0AAR-P{A08bS$-z_VFHZNO61=b`Cyt70BeHo( z&`figUELNTcu7eBn)WLeWlbi**nl2g-}u~R$^LddHdo7Krw&AQ=heL(0FQWwwOJy{>^J{9$*4pm0k<<*)7t!_;v^UQxZe=3Tk66pe2jM|>Wgbi-2;!g&crnhhp2N;BY8WS!BrEffq8Gr=uQP6YXDQAS- zkmXL2U(9YBCwNUY<=psBpebj@YR0TxTJ>9kYa4X?=ZfoU??#jE z?ipFUJ?r3d=LXd{2gz4^xZf9PNP%I!v`(MQQi4a72c1`lP1I#Tl@F*T+t)FCfK&fQ z9}ob&*KxZbA5c{_e_ly7{{)aHzSm}rI3-$}e-EUJnt#9BvU4BzW62Io;q5(<6HbS< z$-NKZ$!Z;>tbf&kmNLEu{4!4_V;+wwWXxr6vj!}AL2AHn0aJL@{98Q7Y{iSA_LvH3 zVkytYR%~0O1We}&sP|lUTeakVSk#yTVN14sfkpK=2H>Odwgn$H={cX4jEm%0sGa*- zwUt0@+P0YpwyvD;L0E(~{W+F9HTn)@8%9eE zmXH%4b~jKXgQPnFc%uhVi(@IpTS8F=!$bxXgz7C?z-zfs&?RX=f5oJh9!PD)DoUdE z5lms!E(qy)M}HtShZiPFyE94$2BMVSM>UP9nDPcsF+lqJs5}XczOAhjBm0p%J|TmP zY8KCAY*Gt+{+ZNDyu*M?e55&n+b%EO^o1@-d4G>|udr#K-N7f^%E<{!E7dNryzRRu zTE_D>WB`LEO}=m?q9$Ls3ctt~uDV0MFoF9*qaFxGT}jGAz(yv73DpS_AJDBnpj#DC zVFLXIwnyO8hE<+-XDVE}Ng3c^O;hU=h?u@5494+7r}e|-BOFoo@dz&tN4 zDZv_T5pPBO|LlwM917^8w285G890|%ysZZT7sb(OTwRwL_pX79|&~N9JnW zl?^7k)2!%dIG(R)6@=${YuL$RGU|`y2(?@vKpbAENz3&eUv?Mf_O~nBVCeG3D=@ii zGRYlY!h%69(tkC{T{WctU43QVQb5Fw=gkl!S#0TA1f4hM~S6lvoC+8%fK)?!K#i3;f|c zAAZdx`J>a^zlZJzW>q}%AZMHGvRAp@PG*&-p)#(+|FyA9xj7AP6qRSEyIU7xiV3n9 zuKjjb?tR1ELj1KAW`BTlr-8rDm=!!(7$qo zY(GSwaARehSlTw5O#`QwC>2~Hw=Ko=WVyO?YIPVU%*ui0xMM=4==cD-0Yq}vo9=CX znjBxPf&BC>_a^ZKCyiFgyYm!UC4b_cS|xAKatzhy2BrFra>rK?)7ZB;Jw_gxl9(i$ z&T(go5eyG-YMi+XfZjX&o?0}2$L%R8of3i&6Z|Uoi7%iYt(^ZUVKz92SHX2v+ncBi zHQCkPxTjXnSJvv#R($1OR9kRQttv0)IkxxRkK69ys&50aiDl4&FVvt#TOIJ*6A~MU z6RZ#|`oeQU`APWUeRsCF!;8`?@J*eB;`f=E(aJI85Df_|hiHHdPJ@h{>+U3+tdv^Q zu5n*6*O=!JWXK`NZCDOLh71ejXXm>g6Mb1J1vy8DJd)=SWXK`N6Il*Hh71ejEgu8q zcUdU~d5#YGbDl$xAqODGN!p_DJ7?o$xSc2-J(->ic_#B&Hde|8 zv2%WsI5`v~e`%3>uxQJZDcp0ZP4`0fj*146AJhG>+yg{6KTK`Pd%OCG3{lepUKLhZ z{w`*hVu`zB=ujvqGbe_Xl`k%FHx{EfDD2%shJ)1Om%5t>_%KyNeUXWzs6sLr)lhd% zSXN{_D-6|W&I83|X3OwI>G|6IMCfcpZ2Qh#PJaHi+aum#6(k{^1I6on<9;7A;;@}9=GQhO(J9j$)9|dC4r&oFZPfWA6^vX`oCz>P<`bvD|OmTvz z&|Hd_;X=c?l>8^py-d6EFPlmgR6O}d_roE!A|Y}@l}c4aNRbeeCmOH)ODxD?50{IO z57s1UtQLT*++fFQ!`=yr&AYeE{jp7}0((-f)$WJCvzB;z%N=)eBIL6x-RrfiBC_!+ zcMXxvIi{f+UHa4pDr~7$U(F%9z(2_kxuY#k0@v2%(tpdtB?c?qW#qio?xe!GjNw`< zc$>O&^D?3prv(~KR%uM&-s2H?+wFooQ)^a4UitPRyPOc^X(7g2s^J35h2IJlDyGro ziwcFUnOyoIcu87PX#(i(x?9QYP3{P}Z=JiL{C1uD1?|%!()kN)&-|PdV9M|lF2k>t z3`<&ND5E!(Nt+YriIdaT7itlUNS>$5Zyu)uoleX;e*u1=3-DcCfQ^3zKepFWFIWNo zrVH@hzye$ydLPiqf0I0wL=hWnZl>Vwa=}H|$oK*YPEOe5j+KM96yEaw(IxkfMFJ?f za!49Cy&JmZuIiFY-3F3#a0aN`3dZzm*vPtVu$?!b={3b``5NwU@6tNiWYkXB)YF;c zCgIH-72~vlxO@$_x00P-@1EH+FXQFnsu-U`ly z4%`nzjUyHa!OHNUi7dYiUq9$xt%Yf_%^`Pn5v~PnyrD4e^ci4j_y>9pKLZ50Ipon- zJdtwI;lkTq5!ghEy+#pE2T3pkQ@8~0=}g@=CD=>UvDBjz-KqZWvX-X$8>ooVur;BU zNs%yGO@_!Awp2%_s!28&86J1H)Y8B|EUuj?FONwHIIsg8^2)lDrXhp05SiJpLq#!! z6GDRyuUx$pBMl#wiY(_(5+5P?)1+I3tZ~-8JoE>kU4D4HLx%W?b73~4@3}dwQ|93B%UyG0%gkBjj*+S9 z$>Fl;UxoGOM0QQ>YfY9s=dK{W<`j`(?7jlNE`)P*IG!kZ-u;M;D{ae_v5Q)=n3z0LgK%6*|6Nb_(?Z6Z+&2S{LnXRb2 zvK1Qm8&};2MRQB72O&#aQv=J=V=#T15+0#}G}Ed#>mZ-J;a(f!4GEErU+z#v4C1JL z25IZhB>8MWNoL-37v?mOPun3+0|_%<>5wAe!<UlV(&a#%52X+IYndB^RSRR;vQCsL4WM@s;jv3<5!0f<-E`ooI514@BAayvXN%3>KKE<>ZjpdCnjs2Um` zkW7fmhiqR5ZT^cH9ZJi=Hz4FZJH#^~v?)*^%cpm&AewPn$V^r@f81#cWu0^z_$PlS zy{dSrvP!Idi+WOnvX%OwB+UAp6clDm4@}`6q>j#JE$KQ6F2q^PGfa%IRHJ_Sb$>rT zRMpdJg;GC_9%25n%uMXBqQ7bSm~Dn^dfeSgn+9&z=$qqMM8Sw3ybcRX%NzBUH6uLJ z;sSN6P2{nY?j}-1dfpeyI9;^IBafvR9dQtQy$pv^O2)={lH@tzX)U%f6m$zq$fnQ` znRBpGEpgD2g%<&A3Y9xIHm)uHvgE);0AWxGjzi0LhQV?te*3JIu3`zmhj(MBoS)z+ zr!5VYna|a6NeFCKpaAIpQl4}zyr{g7zr~Bn;rkoMByU8RT(RGBBybmtK6Q^O%5XzV zX_M^z#=mL_vy583nb0^rI-UbG)CV-qYE(BnzB1OJ)$c0!MXTRcipuuso{I4?xT-@t zfk?j;Yx^ctwx8t5k#CpwykZR-womfZmlM{zBc(USGea~pNx6&59(}SJvlK(+GROs& z@$20}#>IJZ#1jm<(suizy0-gRvQXRYiz;mox8&fp50Dd*;HfB}vY(~{knhbdsx)1< zsGp|e%Xm_>8Aato_&ZbAbT-1|nr^_6kftfdAbGOVbbbG-v&}M0(;T3oX`qob{T0?A zO)thT()8m0q3QaNhnilK7(mm%iH#-!x_*CQDGy4&Gvd#ekk`I(CCTo|o=3z%hC(U% z4@1d+S+Y>cf9Oj7$C86eh8#zEP%>2ZQ*rpHy zk1~oi{#BFAGR!DAK*K12Co+oKSc8n>A^akvcqpvk=D$WaiVNwU$ytHC{@Xz|=}$gl|7~9vd2A9>g!HKHTtrPNgNC4@TeHtPKXQPVcVrD3vdHBaN@L72kL?om!1EuPT? z??;}DW|!h^v5o)u?7xBqmTV(ke_Id(rcdwAJ)X5XX5r+GThc)SBHm zNgU=mw99bE^72oH+ztzo!(S_#D(>=p7_dF9{R5KpMO4Cy$yr6~))Gsxn7&{qaT}g? zJxuN#(xjyZh+JE1Ct4Btb_@qdp5pY>wkFfI;R9i?kFZvzwkb@m*-YEZnl zXi^MN8^c@Ls@D)xm=J19SndBo>rxE1CwkIFH(r5Q>I_`?Sn3yuB|6^rcrjurA)5g( zT03Zrb`@%EizzxA7BlJ0Oexw$yv1s%Erm1l(Rtz_&me7qPUk{if$034)A_xkvkVtK zP(w!y(J9KDRrO<%O-s@j!9L+ozpCqLDl91^>-jnlGdT|jqdJRYyfVr9a6TS>uJ2hc zZt;R-aDNl+@S4|xut-_{^CYMH4wgA^xJZ##z3;%eNUxQV(cTKMrOi7Ub7+8cwHQeF z^Q2?}AEv^|lD==~X>Uy?HZJLG99C>-8_0C($kjQvhy>oEEK0<^lJ0PZg4Xv6D&F;O zhoroiCY}VF))WE`AAonFy^;l$Z}OJ;1-}XO=RpJfp-)o0qUV)s!?r`R`j=?|Zhd;t%h98Dwl_@D+lNxI ztp+0!U)w3D;EvdOt>U>B44l(}o|irC;%XsE8fn$WFKRKhWp=u!Qowl@$e9{Uy=>3) zfDL9+Pz}Z@=XUg@%9ig&+2xzyVe9^tk1vtFX`wUrof9yp(EkE&U;V&dbmx?LT(* zl(&f=dAfgHeJ`@5?wYdcnem)1!|FgtJGa$s8@B@?lGW|RFS5Fw1zTOq;>zki>FSvl z(CS_e-s+;{if*1A;vDCd4DK3FA%i=o4DJleFbwWN5mHK49u^rV2bAhqON2*&hzzfQ zA&d9`n7zd!(Ei4W6keM4StiPyMjjYM9EE=5vnb_O& zaB?xkz%B4369nD*Da{~wOHK}*--aM~lnju*g_+*->B6_>VD#b9H( z6Nrdoe%P$cW|o{D!}35pXnFC&um)M)aQq_68xGro3kocq&`s~Xz6H!I$3FLO3 zy_jY)qt7hg;wdyjm=>W%2vb>(VS5jX5+REX@H7{nGZf101wiWkjLfc_T+*#<`}hJ1 zkWEdDFuhuuIhrUzVTztT2aM`FqGwM%NU=Ubp7O$M@G~TV>-!Z>69pkCTECqqqk~HJ zPV%q1#Vo^2g#$E91y~|eIgK^QRL~=J?wLGe%oImTxetJdB;}kEhkI&>6poynQvjsiVZK<65~RT7-CnQ>u*Q7MA2yo0(;p zk#K;9kpM?zB;BwE8A*5iA|vS@S+GC3MMlzBem1%QfAVfnM$%EvEpt9f9(opL9M74| z=>B9pPa#WrPPdeiEXS~v2SUjcF+CUT(DmR*(_PRYX!;AD zH0|?9xdeZ|h*VL^w-6>*;4qGa219;ZZI-_MryOhkH>M1HOzv9UgPjHEl zTkXzMsIfdDlv{1javoG;G05p4Mlk5Aodm$=9WJPy*jmf^Ii4q|g}nbNw2Uc2uEO7` zLbZ_L2#vRpEDqjiA-%*KJXy7iw*FP8S;}C$_=u-ayO@h9)GpczY!@Bmp-15+u68eZ zGPNIpW^5tLcr9und4jc&U*I2XAycrJwS|}@=`G|N4hmXGhC;WbwFmCI<$2UrmH+|R zR^|%TR^At?t#HN+n*~&=tz6?^Xi^@yI8MsTVPkR29*^A+a?T7-AI%2muZ{Rtd;#^S z*>JTOB!G@-j$Wn&2!fhTS^T1AQ&!pr7cfT$!S|ZwX&KMYo%le)A(e5J+r(A!fvoHU zS(!izb9puX?*B*Im&a9EtdDozgBuRJpnz;DqM*ofHa3L=D5xN~?~1#)p=GvMqNbJC z1uL0KQ!L9ix5{X9>w2}+Qrk;&slK*cb8EG%e$PBJhxd68hkN_L{q;v4W}bbXnR(`! z<(2n3q%cAlgF#J&Wfa3tibq{z^lAzrk{#SPoSd@@^z@n}kFVw+} z(3{F9ivRT&*JbcJ&MvW!j62y5v89ANo%_Tu+z#t4(&xC)#I%Jz0C>^53_@*f#RW&q>? z!+q^WjMAyjqV$T!PyNY{!ZzeA%B=LbJ(&M7+;^O|7WJ7LQH92a7_gt}JO+5vH*kb~ z_O5o1v(1#u+zNXU!Bh!x1156vALV;M+aWo%*EzLP7iDykJZ4&Ia&<{tZ>`FwHfLjM zzR3*WymW8a*Sw-8bwx`-8{T>UMZELgpBHaVjbr~;hkh0~Y)&mI{(_W%;W4ru*?9An zJ{}NO{d}qyPk%ghhezTw8c+N{KTAsO^e0m1YRv5G@)A&F^W&Bneq)|BgP&eu^4ENP zdBD2tHvG=xps^nXyxPI4Ue;>ui{oU_FJ2JIx0*M3%A`57%BIhLs5}%ZB5Zh0EP&s& zHFbQDCMeK>-|Wk;Y)yrUmy$*q#)VmJeD%|*{u(^7Q}cAHjaev+&OWIj_C0m>fnM=| z%y)gisGyAp86Z(VY+{&Eh?oJEqKJC1w2ArLb=E9xv@hSe&f0~IrPA#x%`MVK`tk$2 zQtWugC%uVH#fw&2eSIi*IIl6b0BDMPU)Kqy!clx%}y_&YvS6=p6>RStk zbjO&qXQ)#=NA=cQWotvNvKw0^#S9I?OZ(o@mPcP%1Rvv?P|%ncd%=r^xEbarfLhG_ zS#b=0s38xWS+rr$VNpVTt_IpgT=sd)7Z2ywhV4!*HnCF_F=w=`i2E%V)R>!sE}67X zbUt`E_fg;4tF@^;Oq%8=9oox}$f}#}Ccg&ylP^@jfx0?h?$czm-Ef%=ez=(}S_ntY zc3r9SvosrbzLEMYvrrZOCsu=J^Rab+jk21$BXvdd=6(027IOc6sT;IWeti2rSip^; z0_Zjz(U1+NQX9^>wy3blHXP!oTn~P@+33zGr?{rtP}}auhrN|*VcV%V z*n8h|H{o+ix2Kf}@65B#W)~=)hz^48bno?F>Ub`j;89K(-NaE&tu@ZaS9wHKTPrW|Sj?_jo7u2bSnhyZ|gJKO0;ePl^EmV}tvfHcs=Z z_o|}!sgYAcdEeuy!&w$#0WZ3wO$_nCv^>*aX1#Jxq<+N)8BiWh8>9{J=P{3`SXmjZ zIk2%1YszX;GT0ni1949mUfIm-6o|>Cnf*=vylityFt7O`Vl=ytf}RxQ?@{EdX$_JW zHLEi-Thj`pp0uoWE>I=J@!f|y4WZg4#2*&;BEiQ~%9wWmX>BCmJU|+-9j!s~P=n+<(;7+M+nmdj_riWi_7)Z{ z6o^@q8NwrfxAbSdC^T}&P#lVA4RU}QfX)G1)fF!EUYtEH0NLP3#yg(AO%)*yMP zLGo3!MkilkBwzN2Wj=d`f+G1R75Q3PgXEzG$OrT2k^WuSzi742<4HFj0X<6_@^U;0 zRZ{bCh)e-SC(SrffGaQvM-FI?#M)QCO6{ky>r_1) z^T&U`ps~@090cMS_Y39-9Hi>-I5KD%+Yam=g+txme?_Bk2B1@!%aKV`X^(Sw1h+yzTHxMjQhp}v0 zB7n7oKwdo1>IN%jhd^B(Z@H$6<2grC9sFFX*}H8gLI{{({s$1`^9QR-teNKVE-9mZ ztle7^aE?Mwa0v-N3_`~6iV>D{wtyC+q!W~+1_U=rTT4mD{!K}%M_EQ`>jU{&KWkz= z5lxRsD%qOJn;3&h7VC5tA)bxFt43QUL>U@UH$|nB+r`8YB5?t}T z5y&HhtZ4=@h4#d6e5GgxmfSQp(aBCza?s=9neVtL@3sa=T{!N4+oJGV{!{8Ev-Vve z$!B?n=bNslzRzw@7AWzrf&5aaHQyky+w#*tNJi^{LBt94P{}u_foQ!wRH)T&pqCgm zaQPXeyKI;=1&Dw*o_?jm39Cia1Esq0H|0(~xRMiE4{GPVPq9CqlN*)}Y$!K9=?-W?+ihG^d}% z!Ol}=I0}H2ANpC&7!llBR1trIB9|3edhqYpOc`kY6O5JItyvf!T{XqV%x#G0l^wJc znQv-i=9j9bFESA=w&OV`*V4fIk8O73Rolx9IKtq-czr`_=&uwc-<>N>El*UJeSbUA7 zgs5b|>MTW#;iccFI_o6u-q!Mod8CxIJ->b3l-_I{<%yDxR+5gUH7-dj*j!qStpf<3 zgjybA1_U>G;-oyo>*OhY(bA^2N4Vu?lXa<_b&(RSsgnrXazeD_l=&@}KqF%;z1cgIJ_>Y133P$D;Rey*;$c;#$(oB_`rfTXDa`oyJcbh#p+g`2%lxDrV8nc z)dxtiV!ra8CM{M6@k@?zK|K55{N{XrlBIw>Nm$6mst2a!TY}|c^_gVL&+K&ridaq7 z2Ftb9+q4GP5>SInm5*r+E+fVd%g+_=_#TAeF9KBEV)Y6I#ia^d{l&HLpR@+aLk*H= zAz&U?cwe_l(V&{r$MtF~1w|q;A#%Oyl44V`bqvd*U?@deh?Jrqtw91%qc507&}v;2 zfT5yrTolivu*hV#Vp2(KkO|bFs;g;@P9Li4=+~`^w^CT7|AeByo7NzGs6qPwq%}Hy zsCLoU*TknOEYkl((f^LtAbqGo`oGc|ojz2%=;L}gpe<=pB<<5y+CPfcAZe&U(%or| zP8zCRq;W0Wn}Q)}ry@O=)*xx90n%zMJb_m0^Z}-hzE}r0(1ARygSUc5*INfue7O!@ z73{ta7Km~kTqT4Of4bJeVSMvc3#6iIN`oS{2r#-1ULy)z9R=6HyuiXWR!vpIb+GT1 z(T!XO_Xm32LfC_pB#zyg{VhA#lZIlkfw)DKppebwh-tutU~Iki3N*t`_-aLHv1K6J zLn&Z5`dV9lsMs=qy+&(r($Q(Fh4RZhpp(Vf_C*2-+%Y@{SX`6V{xHB|GqEoT2uC(& zp`jrd^Epdu;LU;~-qHM6spTp56Db!vk-7ZD5|g(Xz~#Oc#lt<3KwUhw7kcVHi-*tY z=}1Z^gT3^$L1;VD)?${7)G^iKmtxYiLAQ1^ZIDa}iLk(&2=$mYfFHU)K_D@V<w}e67Rs%+ zT1pv3Lt_&cRq;FUfs3Pdd^0{`s)q*9UDA~!8Ov5twwQHTAxh)`94zu9vApW(qTJet zZ?pVcV^34?n4{JrZA++3J#3*hyCQOmwKw3{Q)EsTwwKmm*5S3#2697hL4`=Dz$D5K z+--_)qmM{7sSvQ?Ijx(uX9j+l>Zn-h8)rTT^_%bWiD6&V<9enct``Z{nl;6ph-vG% z@{_Hz!hI-H7;*3LDq&g}@n>Arfkp5_Fa_pw-^+?O$_ypJwJ%p%f=tHp()aT^@rrBb z5?FgmTKK6E5D0|uO-mpfVc>**-YR5X3J+as>B$oR29fucT84QbGV~tHP?r5S@Z*+Q zrhCBOv&=G{4g4GU4=;y|L475DUvAmRCjAY3{J^0B|G=Q^B5gBt2$A907|J0}kyv}> zK8wG`?xzINg_ng%7hXnd(1jlhlP}V7qcc%p=}hh=A-rOdDTWz}(U%rY^h#i#Qp)H{20-*B-zAef@=LpK_cIbfhnhXf zE1muOZxFew%986tX^VUI3p?-=VZp6=)s2#1_6Ma>7nT`$qCC-mlyun*j$s*d59)qT-kB_D?6r*WA(M^K`>x8YA+o1_5K{QRz_R`IJ(i(L0 zE4y2FHVs|5pMby!Z`EfDs>7wK06<8x{*&M)Aec)(D7hn6bx_ejvlYWx2%*HTDLjiq7zga)wuE4LZXK=?w4D z3Ur2d8*+xz4Lid)=?uUPoq=*w&Tx(LL1zG9bOs76ox#0CIfJ2CcLo+odH_0u0T8Wt zw5-+Z%usytY+)yU_MrC=7Wp^ucl^t{tq~vjzcUfCElGa^f5Rc~F-Cm!#Xlys8qJ)4 z1OJc1-Vr`je&tK!XSC|c22%pUm#Y6grFCm+Z()P#x4k zM2`7hScc={RmUkW%r6`hB_zLK<#_($JFqXFzqm*-u(y5FkZFI03fIt!=P$mBl;QN>Bi?MWwa=co;hd* zx(yz^D2b9sF9yPVg98&=XpI|vmB*@aqaXT(WxjSeidTJMnZb@xe5Cw# z6d(GfWh8r>*0@ogCMExuk#g-VUs;?cc8ww;$xEQw1xu9AB~k-RTL*-%V=h=qm{&A$ zAs0r=uPyx;#c)sEO_xG^rwajZ5hmm2yWZ-`#)hWEZG}bOSaz~5lre6;>zFend4fqc z-;<+cZ-@rw@Zg+wugV{a*TamvMY!`$x2j0rz@7JDLI&J|fob`o zXu0#A_>bZi{QJw6Pg%7APi((G5G{8`x6m5gzJwaw8GV7)z$mWHibFN-T&@PNy8ZW~ z6c)Ef4=ehg(i)@>HAw$!TBFm4YDypX-*1Wmd)DnhiUaL8Kt*w0Tu4#3b={7FnVM$~ zHpNIKJJX8uuk{lZD1(Jo=rXj4sgnUWmWwDDs#mBekD@iG9@LcGuw=HT6-fES4NETY zbt$Lsh%cd_Nd0a_y^7W#b*MqXH_{qiaHw|C$8GCc3WlU#RHXk!YmhY50BN;t{XVVM z=>v?5{()cMc*5B$JqNOj6c(9$qnP|gYmf=l024TXKg>Utwd_Ee6`4eznL}+TQivd@;1eXw#zIx5fpc+#0tDnZ%#2t#MeWJ^E7^|ITb}6R}8u(XH`v zQBdcY;)r;mmvsQlz*IBb8sB$+qdr}C04~YZ4FbL_jndV3ZTrz;+_mj1N>EaD!Iomu zUE8r8=&tQVN=U@u=J8OEySDH{R~4e(VQfAv5y0B`4szGl0E<(aE|1!@9^C;agZ-s@Zv;;!wZ1YYjiawQ@E{R^3)!H^sec|Y$CtZ^w}9ju#h>LmJue?vIj zt33e>N2UFbOS%R6B^Kwv^sQAd9XXg09hwl?cHsxpPIF(j%4rCGbG>N z&iXz}ro>U$?vUFLwdVPBCpBt`&Hg!xPbeo()|UgyEY2{m9NGcM?sAH=r~N84CB6-PEdkzUkC9Er42^ z=+6V^a>$3^``msvw`jqW60Co)@diAI{!F9!-0QHNIh$7C{5-moj4u|_n!5QP@D~4N z>8}k3sJhs19R(HBziF+c{sgT+>T4DCU9?80zSck;BfldQ5@{R)^+e?7k^xU%enG)d zhBH!zE3^Xf&!7w{%=wd6>w>`dTd10N?y_wxX?u)vf?{QK8B1%B2h?DcmP%{t$ZJrI zQIt@jE_m%vVUd18EMJ>uwY8=dNFFMX{4`pllZR>-c|FKnOkt7yT}u2lvzM!Zcq%}wtYEbI;XpK%9s$HZpbp1C4L(*R>(${GXl7<=} zt=hCjXVOqQeSmS%*F)E63X4qIcb1KsNNbP@)BqC|x@OYqIwmIAgNe1uo1muQ!ih5Y z{uf%c4QZgCdWvEDgG<(nVJW_hVN*J}$FKrX#<1l=IPs?|hV|z=&Q0kMQ79m2_-YXa zuJH^`cJ|+82LFXz03S4l82Vfa=E-kPQ;QKpR1NfH();#tc zf#rg1Yn^O!KA@x3!7I1k9MJYZ(X4IO*V@g*-gGBLBvfJg-v2D&y7M8iJi^N-lqcOW zE}Ym%DOlgScp3DxJL5=Q2NjP~Ou9a}EX-1O8T3a=2-gQ!p&r)<@I&_{Tpu)#BPF;# zxY}8+4-Bvvg6s0A`1pHei0=s5dQF9=Iy=WH3B~$=ckd?0EEKK_RH1P2!yueG(3wSx zQNk{9QbGfQn}q6yCOn-WPVTh*PZHuHp$xdlMZ&~-{Kg>>wMfv7paSwyl0}GT7Vq z8(@bHR3{~eTi2SkopEHf;2DpP8V#$3Hz_L=eQ%sxE$k&VW_h+6R|_AIa&lY|(D1qu zMU%?~UE^>Ws#1B}mkZY@b&SFI3Whnt-Ca^ zQV4|#SSe`bovSBUQ?(Xd7(??aDbkk?VTvWTw4l~I+juF|Msq(&JPUL?Dl^&sVF z)auu6Z*A)8ETS!-vM;7r;qk@S23t2@yqvG`?dc; zTr0$ZSEaYewuTTn*sDwVO}>22eb)T8NKr+EE=d3%A7#{jaJ{c5N)|sF@J+A%LZm(7 zee4HueY#Va28Ovoy6j|neI2|3Gu75|$i61bQlP7$%N9Tu0BJ*V-C?Dp-}| z!La_ke3dnc{V23V%UlBEiYEiFk`kyBqw31(jbHZXthWBkV8Q9{=QR4e(O$jr6YMLy94Q{C5S_ki^Q)`gVIyBXPWm95&wL$UgJ z(D+WSj|WA^V^53Fd8*Lfz!R>0ZS=_^WEHyszxQp$-{m=zSw5*GJo|X!nN^Rc3YCpK z@ioAB^%@{0FXlqiNWOS5#Q7C@?cv+WjeG0G)e^owl(BjU&`_j2sR<7OBCoqQz|H6E zhr-(M+=s0%XiMYOLxAz(Yuyn%`|*f8zW)(xt=BW4F0a@Ism$l7;yA@zi8S{xZ57%l z^BOOcHyn-*3($50jR;#ZU%B2ow-FzKb%__LJrU10Zm>qPCn#ev*9X2ON~l}b$R?;+ z3*UBrEMC08)}5E^?v!u()L0?j2Qxh?%f#o{h2r?R*Gf?q!S@f3PB1MLzms{T#S|dl z3iHqa<#)#OnoZUmGfMym92*nMd=p6L!5GOqK}=IJdXJpzF0z5BeDTpxq#Am2DNsu^bnQ=@t^Ou0B|)|{{HwP#ydHPRYd9#tEAP6{j_=`xE!aq^PhE3sLjg~G zhYg#068r(r7Mc&moB8+W+qLCq7Uucz><%^`KK^d_ocQjmr9q8z0Tet|8<@aro`T%w zKq?F_xNa3C)CC5BwZ+?y{S)K^e6?Gx+t~_=hpYa0cf5ObJbXQ_P_-Jm2UrQ8kn52k zpO8xc;&o5Rd1$Wk_yqasn5)l1s7L|iJ90apv);?zqe6jY)d7KbNipb#6UN#mw*EiD zF1F&u+pPKQJfSYL!yfpRp9B5G*BdR{tz+3Q1{85D;0IK{pLRJxW_T-hSX=Y)J7E6v z>qfj^q{`r%5T>&#*@f_8v$g@2kmy?NRsJRPBvY66(TqaLbk^Ho{ss2Iq0=1Y;$x!% zR3)=A1>Y|d_z%0Rog>bPV(Jq|sRo-r>p3EXmH;rWb%fI5@r8bZ7RFNj#V?Gd`gfCC z0hh#Vj*l-~?J6H%c>G1{EDtR_^d;*{K9h+xU=UvzmCa_6BEC7X-ym&rH~GAK8L3es ztz6Zlc7KO0AvDFAbm?MkJ+LZY+zl?O-5VCpYj|NNRz(r;-mk-w;uM9&RP4u!$+xry znLte$7sn6I$HlN;XtmA+U|dWv$^PUXYZ-s`A;=Cv{D$;dcd0~VcW4w>WQX*j22;I3 z`>e678?Dyq1B{D4DiO5bTEg-vEHcSaOa{>!WCAsM(z=XR>r4Q~#RShnG|*JCdp!W{ zjNOYu$?i3}8+NZ)SN8%?)xFjT#^O(vD~8|loqzBeV^Y2@Y0^yU81^HHRW{`Ey6Civ53s%uwZ55O?Q4z*Iw>fl(Nw$)Eb*APfhBAp#~X#f-P?=Z-qwHW_*v`{_)EKv&sOVq+pf?A{{8nyWH zq;)!5MP)%P?pIpePis(%Y_WyDIZ>Vyc!E}=5}T+J+dL{!dM-M$O}X9{Dme};Q40f0 z)WT4LS}b?dV#S9r*nUQZK`lN~T6{!nPz${6cPUZc_Pau>QHzUIi{GRc#_oK6OimQ> zC-oizFhm^;3{eL|3F`2^u7iG@`$Bh__52W=O{7@f>yF>vV1_OyUQwzZXiwv7F4|-H z-Np76{P<_qc5Nw;tK)&0`R44tR(@!p-H)dY2n}df-meFQ%-Q>TcjS?^YU&V=^A#RSP8)=SvkZzV z1XujJ^_uSd_0O&85xQsi%kic+5sb%t)VDkDb;er67SUo{_v@Hyq*_QpVmcS(w57Ck zCCwbZo*ToH{u!MRQY~;Wp5o#c##6ip##3$ecnWQeLz}Sh)q|1Q=Er(KHgU?pShk6B z#WmIX9&$~Ei|r;1!0L4eWUfX)wc0imsWAMp#)o48R$IAza{v7=tk3&v2Ybl%7yJwB zuL->5NQyWARC7l0iemVJ#{EB97kYgMYNK1Ri_`$nq0}|MZveS&5%x3u0gJEz!!RvA zGR;e0?-?e^j{4ae-iU=52tQBzss|7M#oC^IMPLPh>39Sr5`b7szUD^bEtr+W2mE1;XIWGX zv|yPip%zS+I%@VLX~C5%bBo!0iq{ki&Qlh&^PIz0NA+^ZmYnLbJJ}Xy(l#XVB9pBP z+emrorh1f`>S<4=s?cl$8{4wgNjx#o8ON$Ab2QLv?gn~L8K_Db==+Cq=dpJwUQ-No zR2is>8c2FrWoE87f1|nW8SSSeUJ~N$$bO+*byNL7O=U{<;8p4Uz^js0T=3!hTG|?u zAi;ilIf>ua&KbcjQ!&tJLCJ1jbx|4ZTV=F)q0Z$jPC&W(C7z1y`dn^j)`J#{of9(v z^5>q*E%1O5{d}&2<+x*Lamjo~xHG|sAig;SCnxNUiJ67MrcQkBNyxK`B%kS9_XZls z4@WrRS)dL!Uw+xwwoIFs%&Q`uo!Ko^y1G^}RS04+TND6!ttV#%-=GfYlG2(}2)q z({DD)g^4m4dKc%|2l7+Fw%5Eq2SNDkSL~fyQ;BqQpK>?%x6<4V&05%w$J$?P$+K5q zXu;V=r#JU+)o9<*K2GM(wX=0%A5-zL4Sp9Tv<*HWx}H>Ruw##XHuFm%9i}Ox3`>#I zBv5x*5+<>M{Cc?UMa`DNx3{--W)8}&&XAfVh0Iw__`}njRnpjjI4K1^HHq@ZA!V>A zp;qdi!mqY)I!*A;OSVLw^oTQzFZv^QCYwfan_{KObsUtD)+O5p@(+_CR08jKLR*u< zx1~5^*;>j_H`FR>sP)oN|H0dWd0MB&_wf5uy1hGlht{HkxVQf{Rq*2!e*PzWsxf+r{@EVKYi?K@lPSR|=0J)( z3uBNE)%w<5t-ZQh#HR~*k9e3dSt>uB?u=o+siX(#P34`c`?RSYPu6U1id^h&@6J1R zvqd)6ubZc$UpJ@xQIB|0LjBsDD*NV5snW4a@|-<*$^TisctTI-0M?UIXo`1d=zI+J z+PNdgoA*kxZPO;Fa=%;CJFuygrEau|)M#@(7%iYP7|oGli)x(FZZ@TI)BP}$jHCR~ zXiMFVHd-k&LO0qH#wlJ?O!bgX-C!z=$i~=g&uM#8d1W7GC$^umL{mji3Qht=>Q+mp zBWNiP1HrBr`@>=>5+3*+)zt#?{G73Q(JTRe)rF6` zTgF**V{2CUqu%_4emQ321^8@euf|8e9WB_SJ5njo(0xP+?a|Q|*`p&YvPb*p*e0=2 z6t5}HIb5f%Ojc{kwfUH|B^K_V2MeluC@0-cmDEnFJ=qBsRNeXbd|PZ|eQ}{Q(LyQ! znyALzM7Jv?ZdE3F?MlV6cg>zsk^)?rqFg>J7tl%&(A3%-9n#I3w`a$La>f1 zYMgOq!ly59GTkKplbNv(rL8`sqM)s=yW8qLrOk0=tMOx<4>KPt=?oa2mwX2Y`@Sy% z2MDHh*m-@dvhy0Sni`{P-d5@7AXuH56PyG2yb{|1uihX8|7L-sGb^Ct=+@4&>iyO< zkXJ>x&%x-9Nhcg$e9o2&zWlF=O^nF1t$e^BTMWyl@}S8li4xj_v!rIGbbd0{)`OqB z(_!VSrrY9quZ4~Tb{i!CW99%>NlVb;w^@1ee5cb5wyDGAd}Z-;Yn{b08CCg-*_&@4 zW;?F!vhqd4ZQa?6R3bEb_PXRG6Sess4>k{YQ6vh4&F_BdLJ;@cm)Epa&~sKCG@ql= zpvjMm5^D0NmC2u!CSO0w_9*+3qBUheIH&CPq|t8G-jHG0KM2lotr=@e1w+FwzTQ~tA)TH_2-@5xlz@nwm^6c_Cf&n{i^YEkC#ol zt``*r?bt<>P&=AzJh`vaDXqBj1&2d8t{uLr2%euw(a~}9XbC!QCg2OlHNrO4anqz! z;D4@>LinxA{$BjdWLr=E`~qqJ$zJn8EPnOhj;?G070_k;Bv7(0z|t1~N88st3%1{( zHQx4fl>%hLC0=cZ-Lpwvwe$k`Z#S$QU zmd%UrnBDlr?PoR|H9n(KpvC_bCDh^{+xUS8vX#ZBR@gWTw3FU?-kcH3d(4I8Mi?zd z69?MmoM=F3@|@^rM}dqc9>`ZLhvz{t#dPXsTcuY&kcOYI=SQ(3Di>P1^4XS2COh%( zVem)2u>}{XHQO(=<{9@jabC=~%Vk$S6$Q;bU6fFBJ3%|K-O>weCz3F@R!v&r9K`OT z$W0ll@6cHooOJ)~w%@$A02jXYV4no`6y>LT=;PFIJ3Sc=XSk|6Y<@g?VdFh?qn)2y zXtT48R1CD)o1%o;Y`s$GVP&&JRnEuQM-=b;gZV|~b9UH*9F-r(zMxg8S$08Ml6Hn_ zb`kbdc4fNdECMQRiH!?R=V>3=`B#;;UPifOmvh(WeO(_z106pI`-)SS*mh_!4$i6} zPu9^vx}x4jQ4ZqV-Qf>#ZV$_2xtDkc9IKjjPve)z;SL;1!l@{zS1(aQ+o_#H`gSlp zPNou!%h@1`*A%xd(Wx7(=D(z?H^2Wr+j;E{2S5I-GlcKl;0$I9DPP@mw^7qAm!>mj z-~u4#;5%Qs(6LDw?3mTIo8ghRmH)6Mvsl&Um8~25kh0XRc9L4{tS76Lt+h3JllUF!Vee4hXr`;~W;&u2 zISgjn<}Bd*uH}Sr--m4Z{LG`axVk?FvSw+d<21o^CXJt*0te%heA@+Rz|~;Bo%13g z?^kWRsC7#do|nK9Dcd^pnc&946kCQof9*)~Fc+cERj#$QfsepAiK^ls-`R!iwM#jGzGxf)z^zz|rMjeNz~ zL555fPuaZr16yn>wKHiv`bo%eoTE~pm3J=dmqcv*ohKV(LIH?1I=}Tvn%vX-gtAAY z-f%bSheW;ilu?g$NWX=zyw!$Bew$!B{`0N2Tn(tYj8=BuHj0ni=Zxh^FWTDi<5}s9 zpL^E!m}XDsi=MMtSXw$6P;{?^tk7*RJm@!Ra??F@@9odq#x^#tNKWUww%MXsG8F(V zHbj)rUYsa|acT+a(gU|`x6NkLDOyu3w)ievt|@_^TnrpsCwQ*xwEf~$1sr(hg5C-2 z0m@6a(Q0=aZSZ6xh$@FQ)q<7XyzX~8eo+NNvYrt`>moT=>JR1)2I zU%MOcCuuyl6TZ*Q=^H6{z}=g7o4AsMan6qe;`}Mw1?o>V_r_;Fa$?;qb^mFGTV2`{A@l()&&;-?4k1H@|bQ z?PkrH!LRIv^+g_)r_Qcgb_NNdi{X!Y>%*F>V%J)c@7P$^%*^0DKXP_unN$p6&7kq_ z)=ZNMYY-`5_?-Br?G|oelm0Lr+|TBd%244q&{NQ(v6J30$@wR`iEhamgTj$Mf1 zCEqn|95nUeJGa@QSsyAF4udn?4VfoZ&B>Jgw)i94dbWt7;qKDHgMG5uy|fsUXp1uW zu8-lAlL4WrNi?_*i`EB`4A$SjBg>mFzwC??VNP3q<&>>C|MgSb!`dsE{I)C3?(8)x zpWX^DySKtYPkswixJ}TEX{__UkSWiUzCfiwn|~xqXvg0n6?|UV{Mh9_z1epZ4N^iK zd5<%;c#QC4FF;a3rWQq>|>9mlFE8p0{wbfbN=UZDktD=(W-oMh_w2yi+ z?Xl}F(*nmfeC2nIPr2O(8i|B(TpsA*{Uwav3=kTVr^1hXM<`=#F3pK)$m>K^G&&=F7HW z>`!-KZGTqvUl|cbP+ffgp2X>0;^V7N25Fi+a_*5%wZ!OD)na=%{0H0TT24>?+YgW_ z%cb(v`HI%7Cy6VI;E#H7Wz0{F&y;2KYM#&;gywdVE>UIAWPFg>zD(=d3qIEf&YjSU^mM)5<9d;v zWraWL^{l_V?1LNI=LR&n#mu&HfUb1IhX>KoMqbMFWc1dJzrZ%}3 zUmcm7&Zg38RB7izmZVK2Dw*f@f>%jO0^DvhWlkutHl?w(QN842SWDgY7_RGKh!M|u z+b^0Q2Vrn8ZA(4L#S1c84Ut^i?x`^_Rk$ZVvo+uU8Qcb_9G%~^Z1x5)w-5Nr1}YG? z(0+H#9#NWAs}}P1v%kzfpm4R$;6dzm-i6ky-3{oacY2((ADKPXFV^`svr zB$=q`T4bXi`x;j>eA}+9NWSwMIJ5O|kiC6leflSmL)>BeiOPW{3(aT61=%gSWq zgY9>)?gGjcXEw!T@!7J=0Cj`ON?w6A+N*8t$F#xO{Ldb6lW8brsrUVXV5YjuljEh$ zjJtMt>!viksZ=S0{Lx`_C?w@Fv`xXj%){It{d<TD0>Lo#y{_@++wL0a=1el|0=18bQ>+`rD0CNEz4m)guT1@gJSyC1rQv(o(=+hcFa z;mvyGc4RkE)@Za&qJ&OEe<-znQ$}l+oqHQ|P&}N5D*6}3dpV()|5X5Q#pF={)JYtT zFlFmHX~j7nPDbo2D(u)KcW~s$xWOQy&@6DgyJm30?PmxfK{3)^1Npt(?1_9(H~XF1 z(j0!G8@Sf8ddlGIW{Y)YOlv$e5FGsJ*N6tXnq5 z+u=5fxRTO3$v%kfrl?KuYtswTObc?TnbfW7tQ7lOUZ;T*PrjuvmYtzIbx;0`80s4j zhU#jumo~yscn#^J93Ex0cVQn<)@Z5UL<#le_obyyNK36R&aGg+PSW+n>jr^uh@0#b zt2GbswmY>GQhn1YykP!d#aAu3cm>RKP+mA+^L1pHb^zXA_#&l`wg)bryIunG_+A7s z5w979RlgeF)tu`z^U5xryRdvJ489%+zU&PT+FThwv~`5LT!yy@fGyEKT^?sxLJ!*koQ`>9OmCfh^_ zZSdvT;HITKIT!{4d?|2`^ns;L*##<{wQ#$&y-7RoDrVqSBy_f4S@UiPZ5!T}RC?SH?~s)+s6Pwx9SMrmr)- z?R(9sxn^E9KDR5g=8|4h*RWc0E(xA`!5{S+6&6n2`IQ2DTqAnBu4ngL*_Pd@7(&mW zQc*(NGF~Yamn-5X`R=1uCJRk*d}l}K*_BSIXw3({-u&Z!_G)dN#=8d&jPhCrNH9_7m=EFH~yZPSt)r6?k)^!MiO(6r8#zOaFXzOJa%AugqWC%$RlFEi z{1YjGw!()D*EM~JYQen++vhRAJmQ$*5j8%ot38EhZ(-qD%RIieOKNF|2MNksK;01g zQ}SIM3LxLrxsog1)fp0kZ=c~KgI2)^-_yy;lke%Y5GB<0t`SW+K6-{Pp5#*zVOlQY z(d%w+%(DkB$7sPn9d7q!PD&SFCi9sOH?9ZMVtl@5P@SOa30(tb*)DrKm@_Z(~AY-EbgT@Q3Z9xrX>$d2rHyF{h(10Q@YXiy$MX;04yp^f0GgT_AjuA?Yq ztB?wxAbMK-!Y7EH2HG7`V;OydNIvQK`*`~b4{m;}%sz=7pk_cf-$P0i-<9i|=;q_g z?7qBYqJ1L!fKbQxBF!iA;Dw^ooh|GOS``!3e~@+p)P1|Bm0h7V_{b#GWKXuoF+kRr z-(d4h?myfwJj8`Og#^xx;%r?azE z0_^CgNQt7f^1;S;ba1}Nt#zBhU;Uw*mll4|2K8&drF(OV#BgkSN@w>PkMc_+Rd z>fIX=OqWP=dJwhzd)1sD$>tRO`QZijNG-89e`SF^JK}pG3T?PgsBAc^;Ui0SDgn-F zC*JdI%&Z0mn83$g>(iWBC`mD)t&1MfjDLK){SnriR-v!tixQMmO=<>gcs+9=8%dGy z;ml#81g8ry1AcTR+tmJMZGLY)ccHxlTR;(9F<+9YH<{oT!ygeg`0jiQQy@ze@UB^I z@yU$t+8j71GP_qFHiJ?E>lASRQd2W+T5tIb;jrHF8N$K6Z?EA4$v?8JXSP>)(3Lxep1S z?YDcJTvj)!mzP%GZ@-V_Q^VkRl0!$j|75LwddLK$D3aSf{VB1c450ICiL<| zUQyD_rtJcQ)Wxy;`taz$%oP6U_T0!eSptFTCS>y;HZjb|O2n=a^3<$R+ZPkHCyPg~Gcn zQVP@}g@Oo!nP&5{`GySCLQh5$3l-AZiaRjm8(zunXXGqeJFuRl6D1%2NAd$SkQxWJ zdO*bm+|Q~dcN}|~%Ic=Rdck*#Qa?K=&Bk7(@M2^oLMZr`i4cG*gdl#YfQl)d z(oT+?hFWUdCVM~bdn*akbcNKX=V%-A#XItYYp3nWh3W3=0`X;`bYAgfK>(3JeId?( zg=;rDX1II>#v&ZU{}l4#82*>|g=6?%1vrL#4DO&OVQ`nX)xO9>aOeHBeHd$32$WnM z00-kXq(n)uvI$>Zz%@m$T@bb1{fvE5hzIKBoeSky>j!Z-WE@01HtSh?d(B?R|M4sY z(w&7wbnpovB4U=Iw%c2|txPPNmSZQ!HvtQ1F^;SN$PaYOPw=4_a6q6)sSA=dhK0cIF?Mi$C(XCx({k2_0fF`l;q1RQt_2z3Jw>>+Kw z8yk00rHSE?WC_Hv+9bUyl@9>>V?M~C{${1Vx zyn}QYMe`LfBm`p(iFTq*T0sbPAeY$Sh1kok3o)>l{U&~4FZ&I2_M9O(^|JjgkC9SU zlOm-OzVTJN4?q1NJgT1jihVq5(-&kh^izLQqI6jKKVZ6^B@n_gV2bN2zxKgs|wiyhYf@CgdBY8Pv452BZM=!=5@d^0I$rG2Ov1K1vWxHhdX@4CmH z9??P2relB)Wro2OK1n&377HheVD6Z+DF}um%V-IPBTGaHh9j)63`dS{h9fpDKhJ$# zs{u(nr*~$LQ!JcfH%cA#`)bekmE*%S0qPnb{LJYN^P_zszcIXZID;R0!{Vm$-CNUA z%?F`A`R)9U>=3O-E^oSXIpK**#Xs#<(vN@3U6TS0Zx7X5fxa8{q%Zinr?O|0X8 zM~Lbt#|rkg{XJ%(@HkHC4AiHAll$SS%>>uYH^7*|_}EA6A$;;mN0t`akN3TiSzu~` zRY5wclFbY5MTqF6W^ix#a_3R|1U8BCb5lq~6XTV9r;phOv-uR>O+E!bPsukPg&=OK z>b)ol5uGqmzC6_`+@+S23phfUfO{YXrrE3aY_iXijJw5z$A8@elw zmahp3aI}0~{KC=l^?nV%pU(lD@69V`Ik^Ke*!n%XdcSM@46uw`jpHdxAh=v`4|0Q ztv++}ej#|I|yv=9!4qE^IGL;Pi8;9F>sIr*KrX>K3gXI_fWGZ{KkO;kE zjQE9KF{Xb*bLfYsJjSQ%PeXiqE7c8sVIC<_e47-Xes3?WK4ZT*!~@;(d-_Xr&FWug zu0PK}WV)_DZ+{jd(|d$0bXJ-}gp>PU`a8fIX&t5u8ym<;k^R({DArTDIG?>pOK?8h zDN3-3Kqbuj!F=|y_Aclrrm_B{Lp<6r!oAj z(Y5|^Ir<~5Mg~_XgFihnfX^EBF$)GbgBcjq#l`F(C9G!|4}fA~DZaD6T#9e&FSCpW zTS1m_6H6;1g5${kyda5T~S0m(7&k2SKH)0?_(jd znB^Ddj|Ar>u}o4k5`g1qV`OUBP0i;OM`hplh>4DQIBorl0~f zCB%p|!fWl~ml-4T;-EH?kU3fEmvY&nqx;b(2@Y8sx>a z67?$8CxyS_K=Psx6bF)*#4j93UMg-lgj)`SjMy_Q{>whUeh9bD+fl&Yp}OOs@HQz? z0<2uwge5XefqcBlF+0Qq;qp_(vL_xa#-13i_rw<16D#JcUU;#X&(j}vA)i4@UPk$Hej6*U_GG+ezCr#RC9()Ik{4>5;c6l7do4^z~C6w6f6AA|wd zQ$?|qE~bhA0aHZ=gt{qF`>9ymNy+Ay`j2VMJNGflwBEd;b6#_HjY@^NqTT~!uBd0R6lTquju>(k&=w=G<##W_?Dh9|6 zJHW&Ab3KBi2FM&y19D-Gh`NAFW^gR*G8=>p*kv9Qzp%?Z2D*CA5xwQ(SWv&C@a4Xa zq3mU<4fd25NQvUxl&_y+bCv`Z0h9AV)jRyM&hqIV=$e1!>y*c2HiJ z+kq3_OIT0|z`1%D2GEWC-kHlL0nDG0EKAD>=9Lo)AE^xwaf~(jbRdbn?L}uUB98k%un{p>tkBc0N}kPA`f&k`7YEk@`NsqNg*Dnmlu}u#l2G_ zxJh$hVmPd;BTO4v%57a8j)+1b4jnu!L_WDWG^!x4g^5k1<#-Ptza%k(7K_ei20*zv zL@{XpUs@{r|1ydy`oC#0pL@eDpCW|IF;&eRRyI-q8G8R+rLyI8gB4n>*@Gs0IF0fYC|*pinv) zFNahPZRX93lN~KXC^6+F<^L>|GyWHp5q2k?rke53fKp<+8@tmF6kc>EB7>Uoub>PZ zH=O}j%=!dK5rt1~fuOvqPgX!f^5M)+J;)_H_#n>w?FT{$cB}~T3p-ZCz=mf2JFSlU z>h-K_KEUP}&1?eS(6drViQ>ER(Z=^I%yPoL10R0G?wH6533ZX>9HiwBlxfakvU4GhEdKJntN6E6rGrUN10-^^& zf;|etO|gy$t^2^bfMZ9dBU;-AOfnr&+V+7m%L(!t$BrJ9g~)OS(-PGt<#gp{#MB{eYAx)=dcnlXD%T`SauQCIx#S zTz)}X?6_{Rnj8qxei_JL%YhK>f{=xdvL}gfGSP`&k-2FQz`2~dDIpq2JAwT{nTXSn zwF_HjJz-*glnXArqgPLC#aHD!Vzkgfd}qERmW5Lo49?mPBEeZK{2_v~Ujz%+@VudQ zR)-*8fk*==zd`aL7Xw#(0IBA!xE6fQl)R2w)*!y9k0XwM7cPBTFyw>VJ5tEwm4%*I z&hp6$<$DVptv&MH=93j=)D}8mQA9lv4ThRq=%{9ssrqQ5!s&Vav^j(L;=Ya^JR_=3 z&Qy-CCCnn$G2b~z^wC>WjON+a&yhsLRHN$TK{8Qf;3&lGtc$5Yg_!G>xjr-Faud9_ z@$8Jer^HJYy7!>aSNt>6%$q@)tJVT5dxF-3iPf>SO+<8U+aPglZ48l9g|d7QuL{ge z^`T76{QR3eI`Boa^SZHrQsVlP9DsIp04&rf8a~NET0wCzw1Pb6Mrq1(ZlVOk<_iPq zIk!PFr1+B}px6FJm1{ZJgV$mb;pagzsQ8%@(1VJ|!Njt7&TWu7=SJb{f(mwx7VByC z%Y)Pjw?XQJ8~i;Z-PxM-u{1iU-T2I&BG;y#ZK!in~uR9lBhVIQ$idtPvvMa9$;T;c#9xxS`qo zfsu~-hvpw<&rm&ZB!7~WD2`1zFArm5DgW)xy!jy>2$$CmmaFZW!F7}0;W3WLR&Rk2 zE6tGq;>maAg>bL2j*bzvLNGe4KTaf-!#aNX>Le}3VZD(j-Cd#wsJ*LqDPbJpix=hf zH?ecHT!efPXGIAemJO)b+kT`-*xRm(66|eYm6)^HHtxTq!_8*DA!a`J{?KR^Fa+vd z;}CW?pCM$D2!}sllJF6xb4?PE&R!9kptTwzPq{av6tJU2mo{&18Y272)xol#TmpwZ zl9s~^GRJK1TNFYKPGrScbFiR|-Z(`3LT?;0q#QN9oiBd$_S9)iy4eyn=R%sFMZsNC$TA^h=j zhb>~Ekd*r9R3f@u;61q_uepg;({dd8^iPg$q;vY(MMjQ zKJupY5w=QzxdI6sl6MY~L-I~aKp&Dnp~aZx0R+tQ7!Ytw7Ke4fr!cL1_C5bbuk)aV zg4lzUF|PBj50MF>-)W8LbwNLi5;VTb=>7u!ClW$aR6>XnQ+`zb^ANet3myt3uHJ){a0ke3~8J znpR*0|F$SWyLricpg}C0&9q?v;_5v(oBbt_a5jUc!$Tb3EOD$fM+{R(1*0g27^zI* z{QN|?mR@xuEI{izj2~E@VMSS7%=hH?Hli6T)pCiGDw+!Q( zi_&}WHP7TNX7^Kgz1h~%V)U^4hjHIG;efLdL0n+aC1SEEmP=)$H~V^!eOf%_pqZ>JU6qbQ1|dKIWW#&4Jm`u z6kfU-EfETuPD}1$4}eIjsC`OQI;@Ksp^K>iM^L(W2J-nT$3fO|IPpa{f!j!{c@3BC zcy3o-n2AOIcZBxCrG_6r=vcy%DLfASx@d|);&3_i10D|j^#DRa0!Zs?A;bBmb&diJ zBocr`Nkz$^B<9u)K78P|wBistj*(u6bHq#`EY1j`)E)R(Xia4nORe z$(B>KagJC*N)+Ff4>vvsC`Z57@)iVpAYA?s4=9H;*4u1&#sxx zwI_%38S5Q=BOVfx(V>135mm-v*Iv(?Yhv4JIj-WX_T(j-Ul|U`!Qae5{Np`&;p{aE z1Y?ytt@8445`G^XE>EjGDPUbg*5$o<@x11pjK=B&t2vqZxNXj0b%at z)+s*J(y%vH(LKe~UI44vp&g~C&kn%?#Ho3Wz=^?R5`W5*;>@50-s&wr=EFg{?zK zGq@}XG`VT_kUqiGy-XCDk(lLxV@{jbh#=`6legA?q>Ks;V(U@ij6IIi zY$qj$9bea4b<*cY%4p)Zy$*|sz4hM_4uULoQQ@Z)UT?JXv>5&C(~&YNG$KG$7^F+2 zqQZ|rF?a+3p1zaHiil7LQeq$A<5$8+xOb$C2%rB?u+Q+ERgMr2_ey~(#z?v*3g{VXD+~np z9(EjO!zmj#K~;1$c$93q?6)1UCRXv^5oV%hwQMm3#XL#H2#Xhg^{B(f?x%G^JzlZV z(VTyHG(C$bs3f?XCOCYfstW6muBSsM2%^HfL!5SDb8vGk0Mmo%q?uZfN z5g|TK6Gz1_oFv6X#guz`42>>MdkESoq(Oy&uf?Lj>Ic1Jn;oluw4 z#4plj;^iIF59+s=COpVder=STCQgm2nn1~6N zU@0v|PX<7K3Ld60V&L$y&Li-rKKb!RU?l(U_l`8S)g#79-~3G;Ffhybsyl{u=NNwI zvLne2LG1nOy*S*1@)#g~Ovzz@_<<fSkW8^N_2V-Q$@Z=a78ycERj}1$Ha(u$9 zV@YSg07F+ePAZ%{Rt6ZSes(08SdlwIU_FFFe&Pt6d3f?y$17|s1;<2_4&GVPA2n7+ zdWHPJI}T@%Ua$D~2L9ssXzo}u-?Vo|7RO9sas$wbV|mW+j!kSeWh@jUa>h%>E2Nxv z+L20o9JuqB4Dj~+={UxY(qcFJCrU97 zOZ)H6OzU7`U%JB+wG{kWsn)NiwB_ta3a-yBH)t{H_M=DL6veAbx3lgxSM{f53$^}K zki~g2k+0nv+RFsjxu8jjF%*Kq7#QCfd~{4R$OzK-g!Cqi@3O{03C4Fl#V?HSdX8%- zzI&s2ny32!ceF_B$A$@fSA2tMfI*~0@oma6Fno`t%0G?qGcD65g?OM|{{LwE?!c&u z?P2#WAcO%D5`vV4gwRVMl)zR9kVc7gRFGbm7CO>FIst-|p+iJ^3q^xURqPD}EZBgj zh*AW7RzSWpXJ+@Fd-vwOPk6t7ZZyLEu&{Jbo-!)^D%8)PyT%o zXG2GSArTGT+7S_DCa_4YH)C@s zDtfB*J&C8<1^)<7HBNv9JQZ%nuI?!}V^>oGXn=SR)Ja+_MA85OH)9P5F#X7jptNZ{ zaW{5lTH6QSjD=1p$tF|AxEXu7r`(MFme!!B`bLysyQ>`GMKCegjOBMDoQ0z)C1of6 zZ+gm|*uN<)9Mw84wG;anC=@(#TcQ_G2v{Me+H`mo^e~?EZ*V@s_i2DD)=iN*kRtj! zG@`hRB_G*vHldMynOQ?GO;FJprVUAZIMzn6T&W<0IIH*BB=->{iYYxFm4pjy0PW9uy% zTwS1IA-2C)FF9({d*P@xzw|aZ_|n_fUi?%!XMIO6!H*8()>MGNYd3Xyy#>uXvVF7; zX85-Jr#4SNNZw8OA84YYDt_Hf=>}iG;TtPDeizGUy`*p0DnJds;muysH@r!S=)U15Ek@q}2#W5-?Ud1WiTMqW{-T+DmT%?YyP8YJ?a8&SfU=KmeR*IT*>d=IB1g-7=k!k}Gm8A$o~{sPYCL?b1D8w3!6 zRFmH7J)Elf0LJx}@8LX4d76|`d8=tkMtpH#IfXaLsNTa_3d5=*e7sLcNIFbWi=zZE zE}#uB-@>7zCeRfy7SVql75M1Cj)`CBzm7paTE8dQH{NNrQ`oq!b1D0jN`kKIEGbcZ zA7-ZzOfD^Mgs>L z&vV}^TQF~R6K4w>n?Z$v=Qed11!zCk)0%xunW6s$*sDHgZ6ho;>6Ji}UZqHSlYVQK@MkLt zb9yINv6S%rX3h>quGmDalbqfHVSS->mTYQLoiX?o92CeKPuLgkt4FH#=)N$GiSH2_ z`f`7BXQNUUO#_r;2abs~vKG0J$|1m0iQ?iV9{<#td8=DEqirmailuk$w=JD9TC={q zP_nZ!A6~|ZZ+Zn=O!E<`wKjb%46s^?p+8k}F|n`gPXkx%&puQR>`#ELnd)q1A>rOZ z$q5Co=}G zWu{FUZrdnL&ZEW_mvixsK6&s?>=li_R{EKe{FO0vo3LF}cAUI)aa0~_TVI}V%#+6N zv~^x#um1;lbw$|mzH&mI^tiJnJ4fMhveW6SJ*+c*<%E2kC&f9{#WXsQB6_4Ro>a>F zw4HORjr~linxt0K_)Tb;4$cpmy&o}q9F4{LDF;`AR_Xm#w4XjAv@-oHY|Atf6-RqN zp4!=&Y~-kq#020bM`D8zzBm%=625jX2x&bMi4o|G2X=MVF)~J@?npTaqqf1Jyc*ER z;y_j?p-1}3o`9?BEqX$6JJL5V;Ynw@#>P|PrcO|%GrFHJg*tgLQ<87l*gT4Wk!-yl z;4iajF^;@>{disv=O7~jD)hV+?3tdlJNd z*ZRYaD=!YLz~G1O&r#vroo*LB7?b3+I-kCHK#Z7~+huv9Te9M)v1ZhC0*PNLpi}ri2_8q{d@28zii3Qm8B$ z0g7ew{&EETjr~vR6_Gp8J7RJ02Mo{b^?@ww6@+%^)}o+apl%AYnf?*ZAK9x^Sd$f0 zl&a_Tmp=4nCcwW>;qmL}^+pz|#?H}V95?Ux=L<$TeI^7E)LjLu!EgKiNRf1(ccnk^ zdH?SJ-+f*MDJO6|Q`B3|$Psf(2C$(X z&pbuyeEW@aRx|R&L2!5+SX?}17ib!sQw?otG89Go9ccp^^a1X>>)on4$Iz{~{-TpD z$9;Dibc5=+6o$wh*I&Jbbh!TNBYxrftIvS^)?YCbo&Ps?`Sx0u?B?SpIXkh*hUOA` z_!CHp691uYOB1j21HWQ?@WD={EB#O!ur6P=U1)UcLJPm_OcG2tRbcjzbCWEc|_d+!gzi zRwMmi34QxO3;K9vp`edf78>Zo2vFY;c!$u{6;!wGzA0EFz*(wE5!#Cb>z++@%ywx;-b@Bx6Wns#g;xo1}w zK}B~ILEf`VM^m70VVt5TJ1-RKiX77*=AmGiUTUI9x1u#j8fx?$))TZ^rw=dz`Uw}D&$5ve4CxP3 z^rz7pqz^SZ{YA7|rw=dz`n@B3?V~N)-T(JM>E5plME71?KiVH5-T+>5Jh_y%cMxy1 z!I|RtTl5?C>OYWDFR>B&B997|(>Xn(yqUxy3W4tZJz9e9{cTZ# z?)~aO9(&T+ig(X({-s?RB;ET}ih%C-Tb?k?kPrKLko3WO1*pNtUmT=-Jp9njM)>%Z zFF5Pl!v@2f{{xCuVr(#}meCTNkk<+i)`K*AGysd!@yx*H%$v!L?8s)#(6aa=VSX8} zJzfBdSBvYJDEHH96QY_6{t>ShQ=0JZfq1p}BJ{6_^g=}Ecr$zl;D9&7cM9Rqj&kTB zIT)qJTj7P&x7`)W8ae0_)R&~q^e$2p)aRlT)T>}`50Vqq8?sE?4PTn}JVDM&dO!Iq z8(U3f#>wGo&~#M(VZ~rEJ2_T_mnoU&+2br}V>>C5Ft^Acj!MpKgEl!+FeNJQqrJ|_ zHg?2}P%?<1CWym>F`L8NEpdlM>LRGxZG$-;hl|8Ch6XX&5Ds5E_8R;n&UQ={UsQVmepopB3s8;D z{!3ado&AXs2{yvSeg$CB*BiK?uSYJz*NY$M>;HxyOQ)2JEjom-MZxb9np)Tp>FOy- z-oQZj^t(xm1p5YX@N;H6 zpkKrt>Z|n>DL<)~f zkP!IsL!^rXJan-k0DXpFy67=$;UFK3j%|&ZlS3z@d_N^1J==%3lH1y}?L&xX)3KC? zH(;S>qoXa*N-%=avmF;=pl3TFexYYOF(iM_))hwlbIw7$&d1J~mY(flBl?(MAwjYD zEbKF1pe=;%?GsX>6nW^d9{3gGP0u^Gu-k;X+-JTqM8@^^X$=O)Py@lSn-v=has-wF z7#DB)9Cld2q~M&4_5(oW)Q{$lmCm-TDh0*ZyV6iez9Fqa@=$}zhUT;;7M-aeK!h<DfB)4Xaw<4I1g8S=wWPUU zIb*d|L;23HAf&%4+K&4EvxdfmTje?Ue&5P(ASDP6zcu_wV>whN^zt8@$!wq?;?mc= z>)$wQ+Sp6997nv4s*Zvk7^;VL8|*1>+SpqZN$`u(k<>>LP7TGlt|$B43>&G#DhB6= z>LFdpklItCWt-a$h(BuQD+FfWP#LD}`wq@$-lH5%Dyc#LC#n?BPh4>hWyOaPqeLgB z(^v3Chsl)ppSlo^5TJdOFGh`+RjEzMo5WFKJF5=8+YB0)q_&*-PFKuy`#-43Ad}Ilogzv@ zep)fJL`t5fO&LZ!vMx)c%$FOm&?D0^5Re515_;t2LJaiCE5tAK$Sa2B?~y?Vj5TlH zb}q5>$g3YJ*6hM-mQD%hMIEkq-sczRdbW=?6T0PHq(o_x^*>;GguO`!OOO28FzGVS z(Hit=P=hY>GOY=^GYzWIB_A6mGc9*07`n^f73m_wL5F}#N77J(?lSj|vuaUVi{wvl zs^7wEpMj{f+sHD{k{+5&Hi@&#l}&waAa&VqmQN_7<4b7C75NI zD@riv-Zt#TrLL|vZOd>OZ*QZp7`AR6PNK^F@Q;YMhY2u4yuER_inrm1-fO|+$~#bv z@%DSPTE^QVx$+j_Vm}YS7;qcdV8D%RM8GY6V8DGt0E^_xPbSL!v}=T@_NNrR7^SHq z?v2o^BDoSGIuC!;)k2FHAzzt}96>b0wka`!w2cG)327Vg$~4M~5x0RsFybz?mPj7# z7=Gy;XPUMO`bEUsbBD`#d)9EizlEoHv=zoM*kpV^xnbU(FxPq;dxA;kf{~^QTvpE{9G=jLKP>5GXL&;AGm8lqf|W=4Q44zYVM>AuK1;Zkcj29Y$+# zQi2+NQkq1o^+^d}a8l};DerZ&5ZvD-Q%*|0%;4f6rjo0Iwl0%5tK@3t=psndStyC} z!ddA3N-)s2&|^5 zGUX=lTUA`2X_rAsku>_2BA}zb2u%}AjogHPgri<3zzmbvmzio3gCDvz;4U!E1cgS* znV|4UQY{$R3h)`4OI@l~a-;=)oCpMc+yyq!$B7{K_or${5w1Z6;efv@O*;>&iFx2u zrkn>(X3D$^ZLJ_mW}e8qz-y3HOk5x6ou&3X(?`nlPIKzGI@nnM|Bldmq+C$kD(?D> zjid0QJ4@;el+zzA8b)0#0l32T5+Ef-4+(_#E_55ovlBpLkPQ8_PEi4;jFgTSKEyhN zZKV>JR8;qGJg+29YvAg{@+iDXVg-MQNDR2Rs?mi|Kq-`taJ*3#J(0opZET#*KBcfG zqgQ^MBFh9*-6v93*tG9P66dQ6p?tRi3!N_=wE=U0p^wh@t`GyA?>+Ggo$tMo`8!`2 zTIhVMIbCaw7Zk;IgZl%ExLmVY^eCWY@R}t_iIN~|{OGhWA!3=ihWsDZ{gSr4;7He6G5V%7PE| zge53r^n`o%CJtv^XfeM0bYj%l2YLA^pkfp+k)B$Jb)t4=bS^7$sjg-%F|JHxlgvCg3`4Yj{qiOWjDsN6EL&4YK1^WEaz1pRzlY z5_%O~YvqN0A0-`U%u#nGn^tBt?{(VMl$9F|dIrV=DpGp1-UC_{_{T~SPx&DI6?SzM zerv@jax_14++CJMQqs^9>NIE&F#um;w7B%>OV*OYW3s2$NjPrWh8AP8rzJ3eH`9m> zD9%ZvWyA~=(G!QTVxuu)E?Pv;MC%EYuT=jon!0%?#eYMi!TC+2jrVBp%7~_ejF<{K zu0?`8I>S8O0 z3tacFgjbzH#l%zkGbp!!nCttxHklB_Y2y`R)M;Z*k#rH4Q4w>jM8r2NtVF~^yao|* zP6z=tbOKIdYX-O$v!hfXQ}?N5x&aeslQR@a%qB%Y6eT#DY~o9+xDt6YTlvx2^)Y

P7*tNlo|{saDTB*yT}M{OmUp?7ASao5qVjKLYD^kqUS$a1vW3jJn` z49PznBSZ4{patPN!qNt@Cn&sVYr;Ssz34nvI(WcC2d{UdBG_y!hT3^I zN4l2T*f>g2KL|gS77Np~10c8Ylp011ea_PPsH@aQDZzgq<9eN~rt~nXIAb2OZY8Vj` zerXWPd#z2W&OW6G__hTg9K8u!8+BKuJj$Cqmj9Tp2m8DN^3ZEh&X<+VXK^ou>~E^&$&Jkf(y_^ce6l zFy&&nv`a{U;nHsL3&W+|oOMF=7eu7)L>o$0)^P7Og=ZP^0sBj#leD00twubK_(r zXVJ6%v*TnWcLc^Hyzov=n3duCUrsEmBDsU(`A5&Wx;V~?PN9+9F+(qjNN)A3i9^{D zDv?+|yZ$F8^krTOV=q(M7=08uoU)3&M~iV{`S5T`4g2}=knb;?T9tiD>(Mh^{Jn5J z?d*8snJ$f&*N-0*uz`rq@k&ai$ah5vT|&P%p10+$1S4AvmqI`d0%Oct{MD30Hg=Cn zgfZ(+M^c)wf)l7Yi;Icwjh8Q0hazC~SlS99W3B6;1&8=`u6nG78Nm*e`SIf^>x>wB zD|#oWR%}X9gRN+D^PF*k1Znz&d>S!IZy9yiL$EFOT1tB(TT?44SVJq~R>lvnrOeg( zPawWkXQ1Lu0}|TGPp_x^%0^Qy^p>AQi!mG+Jwdj-0Rdl@U1SA2d^2PTjIiQP$*(p; z2(rthHAWpaBV^?f0k!8DHE{pw!7D$j@*1rL_<^&h8v%Ul!(`>{DK z!9I6A!{hhE63_q(F=K1i$qZ`;7+(B*N>wAU=t5%bD*kBvj6E;sd`b&D%cOMB{BT%K zpv5Rk<}*B@mAkqT0Y~LGBU4@WEZ`pgbxK3Fm|}`v(iS{J+}bMmMhv+y z>Eb`qsbV{KZ6im$*?*&qf{JCi>lqPH#CI;H`0Qa5?L6#Kikq>C!~%oPP%Au?rKa7B-r+LzUXqw6Gpx$DEj%@lwCkjOz!E1uSgAjhHS=%)HZ$wuZ_wZ@oh>` z*hivdaZGfkC4!M1V0fJ?DHV*sXcq%5f&adeQp*SogF+=Wb$KeukU4##TuK}}<(k80 zQhK`b3urMaKNGM-W;2A`w25*h0Aw+~4*^J-C>Or>en^3njC(0%)c++~g8Bmtzi=(Z zVFVWX^P{U>cz;R|Zs+wBcyWl5uu@%lsGUmnaW_(Svwu+}UG;0U7*+pQi0V~jOI}o} z16h;miXW&h7C{=A!2S1O9}YaEHDIM@3=Q&Tl)5&`W9Az6uf96Z-yn5moonUWDr z18Xuv;~MawkRI27hr};j10I@Wkutx1HFYF!bpcL6-0R^^;CJ#`mgdb~zfzI+I+0j} zd+wx^HZBQq>u<(q5IKHeXdsaZe}|MPfwG=|;B{dhtP7cqeM^YqO3-#uwj`dp{t|2o z(&4xqyh|a)63F&PD5Sn7jG7EG8rFp2lli4@T!}?#1umtaLSIVNqt*IS3Se+4B_z7n zFq+@km(r7^Q&?QDB~O;?&aSiunLv%sq(80JnE*_XiO9TLw7CBZuxpWdKQ+m`UUTsM zmm%D`IY0H$B6EO&{BGZ|f~i$_?qyef#}}dj>C){@LyL-~Tl{N@W7rZZ9PWJHO7HL> zJD08=>B(?9 z%XP#80pp_|%?Ng&oL9C)YH1S>lX&WtexrCdTnpfMG+7Gi>Zlcj0bX=MUT#DxO#k6i z$Vk!Ed5jk0+y;Pra%AdFBZf&h^|GLW87^1$-FEHQ>RC%zN=_jLBwVhvq(b0wB}tUv zas@_$zFg@!MJ`u*Qv{rEp60gm;J)=6^@dE5la9eyg4@mT4Jm+EtCr4`n!al3AVAcr zC25LWwfJNiu38Lw=&P3Ercl7$gndJck;SJ| zQd5Zy2PDL`i4j(; zO@0z8RkK2I#Y%XM{9-NZhEEsiUaiu`z7YAya# zn7g=90u&k7Cd(*e(F3+m`RVsu%}a*#;#oOT@HOm^%G@dPnD7U6Q=@F`5G9HoeT0@^ zM<1HXyA*dfFv5bhtF?yCK@G0lsdBB+tA6SP_9-Q&EAtI4mgWRlVy&T*Qvvt6sdB9W zWHFA`0TjPIQ*kdr1I?yHxYINk+}40=r;vcV)HGtyCNH7l(uip^;BGKY2HcG(BHC!e zG-9Jo;hzv2#fV!MT+y#HO-9^xC`GG=Rq!>Y$%wlLg~v9k#>j@YpDamNZa6?50`akMAJBkOfDE{Zxd2uq`h7I z!bp4jG>b?(>2lIQUb?({i$y?fceppRlLq}oKz)>yD85-QJa9k_Umb?Cbea9(JG{4= zx*p~A=D8yIQ?pY?vCjw}x!ZDXnmlfD8ro4DHwo^f+zJ7`K21inf72R_XrTrp+IH`b zt5I}1C=iIY^?(*YFrXEDL_lkyvHv458xhbRo@NecEArcKicS1DccHL4z(5`7YwvJZ zkO%s<#oYDdMw$fN{$`3Z2Yw++VQY&jirt^~x zVMZH9t8q@iqb!4`6TdKiy4;c#?Hr7tW9zu9MCnq5$ypeYwCjh*xpfW?^(0`ld^qu#y{=bXmz?-#_mccO~q%W@FK<}%1z80b|F>G?y06O z!F5PT@6jQX2SaAER_sYa5KhcSIbz^rH7P5#fivV1Vlb)4?+R%Bsb-_$A2EX(MhY$; zVphe4+h*X=BJD}|3v*j#T_E*F4HYPGSF^WI>R20FLHP==L7Ga1>q}=~R+n5zJWHJ~ zGm@1Hq?Xe~mbY%+?tZB)G?q)rV??3Lrb3n7Aar221lApYv6B=Bw!L#MCqempkAo_A(&YB@Xmj*`I`;a+BHeRhKuBlYiQ$c2UhL66F9Gu1-FKGSHE z{j~eE(~8Zs=rjz?bs=M5D|EPQlj`~ZGXrJJSHpE!M|STR>Ajl!UBVDUM<00 zUtTFP;aOAoy~+%%Eq_*q-&<)7hTl-5CzKD-YCZl27>vIKBN2aF=<6T&~i zNn-voZ;-o`joqN-7;Rq{B{bSLpkg+%tKU6CyYnoGwsoXJaw0GwVYJ$Y!}3^5G-si&3K3wW7U)>h0y z4_rkTOr_|lU@ADY@q~%)kvx8)`!YL2r4W{0Qm3F&=pP6+O-O*4s{%wLY3X9GKPv;o zu*vR@8oN%ZDhO@}5bseO43Y}YCZj`ijO`vjk?gL^44@bv>g3g-g}-KD zHu|x=t~1eqYf0S=qcVNA zMK5BYs7tGk?E+T}6b)Rl4SG^O0SPfYG{TDT5LFs!g@D;;1A?y7?0`yhDJH4}ZrrHS z(to59Mu!HjddqL4%z}D}w6p;M#hj7_xz1N-^S83xDeNdkM4u>vL)*({QQw*^14P3Z z3R~<>inMBd3=j>Rg;|j?p*qST*ff#xVF;bSX36*vOdEq99YERqce6-*_$O7wG)7cH z_}AGqJ}f;)#)oC*kYOSENh>vnMDTI&k62V16vy~bmq*c$m?PuE2ue|p4@2OK&5`k8 za|*A=hplKa_GxoqAkwlSl$y?w@gYz&HI))AY>tc%ADsh-;_ePrS8PCoV2~I>?>p)| zAV_Q;O=favE(`+!i}!l5QrTtU*W&o5F$Ke-X|NH1f*=Ni#f3r}3>LG*FANs5=HwSF z7FgpxXb~*_y~e$RZ85Zq2o`fliQ=2J>%oIXcoXnResrCCB|Ab0%lz!&IWj+c2+X2- zgZ9xDto;X}Uq#+@-5iYD#C>pIZGb%0mq1NsO0z2QrJHWVamVYag?X!uZnxv0;6wwr z4U{#${G9PgVhjH3>#0w%?`Rzw%;Zz4&DafEEDXjDfc&vHAVM=>v>({KOTys3{(gP> zH5pxZfHSdC!zKw0`Zyc)uHUFp?}qgo45*jbq;b85^_n=Hi47Vx?w8oRVV_1k&@8d) z23WUO#(p}4#a|@1a&JYC#xcJaieGD+o?lY1qzP2l@Rc9bES0y z8d`S}%hHk65M9VjN|@x!kke-N%T4t(^OQ zYD@Nn8Nm*edAko%tA$`x=0EgzHeh};h6XI!?S!2%gG`cz_?FFNGXk=}%x)+~w)mFK zVoQvO)2U_iey;blruj}$`SUz{f+ zg&!$A_8e~D{!ELp=Y9kRB2oyU^!+^POM#-vmnzW?fa;J*()P{c?Iw8AG-wKIz%>$( z8CvC_c)!!Rde7|>uolwcUpQ2fF$pyB-d!T`8ZAdF9W!~Lv9ERg!9dje}K zhy*4Zd`B*wlqlv8c`Lw^yxq^K#d)ot8b|UPOIr+K{Rj(rG7>&8yAl>Fcrvp4e3?4> zdR_f+{@$3z;gE8wUz1G^L7HGf5@{d{>HXd2%W$IQ{9rio$Gh%0ZQXqCc+cI+(M?dM zp+gE~C2x@WDK&*{p~bKl8OQ5>omf-bH=q0d-Ml8-PpgC8#M6MgFh zd>}hA=>vECgN78)x>4Ge`SNX2gOE6^KM;JVde2iq@hsZcv;@zheIZIPN`=RJZ+Z*0taQ^0vA`Vez)Q?H2*B4y64=N#cRD>^cJq2>^8*?Th*H zINE2j43DE3REgc&s%k{+@^M$!Wp$ni4mZfYu<8v^z$0TUy{ zLPGz51>E*aV~1^lIZqnRZ~ZH=w0co;+XC*r;BMy_Ab3!NYEPNsc&T|mwL8nD#h56) z->&|HoVLZl8CoGi1`KLt*T0XRj zZuvJCNXx%P5rUSlT?a!CZd(0Ct$v$82n=()qv7fTdF#)&loVQgczatx?a~5yJHzP( z@^*#~7RVca48p_FOK0A#OKymQ5*7l3fDz(!tm~~_6|A#R-p8=5a9TwhOaBiDDlMD5 zP@N3RM_9(fJkTANR6FapFI7jhQL8y7ayYV0gL98w2qWwP4PPk7^k zu7$es8n_m?;jU%mswZw=r`!T!Ub+EqXBouQZ(KM}5%9(Z-~cx+G%_OKJqtf9RJRaZ zqe!|=-&37_wbBW1A+XX3?^!U2DCP~)iAw!Bs*~Xc66oZTIw@sk%|&?=j^8+Kx{!;z z@N9L=2BBbUF2pD)iW;>VcNu)?oW?29)TxjWDIIwhlt@P|eo053m5(FmoBl`*<30ZE zUT=B1(w2wx&I_j8D8=iPO{>p;_|?tXlR}`tXvBc3GbvGuWc^Q=cE8{%v+@sjaejZD zyA#VKY-CUcH^{&3ZUY|{gFkM5%Rct8QUpec;vbkLeScOkILiIgT`w#fK-H`ticQj7|F*}N^8j8FeBIjkmpuPt8T=|`6;n0`_v4qtf--k z0nb0W4~r>-G)Vi71?-BOo@z!=4A9yOP}-_1DQ;}lw4`X-&ZOgTFqB^eB{&!y;uj7E z$08gImfzBA4+BNqnsG_4p9O*`y#x0a^c-ew31J!7 zq%V>i!`)~NZVW>WYz#;9O!L2=|3yCc5+~SpA6uMM_6o$nI~s zNG=NMEDGBF+l4)qv;~X!^}?PsM@vDSc1m5!u6+^DH*6U#5%JBk>DL}Gyur4JQsGTD zrHii=wJYjb#Ga?cIM;}GO zsGn9nDo2!{(gkFq5qR=p_0#GYnWNQ)z=nvO*Q>avx{aNqVqsjSqpH+U2rB=qVOlP` zOfga8Tj3t3{W=JByHQ#rc9YhF!tp$_UBN`#k7kAcSj1yWdY+Ed`Kt4tmlyHulAZ>| zC?hx)_-6x}L4bW~s-lU6BK2xJ84hGFI;;c<+V#HZP zlwiaOMu`#Uh*F-nwA95sHr!i1>CDp3Ot+_k*zF_|V?P@UeiF zX{ok#`2en7ECS)ttmqPIS>h5ky#ds5%14(-eVRo&6Ipo*k1@CouWq?2vqWa501r2% zbO1$gHEjWWVZhKu<Hnx$L>nZCU zOH|5w7p+Ghj%N+GftbPN<%>&X0!auG^xu%OZtwsJq(DPC>>wG>?2y*77!^@E!pbw|q*{GI6}e}frkW<}X3G%{v@xZu11P3tv(XJbM#Y9Ez_~>L^Vq)L zlv30-1GQ-D8PS7FF13LEXPJTgG@3vx6gexXTlxJ)h09U7nVXr9vWVP?L#>{I<(8f$gFt zI9}UTXyMUb%;t+Lv~aOJT8##sD=x1-n5_?2`^ju|dG+%GI1q1n`lL1D&Agrm2^a&a zm(_MjQ*oRXq^Ty`sbCm)T%;u!cYGyE&^Dl<^tj_rwv0ROQ3Q-T{v>K?k1myQhe0ch zJATcUamTNefF5@^mIB+rsKkjF5FqZTS(L(K*by^MtHo~9Vm(cE6FOIXSKzB`nI^jc zg90uwWd_YLB}{vjXpD1O7a^1geWMuN zrsR+j)ZkaV?$a83@yeHI`la{yo;xn5do)6otMh7 z8+i5J-?&s><*uH=HkM6^Vg#$Bsw{EVbMVQKCP`I%YV}D;Da-c@q_KVcQ)lM&eA08r z#q4DC6&x6%jC95>QGM|8{0&AnOa4?CAV&w_>_8GUShas zKHE>>QOP%kd#bXRX)*TdekHO2!6dReP`X!%42(=7D+vN3PssF)w6RN+7lcPOdBstl zYW8c;stNBT$FUo<9%G0fmg%99_B;F|au=P&&c(*{y`M4&!3qX`@kbwd zBuk4Ky?pla8Ox_EuP!^^AO~osZb;A@ToL(78Oc*)Jl9zCaxy9~M^J&5VADk}=f98j zBpYF|t?_DzdR7RypJE_xYHNoSI&!%*4-m@K)=FAvYq3n%S}c=CNnlJ^1I9}`;+Y%L zvYDUCWHO^T$$7wX%&qX0iJmEJ=6{Eux?GN}rzd%4v1JtAiI}J zyPUi#qqD9io63NMUn-*0a9~z~xg5jEAB7YcPF@qgFr2)$JpWw$U>6yt2LLe0ka&SRrBPB|atp5SOxvV@PECb8OR;a+TCauE2^05^> zXK3R#wiPn2Y}ce>GHXtuFf#Q4f%XH(`B*zzg#>&$0TF6hXyuOt5OJXR&Tc z^sQG6JV~Jz85!|oMlAOyz<>TsfZOb;=ZF+cXz2AfwJr?3dX;KCkv&6&fuWF5Ucgbr zaTEe``HlsiG&YwO8xif&?u>|&e4TjRg`NmzD8__Z?fq#(*)~c~bZ+U*q(pVD{~nCC z3J22mv!kR^=EGiIAtT=RXbpzbP=j&%=d>mm?P^esar=uvV2P&>`3amK^^`7&2XTFRsXA#+M8%|j;=@Khlm3>vqB!<{U>^0SC3N79~RS+q&eBIc12%J}J{X)D?D zq*7YMhLtiyx&~TOT%>|s@Ja~SOR5XrrZw0FP!sF|_6e=Ve#p(P9_$CfL-a#_B1S~j zF3WFuiWK4Zc6h4%^UhG~i`i5N>ga-@VxaPd^y8rFzZ%3ev}vRCSG(kpF4z|y%K7~NZdzI2^N3Rt)I6BseU)T@p{%Jq# z+5%qc0OgMTu$Poj?!(_tdzZaUDrG;MQVskGt-%I{8f@Uf+dVDWx3pS!Zvcbt?F7f& zhtl~mx4qaomfzXosrJvCS-p0-iwc0vOiQSu$SeG#A$6joR|T56wD^V1TzVCnd$F4} zpd=Dva6imM{AAC8F?lcT@+52guQ}4kVve->UQdEnWfkwX7n1(f1d)Kv>p9Z6Rr*4} zp0G;gNQIvbt_0@p^VE#gU8>rPE4PZD+UH3za_n)yQ%y@>#e3y?;#lhtj(F@Vm2lKL zuacYK28Pr3dt#z27((#!Y1$MEj>8nk5!M`sP>#>!$I(*73kN+<7#a3FMj1iPtsTvR=5%q+2V--I!vPmlY$&6bv zIBlz?*|k-eiQ@HM^%Rb#gups6V}5VB%x6q_6^{6`BCCmsq12l?HmzoEAM=4tP>f{IwP;tQ*LbL2@ zndxZvLz>;j#!#Zz2Gf5`i?>f*ZRh)c1Vfun>rwy7X8jjf>3{7FPt^)KZ*>K`;1uJS|QdqTz!p~IgQTQ!SCfh+pGq#6XtZpUk0jQ?-P&5PWk^Q!(rH#Es ziJI)EvUInvDsiA-qwq!{)LQpE5du(6LMWO6A!6S5MBCVJlqhyeyI;~0wMW+Q zwI6sAn6`%4IQGfk=00I-ENt?<4?Xc@?5pAM+iK1}^28gNTJ?c~|5>Sj?jz43R*Q;a zR9~&ytMidNV7Q=70;)-UMHAG=^h)W~{KGRaj0@%ms7d4H_g`+&lXauaO?_2M_Epz4 zasc7UjiD6YD69e>OoRngAuMr&3P_{9gNHY$TjF8oJsnw=nU%gAtrMKI^|^S)zT{GQ zSI>LuglTKmkQ|6Ufa+RcVGe|@hXXDV7TK5s*)OEPDD8mwh2g`2HTma2z?EVShHjwU<4^*?Uwo5wB&uMM{(eSxX->SrYxNC!1X+gfV$x`&#smo40FXi_k8t!MJL{3BA#j|;FsiW#@5XRejo)H5joOzq^4U zE=u8Xn|jlt28Ey}ahKY^R_;;{Tq}2}4T=X3$K~CV^ z@0cf@pZmpgh5bpvO%a8Cos1|7t^)!AtMeO#WQUC;bM| zgn_H>xkKQ81v`Bg-fi#vyQdS2r(%FJY#XV=t3xie*75yt)J_9DblW39|lz107FOc#{MQ{wXB^;F%;)03ZQQ96zn)t?t6a@l}YZ z3h)AoI+`t_Oiebf)}V&2yvsR&8Z=k!JBTa zn-Wcjy{Zwu1Ks&sLKbxAZ;M~(&fi{_-wBDL(Y~-1H@zb)9QpBv-hzCG&D()pqUxbH z|B93-0kRf9q&MFipI(f=a;HTkZ*BLM z1EU02^H8IE;wW0Jdt!h=Pkajok+{;rLK**0>!c_CY#n-Hhn`3*f*I&hy$26hN$5uF z`Ll(*iH@IynAAC6pmL*gKJ9GLi}|Qj=$tQp9R9%08CorpxhY9JFEF{VcQb6m(sJ}P zF^l^a;fs=+#A;pF^W5YnRoIgh20cyZ^~BTkg@1&nX(Ye`{&-zcZ>7jKq6GC-De$)I z<+~vUuK3>Vrnjp-%0~=n8K+HJ&!?p}sm7*+aD9eyoomH)STS!Iek`p?QA^f)ig_y< z6$U5Q))6A5p{;NV+d*Z)DQv4K!6^*vK%c@+t(Q~Sn-l??>@_O=zmvh+G^>Pl|yk5>>2F-(W7;hZqJ;odx zK;ytjLXW36obq60HsrwpZ@6`?5rxHlST8L>!5eMhgG+m>8)5ZXCxm#y2I=!_Jq82* z2}(}iyzNDck;@Ysc=a+6Qy36XqES|`xY28X6(&NgNom@7gPhVpD4bA2q>bNz+o4*m z4ZLSLZ<czm44{GxU=#Mx7woJ#s_SIXmDa+FGrbBPYG?s<4c%EzC(>uEs@ zTv3ar1aReH==hTpoEg#7H4#(C3FL~v#|h+n@e3!A?>FQ(f&5v~JKkdQ$cyoIWRGkl zMuqdnT_T&}o3-d6=Z(yabjCNNrO#%i4gAEZv&fAy{a#|DboCbe{lzy*SO5D4boJ$R zS6>)i{WF>Um8WmKk+-SrZRjX2_)t&(CsB)|r+>P2`W4oU%7gAVvrT%<0A zI@(YGa3l>lCO*?Z+TiK&E*oXyv$22;IN;-L)8qIDt=m5Ev;mD)Qfs!6|5VKzSB%Q3 zZX7(ZtnqSf^hW9L#+thDtB1NTR56hQU>ZDv{B>^ zG6GHIajp#tw zBbz`PgMZdRRRDQ+BgtY!PkN0MLboQ`s)Mbj}5XgL^K z=u%ul8gwac@e5swdsBWc#oo|6*21MgJlc_UqI#iAX-7&F->j?$cPR;OZ#Vu`_w;#e z2q7%P&Vid`*!c{t!LSo*AnbIrxwJ-)IH4LN&c2(Z8?unu-)EC_L#;QV8!D%}p+|)q znvgkGd7W=(6Dg6BoXcucn&?S%nrarWo+DqUTVK^#z{Xns zcZ6m+a`=a*C#SK_6y7AXV$dN+4u8Ny*ApUv7bFm8zFawQOtxvuR1HM3hOCk!oz!f~ z)ufjC7~2dbC5AdHDZEKawRyNqNeOu9q;x42!77vnMmx0i`G(3(GNS3g2=oUGH*`(M z1wOi_6XF-TrW4Sgl^W0!982qn6C8uMuZ?%Qg=;F<)*JsQ?1b7LdE^nE(AMi?pHs2W zPn{`SBYZ^rr>jp;;!Imo7fJ%!?%Mr8$mzG0C33>!*LtI+oMNJEy zm)F%~Q3Q+#@uDWU4lStlO3>N?A0s;PY)oWP0Uq#|ctsQ3AzRg}u4tN0i3Qh(Hu&mS zf>&MAH1v5~BiaVbGQ6b8pa!fHT|9bb`upqyN==OJl6nKET;MzWQax`)zG+*_8hP2> zy|7dE-G4{AB#`Rz;XSu>lW$=k}(_K-z%!TD<39#fR=MAi4HV9!h-aSXgXks#h}mXELs44Ru}OLeO8yv`T4A8`gyJP zX`1%;c4i}JTcVp9LP`|htd$S$rrHnio@6r#O&(jZO-F6&W`5=!Un7=HYjWaScPum& zO2+o#w!4MOF!4Ls)6gRx_?T3Qa-}Rp^iSbQt-=2c*o^+js|Qakn64W#c`4^iG9UtYQSpbs5Va5{D&}f3Iv*d>WDt$_obp-l+w= zJ`|7cqK$fsN6WhKNEeS=E#UF1cpPpCkE7yIFBu+*;_-=id?6n0RCpwbM~QTJM2SaO zD|m#9$9t{eaaug44Qm6>QQ|SHEj$*8$Egf>ydxfa9*4&P@u=S(9*xDLP6zR?czh%t z=fq=ECwOcTkN%zE;TMlyUBtiQG35z(%oLB@C*kp;czn?f9v8b!gJ(uhcyttx^j_j$ z@%XSeJkE;8r~&YpARbo+!sEJlboRren|Pca0*_C`W6Lmj>=F-OCOle-N3l`xC@CHr zM#JL;@i;OL9w)`))Fk^O)BO0Y=fgq{{77D}XWV)9Vp&*!x!xCh@&ZZ{`)ntkBK{?pW&7h zrsRJYSryFKv=-qyE}Bk@I07S*0brH>A)EQ_>Aqh4_{p-hc)L*$4HbF;iUYGlaL&{0 zFNoDf0d7b1Ga5w%qaX{{aY4E_Ka&M;aO%uHnS*$g!3OcRA zeEL*xY3=Gj{`DAdd2QQZff&!jr?y$nJl5Dw9lLtztI&5L>?M_ntZOKNoLYr!I=aH6&N~rc>m?C%Y=|?{0tH5b!(a@beay{Zi=^PX+bj|QWM$N)>OXGsi+2B zKbfzd3JnV1N!7da&k*c(^$OEgbyTXX+m-nGXNVw@-b5C)#mYwEyDYt*gwUWba2xc$z4q}_FX>G}e7G^5u3LF}S&<2**a-Ylc zZevF%ZOnum-oigw1TpntT7wH0ou*2G8fcDO(a5WPvW4faXjGkjMv=vphqiOdbV`O* z;fvaieUL;FH2V|WlkF{Bj54C7*Y1IJ{?cfG_`5W>K_5Q- zVC^uzZH2c5@4UjhSBu-q3$FCmVO6#U1}2zuaP_6dZpBnpyG z3l)yU1Rle^lOEtQ7m#hjvhd#uYmTivW0lv%9F)K4s>tS|gm!<~t^DMT`bk>pt^D?( z#CZP4+pt03h2rIW{Xkzk5W?^i=PMMk=^XaQL2fz>1<1GXH`9$rrL`kE~u$Z0AFw%or(32nI# zlwR**%hj>__iyDpwtBm>!rRF3d5G5I;a^rR!fjK$5U&+~EJ6cDh6W7Z8XLyv?C?I$ zlXiIbXz|wj0E%PQ?-}TC$BOp)Fd4C|hZp9N3Nbc(<}%6!#%oRM?~KX(Jaylb+b;{YaY& zjgjk(WAiCjy&-4+r-occ8ZzmAx6=IRes7ZpHprf>irBXC?FYPWHiHU-&9}wed{c>H zlT`DaI0%06Ws3W-&G(X#i@Ev2`282X?`ape@%LYX4Ufx|wcdtb|ED&*F59pGIL1f# z{u|Sxd7IXW#d&xiUnDPo_<=nmKRqf@H0KY8y@~7sl?$8mZ*y~gN)$bZ%~^-Hd$Dq| ztpv|m85omL5om#&SCf*&%o=g9Su5LLGCVl(L`*F>Rf_>__V3OrJbYJD(NZLsfDwRM z&|kN3+Y#?IMk4`^FUmGJ>OIUlZznDVnz07Ib*G3cqdh5Blpf~Vc9{G6@TTv23-i^p zyF~G-$HDIU5f)se#-c5l`ulF@w|h1y&$ScYd2FHqMVu=hCtD1^lQ3$#dmZ2LUD28IiL2sG{~1-VgQiHDukg` z-{r8xSX!w-6r%_ts}-xY*)H;X3B2y#kB9NU2m2~T2t@fZc;y}NYru9s^=)swqpv8Y zE;fV8h?}DrIn@+Mm@a^b4>w02@Xq^y2^DA6C`s4_NaMN13)g2&X)$gEcti;f02s@m`!{Q7BcO_oVv zVAS-}hVIBGgq;W#u=A=_-ocB0?5z{oM4)2BsW+m5Z^8$S${P8O{1~_xB!QA>e)MD5 zcKPr_ZwX`F$&St1Y8`io`)880c02g(&Pnln$48*%E-EOhxlO6Ljn+sVS%VphQNtHZ8XhsOOrZ+zzR*o!-#Sb zO|&XRIdu>YSfX+UmZ+S$B%0U%!aIiJ)&APaAMfO=$?k@*{UaZ?g?0r!&G61X z>S=VgXYMpDYX`P`>A^>%I38BM+SwOdpu#SQh)zzAjN{ji!a)|fI`5~I2a<4xBy?QV z)Ol6u>Z@+4;+d$1wQ%%@MU6sEP^foFgDXE|P{ zyx!TlL!SPvM%@kWIMFGQ%tW{U^gbTFS}2ZtS8K#C+`C${OKvgt6JZ=C$_K)nc{yny z&-&53#xilU`N1=PFrjwj7jHm9^k@-ZJTG}2PAMNUb%%-ub4jsMBX${6tPy_K(DZb*Cw>oe2jx=mNeu8R@pUwb* zC7x)$>b5t772gdS1_Bm*D=lodq+g!aAbqGo`al2dt;}lDYMlwd1eh%SqhU0^{fl=v zYe8X=NmIq7J*`0|Py^RDM)RS+dSh8nTCFnym;e)u1oLS{j0E3+W(tV}DT0gyckVJr zf&x)Sf{TO{Z|vel{(#pqUK7PM65K=kL3{&)&;P@_mMx>Ai^E9ecbhS@br89-nZB-S zm1s&2SYbdXOhOE!odN@g(Jt`|htaOxIEw#%bHH=P@VkJ=4|AcAA-`<|=9HB19k_A8i+1+w1W!(3!WIq~E#8|ol)%zN? z)-Hq5iA!#tF6T>S+8&VBFeLug!Eoe!VuKa**P1Va!>^Q=B$1Q zY`hMO#+;8DXw0901|h~w5u`D{y4z&Tl0UzFpl z0HelzOcVs#B52%v$tCGr(5{b~k^1O561%3PfGFCv=pJF$lLZFa^%U_7?Rv_d{O$TE z*u1zmZAf9?N=xI;c}U~#IqODg{&ErDO~!R)sBteN#Y&s3{|VC%i~4%At%SNXZVP_? zEnqn!S#X;9maroR6k*(lm0=y)BaK^M&7TW_J#B)$|M`f5yiEyTCw4sq_NobXcDS!3 z_gC^p@HyeWI;_B6Xpex&ptFBuuN)0R5V3I2M;Em4?Z7U?!YP8Z@I`w}79JrGrG+O5 z0k-eqk45?#I<|;nYSGzLAGGMiJ+R-^m`aUiy~K>!PzNDqP3ZwEG;7f@!mKj{2AcKb z;uo6r<9qWr>m^|F!mQyf%5fGMthb|mKeIu)6x1I3kzysr!@LiV(Nbo0Uol=IvuGqQ zS3SKt8&6nBqqJb^9|xT+jPhU^-}h{h0Yw<)d}#}|*?h)rSmC3?-4X(oV}$a#e1-V1 z@{or*8Up$<1ue~wSM(L(brXGIe8ESBBZB`{XXisO&rr;04ot%N`U*Z5yAcBV0|iAU zk$i7OUvpM)A2hbX*lqjJ*aHflh%Zx|Pa0?o=kTj4bA-T`F~YwR>l?!wg+L`3p&+$Z zT2jR%TiX!$bR&G1ZZJf5O|KZv;a5EC9|GSy2;crUZ-?l7Iu=LhGtfFABa|Y@5!!RF zd4vi?IYOTk{GZv&->&Mb>=-AC=?Lvjn;%nan0#MFg~rs{171Q9u}?8-3;R?1Wai=&t-*!;A2oeG?aO_gDXefyol9T}kiixvh(B&d=cBYQ6 z11psa1Os-AN<`#JB_e1IDsk(@qE+oRa^c$>@mdV4Me9+EYPtDn(FiI)3p;c_Px{>! zN7PVRGhm8p7?`3Oh7wF870)&5(KW%hf%T!%pdLMx9zAFc>T&U0(;_^|?el2ka``v) zea+Ye3WK_g$xoM=QWw!9b3MKmL=}}N1HPz=fiJ3JE`f8%UN8qkF>2V&q~WDTFfAOU zGNOk2l!p6g4Qe>7sn4ywmCJWF^(C@*Xf-PLMt;hj)s;Kn%;zM^sh2%~B`RlNiOLyD zP>bCrE#7rPKRvSFY;Sj!7I&$brhbarFZ(H)VhdGlC3%FyC-27!&ECZ94~`yFU#Yi3 zfH$gR;En2-OH^MOic!lyO1;! zG<`M2cbWY}WkpS|DNV1@8ced=56C2Y!2`siad_Dd`0@S69~o zH%yosxIw$t_ZL1IZF6kk-C<(wqjC(R@j+yO16D@`U+i zqWS4Z;~(Y!YVC`$w?1I!&3;LbV{Jp2rsv1BtIo7STVHG?^+ppMZ^NlnpTu+-uuBbU zW0#ssqWQaReeIZ`7`ybUMVDgweI6AXyL8q8ITUBn8Z=&g18m&^nSS3uVX$-83lH*Z^aig@W9ucfiHYeW#CyD{0fF1*tUfZ<}+}jphAT~n1;7xDAMquieehR z_CcA3k2kSYY51D?@ofSXn1+AUR#FTh%)?tTNAoo>NAoq8s64!(7-x|g2aGYz)~9@5 zv%yqaVY;^de1D>^JnK&@&~k5W?Oue}>+Y+hO*zOrb@x?e(uV=J@!8+U9N#IDrhc&@AvfZEiwv-3ide|R8Ze!cy*t=U}Psmrl;YPPTTg$Ee1n) zF18p-(WL=cjf}|otv|i(qR$CMajkt`{KB>N`GfiGFdXacn{2Vdp3%p*iQP0cnM!B= zNQxEjtmO}xW~w{;Mi_VZgQVjEe?qSZt?W}2XdCNf?8LKB&O$ihTGD)GkC z>@9r55MS%km|0g19iTa3i+bZ}!WQ+$lPJMAp5_bUbKntt<4Kf|H=abD9}g(a1{{3j z30R3Yp7_Rs?H}p{bSrx936Iye5eHT9K+r1kg z36qcz5=uy;mjI!p(DrVj*H8tN5`|X{y(&$D3W_2{AR{6IiUm=M3QG|Pf&$V)7o;mq zKzbMW&YZcs_uMVd12;2s=A838W#-PEnJX5#aCxn_c8~RtP$xj2+OOcD0h{#8bLUV?3FY-S`0k;W z9eiL5OHsbvYz5do*xp%zf<&sWfIp`2W96FN+5O@Bdg`+4D;aI1S z;Mx=ZafhQQA>k^ z5w*=A2wz^~`=nW${;1CPeBHhwhK3i+rAy8`=b=32m!;w{d=nZQfUgJc+qI~1`ZNm7%NtT%0DHb& z;}pv=qXZ%-{&UY>UXJWUhbRuUsTTQhDo7g|J9M8DiUM27I(7V=7w0L)& zIL%VV#3EJ`Tkkv7vI3v+=GR?VDMK-&BPC)rFEhh3&`5y!D~_oaR?Qbd+nJW8MgkAL zwZQihjxWn-Ti)DcwVCI4?^cdAqn(RGH;R3=n1-eEAx+AL^1NXMI(1|4lVI%|(^M3B z0H>s(NDJ5QAli%uZ8s>{tK~r&_&*$^iQ_{~l&-_C=T!(5HDUv>^3rP96H=$S^5SZ- zu5RO}|Befd@!co?HrLWbS+H6jHCp7Q^?Xh1#IylL<3ug>Geej1=#ZgE3)|)YgTQiL z{?M|;r2MSu4*wU2h-PIz3FYfLv@Op2j8Kd4)4#ry%&oJ`W%wWSEUT5vtNFZ-E$Qqk z)e0jGcMx5IKE%!?uTZ-O6>uOS^rG-}akE3a+|71KvL>|_U%u<52tGBvc4z@c2HpCg zObm~>X%11qs7WISR%Yj@jKXE3LYy9Gp9NEhV@IdJs^Zwu)diM4EKam?B~EvesqEB} zOjTO#PBKbGrytepIz^VLYX;T1TBWG%8j^zYn1TTt~UMiZA-g(koymLF6Vo`RXN>s%$b91{M0+Q=vCC zg>szIN2ZOkeatpeIx&Tc+Ta<<>vcK}2#!YzAkHwO{G?@+jsGp9Y*@_~E=aYRZ-ECU z^-8M9?oj5KNN)fykw^ncDSHD?DGi+)mRm-fl+tTtI)(pZI<B3+e#fE6HS#6?iM5s=86868 zF_hEmEX&whDkK;{TVhy6ia}qTCvN&5c!xkZfwwqpiB+6y_}@QT8nf+$m0WM|!9080 z8opwKr5`&=TjPx@ht|j&S1!;RapQ{l&>Hw$&fdc1c&$yA7GnV*6^WMt-bl)eU{)jr|1g5(-*xKeu+P|JxuUhUb3=HG@)+t9c7OT z1hhoMSg48jqU3M3l#3}ZI>%Ll3gQ>85>!|#R|)2eQ53hTE?gzIsxJJ=@}UnaPuODl zm^BvkuJKH_a(z+^4baNp{x7Vo{%onDG+fJH`59ggv>{y3z$Ja~&2GKc%p=#=#X%D{UGt#K3SF6N~51{ZU&-AP-xdqB2FX_bNP1zO`KLblbfjErV?Xg#XDYqurc zOXZMt#0lKpAn%g2%D}rKt#K0}?`dbsmtu8kJ@THuAfi6yjiKe+;_|AsdTU8&H59sF zXmt`ji$7hV1^$Hh7lEf3Lo1EykD*0NpfNs}w_Zy^D@$~aq4k3Jg`xGrIv=66uU*rZ z`TGYf3w(suh{Ld#a`Hh~ULH$P(Btb>QmlzFb>;sezO3d8#d*uamNLrdb=>x?8q0GI zTS~BZ2|t-ieMpc!Wt~i=^Jr@{I$tMaYzeJFqw{q%l{#s?!Ox)ww6`C=m`aDOBlaFG zxNrE_;J&XzwYaf~L|DqQI5S(B8BJ>d@Yxrk+aA2@t%Di}L4Az&5^(mn>b`@01ET9nm;lqBY0~YLL@CTBCDIX}bc3IDl?fZ5 zE#a*5OD487D8Mjssv4a;KQo!_^4s)GkUHOk1KtM}mTG;Aoup(io@-Y@orYqstDuB_ z;-cx9f`;1s|7a)psg|NeR9LXTMa#*W_aj=4Yu>lKy4GGr8M?+-QA0x291|E^>u~4K%3*Ppk5p0uApAD2KQDx-Ur)7JC|2elu;Y`(;gW%72wJ&3vh%37YP&fkz4;R!nRT_kY=!ENJJD3V7&u!$9EmG~Kjl9G6 z^=djVB&wTDES)k!N2|L@I$B*?x)WcH&qx-X2+(|ln9tw&!No98Dgr$B`k zl^(uOMMfp?#Hge^HD6dj*`O~#V~k4LSVpC1iRKKnm`xEbF5s7LY{BpPVTa|j7(J#zmDvc*% z^m#$DbPQmNjzQUKj?s#8LdSr{=oqxIbPUgu7=EaUIyQ_JYbLe!8B>q-rCsZeL7Pj* zNN%QgG;A}4)EV1c4BAs@r-d~R82-4Y^~Eq+tReb-FKZe*O1st(rOhRxmfqH(F>{{5 zZ-2l}c|!xl_6-BJyi_}NIv-p`4OL*b5u*A~L-iqLiKwRhQ>e01{3pKXy}IRCiJypz zBd8HS`2jT^Dzx;qXl}iVWGJgEF$I>0DP^f)T92|pOrbGiN*hZ|4J9`^s2!N01l7N1 zR6o3vx{YN~9*9BDpJcT5q%|%KLip+3LGj8+0HU*6j=f6TAP~d-0Wr}HMD7cz6-s35 z;hH9a0KNzW<*Na~DH{X=8Y2+2u>``i1U8HhFxO;;V$^2Fvuc0k`=5B^9BV_iigEx& zv{@$WvCTOC91PI4?GcfClLS+~s^%q)+GNm#ncSc9DvL7Wq@N z$e*;v!y^A^7I{M3phX_~(;;|^%QZbM(om`Ze9EkrxC2sB2E(8kgthLRhv zw=T*153rVJhGNtvr;(!&&l_OvrZm{X7xso3OC!q0Z5C4okF=`Vku|SvJI%JBX@bOp z4^J7GV|0~(`sQ{)2#o5#3HwWxkv6%B@VzA4NTc;26j?bXkciJ z2BwXrfjvuN_|2D8OBgNIFzxxWYGwOq*E*)Oxx}>8D{6ILy$pFpt;YWNx4lGXtAm-L zb72|N7=fH!>9$cEoY1ap>H;@2R)X!{FLTlqexp8CuQFkZ-Y)9(KUm2l}3#fw+N2==!*nt!F z)=oDSkXUTY?drVwnwk+v4_)~2G3o~ah|q;6j#IY>)WJvN)sF({z#DA=&y-G<5h_ISZ|k!XYy7)bh275jIz^G zMBZdIjpb2h?i8T_S%H1zuYFQ6x;8YHvS#8hEc=Xx9TSG<)z0} zV}DXAfruGo;~jo~Da}ZMpESNp8;d6{Z2YLfs~(N<87rk%{bUyWGf5zVLg=#ZUA3== zF1Qa8At*yBJRykDmi(a;SV~t}vfsu_r^5Oog_)zyd8c1WVHQe-d-9;akKR{@83|D3 zOxo6^z{Y86cVk=Jj_76XHy~As3r8n_xc%!#^WLMC5dPKFGK_21wVyQryRk@&fpYSrSp2+gI(4HLu}d||!B zqLE@9A72D$b%R8m-7THt19g%4QxGij>mFseX_nerS@JV)H%o2CmU;-)?>~tICm1x5 zrp#7bl9_)CDbnJfar9-2X{R{o!&$^oo<2uSQg;8$d&~he_R=x*_>vFQ>U>6{ zh7n5iFTB`X@a>YnkkCQZqxg+}s*ke~Nx!%zwA}HLYWJzOcojsvLo>xfqX#sZ2Ui5! ze$hN2Vwb8aEq>u0cBu_mD=%r_+ESm=bk?QG*{wDv(zKNJcfe=ogb^IHOSFHPJ>ZT5 ze&N0LsEyemT8;W=`{DSS&T+{I} z!|B*pYE7Stc%ZClc+v~y7`}ap+SA--n-)_#z@4^9fV+4K$M?Rg7Up-KsL6g-0DJ55 zc>vv70^M#K|81$7oY0PR?HA~gq>(s!mdGPIv9hx=Zv^wiFV&)a**9tkfgJiq$Z6kr zx{JF)DU`>53mJUsHnHEW7Mn)6S^{=eW%tVdbE+20^TAdn1MIWo~+-iZP+c!4ksT#aO#Shm_P~qnzqn( zUopfhjjct42)fL>s@7LZZRe&{Y62@msZd9_l68)+ai_v|cc4VCR?GQR4<4Oki&8ak zZ@xZF(SU$+71VAxTdLwz=bKw>*CGdQ@DAaZooa&8emiGtU=6v0m!NI^2>P5ZXoaI?`C-`cu+C~|^o!?yxPo^VjHDWW=56cNU%R1}TRsUDzepK7Bxn3OS_~H1O&T-fVwS!NN9zmmt0wehx&%xo1jp{1% z78m%PH>ur}U$^sRo77HhmzPM}{fKl}7wK-E+LegZPU8OacIp2=(=PE$+O$n=M{Lqw+QhL#o=*~w48`4#3|gg%mHHFS-@(s?@I%|xs^;M?;lvLVZukzK zu>+nw$9f6(nm^$t>B9B+RZStnWlG^j`V>y99O@xl%bn`i=FdSKe4xSU>^D2)bat7S zOkewxX^k$E$9%Sfl3~U z$4%NHV*9rrMgGwh@ij@+webL0tAP7JDZn>Qsr}7mcWSv^{J`{Cb|=q04ev86?DPmJ zC26OhF{dU}Xk*UtGiqnz#hoR<@jHFxcCE4uR_eL^+FA8Ab2|_R)8|`%s4bK(JNceJ zR0n(3OQuf#WXjTIDtu0DMr7(DWy;)%k;O7;pEw6zeGcA4y-JI54h#f12c`smy<`d{ z$2q{?=M7#0z2WrtYCi`dv~dn76s?VEPN@qkDGp_J6^AG~Y|uUH*hUrrY7Y%Z3SQS80bG zJ2Cj!4%(+~hwHQ$?EnO52TI`A4$3a##b}2yR}FT6-p~%wyQCdTQUZ*|C~n&4Ya~h9 zgM>LKYN(r#x-@O*}6*$2Ut9LR%yPA-@mSQWG%g9ZR$tXPEuB}UaQ_z zyAb0)E3IIM^$)RBWv5-@l1BaOYB>LWty)^?zl$f`f_067v<*V^iXXPG>TGSd4NDq2 zTYMVvWShkEGTVpn!$71=-^B~xQR}doUToj@!*-s|w#HpG)wj0Bg-J~wi|El~3`)AE zerR4#3=qaUKfRN}i-elWC_nAuweEu{wt5Md=SR3bx^SZ&7);Sknqq@yiVd_&oY#pZ zJYMS|tl^#C#rr&jHN1W1#W#q6tz0nFA45WS%f}G5n*=<0*u2Gg?5aSZlNZ92Tsdn^Cw-Sv`+w@3hA1FNMV2J@CO)xcx|Z zO?zAWl6+gM*tGY}d0D1VX4r|39|EH1P_!I^hvdW^Y|ja8@krqF;ujtXe15l&BcOOB zu%gL2*ZW8yFQiy6hm9n-!BsQk60CgM3HdTm9G+B0?#4rr?S|5JGJj897T^)V>$%pJ zJTJ)_%v*oZDT*&R2$!~hK=_D{JZyRj2vOToDIPqkH>5fPHXr38j?Z?i0HdW37 zgrC+)Ww&V!9*%+<{rs4+hj=gy2UU1ZA+udj!Y}cs>rC;d(C(NeDsHA|LQgLZ5(TcKM0nMI z;;lX^3lSZ-iqFhyTAr)7%TzN*?S+NCPhTs~qG|oikJWyry*P>XexsVeJ3LZT!%!kI zsS{%Hq5az=@Q5U9fe)>@!arOI*(=Xw)fN&_%?eWy@$l5QWvo@ryv;3{qHr#TSASV) zOPq^k?ByTFTSvLuieU=xTk8w};C*XdDGlTrZKq#H34`}O<34+FJ6X5^hiBkHYh3;R z5fB-Bo%xUtO>Uv_%*?R=4$F(>t*w=?@kAkbWEz!Oj^|$=+Kf#i<>I+eJMK4ruk-av z);N=2I_{5-_pf5D$S6C!PAN{8RJ&Bo+kmlEt({C^%Sq3;+oKJ0k|HAH^1ZxVb!!zy zDa4NV3Vgz$?7D0Rr9!&{L2$CQsTV;KACqj&V88n!2&-X@^CEbbUG>%WVhw9GueO>r zPkj;O*R+l{5_niuJErA@6+iu;a**@4S^yY}%_qU^Hlev>zFegbgCFi-*S62#9a=R= zIYG5#KJQb<`aYv%@*F{#x-g`wlnPM=0-S_<6GYXsT382P1mD!N*7FcdKezcJrO?l9 z_Jd;WL9tH-$TWCOj9?BkvUuISw8LW*GPp;xS4}&6jrNN`WmZlIEoo?}J%2)XJpYw0 zvCc~A)>EO%t8B~nv&?Y_DqxwzBSqh6WsZx|K}(lt z0(;!OX<(11pgc=r`1xkmw#-nBds&y|%UwK6^PT&eTc1-{;eERM$^G-nKB=TaYfwqt zKVN2_+{ap$R-=xk_W9AV5>$YWjHX|Hrl&1|sHp8`1?IwA!zgoYH)|ux5O=deV}VCS zLt|-9_e*&9Q37t76BJvN_JN0LX0)|F&u9nyjJaV2ev0?2%(~LnBAAQ~k$z)4YmBiN zhqi?Wvn#Nd{{{WR_TXto{%}Jl#|>v={sn!p4%U@E=p#C`tiY!J3;L-YA%S}HKitvU znSJsv=yA`qfgb(rsoT%wS9ZiP4Yq~$hXJ)o^R-R1M)$QNny($D)#z)7{Q24+|H9X_ zhdp49zDAjAzV?7JL|=o(7<;s_+&OJ1!BZQC5`^Q&eXg)WIJ6T%mG*naUb+1;_R7&3 zJ;5~CuO*m9v>pM;*zYI!nnA^XO)$-5f&uo32xYG!@;v2;h(KdRgf^Clc$R2qgJ`if z(&5>lQM7CK2+3%3xtAQy1`RV7Be)6s4d8M-6Elx?ioV7*Y&orQ`I>enX8C@3CT1mV zgZO^y58w4Z@io=17EiL9wsQ$YKzykP8ov7|N5mHzBfhk;#MiS#J04>wM#b=W%+>w! zc+54*0d&$P&6oWt_Fz9wnvGd|#SN=9K3gA|w7qu*)_73HP=aQfZ8Vd1Ql{Ji&lre5 zAY&k&)_B+{?SQmX25p0Os&~Lo9N3}4I}SYTq`kEU5ztOl1kFy}C`YstG)6no#?nrP z68+GOp%@j@56z4?AP>!qqHJ_y4fCg6&H*3BvYoItATxVyTakf19-N^iT43VAnOrJ_ z9+^i*aPms)X!&pl`oGza2O%P*Dhw~b>ap{A8+`KYWz(u7| zbgl(Gh<7=>L(MB)`0|hoMR@)uD_neiHz5$%a+K(U-10h{0*j_H;_mVKqJ*vo6hA0$ z=Ph;+?<#d#CRnSQSX)Ynk#K#3b)fR>LEd|#wGr!1tMwr0;!pP%5Bdm#-8F3Xz*TK~ zkYidiNQ|nE^i;K#t}5QY%RuFS>a@UnXq{W%vYJfFhX?t#N!Dcck(YvK++2SOE|$hM zrsTgTTL%>MBnfzbj`D$K#t*18sM~5!-KJ~0O_gTkmk(LH@q|&yy?~yR`QT%{6?%8mSQ^OCw!Bj0>am5;mb3uLjtmJ zu|v6y?Xj#Fl?64cD@tgbvO_XXLk`J1h3Ecl?Znq;1`g%n*Q{U5KheO=X@_WFoN;tG zBxf9*Xti$J_WqRbdB{in!i>Wfc>Fd8k%rYP!weDw1nr7@BG5!fz+l@x3&t1X>X@>H zc>aghr^*M1_`bQ;nryb0ju^r-{OS0K4+GDc=t$r>bFKCG^id;=2d?Z?Y3`|1G&J`L zPi3cQ%1%DyjGS-%$;7r&8evgfc-?bITX@Z<)w)G@`P258w5ZR8*MQ@7>mj~wk+pmn zm06p|$$6lah3pzw|jIp85T) zc>4h2f!0qr>?gcyK!sO$&-=nUI*{--#~wEGr*qpRGx*_NOO)5-tD=Mkc&WoOz@rb# z0Dt_I^)Ty1>G0daZ963gHaE!B`B3Qi)1mR9&MQl;HBHKx!@TUb*4k_w<*tMHnm-UH z`vURCS$hIsI0Eit&u?cdk$Yf95pF%#FYrl@c?5u~4(^!9$E$6FdC&gA;S7pAVE)h( z=AoMUgCxw(Z&p}SOzayk)1{WG%t3uebJ! zQ$#Vf+*JadxPG!0he>V=e)dP}8P9H+rpmt4K#7Ro)u4{>>o-hmzAf5L>i0n zAa;r0U8m>#OV=!iHmJ{OUKE8Q0Mo%#2W@XU6Tc+MO8{ zXoLGI7K8VQtms3H?9ZT1%Ze|#5+ZFU6XMk0JQLzI!4ebVz28Ja>=pN!D51G<8kI`q zLMJ>a+Ta>qGPliPxW&2Eq(MM%6yeIm0B}057td(R6WRHWi zQRw{GFg}!9V~xUNN~|nIrF#EE^m9%;W;L5w9jcCp%8fLYEwqiUasz)VxA3EKgD71h z?W2r!j>5JuxE#qKhKKN4Qz|_7$miKqLU}KVD8YOVew1{|y2L!`sP=Z^ZQ2;K+nfG0 znF$qQRhAkLHjjT*sk$=ZsLbVKX>XXz7Y=^5FgPq;^YYSBd4oz{V2){gBW;e7uBVdX z$dmqubp<;>8)6#YOH1@LZYY+6_o||m%okkhUZP~E?m2(z-twugc-tGNTTZ(d!oart zd22Q^lwdO5rJ=B1qM-D}|EF`zqy~FpCZ%CXtcRJj+A%1>Oj=$1!c1EIn7>Rqp>2F2 z9)HQY&PO^;_{*BZnutzZQH)bdD=E>KPu=`K$fP_x{6aCFzbv~5zjE2yH^v8_?2gCW zsm_vn)mp=q?r2+??iwEROn0vcxiQ@hJtpUWkFHuf#&s0MH1-=4{c!&0gvFDlCN`Ru zqx;|@$(zUIBFQ9Ljj?b2B%?MzvlAw^3xiCd-n*HmgNX29H#SsIx)L5Nle7xpA+ntt z#W2%ozA_Keok4EQ7>fi$s`4l*yGO?Oj@DruE*B-3F~A)93~=``Z3eiPQiwP*?fg$L z90i+-iID*YF$*+p6J+p_zfnqcwuN@;o(Y=rL=(HR{Fuxh-+&C5JqrI0GP>Lrr8bKa zgVe=_7b(og+_&Cmv9vX&kdm}SPa%e4oC((YUCsn+QvysLHGcOq&^3e#FNMWSFitm2 zA#L9c?RCo|>nvuF0CPu)-(?0h|1Mv|e1lkMxx-*t%pKId2_l#~h6#3tZQLb6K(X3LdT@3KwVg4s!pEVF zD{Ap6r8l$v!oq1WZiXv-oacnul6?@I4YNJZ5`7VfH^Dv#&V<`KvpT*AW)!p8eGoh? zW}C*E_#(I%VN3Br&@|H4hjsNuAU?rh2BrDRrr9NU?c%m>>}6l=aLL;Mjt8V#x}cEC z?{!a!vfX4kv`;Z|p$onXd~p}`Wsi8sDkE20mMDm0Qgg%Li7peZZCw4*1A#`dq?; zM_Cq~;7QXP!54~_hIC<@y_&+uX#|q4rdi@#gAb9j7lHxZgV(kyFgb!Jka9sK7;TJ$ zmuU(ga@Cqe7CtWst~hpGJ0T~&JFD9I#w`@ZG$Fr7rNf8)vDIwjP3#^mm(NY&?Y`-x zT=X=bgnnE}+nqj4PyM)J*hx9-y(W5f&3a+YvvmNoUbi(|pWnH6Lau%qM8~v~Af%;Q z-=^9@+G)X8ga_AQDO4+*K-Lf?7{*`>`~u6uU*a76T2Oc>-2EJ&yAydOE zo8N@`Mel?qu}NOsC;H<)U2@0l=9+f!&8M^CqkOQJ8>tN3A)i$<%7Yp1w^UneW3m2G zmv5cqCJYA1197BjdxW@H-f#IrFYH$DX=n2{~w7iMJ3DSsJxsl~S0M@If$wXI;! z3VK&|z>M69lxTdX{`5b{$Q)i6#`2GPwTR+dZIG7-5k4|6XY-ZOHZ9ry-zk!pCwn!0 z!`M`uX~XXdenMM{Rb10Y-Yt1bQ`=Csnl{Cy;O~H^IET2E*5Fbw)WA}(_8q(Zv|3*Z zhBmkq43gt8;RDC)ey7MVF}H=SrfZm>jpZ{=yHlPEBo72%94Abt`NWpCm*e`05}GVC zsc0}n)Z`PI4l3lV-^zB-#6nIJQ|k*PQK#hsNi?l?j}t{Ap?KsAS-ekBL_I$XB?+hH zkYN%%xP}bePm(jJY=K{s!NX%K;WJ4}2uLV4l^7Jj(W18CNC7BJm2gc`doepL#?e9* zB{*7uP4v-XXQu57o>0N2f99b3X*ou8r(KBjV;Y(pZ>!3N({fBcgHQVzA;v?6SXeON zB!-A6T@US}XuuV-kAW*@AJ38)jyc*;tmo)?R65MjhK88qF-IGUF?)4AEpv3I(;`P- zVR^JG%*;P((ELbi5SoJs&0$)O(CqgI&FOyujrJS@ToD=rSA@p1B!=g7xAkL&VpMId zLA9FBl|5_@6N@}U;sX^7J0oo$Mr$x~@Q6;uGxCT|Wm+xtG?nK=(;<_Ibw%&zv)a5v z16!)m3-FYV?giRhANb?`Xv$yPAKjet#Qo9G7;&ME<^E{Tk{I5tw`~eD6ywu8o`%Vy zJ)_GQ8luar>SOC@q!+lFLWSCP1w2OIhn#s@4tOdS+RTkk!^*|5AukrCY%nBeiV_l% z+MDa;XS8R=m6QTu{`Nn?yxs@QxNNyZP-)ASpVL0|Wy?=RlMJ3Szi_BB^9+vEC^)WN zUZgZA`8hAiN4{h`#2(Xz_z3xcmLQTd#0zXgF-~nF&&v5{)LG(_7(&I)`pGVFP~kJX z#OZz&DW4$?{N`obvW*g;E$>PQ^7a=gYLW;jjWoOBTMt8~#R&@?e267+!qQpjffJT4 z;ulU>x}5bfVZom0d2LruaG3#q@p)m7`0_C?xVwAN-Q9~`-7Q=tUq`<^2&NkgS3ys% ziB492MkAgz*!CqGC+JEyX*<+Tj$heLF(^=h_?G!xIUemJ?F zW8o{Z??WG6=kqC~zE2b*F`QCk&;7CCuXDR2!ulLXLGNWu&;@%a1(2;tiC~yIf z+jyppvVF|1&|(P4wtRlof}c7tK+f1D+BwV)#xc_$L<)@MC!!5zAwV79p7b1TTW>D= z2VCM4l%2%lDFtSsGCV6wOZMKYS5^MNs8r6M<+aD!8kl3CpGDn@#xnS!>o1@E(ks?8 zTcI9T$n3Np`B?rFpEi<@89?Xa!x+dY^6${nMn*7esv=+56sP^`nXi~&qGi4(XXP`> zqqFiE#Q+}$Dm5a3?S{C5Wr|>cA^)!Ug(3g$AD$r(F$yvz235)4xQYko*m{?oPXg7| z=gL*Ew%u-^Rav>pY5SyZQaJfGUfd-e?n_ z+G=Xy;e$sGd$Hea{8*HBKz#QE*8%a9aDO()BPg=*n(RqNj{CegT8B3-Ecs1x@tdIY zYyDsNwSuO=Pf%pzZPC$izZuc+iWfhzam;i{a*W=tX;=)XG!5JQ7mlkXM?sN|ml%h` z9hQV+kv}~#UHI*bg-w5oNp7?fzC+^}3{)D&cK?OrW^rZP3)zAq8?TKW50?QFj^(^K z;^w#njpg`XHI}aenZ~l?e_?5drod8AWaEXAmy9eMd$F`;_H`?H$;I&xonxo}!f~18 zC@8Y=_QbhxryEhSn-@n^vWuqV+?|?|vw%!fvde#A*#??|l7b=|ui`5X7iAHa!@XF} zI9kQ6Wbs`ZM+Q`qslBl?@|=^}So!NuzG6;l6?TPoFDCcOMf7>?tmJ}}rUhB~aKREDMmfV1lQ<@6 zDAEkPC_obo{?Z1kw6n{Ua2}s$t7}ps&&gww@c)@B>b}798jdZ*PtUiVRnpJ#t)JLx zvHItTk=FNr+{7 z$;bx@6;vgcPQtP+B=lH?}sW$Wda}e3Rk}9%?R0a`nrn{15{@&t|@lQoK zQZF#{=|6tH4=8@RJD>m7_Kr!3KQE&O{*O_!V!3Uz(&RiJzQR_SH9PMsU=%yFg^ji{ zSTf-cIIv{y4BDC^#+Kv_>!pYB6)SCZ3TFH6e86|MT8ia79!RuM354mRUJxY|u7>C3 zd8Lf=GGOL>509FoC>;jOkn61q7%-Yd!*xFBBB{Vn1j~ZWc_PjinR1*4i zA4@X0y7urI13)}%`~uHx@oEsaZm>;fv=!X)4htY9H`?a1k{68LsV#s+kz#0olZnp) zixpn>6I&#||7pKie&7>Z6d%2(Uzqrn$SM(Lauvh}`|OGrMzFMqQ$tPF;SG@ ziUuHvD;kfE+J>>Yv>`5c&$%F%yXVjvT$+gZ-Bwfi_5!#54sSe`(`vCYp)3Wo-KlIX z`~mBb$}1Omuj97lsPUpX;-t-~fX%)V^w zRNxy<*s8NLJ}Dx9sak?Z?6g%>Zd~9KPJ)}=qU})dYgF*Zy5Mbg*~G!gZ94i%^2=DD}lJTt}&YQLdxR z6{8;B0Qd2qa;>w^UfUPOP)~X;qakmbZ~KgO6!fk~2GCy%^>(Bf8eph@6JV&ve{L(o z6ZhK&vMkcOjBOwMvin^0jO|wqbRxEgLmLs>gD=Y1_S26Z+b>?!Vw<*o&-g|qm!t6`hxgPPGXfa0okD>%49&pto{vd6L5uXpI!!j+gET7is5r6TbjQGE3 zH3rUkuz@?`Z^IuV;ul|(5x+(>N3^uJnZO1k-oQqW_|QuPOpJJFC?noLp+|gKpA>q; zCts2gUz4^&!K+;&f@i=Vn&24mz68gJH;91|Zz#ct-+fWO==$-ZTs2*LQAWGLY8dU* zd5EDf+J_5?G1^CnUl{EpF8Pl3i#`H<$RDQ;n@-HtY&ja5yy+G-@ha;uAV|_ zG-;;J3n=`v`TTRX(d=u|v3^r^Ngw>Oms~RQ&2N{9<<9dk0<58gVoyr6Pa59gC);fE zIv~XXoVJlc{ubZ{K^_N9v>-n!eu+O_R|c=UB(Dqx0gM4YSrpI!=QS?D_TQ7V7y~79 zanq*C#Y?>RN9h&VU$j~V3iY?!(%%@0fg2@&f6Dpv4Bmc|xgcA^;rV!oa`KW~yeRya zhYr6}X-pUEMsu9ihlzGB)i6gr&8$%7euhQQ!0^i!*!Cfe~C3$ zZJi_l)?t*jwnSnm(#Eo-1$X8SMeW)pQm3xlRz@gI|B}yn@PB;H%byKTEk_l*m4Bhw zrv~*0UAc8rv+`^p)fyb3F7Gq1YKjTS+*$Kg_yZpK!l*OAY2xv%lDV~;Ba$yqx)97$ zcmudH&r+u#&H=*bDE55njd$`sMV>pp&>@a0SR zjIp#b!499N53vXH?t?lO=Y5_Q$gfe}jeqg>k5j9$jZ_u{?yM-Gz^&I*TcZItb*iHs zyG!W;0q&OGyBj$1#GJRhF?=?&nEkjCcbT^}rBz`Gmq}pju*F^`URM?V5I3Vxuj2`k z_U8*~*OHfc&EodTtR!WQI5iX{6sHoGrGrIYmJW7xwqqD;Pw4`|sg2&d0jGs4%%QwY zk+e8|z3PQHzBAhXrZVa>&y2B`XRlG_GE5sMrkE&TZ}<1IQ4qh`p7;&aG|blU8&=vrnSDj+a86ZqsiP8GL5p!t1r7PqrH&RpC=$PM zWU!w+DU`1+^X0Mj>PCVNFBLooe6B0tGEq`>dq=)4&c02#b(znIw^w3!s2sW%-=Ic$ z>dPn){5=Zb#hc69Cz>wfI@wjq8f_4H#lwgH(p0#h*~&ZT zS}bg!RJ_7(va_k z&V>lh;seYGE3cq4uB4(MScg2pTBfP9R0AtzuDuMO@YpecU82N+Aa-77VQ?@UeGb*O zA66o+@^9_z#s&?ZIr`}N@FOv~N$z$QMSSLOH} zO2tALYl;%;b49MoAPTyQK9^f5Z9KD6GMwn|y`Nr7X>&FAL3$0=j@F{Ccq+6N)wSDI ze&$YkU89>M-c7F@(0tB*Rqlm0$cJiWd#a`CY7x_Q&TBQY#}_myynPjY{cS1$YO~Z+o3}J=CQ2jm%qI3)Jo8*? z5U*~rw`ZGZ4}m!Rk2)WMS_>Yr3#Jh-S?!yZ^H+JXQ4Pwmi3W;f$VXEoLvp!!zv( z1x0+ZM0_!o0ukRXN@(U?q#^!^hIoW6tuH%H=>l=gqq29?Cq~$EeuGG^+S$HWF<;{m zP2j<)&@~bYZoEt;zAxF{P`;oocFl)d!gEtPFFU45QQo_2!6!zKC0viG+6Y&Y5R1a~ zP=o892G@_{n+#*ARQLekGSw04$~X9?doIYFwR_mZOv>}uc!#*u@~jtSrX$sZAoa2@ zr0{`hVGny8XAW4_=#|qcu+hEiH4N&mR2+d>@iCs5bs}12@|CGDYV_%4|By|iq&R2K z{A*MYzuFf3A(z%+a8J7?gWEtAz{K73o`8iQS{d6NyZoS0( z^w^A4{{Aaz)wnt?qdI#)JAtg)o|&$b7(~n;T;sJz+U*`~3!YG6zliSO>$wZ_tS>Ab zdE)Y6K|Jjh`zfW)bv~h6S`Ai@%Hu{{Nx4qODhvGKHC8RW0Z9QNw`RcIbG=gCBIm&z2`KlqXg77|-LI-mS1(W*%GjF~NOz1R(Ck(R}WD5sA ze@?nC{dW?T1%X`R3FI4^t`j7XQ@_i|5WWjb)-ON+Y@i*W@BU0n(04anm%eLkTX5f1 z*11LUhW}(g0)H6)`c*p*x(g!l8<#Vxvinpx9sAo9d*y}?M|NRfrJxz(x`z05Dgh#1 z;)aLoUe(n5%Z+##zj6mQi4+}SZ!dp68fy<{RRp1H(u&xp&=SPH$_=WgJr z_#71hGxP*eLQ_RIT_vT<4LRL?X-FDpvnVZmqN^gWH5ArG=Fwt-vS}8--WsO#hW3FB zh%<~5xt=6&eK3BqeM8VL5P|2XH%(xBs4#Ai7GIoogZ!H>knw3X<(+~*a{Y2cK63p+ z1werR5+xMiEpBy+n>2j!i8bY2dnfjU(g%=~O^*y*T$qW6gISqRLY+gV+Jj6%6>kD? zGq*Oc&MLz%cl7AMmFFG$fq#qBs&cYh`=*a{faBWosrF(#aa>wp?^Y6S^3&te(pdtP z2XS za;`L9t~4I3PEKYADODh@zfU5V>qgMoVV=FYNqKaW@BP{y!&iK4k7kc4H}r>;TQ8(| zVprsr4|j*ruXjNQzB@Ph)c4YAvpbYMLR9*ehkxIc5W!Se`1k1r_S>w6XyY2=0)R-V zc1teITytY2*A4pck)gc)XZCiy*k|^cO6Oa=!Hl$I)|K*gX9uMtpyPgN-A6*@;bsx9 zwo1y7QgYWy#?QN6Ly@1&rWN~ zPkxkE+5KlnHktMn2%K-~96dAbm%EqPP0F{ogzHsj%PB`4$fXp>wSIiAF^~A#4$I#? z;3+xaNd58_Z#y@wA^VaFgmCWkgmbZ`+@f1ffU|*#ouV{>z;@i-voY7DEUp>qEVa@O z$0G{g=ISSDHCga&;`usoLAQwq7KcCJnJb#Uzy>Pu;jO6__-?no9{;2voUxwzeZjr( zncFgcpP}*~ZWTlc9iJX++C2m}6z{8kz3>9#)+hDr@b>Sgh4H)xwrc$ND*H^9LHh~> z&(zy8s(~YQL!PE*Q*MXRlb$+}Hg!zUE`y zsRW4Kcu(xQYMOMqEwS5GuE7X4lhOr%6Q4H4?l5)YD`)FZtIoWQVlivYZ9ZXXT0ORo zveH3XO+nh~3#2D`_JW+r!N<_=Zu6DjrX{fND09T;uqQstHGIC&@cDLG+9389r3(a~ zPBQ?XZw&bGJ&Ua{Yy25vGAQy6%o-cL+N?T@f?w|ONQbG|9X%>daqwkmyT^PACX7~| z`HQ_UZ~J|K6UL%<`10-cR92LVf}qtBB{U#|@5n`vLfkYLM%08=XI1}Fwlo;qqTQ`AQJKyAWqcsaE2fW2yNzYB10?w*1# z*!8``-(3e=efm;K5VUtZLCexW>m@;(yFP6I`+v|b*do%$|0)VXKBJ>H~j zxx=q-ga?A3DNh}=%@nk~K0r%6Wba?lgtg%gw;Z-tWg94Ogz1bYOzSk5oD!y*Kc$Ue zcPLpPFx}K(a(citj0nqu{X}fAt zM&9LX&)6HYS1CJ}D;W`*=mQ}RAGjJ?P>2R=5Dlih5u#b15DmD?J9L5vTMeOzml}>@ zUsAF_5L)c+oC3s!CvotkaDIIs9L$9zlf)NVu9W7LHrXrjA*>B6;^vWvRjF<-!5yJR0xP++&;m4oJX${c~c;tA}}ns@x9 zA=~b7+C28mJrXYXvS-}Z=2jL=i*fDnnR|TYk+cd%f&iAal*hU_23wqduTChRe9eAc zseg~ZcHLfsHKfA0fi# zQsbV8>l)_lD~~2_u3}h#7|9f)Fj6q1$?*mW$UUuteFcwT3qqyZPtg>Uw40+N#gg-t5vwhd;_(DA8 zzJ0K=>K>kucuXJEod=j73+Px$InQBdr8_QwW!W|_#&A3H#{U5IkZbn;)&&2)MEoY3Cz%t zuPE1|ijiW`wX|p1>z<7j>;2rP4daYWb@6BTXfFfEAWa}iv9XS((Ld%Uhr;%K#|>rk zeg5zktVwO5!suSHiF(Cu^a>wKQaoR6&UjvkgYi>E9R+@Ixc)x>mN}}i^;8yglT)IE zy2%<%u~nLz`l>J-U=i@Q3GwQ4B2UJhoknh=5;YDkD?w#J z95X}-#WC`M47czHGTicN4=T);KTi9MwV}kgFVkARQEhYA2WCDnvqeqTjn=z|8l^K; z^o0jLhM5J)jj9DQ%$PwkKBQv{IFnq`kr+nhguBar4Nc7L4v{;Wil={;qs;>uVU$X4 zkRIU)O-mgbx533`u)PtEqWpeo$6;m31D;<7{Bf6pB^8Y`*N9w1nJ9*q&IU ztfNvvlj~;>a3%LMDg+vPo2Nz#HI3$@v0+xxQ_YQclxM$FQhC-c-qA?;^8ue0?`Xiz z(`r<2#W5W({l>+UgdMa1yp$y7sAQ4NQp~ccyvrd#QkVKZL_pU)Vr*>LLzP*a$CuPh--oAKx zA{$4U=}^5!p_=Ris;5Ee3Aqz4l;dN*uMpU~uMr@LI2AU6N`i2G=n205FrnCl+(q73kc67jEnR zb$R1BJ|qpk4xg0fcw0$^*Xk=8muEF8Z#QzLYN99lx;z8gdkvhp;}QCdqYvvv$pV4!Iqck&$g@fVlCE9I z)=hOod0Zn$o-*kXKh?-lj=fD8x^d&SFh?D-$zY~0)NmgRpjMie2@fvedG8}z|v}su_XfqV^r!87mU|VPd)Drg^Z1VJu z-H&|iHQ3a)W%+=HAm<}FV=#z`+MV*$?gweM(QdQho|?Cl(_?u`Ge;~R&;)#5`G@Bx zgO3IML*mVCI}=={RNkR&U<&`om%BG}bSdam;h#rxTg^WdQPd?-NJIVmfwa_J%~H6f zrf5ofCsvQj9f*_H7Mg0ipzpdN!=uXYv~nB|dJY)z+9O(4WIZWM9jfjGs+S~GQ9fQ) z@}#n@D{8hf61e%DCr%BOfy6`YL6i>mB@$&0Eia8|)}QB_GFr}ML+cYb4Q ze3{&})vB6*`p3+3s#L1Nwo)nZvbQ|R6fb+L>nV|;V|m$|p-8(4Ah65cUf?-B9r1Ws zB9CvFepJYD*rha;1hwnG-V*26Je>GPN`u*1=~7bqW$ip1UBQcP6s0lw6h z+so=*iQqv^(jx=cyN9NC4=NAp{ko^#&uV&i*7a7V$ugz0hw9dbokRKh-j4m|?;e}^ zj6RO4><7xhod=W^ROOAnR2I)!d_|)Ru){m6K;s--|Djp=8%^79s4S>$zNfZJG;O~i z+Md?5{lY`r8R28V1^YUF3JQ7xX>Uls#uZp$_~qkyMR`ITI|Baja%`MXPUzco@K951o4|oBS;B|{y(^F5B(yT zpBw>je=^W9luair@N-Mbdr#zjT5mrQpACrS`v*C!>`Sj^pFNRZMOsB`@T*8r17Ago z=J^>f!E}gL>t98JHuzN}!9;v?z=x*UlfhfW$MatQqg6UL4Fk~UmhT?TXj6Hi&)_HG zLZ5D>@Cu*olrT6F_m^OcA4R(P#LV{(b2N>cEQ+Z0hf>k-Vm`dup5QxtZ~7j1O+wAOWX{USu4|{olm=`&rnz_B^7hg+>>oW zc;k=K6P1cj<;_EtX%k37eU$zEvpO!m>?dQ9uHGX@)dQiln%y-*aG6Lc*9Xq+4@x8a`l#A zK_g=@<+3i)kCp^JC=a5*^f1EIOpvR#reL9 z7ovh?g6#1OfAF58MciWn5A}kJ1TUU+xK$1Q-c(0>_9B%A6V?S!%09G7Ql%EQ7}}SH zy$}#1eT-<0{xeqmLjM{249~jOq+$$>bQj$P@VkeN`|>5z9J74{{gk3GpiZCe=*wnP zG0+8OkP?>*@Pgk1hJH79bb4`K{aShyuR7DwpDiUU-&+tVXTSW7d zAJ>WCJ4d8Ph+oy%7B7NLI>C)+n|6rtA$9hraEvRWNm=E+XL#fiM|TDCcCFct3d$eP z@Gi3*ZQ?!^y;5twPubvThxaU9p~Ygfo0W69AWs%9C`z$Qv_~<{%}MNDh#wi9K9@bB zRp>eoMF}124AgL$3LXt34SI4YaTCjm1vWdE%n*PzBWS;GpUGe>#U4YG_wvKYWI-{HaAbp3}Njr5Nh4 zt_EQ5p#$5rjX5PG!jy4Z{KAxR+Jq^?dvd_%EOxx_bIAE1z|epCPI`U*_;W{B_K-q^ zspc*zaiyC70l%Vr;k)UBS)>ALyMh9TgfK;BnGpPc1HPhYVyS3v8M1>FOdO``@VPxl z50N(pEO8_#wH5yU5{Er5SaeMD#x2qZ$Gj2ywc`wHKn2k67qio1+~m+e;a@LxwDduM z*Nb)bBrrqIeDC!1p&k@s_t4-O>D82%6`u1gJYQ#1N{IEEd`M=YH0A#kZhGD!@6R`n zfWDH7H>%A)TIPr^aZ{*5brY;2o_(>5k(HR##(A|(r|cjxjW0?IFfYv#C773PLXw%- zB$W@2ZnRBVsqmFUn^a`qQv#feFDJ4p8x)@Pdy{&swrJ)`O#2FDq$^7mJ~X;zS+JyrkXC0}$`zpr_7HS5uT^@;PPKQuSFon$`&DG?e%uRoV#nSeMhZl22a}e+I z5nN4HnYIy#!51`5vkWg;YQxmp3pIR#@nRoq=JVD#+88+tV;A>oT8ht{2iJ3BHUp_e zHjDCVWQNOW-)tJqpRRTEW<9B>9_kmBNxM6$-s={P z1RuSwnE8j>V6OeU5RYb}Ux>VzWu3{}9U&%mhn8c=;}wFBX)%WU9r%V_a?|86N&uT2 zO2j4dyjkh9mFOUugh~dHFvTPk6{IIjB`HXT(-pzMkc5f_$s|;acAzJrbXtrO0Rbi< z1A#jUDIoBf^G&S$^uvgP++vIKO|VD|yGgNt)sb#Ww;;Z+W6S2O2bD>9d{h@vg1Bp| z8eM~UhZo_pvWVZ}LgRKyr=}gcT)0aRkIZZ`m5rcXVwme)YFTbbkjQd<*(BQ3gS$2# zdIOBI&tWqS;R_c!>_j@PtAQZhr!8zHeM|N9}ln0-H9Ysa=E4T=2PdmZ)LU7QY+tLfk=eByXOgy*6PylsWCroYP{vU1M z9UoP(J?`F6lL@3Qkgy>Mfdo<^Kz279LddpI0-*~5sR9uxf&~Qxe5fEGJb_V)fT&oI zqVi&;*b55ywfjV{U>EFyioY{w=I%Xr_vZQi!TbKT``MwShB?9DqCS>zQc8?lIKagX zmI0(hIVyp03->yhtnVM5fClnm0uurKcw?EsY#HK*Yqwr48PD1@A=52PTa|SrH<3x) zzYmoRVVx;F`Z$A$g3oS(K28HXOk*Md9;dpCG=|Xu;U9fnS;P8-^KlqtRPI8N>T3>{ z+-}oGG?8hG0jts$3M(tobouFX0G2R1(HVj{I?zs_q%{A>ai%jv)eZbJmxJJ*o}lb$IA2VP58lQ`gUgz z&>pNjL(hpHD;?~1+5<~XR-Ri~2wKOR!15f>GL;YL-@FB1`cXz#_5#I5y3fFHEUfI# z-lRP!3-q8YAJZNkXY4PPY3v!=6OzSlEsIRV7B&f0#*U8gCGxt$&*N0d^P;AF!>^S& zU2RPp=^uR@!QiP8dPva4?3x!--dGK%E&6QXP5AeF2Mx5x15G(w62w28EeTB<3c2IY zRNiKuBlu7dQrpoiSK#YADx4$Pq(z@27naoyU3aWxw%vkmovW!dV`kHk86WziGE?i* zlpp;AQdpOeg+{O}BAhG~821hjrhWKKEq(3W^DHw8ky|FnRBa%oi?MGCZNb<#Nwna| z3YApsdnf9KrYh_$p%|DEFKS9M;#*AW_?a3vOla zr~Sy~9?InrD=zQ}kU$g=mXXiI0VChS&(iZ^C|yygL!B%bk}hBb zxs&*Z%dJzhhL&4uwD8#CW%{N+E%1!IqO2eZgK>N{g%*kBjwQ&qfmJ9JAM9 z&B$}7DYRSE2yMgoiO*p+^tzj+YJ-}|rxEzvkVLH34$`eKI5w{sFpMGKXr9wt$eH^s~r zmR)~G1n8qC&Pm=Kv0suF`I-lRCD~iVz9;SC>&%t>$YNV`6oB)Azm*JP6ptG^Hg2wT zY}%a6Fhj?v=0wN%=6|oFI#}?f($T~=Oh*N3(ha+HVNl zoeB)69RGGulv~Mf&dXE1Rc5wf0xM9Hz*w51b4zz4FhPYINuDC)L^m>3{6jY~6}(7g zN6SZ$rC>Ob;tg?lms*7HtTb;mTTE5Q@V$Vv=-yz}1#PV_;VavDC)zCt*R2ApLOseh zm)HCuH=v8sy$)?_bG{|r+taa1$U^7)bws#&Sb3dnu@8_YT1$GYxvV8ULHfm)ye4Y@ zqT~8pa~V0e3NU@KVL|)h=CYRbFePBrlHRAySW5x~tR>cHb0dsV3#&~RU904aKL5-6@sL3Ar?(Nr;s z&H`O-m`NCFYlJYkMh1z0xJCv=Hxz3B%=O-4u{7YgTP?ecs)b8qGHKD5#sz#v9;$;w z`M_jn43AziE|H(Et-6veCM;wXXhF2B0`vNkl!5?8l!9#6 z3fn?Z6*164jk>wfG6s&14#mJdeX0`q6J5M9+Wu(%Vi#{O$6UdKF2{+KDb|DFQ2S!` z5^csr`aHiVuUjadJx@uFbCo9Zh2yL4s86*!$Jk=uA)V9(d=@QTz~`hNU4ZQqX%6Go z$nRl_hy;4S05!RRkD{d;_=plQ+(6S9K+x9-x&c5yH()}LZr~~{S9=FWN`YZv%UuuaJM**13gMQo^{% z4Z(E)yT$1{XN!j#46x%RlXpbM&ZN6S6rsX$odQ5VHGGsj3J;O6q&V} z7$dZc>Rqb6<9Tk5b7Hau;ktADbR0x+cn3;9^>cr~o36EF{MCTh>o_N5p>E_$ zBAk4#G%DzAYGbV#0P1TCuN=V7SESQsTym}9O?mNLi6T%(;AGMfxG5&)0zDW>O1(@v zftCWy)n`0)`V9Nt;n3KtLy8LeQN+G;iNDF`e%oWsBB8bW95lztQ4+(gGNW zDJ+??$F$%&COyY|+Jn>j8qq@2g1L-%j;_jcP>T9Ay@tumfK!^dstlSclHUeOiKk2V zQP42!Cb1-z&d-CJqEcBbGwFR^V6) z&7wUp?`2sw*-{K{%LQ-oF-$LYMsVRMZ%1u>EWdA*w?ou~Sa|+uk4kJS6r*0_Q>v+` zcqY>peHNS%)H|eHuh~nRFC=e6$@zG1JbRdu6z44K=QS(aW@FFMcHEMuubj}FukblD zqFxsx?sI0bBNPbT^`TheuHT2T6FJ)s0j9g_jWK1JiO-4_R9NL!&&Bc+fA&o^v&Flf zw!D@d*k`afU`CGDV#4q==Rdrf6rNQzC5<94c`}Z##pldezLcnnLVtE z{*DMqO$M7)#5GJ*1!@u%-xYb_GVi^t9~B6P_H>-br456d+qwsPuo1Ky z;$hMY57AMY@(`V9!E(J=hQ=Yf7BbIxgd*U?-9^;Xo(3C7Ok8=0u7%7q9;5_} zJmY_8Gv*l&wvc&-2?5lShv?XLieMDp?*?h`{2a^+I3TR80)a%)-K4oV9E@pnbW1V; zG2k1+qMlVYX(XMkP`05lQw36P=}C4odKz)pqIz527Uy!sk% z&`uqh-UlOsao;OsL3i&H|Ipq0S~leFx6k!*i@3k!TJHolhH8bLek5tpJ^ck7(FcEd zDUX>4MKTM*b<u_kNzI z=t0_P>;_5<9eefl-hMW=mbQx-;8-JCs53U9;`6ZkDH1NQdqoQ_Frob-@BLBFiL+fx z+oZD>D6m*uwr9j_p_f`5fnkOP7CT>ns>lEp?qzLqZTkc)oS%PaT3!q#6j~g%dO7zN zZfX*(-P=;0#Mma=4ve!!n>Eka*{8pq+FPH6AU4jz=5Zhb&cbN%4`*R?Ttl<)=^MQ( zEN0>Ao4i9HNQ*uTFZA^Gp;g{k-e+XvM83PWO^w}xMO~LTIUiG?V5c&+ zUzU2?X>f;rt7YEajxIthIv?8-IpzNDo@L%9HrAK6qn9&2V>X!fp{wf~CpUQ%i*E8R zi<8dxa*B!0cWNAog;#^|h4bw#!1SyEo$sVL>3k;jxUj%%;= z&PKf5T<0yUJE1NszFp$wOA`6`tB&tk2vL_8FBf8Rd}twlupR=#(0Fd!0D&P-kfsZ< z73H<(I_KkT3~j-0Qe8@0#59ir7@jd7jy#!xC-*+z0AjL03w26j6y=NAqP1ZrN`yK$rGN(_jprm?5)4YI;u2#=QihJc9Ozl`fkXlxWJQ>&{zO&*jOl_*Nw4= zdKCtG%UWkZ1Np*KR?udZp9=Igt(b$?xT@`~$P&=~Kdd$M{~3uer_ujsiht<;GZQWR z|IupS6uzh4yTu~I!V50Go(dlb``~ux2v#a6>FWe@trF6r2Z4>}U+L3b;C0CsgzKvK zxb;vH>zWwy>v%Y@H1K&G@7c-IL>rmN2R`W?=BN@iP zr^fE1?YL<%P*oabLd7`n6h*=~@VIEfH~>#hArAE5^X_pjj(P`-d~jcfboL&_K>O~# zp=FWw7O`*CCjdO_R7}@cYTzh-bY^~6?P#J52(M8(7!Zzpncl<(WW;H@$N9K5;4NqV z1D-DY3v44|f=POO>$mzjXEbN`J8xhqNg%a8*M)0IFqBum)y@}f_qJQNpkF+1_lkEd z%cUro_ZcYaiC#_;=6yChpLLIrMjWg&fE3-tB$@kB@$}^lz}&WXXdszRX}wb}5Psmh zezAPvcd1$SAwnW_0z<_=bOJ+@ESx~a#}$+L?%Pru^J%YnZ@2IS@bX7Xjvs6t^Lh7X zymqH^5Svc*MR!m~T6A}?{=(fsBffu^b0u3ssLPyiQIgCF=i{%+2`z-Eo0lYW!bwRX z-?8u~Z!4)$i#NPYwR@6yt2exZ9PPOm@i1*Rl8$$1Glu5FNis(?A)rcMTEU`QF~MSv z__~0lIig7{^bJju0YqO@=o=b|7W55bghY2c?-s7!d}ZNL-ok?bsrA+kics&dhz zrm99kvdk3k5&U)6yY&OF&(>Ces!IV{Q$nF^(UvSgoa=Ii#=u{^6##A{fEJE54U+~& z&Uo3=&VRE>lpv-ah5^(%9+!+cqf9-{?sImtvH5?GH5ai|;<%E+8)LYRHse$SK$$q2 zF+}2M$fXj;TZD?eHDH8!iqWs+hHn@N6JX9b8>}mGM$kn7Cq@8|NtQVyc+M5<2$d_$ zC@PaXq}03edFN7gg2KxgM_X`qo&W@qI2xQ4rDIYJAczT6ME@8{3UkJNFFFsiSUZ`7 zVKS=JtGS&FT(6g%9c-+_-(zJURssL(70|2)g~w{i%!|7<;*Y=T?7@1{KGd-Xpn{IX zx=NB_yQ~uc?J)BzfHXVCil|h($|phgFmotKlR5AlhG}|ZLP>p{9#mjqVnTVnkQ!sj zLh%n{$wK>oj3wtzH55y(V0V~|(9|`ddM#=BZv~IBKR`)iHz6$J#tyrT8~5R_iW?UE z>$clv+*oC&aU)whV(0h&1kqxRzE1`n`EG9U9ppb2}Mvc#~l;vEQVXK6Fe++DxHMqFz}mJJFBfPB#hjoMgXq`wEx zDU&QQw!G&oFk@i!I3u{y=wXr$-U&;t-*?vgq)p3fC0-13^MU_%c6Jz8>PVc{5>rxlMo5=gaRfe2H=5uyZ(6CXK?EHHW=cjmEc z!!ZPl&Ng4E1wvYsFOMy^LTID;(#!}j&9eB6Cca#DrxgMyk)(=~Lc%@1x+IR|cZWlx z1{I&cFq(}dzLv826K6JiCLE)a0K9U1U5lphO1)OlY0Z)~i`L9vlOuQNCMsc*L1j1* z!&;x$*q3Ny?^8~Of*;dn99ID3t4}(+nlW%DoIdHSWj}>uXz#b;teMXlh7i)RN$c?C zpjfo#Et~sN!qCKLUWPUIO=PXZ(F7k%s7$JaS-~z1WwHY9)1HX-)!JAQC2AxIPTDN2 zpcS>|?=v`hXhJ~u)5i+--B_3`CRil?`nOIOtF=Nn(!#gJ0s%{t)58&>fHHsal(R4l zLp=XC)^)0d>X=I|r}QwFTq;^HmlR%GN!0~`4o7sbF_@*Y0!TT?FiNNbr( z9ueM1&n3mHT(+$OROOPJC?O-4TrWVJTs$GOE#>i_iv1nzHf`|v0@02crD+I_jB?=5 z&Ue{Ylq@DDh8eP@8BVsARmk*KzKd;4YeVLsHNrVWDB$<}=6sALQh3~-8Vov0261iV z{`8!XzjuPsuLSsA=+ayJtu>EN^#yGw5iBtR?330qDLlMvXfrrSTyNtOyrd1#pb!b#x~ZCw!`PRI`G0- z@F_PBZN{PQmLebGQUv-CcSwqSh&zm83KymgN+DIqu_@AhJ<49x0({b z$%ofaT}7KwB0#{0xF!S$OY#Jb1_Hy<>&5RZ@}2iXTo{Q2)`fD$hqydNKE%C)_Mo>~ zBU;ezs`|J#g*?RlUOmL66!mGk28L5S#C?R)#0759R1a}?fo9?%?sF70jJ?W}4#KF2 zhq!=(>o9`W4vo2&%qDYIr!Y=H!wjt|WzS~$Dp)0psDXH>>ojlruFYG{%@xqRq zb{jA301V#UVoxP^w^#^Ymz*jW@Ht}v!@F~de7?sQt&K|MOFh1xj%2}vF5rtOSN)Bh zLSD42_h2@W_Cd7o50Sj;d~0`LoEVkUj-zx#@9yx;?Og5aXL!n@ZQ^g2*x3Y(x`aik z(k0wL`sIs!*QXMfup(8ugi!)acM0E5cRFpU(j#0)@ePl#jW(l4xGq(C1QUYc5oW^( zK`?e)ArR5F>X4~fPw@iJv#D~0KTmn!5;Kt1p~HizWQ9j*G6qwM`ii*%*!z6P*hiEm ztnljikUT9U_6OY7$``DcFYWyLx8Oet@OJB}d?Q%1wq*H)$*YJrZYy2FkEzln7z!zX z)1Z)eW9Qpc`Nqx%4FSFjGaYWI!=r{y%2+6s5K>Cj!n(DUUaN{ihKZKB;=bsbS3Fy18WkKge!z_ z=*?z}f9TC-^VJ=F<|LsWo=7&cSv-SCAL!$3In@w-*v+Ix_hA?M3^K;!YQ;aQ@!ik1 z5$e*DZEh=zM;qGm_+R_k`6W?92Cye1!0Ovdhxan=L5BxD;+`trKL>o$9q?h*t;IQf z>~LQtRIJg<0cE^xc>7Ra4LeQo@w(7&6y-6z*VhhXF zt#6AC)OG{6b@t&MqwtWmla}w`e~j=AbF3FUsq0)~5<+tp@ZGPbG_JqH>8iA`9#jrE zSl(aj1s~5E<;!8cX%9a16Q5erdOC>j>gNDag2gOf!0Ns$eqoOee8Hiv=j(wv46P#y z1mn3LS8ua~_yqWpN8#I^yGHxcwMhFw&CY-O8^c*f*8 z8D{RH9+DLSTuk^2M^(3Aas3^YF1w9=O?u>A3^=NvdR^&JKZE(3`dsbVuN26z+mBRy zTbjib%=VjxRh1rrryN!ja~#%IX`py0?-Ii*fO7+`Dho+>PVsfoa?|*UDZYG`PccI> z+B)$?J|8{WTVf?AeE+mlQk`M8kf5^SWRg=@I57hBa|edsocW7wat`;ms~Bvyy)3(o zaqw|B2Mg;5^l|;Bv9VNik!vRytN~-}}2xvTObWqPm!DjzBEr z*9~xa*-{EFLLT9x9(dg-%%$G5pOYpdvmuP4IV%kVZv8t0T?=e%JEa;Xy$a>qq!6bD zxwf#!C^)XpXW+9^!qGiPdyEl05I%yhTa94Y3RR4O84nHx)lFQD6?zg_$`$%W1aq-M z#kai8)8~h@|FBAliy#6_8Sct63xHF-S-Y^Qt~~}*SvQk){uu^5%KqX`Db~0ZCsc{Qw04Q~Y{-^vE+VnK}9JV&XPzvzk zw0g)F-8QzFau2hSs-|v08>w3lcP{Z=XJb!NEVM{HSftn9$!QG!7~TuD-2FhQo4rPx zLl{T@$aGj>ta`At7yHN(qkM`h-HZXgsFKIEh>Iqpt0aF!Nq&4=o6bCanQwTbzkn$J z{)Y0leA!f232T&2gcVI!l(X1xfY$6;*mY~jDwa=uWC+}EE8g0%U{P0|A?roi8KHu2v(3H?ZD0n^-R$!_%7s`od+$u- zly8y2Rf#vUi)pjSLL8mKF^5qQe1>&7ZNX<)b)p5IVRZt*#4{|o?Dw6ho8fNnS>m4G zWfTL}(nRgX46g3lB{kV9w|8EjQNWB@?>(>;ygW;|13N2XSt{E<>K%pA1akjHaDhjo{$N z3%=d%o56l0MCC2NhUHbA_*91UY`@&+t7VNc$<)IVNd&wtQ$}UL6H7560^l3i&-m=T z`U}@CmPzTMXEnf86)P=M@}IuU^%5(l@aR95f91+zrL-A6D*$r#wX2&MBV$-ub%IbC zC#9-H7fFF(x3XxZ&$zRZ%t0l|H`G|dhcsm013P_v*(54c*rZmeH65OM`0T*Fnl?LA zUfpY$LFIB3R$kpp7n44?up-f2EfdVqUEL!7p}V>z6Wx{Ny>2j(@LspiAMtInyb1k6 z529{4=4-+a-{vaillS`8vwNs zN*|n-ZnqeWx<@jlv)_;za`yB0`?9qO?fJd?eS;j22-T>wztf~ETxrRVZ|+?RxA6I6 zdCSc(9@D5mxI#9C)0j#@(CsgzE$H^=ixzbIn?OY2_G3QrCG*;?uCq}a+AH6`iK3xb zz5_m~5_)55dwc2oCkQZ;?_Uc&A>Y52QW3s?-QBLP+Wz)@&-1?a>>%yMTn*3SKTQ}# zy($EPv-r%!>F5i-?waJ38U;*vm!)mWqCOF@;`QXu!U#{)P7s>fDJgs`B`IG`7Bn&A zix8aS?etBvom?H)=A8=unt~NFJ%3`G%bah7+}mwhnvaltBK^gkAhLc zptTZo5J78xdl|H@1vNy_qGL{QAZT@~|Mdaa12$Go#l@&$OdM5^fS3AUC+k=n*CwIf z^N=gS#x9{q7`hB3Rotn~;zt_$lj{%fbj`D|S^oh+g^tU!*~=7CBX5} zVrsq1XVX5;k|EKMK|KUCA>d7?)aB??2mBU>#4|zy42fsOKMaXyVPZFQn>|cZ42hdQ z@NKpXi5o8P-3$ncNqqE^@Np1$$UK83bs%dHLt-3h(L>^Yf$6n&3&M4o9nihoqIt%C z`RL;Qk9;{Ti$R9v%?D4teCD)C)syD%F8f?5{Om`*d`G5`j{5spBCbsC+wJU~!uS7B zk-}T7>CuvVPWXE8W9xflo7*axhhpO7VBy4F6a)joK-z+VpucFrK)^s52n6*I2r_I@ zmvz7(&@qN$pqHE4fq1#AJMfGT{M`}C6apr7AR%B9B@zk&w|0;rU^VSELcj{bCu)Nb zM}z=j+fcB<5Fk0FMgbEU0v-{tA_VLWBRo;tLuhLIrR-=nCA*3MKoTQBgxnmrE$;vW z+_t%i(oCpSk(fKKj8 z@eiHcl^q*)axfC; z-_=p($&b<=%#)$VI7;&j?KYBSfWe2rcfu?YpR_&wj;oq|Kw&W%e@8L-lJ+1I=)rx( zue8UY58WpEnC!=8li7~+S+-OnjrJgY=)q(^kM@M<+ZeBS6RN6s5kBaE53((Wp>7lO ziI2K1fmh(weJqgdx8ZRQ^lsW*T?N-ao8R&mB>tO(Dl`z>Om)KpK@bRfuKNf!f8hQ5 z!k-`;M&(17e^WS_!4xFDkE@{mn~z+bZR|4Ij*H(wRp-zqXB*kyol*W5Y-}DyLJwdd zsZTP@%@*0;Shn&%fGYaSvW>hi!62l1=L#dsCuX+E;(zbN2$+f4GK<^wnd@ryFy$Dg zk#Yk&QKJHW;G}CBdzQk7DWl*IWTQK??L__#gTLyZNJ(I&8|yJAXmgk(>K?5Rl_Xe? z`GLY4^_a7?8S60sDC;pM3{lV}wo$p|DJA=d;j$|UOtNDghE5gTCEnDLuW#Y+%d&FF z>Is`^>Om4km!E%}+0tLHX@rr@<8ETrIjUvOvIqDFSY47>xYr5KokkLW~F@Jl<%LPMqiGv(kzpeIy@8A7Rq za_|M6WDdTN_8K|(Ji;hynGi_i;3iI(gG)}SQNTpz;CBgFk%QkIMtGvOh0xS?O5tNE zNtJ{HO-#Zg1m|&0-IY-<00(?y`=tmD&ruFt&PHB7H;BTWZ?q|Vck8!2w@i9 zA6SS>9z1-}Imiw0lSwY%Br)fi5)lAikPi;B zMx}O!%~MW0^;jD0WDVY=bExFglBbvWuVu@r5Me^AD0#CI8tOi)*d_`eCbWWIuY?9X zEcqBhD}W}H20lWivxBF({WUy4){mz$!#s$JvnF^^;o(r>DdD@?xG&+WO8vXES3Apq zYw%V9*Mx}ympU_jW`cvnfcvqK6a(%j;vWXwPdYaoaA752!2PSt&n*M)g#tce12hvPMOmvcb)HDgGWTlXi$O1s!`Feh(|6 z9ib>Cdeh+S?Len3USqlBZ2}9?>tb?cxcU*6o7zKM=JjW3HMxAX*Wb?(BY4pG^b65n z7LX2Q!h#z~Wx9xqNFySrcC1_t&v0v@Z-@ow7HfV`Q60kub8&6)hOq ze(o%vGQ8Nq{caS`Rgvuuih+@BZ7zvy+j3=Os}W$P$hI1KLXmAXrGgKaF+e;CTrfa9 zP5Y6{LmjfZG2cDN#!~(s z%br)iwZ;#(faX$Ibaw^^6(Vx-q>r}eNvCT7C=n9#q>qlvgSVf%xC6Fxy87yyei0bI z!-{~n4mf;P_A)k#iV&uxx+-LNo-9!Xi`_%mGzuRkvVxzgL{Y52I@K3Ri|$mno&Wx+;wt|bo<7FE zlzmJH%MHx2Jo#?J`}phTtJ;^fP9{*g0p81#j`5ki@H{@9&pOvTk@q~=)iU#mXDrH>N6BV3wIwi3An5L~|0KUZ zv5ja!&6TrG$>;Y@@{cm}7KH>y1gJ@B^y`DDK3KAS;d z(brx^<(``_J-SKcaWf!1_WCBer8YTVUaU5OQVG59u8jp!qVzogv=`T<_XBF+Jk5s2 zTh)#S-S4p7lnQziLs{jocH|S6nf`PsY`b2EaTs?54kR3*=%~ses>=HfsNx~kS6p5K zyvG75>?KMOtgp_TMo9G>N>#uQ_jm7PXDAX@i^d*=qph|AGHLPj-x|%~;^?q@5_>{TBF#IW7~Vsh1r_dC5xl-X6o) zSF{;Z%Aw(ypHmRLZshRw{-qlGjke1Ju$O?Nyr>X3>nRZyOaYKrk9EHghH;y(6R#TQ z&WcJZY{X}db7wOo8aKX z(*voVxcb~_?k{ZYQ$kvv{4{LWN+$Hj3quh_zG77W;&gYcjs5W-P*o=Q8=@BQvC+XP zEVhVDZcJ?rR_Z86bdmJyfQMe%08j*fF2vlr{<~T3+aSNE6paJ+#k3g%Np8_P?(b}d zH=>onMP2ijT_iK|U+1`=W!01#CO5ZyUD{C_QN-ipf|+b2?KbB0up+YVCKg$&yQ27D zJF@N+Yv9JmUG45{W^3qnEoF!6PGI!B#+_rv=<;K61|Pe@pTm|@41AkIVC?&@G=&%5 z?r+MSbKQw%TzvOxOOaf&cTsdhzdNaZJFN5zTeBhk>h*9V(CxZyPrZ~s&bD3b@1*gJKwU*J(wM&VEC};=`J$YIZS(y0QBIi z=pWJ^BiDg$%ypC$JpCj0SoRBrMfyJ|`i;7h$$<2s2k7^Vp&bT!=rxg_aVwC|rLago zyQ>u6MSGAu^q}|w+7qHL*7X{{I)nf!V7g{8hIKbXpGencbqU`mx0Czi^#AGIj32qt z-K1$3QH7e)l|Q%FKi+Y(umnxxW>eE(8h6K&J*Kf)R6N`)pRO8oKAUBjF;}zclp1Cl z%^&mM&KA;Uj3Tc;1}W#VuKaYfKsH-WyU`0B|Fv0>?PgxF!Vj;g7hhbct?MeUN1q}< z_2kX*gg-OsdeK7n#=wkMb9a%MD`rL!uqJsiLv8V-|4|!zm`a2h>ZzyvPWA+C#`pt( z@}2ES49pY{Sz-*>;C|SGN5Mvr`dB!I_Hb9Y$KAilj9^&t2W7>dC?Z<%z}BAN%tAIi z*N_bp4ZEmgAi$D6;~!*Z8D>HSYBC`{&-n5g|4mv-v2>#bX_Zo%;Bktade;9l%PA)7 z)3A6EZAOa&ptQIN1K+dlZ3#SM8*Ki~z~Umy54X8<*^qDyEvJ}Ic@d0lLI~4b9nmmp zf|{>-$O1__3@&ju`=0-bb?nZmpslZ+Xn$omEmq z9GdcOWN7+#vltrNO{HDQx>NZGFx)*OP;6$1nopoS&`h8O&*%^DQ8%E@mEjl~P+#yN zB*i8KL!G5com(g(s&kW}PJ*o=ZHOlhY14?O4=l|!Gc*kTAZ29ew7j&?jDaG)eB9qt z+uw~hKjHWAe!Jx(R&;YBSZGfhBF1a4cC&~UW&7PFmKI6@=nfee2)B zZl_!g#kbIAR1S>OJtyQ**hLeX*A{?MIxp^JK0cp(T79Z%`=T5pG%A+1vwM&kk4A0RL*D3NOcq56KDh9jU){3;RKx70fIjbzJ3j5x z?(50|K@Dso;2aUe-l35N&uW;$S@{`%wVh_g`W6l%FK*$c2)S_!H&y(@E!AV-=k6>sTaj@&B4ABY7 zWm_&8i3TTivCbqXhy6lw{hfch z-BD~gB_&6?QK^%yq0Pu)xl?W$ObAAneVZ}3?$ju zR7w^Hd=_m%(*O(~-lDXt85kzK+8-D!)cTs_l4`~?^S z&w+eJ(Q%@lq~rgS%i8OCh;E9@$ABmDTO`UudIj!hSDCaIiSiYsMNgFPyP!mQ44*j(zT11c z9IgU@Cme}<Rddp7;`MP{coK9B9L5PWe2Z&uCxTRQuS?KlBHtJN_XU z(L{9y<&23c9+3N*He=2IqsgV`S@Son8Oy#Pbn7#!0?jmbmNaoZV{k^a(1em=;R#D# zo>O{<)~r;fVg|f=v(N;ON#&t_flivX_D#Oo);O83%q>l1_EO-Yr#A3Nw-b*W5y;Zg zOZlt;fgJvwBY;QrF$UmKk+f101M*7cBkPZata>_}kzd*&$&e;m247&r@ybFI$32dU z_Wa+|N^_&U&>wwyX%6#Ki44AQ8H{lQ%Rno>h0{wrCR*^V-##c1Wot;&DN<8bXU+Cf z%65(w+lJNsu1jh6hS)AwY*$*dT}Ij7-Vj?WZTZ0Afm<5lx?6F5*qZB3%Jr#+xHdSp zc6C}>4E5?qnkMo0rPpI`J#1jc*ZoJAh^RVHRArnUnn<> z5B5^tsWwnzM!@Yw#H681ryiEhJT10`$5<%p>i|by@vqa`dgLAcApZB6kbl zsLpSh$;!>o83;(?Zs8ph1C<(^M9GUBBEcZ95|eSfOV>b}xIBl$KI1IAilSh)wSczZ zSX>1niQR<>7Izm0d39ssY)}1>se!gpY(1rdiNK#T16|o&v>A!7_sETf3BgFj|K*Vz zi^nJ;<~NVh5qrjJ#BgI_h?p*Y8!*I;g^3|*{x0Pqgo^?gxv?+^X0~C|NGY{WE&|*ykU6Y+ zXNz^`hj;1w%47+8VHsxDU=+-(BjCo+SuZkcdjqcN%)&s>PSZ6#$A%0LbL>VvVHseK-B|p? z9J_JPhH~sdivtHOa_o^e1opBtfv=}Vcy=g-wCFkZjtk7O)0YPvvJNfMYo0$uCS0PL zYlEXTH33zE&hJUG>;6O#nS@vM6xnr;7}|l!HFRKdJ(c!ga((2FZk4v4d{#|OKls7a z+Css)Jm?dtb#l*8)%U5T0hhL{C;xS6;3`L+AWW0#R+Q6;OH1!zx6u~NqtoB5IPW|f zEY_Z_q9n1-SU;sS*~ado?U+Yz6)iN6HlbqeaClwmB5ik1nMWJ&O{8}>!DAjh{Ib$v zHnxwlG7{OBda6YB71|$4WNj~qL6x^LYi|nM!cpsG0#whRMY@w@NTITM;Krv;FMYHj zw%_P%zq4lh6=D0^{~z1;X2N?H4QLxzuCz@kC#%KKwgo?Ug|2Pe@&>d`w9r;2cP6ez za@UnI!w4kIbN}qp9%eZ)yNe)B2UKNueF#CC-Hj-h+1*IekHOV8j3_p-T*g+@Fou#l z+aLidzi6rTDMwe@!4OIn&Z$r;!?W=&*Ot!W1=p5-%x6|#rWZZ0bg;&@QVtl?3=SD`C2RuW^;0UC>OD+xFyVQEwqWphxLl@s zCRmKo27PrhU{|>)B)6#_zNoZ)6nmSJ!tm5slQBGJHHIQTB8FB6T;JxqW(2y0$tO58zvj% zBI*K7nAsvRA!O8)U(ai<34F_TQbocRhbrJc&?_S0I|O#XQtImz9S7?bYJzvI21_J- zL>|TE1-^A2d;|LhN)YqCULJ2uf^hv9>J;=dD3eO}ex*1@y7w1t#`W|oV2O0kFqtCv zQ!knB0a;AfNn|m`;Zj1Z6 zJ>N2?akQN#7<&2#Sqi3qy(+*2nEq9Wf0+JNR5XEAHY zqNjhm&OiNwm*qzDr#F_aW3vchna*8aA#18r@z=f1JE(Os0n)XeQXzA*nu<_vw&R(A zM_XONzj`Jx&oM>d(A;b=AtK)du70~mCI9)^z(}^9_Tl`P_Z&P6x{EgB{8(SXTRk7h zG9%PX?%m)0U$91oIt0oo+uhCKYiG+}2)xgpq0P7upAapmV`CYm_Eq46nRPD(rm_E_ z;8-1r06$V8CpDnqq>cc1vH~Zyol2w+z!MeX-mp}@u<2us>rcKMSYl&8QkL*NK1ISOao zCtD$WzjB}>3_%o3?(E()ht0J@xaAGV6dKUs7Au4m|I@HYo2(E(Bs;%#cWD!8<@K{$ z@m;%1JFs2hz}R232c8+5l*S%$cUM*&@zDW_EZb_~)q)@j& z05`tsU!`egwm7K|ydQ8fTV>d!juIF%>PxFEFmR40T4GehG;V8wfpfHjCC1ptOJ`YN zpj0K{7}{IC`BldPYVkU%7~0%PNm8iuA=CeFfpnBFzvqdLHkla{_{?%3|fO<#vPp*_X!$eTM<{D2xY?mwn2S`A;m6Xh(GoJ^l z?Sn~+?wKJpVnXnRkQNhyFU3Dh2)?Y0ObF`X-FwS#q4xSJuz+b^!V_yj=ZF>bWZ=Ty zoFB~x{t#%vb5E5d@=mKOFJo;?Orap8C3|IB5bu?*&mY^^HIBbJrz8$4NL@R#E)fX% z1_Bm%ETpcB^U5UROl2sEfEV4{^5ft4ZmMnxtnrF>-rMlXQ-Lx^oZv!}irJvv8C^fuz?K zp7?h64yxx9pr?4d+oUJH-F=@|o*uiKQZY`CZ3Qag^w=t|JUzAov=T3*m_*Ll*{8pq zj*`AeKvY~LKMLZwNPZIkaFP53l&nwiZuu>+-6CsVc_wfpi}eA%DQj*{TJ(jo`TVoy zqh|wOvn)bWCd}zRxiZ@Nk(yYj*}WvN^OB(}&rj1!YwAArm4_@tY|UPVpt81*bTe2&ecqpPb_NP*`J% zZ}pL-ybH`KrnsURnBwbzikRX{d~%8}_Q@%35*ZFiy6R7#D20sY zBqf89*U(nITlcXq6nWKU1>2hi+u7K;|A4CMuxAlfT~^T254z~H9jkH%EA=p(@uS~D z4Ie)^2e`P!Fn|=%UtwCpWnlHkV}jdlET2-fR-ls~_c;8}m!;pZ-V`3U7CrrZR?A>t z)|2*N@`tw)4D-ud2}aOv95!*p!!|^UyrmI*-(gJg#qrvBzbxFEh7NBgFf>tDMFU6P z_}kLXX4XdK_8Q7km$f`0m}f>XE+$w;5%6LH!2&KO=w`;i>j>`j%j*cXP$WaKjp2$t zV5JydNnoLv3>PMoig1w-0a{9i90n?E$kh}SLoVKW`N=15jMHFFT0?&1!vrab&UfWV ztNH31OZ;}~V070GOH{gcVG8Nm#XsrV{SCSHhg%1qw7k^v{`2?P7;=}*|2CQDrvwkP z76GzmFqMiXEqa9bukfpV-`!^2Z>25xUmHt@unvTc3>p~$88jUD>*fa@Zr;jnAx&M| zfD8$N@Q?uCfhhkbN4`<+3-D=a!I_S>f)DloO)2AyxBKMRcWf8Tg)bA)c3dJ`PWQ-W z!)P-uk?MfF5!i%)rG@H@U@n^yjt~Way!=nthM6!hg-_26c4OCuV`#u)S7xx28DZdx4a9E^n`>V9A8Q4(ZPD_jni~U4_Crb0gWr+4e<|G!W#ix36`I^YXW^utH$xGvxA#0(w$3Eg0Z|VCpd?FO~t?& z{W)pTXY>Vpj0aZGFkaT!^BB{Dbn%ES!MT7uRvAZo@X0Uq;2l_Lv?p||QruAai~ex= zEL{K=!q=U_1<+ReSgru=i7)xW{9uk&9^?x|LD>+n3Fh6w4la~WZ7|ekWcFxEHLxM{X_(4gv9k@TX=G8Y$=rp^E3lh6^J5G z`MceMyBVjLsO;%Dk4xJclG}pvCID+Ybs(D z@G-rEGuZ+PkFOiwNLw%pEdT>1c~i`=Vl>HGP!e5NC2Q)y19O@PkuR;noJN~a#gBV~ zK@C)}2CS~a%y`{w=NNW?iWFuFbx!grRB9qSN6|!EU{jj| z?}bBy!y1yfo^mruj81^+$tbHf_dLY+$MrS8w!@yW2^{o>{S< z6L@0LQ>2+2@_i1d;@P!9Qw7dX`$(4rw9(TT0E+41KJqai6s_9Sb_?ot{=RY@7xoRU;}w?#J8HxG^1YV?2Ri&hB08PA5E1$JZqGGr zEN#IBJ20)%6IIu@5x+I9(#59Hew@#{#eL6H`jQoURbO)7^KgNnFI&&}V9zd7C)71oxAEP%u6l|# zwlB^U$IXH&)nqi43saG`v;|XC<}IGCU{Im4*c9KFNT5}naDPfMHJNj3C0!IN#6?M zh?=oUajY5BLDlCwC@kiCa!fxk0nT?O{^5LQ{6sL=k=^kr04FwuTh>1KlH+t=T^Ia6 z`dG&0!8pFc? z^`+f-Hv@Fzdu-kN$r5#4AI~LhLIl_){p5yj7VSa$&;uJfJ0IJ$Q3rNC?FRn`-{)x@ z)msA?6BGRA;O!I^Wm%(`+)I0q3H0FSvmT{A27Tx@(a#;=8OdIwut@*qe%$tAum{c& zeK?Rjbl`F1FDZ&a9=dh%Sf95Ty}EAwq-$#1FXWo`ULDNRqWkj?t`7EdbQ7fMf^J87 zVRjMSvgBVZu|JtBxZ6q#$Bd&Oc*;01!~-wgWYBh_xY>y|i{%*wfPBUTnEgbbnd2GO;jt z&1fe8)~PMcB3ORMGn*MtxzvO1_bL5U2E!bDaQ=ptV;(=*G))=^%NDRt)UuJB}Q zTdH}{%f2jj7wyJu;?8Q4BkcffN`u{F#I(?}qnXc^bS$kiET!g!U@qEo*rLtk+;D2Zft_gtQzg_9^nt{>OchCM0}`=C=i&!`jUQ z&VVF^J&Y3Z< z>p6rM-r|X8rsj-M&QhMYCpeAOQi5Vk?ITEwK0_ZKz#R_)=6>Y2p~euTFCh zrTn(O-}7QSZ6U(~qzBkL*XWKTSNucAkz2!Sjs`oBU1{z>KFii;Y(vvw{!_5TD+Ip2 zb;0RSMp_8p+NXn@4JUnaIt;Fn71IGVVnDB9Ga?`^tC16CKJ7tULl4^e7TSZh-aXG> zX{(W@2Fhsa2ISiF%>UZdY8T5w8S_t2do`a&)3LpM%qAdR-R z7Hr+i!K%NX(CUQDYgB%;GHo%m1)}Z2NoslafkHO4bdC6jmaZA}|2e52yvH-1O{Q9+ zr6-UUgEznYQ1DeYpY%yf&mAPE>@Bnh?Fc>Kev?lcre&cyAlrg z9`VX&2(7I7H{!OvLo@jA_j|Jc-mdBe%CVHGuxl&YV(6x5#~r>b-~Ot=LCYQz|Io6B zq-A4`A{GP;e(;jX>Gl75(BsqC5fh`kx@GX3ot`dH?+5a07w&~L$e%)_4SsB^%3+-^@MyJ#?w(!Cb)#!Gwt zpuD38L+pl^j!kSA?(w8svfc7da6v*;5~c*MUv1&!(i1e@6@Ib(gvcZ%mf=?Q9VA0>->aYGxm>wIExXcHw%6@2bK z&u8pyiir;o#*qZk$>^%< z$vX|<@!!C=_)H9~^jGj5hR701vll%x*%&HDnEqinOi6N0gOVu1x+Lj`Ja!v)ABER*o@j6eE3A4sgZW>NS6;&6hLWWb zHh{Tu0NGG6l_s(b3K}N40!p1yD~t0#-Mulj6~Dc?PqJa6ZJv=3DF> z7wv+R*bLW!mZ z-I%q5OqjJ>n4@kb^ofHiR}T$UFdl7Lm8mrv#@}sO6?Ci=q-h0XF6D(!k*38}9bmD; z$OOk@jp=LWp3kvHd@>D2j#EzuqA6i~44p|^@G*2d(Snbmg*u_f&}GBqW9V{t&HoPK?T=Wh#j|jiP>NU;2Uu|!E(8mHN}Yo% zrm)7-=OPe6Jbi9AOg?>XJ4`-(Ht8EW1XusZ_ns`MkW*UdMp8u!j*oiL;-AC96Nxu} z^qgcnDP~wA@z^kxNIXG-&`|%PhI-DzP?$#;La0L|z>UxQ1@Z_JTf=upAUuFl7x1CK zdWNu1s2J!04S02oRgzO_Rb6b%Hk`~(YrFlaBv^hH z&TJ%5_%I2Som&o<5&&M91PVY%APVkxgDv|00R?v$8EeQ}rL1_kuQ%l!CaKyv_Z%(* z#b62=CZu}WH&6))C>SUVGbviPQd5gSkwoX8@|o4V{N6&povwV{mBV^NS3Xb3g06hN z_=m21{_uuQ{Ul^pt+4Ro=^y%H`1jdWgV;K%8oKg-k`~>S|MLP}`Obo>SpLNCm5ID> zR9OPAy`@P4?-x~8#U3Ke13tl=Bh zX4W1n)|bbYwc-1M&KOJn-%s|!mzF4L@N4}Y5u%!`hJkAgMZ&-}O0;0$62l(~Tysar zz;zu(K-*m%uD}v21u%Ne9wE4Mvi?9@ z@F^?6@VZuI*=ArP^hEGEiF^upZfjWiu@{pmZ9JMyrp?F(0C}f2Wm#qnlqowLSc|<_ zJ~B5^7qccILYioPA{7<~z9$Ki39lUq^og{2T$_Su?Kn(;9p0b@=ECR_LGjfQp`+ux zx=j^kGGP{1rNhw|%fNC4RX_w5B7wT?VTK_lKag2fNv6Ld_9`72+=7@E#KCJ^)pqK_ z^oRlr0VB!=Ap}O0jp83hl#O7=h-2e;ux^;Y>K2QL0_R9$cyXYrn(d`JVMN(OTJ(sr z`T`@$%<3w}?+jKgVTTBH3?a6cq{({S%~Ea8ssE4XX4oy{sC)Ke84Pw@90~?|`c$Q9 z-(1X(_NnUScveuS!C)t4hrwWU->Q@BXWEP&dS<_>&W-+pX8uz$~)glceYiGe=5am`RBlzOWB%MqdaB=nG8< zAzx_wnIFsqrzdXua5w}q9g82R(XqT(H&T`tr%^tbu^GrJZ=EvIC@-dctAp&@k4@^FOOt0}5uX25Uv@dP+n1mR8mlf`fEPu7I5`4&8jP z!qCl}5~R@0oEHDk&72`~xmnvVh^`hy2_GmS}$?q*h9pqpve zqwF@8P6*2+we2XGq!!Q~Oj4o8cq;Cp-A1MgFd|d6wdN;!K?Le0e3OOnb*)B8-*nNa zkZ)R)?oH$a#zJfvJ&KPSTh-IiO7NhILZeL4K@IfwF61#qC44xF-IWMRM@PXc#84-DCuTiq&zTw8_4QC z!)Jv)khQ@<*|dw)5d%t4UnX;ayU%xwouDLffg2=M!2b|HL;2dKj;=;FcINM~enzYU z9#`cHvglf}deApSaA{gA-4ftoZWICVgVYRjqf?{!k#fk5Ks5AW5y0<{GJKeuG7nQx zeQvEstxS;mQqV9t)sxDgk`qwShZ(FDt@o*IFh8R9=XYi~tL=2r=pzEl4;|MWAp<(D zE5$!_TvygMhTqkE&&15U7Ht4gKkrv%&t-C;9`$9oJSlwV!MG$!n{M*{`%4YiB>!8mWn98;yJ1_>Tpcau{IR zjm`M?gUeEQ$-JtR^UbHgvhmGi{r&4&erjG-u31*G(QqV=4%6}rDlcwNvjm79yKsA& zAzE;I3P!}6Zpuf?n{Fy7Ear`PnN!(lqH^ES@}?WAGRK>4T%-RVYtJ25#qoUJJ)|xO zf?z|zUJ>kF5ZkMQnwS_1sEA?%?2V$a_r}H+d+Z7^ku)Qw_pj!gZfq&~O=6-(O=2|h zH#>XxZtlH@=A%FVI3F`RWoKt+cW3wZ9?P@+OqH0yHZvAjIz;HYt8EH``H6*@ z^^6*bMh*8UyJxVBj-WXPJiUNwh&6-dDcP04wE3{ky%eyF_mVSZNu$wgF19!$Y5&lo z68Hy3rNANJF&LGC#4n6WK|{)mO0$<()_RFbi9Nap@lA^_1@N&;VN<@Y;H3E_#-|tp z(c;t22aiuVza$OgSC?1<`8Uff!&zIxoyXR)_fuL9;U`|VwPrmiW?P&MF&C~UN3)g` z18vg@z8_VwdZZUcvsw%hriwNV!Eod!KhYJ;moL5)rCu{Pdq7bctK^6NbUw^B$#xj|05^u$6%_+{E?moT7VhY|Q=rvJ1 zeO9eRwv&K3ntRg_2t)mB&Zh}R)$3t4_DUYN4&r%5mO}OtVJv2Tjri5u0Ue^e$jf?h z2=vPZ)vEKY92U~=P(tCPk=|)|`p?!HJmYE0U3SJmBF^W1HAD`EKT`}2hJbN0@XAmjLEOB(A%%i{KCvMS?IiouEi1}oBZ3sht{Me9PKj6q0)t(NX=7A=cHrl~>} zQw$0L3@&%3ZL`#4Pg67siQj2ShRPabOx z7USRVuvB3m(K32vpr9rQJ_|USU8KdZ9^a}$Zcq%?12A|1R!Jj`sIvyN#u^*k`9lL= z-etEXiB+crC?qNku0Xc538Dy;0SIjM{KUR7tSv?Bf}o5+(7e5tF)W3aMH%)qX{{j? zgF*m<4T7(1j-_Z_2$V4hxwGH$7@J4SqL4yW$Qp`4A%MY}3^{0N%C=FoE(FSGLc;#A zNAZz|VA1|EEsH{qszTnS7!(2+y(XViGzuwR*)Z9p%Mjb{jXfHy*Rb47-jCy0t7b=jB}fnQRXCbc)AadZ$G6mt4#5$Hg(M~rIUGHt#rA4gF4~V z_B|LcpSL{7d+Ayv_E#rA0qJt}n;-oU~^@n7lP8ZuUcSR&Y%)b{(FkTGDq9j;eGz3Ll8ZhOm8%_uVGlg^EekQ4n99m+2FI^TI)lCnLWmz=f4@%T3& z+~1 zYH{psOD5|{b-`M68z$SL8^!3g7^u}^5XECH9;dY!`EP2WUJ?W%u@(lASPKILYteO> zu`LF@Z?Um8R2Qtp3bht1C3-6d}v%M6Lwb(^#aYWXFQIFyYCoM6= zp(5q#86;vQ3=**t1_)MSsaqv}_{cJtou{f`CB9KB@eRf3mAIi*;&+P2O8iDE@yKv5 zA=a%D>c@jXB38m6F+ILZlOQSr>+qFZ9STlao?y*}6W7K%G#W15sS(9s9pdj)XrLqw z=czlawOKMnV->m%Cw;;ptKi-zYE-L98bbY0I!MGi7$jmt7$8`Q`ooRh6!Dp*51T=C z!AeX~D=~#)^ggkCxZ1Nr6rHO zLv_JgyrI_O4T{lgaayaz8H&eRd_`+<>EF~sJ%}ts{%xxsOhuY`PCLcP{-#pW-)!YD zLm^&x+NUa`rMdK#1|jv7un{tS6h4AD8R*xNWBRD#2;wl&BV_u>&~aCtvD6~|qU(s3 zHb_NF8z5-uGJ~a`VOFXN8oB2P>F+%$=F~aMbpHNpa{F8i(59Yz>syxU%uott8Xzb$ zd4$nNPh7BUVe=?^6kMnZE~FS7@(;GL*5W>Gt@RkEIMkz1>R}*4J=`IYJmP!k8wN0{ zm#3>|`oWTQEulV@GQ9ii`{Keqlt8qkN6&QL{IUh^ zbIah@npzVAgj2$6n=sK`a2fXHebV{v%a-UC4S>{R7OvMQUe+j>2;h*hsmWgrw~l75 zC>Up72?Bz%FOYAl0EvUcH!bze-80~d%I-C*D%~@9?2*3J5P-8QJ7ppIJsfT=d{^7a ze=MWCX-Oqr$5v9uo`NocpZrgyFi&JRiOha#W|)!y7KyYbMSF0Fqq>y5-#&>op%7Ru zCF6IjYEg6O_J*3{j5VGYuIm(26j7@|Y`vQ~}@uH7)ZgaK48Nbd%(TmZfzwn6Z2d1OL~ng+ z0n!4~{h|5WWNOXdR{X-|ZwuOc5BpOCtP8#Pz%$z|m3X7-)kA%pz=YTQ7y^HaU`IQ9 zEjxkeYCtI*ih5(<@0ID^>Bj|upFpQy5@fC3VmPq4M~nBCCbbYjq{Xu-7+ZXtfEZf5 zAXDw{1(~wH3jntGLQ0J-J};AW_|^ZS#qCnPIhpSLT}9*pL($*Iff0=TT`iDBb-)(S zq!3q&*P<5iVro6sza{9g_rEQEVe`LTZu2LHS?7Cc{?JO+SYGh6C5%Vxf~ddmXLTYk zHfl~21$9mMnMyFUXVVA>&tInu`DIZtEF#I<*|8xrw~{3@-Ejbf%2*m ztr~ZutSNlwHA_cw1Bo_Q`@4#@z-z0q5bU(P^L1#t<$l58Z2TxN4ehj%Sp-7bZ%H+1 zKc5?xmUTSZ&tJ6P#Egs)uEyhkSF=X($u}&ONuB#k3uO}iq`~5Dk_KBM%4jv!X6j3n z_21+1F~0S8tzCZk-LqX_$R+LaxRkopYr8zo5ByOfMbWpVgy)n4;cl9{_=q;~}v^~aJ91!U4Eza(iczBqlsIHKEwz84Vq}{ zrjVa)0lZ6HYb(C*Z%Yubx^G}5j*013qtyv>8_EDX)8v2DMpF_;|BI>85UF4D(K27s zobXfgC65sh$9xGClKB!^n&eBeM$3H3SV{@Xsriyoqe*z5GW!1c5~3rVDJ1=U2rs;A z@GG@s6csG|YTX#Ce1kw+zD3doA>FTIV;H*k3UZ9y`@}Dd-TT0p-iPk?O}xhL;_Zzq zaObv`Opf0tfD`1OzN^8n+?eOb-k=)d>g_mz=n83mo`!??%U~?yI=)FWE8OP@%X)Pd z=QkpKQu@STThc>ys*j7@RY_R96qIH-&NufyN$ zPfCcXlbfU6$L0}I^fmAXF*cuvx*5l2wZIw53xmYh6ygfrk+c%J1$om1Xwv#wT9Y;q zzpzOgWR=&Xjayi~Ey52^v4zUk>;g=9VXUn-OBC!3fxQ!f5H-qL!gQ-`7B*nMF^s^p zJP@bl6VgXyc$u2}j+F>)dfpEt+@noLO2f7{=m8f;wt@M7BfK(_pH$k#@I$Sv8`wZn zii<;`WF#3S84aLC#I{=zs}5IeQYiYy7y;3IV^tfgP07oWZUO)Q)yCSK&80Nx76n=E zZjmL0&dNf!Fpc3?Bdy(tQYwBFWrbd0P!rDq87<&atxAetd*U9=UUti~m%8V9}JMOPb&x&^UtgK&!Ky~+>XLq)?AhsMUZT%+E ziHlEM@yng94)!+%ySc`AN%Q~0i1bQC0ir5 zit2_PVHttwx`8Ix5hlrw;JpwZ)!SMuZBGkG+b=B7_RkA}n(afY*?JP&Pm&f~OmvdA z?_jmQz}}!>H``B#>&IWUf$hH*rP21M#V@q|X=(c?{pK?2|FBK)X3a$9 z!Wf=7vTuF%9Tg|OtEikC!&BQklK2DOU*S49qV9|v!W>T@;y=u30LehVwD`e~uY$zc zJbS%4qBOOS^=~C$o$`q35%G^Fq=jr!{KxY2UsFe#{l`Mp->aEk6qp>y%lcVAP~yh& zW&N!US^QWqoz}Va*=5tQWOmtMEI&2H+QPVvUi_%_u?IM{4hqj#K%3YG=`pM!6^=VV zb^$@(HA$DKH&*NbB`LMX@>Mz3I6m%2^Dvf1>BLE&qW;w%t2 z!^h23_`VgN9LPflT2J{b0CBwdb-(&-5f!XkYaX@MnsTg_z+W9`4djCkT=M7nTY&e3 z(bfl6x^OIy7;J683aLV9!CeAEEtm)T)b862Ue-nf_Ibx|6nlx1J*)wbx&%=B6@6(A zWLwG@&^_X>Q^a~rIK|Eo~0JNEG-x&Mq&BB1Rj2a_a#za=~9iK?|C_ruN-E5 zke4Q~#lIfQhYg4M_19DvG~Pe%#`{8bj!#wVO&ekTgjE_x`pm;xui`lA;2?pTkN+nW zx@xCP>pMQ}L7W_kJ5s^A@!F0fowdg}?5yD)#)FuUlxS_ihm3x3%e5TG)vD!;EP;As5cy7zk1`yFFAuJfUl2u=eW>f_yf_J&&XYvcH}Y1Xx@xhS9wjt}duO~=cQ4$P@pF;4C)Hdo;*Wk|)XEG1>U?B6L=Hri^EfYAQ!P^)7d&$o?A z&Q<2=f79ym?4vaU`HUTttMOlw+6EUbvPSYN1=ccU?|5EPXoVa8s3_ejcGG&kAnWNh zrp4BL5~e(;#KV?4h+*V=*Ypo(Cf-*K<=R<(|s$IF=3IceHhcAC;*XI+`&*N}Zj z!J@O8p&&20kPu^}c-Y?hrLL2~?lpgi4lHf4&>CSz%~61K{rIw1FID8BzrvL1VP=KXRbx-5TA{Hw3kWs#6t#*IC#b{oT5C2dp>*iV zhnm^r*-I3RW`}~(>;?*y^oaWu>X0r;GbX%s*p^={s~ad5D5>VYR;2<=`HJnm6qu#L z#n?&w{IAi0Uf0Kuz=}qEkve90Mg?B+Y4@aY`pI_P`43NnuLNZiXBTT_ryqf+YssZs zA8P59$wzL09p~DFv3$>}X107ACZ1yO9TLF6J0u-h7m9)GtNeDEsV2WL!wMHLz(p}i zwQT+E<|r@9XI0IHb(DCKB=0+GTYhe{wVGVc)3S0ouVmv3hmkms7AF|8GK73w$B)bA z2cEGeMgupai}+9#@r4mwd`+fcF(~r5Ls<{Fkjdmf{W3L#<(*ltt@3@HZJ`D6IOWD{d5&`<#pvgjk7Ubp%P&wgbl(w5NwyvgmE+lR z?`NDSroP<*3u$p~d9DCqhw_yRRUuKFm8BBZy`Rsh6x{oPLUQkimUiv^`0NN7L2OO3uoABdDRq8%o=3lsZn=GB;Ue)Co%&VPmMke zqG7wiv_QBke#kjcc`BRd{Me^CPuUgRlr_u&^Jp_CY`S^^VraTw_F4;BXIfC?U|4$! z0kvSQw>%)s2-aFMfS>=!r=~eI2j+Mm`^2(-lvcE-sSjWE6m%%p_eeld3Nu88kU~z}nNOgs_CEjo=TLX>9flRO;o(JJ6nzRw+w21sYu&^Xar(X(=u6 zW_*Qut+eaY(KjCk%%xIh~u`XtB z5$^I<+!HzS8$H?49a^yeQZ&A12Was&p6QruAaUhPlou7VUWK+b1i1?Q*z?xPGSX23 z8R>TAV5E!IBi$__8Y7)4SKZ;`WpDdM^6f8J>qG;4W7OMCHN~ih8Iu5@bvg7yMm^nb z@Ij?_{d}1(Wsa9DzVoi%a1*OS;pp?Qm)%*Zoy&7xvesvHDH@|!OfHFDak(;jiE8W7 zD<;^#Wq6bTVf0e(R;-fC&%A6+HcG@9fa4WwU)G&U!WjUl#$!J68*HQyGk|Ch=7#F& z;e8loiZNoSfMASxHAjYb|Nr>qu&J~lhWClNGQ3Zu7`LFX1T@5;u#6T$GcBTK;?hiv znu&{mK&+(Riv?maavH>9tLEeWvn^7Ny*SO*QjakO4Ec< z(||&dh)a1B_HCLU4hkc!tzOV&ka_Ga$Qv6VXoW9TE4-sy;lx;blCdLTw4~ipig72$a!;;M>|>nk;MRL^}Sk&*0b{?pM;Xa_H$b(S4HL zOo+vyr}ZScYYg0s!;O_FUJAR$F=p18DvKLs7I&%+vtg&FD_zAB)X7fX>ng;X#oUsP;n%`JCn?Ngq-DV7dXx--jLEd^c zpD>oIv^kSxH&{zC=sbYYJ#;%oqw|y{+mcO_r0?WS;`(g@uh63Cprxve_b3Ks07jSb z1x2Hbv;jS+4D?Sgw#k}3N%v2ubWK`Jx@HC_xi|R6$9T*v1a}?DH z4>YtIW1YZ4CPO(b(xH21x>E+xBIur!m*$?cCrS6LCrYDx))&9fJ?l>{-#s(Ib%lF& zxn$kqYL%3r{h!e z*&xE53m1>{A}{MnsPNC$xh$8KMn4%pSqM$tH_@Re3lhF-= zT$AIam3i?cYovPka_eN?{#UCr`bi;)CX3op(Ksj0AL*OI_ENCEO;JL@VzQ|01x3X+ zg@HgM>3H_l2igPGO}urKZwvM;m5B4_?6;>@H3h#<;ATD{v`P$L{~K({d_v$HdRq)% z+1%_?w7Y999(3IrX1c~t{#hx)4CFlZ-Kk9&<-_%gUZiZWqVG@U2{)|Mybx?0>uYC! zdLx*9)7r;KfV1fLL|HmT_pD@%@xC!87CHqAYW)$FLs?ZQ7^mz|kcVaaUU8#veWALs zJB1QDMc!R)5FxayscWaMm8o`Se&Xk-2!8lKQ(LfZlqr}xnWr?U6&PhGu1;}*Cr>>& zHIMbDG>|XpUUWSwKuMXxP2brgDrEHqG(R==yC^gKJh)Rx{&k=7uRVGn}UbsD(O{F@3l_hVV_zf%@;t8gvq{j**DMv=~?TC0?jp^KG`>d z)LJDmRD-WP7S$PFYmB5FMhkb)!*SNSNa%{;Zn5}<;chV)+WQ)R=+Q?j@M?GAj3GTa zB425}eb+jZ?Vwf15p)ZIXyNSW|3^53z822^`D$tnzSopABGQYTtdc46!o>|!Fw!XS zlI(uP)-dpO&`BPyg}0&2QT)RhzW)4b)!q2hRUN`*Gcx8SXVk~`oF z8Rn}{xbV$N3A|=&d!2}{1O@HcAcA+j>DS393!{KXS%a2%dkf~)9HkUf~n9wTK3 zQ`tT|@VlwK?V00OEDcU7NfihyYWconJ>d4EU3y7-h z#Z+1E^VsjKYk6W-TeO@`(?W7OeFXG0PN!``CQhgOP2+eh@_kWL8rNQ+RmZy;DMWLU z_ovEHVuWCbPLd&hp_61xD{qw8`juY={`H-yRrqVmldJPSVYXm?`*goR-n53Tr>EzX zzEs2ZsEOrKL!s-;AP~)Uo_lcD5!1AzwQRX2KJ>bLbwsq5X%$cS1zI4boheLNHce(K zTF2VPvx7vubgRAaiNfdL_RUu)2Jhtr4BpH69>w5Ak$}OE!)Hg>9lYZ$DHtXNBl-Ef zYPBnggHcQUv!{0$J~n;g#I@ochXkuFT=_y}c*TPuV78Tk5`R++DxuK?O@}tpd=-@t zH1+Itir(}MXH_W{6dAzd@A|g7uOiJTnTx4Vq$9-`6tPf@i>98vH5))NXpNz-_{QE- ziI;4>6wS;zlw312-jA41G1wb5nq?HD(Lg_iMMpz>JGPOc^?nM}xT*oqIMvklG<%*F z!#GepT{^|<6oX~}3_8V0ib2VMaXAJ1mZIQw(~B zMzfY;G#cGAwo|n389=Rh2HtsjpdAcFuh6nGzW5A$etfd%q z42@)JK97FSHh`avmt6#Fm3DGkAiw&a ztz)_45nTE&qyNfQeP5nxKLqb^QjiSPI63S=HIRAi-YCNPw%&iuL?jDXnMo)W_je zOIu0^3(c1N{2%`DO3T?~wV5=VUyJJAl3fuxX;;xEw6r%1uOg`Ff*Yjfw6r(yA{E#6 zPs~==_D{NrRoC_dh*)z56xP@FUPP&DdxJ@EZSPUm!kZOSmcb!trz8NUf z9j%&|cC<}%!iNqhDH^o<+T4}E&?CP)1Oj*@q;s+U65Q%!tEBB?~v zJpNBNdmd|g59aDUu?;2jDDQUlS$82aC0h3hwJ{7nf%z=<)3lFSe<}{`yS0LUE*nI_ zXypERyzB?t93z37V)p6IX%yx8AACTbEXqk9SD zfTwk8!=nTI<7?`7Rp_--?`s8-JSn1CL}`A2e?^6DCcI>_2v5rF&XXr)_EIz^s&=6! zGC!vr$&)8#Xy}0BEpSpMLKm#wu?mv-@kGDYMv-n#p_W~rCr&iCm7iLQQd3>jSbDX2 z>~no)veQ&gOyhkiAehEmI!#`}e0#F(Ec=}n#3M1k<;f#4zflZE(&FxZ_056#K0Iep z)fmR|i7%rm{PRf^jm(!hJ8BAE{I{(p>Fw$rr$Qo}cx0Xu;~RviXBgu^ES_PEcN44L zV$qb!?vO9fFdAgz8AiPoblItC_G)I3%~u`q>!9?_=V3Q&by$Dza#E=XL zN%yPewUP;IZ8g1DvYs*}UtZEN%|mQj=a_gCl{&{;?Zlm?#K&B<^Wo=@!UhL=T54q=;y|QC?oy}zi1=a6^Gf;e?gx((p^W)pkBc!*3FbB zui<{b(DoNQP1&Ize~~Z!_zQ~B{rHOJ$JZzx{rDGZ?c4vtkJTGwg+$@Uo)UFG4lhvs zxN?E9`>1{#RzUhtt%Cdeu`V0^7-UO7Zd)MzxV?8dt*M-3Dd*mPtP4Uv_FBn$%991s zj|Y1f`veu6>8*Nhj_i`EIPfKM>dp+U1qJz|El8Oo-Lx9q9Yp$>W*vx z>yEtfU(m0dnGqI5{S5v1(|j@1yZrc#WwxJK8Rdq4{Az*p<5ww0_v25&p)ekQPVwl+ zpHO3;FSvg^t|zBDLZa|vPl>u8|Ec-$Uv6SmKmMJ{_9?u-AM3Kwk3qKd;~It1k82jX z_m`6s%<-l|(p?%#G52<3T@Jdj*E-fy5(}jpck_^1mfYVc)$XlwZeHvXs(P_Os_w<^ z;Ks%#Krc3wK`(5|ZLQdNswjG~p`h-?2C(kM1^Bd5$aAQx2x*MMXu{f5TSvZb_rGe*dSH+V|Q?4V;i6!8_J*`R^0)!jeb;7^kYLo-H#1m z-H$W=1wHz)fgb(%nL^Ev@dEQ7VPY>1Sbv!(4_JQ&O90ma>!+z0oL{dK5N&=fw#kb| z+efp5v>fh|@1+o|4!)IQ0E=!>bk+{9^hNu}m`}`sPY`dPR)@VoNk!K%9VhMg(Ht*5 zBYTWJmaOO+%bsBnc4&;f1v5Z|HB8U))MYmHeUx=`TqeNN)pX^-ahsavm$bDAtTXVO ziqBlI4DLWy5WjE-vclZ*b|ACEYgFJ*AF%E8vfDWKpe@kEY6>pe9vSX7RwEEq`qGEo zZG_a+P=5BXZ69k*n9CPZ66T6jolR*rS8h4lN^BX-L5pFk*fLk9il3wy%!>jBQ^lhx z22+uM(No1UDf<4Y;;Aav6_gCQ0tQpXn<)l0(P;KljEhD~6~9EW_fHjTOh2MzE~X+? ze41hmiu_11E*g<4{)1xfpDGqgh*Ys=>#(PY*C1oSV5+zl#bByfqiIGl8jYSR?nu#? zDn5CqRkCR=&q+Dl;-|^ zktZ3lB1(o_0fT{mU~y99Zzt}+BCIC&y=4w`;oYo-*=<4=BI8xjo~ z7mB3XO^p-TW{zmA3=gEzOLQ&qZaj;K7=*9s^ z#*G6{$+&UwGguA}1^(hDT5cSeesmLU{sRc~%>ysu)Xf8fJj}s*l=ZNx+&l=MPx=XN z9_W<*a#~@a#La^ypWB9+SW`-hhHp4uZXPtG81$kp6oOs^W#qnrv9Q=T&^1s~)ph5~ zNWrfky{1^X>LuXmTj^?-!kBvezEySQX}crmHP$bsQS2`$r2D;&orGY z_Y0IOwr|)%S`ZiZPr}kwcGx5Bz^EPMet~WVHLEQo ziiN$WM15gj24Znx|GJx4bz%P+mHpuYnV&Mq#)Z8%*|@L=*>Yk3{Q|kLzvx}gw^Ytm zDaWm?algQuAY9mctzB3WJC8$|1? zdv|bSV?*HT-cSZR`QSfo4Ottit?1-NQhjxApvQrs_rD;;g}s3k7xsks`O=}^TPPj+1MjllahLU(lyz^X)`g){ zd#!9ezv%Bb9-m2;5)Go=YQyWCouk=_|309v4TC9WpZVwkwfp%APTCaw%%W8!MjA~kWfgpy*9S-?+SvbEr$iBD8h z)-CeVSuk;>cb2+xhG`Ini7NvH4FgxaT@p1H-<2D@NM59pDXo!`H#>~cVNfQo=n_X8 z7-7)ELXCt`%6}D2irG$=B@a?5c@{{Qnalq&#Y+g&Ms1OU;^t~ z0#P;i|4U%~O_*Z>%XCYc2rq}axrijODlew4{B-+%O4wqVr>H|QxH1O}Cb1GI1{cGC z(UTR)6n+0>MOT&U07`~j0fWhk42nTbG@6MNPU>&zloQp?&Dj%8XvnEEA_a9;T8r3k*Nsl8P+Xk^TBoijv8 zrCoF0THIpTm+Fd>SiHq>AO(x@-V6n0qRT+>|Ci|MLnV?#*F*}}6J0YY7?;u$m&!z! zfk01mtyn4(U8^V|jMM7r*kwz}Ci}*vGRY-uYfN(G3J6VdfmBR#c}m43*AcK9Cb?d4 z6RVz%Eg@pf$Dy#E;PN6$O>h}xVY0xZtcNvag6lNZ0ux+1rJCR}P-23sUR(QPCU%38 zqQS2&l?kq^6r;P4?=sSz(1oC&%yJnhaA~irp(a)?FO^xY9|?19-jcgiX1RPj+N(k4 z&0UVtaGA_o~;yvG`*G|oMfk>L~`h)Ny z`7YCPneW$Fo+%iyT+I}W zqZb)>BR{ zm#ME$Jj53Kw^BTKpzFQ_;hBDaIG3)gYRaA6! zBdMMs@TA8HN9YRTspZgzK0hHWh|0mtmu0!keDz!|GhgeTw13N5Q+DXj2`i*OCs2&; z&z2RcKieoC{khi)V(mv)$b~#@W0}I$t*xeGghb)To)UFG9tUF4k0-c^ZOOBXy2YEQ z=;Beh3#Ng4a6;#eO^4KQ@%n6J6g?P0`wa~OAADXxYqNq@n}UQa-@$nMH__7ArOW)Om3|eI%9Hco%n^xt#zQNM{+BDzta)9ZisGHjnj)m1Sgnm46Iova=VM& z4i~!}9_%)KFYdmG@oAX#^7p*f1beFd#+G`ZOJjWSdoy3<9G9pZ{Ju2lnU+0F@Pmiu z*v~&I?%YbBm~{}YV4A%)>oES;FzbMjxK})8i%VkQ?j^Xese~XGA!6a=tg0#y3vc=! z1ilQi$_@uNRzRVgTzj_%_(TD`&Ge5Z@%ULhmOKJ=St%Y@P4M_#Jl-_J<2~^>?gNjv#G}9$9`nQ_ zzqTJd8;D1He|U5ikLdyM$PmtP=cXKs(_>0Fs;$f~1kGVDAu~0l3#KNPQ zcxm*0>Jv$Q6&uUEonoJW`Y3@tAnrN`}Wj;^ET+9s%Ov(+eJf;__;c&rhRr^O>E10JE`u|Yhxh)1K5@Q4$S7scb4c=XDIhdq<$O}5A8zdRcL zz^~P|&4OR}xzpFhFZ?KFy)p0$zlgX{{KD_^DcSG~ulC=S1HbU<>t5nwP`rsWL)^iL z7eBUvK9q%542lcPvhc1u(XX;nL=W2_9$Tg)!t;o@kOnWe5$`5v;mgaF=fW>MfOJMA zS47rka@GmiXOBTQ9lRD9rcdOiKk7B9AXujJlDSGOzY;t>oPT(DXcL~2+j$c^3x!>$ zJ>j~p-aItbR6#k7!8L)$=i8%$1DE|ec*feSzu>dJ)9m5OOcPI-7YJXmk*E!0(xwa2KH>q=VWl&u~7{^2N>}y%XDzC!BR*A@t!W$}^YfFiea0YAc zou;Wyql#QmAC~-6LFDuXQdg^Y%3dCngBq&JR&Pv{&G1e>Oeb%s3~DHqm4q``fp?nO zI*n8|Ccg!w(tO5_9-pz+R#m+U@1uO}D!j`ri5?rh^L$$88O>8>cMekWTS#Rj^$d2@ zJK+(XP_qt5I60nZ?%u$6@O8Dd5zMc z5v8vzwKp`eG*Sbebi?6@9x5R8UMyNkal>O}K7P6VARA99FPyi>^4=@#1KAV`PVLsm zp^RTGGhGIP*xd$E>Mi$1Q6YUgn^&%e#$DIC0b5P^Vhe1&79OZ9UoAffT2{O5gWQ&& z*(4;GiiQQW_!OuCq_*zy2X9@FwUpzhK-aIa*HM&Gu#5QiXDL)seEXAMEp8LYvyvS( z_@N^EX`eGtV}7bhW;1q<*4^}tbC_}(-MB;eJ|FP7fZU9cBPNVXA3c6;){m>j=h+hY zo~P|A9$>x&I<8f|Sk3=gZ*RuFpkhUXh2Ien>KmVe`Nh{iPpy_;De~WF-@`)JXdM?i z%c(E=IC#N#(GS=7qK{YO=Ren^{1doN$*U@C70b^)_e%&re0R2m$D}0( zamO?EVM^OIyyO{sQ`VlUgVt-k23HWC)=OT4AGb6A1x>OtB^qwff2>F@|5$@fe&a}bHW-Q{+g24fx!=T_yrrGZ66g7YTG!q;!W1@3)}2B*k}VuUP>%K zzobP49^>mMG*1M+@n>fDW|L_lsBBAKJd4FEIpx(je+^%?)810~Yc)UT=XjLI^-6f) zmKwc=U-Ngs2@k3R)@_x0-A3wlqm5eHXScnM$^1OjCg;km*6b+dgiZHcc@-&>O(!Zc z^ndnY57SD@p*8&Deem|qAu1j#@`-yz_Nx`y19lXjzdf_x{wcd?pc5@saHMGkUQo@k zLb#%!oyr?#SQNHN79!0;?_0}3d z|L7M)Cj98v^U!_8N56_;%yWJ8%S%)QP2`Q=-;~(5dJUV0A1Z9ZCBjGS7g@ixq|X$- zkuu!bhd=;_Qhevu5m6g6$+zDQTpKUN{Dw{@0a(?XJpXbch zw)wNy%EKUKd6OPvD`~-NrS^U%*w3Ryam&}cJoPI1I7?=D(PM3c#bhCz_c>P~AT(

><%S7RO%zu-^a{H@W= zqtnG-G$7dp0GHq*W_^&-oMX6ugMx7iVRNS}qeXBE@lDRGciAZlcB52h1Rj*7Lyn1g z%Q;FKE4oeUL0l`$6Z7ptsl)m=5y^)E<(UK*< zIvh&lb(l2{ZcH%H?h(;3ym)+AC_mYBwlClMrajr*bDa<0wlFxB^(IBZC7mOb?(51K z;`*+`gqf)2mKDyrJn?d1MI~_^Pk0+TI*7*a=TOmnTXSb)Mj@r2zir>Hu-Q~7&d5ST zLIa7})cw2ZP@j{@alF#|_P^P3N`&oJaBbES^V3k1_@(=-Yy-u+8cr!HuR1%|VWXMB zb@|Ytk45oXAKANl>aZM&ePoYw6E7m8-k7SoOV;s{Q^`ptxR0{f4xdijS_Fb^l>IilMcJZ9-Bdm5Cc${~sP0OU>QLcD#D9~j zrDT|j%JHY@BBMXWyloGK!r)H5K~MB1Dpq=vJ0y~4=bK`g5nPl~kLQ18Z_JXYGT>;A zDzu>9tzclRSa(#ek&W(Sk3!|p#|BV-=wk(ylM>3UVS14l7bA_V?w(Vfq_Y_yg+KLk zD8I>;GeIsy_!gWj4FV(K!O~C_^!-!;(v$8_Q)OdCBv~gQS|ov_d#lpI)Al`z`3Tg{ z)TLn^_5vlrXi!pK>m8S^=OZFNPgxvMkMxHy8TAep@w{{PaqJ-Fx=l1rjq}hrpHZ-A z90drrowv6#62Jm6nO&k~acu}?^Dh7w19K=_rzm$!47=rC-VEh73i6bfW~Cb`+{8pk`?!m#%!mG9|DGjKrmg|X z)R7N3ZhxG0rdU19wddvZvR>RUHbv-BOFc#a;`q>Gv+QnijfPRn8Z;I`g(v1gLI-?A zY<;XNl4pB^r9+C3Bu3EzPIo>yIrL-o-fSkV3yuRRA&&-CCL^#;Qkwm%OffzkOazxHmwj(q-A`)}-JS}UAv9wiV}jim=3YF?WmR+XXrOr0KCd$ z;X%2`g+~cEj&b232<5_~htLZCaJG^5q* zO;ueL;F!gpq7WSX3k3v&7({_>O7A_&mi6+y!!}wLDmu)xxtu!g2bJJc#AdKMFTB{f z4z2-A>qY5k9y3L0!q!n!JI5AqhkG58@Yw?jP36t#TT=<;OPKS9J8{r>vKI@Zx6Eqr8OfwxNzU*gsTz4BdYb zh^ofYhxj@TWJxo4Sw%-xe)3S3A5Ymi0v6$w98MOz0k~_SQ=|WM*xvV52pHtH&#wHk32B+P49_ypK>uWYz}q;u?+zOoHle5v;5Q!$LY# zS66iUSKaHlifW6U{v!$zoj&M&0l`kscut_B4R2P<@wM{54ZP&79(CAHw7jhE+=}ta zMOohnk1c{5VDFqOK`oT!8+hW|eL5=NZs6&cdca2?uKWA3Zz(r9Z*5zzmBKdiRqywy z$3iv|XxpC*+Ax_ z(?tz1sLc?+FsRJ{RmJ%qLr{Yig*dP?cr`C=;20c*IMs7C#woBBAr9=A;YVp|9slko zC1o`a^Xv1!xVeIP0X!zECvvg`WYI*|Q5=EG!ujoB;8G@z;((}Yx18;H^Cl1K;<$$x z(u_`<;S9pCEQ^@%W4^IO4A(dTxG6d?gam%-hk5z_qIyv98=l%Xq!+IdoY|O_3JtNw zB^$}U>hlB)1%&G_ed58V+Ns;aBKfgqj^~};7>|B%#@A*$<4do^IU1YUXGCS5U~|Uu zt)FJqWoIZDm&c!NV>q?A%zYhd=cr@uy2*#1 zeB$xiEXj>|GRJ-0&YQ%(uJr-tU!qMow23cY)_<0NFqJR&bt4TRHL&*I#8-51yryJq zlAE#_pkM0w;Ap)uuXDTWXL9cS0u_iPaoKw?2>HW0L*X`dz1Id zJ`Ef@JCbVl7wGbgr*2An5wvvKLwRrl4^442k~`DRu8ubprA#$K8R(5W(&YWq5_nZiYPrZ7KGxzuqLb?Y`;h_>ff< zrLvR0dPU7oGFr@s_uXTO(9jnge=@@`(hJrVDs$SsX=_2#qpgvaWf2k zds;^DXDyEKYHR1MEnGW$t$HV9H>wm)>$?b^9m72=YTqn3ug$=%EZaYdZ?ZW$JcMam zzyczndf#}~fvOCcw%ROhT4RCpD9fd^7#8m?a1LZMC>Xow9HiP}8|*Eo4N7Gj z_&^)LT+&`Ql5g(kNPUP#NKkfd=3#A8YqDKb32cS;1cZi*?WCexWGj^BJ?f}#VrM8Z zHp5G=I(xDoC>WdJ%w|6Dn6o?IKfuw)NQEL_6kUso{Msl|v#q|D46y{G<}o#DzC@y? z*GT*#1RwGB==lR3;~9;1GC9}rNyk{$_8HPsafR2CKmdm`hS?7p7FWIpZ?^6o^5Qpq zn+UY{G96#}N@zHnNXtMAb>gA#_*NI+r>n%v#yA=&=FL1Q-BC+WT^Q&O*Jia0 zhBKAow|d6%aRz_mk_uYO=+f~5pbZ0%ZHneAtJyk5QZN)yY2~c{eZ2=rs+{y`u;OaOmEJ59!`7j&ih6 zs&3(zM}gZkCIX~qdl8w{Xbbi1j+6!)tL+x)*%kxF=>@k!; z6Q_Ijbc)vaxp_9Q(mi__CD8bxXKyrMJk&?e-b>49;@mu26^EXEjFuPDOl^5sCzuUg0L`~_@1|fVfZp9`3-RtB z1RZ+!Mez&0`(nA?{cbKqY4_mWp>)PXN2ZD0r7EC%-zE@M`qG&X<=$<0TK@{c{P;_w z2eOc@z*DO-9_H~PFDrN}?y8i2GsQ8;#OhL-Yd-z@o3_fdT#c1*^W_c z8!d+XH>>;)Qw;J4jL!cUMI(Pe8~7hT>da!F(_+Z~6P5q>6odQ$1N^F)= z{(v^{FP;NuvVyjeW<>se+oXM}QVjA34DvtOF0(FcK+(t_&<6e=x6ho*5@|8y-$~`~ zq!{E67~MXDC>r?#+Q5Hsr_9-GGA)Mub5#CwDF*oi2KCQR>>I;YQ8e-gw1NNmE}3K4 zK3WX@1jL!cyMI(Pe zYy3~_v_$gT%N_k##CG@g4c(6I%WY#EfeIvukTn2Hj`Zxz;%RZ@3K)$mUJa9<-dfIsC)ykG&Rv+h4hyp)M?T)?iUdgB82=b{Hn^T7gE4WRkoRtRQAgfDzG z!T~p6>>(hT?#dq8qcJO{U>Fr0%AW1qvEI?w3qkyl_D$LA?gVDw%u8lXkL4*@&I

Z{CF z>>@3Id5dqimy@@+x*a#qlr`J=)@K~;!*wOpyAi(L&M!aXSm8zJo-K}O#eWBXXN#j2 z3)}(9Yl9N5DSdg#beIo_yCppr_Ypf>V!znxsO?oO+ve!(Ce~;sRYP|(Rpy^=bKGI^ zR3o&~gdMXY`G@O#L(Ls_`0y?{<_4@2Ere>fyO-KMb+xF% zaHHC4QBSq=cR5~X!>C5Mv>pGfqXo;NVD!XcJLG#P1_C!nQqOW3M2Q2Pyi2|eLAVJ! zPw>Vm5=2_H;Y=WG(8`=ENl2PE;Npb9mZyGS@DyELSM`8441;OH3-!C&1= z@FiU^?6=e-&FK;>kNg?r;sH{32rMrTJ92|57`CO_DKWgPY;aFjVJGPx(0s`}d!|pI zu|B{zl20gh95aH&!LFjsDNR`v8OsUsqURh z(E+Vk6$-|R2ny%?+$BZ|4De;uruQ~C1$^p)+-59}l0s}(?+a_Z3!NpxBjMZ*2=VT) z?9cKWkRYVqsUzgR|66Xdn_OdTSIZhKfkzUrX7u+p?UVoq~lMDS`mJIG7S(^l`E!ZiQvwF+)jSc-p5bqa^YK0^F=pPua3d zJ%vNbaVD`@n$L4c-@i*9!-2V;IEGV~bhf6_KR``9Ky8pII+2^=q9>I;b<&|I>@6x^ zn4qYV(wKcjp=g1(cJX%qbtHL~=Qxi$=Z&Drr?5xpUBET>^1-5RMHh_B<;@lg@an;4S1F(+;&vvYrb-fR+3Z= zs($V0&U(5tG$(5szz;VKPCFK}$0-ywNcPa6vDBce7Y$Z@;~1$-QZ@M9Z{i>}-JPL% zilzblFlxZV&q7LO2?e7HQ#@2?B2~yWs*rQeVIwnc)l#&ngfSsKEp8D=+vV!G_=du= z^Nw5WH7XnX?aLrrTyg(0#b98Hzf&QApa00Gruh@7k?CWfSoSF`gma{mLPIYbVP~Jk zLCh>VmT6e)IuTiV3n$3R3CSV=P|508c7w_R6UhLe00s6%N+DlnaECKEHh{v>qXdPpEu~O{ z>u9&aYH)>;GPqI_xvKot*XhgeUW33h(~Z`lfFNuV0~Llx3W1<7CMTve`nscviFbTW z&X2^~HpF->rSXhp5O|vL!+tOzpM?{UCS@noON1X?rM(_1J-eI#^t&S=_*sI%y2tR| ze>f7^D+DgjyNGEm7T1DhZytLS4qU$TR!|6|Y&eebIe$8O@{l)WEpT{;GCZss%=JAB z54r^lp>tHEpin@`A8$F<8wo@xCL>U5X_4)_Wk=ou|KD~TQtqM+1~Z>Mx|@l5I26+! zzW$D*b+CzG)SBPE14+I}0@rIU$e#Hd(gT!CWJahiZKN)L8+576pZ~|PR%x?GHcG}_ zM;zv)W{qZphS=&k6WI8hffl;)@I)Q`m~o(4H? z)o3fL(P|GhX=Q#^asI62tJSz@c3Rm}9_$PE@FhOZPgo(vxUp|1+0S-kAM5KZR(7iF zq0)A?momY&dv*_B=jSY9&r*yV`}V3sxUs+D@BBr1Pi22Az?s56rc99i2dZm)Krk3= zYjgh~XB<0E;Ll=FDJ}%-ueH_Nw+tr95=|IQEufpC|8O zpN`T#ARp~xly9_;TD10Fm&?0NBh)ZM1236IbWwZ!`W>aP`i(ZTB3cbGJi(Fl^A{X7 z*lLQv8ARd-gBqImLH#ehW2(&#P&_Vy_mo%lqfjqMuHft;terxW9KB@CS3`S>0geh) z2e=QZ9B_VhfP<29fTJXGfV)xM*^r%eBXcMq1IIQ40gi1H;=^(3f1`%;8HL@TOfbeB zujL%X?ocrH#~XY3lo;m-BLR*sFktxeim~v%ZwMS4cBLo9s1YpK>tj@5q_a2w>(h!M zMlPn>P8*AHr&U1W?%K{LjAcYZ$h2XKe&Q7emHv-WnUI<#(gP`=7 zH-hu^oVC0VG_4N@lty_YxKQ7jY9v524{hM=!e&qc&CGu`fCezMi-@XZ8r?+^28T}^@(gxFO>QOe1+QMwAtO7#?Dt1c7*c7+1=rNa&~u^Vxa#t<`drX zsjIxRkH^G;f4)c2*nQsGS5D;k?>@czB-&YH5?CLTDuYaPZG%j7Z3SgMqy$5d8@Y0rd|k^wRNVkCf*2ow{zC^LQpoz--mB(2cFv58&%Kt&J$j!gkC(} z$BCO`no1ay4RvrE$x~$ggZImeokPEj4h)~q&J+_Xph}`6 z&Dt*=X%@v`AinxSP<{SQfHR0Mic_kvB3eMW5}y;|Y*Egx$JYJ2GbR0DszaRVNvW}r zD`GK~tH$D^R1#Q6jm1z>#$rk$+j-NM)9bQ#-N+mY$UuiR5D155?vP0SQ-y#%mM%P0deyc!FN+84bSSlW6awQz{&C>nH|^; z$_M9lF?ZV}=nhfIBWZh(r-wV`>?Y~%lTrM&H=NCD>BGuk%`0>-gBfz-(aaR1E}|;9 z$?^u(0QT1-{njaXewHUx4r*^Cf@)RaSNl3E8Np~4OkRIRnRz!0$K4WxLtzj5)vbrU z+}{a%3V%_C*u#E5fPpIbcY;y{sn#fK&R8KX0WAJhaVaU46JSpWIS{eC%Rq#C!NEM zVDx<4RvqNV#9J+}g$zc(tkZSjmfgfw7Ul%U4Tc#`A!Uc{Gy9-ypV^v2TTgztzMB7>xH)`{fV=AmrZXcAd-~CMqa3Xf= zU^x>pzeBFbkFVd|1RddyA9jth&|iQ175IqP-_C#}@%o!ou{lrK72K4yIz)N~>X{%Q zM9)^GRWqH3eVBum#4!V3=dm1;(*p}diRIZTow?j9wsx zC!ETOWd?B=W>#E;NH&+s5@E(HDAK>q>>NxfAbWgtVGKW9byj1xj*__Qg>Gus#? z={~jFjZ8|q-C?RX3Oo?=k~;;eq%FK`JpHx1wfN!lGpg|HEN27{$aRJoh3nP)fU*+R zRG=BI{NxmveODrIJt~-?I1jy;nanp%byj4Q zSSC`@5$aM}v{2Atnbj~52))TJkvduS;}=q#va{nHdV_R6S{*ru?gox5x>mv=`O5qp z842)}dBaH)e7lsM?IL|le`S8SP#RC-ju5}_B<=`MTfALrJZC=BdBNilZb!a;mUAPU zO>2&4aHkW9DtGCehdP7%99v3w%KJ>bNXc3P%8UCbc=512W%?(@;CVs7;CVscVlbF? zmJ81d0tU|ug1&fO(0jG%dBNqt-Q&C^4%;0fp|Bo!^1g9s`}Zbwp1eCpOkt5)j&atmQ}9=1S#^MmAg3gpw;t$$AeZ!J%m12p3pK~C?2x%B2-Rz3^HMQ z(%4vOoUq(Uo7mn6&M9-wV`r&4IMH@z7Rieb=2SJ3;#_Ak*h1Vsms>37aT8a=iq~8M zhH>=((F}KGGu)+uuoV7I%0GNXj2 z?y%NovnU$vGOawj%$IgCL+|ISW(}`P45OZz6f(u?p2}2b)0?Oq9P7naqyiK;o2C?U zHti0HCv7;OXO@CP9S7B@s_+mWdigT z7(-1%1gx9#B=lu5f&P(-!inic0ny@wK7samPEMeGpCgVctZPzuLP5FdlhEf}o`;j@ ze?T=ciT;bq#YuExr7&L;G?Wd#8ntj%Mu$++YWl3~BcTz_%03pq za8~v)7|nB5X0m4T69=4oyiCoC4?0h>OSEn{HT#Z0RN+h4Kh)H$O;KOCndba!PJg)F zyiYiP@vw6i`<;l9vo$Y*vu;AA#BA-eV&{Iwj(|Q|+{f9PKR2z`W@|o2$ZV~yp(wmj z;l}O9F%qB!nc8MnVZ4La0&`nxK$t zq4y%nArL@N5G07NqUNOtvM)A@GzA2t95ob?UImpVgpTw8(xm)mXP>)gp1X@5zKOqo z;4-^Yc6MfGcAkCqS(VzJrP2PFuvu2hgsl&4!GsN3;I)*7ESmW)R?~nm?nhTbfz&OgxADt@p&6kudw4(cJw%WRs1XkV^(;4rFd0*nh^ot z*e~|BJ&)HWxb3ni`;9Wh!?B68I{G_9H>cX5u16a&=%}lRCE`}@@k(yp3OfozUyQfO zD_^h3A8dxh$lbT4mNJE}(yFN?DGmK8d5KlIUg{Z0;_mhCULq(IgQB!G|(N zLBxYVudaqcV1zXYYt<&X4_^dXM#_oiXX?x=JP;U1J`!HQm)c|!2PK$#+xH`f9C2!X!`{>Ym2IO0Q8`(fa$v-+!$vzqxu;F=l8( z?G6@4tc585M6=qVp@ zQWW=L^@2RENnotW37zmWpzA0RSoQj-t8)|fr`7Vvx)8SJ{Nd%u3ZM&%MsDDYM(zm- z=TrVj4QB>08Yvdz&r+e#(hVKazTP>V+SmvFxzlil?(RS1Pdx*7(- zMd(>5F_c_GoDQv^1k{= zQq!_Tv$4_)1XE!Kl&NM0sg#dy2GCQQ0Y&jVR@=)1x19=%a0(4rIE4mC{3c5TpV+H) zaibcr{H&iN8coULI$0x5L)N(G5kG5cgGF0x%u-g# zjad^|-o^HDGi8Cnb)$gj!L_b@{BmNA+&!M6{c%E%jAxc7j z{IVbD2nja=C-L}2N~moeL!HC|QOsZgkzzU_2e2xvBJG1VARfH1aukf(#(kjyj1jMq zQ>Ft=C;|?#fioAIZS6Fq10WLTc2)NvC|QgJ0Y`O~BAW zxIkv_yl;hT&gop5|N2%;3H81A`GzN{d(=Bl{?XIa^6VaAB-hO2Pg9fF-xMq?RlVor z{hy`UeIVTap=1&ZT5B9fI}=dm3*L_DW5mEiTDJssx^=ki#6wyY#=fs;4Sv$KeCWY( z%lY|i^GE;hmyJzZ@ntL@+u0E@BgR}PYPw;kXyC(h2F7;bfvP#$l(-h2jy@PwGRW9r z_UM>lyz$fWMVxz8b04LORgB&){%J4%=_vl`EdJ>#{^>6M=_&r{4dmh;j%rg}*MPRA zXaOISNQG;uSCpv|Zs4V@f47`G#NXU2;v|_EAc$)t5R+a5KQylq-Qn)kTIqu8Ao$1a zH3CAsMzlGQAq=&EqY4O^@@eI7_?|-Mw(93=#rF#md18gc5IBMi64r$8tR=;n>O!}S zWpC9iB*X!Wek3irdZ4)lTPf(EMK4`TEP6QsLkG0zA^EiEKi1qR#osAp?a7xHF^@>~ z#p3fkvzRvYhf4e_X1>J^6Vc_zBM%7(tu#>9ToGS%JPRrkmtpe#XW`(YOBEtmDQAQx zVdZTR4WFj^d{iE42rk)P;N*){A9>!D*-lm@Qy%#7^nE&9LS@8Z;sBP zHf4?ipkr}IV7Ex~T;n9;2RvFvnX}k;R46Q?&L#3no@6(c0?L z5#cR2amP~fu~x_lEM;I_i}DZ$@}1e`&2<&llEQ_h$FvX-lv=xl#tW6tsbKyw$WAap zw*eV(JfkA`PFDgKQK1pP{j^sh-l~$hw+V3g*8i#{cvdCzm!^U6*NP^lQmTEutS3^E z_|6;=MteT(ElhM3^W&figsCP>^Qz`m>{9}l!oaCwf1a%r^^f>3v}xDN^(yE3K=p+6 z@{@SF77EJz#GCPvYUT@UHf7+UKkZ{_223o0uA)fz61zy7#jZy=%Tsbv8-_meT#Ijk^2OaNiR<|s zKd5gltYr=j)rYS=4HIl(v+jc}R0s<5*xKe8wcrNcxVAZ-72ZJ19C`cmttHLciEb|e zLN~}t0r(NO_`g-wCv)7u8^(+qcuz<;e^SRh-zcTn3n{xkPchf$*|ki8>d!DxQA8b7 z&wN#3EvT@l;p7cc!^yM-HH@!db=si4g4Kn#<1jn?(=hvyVT#wVit9R#kS3PQhuX~1 zL6omn4;f8a;a*rg+BQK?c|ib0ahJu)tCKd!I~=A^bP<{11D*dcAzy5eMKLiU;vR=w zBn_MKX2AfIVd~0)C3vqX@P>PXCgyVLj~jTeCgzH46=jPGTK-RLv!sHAA&zZou0qVf zrJoJ5j$;_DFar;jiPxif{bch#c8p4}qD}jCny|iQihILZTR2I=B`G3khT$DR;W;XL?FS}S^DuIC#%)v-?cU; z#w-K#f#uUCx#I-*|H4>*Z>l@w8{ zS8bp;DCb%)Ia`~}o7o}S5giqaR{JOzrvr;t2C%+{U)U(u@Jkd62YW8J!QR#f>t4i( zB}U4rGVl}2c_f8sivPTVeB0sd@4>M=Yf-m?{3lqI)Iyv1S(`bI1#W_Vt{euPI)E#+ z%sv83iB0YaxNkR?{XfL1n`Z9As5r7lG5bKjx~wwgDQXnPj;K&9oEq@42DV$9*0mnf zI^;Qk^9p^;`%-;T|1{6kohg0I zyHysDMMi=p=6e0jO;}M17M`UBWXVL&h_J<+z++xF+gY411Z%IhktRUkD_S}r5lAgm zm^Zy)3E(yQnL~K=8|L~f>HkK{e!~p!LHp?Ee0zYoFp;O6%V7jP z27;&t1PsmoqA%T$QB})gPP!Nc6m!@xO4q%TtAn$|XIxVFf7^}7gK2V@j81&xAakK0 z%3AvpiUFjV)%v_o{P@A<3VtfjlGPgy1H(_B94uWm(D~kQbBLmD%HmVs0c4x`TO&o7rgx~lkqa;5)!u$xpm|ZKSph;1eWf}Nd z^D=cpVD*MB1Xg{1$daEv5lZEt)WXiJcg?DzR@%(BjWNH(s%$3XLd{m#oQr1bY{svh zs3)>`NF;pzWy+b$NxbQM=FmJUS1r4lml$WR!pc$^P`57&2=#-w%~H29o271R{BEAX zx>7tWOXNp$opcrk%_YvO9_akxeY2n9_dYP>mitgj{D86swe?kU)7m7dHPZ>2R|`4Wq(k{XmrPOQ{QFX=$?OSelxG8_UmR| z?Z2?&`;~G=RXy@l)i2sO4r;23NU{uNL0gEM)ZAho#lk2AeK}~0ED{;|=G&nIw@Awe zaSUpmJk@;GuN4TvKk9EuV6CY*sL~c&a`9u^7W893u*d@Z;PFuSO7PEJ3v2e{ye_Eb>Iw%?BfE)!cA&lii`&mNymg(kFOu*fV3M#&zfKVH4tc|q67U|;^hgh7jJcVc=o^OK~p{vPY5W(+P3glP5G@tOh43hA*+btE?pHwEa zii^2f#a(I@HT#E$^IP@1XjW138*_ACJ@4!me*YUtu+CCZ&;b0mdKkcIZDc1k1F-D1 zbmx=*n-js~W|%9mQlh^r*F`HRxzA!_@f3_!P-?5R0&j$UbIcuBEnf&|1qKAPf|j(e zumThGkvEkYI_qZ8(Gx=janKA52&jR{o+(85R_W}Z0oUB>-*tjS37^?ahYUwNvzd}b zp4s?F%^Z^rIPM+3&vTN;A;}xcd#F94 z_>u3-UD#SeU3*?bAR0f16I3Ri*BtmBR@wuk1DDThw#qMq?AR)w*CZ}6hx524=2q;I zSKo88ud;(%=fkEod0mzGi20YRHWme=`I%%(17-w^du!r;B7TADF!mAC@$9@M#)yhJTG9)kj=OCB z)QF0jJn7aX$McM-paM~SZM;oZUmJk3#CgWoC=0C6^$`%wKe#9mI~!gKETO0wKgo|r zzfUnBCfDN2caEy5{Dj6|!fQX9`4bqZ_;xf{KYlxUH0a#@?dZ{z7#3*L#kZs9{Uoc= z3urS=oUNB_nydFtJgJ}H@#?H z&5h70YBnuoEnA5k* z!2ITR&%m5X31i=hdS5&g;givJ8kBnh4X>a~(PU6=wOtR&B?XQQ%Im~0@uxfmvEuY) zxC}MEM@UR}(Le)qYXNX69#27FxnVN}!*;nt9#Uee@&FlgH&U_~bB`Jz;svC`0)lHw z_Zcfe=@n0yH?do^8?Noww#%q{jke(0Zu(h9UH_lS&~QOee#V8TxYvSEjE7{I>!|Ct z%b>eo(4;{ZnBmfHV1`S(Cj`P}h9#C6z!>hPY=m!yRHGu{`flh5hu$k0QSnx>cQ;uo zv!?%yijlJC8MDQRkF24X>(5PLmU_(k0z~lHjX^975?4SsBHUiwF2gNfwpKa=&c?8x zF!a(5|A=;6xbvxC5;L zjDdE?3!q}4HK3vnhy3i)p$xR=w#%jX@OHTrAJ{Gf?IX$p1MPhQkxsE411%qX)qF)Q zu|vk$@Eyd|Wt^Q*EKx1KBbPuMw?hV6I11Nvhq;kjbO(vEMJX|NoK@=c!@JB0tO0Gs zd8{kBc!${*Kvf)O0k^_13tTYF=E9(xWYEKlL6_VZykTTu0>UyP8acQlVjv~0N5q0a zUqr7I~hPdn#_r-AtpjK(W4Q#2Wv*X+;(bBMr^fqA5m;?NHM<}-7> znEe7wgYjCbDGbI~yBeR+YKVUqP zt;Rm?&}slv{nTTr9l zYZ_fbTTr8ma?|LV+%&44)dXg!Q3Es7s3$~A9gW}_mWq7bSicJFC>06SYV0V~I=Y0V zBQt`}*oco4G+9oN0v|!mfrr2u z8D#?1S>SjOc$G;KmVL2(5uW}hoOG|Un|J{xKoteVwGQb=(OT`6oB!4n0Vk}*?p$2J zw%fg!U{;d6TOLJgL`mq$!An3#BnK6Nleov_Qz2_JW>`B@yMW!lPw`=bnsZBq(t+W$ zqiYDC?Brj@SVpob6a`qei`7>c?LeOaop1fSbqVKJv6jXD>NmT^OF|8JdhOt<(K=d~ z^kaf14lUK^v)}R$45#tMB?~O;divrN0%7{HR{X;BWi9B-clr{SVEMsE`Vv;bvW*?4 zL&NlCKY?h>GneKweMzrviRZzUEW=qgp)PY6AN(9=U@RhsDOcGtmffc)m`dE)Ei;ar zyJZd&?6Abna9BF9qI*DMS8{?~1NRuZVhWQ$dtnAr#@LI`tOif!n$T`Ytic|c!nCC= zNB~;&6s8Mp#+NOi8DF*lfiZpYJ!YD|oP$Aor7sjsrZ2m8lk`R4$n<5Rkl@^I{%K81 za?BY4rs>Nbs!&W{@OkniDmJe3Gblu?W$L6o^0|?rFBbck_34o3R0qtX0{fIQ!z^dD z0V1-T9|Z(g7qAe_a<0{}WU)iEBZiKBpm1^Ee;;kZ&~agp491se3$8@x_T;h>-G)KK z{z#d~hZeC^4gEo2(yRuUVdyY0!_eUg(L#q2><%48_X1&;^!LmiwUJ{5@LyFDYOCA+Ig>3 zYggKWYVEi;7qz~&Hy5=sxi+Tkm1;FGL$!KBv>e9>7CFuYDh+DX*r!HnnDb_erKw^Z z5vrugUbjlbEfCH}%`FY#i`SGQs$`y2$voPCD%q&1B#XA7O4jG5l3lr}L^~BfPg9A3 z8LGq+qFI^|?6$N^R3y}kv7@lGovkecm;p@k3yP2Vg`p$n7f;$iHOv4;{I81?DaQi$ z5lhbn|IRCxH;wo>Epzl~!G|C}f!B(-|KlDR_m}bUB`y6}W6A+DlLi9fT08X2q|-i` znRKBDVwRK+T&ZHw-oJr-sz7F8cebB^cd=Tb0E37(%ffYDIb?~}f}ks_c9*8Yg$#t**6pglfN(a%S>{{e$T?$8n3=Tdh~TCs0X~d?lE@71oaZ_h56+< zV=umWNnjWDjCMmAAMeKmm2XP6;0a&E1t8o{9nRky1X)((0Z^|i$H4O1V?MquEOU6V zwrgzT23tO4wP;r)U*mwxe^Y1+@_-gS|25NQ%zvR-B zv>Y60Aj_b9@b%}h?^q%fc7noDNn1z3e(4+qqmoV>;Jrp$)*BJTDYKa4qA$*ec9V&L z7iRwj4nh}~rD8aIDv&UOgR5fpe{76pCySyTG5e1=D6{_v+Jd33#z7hCYSI?W$*LX1 zG_|-_q;JS`(kykE-*ut8knIS?xALs17te;d@oXb`nqZOTFD>d;k+_A< z6xTa%ronqt3iIHpmS|IN;5_xiZlzgYFU~!4<2;CPe)L_pGCn!u86M!w^_Q&Q_`X{? z(|-Uo`TK4a*hgLrC*;O(Dq*-}akt7o8G?Sp`Q+sd159qNag+KMhC9G4@uu&9YnvtA z%CW^>To>lXbv5A{{AsreKDnZk7!-_7;tA25#0VBna)io*PGaoib`k>^oFsuaykW7k zi!Xp*_@*VzXn7dOKDh}m2t1(pn7tbq;ks4jmZhZ+{I72Te&NH!v3%mgm(9Mggc|Y1 zl8fKsilXSb4FB6NEy+f76d&IpuSW5Gve&+IW*C*g$8V-J{Xfye`Kx!Jn(u|qF%7W3 z0Dk%}9P7R|iuujGEUaWRuzI=`)LH*<~KQ;%p z`kAy3u2>Tf=dxnWIP6}r9?Z2=E1}2KXt}Wge)5h6Z^rnbaN@V{pzw#oeBrn7pm4bt z<0ZKsAKh)Tyz}# zi(ALr7g@^s94f9K2FY>#@Pvf(*{zDy@G-<*5nuT6#1y3wt4;+&SMnw@;d^)tVF05o z4moVdK={+emgme)>7gl_f03qWrY#sUU;jmh%mK6omGfF|${DUJ$0MnWlLiRfP&o!} zs2op-med)*dQvx)%7l6`bi}020MV1WZ~qw;7srt+ENz(qA6X~v?CZzxuCO#=t6zXf z>ES^kMj|*bZGUmk3l`dnLN+G~ZBGx#(>IR~$U{(9C=1NfFA9h&PuDALrX#Y_=6}S~ zh?OI`7;&*9ZX?ELfKNdtaee9|$`dPWmc&8<3QV_<@Zv92LhUw+MwBax`I3Mb#H_H+ zvXxnBN0>6Ln%0hjQTbR+Gl0ha>x{LDBJ8|8KR3zcW90H2Hr#p7LK519F-LtZv=b;?+Z@^C4(QH56`*` z{jp%Pgm%S(4bcAj030Va^wkSCS-udkU}Hdlf=yn}Zwosr%)dEg31DL>GpySDe8@6M zVZT$js3*t#CLpv3V?f0s%r%OHtL7B}!BrFN5sEOcJA;o}F2GF_zmj>th^_uABeqIg zaEXlkRW6ayv;~*QlE3B>2@-ylkzn*uS%%SN*Us+%H;mW@ZWyr*5VVlN;sXfDlsPVy zhK{)2@gpyXF#{O!)88KA$7ddggW|RqAd-B-GQ>y(EQ5YUp&uoJ`v?O|x$-`R3Y!7! zL1g4V6B&BS@{JdMy!>p!#D7Lb{_xp^3cSja2c@~Wimj-T60YITVPeD+SG-80ANNEH|wGKk>D4gBO1+H|+aA(Y11e7rHDroPGg(v`Yg%+GVxh+;)ju ziANAQM80?BsLb~+9u->&Em05oo!CEyoT38a3OTT!sO>!Rm*uF!5@=5_2rW}DL%}#J zn5i4UXy*-nmv-KWBA}hu|2-EwZ}q#u&SUj3q!kb-7eD@Js(&n_AbCGq@?%)cyHT!a z&W4UC`18k>a3el`0BG&>Q)~w|iRrBazSknFvN516kdi z=lwG(^7n{321;mIrD39kB^CYMZArLuFk~{gbD)_cF(-ZJ@Vk%)cMiwIFWfmCgX#9# zIlu!faod|Ii`P`G_6U4kL`y(jgzv-kb$Htw{LpTDyT3_(sNt+2ej5I9UpX%zjLAUhM{~@M^bN{&~8D$$fv;tMsi-yc1=%cy$!79%v=rrF&KUvqrq#fNx6d z5(fqG&|$iGT#AogZ;1>XvU$Az%>;wzH|7m!%WVa%tytJGXhT&LJ4SAPD^9@BL3naz zdfxX<;^wy*8*h~4BMVuNrTQYCk4@Rua@HRFabfHCtQL`4UTdEuAaplEdCQy7njh0{ zLTgE}-D{JYatv=mo0f4cFHdDrxGU$aMT013?IJV-NYnD3ylWYFah^WYRKi)MsC9>l zpWj#XE7frf??r?E*MwTXP}C{M_*W&Y$?P*aTD;R`(lJ~?d2)~=ME&ZRy#H)ZnDvW1 zyr2rA%rbofn%#P+PdNrZbR)wnOO|=g%SWJPaqHO!$Hc8YHTX*HHHdK^B~-K|?3PrnXzdsxI!N4-6D z)Ib|Rz2ov$s9p)yD{KT66Ss+$G1ew*ECq`&Z-S0|#o7{aJ}@@#NiN4G`@|SL_dt>n z1J8Hl$A*XL!=Urv46b60RMaiUdDW`chHM)Z2i2cN)xS@wKM>Sk!0{zq;+o1=*le-f zQpH-0FRo^d%EMF$hga7h=OJ~iv1~o%kMnU_K$9j6#9L5f5hsYjmOr5z?6Napu-9u_?RnKw=n1K% zP|6dvR8K&tmV!@6w+lKUt+w$B>u^4}GAR8!L|&jOv#Ua}Te)L|!h z;fB^)>@CU{6_rjE^`2CeSPbNxX{ zKC!X2I1_O98iyL3A|O-T)&$=6R`K9`1(csp@aiqCRoKszIV$Z>0ijCU zrVVJbW_ER3S>I<*DV``shV~Kb2gQ4=bzI?^s{RHxIQ);n_E1 z0>gb|LXJL=xrlGYv}j}9$Y=+=cg*?nE7oH0zQajk0$B1-ArNT8)HUz7%W_!Q#`81L zeGBog+FD1jG(ugTOZCCeVLvJB{y(;}-e(SqBI^EdsrLBR)@D3o0DP#f&q-PPpM5u` z8++fgtNPwad46*WZNc-K(4wE;{DwB;8PWH+HQuV75q0r6VzqW;PTCb8L#&iM;(jJA zn&wh*em{?vSEbK+5YSqM-f%XxF*`zfb7TphZT4bWKMj<2opwc*S5ETr9j$eX&;}e8 zG$8dtr^vh_^($V~!}-Pz)_yFWc17wjr=-$q&=w>QExOVg(`G#M3e9-vwU5S29D4OV zzuME2^xv!vOdU?bl@Hqo#4*}cJ~3%@l26@X?HdAJw1*`F1=9{E`H3#plo-1JQx9rF z6@q76>zA~qv!PT{T(9zYMXk%4i?YF#VV*Q#A4eXakb(NXfrVn~^*;8_465HidRW@iR60-_Vw=pW6jvTwj*Z2BZuqF3R}S z)VI>8-xvQw^LyG=`uzj2Ug7u9Mf3X;;#cuM_?mQU-I!wH59;@ii7|+Wq%k}_QVEee zxoj#bJ_URvdQuW0o(%J@d&dKThu-l}{6g<|2!;U#v~cPjF62kx zIU*!Ghg+9>hh+Z4Th_%adtBvziW+E*Z>OG_pL)I z827Evk!P21#QDI$ed`2I40XV1zGkd-fDr+=t-=29<+1dl&sGrYPdUQ#>NdRBI{(^i zt^q9G8=fT~Xt6M1cp|AshV`nt>9o9-X){HD00h?`iffrRoYr@3rrlyD#GQwIPs=+G zoiO#TI}iENG^?x^h_jKii|7Ya#W=P7Y~x^RZjRc`v^fbQ_AE(a+^X?+&hnK+d5)oJpOrWs|9;k~JV5Ea*U&YoxuGO7K} z@MWJ`tF!(T1I6t_#7!sSnuqsH4E<6Fh32bW9n<3s5C5;V5$i$ept)`-Jura(=fBnj z_91N(Hmd?wz$EK9BbL~w6!&7#MTk?AXDl2ZqINvPYyRCXjJKI=onu-68V~utOC-k= z-N93=@usB!aF91kGO|IFIhh~P0EjrKg_c&1LXz8d2-XglQq-{@$>F?F&?+;s7(YST0B`Nu~q z2B*WkiLNZf2=vHMA{)RM8N$Rbj0|Dfx#dkmWpCkY2CL8o8W~oPDc<)Mwn00c>E|UH#N=H;t1^{<4E~z8AqUt z7DtwgUrn=l{A_EZm`36c8b>NnIUtVIbS|C^)i1V&!f{)%d}EnBFY>M_D8$nfx(Be8 zlsIlM_EHG0K)VD4S0I=V++bYFmK%&Kv@e!OE@bOVyLu;E?l557a)%LIrE{>7EsvU> zqPY6%cpM0b)p1ugKfBV>40`uo*fPZ^r*MuisxG&DeCX#^OL&#D06@2>Dt@6`R6U!U zTVyPUSLE8U{cS?LyA-g~P9U;2Rzr06*B$sS4{zID1NKj03U(9s#uoTo(WZ3iug)C__zjx7_vI-KQems?+ov5P;btv4aeL?&H>L(%jKTTQ_=f3)W1 z)E*|DE{z5hms`glDPc78JrsgwzEeQZ%t61H%iOxtw-`@fWgTd`2tz-+Qz^qPQ#4FE z&YvX~p93=^ZhTyJme1a2t*xFpD~#TFV&EEOvIxB#ymf_7vU^H z$vJ|b-fa!w)i+wZGCN@*jo$}ThYbb<#=o%gCM)FF6a`KDHE4dr(pEXA+ddob)oZM~ zSI%bG4bAlG@cB8pvtCGBaO(>#u(J;1i?%{lYc*}g4JtI_2DSG&et4TTgB_qfP{KVL z=~J`?Nka>g?!Mg`$F9<5Bn{0j(zy5atsUyI?ayf*OS?*sZFmknwj^}XJhtR{_$B_7 zcP7`ke>s|0+-VJov579!dmB^H(0id^{{b(&%es$u|5C0qXLse@dtG+HSd@^-Wrygu zwI~GrHc>#(Z^1M?{5JKx=C>A#hJM@jJn`Eu=cV74JTLvW^?B*HEhw7qw<&-tf>h#p znZi{Abm6lGanWa~s)(4n&rTB@&}XNMU+A;bft)xULpS%b^tJe)FQ?_x4_SX;OR21w z!hJ^|8uNVnY}_GhIPcuw8p$X9Vr|Vf5*E^DeK2)wfB}hs_4X0#c=iiLL610aUIwf^ z=cUtbIBIRdu6lL5q<2I6_sxmge-=zX)_iGKY5((J>O}1ax@h(vaRGj1o#*MlTWiN` z5MXNa3y3(*t-o9QDlA4IxQsJD_KrHOdcqpSA}L9<_aq8Id#@oNXz!p_wD&^;{U@vK zF37il%oG84POtKzt6kgI&KIPiM_iEC>%1)5v~q8Ais?3X1wI758j=Luv(x}4;(DE` z5@vaCY=}{2G^(TYZf$Lss5E9J`?_N9|;o>awJT&IdDgm2vqP$7_h=4VV3iGIuZtP ztp^t;iQ3bR7CsnlB%T`J!-of=GKl5KLSi?LC8+Wu9mY*WBN65?#cC+lSzNm33F`wR zmfr>yYJexLU&(KS&ibuT055$J4s;w6!$I}zxj>GI?I&R9AWSE7P~KBk{6J{>mK$Mw zXSH^{`Qm9Q#d&(s&hXaiC2NONU(BZFomt9DX`P%)E?bK#>?Rq8JU4bjK&X>a=3Km@ z!Ed)HmtcB!K`aXKl@K#(dakl)C&{RIu8EkF zKi%;C4`DsV<77pzTdk^E{-XTCX8DWS7dGM0Ng&^O%i5Zcy=7hO_bRA>kAHHxJpU%i zR*NOYT0kc*)*7x&pE%fyzru$`7AwI|PJI zVzZ0#I7QQo@;Jrct!-bi_b482g11~8nAe$-BE2j5C{20F&#=D5RVfytHoE9s@s~AD zG0g|{DN$(^*h0z}74$7t&$bJBmB1DQ>1gaq^g6#!C3~=z%BJ z`=)20k#|GeS7QY(5vM~9KA{>6yd+QU2n}Ym>k`Ma-%l&UgC6}G%6oW`Uw>|Wi9MuB zK;=aXp{UjUr77=@RGw2+Y>^5}q_RUuY{y@Mj99I92~AYFqiaBEgukbyUnt0LZz&h3 zl$ULjFULlzWxz_rX^Pm3BGHkjDI$EV296j|LeBQsNPfFpp^B#0E@_8eU#DU~y;2^? zSNnqM8n;V{4fV7H18Ls7N1;AG*X4ZFExJXRxIdaABw>n!lt&D=}UV=TeVi|~;l zw$*%oWL!x#@G?&=ZY$5&We=}W3h|-k?KSz9n&qO@@XP2le&93($Y(v5JM58sR;Vp6 zXSm#w2KfPN*Fml*UZbEbiq9+o@1_a3JG~HkEM8GSs2&v|BV4vTwNRk?Ow;8DVYYs( z5yj1~E|r&zY^XlrG#um0kM@BFh8OyU@aGY>KTUlv!#3d7m^$n=Duq~zl-@+CL!?rL z?ZL6Q{`s=K?w5JZC|e@yPC25^#(V0l3mHtu%V>YjCegNNg?&zu^R2YcjC`olc=G02 zfjqUeZI|Ch;K`Rox39#qD0fuWdZMgdQdt=IZdDi+!P~~$n&(SpYcBIPWo*%G4dsg} zJ0T#{%vO@2ESDKvX3%x>CxA-f1to!4_YY{xNqOE6slx8Y+#gA89QYenW58XM(53!{d7XYd>c7>lE zVr!;ckxSg0&D*bMFH+-zE4VIo#=4jP1Jb4B`Aq;M=M)7wa-;PrIoD=>qq-w zd8`+&Ss5%4^QysDu{_35IPua2NX1vYY^#>nMH-ipjn&hF)J~w;OD$4jGK2thU2ab$ z!lDK4ct4_G+_>FtW6R@?S6j}69L$T|jCGYOnf`Ybc3%|}DzYyqTlZE2E|>)+!4s+$ z(SiJ5kt2x8q18tWAZ;E0_x30&+u0r}>SmbXo7VoO%`jlxqXaLA59DE1TStD(Vq5BW z5ysEI=C&&AGSvj;Kk!h%Z7DfdF_arEWtq)pF8p~Mp2IFsfX@!KmCCE(z}~95dIp%- zZI#&>Dhj4VrfVKn1c#|B+nTAzugd7&pz2%mScK^0@|FB%Lu!d@vMvKGFcbLgs{Ur4 zGrgmYDQc5z{Jl=L8Z4PI#x$tWHIfFsat(DCO1%su{R;ez*DTVh1YDnKtHU35&fh*p ztq*L3_Ucn1IBC6$fBj$`Xl<{=`hfTT3;tV)Zx01^=IiPwqza`aHS|e zv&|mJGX_WJIbeXeO_l4s$q-vT)`E(HhVh1g(78>yE*FO;*QEokJ8Zkd#!x&AVb24~ z=0~C?>L{HL+EBymViB_O*28Tl{k{c${F`&Oa%?{3jLMrsmA5Px>izTnBDXQZ1c5SNtM_$Di-SVG1X_G8)%G0jSD(IRofan zBj8FrpArDpIDJgs*K?s((|wR;YEDudgCBZaL%l}c@X+gBZP2$hdz^G9=@hFjdb#4^ zzoJ}T=4D$FPb^w8Lw8bI^~>v8kEUt9!6$!UE6vQ5IjV5DrwZHNkS^WkhIHx4L!t`u z<$Y?kXCG1I6>Zv=<@+Bc73DoYE9%d0zEv-jO{N{h6)5UQH{|!NjHm}K?RdVIgb#E% z4HIx^dZj>K@nc&X{%oQx({BsN#J85Rmt)(gbg1|&s`!1r6b~zF@4PBLZj!C3dIO#( zHEtHk)>G!F_|pPH*950FpjDdU4`o6D^$x}RS8P|krSmZ;&fLCvApdT%?PWf0vh5SU zQa3?yrOVjMvMBiF_8*}*C4yUf*&1?uR#^U~&qbg{n7Ncl=*sdl!B>j$FUQzI^QuT( z1wwCXnuH&^G(wZb>j?Nf5bH(RtIZ7Ca^nUpXO|sb$K$q%Y#NnI zl#Eg*69^0p%Ub!|4$YWrtH@vapwU?NJt5AqGO*w#PYH*!`CF=&N?>bgvnVMj3#2yi zb0%|d%8Hbwe(9F%5bcVT_93OF>@;mbBKveA@F7f8FCISiF;vGKnCK95u_%5r;jJn> zeW@*pJ@Fu@)d3#@zl`Q}Sl}&U5jj~ly9zB^x4l}2l{B=t3Wxy@f!>Hd{EKD7>M`-# zZQNi^aALnxv8Zt0lJT727SZY_H{IopSQQEd#b(nK=DNTPf*P z>j(=TzY$7$U=41k+DTi{A65&sXw}aZw}?}np;`Q?BJkF)i-@v9`z=m% z`xvidIhYGNRr95`o~+1iq9dTC`BTB$(w|BhnuR|>3;I(9LkmT$vCP((6{O9&FZmWo z`qIo>Mqlc&+?J%a1VLuo!ug`*wy305K-9~jU_3^L`jV;#>w~bDU(VW5i7<>*&}#BS2aAVzH+GYa!82PHLeJu3SKA7P8-&&Trt57!XNN5%oDLf}p-(Lb z7Z*Oo1#k4J|A}AdQ~$f2n@`8$V zy3fEdZ`G4ADKdxXME9Za9O*+94b8%bpap%XuA#;4L(qI`Gvr>Irr82jILD{Ek8gqa z;VNxol-s)Z6u}yMBD{o=S(Sq>s~5x%vA51R1M_<&ao4 zE(hHzG);7K$0}JbJezU7DIb?LEVzWjA)2X=4at#F%d25vjvlpQ+RB(>5L)vfM~?I^ zstDkL-nAKgU3k|5!4g8f4IVWtfS^%-m#t^2k7O}(aX#HAd9W># zciL@R$+ilC4DPy#K(vAUJNz2%wSCEs5$f_)q@!T#hg!U<9s)%QrxdRuvD;qVu6uMt z-z{{9NRPhj2j{KA+cjn3v;}<^TF`fa5Bjc;aXJnP>+9j)l{dKvdqVSWTVWpEJ}r>% zUQ#xUQ3Uzy%9*3PRJhxv9E}8Tbf^}0_|zzSDV})P);I=;8+~Uz9VGe=mc-gp(Z%i~ zW}PQy8`>rQh;0t*LLnYVT7qUk!h_?3DH0wWA1EMbyX!zr<6G3>cyRn<7{?xSdG;wq zz*i(bx!xEU1O(=5j(F|5{2Nb;2EdTOxcMp+Hz=RB83HItFNoS0)AmH}Tf< z8$b?TnTVi*>p1Yf;Ga>EGiH^p%6=w9<)LQrS@~S?imYrO>70DrmSj?ofVnhk70okN zB-EuQL)px()BfdfI#;g7gE`^`hIZjs1$%VwYvLEW_cf4RT)sdPQWqYm7PopIowhCf z|HZv~owJqZFMknSotMeBeG}w=7dUG^uAP<$A|P^F!vC&3EuoNRP3nBF0U%T#R)!Fk z?}GSX<%qv44?Qfu_J($|1OCGIap4y{uAyYmyKCQ-t4JdL-+&()T(4v}>E+UW{9WC{ zyGg&M5=g)P`;P9{VY*-U5cJTm;k3YVTLkZW$(9@g6pe2Ej9MeQ^^mu1+u2|ujXazF zRCJ`Zh=H^Vegoir14LY>Fit?wL!aJ}9@^wj+q;a@j(ErTw7Yo6c+fP`0%I=`6UPs2 zEZxzx3^XzH<5F>K1?d2KPwl5Jy-S>W155_IuNc%{baOlP)K5xPQNO#3POSnfykMNN z;&6#@W#$P9=ULZnb&O!VOn3^g6uv+1uJrvecjXsu?or`ziOLZWg96|v>L=Gj;7^y~%aH}$BO{Bt=WAs9Lejdah40Db%AZgmY;n0#ftC*x3hMjN~?Dj^(xXmNx61-~$Eu)lJT8{qI5Hx56yE%O;SCgwdYw3f2B&%edi#m7^IbPrO68IIWh0 zb*3m7BijEZV}up|m-hgL`J}@SKeNTC(SPY-fb5uJ;B9nU3Gu)xSRM5j#~st!0DJ40 zW`ZMK&r4GgFcQEsrW*Wq$687J)}5qA;#X7lKJA66TdXIcakLA5S7v>uT5x~R6bko1 z)jsZPKoxa>Fe;TcNseY>#N~K~EueDvLO~SMnML9kn&qN@Fw0nI6P4?)i`bX?G|P|j zX_kL5`>CL9WT;vavxk6)F>ce0F^e>7VO!`XnZ8bFFXNjOJ5|+oKClmuX7aeU8@oZgG37 znA3tMwayJx2(V7=sxtiuU2cY}`UqjA|tHUSYEIi}gjQPQl9G&6rfO=W)(n$kvmaBujL>FHXL@V*xU1H0Ir?@FMb5m|6 zDKnk&{tNQqR8|H10-vwlEy=st;WMYrfv_biU&(%xbrWK^^oLhIbRrOK44MB5zvfl! zgV;bqUD}opehvqyM65s7s`lY*JVn81IQD_e)J8qPnjpS*Fq8JeTHoi!UVKZVf$i7| z+O1|ydz$h58;A8t>FkGU?sAlZ!y zj2UX0CuV2b1(Vz2_3bH2kb}UXR8e1z;~6hO(lw00WwkGP!nz{LLtdAFv*QtC9=$d{f6`%+VMg4;d;|(` zEnrxJC@3JBO2lU{-{4(Z+558cv?Ep^;vdNpSUhRbN?^$WMF*>mAIY+IQ_?Q$L=7L2 zI#HWPSSM0DJj4r8)OwF(*$c>H*^82wWiL-iI6vRUUXdBVSbT{EQsT>vQ9vpzwYu~7 zSL`1vEQ88}BN?NOWDIH1Mlvq;%_*k;J%W#?M0P39z91dMV>0bJ)fr?wrg_j=T&HRR zkLD{Z?>1IHgAuy!Q)Qn~67m(956V|DZ3Ha5-z+Hg{N8FGtHge;Xs=JWeeF7x$zz!*DQ%2WlYX~6 zt|ug%7wKZJ%M4(&-7-K*vt9hMU`en7Q4cK$UL_vi_&t&(+|Q_p=)jW&#O1*HQ>LYl zr8_R82xwr7>6q5ZF}dAwp&U~9w*-yQ$6D=dAONx{lX>sj@Pd50WpIclpRCvNfwk=N zQM#zHpZAh)Sugt__32|C+Z)a}J|~Q%&i|(J75>}3T-5DjPl(aiZS9NV4=DbqKK7=} z072#6(*%ZFv8cdU<@CK;VwJNstM@lCO})bD8^^h*pMAHYw)|VKaEANt$xrmRw+^R4 z-lbwl@sb}Boms4HnO!< zq#!bfE${@i=8CA}heL|2Q7=jxkopsiI=*fiO`DNAG*jxB!PcR@kVwrZB!g{En{jN= ztP#Nk*0;)O0{an+QYNspuS{SE{q32+irzATO&6>``kQBu0I&Q&fN26dgz63xSiF^D zB$XG>uM~URp63@-=DuwYW5X#)%yB+7K*SO>Q9#f|z}zs$DKg4lSFP}f*U0Q%nk}FR z7%}EPkr87qX>mmik?U-FA{W=qq+Kpv8=jDWvHOWwyz0PxSC$_3Mym6P3>QEh!v&=- z!-Xd#oKGBMk75Qeu4uD>ln57Jfi;Y^|H%qGg%P@}5Qp$Y8^RMJqBevnAC&KED*05) zKq4tB28i&dWDMn=y2gMPtQLPN#{lGU43xYagC``M*BWo{#|&T`!y|nRuIL@lZ~Vs| z&X=4iREj@Ov?s8xR5%=0$ER{?I+7OG)QDg{9L9ygd<5wr=VmA!*El&Y^$8%0SUyM_ z7|_RoQTlRVo)C=Xp+e%a%+Q9TO9Oh^3}HZ@35Fp8`b01t5zzkwj{2v$UlA%L#`CQL z;xbk}o}YOtP3|m3!0Gyf4(pnGy3pi~%TcjkDHh~dt+{2#zyJj>BVTR?{}GY2XRalm z5sN~>!UV)1*yv1q16GN4MAG8sbv5Cc9B$o_$QH%d0MY@N-OjhF4ug^ZwK9H5sQkc-4h(92r;ZPq&X?ODPJ5iSM4tn$Ub0 zru*>b&$Jr`o2}2}0k9*q1qnb4R!V>X1{&WofNzNdU|1=c2{dG&p?zhb>HEwh(6kf1 zWuPhW9Da#EUH2A<-(F`aK}W_2^qK&;Rz!?Iad&$)W&VPi8!WCYXnZfSs;Ss>xax84 zJ7rl2Z5Qq(-bxt{DF|Ly5cM3hQHC<%@r{|!c>2J$aeVB)q&(g`*O{X|R9tBT=t&+*hP2Q#t@N*m4EP)@iUv=R_p4km)DuQb2z z95KrtuCji#Cob8&U{q(@MFsUDE!vW8uHJcxX$&YoeSU{B>^;&!-)}3U^%*ctguY_C z9Ym+VZ^nrcwbhX@IqrS;NJ74sa1) zHDLw@H4oW4n6^Lnn-P;%p6#Hd-Bkl+n@-yxbHjEH34P0$2YKm`cFk3 zoXM&x&t-t3+LQsx69VUh7TJGh1~7iMeEE0wZ`eaBCVn>E&=C)e?EW4)8o>BXkLinH z4;xs(U-u-~8?`fb1pEkI@l{0zr5LF9ObLO7ymAZRi|4rzkc*zSTQ_=z?%mRa!D7> z_ag~h8j7uh+$?!|WC@o1`cSkH!lX)UONhq2@I0Yo0#l#qm`E-aENN6pt$#m0+r(`16$h za2H`Ug@~zJP9;THPD<=&o-!LK%NrF8Ak7Fil;eqlx7&Y$d6*ib4En!)D+Ld{^XBF$i+;si4&qpA*(}g-gK9JfiWt>i>%974iyUD zxw}CiT71sW74-Q06Ln}=YY*Yg|BR31*Z0_WGC!4=sCf0$R6qsmT@z576*n}w-?J&8 z^4`lkmf*b(RjFkv1D(%qb;PrBv@>pJ;#6WA)m2!-?X^7uamt`-wUFQ8ikB*nG0USPvq{f7mU`$U($<)uHm|(P;_nO-kDx>(w_XgOMs9 zTB~y{Py5DLFO=qc5HsezRD{?6#a=<31d98`9?z!u=9Ni#eSy5= zFruO5J4TBC$G7bf#?$MSudV*5@~KlGaalzfprV#j+F3poC0Hxh35pMb@CIt4!-rcy|P-;#BYfIOPRR!-43BK&ploLDsemU zeVrISCGyoq;S}u3mSNn$rP7QNr7MJ2GJ$Zov#l(C;m)?Q3EnpDQJ(B<)#vhn!VPDyWun>D^yV}7d7PMDY zn+ZO>+Pe!IMtk6vaJ!M8`c}iBbmMD=B>}WbQRUL?LsRfZ(1B6cI8!tqz}d3CalBv?J!e zr%b%&x%N>(r$~#dN+t@J4^7hLACq=jB)booB120qS+2MOB|@?K{vdj}5;XY=(jE9l zy@gXJa4lM3 zZm?*z3%@3~;evHt{K5qbZVB>Uu&}a6YcMWKP%O|7cs+8Hd+a6$4`V&ZxejU-0uh_@58Bylg?Y5`<%YZxF`X_Nz3X%L1F z9oV)s|8LXYd8|sJEf?Y$t!)ADWreNTu)7skC&aW9vd}S=p~B&TGx;TlGz!OXnfGf< zi7?E_Pn0GHP)@iE_ZJY16X0cYZl}G$TNh2c$3CDPF-&HF9z~eUAT3&$JX0)fliybW zC$GSLL%PXm`30SbMRFn-od~`+B(1wTBS1z=;D^zY^22E9A%Qra!ygq-`-1JFEXB4n zrjLN&3}`Q<7>HqQIJQLEBKF%qUL151HQqO6&!Rxx4pFP-j1T(_LpT zh+C#0s!4w=@)j=0bK<&2v%-`J)^~#o*7fH1j zJI7w9sDVQPt|Sd;#WQ+W2v!Qpt)GDpZv8qIlv}^fl)OHS_Bs!>uN;Oa6S4DCVIYSW z+9N#%f}gU^9#vJ*427yz8VZHTsv}P;opzmlM8)wiltOa4DXKiQwKp#92>YC3VtsdS zd|GYxH3f_MuKIaF-g{`bNF#zMpAehW&SHAAdR`{&8@8I#6hg-8)~ubwq?jTTfP0tz zKi1wnu*Tzi9PaZZL6S*i53(mnBoPThB!bwtkZ|vF?~Q#a8ha_V7OhrGiy}j51>LkL z-7Zy1sjjx}3oTu>RB3hhsrSs8=icW$_ulmT{*wN~&6%0A&CEGx&df8@a>UK`d8?+D zwtlbG50IBHy;h$uZfa?w!v7C9wG^=96tPG#DQ}T}_y{`lhP}0UVxDSd$&WC|he{p2 zE}FshN~#j%U3f$mR{z>C5Z)rN1TxAjKinMR;VY)Olf&nwTOMEy8jul>Q^&u7G(7&K zM4vjlr-VEFk{dvNWNu&zOC=Sg$w`E!?i6Zv17EiPYJ8IfUOi?~7`$PEQ96)AyFf_vq1y1r_aMED6i`3grQ{Rwy7;YmtFcYhi(?H6Gd7 z@)sLG+tpcV{R|RRX)kuQbW_yZ0(p;amX2&TC5h^qLDjWbs>?jC=6AQuuBD3nrUnM^ z&(BV1#^47DY{dcgHJ&<}qziD1uA|`nmiyQfw4HDhk?TB1b-OC)R-W6>@-e$YrNdO+B?56R zMgId*^>~-J2SxKirIyE7{UFj6xSa9}lB=#8fpXP{R|O?`Rg3ee_QMO7nXJ86HF(Yl z*PcCS2`aF}I(49yu;HuTqR3;K>Rk_~#7Ais_u@SED zWFoOzP{c&yldu}R^4H)fe%Wd%N%+TeaDPwwRb+)*Ip=8>f0gZ~EMu&8!L#X3S_QL# zM@|K6_zUY1+9qD#%Dn?+W3r==+Op#y77CE%%c5C%4M+eE3|Y6 z8-Bqu*Z`^Zbf8#h;*CUCgJhrqlrYeslw_dc35ntV8)oUxOkfN&J_ZyYR&-ThK&jRo zp7p9_2P+IFqZdVL7c50;M@pzjgMy_<7E+EPDP{b0TZ?{$?(iBVQu>Q(@}XW8h@n)J zn3T#B62mW!wrI=*7E&o~_?AwV0)DQIUy%BNE?US~Sm3Rr45DbO1ygWtVKptma|>N> zwp5tGi2DH_xF?LW{LKzh42b(BsW$c!EgAWSWw+ml!LUcJO>7=aOTbykZ(fx5iPpXh zma8-KI4H?TY_FaQmdmqK6bmlT&N&pue{v=#`uzozloS3b>^iN43$#B7m3qwAXv^D| zoGqx}+R01>KZ4mgDO=Hd%OoS{FEfNf^tIETNtRhGlab-&F&~5Fx_~z2;bq-(_}i0V zkqrmR3=fA9Y*=VmP^2-P^<_m7<9X3AnnR{qR$4THQZ7RZWWjdOw$kVgzaLS5-3SJo8_MEN&biQ+U5m6VCL67}66nSVbF6Hnyd z4+hEn`)bOjOm7Q_%izHF!%=kylhbS$t&3gxlweFhHn-PjR|>-cw;V$?In83X5+nxW z0eo>*&z{O=Dd?hy>jfzf=o-082|{i~GX5LVSl$uzr3bh9ywhe#LtJP4%4|zh_781< zEW@WSZk8KBIs&#n7#-vMf7OY#tC!#7W{_Ku+r z%*7UXPTUH(MX-fi0hQtxZUt0^VD6q=)P`Y}Ysg@5b!drYn>mYzcXB^h}(<)CWW4Cg!uW7DgkxLgXgq zAzFg52b5s!0c|nY?1TTx)lf%lVh+F8GE9aYw3ZAz=0Y8hu;W`n48xAgA$r(x=Y5uL z39AL1t~=&at}xAvE05nO7*`(2AD7f}xh9op-oX5Y;)jrBesCx-=FV%2h^2vm;Aj9H zh{UXO<^z@>g*B%&(NU#_O8=fpN~nMD6e;m_(8eHi4-T5Fr92krAD!3iciIYhp zlNDV$RFQ^^GA*-NNm#E$jSrQ<*e%?0H#4C0Mgy?~;3W#d}p$BT%P!5FfhEU=fY{HzYAq~kuh-+Bm zKnQGz1Azrl4A8B;d2)HZdP+md+f~Aw@Hf3_ZRD+ofDqoKzfnf;pJu}j^(a~&`5Q+0 zn<)8Xw1cI;F*;8VMI00p`Wq7jHLU4e_h{(WDDL)}=IDTmvVm*^#fA|KdKX&JW%>O> zovXK5Ci<&SG!)*YneRHTna~Kn=3lr(;icOxAMnDU2I0<%?UsCn?V|)S-Td-X7LD(p zW5I7mG1I)SA)oxTrInAmZ$53wX75oHt_Ed0EVAbOFg{?iWGq;s$Vpy0O`kBn6(BSYQ)^~GPz<%iE-ixPL;uObKvU>HL&Pui zpCMtMd*7+B5ioq@cs}bH%W4+&_)hYpt*b1Ld zOVD*g38o|Nqa~P*fD&}wz=3ex(LU5rna`DbEo=F}eXxSWdyHu%>A4dC4R~%pNEq;n z`z)D!@Jp6S3HgE?b<)X{K00ZU`r>SboCdfGN%CxT(A4PJf%Di0CW!E{?+OT-p`@(e%gv-%#tNgTEK_~TGEB+>Brr;#B&0B&5IqH80;4e9!_C5^y>8jh9;ZB^Fk7WC zY%47hOLX;MIInI}(VQKkCGI7<`Z5*ft#DkU8y$no^S$A6dA^ro@K~OI8LltSzowP2 z>(5aNmp#=5OY@fSa3HSC%>>-nQ-Ex!MU!k|X>OJlheXP8h#gE7QHz@mEsEGd`HJt} zVCky93u8@$4kzIWB5`=EeFPb|=$_jOh-+S8=rAZk&k@nOC}>#(8RNqve2j6me*{Ji zvAs!Smx+gYi;GsZM}!O>+C~`MiQr*5X(Sh`%RIQt=byZ1dEI|2fO&4l_f4wqhWF3I z7Wjp*M`>H+wwiLgi*Q?CoJtYr$F3~3Bw>)4SZUZ4J)GD?@nwBznaWHMRQd*8j%88~ zp1RA@fs2n|VyHzj#Fq=#GZeEswBYl$S%QM``YzcUeAPBfg7fi@EzkI=KSYSgf)9Ms z5+o16x;pIO8B6aNYBOEL^24M%RU$!Dbf>ELh3-_1ta&*K#!-2BRIeC%CdY*nPK}5o zy7CgThHk`RZp2{{F*&2_I-?f;g=MSv*Qd_EzOXb^SPOx`SC%Vm0BwRR+P;y}G4}+S-Hv&jSGCdR zYE}ILgL%tuEqQFASJk=Zs{D@cECcw|?<_B}bzXH>d(;JgpUg+xxH+8TuMXcsIJncR z)pnzmYiD5^d(ErbVNy+O6x5&{<6u}JppXZ{XjSR=lOyq9ScIq}m+3!?U+^bCT`;Fz zLVNKSjQ~;wz%?2$0_YS!sEi-CS#tTR4$eRxcG|h}SS4uaiOoj@gM-_uKS%OAN-I+Mxh0lV z9`dIpSy>@!>DvdhqNLZO1ZC{t35nr9{Asy|nZPL647Xs@uMKO(JN<2OvJWV0DA;Kf zjGd+hB63iE$+tyFa<9A0`KU9as$UGhVkM>|R zC5U;t5iw+dPl~}jo#>?vQP#XjLmm1}W<#KY$h_e;kyoiL#tGX*xeB|7k`Ze`f++aGqi9I3}=IWjUwh~fHr)P1|gAJnKGJzF4CyB3qqH#O%)>#97Io29z_5^T}tym^7 zsE=|fQp5`fw1F`%3Tzm0ImIuGxSTPb2@F?YG_0|8h0ohrH`g)TS=Ge)E;~*2g^|^9 z0&zuF{{g8;zC7Mq%FYq&GP3ePukwo+5n09Y>d_{r?ZBde=1GP1f1b7=91@|YS> z7~#j4fI@~Jw5kk0UXQ`>BV5#x;YVsL{Q5G67bRP>6TT2&8hyM)*}>@Jxn%1xmLVFs zf)Y$Zyy@Ap8LfgrLq`)t1PvVo1kK!=Fe1c30bj{Bpqb=6EmwG;$ z_!1UgX+(Mu`TB?O0mNMlJgJM4NWI_=Ps@_C}toNaM;q7~Qz3`A<9RQJ>bWZpTV7 zVE5;%vMw~|jmDO@;l~QBhuMQvFKFx@AP|?a`|l__#+5hW=L@aV*cL)Znmr$sE2|sH z1?A60)``qXn+UU~JSWE&-s$%Y=vFK$lZ&l=*-5XeZ+ln8Z-~C5HAPw%(m*(9O-QG1 zVj;ZZa4|d>yNSU~le7_X^0$vht-4q{vDn6B4xz1%Y|Kaf;^@y)LSSl$CzNAqkle7= z+kl?5*0id$*2@}6Yc1+XYu#Ot+}4PH+|}AUp;~~cwO&qnM{7N)oAo8um+~pBb>e-V zEqjqF`u)tiyIa5ZV?#*+hih5Vc&qtv2kKY~#%CyoHs+oBSjU?iz$^59*eqXlt$nRa zeAHd$tL{DhtR2jCaSO%}B0$DEc6cH|L`{pdfFM3~Zg_(jlUTady$=S{y%qD=4oV6w z;C2B)%M5k!gP`|Ht=rk_v?98rBaP)^;0P_j#X#&p>uhEMqjxxjoRz2t8q1YzMVa*k z`-!$jycZiwH+PYgP&Ze!GzuQan3 zt4b5;?SKlVS1A?g?K~m6w=;oJo(mrGJYu!ZV|^)CC{Itp2rQa<(h}6u^P07l8H{^; zVK!?=Hj>sB`*w|JdzUR1z0dblgfugwLH4?Vq~g;gm%4Y^ty|eriWb>hth2Y6mLPi< z9oE*&1V;AyR#>yyMp|327egx=?D20ZteP1KGPlrR4!5;mYAhp%?a(bEa(EnUh{#Q! zpmcD2zAYfG@rkR#@AUz3k=Dfl@f{ryzv6&s>lz4O$$=321!-mQtp^Tgnn=yz4$ymDbB4fj9hB4KzL+pE#<|CTzofip1j36 z-e27shmni#I`TLc^#ZPL70wnSm*{>#ASoA_r` zUi_NxpK5i;r#f`g<3j#9d{4c4z~nA|@WWZ2)}Xthe*QHNuRriY&JjW75d1Tva!>u6 zZd$OmQb6vVQP~*(%D}QpBzO_99C{`sQw362{~XYPx0+$CWd_rJ$6AwLMEq{1;l#n+ z7l8NW;-C92!#^vVZ@#}qj5onNjbphXdm@MwO#fx*ti2DZdX2T2OE)cx&q)>cYk9Si9iH#Wi znD|?9(i@MN&lP8q@Z?v5*dfK8*1yYVX@g#-<_M!--(%;Oc4YQNad+u}&#)o=e8!*6d; zK7yZmWkLj>7U~G(BUf6(c=l{-cb^nj)}G?&7;PwTa=Y~)i;gD}o zW>VqLKc$UUrU~JTsKmJ8JRC4{)|rofOZ%TVl;*lPIC^mqwOG ztQHX3QMaJld2VQt^;CZM$XLkkTqkTy4yRU`W|&rh?xHjft0E zlr4HLJIJ}{ZmXjBzXLRR={|@FPEhKoqPGkceH@Qpl=-a`qp5gGEI+i&+OL+n3ONRp zTrZu(@Wb=1F+6ec^iU???rDs=`$0gc?vA*nicnB>C)hux!m8PzQcl5dpO%ZmYT`hH{CMECztE^2~ z5~V0~6xmHcsE*>{NlEdoVq^G!we>W!(I)4Ik4dR|xGbBEpwN_gH{I%PIgx<(IVwHm{8-c$&bgesoDdY_!^&57 zkC!>2*v-~eKHWfdo!r29KD65UJ}XHib1%HX*f9f&2?WZ}-`ACtWvkV}$_Qe<__B3O zj1N+k0~2M|r+S;UG0(a!E}W0tZw=&6ZL>Cn6CT$7Y#c>%HN`Pl9i1o>;KLJT0=x#a zkWzWje-N~WLju#27_G%i_Gu|<`$UmV$>TY%SaTYQiZZ3LM*I?g;>9fd$D9kX{I`LD z;Rypp0Ue=*0^o|ERzGe%$u>|3MjRbH8&%ONn0VMpA=A6qO4(Baf-9&Fi82p<@k#45 z>{VJZuN4@RgNc|RU>7$IuYc;AnBb1wD%G=ry1Z zu}AoRqRa~ba?A^uke~m`mT4vjkQjbw2V~+*6+y+N>i$Hz3VI4qiM8w#iE=HQlteU# zBF75|5&5WE2)j+3X-@&+a!MB3T;!8%q?FPv3ev#=#^+uT{HqV z=l+LDa_+yI#IIf&3GW8(w+`V09EON5do%F zWET|@tVk|DbsxmFT`89$LMyCWSIlFbDaO-{M$Bh63c+b;5fB_l&=I%;ckor~$9}ga z!^I-wLQ>gG+Co`ZF-D!1Y*>oW~5D$@PY`7JTA) z5))1^VDfo1Hi05L?-*99-kdD$2b?NHyH*ZNiA=LN+-TPG)$C!VF|><`esO;Lr2quy zx4-y>^V>f~?uXO)Ef4hH{Wk12de7?ecOV;0Af`iw&LPQ&u?tcgmW} zD!l4yMqQkwK7^~xf)ip_tZRf$oQ3aMM=AWF?b7nNBhhuVB1WS3r{Ds?UDXIepP+Ry2!*-@A6hTF>*BIt zWOBn=E(@@;8nOE*9gH}RQ3%faBLaf+9#n{19rHi2zRJ$iiV$%OfFpR~%se|w3rcPs zlgSq?3rY0*H3e=?TNaYSem9kih~pP%>54d%R5_>bN#QAHtj(fc5w%g@`u;GW=Zn^N zjyKbhmgDWAaE;O#Ym(YHl^;K2O=EGXq;t@I#HJdwni;gZglf%eq!rCq?k=jQo=uTg z9A9}H$W(l8O;w9i`NGd(+1lBQOc5c|#~`!e3u}u=A0o+U%A`4rraU1ryw^GFIJ4*& zO??XL65ALb!E6!VHOx709meKTwlFB11#F2vnng=ccUN8rZm!;+iYAiZu}_X&)Yx(& z$_6QlA4~~e^1ISB!reRiHC;de149!56vYz)4*F|rGczYB%8XRED7fkIK1^JZEd`F_i&F>IVYi8mYMH@k^@oBfrwRDAiRW)eWPA(2x8G9Eg)}-_urT+`mml zUX%~ua1?CY;@woh51u76%_X$$)HD#z(6$$(0R(M(2k{GSdxx}|Z2J=zecJY0FIm^K zL886O0HJLkKp;BZI@|WnLoP91_M5dH&%F!=eiR`gBQ_sID@Q^`R2&2^{>d84TmEF7 z%4XAc7?jOOlXiY;8ZOzQed6KMPg~dckAcS0cGF7IcK1mmwp&z`w);`>YfKss_!(^X zNbv`?-Tef>r8=a}L-U;rezy))*dMee8jEXb(pX%hC1@;??gcB9&v1>S&N!cio!io7Cy+sR^tGQc3>5gtpKV62t%c$NHU_CA5WC)1>V?mnLoB*)(bU)=2hZ`)3DA!gF7n9-$bL?Do?N)hC-`Y|elBLb?Iy^E6)F z(w?intD}403*9M0F`xTH7tO05>rjsuer}D$aQwHXG93TI3)M9PmDi3*s00=L^kz_-7?jOI0J_)rm;W7K^Jg-J!TJ2EY~%Zh6BGx#jIAK;;LUeAn`- zzUB=TakEWZe7JL;DOCAHZ2fbGw*?db{;w~gA13?QaJcZhU@ zOkIe$4i`v$gsld53y+E{y`zDU4|bYX^YTHVy?9|GEr&I04i!-3q~>I=IF*2*f|yq; zDr>*K#J%D}$A66AT^ehzv$h1g9PDkIXifb)0hs5t`6_`=dnC3#>q2Yc4qQhbejPSE zRz9>STp=kb@f-2lA~w!M z9k!Sgjh4FKqb&pY`QPg2@E;Sj2h=&udDv4GaeRHEmZL6e&fiGXa@i6SKC$JxkVvya zm*$rwtr?LU!bDou~&0+H>4zYz1Veq6^oh^{&@kLL}2#=Xbs_UIt*`_()a=R^# zFGd$u`$J`H$$mNxg`QLnn| z{~wRe;AUF7qW;vJw`~r5U8RVTFZhbdJskcDom0 zJw@cfpWNEz^!y`z6GYaiRBtX0!L*mAF0{H zd2yx|8e+oDuTD&?;6rZA!IKx^0c$HW(&0m@-{&;)s8>BV;ns$${UM#)17`BDwHX6e zH08Cmn`IKk-i~v`_wHP9LJZ2LU+3`vfwy% z96y(>^@vR(IyQ!$Zb@O#>XsCKp(SlIR1kN-KWpuMbFI4^8=3f!UYli`N=)-W#;Z?i3xnU zzZRr!NGE1*lfaGEaD(`TW^YOz&EBaKKQ`ijw$|PaF=6L;r~9sg(lqs8IzQ>Kr?EqX zx?rkQeK}p;e0=iV&{}1RH2VY(s(2Q~#E35Dw%UuCqS-6>z9LON2IzdHoi<2Oze$$| zQs94l4e;dA)Iq4YeXZ?d^zgH8w+@Lh+xcHRm4} zYTEz%{NXOf68!=)^cVl&hr5S4PX0^*q035m{i>msCl93DNS9mGyXR^B`0-*mf7Cdu zO$Z-5U;cRuE2j9wzF@>z(Tfycp&1|UEMLdjq(21*D#EAWzSO7KA$xL``gyuoSnE#( z`slFAv+3fgz;1rGf@pZ6X(nX_Pc%)Fl*L00iSK!`Wx^@XD49U|xY$|8adB?Qr67K# z6b8q%4SrG1V_mgD{_6S+IXK{dCw4Bn`pR><~JCUDH05fIwPFOWWd7DjG= z?GJW^HWT|i{F%{Ot2Y>qAlecREyi8gxzid${?aAZI5{i&E5SEx5&|6|h?= z3t|YWQ>galOYQk*KyO38H;v(ye`)RcJ9e!}-8EU+f^T#{>{Cg3Kutd2smbxWL}O8t zIs6@Fdx>qO?fygcZ8nIR)OTV7OyL2;w9D$7EqJHlS}XQ8#@HJ^LK|6k zjU8#hXN-h(%@Il$HTIpS#t!L19MCnkaFq5j`k6OL5yn5Su|GLrKqWy{Nl~p zDAqL7bEYO|l9`&5>7J>@bWvMf1cc7i#+h=a#$-Cn zZ_#?gdsDQ{f2gT)NeDhW-1C;Lpz3Zoa__QkVHe?J$Ekr3J}#RimIm`O!EtJx*#gQ6 z4zf8^ZTA>zJ3mF6RwuQACreas%jET@X&LM`N*C3(!BcIw>S~*siGhSOc)HeHVLNF< z5j8}v^7JTA>1vp2QUfHx^q>J;Cmu&zC%l1v9BsAq490OZ9}c~8Rfar{c3`G<7o!!N zrMGGR3j2-nh8q$;69|k7jEWzwdsx8u%-LFF^;)J32LrOm*vC_4KIm5ZXUSJWKR=%y z%#3V6Rrsj;%;=AKqvlmJq`xq;}fF(qJU1g zpNQ6-i|1)vVOGiu9zwe;D$!PhXcav6zHNc_H5)_09xe5hiC0T!#2s2kg-!pLrg|d8 z)Km=7s=)5S(S(0s5>vC#d*!R_{bH60oS2@wSNy{C+`U=y=o7BI@aPi`PHcBMQ;yk2 zOSA_E&@rncUQyT8OL6B5;k^6zA#Hfoo!a|s8`QoaK=wPZeun;Ng22g`IE#@`= z;i8>101peEp3mZ~S8F*5djyzH-%S)3ZfUmauf4^#Q9*F}ZuD$fO{?JMp_4*zkK}m) z!3ni7OP&R3yH@*yB&eITlsij+8u$DG zE1vT*Va3g*D_OT?E7@`@&m<0R<#|G4_#M%<`OE|cG^Og>+45M!8!&Xm35{JFwJ({K zGKq>S2PVY{jdEIoiVJH}@qjwHrBvKhT8xUDNTr+8(ud;4x0H$-PumK`;eOoemU2IC z4J}2zt)!SAHuQ$);{Yk@&4d*7mOM+%Qb8O%4`LDr73T?w;pgIQcber!#SLibQk+vs zv?VL-W6B{a?R{No@6!@g+S89}uc}vC%69^Prp2hV%T%=MhSK1OBIKfGPiUt8peyYM z+7?F}z6l?dqrV9sljAwuB67%ZOU`i*xAR*oS_`yzRM8u4^~B^TekR_Mq88-HcL572 zYGk_|MGY@Uh}Ym%IY~MR)c7Jh{EsiPpSvwQ!*3|?c|KT8VZ$jhjC3m~vI#lzx*~ zR{HQxjxW?-bNK2LurU0cHoyt;3)P^~%H7lbI@w03KLHqQ$NbKP2zVOVZ3w`#A}G{JBJAu>td znYKT@R~ySr5Y%kPR+8DQR&HkTggkX1gh~8<`3{N~V(e~QoQ{w6-6VkD5tZM>*=4`> zmZIL@N}Q2zR6|Y3m|W=9GlqIS7ikgfh*R>93ep%VJ|=!)sQ6f`nnT5nSxz`5AFlWe z6Q8Z)s%2Qog=F6MkoF6Eg=z#N#Qg-K3$fxqp*QnYZ6-TGu*(S12ffPUt@H@-2<*gt zO`Bl!bFP&IP5~D*x>}v;AH^sVd06ZPAY%%z;zUCkUiB1Ai9hxA)e64lnwHGt z-_#-#j*D6}+S)4sF4-{Jn)jym7wb<2!)VLt*|HC^e9i#F{x1x%|@(dLz z@PX9xTD}U1F?76;D}AI1DF_UCguM&06nZXYx7V%9(IZtMq3UPaKg34*dzKvOLip?bF@Q5cKOOoq!p+djyL2 zp45{@AEH~Gk}I9TFc4F?)rwr{R_~?saWvm8Ag#)&TdCrAqvHKwit;<+Li?(ZfCR#~K17-sM0DTE;XYD0Kdju%_q?EWMFxdyJxkhf zWbjij2G3m7p7gtxCvGB*ZO(q9Es(jN33KXAt#RV`3j@Me_le9%Ff<-56?>Ut`2I)j zR%U|WB)O=w`>C5<;anS0dqG6Ji6?#Ar!n94llFp|+nV2eMN1E9-P#zv5S*DfqR-{u*6E%b6VqIfp0t#g7^bJYxQG%bHw+Yujs~X zCQ@#9@4E@`c(H$+bIvc?Nq_a`*7!-B@0xtiA6oAiYII$y5PnNI`}u+}I{O9U7dra| zt!sAnU|8{!xUj#pCw)5nU3GK#&XIp>rSMK2)dxEJH3Xsyv7(N&IM7Prb6(Y=`CtFj z2C>Hp3F+~D5UqTywea}gvX^OXboP5&OK1N)=+Bi3dY{%pXMW0DOQwM?(Q1h70w595 zz+bck5kLt>0}a}M9$dZ@qJfD@YZ(ma^kpt6h1NpM32h|iRKncbf zF4Udt+3sc8Quj5=0FpfI5a(+rpZ$TWK-khhh_c%rz~i)ey@)ZAh+Z11(1K zQ0&5j(NGQDS7S8vBWowdb`kPi1@q+R@UwvGQXTQ?|BV34V zE5n88wt&txzA#(}Z)-SpHL0x(7ml?t!UZ*?tvm@`c~<5qjZmR|TNx^Jpjgo<814dLFVgF-w8*l}RpK@?wg~1V-0!t&NPY zuEMZ&r5fZmP)qOm%dg>eX&)vtvki^Qd|8C zOj?RM+eh&J&`im`q?)-0Ze4#px*~C7+BHp)_7_ zRb#y9OKUh^aYc>=)EMTM8t2RWQXFlC8jFRyuicS#vwZgmGxAH3`7$XNN!uFvrQ&=& zztowQqt1#b?mqeMafbONK#Tb$Z?r~!X;i+h@(5HfEx2l@V}8? zS_*t(e(4^HOyrl=#n@W&X}?FrsjGn}cydmKxq!JPK!E*f;?do&QsYk_vV^%cE;^O| zA#+M@2zKRP?ykf+;2hloZZ%}@P_A$iya6JLN$>_O!7klBCEVfnwUB3SU<&(|mZRRk zq{_Ks=zUeTt&RFQ$OsXs3g~fAn$Y8*^n}FlMJ;Wc%zU6EuK_BtT5`>1OpK+s^B9(JBuS z5SLZPF#gZhwqtA-t%w?)(GE^#+dA^3C*yJ>ZWqO$eSXtT%PKcCfK#Nx9&WcaR;TLR zPo>RM`i#zCCW!b5i&sB1J(qD)MYv`shE^o3ozAz7HX}jlC$*E(4rymdE3QyHNb#be z`vrsw>I^TiwNU&%X$M0?eDMAmZG!XWqjqGvf76am_agPZc5rM+DGr?m%>TrLpNCbcIV zx0Gnb1QknvGp zbBcO9TxtJQMN_!G)|TdXM|*t@wwSg@2^LTZmP-kgV|>exT2`bHcIYqb&TY?e*)^A< z!E+a0RcE!A(_}__zU9)GXy=L^wnr4z*T#)*@!P7+$!N%MhI5N-m?I=9L`8h_I6Dq^^S{v42P-eyG11!RHUQRhf>c$eT_a z7Tb1KLIuV(Suug=e64t_ZtFijZM+u3b58$QpSRR(aPtu%A=hL+h*l0PkXhJtn{6Q* zN1KRsfijw(Pqpd$^us|V;dV&5?MWWQ7J5~kYp#mRh#Dx?xQrMCSiP1J6p36$6cl(a zBSb^FjCfl78dShDhS+iw28uuEGNMobTxJQE5#l5r-+Ntaih2yg26*s4TG7DmAip!SwX(Kdfrv(HJ8gwJxm+;6a+e!8l zt%wftB0RM&LXeBJ1RcW2RRJyi{5pWmdoCcI1#}?lL0hAAAXd9!2k8tz$Nca@B{S0C zTK`-I2w^Z{A~Zc~Y*sL(j4=bQEKK!;*MzhwjyUmAkopabII+60jI;g1x=`Lws*b>$ zkg6jsaY+@($8}3;s=`}unC{bP9h7Vkm29MxOnth5H=1F~B7*6=RY2?f55wYuDH;s2 zOvF*JZ*Q?ZY~~5Wfesyb_?2N@;oc|_3n^bpIq{3p)1WnBJWmwJjOJ!a1$%mvfVg_v zBcu6}F5=6y6^gi*ig=849;P&(?|=a$+fCcy-2*#2NTa@~gTa?@slU*g$k!DwzEY># zK2n1UrPf)Y$9Pg2@Wp+>pkS09Qz%ywy3!Mj(WJk><4>E9oMGF{Ob{F|ia^*^y<)H` z{7(p-J^_4SMOiW**soCr>rPP`zQ&_e$5eAJv zU2NEzjig}wbl*|P*Uh%|F*gwYH^LyGCvB}l7Pz{(jbBjAAcDx%_pcN<;e)vUDQpQT z5>{3;%CiqvqK@QP@NOf~%3VMOFVNE^#5V{KSm(qAnHHtr$=G`@+-|y95;8 zNaR)z2%gX*9~8gPBOfe8kId+qJ9!<^D|gub@^-ydi)~lfM^rfUyzdc+PIkpdb@#kI zc>goi;(I`-f1s?sTt#)MEQ{ScE;4_l>Zp@SUYE z*5{wUZi{76MIeC7nPD0)tVrfjU9E;!+YKYa;siKKko8|YSkHLcHjDM3 ztl-QmDTYY{X|@ttA`mE@Bx@KO>%*RZwZpcJRnn@6WL&YFzT;?#P=Fd%%-im=JaO=u}q`rJUG-t&B2mGyjuldhXe%Tb;t-W%-OQ$ zqSr#3`DJtp;5p}7_R@voj~}#6QWtjOQLorqu|+1TLN@fy_fRm(wx|>T-z&C(<^~w4 z8^jw+BQf7lq#6n${xqf?Pp%G)CSF-rIqfk3j%}XILY$62FuDx?0Y`>HOSar?8J|~W~*R7{tJqD ziQ;>26ki>)J?O7?hI1&3vWileKm2lsXBY|LI0~jbRHgD=Iz3NHd9i!`ms#JE2(-6-URq%0d+otgT+hlqOyQHkMw5(;6 zMVCET@{X-7yM>krdq7QKXR%dL?6#^CMO|;Js+94?k3mA*LpM%gvYwV8f^{AU7M`+=;14`WWImwFe1Nuf$-Mlut&n|4OFU$L&qL;qMO_~< zACNMeh@i|S2(tW=2g~oiXPeFfyO6<$G6!^#eHB1UTzp@B-`0gC(h?8b9ml8dkdc7l z1(QX6Z{Ag)gtps637I!R1oMh2@OE_%u}&Y^hOlzV2l8I3^Il3zT)g-C*w&Ygqa_}^ zkMY6#gc^7UO31s367p_>An$$6yg%|O_`eO559EEF&iguA;^KYRXSN)+iP(t2Kl#q851bKhZ&HJb?Y_0eYXKf?ddCCXyK0xUrr^#7bfXzRp%~!H|C7z>A zEs;%CT7pe)xSL`=GylBp4wgl0q1Mt%`1DU4@xipfrL@ssLcG+4mUv9E;u5oA=_=~_ z7^px56_!qMp~6fM!M578gf35V_(xyc?qM@%L*#pEiJWCqX^D$*_AO|687=W(e5nWH z_ldeb7zZlIxQPlfZh|1=lROxoa{&@9`zaI1xKn4`NlRReANU^HoT4Qjj34)4{M{ND z2P(jLoT*!pZxdPM`*{z(M_#fGXMSBh2igsNpxvO{A%g232>dPsf($PNO}omG+LV?E z1aPx*`3Yj19{&m2m(p6OxITLOKC}ee_cXWfbJg}3yOq|$_EWmb5i^CBxD>zXXImw^ zhn9HQhr0v~T%j3u`Cd`qd(;F93UYPw&o8!Iw%HRcam~P#Yjv{ynoVQ7J?oOy$xa_E zJo|sL@cXa8!W*7weY3FjH?XXqc-AE>eCUIP&wR6>OyMaXLNsAgHx5A)1Uqn|xdX%h zgjvA4d5*va-DC$gpe3#jwEktA!cu67$IMCWX0}ynqOOn56WC?v?f)C%st*5x5*TuI zUgdS$AlCO^>h|&=-`_WRu~+d4Xw4)eYRv?}c^A;lY$@OT$MzyyKzYD%KS!#KpZQD% zSGva5wX|2V2Wf2&g{}19c&%@a1Lpvoti_-D7nHz?OJSW<`#84$U+V7lAb-F&d1VeN z%q^YJmHQ8&CZ2x=PH2gRkK*LX6T!|rUnF;$wn0Kr?0{7l$sMrklpD-k{wW}?%q8xC zby4DH_{DbDPlGk?PR6J>4W>l%)jxunz^$gV?(#qwq;153Fn9t9$`bI678YV^DQ)(Dq<+T~Fer>+6@h1(~v=e%k?<5kP|2Flx>E%~Y+VSp0s(cBtopUb}T ztf+ng#Kj@=tF#19T0;pQ1;0T{@TfMF;2~>Z95-8PkiW*wmU{rB*JcYvA~#zm0U6UF z>qerX+-zyt1Ad7=<+DY-DsIA0Cb~;!*wvd`K3noPWI`txbANL+LKueLV)P-IjS_3j=J|G;BYEqlm)iJ3iQN`H6{8DpAIqsjM# z#PA)7U=2)Q^aMiyl}PE^d&sj3`;zRN*#XK6%CJw$u#XlPGJF7hbsW+>n3iJh{kM5gu zC|Y7jk=s-DL~B|s#87h9UA4ECUD2_pNeU$silkvy0X;_iCiEzXCnSb9d@CV<56-Z6 zVWu)6jS>zhhhlQZ2$eVSRBPv?lpwr zJ>@}67+3BO0oA2F!p$3rQ(kl~2;lK( z+_!m8SNaED=uR8xzA(^(&b{O#MAL zmGz)4aH5p-BHNGyd*K-K1MA1nt%8RHx?Boss22B<{ZdRD8yjHbd&$vz3oS<6H|w~= zu0=;E61Cfs08%_2TLaSNI@0^Sklsrf=H6IwTg`;k-951#2sT4e`uW&)y`+|#^)j?9 z4)eT08p*E`UlS0QmhruY$YOhys(#r^-Vt5)OYcB_va`LV`h73{PiK1`yGU`MZoZ>p z{A!5Nw8Y*v(r^pcJs-6SI3cGq1#1MyMFLkvyQq`2+;_ALw zp3uYIh^6%=;|6CCyrhhJ9@C-!oCwOKE`|N#SeI@y<_0IP}kj>;qNYLp!i{d zxW;~yAiDwnabLbHAms98QC5l9ZUIHS#{MNhdbKRHpm0r{g69cV^JQMJ&blP74a3{j zHi#>Z@Pein#OL>T55WE6OEmlju0R}q#AB={#PJn8A2Ug48G<)?+r7{VAUq{+yC2ar zE0diPf}o<_>P@bFK2E?;K}^>b6KgLR-gbZLV|y4+dhf>oZd%q zIQvo$4#nNORi2VfG$g|-Nn7^8JA|t`4-Mi!jkmw0?(4&I*4lH}elKyHHHq^YypG&Q zYwhO%Rh)aFK`d|h?ubBMHV5Xy17#N)@nLV;19|oJ{94>*?$L+Ox%v=(c=X{%o|5j? zCEcm_;i-xC9qb3%POPvZLp|GlXS8!^2+vyLd(bef@z(B0s3b1N$6LD__93@+`O>t(2U#2kAz z@3OW@lrv(w{a!`w(O1rA_}`e%VN2i{^519JE&R0^_RaniK^p$RV=%WTQ@JpAbc>KH zk5~IELEiIwc3)%Q>?xiS%MUGsi}zOjX;0@b54zBRm;Ma{=Zi-Z>NIdbqI{(zDi4|I;gB2J zS6=Mh|sig}>rW0Vur@~i)*sT!>r2M$p<|M>05Gb33G;e$DM+hnUQeqZn`<)U>xXbnLfzcD>BhKb+qXbx6x`qjKOFosw2=7R(xkGDH# zN)SJF#-5f?ERf*Uyzhx$;!oGrywDMNHE*dXpoXD909;`t9GFhvWk>wOooklc2g3b^ zv`{R4F*f)T((05N9z#U|+_+MOA%(Z}M)n5?E=;1tFI<>J^_L5iw?wFlXFGA$V7vDH zD2_@MnX%MmDDI>eckNg%EkkJR0dRjsvWtJ(c!C{s*m z$T{VMYGud%a!w7PwT(H|x4%B8hI*Cboa)=3%&AIR$H$z4%Ep|knVAIM`FDqYltCUAlJh+68MfWH*aacYhg^ ztp<*9vNZ+K%#$r!Ai>G@s`w@TbWJwsA)IU-MFAb+=>p&yC}OfX&pl-Cp|aO0+&#}u zgOE7S-lN4h&rbHQVV<4sFXx%y3FjHVYqULFeZ9Z)?MLizVVj8(J`j3+Gn~r(#YCaU zkWy&Dmsi_|m>URphzNs^8V$${r1F8JIFn!i;tY%`1qjZ-Xz>eYV03BCGq8DoIRkfZ zwQn-HGx_1{nr-$+SdPHt(x;qw1fp|LhYx2Bmv+bkfm_nA5c^j=W*^Ur2^oFv5r|H> zvSX>-tjhf@A%YiwY9Gl4lUnj|@qwlClbn8~_~>j*CaFR2;HFRL8GC-i&QQVFqM;nHi^Q+arMzgnysu2Ucn8y^FuVu`C}8T_n}Tr>%(MaWBA8n#8I)#9 zO=RX9(%_{qKn8Q+CNl0^I7_6M@oUz&0kR8%1{hr+65u;&P3(fF1jN(@(_gah_CE?> z9`0{TWyfd})Xu9lv3<(WPREz+=?QDaNW^KV->Z0#;#%~weGxN3K%!E0zs~wo2J3hT zflei7&O!T={!AT61{50pli8sKEQo^fWoUIEuR3C1>!SgBig;fQzC8+iohAyHfHGtX zmX7xy7y@w5BVOH?&`!cAuP*hjEp=Xf&E7y&dky4^n_8NP|1o{j-$Y$JVAN+|4WnEe zD6>&8%G9=-BY11ZXTi zO7O1LX&^tWIHLKEx9!K()w*!-KfJNjmsOdl2;tV$BwV#2+`Gr^lpXy$iIu*E(@U4@ z!aaY&zL4!Vku?ja*WXKpgT@}h>9t(K^*v?ZseYyl2meQ(2Ge)WL`4X9wkF|zkivza zo7xC>^bDxn)PSd)wm0K5-?fJmtu~QE=o8<<>ZKp(!d@8!FYYA0XP?Ld%E(;6WxCOw z`ssg_FMa}6++iDfgsXtSLtq^<2#o9Yu*Nw-YT-bB>V5mb5Yu?(rvt`!?dleU5(jE(ZeFN}@y%jD@Fx;l~HGcWxRh9q5+$cSj{M-V6tprTXgfT&pmjIaJBh39g zPQe%-og3A&4!ax$9AeH`ej(Tq!nRS|7#i)T5Ohv^1q7WFXc|MKk>~91uv4@mhDPs{ z$T4IDo7s_O4^aCvxzKmbn3x_g%r#!EfNnc+LT87{VZm)pO(~oHYJq(ac^e{m3 zgy=6;n83o%DR0Wzh?imP1#}`(dZA24N-fJtcc3OR1;nHYjFftp%Sfp&ZGf>w&+;04 zh^1UcN+6aIDRnKEky2NR$B2|BmFxH9O`+u&3{=)c=k{{9`Y==i5*R9ZlQ2T1Rpl~N zdXSPqaUQ6N%qA(0Qq9jh?VVMif{~JmiV-PwqKGk4Dk_(eQf9f)1rRCm%%k=o6?P#} z`)`S6RQt|Dm+g%e|E~cqqoi*sVpPnRHF11JDh4<%dfA?l@Vpq4G)VfKqAIv*zsgJy z43a+6xqeG>t-Qd`9k6#b&nbwJQk=K{Vju0#QU{UognKClRsFJ;#6j|L?IC~Ie_*+^ zJ`MwT9yWl_{?lIJUkGJB~0q@ zsXz`wvUSOhN7!Z)NpZu87n)51O##P%44R?~_o_5$kO;^=QeV+Ug8yGs9lh956Mk`A z`0&4pbiystWj{w>!iyd$9PkuLhwqaj@#FrES?qfgO|wjTSn@5A3EFzdq$35H++m5| z1Q1#2s{znhpmK43BURu|f`8oSHw1*7-w|NHAmay{SlaVP>$I2;eZ$(nFXb2r=Z@3?U-q8n?@{8GkWH zCes9yD0LZpuq+PbT=^&@Xux0sh6=(+*7sXnSM@Hf#a<-8y3sM(gDM`yFfpQw`E;$5--3*Vuj=h+$PdN9(n;*% z^0&hs+xf_k8&{~C2Fsn?O@p1VlWSGfR|oU;QI0HjluC<9(?f%$o8RtvAmhYf_koOf zzWc*J>hlkx9k&1X0cB=2L4A2J|02fGk-bb=!IklO0ii+VzQOWn#*2gH-s~T-j`{3Y z+74aOTF-Vr8|`o_@j3WgENXFEA9RD;`Wq0aZ|kocOt$rXbXDbAr~vzjRdJ4GjF!t) z#>qIxPF8Fo;~Q5Q9SFoVv^Unh&qMjf1jk_3pJ10O3?K9=`&r})V`ZXa9UD!X;NoI9 zKmR>ASvAAFIHLH;Wr=Os zgS0*#@qfS~FH?Um#nGBo(_*}Z35xNYKQMvk{A-ZKwZv)0Pkr!Xy~b--1i%@hTgI-f z8~_-N70-5=0j5agil;4*p<5OaIJDy?44zO>nHvH(-wHf(0d!pa8erl5n>w-+`iVd2 z*lZ^NE^CH&DjjX=$W_>T6pkyN8)dC)vEp%0n^69Jb4MsUMe*Wl=K_Ubl=+Q-V3Y~H zj#nG@%W$k>epbRNu6Ax%!A0D_9LElImQ}8GZl}e#IG9RVqEoyXnk!=(;Tz@?5i1!Jjm&?=WYhbR@4=H;5Gyk$s(Sz#c9YaJ6A_gY5< zbzdiCJj!Z zex8@>UkQ_ucg_foD&@nH^%oeVGY@lCp zE?OT?&X58}TZOgIJm*O>4VIvAt57pq0vdq9+QBhAgo0r?Qg2Z*A7AJ=#X8gKxFy^r zeNmuVqVc?e!y#s3Y=EV1JM5=N%DAbSR-iPm76 zfVivy=05P9yazOS+4L&f07vHv;7{!Gcy+@=nrm|R6Hn$X1GeBoGIkfmfNSB!np_J{ z(+uXsuEFcHCNg)FGKa_J&vkWNSLza8IH&b+Y*cHB!3nX{ct7<^P2L~SpS%Czy{Ef8Xw8o)5tFF7)V)$jUlZj*ZnFIye=u^|*4CZCP^ z`qJIbr)N9#l`FIrtGo!Kl8!V@RuZ{qza(1#KeVl9F{YE&BsJm_ajS&#uJWCs+($Ysddb52L zjMSdB@wY}grkERu!9hfelFQRwLbR^R(|mQZqcsn+=4Yu-+Bn{iTrt`)Rbgi-b|m`S z7)K}e4Fx07vo`0-u@3l})zm_U;BIrO?*{=1TsC9E0A%%0yRL+#MD2?~?bYiF47I!O zc_K3D-PK68D_dCpUXd2Tv8*Yq;*^pwV1JXPj^qh#P<>I9<8xBrzbWzj-dsU^Q zoE1|HsF6ZD-%$zCMy`j$!IBfjo{kU+c(bqbVMw zFajt{a#+|1TH--LPiGAArtrkk$qt1rqiqrEU3Q){)iH?OMN2%e>eo;$GGq1CDY}HM zu;!X+U)Sdz9ivw;sTVuu>NH0#dzLccVWtx07&f)Uj@dEYal4|vDRoye!_kGEplDFa zx9$AQ3DW`%ehG1rhM~|a9s+Z61QyPg+Z>14&nCohqK}W< zydZ%0n&nvHe;vyBu2;1}_7ANE!AlOGRu<4s`Ad)~@{U~^IN)2dqwr+mAF~}+!a$1T z^k+LCHGOCk585IRY4EC71zvFudh~`aiAkp@lVgsfE6a4$JWbNPd&3D%V~3)aIB*az zTH^5MpU-m?u$~kR_C_}cpFST5bfYDrHwfd+B!SKj8NYON$ayk*f#YU%oFwt*0!JB} zNO2(c2@d|~LPuXVftGk+Z!WQq^}zn@9gdOea*4gwBH(Zp#evxGckp)>Ir_8vX^98+ zbcy|55A0_aJI=8eX*AEj2Jw84=IE+IJIvA=LtQWbQ$i zk?Wp5m^;=(t{Y4AJc$eASV+F&r;G4I&vgqB=DLpw+(+OacdlDNNUmFyRbmPbNMNoT z{;yrG8$SU#Icrz4e>ywhJf2&Y|Z1j zcl3wT<_n608~a3aNVuc&temt4La`9AuNN8i-h4zggxL16j#^>CZ8_KYWOu z+#g9%z?MU)I&=so_j%%TGi#IG&(rw~4WXprSoZJ+qkZb64k>=1bvvK7!7s}B^y7{< z6m{tknbe2>jnA`kAI%AJ_Sx>JulPR=!tyQq9Ua(CDmG^Mx8vw4j9l-T<#!H|S^h_y zGlO{iH-Cil7Ce*joN1LoeCN}SKDAg*1K*3($A<9jI~*<9W0V#2i*E@C?ZmA^WR`#P z5SitVebwga-NOyI|FY=RCZ07(P^f+V%zvJL8+kE+72}OXv|7>hm9;bwt)y zk2i+!=bm%qup3k#sK+$HBGuz{UC2LmJyu_Le8}3H1cB93|D@I!{zyf^C>c3~IwfbK?)x)PA1em7AeAX_Y$~WtJrg%X*f^Uga|h9%Lkw|kPFQ&sCpo4D zl5wWlynaa0rqWD~lU8b{NeCr^lN_|El)3&B3^(F+UX!+8z^S%hfS1rV0DUlPKPrPh zn00`c)8gu0Y$;cseO&9?PC5e?fTpEBo@HoDUtUF`v`JwiN}Ckk5Zs;&w$%_OFrE3{ za1o8;24_m1`Nq5KhGiNmz%cPF*tXJ)1_wzOZIu%a{N-qEajHG4v`cX>0-x^;$OVy= z?nH>^3>%QT{?^s?H!mS|Jw6f=t%bYPCR`zx!3IceSqea_y_j|S4@MEVql-5(NMo)3 zu#_ugXiQ&7MY^Oh6J64nH^d4pKgX48GgwY$rbSOHE1Gb|$%=Nj0wG*fgH@|XEr%*hzOX4?7LKwgG;P3C^PKrvrqD;bzmS+&7 z3GSeE7#1mbA-;Gj7vtpT_L|1)-lI8dOyfao9G`{vXdiEk1^MYc<^c6oQ4_J?ALCv& zlPC8OxpE*Lhk!xR!o^9GkKpZ@BzVj4t;vO<^1Zm?W`tz;QSr(G!s0y|r5BC3<2R52 zeg1O+Cr!RSwqlv!GX9%jV~V_G)N4jve~#O$X=(BDHKYHZ7SV9vdQ=N5kJWBYWL_hW zyzP~o&@#Y2`HPkT_QlgOfVGOuEor(-S)tn&C>MPHVcb%|lSOrOX3e9xL*fjVjxxFT z8ARtGB`rtu%Qn#Ud0Zrnd=l4BTw~Z(Cg+D<;?;PS$&LPB+;VZBH=#`KUcAcW?xOJW zYh(Lz+ls=46S&V4n1C$1a~i6fE5TgX-w~TqKCO!JR`FK&_4l|IqOMQ1S_$e|&DOkx z&fH)LKC4*-n*R}3Uc~ZZdRr5V>CBB=f~J4QwGzX4HDZ2{j(;LAA^ccE&vwq`C4?GF z+^8un%|gFfrKQ(V+dM6$` zW1htYS;R3e4oyBk{WmTf0DVFDZ3Rc+3S^ql63h|vm%18x1yVDgsVA}e@S!*UBYU5l%cc_+w* zJ=B}yBc1fMA+OOHd_~0>0{}A5r?67m+${ zWTlQD4Rz2NrK`F+kP4~8M1|Dh4Y5M|Fxx?40+To=xHvT-VR*a1%um8?E(;7wi7gHt z3)ygP*Pj_PiC3b(>hTi11jW-2vDNRd^5=%Um_)3L4gL0bYy5Jvyv>ZGfKIX1>aThn zDUpaKN+hB;q)29>)rK#nn&2d3QN+c%Y+W(iXJRsEjby@?Pv`{OcwRzQ99F`%R9oI( zy{Ed87t@)qWm(CzzP~!bhB6tit1j-ZPOvTJcx0}XHY2jKc0|`)CNCw;9m8^x!F7t;&!uiE^2+0ZMzmV0NRwbRT1TQ11Yto3`9kuRr#N9RUhE7nSteO z)g#VGpG@&ZKS5EFxPzUMc3wyf!%nQ*Ckz$IIKAn2|`0;5QqQ&DL5T{8*c= z0J`>Uiahe|^&&jtc~k+XAH>C4CrI*?+)b3fD7l+BK<)AHcqD}F@yN17$`z3Wy+_#z+sgMSA-#$%n~|6{ z81k3nDJU)0OpxnMv~2dSOa(B@peqakC>2ACzk`PUur0e=r_H~T}heKFnTUoWq zQlpOTzNY0Hs5V*fe`Av+0mkQt5e;l@piu+ca;@e-INtz0MeTviBxswZ`ap^-@OV?{ zaIMKepcgIQ>5ebxJ!)v1n~gmHH;+}c$^)TkV~m59IZ@gO=qe$+=b{Iy1^sdZ)rLyK zQ0(#kydCAV&0o&eNHSQ8H|WsDLF7QSs}feVdoavtZtDguo7;A43kSl3=Cp*vR%@e41!^uZ52c_PMq}AXb>Bc?FNyBNj=TzVsqt4PxS`DwyxMU^*Bk= zQ=GS+UefumIYcKaoE9-AY zgQZKJXl(`8R=UzwfE+PdW`FBTOmH;?fx4*zHiVm*&Dru`k*hyi3fw=t2kRV@rV;A zd;5iJ@GqsoK-6F^u-u($g)qCVOODL$$3alRfnE6{r%dV!8SFJY@9JXQ(bZMeX?rNj z$Xf2!T|H;#SJhOjn}Z3z1b(}@20@`ITl-Il=83bHgqj0w^~FR+ zLM<)&A(}X0uv%LDInh=CI`^*`2J~yn5DWdPB$jYAv%;YW-dfi+&(NEtLV#P$K|idgW;zkwyF^m4xGm0W}lQS-FpgMmH<^3Py31^$O)rR@fK+N;74eTAf=5884= z7~0wfT3QuBv^4QGp*1GHC<{$|zvonG;%kE7yJ$tBd6KQ7FoWebam8Nfh6`jEv8Wi*| zXG|SJ?BPo_-D7Yvko1}*m{^o^@%LCm^)ALq9~R3`uuTuVfnZ1-W-l+k;!TLjFF2Fm z8%&;@XsaAySYjTv5AhjqA2i9owRYTXybzhXf(%a50B;03e` zl7i^(Ihu$)yo7c^u!MF&5Hsz9WWgNy?14jdpUo>NpWOi&ls+4)=sx>P`D@@%m^0s2 zBch-DgZu2xoDn)|Llc?X988Y8lXuInc@=Wpzi|k;l_wHH*3}8cTWI@Q6c~mOx9cUJ z9WqS$>=0gJ`0R?ql+Uiri)nOMz=j^5U1yl`*mwr8MjmAJl1QD_7CnUGf`8N?r1pBYp1GC5W_G ztgDnSQn(#wsS;pK#4{hs`JzOzL}qw|ws0b|pR$P_`$?_Vr%nL!sJ_@`V%F$t>;UR& zQwLC2dqb>{whrgWCNOpNVxy~RSz5!7BFNJoPll>!{cxy?*26jHG^~b7huu#N0rRA=gG0-T1-uD$%xhfO6^WjH$7i{kXfqR4f-{ph!#>x)ptdVf4Z%IUm{j;C z$NH9`LQ0zyR{a}l_y>JMjWVW-$mf`a#UsTfAB^WY#xD(wH2e?=^>r3}{!i!gHy^Bz zIo9U})~xwd#xvY)Jj1<=$5I$9bM%FNl{A(eZZ;s~Q5lelS&sn~oywRrdQ;DgCMPOW z7@BC9g3O9~az4luVkN|63g5kHt7_3k;(FySTf4wq#YB|q3y$A`hHtIv7O_h3$3^J+nS4u988yJu)*XE zTR%Sy@*J?W6u12~=>C20rYmEA4q`&;_)mFEF& zx-u7%nPf9bmomxb@)u>2%|~RNNn)(0OwxATw!v>Ec_4?A_v-Cz`QhZ-wnw5bR|#d3 zuP}%%NXmajF9?2m$JRv*VI)*0>4#|I;1Md5{Ni2PR56V=p-gh}2$e~W9|4wAw$Wm> zPmSfMVwpv5;U$zsVhNqqnR?n*R~+EQluBYTrIHf$l>XhVS#U?G<4x;YlY~ zJZS5ms3i&3)6!N_xR!I89)>@dr6!Jq6m3&Mjc%;hirk}HAh|!!I%I=2i zA`Isxl-;!)HQffcxAx8td%tUw4<5Ie-peu{mT$3@6AO7|5^63NYNbag3VO5f&q#YI zF^jjNkbkMis9FKLQB{;l?B(T@N$liUGe@dS;?@ZH=uHz%p;a;8G7Bu*Y*wI<|EXK| zmpMXW^8!csm4{8zJ>sL+ZM@lxQdoa=WBuI+>k|WOL5m4#03uVN*@TrsbFI9+s$p&F zXOs4+pS>Yg$bZ#VTA0D|&~w~XTP;y>6f;da^vo+VYyR`9t*aRc8Ou<^Sfb>yg*+ow zQt%Y*^40#W(LCuj7aJ!-L#2;|xQ7azTA;<8@uPI}pU7KK;C&UI?6NgciOj4~-1;q} zWl;o3#aLN8gMxnk7w31oFd>o;&RFmvhy(5gonMhnnY!#_jn#tAZXY%m-?XjOJ{$$n zU*jI&8Qy@ne4lZ7*~4Y~Z)~+9440y3DkpjC)!*3q2oppq*m8ogyxYvOjK#&cTVnF& zf-*mJC=M-d+q!G0o)x!ky+puhtl)M-(#aJxIMUy4e?ipft%R`a5y9|pXz4sw|0LkR z9ox&o%5fUuK8q$8?n`D)|JGK^qLm*_A0zc&F$ms>h%E_q?%G`9B~C$dUE1JUe@euJ z1S}Czh4Jd2?Sj^lXk^7dr4&3KxYZ|vqD(3JNXnE_^p(FTrRY04>y!e0KBW`~ezdLd zn^I)|@?<71PQ_ZpSgs4oBt|ia&VNew$;dUZNl-Be>ZNDRXZ1Tf+yt#Xo@ z@K)s&DOOcP6rMbxUXq&f-5jm<3Cbm@m|BiElS?ObRIW>sI%L?5mlD!W9BG_^lnxdm zQraajA*EOqIYFzcp-dF4Ofpfh@`hNU+n=~gU;j9K&plLOrkOvCh%*W6k*55zha#C5F~1 zx(6ny=>F?yH6eUFT7~yI95tDHEeSEqJsL6+s)WO%ga~x)nthwrb&Rs!Sl*IU)p?9z zy%v0q;Tu~$&27Bx$0*}%&s%xaKX!~V-f_H?a3*n_(>*vz`-qdYZ^G%(e$g0)%p(#y zomo}ew$)mVQTnKbl;s3j>OCLKSwkB5oty2VGuE}dkrX8$X)_IAJ@Gzp5-qu^C^|P~ z5M8X4oKuez-56dKm;F#m>^fFW?k~;7+omsy*oTTiyqyfrxWaS!zOA$7M1A^+&C`79 zPxjQO(3}NX3eDZe>Ya!Y{?`RU*2|KX_^p7H5h6APSzl&SEGDVoL#;W-I6)%wy zCbL6ndsmD0$5?e)T%KA8J)%%eS+3q;$SWr?|7zqiXD!kJc5by6=o++M)ib}YZf|c9)^W`EXh0Mkrv^kpUg9t1sxeN5 z{93#sX{;Ke@YrwTag?xHc0uiDxL8wZoEjCCcq>oH?=en={8xA>;f&=tT^^iea@*@j zoD}j+IE`LFiKrJ$5>YRBL#z;6*FIU8!JdR`9%qVrfmdX`u(F=LiXS9D*RwYkYyQtj z>f7u4LGrXd;@{p+raV4-+CkF{AOD>+*eR?jdmnu}rc7#4;J%IyCgr!xEdXtW;7bcoOi%*MzlgC&F+C5-E6zoC_% z0Npy_z>DVfsej8(U^ZC`KRO^U=%G!H>TItbVWcnmdR%GV{%B`=Jz;{-Wvir#qXVII z7j*k=d2Oj!E3fV0b1WR|Vy|e%MB9;}T`{Ee6|0r*v~8GiJH+w?lG6Q;s*~FPd_^IU(yQM?=hK<&I6K0aZ8)Aie!!UO@gJoh? z=~a6z5jcr;D!Djbk@Zx$M0*D_5>mtwLlLwr_6ojCDi1}yjQq)Epq3NWvRDI7hwPxP zgt+a%*!Ai$N$=ZNcng&eOfve`f=|}8v)9wyUE6sQ>7{6U*2=)IN3u4P6mxYa8O+Hw zs>Q64+Ur{2!`y)+`?0{y2!_ie?iGSrW9-GnR^EsyBFZ z`WS^7;_0Lhctz?YUeOQ}&b(@O3SI^j7Q2tbob?(E{JLyY@Dw~*-F)fpQ}TAi_xztkC<$ytX* z^mVA$5`mQxKOF#_rrC!Vr8C_+^KR_#;SF56S&cvRo7ECTH>=x8Ix+Z<=VrBpu$$Gg zERoKKBMG`${VBGUH>(@}2N#Rg-Q7;+8$kF-txH~apt~p?JR(G>|?*Y!`?je^VjU9EMhI=TiwN8BOyH4a^mbR_Rh)rUF_W) z1&*dJ+K$Qe&TW&F9P(IlRhEokDj{FJ<-EDozA;CN8KEv@S6gT=mtVUySzXA+|BVaT zbP=z@8v8x%>0~Id7SsGcxd!MW-fxptAlO)Da=4}?1K!0>&&JI=?5J_t1y7O*v zNkzG)FvH3}Mcv^?!-5BQis3D`j2`&j>>7MaBjXTW96qzxUNXC8_AD6|?z1-$&$!g2 ztw_lf*VbRUJWq9P#XUs3nvr221AjksG?Txki@IEroG7pM6g4Q3m`QmTx3&z<{N|uN zzeTf8frp3eErgTPB<;mW_MPnOtk)E%_?Eqr=*0<>&L(^7tcNZ} zw<&69R?D>S5=(eH$`iYmclH*mIhdBDmP~;c<(-Y-!BKlNb1S6QIc;V0?A#KkL9)o; z%cS1N8TEr9km{SYO*&Q=B#Nh3|H2A8`F%QTmkwxbH38xN7!}y+$^zG4vFY za(^(ZG~`dQmxku0yXO}Y?(y}c>AMobt@9mSqT{-z%QSbUia&Wf(scU8f%QeMsSF)y z`p+pavW2s{p9UFAj@1wa{WYLZ&6p_Uv{!yNWH9y0ZCBr5aC~A9hwJa-#9;ON_N9R@ zBTMjcTW2lN#>AZLpH@?u_vkj2g{4n#U|34{(B3SYJ)||83Natq%ZX;3DD_A`3E@4` zc&Zx04W=sFk2z!CBgXS~IdBjVJs+3!(wE}_5yWrO*2Zr5Hq4p#QCl;%JPwBYAKSmw z-k1t!Ke0Cw8#sCL73;XJ-c-5@ke=3fb-vcjdzGNcd3$zV;Gxl$HWhw9kA6OlQzxYz z_g30UU1_Ph(w<$gpAZ*$yBsJ@J7-`wsqE4!RN2}~_V=~lr-JJ;W@UeHlBB3#xuPu7 z)T19b==`fm;vqL&lZt$L~i|Va#Xt%Hk2{fRt5enwN#$*Twls zS60n0y5)r#pWBy;in8i|kQ`ddL)2z_YYi!w6gKmEKrlSKX8$0tD^h|>XPwnVET<_| zX6Y;&>$~lgGTW5e%qe04*zl$^41#ZDUuW&7!MPju3Zgw{LF%mF2npe%vW*g`^)xjo zFMMg=DrWL#Ij}FZ3aKqiYY5+sO4Ac*_2Dmif#=Jw?X6(t*Y-`?j%iT;8+&cBlanT; zZSz*zA;Z=%z`T-O&$Ve9^t^4aBQ|l0q@xeLb+ke0=yhF31Mb*6iyORIPIPol>F9N{ zjxMgP77VH1*}v6tO@~%b>{eKG*Iq(s)0rKUdY*f$M@(n_{lJ46R@nQ!y-9Yp^!GGa z_5&W=`kRYOS}HAB;ge2ZvT4H1gJ zJY7r*%Qu5rT+tbR#$$eX{M23$>W|464yUfzvz@mG&45FHVQ>uMJdnaFO9(eJZH7v} zUg!#YqpIt$XvW*+L}85$>|9}KGA?%g*M22%AX0+;^;}iOU`~_t)t~DtN$E?@A6mY! z$7a`Yxn`_x;HWEHoERx)wuErS*mc(X&QRm;SyR^rk;dEQL@_H3>|8MrI}~&HGXai+ zf$tzG80B)|xh+nVH1jss%*RSIJJZcldAR~85;}*A{;+!QM2Hm2uEX4 zZkE@u(#p(YQLXwc8dv0to)k{THOMlKHrchKlC$7+w4;0IZ%!ktB`9&W|`BaOM`F~>|r^_aV>ck>?-f5A*OPY2UY@Trx7Xfk>>paWmp9;|xM z)=Jx{bfb;(>T8B#=R(`+>g zqB%9{*p3pyM?tySDwm6#t%3~o>`>m0dUlY6{Kq{zc{cCa*YGdu*?F8e_3Uh}qSV>u zo}G>Y$ex{oaM`mHyd|7Cn|juQFMS3$=!v@^)w@15`y(n(@49BI-nAT zp(8{4W;S%c*Sjz*dG0DKZgakAAm8MC|E#*!E9IiCmQl}KA#gGs-)LR;Il70OOna`+ zhOZkt%82Wn8S43G-g>#J_xu&T=WjG|yeGouF#F7b1GI#~fk^zi+7+|bXcJ&+bH_ui z!5kRT0<-EyoFIkJda@;3+OoV1Pf9!L$f3NvrK3-FBSY;uu&fmltj!5Z%@ph!-oL*{d@V7CgK52g*c|nxcvAzUlaoyq3qB%=+LRobVlAd6 zUu&D^!2Y(5>SC*j6`7}{duwu^N0T@oiiTUI_Ki)Qp=m+_#pDgjzN&O3np+$JsmI0Uws4r zLBdd^QG5;YFK2;_@GmdbX?b4rJNIt+{ewbqqHFeJ@b7bAS~tw*e&;NZ@`}Iar9Aw6 zwKRf9y7CsqIzAHBWu^aOHM$DisfON>wmpzS78-0hb$lRX_H;CnYMcXA3-*W#c;z*` zOR%hEAz0KYzLe3D~%BL_>T z7=RVwz|q2yJ}t^adh***;xE4~Ms2?MlDP%)mm@!V(=3UpLuf0sdVj|kT9vtwdw`>! zs5X}kF6xy^(7l1lmg~S25YBo55JS13Ohst$5Qi1M5R>YVlx z!d+^VWT~~KG>mEOs0kGYJ3bH&-YO^d8%Mac(sRwGdupiT^T0Vs1R@q<44li!k(y?C zt7(~1lbXf2cZ&1Ftwcx7?8ftHb5)KzjZ-HTZITeKqGY8aJSpDVQ3Ep0l?ci_IKr{Y z5_*KS4T7lLGb7>EQI0F(9R`Q)qaAkxuqK>dq7{bDNsd1PF5q7WngAEA1EXG@9p?_Kzpas|Bs#_QQx^tDj?giD$8byq1w? zoMWEg71XC1KOg7VB+ATVCQSD!N-_wRQBJ=sM+X3V!-5HpA)*FDtgce{A(dEtp1QT2 zI?=I4#PB9`VY?+*+TZ}AuV^=&C!b}r!u?5(B;oL>+SjY9d}b{Rier);^8#wk3xbjj zCr1iiN!_Nf&VwiOojt>`ihi47q5M^A9_*dss2@>X{=p5Z7-t4=Q`CTs8)Jhq>r8cY z*2FSih@-DdQ-aC?$LeJ>Kr9s{Jt!B6c{U#b4fZpid8neh-mI1Fk;hT=ih5S%b7ZZI6 zg`I1KCkU3umeNYjhtzovykkBe*>q=3Bvo;+#F-p>MT6d-J00cx(i>BuPYDe*Nf#AS zZ~0*8E=PH-#e7)0%TYr=(tc?hw>iN%i3%wTzS#Bx-QNqlj% z+Px6VJavu6zQpm3NayU40lqO`8Q>edgba{Ar+s+7y7~MTFQ%S4=q=YNB^MbXeL~wX zjRNYz0Ma7COteTaZ-^D%Pj!qDCNK%MR#No{MmKzs5h*KuZFv(8H+eN?!#s60<^^Y) zhUPN~aSu(r8uNixVu8BYTWW!~F&2X-LrlgPy})Dq@_V1SErAu(7okNMZ+<7v*#)QG zSlSRWc1;YyhY8($$vYlqCnCQtXXUPpaYz>;;w5Uj5Ro8%(S?YF1#}@ojF<6^p0A%Y z88*2RhCuH%j!AyPP?5EcxneSBlETn<2GQxJEXYw9Y9SB!20`pbdkAb_=ZF&v7zq`S z{18o?zd!|~^w%A;#RlGl0@6Cw7cwAO()8cQszw#@iwcsG9rFVgEzkoEucHD@(gGD| zu!@Wcq2I=LY_zn4T$;BZzdkkPOT}zAYpc3 zVCLVO9WyK<-$Jb5cGBcCf)*;D5yVT3pcS!D4_ak-IXR7zuzZd?XjNXQf);9C1ucVp zq1Z?KDrorMHhE)5S_rsY|roOixO%t)oFX+evO^?XYqh+62VCryC9(`;EpYt`akPKkW> z-v(cnpWyOx^xyO?7UYc_w`oL?f6gGa~$PF(t9qq(;MnXAmKSUG9EmDsA$D9 zLKmaT-9C}<=Uc4!FUd;?KbFvUPAc;fLX9PE)N}_u3+>XZY2qS1nDI&~m^qO{Icvfy zdNAuFNljb?2j6p4i5MrrJeb9E8R-ssrT1|X=;Zv#SO#COa%DT1xlKt38^=pQXe@_N zRyJBfXn>e&NBQDXuhD6~FwF*ok{YEs>A&E?M zNFr~D6{=rwbP^^oNp#IiqL_=0MWRLus?I$WNTMn!s*kGh5<{ZaDY`^4yqwa5mN4cJ zPq-~z!SbfwPhL{#DFV_WsZ6v;DsPAtPrW-j3lo?^QAJ5q|2l)auO?i~AKay;U zF4+`bVo0{qE!k>bPLeJ6mTY5|lIfErq(zdMXpv;z5GyRX>S!uVV3KT-Su%P=VCG`A zzdjnxLC%y$ELK7H8_qI~$*&~DJtk?U^jC@sw*TV?tNL>TKftmcC#d(4tQw^vn*n%ri3t->Oq~Gcv7t$uPE>FikCSAm1c$1 zrTN0mV8d(Jm*`%@$(zv_i(6uN4Q+@L%HuX747X8GxeXKDytf>^%_M0QwOpe1!E3_l zQ!)jL9ThHnfzk_;ucY*XJ8LF9r576{yOdsRl)osw*tjIC^y2;#&TCQlePXT!1uo>pB>6{&O@uB*!Q7rp1@WbN5a%T-h%eQHI4@B_e5nfJ z$i?NK9OFf6UW2eU*RjU(62gil{r-t>9>NOjWV;t9;IGAR*=@PjiJ?ZH&_(#d>zgozmWq_FcX^1;Wk-2{B{6wd@4{Gv!n%QD#a6p!%bTZW>z zO_m%~&@zKEPIEThz-bN={`wC`vx2^aVbfVhNi#_bDJCY!UvB)pxFe48qwI!8)MH&sMrMKXJYIQv@62;{SMY3pOFi59%Qd@abUp3F3+hdPUz!9@SP zQ0FAkowxT(-wH?aJ3lkGr&se5hUaT82JrS-&>t1%Y+!Croqo;ebV>x@U#b$pgG*J` zwI7{Qv$z2wjguh%xl%&h{*w~H1F0$zJjCnL$laf6xFhYIRF5O1WtZKlYT0E6ZzeN9 zDEDD^oq}P)1~O@RSkp0L2)ijOeMvOc~K1@)u=9f23xW5nU?kT<0evI#A5H zPlPSU_HIv08IfQRoo>q7oM%K)FuJBQH@@Q-Uj(3pGeMMLbX0EShjL=+<dW;Pw{PHM@-Ir^B~-_rs$uX#|Ffp(;?uN)xhbVpgLo}U zUHTcdDD9cXYY+>Qk+fXVSz?TK2h zr#-xqN_+AwS7{Gc(bJwY@>kSy_@%6~WkhND2TyzQab9Rq1Rrwf1?S5-dx;CYj0Q8k z=5UpRESIl2OfWZ)XJz2jTXnK|Ba9Lz-AG17JM)T9I9W=TAlex(9&)h3fj}W6-&t9CGrx&iY0EW zv;v%k?#bDuuh5+xucVyaT$Ej|0Am&1*{zYJ(s7_PbG{U@UV^!^Tfp^7&W_$v*}(ZD z7ea5TZ0BHdAsbezw^V!^&|4};{WYMsR7?%X=gjx!?RDOm+}rOho&Cin4kq4SYvpu^ z>l{qHU0SK!o2h{psQ~5POr&t>seyX3mum+VN4^aQ0C|qTBt7yRf6HIwIsV3uFY2mb zj^GB}dMtCCq%^UI?akapr~e zw$3lM@(*sqf-^$v6gN9Mk6XlW4ySF5N1dJ7+{Q4p zmR}6zc*!nzcX4hEO=e*I=;Fk#&cR|fgUh3f&7ft)nfbKWRzdA<&O%!9DsX>FH)67^ zN}}o8_9jxasIi`7qp-V9LdZ0+k1*`kgJZGI8R8(XNRzmINKwwj_wf?7&hQnU$GY3y zSs~yf>=s(tILj+hLjM6a_pEGO!7hH%vn(Wi7Emw%y9a1d-r!&V6flxB);E0VUW&n& zWcKxRRt@+WQQ+~msFJHK`WxG7VBYs(;~r<@>HnDxnlG9-p!uRV#0pz_Im??>M3bi7 ztJEZE-6}OJ0hCNmk}9u8?YoC8_D9zc31Hpvffln`WkGFuRmy@|<4gWdeh@!)wMvBs z;Si9iP;*%!BCSz}YJ}EJhZ3O%sxi%#qE{PS$p!OioD^9}vKL$RV7J}5Fksbcy}#3V z3t|ram6^G8VvhB>Jln-=HdJ-lQjW>!eG?e1t_r;Su`?KcaXQNc97QhZaN}{_mbiG! zn~M*!!9`-cv!gIEAp6v^m}xNC&>+n=O(T!eNbY7>7gI3!NAgX<;F;z0dj&Pa9_SE?vo=lQ^JM=e2U3$f=O4p3NaN2xmwL z`36)Yx$3baoF@eEisY(SrYTpwl9!OHJ{8+7AAC8|Swq{M2K)Z%RaNZeb;wii#MT~9 zor#^`@zkh5^3;W=$VQ~RJZjV;B}o7FSVRcNMil9Q)u(CdfYoJQOvEm5VqX!ly4sL5 zbtc#k8FePuS1`{JEA7`bbtd?CA6id1trrF@I%MUK7I}RWE%N%_5Gy!eb+!^FFnRq{ zq><6PHJ&r1{m7|l%IUuZs6F=}rJk)RA*^RV(7J%~`rUY4a%r6)syFxgmN+>5inAOf z<*^i$nj_EOPFB(^v%7=M`z66gUKx zr0u}4zS0u~PDelL$3Z}( z!@g=247a8_%WI!u;WTGuan*S0!7g^Sp|xiSz72I9I48+q-R$0!1|j(dnkl z%YL9}HOIMGv|u<@Q1C+~vH2RnuW^)yd9UI8tQT)W@u2$}6%V?gpz`1sejl(1oSKVk z4kLZ)4pVh4U7&jc4w9C5ve%jgNs1q>*68trS5on#;u;k{u!ilo0YQ zsAoD7_2y#dT&?0?P&36@MqJ_zD0-Y`4ZY2U4ZMJw?k!|!<= za_D!kwI_N!!k(3{Hmq9%yH`1D7TPDP^BD@#GIG509GQE_=7W~2ofWh^cwm1S4%vKb z5rf-q$y?y3D3YA|{gpy%J@m??I;;7mM^4>Dik!MP1b0kOT(p|eF_x(MYj0rn_RgTB(BYyD_0^K_miD{@b2JRwXJBP zMQSlYNdAL<83lkNR-vpsS)MOnE zA`3pRl;FfWH#5ryYwxd7=b7+gWddd=`_VPXDe@Z58hNzU65{q~lm|ch-+%&;bh!KQ zfJ5u_LxD$lGxAIaPzxT9Fa1_d42M0U?CkK@vAx?LQXCIu5S@V>U&LAerZXHi?C)9v-rD7CE+QET71sR_O)T@e zn(M9J?HnfR^CmK^TVBHZw=zWIMI5aLK5;5T`>j3B{P5`>XMNGtr+!DHz6BrjnCI+a z&4MaL_Oh?*k)2mkkv;G06xmB*6+N;~k-y}h^HwF+3B?bW6a>rLUCT$5k#HX5gC)SN z?pafM*UG%I-#Nr0W^uTT?K!!>B;3+zjE25atb zu!Q9g3of+G!>@k)c;)L*y9fp;?JzDSzR3{Lmre@$)ZeC*9JaPiIBssBl54L_x|;`* zwiXEXt(>YVr?zVrUev^-J~|OQoZi=_Bz$uOS1itYQ;#sH>w$$M0ZM0X@%B7!DLQ*7`i4@7@4Y5M=Q_fzY z9E^EcLoE_copQDn^Ee;!436M60a03E)@jU=(r}^z<$t}gjWciEYV)FW|;$qv2&gp*QV#ue?n_?xGo8sa! z2GQx}cq2Tl#9O)H)U5{v;P}pN#i7n+oS7!q!wb7@zQND=ZDtfznDoO#;->W~Og_Er z{7@X_O=$Lec)gnaW}q5mh@AeJv#+?stF^j@JJDDwH@d&!1+-^;9?{=(6oGF)$Bl{m zyqGqQv6wcF5k1{Xx^opLJwY2#LGCC=Tv#?J{DpW4;l~of-|7p*AH|F5AdUr|yyuSc zZV_5sciKf`UX^In*J-rpB}4;Dmfvvp5xsc{p|5X7k2~sk8vOg^J1bg+)U&2yKz={TFT`TTX|KYk*?D?$V-R@mXMkfO1mP(DPBx8 z(#p`<4NbSF1OU`(IC3PbKFSD}ba zvKr5DQn-oGG6ubA{~KqS7B7}`8K2En@D^ZKjIlc{zE<`q5~ zCJCrPb-hcI_4)b*5~2ucB193=8)AjFKcab=z~nt6Hmdc65*yWeLZf^5HJb69F%oHv zF47oYLLz0vxkx``Es}mr z9tn|1CPE~VH^d4P9ywbI6PQFg=_S(a$GC=CG@aQeiBu?E*I zV@r?SHAq)c*-tO!S78|mkw_*&B$7A83d?`RQ{E;pi4>OZvAZ$9Ij@VMoF|fIpf1fo zUSdcy)h*3*UQW^^b7>Z2EsdUMA|aB-M2MvEhFIaVKX5_G1SVM0C!&=th-g_I8b;(pxYG%**D*U8IoLI|Z< z7342Uvnp)zlV&|R(Qhd1D~jLhnLqztewgvXImGV)#zooRC%}h`^?2Y~a4!^Q2v?oe z$6O#;3A~b81*wN< zaDTiQR?!oMkK`};CnX9nZT`LDkT=Q|9??Y>@Fbz31h_i~lY|JU^+lzEu=Pi~U7Y7- zblIwbck_>V6?&nUK5@^nB7TbVsOwgF;$n-)7G$w^yUJqy9+zu?eITDw>lETj z@oTXw{tJs8z35&MNXqXDf{VpmHQ=Cd?GVqoY-G28Gl(u$%703Jgb3Y?h~51$>tU|} zRzE}&#b$Zb|5H(p*CvxKvssyJ$<54UoA^{~uvwXG2VO!ZizSB1_Tj~3vRF(ei}=Z8 zv*3=^sq|G> zGSjEBHgCRwS24_#W5pI^rl?x-tea&MvePZ{7uo3+)LPLjj&(lO?R0NZ*HpiD`X4yB zf^fE&>zsIpOGAcvj6rlk{tJg%5RUHbRuWE>aJ3fa842Z3{SZw&huVAIyA*6Ji4OH! z-h{048{Im;`iI!ng+mStphl)@kL%WSv+{)`|GZIe7#YegM7lVqJoyqmYOS%#H&trb%^6J%5q z8AN9w$3{gTL<);`ImIG|UD=Z#dWj3SD0|9Z(Ul_7c@wgyH?}Bmw`PlakJ44il_ZY( zR6ES7$+sx8phRYovPE}Vypl4Dv0Ic`U=`ggzL&pJwm_MxXci0QAKWa)aYkqYPM>4? zg@b8_q1U)<&%fOY&8t5*aE~LW`#HI`B3tf3L<^Pw$~t6Es9st;ExA=Ko<{Jxlr0zE z%4Rba@ws7n2;h5E1fELOifmOoZQ;Bb?X>0Js#4s4x2P2N?=5nQqNlhf9x27;nqs_> zBTkUW$=3VHUu5h3w)#nN>8ZQ2bzBqtnE0(aXyVD7O)~Kb45HIbnV-XaV&boY2jl2n&`0HDhi35r(R}CYZ_39`xeX1QYRkOmya~*q# zPkpMLGgT`B|2A?Jfd`FTG2%y`y5Fg~763~gR}X6zywjjryj34GypkF;W45Z~6szci zrtmiWCI3{(>49bUtgx{uCZ`Kz6+VDof%F%A{MN7}sA$oeQ?)LbhFKKUWgVEc1mlH>Qa2@8j-ZOBaYh)gYBIe6G5JC|%M*gCR z8M7m+h$$Sd5q=`(Nr!8;aLV>>PfHOqjzM&~DYLU5F=s7xwS^d$D^`qPh*hxkLn?9j z4izlx#k&T(<#!4z~k1gru1SSG<(^# zPJ%tr3aZ4os(UJ)h;diU*Tw~UMdhR5*EX(jn7*xdVG;i(D#LAIL||@Pce^WXU2S0W zMq6Hr6_DD~CE%Y(d_!193vjh_6$Ke8U`IQ|wtqorAvoVosZ9DMXwu$|XhC~d0eIfY z)c|I6bfrMw4p=|+c3e@I*1?reaz^#7;jP-Bj4KD`IIy0t5ba7Wb)&;AUjF{0>5($L@ajp`? zirYuP^f=W{x(E0o&h?orroqn*2GvLDh#VPmMY#S>gwWt`Ab-)|Z?H3~!GB_+Ypnml zpBJW0awUsciNxJM`C%iM=RV~6L|KJ0^180N=K7B~^6bIAj|4;P0c%~~aoPL};VLuJYo_xMhk;_8{j&!`%i=l;ywlINgo zukbECy|C^=+HQNJ^rGM{hC6bX%Fqxur5A{n@?2lEl=n5tT6^w$|(>l z<&gM4CZxRr9LOEzeJ&q7HjZZ~!y|JFY=3!2&k|;#jU?a)t_w;6zT2sifGayy67VUC z=Sc!gT}OU^+Yjq9@&nr>tK^} z3HzSj(c_iWaDQu;8tzy{AMTZRT=EMCcXM~13eId7|Y~(h1n$BkP zm0i?h4}BS^8plb)JcdJPn75J;8s?}~Im{vH!cyLpRrlDfth&{1W!25GrpKyHoRU>@H8Bp!s<%qyWYyc`FS6=wyZu-- z?RPeL-8JREUW>;oJ1ybjxA<+jK5w|*6DPT}YH%=!&VEjoO$~aLH@NKLBEzl^69)09 zYquIE6*gj2yvr(p8Yb9v@+qjBs5v=IlF~5&Nl16q70-O?{^?bB`X)@fMs0Gn7lrpA zIk(*s-mpC$ylPxAY>YKEuF%ZXxMG#mxH__1A6K%ZHXhqDVKRxgpkXo&-;(y6 z0GW+CkgjjKfgXuMuPxgR( zry}jI!nq51^r;_GKZ8n%>e#3{RNd#gD<1H+9$pF?yy)*x|AehtS!)!A)cvj#;vb(@ z2{)<-3#?>x!+{Lf4?^rkh}-^T{}%GWoDVOcO1(vH${(!#gi3vm)<(xhk%I^n3(A%z; z#13x+0f+!@bqTC$Zb9$)7zUu9uHy26e4-_@!wFYj{OpzqE80$k(NqtirlzE2I@)lQ zIU9H9UO;y%=U&$&R*Ftv$X^tlzSv9A$?v`#IuzQMD|6D7>Sq@A^rUN^c+5Ga0CS%~ zbPiHhWq$%j$96iG!H3r3|K}}`OC5ox_;ed_GtNM1s7rHh}qoZ4&qp!zviUonpt(^P3THuMCZRMfcKtZTIolFz&B zg?q{Bq$Ax~BYO2M9d9~4wKw;{;0vzmVwVqz?VQA6gT#W1u3ClskWkYzZwgUBuLqR+ z)KyJ8zYjWoik{-453Nr)t?LG@(U)9x{L-R>dL~+T#PN_FQ}2)c z3VVOuen|fcd;bkyhiI+gw6+_xKD=q_eS=oW*REM+TJ%cpv9DeA#R-mHzLKjUa~;2N zH8nS&AYxdtj(Y@eJZmmy3gNe0eUl3rXJMU<#Gj_rs9euKwl* zl4OWMG6eoP;A#P}%bEm7FsM2!Y+?kHuvXeI-CFt@)@H4BTE%tnOUH&eyp1q69g$-qU_W+`3RhL0@x;ehYnz7+tAT0UrL4Jt+ z!PQ5!VuDXw@r&qE!*Ucp&@(*ZhDE8G5kdbyTpbnW2Ie zR?&miLiwvh20Z@BRWqWk{DTLp+MEvzRuS-ap^h<-a4e{mxPg;gG-O~|~!mCrlOnDL)iZM*~_PcCC_V!f%B71w9rM(3`#+@kNOVbx0yJm<2 z2e7@#-a;5er<<}QhuP8X?;aF|g#WqviP8+aGBrQ+5+e?Hn_3;-j!doQ0cC2{4yeQ^ z3p|tsc+y6Q$m$UnHP<>icc+1dzRMz%IgLde!o zB!9LxA2}miTgcmzt<61P*c#qI?tal#PfIwUOl{TyWopxSD>Aj@17vEJVX*wFtF<;5 zD|#$#0IzLW8W)MNOO|$CHX%#9Ab*jiT|iOr6sMo-`Q@Ma-3tBU8J^7fffFas_AP_x zbaS#5N_qIGp!kB|ckq!4?kVa<71Fdel^qcts z2Whcqb$omiQO>7k8FNiqzR7|hndBdCljN0@Nq()HBv#Q)GFFoN;{g1k#aE8_O@g^e z-eQtw)((gtZV|mXe>vU%bSt))=*iL2a?fxMA(I~}A!PEXTVuIr-a&o2X8~^^mwPO) zN!97k)~vwiK;&vq>_J-XvCNcZ`u*amyrndDeA}G5hwc{-JxIP4zbi>Fx^ipcm!de= z72}g^{hY*4wtimzB3nO?o$lY(yNATT=HpdA6W?h)2!pV&_(IS&EIvY% z^=Vn!yJfsXH1?@g-&~7^L>6q)ka&tFLMxiQk{S{>4=OK>RrDb-M3Q@Y5Y7~euNU#F z1oI*B4c8A%U)vXsZ;US(awaL&++QTVmKe{$lxmJV1dXln?fo^d#@7||{WWM_G=90c z0p_Ni;ntO~?7UNt{p^I3#o}{|L{5xG-F6P4QMW}xXw+e+8>8;@A$`=n&s)%_JE?jn zJDAzi8CuIh@s~OD!Gm?|5pLGV#Ymq-^iDa2k507(}O=!6veUit zz{7?(LaIf@Hx)G*9W@;NP)@9YI+JJn^OcR?BiisLl+d(7q2(>8p1gz(?PCcZ+HWHI z@e(?(k0o?ozZw4TdHg+@S0mIDbkqxY38BUkLY>A-2sM_tQPW-WDi!1ViT%79q28^d zeutM3YAhkt=XeRB#u7Jb+CG8G@$up=uSTeE>!|<7O9(ZV5b9h(DQfxsgTm0MQ+x?1*9d*V z@e-j+xiywP|m6S7@v=6;g!C(mXuXfrd#b*PpQtlq^O{GHnr&66g>u7%4~j zy5hDvJiej-Xl=@R87Qw&cnp-u>q(%@T`vQr?Rps~6V}T>8B5VHP)4tpf#LwdB2a7q znH4A|IWbVEwzA{{i;9bq?*(xTls)1X2FjlGIR(nK)?NeU(>4$&7pa&SC}&BF;+y9{ z8QvXY1m?@aJh`1Mk=-RMWO#UCnsR472@juikj3Qp`O;;0JcV&*g-2vIuwv;lJSx#1 z5gwLed};-lyz9~qj1EA-=m5$%iR2(0P9pc$tMH&eGCWSKm*D{*Dm(@XR`=KQDM=6> zcSJJ{k5g1D7#jAUM@^oIlCnUZV6aj-}Svm=pPt#?v3{2;ZdfBRLOVeerETU)_Ec4T4 zuuM*u!SX6VW(A8$Pz)BTJ0c(kOQs->!E#yr!eF@!Ug3RT*Q&40TSezTec@A0PpFs} zEPs*~#Wyd-oMKj4+NWO-zZ#%N@b~-M>au_hK-cZ~_&~E4o+i`l{w$#>MZwFlpaf7Iu|a-fIq%{D0ara;oYA3~JO=-;iVV1Y#@9mFp{kk2J8 zU30xK?`XG$M)`|&>gbP%(!|5a@!a;BPyX~YyA5s_y9#LccyWu?d16vy)|WPmEt(Yo z`K7`sG1)N6@Rbub$FgCb7+Tj2{G`j4X-2?3TF5|KZuV$d=Hdfw!K^c7xNacK>2qld zhR-a~g5d)e!|;hK*&&3V8f4pN{R9Stk3fA!(Qvc&kuX;RH#TeEY>=C^4jbfSP^&h` z^3YWj6|ai0j&uJ8S;u*hc8l<|{OC#fx zkWVaokc~dP!OtxD6G`6+-oh=8TGcgRfJL4r21b$Rdz2(@J(o$6__n)Qd|^#nGi^Gk zL0s}x*+`rR6<$%axD}3|67qc2aJ zlN84~QA(((c6?nclMQ-r%+gfH(YA!JX+l!;b9F)7dLv&n+E$;nrnJzdW8QN4@Jl?o z92-vi@aO@sCcg~3ToabK>^SC~c<3bB{T$oh8u)$Y-<6t3ZY1YD|0Stb41Z&|%NwwJq z+Kj;}Fg{+C)X9!GNvFhtSiI(~Tt(jI4^Z=_X%XHxx z>O{g6nK)n26hs^Z=Zj~8G|m^##V?#Mo^Q-)zPK>aHr;EDTN$ zXQoYOX@t5oz88KeU!n17{nGao4?SRq@_=p119G5)9`LpFfEY%BnkuqFmsi z`1SQBzI3jwM$}j0Kh*5Ys32hWs_8}Ev{ki~d`#Mv+Bza)M<}Ule1JRW+2UEg&Cuoc z8Mr5l;R~u-eU^UGq$X>0KvQo-f4m7^!*6TKC`FEoiM#Fl=XNoXWdc85bpagx{!YYA zPh4ONw*2D_TsFHGkiBk2Ruz5K$diJ=y~LP@l;$H5;Cgv_*MBSBfS)LF=@I>@WLo zF?&IjVGs3v91{b>A56{2*YJliz#RSIm2AvMQ|418bGI-254`o&wpYwrz?GrTM{p#; zDI>9dG6SNzHh*NRXKu#IyxLpjzPap{EGNQ(CR5zv5{RZqVlzCj9wU{P9}|fA9<1 z(-y%m{Jd10dcSE%??{%!bEB~|<_@GktpH}uaI@14cB+13*8;llUTJrck0 zHDKR}*Bap~mqv-#(BNBkMvC`*;HyKriRY2=iRu@`!*TeC<$Ceh6h3|Rov6LuEdKl| z>U*(FxN4eja=sKS!pbiS39v-wy!eHc3FpL3DqhGI6?YtXRkBH(nKAJ~-WeaQ~B6&f#;gQ@TbKTATr8c1T|F+yI0IbD!RfeD=_&Z*RmA0A(* zF<&{UQF|7>)l-Csts;>m@M@{;3-BqE8x_^Mf0=$i&8AxlU;*YaC|R{{4C+`B-5gmN z1%{;35tzD%cKB=Cbk-spr$kRqEriT-eTEKsDS2@_Yc59l2o%bX_Ff%p1>yL?Uy|DM zZ@;xwXRa*X1GdViS?-?<3g~Dj%}Q-^2j+gelCY|GNxt9)loM|H&bHet_1AMxecc{g zTmIEXTYesyZd=M;BeLVC8=|I)7P|PO!^4Lb`2BtbDp(h7g>ObIsa2jWrX<8{q%GLW zGi&v0%Fitxkej8OTg2cX${O5dKmmtWb$pU1b-c_+ykjk#u5Gr(ShbB?c@pnCQ2d)1 z);o%)@`Gjbw$k zxq}ki6{f?MtORYrw!#xGNmxbFK{>Z2G`W0S2qiR z3;O6=#d7Ht6D`)rKI z?6sZMhHvA~_S)*OktQL*WR_uqTmxybSGVz_ZF*GKo^Is>Y&~Lm%yC;WL8N>x%(v>0 zZBj6Bb3a%VPyuSI3RMngL#PP2UwBirP*V;hLv(JF<{VsD*ZJZDwpMHvC4fsDw9{v_ z84bH?8((lx>~(2Rp7jqew0G;@;^d*rY;~7TFA$Jrf|Z@d`tpZ|Z5Msc09&3Krx)Sd zOX`vA9F;;ui{%ti{WYn2>r+T6m%b}dlo$NT)*=^b$EZ2BjqfPeFOnUjEK${uMGIB+ zQDZdPA*JfH(s~!hwv))gLW7dGisfcKgcA90$KbRa%C4{xk4gsc+9z!HeQE$pp|Av2 zi!#T|lCWJa$}zJvfl?#zQqwX{o4ez-9QQvvAXu>WQHxZ|C-r{Ysb-^6J2v!x(@m zd2}A!D}dWB*mnA)fh7EPE4?!Nn#z>4!sWD3J8Y455cwkUlC4KBm2X`GifLP_O9X=- zY840B8nu5&v{3DTqJ&?)orhkwJ!Y3FN}k>HqCwrHnyJyq}6uCUjsWOyE#N?KrSVtG85=V_HQfXCf~ zy0Arrusn+N!YXB91`oY&JIFqz(0Bm3Izt{ouLKBDCeW1W4Om7tuq_6dQAu|y8`v?R zB8qLU(H<1A1@>Z_yqk565`!Ay`%_J&6z1=3wFntGoB(Q`+d&w8a^GRsL>} zg{d9zvS306e~`ah0*_4AD?~09-FP{@L+}>=H9q|koB5^Nl{rY*RF`C*4#ntH;jrD>)&1YDW|0$G~=<_!*)rY6E-W_c_1RxVej7+vm{ z-tMLxvGAkNPU4|>vR6>F;I3E1ns|*vQ%mG%Yurw_v<}o_SyhUGDYo)XBgIvt6JaJQNYf5Kw!iK@X;c60`?NLywy@7GLEs zdLtFQ2R?TL zCW*t|=3~~83T|v`deCM}3LSTeZA~{`EL^W-#=@ncex!D8A{bm{D1Uz-ToJXS95Hss z&=!o{QKAK77yQPE-37Z;>@K1h7`yX!8L_J^-^FA9=~Z28y-UXJZ1}(UK2ugU$``}-7HLs@=f0Esu!SvC7v3@bdO<$Er0!tP33VC3UihUv16`Wm{SdYrWN`2*c;Ktcl>=1T$lqdi%z>T}68Uz^kf4AvB(Ci;LLxMu;D{m7RQv+0YNhp>QP0Ex zXb4<4ji|Ifm9?U>;yS+ID_wKB-ITg3ZsORS(nqK6OIy&Xdx;iwYS5+O)MIxmryfT! zgi~8ymO4DLpi6}I+HUF7O?RVDTSkaJb^kTggee|08zOp}X}v(NqPC>F_^+xhF^P(9 zP1Qw2M7Q27NTXYC5x>x_x9rZztn3sfNcIaM zEIrx_tCTCCN%43~QoKHbSMt#VG)VTskNMj^dUd(}eFzG4+Qa!5VeMM6Lf?aw)Zw+@ z@8x_HLwm%0VF~8zf^~R?*w3ddi>JLfX8<0~89*MVyORle5B35D!|ABGBHx|%Ao=Em zyp#4KdBAg%$0;d?(Hrr1O~oGtl<{|9H;KP%La!Kq3k6TW`neXw-xbkJ^X>*>@RPys~YN!y}$i;OyLd z51E~l_Q*`O@OwEsH-Z0)*|~uUP0Y@9_sH3~{2nw5=W=^|km9%@6NUiExS91$`QHhdzCvgT9-UrGQuh6#IiL0g9zP zP=Ha1H|(TW)aw4g2X)fpSbf@!6+pFlY*kns;bh+82U&^x`yM{4vtBLCUqGXVeC75I zxL^^pCzn``WgbyUdReU>e64zZe|Rlrk{-?mWaHO|@EdIKb9B+Gc;$yxKPG-y_2bzR z&cnLuqnW80i-DpgKYX@5=m#0F0Y8X}poZF#GJLB3Z4v&@760PwT`DRn|83Dil)qbB z|AVam-auhdjo*@C?KFlZO1~}eev|TgYqpjmVL1@IRafX9WqX^*CTfE2QD_wBwud;i zcuH?rm;3A`PJ=Z;`Dlw#6J%;OYJ!UGRW(5+C>quTh3_T#vCLjs69h4Ym0?kacc>4& zniw?er`Khs7Bt5*GUVIFkg>ML6cCs@X+#oRVD9WI#Kqj%PyE8%*>A7+-1*E)+H4%w z!H?gz=`-0FI&e&zBT0+mo0kI#2>iqB4MJ0f|zI4pmElA1O^tmzlH$L*#;J!H5MtV!GTl80O4BC?KZGhv3MP zFn^iYKtxs!q7Sq_bTY8+* zoN6e^6aj}~r$ZTT3? zp6J5x1#pRbPMswE!_rHjWV1|rCSq&pU3I7n5jjiTkQ`u+^fcLG1Z!a2~#bNWHN9} zwcUiMm}g1-l`0U+3Vl{^g(V-%?A>Z<&SEr>~ zVcc)6xYC|CuHQI6Pnn{ZVT**|sEN7zNHN)b(hLB?^XA%ezf@29AT*pmUkI!8n45R} zdEcpepf>q6K6t9W$oe7p;P$`D#(zfj7RUclCmB|I1?4 z*)~rED^TWNg;ptL#=zU{l>(S%$yNJs|5Sd`YZlevBbS?ARFblCpDIOrLm$h|nfQv= z=NiOSxjLo66MH#}q(7LZzpb&Go~Y3Vs;WYysJ=^9b*jRv%+h=P@7?RI&sRtCNxf5w z^0bon{QT}LJvhijn?HClx(}}q-=R?8u;H%cp`#b4JOlk%{v2P-190Vps8N<*c(FNp zyl?b=QP~+>rN;|lhUjXt4BanO8p&hUm8x9Q#7pHg10#$ly0(Y$=(&2+qH~E-ln;W! zRgl6D6{Mm`1Zj;p5Fw=!{K*PZ(L#b$^raww7*M{H$AAb0q$_y(e7&u;%YG>Bi@#Ev zU#bYDM4k4F?3cjxXX8s+t3-tAyU$jTg0H*@Tfgnu zRtUs?YI4W)j7Q;`<-H=)*dJ+|1qSrehcn_^V8_>`meK%VxV9_m%#WAAzD2?egQ0uDHf93Woh7Wn)M{mme%SoMt1$}{%9tUSd? z8s4u3Z+F(-#0ubi$D0~FuKiq(ip?1v#+dtMvS;wf+X#EfH2OsMb7$qs^kGDV3o3a^{qR?ot0Cd+x23Fx| zA7m8sg8as(dNcNpC$iuc`BCM^zF1deAQzM~*v|*#+um=a>ANlLswYBW z13@M3pM`{92NmY=-+&E%ga7ULzKEUpbP+S*pl|h|7N#AfE-XGlU=S{zg&-=L$Rryg zJIv#gE8g|{kQaN3P$$1fhlWUh?|PU2D* z5@*G&dK^)Fv=qg4kPq3a*Ee&(?1LY+m~WyCv7!OOtJ~n<-7J!*$~1St@H)y3h3I^9Y!$YFHe(80caU3lz`(O1EPa24AMdu1P6C&h~W3P>yiA)PCdv>1Q(9R@JmY7e(@iMe{Gk(Q+s-lui34?5cHgISAH1% zz5XrpJw)OMGf1gD`VuREOFulcM?Y;Xa!C2%^MhP`dE~9mH+_joVx&xe{|A}o?A4cP z35R(3ANA5fH3)Ad(PU?$bZEwsp%?;}BoC9}eOvHThhs zp|w~kVO5?~(;?q>kW+kEw%BX)Y7=Y`WO7oGMbm{^iMJ?I&N>1Fi5(DImW`rfi~X_X zCCP6@i%2N6{b6)&j)BB-$73~y&xBB6RCwp5S~Byr?vl@htUs(@wrKp2d?p0`HJ%9> zo*5m$U;0Tu6Y{|U zv3yF_D)uiJvRK7Fp)g`SX8Dth%=fT3q$riObhMw=JLPsr_YUz(f9d5sq!L3ade~z~ zx6MPsirp^{$%jEM&8Z&1H=fn6Y4s1wC1pc_?%p+E?yh@S=I&PTuXyqUa`%I(u;{&T zUT>UR@oOIDn=ioLxhCa?X{(o~_z8#k$gqCREQe(&{ho_@IvYySjJ4^@v>6lg(8IiM zCOj-)LcqneVZ51#rSWD{Y+OuFS0i7X-Eb`nr_A^C9bkqwF*6fWQ8v&aS%Y$$Lo7Eq z7EnX{hyrTMVqv!^te>_lkZv@krX^I?P`Sv8sANo12h(fymU)H&MH$Byc#GE#KgzcN*@vLFrC1f zXM<>BK#1~=^!U4aq=og(2G`RJ$Aj+cz1iq&V8abCEa%8U<{fkFZ&*``9^oSv^oV5? zNZvzaf>lIy;Xf`%alZVaULdNdV1<_vE5$GIUv(KF$RxemBP=Sv=%88d3Na^t@KAq= zeI!8KVUGdQ=uwF()~}Ah!Q2PqO0#veAA{qIBQh;)K7vQDLCF2x0`QP5h`>j_*uErx z_DIi7IfL6fg0+ue0BY?Jb`EOH@KlvwsEp*-M8R<5inZV2BrECWdf#QYnbGz$xR4BV*FH z`PoZY*j~yPPd*H)>PCd(%C)J}-(H8E_!ms|Itz-K9ui>x)53nCSTKn+aL1wF~bz}`FgB>nc2P*)< zeaessMxo^?PsZU9>9;Dy8(H$n+XB!=GhX?(Qc+@ z)cb-6dsCM0XX4(1GBW|9-P%Rk8=9L@?;J)52R0&HVqff;s7-}e2)_gO-6J4ThZWac1Da-0p8N~imtNpWlDM7)#etDX^J=o#~)Fg?zdiWss ztH{K9_Tjhz<()$}`=rOj+UskY?Ps|Qg@3blp-Tgr2k>fT?E9_LVBqt*wJpzP(1GJN z=k=duhFA#y!Zyd8mt)G=bMxpbNcf7D`ZJFyZ-=MGC`;Vyd?;Gzx@_Xl@`23pKg-Qd zbOrk;mQL}oJmh|xF1cBNpfukaEO6^F7VIrv3vf83c`(0S$=;Bkw>T>Cm9xeK^2pD} z6z2Dy*o*TKJ?$a9_vd3Gv2?XP}3_5Cpc zd|nfKu7`2zXTHM6QJS5iVxUr=dMfp}8u3p`scC)fDJQU~fyjsVk_ce!q!TXBPRVPTg9M;uyEAxfj?G^Z? zeb)o|w(9nt73FRH7Bs$1IF?#K1H@F#l26+gc1 z{Q`M&!r908rg|^~&!#e=BER%h-CVW>I{YzaQk#tcUq~!4#17Fu#{MJ*6iAh==)OoXNht z;M;A(c;jy%aix@R8Nd&bQ}#fI_k6 zA+P+VUw>s*Afby-9cf37%ZG_B(;j^I6ncz@Tkq3ueB1}R#p6Df1JbXWibw9eh@GJ&Q03B@cu{N#<77#2vKDN9L&^i9l{$6 z3@n*zB7R}XT$2-6G8djA?)UL=Y4jT0p?`N=I#}vgZHo!tD(}CfiTY9jKhn+K{{Mr6 zb&{)>VR4Qc{Lk+8(X2NeC3;zR(xOI~N3T{)2Q6z`f{&=`2<5h_jvj0T;Ugbx9(saL zbvVNLfCD2cvdOeNc5Cl$mJ`yo2J;<##R>zHCi2#gXnWzdN%&k7TREh62Ej!L>$ zC!puWy;cjF=w55x?p3lcxYr=jPTi{uVJ_apuiOjQW#7_1bgv{&^mP;j-3#B2OsUc# z3IEzJP|&{)h+pVm2mZysl1@nfy0BqPsLWj@2iRLMnzrPb`kDduA?zv@2t6T_v?y8T z&dF1L>m-(aK0LpVPYK>gw-4dVYuE!cDC`oa*_Ow`vd#FEA(jB`5sXVbecz;>Basz8 z3GCg`iU;2zCuM>vMSCzoK@TLT2CN$G!Q2Er_$VTfh6gG8ur?F|aa*1g4%meCq&>(F zdfd2p?(Ic2DZeStt2NLbE1ix)NvAvK-RUL?hUj$DPO6+1I>=r(>NjBl>U0-~Nrcl? z<+zr8lM0NhiZ?rq$>pv@+Q|G&@oY-pIDY(qHskT*`=SMt8)yTL9|!Z&DfUxrD+R=} zl#M6l8Q4bJgQt)B0$+cg_M)SVcH|_l_L;o``-#Hf>Ej_VGE~)R=T71|7z3^4OHrrx z{Mk@P*|2v-3u;b1#smzFSJr0dif5ks5;*gGbdoO|11r2gvT=Q=xaK?Mh3nCm9Hn#O z8mR$yQTNVuRm8P1>@}Hy|TcA9MhQaAji}a z+Xl9~rWQEEX~~*V5%BoN1cS#nMMl}jn^E!jX8lQdeDe*&qSiewz4vJQU<(^W38JZ; zr=+Q!w8uDTMx{?UC6zvr!k|XRDUD3`rV$UNtAkx&XqY-XSG2(jw+&Wir(}kk+Obo7%5{4gc7md#LVi-> zUGgSgwO8%2#6=A8&_zrP(M3!x=pv>Tbdl#&1auJ-47$j-6Yayyrxao2iE^ghJz3jDtf1WD$6_Za53$qJY0PLq&!?) zj@~N|7nv!);iC~W(SrEyl(s|6!*(GR&chDz3+G|SY58abUFV6{;tb+dTeXdlv+uUo z>>a(#zFl9pFJ-UNk>c$83TaUi%w3YV*%x=e_iz4HfL9#nTbxHtvyWqo2phThpLbeb zD$j-?!4$k?N{I$+4TZwF@?!%kafW>Y+esmC&fEt0;te@RXb<8-kFklkK)Z3GhHl(M z%;qbdPEcK zX9qd#W(3$Zx96As&ei8|;ozc^Vfvx3`7&0Qay2G&2W`d)-6mSl`$27%MfS7o6$*n1 ze)Jic;78LQkGXvI89A5Fr7)P!W}cB#-qJI2Rt5EX%;kMW3#wRszy=r^2|hblV=n*l zjGR`|vTs6{nRPxJGKgJ!>w9+b{cYIL|wljlmJc;DR>>IE#2=fN9z^B23es zE#bWBNJkxJYQ}{5l*)k#(*%RL`n|90k=amVITnQmp9NLBBPs`cyhSsS#e_TJj7+e$ zGcv*UJ0lXXO0Xt>!vssigt!u+ z7B;(K*#G7Vdso(%4imF&Ptu~q$;(%PvO?~}dC303EA4hRig1vL_NB8j(Wac08ZS2mG%~{wl|F$BHC%%>qbSyoe7?I9-_@+XHq{8-&)Gj>g9{Q zCDDR83^al{>@kJG9QNp}%wdmck4Fv*JSTHl&^e&z4id~^{^w*4D|$}mFwm7p4m&4W z=zatk8aXUGS0jg2JtuQmLN=~(ifaRJTrr2`z%^0>?pZm^+Vz~;k95z*B1y5Zd1HZD z%o_{LVx}=+7V~UTSir(Wd@#9fG!VHVpdq`)k;OZ>ttw(DF@S*+qW_Gw-Z{PGwtJfo$(0Pp&( z{XKS`ss*#&Y0{#^&ui9`{FZEqD8UzGyfTPAA}r)F-~DqkscGkdr8|r;sX-4WwcFrr z@TP+zUc^he#WUvEr*p_@Wo0U(Kr)s63}n2dvI>G9rm|}1RVsUbBc!rhLPDC#PEe7J zlRdnSs7r;$lfC1f=(Q+_ak59LDqW}CI>*sfItdhXmCoW9x=QEsIiDOKKgXe5|AlZ` z0qLd*bzeZUB461jx^#H|EW!h_2oI2inXy$F1_y9k?AN?h+eUA*{~h#-KvjlP)wZdm ziB#LZa$XovRojjxFiN<*d}b}NsG}>-H~`MPDZ}2MEhf}CR@-{vm-5zmQEeN^H|(&t zWgk!!;s4<|pkT@Ehdb@RvJDgkee_$PC`xYAK#QTh!gMfTcxr&*Y@dVNvg~&Cd0BQ#fn;F31m;nJp~`Mo3yCl$;sjIi zUw7FpkioLsw*&|cj}fL(h_c)2RA8JmvFx_t1yy$2nD*m@S^t8ZFk4^12{Q<};{hIs zAj@utt*xG$(jB*(1Z&kV7-hG8gamXDRjEi=c8ewXcG`>+3O+76gf@!_NwZ&&CHW=< z9J*1GKk0%j(M_e;IQ&=D@Mq!hRf#Uufhf^!lbd^26(qqzKrG`o3n+?9-xcEIs0*yl zZTFMCw#L>_xp8ay@dbYFn7t+YnD(HWIv%&zW?N`8stFJ-9=A6#BjDz@%?YRpJ46xO z94?)(_ckNA4bd}@!n+w1J(aUW54|CjIBg&4g#ix1=OQS_Jt?_4VCgX(Gc7$1rx-@* zF@R^49#@0!9~R>`&e|(j%UzT;$X4tZ4+m4a`1BSrkou~i$ytq+ZVSp8SGtL!1y{O| z`0)6>&;|PrW}|?(-0gc&E_eIV9xP>?GBYUJIvS*0H8UudjWP9$QpS-NW#pz_luKQc z*JfO@mkcxfOFc~s%y30$VumY1&z5lR%7mIiQ?ub-?@?idZOnkUEPU;LiQO;C%HAoz*jKS*lpd<}h*Ikj+Jjjkt%YAX>vd4;$XUf> z*iG7x8R42z>m#XFkA%4HS-U8rS5<%v-0;+ya#N?y0hfpyXFY=N!d!hn0p0>G606+7@-jdIKZ%hS#Lb7%@m!GIX89&aHwYwiv2~cnQJoWaW8qP|oH)~3vV|=BrqXoM_ar3OTvj!WJ z*6?#j2mKtItUi}j>2ChZB(zX%+GXiqA@Hv#-KG8ouvofVjUPRIy{@R*g+lb)eccCD z_dHXU?mnl(N7a=Qa#5FiqQ>+XRTs}EG;s`IwW;)ZR$GnB(yM`mS#1@D`SR4X-oE@! zkmHfo|FSIIwNd7%y1q(vL!|1=q3Ivu7?9i0?0H#M=Jup4QBSXW>ZzL=L=s3Tz6pqx zx$`Mrp7k`>U}4e|CbEj3S_|>cMI3RQH?qg`kYD;T-n59LhtGPDL6+-opwgh?zEz6b z=}mEwQI6U?=G=8Z-r>Ua0=&~2Yu=nL?Xs-gO`~FU3YIk*-n7#FOmn6fe)p zylSv8Df7r;s28sq;n;62ctut1hFMF7KdbEClabs&8MBuaEU2ZVJC5Z;I|EIEwL* z$B^Eic6MJCQFwWblnNBx=d0m(f`o;+R|IQ3OS%Q*s>4J7y(>D}L~+qf9p^PFqH(;6 zb-BOMK0IEX>WO}zf*8lEl&Z1<4oehl1pERmc)S`Ye&O+I;4hxXtLQSgd7gSjdeX|% ze!jd~6~}`AYj+Br=jhHaoxC2vp%V9VR#r&mK6F5ziX|;-GVDCVUwI9vr{|Z!f~8)c7UKqvGT_J%ti}R0`f{=*^8r2%hLh zqJ?@;G!@J6AS}I|Li^BzqCC+jQ4qs}C{?9%9ER{9E>O^e-WI>mgWmoZ z4~qIldeEn}95WcrMY7;_Y;DI&Y#kK?t^NgRQ4-8uko%IKRdpO^*PhHG-yF z%_6i67(-T>?Ill8?HqKA5}v!X2a^u;V43Yx+JpH9dNAJrX)LoXautT+c5cKCy(%w& zO4A`b8#me+SLKcN&TO2w5zYs^amHKi95_d6Ac1kK{mWH#t9>mSo6CgF zeQ#{=X4@MZJX~hVE**%o6ic5i^VfO4? zvD!A}nzF^vY#awGj$^%X^ss}$5s%O)Gj)VEm(s^0Gysz4o)p^i+;inMdG7fEMMs6K zP~xriCLW%98g62UXaBQ*L?ESwUSg5}y~NalUb4@GB@W(9Fz6*vZ0m|%qNzuPCM~X@ z-tlHa%__e=N1L(yHakTuzcn?ZFn1{`x~vHXg~9S$Q!}0dR=I|!fREBbPvY#s52CBQORwr1EZ0nC&MvA}|+VUqmt);#W4Xu(N2Ui`vIIsRAA0*k5_ zWF79SeH`z4nTq@Oh2|FozB@K?DsE0%6yLeaaz7Qr?y8&E%m(uc<9tiV%G&{ig5jcb%BnD8DU8oACzH z@476%H6g$jxINcn3g+@gTG{@^*L;JR59Mgg_VKhCXZy;c1!sHE8kVg!r!bi9n_QRK zz6tH|nCN?4mlJ(23WLe5+jW`k9oJ>H|3~P~G|872IH+D#dJ7DVY@eO0F~>}}F6Wqu z*|?5VT&H{EigQd3Tq8B$o;AT+R&e_Zj>>FhHU`TTgEih5;FRKx0Z#3v5nj%M@GxhD@=wZ^#tagF;}6>~cfyPF%DH(<=1f z&IWLCXW~Wnlv+1rg1hr7ynX~rZ7GyYaM3`=%lXM{!4MPNA|N7mCZ{GkT13?n%{0Ts zP{D9#g6EUVXfy6izN%Y2H#-yeT!lI;z-><7{ESoLM$-C&gw8v=#{nQ_}iWw9uUiFf@`@cCJR!dU8W1 zt!LS|{-wD3-Som0lU5E~BQ@Zjm9(rSZ>p7W>`f5T9SS(GsGD+NmA$dRwB?NjrY+N$ zFl~9ZsI+Bj#nSe@pByWy&mc1A@jfyo1GUpRxX}jo$DCRKBH>E z73D{yMTwu6Ob7hVvkXELkMAs7_!I{$&<@cKOkP`V%H*{Hyi0sV%!@cF={K{IS25mn zp`(z@U=&nlu=jzOmkjnuaK#Mv6ex)d7Pbg7Sh{GY8SDcpopFAL1-3r70N5QDcz(Ca z6Wu~VjPpB6RVf%pB+l<51Pb~`r1*vY5qT@;6W~=hWq~cNb#&8&(ki3Cwqh3HN?C*} zNy6p=Tk)ABZO(rF<`PF@Q7pYxgLIRf3}2GK4t=xubahvY!>$|;umsnE<`}?;co6J?ZhuofcR{abq-YGMv7*0g!N#eR_m%U+&n&CS@ZtL6HHeO=L>a(`Yvtqe=;ia4N@_E+8Bf zUeFKkLhlm%0>8Wh9#niUiv_<$KE$((G%Ip*?YTE9e!}WN0arnO{e8#Qj^3z`&pq{# zj~q?;#Yks9SFWXFH=a_3Yi58lwr~vZyqH{lR{LOx(n7DK~+|kvN&o5U$MEm&` zf9X$0V|JXv;C=VeTllfJutPp@Md&{&d7x|fF#C{~7N=ai#S=^SNZ_?Ua*PZ!WKiXw zKi=Y-K62FXU<#$Y(b+($xW4kE9E(17T-GeN`Pfe!*O>J-j1S!nj3`D-xTzi9KezDY zCj2Q8-|Z)xZpqJR)c*{Mbc)^P8$NSPVI}^BrusZh`0f9hX87lh=~~s>e8uOE*(~8- zXsQ>##{JJU)AN7fIB#LC|Am+;QEl<>#Efqv7#dgVq8gVDQZdbOD9Ay0s%qgf>l}kw z3Tc;LcsRGt(ZLGfd|lGS8r=4^<0b0^@jvnP6US}&^%F`>)(9JN1gh7C5_8FKo-O#s zVfSH+C`0tr=nale+Vb0c_y$K^wt{w}lP`nGqwcYVN=o;at|_D~<|G07nwFi3B-%kj2_h2QarKr)1)UQCJ4Cfx5=07}R2fM82%m1h+w z34GmYnLF}zryXZ#xjCV7r^VnPDm6UnGoXOOYYJYIrxg5({N6_NUPr2r*5Qt&tzA3o??2g|ZPxmChxVINUE z+^P3l*D2T1d|!Gr3KA8FYyn7?<<(Vh=J=UAqdy(^Pt`MX4FRAA}5Ik;ZJUBmV8t96hp>+_g9 zj$FoPs#fwYKX}a%!%9*iP<72k3-!9lyVC25-$k!WuY1YS*}{5K#5}96o591RIt<-+ z&N)i(?KiLc^Gd%sn(z}>9BX|h1AAUMIJpU%LIpuJPRvP-v!xn+V9v?MEx$|*=ZCI3 zI^@#*v~fy>pU&q-%jq|UVaxA@W9j^4Rd*3rBC+#N?Xc9e2PW&JK%sIm^Jf$W#c z;y3O(9y0%XBv|sStNiz*O9Km&t{_qacd0~3Wb*zCCyNLt&ejY zYe2z}Se^UwVz>?MK?2YN7sEw(wfxTdtS9ZpqAuvhs}HxZjecwF&pY@zli3Igi|^@F zJSNi);3;qW=x;LHf{Re`0IIcF-Oq4Lv5( ze}=eTXJ;rFl0KnGU#C4t8hY^FTn}-UGua5qL$8Va^f1>ee8Fo@e^&5;r#%B7NE1ZS z9^?T%#@&2n+AWw^pl0HMyEe{k23x3e2x~z>aU4w*k1n(ac|Z@UNT)qWzNwk~jxc9w zzOtCBB^ysck^C4%eg^G9^3Y=pVF~R<9%IZru=22RxN|o9l7b?SHHya;+Jiix2R${o zz@$=aAMHjSYs@_GqArK%e6YHEKb|oxxpKja5S?@L^&kJb|!Z|PA(oQ5ao&YVPZ2_=d9&fqBLSPKh!NIVhGx|nD|A=NpP2^F6MFIduf-^wEX1y!Abm{5`H?9$G1 z7FLm>8mA969?AuEE!vG!Si-{`Cg~;*KLTrL%y|~bGQd%aZ->C z)FgB0tUj+YI~517GY5zkJZXh&j-OMyQNejbV-qPPUTTg5!7q1@VB=_yywnu${9N!* z-TN(~{dn&;FQ*|df5=Bx>s3pG5l=0hTqVpHf%-%Y@HFlLaG%@{qwiR0V1pDt@AB41|$* zI(O7Ve2_ieuc5Q3g*mCD=*~8fRJgN^_Q-(>uX+W>h+Z|G_M9$r;K zo_hgL^ePiiyv_D(3FjkHEwN_d+&&f0R#BPoN;^A#+DX@&W_%png5U|heE2Ds-TEDj zaOAy-@VQk=4XyZ1P9xkQt!NcFYGm;tt%&axa}SaD7=Df1BpP0e_xp{SC@#Hq3#abG zZc;JOMAwvwuF)PG1-@+HISgRoq=?wSM}#F>=xI*!2RuRxSsw7r5Bij*u2)`)4=jy@ zlbvsB^)~)Itevy8R_YP2+YTbTOg82*k8%is_$=n#+B<2^F?eIuFJ-H$ep^s3SoI4) z^1*ouEgzi!yo0kT>p?LvvSDcGd?o};X|zS9v|SyYa27SxLjMi^PPX9+8?;Ul*cEX+srceY~D-rzz9ICp0w zJd9QI25Y8y#^&tDnt6j;s5@h_(TwF6bY~UT%@ZL==)(Oa^<vfqNf|9ej9CtgYnEHMR8mMR5&N4a1M03ewHD6~ugKM!)&WgDZqq) zDS)=f6u>hFJCCvRCK~1pP|+>3;a@5P^ht3})9(K+GC&7jupU`nJp7%{deJ$NJ*0Gn z^$HnbTt(8oE0mbPr+hLxRJ#R&Ln!kfhdKvqMgEYfrQ1b!v4TaVY$Wa9|0@;HheZYsA|xQEaQk|a+wjwr}%B~P0v5VxzWOsC}Z@b z4u42b>Ogzo?JKRV$$x;#Cius)L8dP89wH|oP3>MkyBCf8!|g>2COXTKwQF@bD&U4r zM7b#^nnAgs69JHXdW1sDr$=JuIV)-J{=uWiILos4D5hnoJ=v0zc%Mk|#G<}w?2z(a z_Aq?v#}b1+;jX}D|3aFm-eTnyzR7XWU< zQRuA4ekxjP{t4HcyGNF0wJ9nJSpCl&JgaGzfFU!S)N+P^atT4zftE7~0WIPDNGf=Z zso65cIgAaU(xA~yFo?P!O!MV;r#Opx;Fs;w5xkDB?)lNF&b_=+PnluRWT`MXv93?0 zjL>8pG=j1Aj;Tw;+LD|!@?n-nJYub`G#PNiSfkvO$u?3hXfgnju|}bZ$qu?rc9^1~ z$@b?Y;OQ&@Jxpc@h$b_!M3Z^8D3h6+MX&|Wgf-BgR3x;U8Bmzqu$!q518yQHN^Z;2 zr_OQ?wXn#?ByP}h#U4w`6{9_1xi;EkWw`359$~n6!10pf|0gyBtg(gXI;A4>_%LP(IG@C0Y@kUAUyd+6OKD3*OBihZgMcK{VEbNxNz*(0q zpfaJ|%z#&V7UTE3bS%Wo%>uvoLfA)q@IT^*^TLaq?albOcCPk^vj_W@;)_Ly84%-r zz+28JbF;u-T1czJ_WTF*4vU@fW_0wpB4A;15Wrtp;@rb-QF`cgzbdc$mG)r1_{Z&b zmcNLrqFtX!yB5k;=N8BMXxS`uoZp!UqDHn7*0FrJ;p-H}|^_NQV zbtozdSmQ5@i|hg>W(nw#FAM?E?@TPw?>t+=d9`<)-I%Ev?H)fnxf-)kkWXQjJBY_9Btv* z63*uiwZ@x=;&I$_9ma#lJvS*IJnp$B$CG`f`RFe^wDWe{ljt4~2@Tw!n?yr<%!e_n zK*aau4Sy(~iWu-vJ{8dy4tX2(cCyNU6IysUT|upKi6SvtG{7B*pU*; zT2l=4`xbxaFduaJ+dUtIeCDjLHT|1Ei0K>2no!PP&WXd= zEDmtCR9$comiEG7%J8^q)_K5T$F{ODYyst9S<=U;&CQ9!GT>07H=dy;7O>S5ERKHC zwS<`ksJsG?8LL%h4JqYJQF&eOZ>jkTe;b;w(!DR+Pa#qBdqs;|^E*E1S1Y~LSI)!$ z_6vo?%DhV;tq7w_w8sde$1qL|qrXl4B8>jXX`DV!&{kq{^bDhx((Qohfo3;?v*Q;w)xmm7frI6B)`{{t4LRv)G~xei)SvpwQ+#Bse6Xu(37l zAjK#R2#MkGh2cf;utaJ`u|PM?xqdn>fB}$FC4=jTBHg2wgcL8t9Xp)sSyzf7uB-@) z){;eMV3GNUUp)V2r*n`t@QK{|*4YJ9^NS{I7(mcqXmOvF)aM~vo%Q)YO}Yg$(VkTl z?XeYZEBUyd$RM>pkvr`hyPe-_a}>L@g0=GVqu;~D`2tD_&lKK#!UyhgzQ^9AJ#zm4 z!P$&`K%3nNcy?w&@DQq<6l#`-P;2)(*K0eKP^mvUTeBZL$p`I*7Pk(j@r9v(Pvc{w zoxx1B=cI%7l3j+GUHTjQolt;rha!p*1l=GklK9H~&LrOX8n6)USu9WmczpN|ZAKN` zcp?uoO$Z(;P%d`WkVzaLlHIg2TxT%YPu=S9m{q|6TInZz-PWFo1WJ*Kd6J%V#92aP zb)FI#g)r6{PnFlh4?}!!Uf)HksVX2CUf+>o8D0-SCa;f6uX@Zm#KLS89G_DE{y5xs z4Wi9rnX1{I@^L4e&AlLOKjkdUpPqmci}BvDFzaS#gIHHj0@fT)tat(K_8Gq_F_))& zTqS1lw8c{wXT5sDE4^0iJx@|XZ2h$JWwY4m3*xSgeMJ$_nJDk-JoFo9^%DQW+QUgY zON;b-DuP$}K-H(7KA`Lt^Mr#B6iNT}th0lao%NK&deZF(@Z;Ydp`T>?v&j)2QY^y} z0LbJBBK?J?|8>b($HJ`72qScc{+FFS_?@+KKaYN3ea3^YIPaQag&Ih%>@MZW_e|wV z{)_V+t->>zD?40uwqS84PT=-hrDy#1Rk(quM0<>&Z90N(jS!I`Eit%Q=X_j~sdQl{{WE@koaw*oqeR6~#l6p99Hqcb)zC#m&-i z9ug~e`NTwxd!#d^x_qFntaSEsHdj`p+^*cj3ucro;wyf}_`PG`R9U;gIoVqpcJ6DH`!algZbN>SP@eAxm z%~qG%AbmrAR|g9V{s+L_588>(({v0VEzpN`sUPO)IT}012Qt2jb@}m1Q~QMR7yMl# zSQOzSi&MRDPKo>ni&N8k1-RN-SPhDU^>?XrQrU7QbmZ0RZt1n zHYz(y0zkIPP8txhveOrE#0w3wDm#k_L|NH+NC+bSi(f|KovvN4#=j_*92ylVKxmbx zpJ;FgJ-&NNKD2a<4h73RFWFn=y3ErZ^g-+>r7Nl~KRF-kval<(8K((&cwiB`MVoQ) zcqJeIv$Si589`+0sLKMD)`pr`VX>sYg}QIko*h_z(SoNUU;^=a%JhciTm>ww428tQ z#TW|@?c<7IF|-HIm&EG=wYnB=FO^)0)u-Kfyi^-{nz_8(`nIreOGQ^r?NB~GrF3#! zVPgR5abaM^69auCz43&KHVtZEGUtr0zy@UF*(WESgAJaE;R7p&dEp69Kny8iW{D@1 zrh(&W@7Bt$79N1&mH{m{oysIE=K&~gm+-XLL>AU_9keJ5k9{^UQ7d8L3(vXY(~HKt z;0eUfDM7TzC(0t9&>mrtrJoIoww_*1GU*EZvuPmi^N8qe$sFrgZa z2~qJGq~+kS5gJdb?W!RhHuSAgt)f#5?@{lOG>rrIR;Cs-?`p%mNrMN+^CNX!r&$Xs z1zNYMCgZIs?ZI1|URr*6>)XfFB@Q5aV8+V0W~yDuP+2jGzpM#3>I?U85AP+?)62LhHH<1E7#(0+8jxj6~A%n-0i?2rmx1w`jF@kHnI zYzgOw8^NmB+?*Ad8>mbem}bDNz%(_Zyu;VegtW(bHzGx0>DdA2B{nVYkWmPCa@qnQD-jAm*^qn+?D z+Q8PXJ8UeahejJ^mEksu_Mp*bTUEHtHFb$_o0*elmP*ZtOyOZU^{N42hnA!4l;ze^ zHfT8jM$1uPVz~@uxt$adEw?Qv`3~f4IYU6SoQWq|&a*{X&fJ`3xtmldw450*%W|e> zwA^s3IovjMcAa1aeTZM9My%_FYYT(7s#T_T6Uc687Dclcx5%HRTbP5%Qn_ zn4x_sGiBcklnL4wfYH7bn8f8nADK}fQACW(`#DMXTuA3FpBmz!Ax#|7ke)3nD$UJV zmW=czQG`)x2F$Xgsd-&U|Be>3A=4x5EcfjbC-q$T0(wDiY5U6*%XmRTu>j+Xtx-xy(Bnk=V!X32nuqqNe=JB-02!Vz9 zRS3Lg>KEB-eog~@PpT3JDuSR0*@DE%AOLPWbu&DNXJRW(2%?REQLtkOXRIWM<1dbP zJz={^yDUM^0HaKB6=NB+2NWvn2*|>(jFe(ae!g(Jt1CN8;f>SsEutBfcsU&L}ZDBEf#HYo+REzYJ!;Yjq-iECncq-;6hh2xl8^bOpnoYxQO#zKzcc#ra?ACsA z*d_#zVJjh8`pIE~FdoBJ09nIMd&8w!*hI<ZGw#lo<~Dm>Tvm z+T(55)#R{`;INDEvrpg-{vJg##(qRJld;F8cbezQw6J^ysIQ6XMBK1(Hb`y^aq#&H z@aGF$ab{Te{Z1uT!bC#2YrX>M=NG!dJ*XQPRXj0*gc$D2pn-hd9M?b|zStFPX6d1C z^{B}+rEk!JhrX41vfQlU5?2Ka>*dK@>sCNUS2x<@P2V-8zB?BX(WUe~oFWp6bg+FhZmYNX|vFIumE%`q-Z?1k8*|cyE8x|*(u;T-!e}M+LQt^QcVa# zg@ud+RYMMF5})dHCGe1UT83IW^Mnzw3K+4vU;s&{YUCR+gVo`9rG{A>4|>bEPp;LK z+9;Tu#p=NhX-&;yN$(CxG#@&@_@2vQy-*-Ok8KfM9DhvxpqTtI{7*+Cc8!imJm7D+ zBEo1e_nE> z%P*XsT&oQcOmxD{>hP5>`v!#5Q+qdnxE_NW!J5Sq23`vRf3{L$n9ULJyKX zM|)6K=uxsx)rTa7d)E+Ob>}7ZqL5}lA=`Bl#gf-a75w?s?*@|Vq)>q`3k8L6%ntH7I6G>K4Xz(7tN}&EspjzR)WT zy%_BU0Uwa=?hRq{W>w`GI8A)MagvY8P?=8ZBGq24)S8V%}j*H%|2cxKi_ zG;5bPgEr&boEiWx8-?e(O$Z*mg1u-C@8Le8LtBF5P*f?x(ddyB&gq3Ab zNZeR&3HX1kJ$GPKMf1LQ0Yb7N2_XT}0|7z{34|I53B4tRj`RpuX$eI^KtTO0G(pN* zfryF?0sZt)k@DHG0E!(Xs8~S(E28q7o!z@Pdv{TPpnt?;r|#@*o7vqbcNM!S1ovl{ zhdUA>^KkD`Fz(OZ21v*}TvY@w+GB5TM94IpWh)gu0!cCr7eb^+!~Gf|({R59iTt@b zkztWOk(h-GAyV$-sYJDtPmCnJ3d1m95e$k@WVw|OEJ@%i=h@4cR_seFsdr8CD0|_z zIyS^w68N6ir<@8X_IpYnN-sPm08!9?{^pe1^kP&3yTNEmUyb}B2d8ujL65z{^AG43 z9GWs%r-wyXvH47djL|(Efq6&1`S;0T-n$M@*=DfYC|7jD<&n}2ms5yzL*Wx!BBf6} zK*8vSm66rB;r8l$B1Lv1kciP8DpC2wOH>N_1R$eNP-N*7fh8(csTKQtBAXqjoUu7H zM05vymqaT@JNVxvF@FGKh*aZGlo{SrIa{4EE=I~!V+8beOf_0vM7_MC37q)Rlv|lr zf>l6|h-ak3R8xhL4)%sRJ$l3~kv@;`LMA%XWL+pP^n(se`auT@vHYNfNk1s1VDy7Q ztQtQU!>Sn@)EfvO5&eKlRDMuSrJx@GGWr2UmVOXeqWnNBw)|ij<%~wu5YZ1(Kbx|P zX~hA4un~+Q{9rR>hJJ8Qb;fvvRqF@pu?1&GWsu$0m8Uwowo*s#zzKXtK)x_&Rj8e1@;M-QC`sbZ$!Tn(Rr6347;ab352k#45K_h}Df> ziIUy;H3~*EzEoW`-;vdXRfU-1>sjMh6FHoNBwjJ1w6!i0-4#!-R&je%_BE9!d{!tr z{lb)WA*gWKc_EM>O4P`=p`XKzi&JLvFK;rVbp{yW2vYG;a8Pj&=bUi^N*h>suQwW4K=1*LN?dRZ$_SzdR&aT0Cm)e^!H>JnrZb}_KvX;G-P99)2rD4N5 zXf@*@UilRSH}DCPAk*GY+o|%2F-2yj^lD?ZAnPGU6AWEw3w1mVOt)LUy+16PmljVS zT>o*QIPU$oi(k0+hhNq0{i7r8n?vmVe~z>tVXsmf;NJg5QsUeD-+Ni7fqV1Pqww8! ze0BTVDEngeJ`o`U03n2W-m60b0H-MlZmPcq7ZT@8FHi_>ssVzV>e|u7k8x8C5IhHZ z5->yrpb^DDuBp+2Yllb*K&AjdrUev&OabC&D)#@QCOY*k+h}>jduq1)bdgR|+LQtiu;Ju=hv->+Adf z{gfB(|K-c$TdC@}|KHcB<0T#;rJhnN$zF%uPndf%lI-0L_B1Kt7~_P`hIGeX{ajOf z54MNGu~$DG&1a<8y*edsVxJPYG;%=YLCyqT-aJa#;dJw%D8cFGy*hFe`&pX(5rh3g zF>%%SL$sW3exMLJZi>UCkuh=;8x;c#eGwEKH){g~HnG9k;re{(X~<$$M$1jCrN8=G z3`mlj*bpLN!(z1Ix#y=eXSqQVTURGB-!BpOupuPMrKctkbM=8G2^>$7>cwJ5skh&i zR5#pO>J(yYIj@;Ln`y^Fv}0(wXml^WUv9Jd%6 zN8DoE9V6FTKJRGP(f)wRiYY@JIr_)Sk)uC__}#-SgZhgj;gcyC{bOQv^`9Oqk0(I= z13I!g3I`%_!%0P|4d)G13~o3988@61S#CH3OO!Wh#g;eSOF5${HAL{HcyFHqdq0C| z<(4~b|62wL(w#K=0C##pxzkIO8M@Q{>dbktdUuMID}PPk?jH8*LsS7{VJE57kTyt= z?xb-ZBUnX7;!ZsUX=J|Gi%q{ zuCCm*wx_QQFYa>^-2myFCI~yjLCK7 zSzIAQY+Fr`fv0S$k+HxhV^NTd`PIp|IfM+{x@t1O{%Y&moU+EPYty=N>lzORP}aw- z>n@6kYl){s3AMiW?GpR_M%dd>&Wo1TY{=J^+Dq8`ln{5aM}W21$sVB)Yk>H+t{fmv zQ!twL>*}igi>$U-TLcUcDnJe*>kNZ?4Z$L34zrh=(Q)dgK^%24xM=_z`LpfpArh-e zasDB>Y#iis*I&UGMRlzoXN}C3WIPO`ONNX`FzO-jTd|pa6a1owBi=h`r2Uk^dQ+Xy zenoN8enk{w+3!lIj2K|YQn0X}F{+x%*yE}jUmMEt03@RMf+eE)7Af;BrV_;%WGtvg z;;owbh7em=647kBM3JJmEUZww@%d4-qHO5T*A*`|S7H^$rPvf5)amC5xJGkcS zlkE9KeRW{;O`(1#UT7K-!NAufaPv>mwfVL(d+h|OqHk;cR5Z!E)2)sV0oMAs_YSKE z?u~oz8sZo3z2R4Nd++qg_FF>iy}zGqf10HV2EKJa?!6O9iEr<{<}&x*-<8{w_~Mc| zar|97WGq_~5pwSxLa3)zJ-PRuQS?A9{+h$Sm-VD{xU216kLQkc4>a@Z$<6fGAdFG< zHcpp_v} z%S(%|3G+H<*&$696Hipdi)|EtalZX_rWgAYus2eA+$HOXf*ucKYsI)rtt||ocBwVvxwzxy zowm^4*d1d9j6pRh~Ts2mHty(LqT^LBjZ3va9wjsx<6x@aY zGHydCvfPFQmZ)urR_tq%Y<8Y<#@5gfu{G*kZ*R-AVx-^rL1}(u0_hOdkT<%)K0+tA z4uqyqdTdNh4vNRd)QYh&?+b2B4!2JBu^yBswq-$r?4$)0f;UV?Ca4=kqcxB?qdh#K zn$y`Ka1A1%;jUM-6`3Z9630=zCi`iuJ;9l%pJ-HkB9!6A=L42Re z!cq5#DDjQDxEDJ#wZ?6>bI?4P-usbK;A;L%bThZ!faSYP^DA%$4u#_0NT zbRI*&SfP>itMNC;-uV12V0c#hZ4h}Kx92iVB(|)TXuFom6YgOGRoNZ(kvbK|hAoFy z0=iOSJXO}?PJ1Jh-A>C^PAW0#dmG(jA8F|L0ix8`aWql*b)3%iWg}&Q zVO1mHa$B3sF>yo}628SNOyanBeMjhoi`OIK7cO4mS9OcmDVt#e3jDrdKJQj(uVkl5 z^*AnGza}NV#p{O4TD%tV>(0Sv7WY1458trG?qOtl({1&#d9BCnBW?2= zz?yDbaw5O>F?eF*I*k$ZRoeo9?_4;)9>1{rw-&r$8{~(e$TE`XOL3Mo^#QnR8sNB` zFo&S}`h~p#kKF;=qZW_bd)hYo#4mdsq8wWYy1X2;xdCsu9TJY4DI`FqTAkkWmomK| zvzx(QqkM2MdZ___c&ELby+k1a64aw1`~Ok`ul&*h$LL42Z<(eUTaDhtM*M6`b3Xfl z3dEuQj3~jO{z83@Q&IVU?Wb6HLt<}SRfIK^BYhZ!SWExphH~kjO2N27Oys#MU>UkO z%!mknz&NX+9PPU|!1X_ARrN>*h{XkiCKjgm7A&v?Cc<6zetI#E(&%MD z(qqdl6D3;99ja=)&Gt}380N!co3ckJ1-8V4f7KHIl`Ua|fs5BkS=`^aPhh9Wmx?!1 zUScs}+)Z>{2CkuW#RbI)ijBH{5~!=UYM(vPU_Vn#v7lh*XbCRkRr$+KqLOHu7R4{Zie4+hX2k;yn0OQ zh4eW;drMitKcIi?WqYDdkKO`bTK0R(CsqsKYJm<099Ii;mhp{>(BpBnP$87S)xs?C z3s(#9E5vHSh#T3+-1RMwea$|sK3+ai6PJ(Wqu;_O-%6$z+Te$GNaOHchWN#o-WB`R z;st{FJn`qoQ-Hrz{P{rqc~|@i7axJH0e|LtcESgf#lx2 zhU*q&w!qKqp!g-2c`k}yyTr?RJTGBnmJNRLv!!*4F74ymh2lHRbq3I-623n8lK8kP zeyz2Jcz_FE_sSCYDDYy&UU8xV&vnF$@CHVfJ{Pn8*Y$bjn|8Qi1^U6Eu7~)Lp>+oF zlFD|?*mhwjH15NReCaE$;*!Tm3BW|pUoq#>mt8~di%sCkr|pgSf`j(YLUP}9$=uhj z*_!D+bjbd@$=)Pt^PQ(>7N@)+N^qTE$aMm(89zLFdN=bJ)cJ@#iyf!LXTO_OYs(%iJ^8c{(JCTWoE4_AxuZL=*W`?qFsnL6bo{WKtz6 zHn@u8`im0Uh#5(|=yp$$nVQ5aoYS-UUB~TjutS{ka+|!iq-!tWtmaJe?u6{G2 zhBxvXdt1Ximc+Y%YwyO6Q#C9req5auzb01PbQJuu>byOiPnvrwowvU2^ICl3?1~6J zVRY{0JH`9T!0%HH(ZCl14SYmZ`mi*x_v!EK_28A@WYW|AJqxpB*)c$v&%$O>5?}J% ztfAf`XYKJuSO*ZyCw2a;A&+>=0VlqmO^9Nhs4|wF^OCFS_C1nCx0l`;_oIErWq7L? ztvZ-F$+GL`P({$3!$k@0`mI$BTO`Y_pI+KFf=~L{zL2>nu^9a0eh(b{?G`aLkNC~c z?8}T0LuBl)_5mhzpp2U;`WkgT}mD!#ZX6_Vt4%u!~f=Ujzpd|d0|7o<9EpN?TrXh8xK;u<>THNXoV56EDKutkVHl!_2QOw2UJT=yP8T z&t)}Ih@%6uVI~~>#uOiLtH_#>Ex5(<^1d@+^JO@iu;d_u1{MKk@2U!%Dg3~kjG#w@4;GP-g z)?^WtamMZ!#>kDj;tEfh5WPQ{-&DiVF$K)3d+)>4XiEn;+sLWQN%e)%VC3cWD4zq= z2Zf29qBud4H?3%uSEu%!BV^6;0!=lJYQHmSG zJ<$5kOm}(*UvPCb*aH;1GID0IS(zgD^pzB1yyVH?IoC{TYd(|0KN;$5&7PxR=q*!B zZ%Q@8&`T+DXH}N6VYo9V&Z>h7XMjZ9&TA6Ol3WQqy^C3o1s8X|=(H1-ialqLNoYQ@M!LYRKD|?smYNPfVG(#liM^vYHz0x7w>?nj@R^4wZQTv6xDuVqqIDK0fw7l~T5PMzIOV*tis#Ta6oB z{Cv9OKBg683$Ms3yKmPWi?=%-6U2LEa7 zXsQ=uP5hRIBm4U=a-C9Rqft6y4mok*RR z1(Db&RHSN@2~-R=3Ls;nP-N05S~2!GtpwX+(^>d*?mWsF+e1S{bDp%jW-+bU>TxU5 zWRF`#`CyO3p>bJt*0>|>Z#tbyTxnuY-0p0uD}qB~Mw)+U#MK;Lv%CW)eUXH`8Kxc) zGrST0E#jL8siHWQ9hz-Mus1}pZ!VLWQW50*CQSu7Pf@a+_Str$x|;ng+t~(#KE^lA z&(mb0w2HC-$^CfD5Tk~948TIsH^AeRq8Qw4oK76wQZ!u@`xM2L>5+DhgJG;IMHdka zvs1cs;Z77HU09r0O6Li^9bMVylnJswk~2_}zdX!wh}}cA#ek*dhw9Eg?Ihe-R$gSwO|QAW zwgK;5iNpBmpphCfFdDBd+$*O|D^8$$4l-_FH2!rVAEWVah+i0uhhH)p|FGCT<2PU) zOXO!8&vEkWM>$>$-sXB&j&{^E*hyL!7(~=Q_XH_c;#d6dU)bj^`Nh$QZ<_81=MjsV z#PJ`;IIdzp5?OMy8$!D0hYY#d{bj6U4~u97O8HjKxIeAgNFFe4ph0>}9cBUq512Nk z5E!1a_>u@)PrhaZyn%$DW-$R#Tm|h;5s`VmVqUC41ap8O^RW~nnb)xOF!FWwu)!{6 zb13S5!KA#A+*^YJu(zJWR%jSv_kD{};4Td!XaRx>JVYUu0=MW2z)n1Yr(Vb##P(Bs ztmN}b#z74tWB>$Z9HS6R#`8fk;>8|+D*Kt@ql|M(Mp$FoenJL7P)1z}v1FXHWEiIU z{Y=Y@gwUSij|db*{|wF*6cV6RG9+*`Lxuzdx(o>v3Ppa-;0>laic-M&^pL&bB~xkD7=677c! zdDH*-ET?krrebg9NT{dtfnJ|A^c&2e#Ayuh(BoTXEATwEq+%Ee_e zg;c>_EY|xNHlMkc-R0Ou4u$Y%EV`SnaLOee6DMCi{t*fvd~;nPhc&9c6L7S%j?8m zrA(0hOPPGgTF1TYB?<{(UthA{AHe>Jb&iM3uN3=h);s#K)07Fa|0a_sZg8w&-%v;Z zd$lF_!eWo>%$eNL-Y}z@2)n277w&-Ff88d;Zw3FDXed$dl#GrxuDF7q-Q;M@cibEw z%{M3IHRA<~9m9C*w7d!?F#WTAfClQ;Qe+doWs2^0JZiQ@1(NufjJ!UqBV~dW%xl6Q zxyP}dya8num%XSo!tON{h>@B7Wk&YL{1oo5^*@aqy8X zGxFdA7l5o*SDh&D0#$NGIqE?KHtispFW!WC^)p#oBChW&!vw*p8yv1C52*IA1EIC+z z|CZw&){K(iINCT%4$Yx8 zuSbK3;dL}G-3F1zc@$s`j6jD2V;cNl1Rd5;Gz>bd%#uL|z`&rx!y1Mdl^;;Dy&6Qw zen858i2^LyKQihm%3ecK=a3MyH% zMO<^zJV>3foltwX6Y3=pbK#yHj$%IxyffS{kcHW+xoobH8bmY~K=8}4Qz*o$8-RUv z!wDy}tB?sN4r~-O;ZQ0$;hb+KCmew;C!E`b0&!XV&MHTz6!1QM!nr{D2FLh=b)@Ew z0M(26?M`zJV0U=TA>k>43Q}-Jd9b;+?4)Cn!QLT2JRw2&sCdS~zvLq> zOAJW~5>EB!)^vN8iW9Sdahh-3?QpZx8o)o>+FF3dzJUe<8K;}e)xSo7)2*e0ikWCS z;B=clDW!cRWeHvi^VW|QkywhRiOG_a?USb*x0qd9$S)-oP$Dtum|a>_v$gNnLQb)_ zH<#Z^>d-=F#M)98AXjC?+5lKO+x*)^$!3|h<$Kv&c2EK%&!6N47p&Nx3#prTC0O^RXYfHbWL3)R})Nrze+(m!d zLdG}d|KWJVme^9MQ1~ZA{?b|!Cq@;LTS^s@DFjuRaM7`w<YT+uU5z5K z;kI;D<~j~uDK^~DY`EdJ5L9~}!2TffN^$5NI4nl{M}b2%oPEt3RIiz3^%`7@Xa4iPELafCOJ7zVq9e~>#<+rr&m4NvoH7fadKA*@}mrO6R zJ)c-pUePe2B;!TbSK0do?>+Emwz`Ai5hb_I_FuRVFc0p+g@k?Eqgt2;5_wLfv&SW# zj`N?!??CtV7&_W2&gJ3pzM~=>k5T=TVkd?hy7OX+{IeO}pAhQ{R^}<@$x+T0>?ffk zR{8su^5(=jQUWkBCasu#$xBU+Hz!)vb7t_3gBDKVx72YiDhVaxavoDna!%nXB?}vR z4@EmSnJlgqsT0O(>WUKdH+6}EY9KFBG;Sp?Q8b~%IFn`Y-0xwpRNgB&f?w(*o5&^HAf9iKXssfi35ht+9Dcc!W8nl{iA( zhBr)czQDFnT9}6~HNJov8Jl%6;z$l&oG1fp;>C&bF9y}%n?LMP!+R{v+0rl%wBivN z&I0xZRl_pdtHf;Yq1oW{`N~#YobuoB>**{$eU2@LmsX`*(j8=B!xvleW5--g*^5*G zwBc8QHr!7tw+C&Q&9BLHo@2jLTG4ar_6VdsuhaSrW0tkT1N-t6I=GrRg>Li}$SHi^ z==7FGPicWAc?KMN{w^gVA%x$1dbE0oS?u`eXWz9DS;r4M1?qF3{(xy57IFv3^{Ged~-3~i13WACO`PI%bBO=)l= zYi}*Ln`N!V-fk*e8icXP!q|Dvc{jT=2xEO~xog|1LBy^NAQ&cmibAYi8-Q`wCWXiI z=u@*D>@A9mIv!B`k7^LXA0V(RjOTU27d2wvP_QKgaC|~`{^DHBY}urpkpD%+KURYX z{s2M#tCkk`V`&s@@dq3qf7~7KxE>m(6U9X#dD+rPeKd#=0uU5(sFO334X0pB2;gW! z-sx%jvm%O%`gc?O2Wt?)A0XJs>0@HD*mw%IgaD3D2!wtT z_)O2jaqMb}i$Z28AvbCeAp{_nklQKP5&}3rAs8tMJ!r^CNp^o{H*-X5zW7u4&@M%k z!IAvdA~=%Ezw7U8A3H+yKD@NCPY4F8?3dg*DKP%%tDSD7mwF*Wa<38fGSO6>KFj&g zY|7pujH&SXZ*j-t1u7PAYn-MfV9K5w;`&EMibC8a z4}}p@d?{<)VCQU;h37!IZxxG2pTlzGE;)=s0d!^2J9zM$1g^i}1#J*4` zK~B$)3KW2x_I~Mx#n?Zf|6;Urv(6R|GaET_^ZaKU`P}!=G0u}FyNxo$R$8uFX*q?+ z0~q)rsT_Gg{Q(NbC`P4fs_p)!;)gwRTGjP8mCDA00BkBv0M;CD(9mMCLmUSsO|NO#v6ROKWs6TjpZdv31UccT8Wb3kP-HUED0rQcfKj0se=l zI(zx~iz)-`j z(&>|2`Qq@tHoWW>XO9%C+0>B_O(@=9&`Pk&J9GVA9QUXZ_`M5lJT_ z@&10A$Et@qw@zi(Jjf~E;Ws9 zhhC2CZQnzP6YiLmuz{2#HVxp3rU_D`HgCPknPyIG2lq{!jaeBbL{-KsRi;|16b^7T zC4;u5iD*W@1b++aCEpHk?edrS8*Vvp7Y(;EK)&iNw<;xgJAZEpXt-uRa}e{3hVzTU zHmlRl-%YU1-dXGHWbkh%%cj8|vKyO=?WT(0_yo63Yx9{eg=N}~K*MEZmo#JVQ6#k1 z+e*bu*?5l0i`x0x;zR3^_LkfKsgz=Q z)mg8lw4SC5y1iC{CVVEqgnjRJPBi$NGl>ad0-Fg#d@j`nO?c+1$fjohJYI3HGlLDJ zU^HIeJn8i#pgPT`h^=O`)t*HPtTPL(9)xg0Fka5PK$Yi$Git*a0 zR)P}}UK`D!oW)$kG(>E^Hy(4|s23ys#LC*W_>J4(x_^&#JodPA1{?kl z=+|!t57uyW0d$4^}Vl}Pb^*}^Fo!-Asf18q5WB0-y5%q$} zdAS?zEPwt_=pD6Ubb9QxANo737pAdjgVpXp>MZ)JS)&8)f}&~=i0V&Cq)0}102%ue zMJD|zsCdIvR|V5b{bN_h4st5$OodoeQTq;Zi0|3K-;@CpdA@8#jXREAS_zuL?BE}} zaK|xye91C4jS5CnxRfbe1fooF9VwEg0Aw@;MJA>QF5dT0QeCDMS9YJ4$}bJJ=V=0P`CUSoTu3HlpogZ8Cf^>4259lg0mpaY==9*67$;H8SEVj z$AS5vYKddeU~00(2g|MfM=#kDAObhZRD_yrf1q4(WCmp10Z?SQNshVM*3?$3BSa+n z)oR3QcO(vr?t#y=)#xbQBd(*!E2iV;O(HO~d3X2~SCsJFp9ZFqx!2MV+e{OR#$ElH zJ3dlVQoNnA`dCQ~-fE34RyUi~Zn;!DY`0+6(YM=r>GWv!CAZsF+ImAZW7gV6v%Zv( z)eCy6Y7Xg$y&%e}q351(zVpdJiG1^o1@V0Q8_w8dt3i7B8pLlqd1@o4Sx&6^wB;}& zCCBmkfD7UIDNy_RxCD(J_tZpdc8~a!n09r-f>2R zv9lB%&qkdFhT?40X$rxHne=OEHrzPI&llC|msgtSOZ7dqoD{-f&?H)|nFcYEb&Iv!hO6x#mDh zAY4;O=zP>UTqnRa3O?OGJ`_RGF;G@hNd)4^T&k-3H8tbXH8bPA$)7lf7;G+OYE^#` zEyif)+)liAm9s=Afa+)R7ph?GbQ>kW>I1>R6V91BfmQuVN`Tb|f@z;R`$SQdaCl1R z$3KOKHlCyuI7R`*q|cnAbrAuv)Pb_OY5g&lT93c{xpNkOy>>|qf9Z4Qx~PMMJ&J9_ z4_#f-ioH+D<;-%h6OaA^mVuOlTeka}5}@sX0Ix%71OWllAyUuRJBfg4QCwND+A?nX zh3atcS{)9LRcUD#JXS?hMPxLtlm^p)lRL}I{lv~PbH6wUV}XT%nR_0Dv9`0!hd!V|L@E&=m=ArDLSWQ{FY5i` z>}hnCNkl1ICGOv#sHozro%xzyogE@IfZz@QOjKgt{woSb5#qeKz`;Z%$iTe4(S@`U zvj0PAAFV+Ie}Eu=%-g3>u*Dy6eEhAveFut*LfUqbChDa@gb;wB5X{>TrC=0N6&2Of z=%UNOwEa|yiZYx^#(WJTWB>%4;bsc4>HuJ^4w$yzOmUI_Jzd~DjH^SW1`zB4fLZ(9 z6yjqaq&+6>-=(O)eK^z+zw-T=1`ym2E9K8ph>v>@0rn|xN7%xwBtzd6Z7|tOt=JP*dT*IR%m6{zf+y4or zz}XQfF2=fc>vCY$fo%W3Fb+4aD`%+vR4%6b|DYw%3_W?w$3r3`MJcXGOJQ6UA6(n~ z`{Xchk9gMu25Zn2fW9dNw?p;1%H>}@3X$6(k@RoXRld-eO~EktOfg$@mFvGwUFG_3 zPd;Y;e-`3t<{t#$RznkjTMbMn2N&amj9PI(n~l_T5$S#n8+eb`OK@p-X5*Hc{A`jd zkGUv)#enH0k+h)bn%NEbeaWueU>+M%T$$`ziX23Z72A~JN(`pvISHOjw&L%}@v~4` zm2iI>+g0w}>vWZ0S}RL)H8t2y$`4y~n`+T*6e1V&;()+QUFC}Y6$-`{eL=P8VSkIt zS0Ak=RSzjKc>YV*r362WH79bW>UKNt7I0ZCp3m4?W#{{ZMAftyWV52*|-!)8wFecGO!G zA4wTwX;Ev}Af_SXrXr`JW;1pR#m1J?5RrajwrgB<^mqLO`ju^51v;KTtatZt~)pq-VRyh}oWenWMKXqV88{I%C94D?uMg>!$TOz9)LlARc|P zIGxYy=t|<_+PP-4&!`&cEXS3z9H$UDs`@V+{Q_-jycL$g&Qm08)1OogYy~n%0P~*8 z*;{o`Pji4IbTukTh3Xm>ke-3A2FU0F6j_GqVp>LpaDg@*;Q>eu8S7xB?AsT}lzm4k z3L64nfoxYGTcQZiM9LmoLZKHM$jILfi(S)M^Yb9v&$pxDKdu7i4ER~El zKP_#3ngY;SFmYd_yGq>G>P~zTecjew`bcbd|M)co6Ze+7>b1brs+Fh=)k@7MTWlpj z#!;0b%TW~+QYrlW?lOhnjZ&jhot093Eu}DpA4(@|R!s~Jf4I5{E*8mrrWN}~H75uY z&FT(NMc(u9H?Q&QKr3Otai;h<&Lch@^i?~yKe3n#Xa_&rV$QH63n z5k(~=}TE- zrvYT_G!$8O8Y}ZZwoqpN$5U!l>`J1T(^3qx|Dp84j-!dP8a%jo-8k23rWN};&dnf9 zbevlQRFVyD{D+tQQF5-EcdV`q-A^#b0Q_3J}H*qeJ0wxvC+RXwKufTQTW zI!AP;`#ZNaT|Icl|7JF3o&cupI4bNQoag8YcR^hrguJHP$~!j6v+eNJ_=zB1j}u1_9d&%^sMulluOP)F$Nad-wM8df%D~z?FTu~yX;XBe|6xOB} z55LEip%YjUp#GEq?F|GU-{W%Y1hP)=$JgKmJHjI1%d@U_Y%C@9$-)6JShPP73ouh<=3kGF8oE?|p8@x)xP#uJPMQF8HF0n1_q(!W}Qas7{{EZ*$e zXKw1niz*?Od_U!lE2zp|{CuVBF;+<-q9F*|u9EG&z4)4oGkX}ln8Rxg#>W#Cb|F5&mA959kA8a%aEz|^822y;Vs$fT5YiJ zDIb*ZZ7<&WVQ8vvDFi(o;AJG8vTfCa0sd+kGO`ixKIR3A9eK# zCcr>?lTi2-kGWa~hZ?XJE zH7xHXUvB}wfkjFYK~M~`dWi*#dc6hvBc?^V`tvX1dX}+VjDc!oz7|GGH8SH-11;r) zM-6C-iww_r)L^ryEgm(f6uLtYnr_^@ZYT6~WeCZkV; znpo=(ddoLlJ|-mq!($Y)F8vsV@9VdTeB!UCYx8Y&T1E2356+3YXr+v~ug5)_l?) z*VO<28zuNX)%3lt{!x@8_`%fFG5pY8S8Fr556^vgPQw8B=4(@C8L#j=_PHvfx(Ri= zi$6tuYV!17=l74Z^i@fXoIc{|v1FdUvr)?gO_W-^oa)Ul?sr|E@BuL!aKwcT!0??S z;Hus!f)e58ZA*pJV))~Cb5TOvT);diFIoJm-$yu}i!ZrtQb+#LORn+e+&;W$O?eK- zlZLZU%UnL`kNIh4qdt7`_Bm~Bpb?LnI)4x!{0cllvR1G`hg{i5I^=3n0x)#Qipz9J zHr$=Y-S5JqLc7Xx>hh^yxKjDaS6%%}LJ7O`l7&I*x8!Hub+zYJ@4*v8KfUJSCfiBs zBYl2{C_$fBPYh8lz7xaj9av0X;#;`Y#iPTlFFxDHAKy1W z)=cax&JVwENj)9wGtCU|%O||&%3?A> zF5~MLN}~cxjPKDM+eI+-&ehpNyxl%>wJ}UrU%qDhta`lrD0eI7p&D3*a!^CfK|{ey zL@oP@mx$(Ej>WF(E8icwipoWc-4tlCiK;5&q{X~dpNQ=LU6fFa=y6qneTrLzJ{y=9 zVYu>t{uW#gKYx3&4}SjEJOLeRth-1)I26M7Jym_Y@cr9JBjlj*#AOc}CA>U)exA4E z=dSh!`;1l)T11_BJWh&zW8=ReIp?>9Zg!3^$8(PfA;fvk_Vup*(iLa0@P4FsiDOho z7_Zz9y>#_2o!gjK^pnRP(}S>*bu4^mx08ki2d|7g9Se_$E&3LAC8ZjwcyM=6KY0Re zf(8+%w*YeZ6l{g3Q3&)f_=b@!zwA* z;tx1J{;2oF$)gV2l4mXsHHs@T+*n1R;GIp%a>Io=55qS12bc@Ne zXX(%9#_{jBO{uYV^VWt9*R7}lAGdc;S?Bo?+TD6<_Z|89U&=_HP5TfAfHL=#Sb;8& zrG@o}Uq3?eqn?f_XGJj`>yA=)!nbyDw2Kf#z6l=}V;=`n)}knQmOSkj*Bp~IpydIi z>QlZNDV!Ed;oaAijc2VWB^VFB=ew*VGE$V{is)l_ea!lvZ(oXyf#jb3WvHhogW7viLWn{h^@YFxs zyPIkvb41FjyC?*!fZy#s)L-R@C>X8!7S;Z!&#Lm&mZi0NZgiJ2t0u)Vt5z)2K2)AB zI*`qNqs1aH(14O!o&+|G&V=(L6spcOiEk^{86X=bW&r62IOmF^BL?FYRj@A>Uq(_3 zlmUO!I8m~3G;!ECS_wAJQ&!{PL6WZ{-FKU;C)GqIkOoM1?@l3TiNS*x?O-ElF@{LG z50H5{N}#f>PKu0C7(m8@BorBf#t_lmb7595HlGssxMRoA2&@*=is5CR46m!M`(cys z>oB%9yNz%d;l45z3dgWFV7*pTUP1s6W{z(bVQ2Eg;RYkKgI9P7+ocLRXbaRsrsz<)+Bc~gPo_c&@FyaZt)X^$Wc&S zA&eTRt`J5K)Lnau899&)gAE6&VUXiBLaPSq2^kQBNnI*NIa3?T8J!7`F?COoWp7Jg zHMxbYC+L(mcXB4{O(}5@DWWV6k<=hqdMd+x7t@f@ zPUs#p2TJ#-2vA84&C{t~3jkM~AXBc9N?b!dTcruXbg5P%`n_>ZZ)98pEIJsh^*|MQJ$Fyr8 zUvm?@2Khj9_tWe^5YeO$TSu^6qS!YjLtMJG_jC*QaFcyZ(Q&Mp(c0aXeMXDLSYZQ1 zzUuqsjY3ci%yy4qKZT?yimZ_wf@0E<%pcT1I z2;KVLm^^o?!A8)!;HV1krZ>e+`uan^NAQQ*yWMO&MZz(5#2`McgS)v-9x%qLLr7FS z$A|mz3xo?OPxLj+de0NZKDWWFcX9sM`wZI#cn}sd(|1rhH2ykj{QCyskYoz8PZ*YO zt{x%9l`tl%|R~4;^c~xMG`JO$~;#eN&aG#%SD6xa5)ro}b+j@G?1Sym9UOv20QU6TEWQ zOigBb#l@5#Go*he>qnVkHwHwW+h=S>0EOsYi~Ef2Y8wZ7?CCSM37bGku~K8G9xkg= zOIwWXX%l?Y`i%|HM5K`GuOLRZya`&aWuHFgtxy4R4S60oh8QU44w9c}xRZ*P{`m2= zk&&X*=Z+$W%&SJRFmG{R_Y{LYPDw;aFX0hVLI~6QyE7Pt$$1Ue#{VmpYvUIQsd#yN zin)(g|1Ezri1SlqC6g%^jT(1zpu3$eZ|Uxef$VcCLNrcw`d%35{#2*OMd#LHX}S%? ze$$C8Pqov_(yx>Hu{tHhSJAGe&C(*O8A*XtQ65Ee3=siMZTtn@K725d8m6& z$Pm%)%MTI3;L7-!k?t_>^5O18BXzwIcrdes8V(#n1&#)gVpY=>|Drw%*mxp929H9B z^o%RvXGXbSW3wqX#*Sw4jCOAIMd_&}GIq2)2}@JSQyngr8xhoK?G-jVCbmy zz}3wo2SaQ4q9Mo~BU6BaVI5$PVV!DhS$TTKI9^>?XCep=3hPitGOW`J>Iq?;1_E7% zb-D+d}JKX=Pj$lkE0$k&25^x34Cs4U=lo&4#&Z8wbsBC^{L?ku=_TWD7Y>0>g zjq$jX47QeHXIkGM0qb+C*AJxswkCO-T|%fLk;ZR0R7ay<1kh7_+S}z z5WYY{LYA^BZ>ovKsDoC56TphWG9+{>@Dw4TKPuc8Sa>OM9kgy(skCkwgrk5rP&egK zzGx7Is%VhjK4XBPY@czIHPleG&uCgrN9o_Rk9y))6N~Mmm0j6Yy{-ZD2}|Ub&F+7;p-}t5;i2z*{>KPo&5?5 zkwb|Hr8F3#LMe$9j^3Uygm`=A5Wlx$EXDG6^?_`VgH1r?s3zz_Sz{9bGR9IUGKr;> zfKnJsDW#OC)F7(V7)vP(ri4-oTTYW>wOnv9MpLw6G!;fut{ozyDGLLXQoUv#)$As~ z715L~Fpxu_E!AVGrtafuLU5+hO0d8DVYRUpNx5k-u5yjJJf@GkhdB%WDV|Syo@#|t zPEPc~$VgG@n{uqzlRf|g<8JjMN`(e~k5=PzXC8Toa(rGC1>^?*No-NMBrdTbdF7avX@7>_u#IzC|m)zVvl8vK+aQ{LPiPqV7 zxTl6-f`?#d{8J`Z-s$cb%mfeqE%~QBO7C)~>pal!(uT?gtOFKQ4Tu{ly3nzz1FbGL zQjbuf*t&(W8Ikd131E?UC*33VQM-m(`>6WWG2c96MBfCu{`0YcB|h$-4hq4ze>x<7 z;rTXVY{<7!dE0EAVoHB6p^iXbHb6J2qI=aRRO^5bgh54ydVaB!pYk)*X%lWJ}_ z06VmnuP&?;rRgRQw;kN-ZfRx=!^3SQ8eHkV{E~HFOXWW^V}7Fd;6v_ggLNPlk|(R$ zixRp+p^C_pReiv`;$&4nN{lC~dV%udWL5g~!Eyh-k;*27Ulr0W+x`u^!1H(U&gR}R z+uSLJZTc{Es%rW$?}^9V6OFL7P+7USTu-Zwi%UEcwPu(cd$Svlj5Rk6lizBaw9~!t zvJ8P*C9IA4Iow=1jIVjZ-HENF@-a^RgeakHwrrR@Bz5yJc}VKPC*6;;mnj{d_^}7l zy6v|*5$5z^^2Cp4m^|?VpH#L^{7_F(-OXbM1QF7ydfL5;Q3Sr` z(A0eXl-KzD8yRq^0RqHlncDn0ID%hz(cLIk5X#WYZ{kQObsLOQ2(1S3NryUI!si5uUk+h^XzGb4 zAZHzLe`v4_ss^shHXnf(ftu4|+|gx>;J>`#ZWMxG?}5ThmLEtEB{;(bTSrWdNxbra zJBfe$rn^oE2G76kp1_I&8Q6dU-+W(}(`jQfgY7%#+kxt6}?9umgRQFM$qd^bYwk-wvm z!^u zNcpwz916xQSS!l4i^Vm!L3tNba1|*y_&=oJ3e2G+dG2rURkqn$9uzdx=o9aw27f);1oGj)Q10YRNd z(_9A+aqfG4`rQU|QKslR<=4#2Vdb|Xqy-`v-mdq#1%iByjtdUyJZw)aLsY^cE2P?X|TKFUl? z;l(M|n5<5X>3S?HFEYO!Aw#`ijgTMP8}o;IQ4MB{CSHp}?;oRhMdIw_NU9i)yxR_X z)|m}Q%aJ#U(%~3ce>53+n*bUedE-XQkvEQ#;R6EQMytSAcM3v|`IKXS$R zEO$^A$x<422s{_160cTzMa)L>H)Lqqxs$_PwN0dVqn14(VbKP_6H!q z=&Y_85Nzlc)`2}53coxW)>%RLJSuux0ee0aLGBmR`vefcu*O@Qa7UOBm%y$Adcc_5 zH2_U0j*+qxq4?JRYI>-euBhwj#eN7Ruz|*W)jNGtgGFFfYg|d(6^C#^P+B*tQ7{2t zy}LAwkE`d&V)X;bOsL86dY+6BR6Aadh6QRML6k71Z@t-`=Uz9nJzstYtT%&AjHbvB zWFRDNPk^OXFv0XC&y}*`Pz0c2BCo3NsVS&op%%|^4wx7UcU=R|l_8iXHuU82Y2V96 z^f}YR4LxohH((S|j!Juw7Y1^8S@u>c+Zw~y&|(yG>y>g04<^7dd`l<-9K$sN9K)ZY zxaf$$9LMlLT;CY}N+^o`8J_jJ{sFaC-_oPC#%rj2`>)e~h&oPqsv-Q~`RTLSm!#Z3 zgh%mBzfB)t9={UD@eMQTGTyC;XQl0zE7e#Ikgu9}Dj4M&IF_f&IYrk;jOD+L@{i@1 zYPzAB$1qrdu^e7@flFJ-ER_OqEZ^5_?rmn5F+4VHT2t1Qf?+^Y&xCa1vCZH! zlXx5*V?%w$;M!6wrw_OA6qtEHFJ6Voqx3jlR$XbduuT}F5?PZdT#W3-xIosPG5+}i zl3AI&@Ki*!;EyA`#vey`xKN8DyjC%5=^9+Tx3$Nmn?Z!tjU=H*57Rd#{*djNXRrsT zx@g8qX~s$lz?n$TyGVZq%^1N?)bKQAqbQN6 ztvPHgS(ucKMMtxi5rfCdZ;%Y6bRbN9gQOpTMdqyISif$VIa?KguD(ICoa%-z$b8n- z(>aW7rRW%O-U1B8H%PWn2sR!bd3bKDJo4~71!Hxdq1AasR!4M6d?n5DC-wDc5YxY> zXJUXDF=M~m(=&q|qwI0m27-;fJOe@y;M(N-Py|qsdMcm*m)|~dz3FOw|o)b%+TU5_+|!;7Lv|_$+_!9y)Zeq zSp34|9Q=}RX4Ddabv)b{0TK8O@NuOYgFQtFSgfLtK7L8VWHK&km@gRzC6J8!a&eaD z7Qy*H;!l-WgC7%r3^5G-33KIK&rS&1iOsq|yA@GxLGUeeJq;BIi81V+Ayi5he`<&z zBL-EG;roKCVCeZ3x$Z|&&kKCpoAwbrb#?hd_Lxw?7d7>FYTLt5-JMTF)#EFNdD@xJ zjuSc0fecF3xB?Y{>%qA^XYrsEUV3(ZWGkp7=-n73c-~wLf0T(V?iOiHe(0OD0laEK z+s6FNRi0SB`ayS1UhCZa4D&sdBp*mH-Vu(JRcpP8$2fTrZ`aanHcY;g0QTmaZyhv< zj~(eLU_bh6@!dF?A3RG+l;joeOU@`wt48VsRg3Xr z=8!LK)Yn)kM*#{xcwVnW-hG^BM8bE$t>Q7q%U%MQ>b(sp!S^->2-$t%k3VHCN=V9D zz&t25LHvpxPu|-&J<&7VoH?Gnw=oTMRqt&ikC%P~8u9BMjm=oQ_p_Gr&5f0U750dm z$4g&YMoIvNxn|eD;Y;Q7JT>IQ8;{@6wl4p+9JVjVuJRO?gpzpkrAs_qZ)zGp?(nqt z?w#x@G1#M|LefljcHg9*w@&PkEYs~No@=cA13B-4BM#TJa%?WaSmGfb2tXXe@%pZUIT7wAA$~|-c z|Gi#X3u@pn%?Z47g(sJpRI->Z=<(h!j_7)^eO@zoPC5&C*8F^Wazr~WF8SZdi<6++O3q3K0`Q`*3 zd7USp9n=JiwHkWn>(q1~QqyI39a5hUUhFBk3=N&oGIy`?v}CVP>1eNS1MT&qs>^<9 zFFt;$XEnP>=`Pz`zgr?Sb5%anZHV{y4Ia}7YdR4UEN54JmcTFE=t*N)@K66-VD;zB ziKIWbohbSwO*oxdRfXu*>w^pN-t}Di>HUd zMpMGeHrohGhHkcVw!XYHYkCd7c*m8s_~hlDU(Ll6`S=x{_H3!9f#2O0QNt~lhLb&Y z;>3~l`R-QJ3ohS$^OgDLQytKJ_Xe8pYE`w_%6waH^V|qu&!L2uZNA4X8A0arMz8h6 z8et!RKz_dA^!Dr{O|;)`?@_ybt~*>dKi+J5B7eTqjF`)}-P;rSlntIX>}{$C+U{pj zLS65ms@EIJcIDgyr_LfKksgC5kvu!7$dG;-a0J zlu7;_HHc6iAjrQrh4}d!O?cTt2v`)pQwUBB2tiH_6P28xM{;@Q(MFe5_zm?w$N(wB>7Mf_=4We22wNPLqWK1 zn@_7^t=pE;VzF*B=5sz9)`uECC^Lw+e*ChQZRp|Qd}c~@Hd^ z27}Z)MG1}~>PaF>3JdU`Yi09CcX~?AZDstAou1)rdmxLt7K>Uk$nYpXF~`%1i$^*V z9wO)<31gslmhspf_9WisNzY{S#WKF`Nsp7gOb~GkMEI&e-T(d}-w*%m`Gy_)3x4W> zpb!6^9~|-S%F{R3iBActB{h_M`LnjylWeeG0tFKrtEZDFsj~5bU7i89h^uPyKlA4o zGj^B4lIQ8+}nIcu0hZPjoiH3{DXYvt#afDV5RPurTsmtP&&jS_PU5MKLPVeL-Ay6D|iVE_jRzs4+7bsM-+o)2rk$s?P)XsdQHr zVfx)w@)Q*eUh))`;3`g0X3Nx7b88MsLJ|#`t?cE+6It|vrAnlrAV;qI4Jqem}!0VVr=lj*lAP4N`PLT zF)!6Pi6tIBZ3RzQRQjUk=ul%O%j;O+P-Wg(4fu{fXXcY(LA|!5849m3Y9*La8fA4j zb2zk{xO#WuO;2-!-9UB0zOZ<*>Zdu*DRp#uihcP!&wbX;ra2FSr;zPb;=O z?+2-}58}lgslc_5TU|`<`wA^ulwSQ&RNY zVA1HgTCwH1-GE+tZg-87&vVWEDP%YNf2@6XU{%HPzxRZiEG3jkOK2j9l+b$>5Rn$e ziXtd2xw(xdolpcpddbq8O0m!}DhL6wW5Mz)Pkmr7C}6>divDIlyZ4^iTYUcT>mTGg zvr~7r&Fnenx}kp=wdO%WOBABkf*@)q>#on+IyyBRwQ}RXbEFu>)j-hthw7m9a||p% z`FZwGl-X;gaI^|9XBJm|>Ci~P;&D-T2{td2A~9;>EXBo`%JVkP8kJ{ij0;J;v3ayv zm7Wg{)urb{oDe!a&2@TF>x6Je**Tt4h;mB~;wdw^UPa4fKo@`1H%(ZL5#+c%{RLMB zL2fk!eaG6Pn%MNJw;b;=^=T73UbtFD<{MYs<9> zO&2a?;03*dAdi^Er=|@3Y0Zy~hv~Z(G(Y05MLLnH`6Zomc30eMhv^mfI*!I1(>H7S5`3b<(0?6sa$GYKbK= ztQSPHUgNT+Pa`&0+F=2Lc9tTY4tv?jqtaS3&LM*y3Z} zMQ1U@zJJK1!s-HPK`0xd1E%%TMyTR zy)7q%PA$1k-Ly{e2D_^ideV}Ep2UYGIe6=mi#Z;_A$SJg^QGlxopn)fyYtWk&}xU@ ze?fMN+Ptc3CLL&hsjivK^uby@314+Op?}97vMqdjhqbTuI1)F!py}|zH+#} zXtJEskvMbFWC@|wMU%YY5$$l%niT z{eE>rq<(R43wEx$QXf3OV)RrX&7asna1aF;T_P#0?rk8-j$pxviPdU|9-LCbD{XpA zte+dJ-*&A&=k<3@;m1DQXyAzg)-SlxaE+3W8x7smFWhLLU;0MF9F?F$xqjZA@?7mP zBjn~3@BBD#7@_k{g%(CJAPgSdd;GzPSBTd*I+A=+ZIIj|HIR9VZ%)F@lb^W8WS%$=op~BS z+{2kCMWQoLzpG#V5%NeyZ& zONl?ZP_?AUNtL|ci&QQXi&0qx;h7|h5{ZF2oXDNFYAGNj>IyPM4r~il^aH4j&q1LW^#+QJCnzP zJLdJz5Ej^-Uhd~gV0y6{g6)VJ-iI_VJj@*HL%L^P2cRb78aYDPp`F(`Mp5?Id2C;`XEcQ^le`d3aDV!;wZ`bi| z7gl2!v&A(A)dal7wHe7!%SJ6SK`m<4>HpQDmX>XYu~|0CD{weE+(oSk-B7}!){K+E z!p7OG!#iY0b@9DAs+*P!ghp?oar@Y)<(%V((h9xa0ssL}{SN@u=4>tAAh_gI(Z|40~ ze9W~c>&^1?0RtO7=0E&@u{`a%@Ouf_xGvo=$Zp{sCB9>F^o#!DNX|K(EeE&s{!1j~ zkS^gF7L|}c$*}{ouXldSR<)jCqN>$Gtu~kE=+)*b3!_#W!el)@yq##pG44V`Xe>0u zI#iGDbC$}kTU^$7+;@xU&k3+L_BKKWSr{dRFc6Z&+RSl<88rz zy5Yaf!YKZP0sl=LuCAGuAS&?6!Z`J%GZa=a zt32nSSNV6c-Bn(Z=vBUrmwuhemM?YpwogB;z`Tt6E{|B$m$G_z&x=lqC>)yS_WS}pa!ZN!oH?F;9NW`7%MpD!9IJdE1%bNe3Z+H5>1*%T;to!PH4zV{4&`9A zCOUU`Wy^29t>O^ifu?cs2r8fU2ICOmqWAsr2s{gO8`uP@dYSJxdD9QxN)vdUN_-rtdI>k*LKuQC9a7p64#2W zO8?Mbyg(WSoEvj>I_ahuURj*iT`n)Al5AcboqKb2DrrIto3WhDOqUJPNW=zdq-aC4 zoHe<+gtIP+p>f|T&ULGHUlL6ax`sn+@daUvtx6$z&d4Ekyj6wOeeP~G7K~K71x7Gq z+`P_J!*11T2(~EVSYXhjh;!Y0`(q{1zT+HQGH%ON#sclfoppytE5Lp-8A zmyYq(+NZ}?YmUMGyv^0O9&rW`T0O^hGe^6F>ISa%U{agDZ?3{0dDXr|s|HnHPU{Y; z@jgAMCUP_e)i};|7B%C8N^w<#ivH?Br9K?K)@L@^>p8QU&y5)7;k>qKUWi*Hj))0T zpO%V9eUe{ru(15%25u}Efop-?zD~ zss?1!tH3Yj=i#cVmsT4$@GY<#_*IBr*MO>7oYb_Oxqo64kDtZ;mHxks`?5OMWJyBY zTM!>KM$g^lPs!DzvGPTiPQ#PV-i#xAuDLiGExejDzd_dK_HOF&GEaGIAF?BM7a= zK{iKY9Q0r3x2+gWRFq*LmL<=bh$gcM|!En|MCTd!I4yea7is@0AW1@0AVkU{&`lgj{k5y-^Hh@hSoC zyynhl#(Nf5c#o`s_g>@j;JvbwM^v7|weo;=F>;6}c0Nh?}^6@LN_u zM_m@jz;Smy;Qie35n4rEfTJUh^H6Yyt)tson+AEY^}yUaf+*G8JAzZXbMF%J#Sej6 zVi`xPc=IfBc{=M{k6}Nfn5wCl{$lE-4`Q@P+E3ocrz;9#cqRwAgnl)iOg5um%siRdoNiEgl4U{$7)Coj}3Qc!uBw>@2g;&R*x z`%eyr_+Lo>72emP2-Fmr8st%@UQR=8C**stu-oFL$S>!UZMEYOc%`?sO`x{e8SbiY zUK_xzp|GcGZv{P9dav_{>o`~JwDGwhmw|b~Yxkh~FnuF=^=j{AaXTmSC~NNK5WElI z_MpsKL!}6-Exl>$dNGE#g_o!;-lAf)Rfd#v^)MyCTV$$_4z*=hbx(CjCrZ0@VU3Kk zU3H_y*LFyCItJyUb>5y%yP!PLb$G>s@7H<9dc;nyLp-yqn!A3+?28+`%S9n4g4r)} z2+S@tW?OAx_6NKz%%-+5+iDwSb~UZXGtBHqW6Uy5t5uqGE`} zTRe-+cZpI%x}#rxm})Xtaw1sVh(loUl_A~Hc3U+hYdlb-h#b7tTVHhMRIr_>V7o;X zWxIL#Lv2}eLb%IGyQnTVYM0iHRF|hDD`_~yXUNnR1)U;&|Il_7@{_nS@jPKl#`hXe z%z4zCC+2e^cw#w+z!US0C#<&A_jP3H$GumIEt~*OAObkSB8YN=dE>-f<^)nK$_Yl} zF|HGwU`U?X!Q#H}PVYdEIK_2{XS?~}(?`bkYj%4Viyt@K>wOoaG_M5`@ zHKX(>s9fM(C~oCMuzxUz!2VlD(dAHYZM&^9rMx?Zna}*(G)jN@i)1J>SOX)x^C(a$SzI30x2$(<9r9B?X(*1MFn(Jb7sODQKk+etXypMuR@ z4Qk3yiKR#D{ZDC5iaUd?N1LN!TaE(PmeE|hX|C>hk=SC#ZLw9G5RuHek!AYofv31) zNq18QPe}1lj~HK|R5Lb;!lcGVDX`^>H(&66<;))~55DMaEEaMqXgx1l>y@rAPQK)A z$~yBZJp^ZS9*tk7^N04|$W5 zs)1>@f#^Fb_$u3ABt2$opQ`{QpP$-H{?9CVQwnXDQERf2l&CfFOg3{qYE4DQ5CpZR zV(J%aP4p{Kt?Ap>y{oMXQvtowm_9#ST@i<~;?!-Xx>S{cjpX^8{*S6lm1WO|hE|n7 z%*v@MtG(rIAsR7Z`UXTC@i`60=o=6}yybmLbmJtbGj$%L>rCy(=sMFKRtr^Ux^;}M zGv!zqRp}rMN;Km+hQ^BdZaAS)q9N8%b*3ep0OgbgM#u&Wql6F!LLTQB2+91V%{6rM zJ}kp6Gd<6ng8fm${%s4R*b@fqKj9eH20}Cb73IPYy>rEHyzTVUqX&={c%Z4|SQZs< z?=Ob^?sE>u@a4u9(1<`H>OhV+qz zpL_q=l@cmBRhARyw~uixkzSb({!OBb1?Rj z>&EJ8Q!D}I)Pi^fs5ZqCAZz|oJOWgkECRK~Nq6lq)ut(&I8tqrlaA_Ir90Js%^Sjw zQ)5wRvfIMu-{Q4ZHKs`0C}m7}$x;U8rOM;T@8M~c;@GUAX$p)rv>{Db>Y|P=FE!`Q zk$}k@rxP%l9D@YRp@oer$-!6DsUGyFET=b-sl-fQPDazZ zxpLe~9yu0HJKZ`?rvoRB)miZ#M5;0~JvgbGnF)^5d!A7ojdkA7m`3WX+{RY&K^ak|j-bPSg#7?)!%7u1=E3+hbKR%SUL zj?;CfkE8e**L}d4ex+TPL{ozFz8Wds`bC=QD?Hr)vl*Gr^K$uY6HorGg)9n59&-kiC(AMds&=RWTMX0 z<6f3;A8@bEx2q_M)S28Vz|@&6QOLJj5Nx>`s$MgPf%@Z2v1tld0i$igy?V4w;24ZH z6q{BMT8%2n(UDQ*EaSRwBHdM%Jv^)y5v>|li#V-2te(18532(lt%j9Tz_~t0&G@)d zT-CUuzizSVqkGK>;y*FW{>_sAV;++hFn*hTKpY)Rc*5ARrp`aNfG{58#nwdup9mZiC%~Q zoffBX_4>ESEXoQ{t-Rg>2^9xKhu(X8Ja9~l<7 zeMziw47OM!kjW+lvSpJS$gyA)o-8mXl(|ZUt`0d9b*EL;ai{mk&^kHm0^g_uC z-WF<>g5!uQ9A|Nb@X<#S5-Y^m|t zQjUSoRL#k=L;GwO$GSdyj2Y)V9p$ra#%J3&tvd(5IYH0CZ*w$U_6FnX`8eV-Y;6=% znu0ysbe!AQ}m(nJ1uBKdB$MaI_E!xWuXPShD&(g#^lw}DY~=0ujUoiDDc37eyw()%bzN&Z$Tf-Q22;6t(zpS&rdK%;-0%*Ezzwe& zH&|`mTGN-D03IL$c)%iv@_?x|y=*){N=13VXuF?zz}Y=X7n;I`>q1kl$t-f?8E#58 z8IyJYqtMih6T$Fy90J3eP1fOVw~h2a3Qc`D6|5&JSZ`59S#K&$nUi(@lV(xY8|6vDl^@eVct8dU&M>&<5qDt@W&<&fj?G}KUCq# zY8z#lDLmyH%SdXJWk#Lp+_EW?b>S&&nJzqi$Q6iZnW+=KXDmbE={rt@!jn6Ln)crq z-H0wqH`Cx9uG@*py6{B0q44CgGZQjjdQfQ}iz77EXm-%8gUlesKsj<0r*_Q}lkZA16b>X~Gn9 zT%5#F;CL_Rc%SCz9v6uvHj5TZwfPX&b57KE;TNh;QSnSKR3}}G15jytBC5H`lI>Ms z?tuK^xgR>OPLUrE&%Ii_&WWJyD_q<6UHktSk=ux64o#8i1x}A5lLc|NJ!g1BHO7V2 z5PPZ)*||M!FzAs@^h{;ln}9wmC%01+z1l^U=cH;7+HD{jMJ7ulY_yLVU+;B&jp~w> zqeOLyr>>d9QC;ex6hL+9TJ;OnCHj@9y5#Za=3CVzyr!<;V}EWrj~Hwj6Dcv>!N5lR z{0;v{C8iQG=+7-HuX|`{71=0659|b(FkNDbBR>&c+{Z~!1DQTmmzbtZ z)g`8NRtr^PS~XP{I3Beys=z@Q6gZyZ7#bm_#6)NmIEZyriRn#FfGWysM#xDEql6IV z$b{VXDI5VAnG@-l>WXkHOvR^>>%)0!a8H`1O{i#L6nDbFgxVbAnn38V33!mHJ#Plq ztqtp57Dllq3|QaFF)nLDhgsuMCVUGt#M^?u&+wmSVHAJD;B|QmIL75qXp29}S6g^n z@ZW6s@3Sz9KVhK%QI2u>6FSTv<*WFym#};lqW+92UvVC~e09szNcpOoBGKimvq~lP zzq6O;G%H0P&a5nlJdks_{HovR3h5N^b~)=d1qjCjo{*Naa=-D2^HGLTIcwC|e_YNo z!xT?Y{m3P#nwHGGXLON*$LHksazxQQrWOiYMHGY=wk&!Sw#suNcUrE>!PvT$&(npi zSOOHb8pb0)VJnsZg{@BU2vFFv2-FrT-L=CMwk$g$g)MOl=Lut=+g%(CV{XaQk5R=E zU{MOiBfw)+7D1G5rp{&QhC0_G&W-}!tl;w%7%RA+=1jNF^$2f{q|cT-ohaMFF-ZFS zWu5CNk*OTyF-}IC0rOB$VIJENy_TmlXlJMCLf1i}RT;E{oYu_-eL)UXSCGHrXzVjS z<6M8BW@?{BT#*h^TvbM%{<@W}Uuba(=lY$4+`BK6cUul^hA@hhy4*>@l)5ZY$n#qeZ2TU~ z(;3!{d8W+uBNvasc4oRBY-czIgAHY_lo@(Zm6~BktBHz|Gg!!8KEobVMTu4os-m3M z9aN2H=t0$lqcIQ~a<1*D86Q-Ns~S}F*DZ71IK!M+4>T+1=&X}pCf7L3rfz;5Wy;c6jtt%hKWGM5Eb^eA(!`WxgZbH$MBGS{PjhhCMr zYOf2Hx({R5+dJ%Ao5R7 z4@Z9d3Rkh2ES@nCoSAwcI2;ox&o~)`R;x=5j&@gz7OjDle#_<>kof%iBFWnV10|E6JVv8fU#TKDUrXX}JQ{2#v1*5QKf#JkI zXGEOHo~WA3)r9NrGp@UjV_es5GOl}&qv5*FrzSP=FdIFO+n!rvJhz5Zx}JM3?70^> z9-e!aadl2ad5+k^a~4~8jx2%aEKA_IU7z)-n8L*Xil?cp#&Fz>nPJD7H@t~i(cxBN zmJYWP90SwvHpd#XC@3bDtSM@7yfTeG=9u+Ju6a(Z!K_G3;015)Dq-H{NMi7UH!jA! z;H@j?j2FC7W4z#vH)bz*yLpy=!P~8z5GoB|D&4JB!W4^_ImXioPPW9j;mN`J{caqh z-|tpb2{d;&XmQhztS#euAutyiCokd{1STF?dz8>>Oh3-i2+UnG%Vc`CGph<_*=yUw zM5@O0!<-b|hllWACnu;4;|Y$2t6pVH|Lyjk+An$@mSrE!t>zGKtZXPB{z!p<^5M@h ztj;l3f4ZztJtQ8e9@_dvs)rTtWATVH0ui8kXc1sckQ32emJ{9XvcS>R!xmhQyBv1l zV2E#VpROL-1Zn~5$J-+LOl?s;wA#AW!y)kqP(8E=)Nv-mjZIT@l)%yT#a}>FomoA#s{b&zRZc>gEu(@K6u&qz-sH(5I^Gt zFrNruzC{paz9}WWV9Y0_qRcni?qTLTJ7&uc=ULF}8e;W1EL!6kZt7Z9=dc=LCMSa7 ztvLjSXU@@`Z?}zfK5B@)I2EiXDp+q(MOkmY8QgG=?tIcL%6g-6r8#crI~C^0Qol3n zbq(=8u0TBNO<`=hu^x}A<#Qrfzn(*2eLh*QDu!0uC_C!vM}C$WJ4i;99Y*+6W=G0I zB?`m1Zg?2$IZT%h-{+ddGsu*H-Z2KDbodP?Lg~<*K27^CjgmwcrKD-_CR5URZH_!$ z)Q9;Mr9+pUnT`3nqn}xuZ*6gu5M4fW*5&ES*?h__smj@0`hQhAY;}Kh;G%TcT!F)R zH@9?n!~J@PGJsR59g5Tce)lNj45DWI^xgY@z3=JG$xu2RcYiVc?!fUJ1&(7l#~GTV zdjuzz*o|8()y_lo%XKzthgRMfwL@MfU>?`6=2Z&l zSM#c0`qjL16V?vJ+;#(|ca1zvtrp`6*;-$x`-yYsythQRHno+*n0wuqi>Apc?kJSwC z;+?DOafKE}G1xIz7oA??7#caIq)2EKohHsTui<6Q!d>Q_o3QBQr{*z5C+-OI8eZZa zc@3|U(1dDCIlrr4{<-q1n!eWQoVfFCGXti6#4H9 z^up8Yul7}TZki{DU+ueI+!7-?uVR-b(SnCC_k_Pu*r|LR@p>;}nXA_D^q8i9^8Q50 zYHvf|?_vs92Sq!VvWT|PqC`Py2`9o5j)iTZ0%KmMkW~dGnVac*Pdvt3BMY!?o=&xF z;}~QC9)CS&xpRyjN>*p}=Q&y}1fHYOetLtNs@0G>2nC))#93tl4slYfhF?)n;Z3^V za1^+H5zX}{%@x6kq%^U`ifFOLS)5G4S==(kJ&VVJk(9Q;?t)b90XDXO zAQBMB$r4-ioW&MBN4B8nEL+^3iv_>j$+u2eV64ZzAJC~qa$RIg=-Hrsnx|f4u#jR> z?TQ|lr?-WlaSPnhb4r23qsM&%^q*un;?^^t1qTej$PG`K55wJ@1y z2STgsUZ=?KMmy};T5~b3b}bax((XhL-=j{y`Eu&DzWO4IQ$e{t^I2yP)XJ%0x~`|M zA)B4d+n=xF^k4S$H5L}c9U>v#5JSXji2j@Wa_6)-^mTgqI*XZqgZ^YMU&APRwP#zw zNioD?MPtuqfe|A;=4)rSm>+SreseXSl=Yjd8H9Npd$t#q0@$;?q<&$~M!(|R_c}3r zRIQ|K^eyZ4=O%Vc!@2cb2LTQRn)XZY^IqT;-A%aQaewhhF?Ms>LoF zdw0%tgGn8H({jKF`h{-{ypv78@E+nc^<+0562C=Viot!G0m_B9(WdFuVRJ#XmdCK^9Kk*>F_8{Ux5@C6;=8>9N1)V4OQasMeg|g2?Uu&_N%XJ->|5uKCNIR|wg`Rtq zO_iBmn*aawd|y>I+vKZqsoq?=P@bOWYb2I(#o)~+qP@9@nL1y4Q+`|Jo|1B5q5l{0 zGH38lJoYt7Li5;Wzz%na{kGj?jHo8 zGeL8gUEcMzj;tY@KD;7JibcK;od*}mZx;FLiif#8*KL~;xoxL*n+dqr-!Gpgzb|&6 zw(PLv(ns&QMY6(DUk9;{>q0*3TQ1sVt4&Nu4yXGkK6_KM_sA%(sWqff z)=e&Gm+!0ZaeiMUM@U~c@duad`tH|6zALfV4Y{=|eWNZl#?CL2jSr8?5a+pk#8{QZ zQN#2{FVZWUWeD4vBRI~qsF-p(=PtW#s^_;c+H6*WBR>7m|ePuk(O^fBh4Zb$w z7A_I4+BmmDrlL-?&<@eg((A<^lQJ)te{A&iyHuC;Tdap=KduL6w$afp>#c3NP6kK# z8q10g`o0o#IF-u&l^disK72zzD@@fT88(Yp|Nw(yE%wed~;@33B;d(=)ST^8P2 z<7&@cdRLU!+>>8&h3uI8^K z*N@7rBKtLM-e3I0*_^BAAK+Q6>jTab7N2-r>Fi=%A1KQ)k@|oNzz{`J=Z8d9=k(&} z$BwSzM5t)gS)v8CvM{O;K^Q#!(w$=>f)pBs2oi!)$ROTKX)2pc@imPo;(n}XoYhbj zLq-`LW?2}e17V=UQjT$TAhgnfzB{3fR$nZN?|)SgSyJXCx!J9L9F$9H6{#RNfv$c$ zzgR9g>>re>n(N9(p^|@cvD~oF*D{@Y(~kHTdGF!VL>or-tKI zXE`^d<6o~|t(dG_;5#bb;W*^v-&PQe$|RkWx5$x`|C$rIdAlzZ7=!Mk#RZg;UtdHN zSxTVrB#E@{WlQCW7XA!z8OPw8ykigfPC6ou!`)n51_$GAMA}k0+Gk+0M0|H zm_!X_;FImuqXep3A1LY$kEU=)>eO$udq)u{4af7gVGVnY3e=5itC+7J6-btEp3bf> z=5ea9+iv+TyJH-x!WswKi?#6xF1$$Rl~}9E&&hJ?m_U88BOX=One3`@s8*fHZYc`m z5!64M9k2=1;*#zLWHIf3D|GO-!@^g5YdqpT&J>{&yf=_3PI54O@ZM7S+r5FdaR}b1 zbs$sx5Rc%y@qx)U0bM$LK@?fW0vz2!%<+(orH#6vSn!{Tfl3~c7LVe!U&vP$MU?3# zcWs%jhH^pKw|u2Mr5Z7&#bnK5c{SvY3)$;MO9q#o8l$_(wZCT1a2hR>o3@UrAm4b$ zcPy#LGRpdQOscG)xNXFlscDUOLFqVM;F%Zf;#{N&_2Td@&aX@Ko%{3e`g}!2h|9|Fn z%oV}>ayi{Z$>l7V6+sd;lndXwHY1h-_EwEc(7#-%TCoIj@xlH@WPNYWDZ&K zp9(oO<51zL#!k@$rIZDfYcH*G=q+TEseu;qftA^%<1m0LvZ5I%i96GBI>jOI}huX*Y{(opBYax559iEH(Fd|@W?z^N^bbo z*UR~NIVQt=e>ovL)X7O5UVXk;u>=T~BVG*Dao&Z&?Ez=enZCh~Q$eEqmC9Ykc8=livFexiU=w;z7u zjL@-odL<)Y--xM^&mxuN40WpIC+N=lM51oSPDY zRSQc3u8p4MR*_S21)-Q{h3J@@2X5{(9mO-Uj~NlF0gfuJw&8_^)O= zVso?I(gLoxAkd)mD|eKXRfhSiJIC{7yJ7y?;=|7v$@%pPV1*dfbPwj z41_$(F|H6ohlL=k^dWBsE#H&+3NESP=9GTo&5%Dc3OFmN7s9Cvoj)@Ql;s##fwQgx zbboh@xQaK^8MBopV`gEHFic_%K^6m*2)o^|&b2U# zHDTygHx*@#+soDy6FJ%yLT$pn!~1CB$A!*>4I+odWWqRs&V+T7IuoXv>rB`-C3}#R z-#7AiNT(>XGhsb=Kj1|(y1>07O5;AV#(P~Z@&1M$5RIw_N{L4~TkIbToB01Lp5b7m z!wxD4Pls8QNQa%^MC4TS=)r3Wj74N11)h56$?=(fk4K#5&9MdiYNb9Cf5kDF4%gQX zEEg6SbNL&`{o|b?tMsLhVyj3_I8d=6zzfu!RS8z>va9swYuidmHM`r>T?@5gp)z2wn)b92Z3S4!Gv;AEE_o5Bg1eUc}r7dg0F|aK2xPP>;z^-Lk#wSCPx3^SGvD(wdTfWl8KUP?cUGMBO-g$ykx!&26$UB7zy1~yzc&+J>qMw3cT~V@y_QAW4!Yl18MJ2V|a%*W~Z81aG9Nbipohn{XSvgaMV59 zI50|7T+PM=_6t@+M4;1)zDZ+&Vc{pPg*vjY_rEOKa(*zdtf<46WWrCDOxS|AlEi|S_4Usc78oWrTOA2; zoKiNntDE9kskce5t<>A3SLpxMA!QZUUr%oTo|uxNpy9bqoly$%vix}-XCHA^hmL&^?vuR5gc;Edp2e4GBg)%rb3A8<6h`>#YIK7)4~mRsR5 zHyP*VtSUi|rjWPsjwK~gy;_F;;sN};K*LPu_tpBnNPk4hF>k>6HIc9qYg~Ki9Z9Vf zSM1AU?ZKg|#u|O-sj88;s+dpF-r%k}EOAhD=dk||4bE<%qiX%#{#s7k zwX*MS|COSBj0UX}Y0$&fAbXGhs!Q@g{>Qyb%4bIUYdC|}%Kwb?Um*s^C~!w21#(;k z{+sQu`#%(DpW}bqjsi7Bd)`$&OjQf@n&9WxL}C#qS8E4~lPljmvw+0Ob(7K@C)dsD z7f!D9E78eyz0bcs&dGJA-+xjZh;o8CxfU?6kv@ORKRda~%rU;o>gYOByv(@kQ)?V~ zIWMi%r&byA?-M6E2~J)guGJ^6?=6fv9uWqo%HKJL2Dmx85*jC?_tr)qT`R65Tf^IK z2uWS1h19k%N(f;fqzT8kLI@oef}?9M-V8_29_#ecmDF&Lu6J9_)G2U~(I9AHlm>)> z22(l4)qv1p4RCgqycvvJW>`OLVH9h^fc0LE0qYvSjJU?*a>mgze&^|<<#FnRn4={p z&_~NXYxU7mHP=VWQ%dylweq^D{#NM}3ii=*AMaXyw8YKdFQXLh)As))YH_~&jPu6% zvifxYS#h3&alZUnLHPO7qQvP zU=70g(gI@%!1=PndVRj^#Hp~C!}+q^`UFeBb?f!{^3*zgzH}`#=Sxc-&KVX2Thxs8 zdW%|>m_^Q)qqrup%x^67a||rQ`O*Trmd!Jk&F56EW%nntEI*-T=6q?%gJl*3mU(T< z%=z*#R|TdWSg+5Q2N=ejpiVH5K0#4qoD6tlc7lopZo_f4}Xw^~~3}d|0oPo4=s4=|58#C`% z;3L(7i-ZMnPnCT+XPhdnhKRe)sxV}MVOG@*k$83sLzUL+&1P}xYPH!cLjSMMT+_K6 zcfe0o;P8OQp=;tA|0s{MmUyc}*LqHd{=%Va^@aokb=wAgNTJzNSBCP*sp`;`&lw>u zaOf)BppOtoIhy1Qbq;9}$Z&o<~I#1~O)%^B;H zMCzYq>f?+>T(PB%RUfZfEV0o%)|23*u& zqjpiF7!maoiD>PLNbIBj8?}#ah~nE!zA^5KCZ0sR@7U<}aM(pSW`#Qdju{hn%(y7- zL!D8HIOn-q_HoeK&2>QR?^>3clA@p{ z^b1Zr;{T6FJkJ~Ah;@`h+#{9+Ml`!etPeKoBi4tU6e00mBFn#UEyo$lUEV6_ER7`( z0ck;$1~^~bzLU-ue{7VKchdRdvQ5!3`FkP-k~c+Sa>Xt>UtEd;(mi6;+N6(ISHx&g zV^e}r(a6;RN32WIpvJ;`O6KqN*K~SplC}5x>xiB)3Uo`Pzzwbf9rpR_{k01UX6*A{ z=@C{ZU`{@~QHS7;jgb(<`O4aX;e5q+kZvGKoUi68wQ;_hr+(plMZXfAuUbCo-yG+B zRsAXdW8%Rm518}S1_n0L=WqLm=PP2O3iwn-mS3OA|GVWi2zrW0-zCu5p@=r+TNAig+#BG^aN{6sK4zh1=@&XH~h z)pS;G(gy<7S|12XZKhxQHsu%k+oY4~_IY3}XMjuB?z3y<6(QSe_mTe@(e6^qP3oDv zYI5#TzYt|P-%UsT?~7U-f}=o91>r{liwH-7mYm4l88lO1Opm+Cxo)W`i#NxVocwHP6FGfdybR^o&H5ZrYO_8ExaOI2fF%suK?|bB zsHc}=Zr=5JEisIo1=e#_VA^V9+G>t*&jJ?MHSGyw+LN40oAyhIOwYaq#vM&)oH+_u z;$WNwfpO9{F0wK7bkhiAf0}L9vs30~or%1_6?H@4yaIcKDY*B9f1XE_ zevm~q*2-iKao0)<99}D%IJF*>-@Qed$SXLNS|&X;Wa_SXo!{s|y+~2#mwtybk#6Uk zvw$TDtE2^iY-Az_zfV_IdORqnzfV_Idd4WwEr9|zxC*TLfNrc@k^;0*XyW7;<8xzV zk4zwYoGbhP!uW;8_{A{_&?`RTdVjU6z~3+)*L5uKP`A<_g1otA$bA34^OEAD^mQOYG-ph{!9N z)K#@HGLRVU-@1Bt@fvTc@~25JKU7R+jTqNad}yIm&h+I71MEf;xEK$C)gWTN8^J?h zoB;VrPcgapu>Y=VsRZ@D>Ey z6Fd`MMllJ4$^JevuS?TQ*_l|OR!RuY7n#cI&-s56861r5NxFjY?TJN6+mm$JX~~c~ zMN>}cE>MjX7z-3dEZd{>;mxs-U-z)yqg=-^?jFSgy9@cShxHz11gCNr@_S_Hb(&W; z7V#vbxbV#$PY76iu8V=u-yT>IGihyMyY_>prCyys5O@ zrwn7#au*m#r{$9TjGo%~+R!3$?uYA$>U{+@!-nCmm=*)K>J5X>!l)&kFxW6m;+V*4 z?inbTl&05+;2Csc?=I=fd3!ABi?^C3eY1rkOXvys2p3OX^IJXO9p4{1(@>ST@U?yV z@v#+CIA>%UJX>|9LABOv`|Ijg)va=2wLr^sa<09WCov8Mr>X_|(2F)0NM7Qz-PGw5 z#haWF7VbN$2fh)XaWEF{PZfkO+!m#~aQ~N6x(oNu3XFxj5_PKbX5Y)cwe zH4B3IL~PTOUCC{1%^u7Zfn9ePyYAo^J=v*StQOd{YrM8=A}4a~8kfkfS&8g2tFi6@gvbx9J6LJHwa-?l1%C1&$hHf#Z$!0@pvYS;Z9I9*ecrF0xpQ z_jyCi{#HYH6*V*q46C+8S%szP56%x({c3vaSB}xWrIscO9JMr6*v>*4%2}KB$J z`ju!|>e4EZXB}qs_m@kw4wUr>AGZ?gQs+R;c6}JsNS`k+{Xk2vpSVeGY(+03Xx=u^ zOTH`uc(7r}^P}#$JUdoY&ZO;nU8>%W=CGx#fnIYKZpWHK7ypi=1=3dJRcR+4u^Oqx zWsB8F?sTdYlW%kgTq}-RP1ULI(008-yK5Soj4pes%G4R})=o9jKI*|)VY z$^yc`f}R}XvL`fWpV~ceqZq=Qg8iL_eZayf_JqN=lc#Wu%bw6K`>`UQw*u#-hVw%f zMsX$#6yL)!E@wi!oYUmLuOr1@;Z4E*1;hS*3!~T*2JFA&7?(YvIs3M~1GkCG9_4+f z0_S(bzBI>#7KR3R4EJgr0q((B)vqBeXO1*Q3*HiYnkJ8$JS{Nw(Ga| z#~(v_FEf=wk?&=Yr{Dzo9@Wt8dNZS%>&;A1iJiJ#ew!7jmrf(n-pmZ=5srIQcij-6 z?D9CSELq%VS>Csol9+I(jDHWHM|4JWwy1tQz#$~aT!gw`fw4iEv|Uo_JFVmjC;YbB zCC{hdAlu&@_*87+#8@acKZ@l~Y~~pChVd1DwkdHHLRNbwpC_CRfvX1j4NmLgsp5)xHW2jNIdqY|I^B?(BTTN3b6`eKinmwT6ZjNBETkHEdiV+pJ%_ZYY*DJ$@DdSZ|J z1M2SuZ$*i()YT`>_)1-a7|!()ac-$OJES*0Sw{@<$vR7Ktj??N3N#SCIcK#nD_7PW z9H?r$5-(e)ZpB8$>Q*e>cuFD`TxJL@mKGQ*`UaAq9&uXxsD7i#z`FxaIbtT)1YtDo zF&#$JI0i4OKR&R*+s+z7s~6R;<7hX6RweS#*2fS*%0qZ*{R-lvVrK>CgV@2%lf#ec znJ`hsO=Bj z=n<{BT8P631N10fCk{p&wt8Itz93K|4gp^AlogL)P>6CgwgmNpmwR|yyh4MR;}uVK zTlKycdc{+7F_sgAwP`pyaCH=OMSwSz%!x-(ZA@GO_w7!r;!)vEL6%;4QO7Jbb>Xa8 zLf?k5yv$zKw3{=9gYmMar#KiU?S5Rpqa>C9?ACi70tjQ!_LePbciGIwgr??{wf{;W~f*Rm=k`DM{sgs;O00I@U|kclZ9*8*FP)@ zw24E2mt1AUBf$J&sT4Jc%$M$YG?>>LwdDNVsiPwYL$8)Q_0$ndfT^Q@JOWG|76GP? zyLnqo9mE_{M|9ip)G;O=1zvAtQAAmts;3TaHNFVwl;07VI#hY7V8ZHv;}ILU5KJ9w zcIw^88jf*4n^Qn&wHtYgqut%e{+$UXk7swo#w9XM;wnC z9Ijvxzp~F)0+cLJfb;gh%U+8rMo1PW8f=1D%^9Ic~rO;$17iXddQkH z192Yy9Iz|mDm*FduDa$aI}(X0))MKuC>H$4mcW<70xJ_e4V41s`W5Yi5qWoR3kZ+6 zk1Go^ryDb;a||Ny&I-W~oppp(k+*@PBauga8sF6IyX?S|#6|_42zb@?C3e9|fZ7GqU-yps=ezW7^~)%><}ue#6YxH#mB;xBn^j_pNh4bOET`md zEg@w$k4Nx=S5|ps+f~4GIg46s`rqM2m;(J8%`% zL@TU@;7BRl)D-S4gwxbG;dFXmpod4?&3Pi62JP0PW)R09oXS?Yy|oP9GpV>dd0l!H zS++$+3uhv=R?#(?w~j=YGd_{~W^4CFPFZ7!j|#6boDaeaC-n8Z^^s^JN2~C1)+Unh z$nMBk#gT|4U|O>zpnu3>^p9n++dr}3>;r*~!UAJnYk837wKpvd)tk_)hG6^Y!N3R` zjCpO~ZfjnXX@>&G#4ns5I_O8!K|gW~I%vw_z;UO{9^E6Ud*TLksXYk-y6PT#z?URG zsz*w4KB`CZA8OOoX|_i{`_h7A-F|P9NJ=Ly1tSx0MN?wbu&2LEo(*(#ZrLM4>qgWR zw?#1?>fDrw=RJEOJ-zAe(M=UA4E9*fr`5R1nPdb^i4ia%k$^dI1gN2I2|y@O-yoE% zzHvh-7X17Rf$N0@#(3}eVqk#S$u-1yw;G1Wds&+vp>#GXlu)vHoAW~`y+NK*FNJ=C zW5734m2509^m1<#e8WkgoYfjkP_nVWQ0`TV9h2a3OE#-05v9IWcR!`-)N?8K(f_Mw zveNgmFm`i~RTMa!d&JB7I(w>(PHMfE*7OvorfAE_5SREOQ%iYbSGjjE&WqO}^AhO6w2XpftdRxTCA zCZ5b?CZO0fMF~K$X{!2#ViWyJRBXEOt-#Z<#U?r6?ZCT2a$U)Ob9-_b0~_h{_x;0S z)9Y^q>dN&y`&N-t{}sp)TbKxa9U_j-s_JgI$(`w08?vRe^v z$25H-wrTzcft$qX=$6h`dv)dJR|}&m6ofg^VMGg2VjnproT8;3t|x1J9Jt1_SC;@t z5!}0|$y=fJk-krJZfs!`XTqTN(Sc*Y8Mi12t;!P)vBoXP_^#5`g>9sEOm%@1=<344 zy}G)fn(OLoJ`kQA3?_VgSuw}B$3BJ`onY66olWO;8gnMvyXoncuy?+3rdp>vnY`bEBkez&=G6@f;3ql z2`y4}-J@XO=|C@!c;qig&0TwoR8>->{{>x+btkd|iVY^Rhxh7R9=m!48+gR~oINJ% zclPOx**hGAb-(lBoY$Ol`}C`9e&lGiMe>}HrwRk@VjmK{C{v#fv~axp^xH$fCH`u` z|CTdwclZ_e>mB~(`$^&O7*YJ4^7|8PDQfQ53o}W;7GFtFYd!r%qPxw0y{l^%!?IN( zmfc;J*wqm$to6}KXE}H7*Bkr0qL`bF{Xi`t)+^c4^K77b5)B%Oql1#57JEwq7JKRt zEcRB1xQl%(7~ci9zK$ z-=$7_LXVNwgvQOx7RF<=Ncj$t%jiQ^iED$VSyDr zUQnO+H^>|QE2l~EEG$H>X1sy$a`tI4Q!}Qqc`(3ygUV;r!$iI-H-j_(a0_ zi9{WB?1{e&=W;rnEujc!3xfUeFZ=cW*o3kySvt5}e8<&6B!5kDM%Sdp*Bq1j*68t0 z(E@#jDqavB#7PAR;@DX)Ri64muLU?l{rLnwEbWjCkMvhf;UeHclyoi00IyFCcDEIR zMPED-wy0owxnLWQ=*cyMHQfqiYO&mEDI9@ei6quw!m2dG-5gB=$4usfv{|ta7~~e{ zLoJO>6mxGUK5C7-o%3h}YtacsY@X_u`3A%bg_x(+l;`bdg)t>LE84x^cnC zVp$N(EXZPA_9P2R%q&(z#7mcgaJ=C2iFlp6=eVBban3qGI|+44e3Et+>Xg`+Gj%st z4HP)Mxx$+}?i?K)F>VB;u@J+7T-PS0_F&z3^d-i1!kS_`($t=>_8#>?r>* zT3_}Q3o>-<@0w-o%$F>i6b)h*j148Z1vhQfUv<+4WtCb_nX<|iF??%0m0(6~6yb}i zigLFaSC%i-xDuVY`4qe6MI9Z;6qOKZKwWP_9WUy*i>rW8Uo2BnQWVrgdI3fHqaHDy zH&hQFJ7b>GE5;a(LCjJ?q@+CgYLSej`DCi+wIVgeLf!~2oR`Q{dXp!)5Yv?B?iRHx zpc61ZJ*5*cs<}?UoKU|?KP{_w54KGwkJ|~D z^DGP`o;!WGd+;0au4)(VKT^1lTz6HKOU}Q9Y;nubc=|QsLt2DKfW4u%wehp`o5#(OHd(2bfXV_oW`tb5bhDxLJ*c2lRQY zF-K!Iy81wZmAVa)sPou~r}cTPE=f>(zPg-+yXVU~p!Whda&(iAa)x;l3Aoc0fJI0N zP>T@##UeEJfL=Q9b!;$p%x@d1U7oqB{)Y~UE=QaV!=2_T447e`6|~F+dZox*s8on4GyLtQEORWWdByY zh)cz?OZOs`W#CV56Y-z_%@er}&Qf~R;qV-%#Np6t18tD&u)um-r*a)d59-5V@q;Xm zscV}_yqhuUV1k%TJ*W?dDkdYj4tHdkN2e^II2>9KY>i7F&|Bja>Q6V%(U$9jan=B=28sgJ3&5h4kFyhk!yYcx5R}t}PH3VBEIxKJ`(Q)u^kR#C%L#`7Y zul*f*mFTePRV<(6q=;p!jT_4r*p20%Oe~+b_(Wp)heSPf*)x9`%jR)8ODJO5f*_Wg z9kgOuCpxZrh7B!*a-C;%DA(Z_Bs#i0qmMz?SQwS_?j*B11{1w@pwBarNLEK7Pdn9E z7x^3#hTyVk9kwp3zmkwP0;eq&dr}aqu0tW zIGGyPo=^VD-)CKas|C~ZvE0-*m@Yo%Ty$KjqjQNv=IES!h(!V>S#>3cUh^>|D;TGo zQGveR5NwVKByw;jQKA09YR<>c=yP*}Lpop@MX?_0sSmEP8Kl;StXNT;urkLgk7INH zLwfDMAx1#o1Oo1G1>n?7jP7w{ zg-UY_qSie;UwPOZp6l^OSop3uoM3Cv^e_SpajQ?y?!Lg>N+r>K<^*36mS~)wW11#& z!RquZ`f^Crj=sE3N?SxYLKi=*kI?52MZAb3w6*ug5t^S~m@D;t1|?eGXHdWNeFk#T ziKz~~d2<1Q!XIxVV`|9E`N3<_05->-Fuw{5Z!xB%aY*rf}kdJ$s4Kv9o9ryUCle1)vyAPF+{Wo7MB1iq!uDl%7e{#!G)fqSQ zP28<3gSU#h46eV4+iz8{yHmZ;d>ed1S{0db_n~C@+N$8~Nv#U0@6}hr36Hz`oUKYY z^htM>G$-^}CC_%d;>x5fVpVfc%{t;nt^p>ueuZkhx01nb)sox(LubnGaz>Rd#dV++ zdr*nH<96JFf7Ef^3i_`LcK0NWC(BMUno!Q$Q~jGZwNkDWIdTF+qe1pO4+!& zzqr`Qt;TjjT?up67Gh$S4L7X|v&(EnBzBY@XS=O`Dd@TC^J4a!B*LTSyA1Zj$s$TUPdb z31?-YY`HmDTdd^LRkxLYMnQONttgaTmgaPEmKMs;2wx+)a8K}G;smEtF!vf!ST;$?wyX)2xm%6H1U8d@^!~ zT)8Fa6}$mnXCQlR4K6BG`G`AMsDme0?<{IEkfb%Xp4|0pv8$cRM^uiji#)rgY;xa< ztPL?xOYi(C|0oDHh?b0}q@LCJ)yw0E%4u<=m^?D4N>w@dkzi-hjT0hAnt*0SO(H3E zc5p?RUbc0rEPZxxd0A$ZpGNxe;8o&w&Ib9&n~&&J=ST~q@{xo=K5`t#z*o2sMrf6f z^xPnq%%<~8XZ8A=_&TYamK{Ozx6+?wnKU#AMkca{B(^P2~4qhAP}N zvUN^oDOwp6t;h#d4}u%YlAWjz&{06iC7 zzdI>MaSv7oi+jpdw7h>=&RXh+`ROvNfR4(KJryih-c`%wuYNuvPdpXuXzPI`DyFGr zLHJcjgHpJL?k2sy0-NYlFB)i3u~L zeLU#MF_Ggz{^4HLoujn;9`04kGEzmpGvFv&g6=+w^FUPWdz#eGU=DAucXT9F9Y#xW zp)^ifJAK7?t_QwhPmQNd&8{YRV-lsFQGPvmrI^PFR8qkq0;EDL0yh<6f%|(yH46^C z5ghLk8#yC97;(>=!LDK(2di|Iv+-#DTfruA+HYJP$`nsWw@)I*vP(+QYH=un*(IBc zes5f1fO)8=@+=w;_FYXTN=w59a z70miqaB;G@$hpEFu&?N|d^9S5Ts$g|p9(gz3D80PzZus+T+Rv5K}67`+UROlKtaIy zPl64^RlGeMPVJ|B8f;|?AZxCXWlNV$X5m#&ht~zNe)`Z1dGf)^R~3x-EI3$*8#q&p z&?wTXnzZk;iZp#i*~+N}L(T=;C5d}DC9FF6eWq0JEy*+}2V| z;RMR8Qi^l9m;1}z+b=ehC!Yz{mVch7u8tME{;JZ$#UjonEcUlwg6rZCyqX@WCpN_+ z=y@U7DGmX;Yi~3`5~)Hj?&w)B4n^NC=dI2 z{hz_>Yyvf;D!4d4KUxPjMHgM+jdm9=cl$=U~`) z*D?8YiBK<_K-tK~SY>VFKv!UwS$$uu#-`HA4oyK(4l{Gp_0MXD?W)iw#i0;8(WzSpd9qnjveWHZ znfk}jiUsYlM@%p(x5$3pElqMpG0~4duFW4%LY{4#AH(Xcz}0_(`jA z>7n{@2r!Y}8;_uWMreE#LB#I4oB$KPQYAd$r^}7yL+SF7qZLa>F;G@P;u_8%tm3UT zLLH+BA`&0x1Yu8it{J*EiXbB4FeeC0K(@y6TGR}Xq2uL>=kx%lxQU8a6HuP#+yS0) zQ4J4d4KieEi-JxRvjwMWhaO21zj7r`skd}REzM?CKX2kw)C;v0C7zECYQ*Px#f!&h z!F%;WS&pd8nM1T^NMd0oW3phbo0``R#0XZ!ug4$}&&3Qhu z!d_MIP}|VWN#Z1D8ZY=7YSIru+E5ODwn))}l^sLvJ>ncEg~Afel*YXbOi^!Z5c8 zqQb3#w)}e&ZsdWea5JuX|9N+qJMTO%+jI~0blxN?wIZ$T9%`Q?a<~HVyxdgF8vcS_ zf^NDl)KrX*A;J(JuE2bV%e!V!pJen3{pk^NIgN60{yOTCB^-*#nfrn~(L2Iz+K)>zE31W71tDAoKKflw^t!+E)tH)f`qRt7%naMAz0ntig?@RF+H9CxiU$W8Rd`hiG>PaSQO}knPecjAi zG~vf*cOHvfE2+*N<&gow)}&Mm2XOG+bM zo7DUz3c}$x)DbOT;-f^}U~l@89^9%<^-of;rtr;Wngpv5ag$@0Ct zP?`*`N~%y$%^$kTNg7C2qGmPlB~`OZm(ygq?sC_tjAU6g6#CSe{!;#^P+c*T`v6JX z!8g{(^t{9}h6`R&N!unBa^fUxWxuJX8_QcqhpJp+!c&Ho&u}KaBvZ$Px`;_!r7o}d z`j%4wUdbB&lCETpeW}1RHdM|d_Hq)MS1=>0o>ay$rRhQ?aF2fXE^20CWWIne3!uA1s=Ug>~ZyKEg*~sxZ;Y^gfIt&g> zw?zq6=x$x1JGRQL!QWqm(U$#6@cw5?H3jqC9djD+ytzRkrX8wcPYr9)iC3MJ^P^uK z;LWe!3ru45s1&GFd}$+1P>~1l5!740CG$B#`K)!Y&Vr$Y=?H(PD((LVm32#`eW_Zwh{wMah|ZqzXbpGwVXHEAA|)L zuW_4xm#%}4e-!>IKSna=T1q!o>^I`@xX*g;SGms`PHXU0aKKwLq%kW?E1-{5fp=Qq zRq$Wstq(!{lOZ{*9)&`}X}?LrEtMLOPJK_8l^^%hZ=l9egmyR@&&Jh zP7LyR6UK|_vrj^!#IEz4T9%4@*aAo&>YL3JSZ+4|@~dmJIVSE&5#w>Y`Ly7jCN`cg z{sx&h|BW%c^}?K1@h62B(0=+Wbqm~9u4T{po!xMg9bP5*CGZh9V$l^#vTKwiUWM7Z zC})+4ZyF(|ZN^v-yp8xDjs>P|ax74RaTqA$4jcx+uJOM*pF8YU3I6t5Ii+~xcXGm9 z1jMiqUrgYlHuMc&4;lI1cXIBqI+TYYXJcB7%ZNJL_{&QnC#N9bq!~A1+EWCaGy}rK zYdNL)oA2fnSFw!MN?(fQWYaGX5|RoVM8Fk#jyHsy>p7)W1R)o`BJdK0cZ${WJy_Fv zGDsg{W4!PSNXIXrSWdBUb*W&vDLPQjcojwC<)+UlIp{6=yG=Kj>=X{j!+fcH+ReDGb240-?b2>oTe7T1+UF z33q;H-_5Da6kznCf?0I~`L(ox$t;1g5H?exkx0bqoLsfo<-2^-RN3o<;Z&H6an`5R z62vkL--5FC#7EZa*5s5@iQsAZpM|RR7es#CCU4d(_#~%+i4CPh(VhdhOM4EaHHJN3 z+%D}okyZFegh~v8d5<=LnMw@pQ{Gu+~PkGn?r&o=km2?^wY@QSQA zMMLd9x0CeJp*y|x(xkx|^|Y=#@u?fuiBbT@`ZEk2pc-;lrlxS2g~*C`O6I$v=u?Ba z?y}~8x;>|ciLIpI_%-+sXogrwqB!1QFKluvWDy@H z)8<{o32_us03XIbcOMLkF%QR2+n>|H3+qTnJ;rA)fobr%REs}9xIgD zxgu_1;Kh#*H}mTiY(sha;T)@%wg272unf1+cH!E8EGf~M&z$m@YyZ?QbNqRLpI>RY z_J5tQz_q_NeV2T2;-y_=-T%G4JU$4}NMK09f8hR70!9^}E&!HNZ=Yqai z`5&TSxPIQJlRl@^2+~l4q;Jw1B%OYtS4)#Y85jOxyFqErbJ0jScsB~ow|y(8BKS=@ zC`6)FDL4`>JPT|7-G;af&XnMqzXb(F%FQHYmZj7PnV|;P{C#MRp$@2assk7OUTmH{ zbr)ImcR!z#q1s)~(=tj;E z)_@{7B^v%G?9?d;Zu<3?1EZo}=PC5wtQ(~Xokfr9T|_a?L7+>BB|lFbneUh1`LCRx zO)Q7v;JkFy9yu=^MQe;`J`G;26zl%!v>K!NOMA%7W$qriPK2K0w(vK+MPK*>L!6aT zhWhei1!aP>QUJ!~1qCL{3(sO)`76cF)uO)g-%NSnL{Wjp$oTp{uq&+;C*8~G#P(8D zoEa%Fh8rK zI=BMA`o#+oOsPX6qX+plVmS__l6T7!?SY<%ztYp!bukG370EsxrZ*4~(`< zSBtS@tb60@nyfv=_Y`2tP|*737HN__}QnzeR@9VG_A*ed}1FN z>M!q;DFd}1V?M~}$K~Wa0$5@{rY!Y*khY(67vXcJU-;PTIb|4yCF!8p{W2X?lH#Fs z(fbYQ;CY$dw{z-+E5hm7AaBy)z@czNMPoY1vl!DsO0nTS=~OPXp8|+vF&(57qy4t* zlj)$LywgEF9i$D~BhxEgL|F?h3;)zl1}U>MTo2Rr0jSkE7sK^%?$t6C<0cE~a6z0a ze&K=`e)(DuPpNDf=Vd|MJlQgly+s>}3*rT&MCU&9rN>+lN5(z~;w2aPm*OX?fGq0> z3%MZvc)wf_f3%-0h<{PQ#De(8{c=HkK&cTcK&Zh5=I^w|SOG#ct^fsnu^_%r!EkYT zM<*S602=LD&(u@AGSL}B!F55WQl@v~{E9dO@x~@zYd~sd* z)B&)uSXaK0YH1R`LbQRdE8nDz!gVDc`N*PjV}!$GS9e-0hBz|-%0-?hhFIkBV=)#y z;fL#wtON42hXM=hk9Pdn{63F(cexcuM|r)jg|YTjJlwDTs;;G*iM^zhi$nH!%=vX% zEIO?A(gFT`eM=n`0T)P91uR{FD!lN!8M#kb;Qj9RDN#dnt7$PRKz&nn3Y!%Ao)v{;M5e#-tP@zOgwx>pu{|ysbh6<5r1- za^4YnFn?|vOIs8BjM74bu01H{9BXNfVbPy;i*BXWXwfayqI>^?MI+^m0~n%3DMQ_& z7bp|7=vrw}3QH`i6yxGjDRCOJCNm!*evEch0MQOlw})5dlw!04cJ>&Gk9Jf54Ld5u zZgx!m4@A(83K7!^YX_6djPjtg*pAY|4$7m+_YTOT$#)LOZKxiU4R-ND|E{5-qSV>L zja?}FA$=EW9K}NWS`U#PJLQm^Qqmp^i%PKzHRh1qg&ILA0AGCzS(6R8D*_p+PsxEmQCUGd`sXR~|Yoi!8O`sqPjN`q#wfuhA;HAe5x{Z8;o_(O_b@fUX~loe3*Ep zF=&L+Vhly*!@O-DSQmLB;1*T9H-zSWEgz@|ZeqpC?x=``S>!SOEcvV+rD=48rnDGk ztEbE6iGbTz9laqO8(^8Ba&VKav^UvijLp!#)xBx8;Z69un-b}8!c8Ym#Py8{_p3rO zoN&J;e&K{0etDU2BR%?9jFVnH*b){ST6sMZD#R^x(c><9@XMWE(I&ooh^4$a93Fnk zNbb=p7B{=}80#c#Dv-~{nF^fG#zBdAHm+xt>^wnziTEc&Jg3x5{PUf-u=5T4V>}xt zz+OX;SFxHr8;8jFHWDH?5EO(s1#82qpFPXhV$*hPr)alxLShUu+YXDd3ZIb+ z;<=NW#%XXldDBQsSuy`YD3Ce;K9G<q#ti{Kkrpwe5-&X0t|U*-wRG2ZAA!44L#pwDi1wv;d|;UBld+se8&~bO8(#_%lqsOl@R9vV{1fLHk*&a+~vcdWafXAbXUWeRls->06$xT7JP>OvWV)**CZf>q6y_4=ElM6E*!I#m5{& z__i7FkRs)--%(SF^wDtEV~tm7yl{ScG*2IvT`fOgrX|JC{5+^nKB;(=Tu&Qw3a+P> z-ewNrS*ItI;_K#G%JIo9o(bcTrzfQFU4!d~^Mq~Y09S1TZ7HC48C;*`QB@gE@(wYX zwhEmj&79p4#*cZHtVg&Q1Y@sk%fhJf3EHBgyw8DQscaEtE{t5_TTw#C&;>{J#}|*v zJ3*6oTXNYhiU)zRJulo7`6#yyRI#=jyqp(&%(Fq?cyDdTTPeDVBXyRKqqZBM^jASIvE(At#Uq4J`VQ@b}yRXU>i7+%9d9Z!7A^4w$V`1(

o4L%2wzY^{tVj_l76(Io zs^#GpS0q*x`+!+Uthliv)uCAINMl28t4Ed_UAK>&@kypxL&KG^NNA|YA216E4L4R~ zE);u_*>RA)aK#l-2E~db!DxsyC^n0g$V4JQ(O+?7mI!b~mJiewyMftt-bLJ4`JP&_ z2bdjD#hsOpcoj>`*2fpSu9WfpX_i&hI0RB3pt@-J2vSAf!z_OU>0;&cJH>v(EIz+; zW93UO#lFkz2W#C~`8G({EK%W;kAqxE%U2{S@==bAuSndImM;So`zNz?@TGt&uDsQ+ zSnS)YxB6YIyjiZ;XUx8mg;&j8w7lu9=$(>r9d}mV=2PruW*2U9XPfo6d(R1G`Q15J z%JS-*iu(hzpP6iyy4mCfFGb54D8Jz4iY!N;+hhm$}(&RBz(P(>q z40WTmzg)$#pDOLh_@n?!OBMH9j=K}joGw-#6csB^g%Nmgbg?Bd@n{#aWcsn62wk*1 z5UR*;ang7obc-y{Sc;WLj`Dcsa>bP=4#mpjfT&z3{DE1H5x0I&=7d=YKCB?E= z(=JvP(<-v8;;@)@OIj9jiv67neILs^S6o@JDb`xBy@K|)dcb;D#`f~e#meeTMYdLF zZb{2pOR-Nm;|W-Mx#G$?NwMZS$!4=K{Ty;-Y%hphk!3xkBFoAK>mj$KWnrUOS%~n$ z#*S<2aV{;IIeCgHE6WQLTc`7l&>fzNO{MoyGvk|U^Nhu~A5LUQ%t9_uLkUA)`2 zGFPu3uuesCs7T}K!fQop(XXV}rSsdJW#QU_^x611K>8y5w0=iliJ$ZD=*#dk{9U~& zevsPmV!Vi=4OP5C=;^z96)z5=Fl#7$wcZ1NWoP1QeF%O|uGUB3r`j5QG=3JZ(TCyZ z)*5{retNFe$Kq$-T0IdzrPqn^)pfdt(A{-n?6zJ{Mrh}H2?e|-F4N!BBiypz`<~ta zf6wQa_w?EUymmt=j;X6_L`ix0`2P4Aub?8@MvBkVvlUxJD;7>H|G4QMpZe6Q4`U@h(bA|9y;&q2rtMdPP^^ z&kwEJqz{JI(@ki(OVsZ}RNy7rqkaN53pZZ69FsI930vi>)ZYm#lSwVNA>Zc|wF?=X-KID4d9JQ7V2HZHFiO~=hf=%k zdH~$ww(BYQIka6*^Ta4y#^iHp?AaoNA89`U$vcRw&#?x z6J78*E!(L#!q17FdNusq*{OHO5Atq{pY&aNbNnFfT2!!0Fa1&m9=r8Qppiiv{2=Wn z_(8H2Y0Q_nW7akeE>E|2>!BWxD0`1yjjHa^o0NQ{E~fnuZ2cj+P=h=S`hJfdQ_@gm z_aPLqS8oC9u)XLw27S6uuTDSiMWGA|-KV!y{*Y7Jrw1#qij=ocFRxrXdggOQyfT<7 z??bPxwO{YU!c#FL9O?+UvUvDlZ^sv!XuwNgk9Pan=pokkcYtZlm=n46B{xojq zYX|hM_`m-dyi3vfW4%58-}($1An#+;V?IqdgIB3wZ|OC8bb2P<$IPdWpXfuutp5Z< zOg{bl32uda8hKDp!q0K_v*a5b8MZm3$HH{%8&uBrL%28c>G>f&9Y5M(eFA>6&*I?n z*mM6-bc{>`BeUhB>UOh8h-Xs z3?lgyejfG*M^UHwRP8f;41R{QsmuvImI9(fN_dI#HvZZQO**bmSGAGf(}OP54yi)H zC-nZxG^dvbg*$^Q)3Ot~S$=(`j809EG&y{XaXR$y)%t@vCYu9%Zlc zFJ-CQhr%zQPUn50$12MYeJJSye182xk5d+}!IXCab&&j}-cwnU`_a!AFa}@#Qtz!S zr~6UFMH~S3_)3pgr5xSggU((EsYKs?iHe$dMEA-)sRt|WYjAP3Z-r5}ufV0A)WcLN zbq7$+Nqw#g+!{dbzQyf#pn_3~;t%1bnenwAq7vvf(1Ugcmkp&|U+aUF`}Tq4e@dUM z_^?4xsEocr6Dyy#60v(?|I>Oc70>Q_ADzaHDSfXUe$eeA@q->$A3x}9 z{ImLuUKc+n&tSlo4puS9FMaBii7CmM;VF|RPnBMX4p)KNeWRC!3wm88n);1i8vjSv zYm6WCx(@h3hpSFC&*~NMfAqR4lzbNVk#s%o-RO07=;2vCP`X}2SkU1x1ICu&q|oas z(7baP$EE9WdgyihgAUgUKitVYD$vS1WkP88?cl=QtSWtwuUA)BZ}+v|Y?IyB+7{@6 zsv^kNiRv~{)fsD*O{4g>wkJ{71)|dH81HcRp6&g z8h=TzX}jfKLa8MV+>Tz-E7@+pT+)*~@es+|Clq^GZ|KbdWV~RgH+hUT@VeYJOa}2+ z^kNmpre~%mO-atoOwU{;D*c*hIx|qE!A515D>eU44+)lJMbMc6Q{NzZd|B_W1dN3g zRc8i}_^kA@-j6DMuLt@GDN@b=${Xii4EptZ-PhkNfap0lnL!)A*T?uuEKzd4GlS>s zL}d}V=9rnZ=Vx^M!0&K1NWqW3`@zacgqi^_XB6|J?yr&%vF3X-Ih%O;=tsS@kK`o^ z&3M)B2fYuK|49#2&Z5UWW42pcdsCqPPs8^W&}R z{rRe1TDgnfa*-wEaZMkfEF!UdU_@iu^zQlykyFXt4Jl&dHwN9J(k-ZbQfUb?b4idZrOdPOl_Etv_Rhc3OLkM%V7 z^XRV|dW;tb&|QyE`=8MTgc7;r)~mPyG(WM_$;J8$KqrRaTI2gv@TKE7@S0_-TiDlk z{DRMN#7*Rp8IW-zC4Et$rpwLLNESa)M`nQEn8JQdDeIf9iwU7ZN0QgPgIc^;5O%F zw^?@}>0R(g1wTKPrf4J&*+}bkOuH{t4SXx9Bt<2e0ZC4LImr@t^DO34gxd#Pq> zQ1;i(GBxBnL^zoNZa&#apnIbfCi?GR1GlmQeo94!yJJwavw>0lBG;aJb_$`X$MjOUdn?r_&5z&m*He&lv0*Z~ET#78m6}uD zW4%8*nnV*JW(MT(j!h4ub`N!*VDS(!W(IhW?Jz%s8>g$K1Ds!$IxfZ4Hj+}S_GLH3YBF5MaCO`DoN2~uK6t; z|4rYZEF#2w;(u&;EB6l!*KUjG_-Kdw#jS3Ghxk~lD%3Va5qwaCKxymBC%SG-}8xNxa7hxz>Drfln zNm3%a44`E(s(eG~#eaJ7+~S6>k2r|(@)7Fux4wjWH8T8FlA^Y}N2j*`>MNB+be4zz zNy(SyPpvo!2d@LcUHZ9J_T)!X!Q1Vqpz2&qi;k<>*d zIgQR1HQrFwCst8MuIxcaiW_eRi$&Cs8F1l?G5hI;!LZ2~wta-XSMbPk4Ye3Tnxbit@EDT_=qfZF|w zhq?lPV}RT}!9t2iGXqzn6}79|z$IRy(R?eIM*10V`-w%=nE?>NHX7u%s*1m!5@d8$ z9YGvKrg>y(+Td?2@fC{*G;c3M?SqX4rLECJ7*S@P8$$U3#xj+>2r&cP$}A(CxQiO| zlCs>eQLe1{7F8LEDzk5BA%1|OM3XtSJeOgqssPbpWCqH6Z^|MoZ5F+{#d4 zjw@w!@a6!jI2R3kVI-!`m>tzhQ+_FM3k8U9`oHi_*POLBFfAF56ntjGNh5kgzU<-wSkOp@BDXxXHTl-FGR&%AlnfV6 z#FiOw&Bd`Vn2a@pc~DAQD&WR>o15is8}bY@`g(By&2pHM!i-WjH9O3B)5kv6T?)nV zFrzKShZ`k*SIHkhLzK_alE?nU?eM6YF$On^xQlKxfKL3Tm}GjdlHnIDr06y?pk(h* z(0?^r((bCp5Q-{ec>0QmC^)~-nR<4_bs^nkxf}e16BTEGThiR0Rnj8m%z&iVxsv87 zMWrli&iA_0iE75G+%D+mlBUQwUyY@Vs>UjryH!@A-waR_l$0Z}D^?&9M?{>@_u)8e zRpuh!%z(__wlnWf+$JiH2sqd1$GN|+ETY%Ey&oMPVnk3*btB%>JSL~R)s0Tx96%jk zM;#XgV9JX5v8E>#)H51U#Zq5>_TO7)GH01lvi zJci4H7b~(TBOQw@@e#%5CzEJR6zV^*0Tz{F7M14H)48w^c^z9D-ylXA9b`CD4kFaN zVuos<_+GV(D+gH^ND89ZykI6LJYPi-dFG3=)aAOOgr|R%el}dD)yS_>f z8=+KD4KbBVnxf7;We$%_4ak*(Yy1)~k!dcI{c=9sRKemPD$NY2zA0QA88osg?ie9O zpZUORob_B~5k=c4CgW0t4+UI@L@#OUJ9 z0W?O$aBq4~$CmZ+mc}47hWLm=^U;Om(bC9LbGDd8pqT;bLpZvPF;{K`KOse*8K7p) zycR~hnv{hUY37fX@!IDtU$KZ3bGPMmtvLpFv55S#b2(Sn0%Z}oaRQ;}EHOw)*NbTUeN zt7!}I(*4ArD3EeQY$YMb}M5vho9v`@Q z$n7N_BGkNSGbjC_%1nfrt8JnGIvSgmMZ}nIZKXY(jE|H>beMy-vCq3avG_?^qPz@H zlNByUQ|%$7Xf89LDCAZYo?}#W(Od@D(bIYAm&l^DTyY;yB@MWqG&Ri#Cpyco@1se@ z6xW*??2D|V$|(ZNFZR*7qHbIe<==_)R(XoZGJx{7V*MQzYjpEk&yBg~ClsS@{ZM)r zrT{jfNitNEZlI)(8nmMZJ&ZBF;w)0ju}A5>9>xJ>5mDu@zoNvR#(rfH8RhOLDZH0) zI9OtdfHDIr#qHY<_-< z{QJQCYrIifd5ehhkuz*QqH+-BWCrB$nOhEX`x=#09MMpI{X8}3kEG)J;bxT_L_(PX z5%<^;r>HohqkQfn$N5-UL_K-#xAeHbv0GV0FuC?6+A+Y`sVpLuoc<&GY@vWbhL_4o zl#&^c(^fmD(ZsWuiYS`N9igQ>$f)>I>tRDZ$5Ck7?1O=^}sB5NR z>kp5b;wx&(`FE(@aAQWWSVTaX0kKmH=M?HE9-^TPpa>nufvBIB^xg=gY><#5q|6}I zPzjavXoS&AaiXEj;LdfVwSA&X`l;fGj`D0L6^t}ysp5!&G6UkItKz&EX>*^VaK%M7TaxVIj^6%MU*BU)XHC@w$4e$065nnh$e)rT#8>ZVSeI3>k= zzLX+})G`CoDmEo)@&vPJsNlURMr+S!T-&es(~}gVW&j6J+fP;dccNn{MhNMe5kxr` zb1M6auV^q=52QJo(N$TNm4VLRG8{K(M)zRx5xr#wWZJ|nmB9Sp{j05#Keeri=rRL* z>1l8;i7Hf-%C=d?%OgO)#1VZ~$d1F+vviJ?TW6(S??l*S&(pO%$0KkX$z= zyJ0L7M#PvIz{E4tozFO@CuQPULL53ZK=~QqP>UU^2c?XOGD*>De$ zo;)QbP5vsn=^%2=2RqT8EF+HErWxLqHM zTulR2VxqFlV7r$ampmmwRfbs?BD0)0P}RlaDOO#GwDO$6+?@T&W+Y`Mr6%LfGvkP; z^6nu_j#N2`kTQd-*h-a9N+vqW3}B^0b`MHn8Au^TM!9>UDu82}5u{QS`D6yfQN6K@ z>J(NZih^?HSh_wP`2nOIPh4YS)ZaDp6JjP)3eQr4_xg&InK~B$~>8nS7~< z$|7pY>nBt6d;^-Vb1-EeezT>&;zUvT$TUiuWoXJG0?J>`rVC4rid@20)Ot47gi<&W zQ9hVO!)F^As<e0L8p-UE7j5Mj4e>+)@k#=BAJ15CK$D8cdAi6Al>XeB9HtxPPem+ zAu3x@LjHWUj259&GBMAXt|EiXfch|Rttp})D4B=~G6PuEN6XHz`>04EGl1+XovQ4t z@_TGH}l*A z4dex{87;jzfbo0Q2yY6Uigu1#fJdIFGi`!=#Z7dPdv4(#GuBTmqKFJo&2@af(M8!s z5g9-)xI@DpMF|UxvcVEbWRV%55eI1VLZewV4&bVmt69l6c}7NZ zW(qHk`B2#MEV9U$;rRncgM#wBMMm!c4j@{tiZ+WL&u`m+Dm#pNbaYqS%Gf3mZxL7C zeUSS;>T6EBGSpy+(U_tFW3P`a4!k2CV6%lL{&xD|&DC&LRHG3}-e%|~1p6BL|*_qF*nOQS?b~*d(vtD!Y zwa}paqVOPCA|+3aFsGN`W?`5FNfs{Qk%#6o$!~;uii^dEd*P9#SOOz6!Ri=h@-Ghc zF}s%FD+DQ&z{po3+2$}uBnNU_90j?Qmnepqb&GgWfB3oc0u$0tLO@4Q4UK0WD-yo`9ceuf%6zX<6bHGeOG}UCa4ahw_@!ZQJE^781dj2`nJ+z`kKo z)D=qnVkRh@>Iy?+e=6<`M4}jXZ%Mz#IR_+u@tszt@tV+t{NjK_DrSNfO#aVWmNTbU zgqoOAYjF$V4BFv0cMr7V{El_x3dxmrY<7@|UWa=_F_h56Owf|Ir01{mm$bwuuF+8z zWYLsVJX47uo-_;}nWU-&D30l5O05qixIQE(@wTq!z=qJ^Xq8qFV+lz7ST8R6;m%ls z5WmpJ9fR)fK`bTm@aBG8fJ2?71RKsWz;xUY8s&%t6`nhg9gTG3kT}9jFph4f%$86$ ze?Lnk;YEYlPfxR8GY*^3>$nYdqff-7FpMy2^KKU`KP}VbpMEP;(Cs>jMO=T9NqZ|a)=j>|9%iBqqPMzUgAyK@2@2hwG5>D$ zuTc_~c+wOTvn@2ywJw2(qv!DSc#ZK3Fj;D!@{JW?zniIMQE7-RA+LQLXqZ-<%{ zkV1(@%mh76z%Q>lRbgRub1TC zouQVIQX~P2tFJVpcZOO!A~A^ztTKCd!U3_7Xv9q5KvR>o%Z|#XT8GXBaT6%T5|o$; ziXUY$-g4dACANwbN@QXtD9kw`X^ebmev?yj6X6+rWMbb96*a%T6DkyDS%w!P^X&@N z$i)mCo;Em_DSa3g7k7n?@R+Ref>KS&FO(B?Z-giUIaxsHOo<)zzpPf*Uiz5aUhDVO=2#w<`5ha4lZOAE=9dE@(~$1&~)4~D8l5nz-%+$aZ`GarTq z;Zd;IN!Vi~;-^VIi1&l49Kx%6QYf*HpR*ijDf8_|cx<@k5KcT&Ch?D7PBZ^I6q;Q? zh(tbS0;fl?lOg872l%o_3MK9_6Tfh9;d{@F#X@2q|82BBV zLlXMfpB)K$jKsWk)hmup89yR*EFU3A^|60pSC0M5lsX)Wcg{$VVphP%kg6guTI-3Q>d*v!Fzoo7fQp&YbJz*rixgIHBE{V0oKAx7xTsn#`_=QN6>O}`4}`xBvtvCP1Y-`x=tJ}xn7(ZMOXOvzJtTGg!i z)qHsZVjw|~U#?5$x zDu;P-Ax!9Os6j4fFvRHiTxRyC_?~F`xloZvv5;`c^*WkW=P-6568^YsC%TO{CePt& zu=-BlBDjV~sRTbR2Pwl(LnF!vk+8>1;ABobTAr9R%(K1G-h_P?8WQIHirtL+EYu)^ z8Msm|-mLl@hth)2@Vmq>KMU0^AXX9)nF$(eZffo5SHc|p9JkC(KM%!)E#qE8P~;Jx zhiXPJgLbM)JA(^InS@1Vg4*4+b}7^4pMJ$7#Xw&WoBHs+lVPX@mmNHq-!)GG&RS%cQ^P!YTv5>&YgGZQy=R=bV2$5jPOwjw7 zMJ;z#XWO+*wRZjU7Idvj*kmTK7~xysCC-lhbK<-ujY#ZdBxb@soVR=ro4GzEc5?lR zTy^)nhf4L(pY!FD+7d*W32qw7BwQ^Sao=d>d=+XQ_5}xsc*>uA6{?(z84T?atc<)r z;>+}WZw%nR78{AJT=*%|?YmGTbMu{n2JN>92tO9`O-+zK<~2l$pDfU-0rp_7@QkIw9)ks1Ho)o8CViJkoG8m(HuAFo7B z-m%sdFlw@2An}qX;?1D%(bBBTxW$)lBwX@@^=8H8P#Z@iK=Pxn8+$p_-Vq6n+zu}V zeT}LIUmTprVTp{qYm@6LdDPE^@=A*m7@3J#coz4jvPU|V9*F0RQY?Xyf7-(7>FD;a z1VUzlk+yfU$r#A46N!GDb36TOTJssU)0r+sK;L;8uIs{4vt8q z<03nqtBiE)u*5jt^A2%mM0%hvN&m-xd+$P?;Yux12r9_QUa| z%-=uZMc#iEBLP10DdKOqbnPqw)lVOF-ivKO`UMnvnp; zOwddhZKjNQvD1+J&O$;NGs)CZ88h?!tHsN^X2&p;F%y{N@?J`jSKg#kH@^B|5{aks zantB}s7fhjFvN9kh&kmY3S4e|n^y(moVgyV9K{SOyy+@DY!2NBJ&au; zHWKXk@+q_TM(B}DpT4D3q8#t|jHSIIg-BrIuAiHjpF>>=2$2}ZOfUj`ad;!t${hF^ zfzhQ<0vR(wVFxW_2w*9ec*acp;?~6{jYTLF{MJp%C89ACl;f$?jZo92X`x)c?-I~> z+(nZf3iWs1NhssscO+fRvFtsZSH~tNMmqxuW6T5w-F<@?GxOHa7)-acDv^x8FJcD&g3p0M z+%O88g};P`hrPjpA)N8uUqUUTn8Colb4xB|(Zbiun&e+Y-6O?HA{@UCExcdx?T8Qw zYW#H>Gx#^Wn=M3w82?bt{QO&JdI2F4wwMWAj5q1GaZJB)J5(q7U3Sc9QU0fW#@|_# z{%kq(ZRe3;?zBJ~_;b_w6L7T$|BfdRQd{C1GeOO%T8QuO?8uVNLZTcqfkitRPW&JE zrO*-f-MOvFa|iczoBs&aj3Pl#cU(`!%!K`;iiZa>*aZunVDn)krOgmI(kZdEi{ z$+^l>G>~_6<5oW2`bS}Y}UG80(3 zJ_9@GMA$5I`_EA0Fg#qq7or1A!@uyd6*F)kk8_~!qBWaJEc$jxPP6i_P@@83DPfhF zpt*W1H~-e2mBS3Vi@UTucS8lkC5~1*gigNv(07GQle?kH5kzRU&=52JZm8&e7VGYY zx`r*H6K@PMckYI2M==BQ80W+QbEeSf(x%_v*kNKO!Izo9gI-!#*3>9^tze#jm`EJv zNAZJ!Y!=_JP6^~N{r?U<$Z*TyrbdOag*`Kg#r#>4ne`7o5lKY}zg#%g-24a6mW4>b zvO8{jiu*YK@+OKXfK9^@N;gg4NG>>PukGUQtaPo^g%s<)fm^f)uLMAgo3t@U@ z`a@Y=$LL`jx z(PL(P4%^xh37|aswD~oMZCgNWBw{iXcu>LA3bzGKd`??9>{oVM?n^U0r!5o347z>P zb=!z$?Ce76EyO$E8X_D>l zRuBxvnClU?YXLEkAj(Y8MF*1}VcVJmul$_T6-oqUCMfLU3e$4gT&_^UC^JD}Cn+pm z-3v1$ElW6MCMbteJX`*w=VTmlQY!J3OO-Tda@+VwAreVBZ+WvV(snm5MA{+_OCaU7 z6^KWSdD|_Dj zu6qfw%mknK5_(@N7~!z)$cFiBtFT|VZxL^!0%nJl)$`rKKqnJUp zH(j-!W=+0nG429p3)%u^!OVY);tU~GB!Kh2N6mqPwpXMO3Eg~WAbw?OyN2DSH;C3e zxsa_J#SEI=>6-0oCRBaAv}u+d*TrqoHrmwOHjU!(QbnRUGr>$fdcWbR;x;-`%p|yT zuhC{^wC!6!h=g@!f{MLN!jS3ZP2R$`R+#sFf@xdWK9q|YIC22iEkBuF)C?_RtLGs?Lx*KVCV$KCibMo5 zn|)Tq_9?W3v%p}7_wE)dm_v7_m(3%=6j+Q_PMQft?U({$ECHdJU>JkMl=F{hB1dOJ zZe2_yEHo3CATG{dGb)&;i`m*?pR+TZ=?@mOO`@1V(_gqL$1NAlWXdtpY6Zkr0z@-G zL&Gy$l*DhqXBNc17DI^`9rLQWSsa%{ArdP(?lm*K1Xdotn!v-pO=fiotbS(D@fCBa zge~QY=I$^L#MqiH^YNReag6OIc7e&8!_39y!RqEvjO`L7?PS@C*=kXzdTe`>^~YdS zGoYk>$kqI7t65&sj&qrc+fDvbwwucYx0_L=Y!#Q8vBSJl%GP%o=T()06DB1M8;vix z`98UH1D~Qx+p5mW`BcITD{ZUY=h)%Ww(WmA);HGHan+q;^~{l2tT$=hc~{@mD`TS^ zfr}l>*x0ZiI9D&WF%!$!LE#6PiP;xsUVQ&reUm57mX0FA^c7E#JIF>Rf1E959*whc zVPZUHw^>yd%VB+-tr;og;(M5{f{4YoepW&AOB`lFaA=Py_aLtLlBv1ZG%sh1m?s{z zZ5=7J&zySDj=0Z*l(M#5#(tXqM;CvUwfVJ+g5~@Qu8UR~Td!sIl(WskZ*Y*Q7-ZIy zvr3o}Zh*tHqR&6DD!3w3wd%j zGp>@Y;4B{dILw@yJiDU#xRM>{9C-VviLYkso57WB4`(#%tZF1Ja+(^eyp<~XCdA^pdlAj1aMD%``s!sh>%T@}A-&C>%i&&E3WuG%uGn1ThHw6h&BD{wYjpAq{j~GbFrwW<$x^|#LQP<&hsizy81@*A*q=Q>GOxF5# zkt<(<-ny@Sx}y20KF)5L9cb79=L%MlljFbA4p9e&lwRt+b?NcWhihwK1X-t|v2;UPOoiUP@Z!_1oJ zo{urP8r#thwfQ^DTxxC~HU}Ex2$3eo{S#&u{P=t+Q?-fh=UO?R1^VT-mU+L49puPw z_{x6MS|J8WvaEZLtOcs+@@tGTgMz}WrsO(F0ZN8+HQ22H=@kt)^?5544lm$ zZszxzU(@Vq<5%wzW6HF(L1&y+%$(?8*ZEIJfZA`d1^W}nKrg}RZJK|8$lHu+^ z+0zbpN*R0%hQCUO&qPAidf>tu=5Tvl`=s1?)Wo!U#J0@nR$FuC5nJOv-x_wnNkghR z-|Cx<9c)QQoP!UA%XO%C3(vQT9c^!SXIt}s7519R)wK*G3sFQH(XfC zM0T>(o$a2|oVd9zv$?!E(aBD88B@V@>1?OFOx=p+OlP~!b-Au)xY=6lrHFx z=GAVtu_F_jn2X(Ta+P8oV(;!)`hvP()GZ&pUfvw`jk_rTtj zl7el_H+^g=^IZ>IS%u)@9o^HmaTzyVV_e2fK|>SysD028HxCuf;774crM8=lhs>vs z+79>4$b??DtTS>mQa(EO&+ zUBl0C#TIWHZerUbkZ^~-HZGC~%Vr*z4Men-MMnfOTfN!Wrnr;c$Ufm_@R4QR%;bKy zd~TlqP;oITnwCQ>-ewqx&j|nPhpUyG8hf`7cUSt7{cQ_}7Iz4j%jw+ycB&(KIUP8_ zb_tVuiJi>$0roLhuIJaj1F?prJXd#FXB!6ME?PiJ56)aySK$SmkY{(gUd(hIWV<*N z54Yt~cY2WR?vRdT>R?+fW4ATT*Mn_Qcg-s^+G{F09t&RfVVkjLe7x-==43n; zsuZp2=MA^@5S&diUo>|Qv6CG-&+BO0>vCt)!=aQh;U=p6_1dP$P^|EKOQnz*I@H$4 zyg1$(YU{gN>RgUtwz)&2(NJ=;6{XGSVYoezhMJD`hJI}r*0dluga&5daNElnsZUXf zxR8sH`ZOcambtI>j}vX@umxO5Z?80ir`oEf%?MjAf&^1?Z76~=;4XOeDBQFy9|3p8 zbZlz4N$+{Rp(!xZKH_Ru7;mai!`;?%BXQmoqqt;qe59S`YAj2}d>&ZQ#9(CP*S;|5L0!C78+amiQ@ zf_lvkH?E^g)|`}K0nah-;eZM#S@`r+yDEc42=Hnp;^DQN~xzzP)n^&Hp1-U+so zYi-QjaMNP?^~$EvMB6F17+qxD2hHqVYl|+Oc|FqXoQQ)#N_x%@H}7X(6KBe$*d`98 zJd66d*Ay|cQv5x0<2hqzWAryua5a#6DbJf)PuP;CYpPEke8DVCwTZ6y_zULmRGf{( zwj=roM&RMrs!2Hb1wFP9lkhxzjGb&7x+>}OP5fj#%$0w*0KYwWeQjm)>tr0nQe`}< zwA{6}wwe1FuK0pBtqeC=kFBk1ici5EoS-#}Jm(Xq_>1W8CE-h=)|D_vr{Dr8M)hAY z`KH>~tcfN)#Xe{%kG6SB^Y;(y8oQeLcK^@OjTQ%_{@Rt8 z&WGz(kFD5MWDyd^REllo>c_HvY(i{n_daoKA7oMAq(6qGUUe$2cG7}7AicrrA(wTU zE$_D!-sW;13`0wK(+`KT$KR@Up@Y5_?>Aw$w=2*|JZ9N2D zm~D$Wq^s!T+5RxyA>hrgTmALi0NuhbX`Xw+pK-VPE1Pehu;pEYdI;2;Na}g(y@V`Tr{uvU z>n(X%vSz}QWeS=(A4LEEUgS^A#V6NqdDR)ZE!^ZuTwlZFehMc|B3yR9F%6%>eWw`o zT!V{V-yIdrJBqFYwR~!Q6;tnNJ2XtJ7Hl;upSCZ$D*e%>+#vDLH`7M zp8m7faG7WE;Y3=|hG##Er!{`VC!e+PVXIhW@G(>OIouI312_LNgP+44ofJ*lj{Ety zHdZy~pTnJspn5xTcd%z;1C#i?jd$qrUHI&FXJdO)XrAqvQ>?x-W9QkI-Txn&$QSH$ z?*FT1@KTHSr(UpQUFXFPnY5*LkXiMjea?~cADEi+?Gcwr{@Bc3W}BME3vkVqma`uY zHwic19AO?@h&vuZb&r}E3+)b99y*HCVB5{{#=L|xy_App1hTk&H`g?U7vVf8sP{25 zco9C-NCp$|@**rN$>@-?FSd;w(jh;-828v>r9+NhVw+_ca!d2d65A@nxF0c9m)fcs z2Jem1jr*)~zzuntd3YHv3DUkB_gdGP4te3rwwWt;LvCRTzk+MI)X;H%^@^?SkdC{} zt2p$;s`s&Qb930{s^+yio3s@+$+bNDyoq0FSG%?jnc1(~ z#-_z8e7=*mYF#v?-mpVV)zx;SYogLc95oxZHZvDi+ov76`yKY?g>3`Ohih;f<9xV+ z-zeENuGL@7f=w1XcAb67RmgiC_a?!&2brwv?Mtpgg=^;Kn-)O^U&BqDG?DYVnXnm; z=lj2g+a4iq5;~b*U$b!;#{Tes4!h)iBR;SJ&qbvfH{zD2?d!H)hG8#trEbJ4?i*~@ zjd*Y?wRNzEHsWcHptUmC&SuCaTRFps=iN8h*>BoWu7VrvG?#JX47xMJ)^I%8YqaAL z({c-*4Dn=vy}iXGZ^4~O=2J)77CibBl*i&=zj(c>NqGy8js(rTY33cY%}n8~c34g! z$MFjcyUJDg@D@L}?QCEMZNr0gDUQ2sDt=(QnAq)hvLnTBn=>ESe&+UeJRlRBWp~Vs z4{c|&^KE?S60+b ztWvvbm?^T$e&RBvvYPfsY@+G38_x`+xNz18^S^w%5d7|4`$TR*BeF+i!MoP^8t*D> z>V0C{n}P4yC!O`+>=CBckX^$}$31p-q*z~k0M`Bbm=-H{^)t2h+JmmAvSGXb*lY7- zb@iUk8DaA8-POtTdmj(RrCv-}glU=k#=|CJza8U7bD4nc0GtaTZ;KVEYgw=0&r z%z`^6_9Oe2o1%~Z#KGUuWZh{iE9i40gh5Gwgr<9O{n9b^;%J z#bMnM3r^TB8FoZxQ|qKH6ZRTUi~}M}zmv9N8D?;(G)k0*RuQR_@WZR51isYno2@-* zpA3^HZO@c2)lS)I5zL@Y%S5y7l$r6RP4QOX6HG4EEKCg z#ZCTC?Rb}|55b=c_`Y}Dr}hz7V^)a>^LPAvl})M7{2I>rzUJI#SZbO5Yxp@%>Vlkq z+cUW4x!`-X^gQl@#8jQybRLg=GC0-Hl)hk#Wb~}feNOGXV3We}o183xMtF7Y=JfXv z%JxfJQxN8Lx_S9atQTic8pmQy(=A(CIaBQ`oKb{UiZiu-z=z^XIV|zwQwHy`D zW4Sh_MZSa4X4R8>!cCR$Y;NwL{ASyiwgkjSY;jjPzJker2@lexUM&no4)6Ca;cF~G zI=aT++WP-Fo+!NKgHOD>ITurExk1HT#u@xOlDW&gL8V;wyL5xXkFG9bu}df3$l92e zSMUfzkQ>y*|BvyM&p3csGvzycTOv-xBUDuKLpSP~+~30sBJ7ae=ArL#854tlD@T~i zpYN$}KKmX|Kr=W#)0HRI_k6ze1Mc{xd=OBLGvCCRRzG5Q3HqZMzN5&wuev$@BhE5{ zo@{Jt{e-WOBy$tx+sE!JVNU&oC;o!^z_ZfrZ(Mx=*-GR9$oDk!I#l$QC#6-M|MWF?-;V2=hkj`xQ;p&-gefs9a|p=yTpLZ-PJLiY%yP z=ZK|mzhBqn4%uPSVxZ}xSdFdl{dO<2J+Qxpc|U}2am4nSKBlzAos?vT_VpIu1&in8 zf}CS*%&0W%NFnOOfi!%e6r?^x-^BGqknh9OH|-<;?L+Bw9AaYYd}w9fO2_$s7pG(S z08{3cO^ILz(@|iAS#isDcV#jCO^e@bb@Sja_@pA%Ee4q6UvL0PW-(65JbSQ`1ELiEnc_|E9`Up6+1MHo^?H>7T6_TTvOq2yhBu$D?crg%rg{JZ$LBq%q+Tx?%| zsDjDyH{LQ6ln)1poI7XyjWd^^Wxet(!x7 z(w&_>tw)%2^72wMBxhQ66aGM2ydzVM8TUZi99LroPSXicplGXyJWPnmYuKi?PP$wH*U3tHYiQp)Em zxE3W~p@P2(2w0?`e2jo43gTh~7zJLZuMjMy7jb1Fo(wlu_(Z%|<>vyYDoG1#6#U&t zz&ZsFbrJBIf_~iuyslt*4*?q${L)Lnn;yXU(*_FJq9zjt3)rgQx&zx4^d2G>I~0sh z5b%zI9K!_cR?u*&fcF%fm_`r`>{Y_~z;x^PfUMAQbz`HTEb3%eFh5*C4h7pI1cWJ|rYx#ND4>iiKyHFP z>^6F0RyqFilKe^XWg#)i?*o~_f_^UWYFQx#Jvg{*9!QO%bN-OB@s>FE! z$KP2;zQM+M@k^A{c@}Lsu*vm%0Bt$&gzKh?w(2=vU4iFnEd`#dbrm>QgMkK0JYOGD z;Q88Af#+%qf}5PMriI1TRz8pkYvbqq;`Rg~+P5hx_8omND#){bXFnS#QbfwTDd^=u zPX$d~3%wP1P4-jZwJ}hE*G4?SDSDBmuk zFjhg)`T~*_9Bm{ZMZwz*1x!|Og#gFjR3!ymo#_e=IuKOwP7`V52?hT)7BE-A7H9E{ zg7GcH;&}y^nhAJOfE<4%n+sW}CY>EvtYD;T#3)$NMykA`U~X#xD-- z?jmHrn#^=2hZJ0PE8rsqRU9~?;DQ6k6ok7qbwWX6PwC~ff=_y84bru9N}!-h@VNr$ zrxILHP^FiEuN8dnz$FC`P-T@X3N}0Ng950h(&8$BxBk5&;)a@d2ZUAN9RleJyhGqu z1>Pa>y8`bJ_)~#*2>h+!O2eRdk_F;_?m+Z*cyPYLrNBD` z3MlXnf$09c|C1Hq9Rfww#5)8^DDVz}QVP67po{|V5Gbp_I|M2y@D72>3VHTCUufSXJjTCq*zKH^F#Wz>rE%=A~2mOinR(u;Z@m73$1>TD9sK8tC zT@-jLzPkc%#XqV5E1oN_kAk4L;`=M{R{S6Z-ijZhz+3Ud6nHCsgaU8HCn@k&{1^hg z_QR3!L7&JOe}bP2OvSwc%2O3=bl@=sUpX*MfmdaQ0{F2LIaLD>&f*ag|CCKT8O*rkA~x&ZGgXpkacFTr*0 z%a$(**zW_`l?VM?fZDof-~$De*5&7)kCYq{5;&}YO1Y?WQ~`x?0gfr4E-t|T6i^Ho z;G_bI-U6IfKzUn$vknB|IfZONK2;OS)dGC3fWou@=M_+b7T`+--smq9+~Rc1*eDj? z`aq`Rik}Nmd=?FSFUOx$px`XXk7`1FS%9kwC@KqZU4hp}h~O|gjovF3H+>+T-eS(O zcr1P~jRt-rSVyqxh&%rN@QGCT)6WH{DvJtt6;M3M-({ zD?qTQ5{kTn6jwlHSAZA=6m|tDrGQed0I>?F+zJp!@Bv3Z?2>?TK9JE@@NfO#!u80ct3qC@VlM1=M5(sH1>FtN`^CPssLRTP(>A>y8`N`0`ycs^;Cdf3aFb3&<7ys{Gw(mNIx~9S}MQ*1yo1{7^HyO zr~vT_sD%oUpuijKaDtyW`rf(3Vx$kS81VTg$CeO#$XApnxgB(+a3x3h=A~ z%9a8=uYjth0KpfOP^uJUz5;5K0xVQOMN)u83aCX2u!P_p&QGs60n2lW z`{fF%2caqovQi0UMgdkUpsFaqS_PC71z4|uLZSd06i_`B;0*=T4F%YwfI6W7o8|Zu zm%@|K!VCKO16w5T<~_ zmjDq8D0B&sTLFbF0rDs~8=NL2N(tpFVUk|~g)0FHDxgLsK(qqNQ34cEKpjeeVhSij z2~a`-6(<2o4&?Q3JNLbDB$g(}3I258K_AHI%lWwg^(N6m1qBqD1gNBd>XHCe6i`tT zpqc^*O3L$(8cHZA36ok1s3!?fM*-y|0qQBBd?Y{v1r&}1XrzE@kpPVqP$CkbDL~K- zmg0~g&DDgOkN_m| zyHBJ-Pd^u+0wg-JsOtz2?}K1~x{e?TJ_%6L z5nz}CDmVfpDxhj3z(@tuY6M79K!HYp(F&-_2ryOwRTu$+<4IO>{-D1|GSLSz9jSgU zK*dEAPgX#|MSv*^sJ93(O#zh_0j4XUup+=r1&;)e3Yn$kPY0e*Km|qAc~Swj69Jx5 zK)pnOXB1E*5#TumR7V7ur-0&!058h%C!?o0BFF+Yp*AAGOA0862(VZIMGyg&D)46T zWrFuPrBN5fV!01wN>}8gz)l4e8U)y-fD(fM?<%0GAiy346cPm3 zr(kPZP{@8I6b6LJK?Rfq1o%J!6#xM~Qs7PU5rRKB>*xLwi(@{JS^uA(3sCS64V)Ap z&tItS2Xb0XDCP%nR)N>#X9Rz-k7{|c)8f1jq>nHCT!1=$DE?XjRr~{K*>FTpA}GS55Rf=&tECF2Xa$QD6I!@ zOMy4o-w1x^=(FS%i$8oIqyN*-1*oTo2JR}LoF2eG3MixpkYy0Bf6^pn^FXpeKFC+h zlk;^Bg16*gsw@`aK9Ejx`MCgv^3Xt}0_x)dfC6v; z9TZUV4WN^PJi&=Vx+tN{8%(+>ptc)84+WHV19(&c_1pk@E1;4aKwkw^Zv*JBfVyn} z17-co1W>UJWU!i0r43++0*bT&3{^mRHh|#@sK*8{LIIW707faG1{**?L6913AY+tJ zb`4;h0xGQmBrBl08o)#a6jTF9RX`OrfXND?+_5{A;B_9%b6*pS=|P{!(LB@71*n~d z7G^1+bQ-`D3aFU|@T3AtqyapofQo1U&nTb{8o+Z3=Dy~3-3ug#=+~fk#AJaF#I2Y7 zoL{_z-~#RUJNsom5c^mBT!3MDAa|M+5g2j0S)baxOQUOK0 z0KQfbq=*;DH%chq1@Nr`%60)bKp9CnJ z1@MmoN@f9MLCk-*?5LOpkWB%#vH%`XF!mt#4;{){O8X0)=}exc*QO3zc)J zE%mSfA{9^x3n1@3&`v-;1ysL+MF9nryaFhsfLd1og%wcVir+sKRYG|ym=sq)Q7eEL z1=O?xD5Zd6RsgXIvJ4Oqr+`vcuqdm5B31z99pLjXDp-M3R1+#z0aR8%sVab~3aC^C zP+b9qssL&#pgI*mZ3Psg0;sEiGE{v2RbL78rfAYo0i~q?9#TLpDS##lC?W;WOaXM;Qf_W;)aAlKwblCRmvS^W40CIKHvA7lJnfVxa59;bk^OaRFWD98jbQ2`~G08$lD zb_rneVBY_~$xf-c1TvK-mcaY6aJmn~i$j0(cVu@Bgw> zDjI=oQ4@+70c=&^x%D=|a#p$Vy;!{C1MzdWp9@gF2o1cafRaT3dlgWph{yl?O5VUb zjW9W&fU-mYhZInX2;f5nlpg~4SOL|B0FEf2%n-mQ3MecDa9n^K{}dAfIiV&L4+1!) zfU-dVXB1E`2;iIoDgyz0rhqCy0ADDe@(;iT1r+z;@&A<)iu(XuR6toDfJ+J}Z$obOluI0r*9M z*T-#wh3vE+)N5dI#|P5sUw+On{zr~~mAgTOtnp}pKq_SSa{(&$pg4yDD)az^DWE_P zK!gJ7^8n;lKzSa3JPIJpBcK1Hlu(QZCixXmg$JMz!D(6c?FAI^f%sX>&jqNr1N#yR zD7OPpQUMiq07^T+>o3K1K+34e4cA9mf{pCd`}su$A4sQ_{9K?e1a;6r6@q27?>Im} zbsva*O+SZcxKdmjAm}PkHwP`$r3nro5y&BE-~(x)k)I1t9S6mY6;Kxkps51N-~cpN zK;;{NmI|nL!{fh|5-Qukq>Tc|^boWs_=0XNohqQC55%p`el9>o8`yVMKoJ{&?g}Vh z1JKh4!2o4zKzjKkK&2XhJ_@K#1JF+a1!({VD4+xlz#s+Go&ktgK+ze11O?Qb0SFFL zLX8=aLcm>pu0hr(c9RHM$0ZCC4YQ_Le zQb4H~fX5V2BnDur0;PEvLE*T3DihvMvBd0rgw}URFRQ z7l2n4P`CwPg#ya70IX8rd9haJ16NXnZ9gt1uhE1++KMigik_novsx;D`chrvQASfI2Av#}#SL_r`0B-p}hW@Lc3s9{D#kUE9Qi19u zAb*e?VGErhF#_wD&o(LsLV4vLwVxPm$1*kNF;xGji6ak1B5=09U zR-9qVK_Y2_8*OTeh)I+Wq{;k#Ewvu`lZ9{NfS>i)jCb*arip zd?FQM{ak<&A!sj70aZZ&$||7#2S9lRl>Y#zsDSDp0F@O`_XD6R!9IEseDZ*h8a@#( zYWcYU#XnG?jsl8*0Mt`J?GJzk3aI)4&`3ef^#U3zpw0&@ngRr!8x;5eX|5*J_W)?A zfXW^Ktq4A+=RYox9oCj$8-e$Q{3AY)k#zKP0cv`nfzApj>A~|)S0$A6fJt`+6!QS+ zN$@NCDEFm+-ae2%`ue#5bvt0+Ujdam00t_cLrQ9uO^fN2USpaC#l0i`nlW-6d)20wqyQbMH+fF~4C8w21;1ysTScuE1)F94oV zK(Pye=M+%j0$`p3%2@!sND$08K?_NK;f!5tEhdY7ATzeq&jqMuffkl2@a$hDz_W%d zf$}}XVx@1AP5F_`9xZH*Uts0LV*f<6i{>mV4niYO#tjC$oLH9kPoEA z5B*$#suHmOnBaeO0iqJ}`RAxlq{1;j$8uIUL6GqzecA_Nf7Z_hC>#O%PZdxm0^oCk zj3TZ1VuZj%rm&Qs z3yj$<#bp#w^a1u|6@>N(sGy+cUICRA6mnfuQ{eR(tf|E7rj7!yoB9g8ZW<}@x@n@o z>!vxu4GtE{4|MfmAIQ*J`?)}B(3Q6%xyA}leIgY)_&_Rj@^b;GJ+Qs53ZV5s&_e;F z9te6VfU*NYUj=U;6)=DxD4jyrfhL31#PcG7;6u8VEk1%4!xcctfnX#79;Atm13^IB z@cJFA!1X(+Vjx*t85x`)&7_cAVl$9RU^A0_Amg9n=K@e{VDaM$pw~b!QvuW(2xcpQ zRs+G43ZT?L@H9a%W2euN;K{J4GtlG(t>d-2fIub$@lt59h~NOLK$n4FsSm{QWqvLI zi3AqEssI8B0KvdYCD2Ep$r=T>ZU|Vf0BQ`hcwK?l=_UnUH(M0AZUWmBc)jd!faf2t zn_VQbD-k1{-MmL|mt!j&Az+^mWNiEWT%hZp;?^Mr5Mf{gA1QzY1Hlmm5MUrU7F2RR zi}Z0q!EXqd0h7}THsla+PC;Jh*5?X5KQAcoJo{RK=h-D61OuLHS9}uiT>C+R=h;;S zo@X}{c%E4Wo@eOZn#vLtQOuBO;w9dBgJC+P_BR3+uj@nwT?F^nom)1%6J7`T1iJiJbVLV!#SZeION<`MCfD7+CzO0?02A ztW*H?1%fpS5<3Z4ufRLEzU~2xKUa4#*`y{ZJp^n~@Pa!ZZ&LsP26nSUf#>)x1zx}J z5y(z~yaB81Q_yBCK`?N@Co-AiBUtE+~NH0>Re`oacc{3Oq-yDDWKlL4nukRe}Xv8gC;sJQ}?r3ywra zAJTHfdT04f1r^2%_(efnvVhwP5bT{*?kGrfZQNBb$bo+qG??m+zih*NzkZt}jpR^( z*zasLTmd4#6XaG3RcY!kY7ReX#xr}s zStnKj!oL$dsG#F40p%4S$~-M9DL{C5f~pE~1YILFlu$kaCbboO?JVjkK+t$vG*m#< z1c1g0dd?TnOaY`4Xwg!^jpqck9>(jBOhC%>LfWaxgD(i^py0RzofRNhJX`Ii0HNXu zdMZeF7QGc9SUfHIDF`A~Jjp;Mh!jr{uK+>r35F^_;CO;W1@&JMFiHW14`4A`fw$bp zDe%_!grE{{fu}0)7WiWdyahf@fw#bCDDW2eECmhR+MJ`n+nZ1MAQxKfF?z}G177WjGv-tv82fwx#UDe%_j z76sng+@`==n>##!D1g`iEvy2sk8}dO0wY2LwD?smyheYQ^)G&Tt^P@qRjf1kn6&!059A8* zub&Gb^gf%+Hr%&I;C+G|3J`XmAY8$By9MM{@Zmmp{?DuA>H#syub|i=0fiKl|3E+y z1<4-^D6Rkz_}Ons1$B=Kh*f~_`?Pp)IM4qwSVZ3^DX%7oy-!d{fj1ph6?hX+LxDE| zwH0_1P)~t30Sy&=7~Ch_G*;qGKr;p21hiD(O+ae}-UPH$;7vdW1>OX7R^UxQx8Xeh zXPkhZYT`{mZ-Nb64~4IbtNnZ+>tTSO3w&}xiU%v8`~YS!K>%6%&g2ON z-stBl@W%U$0&l#}EAYnqq5_PU{Vr5+=z?4SiT;xtH9e6|0?kIL^i~>4!XU~U4d3}fH>goiEstpp2)4h z+Y@;eczYth0&hqqo7ipfTt7$Av8dfXO*lgCt#ie1mvg1d<7dEcu4^z24Jy7 zLA(RY6hKUX7OyIRlmNlX;637eT|=;&W1CV-Ox6?NZD5fPV4c^sis$Mk1)i&06nL&~ zQ{cI}!w12D=j$#K=@(J>+0A=CkU8D!=K>H6VDWwho}Y&lKr(<9A1Q!f0KpLjh}TbW zOpZV4^vT9TPN)eK188zu0rUb0&MENx{G34M2U-ENxIlpS@I@(r;A^eo^?OOdlR?+- z6(wH3KPd3}y-M&3TMhJ;Zf^KM<|pLm0*K1bPH!qeOn!o26d)o$!EJ(|G)YwekUMJf zOdkPv6+jSx7XK>nyvT;&=*}&#-y90Oe!~@b{pMDHZsq!uSBckeeu7;b?D7H9Zy_JZ zU<>=XKumurE~cP`vyV{#6#zP(Q2;*6d0?(}l1dU{{UaO1L#A|h_0^6V8%}uunxy>oJ`P6OpxXnv$bKPxj zxeb2u!v5B|&3i$&J?l0fxXs6I^OM`GahrGCW{KMvx4}o)w23v&Dg1vdOm12+6&0yd}J2CwD^nO)|xd~Y7PFWiRj8Y9Oyd9mReyV&r> zRBZSnC^mfc5*xm7iOo5;;k%E>@s&nw_@*K@d{q#eZEo|c+wje^Am~n)<$F`eZFL*I z!h{@ORlW(U%W zoAEQ!3Ps{DT;~=3U>1%^D-~U*W_+#c$>T;YM$sFYicEapMG>rlwFzxU@ok z#rSa;{4THjgn4sZTGfbmHT&(jv}zG}eN;R=VUR7eDDNR@b9W|cx_z)Kq5!6RpNF{| z7R;++#?MSEYqni@FP!^huU}{mj!&x}vER$?Hvf)Cw;yPBb#hwVqHRZ|&f!edjBUP8 zFy6ftr*<0{SBp5BF&kH?;k~7SS5@yBmRYp*6Y(Bzv}UB+J`(z2W?JL0P(-WBU~5iI zz>IyAi7nddERScVHI7LAPn33>2v_jHpMfpxh3+FP^n#X1D z;-y~cj0g0Bc_q!l+XqT<$6ogMVzXdUTFK~IjqWx7b*3V-FY+5{|BH;cl-W}B8`-UR z3s^dkhDw=kF%DnJgcr>?Eym|F(pWQd5@zhHjI2_`g^bzQMe(2Jq`Ti|qNe%DZv=mr z5tm%_?K$!EQYQM+X@TEnf{VtS6^d7!?|EO+T$qfNaxpV28F48BcP^87((5-Cw-MLJ zAUVb4LnfaviDf}G(``mt-GbXNM_ne#g;0*vayaB+5HvnqhZG2k!qP{uD3j?10om+vKX?5~>ee&MG(JeF6D*MiI zCbY3xDQShxtO5HYqP;pi)A*(Cgj3pYj&tRj>l{ogAMRE7&O9DWD_NEfyRWBd=H4^p z{f_&@%M}v1yL(?S?VC1PKQ*s@oK_8+Pd-j-giZFtY4w|bimB^-C~N26vp&6e5__2h zVJjzrl|7&TUvxqLzZTH2a-~fmUKLoed&=RoHfPY-esi-lHs6?=W%Ej#gR*sgEZftI z=an#Lwq-AYz5J=EzU*ckY`QPISsj~M%Wl${x0cO}m$GR&U3T z3W2pvkjQ^Kp=9O$I|m6X_g{^k{(pu0`u~+2~&Z6)h4O_=ce=) zFlqc|dZS1g?GxEM*L&dU#Y@s7Yh=Snx4)TQ8|B}>DRpyiPUpC*Z%*e(dv8v!6O>8^ zb9DYXhd1q=pj71~t)75HmHTfDw5i;GpF)(%{a0$e|6dYRs2sD9pK|||gzl94FXAKr zzvWPxa;(TX@4rdA!?&c@;>aI5nqIOHo$1)7<9u-?&;l}2fv?Qyqv;j1ZJNG&&Ed4O z*>;aSp8i92)1zL=(q{XW=t42ENn?}8PfU&NnLKG?()dX!t;SEBm^daOHEH~~6jSSq zKMI-!-G8lX1||LyvHR6i=`Hhii1q$b632|F9zQIDef;ndu}x!>hgWZ%kebkTV#3(O zio?c_nKX7>O49*x$rHyXCr(VA8do(oE(Ns`;|A^i@?v_xFMEDw``8YYk5v5gRY#$Wf6sOnTg{3OQS*q$H-Km{n(^%M?u-7n_ulGAS`OC2?}% z#H7@zvC?;nSv~UCBDsboj2SiwgH22^Ss%<<(A=IMh%yCgtt(nlnr9ay#!rl$oFG&4 zUoDyZV;2{!oRAWmn39?_7A*~r9Xd5ObyQ;PkP%7ahQ~|iDHSUXi5;7mI%@oI6Fi?D z9ZX6^yTc~I&Dind?sqL#<{u5Ej>pbP7?~KGkeWI%Y3L-lSzY~lWW@i`!zj2hZhUI& z(8R=Xu^8Hz#NkzA(bdF+B=(dL+dE;*q{KE8CuSQz(VTheR+W51?wfYgz0jX!%z#z5 zBF*&UZ|62OkG=gseVwG?nf8**Ok%>YQL+A>ts0v+W!RWW!;{91jIChSOpA{0P~o1# zoXkftFS<5jlg80HG36m06m6=-R`46F5c^PUO6o)@Hr>Pih%qNNtP3xaxlP#1F0Eh= zUHd0G%5tjMW_#s7VC&+AW0P@&$>E!EI=tgHu97?BaC!Y79;e_eD5p7`{RX&kb^H&%?u|?5n9coP59Y+X zw~7Q)+|)#tQs2}lQ1-KOo}@{ zyZGtB=})s+WCab*3S!2=LE zL{33D1;ub^yikK+)~juhLpCv4MnsI$B6lkoub3FJL8Ew8vWiEeZ`P)jjX6o?r?s<@;QnupX?EK-4F| zNUFh5TV7pjFo1o6yWmD)6Ho(wrGg^qA#N770MTC~Qa{uOw+U}HZDrRF-VEtaHT_X& zg~GwCv^XHdm)E^p*bhbagolRCq#}P3YryLIwL;(o_Ef4+tka1H|A$J$s#1^W#J?gn zgmoRe8Jf)N6R+yTFEGQF^i#`) z=*46&5ZxsY#|}`Z+-_PGeP*Oi6j1IzulOVHG_M)`2!tD=OBDi~fgJ zQB}G?rAc~m4bq}DMrk*Ot2$ooTD|xIlKZOUt&0kU2|SBisPSE3pnQeKq2r;3)^=-X zx?ZPJ+j?n8>7$|3-WvMRM?(euR1_e+3jrW`)v`41#&1|xrgaFL{YiLlWz|!r;BjCt zZC+|Z!|#iwrfgq6sfEHEnAG8Q~mIxsay9?rrE1M9`O} z7;caX7lg}DCW_TGn8N!mFqWZMv55^Pw0ajdm{PDW4W{9coNh2hL2|9Zga)Cl!4v~Y zSfdGT;L(lzS8*e##V=VyqbU)RU5%y$NdDGnLTlOH$m@($JS68oa*<0;V0 ztuwp_foDxK;Md%BMGST1o7B^Q|O)nz`7{pR=@^ z#*sPyrcQhp%5WL2-3t8UdkN`>of=Bot)Z9qYG^KmTB35hA;c1);CD3iX%E^8(Udq< zmOg{3>$k2?rhiWD+AZrqho>BPL{eH3U{7^a(^%;z*X>0WwTPOVQwA%J~PT=><@+e~uXs zI@y%e=a^9l4(FIrTsm{iC@0n&Gm2Tv6f>Us@}`(aL$Yp)8TmRf#hjF|8$u{iWTc%R zYbfi2ie%}DGtewM(tanJO;!d+DNj9ZPDM#wV&F~hF_=fuyzUo1f*BgaUV3|QBy$?f zc+Lx-XC9eQ3-OaE($W!#aYSgyS1OXFhD+GM)vQQp;Qo+sW#2sW>UgShw2%!|CbE{d zViNhJ7r$c8f@-(FVn*4&^okj!(SMzJG>z^l;UbJ~{(I?Q-B{cVRCrKYCC zj4PaVnDIP(1`-;F4}{O4-C)+@9vT9KJ{QbMTi7Bi#&l17b z9=gvmf~28Z_ynXOHX|jJ)$X$lpq_W&`dUAg1^qC5AZy!aK^^klJ`3I>^=-2}1ERhJ)o%n2WSf?!hbjrZtgKtzFwD3 zL1+m=SrAi#(8(U;hA0x0R}R4<2)zJNA_yIV;17g?Ajkuu;CmV>hL{bMcN&mChae)* zGVHZ1<5otTvNpnMMBC`@cx%#NJ`cIVv(U+a0&cgL*QWLu@GK+KibV@Dt+*VPWm-{d z?aH*q#x8=`4ip3;z^S1U2Gi7&wxp2#;Q=7p$!%G^R1a3K-M$k46o`2^e?CimIgakQH^t>OgoDW2`r&02iq8+$ zY0bb)zR`x0ywqsJJ?YOz8|uSrMjPt0ev%EXo=nL$o(xI5P8^75n>f~qWOVX@Mt!L;R3LdK+A^ z6UzNYLl40DI^`L`>pG#M;BKAJzroKsAt(4(C$s?^t8)Zv;56@Xe2=|Z-oSo*e{?^# z=7XvJ%D@WS>0u=$R5>`9T)}|CC2*lB|WF1T%iz3 zr2SgLTRSVUpf=mHFf5DPY$*KAZ8kLO4z<}(aNctRITda3BXq@n!98amd4%B!_JXN`(v$q0>r;AabC!r8euXAM-w zzGJ(Esvzn^+aOxc*{E09OX-bxW-Iy77MspTpj?nt>0SWufyfc_XJDrg3V?S{9Ldt@ zt;%0Mw87QFm&|3bqX9N-o*iw;!g+R7Gt1`L@g>FXdG=8xhllmzMU=xdcJxec21(v! zz1Z6e^85_-RffuHLuqYoX(O#OvA>rXg0$Xz?W>vLUg8MM3^d^U)GdPRvjzMvN~NcH ziPMlCV5qK@E6WY@8{r}hj=d^b@Di60Ip|kgG_K=`hR zd_}(j-y0Efz*|6$WNFLWio4XlC5%KgQkV^mhqBJdys#*V4``vVj@Kle_y``t@2~2l z^b<;Fqy06sFP?qho=ne< z0DJ7{Kk~y3d`QGnomj1LT>MXH|0L?00r15cp*Z;5i%=H4O(j$eADI!F1Mf-+oq-Rd zID*5;zkqkJ^7kD9kP+%yQmX;wa7tdMsa~&d;!X^>zQ+& zpydMBT{|>IeG0y_Bk$A`;iOHd1U`%-w8XBVrfv7dWCx#U!Fl$6A`^L{!mQ$P|7H zefBk0){m^JEMHWmUQr6uh2LR5<&6X~EmvVK9_08cEC9#Nk$fqARNssPExLvJANwB7UooFVK577a17>?-SvqB)sxS8E+fh39mD(csedHKfoQIu z!fIY9ei|*E{pTHM5nn&=z->6F!;v(bFT1gNF-Mz=V=2%+elRI@f@fwz2f!sWp#t#5 zOz1zE8fto4MY7a7f^GcT5xafiGkui5bU4y+46lFXNKEGZL<@s~9e=o~t}}u@gSU9K z#xiwyVud)Mg|V8tXTto{yhH&y%Cf(ECSoXmex|Tk9l|UTn(Ra-4d8^CBUxG_D$sbD zKUrLUcyy_Q&k=IL%QAPzTqk{Ar1byEaXT2eayT4`!+5Q;gf(idE#P07{3?G7ew8_r zA+i-r0?YV#b_fd`J2z61oesZvvUKBwNx*Xee34RLUTdg>*G1)(WoTNl-BHd+T7DJ$ zdc5zF(&}n>cZ0MmQOZYC7;#Znc@(g}DP)y-?ak5D#6JCE1E z=*-yYjE>}^lLN;uFapXdjMWCT9r=ALTeH!L3iOW~ooL8i+~`Dwa(kl_%}~Eh&g2>V zS)1sCeel=b=NhVI!@>-jT+vS_#vnDYtg3RM%wJi-JKtJkgG!IriPM430JTNDH*R&Y^OMiG(S-I6|Msu#_I3M6Qk2`V8J4wk8$NAuQ11*pL@^;9a`S2;5V9=lcn}{rRpQ+PwAw)i-mp?5O(ehHR zY3K|%l%^+=!ErR9wjOj7d`DAW^(_s}_(?-{@Dfeb*TFqBpn=e^1sp^3Oj+6k+<-#L z|Bn*cwDz7;S$pr%@dePW2?gDBs1mDmVm2gX zoa||oEH3OGL$%V*+RVK*u>pQ7$GNX8d+kE8N^`-n^X z@JXAU)=iVPtEd~txwEJnFNSSJ-Kdjd=5(jib~?YWxTUYUUVj9C)#TWE2>7Wcl;hJ! zMc;vEYRXFkm(+yZVJea($1lpBIo(03^%^JC02^_v`bK%2KdBX=Ubw_rJJ+PL=C`dI zC20J%?j*X!=%W*hVYa#QXpe%b@m~y*EmlJwa7#^j!O1F;rPAm=-13NgVT5vdTlYKa zb#1h85L%02FU7nN^MuO5dt#PW{hTMD0{nM`R0xi#Ig+JwX}l`keB*G%`dzmKGqi2q zV^yx7#8(OG!EM{0AE%}8mDenMtTJqw2K9V_H5$P4G)FT0Qx0of&$`|<#wo*ek1x-{ zNe~~S*7#G4*lq}4Bj2lx^?qi&%Kj-oypXWZtmzI6<9;ZCTb$g>u+zefSy_TPo zVJoM%i>1}7?%t*o_fsFGA>h86`?;=@9u+B7d5`ty$Ue*wno%HImxuU}efWm(9y`6l zjUsqDz=gbhAK*f6+yO4UXNn4R;dy;#pbMq0G0=r2TPbM|7kg<(@$29qoP2nfFb!P>m*A9lY_Eo5 z;BPFHHwgZ@LTJ@N4IKb?-<0QnLPfCRTKM`1?75q&l9ktYxuTZ=+Xq72*rlr>?l{_z z&hT3zI1;a_3FD&|5$Z-E`E95h@A+S(uKKH=aAg!`##OD|yib$^|;jCwpo; zaBu|I>J9iS1fg~CUj#yvzgCefwY4id!rYPNP}7Gi+&D*FE8MsU0#~|mWu&fjqa8VW zr8|SHvM!ydgH~8eZap&p;Y#;3k}? zhwU1A9vp-7Jb2ysqavE>=!Ad!q0ddhNUi^p0uG*RV~&~F8I&pd9u_}-WT_&U!Gl&q_7Up*TF-u24RRG)7h_oBNTm?^X$Kz z7u9WEnW!AS=D7#Mv17Nd4w&C@)>oH6JCB{8n7KTi2dCKNJ^MBAhRu;I`M%66Id^nb z^2ss%bnC~`^-HwyChI!yiFk&$zC)aVYDPO3!nIv})#7sXB3^t-CmOZhtpm5&*jrin(Trims-#%Ts-7Ul*f1{Ri< UX2z!GDQ1Z#Nv4~(GA1ko0G|I7lK=n! diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index 105be4bc23c8057c71e98ed656c1e32c4e444e19..aa7ebf86755ee377f5584ee3e329edfab1bf58f5 100644 GIT binary patch delta 63 zcmV~$u@QhU2mruiB7+c+X}o~3Pz!g;0uDo$W&FM76}Cd@5>+I) S(m=I_jOMN+t!r?~T=4w0UK6\n", " \n", " \n", - " low_information_score\n", " is_low_information_issue\n", + " low_information_score\n", " \n", " \n", " \n", " \n", " 53050\n", - " 0.067975\n", " True\n", + " 0.067975\n", " \n", " \n", " 40875\n", - " 0.089929\n", " True\n", + " 0.089929\n", " \n", " \n", " 9594\n", - " 0.092601\n", " True\n", + " 0.092601\n", " \n", " \n", " 34825\n", - " 0.107744\n", " True\n", + " 0.107744\n", " \n", " \n", " 37530\n", - " 0.108516\n", " True\n", + " 0.108516\n", " \n", " \n", "\n", "" ], "text/plain": [ - " low_information_score is_low_information_issue\n", - "53050 0.067975 True\n", - "40875 0.089929 True\n", - "9594 0.092601 True\n", - "34825 0.107744 True\n", - "37530 0.108516 True" + " is_low_information_issue low_information_score\n", + "53050 True 0.067975\n", + "40875 True 0.089929\n", + "9594 True 0.092601\n", + "34825 True 0.107744\n", + "37530 True 0.108516" ] }, "execution_count": 29, @@ -2471,10 +2472,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:26.899613Z", - "iopub.status.busy": "2024-08-20T02:17:26.899267Z", - "iopub.status.idle": "2024-08-20T02:17:27.096728Z", - "shell.execute_reply": "2024-08-20T02:17:27.096135Z" + "iopub.execute_input": "2024-08-21T00:42:35.096382Z", + "iopub.status.busy": "2024-08-21T00:42:35.096048Z", + "iopub.status.idle": "2024-08-21T00:42:35.290511Z", + "shell.execute_reply": "2024-08-21T00:42:35.289937Z" } }, "outputs": [ @@ -2514,10 +2515,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:27.099097Z", - "iopub.status.busy": "2024-08-20T02:17:27.098748Z", - "iopub.status.idle": "2024-08-20T02:17:27.103289Z", - "shell.execute_reply": "2024-08-20T02:17:27.102744Z" + "iopub.execute_input": "2024-08-21T00:42:35.292770Z", + "iopub.status.busy": "2024-08-21T00:42:35.292408Z", + "iopub.status.idle": "2024-08-21T00:42:35.297161Z", + "shell.execute_reply": "2024-08-21T00:42:35.296589Z" }, "nbsphinx": "hidden" }, @@ -2554,69 +2555,76 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "021d8612a48e43178fed0c0b15ea876c": { - "model_module": "@jupyter-widgets/controls", + "0090a6e1a0314bd092156ae36614df7f": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "03b02631a61b45db80f1674b2e513637": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ac4efbc3798b4fea9362751bc3c2aad7", - "placeholder": "​", - "style": "IPY_MODEL_2f619565724a4f5e85f34435f4797cc1", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "07026fa3ce9f40908f1cad23fb8730ee": { + "03ac94efe0b7409880cc3ace36a81a78": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9be7f183d4c34b5491249ea2e89e3ee2", - "placeholder": "​", - "style": "IPY_MODEL_a54ea9c9e9b0433fbd1836e54c5b2b7f", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "0a118557c0514ce7ab2b47cb0d244f86": { + "0863f7aeecb3467cb344c965276dd26d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2631,54 +2639,51 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a8959e27ece346309771bfdaf0c7265a", + "layout": "IPY_MODEL_451e831e5f8a41168bb1dd5ba0d41113", "placeholder": "​", - "style": "IPY_MODEL_1d1ce77c588e44e596fd34478e46d70d", + "style": "IPY_MODEL_7dd8bc4d9c98453c97ed63c835daeb7a", "tabbable": null, "tooltip": null, - "value": "100%" + "value": "Computing checksums: 100%" } }, - "0c312ef42cba4cd699cf564f02f23ad2": { + "09585ef64c004c5580086dc174f84a49": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4149612229a94b399cbad5fd221f93bb", - "placeholder": "​", - "style": "IPY_MODEL_476ee1c7fa68476895326f117eb002ce", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0d3cbe2df0bc47b5a91766e8876fb0ad": { + "0ab9658c5c5a45f88f7ecd42ad837a28": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0e3b3fa140cb40be8653cfde627d3d79": { + "0c37e49fea114e05970daebd3b46af90": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2731,7 +2736,31 @@ "width": null } }, - "10ac5d66ea3743dca0e0beb7ed0cae31": { + "0d0a8ce6b3874ba39d794c1add79af3a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_160d9773829e45be894d59de39f0e2bd", + "IPY_MODEL_bd24b93e83db495ba8c68c0735f0c8ae", + "IPY_MODEL_9df7eba39a454111be100a3d45fa73fa" + ], + "layout": "IPY_MODEL_7cd87c6834604df0bd153d20f18f4e8d", + "tabbable": null, + "tooltip": null + } + }, + "0e594dc4853e47c6814600a0605eaf6e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2746,15 +2775,83 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7fea1137ff84487eb48fd3148ffe61c2", + "layout": "IPY_MODEL_e40f660a323041a893eb609d3636575b", "placeholder": "​", - "style": "IPY_MODEL_2871941f876c4f2cad18e45cc151987b", + "style": "IPY_MODEL_0f564a4e6d284a50a0d7f5933dcbbbd6", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "0f564a4e6d284a50a0d7f5933dcbbbd6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0fcb53e027ed415fa4ecca4336afdc56": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0863f7aeecb3467cb344c965276dd26d", + "IPY_MODEL_118af324753e435ea1a9b770847e158c", + "IPY_MODEL_42f1baee75ee478daa5f6c4120c81508" + ], + "layout": "IPY_MODEL_a9eb2f5fb9f34588be298081076acb6f", + "tabbable": null, + "tooltip": null + } + }, + "118af324753e435ea1a9b770847e158c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_248ea55ebc014df79811279a04e5c43a", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_03ac94efe0b7409880cc3ace36a81a78", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.25it/s]" + "value": 2.0 } }, - "11fb5c3f3d134685a778b4ef5db8251b": { + "123a7f9faee24b9ca7cc1d97cd06f494": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2807,7 +2904,25 @@ "width": null } }, - "1479a4d143bd4e9d87f38b85478b15cf": { + "1361c07af5134f28b730f630eb4f8b22": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "160d9773829e45be894d59de39f0e2bd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2822,15 +2937,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6d2bb728d5434cc1bf7bcbe5114c6c1c", + "layout": "IPY_MODEL_c622402929c843b68cf0ad96de113751", "placeholder": "​", - "style": "IPY_MODEL_a176f3f55a0546dea71efaa2fd058327", + "style": "IPY_MODEL_f2ac84087dc44396ba038fe66dda6f94", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 59.13it/s]" + "value": "Generating train split: 100%" + } + }, + "18d825b02ab240c8b132e33d7d8f86e8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5ff09e218d274b8fac53538c84ef1288", + "IPY_MODEL_8ae2ae2784f24f19b8ebc8c5bdd03310", + "IPY_MODEL_1988929822c34023ba03542b5ac855b6" + ], + "layout": "IPY_MODEL_dfd1882b8a264cf5856df21b7c839b64", + "tabbable": null, + "tooltip": null } }, - "15368d6fe0714cc4aea2a2bb2fb50799": { + "1988929822c34023ba03542b5ac855b6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2845,68 +2984,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f458b392945444ba8b10eed0a3dd1645", + "layout": "IPY_MODEL_797fd5f4177a4751935f48bd5e57a811", "placeholder": "​", - "style": "IPY_MODEL_73aa47eccdb342e1873ef0de4dfaaba4", + "style": "IPY_MODEL_0ab9658c5c5a45f88f7ecd42ad837a28", "tabbable": null, "tooltip": null, - "value": " 9.02k/9.02k [00:00<00:00, 1.14MB/s]" + "value": " 40/40 [00:00<00:00, 57.49it/s]" } }, - "15cdf804328e4b5ebac5a69a308917a0": { - "model_module": "@jupyter-widgets/base", + "1eb1014045dd499c802757478058bea8": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_57e13432b1304559996a38ae76cf5d5b", + "placeholder": "​", + "style": "IPY_MODEL_a621fe07134a4a1eb8e7dde558240f6a", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:51<00:00, 1227.40it/s]" } }, - "169af65c6da24ccbbbc9686554ad7330": { + "1ef99d81d54c48f582aaf0afccc25569": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2959,7 +3068,7 @@ "width": null } }, - "169ff7283fd74d6ebb245d342d9b49cf": { + "20952cf3175f4767be6b403c62274466": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2975,294 +3084,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f28fbbbba2984229af4e67f6ca6e8831", + "layout": "IPY_MODEL_871146bf317f42a7aff7d941ef3918f0", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_d8b8c8d3b7c74f13b7163f40115a9f0c", + "style": "IPY_MODEL_d5301367ac6a4b84bbc0c321a286117e", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "16ac3905f01949b98855f4fb0b92cae0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "17cb2066ebd14043923368c02dca93dc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "19e4dd2c86be43e7bb8e1c25f8072e28": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1d1ce77c588e44e596fd34478e46d70d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1f82a06521d2455cb39afe53180dadc6": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "20a722caad7641c2bf13bb841c20bb2a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "24f08ffd209d481fab5118b595a9616f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "26346069256c47abb0faed0d533560b7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "282d9a64728c471b8355926115fd9898": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2857a837de394de48bfed929ebf8f0b1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2871941f876c4f2cad18e45cc151987b": { + "240319243e0f4665b9fd592c100d171c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3280,7 +3112,7 @@ "text_color": null } }, - "2a912c7f6ced4e7a8e4d717be022a5c4": { + "243390ab71bb4bbcb83f468711fd42e8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3333,64 +3165,7 @@ "width": null } }, - "2b2e2700e5624405b4e39b6c8e47acbf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_de45faae5c3247e0b8fe29686b0e8c63", - "placeholder": "​", - "style": "IPY_MODEL_6348c64e32ba485d8591358508480b82", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" - } - }, - "2d29eafef9b4432998bb385936904368": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2f619565724a4f5e85f34435f4797cc1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "32cbff0f839c4350996a8211f56b5f3e": { + "248ea55ebc014df79811279a04e5c43a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3443,25 +3218,7 @@ "width": null } }, - "36fd180883244492b72497cfcc34ef46": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3a660752b251462d88b557c02564d921": { + "2562e71fd2f64d07b631e639debc9636": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3514,41 +3271,7 @@ "width": null } }, - "3eec7bf90b544f90bca30420429fbeb9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "3f91e82b6e7f4a78b379a4a6eb6e398b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4149612229a94b399cbad5fd221f93bb": { + "26e1b5518ff240278ff1bc974b8295ad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3601,49 +3324,30 @@ "width": null } }, - "43a104c3fa0b434b93f6fbbcca42fc2b": { + "294a233cb4384c7b95501bb1ed8e2c44": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "441cfdef564242b99b8b1cc22c5d0f4a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9e0d6e57b4884960881ed582f7dadf4a", - "IPY_MODEL_7d8319efcc6040fe906197c851c669b9", - "IPY_MODEL_a9b6a871bfb845f28df4e04109b1543f" - ], - "layout": "IPY_MODEL_f4bfeea21b8f49b2a7d30a142e3e8549", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d96d30dd619344a99a12676a4c6e5277", + "placeholder": "​", + "style": "IPY_MODEL_92eccb9eb18148b3bff9e4144ca6cb6d", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "45727302ad624b9d93ae556eb9c288a0": { + "2b7dd9a344a84205bb7c1076b2a000f8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3659,49 +3363,7 @@ "description_width": "" } }, - "45ddc6839105425c957fa8cc282296cd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f7d925790daf4835a17e53ef72c2a004", - "IPY_MODEL_9f5b5b7578b844b59a8287cdc9ee5b32", - "IPY_MODEL_ecb05f4c4e5545a39c8106713cdaf17f" - ], - "layout": "IPY_MODEL_876437f018d640669a40965c5c35b6c2", - "tabbable": null, - "tooltip": null - } - }, - "476ee1c7fa68476895326f117eb002ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "49a2422b46d84a7fa25f880ea56876e5": { + "2c9c0982e5e04ae29886550c55c4a461": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3754,71 +3416,23 @@ "width": null } }, - "4b3e49364f734945ac6d89bd9ea490b7": { + "2fe33272a38c439895dacf4dd38fc306": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4fac98ba7f4543f5bc1d5ec5a3190f4a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5c1cb462f7f84c29a968da6975977b0d", - "placeholder": "​", - "style": "IPY_MODEL_43a104c3fa0b434b93f6fbbcca42fc2b", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 290519.38 examples/s]" - } - }, - "50b6e3cbb73145a48b3d84c0312098d4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_20a722caad7641c2bf13bb841c20bb2a", - "placeholder": "​", - "style": "IPY_MODEL_82d376f635054d3c97c64764d549725e", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:50<00:00, 1167.72it/s]" + "bar_color": null, + "description_width": "" } }, - "5125f4c4f5c44b49aa982831d87ecfc9": { + "2fed369fd0be40feacbcbaad93cf93c1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3871,33 +3485,30 @@ "width": null } }, - "5128eb3887f0470b94f4145cada81762": { + "3019243807544f6d987545bce5dd8f3d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_941416d121634b03b754227b88786641", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3eec7bf90b544f90bca30420429fbeb9", + "layout": "IPY_MODEL_e86dbaa5d3c04bc18c5c77dd4d794c63", + "placeholder": "​", + "style": "IPY_MODEL_cd2d53dd06fa461284b75a1bdd83f18d", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": "Generating test split: 100%" } }, - "5164ccb60fd54e12936c4d1b1c831021": { + "3056551dc5924bdba2dbe296d659c029": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3912,39 +3523,82 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f3a7be966cfe40f99217128504a15ed7", + "layout": "IPY_MODEL_8b0f204fc563494eb11d422e1b3cc342", "placeholder": "​", - "style": "IPY_MODEL_827679259b2e4576b4086a2372057a7b", + "style": "IPY_MODEL_240319243e0f4665b9fd592c100d171c", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": " 9.02k/9.02k [00:00<00:00, 1.11MB/s]" } }, - "56ca127f2df5437f87fbbafdc821e5c3": { + "316b8fd82b284560a819f71e49826760": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "31da7fbc4ceb4e4cab95640e5f63a387": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0a118557c0514ce7ab2b47cb0d244f86", - "IPY_MODEL_f485eb58c46447509184d1339495c90b", - "IPY_MODEL_59a27ef3f4be4456aa0c7658a7c4d615" - ], - "layout": "IPY_MODEL_11fb5c3f3d134685a778b4ef5db8251b", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_849276a9e26042a5802402a3126e6a90", + "placeholder": "​", + "style": "IPY_MODEL_b1a61c6a0ca149e18ceb1f5c66b6b1b8", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 40/40 [00:00<00:00, 55.79it/s]" + } + }, + "33c29b72ee814236b2a49a1d616ec399": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_af4046f51ba94e69ba881c964e8c725a", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7d9d07fb376a462ab7ddd16bb3640027", + "tabbable": null, + "tooltip": null, + "value": 30931277.0 } }, - "59a27ef3f4be4456aa0c7658a7c4d615": { + "352544fb47c84a44811ee627291a517a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3959,15 +3613,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a2f438e3c9f34e7c86ce9e7f8fdc59de", + "layout": "IPY_MODEL_9d8068af7425429db8de8f0963a041cf", "placeholder": "​", - "style": "IPY_MODEL_df7ee9c286654bd68af21f47b249bad5", + "style": "IPY_MODEL_316b8fd82b284560a819f71e49826760", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 49.65it/s]" + } + }, + "3887d5672b5c4b778866106fc0b5e8a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_af2375ac8a9e451fb0f53889b73ae3e5", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b74fa9222c5a4f7e8db4ce0334c11beb", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.78it/s]" + "value": 60000.0 } }, - "5aab81f6c2d64bb88c7793decdfa9866": { + "3b7f9d53d82c471f83bfd6fcefbec3e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4020,7 +3700,7 @@ "width": null } }, - "5afce49183404bd7bf49147a59d70e88": { + "3bf9d068ebd84e0bb766ec5f71d6673d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4073,23 +3753,60 @@ "width": null } }, - "5b9f00a107af4384b3eb9bca9747f3d6": { - "model_module": "@jupyter-widgets/controls", + "3d95a4e2520046d8b2e2cf38369b6f03": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "5c1cb462f7f84c29a968da6975977b0d": { + "3f01e2b264754f87a9a995d2a2604758": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4142,7 +3859,7 @@ "width": null } }, - "5faa54627d394ff5be9347e2a821a5d5": { + "3f585e537a3d44e192823e0223eb4127": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4157,42 +3874,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_2b2e2700e5624405b4e39b6c8e47acbf", - "IPY_MODEL_5128eb3887f0470b94f4145cada81762", - "IPY_MODEL_67d99925319848799714a5cfcfdfb9a8" + "IPY_MODEL_0e594dc4853e47c6814600a0605eaf6e", + "IPY_MODEL_ba8be8878e814fbdb2ec97737d5d0c72", + "IPY_MODEL_a855a088baee4aa9bf215cf977aae4d1" ], - "layout": "IPY_MODEL_3a660752b251462d88b557c02564d921", + "layout": "IPY_MODEL_a8a73917f4c1495894e238554bff6e8a", "tabbable": null, "tooltip": null } }, - "5fd4de48b98142d5a3599af54b5d671a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8283f4d0ca7840aebcb70e8e46d2dcf7", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ff8a90c9270247469c47cb689ae7fa73", - "tabbable": null, - "tooltip": null, - "value": 30931277.0 - } - }, - "6348c64e32ba485d8591358508480b82": { + "404d82b5437a44238131a5ca28a319e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4210,7 +3901,7 @@ "text_color": null } }, - "640a63ead30f4d6495b024df6003c7e4": { + "4279ccb833f743cc83462d1929f6d9a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4228,7 +3919,7 @@ "text_color": null } }, - "645adb2f2e8a4782a6706ad5bb72e2e6": { + "42f1baee75ee478daa5f6c4120c81508": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4243,39 +3934,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9be5a25f943643afab148adea37a5fae", + "layout": "IPY_MODEL_cf059ef88023434e9444ba2768dbf5ee", "placeholder": "​", - "style": "IPY_MODEL_36fd180883244492b72497cfcc34ef46", + "style": "IPY_MODEL_1361c07af5134f28b730f630eb4f8b22", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 2/2 [00:00<00:00, 644.83it/s]" } }, - "6465989afcb4403ca6a39f2ea17206ea": { - "model_module": "@jupyter-widgets/controls", + "451e831e5f8a41168bb1dd5ba0d41113": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b6e6e3493e064f8da58e5e536cc2ce76", - "IPY_MODEL_bb58bae10ed84144aee42b5cc9a8b053", - "IPY_MODEL_ca100aaca873437fb6b72cf630544e59" - ], - "layout": "IPY_MODEL_e7b3780db8b641268b1b36ccb9f65ac2", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "67d99925319848799714a5cfcfdfb9a8": { + "4541751edf6f4d81883ddc88e0c16bf2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4290,64 +4010,57 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d76c142c55eb451eb96210587ef44c54", + "layout": "IPY_MODEL_da0f6b8dbb074da790d9b8769166d088", "placeholder": "​", - "style": "IPY_MODEL_17cb2066ebd14043923368c02dca93dc", + "style": "IPY_MODEL_effb478ca69e40e1bab98c72607eff2d", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 7540.37 examples/s]" + "value": " 10000/10000 [00:00<00:00, 245384.26 examples/s]" } }, - "6a43e294c6f74c6cb08fd794af7afcd1": { + "463d739b98d0435d9baf793cf87f15e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_71755205f31040fb88636ddebe7ea6b2", - "placeholder": "​", - "style": "IPY_MODEL_894c8e01d7f54e70af9af02bfeb74e54", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_73929fdff9274b2b8a7cb8d1b19f2eef", + "IPY_MODEL_33c29b72ee814236b2a49a1d616ec399", + "IPY_MODEL_77738e7da60e4c1690167ced2483e9dd" + ], + "layout": "IPY_MODEL_862bcf6293a64e3782f865bcc6acec02", "tabbable": null, - "tooltip": null, - "value": "Generating test split: 100%" + "tooltip": null } }, - "6b482844912e48149e135cc81b6f7430": { + "47d2e80a277b4481a1e94ed7767afeb4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0e3b3fa140cb40be8653cfde627d3d79", - "max": 9015.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_26346069256c47abb0faed0d533560b7", - "tabbable": null, - "tooltip": null, - "value": 9015.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6d2bb728d5434cc1bf7bcbe5114c6c1c": { + "496c3062480544deba301515e6ec2ef2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4400,7 +4113,7 @@ "width": null } }, - "6ed4f63d8dbc4a19805095fe5cad8d36": { + "4b81090f62c343ef973baf71a0ec5eb7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4453,33 +4166,41 @@ "width": null } }, - "706c8293f8d54f9a988e2a93e8822821": { + "4cd513870c6d47ffa0c1f6c2d8f77251": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6ed4f63d8dbc4a19805095fe5cad8d36", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e0fe440774ca496bba6c8da4ed382fee", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4f1bd609a09a470b9425e9ba1cae55f9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "71755205f31040fb88636ddebe7ea6b2": { + "4f1ced536d3348d49571c317bef4d8f3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4532,74 +4253,60 @@ "width": null } }, - "73aa47eccdb342e1873ef0de4dfaaba4": { - "model_module": "@jupyter-widgets/controls", + "51fba05ef28a4d009399006bff596d17": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7529ce6a42c144c09718560bf4d72c37": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_df8d27e594ac4d2ca6e68c52122e1e10", - "placeholder": "​", - "style": "IPY_MODEL_b34e0e13666d40fdbe78185113c34056", - "tabbable": null, - "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 68.0MB/s]" - } - }, - "7d8319efcc6040fe906197c851c669b9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5125f4c4f5c44b49aa982831d87ecfc9", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2857a837de394de48bfed929ebf8f0b1", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "7fea1137ff84487eb48fd3148ffe61c2": { + "57e13432b1304559996a38ae76cf5d5b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4652,25 +4359,31 @@ "width": null } }, - "827679259b2e4576b4086a2372057a7b": { + "5916bec07eac422cab70586495cde9c8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3019243807544f6d987545bce5dd8f3d", + "IPY_MODEL_f8bf518bc6d647f3ab8307b77bad2787", + "IPY_MODEL_4541751edf6f4d81883ddc88e0c16bf2" + ], + "layout": "IPY_MODEL_0c37e49fea114e05970daebd3b46af90", + "tabbable": null, + "tooltip": null } }, - "8283f4d0ca7840aebcb70e8e46d2dcf7": { + "59cf986d09524c0187606571fee4f3b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4723,25 +4436,7 @@ "width": null } }, - "82d376f635054d3c97c64764d549725e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "83ebe6ddba4141b79fcfc3aa72d6c7dd": { + "5a187012e508496c86e0fce898aceeb1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4794,7 +4489,53 @@ "width": null } }, - "876437f018d640669a40965c5c35b6c2": { + "5f98f31916c648f68bfb47f43f499c12": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2fed369fd0be40feacbcbaad93cf93c1", + "placeholder": "​", + "style": "IPY_MODEL_d4d856c67fd0471bb8cde67ec9492417", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 6750.49 examples/s]" + } + }, + "5ff09e218d274b8fac53538c84ef1288": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_123a7f9faee24b9ca7cc1d97cd06f494", + "placeholder": "​", + "style": "IPY_MODEL_4279ccb833f743cc83462d1929f6d9a7", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "60fb64a0bd414b7c917b4ff1bdca5aad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4847,33 +4588,49 @@ "width": null } }, - "87f3b023162a4a51b40375f9ab156184": { + "65d287d8c3144fc2b78a43f0bbd2cad9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c9b769e39cc74d9ca29efc05e10f0d16", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_45727302ad624b9d93ae556eb9c288a0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_acf57c33bde8495bb35aa1c319b1fa96", + "IPY_MODEL_20952cf3175f4767be6b403c62274466", + "IPY_MODEL_352544fb47c84a44811ee627291a517a" + ], + "layout": "IPY_MODEL_4b81090f62c343ef973baf71a0ec5eb7", "tabbable": null, - "tooltip": null, - "value": 60000.0 + "tooltip": null + } + }, + "65f5dece1f9240d2827276e09bfd633e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "894c8e01d7f54e70af9af02bfeb74e54": { + "6a42590401ea4ef185f377565a117445": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4891,7 +4648,23 @@ "text_color": null } }, - "916d7ec8225247f5a69cb02b2a7305ca": { + "6b34491e13c547409316044573da1b5b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6ebc890b826e49cfa02da4b052372853": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4944,33 +4717,128 @@ "width": null } }, - "91c644ade8be41a892c784aa00bda296": { + "73929fdff9274b2b8a7cb8d1b19f2eef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ae9f542f295140ef9e997964192c04a9", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_19e4dd2c86be43e7bb8e1c25f8072e28", + "layout": "IPY_MODEL_c9631aad5f7941199f0008bf9a7d8eb2", + "placeholder": "​", + "style": "IPY_MODEL_09585ef64c004c5580086dc174f84a49", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": "Downloading data: 100%" + } + }, + "7433c7f747d04645899ca1df242fc635": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_89dc7f171aff4c4e89a4cad4a4ae1687", + "placeholder": "​", + "style": "IPY_MODEL_76c1a3f4bef844669ad6060c282aa4ce", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 51.03it/s]" + } + }, + "76c1a3f4bef844669ad6060c282aa4ce": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "777214f0e66b4c89a70fafc58fae1c98": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "77738e7da60e4c1690167ced2483e9dd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_91c40a13bef54f7eae7b3023c8459a9a", + "placeholder": "​", + "style": "IPY_MODEL_65f5dece1f9240d2827276e09bfd633e", + "tabbable": null, + "tooltip": null, + "value": " 30.9M/30.9M [00:00<00:00, 37.1MB/s]" + } + }, + "7899f705574c42a18d00bc86a49e0688": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "93ef2bffc5564a48a0726b4109066352": { + "797fd5f4177a4751935f48bd5e57a811": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5023,7 +4891,7 @@ "width": null } }, - "941416d121634b03b754227b88786641": { + "7cd87c6834604df0bd153d20f18f4e8d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5076,25 +4944,91 @@ "width": null } }, - "941db0717364426d85aa393b06259844": { + "7d9d07fb376a462ab7ddd16bb3640027": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7dd8bc4d9c98453c97ed63c835daeb7a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "81607a3e18ca4baeb1b8f8f0aa78fd4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_294a233cb4384c7b95501bb1ed8e2c44", + "IPY_MODEL_c5bb5aa64dce4297ae18dc2041a1453e", + "IPY_MODEL_a32ea251b0434dcb8b24a04ee9ae1486" + ], + "layout": "IPY_MODEL_1ef99d81d54c48f582aaf0afccc25569", + "tabbable": null, + "tooltip": null + } + }, + "82dd1d0abee14d1782e84af236b2ad6b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f45e40d8fe894c54a435f99ca83a9af5", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2b7dd9a344a84205bb7c1076b2a000f8", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "9be5a25f943643afab148adea37a5fae": { + "849276a9e26042a5802402a3126e6a90": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5147,7 +5081,7 @@ "width": null } }, - "9be7f183d4c34b5491249ea2e89e3ee2": { + "862bcf6293a64e3782f865bcc6acec02": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5200,98 +5134,7 @@ "width": null } }, - "9e0d6e57b4884960881ed582f7dadf4a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e234015c7d62414da3934570b21d7543", - "placeholder": "​", - "style": "IPY_MODEL_3f91e82b6e7f4a78b379a4a6eb6e398b", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "9f5b5b7578b844b59a8287cdc9ee5b32": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e637799c134042c7a6d9acb0f78b7da0", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2d29eafef9b4432998bb385936904368", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "a176f3f55a0546dea71efaa2fd058327": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a1976bceab224f84a094c80cde4e8466": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cd4d8aa076334a959da64b5994f34397", - "IPY_MODEL_87f3b023162a4a51b40375f9ab156184", - "IPY_MODEL_50b6e3cbb73145a48b3d84c0312098d4" - ], - "layout": "IPY_MODEL_a39fea6f724442939c6d757896211d50", - "tabbable": null, - "tooltip": null - } - }, - "a2f438e3c9f34e7c86ce9e7f8fdc59de": { + "871146bf317f42a7aff7d941ef3918f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5344,7 +5187,7 @@ "width": null } }, - "a39fea6f724442939c6d757896211d50": { + "89dc7f171aff4c4e89a4cad4a4ae1687": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5397,25 +5240,7 @@ "width": null } }, - "a54ea9c9e9b0433fbd1836e54c5b2b7f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a87598836b1149b09e3daf786f13fc43": { + "8ae2ae2784f24f19b8ebc8c5bdd03310": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5431,17 +5256,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ce31247ca26948a7adb32aca9be54346", - "max": 60000.0, + "layout": "IPY_MODEL_26e1b5518ff240278ff1bc974b8295ad", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_5b9f00a107af4384b3eb9bca9747f3d6", + "style": "IPY_MODEL_2fe33272a38c439895dacf4dd38fc306", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": 40.0 } }, - "a8959e27ece346309771bfdaf0c7265a": { + "8b0f204fc563494eb11d422e1b3cc342": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5494,77 +5319,25 @@ "width": null } }, - "a9b6a871bfb845f28df4e04109b1543f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_49a2422b46d84a7fa25f880ea56876e5", - "placeholder": "​", - "style": "IPY_MODEL_c9b27b9e8c944335b1f722200f97d579", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 57.02it/s]" - } - }, - "aabff29de5e044afa3f214ce59f8d064": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_dd09d559306d4589801c8822d6d3bd4d", - "IPY_MODEL_a87598836b1149b09e3daf786f13fc43", - "IPY_MODEL_4fac98ba7f4543f5bc1d5ec5a3190f4a" - ], - "layout": "IPY_MODEL_1f82a06521d2455cb39afe53180dadc6", - "tabbable": null, - "tooltip": null - } - }, - "aac7844c662c4628957dad5607a50f7e": { + "8d022ff203f0409f8ec0a2a51684ce93": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_916d7ec8225247f5a69cb02b2a7305ca", - "placeholder": "​", - "style": "IPY_MODEL_941db0717364426d85aa393b06259844", - "tabbable": null, - "tooltip": null, - "value": "Downloading readme: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "ab000ca85bbc419cbc7aaa248eaa7d43": { + "8ecf783e8b0948e1abe86bfc856f097b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5580,7 +5353,7 @@ "description_width": "" } }, - "ac4efbc3798b4fea9362751bc3c2aad7": { + "91c40a13bef54f7eae7b3023c8459a9a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5633,7 +5406,25 @@ "width": null } }, - "adac4c5de55c4e81a72528a679019e7c": { + "92eccb9eb18148b3bff9e4144ca6cb6d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9d8068af7425429db8de8f0963a041cf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5686,7 +5477,80 @@ "width": null } }, - "ae9f542f295140ef9e997964192c04a9": { + "9df7eba39a454111be100a3d45fa73fa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3bf9d068ebd84e0bb766ec5f71d6673d", + "placeholder": "​", + "style": "IPY_MODEL_c94092d1c89542e8905dd73925ed12d2", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:00<00:00, 279470.88 examples/s]" + } + }, + "9f612dabc2054fb2b008cc6f8aafdc94": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_60fb64a0bd414b7c917b4ff1bdca5aad", + "max": 9015.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4f1bd609a09a470b9425e9ba1cae55f9", + "tabbable": null, + "tooltip": null, + "value": 9015.0 + } + }, + "a20e61f2133d4a678bd2b2e50042b1f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dc08cd9a666743908df5482245d9aebd", + "IPY_MODEL_9f612dabc2054fb2b008cc6f8aafdc94", + "IPY_MODEL_3056551dc5924bdba2dbe296d659c029" + ], + "layout": "IPY_MODEL_243390ab71bb4bbcb83f468711fd42e8", + "tabbable": null, + "tooltip": null + } + }, + "a306574ec68049899cf9cc7a5396209d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5739,7 +5603,30 @@ "width": null } }, - "b34e0e13666d40fdbe78185113c34056": { + "a32ea251b0434dcb8b24a04ee9ae1486": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2c9c0982e5e04ae29886550c55c4a461", + "placeholder": "​", + "style": "IPY_MODEL_47d2e80a277b4481a1e94ed7767afeb4", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 56.69it/s]" + } + }, + "a621fe07134a4a1eb8e7dde558240f6a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5757,7 +5644,7 @@ "text_color": null } }, - "b6e6e3493e064f8da58e5e536cc2ce76": { + "a855a088baee4aa9bf215cf977aae4d1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5772,15 +5659,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fbd7d4ea73254be2b2deaaa3b2315879", + "layout": "IPY_MODEL_fa1b285a6d474628abba13fe7f5952ab", "placeholder": "​", - "style": "IPY_MODEL_dd0a8fa2b4a145bc8a9622e2304ea68e", + "style": "IPY_MODEL_6a42590401ea4ef185f377565a117445", "tabbable": null, "tooltip": null, - "value": "Computing checksums: 100%" + "value": " 5.18M/5.18M [00:00<00:00, 11.9MB/s]" } }, - "b95797c6ae9a4df98d457db1eb2fb8cf": { + "a8a73917f4c1495894e238554bff6e8a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5833,33 +5720,7 @@ "width": null } }, - "bb58bae10ed84144aee42b5cc9a8b053": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_24f08ffd209d481fab5118b595a9616f", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_16ac3905f01949b98855f4fb0b92cae0", - "tabbable": null, - "tooltip": null, - "value": 2.0 - } - }, - "be7218c23a8d40d5a8e4cc89aea8e025": { + "a9eb2f5fb9f34588be298081076acb6f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5912,75 +5773,30 @@ "width": null } }, - "c04185b16fe24db68ca78fe46f88c7f6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_03b02631a61b45db80f1674b2e513637", - "IPY_MODEL_706c8293f8d54f9a988e2a93e8822821", - "IPY_MODEL_1479a4d143bd4e9d87f38b85478b15cf" - ], - "layout": "IPY_MODEL_d23a593cb7f74cb792dc483b2374871d", - "tabbable": null, - "tooltip": null - } - }, - "c202c26bb2474bdaa7d3c2a58438479f": { + "acf57c33bde8495bb35aa1c319b1fa96": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2a912c7f6ced4e7a8e4d717be022a5c4", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ab000ca85bbc419cbc7aaa248eaa7d43", + "layout": "IPY_MODEL_5a187012e508496c86e0fce898aceeb1", + "placeholder": "​", + "style": "IPY_MODEL_8d022ff203f0409f8ec0a2a51684ce93", "tabbable": null, "tooltip": null, - "value": 5175617.0 - } - }, - "c9b27b9e8c944335b1f722200f97d579": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "100%" } }, - "c9b769e39cc74d9ca29efc05e10f0d16": { + "af2375ac8a9e451fb0f53889b73ae3e5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6033,95 +5849,7 @@ "width": null } }, - "ca100aaca873437fb6b72cf630544e59": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fda1346f54894eeea4d244e48e2db6cc", - "placeholder": "​", - "style": "IPY_MODEL_cea23fbe18da41f0bf94307e2eb51b75", - "tabbable": null, - "tooltip": null, - "value": " 2/2 [00:00<00:00, 635.50it/s]" - } - }, - "ccd8827e2a944562b8b468656223e737": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "cd4d8aa076334a959da64b5994f34397": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_be7218c23a8d40d5a8e4cc89aea8e025", - "placeholder": "​", - "style": "IPY_MODEL_4b3e49364f734945ac6d89bd9ea490b7", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "cd6b09e86f8c40f38a15de31fd966867": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_aac7844c662c4628957dad5607a50f7e", - "IPY_MODEL_6b482844912e48149e135cc81b6f7430", - "IPY_MODEL_15368d6fe0714cc4aea2a2bb2fb50799" - ], - "layout": "IPY_MODEL_db9954416fd745479c8a65268d728215", - "tabbable": null, - "tooltip": null - } - }, - "ce31247ca26948a7adb32aca9be54346": { + "af4046f51ba94e69ba881c964e8c725a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6174,7 +5902,7 @@ "width": null } }, - "ce6a0ffa671241eea3f88477f4ddbf33": { + "af94cf49177e4ca99d9ef7362491c300": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6227,25 +5955,7 @@ "width": null } }, - "cea23fbe18da41f0bf94307e2eb51b75": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d0412e26abe34ee69d35916d383bdb76": { + "b1a61c6a0ca149e18ceb1f5c66b6b1b8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6263,7 +5973,7 @@ "text_color": null } }, - "d23a593cb7f74cb792dc483b2374871d": { + "b34cc838b5ae454599dc1029a141a9ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6316,49 +6026,76 @@ "width": null } }, - "d40a68c9c6774397bdea2fbe6bb9e2cb": { + "b74fa9222c5a4f7e8db4ce0334c11beb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5164ccb60fd54e12936c4d1b1c831021", - "IPY_MODEL_c202c26bb2474bdaa7d3c2a58438479f", - "IPY_MODEL_ddc5e4989a394c2ea0d0d886360380a1" - ], - "layout": "IPY_MODEL_32cbff0f839c4350996a8211f56b5f3e", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "d6c1ad93fa194a85ba4c17e581452467": { - "model_module": "@jupyter-widgets/controls", + "b8c0b3c7d50e401db96d91b13a8b7c0f": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "d76c142c55eb451eb96210587ef44c54": { + "b90299d229cb43ef84b8401cbc26a1fa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6411,23 +6148,77 @@ "width": null } }, - "d8b8c8d3b7c74f13b7163f40115a9f0c": { + "ba8be8878e814fbdb2ec97737d5d0c72": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b34cc838b5ae454599dc1029a141a9ea", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c259d846fb094cd2abcb6cc72e54bed7", + "tabbable": null, + "tooltip": null, + "value": 5175617.0 + } + }, + "bb04fbaf87d044b2b91c56fa329b8320": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bd24b93e83db495ba8c68c0735f0c8ae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_59cf986d09524c0187606571fee4f3b5", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d23aa9df31b2419abd3b5df9353122d2", + "tabbable": null, + "tooltip": null, + "value": 60000.0 } }, - "db9954416fd745479c8a65268d728215": { + "bddd506fdb3a4a64b9a2cae95a5dced5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6480,7 +6271,7 @@ "width": null } }, - "dd09d559306d4589801c8822d6d3bd4d": { + "be7d4b0207f64b00ad22457592bea685": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6495,15 +6286,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ce6a0ffa671241eea3f88477f4ddbf33", + "layout": "IPY_MODEL_efa526cc016749f6974e047bc1f2dd4e", "placeholder": "​", - "style": "IPY_MODEL_d0412e26abe34ee69d35916d383bdb76", + "style": "IPY_MODEL_beb1aac9eee84fdcb6f35930b0d90bdd", "tabbable": null, "tooltip": null, - "value": "Generating train split: 100%" + "value": "100%" } }, - "dd0a8fa2b4a145bc8a9622e2304ea68e": { + "beb1aac9eee84fdcb6f35930b0d90bdd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6521,30 +6312,47 @@ "text_color": null } }, - "ddc5e4989a394c2ea0d0d886360380a1": { + "c115bb12c8ec4ff9a7eb01faca32c461": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_169af65c6da24ccbbbc9686554ad7330", - "placeholder": "​", - "style": "IPY_MODEL_282d9a64728c471b8355926115fd9898", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_be7d4b0207f64b00ad22457592bea685", + "IPY_MODEL_82dd1d0abee14d1782e84af236b2ad6b", + "IPY_MODEL_ef6b1664aa3a43e0b06f7e8ae609fd18" + ], + "layout": "IPY_MODEL_3b7f9d53d82c471f83bfd6fcefbec3e6", "tabbable": null, - "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 60.8MB/s]" + "tooltip": null + } + }, + "c259d846fb094cd2abcb6cc72e54bed7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "de45faae5c3247e0b8fe29686b0e8c63": { + "c38aca92612847bebfe8ef830ec4911f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6597,7 +6405,7 @@ "width": null } }, - "de4a40cbeae5420eaa285c1e15ff5c2b": { + "c59aab2b6a7e4c4c980d67c2b0a3e630": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6612,58 +6420,42 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_645adb2f2e8a4782a6706ad5bb72e2e6", - "IPY_MODEL_169ff7283fd74d6ebb245d342d9b49cf", - "IPY_MODEL_edd95e979e4e4e3a92e99bd7c323c9d4" + "IPY_MODEL_e9868a4dddaf429ead7561f39ce566d2", + "IPY_MODEL_3887d5672b5c4b778866106fc0b5e8a4", + "IPY_MODEL_5f98f31916c648f68bfb47f43f499c12" ], - "layout": "IPY_MODEL_adac4c5de55c4e81a72528a679019e7c", + "layout": "IPY_MODEL_51fba05ef28a4d009399006bff596d17", "tabbable": null, "tooltip": null } }, - "df490d58807c40f381869a6efc0f5427": { + "c5bb5aa64dce4297ae18dc2041a1453e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_07026fa3ce9f40908f1cad23fb8730ee", - "IPY_MODEL_91c644ade8be41a892c784aa00bda296", - "IPY_MODEL_10ac5d66ea3743dca0e0beb7ed0cae31" - ], - "layout": "IPY_MODEL_15cdf804328e4b5ebac5a69a308917a0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4f1ced536d3348d49571c317bef4d8f3", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6b34491e13c547409316044573da1b5b", "tabbable": null, - "tooltip": null - } - }, - "df7ee9c286654bd68af21f47b249bad5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null, + "value": 40.0 } }, - "df8d27e594ac4d2ca6e68c52122e1e10": { + "c622402929c843b68cf0ad96de113751": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6716,7 +6508,51 @@ "width": null } }, - "e054db68c7e444c5b8609c34a3c3af1c": { + "c630d7221896432296ac4efbd43b54c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b90299d229cb43ef84b8401cbc26a1fa", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d255dc48b8144714a9a03aeaf1c8fc9d", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "c94092d1c89542e8905dd73925ed12d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c9631aad5f7941199f0008bf9a7d8eb2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6769,23 +6605,48 @@ "width": null } }, - "e0fe440774ca496bba6c8da4ed382fee": { + "ccade3805cd149779865aea4796f21e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3f01e2b264754f87a9a995d2a2604758", + "placeholder": "​", + "style": "IPY_MODEL_bb04fbaf87d044b2b91c56fa329b8320", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "cd2d53dd06fa461284b75a1bdd83f18d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e234015c7d62414da3934570b21d7543": { + "cf059ef88023434e9444ba2768dbf5ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6838,7 +6699,63 @@ "width": null } }, - "e2f28585bb144f48969f706e8e93bb3d": { + "d23aa9df31b2419abd3b5df9353122d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d255dc48b8144714a9a03aeaf1c8fc9d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d2f20d6f0ba44123bab8b7d235b6515d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ff6312b6a0234759a0f54044414bace6", + "IPY_MODEL_dc15ab979a6346508cd44fa115d9e65e", + "IPY_MODEL_1eb1014045dd499c802757478058bea8" + ], + "layout": "IPY_MODEL_6ebc890b826e49cfa02da4b052372853", + "tabbable": null, + "tooltip": null + } + }, + "d30eaf4ee76a40ba95c2d3b1c0489325": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6891,7 +6808,41 @@ "width": null } }, - "e637799c134042c7a6d9acb0f78b7da0": { + "d4d856c67fd0471bb8cde67ec9492417": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d5301367ac6a4b84bbc0c321a286117e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d96d30dd619344a99a12676a4c6e5277": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6944,7 +6895,25 @@ "width": null } }, - "e7b3780db8b641268b1b36ccb9f65ac2": { + "d9d8067a523048f2a00f0bfd5a5ba22f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "da0f6b8dbb074da790d9b8769166d088": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6997,7 +6966,7 @@ "width": null } }, - "e872e61f12c440d89bacf54f54ece5f0": { + "dc08cd9a666743908df5482245d9aebd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7012,38 +6981,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5afce49183404bd7bf49147a59d70e88", + "layout": "IPY_MODEL_bddd506fdb3a4a64b9a2cae95a5dced5", "placeholder": "​", - "style": "IPY_MODEL_d6c1ad93fa194a85ba4c17e581452467", + "style": "IPY_MODEL_d9d8067a523048f2a00f0bfd5a5ba22f", "tabbable": null, "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 235311.17 examples/s]" + "value": "Downloading readme: 100%" } }, - "ecb05f4c4e5545a39c8106713cdaf17f": { + "dc15ab979a6346508cd44fa115d9e65e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e054db68c7e444c5b8609c34a3c3af1c", - "placeholder": "​", - "style": "IPY_MODEL_640a63ead30f4d6495b024df6003c7e4", + "layout": "IPY_MODEL_c38aca92612847bebfe8ef830ec4911f", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8ecf783e8b0948e1abe86bfc856f097b", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.48it/s]" + "value": 60000.0 } }, - "edd95e979e4e4e3a92e99bd7c323c9d4": { + "dd84a3f49c1c4c929acb96633fa78b1f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7058,15 +7030,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ee32229609ad4940a22f0eacf858eab6", + "layout": "IPY_MODEL_b8c0b3c7d50e401db96d91b13a8b7c0f", "placeholder": "​", - "style": "IPY_MODEL_ccd8827e2a944562b8b468656223e737", + "style": "IPY_MODEL_404d82b5437a44238131a5ca28a319e4", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.07it/s]" + "value": "100%" } }, - "ee32229609ad4940a22f0eacf858eab6": { + "dfd1882b8a264cf5856df21b7c839b64": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7119,7 +7091,7 @@ "width": null } }, - "f0b797b78688457792e471764aadcac5": { + "e18ca4639102462dac92c3c5a84ab0f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7134,42 +7106,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0c312ef42cba4cd699cf564f02f23ad2", - "IPY_MODEL_5fd4de48b98142d5a3599af54b5d671a", - "IPY_MODEL_7529ce6a42c144c09718560bf4d72c37" + "IPY_MODEL_ccade3805cd149779865aea4796f21e4", + "IPY_MODEL_e796075aa1d84be9ad454da1c89700d8", + "IPY_MODEL_7433c7f747d04645899ca1df242fc635" ], - "layout": "IPY_MODEL_e2f28585bb144f48969f706e8e93bb3d", + "layout": "IPY_MODEL_496c3062480544deba301515e6ec2ef2", "tabbable": null, "tooltip": null } }, - "f177efbf8fcd4299a5c5ef5d2c18ae24": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5aab81f6c2d64bb88c7793decdfa9866", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0d3cbe2df0bc47b5a91766e8876fb0ad", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "f28fbbbba2984229af4e67f6ca6e8831": { + "e40f660a323041a893eb609d3636575b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7222,60 +7168,33 @@ "width": null } }, - "f3a7be966cfe40f99217128504a15ed7": { - "model_module": "@jupyter-widgets/base", + "e796075aa1d84be9ad454da1c89700d8": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0090a6e1a0314bd092156ae36614df7f", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fb083abb666e4d57838a474c630e6824", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "f458b392945444ba8b10eed0a3dd1645": { + "e86dbaa5d3c04bc18c5c77dd4d794c63": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7328,33 +7247,53 @@ "width": null } }, - "f485eb58c46447509184d1339495c90b": { + "e9868a4dddaf429ead7561f39ce566d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_83ebe6ddba4141b79fcfc3aa72d6c7dd", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_021d8612a48e43178fed0c0b15ea876c", + "layout": "IPY_MODEL_af94cf49177e4ca99d9ef7362491c300", + "placeholder": "​", + "style": "IPY_MODEL_f4fca8311ad64e47937de89ecc8e9dab", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": "Map (num_proc=4): 100%" + } + }, + "ef6b1664aa3a43e0b06f7e8ae609fd18": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d30eaf4ee76a40ba95c2d3b1c0489325", + "placeholder": "​", + "style": "IPY_MODEL_7899f705574c42a18d00bc86a49e0688", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 58.38it/s]" } }, - "f4bfeea21b8f49b2a7d30a142e3e8549": { + "efa526cc016749f6974e047bc1f2dd4e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7407,30 +7346,25 @@ "width": null } }, - "f7d925790daf4835a17e53ef72c2a004": { + "effb478ca69e40e1bab98c72607eff2d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_93ef2bffc5564a48a0726b4109066352", - "placeholder": "​", - "style": "IPY_MODEL_fad3a25235b9448b94450b285a255bda", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "fad3a25235b9448b94450b285a255bda": { + "f2ac84087dc44396ba038fe66dda6f94": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7448,7 +7382,7 @@ "text_color": null } }, - "fbd7d4ea73254be2b2deaaa3b2315879": { + "f45e40d8fe894c54a435f99ca83a9af5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7501,7 +7435,25 @@ "width": null } }, - "fc6b594ae32e4d7789e07642981bb1cb": { + "f4fca8311ad64e47937de89ecc8e9dab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f64b8b29b1784e22abb666c97681a3dc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7516,16 +7468,42 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6a43e294c6f74c6cb08fd794af7afcd1", - "IPY_MODEL_f177efbf8fcd4299a5c5ef5d2c18ae24", - "IPY_MODEL_e872e61f12c440d89bacf54f54ece5f0" + "IPY_MODEL_dd84a3f49c1c4c929acb96633fa78b1f", + "IPY_MODEL_c630d7221896432296ac4efbd43b54c4", + "IPY_MODEL_31da7fbc4ceb4e4cab95640e5f63a387" ], - "layout": "IPY_MODEL_b95797c6ae9a4df98d457db1eb2fb8cf", + "layout": "IPY_MODEL_a306574ec68049899cf9cc7a5396209d", "tabbable": null, "tooltip": null } }, - "fda1346f54894eeea4d244e48e2db6cc": { + "f8bf518bc6d647f3ab8307b77bad2787": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3d95a4e2520046d8b2e2cf38369b6f03", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_777214f0e66b4c89a70fafc58fae1c98", + "tabbable": null, + "tooltip": null, + "value": 10000.0 + } + }, + "fa1b285a6d474628abba13fe7f5952ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7578,7 +7556,7 @@ "width": null } }, - "ff8a90c9270247469c47cb689ae7fa73": { + "fb083abb666e4d57838a474c630e6824": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -7593,6 +7571,29 @@ "bar_color": null, "description_width": "" } + }, + "ff6312b6a0234759a0f54044414bace6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2562e71fd2f64d07b631e639debc9636", + "placeholder": "​", + "style": "IPY_MODEL_4cd513870c6d47ffa0c1f6c2d8f77251", + "tabbable": null, + "tooltip": null, + "value": "100%" + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index 74379a792..741f01a59 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:30.675390Z", - "iopub.status.busy": "2024-08-20T02:17:30.675213Z", - "iopub.status.idle": "2024-08-20T02:17:32.099766Z", - "shell.execute_reply": "2024-08-20T02:17:32.099202Z" + "iopub.execute_input": "2024-08-21T00:42:39.020177Z", + "iopub.status.busy": "2024-08-21T00:42:39.020002Z", + "iopub.status.idle": "2024-08-21T00:42:40.165165Z", + "shell.execute_reply": "2024-08-21T00:42:40.164554Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:32.102440Z", - "iopub.status.busy": "2024-08-20T02:17:32.102010Z", - "iopub.status.idle": "2024-08-20T02:17:32.121474Z", - "shell.execute_reply": "2024-08-20T02:17:32.120839Z" + "iopub.execute_input": "2024-08-21T00:42:40.167673Z", + "iopub.status.busy": "2024-08-21T00:42:40.167399Z", + "iopub.status.idle": "2024-08-21T00:42:40.185888Z", + "shell.execute_reply": "2024-08-21T00:42:40.185329Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:32.124240Z", - "iopub.status.busy": "2024-08-20T02:17:32.123782Z", - "iopub.status.idle": "2024-08-20T02:17:32.161903Z", - "shell.execute_reply": "2024-08-20T02:17:32.161310Z" + "iopub.execute_input": "2024-08-21T00:42:40.188316Z", + "iopub.status.busy": "2024-08-21T00:42:40.187910Z", + "iopub.status.idle": "2024-08-21T00:42:40.224793Z", + "shell.execute_reply": "2024-08-21T00:42:40.224253Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:32.164301Z", - "iopub.status.busy": "2024-08-20T02:17:32.163892Z", - "iopub.status.idle": "2024-08-20T02:17:32.167503Z", - "shell.execute_reply": "2024-08-20T02:17:32.166961Z" + "iopub.execute_input": "2024-08-21T00:42:40.226826Z", + "iopub.status.busy": "2024-08-21T00:42:40.226427Z", + "iopub.status.idle": "2024-08-21T00:42:40.229894Z", + "shell.execute_reply": "2024-08-21T00:42:40.229350Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:32.169604Z", - "iopub.status.busy": "2024-08-20T02:17:32.169259Z", - "iopub.status.idle": "2024-08-20T02:17:32.176549Z", - "shell.execute_reply": "2024-08-20T02:17:32.176095Z" + "iopub.execute_input": "2024-08-21T00:42:40.231979Z", + "iopub.status.busy": "2024-08-21T00:42:40.231580Z", + "iopub.status.idle": "2024-08-21T00:42:40.239438Z", + "shell.execute_reply": "2024-08-21T00:42:40.238991Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:32.178752Z", - "iopub.status.busy": "2024-08-20T02:17:32.178403Z", - "iopub.status.idle": "2024-08-20T02:17:32.181096Z", - "shell.execute_reply": "2024-08-20T02:17:32.180623Z" + "iopub.execute_input": "2024-08-21T00:42:40.241382Z", + "iopub.status.busy": "2024-08-21T00:42:40.241211Z", + "iopub.status.idle": "2024-08-21T00:42:40.243885Z", + "shell.execute_reply": "2024-08-21T00:42:40.243336Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:32.182992Z", - "iopub.status.busy": "2024-08-20T02:17:32.182822Z", - "iopub.status.idle": "2024-08-20T02:17:35.334471Z", - "shell.execute_reply": "2024-08-20T02:17:35.333927Z" + "iopub.execute_input": "2024-08-21T00:42:40.245971Z", + "iopub.status.busy": "2024-08-21T00:42:40.245666Z", + "iopub.status.idle": "2024-08-21T00:42:43.325922Z", + "shell.execute_reply": "2024-08-21T00:42:43.325277Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:35.337140Z", - "iopub.status.busy": "2024-08-20T02:17:35.336953Z", - "iopub.status.idle": "2024-08-20T02:17:35.346018Z", - "shell.execute_reply": "2024-08-20T02:17:35.345550Z" + "iopub.execute_input": "2024-08-21T00:42:43.328986Z", + "iopub.status.busy": "2024-08-21T00:42:43.328446Z", + "iopub.status.idle": "2024-08-21T00:42:43.337987Z", + "shell.execute_reply": "2024-08-21T00:42:43.337426Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:35.347913Z", - "iopub.status.busy": "2024-08-20T02:17:35.347740Z", - "iopub.status.idle": "2024-08-20T02:17:37.530220Z", - "shell.execute_reply": "2024-08-20T02:17:37.529582Z" + "iopub.execute_input": "2024-08-21T00:42:43.340231Z", + "iopub.status.busy": "2024-08-21T00:42:43.339898Z", + "iopub.status.idle": "2024-08-21T00:42:45.300234Z", + "shell.execute_reply": "2024-08-21T00:42:45.299626Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:37.532667Z", - "iopub.status.busy": "2024-08-20T02:17:37.532314Z", - "iopub.status.idle": "2024-08-20T02:17:37.551727Z", - "shell.execute_reply": "2024-08-20T02:17:37.551251Z" + "iopub.execute_input": "2024-08-21T00:42:45.302539Z", + "iopub.status.busy": "2024-08-21T00:42:45.302223Z", + "iopub.status.idle": "2024-08-21T00:42:45.320815Z", + "shell.execute_reply": "2024-08-21T00:42:45.320344Z" }, "scrolled": true }, @@ -609,10 +609,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:37.553782Z", - "iopub.status.busy": "2024-08-20T02:17:37.553599Z", - "iopub.status.idle": "2024-08-20T02:17:37.562552Z", - "shell.execute_reply": "2024-08-20T02:17:37.562008Z" + "iopub.execute_input": "2024-08-21T00:42:45.323090Z", + "iopub.status.busy": "2024-08-21T00:42:45.322698Z", + "iopub.status.idle": "2024-08-21T00:42:45.330546Z", + "shell.execute_reply": "2024-08-21T00:42:45.330098Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:37.564682Z", - "iopub.status.busy": "2024-08-20T02:17:37.564263Z", - "iopub.status.idle": "2024-08-20T02:17:37.573623Z", - "shell.execute_reply": "2024-08-20T02:17:37.573057Z" + "iopub.execute_input": "2024-08-21T00:42:45.332636Z", + "iopub.status.busy": "2024-08-21T00:42:45.332312Z", + "iopub.status.idle": "2024-08-21T00:42:45.340860Z", + "shell.execute_reply": "2024-08-21T00:42:45.340292Z" } }, "outputs": [ @@ -848,10 +848,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:37.575828Z", - "iopub.status.busy": "2024-08-20T02:17:37.575492Z", - "iopub.status.idle": "2024-08-20T02:17:37.583145Z", - "shell.execute_reply": "2024-08-20T02:17:37.582687Z" + "iopub.execute_input": "2024-08-21T00:42:45.342856Z", + "iopub.status.busy": "2024-08-21T00:42:45.342550Z", + "iopub.status.idle": "2024-08-21T00:42:45.350113Z", + "shell.execute_reply": "2024-08-21T00:42:45.349629Z" } }, "outputs": [ @@ -965,10 +965,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:37.585205Z", - "iopub.status.busy": "2024-08-20T02:17:37.584870Z", - "iopub.status.idle": "2024-08-20T02:17:37.593427Z", - "shell.execute_reply": "2024-08-20T02:17:37.592949Z" + "iopub.execute_input": "2024-08-21T00:42:45.352205Z", + "iopub.status.busy": "2024-08-21T00:42:45.351869Z", + "iopub.status.idle": "2024-08-21T00:42:45.360446Z", + "shell.execute_reply": "2024-08-21T00:42:45.359939Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:37.595497Z", - "iopub.status.busy": "2024-08-20T02:17:37.595153Z", - "iopub.status.idle": "2024-08-20T02:17:37.602696Z", - "shell.execute_reply": "2024-08-20T02:17:37.602233Z" + "iopub.execute_input": "2024-08-21T00:42:45.362378Z", + "iopub.status.busy": "2024-08-21T00:42:45.362073Z", + "iopub.status.idle": "2024-08-21T00:42:45.369252Z", + "shell.execute_reply": "2024-08-21T00:42:45.368714Z" } }, "outputs": [ @@ -1197,10 +1197,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:37.604723Z", - "iopub.status.busy": "2024-08-20T02:17:37.604387Z", - "iopub.status.idle": "2024-08-20T02:17:37.611506Z", - "shell.execute_reply": "2024-08-20T02:17:37.611059Z" + "iopub.execute_input": "2024-08-21T00:42:45.371424Z", + "iopub.status.busy": "2024-08-21T00:42:45.371097Z", + "iopub.status.idle": "2024-08-21T00:42:45.378113Z", + "shell.execute_reply": "2024-08-21T00:42:45.377624Z" } }, "outputs": [ @@ -1306,10 +1306,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:37.613742Z", - "iopub.status.busy": "2024-08-20T02:17:37.613408Z", - "iopub.status.idle": "2024-08-20T02:17:37.621320Z", - "shell.execute_reply": "2024-08-20T02:17:37.620872Z" + "iopub.execute_input": "2024-08-21T00:42:45.380217Z", + "iopub.status.busy": "2024-08-21T00:42:45.379888Z", + "iopub.status.idle": "2024-08-21T00:42:45.388315Z", + "shell.execute_reply": "2024-08-21T00:42:45.387730Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index e8c1c1367..944c7f70a 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:40.653105Z", - "iopub.status.busy": "2024-08-20T02:17:40.652539Z", - "iopub.status.idle": "2024-08-20T02:17:43.889364Z", - "shell.execute_reply": "2024-08-20T02:17:43.888668Z" + "iopub.execute_input": "2024-08-21T00:42:48.197839Z", + "iopub.status.busy": "2024-08-21T00:42:48.197661Z", + "iopub.status.idle": "2024-08-21T00:42:50.967466Z", + "shell.execute_reply": "2024-08-21T00:42:50.966936Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:43.892128Z", - "iopub.status.busy": "2024-08-20T02:17:43.891640Z", - "iopub.status.idle": "2024-08-20T02:17:43.895466Z", - "shell.execute_reply": "2024-08-20T02:17:43.895014Z" + "iopub.execute_input": "2024-08-21T00:42:50.969963Z", + "iopub.status.busy": "2024-08-21T00:42:50.969666Z", + "iopub.status.idle": "2024-08-21T00:42:50.973228Z", + "shell.execute_reply": "2024-08-21T00:42:50.972662Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:43.897587Z", - "iopub.status.busy": "2024-08-20T02:17:43.897195Z", - "iopub.status.idle": "2024-08-20T02:17:43.900227Z", - "shell.execute_reply": "2024-08-20T02:17:43.899787Z" + "iopub.execute_input": "2024-08-21T00:42:50.975166Z", + "iopub.status.busy": "2024-08-21T00:42:50.974858Z", + "iopub.status.idle": "2024-08-21T00:42:50.978037Z", + "shell.execute_reply": "2024-08-21T00:42:50.977508Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:43.902374Z", - "iopub.status.busy": "2024-08-20T02:17:43.902037Z", - "iopub.status.idle": "2024-08-20T02:17:43.948123Z", - "shell.execute_reply": "2024-08-20T02:17:43.947597Z" + "iopub.execute_input": "2024-08-21T00:42:50.980278Z", + "iopub.status.busy": "2024-08-21T00:42:50.979852Z", + "iopub.status.idle": "2024-08-21T00:42:51.018730Z", + "shell.execute_reply": "2024-08-21T00:42:51.018187Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:43.950404Z", - "iopub.status.busy": "2024-08-20T02:17:43.950033Z", - "iopub.status.idle": "2024-08-20T02:17:43.953987Z", - "shell.execute_reply": "2024-08-20T02:17:43.953498Z" + "iopub.execute_input": "2024-08-21T00:42:51.020813Z", + "iopub.status.busy": "2024-08-21T00:42:51.020467Z", + "iopub.status.idle": "2024-08-21T00:42:51.024267Z", + "shell.execute_reply": "2024-08-21T00:42:51.023800Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'getting_spare_card', 'card_about_to_expire', 'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'beneficiary_not_allowed', 'visa_or_mastercard', 'lost_or_stolen_phone', 'cancel_transfer', 'card_payment_fee_charged', 'change_pin'}\n" + "Classes: {'apple_pay_or_google_pay', 'change_pin', 'beneficiary_not_allowed', 'getting_spare_card', 'lost_or_stolen_phone', 'cancel_transfer', 'card_payment_fee_charged', 'visa_or_mastercard', 'card_about_to_expire', 'supported_cards_and_currencies'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:43.956096Z", - "iopub.status.busy": "2024-08-20T02:17:43.955753Z", - "iopub.status.idle": "2024-08-20T02:17:43.959032Z", - "shell.execute_reply": "2024-08-20T02:17:43.958569Z" + "iopub.execute_input": "2024-08-21T00:42:51.026219Z", + "iopub.status.busy": "2024-08-21T00:42:51.025887Z", + "iopub.status.idle": "2024-08-21T00:42:51.029160Z", + "shell.execute_reply": "2024-08-21T00:42:51.028719Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:43.961194Z", - "iopub.status.busy": "2024-08-20T02:17:43.960798Z", - "iopub.status.idle": "2024-08-20T02:17:47.539339Z", - "shell.execute_reply": "2024-08-20T02:17:47.538779Z" + "iopub.execute_input": "2024-08-21T00:42:51.031153Z", + "iopub.status.busy": "2024-08-21T00:42:51.030819Z", + "iopub.status.idle": "2024-08-21T00:42:54.855542Z", + "shell.execute_reply": "2024-08-21T00:42:54.854980Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:47.542112Z", - "iopub.status.busy": "2024-08-20T02:17:47.541704Z", - "iopub.status.idle": "2024-08-20T02:17:48.414944Z", - "shell.execute_reply": "2024-08-20T02:17:48.414342Z" + "iopub.execute_input": "2024-08-21T00:42:54.858207Z", + "iopub.status.busy": "2024-08-21T00:42:54.857857Z", + "iopub.status.idle": "2024-08-21T00:42:55.761897Z", + "shell.execute_reply": "2024-08-21T00:42:55.761312Z" }, "scrolled": true }, @@ -451,10 +451,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:48.418075Z", - "iopub.status.busy": "2024-08-20T02:17:48.417646Z", - "iopub.status.idle": "2024-08-20T02:17:48.420650Z", - "shell.execute_reply": "2024-08-20T02:17:48.420142Z" + "iopub.execute_input": "2024-08-21T00:42:55.764920Z", + "iopub.status.busy": "2024-08-21T00:42:55.764523Z", + "iopub.status.idle": "2024-08-21T00:42:55.767436Z", + "shell.execute_reply": "2024-08-21T00:42:55.766944Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:48.423130Z", - "iopub.status.busy": "2024-08-20T02:17:48.422741Z", - "iopub.status.idle": "2024-08-20T02:17:50.512788Z", - "shell.execute_reply": "2024-08-20T02:17:50.512084Z" + "iopub.execute_input": "2024-08-21T00:42:55.769883Z", + "iopub.status.busy": "2024-08-21T00:42:55.769512Z", + "iopub.status.idle": "2024-08-21T00:42:57.751703Z", + "shell.execute_reply": "2024-08-21T00:42:57.751042Z" }, "scrolled": true }, @@ -521,10 +521,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:50.516360Z", - "iopub.status.busy": "2024-08-20T02:17:50.515474Z", - "iopub.status.idle": "2024-08-20T02:17:50.559350Z", - "shell.execute_reply": "2024-08-20T02:17:50.558793Z" + "iopub.execute_input": "2024-08-21T00:42:57.756032Z", + "iopub.status.busy": "2024-08-21T00:42:57.754848Z", + "iopub.status.idle": "2024-08-21T00:42:57.780427Z", + "shell.execute_reply": "2024-08-21T00:42:57.779909Z" }, "scrolled": true }, @@ -654,10 +654,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:50.562005Z", - "iopub.status.busy": "2024-08-20T02:17:50.561575Z", - "iopub.status.idle": "2024-08-20T02:17:50.571250Z", - "shell.execute_reply": "2024-08-20T02:17:50.570668Z" + "iopub.execute_input": "2024-08-21T00:42:57.783964Z", + "iopub.status.busy": "2024-08-21T00:42:57.783026Z", + "iopub.status.idle": "2024-08-21T00:42:57.793469Z", + "shell.execute_reply": "2024-08-21T00:42:57.793043Z" }, "scrolled": true }, @@ -767,10 +767,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:50.573299Z", - "iopub.status.busy": "2024-08-20T02:17:50.573083Z", - "iopub.status.idle": "2024-08-20T02:17:50.577651Z", - "shell.execute_reply": "2024-08-20T02:17:50.577171Z" + "iopub.execute_input": "2024-08-21T00:42:57.795468Z", + "iopub.status.busy": "2024-08-21T00:42:57.795293Z", + "iopub.status.idle": "2024-08-21T00:42:57.799640Z", + "shell.execute_reply": "2024-08-21T00:42:57.799166Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:50.579760Z", - "iopub.status.busy": "2024-08-20T02:17:50.579414Z", - "iopub.status.idle": "2024-08-20T02:17:50.585985Z", - "shell.execute_reply": "2024-08-20T02:17:50.585437Z" + "iopub.execute_input": "2024-08-21T00:42:57.801519Z", + "iopub.status.busy": "2024-08-21T00:42:57.801343Z", + "iopub.status.idle": "2024-08-21T00:42:57.807871Z", + "shell.execute_reply": "2024-08-21T00:42:57.807330Z" } }, "outputs": [ @@ -928,10 +928,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:50.588204Z", - "iopub.status.busy": "2024-08-20T02:17:50.587870Z", - "iopub.status.idle": "2024-08-20T02:17:50.594858Z", - "shell.execute_reply": "2024-08-20T02:17:50.594371Z" + "iopub.execute_input": "2024-08-21T00:42:57.809785Z", + "iopub.status.busy": "2024-08-21T00:42:57.809618Z", + "iopub.status.idle": "2024-08-21T00:42:57.816205Z", + "shell.execute_reply": "2024-08-21T00:42:57.815747Z" } }, "outputs": [ @@ -1014,10 +1014,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:50.596980Z", - "iopub.status.busy": "2024-08-20T02:17:50.596628Z", - "iopub.status.idle": "2024-08-20T02:17:50.602883Z", - "shell.execute_reply": "2024-08-20T02:17:50.602388Z" + "iopub.execute_input": "2024-08-21T00:42:57.817972Z", + "iopub.status.busy": "2024-08-21T00:42:57.817801Z", + "iopub.status.idle": "2024-08-21T00:42:57.823337Z", + "shell.execute_reply": "2024-08-21T00:42:57.822851Z" } }, "outputs": [ @@ -1125,10 +1125,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:50.605052Z", - "iopub.status.busy": "2024-08-20T02:17:50.604708Z", - "iopub.status.idle": "2024-08-20T02:17:50.613784Z", - "shell.execute_reply": "2024-08-20T02:17:50.613286Z" + "iopub.execute_input": "2024-08-21T00:42:57.825390Z", + "iopub.status.busy": "2024-08-21T00:42:57.825059Z", + "iopub.status.idle": "2024-08-21T00:42:57.833536Z", + "shell.execute_reply": "2024-08-21T00:42:57.832966Z" } }, "outputs": [ @@ -1239,10 +1239,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:50.615869Z", - "iopub.status.busy": "2024-08-20T02:17:50.615531Z", - "iopub.status.idle": "2024-08-20T02:17:50.621241Z", - "shell.execute_reply": "2024-08-20T02:17:50.620655Z" + "iopub.execute_input": "2024-08-21T00:42:57.835599Z", + "iopub.status.busy": "2024-08-21T00:42:57.835187Z", + "iopub.status.idle": "2024-08-21T00:42:57.840572Z", + "shell.execute_reply": "2024-08-21T00:42:57.840031Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:50.623564Z", - "iopub.status.busy": "2024-08-20T02:17:50.623056Z", - "iopub.status.idle": "2024-08-20T02:17:50.628693Z", - "shell.execute_reply": "2024-08-20T02:17:50.628220Z" + "iopub.execute_input": "2024-08-21T00:42:57.842661Z", + "iopub.status.busy": "2024-08-21T00:42:57.842352Z", + "iopub.status.idle": "2024-08-21T00:42:57.847636Z", + "shell.execute_reply": "2024-08-21T00:42:57.847079Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:50.630804Z", - "iopub.status.busy": "2024-08-20T02:17:50.630492Z", - "iopub.status.idle": "2024-08-20T02:17:50.634294Z", - "shell.execute_reply": "2024-08-20T02:17:50.633704Z" + "iopub.execute_input": "2024-08-21T00:42:57.849566Z", + "iopub.status.busy": "2024-08-21T00:42:57.849393Z", + "iopub.status.idle": "2024-08-21T00:42:57.852910Z", + "shell.execute_reply": "2024-08-21T00:42:57.852365Z" } }, "outputs": [ @@ -1449,10 +1449,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:50.636366Z", - "iopub.status.busy": "2024-08-20T02:17:50.636088Z", - "iopub.status.idle": "2024-08-20T02:17:50.641705Z", - "shell.execute_reply": "2024-08-20T02:17:50.641097Z" + "iopub.execute_input": "2024-08-21T00:42:57.855166Z", + "iopub.status.busy": "2024-08-21T00:42:57.854784Z", + "iopub.status.idle": "2024-08-21T00:42:57.860086Z", + "shell.execute_reply": "2024-08-21T00:42:57.859637Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb index ea12d845c..eb842aff3 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:54.342678Z", - "iopub.status.busy": "2024-08-20T02:17:54.342516Z", - "iopub.status.idle": "2024-08-20T02:17:54.787105Z", - "shell.execute_reply": "2024-08-20T02:17:54.786589Z" + "iopub.execute_input": "2024-08-21T00:43:01.171888Z", + "iopub.status.busy": "2024-08-21T00:43:01.171708Z", + "iopub.status.idle": "2024-08-21T00:43:01.599347Z", + "shell.execute_reply": "2024-08-21T00:43:01.598723Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:54.789748Z", - "iopub.status.busy": "2024-08-20T02:17:54.789305Z", - "iopub.status.idle": "2024-08-20T02:17:54.923597Z", - "shell.execute_reply": "2024-08-20T02:17:54.923027Z" + "iopub.execute_input": "2024-08-21T00:43:01.602168Z", + "iopub.status.busy": "2024-08-21T00:43:01.601787Z", + "iopub.status.idle": "2024-08-21T00:43:01.731428Z", + "shell.execute_reply": "2024-08-21T00:43:01.730880Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:54.926017Z", - "iopub.status.busy": "2024-08-20T02:17:54.925610Z", - "iopub.status.idle": "2024-08-20T02:17:54.948848Z", - "shell.execute_reply": "2024-08-20T02:17:54.948254Z" + "iopub.execute_input": "2024-08-21T00:43:01.733775Z", + "iopub.status.busy": "2024-08-21T00:43:01.733383Z", + "iopub.status.idle": "2024-08-21T00:43:01.756845Z", + "shell.execute_reply": "2024-08-21T00:43:01.756289Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:54.951750Z", - "iopub.status.busy": "2024-08-20T02:17:54.951205Z", - "iopub.status.idle": "2024-08-20T02:17:58.333690Z", - "shell.execute_reply": "2024-08-20T02:17:58.332962Z" + "iopub.execute_input": "2024-08-21T00:43:01.759422Z", + "iopub.status.busy": "2024-08-21T00:43:01.758972Z", + "iopub.status.idle": "2024-08-21T00:43:04.525314Z", + "shell.execute_reply": "2024-08-21T00:43:04.524747Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:58.336453Z", - "iopub.status.busy": "2024-08-20T02:17:58.335863Z", - "iopub.status.idle": "2024-08-20T02:18:06.978320Z", - "shell.execute_reply": "2024-08-20T02:18:06.977689Z" + "iopub.execute_input": "2024-08-21T00:43:04.528021Z", + "iopub.status.busy": "2024-08-21T00:43:04.527475Z", + "iopub.status.idle": "2024-08-21T00:43:13.293687Z", + "shell.execute_reply": "2024-08-21T00:43:13.293070Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:06.980664Z", - "iopub.status.busy": "2024-08-20T02:18:06.980310Z", - "iopub.status.idle": "2024-08-20T02:18:07.140407Z", - "shell.execute_reply": "2024-08-20T02:18:07.139847Z" + "iopub.execute_input": "2024-08-21T00:43:13.296149Z", + "iopub.status.busy": "2024-08-21T00:43:13.295770Z", + "iopub.status.idle": "2024-08-21T00:43:13.454429Z", + "shell.execute_reply": "2024-08-21T00:43:13.453846Z" } }, "outputs": [], @@ -838,10 +838,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:07.143040Z", - "iopub.status.busy": "2024-08-20T02:18:07.142679Z", - "iopub.status.idle": "2024-08-20T02:18:08.680980Z", - "shell.execute_reply": "2024-08-20T02:18:08.680491Z" + "iopub.execute_input": "2024-08-21T00:43:13.456937Z", + "iopub.status.busy": "2024-08-21T00:43:13.456583Z", + "iopub.status.idle": "2024-08-21T00:43:14.817910Z", + "shell.execute_reply": "2024-08-21T00:43:14.817401Z" } }, "outputs": [ @@ -1000,10 +1000,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:08.683287Z", - "iopub.status.busy": "2024-08-20T02:18:08.682919Z", - "iopub.status.idle": "2024-08-20T02:18:08.998377Z", - "shell.execute_reply": "2024-08-20T02:18:08.997764Z" + "iopub.execute_input": "2024-08-21T00:43:14.820072Z", + "iopub.status.busy": "2024-08-21T00:43:14.819706Z", + "iopub.status.idle": "2024-08-21T00:43:15.269488Z", + "shell.execute_reply": "2024-08-21T00:43:15.268851Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.001136Z", - "iopub.status.busy": "2024-08-20T02:18:09.000600Z", - "iopub.status.idle": "2024-08-20T02:18:09.014081Z", - "shell.execute_reply": "2024-08-20T02:18:09.013591Z" + "iopub.execute_input": "2024-08-21T00:43:15.272042Z", + "iopub.status.busy": "2024-08-21T00:43:15.271492Z", + "iopub.status.idle": "2024-08-21T00:43:15.285246Z", + "shell.execute_reply": "2024-08-21T00:43:15.284785Z" } }, "outputs": [], @@ -1115,10 +1115,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.016120Z", - "iopub.status.busy": "2024-08-20T02:18:09.015940Z", - "iopub.status.idle": "2024-08-20T02:18:09.039533Z", - "shell.execute_reply": "2024-08-20T02:18:09.038905Z" + "iopub.execute_input": "2024-08-21T00:43:15.287513Z", + "iopub.status.busy": "2024-08-21T00:43:15.287177Z", + "iopub.status.idle": "2024-08-21T00:43:15.307560Z", + "shell.execute_reply": "2024-08-21T00:43:15.306987Z" } }, "outputs": [], @@ -1146,10 +1146,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.042064Z", - "iopub.status.busy": "2024-08-20T02:18:09.041579Z", - "iopub.status.idle": "2024-08-20T02:18:09.283734Z", - "shell.execute_reply": "2024-08-20T02:18:09.283109Z" + "iopub.execute_input": "2024-08-21T00:43:15.309775Z", + "iopub.status.busy": "2024-08-21T00:43:15.309322Z", + "iopub.status.idle": "2024-08-21T00:43:15.549642Z", + "shell.execute_reply": "2024-08-21T00:43:15.549085Z" } }, "outputs": [], @@ -1189,10 +1189,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.286529Z", - "iopub.status.busy": "2024-08-20T02:18:09.286191Z", - "iopub.status.idle": "2024-08-20T02:18:09.305536Z", - "shell.execute_reply": "2024-08-20T02:18:09.305009Z" + "iopub.execute_input": "2024-08-21T00:43:15.552675Z", + "iopub.status.busy": "2024-08-21T00:43:15.552274Z", + "iopub.status.idle": "2024-08-21T00:43:15.571649Z", + "shell.execute_reply": "2024-08-21T00:43:15.571180Z" } }, "outputs": [ @@ -1390,10 +1390,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.307549Z", - "iopub.status.busy": "2024-08-20T02:18:09.307369Z", - "iopub.status.idle": "2024-08-20T02:18:09.476687Z", - "shell.execute_reply": "2024-08-20T02:18:09.476131Z" + "iopub.execute_input": "2024-08-21T00:43:15.573738Z", + "iopub.status.busy": "2024-08-21T00:43:15.573396Z", + "iopub.status.idle": "2024-08-21T00:43:15.740795Z", + "shell.execute_reply": "2024-08-21T00:43:15.740213Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.478997Z", - "iopub.status.busy": "2024-08-20T02:18:09.478812Z", - "iopub.status.idle": "2024-08-20T02:18:09.489242Z", - "shell.execute_reply": "2024-08-20T02:18:09.488671Z" + "iopub.execute_input": "2024-08-21T00:43:15.743277Z", + "iopub.status.busy": "2024-08-21T00:43:15.742918Z", + "iopub.status.idle": "2024-08-21T00:43:15.752623Z", + "shell.execute_reply": "2024-08-21T00:43:15.752133Z" } }, "outputs": [ @@ -1729,10 +1729,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.491411Z", - "iopub.status.busy": "2024-08-20T02:18:09.490973Z", - "iopub.status.idle": "2024-08-20T02:18:09.500699Z", - "shell.execute_reply": "2024-08-20T02:18:09.500225Z" + "iopub.execute_input": "2024-08-21T00:43:15.754632Z", + "iopub.status.busy": "2024-08-21T00:43:15.754360Z", + "iopub.status.idle": "2024-08-21T00:43:15.763787Z", + "shell.execute_reply": "2024-08-21T00:43:15.763179Z" } }, "outputs": [ @@ -1919,10 +1919,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.502731Z", - "iopub.status.busy": "2024-08-20T02:18:09.502549Z", - "iopub.status.idle": "2024-08-20T02:18:09.529479Z", - "shell.execute_reply": "2024-08-20T02:18:09.528984Z" + "iopub.execute_input": "2024-08-21T00:43:15.765948Z", + "iopub.status.busy": "2024-08-21T00:43:15.765602Z", + "iopub.status.idle": "2024-08-21T00:43:15.791328Z", + "shell.execute_reply": "2024-08-21T00:43:15.790866Z" } }, "outputs": [], @@ -1956,10 +1956,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.531581Z", - "iopub.status.busy": "2024-08-20T02:18:09.531237Z", - "iopub.status.idle": "2024-08-20T02:18:09.534052Z", - "shell.execute_reply": "2024-08-20T02:18:09.533586Z" + "iopub.execute_input": "2024-08-21T00:43:15.793538Z", + "iopub.status.busy": "2024-08-21T00:43:15.793210Z", + "iopub.status.idle": "2024-08-21T00:43:15.796045Z", + "shell.execute_reply": "2024-08-21T00:43:15.795529Z" } }, "outputs": [], @@ -1981,10 +1981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.536250Z", - "iopub.status.busy": "2024-08-20T02:18:09.535919Z", - "iopub.status.idle": "2024-08-20T02:18:09.555307Z", - "shell.execute_reply": "2024-08-20T02:18:09.554757Z" + "iopub.execute_input": "2024-08-21T00:43:15.798174Z", + "iopub.status.busy": "2024-08-21T00:43:15.797769Z", + "iopub.status.idle": "2024-08-21T00:43:15.817188Z", + "shell.execute_reply": "2024-08-21T00:43:15.816725Z" } }, "outputs": [ @@ -2142,10 +2142,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.557515Z", - "iopub.status.busy": "2024-08-20T02:18:09.557152Z", - "iopub.status.idle": "2024-08-20T02:18:09.561596Z", - "shell.execute_reply": "2024-08-20T02:18:09.561108Z" + "iopub.execute_input": "2024-08-21T00:43:15.819091Z", + "iopub.status.busy": "2024-08-21T00:43:15.818917Z", + "iopub.status.idle": "2024-08-21T00:43:15.823437Z", + "shell.execute_reply": "2024-08-21T00:43:15.822989Z" } }, "outputs": [], @@ -2178,10 +2178,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.563658Z", - "iopub.status.busy": "2024-08-20T02:18:09.563335Z", - "iopub.status.idle": "2024-08-20T02:18:09.592021Z", - "shell.execute_reply": "2024-08-20T02:18:09.591552Z" + "iopub.execute_input": "2024-08-21T00:43:15.825477Z", + "iopub.status.busy": "2024-08-21T00:43:15.825162Z", + "iopub.status.idle": "2024-08-21T00:43:15.852907Z", + "shell.execute_reply": "2024-08-21T00:43:15.852367Z" } }, "outputs": [ @@ -2327,10 +2327,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.594263Z", - "iopub.status.busy": "2024-08-20T02:18:09.593908Z", - "iopub.status.idle": "2024-08-20T02:18:09.919384Z", - "shell.execute_reply": "2024-08-20T02:18:09.918757Z" + "iopub.execute_input": "2024-08-21T00:43:15.855074Z", + "iopub.status.busy": "2024-08-21T00:43:15.854635Z", + "iopub.status.idle": "2024-08-21T00:43:16.219163Z", + "shell.execute_reply": "2024-08-21T00:43:16.218556Z" } }, "outputs": [ @@ -2397,10 +2397,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.921742Z", - "iopub.status.busy": "2024-08-20T02:18:09.921399Z", - "iopub.status.idle": "2024-08-20T02:18:09.924438Z", - "shell.execute_reply": "2024-08-20T02:18:09.923873Z" + "iopub.execute_input": "2024-08-21T00:43:16.221443Z", + "iopub.status.busy": "2024-08-21T00:43:16.221085Z", + "iopub.status.idle": "2024-08-21T00:43:16.224381Z", + "shell.execute_reply": "2024-08-21T00:43:16.223904Z" } }, "outputs": [ @@ -2451,10 +2451,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.926626Z", - "iopub.status.busy": "2024-08-20T02:18:09.926286Z", - "iopub.status.idle": "2024-08-20T02:18:09.942337Z", - "shell.execute_reply": "2024-08-20T02:18:09.941698Z" + "iopub.execute_input": "2024-08-21T00:43:16.226481Z", + "iopub.status.busy": "2024-08-21T00:43:16.226086Z", + "iopub.status.idle": "2024-08-21T00:43:16.239073Z", + "shell.execute_reply": "2024-08-21T00:43:16.238514Z" } }, "outputs": [ @@ -2733,10 +2733,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.944789Z", - "iopub.status.busy": "2024-08-20T02:18:09.944595Z", - "iopub.status.idle": "2024-08-20T02:18:09.959330Z", - "shell.execute_reply": "2024-08-20T02:18:09.958838Z" + "iopub.execute_input": "2024-08-21T00:43:16.241149Z", + "iopub.status.busy": "2024-08-21T00:43:16.240818Z", + "iopub.status.idle": "2024-08-21T00:43:16.253851Z", + "shell.execute_reply": "2024-08-21T00:43:16.253394Z" } }, "outputs": [ @@ -3003,10 +3003,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.961553Z", - "iopub.status.busy": "2024-08-20T02:18:09.961186Z", - "iopub.status.idle": "2024-08-20T02:18:09.971554Z", - "shell.execute_reply": "2024-08-20T02:18:09.971112Z" + "iopub.execute_input": "2024-08-21T00:43:16.255788Z", + "iopub.status.busy": "2024-08-21T00:43:16.255473Z", + "iopub.status.idle": "2024-08-21T00:43:16.265699Z", + "shell.execute_reply": "2024-08-21T00:43:16.265145Z" } }, "outputs": [], @@ -3031,10 +3031,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.973798Z", - "iopub.status.busy": "2024-08-20T02:18:09.973436Z", - "iopub.status.idle": "2024-08-20T02:18:09.982920Z", - "shell.execute_reply": "2024-08-20T02:18:09.982407Z" + "iopub.execute_input": "2024-08-21T00:43:16.268027Z", + "iopub.status.busy": "2024-08-21T00:43:16.267560Z", + "iopub.status.idle": "2024-08-21T00:43:16.276845Z", + "shell.execute_reply": "2024-08-21T00:43:16.276285Z" } }, "outputs": [ @@ -3206,10 +3206,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.985172Z", - "iopub.status.busy": "2024-08-20T02:18:09.984839Z", - "iopub.status.idle": "2024-08-20T02:18:09.988286Z", - "shell.execute_reply": "2024-08-20T02:18:09.987820Z" + "iopub.execute_input": "2024-08-21T00:43:16.278895Z", + "iopub.status.busy": "2024-08-21T00:43:16.278593Z", + "iopub.status.idle": "2024-08-21T00:43:16.282208Z", + "shell.execute_reply": "2024-08-21T00:43:16.281682Z" } }, "outputs": [], @@ -3241,10 +3241,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.990507Z", - "iopub.status.busy": "2024-08-20T02:18:09.990126Z", - "iopub.status.idle": "2024-08-20T02:18:10.042804Z", - "shell.execute_reply": "2024-08-20T02:18:10.042240Z" + "iopub.execute_input": "2024-08-21T00:43:16.284237Z", + "iopub.status.busy": "2024-08-21T00:43:16.283887Z", + "iopub.status.idle": "2024-08-21T00:43:16.335023Z", + "shell.execute_reply": "2024-08-21T00:43:16.334498Z" } }, "outputs": [ @@ -3252,230 +3252,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3551,10 +3551,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:10.045338Z", - "iopub.status.busy": "2024-08-20T02:18:10.044784Z", - "iopub.status.idle": "2024-08-20T02:18:10.052047Z", - "shell.execute_reply": "2024-08-20T02:18:10.051488Z" + "iopub.execute_input": "2024-08-21T00:43:16.337295Z", + "iopub.status.busy": "2024-08-21T00:43:16.336882Z", + "iopub.status.idle": "2024-08-21T00:43:16.342563Z", + "shell.execute_reply": "2024-08-21T00:43:16.342023Z" } }, "outputs": [], @@ -3593,10 +3593,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:10.054394Z", - "iopub.status.busy": "2024-08-20T02:18:10.053951Z", - "iopub.status.idle": "2024-08-20T02:18:10.066067Z", - "shell.execute_reply": "2024-08-20T02:18:10.065481Z" + "iopub.execute_input": "2024-08-21T00:43:16.344534Z", + "iopub.status.busy": "2024-08-21T00:43:16.344225Z", + "iopub.status.idle": "2024-08-21T00:43:16.355308Z", + "shell.execute_reply": "2024-08-21T00:43:16.354768Z" } }, "outputs": [ @@ -3632,10 +3632,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:10.068250Z", - "iopub.status.busy": "2024-08-20T02:18:10.067916Z", - "iopub.status.idle": "2024-08-20T02:18:10.246354Z", - "shell.execute_reply": "2024-08-20T02:18:10.245759Z" + "iopub.execute_input": "2024-08-21T00:43:16.357487Z", + "iopub.status.busy": "2024-08-21T00:43:16.356999Z", + "iopub.status.idle": "2024-08-21T00:43:16.572206Z", + "shell.execute_reply": "2024-08-21T00:43:16.571628Z" } }, "outputs": [ @@ -3687,10 +3687,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:10.248597Z", - "iopub.status.busy": "2024-08-20T02:18:10.248414Z", - "iopub.status.idle": "2024-08-20T02:18:10.256426Z", - "shell.execute_reply": "2024-08-20T02:18:10.255950Z" + "iopub.execute_input": "2024-08-21T00:43:16.574287Z", + "iopub.status.busy": "2024-08-21T00:43:16.574098Z", + "iopub.status.idle": "2024-08-21T00:43:16.582508Z", + "shell.execute_reply": "2024-08-21T00:43:16.581942Z" }, "nbsphinx": "hidden" }, @@ -3756,10 +3756,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:10.258571Z", - "iopub.status.busy": "2024-08-20T02:18:10.258299Z", - "iopub.status.idle": "2024-08-20T02:18:10.653195Z", - "shell.execute_reply": "2024-08-20T02:18:10.652443Z" + "iopub.execute_input": "2024-08-21T00:43:16.584541Z", + "iopub.status.busy": "2024-08-21T00:43:16.584367Z", + "iopub.status.idle": "2024-08-21T00:43:17.017635Z", + "shell.execute_reply": "2024-08-21T00:43:17.016929Z" } }, "outputs": [ @@ -3767,25 +3767,25 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-20 02:18:10-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", - "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.110.153, 185.199.109.153, ...\r\n", + "--2024-08-21 00:43:16-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", + "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.109.153, 185.199.108.153, ...\r\n", "Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.111.153|:443... connected.\r\n", - "HTTP request sent, awaiting response... 200 OK\r\n", - "Length: 986707 (964K) [application/zip]\r\n", - "Saving to: ‘CIFAR-10-subset.zip’\r\n", - "\r\n", - "\r", - "CIFAR-10-subset.zip 0%[ ] 0 --.-KB/s " + "HTTP request sent, awaiting response... " ] }, { "name": "stdout", "output_type": "stream", "text": [ + "200 OK\r\n", + "Length: 986707 (964K) [application/zip]\r\n", + "Saving to: ‘CIFAR-10-subset.zip’\r\n", + "\r\n", "\r", + "CIFAR-10-subset.zip 0%[ ] 0 --.-KB/s \r", "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.02s \r\n", "\r\n", - "2024-08-20 02:18:10 (38.2 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", + "2024-08-21 00:43:16 (39.0 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", "\r\n" ] } @@ -3801,10 +3801,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:10.655777Z", - "iopub.status.busy": "2024-08-20T02:18:10.655572Z", - "iopub.status.idle": "2024-08-20T02:18:12.615828Z", - "shell.execute_reply": "2024-08-20T02:18:12.615269Z" + "iopub.execute_input": "2024-08-21T00:43:17.020182Z", + "iopub.status.busy": "2024-08-21T00:43:17.019968Z", + "iopub.status.idle": "2024-08-21T00:43:18.913423Z", + "shell.execute_reply": "2024-08-21T00:43:18.912849Z" } }, "outputs": [], @@ -3850,10 +3850,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:12.618289Z", - "iopub.status.busy": "2024-08-20T02:18:12.617996Z", - "iopub.status.idle": "2024-08-20T02:18:13.092642Z", - "shell.execute_reply": "2024-08-20T02:18:13.091988Z" + "iopub.execute_input": "2024-08-21T00:43:18.915816Z", + "iopub.status.busy": "2024-08-21T00:43:18.915543Z", + "iopub.status.idle": "2024-08-21T00:43:19.385731Z", + "shell.execute_reply": "2024-08-21T00:43:19.385086Z" } }, "outputs": [ @@ -3868,7 +3868,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8bb8c2257ff642589da749e1f2b50557", + "model_id": "67422fd209454e4487fc32db492ca2c1", "version_major": 2, "version_minor": 0 }, @@ -3884,6 +3884,7 @@ "output_type": "stream", "text": [ "Removing dark, blurry from potential issues in the dataset as it exceeds max_prevalence=0.1\n", + "Finding spurious correlation issues in the dataset ...\n", "\n", "Audit complete. 0 issues found in the dataset.\n", "No issues found in the data. Good job!\n", @@ -3897,9 +3898,9 @@ "\n", "\n", "\n", - "Here is a summary of spurious correlations between image features like 'dark_score', 'blurry_score', etc., and class labels detected in the data.\n", + "Here is a summary of spurious correlations between image features (like 'dark_score', 'blurry_score', etc.) and class labels detected in the data.\n", "\n", - "A lower score for each property implies a higher correlation of that property with the class labels.\n", + "A lower score implies a higher likelihood of a spurious correlation between that property and the class labels.\n", "\n", "\n", "property score\n", @@ -3950,10 +3951,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:13.096544Z", - "iopub.status.busy": "2024-08-20T02:18:13.095622Z", - "iopub.status.idle": "2024-08-20T02:18:13.113469Z", - "shell.execute_reply": "2024-08-20T02:18:13.112926Z" + "iopub.execute_input": "2024-08-21T00:43:19.388156Z", + "iopub.status.busy": "2024-08-21T00:43:19.387960Z", + "iopub.status.idle": "2024-08-21T00:43:19.402565Z", + "shell.execute_reply": "2024-08-21T00:43:19.402004Z" } }, "outputs": [ @@ -3961,7 +3962,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Correlation scores for image properties:\n" + "Label uncorrelatedness scores for image properties:\n" ] }, { @@ -3992,13 +3993,13 @@ " \n", " \n", " 0\n", - " dark_score\n", - " 0.000\n", + " odd_size_score\n", + " 0.500\n", " \n", " \n", " 1\n", - " light_score\n", - " 0.180\n", + " odd_aspect_ratio_score\n", + " 0.500\n", " \n", " \n", " 2\n", @@ -4007,18 +4008,18 @@ " \n", " \n", " 3\n", - " odd_aspect_ratio_score\n", - " 0.500\n", + " light_score\n", + " 0.180\n", " \n", " \n", " 4\n", - " odd_size_score\n", + " grayscale_score\n", " 0.500\n", " \n", " \n", " 5\n", - " grayscale_score\n", - " 0.500\n", + " dark_score\n", + " 0.000\n", " \n", " \n", " 6\n", @@ -4031,12 +4032,12 @@ ], "text/plain": [ " property score\n", - "0 dark_score 0.000\n", - "1 light_score 0.180\n", + "0 odd_size_score 0.500\n", + "1 odd_aspect_ratio_score 0.500\n", "2 low_information_score 0.015\n", - "3 odd_aspect_ratio_score 0.500\n", - "4 odd_size_score 0.500\n", - "5 grayscale_score 0.500\n", + "3 light_score 0.180\n", + "4 grayscale_score 0.500\n", + "5 dark_score 0.000\n", "6 blurry_score 0.015" ] }, @@ -4072,35 +4073,35 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 0\n", - " 0.237196\n", " True\n", + " 0.237196\n", " \n", " \n", " 1\n", - " 0.197229\n", " True\n", + " 0.197229\n", " \n", " \n", " 2\n", - " 0.254188\n", " True\n", + " 0.254188\n", " \n", " \n", " 3\n", - " 0.229170\n", " True\n", + " 0.229170\n", " \n", " \n", " 4\n", - " 0.208907\n", " True\n", + " 0.208907\n", " \n", " \n", " ...\n", @@ -4109,28 +4110,28 @@ " \n", " \n", " 195\n", - " 0.793840\n", " False\n", + " 0.793840\n", " \n", " \n", " 196\n", - " 1.000000\n", " False\n", + " 1.000000\n", " \n", " \n", " 197\n", - " 0.971560\n", " False\n", + " 0.971560\n", " \n", " \n", " 198\n", - " 0.862236\n", " False\n", + " 0.862236\n", " \n", " \n", " 199\n", - " 0.973533\n", " False\n", + " 0.973533\n", " \n", " \n", "\n", @@ -4138,18 +4139,18 @@ "" ], "text/plain": [ - " dark_score is_dark_issue\n", - "0 0.237196 True\n", - "1 0.197229 True\n", - "2 0.254188 True\n", - "3 0.229170 True\n", - "4 0.208907 True\n", - ".. ... ...\n", - "195 0.793840 False\n", - "196 1.000000 False\n", - "197 0.971560 False\n", - "198 0.862236 False\n", - "199 0.973533 False\n", + " is_dark_issue dark_score\n", + "0 True 0.237196\n", + "1 True 0.197229\n", + "2 True 0.254188\n", + "3 True 0.229170\n", + "4 True 0.208907\n", + ".. ... ...\n", + "195 False 0.793840\n", + "196 False 1.000000\n", + "197 False 0.971560\n", + "198 False 0.862236\n", + "199 False 0.973533\n", "\n", "[200 rows x 2 columns]" ] @@ -4161,10 +4162,10 @@ "source": [ "from IPython.display import display\n", "\n", - "# Get the correlation scores for image properties\n", - "correlation_scores = lab._correlations_df\n", - "print(\"Correlation scores for image properties:\")\n", - "display(correlation_scores)\n", + "# Get scores for label uncorrelatedness with image properties\n", + "label_uncorrelatedness_scores = lab.get_info(\"spurious_correlations\")[\"correlations_df\"]\n", + "print(\"Label uncorrelatedness scores for image properties:\")\n", + "display(label_uncorrelatedness_scores)\n", "\n", "# Get image-specific issues\n", "issue_name = \"dark\"\n", @@ -4177,19 +4178,16 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "\n", - "> **Important Note**: The `_correlations_df` attribute is an internal implementation detail of Datalab. It may change or be removed in future versions without notice. For production use or if you need stable interfaces, consider using the public methods and attributes provided by Datalab.\n", - "\n", "Interpreting the results:\n", "\n", - "1. **Correlation Scores**: The `correlation_scores` DataFrame shows scores for various image properties. Lower scores (closer to 0) indicate stronger correlations with class labels, suggesting potential spurious correlations.\n", + "1. **Label Uncorrelatedness Scores**: The `label_uncorrelatedness_scores` DataFrame shows scores for various image properties. Lower scores (closer to 0) indicate stronger correlations with class labels, suggesting potential spurious correlations.\n", "2. **Image-Specific Issues**: The `image_issues` DataFrame provides details on detected image-specific problems, including the issue type and affected samples.\n", "\n", - "In our CIFAR-10 subset example, you should see that the 'dark' property has a low score in the correlation_scores, indicating a strong correlation with one of the classes (likely the 'frog' class). This is due to our artificial darkening of these images to demonstrate the concept.\n", + "In our CIFAR-10 subset example, you should see that the 'dark' property has a low score in the label_uncorrelatedness_scores, indicating a strong correlation with one of the classes (likely the 'frog' class). This is due to our artificial darkening of these images to demonstrate the concept.\n", "\n", "For real-world datasets, pay attention to:\n", "\n", - "- Properties with notably low scores in the correlation_scores DataFrame\n", + "- Properties with notably low scores in the label_uncorrelatedness_scores DataFrame\n", "- Prevalent issues in the image_issues DataFrame\n", "\n", "These may represent unintended biases in your data collection or preprocessing steps and warrant further investigation.\n", @@ -4197,9 +4195,68 @@ "> **Note**: Using these methods provides a more programmatic and focused way to analyze the results compared to the verbose output of `lab.report()`." ] }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "execution": { + "iopub.execute_input": "2024-08-21T00:43:19.404760Z", + "iopub.status.busy": "2024-08-21T00:43:19.404582Z", + "iopub.status.idle": "2024-08-21T00:43:19.550076Z", + "shell.execute_reply": "2024-08-21T00:43:19.549530Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHNCAYAAADrIvo2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA7SklEQVR4nO3dfVxUZf7/8TeMMNwo3gSiGAJKeZM3FCaaEbKpqGlR+s3NNm9Sty1NC2uTbkSrFSs1K03LrbB1KzczrTQVTctKc9W19Ou9obbecJMKCooDc35/9GV+ToAwogxHXs/Hg0fONde5zufMYZh351xnjodhGIYAAABMytPdBQAAAFQFYQYAAJgaYQYAAJgaYQYAAJgaYQYAAJgaYQYAAJgaYQYAAJgaYQYAAJgaYQYAAJgaYQYwGQ8PD02aNMndZVz11q1bJw8PD61bt+6i/SZNmiQPDw/l5ORc0Xq6d++u7t27u7zcwYMH5eHhoWnTpl22Wir72gDVhTAD/J+0tDR5eHg4/TRu3Fjx8fH68ssv3V1ele3cuVOTJk3SwYMH3V0KAFxWddxdAFDTPP/884qIiJBhGMrMzFRaWpr69u2rzz//XP369XN3eZds586dmjx5srp3767w8HB3lwMAlw1hBvidPn36qFOnTo7HI0aMUHBwsD788ENTh5nqVFRUJLvdLm9vb3eXAqAW4DQTUIEGDRrI19dXdeo4Z//8/HyNHz9eoaGhslqtatWqlaZNm6aSG9GfPXtWrVu3VuvWrXX27FnHcidOnFDTpk11yy23qLi4WJI0bNgw1a1bVz///LMSEhLk7++vkJAQPf/886rMje3/85//qE+fPgoICFDdunV1++23a+PGjY7n09LS9D//8z+SpPj4eMdptIrmPHz88cdq27atfHx81K5dO3366acaNmyY05GdC+dkzJw5Uy1btpTVatXOnTslSV999ZViY2Pl7++vBg0a6K677tKuXbuc1vP7MUuUzEe5kIeHh8aMGaN//vOfatWqlXx8fBQdHa1vvvmm1PJHjhzRgw8+qODgYFmtVt1www169913S/X773//q8TERPn7+6tx48Z6/PHHVVhYeNHX5vdycnJ07733KiAgQNdcc43GjRunc+fOOZ6Pi4tTx44dy1y2VatWSkhIcGl958+f18SJExUdHa369evL399fsbGxWrt2bbnLvPrqqwoLC5Ovr6/i4uK0Y8eOUn12796tgQMHqlGjRvLx8VGnTp302WefuVQbUN04MgP8Tm5urnJycmQYhrKysvTGG2/ozJkz+tOf/uToYxiG7rzzTq1du1YjRoxQVFSUVq5cqSeffFJHjhzRq6++Kl9fX82fP1/dunXTM888oxkzZkiSRo8erdzcXKWlpclisTjGLC4uVu/evdWlSxe9/PLLWrFihVJSUlRUVKTnn3++3Hr/93//V7GxsQoICNBf//pXeXl56a233lL37t319ddfKyYmRrfddpvGjh2r119/XU8//bTatGkjSY7/lmXZsmUaNGiQ2rdvr9TUVJ08eVIjRoxQs2bNyuz/3nvv6dy5c/rzn/8sq9WqRo0aafXq1erTp49atGihSZMm6ezZs3rjjTfUrVs3bd269ZJPd3399ddauHChxo4dK6vVqjfffFO9e/fWpk2b1K5dO0lSZmamunTp4gg/QUFB+vLLLzVixAjl5eXpsccek/Rb6Lz99tt1+PBhjR07ViEhIfrHP/6hr776yqWa7r33XoWHhys1NVUbN27U66+/rpMnT+r999+XJD3wwAMaNWqUduzY4ahRkv79739r7969evbZZ11aX15env7+97/rvvvu06hRo3T69Gm98847SkhI0KZNmxQVFeXU//3339fp06c1evRonTt3Tq+99pr+8Ic/aPv27QoODpb02+9St27d1KxZM02YMEH+/v7617/+pcTERH3yySe6++67XaoRqDYGAMMwDOO9994zJJX6sVqtRlpamlPfJUuWGJKMF1980al94MCBhoeHh7F//35HW3JysuHp6Wl88803xscff2xIMmbOnOm03NChQw1JxqOPPupos9vtxh133GF4e3sb2dnZjnZJRkpKiuNxYmKi4e3tbRw4cMDRdvToUaNevXrGbbfd5mgrWffatWsr9Xq0b9/euPbaa43Tp0872tatW2dIMsLCwhxtGRkZhiQjICDAyMrKchojKirKaNy4sfHrr7862n788UfD09PTGDJkiNP2XzhmiZSUFOP3f6ZK9svmzZsdbYcOHTJ8fHyMu+++29E2YsQIo2nTpkZOTo7T8n/84x+N+vXrGwUFBYZhGMbMmTMNSca//vUvR5/8/HwjMjKyUq9XSY133nmnU/sjjzxiSDJ+/PFHwzAM49SpU4aPj4/x1FNPOfUbO3as4e/vb5w5c+ai64mLizPi4uIcj4uKiozCwkKnPidPnjSCg4ONBx980NFWsn98fX2N//73v472H374wZBkPP74446222+/3Wjfvr1x7tw5R5vdbjduueUW47rrrnO0rV271qXfJeBK4zQT8DuzZ89Wenq60tPTtWDBAsXHx2vkyJFavHixo8/y5ctlsVg0duxYp2XHjx8vwzCcrn6aNGmSbrjhBg0dOlSPPPKI4uLiSi1XYsyYMY5/lxxROH/+vFavXl1m/+LiYq1atUqJiYlq0aKFo71p06YaPHiwvv32W+Xl5bn8Ghw9elTbt2/XkCFDVLduXUd7XFyc2rdvX+YyAwYMUFBQkOPxsWPHtG3bNg0bNkyNGjVytHfo0EE9e/bU8uXLXa6rRNeuXRUdHe143Lx5c911111auXKliouLZRiGPvnkE/Xv31+GYSgnJ8fxk5CQoNzcXG3dulXSb/uyadOmGjhwoGM8Pz8//fnPf3apptGjRzs9fvTRRx3jS1L9+vV111136cMPP3ScOiwuLtbChQsdp7hcYbFYHHOS7Ha7Tpw4oaKiInXq1MmxbRdKTEx0OqrWuXNnxcTEOOo7ceKEvvrqK9177706ffq04/X69ddflZCQoH379unIkSMu1QhUF8IM8DudO3dWjx491KNHD91///1atmyZ2rZt6wgWknTo0CGFhISoXr16TsuWnLY5dOiQo83b21vvvvuuMjIydPr0ab333nul5oFIkqenp1MgkaTrr79eksq9nDo7O1sFBQVq1apVqefatGkju92uX375pfIb/39K6o+MjCz1XFltkhQREVHmGOXVlpOTo/z8fJdrk6TrrruuVNv111+vgoICZWdnKzs7W6dOndLbb7+toKAgp5/hw4dLkrKyshx1RkZGltonZdXtSk0tW7aUp6en074bMmSIDh8+rPXr10uSVq9erczMTD3wwAMuravE/Pnz1aFDB/n4+Oiaa65RUFCQli1bptzc3Arrk357zUrq279/vwzD0HPPPVfqNUtJSZH0/18zoKZhzgxQAU9PT8XHx+u1117Tvn37dMMNN7g8xsqVKyVJ586d0759+0p98F8NfH19L3nZssKdJMcEaVfZ7XZJ0p/+9CcNHTq0zD4dOnS4pLErq6xtSkhIUHBwsBYsWKDbbrtNCxYsUJMmTdSjRw+Xx1+wYIGGDRumxMREPfnkk2rcuLEsFotSU1N14MABl8crec2eeOKJcicjlxdkAXcjzACVUFRUJEk6c+aMJCksLEyrV6/W6dOnnY7O7N692/F8iZ9++knPP/+8hg8frm3btmnkyJHavn276tev77QOu92un3/+2XE0RpL27t0rSeVOlA0KCpKfn5/27NlT6rndu3fL09NToaGhksoPDGUpqX///v2lniur7WJjlFdbYGCg49RKw4YNderUqVL9LjzCdaF9+/aVatu7d6/8/Pwcp7rq1aun4uLiCoNCWFiYduzYIcMwnF6jsuq+mN+H1P3798tutzvtO4vFosGDBystLU0vvfSSlixZolGjRjlNBK+sRYsWqUWLFlq8eLFT3SVHUcqq7/f27t3rqK/kqKCXl9clhSvAnTjNBFTAZrNp1apV8vb2dpxG6tu3r4qLizVr1iynvq+++qo8PDzUp08fx7LDhg1TSEiIXnvtNaWlpSkzM1OPP/54meu6cDzDMDRr1ix5eXnp9ttvL7O/xWJRr169tHTpUqfTGZmZmfrggw906623KiAgQJIcwaGs0PB7ISEhateund5//31HgJN+u4po+/btFS4v/TZvJyoqSvPnz3da544dO7Rq1Sr17dvX0dayZUvl5ubqp59+crQdO3ZMn376aZljb9iwwWleyC+//KKlS5eqV69eslgsslgsGjBggD755JMyLz/Ozs52/Ltv3746evSoFi1a5GgrKCjQ22+/XantLDF79mynx2+88YYkOX4XSjzwwAM6efKkHnrooVJXybmiJAAZF1y6/8MPP2jDhg1l9l+yZInTnJdNmzbphx9+cNTXuHFjde/eXW+99ZaOHTtWavkLXzOgpuHIDPA7X375peMIS1ZWlj744APt27dPEyZMcASD/v37Kz4+Xs8884wOHjyojh07atWqVVq6dKkee+wxtWzZUpL04osvatu2bVqzZo3q1aunDh06aOLEiXr22Wc1cOBApw90Hx8frVixQkOHDlVMTIy+/PJLLVu2TE8//bTTxNrfe/HFF5Wenq5bb71VjzzyiOrUqaO33npLhYWFevnllx39oqKiZLFY9NJLLyk3N1dWq1V/+MMf1Lhx4zLHnTJliu666y5169ZNw4cP18mTJzVr1iy1a9fOKeBczCuvvKI+ffqoa9euGjFihOPS7Pr16zvdX+qPf/yjnnrqKd19990aO3asCgoKNGfOHF1//fVlTmZt166dEhISnC7NlqTJkyc7+kydOlVr165VTEyMRo0apbZt2+rEiRPaunWrVq9erRMnTkiSRo0apVmzZmnIkCHasmWLmjZtqn/84x/y8/Or1DaWyMjI0J133qnevXtrw4YNWrBggQYPHlzqu2VuvPFGtWvXTh9//LHatGmjm266yaX1lOjXr58WL16su+++W3fccYcyMjI0d+5ctW3btsz9ExkZqVtvvVUPP/ywCgsLNXPmTF1zzTX661//6ugze/Zs3XrrrWrfvr1GjRqlFi1aKDMzUxs2bNB///tf/fjjj5dUK3DFue9CKqBmKevSbB8fHyMqKsqYM2eOYbfbnfqfPn3aePzxx42QkBDDy8vLuO6664xXXnnF0W/Lli1GnTp1nC63NozfLqm9+eabjZCQEOPkyZOGYfx2abK/v79x4MABo1evXoafn58RHBxspKSkGMXFxU7L63eXZhuGYWzdutVISEgw6tata/j5+Rnx8fHG999/X2ob582bZ7Ro0cKwWCyVurT2o48+Mlq3bm1YrVajXbt2xmeffWYMGDDAaN26taNPyaW/r7zySpljrF692ujWrZvh6+trBAQEGP379zd27txZqt+qVauMdu3aGd7e3karVq2MBQsWlHtp9ujRo40FCxYY1113nWG1Wo0bb7yxzG3JzMw0Ro8ebYSGhhpeXl5GkyZNjNtvv914++23nfodOnTIuPPOOw0/Pz8jMDDQGDdunLFixQqXLs3euXOnMXDgQKNevXpGw4YNjTFjxhhnz54tc5mXX37ZkGRMmTLlomNf6PeXZtvtdmPKlClGWFiY4zX44osvSl3mfuH+mT59uhEaGmpYrVYjNjbWcdn4hQ4cOGAMGTLEaNKkieHl5WU0a9bM6Nevn7Fo0SJHHy7NRk3jYRiV+HpRAFfUsGHDtGjRokof8XCnqKgoBQUFKT093S3r9/Dw0OjRo0ud4jOT1157TY8//rgOHjyo5s2bu7scwPSYMwOgTDabzTHxucS6dev0448/qnv37u4p6ipgGIbeeecdxcXFEWSAy4QwA8DhwnshHTlyRK1bt9akSZP09ttvKykpSX379lWTJk30l7/8pdJjlnz5X22Xn5+vDz/8UA899JC2b99e7iRwAK5jAjCAMjVs2FDR0dH6+9//ruzsbPn7++uOO+7Q1KlTdc0117i7PNPJzs7W4MGD1aBBAz399NO688473V0ScNUgzAA1QFpamtLS0txdhpP69etr4cKF7i6jFLNO8wsPDzdt7UBNx2kmAJedYRg6e/asu8u4rK7GbQKuFoQZoJb69ttvdfPNN8vHx0ctW7bUW2+9VarPe++95/guGqvVqrZt22rOnDml+oWHh6tfv35auXKlOnXqJF9f3zLHK/Hiiy/K09PT8cVylbF582YlJCQoMDBQvr6+ioiI0IMPPujUx26367XXXlP79u3l4+OjoKAg9e7dW5s3b3b0KSoq0gsvvKCWLVvKarUqPDxcTz/9tAoLCyu9TadOndJjjz2m0NBQWa1WRUZG6qWXXnLcEgBA9eI0E1ALbd++Xb169VJQUJAmTZqkoqIipaSkKDg42KnfnDlzdMMNN+jOO+9UnTp19Pnnn+uRRx6R3W4vdZfoPXv26L777tNDDz2kUaNGlXujxmeffVZTpkzRW2+9pVGjRlWq3qysLEe9EyZMUIMGDXTw4EGnO5lL0ogRI5SWlqY+ffpo5MiRKioq0vr167Vx40Z16tRJkjRy5EjNnz9fAwcO1Pjx4/XDDz8oNTVVu3btKvWNw2VtU0FBgeLi4nTkyBE99NBDat68ub7//nslJyfr2LFjmjlzZqW2CcBl5MbvuAHgJomJiYaPj49x6NAhR9vOnTsdX6ZXoqCgoNSyCQkJRosWLZzawsLCDEnGihUrSvXX/33JnWEYxvjx4w1PT08jLS3NpXo//fRTQ5Lx73//u9w+X331lSHJGDt2bKnnSr7IcNu2bYYkY+TIkU7PP/HEE4Yk46uvvqpwm1544QXD39/f2Lt3r1P7hAkTDIvFYhw+fNilbQNQdZxmAmqZ4uJirVy5UomJiU7fc9KmTZtSd0u+8E7Yubm5ysnJUVxcnH7++Wfl5uY69Y2IiCj3bsuGYWjMmDF67bXXtGDBgnLvZF2eBg0aSJK++OIL2Wy2Mvt88skn8vDwKPNGiyWXmy9fvlySlJSU5PT8+PHjJUnLli1zai9rmz7++GPFxsaqYcOGysnJcfz06NFDxcXF+uabb1zaNgBVx2kmoJbJzs7W2bNndd1115V6rlWrVo4PfEn67rvvlJKSog0bNqigoMCpb25urtOdvy+8Y/Tvldywcs6cObrvvvtcrjkuLk4DBgzQ5MmT9eqrr6p79+5KTEzU4MGDZbVaJUkHDhxQSEiIGjVqVO44hw4dkqenpyIjI53amzRpogYNGpS6S3dZ27Rv3z799NNP5d4vKysry9XNA1BFhBkAZTpw4IBuv/12tW7dWjNmzFBoaKi8vb21fPlyvfrqq6Umu154FOf3unXrpm3btmnWrFm69957Lxo4yuLh4aFFixZp48aN+vzzz7Vy5Uo9+OCDmj59ujZu3Ki6deu6PF5llLVNdrtdPXv2dLpB44Wuv/56l2oBUHWEGaCWCQoKkq+vr/bt21fquT179jj+/fnnn6uwsFCfffaZ0+motWvXurzOyMhIvfzyy+revbt69+7tuIu4q7p06aIuXbrob3/7mz744APdf//9+uijjzRy5Ei1bNlSK1eu1IkTJ8oNS2FhYbLb7dq3b5/atGnjaM/MzNSpU6cUFhZWYQ0tW7bUmTNn1KNHD5frB3BlMGcGqGUsFosSEhK0ZMkSHT582NG+a9curVy50qmf5Pwldbm5uXrvvfcuab0dOnTQ8uXLtWvXLvXv39+l72w5efJkqS+ci4qKkiTHJdUDBgyQYRiaPHlyqeVLlu3bt68klbriaMaMGZKkO+64o8Ja7r33Xm3YsMHptSpx6tSpUvezAnDlcWQGqIUmT56sFStWKDY2Vo888oiKior0xhtv6IYbbtBPP/0kSerVq5e8vb3Vv39/PfTQQzpz5ozmzZunxo0b69ixY5e03i5dumjp0qXq27evBg4cqCVLlsjLy6vC5ebPn68333xTd999t1q2bKnTp09r3rx5CggIcASU+Ph4PfDAA3r99de1b98+9e7dW3a7XevXr1d8fLzGjBmjjh07aujQoXr77bd16tQpxcXFadOmTZo/f74SExMVHx9fYS1PPvmkPvvsM/Xr10/Dhg1TdHS08vPztX37di1atEgHDx5UYGDgJb0+AC6RW6+lAuA2X3/9tREdHW14e3sbLVq0MObOnWukpKQ4XZr92WefGR06dDB8fHyM8PBw46WXXjLeffddQ5KRkZHh6BcWFmbccccdZa5HF1yaXWLp0qVGnTp1jEGDBhnFxcUV1rp161bjvvvuM5o3b25YrVajcePGRr9+/YzNmzc79SsqKjJeeeUVo3Xr1oa3t7cRFBRk9OnTx9iyZYujj81mMyZPnmxEREQYXl5eRmhoqJGcnGycO3fOaayLbdPp06eN5ORkIzIy0vD29jYCAwONW265xZg2bZpx/vz5CrcHwOXlYRjcLAQAAJgXc2YAAICpMWcGgFtlZ2eruLi43Oe9vb1dvpQbQO3CaSYAbhUeHl7qy+ouFBcXp3Xr1lVfQQBMhyMzANzqn//850Uv027YsGE1VgPAjDgyAwAATI0JwAAAwNRMcZrJbrfr6NGjqlevXqXvqQIAAMzNMAydPn1aISEh8vQs//iLKcLM0aNHFRoa6u4yAACAG/zyyy+69tpry33eFGGm5IZ0v/zyiwICAtxcDaqbzWbTqlWr1KtXr0p99T2Aqwfv/9otLy9PoaGhFd6Y1hRhpuTUUkBAAGGmFrLZbPLz81NAQAB/zIBahvc/JFU4xYQJwAAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNRcDjPffPON+vfvr5CQEHl4eGjJkiUVLrNu3TrddNNNslqtioyMVFpa2iWUCgAAUJrLYSY/P18dO3bU7NmzK9U/IyNDd9xxh+Lj47Vt2zY99thjGjlypFauXOlysQAAAL/n8r2Z+vTpoz59+lS6/9y5cxUREaHp06dLktq0aaNvv/1Wr776qhISElxdPQAAgJMrfqPJDRs2qEePHk5tCQkJeuyxx8pdprCwUIWFhY7HeXl5kn674ZjNZrsidaLmKtnn7Hvg6lFQUKA9e/ZU2O/M2UJ9v/2A6jXYqLq+1ov2bdWqlfz8/C5XiagBKvt3/4qHmePHjys4ONipLTg4WHl5eTp79qx8fX1LLZOamqrJkyeXal+1ahW/qLVYenq6u0sAcJkcOHBA48ePr3T/lyvRZ/r06WrZsuWlF4Uap6CgoFL9rniYuRTJyclKSkpyPM7Ly1NoaKh69eqlgIAAN1YGd7DZbEpPT1fPnj3l5eXl7nIAVMLBX/OVX1hc7vONW92kD1pFVTjOoZwzem1thsbFRygssO5F+4a3vE6+vhf/H15/q0Xh1/hXuF7UDCVnZipyxcNMkyZNlJmZ6dSWmZmpgICAMo/KSJLVapXVWvpwopeXFx9mtRj7HzCHjJx89Zz53WUazSJrk0jN3SVJZy/edf1PlRpx7RPdFRFIoDGDyv7Nv+JhpmvXrlq+fLlTW3p6urp27XqlVw0AcIP8wiJJ0sxBUYpsfPGjKRWOdbZQX6zboH7du8q/gjkzFdmfdUaPLdzmqA9XD5fDzJkzZ7R//37H44yMDG3btk2NGjVS8+bNlZycrCNHjuj999+XJP3lL3/RrFmz9Ne//lUPPvigvvrqK/3rX//SsmXLLt9WAABqnMjGddWuWf0qjWGz2XQ8SLoprCFHZlEul79nZvPmzbrxxht14403SpKSkpJ04403auLEiZKkY8eO6fDhw47+ERERWrZsmdLT09WxY0dNnz5df//737ksGwAAXBYuH5np3r27DMMo9/myvt23e/fu+s9//uPqqgAAACrEvZkAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICp1ci7ZgMAzKuw+Jw8fY4oI2+PPH2qdm+moqIiHS06ql0ndqlOnap9ZGXknZGnzxEVFp+TVLXbLKBmIcwAAC6ro/mH5B/xhp7edPnGfHPFm5dlHP8I6Wh+lKIVfFnGQ81AmAEAXFYh/mHKz3hUrw2KUssq3jW7qKhI3337nbrd2q3KR2YOZJ3RuIXbFBIfVqVxUPMQZgAAl5XV4iP7uWaKCGilttdU/a7ZGXUy1KZRmyrfNdt+Llf2c9myWnyqNA5qHiYAAwAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAU6vj7gIAAFeXs7ZiSdKOI7lVHiv/bKE2Z0tNDp2Uv6+1SmPtzzpT5XpQMxFmAACX1YH/Cw0TFm+/TCPW0T/2//syjSX5W/nou9qwRwEAl1WvG5pIklo2ritfL0uVxtpzLFfjF23X9IHt1app/SrX5m+to4hA/yqPg5qFMAMAuKwa+Xvrj52bX5axioqKJEktg/zVrlnVwwyuTkwABgAApkaYAQAApkaYAQAApkaYAQAApkaYAQAApkaYAQAApkaYAQAApkaYAQAApkaYAQAApkaYAQAApnZJYWb27NkKDw+Xj4+PYmJitGnTpov2nzlzplq1aiVfX1+Fhobq8ccf17lz5y6pYAAAgAu5HGYWLlyopKQkpaSkaOvWrerYsaMSEhKUlZVVZv8PPvhAEyZMUEpKinbt2qV33nlHCxcu1NNPP13l4gEAAFwOMzNmzNCoUaM0fPhwtW3bVnPnzpWfn5/efffdMvt///336tatmwYPHqzw8HD16tVL9913X4VHcwAAACrDpbtmnz9/Xlu2bFFycrKjzdPTUz169NCGDRvKXOaWW27RggULtGnTJnXu3Fk///yzli9frgceeKDc9RQWFqqwsNDxOC8vT5Jks9lks9lcKRlXgZJ9zr4Hap+Su2YXFRXxN6AWquw+dynM5OTkqLi4WMHBwU7twcHB2r17d5nLDB48WDk5Obr11ltlGIaKior0l7/85aKnmVJTUzV58uRS7atWrZKfn58rJeMqkp6e7u4SAFSzX85IUh1t3LhRR3a4uxpUt4KCgkr1cynMXIp169ZpypQpevPNNxUTE6P9+/dr3LhxeuGFF/Tcc8+VuUxycrKSkpIcj/Py8hQaGqpevXopICDgSpeMGsZmsyk9PV09e/aUl5eXu8sBUI1+PHxC2r5ZXbp0UcfmjdxdDqpZyZmZirgUZgIDA2WxWJSZmenUnpmZqSZNmpS5zHPPPacHHnhAI0eOlCS1b99e+fn5+vOf/6xnnnlGnp6lp+1YrVZZrdZS7V5eXnyY1WLsf6D2qVOnjuO/vP9rn8ruc5cmAHt7eys6Olpr1qxxtNntdq1Zs0Zdu3Ytc5mCgoJSgcVisUiSDMNwZfUAAACluHyaKSkpSUOHDlWnTp3UuXNnzZw5U/n5+Ro+fLgkaciQIWrWrJlSU1MlSf3799eMGTN04403Ok4zPffcc+rfv78j1AAAAFwql8PMoEGDlJ2drYkTJ+r48eOKiorSihUrHJOCDx8+7HQk5tlnn5WHh4eeffZZHTlyREFBQerfv7/+9re/Xb6tAAAAtZaHYYJzPXl5eapfv75yc3OZAFwL2Ww2LV++XH379uWcOVDLbDv0qxLnbNSSh7soKuwad5eDalbZz3/uzQQAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEytjrsLAADUPgUFBdq9e3eF/fYcO6XC4/u1a4ev7L82uGjf1q1by8/P7zJVCDMhzAAAqt3u3bsVHR1d6f6D51fcZ8uWLbrpppuqUBXMijADAKh2rVu31pYtWyrsd+ZsoZat3aA74ruqrq+1wjFRO11SmJk9e7ZeeeUVHT9+XB07dtQbb7yhzp07l9v/1KlTeuaZZ7R48WKdOHFCYWFhmjlzpvr27XvJhQMAzMvPz6/CoyjFxcVau3atik4e0fmz+erYpbMsFks1VQgzcXkC8MKFC5WUlKSUlBRt3bpVHTt2VEJCgrKyssrsf/78efXs2VMHDx7UokWLtGfPHs2bN0/NmjWrcvEAgKvT4sWLFRkZqZ49e2rGjBnq2bOnIiMjtXjxYneXhhrI5TAzY8YMjRo1SsOHD1fbtm01d+5c+fn56d133y2z/7vvvqsTJ05oyZIl6tatm8LDwxUXF6eOHTtWuXgAwNVn8eLFGjhwoNq3b6/169frww8/1Pr169W+fXsNHDiQQINSPAzDMCrb+fz58/Lz89OiRYuUmJjoaB86dKhOnTqlpUuXllqmb9++atSokfz8/LR06VIFBQVp8ODBeuqpp8o9XFhYWKjCwkLH47y8PIWGhionJ0cBAQEubB6uBjabTenp6erZs6e8vLzcXQ6AK6i4uFht2rTRDTfcoE8++UTFxcWO97/FYtGAAQO0c+dO7dy5k1NOtUBeXp4CAwOVm5t70c9/l+bM5OTkqLi4WMHBwU7twcHB5V5i9/PPP+urr77S/fffr+XLl2v//v165JFHZLPZlJKSUuYyqampmjx5cqn2VatWcdldLZaenu7uEgBcYdu3b9fBgwf18MMPa8WKFY72kvd/bGysli1bpmnTpql9+/buKhPVpKCgoFL9rvjVTHa7XY0bN9bbb78ti8Wi6OhoHTlyRK+88kq5YSY5OVlJSUmOxyVHZnr16sWRmVqIIzNA7ZGXlydJGjVqlOrWrVvq/R8bG6sJEyYoLCyMi0hqgZLfh4q4FGYCAwNlsViUmZnp1J6ZmakmTZqUuUzTpk3l5eXldDiwTZs2On78uM6fPy9vb+9Sy1itVlmtpS/B8/Ly4sOsFmP/A1e/0NBQSdKePXvUpUsXR3vJ+3/Pnj2Ofvw9uPpVdh+7NAHY29tb0dHRWrNmjaPNbrdrzZo16tq1a5nLdOvWTfv375fdbne07d27V02bNi0zyAAAaq/Y2FiFh4drypQpTp8b0m+fN6mpqYqIiFBsbKybKkRN5PLVTElJSZo3b57mz5+vXbt26eGHH1Z+fr6GDx8uSRoyZIiSk5Md/R9++GGdOHFC48aN0969e7Vs2TJNmTJFo0ePvnxbAQC4KlgsFk2fPl1ffPGFEhMTtXHjRp09e1YbN25UYmKivvjiC02bNo3Jv3Di8pyZQYMGKTs7WxMnTtTx48cVFRWlFStWOCYFHz58WJ6e/z8jhYaGauXKlXr88cfVoUMHNWvWTOPGjdNTTz11+bYCAHDVuOeee7Ro0SKNHz9et912m6M9IiJCixYt0j333OPG6lATuXRptrvk5eWpfv36FV6ahauTzWbT8uXL1bdvX86RA7VIyTcAf/nll+rTp4/i4+M5IlPLVPbzn3szAQBqJIvFori4OOXn5ysuLo4gg3K5PGcGAACgJiHMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAABqpOLiYn399df65ptv9PXXX6u4uNjdJaGGIswAAGqcxYsXKzIyUj179tSMGTPUs2dPRUZGavHixe4uDTUQYQYAUKMsXrxYAwcOVPv27bV+/Xp9+OGHWr9+vdq3b6+BAwcSaFAKYQYAUGMUFxdr/Pjx6tevn5YsWaKYmBj5+voqJiZGS5YsUb9+/fTEE09wyglOCDMAgBpj/fr1OnjwoJ5++ml5ejp/RHl6eio5OVkZGRlav369mypETUSYAQDUGMeOHZMktWvXrsznS9pL+gESYQYAUIM0bdpUkrRjx44yny9pL+kHSIQZAEANEhsbq/DwcE2ZMkV2u93pObvdrtTUVEVERCg2NtZNFaImIswAAGoMi8Wi6dOn64svvlBiYqI2btyos2fPauPGjUpMTNQXX3yhadOmyWKxuLtU1CB13F0AAAAXuueee7Ro0SKNHz9et912m6M9IiJCixYt0j333OPG6lATEWYAADXOPffco7vuuktr167Vl19+qT59+ig+Pp4jMigTYQYAUCNZLBbFxcUpPz9fcXFxBBmUizkzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1C4pzMyePVvh4eHy8fFRTEyMNm3aVKnlPvroI3l4eCgxMfFSVgsAAFCKy2Fm4cKFSkpKUkpKirZu3aqOHTsqISFBWVlZF13u4MGDeuKJJxQbG3vJxQIAAPxeHVcXmDFjhkaNGqXhw4dLkubOnatly5bp3Xff1YQJE8pcpri4WPfff78mT56s9evX69SpUxddR2FhoQoLCx2P8/LyJEk2m002m83VkmFyJfucfQ/UPrz/a7fK7neXwsz58+e1ZcsWJScnO9o8PT3Vo0cPbdiwodzlnn/+eTVu3FgjRozQ+vXrK1xPamqqJk+eXKp91apV8vPzc6VkXEXS09PdXQIAN+H9XzsVFBRUqp9LYSYnJ0fFxcUKDg52ag8ODtbu3bvLXObbb7/VO++8o23btlV6PcnJyUpKSnI8zsvLU2hoqHr16qWAgABXSsZVwGazKT09XT179pSXl5e7ywFQjXj/124lZ2Yq4vJpJlecPn1aDzzwgObNm6fAwMBKL2e1WmW1Wku1e3l58ctci7H/gdqL93/tVNl97lKYCQwMlMViUWZmplN7ZmammjRpUqr/gQMHdPDgQfXv39/RZrfbf1txnTras2ePWrZs6UoJAAAATly6msnb21vR0dFas2aNo81ut2vNmjXq2rVrqf6tW7fW9u3btW3bNsfPnXfeqfj4eG3btk2hoaFV3wIAAFCruXyaKSkpSUOHDlWnTp3UuXNnzZw5U/n5+Y6rm4YMGaJmzZopNTVVPj4+ateundPyDRo0kKRS7QAAAJfC5TAzaNAgZWdna+LEiTp+/LiioqK0YsUKx6Tgw4cPy9OTLxYGAADV45ImAI8ZM0Zjxowp87l169ZddNm0tLRLWSUAAECZOIQCAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMrY67C0DtVVBQoN27d1fY78zZQn2//YAaBm5WXV/rRfu2bt1afn5+l6tEAIAJEGbgNrt371Z0dHSl+79ciT5btmzRTTfddOlFAQBMhzADt2ndurW2bNlSYb89x04p6ePtmvE/7dWqaYMKxwQA1C6EGbiNn59fpY6ieB76Vdb1Z9WmXUdFhV1TDZUBAMyECcAAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUuNEkrpiMnHzlFxZVeZwD2fmO/9apU/VfWX9rHUUE+ld5HABAzUCYwRWRkZOv+GnrLuuY4xdtv2xjrX2iO4EGAK4ShBlcESVHZGYOilJk47pVG+tsob5Yt0H9uneVv6+1SmPtzzqjxxZuuyxHjAAANQNhBldUZOO6atesfpXGsNlsOh4k3RTWUF5eXpepMgDA1YIJwAAAwNQIMwAAwNQIMwAAwNQIMwAAwNSYAIwrorD4nDx9jigjb488fap2NVNRUZGOFh3VrhO7qvw9Mxl5Z+Tpc0SFxeckVW1iMgCgZiDM4Io4mn9I/hFv6OlNl2/MN1e8eVnG8Y+QjuZHKVrBl2U8AIB7EWZwRYT4hyk/41G9NihKLav4PTNFRUX67tvv1O3WblU+MnMg64zGLdymkPiwKo0DAKg5CDO4IqwWH9nPNVNEQCu1vabq3zOTUSdDbRq1qfL3zNjP5cp+LltWi0+VxgEA1BxMAAYAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZ2SWFm9uzZCg8Pl4+Pj2JiYrRpU/nfWT9v3jzFxsaqYcOGatiwoXr06HHR/gAAAK5w+RuAFy5cqKSkJM2dO1cxMTGaOXOmEhIStGfPHjVu3LhU/3Xr1um+++7TLbfcIh8fH7300kvq1auX/vd//1fNmjW7LBuBmuesrViStONIbpXHyj9bqM3ZUpNDJ+Xva63SWPuzzlS5HgBAzeJhGIbhygIxMTG6+eabNWvWLEmS3W5XaGioHn30UU2YMKHC5YuLi9WwYUPNmjVLQ4YMqdQ68/LyVL9+feXm5iogIMCVcuEmH206rAmLt7u7jHKtfaK7IgL93V0GgArYbDYtX75cffv2rfLtTGA+lf38d+nIzPnz57VlyxYlJyc72jw9PdWjRw9t2LChUmMUFBTIZrOpUaNG5fYpLCxUYWGh43FeXp6k336pbTabKyXDTeKvv0Z/u6utWgT5y9fLUqWx9h7P1V8/3aWX726j65tU7T5PkuRvteja+t78LgEmUPI+5f1aO1V2v7sUZnJyclRcXKzg4GCn9uDgYO3evbtSYzz11FMKCQlRjx49yu2TmpqqyZMnl2pftWqV/Pz8XCkZblRXUlZW1cf57cxQHWXt3y7r8aqPJ0k7L88wAKpJenq6u0uAGxQUFFSqX7XeNXvq1Kn66KOPtG7dOvn4lH/X4uTkZCUlJTke5+XlKTQ0VL169eI0Uy304+ET0vbN6tKlizo2L/+IHoCrj81mU3p6unr27Mlpplqo5MxMRVwKM4GBgbJYLMrMzHRqz8zMVJMmTS667LRp0zR16lStXr1aHTp0uGhfq9Uqq7X0RE8vLy9+mWuhOnXqOP7L/gdqJ/7+106V3ecuXZrt7e2t6OhorVmzxtFmt9u1Zs0ade3atdzlXn75Zb3wwgtasWKFOnXq5MoqAQAALsrl00xJSUkaOnSoOnXqpM6dO2vmzJnKz8/X8OHDJUlDhgxRs2bNlJqaKkl66aWXNHHiRH3wwQcKDw/X8eO/TXqoW7eu6tatexk3BQAA1EYuh5lBgwYpOztbEydO1PHjxxUVFaUVK1Y4JgUfPnxYnp7//4DPnDlzdP78eQ0cONBpnJSUFE2aNKlq1QMAgFrvkiYAjxkzRmPGjCnzuXXr1jk9Pnjw4KWsAgAAoFK4NxMAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADC1ar2dAXChgoKCSt3Ta8+xUyo8vl+7dvjK/muDi/Zt3bo19+8CgFqGMAO32b17t6Kjoyvdf/D8ivts2bJFN910UxWqAgCYDWEGbtO6dWtt2bKlwn5nzhZq2doNuiO+q+r6lr5n1+/HBADULoQZuI2fn1+ljqLYbDadzMlS186duNEcAKAUJgADAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTM8Vdsw3DkCTl5eW5uRK4g81mU0FBgfLy8rhrNlDL8P6v3Uo+90tyQHlMEWZOnz4tSQoNDXVzJQAAoLqdPn1a9evXL/d5D6OiuFMD2O12HT16VPXq1ZOHh4e7y0E1y8vLU2hoqH755RcFBAS4uxwA1Yj3f+1mGIZOnz6tkJAQeXqWPzPGFEdmPD09de2117q7DLhZQEAAf8yAWor3f+11sSMyJZgADAAATI0wAwAATI0wgxrParUqJSVFVqvV3aUAqGa8/1EZppgADAAAUB6OzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzKBGmz17tsLDw+Xj46OYmBht2rTJ3SUBqAbffPON+vfvr5CQEHl4eGjJkiXuLgk1GGEGNdbChQuVlJSklJQUbd26VR07dlRCQoKysrLcXRqAKyw/P18dO3bU7Nmz3V0KTIBLs1FjxcTE6Oabb9asWbMk/XaPrtDQUD366KOaMGGCm6sDUF08PDz06aefKjEx0d2loIbiyAxqpPPnz2vLli3q0aOHo83T01M9evTQhg0b3FgZAKCmIcygRsrJyVFxcbGCg4Od2oODg3X8+HE3VQUAqIkIMwAAwNQIM6iRAgMDZbFYlJmZ6dSemZmpJk2auKkqAEBNRJhBjeTt7a3o6GitWbPG0Wa327VmzRp17drVjZUBAGqaOu4uAChPUlKShg4dqk6dOqlz586aOXOm8vPzNXz4cHeXBuAKO3PmjPbv3+94nJGRoW3btqlRo0Zq3ry5GytDTcSl2ajRZs2apVdeeUXHjx9XVFSUXn/9dcXExLi7LABX2Lp16xQfH1+qfejQoUpLS6v+glCjEWYAAICpMWcGAACYGmEGAACYGmEGAACYGmEGAACYGmEGAACYGmEGAACYGmEGAACYGmEGAACYGmEGwBXXvXt3PfbYY5Xqu27dOnl4eOjUqVNVWmd4eLhmzpxZpTEAmANhBgAAmBphBgAAmBphBkC1+sc//qFOnTqpXr16atKkiQYPHqysrKxS/b777jt16NBBPj4+6tKli3bs2OH0/LfffqvY2Fj5+voqNDRUY8eOVX5+fnVtBoAahDADoFrZbDa98MIL+vHHH7VkyRIdPHhQw4YNK9XvySef1PTp0/Xvf/9bQUFB6t+/v2w2myTpwIED6t27twYMGKCffvpJCxcu1LfffqsxY8ZU89YAqAnquLsAALXLgw8+6Ph3ixYt9Prrr+vmm2/WmTNnVLduXcdzKSkp6tmzpyRp/vz5uvbaa/Xpp5/q3nvvVWpqqu6//37HpOLrrrtOr7/+uuLi4jRnzhz5+PhU6zYBcC+OzACoVlu2bFH//v3VvHlz1atXT3FxcZKkw4cPO/Xr2rWr49+NGjVSq1attGvXLknSjz/+qLS0NNWtW9fxk5CQILvdroyMjOrbGAA1AkdmAFSb/Px8JSQkKCEhQf/85z8VFBSkw4cPKyEhQefPn6/0OGfOnNFDDz2ksWPHlnquefPml7NkACZAmAFQbXbv3q1ff/1VU6dOVWhoqCRp8+bNZfbduHGjI5icPHlSe/fuVZs2bSRJN910k3bu3KnIyMjqKRxAjcZpJgDVpnnz5vL29tYbb7yhn3/+WZ999pleeOGFMvs+//zzWrNmjXbs2KFhw4YpMDBQiYmJkqSnnnpK33//vcaMGaNt27Zp3759Wrp0KROAgVqKMAOg2gQFBSktLU0ff/yx2rZtq6lTp2ratGll9p06darGjRun6OhoHT9+XJ9//rm8vb0lSR06dNDXX3+tvXv3KjY2VjfeeKMmTpyokJCQ6twcADWEh2EYhruLAAAAuFQcmQEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKb2/wDC158FDdXeagAAAABJRU5ErkJggg==\n", + "text/plain": [ + "

" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "def plot_scores_labels(lab, property=\"dark_score\"):\n", + " \"\"\"\n", + " Plots the scores of image-specific properties like 'dark_score', 'blurry_score', etc. \n", + " against labels for each instance in the dataset using 'Datalab' object.\n", + "\n", + " Parameters:\n", + " -----------\n", + " lab : 'Datalab' object\n", + " \n", + " property : str, optional\n", + " The name of the property to be plotted against the labels.\n", + " \n", + " Returns:\n", + " --------\n", + " None\n", + " This function does not return any value. It generates a plot of the specified \n", + " property against the labels.\n", + " \"\"\"\n", + " issues_copy = lab.issues.copy()\n", + " issues_copy[\"label\"] = lab.labels\n", + " issues_copy.boxplot(column=[property], by=\"label\")\n", + "\n", + "# Plotting 'dark_score' value of each instance in the dataset against class label\n", + "plot_scores_labels(lab, \"dark_score\")" + ] + }, { "cell_type": "markdown", "metadata": {}, + "source": [ + "The above plot illustrates the distribution of dark scores across class labels. In this dataset, 100 images from the `Frog` class (Class 0 in the plot) have been darkened, while 100 images from the `Truck` class (Class 1 in the plot) remain unchanged, as in the CIFAR-10 dataset. This creates a clear spurious correlation between the 'darkness' feature and the class labels: `Frog` images are dark, whereas `Truck` images are not. We can see that the `dark_score` values between the two classes are non-overlapping. This characteristic of the dataset is identified by `Datalab`." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "nbsphinx": "hidden" + }, "source": [ "### 4. (Optional) Compare with a Dataset Without Spurious Correlations\n", "\n", @@ -4208,14 +4265,15 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 38, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:13.117053Z", - "iopub.status.busy": "2024-08-20T02:18:13.116150Z", - "iopub.status.idle": "2024-08-20T02:18:13.628191Z", - "shell.execute_reply": "2024-08-20T02:18:13.627646Z" - } + "iopub.execute_input": "2024-08-21T00:43:19.552545Z", + "iopub.status.busy": "2024-08-21T00:43:19.552159Z", + "iopub.status.idle": "2024-08-21T00:43:20.077354Z", + "shell.execute_reply": "2024-08-21T00:43:20.076712Z" + }, + "nbsphinx": "hidden" }, "outputs": [ { @@ -4229,7 +4287,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "84c47a9fab904f3d8908756c3b332bed", + "model_id": "d3c19809a6204f20ac5cac77fe50ad95", "version_major": 2, "version_minor": 0 }, @@ -4244,9 +4302,10 @@ "name": "stdout", "output_type": "stream", "text": [ + "Finding spurious correlation issues in the dataset ...\n", "\n", "Audit complete. 0 issues found in the dataset.\n", - "Correlation scores for original dataset:\n" + "Label uncorrelatedness scores for original dataset:\n" ] }, { @@ -4277,13 +4336,13 @@ " \n", " \n", " 0\n", - " dark_score\n", - " 0.300\n", + " odd_size_score\n", + " 0.500\n", " \n", " \n", " 1\n", - " light_score\n", - " 0.415\n", + " odd_aspect_ratio_score\n", + " 0.500\n", " \n", " \n", " 2\n", @@ -4292,18 +4351,18 @@ " \n", " \n", " 3\n", - " odd_aspect_ratio_score\n", - " 0.500\n", + " light_score\n", + " 0.415\n", " \n", " \n", " 4\n", - " odd_size_score\n", + " grayscale_score\n", " 0.500\n", " \n", " \n", " 5\n", - " grayscale_score\n", - " 0.500\n", + " dark_score\n", + " 0.300\n", " \n", " \n", " 6\n", @@ -4316,12 +4375,12 @@ ], "text/plain": [ " property score\n", - "0 dark_score 0.300\n", - "1 light_score 0.415\n", + "0 odd_size_score 0.500\n", + "1 odd_aspect_ratio_score 0.500\n", "2 low_information_score 0.325\n", - "3 odd_aspect_ratio_score 0.500\n", - "4 odd_size_score 0.500\n", - "5 grayscale_score 0.500\n", + "3 light_score 0.415\n", + "4 grayscale_score 0.500\n", + "5 dark_score 0.300\n", "6 blurry_score 0.335" ] }, @@ -4357,35 +4416,35 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 0\n", - " 0.797509\n", " False\n", + " 0.797509\n", " \n", " \n", " 1\n", - " 0.663760\n", " False\n", + " 0.663760\n", " \n", " \n", " 2\n", - " 0.849826\n", " False\n", + " 0.849826\n", " \n", " \n", " 3\n", - " 0.773951\n", " False\n", + " 0.773951\n", " \n", " \n", " 4\n", - " 0.699518\n", " False\n", + " 0.699518\n", " \n", " \n", " ...\n", @@ -4394,28 +4453,28 @@ " \n", " \n", " 195\n", - " 0.793840\n", " False\n", + " 0.793840\n", " \n", " \n", " 196\n", - " 1.000000\n", " False\n", + " 1.000000\n", " \n", " \n", " 197\n", - " 0.971560\n", " False\n", + " 0.971560\n", " \n", " \n", " 198\n", - " 0.862236\n", " False\n", + " 0.862236\n", " \n", " \n", " 199\n", - " 0.973533\n", " False\n", + " 0.973533\n", " \n", " \n", "\n", @@ -4423,18 +4482,18 @@ "" ], "text/plain": [ - " dark_score is_dark_issue\n", - "0 0.797509 False\n", - "1 0.663760 False\n", - "2 0.849826 False\n", - "3 0.773951 False\n", - "4 0.699518 False\n", - ".. ... ...\n", - "195 0.793840 False\n", - "196 1.000000 False\n", - "197 0.971560 False\n", - "198 0.862236 False\n", - "199 0.973533 False\n", + " is_dark_issue dark_score\n", + "0 False 0.797509\n", + "1 False 0.663760\n", + "2 False 0.849826\n", + "3 False 0.773951\n", + "4 False 0.699518\n", + ".. ... ...\n", + "195 False 0.793840\n", + "196 False 1.000000\n", + "197 False 0.971560\n", + "198 False 0.862236\n", + "199 False 0.973533\n", "\n", "[200 rows x 2 columns]" ] @@ -4453,8 +4512,8 @@ "original_lab.find_issues()\n", "\n", "# Compare correlation scores\n", - "original_scores = original_lab._correlations_df\n", - "print(\"Correlation scores for original dataset:\")\n", + "original_scores = original_lab.get_info(\"spurious_correlations\")[\"correlations_df\"]\n", + "print(\"Label uncorrelatedness scores for original dataset:\")\n", "display(original_scores)\n", "\n", "# Compare image-specific issues\n", @@ -4465,15 +4524,55 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "nbsphinx": "hidden" + }, "source": [ "When comparing the results:\n", "\n", - "1. Look for differences in the correlation scores, especially for the 'dark' property.\n", + "1. Look for differences in the label uncorrelatedness scores, especially for the 'dark' property.\n", "2. Compare the number and types of image-specific issues detected.\n", "\n", "You should notice that the original dataset has more balanced correlation scores and fewer (or no) issues related to darkness. This comparison highlights how spurious correlations can be detected by `Datalab`." ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "execution": { + "iopub.execute_input": "2024-08-21T00:43:20.079729Z", + "iopub.status.busy": "2024-08-21T00:43:20.079373Z", + "iopub.status.idle": "2024-08-21T00:43:20.227878Z", + "shell.execute_reply": "2024-08-21T00:43:20.227303Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHNCAYAAADrIvo2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA99ElEQVR4nO3deVyVZf7/8TfrYVE0E0EMRaFccqEw0dSQSSW3onKybHJJmRbNElukKVFrpEVNS8tqMiyncjKzRVOJ1HKSTB1Lx91cGheWVBBQPHDu3x99OT9PgHBkveX1fDx44LnOdV/35+bmcN7e93Wf28UwDEMAAAAm5VrbBQAAAFQGYQYAAJgaYQYAAJgaYQYAAJgaYQYAAJgaYQYAAJgaYQYAAJgaYQYAAJgaYQYAAJgaYQYwGRcXF02dOrW2y7jsrVu3Ti4uLlq3bt1F+02dOlUuLi7Kysqq1nr69OmjPn36OL3coUOH5OLiopkzZ1ZZLRX92QA1hTAD/J/k5GS5uLg4fDVr1kzR0dH66quvaru8Stu5c6emTp2qQ4cO1XYpAFCl3Gu7AKCumT59ulq3bi3DMJSenq7k5GQNHDhQX3zxhQYPHlzb5V2ynTt3atq0aerTp49CQkJquxwAqDKEGeAPBgwYoK5du9ofjxkzRgEBAfrwww9NHWZqUmFhoWw2mzw9PWu7FAD1AKeZgHI0btxY3t7ecnd3zP55eXmaNGmSgoODZbFY1LZtW82cOVPFN6I/e/as2rVrp3bt2uns2bP25U6ePKnmzZvrxhtvVFFRkSRp1KhRatCggX755RfFxMTI19dXQUFBmj59uipyY/v//Oc/GjBggPz8/NSgQQPdfPPNSktLsz+fnJysP//5z5Kk6Oho+2m08uY8fPzxx+rQoYO8vLzUsWNHffrppxo1apTDkZ0L52TMmTNHoaGhslgs2rlzpyTpm2++Ue/eveXr66vGjRvrtttu065duxzW88cxixXPR7mQi4uLxo8fr3/+859q27atvLy8FBERoW+//bbE8kePHtX999+vgIAAWSwWXXvttVq4cGGJfv/73/8UGxsrX19fNWvWTBMnTlRBQcFFfzZ/lJWVpbvuukt+fn668sor9eijj+rcuXP256OiotSlS5dSl23btq1iYmKcWt/58+c1ZcoURUREqFGjRvL19VXv3r21du3aMpd55ZVX1KpVK3l7eysqKko7duwo0Wf37t0aOnSomjRpIi8vL3Xt2lWff/65U7UBNY0jM8AfZGdnKysrS4ZhKCMjQ6+99ppyc3P1l7/8xd7HMAzdeuutWrt2rcaMGaPw8HCtXr1aTzzxhI4ePapXXnlF3t7eWrRokXr27Km//e1vmj17tiRp3Lhxys7OVnJystzc3OxjFhUV6ZZbblH37t310ksvadWqVUpMTFRhYaGmT59eZr3//e9/1bt3b/n5+enJJ5+Uh4eH3nzzTfXp00fr169XZGSkbrrpJk2YMEGvvvqqnn76abVv316S7N9Ls2LFCg0bNkydOnVSUlKSTp06pTFjxqhFixal9n/33Xd17tw5/fWvf5XFYlGTJk309ddfa8CAAWrTpo2mTp2qs2fP6rXXXlPPnj21devWSz7dtX79ei1ZskQTJkyQxWLR66+/rltuuUWbNm1Sx44dJUnp6enq3r27Pfz4+/vrq6++0pgxY5STk6PHHntM0u+h8+abb9aRI0c0YcIEBQUF6f3339c333zjVE133XWXQkJClJSUpLS0NL366qs6deqU3nvvPUnSfffdp7i4OO3YscNeoyT9+OOP2rt3r5555hmn1peTk6N//OMfuueeexQXF6czZ87onXfeUUxMjDZt2qTw8HCH/u+9957OnDmjcePG6dy5c5o7d67+9Kc/afv27QoICJD0++9Sz5491aJFC02ePFm+vr7617/+pdjYWH3yySe6/fbbnaoRqDEGAMMwDOPdd981JJX4slgsRnJyskPf5cuXG5KM559/3qF96NChhouLi7F//357W0JCguHq6mp8++23xscff2xIMubMmeOw3MiRIw1JxiOPPGJvs9lsxqBBgwxPT08jMzPT3i7JSExMtD+OjY01PD09jQMHDtjbjh07ZjRs2NC46aab7G3F6167dm2Ffh6dOnUyrrrqKuPMmTP2tnXr1hmSjFatWtnbDh48aEgy/Pz8jIyMDIcxwsPDjWbNmhm//fabve2nn34yXF1djREjRjhs/4VjFktMTDT++GeqeL9s3rzZ3nb48GHDy8vLuP322+1tY8aMMZo3b25kZWU5LH/33XcbjRo1MvLz8w3DMIw5c+YYkox//etf9j55eXlGWFhYhX5exTXeeuutDu0PP/ywIcn46aefDMMwjNOnTxteXl7GU0895dBvwoQJhq+vr5Gbm3vR9URFRRlRUVH2x4WFhUZBQYFDn1OnThkBAQHG/fffb28r3j/e3t7G//73P3v7Dz/8YEgyJk6caG+7+eabjU6dOhnnzp2zt9lsNuPGG280rr76anvb2rVrnfpdAqobp5mAP5g/f75SUlKUkpKixYsXKzo6WmPHjtWyZcvsfVauXCk3NzdNmDDBYdlJkybJMAyHq5+mTp2qa6+9ViNHjtTDDz+sqKioEssVGz9+vP3fxUcUzp8/r6+//rrU/kVFRVqzZo1iY2PVpk0be3vz5s01fPhwbdiwQTk5OU7/DI4dO6bt27drxIgRatCggb09KipKnTp1KnWZO++8U/7+/vbHx48f17Zt2zRq1Cg1adLE3t65c2f169dPK1eudLquYj169FBERIT9ccuWLXXbbbdp9erVKioqkmEY+uSTTzRkyBAZhqGsrCz7V0xMjLKzs7V161ZJv+/L5s2ba+jQofbxfHx89Ne//tWpmsaNG+fw+JFHHrGPL0mNGjXSbbfdpg8//NB+6rCoqEhLliyxn+Jyhpubm31Oks1m08mTJ1VYWKiuXbvat+1CsbGxDkfVunXrpsjISHt9J0+e1DfffKO77rpLZ86csf+8fvvtN8XExGjfvn06evSoUzUCNYUwA/xBt27d1LdvX/Xt21f33nuvVqxYoQ4dOtiDhSQdPnxYQUFBatiwocOyxadtDh8+bG/z9PTUwoULdfDgQZ05c0bvvvtuiXkgkuTq6uoQSCTpmmuukaQyL6fOzMxUfn6+2rZtW+K59u3by2az6ddff634xv+f4vrDwsJKPFdamyS1bt261DHKqi0rK0t5eXlO1yZJV199dYm2a665Rvn5+crMzFRmZqZOnz6tt956S/7+/g5fo0ePliRlZGTY6wwLCyuxT0qr25maQkND5erq6rDvRowYoSNHjui7776TJH399ddKT0/Xfffd59S6ii1atEidO3eWl5eXrrzySvn7+2vFihXKzs4utz7p959ZcX379++XYRh69tlnS/zMEhMTJf3/nxlQ1zBnBiiHq6uroqOjNXfuXO3bt0/XXnut02OsXr1aknTu3Dnt27evxBv/5cDb2/uSly0t3EmyT5B2ls1mkyT95S9/0ciRI0vt07lz50sau6JK26aYmBgFBARo8eLFuummm7R48WIFBgaqb9++To+/ePFijRo1SrGxsXriiSfUrFkzubm5KSkpSQcOHHB6vOKf2eOPP17mZOSygixQ2wgzQAUUFhZKknJzcyVJrVq10tdff60zZ844HJ3ZvXu3/fliP//8s6ZPn67Ro0dr27ZtGjt2rLZv365GjRo5rMNms+mXX36xH42RpL1790pSmRNl/f395ePjoz179pR4bvfu3XJ1dVVwcLCksgNDaYrr379/f4nnSmu72Bhl1da0aVP7qZUrrrhCp0+fLtHvwiNcF9q3b1+Jtr1798rHx8d+qqthw4YqKioqNyi0atVKO3bskGEYDj+j0uq+mD+G1P3798tmsznsOzc3Nw0fPlzJycl68cUXtXz5csXFxTlMBK+opUuXqk2bNlq2bJlD3cVHUUqr74/27t1rr6/4qKCHh8clhSugNnGaCSiH1WrVmjVr5OnpaT+NNHDgQBUVFWnevHkOfV955RW5uLhowIAB9mVHjRqloKAgzZ07V8nJyUpPT9fEiRNLXdeF4xmGoXnz5snDw0M333xzqf3d3NzUv39/ffbZZw6nM9LT0/XBBx+oV69e8vPzkyR7cCgtNPxRUFCQOnbsqPfee88e4KTfryLavn17uctLv8/bCQ8P16JFixzWuWPHDq1Zs0YDBw60t4WGhio7O1s///yzve348eP69NNPSx1748aNDvNCfv31V3322Wfq37+/3Nzc5ObmpjvvvFOffPJJqZcfZ2Zm2v89cOBAHTt2TEuXLrW35efn66233qrQdhabP3++w+PXXntNkuy/C8Xuu+8+nTp1Sg888ECJq+ScURyAjAsu3f/hhx+0cePGUvsvX77cYc7Lpk2b9MMPP9jra9asmfr06aM333xTx48fL7H8hT8zoK7hyAzwB1999ZX9CEtGRoY++OAD7du3T5MnT7YHgyFDhig6Olp/+9vfdOjQIXXp0kVr1qzRZ599pscee0yhoaGSpOeff17btm1TamqqGjZsqM6dO2vKlCl65plnNHToUIc3dC8vL61atUojR45UZGSkvvrqK61YsUJPP/20w8TaP3r++eeVkpKiXr166eGHH5a7u7vefPNNFRQU6KWXXrL3Cw8Pl5ubm1588UVlZ2fLYrHoT3/6k5o1a1bquDNmzNBtt92mnj17avTo0Tp16pTmzZunjh07OgSci3n55Zc1YMAA9ejRQ2PGjLFfmt2oUSOH+0vdfffdeuqpp3T77bdrwoQJys/P1xtvvKFrrrmm1MmsHTt2VExMjMOl2ZI0bdo0e58XXnhBa9euVWRkpOLi4tShQwedPHlSW7du1ddff62TJ09KkuLi4jRv3jyNGDFCW7ZsUfPmzfX+++/Lx8enQttY7ODBg7r11lt1yy23aOPGjVq8eLGGDx9e4rNlrrvuOnXs2FEff/yx2rdvr+uvv96p9RQbPHiwli1bpttvv12DBg3SwYMHtWDBAnXo0KHU/RMWFqZevXrpoYceUkFBgebMmaMrr7xSTz75pL3P/Pnz1atXL3Xq1ElxcXFq06aN0tPTtXHjRv3vf//TTz/9dEm1AtWu9i6kAuqW0i7N9vLyMsLDw4033njDsNlsDv3PnDljTJw40QgKCjI8PDyMq6++2nj55Zft/bZs2WK4u7s7XG5tGL9fUnvDDTcYQUFBxqlTpwzD+P3SZF9fX+PAgQNG//79DR8fHyMgIMBITEw0ioqKHJbXHy7NNgzD2Lp1qxETE2M0aNDA8PHxMaKjo43vv/++xDa+/fbbRps2bQw3N7cKXVr70UcfGe3atTMsFovRsWNH4/PPPzfuvPNOo127dvY+xZf+vvzyy6WO8fXXXxs9e/Y0vL29DT8/P2PIkCHGzp07S/Rbs2aN0bFjR8PT09No27atsXjx4jIvzR43bpyxePFi4+qrrzYsFotx3XXXlbot6enpxrhx44zg4GDDw8PDCAwMNG6++Wbjrbfecuh3+PBh49ZbbzV8fHyMpk2bGo8++qixatUqpy7N3rlzpzF06FCjYcOGxhVXXGGMHz/eOHv2bKnLvPTSS4YkY8aMGRcd+0J/vDTbZrMZM2bMMFq1amX/GXz55ZclLnO/cP/MmjXLCA4ONiwWi9G7d2/7ZeMXOnDggDFixAgjMDDQ8PDwMFq0aGEMHjzYWLp0qb0Pl2ajrnExjAp8vCiAajVq1CgtXbq0wkc8alN4eLj8/f2VkpJSK+t3cXHRuHHjSpziM5O5c+dq4sSJOnTokFq2bFnb5QCmx5wZAKWyWq32ic/F1q1bp59++kl9+vSpnaIuA4Zh6J133lFUVBRBBqgihBkAdhfeC+no0aNq166dpk6dqrfeekvx8fEaOHCgAgMD9eCDD1Z4zOIP/6vv8vLy9OGHH+qBBx7Q9u3by5wEDsB5TAAGUKorrrhCERER+sc//qHMzEz5+vpq0KBBeuGFF3TllVfWdnmmk5mZqeHDh6tx48Z6+umndeutt9Z2ScBlgzAD1AHJyclKTk6u7TIcNGrUSEuWLKntMkow6zS/kJAQ09YO1HWcZgJQ5QzD0NmzZ2u7jCp1OW4TcLkgzAD11IYNG3TDDTfIy8tLoaGhevPNN0v0effdd+2fRWOxWNShQwe98cYbJfqFhIRo8ODBWr16tbp27Spvb+9Sxyv2/PPPy9XV1f7BchWxefNmxcTEqGnTpvL29lbr1q11//33O/Sx2WyaO3euOnXqJC8vL/n7++uWW27R5s2b7X0KCwv13HPPKTQ0VBaLRSEhIXr66adVUFBQ4W06ffq0HnvsMQUHB8tisSgsLEwvvvii/ZYAAGoWp5mAemj79u3q37+//P39NXXqVBUWFioxMVEBAQEO/d544w1de+21uvXWW+Xu7q4vvvhCDz/8sGw2W4m7RO/Zs0f33HOPHnjgAcXFxZV5o8ZnnnlGM2bM0Jtvvqm4uLgK1ZuRkWGvd/LkyWrcuLEOHTrkcCdzSRozZoySk5M1YMAAjR07VoWFhfruu++Ulpamrl27SpLGjh2rRYsWaejQoZo0aZJ++OEHJSUladeuXSU+cbi0bcrPz1dUVJSOHj2qBx54QC1bttT333+vhIQEHT9+XHPmzKnQNgGoQrX4GTcAaklsbKzh5eVlHD582N62c+dO+4fpFcvPzy+xbExMjNGmTRuHtlatWhmSjFWrVpXor//7kDvDMIxJkyYZrq6uRnJyslP1fvrpp4Yk48cffyyzzzfffGNIMiZMmFDiueIPMty2bZshyRg7dqzD848//rghyfjmm2/K3abnnnvO8PX1Nfbu3evQPnnyZMPNzc04cuSIU9sGoPI4zQTUM0VFRVq9erViY2MdPuekffv2Je6WfOGdsLOzs5WVlaWoqCj98ssvys7OdujbunXrMu+2bBiGxo8fr7lz52rx4sVl3sm6LI0bN5Ykffnll7JaraX2+eSTT+Ti4lLqjRaLLzdfuXKlJCk+Pt7h+UmTJkmSVqxY4dBe2jZ9/PHH6t27t6644gplZWXZv/r27auioiJ9++23Tm0bgMrjNBNQz2RmZurs2bO6+uqrSzzXtm1b+xu+JP373/9WYmKiNm7cqPz8fIe+2dnZDnf+vvCO0X9UfMPKN954Q/fcc4/TNUdFRenOO+/UtGnT9Morr6hPnz6KjY3V8OHDZbFYJEkHDhxQUFCQmjRpUuY4hw8flqurq8LCwhzaAwMD1bhx4xJ36S5tm/bt26eff/65zPtlZWRkOLt5ACqJMAOgVAcOHNDNN9+sdu3aafbs2QoODpanp6dWrlypV155pcRk1wuP4vxRz549tW3bNs2bN0933XXXRQNHaVxcXLR06VKlpaXpiy++0OrVq3X//fdr1qxZSktLU4MGDZweryJK2yabzaZ+/fo53KDxQtdcc41TtQCoPMIMUM/4+/vL29tb+/btK/Hcnj177P/+4osvVFBQoM8//9zhdNTatWudXmdYWJheeukl9enTR7fccov9LuLO6t69u7p3766///3v+uCDD3Tvvffqo48+0tixYxUaGqrVq1fr5MmTZYalVq1ayWazad++fWrfvr29PT09XadPn1arVq3KrSE0NFS5ubnq27ev0/UDqB7MmQHqGTc3N8XExGj58uU6cuSIvX3Xrl1avXq1Qz/J8UPqsrOz9e67717Sejt37qyVK1dq165dGjJkiFOf2XLq1KkSHzgXHh4uSfZLqu+8804ZhqFp06aVWL542YEDB0pSiSuOZs+eLUkaNGhQubXcdddd2rhxo8PPqtjp06dL3M8KQPXjyAxQD02bNk2rVq1S79699fDDD6uwsFCvvfaarr32Wv3888+SpP79+8vT01NDhgzRAw88oNzcXL399ttq1qyZjh8/fknr7d69uz777DMNHDhQQ4cO1fLly+Xh4VHucosWLdLrr7+u22+/XaGhoTpz5ozefvtt+fn52QNKdHS07rvvPr366qvat2+fbrnlFtlsNn333XeKjo7W+PHj1aVLF40cOVJvvfWWTp8+raioKG3atEmLFi1SbGysoqOjy63liSee0Oeff67Bgwdr1KhRioiIUF5enrZv366lS5fq0KFDatq06SX9fABcolq9lgpArVm/fr0RERFheHp6Gm3atDEWLFhgJCYmOlya/fnnnxudO3c2vLy8jJCQEOPFF180Fi5caEgyDh48aO/XqlUrY9CgQaWuRxdcml3ss88+M9zd3Y1hw4YZRUVF5da6detW45577jFatmxpWCwWo1mzZsbgwYONzZs3O/QrLCw0Xn75ZaNdu3aGp6en4e/vbwwYMMDYsmWLvY/VajWmTZtmtG7d2vDw8DCCg4ONhIQE49y5cw5jXWybzpw5YyQkJBhhYWGGp6en0bRpU+PGG280Zs6caZw/f77c7QFQtVwMg5uFAAAA82LODAAAMDXmzACoVZmZmSoqKirzeU9PT6cv5QZQv3CaCUCtCgkJKfFhdReKiorSunXraq4gAKbDkRkAteqf//znRS/TvuKKK2qwGgBmxJEZAABgakwABgAApmaK00w2m03Hjh1Tw4YNK3xPFQAAYG6GYejMmTMKCgqSq2vZx19MEWaOHTum4ODg2i4DAADUgl9//VVXXXVVmc+bIswU35Du119/lZ+fXy1Xg5pmtVq1Zs0a9e/fv0IffQ/g8sHrv37LyclRcHBwuTemNUWYKT615OfnR5iph6xWq3x8fOTn58cfM6Ce4fUPSeVOMWECMAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDWnw8y3336rIUOGKCgoSC4uLlq+fHm5y6xbt07XX3+9LBaLwsLClJycfAmlAgAAlOR0mMnLy1OXLl00f/78CvU/ePCgBg0apOjoaG3btk2PPfaYxo4dq9WrVztdLAAAwB85fW+mAQMGaMCAARXuv2DBArVu3VqzZs2SJLVv314bNmzQK6+8opiYGGdXDwAA4KDabzS5ceNG9e3b16EtJiZGjz32WJnLFBQUqKCgwP44JydH0u83HLNardVSJ2pefn6+9uzZU26/3LMF+n77ATVsnKYG3paL9m3btq18fHyqqkQA1YTXPyqiou/51R5mTpw4oYCAAIe2gIAA5eTk6OzZs/L29i6xTFJSkqZNm1aifc2aNfyiXkYOHDigSZMmVbj/SxXoM2vWLIWGhl56UQBqBK9/VER+fn6F+lV7mLkUCQkJio+Ptz/OyclRcHCw+vfvLz8/v1qsDFUpPz9fvXr1Krff3uPZeuLTnXr59g66pnmji/blf2aAOfD6R0UUn5kpT7WHmcDAQKWnpzu0paeny8/Pr9SjMpJksVhksZQ8nOjh4SEPD49qqRM1r1GjRurWrVu5/TwP/ybLxvPqGH69wltdWQOVAaisg1l5yisovGgfnxZtyx3H2zVblsDz8m7RVj7lhJlfcyXlXvx/8r4Wd7Vu6lvuelE3VPQ9v9rDTI8ePbRy5UqHtpSUFPXo0aO6Vw0AqAUHs/IUPXNdlY45aen2Khtr7eN9CDSXGafDTG5urvbv329/fPDgQW3btk1NmjRRy5YtlZCQoKNHj+q9996TJD344IOaN2+ennzySd1///365ptv9K9//UsrVqyouq0AANQZxUdk5gwLV1izBpUb62yBvly3UYP79JBvOROAy7M/I1ePLdlW7hEjmI/TYWbz5s2Kjo62Py6e2zJy5EglJyfr+PHjOnLkiP351q1ba8WKFZo4caLmzp2rq666Sv/4xz+4LBsALnNhzRqoY4uLnxoqj9Vq1Ql/6fpWVzDNAGVyOsz06dNHhmGU+Xxpn+7bp08f/ec//3F2VQAAAOXi3kwAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDU3Gu7AADA5aWg6JxcvY7qYM4euXo1qNRYhYWFOlZ4TLtO7pK7e+Xesg7m5MrV66gKis5JalSpsVC3EGYAAFXqWN5h+bZ+TU9vqroxX1/1epWM49taOpYXrggFVMl4qBsIMwCAKhXk20p5Bx/R3GHhCm1W+SMz/97wb/Xs1bPSR2YOZOTq0SXbFBTdqlLjoO4hzAAAqpTFzUu2cy3U2q+tOlxZudM5VqtVB90Pqn2T9vLw8KjUWLZz2bKdy5TFzatS46DuYQIwAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwtUsKM/Pnz1dISIi8vLwUGRmpTZs2ldnXarVq+vTpCg0NlZeXl7p06aJVq1ZdcsEAAAAXcjrMLFmyRPHx8UpMTNTWrVvVpUsXxcTEKCMjo9T+zzzzjN5880299tpr2rlzpx588EHdfvvt+s9//lPp4gEAAJwOM7Nnz1ZcXJxGjx6tDh06aMGCBfLx8dHChQtL7f/+++/r6aef1sCBA9WmTRs99NBDGjhwoGbNmlXp4gEAANyd6Xz+/Hlt2bJFCQkJ9jZXV1f17dtXGzduLHWZgoICeXl5ObR5e3trw4YNZa6noKBABQUF9sc5OTmSfj9lZbVanSkZl4HCwkL7d/Y/UPdV5Wu2ePmqeO3zt8R8KrqfnAozWVlZKioqUkBAgEN7QECAdu/eXeoyMTExmj17tm666SaFhoYqNTVVy5YtU1FRUZnrSUpK0rRp00q0r1mzRj4+Ps6UjMvAr7mS5K60tDQd3VHb1QAoT/FrdsOGDTrcoGrGTElJqfQY1VEXqld+fn6F+jkVZi7F3LlzFRcXp3bt2snFxUWhoaEaPXp0maelJCkhIUHx8fH2xzk5OQoODlb//v3l5+dX3SWjjvnpyElp+2Z1795dXVo2qe1yAJTjv8dyNHN7mnr16qVrgyr3N9tqtSolJUX9+vWTh4dHnakLNaP4zEx5nAozTZs2lZubm9LT0x3a09PTFRgYWOoy/v7+Wr58uc6dO6fffvtNQUFBmjx5stq0aVPmeiwWiywWS4l2Dw+PSv8yw3zc3d3t39n/QN1XHa/Zqvj7z98S86nofnJqArCnp6ciIiKUmppqb7PZbEpNTVWPHj0uuqyXl5datGihwsJCffLJJ7rtttucWTUAAECpnD7NFB8fr5EjR6pr167q1q2b5syZo7y8PI0ePVqSNGLECLVo0UJJSUmSpB9++EFHjx5VeHi4jh49qqlTp8pms+nJJ5+s2i0BAAD1ktNhZtiwYcrMzNSUKVN04sQJhYeHa9WqVfZJwUeOHJGr6/8/4HPu3Dk988wz+uWXX9SgQQMNHDhQ77//vho3blxlGwEAAOqvS5oAPH78eI0fP77U59atW+fwOCoqSjt37ryU1QAAAJSLezMBAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTu6R7MwEVcTArT3kFhZUe50Bmnv27u3vlf2V9Le5q3dS30uMAAOoGwgyqxcGsPEXPXFelY05aur3Kxlr7eB8CDQBcJggzqBbFR2TmDAtXWLMGlRvrbIG+XLdRg/v0kK+3pVJj7c/I1WNLtlXJESMAQN1AmEG1CmvWQB1bNKrUGFarVSf8petbXSEPD48qqgwAcLlgAjAAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA199ouAABweTlrLZIk7TiaXemx8s4WaHOmFHj4lHy9LZUaa39GbqXrQd1EmAEAVKkD/xcaJi/bXkUjuuv9/T9W0ViSr4W3vssNexQAUKX6XxsoSQpt1kDeHm6VGmvP8WxNWrpds4Z2UtvmjSpdm6/FXa2b+lZ6HNQthBkAQJVq4uupu7u1rJKxCgsLJUmh/r7q2KLyYQaXJyYAAwAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAU7ukMDN//nyFhITIy8tLkZGR2rRp00X7z5kzR23btpW3t7eCg4M1ceJEnTt37pIKBgAAuJDTYWbJkiWKj49XYmKitm7dqi5duigmJkYZGRml9v/ggw80efJkJSYmateuXXrnnXe0ZMkSPf3005UuHgAAwOkwM3v2bMXFxWn06NHq0KGDFixYIB8fHy1cuLDU/t9//7169uyp4cOHKyQkRP3799c999xT7tEcAACAinB3pvP58+e1ZcsWJSQk2NtcXV3Vt29fbdy4sdRlbrzxRi1evFibNm1St27d9Msvv2jlypW67777ylxPQUGBCgoK7I9zcnIkSVarVVar1ZmSUUsKCwvt3yu7z4qXr4p9X5V1Aah+vGbrt4ruc6fCTFZWloqKihQQEODQHhAQoN27d5e6zPDhw5WVlaVevXrJMAwVFhbqwQcfvOhppqSkJE2bNq1E+5o1a+Tj4+NMyaglv+ZKkrs2bNigww2qZsyUlJRKj1EddQGoPsWv2bS0NB3dUdvVoKbl5+dXqJ9TYeZSrFu3TjNmzNDrr7+uyMhI7d+/X48++qiee+45Pfvss6Uuk5CQoPj4ePvjnJwcBQcHq3///vLz86vuklEFtv6aIdd9K3RVl05q7e9bqbEKCwv1Q9oPiuweKXf3yv3KGpl5ct23XTf0GKTrg5tVaiwA1e+nIyel7ZvVvXt3dWnZpLbLQQ0rPjNTHqfeGZo2bSo3Nzelp6c7tKenpyswMLDUZZ599lndd999Gjt2rCSpU6dOysvL01//+lf97W9/k6tryWk7FotFFoulRLuHh4c8PDycKRm1JKPgqHxbv6Znt1TdmK9//XqVjOPbWsooCJeHR4sqGQ9A9Sn+D4y7uzt//+uhiu5zp8KMp6enIiIilJqaqtjYWEmSzWZTamqqxo8fX+oy+fn5JQKLm5ubJMkwDGdWDxMJ8m2lvIOPaO6wcIU2q9z5nMLCQv17w7/Vs1fPSh+ZOZCRq0eXbFNQdKtKjQMAqDucfmeIj4/XyJEj1bVrV3Xr1k1z5sxRXl6eRo8eLUkaMWKEWrRooaSkJEnSkCFDNHv2bF133XX200zPPvushgwZYg81uPxY3LxkO9dCrf3aqsOVjSo1ltVq1UH3g2rfpH2l/2dmO5ct27lMWdy8KjUOAKDucDrMDBs2TJmZmZoyZYpOnDih8PBwrVq1yj4p+MiRIw5HYp555hm5uLjomWee0dGjR+Xv768hQ4bo73//e9VtBQAAqLcu6Zj9+PHjyzyttG7dOscVuLsrMTFRiYmJl7IqAACAi+LeTAAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQuKczMnz9fISEh8vLyUmRkpDZt2lRm3z59+sjFxaXE16BBgy65aAAAgGJOh5klS5YoPj5eiYmJ2rp1q7p06aKYmBhlZGSU2n/ZsmU6fvy4/WvHjh1yc3PTn//850oXDwAA4HSYmT17tuLi4jR69Gh16NBBCxYskI+PjxYuXFhq/yZNmigwMND+lZKSIh8fH8IMAACoEu7OdD5//ry2bNmihIQEe5urq6v69u2rjRs3VmiMd955R3fffbd8fX3L7FNQUKCCggL745ycHEmS1WqV1Wp1pmTUksLCQvv3yu6z4uWrYt9XZV0Aqh+v2fqtovvcqTCTlZWloqIiBQQEOLQHBARo9+7d5S6/adMm7dixQ++8885F+yUlJWnatGkl2tesWSMfHx9nSkYt+TVXkty1YcMGHW5QNWOmpKRUeozqqAtA9Sl+zaalpenojtquBjUtPz+/Qv2cCjOV9c4776hTp07q1q3bRfslJCQoPj7e/jgnJ0fBwcHq37+//Pz8qrtMVIH/HsvRzO1p6tWrl64Nqtw+s1qtSklJUb9+/eTh4VFn6gJQ/X46clLavlndu3dXl5ZNarsc1LDiMzPlcSrMNG3aVG5ubkpPT3doT09PV2Bg4EWXzcvL00cffaTp06eXux6LxSKLxVKi3cPDo9JvZqgZ7u7u9u9Vtc+qYv9XR10Aqg+v2fqtovvcqQnAnp6eioiIUGpqqr3NZrMpNTVVPXr0uOiyH3/8sQoKCvSXv/zFmVUCAABclNOnmeLj4zVy5Eh17dpV3bp105w5c5SXl6fRo0dLkkaMGKEWLVooKSnJYbl33nlHsbGxuvLKK6umcgAAAF1CmBk2bJgyMzM1ZcoUnThxQuHh4Vq1apV9UvCRI0fk6up4wGfPnj3asGGD1qxZUzVVo847ay2SJO04ml3psfLOFmhzphR4+JR8vUuefnTG/ozcStcDAKhbLmkC8Pjx4zV+/PhSn1u3bl2JtrZt28owjEtZFUzqwP+FhsnLtlfRiO56f/+PVTSW5Gup0bnvAIBqxF90VIv+1/4+ITy0WQN5e7hVaqw9x7M1ael2zRraSW2bN6p0bb4Wd7VuWvbnHAEAzIUwg2rRxNdTd3drWSVjFX9oVqi/rzq2qHyYAQBcXrhrNgAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDX32i4AAFD/5Ofna/fu3eX223P8tApO7NeuHd6y/db4on3btWsnHx+fKqoQZkKYAQDUuN27dysiIqLC/YcvKr/Pli1bdP3111eiKpgVYQYAUOPatWunLVu2lNsv92yBVqzdqEHRPdTA21LumKifCDMAgBrn4+NToaMoVqtVp7Iy1KNbV3l4eNRAZTAjJgADAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTu6QwM3/+fIWEhMjLy0uRkZHatGnTRfufPn1a48aNU/PmzWWxWHTNNddo5cqVl1QwAKB+KCoq0vr16/Xtt99q/fr1Kioqqu2SUEc5HWaWLFmi+Ph4JSYmauvWrerSpYtiYmKUkZFRav/z58+rX79+OnTokJYuXao9e/bo7bffVosWLSpdPADg8rRs2TKFhYWpX79+mj17tvr166ewsDAtW7astktDHeT058zMnj1bcXFxGj16tCRpwYIFWrFihRYuXKjJkyeX6L9w4UKdPHlS33//vf0zAkJCQi66joKCAhUUFNgf5+TkSPr98wasVquzJcPkCgsL7d/Z/8Dl79NPP9Xdd9+tgQMH6t1339WJEycUGBiomTNnaujQofroo490++2313aZqAEV/ZvvVJg5f/68tmzZooSEBHubq6ur+vbtq40bN5a6zOeff64ePXpo3Lhx+uyzz+Tv76/hw4frqaeekpubW6nLJCUladq0aSXa16xZw3036qFfcyXJXWlpaTq6o7arAVCdioqK9Mgjj6hr164aM2aMsrOz5e3trezsbI0ZM0YZGRmaMGGC3N3dy3wPweUjPz+/Qv2cCjNZWVkqKipSQECAQ3tAQECZNwz75Zdf9M033+jee+/VypUrtX//fj388MOyWq1KTEwsdZmEhATFx8fbH+fk5Cg4OFj9+/eXn5+fMyXjMvDTkZPS9s3q3r27urRsUtvlAKhG69evV0ZGhj755BNFRkbKarUqJSVF/fr1k4eHh5o2baqbbrpJfn5+ioqKqu1yUc2Kz8yUp9pvZ2Cz2dSsWTO99dZbcnNzU0REhI4ePaqXX365zDBjsVhksZS8B4eHhwcfZ10Pubu727+z/4HLW2ZmpiQpPDzc4fVe/Pc/PDzc3o+/B5e/iu5jpyYAN23aVG5ubkpPT3doT09PV2BgYKnLNG/eXNdcc43D4cD27dvrxIkTOn/+vDOrBwBc5po3by5J2rGj9HPKxe3F/QDJyTDj6empiIgIpaam2ttsNptSU1PVo0ePUpfp2bOn9u/fL5vNZm/bu3evmjdvLk9Pz0ssGwBwOerdu7dCQkI0Y8YMh/cN6ff3m6SkJLVu3Vq9e/eupQpRFzl9aXZ8fLzefvttLVq0SLt27dJDDz2kvLw8+9VNI0aMcJgg/NBDD+nkyZN69NFHtXfvXq1YsUIzZszQuHHjqm4rAACXBTc3N82aNUtffvmlYmNjlZaWprNnzyotLU2xsbH68ssvNXPmTCb/woHTc2aGDRumzMxMTZkyRSdOnFB4eLhWrVplnxR85MgRubr+/4wUHBys1atXa+LEiercubNatGihRx99VE899VTVbQUA4LJxxx13aOnSpZo0aZJuuukme3vr1q21dOlS3XHHHbVYHeoiF8MwjNouojw5OTlq1KiRsrOzuZqpHtp2+DfFvpGm5Q91V3irK2u7HAA1pKioSGvXrtVXX32lAQMGKDo6miMy9UxF3/+r/WomAAAuhZubm6KiopSXl6eoqCiCDMrEjSYBAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpudd2Aai/8vPztXv37nL77Tl+WgUn9mvXDm/Zfmt80b7t2rWTj49PFVUIADADwgxqze7duxUREVHh/sMXld9ny5Ytuv766ytRFQDAbAgzqDXt2rXTli1byu2Xe7ZAK9Zu1KDoHmrgbSl3TABA/UKYQa3x8fGp0FEUq9WqU1kZ6tGtqzw8PGqgMgCAmTABGAAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgBQJxUVFWn9+vX69ttvtX79ehUVFdV2SaijCDMAgDpn2bJlCgsLU79+/TR79mz169dPYWFhWrZsWW2XhjqIMAMAqFOWLVumoUOHqlOnTvruu+/04Ycf6rvvvlOnTp00dOhQAg1KIMwAAOqMoqIiTZo0SYMHD9by5csVGRkpb29vRUZGavny5Ro8eLAef/xxTjnBAWEGAFBnfPfddzp06JCefvppubo6vkW5uroqISFBBw8e1HfffVdLFaIuIswAAOqM48ePS5I6duxY6vPF7cX9AIkwAwCoQ5o3by5J2rFjR6nPF7cX9wMkwgwAoA7p3bu3QkJCNGPGDNlsNofnbDabkpKS1Lp1a/Xu3buWKkRdRJgBANQZbm5umjVrlr788kvFxsYqLS1NZ8+eVVpammJjY/Xll19q5syZcnNzq+1SUYe413YBAABc6I477tDSpUs1adIk3XTTTfb21q1ba+nSpbrjjjtqsTrURZd0ZGb+/PkKCQmRl5eXIiMjtWnTpjL7Jicny8XFxeHLy8vrkgsGAFz+7rjjDu3fv18pKSmKj49XSkqK9u3bR5BBqZw+MrNkyRLFx8drwYIFioyM1Jw5cxQTE6M9e/aoWbNmpS7j5+enPXv22B+7uLhcesUAgHrBzc1NUVFRysvLU1RUFKeWUCanw8zs2bMVFxen0aNHS5IWLFigFStWaOHChZo8eXKpy7i4uCgwMLDC6ygoKFBBQYH9cU5OjiTJarXKarU6WzJMrnifs++B+ofXf/1W0f3uVJg5f/68tmzZooSEBHubq6ur+vbtq40bN5a5XG5urlq1aiWbzabrr79eM2bM0LXXXltm/6SkJE2bNq1E+5o1a+Tj4+NMybiMpKSk1HYJAGoJr//6KT8/v0L9nAozWVlZKioqUkBAgEN7QECAdu/eXeoybdu21cKFC9W5c2dlZ2dr5syZuvHGG/Xf//5XV111VanLJCQkKD4+3v44JydHwcHB6t+/v/z8/JwpGZcBq9WqlJQU9evXTx4eHrVdDoAaxOu/fis+M1Oear+aqUePHurRo4f98Y033qj27dvrzTff1HPPPVfqMhaLRRaLpUS7h4cHv8z1GPsfqL94/ddPFd3nTl3N1LRpU7m5uSk9Pd2hPT09vcJzYjw8PHTddddp//79zqwaAACgVE6FGU9PT0VERCg1NdXeZrPZlJqa6nD05WKKioq0fft2PooaAABUCadPM8XHx2vkyJHq2rWrunXrpjlz5igvL89+ddOIESPUokULJSUlSZKmT5+u7t27KywsTKdPn9bLL7+sw4cPa+zYsVW7JQAAoF5yOswMGzZMmZmZmjJlik6cOKHw8HCtWrXKPin4yJEjDrdtP3XqlOLi4nTixAldccUVioiI0Pfff68OHTpU3VYAAIB6y8UwDKO2iyhPTk6OGjVqpOzsbK5mqoesVqtWrlypgQMHMgEQqGd4/ddvFX3/N8W9mYrzVkUv0cLlxWq1Kj8/Xzk5OfwxA+oZXv/1W/H7fnnHXUwRZs6cOSNJCg4OruVKAABATTtz5owaNWpU5vOmOM1ks9l07NgxNWzYkPs61UPFH5r466+/cpoRqGd4/ddvhmHozJkzCgoKcpiP+0emODLj6upa5qcFo/7w8/PjjxlQT/H6r78udkSmmFOfMwMAAFDXEGYAAICpEWZQ51ksFiUmJpZ6vy4Alzde/6gIU0wABgAAKAtHZgAAgKkRZgAAgKkRZgAAgKkRZgAAgKkRZlCnzZ8/XyEhIfLy8lJkZKQ2bdpU2yUBqAHffvuthgwZoqCgILm4uGj58uW1XRLqMMIM6qwlS5YoPj5eiYmJ2rp1q7p06aKYmBhlZGTUdmkAqlleXp66dOmi+fPn13YpMAEuzUadFRkZqRtuuEHz5s2T9Ps9uoKDg/XII49o8uTJtVwdgJri4uKiTz/9VLGxsbVdCuoojsygTjp//ry2bNmivn372ttcXV3Vt29fbdy4sRYrAwDUNYQZ1ElZWVkqKipSQECAQ3tAQIBOnDhRS1UBAOoiwgwAADA1wgzqpKZNm8rNzU3p6ekO7enp6QoMDKylqgAAdRFhBnWSp6enIiIilJqaam+z2WxKTU1Vjx49arEyAEBd417bBQBliY+P18iRI9W1a1d169ZNc+bMUV5enkaPHl3bpQGoZrm5udq/f7/98cGDB7Vt2zY1adJELVu2rMXKUBdxaTbqtHnz5unll1/WiRMnFB4erldffVWRkZG1XRaAarZu3TpFR0eXaB85cqSSk5NrviDUaYQZAABgasyZAQAApkaYAQAApkaYAQAApkaYAQAApkaYAQAApkaYAQAApkaYAQAApkaYAQAApkaYAVDt+vTpo8cee6xCfdetWycXFxedPn26UusMCQnRnDlzKjUGAHMgzAAAAFMjzAAAAFMjzACoUe+//766du2qhg0bKjAwUMOHD1dGRkaJfv/+97/VuXNneXl5qXv37tqxY4fD8xs2bFDv3r3l7e2t4OBgTZgwQXl5eTW1GQDqEMIMgBpltVr13HPP6aefftLy5ct16NAhjRo1qkS/J554QrNmzdKPP/4of39/DRkyRFarVZJ04MAB3XLLLbrzzjv1888/a8mSJdqwYYPGjx9fw1sDoC5wr+0CANQv999/v/3fbdq00auvvqobbrhBubm5atCggf25xMRE9evXT5K0aNEiXXXVVfr000911113KSkpSffee699UvHVV1+tV199VVFRUXrjjTfk5eVVo9sEoHZxZAZAjdqyZYuGDBmili1bqmHDhoqKipIkHTlyxKFfjx497P9u0qSJ2rZtq127dkmSfvrpJyUnJ6tBgwb2r5iYGNlsNh08eLDmNgZAncCRGQA1Ji8vTzExMYqJidE///lP+fv768iRI4qJidH58+crPE5ubq4eeOABTZgwocRzLVu2rMqSAZgAYQZAjdm9e7d+++03vfDCCwoODpYkbd68udS+aWlp9mBy6tQp7d27V+3bt5ckXX/99dq5c6fCwsJqpnAAdRqnmQDUmJYtW8rT01OvvfaafvnlF33++ed67rnnSu07ffp0paamaseOHRo1apSaNm2q2NhYSdJTTz2l77//XuPHj9e2bdu0b98+ffbZZ0wABuopwgyAGuPv76/k5GR9/PHH6tChg1544QXNnDmz1L4vvPCCHn30UUVEROjEiRP64osv5OnpKUnq3Lmz1q9fr71796p379667rrrNGXKFAUFBdXk5gCoI1wMwzBquwgAAIBLxZEZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgav8PcPXdLYHvrmAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plotting 'dark_score' value of each instance in the original dataset against class label\n", + "plot_scores_labels(original_lab, \"dark_score\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "nbsphinx": "hidden" + }, + "source": [ + "The above plot illustrates the distribution of dark scores across class labels. In this dataset, 100 images each from the classes `Frog` (Class 0 in the plot) and `Truck` (Class 1 in the plot) remain unchanged, as in the CIFAR-10 dataset. There is no apparent spurious correlation with respect to the 'darkness' feature and class labels. We can see that the `dark_score` values between the two classes are highly overlapping." + ] } ], "metadata": { @@ -4497,7 +4596,41 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "09d859b199ab4ee2a2de717d6ca51736": { + "03c08335072148cf8dbacc47ff28ca56": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "06b3bdd5c40c4fdba6437bb907aba3c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "168972fc72c6400a99f9ea3f7bc73407": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4550,7 +4683,48 @@ "width": null } }, - "2398e6a1af584aaba59c05e8699e3753": { + "18fdf4b6e48c494187f77fb7a6562511": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ee087271a2184081ac73ea40a8ffc98d", + "placeholder": "​", + "style": "IPY_MODEL_06b3bdd5c40c4fdba6437bb907aba3c8", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 780.10it/s]" + } + }, + "1f357fae3f0c4acb97b38e9290214405": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2a5d21cd5a6344b48424a1cc39662887": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4603,7 +4777,30 @@ "width": null } }, - "24952c20b8b346ac9b084346c51fbf3d": { + "2c5f368d477a4ead996c3bb5453c9243": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4eb97da01abf44978575805a598ae750", + "placeholder": "​", + "style": "IPY_MODEL_5dd3230bed404c01bac2fdedb5290113", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "4eb97da01abf44978575805a598ae750": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4656,7 +4853,7 @@ "width": null } }, - "489c2248d5144a178a9519840de75f05": { + "514121ecbf4c4f3a94b65b7815999ae0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4709,60 +4906,25 @@ "width": null } }, - "4a6b856449354da8b14232bcbc8b363d": { - "model_module": "@jupyter-widgets/base", + "5dd3230bed404c01bac2fdedb5290113": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "84c47a9fab904f3d8908756c3b332bed": { + "67422fd209454e4487fc32db492ca2c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4777,102 +4939,88 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f2b0ca892ecd4763b131ed7aeb82a602", - "IPY_MODEL_98f1a186392b47e19b37a3ca9a22516d", - "IPY_MODEL_b2cb5e5e7e1d4556bb403df989cb47ea" + "IPY_MODEL_9fb657ca84d74c3bb0790803a16b399a", + "IPY_MODEL_a773d2855db44ad283fa4529255879f3", + "IPY_MODEL_18fdf4b6e48c494187f77fb7a6562511" ], - "layout": "IPY_MODEL_489c2248d5144a178a9519840de75f05", + "layout": "IPY_MODEL_acddbab6185044e791172f2332e42cdd", "tabbable": null, "tooltip": null } }, - "8bb8c2257ff642589da749e1f2b50557": { + "9fb657ca84d74c3bb0790803a16b399a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f3364cea9c5f4b05b6bd76ae8e185619", - "IPY_MODEL_f1b67d668edc41089a2e95c5dfbca124", - "IPY_MODEL_f2779ea6cdeb4969a8d547b8e025b31d" - ], - "layout": "IPY_MODEL_b116e430c62d4c21a3c315c6993d102f", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2a5d21cd5a6344b48424a1cc39662887", + "placeholder": "​", + "style": "IPY_MODEL_1f357fae3f0c4acb97b38e9290214405", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "98f1a186392b47e19b37a3ca9a22516d": { + "a0e60495fe9542f8a33ede9f27b9fc28": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_09d859b199ab4ee2a2de717d6ca51736", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c9e4952cd17e4976b25d127135b0a413", + "layout": "IPY_MODEL_d807af4c3d014f4b9687ce45cf5dd744", + "placeholder": "​", + "style": "IPY_MODEL_d66bedec1b3c4628b39ca083bf69a8c7", "tabbable": null, "tooltip": null, - "value": 200.0 - } - }, - "9c12178b80954bf985fffa0e2d4bd440": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 200/200 [00:00<00:00, 628.60it/s]" } }, - "a23e656b249a43d1b9b8965083fe1c2d": { + "a773d2855db44ad283fa4529255879f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b351ae1776cc46d78a233838f95ec1e3", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_03c08335072148cf8dbacc47ff28ca56", + "tabbable": null, + "tooltip": null, + "value": 200.0 } }, - "ad296183677a464fbc049d192e0f4e38": { + "acddbab6185044e791172f2332e42cdd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4925,41 +5073,7 @@ "width": null } }, - "af34f8c6871040d4af3afbf3ac7fa2cb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b00e7d6746e640ab978861e99c5355f9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b116e430c62d4c21a3c315c6993d102f": { + "b351ae1776cc46d78a233838f95ec1e3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5012,46 +5126,57 @@ "width": null } }, - "b2cb5e5e7e1d4556bb403df989cb47ea": { + "c5f6722062614240bac644be7f94fb07": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4a6b856449354da8b14232bcbc8b363d", - "placeholder": "​", - "style": "IPY_MODEL_dc64845b227a4e3c84cc38795c873170", + "layout": "IPY_MODEL_168972fc72c6400a99f9ea3f7bc73407", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ef6032e0622b46b19b02a48262fac63c", "tabbable": null, "tooltip": null, - "value": " 200/200 [00:00<00:00, 728.61it/s]" + "value": 200.0 } }, - "c9e4952cd17e4976b25d127135b0a413": { + "d3c19809a6204f20ac5cac77fe50ad95": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2c5f368d477a4ead996c3bb5453c9243", + "IPY_MODEL_c5f6722062614240bac644be7f94fb07", + "IPY_MODEL_a0e60495fe9542f8a33ede9f27b9fc28" + ], + "layout": "IPY_MODEL_514121ecbf4c4f3a94b65b7815999ae0", + "tabbable": null, + "tooltip": null } }, - "dc64845b227a4e3c84cc38795c873170": { + "d66bedec1b3c4628b39ca083bf69a8c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5069,7 +5194,7 @@ "text_color": null } }, - "e087293c6406416a98b63905ab4b3cab": { + "d807af4c3d014f4b9687ce45cf5dd744": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5122,99 +5247,73 @@ "width": null } }, - "f1b67d668edc41089a2e95c5dfbca124": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_24952c20b8b346ac9b084346c51fbf3d", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b00e7d6746e640ab978861e99c5355f9", - "tabbable": null, - "tooltip": null, - "value": 200.0 - } - }, - "f2779ea6cdeb4969a8d547b8e025b31d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e087293c6406416a98b63905ab4b3cab", - "placeholder": "​", - "style": "IPY_MODEL_9c12178b80954bf985fffa0e2d4bd440", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 752.80it/s]" - } - }, - "f2b0ca892ecd4763b131ed7aeb82a602": { - "model_module": "@jupyter-widgets/controls", + "ee087271a2184081ac73ea40a8ffc98d": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ad296183677a464fbc049d192e0f4e38", - "placeholder": "​", - "style": "IPY_MODEL_a23e656b249a43d1b9b8965083fe1c2d", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f3364cea9c5f4b05b6bd76ae8e185619": { + "ef6032e0622b46b19b02a48262fac63c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2398e6a1af584aaba59c05e8699e3753", - "placeholder": "​", - "style": "IPY_MODEL_af34f8c6871040d4af3afbf3ac7fa2cb", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index 896ea40ee..f8e94adc5 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:17.805542Z", - "iopub.status.busy": "2024-08-20T02:18:17.805087Z", - "iopub.status.idle": "2024-08-20T02:18:19.246385Z", - "shell.execute_reply": "2024-08-20T02:18:19.245826Z" + "iopub.execute_input": "2024-08-21T00:43:24.975874Z", + "iopub.status.busy": "2024-08-21T00:43:24.975689Z", + "iopub.status.idle": "2024-08-21T00:43:26.130072Z", + "shell.execute_reply": "2024-08-21T00:43:26.129440Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:19.248964Z", - "iopub.status.busy": "2024-08-20T02:18:19.248482Z", - "iopub.status.idle": "2024-08-20T02:18:19.251383Z", - "shell.execute_reply": "2024-08-20T02:18:19.250938Z" + "iopub.execute_input": "2024-08-21T00:43:26.132687Z", + "iopub.status.busy": "2024-08-21T00:43:26.132421Z", + "iopub.status.idle": "2024-08-21T00:43:26.135360Z", + "shell.execute_reply": "2024-08-21T00:43:26.134813Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:19.253494Z", - "iopub.status.busy": "2024-08-20T02:18:19.253140Z", - "iopub.status.idle": "2024-08-20T02:18:19.265298Z", - "shell.execute_reply": "2024-08-20T02:18:19.264725Z" + "iopub.execute_input": "2024-08-21T00:43:26.137797Z", + "iopub.status.busy": "2024-08-21T00:43:26.137353Z", + "iopub.status.idle": "2024-08-21T00:43:26.149676Z", + "shell.execute_reply": "2024-08-21T00:43:26.149205Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:19.267347Z", - "iopub.status.busy": "2024-08-20T02:18:19.267029Z", - "iopub.status.idle": "2024-08-20T02:18:24.466640Z", - "shell.execute_reply": "2024-08-20T02:18:24.466146Z" + "iopub.execute_input": "2024-08-21T00:43:26.151609Z", + "iopub.status.busy": "2024-08-21T00:43:26.151435Z", + "iopub.status.idle": "2024-08-21T00:43:30.893896Z", + "shell.execute_reply": "2024-08-21T00:43:30.893274Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index be294f45e..f92c95774 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:26.824446Z", - "iopub.status.busy": "2024-08-20T02:18:26.824273Z", - "iopub.status.idle": "2024-08-20T02:18:28.260323Z", - "shell.execute_reply": "2024-08-20T02:18:28.259751Z" + "iopub.execute_input": "2024-08-21T00:43:33.124706Z", + "iopub.status.busy": "2024-08-21T00:43:33.124531Z", + "iopub.status.idle": "2024-08-21T00:43:34.258108Z", + "shell.execute_reply": "2024-08-21T00:43:34.257543Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:28.262978Z", - "iopub.status.busy": "2024-08-20T02:18:28.262672Z", - "iopub.status.idle": "2024-08-20T02:18:28.266248Z", - "shell.execute_reply": "2024-08-20T02:18:28.265673Z" + "iopub.execute_input": "2024-08-21T00:43:34.260791Z", + "iopub.status.busy": "2024-08-21T00:43:34.260358Z", + "iopub.status.idle": "2024-08-21T00:43:34.263745Z", + "shell.execute_reply": "2024-08-21T00:43:34.263180Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:28.268522Z", - "iopub.status.busy": "2024-08-20T02:18:28.268073Z", - "iopub.status.idle": "2024-08-20T02:18:31.923865Z", - "shell.execute_reply": "2024-08-20T02:18:31.923205Z" + "iopub.execute_input": "2024-08-21T00:43:34.265950Z", + "iopub.status.busy": "2024-08-21T00:43:34.265625Z", + "iopub.status.idle": "2024-08-21T00:43:37.615038Z", + "shell.execute_reply": "2024-08-21T00:43:37.614383Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:31.927361Z", - "iopub.status.busy": "2024-08-20T02:18:31.926431Z", - "iopub.status.idle": "2024-08-20T02:18:31.972856Z", - "shell.execute_reply": "2024-08-20T02:18:31.972092Z" + "iopub.execute_input": "2024-08-21T00:43:37.618146Z", + "iopub.status.busy": "2024-08-21T00:43:37.617403Z", + "iopub.status.idle": "2024-08-21T00:43:37.660445Z", + "shell.execute_reply": "2024-08-21T00:43:37.659796Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:31.975898Z", - "iopub.status.busy": "2024-08-20T02:18:31.975497Z", - "iopub.status.idle": "2024-08-20T02:18:32.024339Z", - "shell.execute_reply": "2024-08-20T02:18:32.023682Z" + "iopub.execute_input": "2024-08-21T00:43:37.663149Z", + "iopub.status.busy": "2024-08-21T00:43:37.662756Z", + "iopub.status.idle": "2024-08-21T00:43:37.699432Z", + "shell.execute_reply": "2024-08-21T00:43:37.698818Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:32.027241Z", - "iopub.status.busy": "2024-08-20T02:18:32.026842Z", - "iopub.status.idle": "2024-08-20T02:18:32.029883Z", - "shell.execute_reply": "2024-08-20T02:18:32.029410Z" + "iopub.execute_input": "2024-08-21T00:43:37.702287Z", + "iopub.status.busy": "2024-08-21T00:43:37.701804Z", + "iopub.status.idle": "2024-08-21T00:43:37.705054Z", + "shell.execute_reply": "2024-08-21T00:43:37.704587Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:32.031947Z", - "iopub.status.busy": "2024-08-20T02:18:32.031634Z", - "iopub.status.idle": "2024-08-20T02:18:32.034472Z", - "shell.execute_reply": "2024-08-20T02:18:32.034036Z" + "iopub.execute_input": "2024-08-21T00:43:37.707228Z", + "iopub.status.busy": "2024-08-21T00:43:37.706791Z", + "iopub.status.idle": "2024-08-21T00:43:37.709625Z", + "shell.execute_reply": "2024-08-21T00:43:37.709171Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:32.036493Z", - "iopub.status.busy": "2024-08-20T02:18:32.036308Z", - "iopub.status.idle": "2024-08-20T02:18:32.059976Z", - "shell.execute_reply": "2024-08-20T02:18:32.059445Z" + "iopub.execute_input": "2024-08-21T00:43:37.711757Z", + "iopub.status.busy": "2024-08-21T00:43:37.711365Z", + "iopub.status.idle": "2024-08-21T00:43:37.738363Z", + "shell.execute_reply": "2024-08-21T00:43:37.737812Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d82d5feb5be34f61b1a570c3dd0179b0", + "model_id": "e88b11d2fc2c4e1dabf9d5ab29054a5a", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a2f0c54e98dd4c02b9cf7548afd53f0d", + "model_id": "7ce54cb5c4f340b7bb0a813fe148c2ac", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:32.065764Z", - "iopub.status.busy": "2024-08-20T02:18:32.065412Z", - "iopub.status.idle": "2024-08-20T02:18:32.071940Z", - "shell.execute_reply": "2024-08-20T02:18:32.071514Z" + "iopub.execute_input": "2024-08-21T00:43:37.744690Z", + "iopub.status.busy": "2024-08-21T00:43:37.744352Z", + "iopub.status.idle": "2024-08-21T00:43:37.751032Z", + "shell.execute_reply": "2024-08-21T00:43:37.750612Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:32.074109Z", - "iopub.status.busy": "2024-08-20T02:18:32.073667Z", - "iopub.status.idle": "2024-08-20T02:18:32.077079Z", - "shell.execute_reply": "2024-08-20T02:18:32.076644Z" + "iopub.execute_input": "2024-08-21T00:43:37.753066Z", + "iopub.status.busy": "2024-08-21T00:43:37.752736Z", + "iopub.status.idle": "2024-08-21T00:43:37.756637Z", + "shell.execute_reply": "2024-08-21T00:43:37.756202Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:32.079272Z", - "iopub.status.busy": "2024-08-20T02:18:32.078890Z", - "iopub.status.idle": "2024-08-20T02:18:32.085244Z", - "shell.execute_reply": "2024-08-20T02:18:32.084783Z" + "iopub.execute_input": "2024-08-21T00:43:37.758695Z", + "iopub.status.busy": "2024-08-21T00:43:37.758365Z", + "iopub.status.idle": "2024-08-21T00:43:37.764764Z", + "shell.execute_reply": "2024-08-21T00:43:37.764295Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:32.087316Z", - "iopub.status.busy": "2024-08-20T02:18:32.086982Z", - "iopub.status.idle": "2024-08-20T02:18:32.132301Z", - "shell.execute_reply": "2024-08-20T02:18:32.131651Z" + "iopub.execute_input": "2024-08-21T00:43:37.766873Z", + "iopub.status.busy": "2024-08-21T00:43:37.766456Z", + "iopub.status.idle": "2024-08-21T00:43:37.807572Z", + "shell.execute_reply": "2024-08-21T00:43:37.806830Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:32.135193Z", - "iopub.status.busy": "2024-08-20T02:18:32.134697Z", - "iopub.status.idle": "2024-08-20T02:18:32.180547Z", - "shell.execute_reply": "2024-08-20T02:18:32.179925Z" + "iopub.execute_input": "2024-08-21T00:43:37.810644Z", + "iopub.status.busy": "2024-08-21T00:43:37.810107Z", + "iopub.status.idle": "2024-08-21T00:43:37.853337Z", + "shell.execute_reply": "2024-08-21T00:43:37.852723Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:32.183314Z", - "iopub.status.busy": "2024-08-20T02:18:32.182928Z", - "iopub.status.idle": "2024-08-20T02:18:32.318818Z", - "shell.execute_reply": "2024-08-20T02:18:32.318227Z" + "iopub.execute_input": "2024-08-21T00:43:37.856040Z", + "iopub.status.busy": "2024-08-21T00:43:37.855648Z", + "iopub.status.idle": "2024-08-21T00:43:37.987449Z", + "shell.execute_reply": "2024-08-21T00:43:37.986885Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:32.321628Z", - "iopub.status.busy": "2024-08-20T02:18:32.321051Z", - "iopub.status.idle": "2024-08-20T02:18:35.406655Z", - "shell.execute_reply": "2024-08-20T02:18:35.405994Z" + "iopub.execute_input": "2024-08-21T00:43:37.990134Z", + "iopub.status.busy": "2024-08-21T00:43:37.989581Z", + "iopub.status.idle": "2024-08-21T00:43:40.945105Z", + "shell.execute_reply": "2024-08-21T00:43:40.944425Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:35.409123Z", - "iopub.status.busy": "2024-08-20T02:18:35.408927Z", - "iopub.status.idle": "2024-08-20T02:18:35.471131Z", - "shell.execute_reply": "2024-08-20T02:18:35.470526Z" + "iopub.execute_input": "2024-08-21T00:43:40.947439Z", + "iopub.status.busy": "2024-08-21T00:43:40.947245Z", + "iopub.status.idle": "2024-08-21T00:43:41.002087Z", + "shell.execute_reply": "2024-08-21T00:43:41.001550Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:35.473400Z", - "iopub.status.busy": "2024-08-20T02:18:35.473199Z", - "iopub.status.idle": "2024-08-20T02:18:35.520888Z", - "shell.execute_reply": "2024-08-20T02:18:35.520350Z" + "iopub.execute_input": "2024-08-21T00:43:41.004111Z", + "iopub.status.busy": "2024-08-21T00:43:41.003920Z", + "iopub.status.idle": "2024-08-21T00:43:41.046065Z", + "shell.execute_reply": "2024-08-21T00:43:41.045584Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "1f15f0b7", + "id": "a7cb8e5a", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "cc67f639", + "id": "ce44f993", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "5a601c1a", + "id": "1f258ff1", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "b72d4fd7", + "id": "4e739e39", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:35.523105Z", - "iopub.status.busy": "2024-08-20T02:18:35.522924Z", - "iopub.status.idle": "2024-08-20T02:18:35.530530Z", - "shell.execute_reply": "2024-08-20T02:18:35.530069Z" + "iopub.execute_input": "2024-08-21T00:43:41.048111Z", + "iopub.status.busy": "2024-08-21T00:43:41.047923Z", + "iopub.status.idle": "2024-08-21T00:43:41.055443Z", + "shell.execute_reply": "2024-08-21T00:43:41.054977Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "dfcac1fa", + "id": "2f5c2abd", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "34d13b9d", + "id": "33fc0025", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:35.532400Z", - "iopub.status.busy": "2024-08-20T02:18:35.532228Z", - "iopub.status.idle": "2024-08-20T02:18:35.552090Z", - "shell.execute_reply": "2024-08-20T02:18:35.551600Z" + "iopub.execute_input": "2024-08-21T00:43:41.057268Z", + "iopub.status.busy": "2024-08-21T00:43:41.057097Z", + "iopub.status.idle": "2024-08-21T00:43:41.075807Z", + "shell.execute_reply": "2024-08-21T00:43:41.075358Z" } }, "outputs": [ @@ -1521,13 +1521,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "61354613", + "id": "1c822d98", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:35.554430Z", - "iopub.status.busy": "2024-08-20T02:18:35.553975Z", - "iopub.status.idle": "2024-08-20T02:18:35.557509Z", - "shell.execute_reply": "2024-08-20T02:18:35.557025Z" + "iopub.execute_input": "2024-08-21T00:43:41.077653Z", + "iopub.status.busy": "2024-08-21T00:43:41.077482Z", + "iopub.status.idle": "2024-08-21T00:43:41.080541Z", + "shell.execute_reply": "2024-08-21T00:43:41.079995Z" } }, "outputs": [ @@ -1622,7 +1622,23 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0dad9db9a31a477eab9098311e808d21": { + "04b4be0e4d19425da37bd75a621a45da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "06b040da52cd4d0dab588972574990b6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1675,30 +1691,7 @@ "width": null } }, - "18da78389b0a44748edd4b3b775ef556": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_becc393342754010a03f20446ee58214", - "placeholder": "​", - "style": "IPY_MODEL_79cf1ecc3d0c4149996ba7fdc2676887", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "1f5e0d326b3a47219ac0b8db78a5c5f6": { + "1a4ac14e40014e26bf41208c22165933": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1751,30 +1744,49 @@ "width": null } }, - "2307eec64ab643ebae747e11b0720729": { + "301c779c7c62461ab1db96bd825d2cc4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "43304c8946bc4880b89aec27ab90e342": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9d5235bb7ed04190b18a773b3d3efd63", - "placeholder": "​", - "style": "IPY_MODEL_34bf61dba240468e8fcb01b02ed66521", + "layout": "IPY_MODEL_4ab0ce0465ae4c6297c0bb0536eb02af", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_301c779c7c62461ab1db96bd825d2cc4", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1433803.03it/s]" + "value": 50.0 } }, - "34bf61dba240468e8fcb01b02ed66521": { + "442d25dbb7a644b0ae076d819cf21b22": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1792,7 +1804,7 @@ "text_color": null } }, - "38acf3c857144639b987af77cca244a4": { + "4ab0ce0465ae4c6297c0bb0536eb02af": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1845,7 +1857,7 @@ "width": null } }, - "58dd4d9670a148249692956b66935771": { + "5e1035df5c2841d4b219f51fa2703747": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1860,101 +1872,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f6348c95b91347648513c9f5f70c8254", + "layout": "IPY_MODEL_1a4ac14e40014e26bf41208c22165933", "placeholder": "​", - "style": "IPY_MODEL_7d4a99434bb348e19319de2ba1293527", + "style": "IPY_MODEL_fc1c2fe4f5a8470f9a43d58552b2d6ca", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "64251c3cc8304107a9c59f4e758083e8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": " 10000/? [00:00<00:00, 919722.83it/s]" } }, - "711562c442544d2ba9ae58ac3bf3ebde": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "79cf1ecc3d0c4149996ba7fdc2676887": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7d4a99434bb348e19319de2ba1293527": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "83e348af905f47528631d5c89a2eaaa0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "923e2ee08922452996a9811a6733f07b": { + "60127a1d6661482792d110c71545f0a1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2007,7 +1933,7 @@ "width": null } }, - "9d5235bb7ed04190b18a773b3d3efd63": { + "61b6c0ee7d4d4941b70dec5a3a2b0fd8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2060,7 +1986,30 @@ "width": null } }, - "a2f0c54e98dd4c02b9cf7548afd53f0d": { + "79db81ca82b94628b05387fc709be4dc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f4a3c03dd523493e898274484c4a9c45", + "placeholder": "​", + "style": "IPY_MODEL_442d25dbb7a644b0ae076d819cf21b22", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " + } + }, + "7ce54cb5c4f340b7bb0a813fe148c2ac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2075,16 +2024,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_58dd4d9670a148249692956b66935771", - "IPY_MODEL_ed35e4581e304b12a9fcd8aac50efddd", - "IPY_MODEL_2307eec64ab643ebae747e11b0720729" + "IPY_MODEL_79db81ca82b94628b05387fc709be4dc", + "IPY_MODEL_e47850dfbc5f4009989ab0289c307870", + "IPY_MODEL_aaa8065daa9447e9b1ac9c75175cf03f" ], - "layout": "IPY_MODEL_b93db824989f44a1a6f83be666d704c1", + "layout": "IPY_MODEL_61b6c0ee7d4d4941b70dec5a3a2b0fd8", "tabbable": null, "tooltip": null } }, - "b93db824989f44a1a6f83be666d704c1": { + "8939e7811fea43b28098a0d858e5b425": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2137,7 +2086,89 @@ "width": null } }, - "becc393342754010a03f20446ee58214": { + "992eecd86a69461b9810f1af292a1cfe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "aaa8065daa9447e9b1ac9c75175cf03f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8939e7811fea43b28098a0d858e5b425", + "placeholder": "​", + "style": "IPY_MODEL_992eecd86a69461b9810f1af292a1cfe", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1357204.25it/s]" + } + }, + "af82f9cb368e40eba50a8fc6bd68bcbe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_60127a1d6661482792d110c71545f0a1", + "placeholder": "​", + "style": "IPY_MODEL_bfb61fbfbd2e4f2bb2af7ff0a2d508c4", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " + } + }, + "bfb61fbfbd2e4f2bb2af7ff0a2d508c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d05d41a4661944da894031ceb487c6a9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2190,54 +2221,7 @@ "width": null } }, - "c897a1b1a3354c639a5022c78bfe800b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_923e2ee08922452996a9811a6733f07b", - "placeholder": "​", - "style": "IPY_MODEL_711562c442544d2ba9ae58ac3bf3ebde", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1126048.11it/s]" - } - }, - "d82d5feb5be34f61b1a570c3dd0179b0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_18da78389b0a44748edd4b3b775ef556", - "IPY_MODEL_ed07d000c7324841a053ac613f7e0f37", - "IPY_MODEL_c897a1b1a3354c639a5022c78bfe800b" - ], - "layout": "IPY_MODEL_1f5e0d326b3a47219ac0b8db78a5c5f6", - "tabbable": null, - "tooltip": null - } - }, - "ed07d000c7324841a053ac613f7e0f37": { + "e47850dfbc5f4009989ab0289c307870": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2253,43 +2237,41 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0dad9db9a31a477eab9098311e808d21", + "layout": "IPY_MODEL_06b040da52cd4d0dab588972574990b6", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_64251c3cc8304107a9c59f4e758083e8", + "style": "IPY_MODEL_04b4be0e4d19425da37bd75a621a45da", "tabbable": null, "tooltip": null, "value": 50.0 } }, - "ed35e4581e304b12a9fcd8aac50efddd": { + "e88b11d2fc2c4e1dabf9d5ab29054a5a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_38acf3c857144639b987af77cca244a4", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_83e348af905f47528631d5c89a2eaaa0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_af82f9cb368e40eba50a8fc6bd68bcbe", + "IPY_MODEL_43304c8946bc4880b89aec27ab90e342", + "IPY_MODEL_5e1035df5c2841d4b219f51fa2703747" + ], + "layout": "IPY_MODEL_d05d41a4661944da894031ceb487c6a9", "tabbable": null, - "tooltip": null, - "value": 50.0 + "tooltip": null } }, - "f6348c95b91347648513c9f5f70c8254": { + "f4a3c03dd523493e898274484c4a9c45": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2341,6 +2323,24 @@ "visibility": null, "width": null } + }, + "fc1c2fe4f5a8470f9a43d58552b2d6ca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb b/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb index 294db8b4d..36a9a7528 100644 --- a/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb @@ -60,10 +60,10 @@ "id": "2d638465", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:39.079038Z", - "iopub.status.busy": "2024-08-20T02:18:39.078872Z", - "iopub.status.idle": "2024-08-20T02:18:40.521690Z", - "shell.execute_reply": "2024-08-20T02:18:40.521131Z" + "iopub.execute_input": "2024-08-21T00:43:44.323922Z", + "iopub.status.busy": "2024-08-21T00:43:44.323504Z", + "iopub.status.idle": "2024-08-21T00:43:45.482662Z", + "shell.execute_reply": "2024-08-21T00:43:45.482106Z" }, "nbsphinx": "hidden" }, @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -99,10 +99,10 @@ "id": "b0bbf715-47c6-44ea-b15e-89800e62ee04", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:40.524199Z", - "iopub.status.busy": "2024-08-20T02:18:40.523738Z", - "iopub.status.idle": "2024-08-20T02:18:40.527321Z", - "shell.execute_reply": "2024-08-20T02:18:40.526891Z" + "iopub.execute_input": "2024-08-21T00:43:45.485461Z", + "iopub.status.busy": "2024-08-21T00:43:45.484927Z", + "iopub.status.idle": "2024-08-21T00:43:45.488591Z", + "shell.execute_reply": "2024-08-21T00:43:45.488149Z" } }, "outputs": [], @@ -140,10 +140,10 @@ "id": "c58f8015-d051-411c-9e03-5659cf3ad956", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:40.529321Z", - "iopub.status.busy": "2024-08-20T02:18:40.529040Z", - "iopub.status.idle": "2024-08-20T02:18:40.830470Z", - "shell.execute_reply": "2024-08-20T02:18:40.829983Z" + "iopub.execute_input": "2024-08-21T00:43:45.490643Z", + "iopub.status.busy": "2024-08-21T00:43:45.490301Z", + "iopub.status.idle": "2024-08-21T00:43:45.766813Z", + "shell.execute_reply": "2024-08-21T00:43:45.766258Z" } }, "outputs": [ @@ -273,10 +273,10 @@ "id": "1b5f50e6-d125-4e61-b63e-4004f0c9099a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:40.832627Z", - "iopub.status.busy": "2024-08-20T02:18:40.832279Z", - "iopub.status.idle": "2024-08-20T02:18:40.838038Z", - "shell.execute_reply": "2024-08-20T02:18:40.837573Z" + "iopub.execute_input": "2024-08-21T00:43:45.769098Z", + "iopub.status.busy": "2024-08-21T00:43:45.768752Z", + "iopub.status.idle": "2024-08-21T00:43:45.774608Z", + "shell.execute_reply": "2024-08-21T00:43:45.774168Z" } }, "outputs": [], @@ -312,10 +312,10 @@ "id": "a36c21e9-1c32-4df9-bd87-fffeb8c2175f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:40.840027Z", - "iopub.status.busy": "2024-08-20T02:18:40.839707Z", - "iopub.status.idle": "2024-08-20T02:18:40.846682Z", - "shell.execute_reply": "2024-08-20T02:18:40.846218Z" + "iopub.execute_input": "2024-08-21T00:43:45.776485Z", + "iopub.status.busy": "2024-08-21T00:43:45.776314Z", + "iopub.status.idle": "2024-08-21T00:43:45.783218Z", + "shell.execute_reply": "2024-08-21T00:43:45.782653Z" } }, "outputs": [ @@ -418,10 +418,10 @@ "id": "5f856a3a-8aae-4836-b146-9ab68d8d1c7a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:40.848706Z", - "iopub.status.busy": "2024-08-20T02:18:40.848382Z", - "iopub.status.idle": "2024-08-20T02:18:40.853255Z", - "shell.execute_reply": "2024-08-20T02:18:40.852680Z" + "iopub.execute_input": "2024-08-21T00:43:45.785398Z", + "iopub.status.busy": "2024-08-21T00:43:45.785009Z", + "iopub.status.idle": "2024-08-21T00:43:45.789740Z", + "shell.execute_reply": "2024-08-21T00:43:45.789307Z" } }, "outputs": [], @@ -449,10 +449,10 @@ "id": "46275634-da56-4e58-9061-8108be2b585d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:40.855222Z", - "iopub.status.busy": "2024-08-20T02:18:40.854921Z", - "iopub.status.idle": "2024-08-20T02:18:40.860716Z", - "shell.execute_reply": "2024-08-20T02:18:40.860248Z" + "iopub.execute_input": "2024-08-21T00:43:45.791748Z", + "iopub.status.busy": "2024-08-21T00:43:45.791456Z", + "iopub.status.idle": "2024-08-21T00:43:45.797389Z", + "shell.execute_reply": "2024-08-21T00:43:45.796810Z" } }, "outputs": [], @@ -488,10 +488,10 @@ "id": "769c4c5e-a7ff-4e02-bee5-2b2e676aec14", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:40.862798Z", - "iopub.status.busy": "2024-08-20T02:18:40.862460Z", - "iopub.status.idle": "2024-08-20T02:18:40.866494Z", - "shell.execute_reply": "2024-08-20T02:18:40.865924Z" + "iopub.execute_input": "2024-08-21T00:43:45.799517Z", + "iopub.status.busy": "2024-08-21T00:43:45.799174Z", + "iopub.status.idle": "2024-08-21T00:43:45.803248Z", + "shell.execute_reply": "2024-08-21T00:43:45.802813Z" } }, "outputs": [], @@ -506,10 +506,10 @@ "id": "7ac47c3d-9e87-45b7-9064-bfa45578872e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:40.868698Z", - "iopub.status.busy": "2024-08-20T02:18:40.868378Z", - "iopub.status.idle": "2024-08-20T02:18:40.933865Z", - "shell.execute_reply": "2024-08-20T02:18:40.933191Z" + "iopub.execute_input": "2024-08-21T00:43:45.805238Z", + "iopub.status.busy": "2024-08-21T00:43:45.804914Z", + "iopub.status.idle": "2024-08-21T00:43:45.870308Z", + "shell.execute_reply": "2024-08-21T00:43:45.869741Z" } }, "outputs": [ @@ -609,10 +609,10 @@ "id": "6cef169e-d15b-4d18-9cb7-8ea589557e6b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:40.936337Z", - "iopub.status.busy": "2024-08-20T02:18:40.936127Z", - "iopub.status.idle": "2024-08-20T02:18:40.946629Z", - "shell.execute_reply": "2024-08-20T02:18:40.946140Z" + "iopub.execute_input": "2024-08-21T00:43:45.873236Z", + "iopub.status.busy": "2024-08-21T00:43:45.872722Z", + "iopub.status.idle": "2024-08-21T00:43:45.883273Z", + "shell.execute_reply": "2024-08-21T00:43:45.882789Z" } }, "outputs": [ @@ -724,10 +724,10 @@ "id": "b68e0418-86cf-431f-9107-2dd0a310ca42", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:40.949049Z", - "iopub.status.busy": "2024-08-20T02:18:40.948678Z", - "iopub.status.idle": "2024-08-20T02:18:40.968181Z", - "shell.execute_reply": "2024-08-20T02:18:40.967688Z" + "iopub.execute_input": "2024-08-21T00:43:45.886413Z", + "iopub.status.busy": "2024-08-21T00:43:45.885359Z", + "iopub.status.idle": "2024-08-21T00:43:45.908212Z", + "shell.execute_reply": "2024-08-21T00:43:45.907674Z" } }, "outputs": [ @@ -931,10 +931,10 @@ "id": "0e9bd131-429f-48af-b4fc-ed8b907950b9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:40.971331Z", - "iopub.status.busy": "2024-08-20T02:18:40.970401Z", - "iopub.status.idle": "2024-08-20T02:18:40.976342Z", - "shell.execute_reply": "2024-08-20T02:18:40.975848Z" + "iopub.execute_input": "2024-08-21T00:43:45.911694Z", + "iopub.status.busy": "2024-08-21T00:43:45.910777Z", + "iopub.status.idle": "2024-08-21T00:43:45.916622Z", + "shell.execute_reply": "2024-08-21T00:43:45.916119Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "id": "e72320ec-7792-4347-b2fb-630f2519127c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:40.979841Z", - "iopub.status.busy": "2024-08-20T02:18:40.978920Z", - "iopub.status.idle": "2024-08-20T02:18:40.985001Z", - "shell.execute_reply": "2024-08-20T02:18:40.984506Z" + "iopub.execute_input": "2024-08-21T00:43:45.920115Z", + "iopub.status.busy": "2024-08-21T00:43:45.919169Z", + "iopub.status.idle": "2024-08-21T00:43:45.925271Z", + "shell.execute_reply": "2024-08-21T00:43:45.924781Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "id": "8520ba4a-3ad6-408a-b377-3f47c32d745a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:40.988510Z", - "iopub.status.busy": "2024-08-20T02:18:40.987585Z", - "iopub.status.idle": "2024-08-20T02:18:40.998815Z", - "shell.execute_reply": "2024-08-20T02:18:40.998368Z" + "iopub.execute_input": "2024-08-21T00:43:45.928777Z", + "iopub.status.busy": "2024-08-21T00:43:45.927850Z", + "iopub.status.idle": "2024-08-21T00:43:45.938066Z", + "shell.execute_reply": "2024-08-21T00:43:45.937663Z" } }, "outputs": [ @@ -1205,10 +1205,10 @@ "id": "3c002665-c48b-4f04-91f7-ad112a49efc7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:41.000752Z", - "iopub.status.busy": "2024-08-20T02:18:41.000579Z", - "iopub.status.idle": "2024-08-20T02:18:41.004955Z", - "shell.execute_reply": "2024-08-20T02:18:41.004507Z" + "iopub.execute_input": "2024-08-21T00:43:45.940879Z", + "iopub.status.busy": "2024-08-21T00:43:45.940142Z", + "iopub.status.idle": "2024-08-21T00:43:45.944832Z", + "shell.execute_reply": "2024-08-21T00:43:45.944412Z" } }, "outputs": [], @@ -1234,10 +1234,10 @@ "id": "36319f39-f563-4f63-913f-821373180350", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:41.007070Z", - "iopub.status.busy": "2024-08-20T02:18:41.006752Z", - "iopub.status.idle": "2024-08-20T02:18:41.119533Z", - "shell.execute_reply": "2024-08-20T02:18:41.119022Z" + "iopub.execute_input": "2024-08-21T00:43:45.947654Z", + "iopub.status.busy": "2024-08-21T00:43:45.946915Z", + "iopub.status.idle": "2024-08-21T00:43:46.067274Z", + "shell.execute_reply": "2024-08-21T00:43:46.066714Z" } }, "outputs": [ @@ -1711,10 +1711,10 @@ "id": "044c0eb1-299a-4851-b1bf-268d5bce56c1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:41.121743Z", - "iopub.status.busy": "2024-08-20T02:18:41.121479Z", - "iopub.status.idle": "2024-08-20T02:18:41.127184Z", - "shell.execute_reply": "2024-08-20T02:18:41.126702Z" + "iopub.execute_input": "2024-08-21T00:43:46.069789Z", + "iopub.status.busy": "2024-08-21T00:43:46.069405Z", + "iopub.status.idle": "2024-08-21T00:43:46.077810Z", + "shell.execute_reply": "2024-08-21T00:43:46.077302Z" } }, "outputs": [], @@ -1738,10 +1738,10 @@ "id": "c43df278-abfe-40e5-9d48-2df3efea9379", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:41.129468Z", - "iopub.status.busy": "2024-08-20T02:18:41.129152Z", - "iopub.status.idle": "2024-08-20T02:18:43.315688Z", - "shell.execute_reply": "2024-08-20T02:18:43.314995Z" + "iopub.execute_input": "2024-08-21T00:43:46.080126Z", + "iopub.status.busy": "2024-08-21T00:43:46.079767Z", + "iopub.status.idle": "2024-08-21T00:43:48.070424Z", + "shell.execute_reply": "2024-08-21T00:43:48.069820Z" } }, "outputs": [ @@ -1953,10 +1953,10 @@ "id": "77c7f776-54b3-45b5-9207-715d6d2e90c0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:43.319532Z", - "iopub.status.busy": "2024-08-20T02:18:43.318405Z", - "iopub.status.idle": "2024-08-20T02:18:43.333322Z", - "shell.execute_reply": "2024-08-20T02:18:43.332786Z" + "iopub.execute_input": "2024-08-21T00:43:48.074100Z", + "iopub.status.busy": "2024-08-21T00:43:48.072890Z", + "iopub.status.idle": "2024-08-21T00:43:48.087651Z", + "shell.execute_reply": "2024-08-21T00:43:48.087161Z" } }, "outputs": [ @@ -2073,10 +2073,10 @@ "id": "7e218d04-0729-4f42-b264-51c73601ebe6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:43.336884Z", - "iopub.status.busy": "2024-08-20T02:18:43.335952Z", - "iopub.status.idle": "2024-08-20T02:18:43.339988Z", - "shell.execute_reply": "2024-08-20T02:18:43.339477Z" + "iopub.execute_input": "2024-08-21T00:43:48.091142Z", + "iopub.status.busy": "2024-08-21T00:43:48.090218Z", + "iopub.status.idle": "2024-08-21T00:43:48.094330Z", + "shell.execute_reply": "2024-08-21T00:43:48.093698Z" } }, "outputs": [], @@ -2090,10 +2090,10 @@ "id": "7e2bdb41-321e-4929-aa01-1f60948b9e8b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:43.343505Z", - "iopub.status.busy": "2024-08-20T02:18:43.342554Z", - "iopub.status.idle": "2024-08-20T02:18:43.348202Z", - "shell.execute_reply": "2024-08-20T02:18:43.347701Z" + "iopub.execute_input": "2024-08-21T00:43:48.097756Z", + "iopub.status.busy": "2024-08-21T00:43:48.096840Z", + "iopub.status.idle": "2024-08-21T00:43:48.102318Z", + "shell.execute_reply": "2024-08-21T00:43:48.101826Z" } }, "outputs": [], @@ -2117,10 +2117,10 @@ "id": "5ce2d89f-e832-448d-bfac-9941da15c895", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:43.351804Z", - "iopub.status.busy": "2024-08-20T02:18:43.350840Z", - "iopub.status.idle": "2024-08-20T02:18:43.384316Z", - "shell.execute_reply": "2024-08-20T02:18:43.383808Z" + "iopub.execute_input": "2024-08-21T00:43:48.105802Z", + "iopub.status.busy": "2024-08-21T00:43:48.104884Z", + "iopub.status.idle": "2024-08-21T00:43:48.133986Z", + "shell.execute_reply": "2024-08-21T00:43:48.133511Z" } }, "outputs": [ @@ -2160,10 +2160,10 @@ "id": "9f437756-112e-4531-84fc-6ceadd0c9ef5", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:43.387211Z", - "iopub.status.busy": "2024-08-20T02:18:43.386773Z", - "iopub.status.idle": "2024-08-20T02:18:43.934525Z", - "shell.execute_reply": "2024-08-20T02:18:43.933974Z" + "iopub.execute_input": "2024-08-21T00:43:48.137043Z", + "iopub.status.busy": "2024-08-21T00:43:48.136416Z", + "iopub.status.idle": "2024-08-21T00:43:48.664903Z", + "shell.execute_reply": "2024-08-21T00:43:48.664340Z" } }, "outputs": [], @@ -2194,10 +2194,10 @@ "id": "707625f6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:43.937351Z", - "iopub.status.busy": "2024-08-20T02:18:43.936985Z", - "iopub.status.idle": "2024-08-20T02:18:44.067674Z", - "shell.execute_reply": "2024-08-20T02:18:44.067055Z" + "iopub.execute_input": "2024-08-21T00:43:48.668839Z", + "iopub.status.busy": "2024-08-21T00:43:48.667904Z", + "iopub.status.idle": "2024-08-21T00:43:48.799618Z", + "shell.execute_reply": "2024-08-21T00:43:48.799015Z" } }, "outputs": [ @@ -2408,10 +2408,10 @@ "id": "25afe46c-a521-483c-b168-728c76d970dc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:44.071135Z", - "iopub.status.busy": "2024-08-20T02:18:44.070004Z", - "iopub.status.idle": "2024-08-20T02:18:44.079002Z", - "shell.execute_reply": "2024-08-20T02:18:44.078493Z" + "iopub.execute_input": "2024-08-21T00:43:48.802587Z", + "iopub.status.busy": "2024-08-21T00:43:48.802251Z", + "iopub.status.idle": "2024-08-21T00:43:48.808846Z", + "shell.execute_reply": "2024-08-21T00:43:48.808361Z" } }, "outputs": [ @@ -2441,10 +2441,10 @@ "id": "6efcf06f-cc40-4964-87df-5204d3b1b9d4", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:44.082548Z", - "iopub.status.busy": "2024-08-20T02:18:44.081615Z", - "iopub.status.idle": "2024-08-20T02:18:44.089637Z", - "shell.execute_reply": "2024-08-20T02:18:44.089115Z" + "iopub.execute_input": "2024-08-21T00:43:48.811963Z", + "iopub.status.busy": "2024-08-21T00:43:48.810885Z", + "iopub.status.idle": "2024-08-21T00:43:48.818883Z", + "shell.execute_reply": "2024-08-21T00:43:48.818393Z" } }, "outputs": [ @@ -2477,10 +2477,10 @@ "id": "7bc87d72-bbd5-4ed2-bc38-2218862ddfbd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:44.093142Z", - "iopub.status.busy": "2024-08-20T02:18:44.092209Z", - "iopub.status.idle": "2024-08-20T02:18:44.099634Z", - "shell.execute_reply": "2024-08-20T02:18:44.099137Z" + "iopub.execute_input": "2024-08-21T00:43:48.822356Z", + "iopub.status.busy": "2024-08-21T00:43:48.821424Z", + "iopub.status.idle": "2024-08-21T00:43:48.828749Z", + "shell.execute_reply": "2024-08-21T00:43:48.828250Z" } }, "outputs": [ @@ -2513,10 +2513,10 @@ "id": "9c70be3e-0ba2-4e3e-8c50-359d402ca1fe", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:44.103125Z", - "iopub.status.busy": "2024-08-20T02:18:44.102204Z", - "iopub.status.idle": "2024-08-20T02:18:44.108338Z", - "shell.execute_reply": "2024-08-20T02:18:44.107839Z" + "iopub.execute_input": "2024-08-21T00:43:48.832200Z", + "iopub.status.busy": "2024-08-21T00:43:48.831242Z", + "iopub.status.idle": "2024-08-21T00:43:48.837286Z", + "shell.execute_reply": "2024-08-21T00:43:48.836796Z" } }, "outputs": [ @@ -2542,10 +2542,10 @@ "id": "08080458-0cd7-447d-80e6-384cb8d31eaf", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:44.110735Z", - "iopub.status.busy": "2024-08-20T02:18:44.110563Z", - "iopub.status.idle": "2024-08-20T02:18:44.115117Z", - "shell.execute_reply": "2024-08-20T02:18:44.114675Z" + "iopub.execute_input": "2024-08-21T00:43:48.840754Z", + "iopub.status.busy": "2024-08-21T00:43:48.839819Z", + "iopub.status.idle": "2024-08-21T00:43:48.845405Z", + "shell.execute_reply": "2024-08-21T00:43:48.844997Z" } }, "outputs": [], @@ -2569,10 +2569,10 @@ "id": "009bb215-4d26-47da-a230-d0ccf4122629", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:44.117018Z", - "iopub.status.busy": "2024-08-20T02:18:44.116864Z", - "iopub.status.idle": "2024-08-20T02:18:44.191518Z", - "shell.execute_reply": "2024-08-20T02:18:44.190902Z" + "iopub.execute_input": "2024-08-21T00:43:48.848112Z", + "iopub.status.busy": "2024-08-21T00:43:48.847491Z", + "iopub.status.idle": "2024-08-21T00:43:48.923292Z", + "shell.execute_reply": "2024-08-21T00:43:48.922762Z" } }, "outputs": [ @@ -3052,10 +3052,10 @@ "id": "dcaeda51-9b24-4c04-889d-7e63563594fc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:44.195789Z", - "iopub.status.busy": "2024-08-20T02:18:44.195385Z", - "iopub.status.idle": "2024-08-20T02:18:44.204480Z", - "shell.execute_reply": "2024-08-20T02:18:44.203923Z" + "iopub.execute_input": "2024-08-21T00:43:48.926332Z", + "iopub.status.busy": "2024-08-21T00:43:48.925595Z", + "iopub.status.idle": "2024-08-21T00:43:48.935839Z", + "shell.execute_reply": "2024-08-21T00:43:48.935360Z" } }, "outputs": [ @@ -3111,10 +3111,10 @@ "id": "1d92d78d-e4a8-4322-bf38-f5a5dae3bf17", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:44.207795Z", - "iopub.status.busy": "2024-08-20T02:18:44.206903Z", - "iopub.status.idle": "2024-08-20T02:18:44.210712Z", - "shell.execute_reply": "2024-08-20T02:18:44.210291Z" + "iopub.execute_input": "2024-08-21T00:43:48.938763Z", + "iopub.status.busy": "2024-08-21T00:43:48.938336Z", + "iopub.status.idle": "2024-08-21T00:43:48.941682Z", + "shell.execute_reply": "2024-08-21T00:43:48.941148Z" } }, "outputs": [], @@ -3150,10 +3150,10 @@ "id": "941ab2a6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:44.213385Z", - "iopub.status.busy": "2024-08-20T02:18:44.212803Z", - "iopub.status.idle": "2024-08-20T02:18:44.223231Z", - "shell.execute_reply": "2024-08-20T02:18:44.222657Z" + "iopub.execute_input": "2024-08-21T00:43:48.943690Z", + "iopub.status.busy": "2024-08-21T00:43:48.943523Z", + "iopub.status.idle": "2024-08-21T00:43:48.953778Z", + "shell.execute_reply": "2024-08-21T00:43:48.953320Z" } }, "outputs": [], @@ -3261,10 +3261,10 @@ "id": "50666fb9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:44.225400Z", - "iopub.status.busy": "2024-08-20T02:18:44.225210Z", - "iopub.status.idle": "2024-08-20T02:18:44.231940Z", - "shell.execute_reply": "2024-08-20T02:18:44.231250Z" + "iopub.execute_input": "2024-08-21T00:43:48.955857Z", + "iopub.status.busy": "2024-08-21T00:43:48.955527Z", + "iopub.status.idle": "2024-08-21T00:43:48.961904Z", + "shell.execute_reply": "2024-08-21T00:43:48.961466Z" }, "nbsphinx": "hidden" }, @@ -3346,10 +3346,10 @@ "id": "f5aa2883-d20d-481f-a012-fcc7ff8e3e7e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:44.234067Z", - "iopub.status.busy": "2024-08-20T02:18:44.233893Z", - "iopub.status.idle": "2024-08-20T02:18:44.237411Z", - "shell.execute_reply": "2024-08-20T02:18:44.236700Z" + "iopub.execute_input": "2024-08-21T00:43:48.963753Z", + "iopub.status.busy": "2024-08-21T00:43:48.963585Z", + "iopub.status.idle": "2024-08-21T00:43:48.966870Z", + "shell.execute_reply": "2024-08-21T00:43:48.966412Z" } }, "outputs": [], @@ -3373,10 +3373,10 @@ "id": "ce1c0ada-88b1-4654-b43f-3c0b59002979", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:44.239332Z", - "iopub.status.busy": "2024-08-20T02:18:44.239159Z", - "iopub.status.idle": "2024-08-20T02:18:48.319121Z", - "shell.execute_reply": "2024-08-20T02:18:48.318603Z" + "iopub.execute_input": "2024-08-21T00:43:48.968877Z", + "iopub.status.busy": "2024-08-21T00:43:48.968552Z", + "iopub.status.idle": "2024-08-21T00:43:52.986642Z", + "shell.execute_reply": "2024-08-21T00:43:52.986089Z" } }, "outputs": [ @@ -3419,10 +3419,10 @@ "id": "3f572acf-31c3-4874-9100-451796e35b06", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:48.322465Z", - "iopub.status.busy": "2024-08-20T02:18:48.321697Z", - "iopub.status.idle": "2024-08-20T02:18:48.325214Z", - "shell.execute_reply": "2024-08-20T02:18:48.324785Z" + "iopub.execute_input": "2024-08-21T00:43:52.989780Z", + "iopub.status.busy": "2024-08-21T00:43:52.988877Z", + "iopub.status.idle": "2024-08-21T00:43:52.993710Z", + "shell.execute_reply": "2024-08-21T00:43:52.993266Z" } }, "outputs": [ @@ -3460,10 +3460,10 @@ "id": "6a025a88", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:48.327316Z", - "iopub.status.busy": "2024-08-20T02:18:48.327002Z", - "iopub.status.idle": "2024-08-20T02:18:48.329876Z", - "shell.execute_reply": "2024-08-20T02:18:48.329469Z" + "iopub.execute_input": "2024-08-21T00:43:52.995821Z", + "iopub.status.busy": "2024-08-21T00:43:52.995483Z", + "iopub.status.idle": "2024-08-21T00:43:52.998348Z", + "shell.execute_reply": "2024-08-21T00:43:52.997886Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index c1a97fbf9..6ff79093e 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:51.681853Z", - "iopub.status.busy": "2024-08-20T02:18:51.681681Z", - "iopub.status.idle": "2024-08-20T02:18:53.129044Z", - "shell.execute_reply": "2024-08-20T02:18:53.128476Z" + "iopub.execute_input": "2024-08-21T00:43:56.140800Z", + "iopub.status.busy": "2024-08-21T00:43:56.140620Z", + "iopub.status.idle": "2024-08-21T00:43:57.343557Z", + "shell.execute_reply": "2024-08-21T00:43:57.343015Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:53.131558Z", - "iopub.status.busy": "2024-08-20T02:18:53.131088Z", - "iopub.status.idle": "2024-08-20T02:18:53.134587Z", - "shell.execute_reply": "2024-08-20T02:18:53.134019Z" + "iopub.execute_input": "2024-08-21T00:43:57.346298Z", + "iopub.status.busy": "2024-08-21T00:43:57.345733Z", + "iopub.status.idle": "2024-08-21T00:43:57.530661Z", + "shell.execute_reply": "2024-08-21T00:43:57.530087Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:53.136980Z", - "iopub.status.busy": "2024-08-20T02:18:53.136531Z", - "iopub.status.idle": "2024-08-20T02:18:53.148739Z", - "shell.execute_reply": "2024-08-20T02:18:53.148175Z" + "iopub.execute_input": "2024-08-21T00:43:57.533119Z", + "iopub.status.busy": "2024-08-21T00:43:57.532920Z", + "iopub.status.idle": "2024-08-21T00:43:57.544404Z", + "shell.execute_reply": "2024-08-21T00:43:57.543955Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:53.150948Z", - "iopub.status.busy": "2024-08-20T02:18:53.150659Z", - "iopub.status.idle": "2024-08-20T02:18:53.391414Z", - "shell.execute_reply": "2024-08-20T02:18:53.390934Z" + "iopub.execute_input": "2024-08-21T00:43:57.546292Z", + "iopub.status.busy": "2024-08-21T00:43:57.546113Z", + "iopub.status.idle": "2024-08-21T00:43:57.781144Z", + "shell.execute_reply": "2024-08-21T00:43:57.780517Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:53.393846Z", - "iopub.status.busy": "2024-08-20T02:18:53.393517Z", - "iopub.status.idle": "2024-08-20T02:18:53.419044Z", - "shell.execute_reply": "2024-08-20T02:18:53.418597Z" + "iopub.execute_input": "2024-08-21T00:43:57.783496Z", + "iopub.status.busy": "2024-08-21T00:43:57.783061Z", + "iopub.status.idle": "2024-08-21T00:43:57.809126Z", + "shell.execute_reply": "2024-08-21T00:43:57.808529Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:53.421156Z", - "iopub.status.busy": "2024-08-20T02:18:53.420796Z", - "iopub.status.idle": "2024-08-20T02:18:55.596000Z", - "shell.execute_reply": "2024-08-20T02:18:55.595347Z" + "iopub.execute_input": "2024-08-21T00:43:57.811664Z", + "iopub.status.busy": "2024-08-21T00:43:57.811098Z", + "iopub.status.idle": "2024-08-21T00:43:59.890782Z", + "shell.execute_reply": "2024-08-21T00:43:59.890150Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:55.598602Z", - "iopub.status.busy": "2024-08-20T02:18:55.598063Z", - "iopub.status.idle": "2024-08-20T02:18:55.616511Z", - "shell.execute_reply": "2024-08-20T02:18:55.616058Z" + "iopub.execute_input": "2024-08-21T00:43:59.893622Z", + "iopub.status.busy": "2024-08-21T00:43:59.892889Z", + "iopub.status.idle": "2024-08-21T00:43:59.910894Z", + "shell.execute_reply": "2024-08-21T00:43:59.910318Z" }, "scrolled": true }, @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:55.618658Z", - "iopub.status.busy": "2024-08-20T02:18:55.618308Z", - "iopub.status.idle": "2024-08-20T02:18:57.218343Z", - "shell.execute_reply": "2024-08-20T02:18:57.217657Z" + "iopub.execute_input": "2024-08-21T00:43:59.913118Z", + "iopub.status.busy": "2024-08-21T00:43:59.912629Z", + "iopub.status.idle": "2024-08-21T00:44:01.485996Z", + "shell.execute_reply": "2024-08-21T00:44:01.485331Z" }, "id": "AaHC5MRKjruT" }, @@ -729,10 +729,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:57.221005Z", - "iopub.status.busy": "2024-08-20T02:18:57.220309Z", - "iopub.status.idle": "2024-08-20T02:18:57.234346Z", - "shell.execute_reply": "2024-08-20T02:18:57.233776Z" + "iopub.execute_input": "2024-08-21T00:44:01.488797Z", + "iopub.status.busy": "2024-08-21T00:44:01.488082Z", + "iopub.status.idle": "2024-08-21T00:44:01.501841Z", + "shell.execute_reply": "2024-08-21T00:44:01.501318Z" }, "id": "Wy27rvyhjruU" }, @@ -781,10 +781,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:57.236411Z", - "iopub.status.busy": "2024-08-20T02:18:57.236099Z", - "iopub.status.idle": "2024-08-20T02:18:57.319189Z", - "shell.execute_reply": "2024-08-20T02:18:57.318628Z" + "iopub.execute_input": "2024-08-21T00:44:01.503912Z", + "iopub.status.busy": "2024-08-21T00:44:01.503642Z", + "iopub.status.idle": "2024-08-21T00:44:01.590531Z", + "shell.execute_reply": "2024-08-21T00:44:01.589895Z" }, "id": "Db8YHnyVjruU" }, @@ -891,10 +891,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:57.321670Z", - "iopub.status.busy": "2024-08-20T02:18:57.321188Z", - "iopub.status.idle": "2024-08-20T02:18:57.536110Z", - "shell.execute_reply": "2024-08-20T02:18:57.535559Z" + "iopub.execute_input": "2024-08-21T00:44:01.592709Z", + "iopub.status.busy": "2024-08-21T00:44:01.592483Z", + "iopub.status.idle": "2024-08-21T00:44:01.806762Z", + "shell.execute_reply": "2024-08-21T00:44:01.806173Z" }, "id": "iJqAHuS2jruV" }, @@ -931,10 +931,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:57.538284Z", - "iopub.status.busy": "2024-08-20T02:18:57.538098Z", - "iopub.status.idle": "2024-08-20T02:18:57.555022Z", - "shell.execute_reply": "2024-08-20T02:18:57.554545Z" + "iopub.execute_input": "2024-08-21T00:44:01.809115Z", + "iopub.status.busy": "2024-08-21T00:44:01.808792Z", + "iopub.status.idle": "2024-08-21T00:44:01.825931Z", + "shell.execute_reply": "2024-08-21T00:44:01.825443Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1400,10 +1400,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:57.557201Z", - "iopub.status.busy": "2024-08-20T02:18:57.556872Z", - "iopub.status.idle": "2024-08-20T02:18:57.566684Z", - "shell.execute_reply": "2024-08-20T02:18:57.566222Z" + "iopub.execute_input": "2024-08-21T00:44:01.828060Z", + "iopub.status.busy": "2024-08-21T00:44:01.827758Z", + "iopub.status.idle": "2024-08-21T00:44:01.837905Z", + "shell.execute_reply": "2024-08-21T00:44:01.837364Z" }, "id": "0lonvOYvjruV" }, @@ -1550,10 +1550,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:57.568776Z", - "iopub.status.busy": "2024-08-20T02:18:57.568456Z", - "iopub.status.idle": "2024-08-20T02:18:57.661709Z", - "shell.execute_reply": "2024-08-20T02:18:57.661129Z" + "iopub.execute_input": "2024-08-21T00:44:01.839879Z", + "iopub.status.busy": "2024-08-21T00:44:01.839580Z", + "iopub.status.idle": "2024-08-21T00:44:01.935954Z", + "shell.execute_reply": "2024-08-21T00:44:01.935375Z" }, "id": "MfqTCa3kjruV" }, @@ -1634,10 +1634,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:57.664109Z", - "iopub.status.busy": "2024-08-20T02:18:57.663766Z", - "iopub.status.idle": "2024-08-20T02:18:57.807373Z", - "shell.execute_reply": "2024-08-20T02:18:57.806736Z" + "iopub.execute_input": "2024-08-21T00:44:01.938342Z", + "iopub.status.busy": "2024-08-21T00:44:01.937987Z", + "iopub.status.idle": "2024-08-21T00:44:02.078263Z", + "shell.execute_reply": "2024-08-21T00:44:02.077615Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1697,10 +1697,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:57.809598Z", - "iopub.status.busy": "2024-08-20T02:18:57.809366Z", - "iopub.status.idle": "2024-08-20T02:18:57.813238Z", - "shell.execute_reply": "2024-08-20T02:18:57.812677Z" + "iopub.execute_input": "2024-08-21T00:44:02.080783Z", + "iopub.status.busy": "2024-08-21T00:44:02.080438Z", + "iopub.status.idle": "2024-08-21T00:44:02.084408Z", + "shell.execute_reply": "2024-08-21T00:44:02.083813Z" }, "id": "0rXP3ZPWjruW" }, @@ -1738,10 +1738,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:57.815295Z", - "iopub.status.busy": "2024-08-20T02:18:57.815004Z", - "iopub.status.idle": "2024-08-20T02:18:57.818743Z", - "shell.execute_reply": "2024-08-20T02:18:57.818208Z" + "iopub.execute_input": "2024-08-21T00:44:02.086440Z", + "iopub.status.busy": "2024-08-21T00:44:02.086169Z", + "iopub.status.idle": "2024-08-21T00:44:02.090052Z", + "shell.execute_reply": "2024-08-21T00:44:02.089491Z" }, "id": "-iRPe8KXjruW" }, @@ -1796,10 +1796,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:57.820752Z", - "iopub.status.busy": "2024-08-20T02:18:57.820413Z", - "iopub.status.idle": "2024-08-20T02:18:57.857122Z", - "shell.execute_reply": "2024-08-20T02:18:57.856626Z" + "iopub.execute_input": "2024-08-21T00:44:02.092030Z", + "iopub.status.busy": "2024-08-21T00:44:02.091746Z", + "iopub.status.idle": "2024-08-21T00:44:02.128325Z", + "shell.execute_reply": "2024-08-21T00:44:02.127730Z" }, "id": "ZpipUliyjruW" }, @@ -1850,10 +1850,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:57.859267Z", - "iopub.status.busy": "2024-08-20T02:18:57.858911Z", - "iopub.status.idle": "2024-08-20T02:18:57.899267Z", - "shell.execute_reply": "2024-08-20T02:18:57.898774Z" + "iopub.execute_input": "2024-08-21T00:44:02.130318Z", + "iopub.status.busy": "2024-08-21T00:44:02.130002Z", + "iopub.status.idle": "2024-08-21T00:44:02.171110Z", + "shell.execute_reply": "2024-08-21T00:44:02.170530Z" }, "id": "SLq-3q4xjruX" }, @@ -1922,10 +1922,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:57.901394Z", - "iopub.status.busy": "2024-08-20T02:18:57.901043Z", - "iopub.status.idle": "2024-08-20T02:18:58.003043Z", - "shell.execute_reply": "2024-08-20T02:18:58.002311Z" + "iopub.execute_input": "2024-08-21T00:44:02.173124Z", + "iopub.status.busy": "2024-08-21T00:44:02.172810Z", + "iopub.status.idle": "2024-08-21T00:44:02.280606Z", + "shell.execute_reply": "2024-08-21T00:44:02.279967Z" }, "id": "g5LHhhuqFbXK" }, @@ -1957,10 +1957,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:58.006068Z", - "iopub.status.busy": "2024-08-20T02:18:58.005525Z", - "iopub.status.idle": "2024-08-20T02:18:58.110250Z", - "shell.execute_reply": "2024-08-20T02:18:58.109590Z" + "iopub.execute_input": "2024-08-21T00:44:02.283100Z", + "iopub.status.busy": "2024-08-21T00:44:02.282915Z", + "iopub.status.idle": "2024-08-21T00:44:02.392853Z", + "shell.execute_reply": "2024-08-21T00:44:02.392282Z" }, "id": "p7w8F8ezBcet" }, @@ -2017,10 +2017,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:58.112453Z", - "iopub.status.busy": "2024-08-20T02:18:58.112218Z", - "iopub.status.idle": "2024-08-20T02:18:58.323254Z", - "shell.execute_reply": "2024-08-20T02:18:58.322659Z" + "iopub.execute_input": "2024-08-21T00:44:02.395138Z", + "iopub.status.busy": "2024-08-21T00:44:02.394895Z", + "iopub.status.idle": "2024-08-21T00:44:02.630946Z", + "shell.execute_reply": "2024-08-21T00:44:02.630356Z" }, "id": "WETRL74tE_sU" }, @@ -2055,10 +2055,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:58.325554Z", - "iopub.status.busy": "2024-08-20T02:18:58.325088Z", - "iopub.status.idle": "2024-08-20T02:18:58.549365Z", - "shell.execute_reply": "2024-08-20T02:18:58.548707Z" + "iopub.execute_input": "2024-08-21T00:44:02.633172Z", + "iopub.status.busy": "2024-08-21T00:44:02.632982Z", + "iopub.status.idle": "2024-08-21T00:44:02.858035Z", + "shell.execute_reply": "2024-08-21T00:44:02.857391Z" }, "id": "kCfdx2gOLmXS" }, @@ -2220,10 +2220,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:58.551633Z", - "iopub.status.busy": "2024-08-20T02:18:58.551390Z", - "iopub.status.idle": "2024-08-20T02:18:58.557774Z", - "shell.execute_reply": "2024-08-20T02:18:58.557277Z" + "iopub.execute_input": "2024-08-21T00:44:02.860575Z", + "iopub.status.busy": "2024-08-21T00:44:02.860188Z", + "iopub.status.idle": "2024-08-21T00:44:02.866265Z", + "shell.execute_reply": "2024-08-21T00:44:02.865703Z" }, "id": "-uogYRWFYnuu" }, @@ -2277,10 +2277,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:58.559834Z", - "iopub.status.busy": "2024-08-20T02:18:58.559507Z", - "iopub.status.idle": "2024-08-20T02:18:58.775893Z", - "shell.execute_reply": "2024-08-20T02:18:58.775301Z" + "iopub.execute_input": "2024-08-21T00:44:02.868556Z", + "iopub.status.busy": "2024-08-21T00:44:02.868207Z", + "iopub.status.idle": "2024-08-21T00:44:03.086365Z", + "shell.execute_reply": "2024-08-21T00:44:03.085768Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2327,10 +2327,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:58.778369Z", - "iopub.status.busy": "2024-08-20T02:18:58.777982Z", - "iopub.status.idle": "2024-08-20T02:18:59.833777Z", - "shell.execute_reply": "2024-08-20T02:18:59.833215Z" + "iopub.execute_input": "2024-08-21T00:44:03.088869Z", + "iopub.status.busy": "2024-08-21T00:44:03.088487Z", + "iopub.status.idle": "2024-08-21T00:44:04.135646Z", + "shell.execute_reply": "2024-08-21T00:44:04.135093Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index 95d3b75d7..073024f68 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:03.522991Z", - "iopub.status.busy": "2024-08-20T02:19:03.522832Z", - "iopub.status.idle": "2024-08-20T02:19:04.942768Z", - "shell.execute_reply": "2024-08-20T02:19:04.942212Z" + "iopub.execute_input": "2024-08-21T00:44:08.536925Z", + "iopub.status.busy": "2024-08-21T00:44:08.536756Z", + "iopub.status.idle": "2024-08-21T00:44:09.687224Z", + "shell.execute_reply": "2024-08-21T00:44:09.686734Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:04.945469Z", - "iopub.status.busy": "2024-08-20T02:19:04.944979Z", - "iopub.status.idle": "2024-08-20T02:19:04.948001Z", - "shell.execute_reply": "2024-08-20T02:19:04.947540Z" + "iopub.execute_input": "2024-08-21T00:44:09.689870Z", + "iopub.status.busy": "2024-08-21T00:44:09.689408Z", + "iopub.status.idle": "2024-08-21T00:44:09.692521Z", + "shell.execute_reply": "2024-08-21T00:44:09.692073Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:04.950109Z", - "iopub.status.busy": "2024-08-20T02:19:04.949813Z", - "iopub.status.idle": "2024-08-20T02:19:04.957738Z", - "shell.execute_reply": "2024-08-20T02:19:04.957121Z" + "iopub.execute_input": "2024-08-21T00:44:09.694579Z", + "iopub.status.busy": "2024-08-21T00:44:09.694245Z", + "iopub.status.idle": "2024-08-21T00:44:09.702175Z", + "shell.execute_reply": "2024-08-21T00:44:09.701716Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:04.959689Z", - "iopub.status.busy": "2024-08-20T02:19:04.959510Z", - "iopub.status.idle": "2024-08-20T02:19:05.007494Z", - "shell.execute_reply": "2024-08-20T02:19:05.006846Z" + "iopub.execute_input": "2024-08-21T00:44:09.704223Z", + "iopub.status.busy": "2024-08-21T00:44:09.703803Z", + "iopub.status.idle": "2024-08-21T00:44:09.750825Z", + "shell.execute_reply": "2024-08-21T00:44:09.750317Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:05.009955Z", - "iopub.status.busy": "2024-08-20T02:19:05.009768Z", - "iopub.status.idle": "2024-08-20T02:19:05.026808Z", - "shell.execute_reply": "2024-08-20T02:19:05.026271Z" + "iopub.execute_input": "2024-08-21T00:44:09.753056Z", + "iopub.status.busy": "2024-08-21T00:44:09.752765Z", + "iopub.status.idle": "2024-08-21T00:44:09.769433Z", + "shell.execute_reply": "2024-08-21T00:44:09.768993Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:05.028834Z", - "iopub.status.busy": "2024-08-20T02:19:05.028656Z", - "iopub.status.idle": "2024-08-20T02:19:05.032389Z", - "shell.execute_reply": "2024-08-20T02:19:05.031915Z" + "iopub.execute_input": "2024-08-21T00:44:09.771586Z", + "iopub.status.busy": "2024-08-21T00:44:09.771104Z", + "iopub.status.idle": "2024-08-21T00:44:09.774951Z", + "shell.execute_reply": "2024-08-21T00:44:09.774438Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:05.034336Z", - "iopub.status.busy": "2024-08-20T02:19:05.034163Z", - "iopub.status.idle": "2024-08-20T02:19:05.052377Z", - "shell.execute_reply": "2024-08-20T02:19:05.051801Z" + "iopub.execute_input": "2024-08-21T00:44:09.777032Z", + "iopub.status.busy": "2024-08-21T00:44:09.776653Z", + "iopub.status.idle": "2024-08-21T00:44:09.792096Z", + "shell.execute_reply": "2024-08-21T00:44:09.791502Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:05.054757Z", - "iopub.status.busy": "2024-08-20T02:19:05.054411Z", - "iopub.status.idle": "2024-08-20T02:19:05.081157Z", - "shell.execute_reply": "2024-08-20T02:19:05.080588Z" + "iopub.execute_input": "2024-08-21T00:44:09.794285Z", + "iopub.status.busy": "2024-08-21T00:44:09.793887Z", + "iopub.status.idle": "2024-08-21T00:44:09.819917Z", + "shell.execute_reply": "2024-08-21T00:44:09.819351Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:05.083440Z", - "iopub.status.busy": "2024-08-20T02:19:05.083115Z", - "iopub.status.idle": "2024-08-20T02:19:07.231377Z", - "shell.execute_reply": "2024-08-20T02:19:07.230719Z" + "iopub.execute_input": "2024-08-21T00:44:09.822110Z", + "iopub.status.busy": "2024-08-21T00:44:09.821731Z", + "iopub.status.idle": "2024-08-21T00:44:11.811688Z", + "shell.execute_reply": "2024-08-21T00:44:11.811036Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:07.234251Z", - "iopub.status.busy": "2024-08-20T02:19:07.233645Z", - "iopub.status.idle": "2024-08-20T02:19:07.240565Z", - "shell.execute_reply": "2024-08-20T02:19:07.240009Z" + "iopub.execute_input": "2024-08-21T00:44:11.814185Z", + "iopub.status.busy": "2024-08-21T00:44:11.813766Z", + "iopub.status.idle": "2024-08-21T00:44:11.820401Z", + "shell.execute_reply": "2024-08-21T00:44:11.819834Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:07.242853Z", - "iopub.status.busy": "2024-08-20T02:19:07.242453Z", - "iopub.status.idle": "2024-08-20T02:19:07.254962Z", - "shell.execute_reply": "2024-08-20T02:19:07.254495Z" + "iopub.execute_input": "2024-08-21T00:44:11.822461Z", + "iopub.status.busy": "2024-08-21T00:44:11.822116Z", + "iopub.status.idle": "2024-08-21T00:44:11.835628Z", + "shell.execute_reply": "2024-08-21T00:44:11.835052Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:07.256913Z", - "iopub.status.busy": "2024-08-20T02:19:07.256739Z", - "iopub.status.idle": "2024-08-20T02:19:07.263271Z", - "shell.execute_reply": "2024-08-20T02:19:07.262692Z" + "iopub.execute_input": "2024-08-21T00:44:11.837751Z", + "iopub.status.busy": "2024-08-21T00:44:11.837353Z", + "iopub.status.idle": "2024-08-21T00:44:11.843662Z", + "shell.execute_reply": "2024-08-21T00:44:11.843107Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:07.265460Z", - "iopub.status.busy": "2024-08-20T02:19:07.265040Z", - "iopub.status.idle": "2024-08-20T02:19:07.267720Z", - "shell.execute_reply": "2024-08-20T02:19:07.267271Z" + "iopub.execute_input": "2024-08-21T00:44:11.845794Z", + "iopub.status.busy": "2024-08-21T00:44:11.845414Z", + "iopub.status.idle": "2024-08-21T00:44:11.848002Z", + "shell.execute_reply": "2024-08-21T00:44:11.847541Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:07.269736Z", - "iopub.status.busy": "2024-08-20T02:19:07.269397Z", - "iopub.status.idle": "2024-08-20T02:19:07.272660Z", - "shell.execute_reply": "2024-08-20T02:19:07.272134Z" + "iopub.execute_input": "2024-08-21T00:44:11.849966Z", + "iopub.status.busy": "2024-08-21T00:44:11.849626Z", + "iopub.status.idle": "2024-08-21T00:44:11.852992Z", + "shell.execute_reply": "2024-08-21T00:44:11.852471Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:07.274827Z", - "iopub.status.busy": "2024-08-20T02:19:07.274428Z", - "iopub.status.idle": "2024-08-20T02:19:07.277013Z", - "shell.execute_reply": "2024-08-20T02:19:07.276590Z" + "iopub.execute_input": "2024-08-21T00:44:11.855027Z", + "iopub.status.busy": "2024-08-21T00:44:11.854692Z", + "iopub.status.idle": "2024-08-21T00:44:11.857204Z", + "shell.execute_reply": "2024-08-21T00:44:11.856762Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:07.279076Z", - "iopub.status.busy": "2024-08-20T02:19:07.278677Z", - "iopub.status.idle": "2024-08-20T02:19:07.282955Z", - "shell.execute_reply": "2024-08-20T02:19:07.282393Z" + "iopub.execute_input": "2024-08-21T00:44:11.859154Z", + "iopub.status.busy": "2024-08-21T00:44:11.858846Z", + "iopub.status.idle": "2024-08-21T00:44:11.862989Z", + "shell.execute_reply": "2024-08-21T00:44:11.862452Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:07.285399Z", - "iopub.status.busy": "2024-08-20T02:19:07.284844Z", - "iopub.status.idle": "2024-08-20T02:19:07.313264Z", - "shell.execute_reply": "2024-08-20T02:19:07.312797Z" + "iopub.execute_input": "2024-08-21T00:44:11.865075Z", + "iopub.status.busy": "2024-08-21T00:44:11.864770Z", + "iopub.status.idle": "2024-08-21T00:44:11.893446Z", + "shell.execute_reply": "2024-08-21T00:44:11.892897Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:07.315544Z", - "iopub.status.busy": "2024-08-20T02:19:07.315122Z", - "iopub.status.idle": "2024-08-20T02:19:07.319938Z", - "shell.execute_reply": "2024-08-20T02:19:07.319454Z" + "iopub.execute_input": "2024-08-21T00:44:11.895680Z", + "iopub.status.busy": "2024-08-21T00:44:11.895363Z", + "iopub.status.idle": "2024-08-21T00:44:11.899971Z", + "shell.execute_reply": "2024-08-21T00:44:11.899406Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index 0045fc3d5..55be504a5 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:10.411320Z", - "iopub.status.busy": "2024-08-20T02:19:10.411152Z", - "iopub.status.idle": "2024-08-20T02:19:11.855342Z", - "shell.execute_reply": "2024-08-20T02:19:11.854698Z" + "iopub.execute_input": "2024-08-21T00:44:14.676045Z", + "iopub.status.busy": "2024-08-21T00:44:14.675498Z", + "iopub.status.idle": "2024-08-21T00:44:15.874773Z", + "shell.execute_reply": "2024-08-21T00:44:15.874228Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:11.858020Z", - "iopub.status.busy": "2024-08-20T02:19:11.857673Z", - "iopub.status.idle": "2024-08-20T02:19:11.877980Z", - "shell.execute_reply": "2024-08-20T02:19:11.877379Z" + "iopub.execute_input": "2024-08-21T00:44:15.877397Z", + "iopub.status.busy": "2024-08-21T00:44:15.876909Z", + "iopub.status.idle": "2024-08-21T00:44:16.071071Z", + "shell.execute_reply": "2024-08-21T00:44:16.070463Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:11.880496Z", - "iopub.status.busy": "2024-08-20T02:19:11.880001Z", - "iopub.status.idle": "2024-08-20T02:19:11.893035Z", - "shell.execute_reply": "2024-08-20T02:19:11.892560Z" + "iopub.execute_input": "2024-08-21T00:44:16.073651Z", + "iopub.status.busy": "2024-08-21T00:44:16.073324Z", + "iopub.status.idle": "2024-08-21T00:44:16.087152Z", + "shell.execute_reply": "2024-08-21T00:44:16.086700Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:11.895218Z", - "iopub.status.busy": "2024-08-20T02:19:11.894778Z", - "iopub.status.idle": "2024-08-20T02:19:14.510745Z", - "shell.execute_reply": "2024-08-20T02:19:14.510214Z" + "iopub.execute_input": "2024-08-21T00:44:16.089136Z", + "iopub.status.busy": "2024-08-21T00:44:16.088951Z", + "iopub.status.idle": "2024-08-21T00:44:18.704832Z", + "shell.execute_reply": "2024-08-21T00:44:18.704201Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:14.512935Z", - "iopub.status.busy": "2024-08-20T02:19:14.512739Z", - "iopub.status.idle": "2024-08-20T02:19:15.874543Z", - "shell.execute_reply": "2024-08-20T02:19:15.873988Z" + "iopub.execute_input": "2024-08-21T00:44:18.707234Z", + "iopub.status.busy": "2024-08-21T00:44:18.706898Z", + "iopub.status.idle": "2024-08-21T00:44:20.047215Z", + "shell.execute_reply": "2024-08-21T00:44:20.046656Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:15.876840Z", - "iopub.status.busy": "2024-08-20T02:19:15.876649Z", - "iopub.status.idle": "2024-08-20T02:19:15.880654Z", - "shell.execute_reply": "2024-08-20T02:19:15.880101Z" + "iopub.execute_input": "2024-08-21T00:44:20.049763Z", + "iopub.status.busy": "2024-08-21T00:44:20.049407Z", + "iopub.status.idle": "2024-08-21T00:44:20.053503Z", + "shell.execute_reply": "2024-08-21T00:44:20.052933Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:15.882794Z", - "iopub.status.busy": "2024-08-20T02:19:15.882352Z", - "iopub.status.idle": "2024-08-20T02:19:18.024351Z", - "shell.execute_reply": "2024-08-20T02:19:18.023702Z" + "iopub.execute_input": "2024-08-21T00:44:20.055507Z", + "iopub.status.busy": "2024-08-21T00:44:20.055225Z", + "iopub.status.idle": "2024-08-21T00:44:22.125480Z", + "shell.execute_reply": "2024-08-21T00:44:22.124862Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:18.026941Z", - "iopub.status.busy": "2024-08-20T02:19:18.026511Z", - "iopub.status.idle": "2024-08-20T02:19:18.035086Z", - "shell.execute_reply": "2024-08-20T02:19:18.034546Z" + "iopub.execute_input": "2024-08-21T00:44:22.128137Z", + "iopub.status.busy": "2024-08-21T00:44:22.127601Z", + "iopub.status.idle": "2024-08-21T00:44:22.135349Z", + "shell.execute_reply": "2024-08-21T00:44:22.134822Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:18.037295Z", - "iopub.status.busy": "2024-08-20T02:19:18.036946Z", - "iopub.status.idle": "2024-08-20T02:19:20.557491Z", - "shell.execute_reply": "2024-08-20T02:19:20.556891Z" + "iopub.execute_input": "2024-08-21T00:44:22.137450Z", + "iopub.status.busy": "2024-08-21T00:44:22.137123Z", + "iopub.status.idle": "2024-08-21T00:44:24.871164Z", + "shell.execute_reply": "2024-08-21T00:44:24.870540Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:20.559617Z", - "iopub.status.busy": "2024-08-20T02:19:20.559437Z", - "iopub.status.idle": "2024-08-20T02:19:20.563117Z", - "shell.execute_reply": "2024-08-20T02:19:20.562661Z" + "iopub.execute_input": "2024-08-21T00:44:24.873731Z", + "iopub.status.busy": "2024-08-21T00:44:24.873390Z", + "iopub.status.idle": "2024-08-21T00:44:24.877293Z", + "shell.execute_reply": "2024-08-21T00:44:24.876833Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:20.565077Z", - "iopub.status.busy": "2024-08-20T02:19:20.564763Z", - "iopub.status.idle": "2024-08-20T02:19:20.568388Z", - "shell.execute_reply": "2024-08-20T02:19:20.567836Z" + "iopub.execute_input": "2024-08-21T00:44:24.879356Z", + "iopub.status.busy": "2024-08-21T00:44:24.879021Z", + "iopub.status.idle": "2024-08-21T00:44:24.882335Z", + "shell.execute_reply": "2024-08-21T00:44:24.881908Z" } }, "outputs": [], @@ -769,10 +769,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:20.570408Z", - "iopub.status.busy": "2024-08-20T02:19:20.570101Z", - "iopub.status.idle": "2024-08-20T02:19:20.573344Z", - "shell.execute_reply": "2024-08-20T02:19:20.572863Z" + "iopub.execute_input": "2024-08-21T00:44:24.884241Z", + "iopub.status.busy": "2024-08-21T00:44:24.884064Z", + "iopub.status.idle": "2024-08-21T00:44:24.887414Z", + "shell.execute_reply": "2024-08-21T00:44:24.886955Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index 87cb82783..32d0f5ddc 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:23.360886Z", - "iopub.status.busy": "2024-08-20T02:19:23.360718Z", - "iopub.status.idle": "2024-08-20T02:19:24.792942Z", - "shell.execute_reply": "2024-08-20T02:19:24.792381Z" + "iopub.execute_input": "2024-08-21T00:44:27.446117Z", + "iopub.status.busy": "2024-08-21T00:44:27.445691Z", + "iopub.status.idle": "2024-08-21T00:44:28.649409Z", + "shell.execute_reply": "2024-08-21T00:44:28.648789Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:24.795672Z", - "iopub.status.busy": "2024-08-20T02:19:24.795198Z", - "iopub.status.idle": "2024-08-20T02:19:25.977880Z", - "shell.execute_reply": "2024-08-20T02:19:25.977145Z" + "iopub.execute_input": "2024-08-21T00:44:28.652026Z", + "iopub.status.busy": "2024-08-21T00:44:28.651696Z", + "iopub.status.idle": "2024-08-21T00:44:29.855030Z", + "shell.execute_reply": "2024-08-21T00:44:29.854307Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:25.980582Z", - "iopub.status.busy": "2024-08-20T02:19:25.980189Z", - "iopub.status.idle": "2024-08-20T02:19:25.983474Z", - "shell.execute_reply": "2024-08-20T02:19:25.983045Z" + "iopub.execute_input": "2024-08-21T00:44:29.857690Z", + "iopub.status.busy": "2024-08-21T00:44:29.857268Z", + "iopub.status.idle": "2024-08-21T00:44:29.860479Z", + "shell.execute_reply": "2024-08-21T00:44:29.859998Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:25.985536Z", - "iopub.status.busy": "2024-08-20T02:19:25.985218Z", - "iopub.status.idle": "2024-08-20T02:19:25.992912Z", - "shell.execute_reply": "2024-08-20T02:19:25.992481Z" + "iopub.execute_input": "2024-08-21T00:44:29.862482Z", + "iopub.status.busy": "2024-08-21T00:44:29.862134Z", + "iopub.status.idle": "2024-08-21T00:44:29.868426Z", + "shell.execute_reply": "2024-08-21T00:44:29.868003Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:25.995066Z", - "iopub.status.busy": "2024-08-20T02:19:25.994673Z", - "iopub.status.idle": "2024-08-20T02:19:26.314231Z", - "shell.execute_reply": "2024-08-20T02:19:26.313627Z" + "iopub.execute_input": "2024-08-21T00:44:29.870503Z", + "iopub.status.busy": "2024-08-21T00:44:29.870145Z", + "iopub.status.idle": "2024-08-21T00:44:30.361705Z", + "shell.execute_reply": "2024-08-21T00:44:30.361008Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:26.317208Z", - "iopub.status.busy": "2024-08-20T02:19:26.317004Z", - "iopub.status.idle": "2024-08-20T02:19:26.322547Z", - "shell.execute_reply": "2024-08-20T02:19:26.322090Z" + "iopub.execute_input": "2024-08-21T00:44:30.364838Z", + "iopub.status.busy": "2024-08-21T00:44:30.364463Z", + "iopub.status.idle": "2024-08-21T00:44:30.370026Z", + "shell.execute_reply": "2024-08-21T00:44:30.369463Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:26.324528Z", - "iopub.status.busy": "2024-08-20T02:19:26.324198Z", - "iopub.status.idle": "2024-08-20T02:19:26.328062Z", - "shell.execute_reply": "2024-08-20T02:19:26.327504Z" + "iopub.execute_input": "2024-08-21T00:44:30.372147Z", + "iopub.status.busy": "2024-08-21T00:44:30.371809Z", + "iopub.status.idle": "2024-08-21T00:44:30.375913Z", + "shell.execute_reply": "2024-08-21T00:44:30.375349Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:26.330057Z", - "iopub.status.busy": "2024-08-20T02:19:26.329758Z", - "iopub.status.idle": "2024-08-20T02:19:27.344062Z", - "shell.execute_reply": "2024-08-20T02:19:27.343427Z" + "iopub.execute_input": "2024-08-21T00:44:30.378099Z", + "iopub.status.busy": "2024-08-21T00:44:30.377758Z", + "iopub.status.idle": "2024-08-21T00:44:31.233478Z", + "shell.execute_reply": "2024-08-21T00:44:31.232810Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:27.346665Z", - "iopub.status.busy": "2024-08-20T02:19:27.346299Z", - "iopub.status.idle": "2024-08-20T02:19:27.553795Z", - "shell.execute_reply": "2024-08-20T02:19:27.553289Z" + "iopub.execute_input": "2024-08-21T00:44:31.236084Z", + "iopub.status.busy": "2024-08-21T00:44:31.235599Z", + "iopub.status.idle": "2024-08-21T00:44:31.476832Z", + "shell.execute_reply": "2024-08-21T00:44:31.476343Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:27.555986Z", - "iopub.status.busy": "2024-08-20T02:19:27.555679Z", - "iopub.status.idle": "2024-08-20T02:19:27.559876Z", - "shell.execute_reply": "2024-08-20T02:19:27.559433Z" + "iopub.execute_input": "2024-08-21T00:44:31.479096Z", + "iopub.status.busy": "2024-08-21T00:44:31.478660Z", + "iopub.status.idle": "2024-08-21T00:44:31.483153Z", + "shell.execute_reply": "2024-08-21T00:44:31.482587Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:27.561898Z", - "iopub.status.busy": "2024-08-20T02:19:27.561565Z", - "iopub.status.idle": "2024-08-20T02:19:27.928742Z", - "shell.execute_reply": "2024-08-20T02:19:27.928127Z" + "iopub.execute_input": "2024-08-21T00:44:31.485319Z", + "iopub.status.busy": "2024-08-21T00:44:31.484888Z", + "iopub.status.idle": "2024-08-21T00:44:31.942164Z", + "shell.execute_reply": "2024-08-21T00:44:31.941558Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:27.931148Z", - "iopub.status.busy": "2024-08-20T02:19:27.930962Z", - "iopub.status.idle": "2024-08-20T02:19:28.265530Z", - "shell.execute_reply": "2024-08-20T02:19:28.264985Z" + "iopub.execute_input": "2024-08-21T00:44:31.945300Z", + "iopub.status.busy": "2024-08-21T00:44:31.945115Z", + "iopub.status.idle": "2024-08-21T00:44:32.281383Z", + "shell.execute_reply": "2024-08-21T00:44:32.280733Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:28.267564Z", - "iopub.status.busy": "2024-08-20T02:19:28.267388Z", - "iopub.status.idle": "2024-08-20T02:19:28.634288Z", - "shell.execute_reply": "2024-08-20T02:19:28.633645Z" + "iopub.execute_input": "2024-08-21T00:44:32.283744Z", + "iopub.status.busy": "2024-08-21T00:44:32.283409Z", + "iopub.status.idle": "2024-08-21T00:44:32.647591Z", + "shell.execute_reply": "2024-08-21T00:44:32.647010Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:28.637582Z", - "iopub.status.busy": "2024-08-20T02:19:28.637364Z", - "iopub.status.idle": "2024-08-20T02:19:29.079339Z", - "shell.execute_reply": "2024-08-20T02:19:29.078714Z" + "iopub.execute_input": "2024-08-21T00:44:32.650921Z", + "iopub.status.busy": "2024-08-21T00:44:32.650725Z", + "iopub.status.idle": "2024-08-21T00:44:33.090696Z", + "shell.execute_reply": "2024-08-21T00:44:33.090049Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:29.083840Z", - "iopub.status.busy": "2024-08-20T02:19:29.083451Z", - "iopub.status.idle": "2024-08-20T02:19:29.516951Z", - "shell.execute_reply": "2024-08-20T02:19:29.516329Z" + "iopub.execute_input": "2024-08-21T00:44:33.095146Z", + "iopub.status.busy": "2024-08-21T00:44:33.094951Z", + "iopub.status.idle": "2024-08-21T00:44:33.515097Z", + "shell.execute_reply": "2024-08-21T00:44:33.514471Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:29.519252Z", - "iopub.status.busy": "2024-08-20T02:19:29.518938Z", - "iopub.status.idle": "2024-08-20T02:19:29.737047Z", - "shell.execute_reply": "2024-08-20T02:19:29.736513Z" + "iopub.execute_input": "2024-08-21T00:44:33.518293Z", + "iopub.status.busy": "2024-08-21T00:44:33.518095Z", + "iopub.status.idle": "2024-08-21T00:44:33.709538Z", + "shell.execute_reply": "2024-08-21T00:44:33.708870Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:29.739475Z", - "iopub.status.busy": "2024-08-20T02:19:29.739154Z", - "iopub.status.idle": "2024-08-20T02:19:29.938318Z", - "shell.execute_reply": "2024-08-20T02:19:29.937762Z" + "iopub.execute_input": "2024-08-21T00:44:33.712115Z", + "iopub.status.busy": "2024-08-21T00:44:33.711896Z", + "iopub.status.idle": "2024-08-21T00:44:33.894449Z", + "shell.execute_reply": "2024-08-21T00:44:33.893894Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:29.941047Z", - "iopub.status.busy": "2024-08-20T02:19:29.940662Z", - "iopub.status.idle": "2024-08-20T02:19:29.943743Z", - "shell.execute_reply": "2024-08-20T02:19:29.943177Z" + "iopub.execute_input": "2024-08-21T00:44:33.897345Z", + "iopub.status.busy": "2024-08-21T00:44:33.896986Z", + "iopub.status.idle": "2024-08-21T00:44:33.899743Z", + "shell.execute_reply": "2024-08-21T00:44:33.899308Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:29.945776Z", - "iopub.status.busy": "2024-08-20T02:19:29.945606Z", - "iopub.status.idle": "2024-08-20T02:19:30.990728Z", - "shell.execute_reply": "2024-08-20T02:19:30.990184Z" + "iopub.execute_input": "2024-08-21T00:44:33.901739Z", + "iopub.status.busy": "2024-08-21T00:44:33.901417Z", + "iopub.status.idle": "2024-08-21T00:44:34.864741Z", + "shell.execute_reply": "2024-08-21T00:44:34.864144Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:30.993374Z", - "iopub.status.busy": "2024-08-20T02:19:30.993177Z", - "iopub.status.idle": "2024-08-20T02:19:31.135358Z", - "shell.execute_reply": "2024-08-20T02:19:31.134850Z" + "iopub.execute_input": "2024-08-21T00:44:34.867449Z", + "iopub.status.busy": "2024-08-21T00:44:34.867242Z", + "iopub.status.idle": "2024-08-21T00:44:35.005594Z", + "shell.execute_reply": "2024-08-21T00:44:35.005140Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:31.137483Z", - "iopub.status.busy": "2024-08-20T02:19:31.137182Z", - "iopub.status.idle": "2024-08-20T02:19:31.361162Z", - "shell.execute_reply": "2024-08-20T02:19:31.360532Z" + "iopub.execute_input": "2024-08-21T00:44:35.007763Z", + "iopub.status.busy": "2024-08-21T00:44:35.007407Z", + "iopub.status.idle": "2024-08-21T00:44:35.145240Z", + "shell.execute_reply": "2024-08-21T00:44:35.144745Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:31.363266Z", - "iopub.status.busy": "2024-08-20T02:19:31.363077Z", - "iopub.status.idle": "2024-08-20T02:19:32.051327Z", - "shell.execute_reply": "2024-08-20T02:19:32.050669Z" + "iopub.execute_input": "2024-08-21T00:44:35.147522Z", + "iopub.status.busy": "2024-08-21T00:44:35.147162Z", + "iopub.status.idle": "2024-08-21T00:44:35.837392Z", + "shell.execute_reply": "2024-08-21T00:44:35.836743Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:32.053777Z", - "iopub.status.busy": "2024-08-20T02:19:32.053483Z", - "iopub.status.idle": "2024-08-20T02:19:32.057205Z", - "shell.execute_reply": "2024-08-20T02:19:32.056645Z" + "iopub.execute_input": "2024-08-21T00:44:35.839731Z", + "iopub.status.busy": "2024-08-21T00:44:35.839542Z", + "iopub.status.idle": "2024-08-21T00:44:35.843337Z", + "shell.execute_reply": "2024-08-21T00:44:35.842774Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index d44506520..121ffa164 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:34.499280Z", - "iopub.status.busy": "2024-08-20T02:19:34.498882Z", - "iopub.status.idle": "2024-08-20T02:19:37.717028Z", - "shell.execute_reply": "2024-08-20T02:19:37.716470Z" + "iopub.execute_input": "2024-08-21T00:44:38.066360Z", + "iopub.status.busy": "2024-08-21T00:44:38.066183Z", + "iopub.status.idle": "2024-08-21T00:44:40.896600Z", + "shell.execute_reply": "2024-08-21T00:44:40.896031Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:37.719892Z", - "iopub.status.busy": "2024-08-20T02:19:37.719263Z", - "iopub.status.idle": "2024-08-20T02:19:37.738735Z", - "shell.execute_reply": "2024-08-20T02:19:37.738151Z" + "iopub.execute_input": "2024-08-21T00:44:40.899402Z", + "iopub.status.busy": "2024-08-21T00:44:40.898897Z", + "iopub.status.idle": "2024-08-21T00:44:41.226395Z", + "shell.execute_reply": "2024-08-21T00:44:41.225910Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:37.741325Z", - "iopub.status.busy": "2024-08-20T02:19:37.740862Z", - "iopub.status.idle": "2024-08-20T02:19:37.745006Z", - "shell.execute_reply": "2024-08-20T02:19:37.744463Z" + "iopub.execute_input": "2024-08-21T00:44:41.228949Z", + "iopub.status.busy": "2024-08-21T00:44:41.228477Z", + "iopub.status.idle": "2024-08-21T00:44:41.232327Z", + "shell.execute_reply": "2024-08-21T00:44:41.231896Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:37.747360Z", - "iopub.status.busy": "2024-08-20T02:19:37.747036Z", - "iopub.status.idle": "2024-08-20T02:19:42.256454Z", - "shell.execute_reply": "2024-08-20T02:19:42.255864Z" + "iopub.execute_input": "2024-08-21T00:44:41.234396Z", + "iopub.status.busy": "2024-08-21T00:44:41.234010Z", + "iopub.status.idle": "2024-08-21T00:44:46.003284Z", + "shell.execute_reply": "2024-08-21T00:44:46.002701Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 851968/170498071 [00:00<00:21, 7726348.04it/s]" + " 1%| | 917504/170498071 [00:00<00:20, 8249212.65it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▋ | 10715136/170498071 [00:00<00:02, 58990173.15it/s]" + " 5%|▌ | 9306112/170498071 [00:00<00:03, 50615669.56it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 21692416/170498071 [00:00<00:01, 81629044.14it/s]" + " 10%|█ | 17891328/170498071 [00:00<00:02, 66243488.74it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 32604160/170498071 [00:00<00:01, 92256260.34it/s]" + " 16%|█▋ | 27983872/170498071 [00:00<00:01, 79535198.51it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 44007424/170498071 [00:00<00:01, 100003938.21it/s]" + " 21%|██ | 36208640/170498071 [00:00<00:01, 80500379.19it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 54886400/170498071 [00:00<00:01, 102923099.77it/s]" + " 27%|██▋ | 46039040/170498071 [00:00<00:01, 86481939.37it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 65667072/170498071 [00:00<00:01, 104452371.65it/s]" + " 32%|███▏ | 54755328/170498071 [00:00<00:01, 86441499.46it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 76972032/170498071 [00:00<00:00, 107058916.63it/s]" + " 38%|███▊ | 64061440/170498071 [00:00<00:01, 88437234.98it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 87719936/170498071 [00:00<00:00, 106652264.44it/s]" + " 43%|████▎ | 72941568/170498071 [00:00<00:01, 88504042.73it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 98435072/170498071 [00:01<00:00, 104959293.28it/s]" + " 48%|████▊ | 81920000/170498071 [00:01<00:00, 88819896.51it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 109477888/170498071 [00:01<00:00, 106599779.14it/s]" + " 53%|█████▎ | 91160576/170498071 [00:01<00:00, 89878347.40it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 120160256/170498071 [00:01<00:00, 105376043.64it/s]" + " 59%|█████▉ | 100171776/170498071 [00:01<00:00, 88552034.31it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 130711552/170498071 [00:01<00:00, 100681796.58it/s]" + " 64%|██████▍ | 109608960/170498071 [00:01<00:00, 90217856.34it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 141819904/170498071 [00:01<00:00, 103650641.61it/s]" + " 70%|██████▉ | 118652928/170498071 [00:01<00:00, 88798720.02it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 152240128/170498071 [00:01<00:00, 102641067.98it/s]" + " 75%|███████▌ | 128450560/170498071 [00:01<00:00, 91496573.36it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 162562048/170498071 [00:01<00:00, 100813373.82it/s]" + " 81%|████████ | 137625600/170498071 [00:01<00:00, 89580266.26it/s]" ] }, { @@ -380,7 +380,31 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:01<00:00, 99039292.87it/s] " + " 86%|████████▋ | 147128320/170498071 [00:01<00:00, 91113760.17it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 92%|█████████▏| 156270592/170498071 [00:01<00:00, 89857702.55it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 97%|█████████▋| 165773312/170498071 [00:01<00:00, 91343882.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:01<00:00, 85531172.07it/s]" ] }, { @@ -498,10 +522,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:42.258763Z", - "iopub.status.busy": "2024-08-20T02:19:42.258577Z", - "iopub.status.idle": "2024-08-20T02:19:42.263590Z", - "shell.execute_reply": "2024-08-20T02:19:42.263140Z" + "iopub.execute_input": "2024-08-21T00:44:46.005425Z", + "iopub.status.busy": "2024-08-21T00:44:46.005245Z", + "iopub.status.idle": "2024-08-21T00:44:46.010091Z", + "shell.execute_reply": "2024-08-21T00:44:46.009632Z" }, "nbsphinx": "hidden" }, @@ -552,10 +576,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:42.265560Z", - "iopub.status.busy": "2024-08-20T02:19:42.265239Z", - "iopub.status.idle": "2024-08-20T02:19:42.792402Z", - "shell.execute_reply": "2024-08-20T02:19:42.791889Z" + "iopub.execute_input": "2024-08-21T00:44:46.012218Z", + "iopub.status.busy": "2024-08-21T00:44:46.011792Z", + "iopub.status.idle": "2024-08-21T00:44:46.552461Z", + "shell.execute_reply": "2024-08-21T00:44:46.551864Z" } }, "outputs": [ @@ -588,10 +612,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:42.794517Z", - "iopub.status.busy": "2024-08-20T02:19:42.794333Z", - "iopub.status.idle": "2024-08-20T02:19:43.311733Z", - "shell.execute_reply": "2024-08-20T02:19:43.311064Z" + "iopub.execute_input": "2024-08-21T00:44:46.554759Z", + "iopub.status.busy": "2024-08-21T00:44:46.554411Z", + "iopub.status.idle": "2024-08-21T00:44:47.061482Z", + "shell.execute_reply": "2024-08-21T00:44:47.060868Z" } }, "outputs": [ @@ -629,10 +653,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:43.313896Z", - "iopub.status.busy": "2024-08-20T02:19:43.313703Z", - "iopub.status.idle": "2024-08-20T02:19:43.317387Z", - "shell.execute_reply": "2024-08-20T02:19:43.316911Z" + "iopub.execute_input": "2024-08-21T00:44:47.063597Z", + "iopub.status.busy": "2024-08-21T00:44:47.063395Z", + "iopub.status.idle": "2024-08-21T00:44:47.067074Z", + "shell.execute_reply": "2024-08-21T00:44:47.066614Z" } }, "outputs": [], @@ -655,17 +679,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:43.319247Z", - "iopub.status.busy": "2024-08-20T02:19:43.319077Z", - "iopub.status.idle": "2024-08-20T02:19:55.699364Z", - "shell.execute_reply": "2024-08-20T02:19:55.698752Z" + "iopub.execute_input": "2024-08-21T00:44:47.069202Z", + "iopub.status.busy": "2024-08-21T00:44:47.068736Z", + "iopub.status.idle": "2024-08-21T00:44:59.482222Z", + "shell.execute_reply": "2024-08-21T00:44:59.481608Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "642acd4483d444aba595b064e7e139f2", + "model_id": "2aece906d5414d149f1b677c20ee62ea", "version_major": 2, "version_minor": 0 }, @@ -724,10 +748,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:55.702022Z", - "iopub.status.busy": "2024-08-20T02:19:55.701836Z", - "iopub.status.idle": "2024-08-20T02:19:57.881011Z", - "shell.execute_reply": "2024-08-20T02:19:57.880414Z" + "iopub.execute_input": "2024-08-21T00:44:59.484767Z", + "iopub.status.busy": "2024-08-21T00:44:59.484373Z", + "iopub.status.idle": "2024-08-21T00:45:01.580531Z", + "shell.execute_reply": "2024-08-21T00:45:01.579978Z" } }, "outputs": [ @@ -771,10 +795,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:57.883556Z", - "iopub.status.busy": "2024-08-20T02:19:57.883182Z", - "iopub.status.idle": "2024-08-20T02:19:58.113830Z", - "shell.execute_reply": "2024-08-20T02:19:58.113258Z" + "iopub.execute_input": "2024-08-21T00:45:01.583216Z", + "iopub.status.busy": "2024-08-21T00:45:01.582715Z", + "iopub.status.idle": "2024-08-21T00:45:01.835720Z", + "shell.execute_reply": "2024-08-21T00:45:01.835061Z" } }, "outputs": [ @@ -810,10 +834,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:58.116207Z", - "iopub.status.busy": "2024-08-20T02:19:58.116028Z", - "iopub.status.idle": "2024-08-20T02:19:58.775793Z", - "shell.execute_reply": "2024-08-20T02:19:58.775175Z" + "iopub.execute_input": "2024-08-21T00:45:01.838410Z", + "iopub.status.busy": "2024-08-21T00:45:01.838179Z", + "iopub.status.idle": "2024-08-21T00:45:02.484647Z", + "shell.execute_reply": "2024-08-21T00:45:02.484044Z" } }, "outputs": [ @@ -863,10 +887,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:58.778247Z", - "iopub.status.busy": "2024-08-20T02:19:58.778067Z", - "iopub.status.idle": "2024-08-20T02:19:59.073646Z", - "shell.execute_reply": "2024-08-20T02:19:59.073079Z" + "iopub.execute_input": "2024-08-21T00:45:02.487053Z", + "iopub.status.busy": "2024-08-21T00:45:02.486880Z", + "iopub.status.idle": "2024-08-21T00:45:02.775155Z", + "shell.execute_reply": "2024-08-21T00:45:02.774552Z" } }, "outputs": [ @@ -914,10 +938,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:59.075669Z", - "iopub.status.busy": "2024-08-20T02:19:59.075494Z", - "iopub.status.idle": "2024-08-20T02:19:59.313635Z", - "shell.execute_reply": "2024-08-20T02:19:59.313009Z" + "iopub.execute_input": "2024-08-21T00:45:02.777542Z", + "iopub.status.busy": "2024-08-21T00:45:02.777200Z", + "iopub.status.idle": "2024-08-21T00:45:03.004237Z", + "shell.execute_reply": "2024-08-21T00:45:03.003698Z" } }, "outputs": [ @@ -973,10 +997,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:59.316178Z", - "iopub.status.busy": "2024-08-20T02:19:59.315831Z", - "iopub.status.idle": "2024-08-20T02:19:59.397580Z", - "shell.execute_reply": "2024-08-20T02:19:59.396927Z" + "iopub.execute_input": "2024-08-21T00:45:03.006715Z", + "iopub.status.busy": "2024-08-21T00:45:03.006213Z", + "iopub.status.idle": "2024-08-21T00:45:03.079353Z", + "shell.execute_reply": "2024-08-21T00:45:03.078862Z" } }, "outputs": [], @@ -997,10 +1021,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:59.400410Z", - "iopub.status.busy": "2024-08-20T02:19:59.399851Z", - "iopub.status.idle": "2024-08-20T02:20:09.496202Z", - "shell.execute_reply": "2024-08-20T02:20:09.495583Z" + "iopub.execute_input": "2024-08-21T00:45:03.081841Z", + "iopub.status.busy": "2024-08-21T00:45:03.081489Z", + "iopub.status.idle": "2024-08-21T00:45:13.396780Z", + "shell.execute_reply": "2024-08-21T00:45:13.396110Z" } }, "outputs": [ @@ -1037,10 +1061,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:09.498840Z", - "iopub.status.busy": "2024-08-20T02:20:09.498416Z", - "iopub.status.idle": "2024-08-20T02:20:11.827863Z", - "shell.execute_reply": "2024-08-20T02:20:11.827207Z" + "iopub.execute_input": "2024-08-21T00:45:13.399549Z", + "iopub.status.busy": "2024-08-21T00:45:13.398957Z", + "iopub.status.idle": "2024-08-21T00:45:15.614825Z", + "shell.execute_reply": "2024-08-21T00:45:15.614327Z" } }, "outputs": [ @@ -1071,10 +1095,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:11.830805Z", - "iopub.status.busy": "2024-08-20T02:20:11.830187Z", - "iopub.status.idle": "2024-08-20T02:20:12.036080Z", - "shell.execute_reply": "2024-08-20T02:20:12.035582Z" + "iopub.execute_input": "2024-08-21T00:45:15.617532Z", + "iopub.status.busy": "2024-08-21T00:45:15.616897Z", + "iopub.status.idle": "2024-08-21T00:45:15.830910Z", + "shell.execute_reply": "2024-08-21T00:45:15.830305Z" } }, "outputs": [], @@ -1088,10 +1112,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:12.038552Z", - "iopub.status.busy": "2024-08-20T02:20:12.038185Z", - "iopub.status.idle": "2024-08-20T02:20:12.041256Z", - "shell.execute_reply": "2024-08-20T02:20:12.040807Z" + "iopub.execute_input": "2024-08-21T00:45:15.833496Z", + "iopub.status.busy": "2024-08-21T00:45:15.833180Z", + "iopub.status.idle": "2024-08-21T00:45:15.836370Z", + "shell.execute_reply": "2024-08-21T00:45:15.835883Z" } }, "outputs": [], @@ -1129,10 +1153,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:12.043442Z", - "iopub.status.busy": "2024-08-20T02:20:12.043116Z", - "iopub.status.idle": "2024-08-20T02:20:12.051808Z", - "shell.execute_reply": "2024-08-20T02:20:12.051353Z" + "iopub.execute_input": "2024-08-21T00:45:15.838493Z", + "iopub.status.busy": "2024-08-21T00:45:15.838071Z", + "iopub.status.idle": "2024-08-21T00:45:15.846417Z", + "shell.execute_reply": "2024-08-21T00:45:15.845889Z" }, "nbsphinx": "hidden" }, @@ -1177,7 +1201,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "169d58f4735041f7a00a218864eaf538": { + "05cb4eceb3ba4299af1cc0c45c1f092f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1195,7 +1219,7 @@ "text_color": null } }, - "2b9840e8eb314e8ba7b76bccb5b7d86b": { + "176ee49c435f4edf9d7acb298474bcdb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1248,7 +1272,88 @@ "width": null } }, - "482db617aa45471dbd4788d5ea3eaf8d": { + "20c649fead4345b59c9999de2c49dda6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_728c44e458d84e538ef30537097e692f", + "placeholder": "​", + "style": "IPY_MODEL_05cb4eceb3ba4299af1cc0c45c1f092f", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 229MB/s]" + } + }, + "21025599e811444b9ac64a873166ceb5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2278bbdcd34d42c685310e394def87da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2aece906d5414d149f1b677c20ee62ea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7a2cd802a8d24314a46149b1d522ec92", + "IPY_MODEL_3acfa8bb44be4473a45db7c728dc9a96", + "IPY_MODEL_20c649fead4345b59c9999de2c49dda6" + ], + "layout": "IPY_MODEL_176ee49c435f4edf9d7acb298474bcdb", + "tabbable": null, + "tooltip": null + } + }, + "350df538a7eb407fb0e4a66284132eea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1301,47 +1406,33 @@ "width": null } }, - "642acd4483d444aba595b064e7e139f2": { + "3acfa8bb44be4473a45db7c728dc9a96": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b8d81524ba4c4b99ab6d0d6217cf18c8", - "IPY_MODEL_c8851ece38b7471fb2bda870c287b422", - "IPY_MODEL_f91634ed9c494ec4a95bbc683c0d5570" - ], - "layout": "IPY_MODEL_f1c1be1a57e44c73a36e7a8d3ac16f26", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_350df538a7eb407fb0e4a66284132eea", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_21025599e811444b9ac64a873166ceb5", "tabbable": null, - "tooltip": null - } - }, - "a673b7221a2a4306a9d68253bd529778": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null, + "value": 102469840.0 } }, - "b2d6e40503a2481bbf4ebb46fcfd3dde": { + "45d23e20356141f8b282232e7a970845": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1394,56 +1485,7 @@ "width": null } }, - "b8d81524ba4c4b99ab6d0d6217cf18c8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2b9840e8eb314e8ba7b76bccb5b7d86b", - "placeholder": "​", - "style": "IPY_MODEL_169d58f4735041f7a00a218864eaf538", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" - } - }, - "c8851ece38b7471fb2bda870c287b422": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_482db617aa45471dbd4788d5ea3eaf8d", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a673b7221a2a4306a9d68253bd529778", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "f1c1be1a57e44c73a36e7a8d3ac16f26": { + "728c44e458d84e538ef30537097e692f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1496,25 +1538,7 @@ "width": null } }, - "f8338a6f5da64d57b669fd0a68596611": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f91634ed9c494ec4a95bbc683c0d5570": { + "7a2cd802a8d24314a46149b1d522ec92": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1529,12 +1553,12 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b2d6e40503a2481bbf4ebb46fcfd3dde", + "layout": "IPY_MODEL_45d23e20356141f8b282232e7a970845", "placeholder": "​", - "style": "IPY_MODEL_f8338a6f5da64d57b669fd0a68596611", + "style": "IPY_MODEL_2278bbdcd34d42c685310e394def87da", "tabbable": null, "tooltip": null, - "value": " 102M/102M [00:00<00:00, 269MB/s]" + "value": "model.safetensors: 100%" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index c266f0fdb..e8381488b 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:16.211959Z", - "iopub.status.busy": "2024-08-20T02:20:16.211775Z", - "iopub.status.idle": "2024-08-20T02:20:17.625109Z", - "shell.execute_reply": "2024-08-20T02:20:17.624532Z" + "iopub.execute_input": "2024-08-21T00:45:20.030885Z", + "iopub.status.busy": "2024-08-21T00:45:20.030716Z", + "iopub.status.idle": "2024-08-21T00:45:21.238274Z", + "shell.execute_reply": "2024-08-21T00:45:21.237657Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:17.627810Z", - "iopub.status.busy": "2024-08-20T02:20:17.627188Z", - "iopub.status.idle": "2024-08-20T02:20:17.646081Z", - "shell.execute_reply": "2024-08-20T02:20:17.645467Z" + "iopub.execute_input": "2024-08-21T00:45:21.240674Z", + "iopub.status.busy": "2024-08-21T00:45:21.240417Z", + "iopub.status.idle": "2024-08-21T00:45:21.258244Z", + "shell.execute_reply": "2024-08-21T00:45:21.257816Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:17.648526Z", - "iopub.status.busy": "2024-08-20T02:20:17.648175Z", - "iopub.status.idle": "2024-08-20T02:20:17.651475Z", - "shell.execute_reply": "2024-08-20T02:20:17.651004Z" + "iopub.execute_input": "2024-08-21T00:45:21.260491Z", + "iopub.status.busy": "2024-08-21T00:45:21.259990Z", + "iopub.status.idle": "2024-08-21T00:45:21.262962Z", + "shell.execute_reply": "2024-08-21T00:45:21.262506Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:17.653391Z", - "iopub.status.busy": "2024-08-20T02:20:17.653196Z", - "iopub.status.idle": "2024-08-20T02:20:17.738201Z", - "shell.execute_reply": "2024-08-20T02:20:17.737589Z" + "iopub.execute_input": "2024-08-21T00:45:21.264900Z", + "iopub.status.busy": "2024-08-21T00:45:21.264725Z", + "iopub.status.idle": "2024-08-21T00:45:21.356509Z", + "shell.execute_reply": "2024-08-21T00:45:21.356026Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:17.740445Z", - "iopub.status.busy": "2024-08-20T02:20:17.740254Z", - "iopub.status.idle": "2024-08-20T02:20:17.744806Z", - "shell.execute_reply": "2024-08-20T02:20:17.744337Z" + "iopub.execute_input": "2024-08-21T00:45:21.358702Z", + "iopub.status.busy": "2024-08-21T00:45:21.358375Z", + "iopub.status.idle": "2024-08-21T00:45:21.538107Z", + "shell.execute_reply": "2024-08-21T00:45:21.537485Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:17.746909Z", - "iopub.status.busy": "2024-08-20T02:20:17.746590Z", - "iopub.status.idle": "2024-08-20T02:20:17.995978Z", - "shell.execute_reply": "2024-08-20T02:20:17.995401Z" + "iopub.execute_input": "2024-08-21T00:45:21.540685Z", + "iopub.status.busy": "2024-08-21T00:45:21.540349Z", + "iopub.status.idle": "2024-08-21T00:45:21.783605Z", + "shell.execute_reply": "2024-08-21T00:45:21.783082Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:17.998260Z", - "iopub.status.busy": "2024-08-20T02:20:17.997904Z", - "iopub.status.idle": "2024-08-20T02:20:18.002417Z", - "shell.execute_reply": "2024-08-20T02:20:18.001833Z" + "iopub.execute_input": "2024-08-21T00:45:21.785804Z", + "iopub.status.busy": "2024-08-21T00:45:21.785616Z", + "iopub.status.idle": "2024-08-21T00:45:21.790197Z", + "shell.execute_reply": "2024-08-21T00:45:21.789742Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:18.004416Z", - "iopub.status.busy": "2024-08-20T02:20:18.004107Z", - "iopub.status.idle": "2024-08-20T02:20:18.010552Z", - "shell.execute_reply": "2024-08-20T02:20:18.010097Z" + "iopub.execute_input": "2024-08-21T00:45:21.792282Z", + "iopub.status.busy": "2024-08-21T00:45:21.791871Z", + "iopub.status.idle": "2024-08-21T00:45:21.798042Z", + "shell.execute_reply": "2024-08-21T00:45:21.797612Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:18.012700Z", - "iopub.status.busy": "2024-08-20T02:20:18.012394Z", - "iopub.status.idle": "2024-08-20T02:20:18.015066Z", - "shell.execute_reply": "2024-08-20T02:20:18.014531Z" + "iopub.execute_input": "2024-08-21T00:45:21.800226Z", + "iopub.status.busy": "2024-08-21T00:45:21.799851Z", + "iopub.status.idle": "2024-08-21T00:45:21.802377Z", + "shell.execute_reply": "2024-08-21T00:45:21.801941Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:18.016989Z", - "iopub.status.busy": "2024-08-20T02:20:18.016723Z", - "iopub.status.idle": "2024-08-20T02:20:27.069419Z", - "shell.execute_reply": "2024-08-20T02:20:27.068809Z" + "iopub.execute_input": "2024-08-21T00:45:21.804417Z", + "iopub.status.busy": "2024-08-21T00:45:21.803994Z", + "iopub.status.idle": "2024-08-21T00:45:30.720019Z", + "shell.execute_reply": "2024-08-21T00:45:30.719430Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:27.072424Z", - "iopub.status.busy": "2024-08-20T02:20:27.071784Z", - "iopub.status.idle": "2024-08-20T02:20:27.078857Z", - "shell.execute_reply": "2024-08-20T02:20:27.078386Z" + "iopub.execute_input": "2024-08-21T00:45:30.722952Z", + "iopub.status.busy": "2024-08-21T00:45:30.722298Z", + "iopub.status.idle": "2024-08-21T00:45:30.730061Z", + "shell.execute_reply": "2024-08-21T00:45:30.729593Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:27.080771Z", - "iopub.status.busy": "2024-08-20T02:20:27.080596Z", - "iopub.status.idle": "2024-08-20T02:20:27.084327Z", - "shell.execute_reply": "2024-08-20T02:20:27.083864Z" + "iopub.execute_input": "2024-08-21T00:45:30.732078Z", + "iopub.status.busy": "2024-08-21T00:45:30.731875Z", + "iopub.status.idle": "2024-08-21T00:45:30.735786Z", + "shell.execute_reply": "2024-08-21T00:45:30.735212Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:27.086155Z", - "iopub.status.busy": "2024-08-20T02:20:27.085985Z", - "iopub.status.idle": "2024-08-20T02:20:27.088961Z", - "shell.execute_reply": "2024-08-20T02:20:27.088413Z" + "iopub.execute_input": "2024-08-21T00:45:30.737738Z", + "iopub.status.busy": "2024-08-21T00:45:30.737562Z", + "iopub.status.idle": "2024-08-21T00:45:30.740611Z", + "shell.execute_reply": "2024-08-21T00:45:30.740093Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:27.090982Z", - "iopub.status.busy": "2024-08-20T02:20:27.090808Z", - "iopub.status.idle": "2024-08-20T02:20:27.093742Z", - "shell.execute_reply": "2024-08-20T02:20:27.093293Z" + "iopub.execute_input": "2024-08-21T00:45:30.742610Z", + "iopub.status.busy": "2024-08-21T00:45:30.742345Z", + "iopub.status.idle": "2024-08-21T00:45:30.745340Z", + "shell.execute_reply": "2024-08-21T00:45:30.744896Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:27.095505Z", - "iopub.status.busy": "2024-08-20T02:20:27.095333Z", - "iopub.status.idle": "2024-08-20T02:20:27.103648Z", - "shell.execute_reply": "2024-08-20T02:20:27.103189Z" + "iopub.execute_input": "2024-08-21T00:45:30.747324Z", + "iopub.status.busy": "2024-08-21T00:45:30.746923Z", + "iopub.status.idle": "2024-08-21T00:45:30.754976Z", + "shell.execute_reply": "2024-08-21T00:45:30.754402Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:27.105701Z", - "iopub.status.busy": "2024-08-20T02:20:27.105524Z", - "iopub.status.idle": "2024-08-20T02:20:27.108032Z", - "shell.execute_reply": "2024-08-20T02:20:27.107562Z" + "iopub.execute_input": "2024-08-21T00:45:30.756957Z", + "iopub.status.busy": "2024-08-21T00:45:30.756628Z", + "iopub.status.idle": "2024-08-21T00:45:30.759233Z", + "shell.execute_reply": "2024-08-21T00:45:30.758769Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:27.109992Z", - "iopub.status.busy": "2024-08-20T02:20:27.109810Z", - "iopub.status.idle": "2024-08-20T02:20:27.243262Z", - "shell.execute_reply": "2024-08-20T02:20:27.242644Z" + "iopub.execute_input": "2024-08-21T00:45:30.761134Z", + "iopub.status.busy": "2024-08-21T00:45:30.760955Z", + "iopub.status.idle": "2024-08-21T00:45:30.893602Z", + "shell.execute_reply": "2024-08-21T00:45:30.892927Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:27.245552Z", - "iopub.status.busy": "2024-08-20T02:20:27.245355Z", - "iopub.status.idle": "2024-08-20T02:20:27.361934Z", - "shell.execute_reply": "2024-08-20T02:20:27.361332Z" + "iopub.execute_input": "2024-08-21T00:45:30.896298Z", + "iopub.status.busy": "2024-08-21T00:45:30.895880Z", + "iopub.status.idle": "2024-08-21T00:45:31.004776Z", + "shell.execute_reply": "2024-08-21T00:45:31.004239Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:27.364305Z", - "iopub.status.busy": "2024-08-20T02:20:27.364121Z", - "iopub.status.idle": "2024-08-20T02:20:27.869112Z", - "shell.execute_reply": "2024-08-20T02:20:27.868560Z" + "iopub.execute_input": "2024-08-21T00:45:31.007132Z", + "iopub.status.busy": "2024-08-21T00:45:31.006711Z", + "iopub.status.idle": "2024-08-21T00:45:31.507243Z", + "shell.execute_reply": "2024-08-21T00:45:31.506612Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:27.871683Z", - "iopub.status.busy": "2024-08-20T02:20:27.871465Z", - "iopub.status.idle": "2024-08-20T02:20:27.968366Z", - "shell.execute_reply": "2024-08-20T02:20:27.967776Z" + "iopub.execute_input": "2024-08-21T00:45:31.510047Z", + "iopub.status.busy": "2024-08-21T00:45:31.509565Z", + "iopub.status.idle": "2024-08-21T00:45:31.607269Z", + "shell.execute_reply": "2024-08-21T00:45:31.606674Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:27.970537Z", - "iopub.status.busy": "2024-08-20T02:20:27.970355Z", - "iopub.status.idle": "2024-08-20T02:20:27.978993Z", - "shell.execute_reply": "2024-08-20T02:20:27.978433Z" + "iopub.execute_input": "2024-08-21T00:45:31.609387Z", + "iopub.status.busy": "2024-08-21T00:45:31.609207Z", + "iopub.status.idle": "2024-08-21T00:45:31.617879Z", + "shell.execute_reply": "2024-08-21T00:45:31.617346Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:27.980976Z", - "iopub.status.busy": "2024-08-20T02:20:27.980669Z", - "iopub.status.idle": "2024-08-20T02:20:27.983505Z", - "shell.execute_reply": "2024-08-20T02:20:27.982960Z" + "iopub.execute_input": "2024-08-21T00:45:31.619747Z", + "iopub.status.busy": "2024-08-21T00:45:31.619574Z", + "iopub.status.idle": "2024-08-21T00:45:31.622204Z", + "shell.execute_reply": "2024-08-21T00:45:31.621752Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:27.985617Z", - "iopub.status.busy": "2024-08-20T02:20:27.985178Z", - "iopub.status.idle": "2024-08-20T02:20:33.646162Z", - "shell.execute_reply": "2024-08-20T02:20:33.645558Z" + "iopub.execute_input": "2024-08-21T00:45:31.624156Z", + "iopub.status.busy": "2024-08-21T00:45:31.623983Z", + "iopub.status.idle": "2024-08-21T00:45:37.204902Z", + "shell.execute_reply": "2024-08-21T00:45:37.204285Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:33.648626Z", - "iopub.status.busy": "2024-08-20T02:20:33.648210Z", - "iopub.status.idle": "2024-08-20T02:20:33.657502Z", - "shell.execute_reply": "2024-08-20T02:20:33.656918Z" + "iopub.execute_input": "2024-08-21T00:45:37.207254Z", + "iopub.status.busy": "2024-08-21T00:45:37.206859Z", + "iopub.status.idle": "2024-08-21T00:45:37.215288Z", + "shell.execute_reply": "2024-08-21T00:45:37.214729Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:33.659776Z", - "iopub.status.busy": "2024-08-20T02:20:33.659372Z", - "iopub.status.idle": "2024-08-20T02:20:33.724158Z", - "shell.execute_reply": "2024-08-20T02:20:33.723533Z" + "iopub.execute_input": "2024-08-21T00:45:37.217502Z", + "iopub.status.busy": "2024-08-21T00:45:37.217153Z", + "iopub.status.idle": "2024-08-21T00:45:37.285251Z", + "shell.execute_reply": "2024-08-21T00:45:37.284642Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 4ac3af7d6..7b6da3e55 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:36.888231Z", - "iopub.status.busy": "2024-08-20T02:20:36.888053Z", - "iopub.status.idle": "2024-08-20T02:20:38.537307Z", - "shell.execute_reply": "2024-08-20T02:20:38.536594Z" + "iopub.execute_input": "2024-08-21T00:45:40.466811Z", + "iopub.status.busy": "2024-08-21T00:45:40.466640Z", + "iopub.status.idle": "2024-08-21T00:45:42.883520Z", + "shell.execute_reply": "2024-08-21T00:45:42.882755Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:38.540226Z", - "iopub.status.busy": "2024-08-20T02:20:38.539748Z", - "iopub.status.idle": "2024-08-20T02:22:01.964653Z", - "shell.execute_reply": "2024-08-20T02:22:01.963964Z" + "iopub.execute_input": "2024-08-21T00:45:42.886008Z", + "iopub.status.busy": "2024-08-21T00:45:42.885816Z", + "iopub.status.idle": "2024-08-21T00:46:48.432528Z", + "shell.execute_reply": "2024-08-21T00:46:48.431818Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:22:01.967334Z", - "iopub.status.busy": "2024-08-20T02:22:01.966936Z", - "iopub.status.idle": "2024-08-20T02:22:03.406051Z", - "shell.execute_reply": "2024-08-20T02:22:03.405489Z" + "iopub.execute_input": "2024-08-21T00:46:48.435091Z", + "iopub.status.busy": "2024-08-21T00:46:48.434899Z", + "iopub.status.idle": "2024-08-21T00:46:49.596397Z", + "shell.execute_reply": "2024-08-21T00:46:49.595894Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:22:03.408486Z", - "iopub.status.busy": "2024-08-20T02:22:03.408194Z", - "iopub.status.idle": "2024-08-20T02:22:03.411443Z", - "shell.execute_reply": "2024-08-20T02:22:03.410981Z" + "iopub.execute_input": "2024-08-21T00:46:49.598800Z", + "iopub.status.busy": "2024-08-21T00:46:49.598484Z", + "iopub.status.idle": "2024-08-21T00:46:49.601969Z", + "shell.execute_reply": "2024-08-21T00:46:49.601513Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:22:03.413581Z", - "iopub.status.busy": "2024-08-20T02:22:03.413241Z", - "iopub.status.idle": "2024-08-20T02:22:03.417640Z", - "shell.execute_reply": "2024-08-20T02:22:03.417037Z" + "iopub.execute_input": "2024-08-21T00:46:49.604008Z", + "iopub.status.busy": "2024-08-21T00:46:49.603652Z", + "iopub.status.idle": "2024-08-21T00:46:49.607367Z", + "shell.execute_reply": "2024-08-21T00:46:49.606937Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:22:03.419956Z", - "iopub.status.busy": "2024-08-20T02:22:03.419536Z", - "iopub.status.idle": "2024-08-20T02:22:03.423128Z", - "shell.execute_reply": "2024-08-20T02:22:03.422694Z" + "iopub.execute_input": "2024-08-21T00:46:49.609599Z", + "iopub.status.busy": "2024-08-21T00:46:49.609187Z", + "iopub.status.idle": "2024-08-21T00:46:49.612699Z", + "shell.execute_reply": "2024-08-21T00:46:49.612255Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:22:03.425108Z", - "iopub.status.busy": "2024-08-20T02:22:03.424794Z", - "iopub.status.idle": "2024-08-20T02:22:03.427666Z", - "shell.execute_reply": "2024-08-20T02:22:03.427206Z" + "iopub.execute_input": "2024-08-21T00:46:49.614723Z", + "iopub.status.busy": "2024-08-21T00:46:49.614324Z", + "iopub.status.idle": "2024-08-21T00:46:49.617188Z", + "shell.execute_reply": "2024-08-21T00:46:49.616743Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:22:03.429508Z", - "iopub.status.busy": "2024-08-20T02:22:03.429330Z", - "iopub.status.idle": "2024-08-20T02:22:41.737114Z", - "shell.execute_reply": "2024-08-20T02:22:41.736373Z" + "iopub.execute_input": "2024-08-21T00:46:49.619230Z", + "iopub.status.busy": "2024-08-21T00:46:49.618837Z", + "iopub.status.idle": "2024-08-21T00:47:27.817727Z", + "shell.execute_reply": "2024-08-21T00:47:27.816997Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "20304eeec37340f3bf2a39a2a20b2a67", + "model_id": "5990bcf3d14946b580823f2cc6231b4d", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8c7558622fee406090521d6bf9363191", + "model_id": "e932bfd1a1e2432aa3d1c447df10a9f1", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:22:41.739813Z", - "iopub.status.busy": "2024-08-20T02:22:41.739590Z", - "iopub.status.idle": "2024-08-20T02:22:42.185977Z", - "shell.execute_reply": "2024-08-20T02:22:42.185387Z" + "iopub.execute_input": "2024-08-21T00:47:27.820727Z", + "iopub.status.busy": "2024-08-21T00:47:27.820316Z", + "iopub.status.idle": "2024-08-21T00:47:28.498355Z", + "shell.execute_reply": "2024-08-21T00:47:28.497855Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:22:42.188223Z", - "iopub.status.busy": "2024-08-20T02:22:42.187806Z", - "iopub.status.idle": "2024-08-20T02:22:45.261325Z", - "shell.execute_reply": "2024-08-20T02:22:45.260739Z" + "iopub.execute_input": "2024-08-21T00:47:28.500634Z", + "iopub.status.busy": "2024-08-21T00:47:28.500194Z", + "iopub.status.idle": "2024-08-21T00:47:31.527168Z", + "shell.execute_reply": "2024-08-21T00:47:31.526595Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:22:45.263692Z", - "iopub.status.busy": "2024-08-20T02:22:45.263239Z", - "iopub.status.idle": "2024-08-20T02:23:18.319788Z", - "shell.execute_reply": "2024-08-20T02:23:18.319233Z" + "iopub.execute_input": "2024-08-21T00:47:31.529441Z", + "iopub.status.busy": "2024-08-21T00:47:31.529101Z", + "iopub.status.idle": "2024-08-21T00:48:04.004533Z", + "shell.execute_reply": "2024-08-21T00:48:04.004033Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a8201274110a4756b2e8dcd5b6c33705", + "model_id": "5297291313004a85837ee0d01806ef8b", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:23:18.322035Z", - "iopub.status.busy": "2024-08-20T02:23:18.321611Z", - "iopub.status.idle": "2024-08-20T02:23:33.160852Z", - "shell.execute_reply": "2024-08-20T02:23:33.160296Z" + "iopub.execute_input": "2024-08-21T00:48:04.006657Z", + "iopub.status.busy": "2024-08-21T00:48:04.006345Z", + "iopub.status.idle": "2024-08-21T00:48:19.210511Z", + "shell.execute_reply": "2024-08-21T00:48:19.209851Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:23:33.163471Z", - "iopub.status.busy": "2024-08-20T02:23:33.163029Z", - "iopub.status.idle": "2024-08-20T02:23:37.018940Z", - "shell.execute_reply": "2024-08-20T02:23:37.018366Z" + "iopub.execute_input": "2024-08-21T00:48:19.212955Z", + "iopub.status.busy": "2024-08-21T00:48:19.212766Z", + "iopub.status.idle": "2024-08-21T00:48:23.062562Z", + "shell.execute_reply": "2024-08-21T00:48:23.062040Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:23:37.021102Z", - "iopub.status.busy": "2024-08-20T02:23:37.020906Z", - "iopub.status.idle": "2024-08-20T02:23:38.513908Z", - "shell.execute_reply": "2024-08-20T02:23:38.513311Z" + "iopub.execute_input": "2024-08-21T00:48:23.064997Z", + "iopub.status.busy": "2024-08-21T00:48:23.064564Z", + "iopub.status.idle": "2024-08-21T00:48:24.536520Z", + "shell.execute_reply": "2024-08-21T00:48:24.535926Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fd70f6b98c08483496128064bb09d766", + "model_id": "f84fe5a33d8e4296b46f14b0aa8b9961", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:23:38.516247Z", - "iopub.status.busy": "2024-08-20T02:23:38.515872Z", - "iopub.status.idle": "2024-08-20T02:23:38.544661Z", - "shell.execute_reply": "2024-08-20T02:23:38.544076Z" + "iopub.execute_input": "2024-08-21T00:48:24.538968Z", + "iopub.status.busy": "2024-08-21T00:48:24.538770Z", + "iopub.status.idle": "2024-08-21T00:48:24.569011Z", + "shell.execute_reply": "2024-08-21T00:48:24.568449Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:23:38.547154Z", - "iopub.status.busy": "2024-08-20T02:23:38.546759Z", - "iopub.status.idle": "2024-08-20T02:23:44.720017Z", - "shell.execute_reply": "2024-08-20T02:23:44.719500Z" + "iopub.execute_input": "2024-08-21T00:48:24.571321Z", + "iopub.status.busy": "2024-08-21T00:48:24.571126Z", + "iopub.status.idle": "2024-08-21T00:48:30.731445Z", + "shell.execute_reply": "2024-08-21T00:48:30.730921Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:23:44.722331Z", - "iopub.status.busy": "2024-08-20T02:23:44.721965Z", - "iopub.status.idle": "2024-08-20T02:23:44.778242Z", - "shell.execute_reply": "2024-08-20T02:23:44.777700Z" + "iopub.execute_input": "2024-08-21T00:48:30.733701Z", + "iopub.status.busy": "2024-08-21T00:48:30.733360Z", + "iopub.status.idle": "2024-08-21T00:48:30.789508Z", + "shell.execute_reply": "2024-08-21T00:48:30.788852Z" }, "nbsphinx": "hidden" }, @@ -1038,113 +1038,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0c81e88003f74845b11cfdb1378da0a5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "16eabb41716a4846a4d2f6eee0a6f533": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1c27a0e7b0d84a52a9f260278ef6d758": { + "0900c46b98f5437d9b1f784baef4ebde": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1162,66 +1056,46 @@ "text_color": null } }, - "1db9d16f72b34b4989ac635108c8f7f8": { + "0f52557a110c435da6cd2255b1c93de6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_449595bc9d5d4e498476d0be97293a2d", + "placeholder": "​", + "style": "IPY_MODEL_54a8a2b5291c49709e90e70256ef2f9c", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: 100%" } }, - "1deef56448864c7ba7e84efef26455a7": { + "0fe4bfde0a7f4678b46d06110f9e6bda": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1e72e6404b524e239765c4eeba5e36f4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_51eb0e0e2c224533a81774e7a2b9b26c", - "placeholder": "​", - "style": "IPY_MODEL_1deef56448864c7ba7e84efef26455a7", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 20.51it/s]" + "bar_color": null, + "description_width": "" } }, - "1ffe23b3f652481aa93ea0ac901abcf2": { + "10a9ac878fc24f9888f4f9559fe953fd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1274,83 +1148,30 @@ "width": null } }, - "20304eeec37340f3bf2a39a2a20b2a67": { + "1ed3042925fd4edeb6cd2a122cc32efb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b163d9ef099f46a2ac2a8bf65c62d0b5", - "IPY_MODEL_c2690650d8f940448e566013bcbd9b6d", - "IPY_MODEL_6e50310098b544a19737c4f5d7fa8392" - ], - "layout": "IPY_MODEL_7578525b2f514e5aaa6e3395aad786e8", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5c030a9494414e1a96908cfe9cacbde9", + "placeholder": "​", + "style": "IPY_MODEL_b08b8194bb7945319e4226faa4dc1e95", "tabbable": null, - "tooltip": null - } - }, - "22a4cdf07a6c4f79a7e15c4e3ac0bc7e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2ad6882dafb0480eb58a27ba49cc67d7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2f7a9f12d0e041f3b5d5bbff0977cb8c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null, + "value": " 4997683/4997683 [00:32<00:00, 154171.56it/s]" } }, - "3194630074f14cc1b3c31c5c4f417fb4": { + "2710f83352d24eec8bdbd2e709475bf0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1365,49 +1186,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e278f7e634e34744a940c3916deea3e7", + "layout": "IPY_MODEL_83ba1e12a5554684829a27e055f7eb5d", "placeholder": "​", - "style": "IPY_MODEL_6bf693b0dd6a42deb08a8cb23352003a", + "style": "IPY_MODEL_0900c46b98f5437d9b1f784baef4ebde", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: 100%" - } - }, - "36ceae7207ef4aee869328e2dd159812": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "41c1230126ad4129bedb0b6d03869b38": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "100%" } }, - "4566f1b5eb54489594173fe431f6a633": { + "2cc9ea967e07414a996cf63abc110f69": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1460,23 +1247,7 @@ "width": null } }, - "463396d07b1f400d8c5344d51b674b66": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4a6e786e95754789891f444f6729577f": { + "312adce86b924cd083b68359b7ff3cda": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1529,7 +1300,25 @@ "width": null } }, - "51eb0e0e2c224533a81774e7a2b9b26c": { + "32419686799246b4b7d88d55530e8737": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "33b7de8d4f0a4696a82a1f237a1989be": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1582,30 +1371,33 @@ "width": null } }, - "5c855f4dd6444186b08b31267b96fa86": { + "34ce7f1803eb4dadaec339d206a66ec7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e9e09eed33ab444aa236194760c97d41", - "placeholder": "​", - "style": "IPY_MODEL_36ceae7207ef4aee869328e2dd159812", + "layout": "IPY_MODEL_33b7de8d4f0a4696a82a1f237a1989be", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f7912b89c28040ddba731c7206a718b0", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:26<00:00,  1.11it/s]" + "value": 30.0 } }, - "6103a8251ce84cf99ee39c9762412abe": { + "393f9e2ed4a44b9080882b753cdd387a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1658,7 +1450,7 @@ "width": null } }, - "6bf693b0dd6a42deb08a8cb23352003a": { + "3deb2b14670b4c7f84c3b79cac74e89c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1676,7 +1468,7 @@ "text_color": null } }, - "6e50310098b544a19737c4f5d7fa8392": { + "422655b6abb04e76ad979c7d6db811b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1691,15 +1483,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c66fcc42f7664ff18bb679b5b0e0ab49", + "layout": "IPY_MODEL_c9b41af5601c453b938a8eac0a2474a3", "placeholder": "​", - "style": "IPY_MODEL_1c27a0e7b0d84a52a9f260278ef6d758", + "style": "IPY_MODEL_32419686799246b4b7d88d55530e8737", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:00<00:00, 756.90it/s]" + "value": "images processed using softmin: 100%" } }, - "7578525b2f514e5aaa6e3395aad786e8": { + "449595bc9d5d4e498476d0be97293a2d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1752,57 +1544,60 @@ "width": null } }, - "8c7558622fee406090521d6bf9363191": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3194630074f14cc1b3c31c5c4f417fb4", - "IPY_MODEL_91322ed8f24d43028fb52abc8cafafe7", - "IPY_MODEL_5c855f4dd6444186b08b31267b96fa86" - ], - "layout": "IPY_MODEL_1ffe23b3f652481aa93ea0ac901abcf2", - "tabbable": null, - "tooltip": null - } - }, - "91322ed8f24d43028fb52abc8cafafe7": { - "model_module": "@jupyter-widgets/controls", + "4a3319c6e43541b2b2f27922fbe1efc4": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4566f1b5eb54489594173fe431f6a633", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fe94923cf8c4419fbecd40d47b31e2cc", - "tabbable": null, - "tooltip": null, - "value": 30.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a8201274110a4756b2e8dcd5b6c33705": { + "5297291313004a85837ee0d01806ef8b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1817,111 +1612,127 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_bd807accdb4e449cb7d89dfffeb98e21", - "IPY_MODEL_e93a0babe1554530b3504fa43d76dac9", - "IPY_MODEL_a97f41bdbd83410f9e6888112502cef6" + "IPY_MODEL_2710f83352d24eec8bdbd2e709475bf0", + "IPY_MODEL_fc0b5589ede043f88d506c7ed679ed48", + "IPY_MODEL_1ed3042925fd4edeb6cd2a122cc32efb" ], - "layout": "IPY_MODEL_bf492bb649084225be6a95fa1a052eb4", + "layout": "IPY_MODEL_732c081a8ca94521a1fc41159f91fd82", "tabbable": null, "tooltip": null } }, - "a97f41bdbd83410f9e6888112502cef6": { + "54a8a2b5291c49709e90e70256ef2f9c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fff19527d7e141968d248732ad79fb99", - "placeholder": "​", - "style": "IPY_MODEL_1db9d16f72b34b4989ac635108c8f7f8", - "tabbable": null, - "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 151883.45it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "aadd08a551464931a9cede90779759b8": { + "5990bcf3d14946b580823f2cc6231b4d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6103a8251ce84cf99ee39c9762412abe", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_41c1230126ad4129bedb0b6d03869b38", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9e09dfd9179141cca31fff3b1b54b771", + "IPY_MODEL_74621bc7913a48ef96c46924241da661", + "IPY_MODEL_83f54bbb146d486391e763ef70ac9e29" + ], + "layout": "IPY_MODEL_dd9b1ca63d2a449986a8249d6a6a0c3e", "tabbable": null, - "tooltip": null, - "value": 30.0 + "tooltip": null } }, - "b163d9ef099f46a2ac2a8bf65c62d0b5": { - "model_module": "@jupyter-widgets/controls", + "5c030a9494414e1a96908cfe9cacbde9": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ca7d7ce8e6344f5f8c60061f793599fd", - "placeholder": "​", - "style": "IPY_MODEL_22a4cdf07a6c4f79a7e15c4e3ac0bc7e", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b9834f1a2dc04e4998fd45d36ec2c1b0": { + "5d19bd5647ec42128328b78586198614": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0c81e88003f74845b11cfdb1378da0a5", - "placeholder": "​", - "style": "IPY_MODEL_2f7a9f12d0e041f3b5d5bbff0977cb8c", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "bd807accdb4e449cb7d89dfffeb98e21": { + "6b2b871eccd144daa320c528f01aedda": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1936,15 +1747,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f89d246cf8b54bb39db18c2335209540", + "layout": "IPY_MODEL_a3f5250f0cd742e98ab0971c6f3a0579", "placeholder": "​", - "style": "IPY_MODEL_e2e836a8d2cc4a968d4e1bbcc7dc945b", + "style": "IPY_MODEL_87d1f25f83e443f8b5a7079934af0bbe", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 30/30 [00:25<00:00,  1.17it/s]" } }, - "bf492bb649084225be6a95fa1a052eb4": { + "732c081a8ca94521a1fc41159f91fd82": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1997,7 +1808,7 @@ "width": null } }, - "c2690650d8f940448e566013bcbd9b6d": { + "74621bc7913a48ef96c46924241da661": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2013,17 +1824,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4a6e786e95754789891f444f6729577f", + "layout": "IPY_MODEL_4a3319c6e43541b2b2f27922fbe1efc4", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_2ad6882dafb0480eb58a27ba49cc67d7", + "style": "IPY_MODEL_5d19bd5647ec42128328b78586198614", "tabbable": null, "tooltip": null, "value": 30.0 } }, - "c66fcc42f7664ff18bb679b5b0e0ab49": { + "83ba1e12a5554684829a27e055f7eb5d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2076,7 +1887,48 @@ "width": null } }, - "ca7d7ce8e6344f5f8c60061f793599fd": { + "83f54bbb146d486391e763ef70ac9e29": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9802781a2a8e40be9d859638dc96a7ea", + "placeholder": "​", + "style": "IPY_MODEL_3deb2b14670b4c7f84c3b79cac74e89c", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 829.72it/s]" + } + }, + "87d1f25f83e443f8b5a7079934af0bbe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8880728d23aa4c138b6db1d8798a792d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2129,7 +1981,7 @@ "width": null } }, - "e278f7e634e34744a940c3916deea3e7": { + "9802781a2a8e40be9d859638dc96a7ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2182,7 +2034,7 @@ "width": null } }, - "e2e836a8d2cc4a968d4e1bbcc7dc945b": { + "9bbce7e5c89a4306a44fb35244c2c716": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2200,33 +2052,30 @@ "text_color": null } }, - "e93a0babe1554530b3504fa43d76dac9": { + "9e09dfd9179141cca31fff3b1b54b771": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_16eabb41716a4846a4d2f6eee0a6f533", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_463396d07b1f400d8c5344d51b674b66", + "layout": "IPY_MODEL_b76f5e93644c4938af33c52c2d7ce56f", + "placeholder": "​", + "style": "IPY_MODEL_9bbce7e5c89a4306a44fb35244c2c716", "tabbable": null, "tooltip": null, - "value": 4997683.0 + "value": "number of examples processed for estimating thresholds: 100%" } }, - "e9e09eed33ab444aa236194760c97d41": { + "a3f5250f0cd742e98ab0971c6f3a0579": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2279,7 +2128,25 @@ "width": null } }, - "ea93594660ea4558b68dea51defcbd82": { + "b08b8194bb7945319e4226faa4dc1e95": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b76f5e93644c4938af33c52c2d7ce56f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2332,7 +2199,33 @@ "width": null } }, - "f89d246cf8b54bb39db18c2335209540": { + "c00138335b3d4b8da48267ab1602ff6d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_393f9e2ed4a44b9080882b753cdd387a", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0fe4bfde0a7f4678b46d06110f9e6bda", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "c9b41af5601c453b938a8eac0a2474a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2385,31 +2278,25 @@ "width": null } }, - "fd70f6b98c08483496128064bb09d766": { + "cbe2a9d9d09948828a6ef3b196589414": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b9834f1a2dc04e4998fd45d36ec2c1b0", - "IPY_MODEL_aadd08a551464931a9cede90779759b8", - "IPY_MODEL_1e72e6404b524e239765c4eeba5e36f4" - ], - "layout": "IPY_MODEL_ea93594660ea4558b68dea51defcbd82", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "fe94923cf8c4419fbecd40d47b31e2cc": { + "d48bf4432ea44c698cc1cce4b981da38": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2425,7 +2312,7 @@ "description_width": "" } }, - "fff19527d7e141968d248732ad79fb99": { + "dd9b1ca63d2a449986a8249d6a6a0c3e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2477,6 +2364,119 @@ "visibility": null, "width": null } + }, + "e932bfd1a1e2432aa3d1c447df10a9f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0f52557a110c435da6cd2255b1c93de6", + "IPY_MODEL_c00138335b3d4b8da48267ab1602ff6d", + "IPY_MODEL_6b2b871eccd144daa320c528f01aedda" + ], + "layout": "IPY_MODEL_2cc9ea967e07414a996cf63abc110f69", + "tabbable": null, + "tooltip": null + } + }, + "f7912b89c28040ddba731c7206a718b0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f84fe5a33d8e4296b46f14b0aa8b9961": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_422655b6abb04e76ad979c7d6db811b9", + "IPY_MODEL_34ce7f1803eb4dadaec339d206a66ec7", + "IPY_MODEL_fced5e1f3d504623bfd6adc490f06fc2" + ], + "layout": "IPY_MODEL_8880728d23aa4c138b6db1d8798a792d", + "tabbable": null, + "tooltip": null + } + }, + "fc0b5589ede043f88d506c7ed679ed48": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_10a9ac878fc24f9888f4f9559fe953fd", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d48bf4432ea44c698cc1cce4b981da38", + "tabbable": null, + "tooltip": null, + "value": 4997683.0 + } + }, + "fced5e1f3d504623bfd6adc490f06fc2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_312adce86b924cd083b68359b7ff3cda", + "placeholder": "​", + "style": "IPY_MODEL_cbe2a9d9d09948828a6ef3b196589414", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 20.63it/s]" + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index 8177bb470..e3b73ccfd 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:23:47.189790Z", - "iopub.status.busy": "2024-08-20T02:23:47.189361Z", - "iopub.status.idle": "2024-08-20T02:23:48.403988Z", - "shell.execute_reply": "2024-08-20T02:23:48.403347Z" + "iopub.execute_input": "2024-08-21T00:48:33.131555Z", + "iopub.status.busy": "2024-08-21T00:48:33.131391Z", + "iopub.status.idle": "2024-08-21T00:48:34.477099Z", + "shell.execute_reply": "2024-08-21T00:48:34.476468Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-20 02:23:47-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-08-21 00:48:33-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,8 +94,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.236.99, 2400:52e0:1a00::1068:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.236.99|:443... connected.\r\n" + "169.150.236.104, 2400:52e0:1a00::1070:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|169.150.236.104|:443... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "connected.\r\n" ] }, { @@ -122,9 +129,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K 5.63MB/s in 0.2s \r\n", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-08-20 02:23:47 (5.63 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-08-21 00:48:33 (6.33 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -136,24 +143,24 @@ "Archive: conll2003.zip\r\n", " inflating: data/metadata \r\n", " inflating: data/test.txt \r\n", - " inflating: data/train.txt \r\n", - " inflating: data/valid.txt " + " inflating: data/train.txt " ] }, { "name": "stdout", "output_type": "stream", "text": [ - "\r\n" + "\r\n", + " inflating: data/valid.txt \r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-20 02:23:47-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 16.182.69.145, 3.5.9.145, 3.5.25.176, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|16.182.69.145|:443... connected.\r\n", + "--2024-08-21 00:48:34-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.63.33, 52.217.95.209, 3.5.27.229, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.63.33|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -174,9 +181,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M 103MB/s in 0.2s \r\n", + "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.09s \r\n", "\r\n", - "2024-08-20 02:23:48 (103 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-08-21 00:48:34 (182 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -193,10 +200,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:23:48.406808Z", - "iopub.status.busy": "2024-08-20T02:23:48.406400Z", - "iopub.status.idle": "2024-08-20T02:23:50.001165Z", - "shell.execute_reply": "2024-08-20T02:23:50.000519Z" + "iopub.execute_input": "2024-08-21T00:48:34.479751Z", + "iopub.status.busy": "2024-08-21T00:48:34.479377Z", + "iopub.status.idle": "2024-08-21T00:48:35.780789Z", + "shell.execute_reply": "2024-08-21T00:48:35.780239Z" }, "nbsphinx": "hidden" }, @@ -207,7 +214,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -233,10 +240,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:23:50.004031Z", - "iopub.status.busy": "2024-08-20T02:23:50.003445Z", - "iopub.status.idle": "2024-08-20T02:23:50.007127Z", - "shell.execute_reply": "2024-08-20T02:23:50.006582Z" + "iopub.execute_input": "2024-08-21T00:48:35.783186Z", + "iopub.status.busy": "2024-08-21T00:48:35.782857Z", + "iopub.status.idle": "2024-08-21T00:48:35.786293Z", + "shell.execute_reply": "2024-08-21T00:48:35.785824Z" } }, "outputs": [], @@ -286,10 +293,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:23:50.009438Z", - "iopub.status.busy": "2024-08-20T02:23:50.009017Z", - "iopub.status.idle": "2024-08-20T02:23:50.012211Z", - "shell.execute_reply": "2024-08-20T02:23:50.011731Z" + "iopub.execute_input": "2024-08-21T00:48:35.788435Z", + "iopub.status.busy": "2024-08-21T00:48:35.788082Z", + "iopub.status.idle": "2024-08-21T00:48:35.791210Z", + "shell.execute_reply": "2024-08-21T00:48:35.790645Z" }, "nbsphinx": "hidden" }, @@ -307,10 +314,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:23:50.014371Z", - "iopub.status.busy": "2024-08-20T02:23:50.013919Z", - "iopub.status.idle": "2024-08-20T02:23:59.245717Z", - "shell.execute_reply": "2024-08-20T02:23:59.245080Z" + "iopub.execute_input": "2024-08-21T00:48:35.793110Z", + "iopub.status.busy": "2024-08-21T00:48:35.792936Z", + "iopub.status.idle": "2024-08-21T00:48:44.878008Z", + "shell.execute_reply": "2024-08-21T00:48:44.877430Z" } }, "outputs": [], @@ -384,10 +391,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:23:59.248529Z", - "iopub.status.busy": "2024-08-20T02:23:59.248146Z", - "iopub.status.idle": "2024-08-20T02:23:59.253721Z", - "shell.execute_reply": "2024-08-20T02:23:59.253260Z" + "iopub.execute_input": "2024-08-21T00:48:44.880606Z", + "iopub.status.busy": "2024-08-21T00:48:44.880228Z", + "iopub.status.idle": "2024-08-21T00:48:44.885938Z", + "shell.execute_reply": "2024-08-21T00:48:44.885464Z" }, "nbsphinx": "hidden" }, @@ -427,10 +434,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:23:59.255898Z", - "iopub.status.busy": "2024-08-20T02:23:59.255557Z", - "iopub.status.idle": "2024-08-20T02:23:59.636940Z", - "shell.execute_reply": "2024-08-20T02:23:59.636377Z" + "iopub.execute_input": "2024-08-21T00:48:44.887970Z", + "iopub.status.busy": "2024-08-21T00:48:44.887607Z", + "iopub.status.idle": "2024-08-21T00:48:45.236413Z", + "shell.execute_reply": "2024-08-21T00:48:45.235748Z" } }, "outputs": [], @@ -467,10 +474,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:23:59.639442Z", - "iopub.status.busy": "2024-08-20T02:23:59.639072Z", - "iopub.status.idle": "2024-08-20T02:23:59.643596Z", - "shell.execute_reply": "2024-08-20T02:23:59.643126Z" + "iopub.execute_input": "2024-08-21T00:48:45.238797Z", + "iopub.status.busy": "2024-08-21T00:48:45.238594Z", + "iopub.status.idle": "2024-08-21T00:48:45.242741Z", + "shell.execute_reply": "2024-08-21T00:48:45.242293Z" } }, "outputs": [ @@ -542,10 +549,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:23:59.645735Z", - "iopub.status.busy": "2024-08-20T02:23:59.645420Z", - "iopub.status.idle": "2024-08-20T02:24:02.450516Z", - "shell.execute_reply": "2024-08-20T02:24:02.449822Z" + "iopub.execute_input": "2024-08-21T00:48:45.244879Z", + "iopub.status.busy": "2024-08-21T00:48:45.244540Z", + "iopub.status.idle": "2024-08-21T00:48:47.886104Z", + "shell.execute_reply": "2024-08-21T00:48:47.885240Z" } }, "outputs": [], @@ -567,10 +574,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:24:02.453944Z", - "iopub.status.busy": "2024-08-20T02:24:02.453026Z", - "iopub.status.idle": "2024-08-20T02:24:02.457210Z", - "shell.execute_reply": "2024-08-20T02:24:02.456664Z" + "iopub.execute_input": "2024-08-21T00:48:47.889759Z", + "iopub.status.busy": "2024-08-21T00:48:47.888760Z", + "iopub.status.idle": "2024-08-21T00:48:47.893081Z", + "shell.execute_reply": "2024-08-21T00:48:47.892524Z" } }, "outputs": [ @@ -606,10 +613,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:24:02.459333Z", - "iopub.status.busy": "2024-08-20T02:24:02.458986Z", - "iopub.status.idle": "2024-08-20T02:24:02.464337Z", - "shell.execute_reply": "2024-08-20T02:24:02.463806Z" + "iopub.execute_input": "2024-08-21T00:48:47.895029Z", + "iopub.status.busy": "2024-08-21T00:48:47.894719Z", + "iopub.status.idle": "2024-08-21T00:48:47.900629Z", + "shell.execute_reply": "2024-08-21T00:48:47.900158Z" } }, "outputs": [ @@ -787,10 +794,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:24:02.466242Z", - "iopub.status.busy": "2024-08-20T02:24:02.466067Z", - "iopub.status.idle": "2024-08-20T02:24:02.492938Z", - "shell.execute_reply": "2024-08-20T02:24:02.492457Z" + "iopub.execute_input": "2024-08-21T00:48:47.902736Z", + "iopub.status.busy": "2024-08-21T00:48:47.902396Z", + "iopub.status.idle": "2024-08-21T00:48:47.928872Z", + "shell.execute_reply": "2024-08-21T00:48:47.928414Z" } }, "outputs": [ @@ -892,10 +899,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:24:02.495013Z", - "iopub.status.busy": "2024-08-20T02:24:02.494699Z", - "iopub.status.idle": "2024-08-20T02:24:02.499367Z", - "shell.execute_reply": "2024-08-20T02:24:02.498819Z" + "iopub.execute_input": "2024-08-21T00:48:47.931025Z", + "iopub.status.busy": "2024-08-21T00:48:47.930625Z", + "iopub.status.idle": "2024-08-21T00:48:47.935094Z", + "shell.execute_reply": "2024-08-21T00:48:47.934549Z" } }, "outputs": [ @@ -969,10 +976,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:24:02.501377Z", - "iopub.status.busy": "2024-08-20T02:24:02.501054Z", - "iopub.status.idle": "2024-08-20T02:24:03.978603Z", - "shell.execute_reply": "2024-08-20T02:24:03.978055Z" + "iopub.execute_input": "2024-08-21T00:48:47.937284Z", + "iopub.status.busy": "2024-08-21T00:48:47.936831Z", + "iopub.status.idle": "2024-08-21T00:48:49.344989Z", + "shell.execute_reply": "2024-08-21T00:48:49.344481Z" } }, "outputs": [ @@ -1144,10 +1151,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:24:03.980976Z", - "iopub.status.busy": "2024-08-20T02:24:03.980606Z", - "iopub.status.idle": "2024-08-20T02:24:03.984644Z", - "shell.execute_reply": "2024-08-20T02:24:03.984222Z" + "iopub.execute_input": "2024-08-21T00:48:49.347279Z", + "iopub.status.busy": "2024-08-21T00:48:49.346950Z", + "iopub.status.idle": "2024-08-21T00:48:49.351135Z", + "shell.execute_reply": "2024-08-21T00:48:49.350554Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials_datalab_workflows_86_0.png b/master/.doctrees/nbsphinx/tutorials_datalab_workflows_86_0.png new file mode 100644 index 0000000000000000000000000000000000000000..e216742ab468caac0a34d95f011c93b2afbd5905 GIT binary patch literal 15325 zcmeHu2UJwqx@H+#+kjjH8AJtCGLkdeDmmv&Ba(B@K~ZQWDXGZ0$Uy|8pa=>Ik|h*K zD3A<=faDDGAMbm2?%c56yKl{!w`R@s>MmPWan3$x|KSV&exa-=MRJzd8qB8W^d-=ZtP@=QZROLu(5Zsv3zvR&D6=+(%z1T zLx6*q?V5#)i-WT;C#UUSzQAGcWX?$*DA)-XIpZL$x{2hU#LxgH|h{|_Uy|O&VK&urhbY6Tp8!347-{Gr8@Zr zsyb)ejpN*B_07YBjVXg*Me?n^gkRuK^%@L) zc{#7Ahlk(+uic3D%F4>_Y8xlPz%XWUq)IL7ra}+=7Qx^wN?+4;!~mt-D|)oQ_VSNE zUKvxiwzsS6>L%=NE*5l29O)nIZaBMpqHSh7lM_Te-y*mD@x#F#eFB9hF+R1OEbhCT ztCph}-pn8ws_fwKMtuLreYN0tqPn^|BaXmfZ*T98KAuMYjrX$hlT#$rp9coCT#16_ zNBjFeVe}G)>FMcjb&IU<`7zlFiP@1f-Kk>Un((-q3;ji|o8NVsoo*>6Dfeb8xVEuZ z=3=qhk-Rovx$s4LS`tV5WtT2pnp$2idG+c~VzB=F_OQjHwbY|rrBv~=zy7LBsCIST zTdcI6YzhmX?d|DVmpEFJh|JpF_Gq>&e>o%Sv%k`8HTvppHR;9vey8}tZbH9E2U8hKs;Lu3owMB53+t^$7 zKPve6@xjjCUV-CelNT&VLtERUdtheE$;ruOxps@?+O@j_`p#iZVKh0;vzg%>VTJ+?^>3o$;$<>t=l^n(7^+EI0Ds>uVf*|*aeMLLFVz~KZ%AmJz z->x^&*w3}c^X&Gf9!|}fPzEj4tSJ^5;53olR#%VKEY{DvmFlC4JYYdd9gC5XQAetT z5xn_co-WZ$DjqZGNXdw+MI$5n7!0Q6QK?`P8wZEx@@Op{BS%rYzuKl-`slf;sw#v_ z)@-VO-H6xGmj96!JOJ$A7o($HEl*F+`J&2E)vYDM#>RjV>&=^zl?1oMrf|A~0V96{ zC5eObp>j(Gned}n)4{i<)Vvn2hAQn#`ufz9MLkuKb(WcRw0=Jt^~9S(%xiPd+(6gJ&@kojaI1cyZf~hKS0&SBcipmfty2Ud;R`J5 z3K`jS-w|A9V7@np&uiTxS;Sqjq;@mm@JFzO#op%P*$Wq9*N2x?EA0qJKpxhrX*Vx2pG+a0dAobNNr98oAC-)^3gRFvjeb>J~{tRZtsal8dE`45cvg z>CW^0_Wnr_gng<1k)M>FlhfPr`FTs9wGM%%W_o`cX>PO5r1|oZFX{J5WSTM~#EBMV z!;4LH?jyz?-rh8WgM;C2GLo{gFDD%zJ<1qgT(qSXba>zGwmzqlX;|ykWLrs?v0&BN z8mh2n-S8^69~;GP4q1ow<|v5_L0L4H=5ApH8x#gcNyV*9=kw|A7e1VP|5;YXJTsPd! z51W?>Ra8<@F}!!xe}9rb4AP0_mtTGfGNx>TB!I`LKiuGyN`>0Rz|H+uwM0uM%ze}| zM{SQGLiCX|_s{#mJL}6+3yO${Sm{$!655~K-f#QEtH+{;+mqq%hVAPK7Grg_ zj!Pp#Qi%jR0lTVc^2zFjV&`&5$9~Kh(>K{k-pfBk%FMeoy}YV>dV4E=|8V?MbF=l- z=hwP59;KOGtJ7_!rP{o1-?ej0nA)E#WrJWPJP9t>%@e zSFh5bq(GKx^w{scMV2DykY*w(At7Tz0LX0uNgS-zp7I-oc|#L*`^tBRje;lij?4g zbfEjrCVuFh?ZU6*kuGyzu0MbFEEghMu`M>~osi4itIUq!VZG(Ly<%=|?w@(QHR_F- zc_JN|lar%%?R6H!uwi6tZIZBvh#o{CbQO)fS)|tC2*pNzJD63PBY#<9L})16hQ5w% z!_@SVqCHMFf6v@>C@w;=H{$$C8+m35KTpCY1eX6#~Xv? zBB9RHx=Kn)#tz*w#V^V#AZ-tp&|60Xd2@kYyl`V-KrRxZps2lF9;r?oMFk)Cch>Of z_fPL^Z_g!I7puVb#Z~WriC8kB>larBoy?$iGla_7V zd0zRLl9Ccc=0e4QVQ-!9o=YQ%09LfAHHMW*24DvABU#@cMkJ64oSuVk8Ac>$_h#Y8+nMTnwsmk_s7u9tezby9uqH|ZZV)K9v^dOXh+3BS7VeBcAg1k zWM*TNFVHIKhf10p-uZpBc6i0-MXKMf48WqAAX55b+u?VXkX%D`zBuAQ$#VGx*q2oQ z!$C)0$;izm0;|llVl>IwvyrK(shi&i)reIDoO@euuNq*U$X3$xrp$T%M~4TP6xM>p zM<&r)dcXgkHrXfJ7(@bLn5TNcA===Y4iOe(HH>pF+27x%&8a5h3vwVs&j$XctsMsq z;yUE8Vdh(6UEEl3-@)Ein_Z>IqDaW641jm6?Cc7hwd;|wY&sdx>xC3fmJ~h=AGoMcAQjyZ&qdr@wU3T>6Ro(9Ih;ZJmj

D%zK$MBn@t7ON&L{fD9VA|Ld3W*#232#G_F_=Rc*(MB#__&(CTH;3&x z%j!QpQYkU4Eq9q$&FQ6zkB{H|7D(!{P*jN^oJiUa>4jf@ctex48YoU4^*{2J3W)N< zy+m3T83*S9zx^#17TLAgE_dD8a5|B4D?H1_;_yIs|65bJ>6sZ~PO6_%Ih}}`JnWBU zyovqSHydadS#^c6Pe$%O{2GuU-TxS6%zU9gX#So`UbF$Ca%k)2KKcZv9MfCtDSR5?2mtj8i8c)B-%czJS1Mh;DerJH@bF-dRb1S#OLQ&t!d1~+_%$Tqb*o+Su6lpJQ(-fx8o53Z z!U=%YR=3P742gsbbix)BA73EIfY0IE-5gREdV2aI?b6@w2Vc;Tmk+JmUzLMomPasB z@5iAr@0Cv!F)1mH(o)-q{Wl0oo2#yA~kz=khH@z?1NEoia1a&#$fzy)_L<;J3|3n)T}1 zT0tLw?B~y)za+bl=8e{RTf^SyLIF5MdR3o@GqtN(k%Z+c();h1LKV$Sw5x8xY(&ou zl%$e#8WsWu&~qPg42ELN>%OF40omPtaG8oK4|!Xp68moeNAo$)$Qw9!@a--b9TDev zAW8^c3q@AYmytz56y1glpy9Xq;(xSfbg(@cfmUaA_*Aw08%vrQ^FogeY!8A^;&{x% zjVp(fcT>fEhdcoEhXI3WY-?-7!W$0NGW7h^ZQmBlE}1Osn#57bA3Da7SGzNlh z?i`Oc@*8~hSU#S6I>W?hZVPQTyy#}q8qF*Tb#jt#8xlv>V8(C!FkalZ`XV*86+9^e zKYzdD;P&$iw1U5%r{ex-(UbLJe0tgx%2qoP6r~p3H>Bt}IwTb)jVWWcy;M+IeQ%5# z;k9MR(yut=CbIla88qrSO9%UQ@o_-gGp-Zw#~Zw_(+N2}02@84~JU@nAe|6KfW?XSwsdy(fBO)KPrG+Q>|njO8eTcU z;F1IWT04sGE+y!?OB|V3$`semk&+77F5XpWw!Dc#CmT}=dv6xv z+OUPiO}592$)8cB#qPptU4a9%H8)E^?de0ZC%+4j)9f|}HE<}%Xsga7A< z@Q0F;L=4){Y2*^>?#2XY6X$Hl>I`bVHdFz~fX?D6Q?iq zZLdsjK(o0GbP?ya$g&aEXlko=@7@!D0xnaZFN&>yxo2swMw5YVafGEFbZ zSYTofBbQK%dRcR*aG;8 z*J8y$`R^Z|IxRmoNC8boIZv`!R1+&1~t)Rb@B7z8(R++UyTz7J`*JCkUyKg5sHfFMtcMbc!j%-j|D zNQ_r8XfENTJ~F#YxaH``$P6GdxoK(d^Xx%0=}oTZtT9<%jv0C51OZ+Rz+S&th=W5B z*v}WJ+8e}z5+vt=T=YTSnO5jB$(+7Gs|@f7*uMIbAdpc6`QKn*NFGY$wakD=imsM( z*BJ)xD-Ic|G(F16%F5b??>M3S@EH}#RM_ELfL;B8TZJ7#m&dGK*}@{Xrna`iXUC}) zWFO2;oT0~+*)1qH*$7hYFVv|9g272G*g64nA)r7@5XN@**Sad4re(#pzXc{hZREEb z$%Wsj7Bw`Du268p89;cuRNtF?UR;0Zg|<4T?207$89=olDQzweYZ0s98-j-ikQ4=P z-YBQ~ZpQb{=R%*YuIc>zSsIaeh@-VQudSs;YzVdhH3&5-{>e#%3lw>=($OAa*+CP0PgsKr3O4sh+R^aW67UWC@$upo^$Cwg55b zD_9&6sJ>Np++o`B@u}SBHJ>AR4L930JWiEkMQ;W z{z%dyJOf%p4yb!b(xS^p;oVrw_h1mjed+>jE~qV^+u8~mrf0fROAz_VeayEKXk{MA zAl9Qbo*qo+4AW>*s5$r9iD&I4Re2|@KPF6DrzDt!0c*mcXLPm^9%|NZxGOts=D zj@No6nB(90jrsI=UpzFP+O zBVWIMJw8W4PHr~h*i2_yEJdN8VDJc@7lAsV_X1B*!P3b3ApkWep{DXA2-w>pm;|&@ z$$Gzo(2hg_kquTB7H&h&X|ha!qCu6Fl^3sEdAvT~+x!*4U}i*z84qlN&4ULIC=qM{ zIq^Cv$tFp}z0!5*D;;aS@tj%}yigET-kW2mk zYRK{9$4B%@@)JAEdI5y>0b!N(-4F{XIK6x{#Lmg71Z0zJG_D`{g+A50cTvXK)iYC_^O?{j)vJ#{za_hPF&#EhE)s$8_Vovv2p@&K*EbM@cNE3y zm)U|;WvPg(inh?&yuOzR*@J2Y>UeKL{Z5ea)?|>krwq1tlMtH;2}X++!?z?nf_!<0qRVSP@vjE-0uCmqQQ` z2o-YdQ3(n8Kw;2UMio|M^|=+=pu*wgP!91RYu<%lDseeNvv!-q!&nWzoyJf+r_O=? zt9nrE5m$AkrKLqyR@OwaERQI8VU}t&~kC&}&P}3)=+iY)^9_|HI)+pB1Q5?}5`WHMLAK2Ey z8up!MGB;y!`qU^7ATl~We!ed@K0YrXAb>lfRXP%H6@%B^b;v-YDd^2ADEH{OfN-@-qiRblF3XK?)pyIsBk#VkAQ2fe=5X7Hkj%v8Nog>lS`^a zif#mf)w~>(Xfa6V68zazMY2X zatFZ1dfuA0ag1rAP*zEwn_Th5ItMIa#$|&pqSDpOh1aFbR5;M}=4NoY>XjxMS5Wz7 zBjFzx_#Z1^(2-f-jLiQSZwx=Yc<~}4+kt+HFEx=;NEJ5#E;m-iMuS4>lXK9=&qFgi z-*|g#=WQLK659E0m;d1;F&|=;}4E7PC zzWHwU*#JK2*oE^AZn@7xf47^zY>%( z>ax@1%4_ubOxD^PSgF4yK%?B-@ATj+}h=#UPAIxwT)$z50{%OJ?6WY zTum4%YLzm(@Hn{}`+WGyC3;Paqw?CHVD0D_`~<^ZmD$T*Eimr})DMaWsa(1HvQ-jU z#`uQ)IJ7pM2jA-Y+X0$@CfJ-YAZP$! zAaL&iJlq2LA`vv4LVyzB*vWx&YV=$R41W|$BL-)dD&cRa_s&KI{HM$gP*=sg*1v${ z+p0ekt7q5!^p|t+2sd3pr9cehSWctj(^oyxMm7LQ=D&IKWknErWaQ(rLHJjnnM&(P zq;F^4X{*#ooEZff*@{3KdH#2Ccjoq~sVT&L{_x?0;v#$u)q1Iwz_(S znmQk35aw&wzR99PshiBoK#4%mdNdl1#$%7_3hMGsqfMulIC6f%i ziGffm9;93gEAohKjW`p>>gyT$;4=Cw&^prY1x6<)7Xfh~0>gui=m8o_8}*cwUi`ZY z;|$=@81N}md^dFvT?Ncq+k2x%e{xcuUhiiSHXA_l5)@nYWZ5cWYQ z;ir$lSdcW+K~F&s9|1k}nu#|r_gHz9Ea>QG11Xk;8G*jCR|?qx8I(EJ=gl(|8U=P156|! zVtpA8L(0v&t^yfS>PX-#a9TkH6!cDf3LyirIz`Oe3K$=8unZ9rDqt<{=pgFP(_B0z zP3Hko$%1yT1!4^!NZgQW^91)X_Oc_;z6(HGN3c6mY#SOI$$-xw&PA06>OJ0kW#SWJ zup)C6zz-Kdis}QY3SZ~zO+qX9>TaN_==nx2mf;;R1%X-g!UCh?;^r*qghbqrzkbW zin}l>0hKN$G10rb%O5@Sw>5m)@X^*I`>Y zUfxe3U=xHN$3X-3*gqF>ePhJv29IsyM(7>z(b$lUDU&dtqPAcY7~)vJte3JK}R$jF2@Gf9~N@c;BWUiS|Mp1X^$ z(db(;$RG%8i5~HQo`$C2%;lT6+1Nruq^+Jrjs^d-QZ5hN9w7@Zf^Wc)68782cBV>j z+S@Oyw*4&O7|svSKqeXs$xV(c zLDWE4Qdmp9!^CP*Jg5uIV1GlH_pMAelaY~OK&TPC`3t?ck9JDRkpu(8oz-+}3^Ig; zINRWE$s;#bQxbFCd3PM;fXB|Jc!TI;|sc){Odh;AZSusLb zV6lSJv$L!m9O2gjovK950mr4?M2gmbFUGdY0*MwGg+i3kb(kgqA>=E8DLv>0EX^wE zQwRksH@7N4k3Q(peP!lKpsrg%$ynkb;rkPeJ}PIj8P;fnj;#)weTCnFm+$s?ux`Cy zEmBWl677%3-CLp3%gG38vdMaXC$Hh_Z?C!F_z?WPsn+oVZ>mM&GIkcWp1bHHW z+61OLggt(wrGVq>=_Ty{z|+f%1yTtHf{<$?arOW(a35uJI9(JY$bH4_vvNanyT>je z_X^~-9a4`(2I9C=IW0NoPfLTMdY9x9BpJX=B+A@ygn1!w^kI|ofCjM;!da&bfre+4+@9YTq z(4<(dU%#iLqeEe^1iHG{#EV;3XlT4!J^?%1H>A^|h`VDFgxIq`XI((0EHG`0Mfx5d z+=y2FY-lFniPj^^Ez;Ydi&Gd#85^gAZA6CvZAKaBKw#bBBaNMy_L6)_`@{k7R<ec?ML1U<-%A zinTRo%wzqBpfV5)j-v#|4~#^}u3S;iPn9#i3B3=t7zXv+tVl0h=m)scrauFX123{% zlL^9zhL_ksmW#Axn>1i<<8OI@$I*ZtBK=IPTHe%30)dfK^hW@qI=_GaUY66mLKmzE zxe9Mj&y_a)kkX?kLm^xKi|T{EOR8~a&YzElxeXX|RP%-pm=#maKZ1-!EG$Gk?>4I( z_SbVv79J`yj{wYwp~@Pfpk^HdpT9SO`}go%rbBeNpCt0dICud-AZ;l}6&z&RFQu7Or-4XO^(`Cy`< z9L(e9tZx8(+Ipin$)Tv?CnIm7BB*#IO`1ZP*Q$Va8Mq9VmzT@wFriR);{~6=I{vT3 z^avWhyQl$jCX5BbdE+(u{c=LTvdF~?Bt|3yLh@2d{Bo3S_!#K>t1at+U<6N5Y9NBwzf z8%8?*)^ra~!hkR>>Mm$qAIM(6jw;!sR#-zwML*&URRPm)}RQea0q#m1H zc&Yk$vRZ>?!6v;NO&FUCXVX+AaY{NVYgSw;=p zN8G41vuo|&UJ54oOCMgepPN@e+qVm7)p+VOtwg*EpOIqL{eU(VMFn_YG;?_PY&)1) zVp64+|F$f9!L}IB!-o%dmxh=77W?fq#JQcXErd3)k7U2ve!~(5L`LXW9_)=ma{9q8 zKD7sTSu1L@iDNubD!1<2Qdi`yZnb~ynr`*u(9;Z2ifMv2N&BzLM*l!6Qrj8Rk+2^X z{Wnw93M!%3`kZ6;A>?MU!wyXV#h-Pej${$7J9q9N^aye6fXhIs#Ht@bBF-aLI(y~F z4H%WFg+V05Fgrvh!U1*S*l3<4%oY}DN0v`Y+r>1uO6cWw45~)mzcsyVUDTt!SJtUs zbrphP0#0F!w;qRERKwT|GNvRGNwCubVg0J_x(duZr#DQ8goNPV7~hA>%H0n-pVuc0 zrCz<>&lh}Vm`Hmc<1~Jg-d4EqOh_dT7wQC|gu8M4fM9Sc;Oy7G2m?i{i}JsV#~kdt z&wu`Btw7b}%9Sgh&C2p%5MX)}W(w7zw@f+$H_00F%d_QAWMyhpm?){2^v4wx>7Lwa z8)#F-lx|+_!W&5tFz98w%!NetMRBFbDf^1Kq21Aaj$=2KSH-6fbVW4W>Ty@hU{+sU zU%wEJ7UXQg$0F#{swScveQIaVoKb;c)Yiqnb|w%v19UDsbuCp*O?>mtV!JY(>Eam2 z!b*O`Eg2EcE-qBQ%unYcfCd(>o^Mn!%I6IxCt}i;gR8T%9qm6b0Tvn)6O+)@+39I! zUS4$=oS5KMV_%;fzudFgLF~bV2=j9u{c$y*0Q@*LxSZGK_ZG`+-Q1~m`G@*vd7eCZ z0@HYK(!|9Id|h=gBsi+SgHFfmN>nd0tknhc5NlynfM+SFSbw0z$;s&#Z=DWPB7%o) zho`M>9UcxS#t>#X3=$R>7mI*QfzH%~^r8y04retg3eLicE*0zIh zF%5p^o#a-7LnPG>Z3^Ix zbIX%7GXtx3;_IRt9ZaKxS{wzsAFk~l9}L$a#+u*GG{r9`PhxSjDEuD)bId4%;8H~} zSm)^#E5XxrMam3doGVP0RO8NLb?*MzB7F(pbS-7zW{N|>Zu|uq1X6dwlo1otL(Kv_ z0fWjlt2t7k%KrHs<*VVqjs7uhOOs3l4GAf2cn7?;>w9$WTEdi^>bKqFF9k+~-t*82({F@w3? z01YuPKKT$%H)z4>Bt!oLS9lRv92-jOD-0D}fk}saUl@dtm6Izte5#!JXOj;6{eSh4 z-g~kEP#Y1uI);dYst6=y4w!?6uDOQ?7S6rsVD6ye07(4xb?;XEJOG3|8wmGSFl~sK z8t{+m0W>`kS2zm+m=-CX$jP7e{mL=F0uWLV3JfI{n5qUqH&@$J0n{)gn5GN*G*aMp z!HlUuW?n=+lwodz6~EkaE42^iAvR!8OYh&LZX5nY#`*V8P7n#W%2Vel(~v24#Dzg_ z0W*~9YyGI)Gej&7r0_Om$Zp#mWR3ORg^~p%hQOFb4sJPGY@^J=bQ?Wsgxe!4g%rMGnBh z^oj-?ThxG>z-S4!u<0fN>zK(9mjq|Vz}3}AQ%q#0y&Kj96Ce0& zxE74X_ankDO#AB~6HhSZ_MCf99L^vjDj95FI?R+Y!{8zewMAy-qdX7zv0CBL&R08hmVh8s*bVJ0RYIroRCg`hUW&8lE_ zh)D*SV1lD>MQ{|21qO`-Mm;ibDkkN=di9DpLW|;ih8#l0g+Teis?)~*S6slq_6|3X aPz?jAzmVWZt>B6%nTLuGihuk4>Hh#v_=;Qr literal 0 HcmV?d00001 diff --git a/master/.doctrees/nbsphinx/tutorials_datalab_workflows_91_0.png b/master/.doctrees/nbsphinx/tutorials_datalab_workflows_91_0.png new file mode 100644 index 0000000000000000000000000000000000000000..00e5bf3a57a0032f666f8457b3edf10eb0165e34 GIT binary patch literal 16007 zcmdUW2UJw)nr)$NMrd0>L4{Vq01_mKAVE~536hgUQ2{BUTL%|g>q|eo zSvWacJJ^c~N(hP_{rReki=(rYkdWQKzCqBz$x4X*#)-E$$R@{ME;y4&tmef3Occ2k zYZ6IjR_Uy~jz`QykEd~%#VTW3V%%I)Y`Z+O!c$|Xr^3zD`%1ip@lMZeos=Tk8-FrN zJfdlnsBm7To-A@S#YrSrLHjnd%&~Ll&hw9@@(b#V zK4%&gstF1T8W!63C@kZby7-~4t}gAp*V61*f~@b-iSq8JX95QM`{N@;t@JJku+ck6 z;x~oYuEY)wUMVgrI^iR3^Io;Nxp|3}o=q+-Q|>BuPDxgKoOULFrOoXKNh7J-rj!(y z6)Edmf^QM15)OUxBnzM2y61$3na}ji^{iaRT|*|%AD?t5cjj5sT2q2gpFT}4-9w^? z{Lb-_bv^U0xGa;>PVQh1(Q`~pOiN#?SkLdZBx{+QKeas`EiEHsQ@VpRM@osj?j&a4 zZP44>>*VgN^4pCY7C8pg0z0F|7)kAFiFi5h`Haqdn-sT+&auxOx${G6 zPoz_a8>7eH>~_%6)O^5WO{Hj(-^Kmvw>Y%3`t|ES+uQZ!<>jMr{(MfCml-P~a-6~! zudl4EP~+s+_V~;+DyyjE%EiXSWXLfVn?e#tN3Skh=Y1WP_F0*(p}l*0qpYlqnsZsv zcWEqzQ=A-H_2BWAkt+?6qKZ$SK7DR*v=cXsXDr&GLUXFOd}w?;{Y}vB@q#Y>n_wJiu?ri_nnOJgHK_(8mW81c;4wdwR*IyNbx!ULpec9KqlP(-( zH}RgxH!N~AzwO6Z?qlrOy_?_6%#3(S+YhPf$jiS}@IUS!8WxsRI$5IP=jT`QwT^#o zG$EMQUFZl4b~TP;lXa7wvQaQF8M2?@DQbn3?XuNG_PGl>Ts5PiXY z#mb7GpI_yc`QZZx&SaO*M>#n=&qY+ORQJ{hGxvCnXBw8eWxfgINci%_G1Ii%P+fZZ z_j_D2Y5Jy~3V67Nc~>8J&3{gbsbx8XKIPw5>h7?(xHwjOC^j@8AfVT0=KS1PtKxWj zw*HkXiS{L92hTqemd~zON_*nBWS#HOXBzUkPbK$K_2#X+kE=eGa@Eq(3Q>D3m2~X# z8;ZhR_N00Lg&ud;$!?fYX94YT3aB%;X z0q&BKC*C`D?o1K2dOP~qy;oCJHSoAyXCj_R!0J@_!jrc#k_p!a-i)DSqE5PJt{_OIU7Ot=@USZ4mC(;)xDk_%RD_4^~d@%6+T6?I3KHv2?Z5!p-dQz1z z^FWV#pEyt0H>`qlczkF2hUz1BhXjtq`u9Hd9ewxo7K%Q{pW)|ibo%sfpJ+6)&+TwO6qA7gg0fxqCrD z;sA-DwHsJIblux~(o)R!!@HufIlTIP)2;06><7`&-pzAo6%;r$H8tmJZr;3kPG0`kGqKt!Y8(K~Hz*AU2mW3; zETA`x)de~4WgPV4FCqukVy-%rE)GWrp_(~H-agJP?65sP04x;Cs#qd>cL6FNFPW@K z+YNk`dnD&yfyxgJ35l=1yOUo^%J6c{y|(8T^`Cw9vW$;NNJwDWyfp7ndU&u_m^mOl zmMD9h>~g&Wiub5hta2F?3gxGIw%u}mW%Ryk#T{>B<+8IYS4*g?3JMB_xt2kfE?;g- zKEK=BduF&%+~=F4-G^uLl9G~Y3}!sJ_x3}2YYHqw;onJr8r6lW;jMuEj*|WdXuhoYOxOUkUTF=qi z`1trj%y%sfK2#UG^5>5nx1MHX99`B&wLj0z#TwO9s+_7vZ?Hiv&QJUJ_{^e|+ft)| z&?8^IJy7Jz2^LbqV{EZ2>`BHAedkAeMxp$o5`Hu%w%_Sibab?@T1ca1Ywg2Bx&{Um zqKy?!oX*L~VNq-=aUDl05O8euHYSHr=C?c{fzETaufkW#YnGxd zzUF(!l}D4N7CM;CO?2rm^m=FOWf(kV*(>$o#!a5RvOWfAQsfWMo>o1tPO)R*mbG=5 znVqG+y1B*m%SZXglFsL*DwgeUd;T0UNTbny{Do&M$|mbUqKHt++lB@mKfj7jw8;MA z`H8N2%iOVcGylwQZy2%tOI5F4DNE}cM)Ty`_mohN)ujmlyHTQQ?FW_g&3s*N7uaMK zp97ZG;V_n#$!f8(nT5SxDtIC+W(kVH;XD>su6!70-m-;1M_oC+D>CZznKMH;g=bUe z0(U({VT_heRXpVJrO&l1tE;yIokpl7cLWUcegPv0kBErKD*LLuxV&sreTNM&FIXr$ zwh(*an(y+$RD}61ulWuum6e8{wr}U9Gh#V3+J&vw9}Y-QPmfPX5O<$6M#-qRn|f!q zUd})(32^~J<5$_QcQb}wbagF5(lwctwpfXA(JIcKa z>5G@-7%RDGQ(4UkiZ)#ZcAO{OG722}vd#r@N@i5y!92?8*R##I~9MpHE_;Z{?OXuC1;0ny%iN@3ZJsU0p4y`a?Da)FJJB^l`%i+sHFL)ry+R=~Kb; zlRY-s+21H}0Rc6a)W^3G1@ij#b`_KMn*&&^o-@O>RaIxOc$`z|J>A_@T&^z) zf+ay2W?$q!IC0$|t@}4=l~Ls;lhv9(WVPGIQFG zKBrH7AFZ#l64YaGcsQ8=qgbD>N~satR+g5X3>jS6-ji;sDiMPDg+n7F<5(PN@7&m< zfuvOfsLb;rpDVXiPnJ%}0?m|JrN5lIojw?&x#xP|7Qr6IrvUCe^jWQCA+w5Z^SAZM z=c8wVqaVg?-e*J-3?0|54crsTS-B}E8khCyPv$Qh%zWp<=o?keox3Ib?c-Wv1w1^Y zUa;ZDzB9KD1G4>>yZT&4-|cf9Yf->qnyq4elL-abBQ zQx|%~YdF$M%w<#~K*9x#4uz|Xb*lrWRIxx5{B+zTJAN5 za}O^qEhV@W+m0QhNfD;c7q+mnMgSE}eWn#GtgPxU<&3KPFFiyZ=+TNqEgRkuIQm4! zn>;((Ob`}8Zwi24>W7%So{K{f;ul|#=0=;(pq1vBMfFfL4+Jc$^Z+ruXsIbKpawSR zhILI%?YkYyo&uJVskIrn`8vS!s-%t(F}qGN@7SHD9`ZKrS-Lp;{{DXI(=!_$OM7Y= z723BEixGE9IRw8KbLf>0+I8%-QGu-{dePkK@>G3IP0HymgU=sd-YA)SZ{%7pPuCU&7CJUqO#***nU=cjVq$sI%Hm90y1tMrjjD9*+BJel zqOS9=4V(joWwhd^yC~(aY0H`yOk6_?ZxL*q|N2#g;3yKk9#zjeY+2|{F_M>6V@@=0 z+`L&tT3R{~9J12`cXEPWVB2x2sI>H?vAx}{N;56*s;v^c&_Uj$YNs$)eWSNr!OSr5 z;@7q37_0QH+}zv;e*XCd_>|b4J9qYkw{r_N9%rulP~w`tZTt4iVpre2_%c0x444}< zRmrG$eY^sc=NxD(vxG$9W)s8ZW<_p}iOzh{qwIH^F$xXLG|5R!md&Uon3THB%T`CM zR;+xjPr5e^#=IL?CRSEnzEw_6?((1a_q{<4s>~XJ91x$ZYHe-3ipeC$W4d2NsF6#; zJ_diiG=SmrI1YZT$F)7IL;$?`P0_W1z>gmS?x1A@?~NS9 z(a!_1pg4nNmnb>pHog?WMo@;7V<_|l;NTlJePi=LZn@qQ-t)Gp^<}dyDz|u0dK^3V zE}!-<6YH|f&AyRTp3^=v#F2c1=rp(|4!m{bau$Er|kcogXFfecgxsla{{?N>oGymh=x5qJcM; zwR0bDuXbChzs>=1vz3h40-wlOIM#rhcjlNC$vcg=Y)S+9TqW(dI~M=kK$@f8+Pd2X z<@#rRy$UePYo<{`W!4jfdLmZgGDdx@={YeShpsBouAhmf1l~fpf8-9&FQcurWzm+58w{mV;u8j zGr(xVck`AlbKTBON5sT**zYRr+qaLnGF=S~jZbz`zDs#r-k*=H+pqz^cKGN~RiTP+ z@$_&KiOdf2>~$3b645E}M8#ccI&AFhe8-Myf}FF^dp!oW5>q>YD?^i$S@_^-g7n)S zH@aPVcB&&+aiQBen9JiM6Z&kJXTlq+C!XgByo73yT2xfDxh?v^1M_V6uYJF&Ptr3mVqG;9}=(`wD+VQhJqzDn$Ym@WH3?XkT>`Crek)s1`ZKQiQl(R8+dtn zt=qFqcxA5@<=FvA^>uVYiP?Jtm&YjqqXOzepMUo6zyGjT&d=C+xFPl3aVE;?{BIl* zB(jpNZN{geA&Wh-J|B7uoJZ7_1IF0uo0^1jYyrQ`AoT$S7^yH=>89(2jb<~J@1Mjl zgGqrSD=Ukb{LZQ*;(k_q*9>`u5A*oH$s<_&Zt8uUD!X8yinJ4gR6swLb3aiN+tOqQr24BEWF5S9T=P zcX^(7GTi6W<7c_Kxna;jD3rtWuk}J8mu{n7pyeV{1-83x5n>Cm&cORDdTUFL2JMyz z=kdiV$0AFbU&P1&QA~>##C}&u!mQXSiRXx{Z11NEP4v8YTKNp!QhLf9}}K!V;d6l7e9`6>?0{>nrVBg8NrA2}Q%M z>v&_dggTUmc7?Ty*2c!hc`jpGNl8g#cZDk6(c039wFSO$0dko(+F%S<_I~BAgVBx2 ze)J{D?zrjG?Z(bQ+W91k^ebkKCMX{DU0p_4GyK!tpah>8tNnL{bTl;Ln&cSWpIoTK zU}|b*VDQM)YmAo=ZwkAe?$QPO-x7*RiThMmC4`GV3z;VTFUs(=aTw&aI_zHAFJeIKX>} zxoq+4kQ556+!srQD6BJbwbN&47#ZiVyi8lXPP$KKgz@VGT}?PeuKb}L+u=l`rvAiz zVkZ}upwhfb+7wzJ_$zQH%%H-fyFQOI)Pe>#2PriD*)t77M9V6lH>3mGLK0W$%k{0T+GlPt zH?L)tj_d9=E=M;egD~FXmh)2@pTPZ*UH&Xe2(W}m`*o;(=+h_7NvFH)0xg6DMeq~= ztCaI_V6We@9cH_ZwaP9oc?3x%q$E(ASo`83b_fOFUha49-Fpva+?J%WGiZ;bmP7em zI57lbRoQjsDdC`6fCf;5`plu*hn~Cx!^{E$vVqEa=Z`-$OiiB<0}kc}NTp|>0FUv~ zeMrXfhUMX#Pi0=H^eab`G57HD;>6L8u^%Ee~!Zi-R~==Gpgj z673usa}ZE*0BRV^WfR+IsAHFTczAZ1o0}7#ZN}jBT~V=o8)F><;@>^Nq>*pTd?WfM zB>b66Z<$FXVe#Px5=A#MGLjg-W;`Kcr3ekJ*Qj)i+H@*&^QKKlrp;YkKagr=wj*O-GHH>NZP4Tlx6$W2fL+5{deonLk}u-^5invMG9h!;ZfDlivwnun}?K3Hb{ z5z+jB1Sd_7l1MMOC4C)|nbxi+W=^)rN|1A?9nhm1LwE@7clUAIcOd2QPy(#L46-?3u{B`)s8>WM>#6kDbw_T(C7wrL$An?hXyc52&K zcIU2J@>^ySw~a|&-y42+p3vBFkJ8f4lG=W6m*b0%pIU6=vQ&#X@f1>iKmlHc1_wvc z9KcTmb5tQZqwe(LeH)|1SK>|2vFte!hlZnD#86=y6}5SP6yvI?mnMn)L$<%pS!nw= zmvp@!74O)zY15tH;6k~#-=Ea8rG+UWIk`&13})RUa&l(nUUPhfeZ2!6Uj40)y%y(L zN|HSj?#>VSTV9v^vZSc6BR2AgdVWCUix;PoQc_Ol;RTI7o0=dJawW&$N=~SB%;=|2 z`&e0n$*J4Lv*8iYz(9-X(yWYw^>1cqyZp*u8JS#I8^%P*xN*U=j{k7kRqj}JyZXH~ zUE)UJFJ`{lH|xm`{T^xN%sXVd;{UaR-96u)W;E%gDWNkfQ`uRi8q6h==QN}oP!Jlr z0~26EiT+j+W!;9{uRCO%O~UR;T93{1?Y5a1@ZBgD!I4s>YHy!4Kh@{p?*r|Nc;e@y z#55uMh26g&2Th7rzR>%SN9Nnd8xUllJi)l$j+gjpf<<4wBoi*XPO|&<_^q(3{+L;8Ad^xh1AVAYp-=;FB&9 zr@>!%4;>l@DiVEyzKGjF$X8J(uEh_(eVm@2Rie!JRwGw*bT>)R*}RdHa{2DvSWZ6R zO4}y?u_Zly;YN~$lT^bj+S)Di&_y5X*vYOGb#D5I9OIgsE>L5rzgHE7OWg>&^Plxf z7)OUCoA10;BI~5) zXcYcvNh0ae40_EM3;fQjJEWByGc%j>3JV^v}Cz5NNeWp+OeZ2O=}=-a$f_9londus8Zl8K<&)V zlrp|h+$yP;uDhX!HO=?o{MRpEaB>CC9nT-v<8A50Xa0xq^N$17KjoeIDw{=TMw;}0 z`Q;D72ISyK1t|#YXeZ~Bp$To?x-|^4X^G2NJgByb(@T`gP88Eo7)==R;Du39k3_o$ zmw^YDKwWK;o(Uv$n)3Nh8^Vs{^7$g)0~LCy$$wRQte=TQieV9jeWhn?9CI$1D-#38 z)tA4m`#L?{41rl?f&qDC9QMR}2nK|HFEjh@3^7c?E7AS_@$ScCKC3I9b{)?ZfJO7i z_4V}$6??aY{ZZG*-+o&IL0K{nCZY}cltorbT-+)6S@SiJ{zLraEG+U3A0Od}`1RGR z)64GjavBS|LpB8-i)kJcGlj2x_)219Hj7@kZ~=`|>(r_1XT0&^Hq~oF6FGM57-10- zejXv@iHqw31hnChM2;&dE4P3#E9YfH>XVg~eH$8B|026MWH1Yc+1?(_t~SzP^=TV7 zoRCy^9Qlo^l2YpIt~Sk`Y5L!BRg%q8uo?}Y4K5kTacyWRxF9yA0r$Uu8LA%(E*+GRi!f!2grO$8q zJmFSLdp?Jmu08C9)_9a%<+dBpS(zbHRyCdz}a#P<=GpVC~PUJPu zKvnkd-ya$kMJBv7<@4ut0lR`F87L+Q7Ef{azdLvn1zj;0#7U%6sWGyRJGi;C;XtNA zQ3L2l6Y^DAnRF1BjA4iv1dsfy&8L-=ltL1@{l3Y=rPhU_LClj-nd+cs!+y=^6hL{+ zg#bZ6JTr%hKn*>j?b82x)6IYY8(6pVN-q`f?Rk(s&XD`)4E0`Sra^RRD8h^|-w6gw z=uMmw_Qn>waTr>*N)$=jZ^a{sTdsmSf-)cZa)R)s-6zXJ+prEo?|O^kecA_r9skqU z(nK7C?V2#Zy63u^VO%4pET7Oz0et=zz5Oq zuX|&-?7_WeE6MoaMo|j;-{~#cg-KeMCz}3jyR1^6Tf6N5=~U0DNAmfbZQh^SYb2IN z-35R$$3zy%T(b&$vB-Zr`K!{l6|wVqJFFQ4&*_W z%yu7E+HCj!R4&+0%})PL0nDifhZJ$Uc{3$9gRxe37z zP>!&|!a~di;@A4mVoI3|*$hHnbRSh-8^Q}NrjOCSz`iF<(4^!r_#+1gN76h4!>Skr z4BmqWiP6z(-1vET&cdu|ms#l6o^0MjB3-}Z=$<@-AV>w9WE$qvt z&k2~884$q(n2fXaLX}sC>cUE38P*xALzc$0@HyDo$%#h^<)@e478#nU}QC~1HsLFg@zyWtK) z|DwU6DI2v;PE6zhu4SHGCJdp0fdSQ83UB4Ga!BcM+YfP7ThlBX5M)pe*4&Hlkgd+{ z_$xxkB@>`ZiPbhA)*?m$LJ=bdSlFr)eU)Z}u8RRrQfB#cZj#_baKCTgJeCJyV)j6y zOZR82!Wl}R4AERyuo|_m-Iw1*H$sg(F=doW6x!UGPS!i0xsJFm)Y0oWBR!pZ3QZ(t zcO{PBh}I<^CACeZ95|FT5#3hq?e1#bkyubKzm;EBRGTZMmm})99Uqi}?_3#}$}cSZ zjB4@3cm4v>4!(q=#{>9NtE;bXHDfI4BgW$YFx{rs`XmHJ_Pa@EOA$zcRv&YOBcCVX zBgMz4GTEw7r{@u<>0dZg-QkT90g89|I9N~39a&`!go^La7=QZx#s~f@h^HZOp#<}p zuyUYfnbAZr$n&nbi|)aL+i#`Ex_#4EyQH!k!B;1rIo>>;-n|$Dh^Kp3Rkr2oHz{*R zO5T5vt{7pft>Kcc9JH21IT_<;^+#}UI}Fmcd>ehlB+f$w)Wif2P5|NJ*rnfzK7psH z)N+5{88OtV3FM&pR@Eli<&0a*9G6(di&hM}%dVVkKb=YMOsfhD;u8-C>6Kr&LGDZR zO=4JCo{SLaDptMFUB)NQLW-Molxko`;s$eZl!(P0VlX07L5BHtvPZt*JXjPj5y2JM zg`<&HPnzMH4oyvEV@w={LE_zJhm0JhP;l%K9aOwtIuirCR1I5EDL;hQ+qZ8=Jm`Wo1qAI67e`5v&zsHZ;i4PXCVQ7E*pIMRXe|7_iJ+39&M)#^RTwAx0gptVqx>}a)YN*-;qKoq>UWbMs`iULJcA4=R)0NZvRmFr9OQN z6H*#?cE?g?{Bn1y@I&Algk1y$PULMsS^!r3kYJ^C>p{e<&Oq*atFTOH>u3?Yo$VPH z4&bz`l+Ot)itC4T=bKlp-)pZSei=Zh;}uAwY{9zrYfOf8I(n}&YrVJthV|2Qu)nZ5 z2)z`52e?)jj>yAh^(z?-LjA(l$De; zEB)w$(E6-sYc%M7QchZ(6&C=_`Vryh5xAs2>lYOry2jT4qg2P<-X3nd`&9^0`WG*L zRETHCPIyjDCN3az5i~tR(wxYRYHq{C52;ha&mr3H@_+E5<_1RcZT(^cV^Rz zCr_RbLLXqLywNiE2uL`RI7Oq+36~UoWtNEkMe0JfF%E4_iR>R35XbmTqy~FRTw7x# zokJrcQn0X9LWsNwyMW>0BS&h@i-{+O*aZ<@Oiy+Kn=?86h~v2JBN0(iBCPoM#I@6( zK7E2W7v`(=1q>Cb7mpWK5UM+$ncsj4tu3yb@b=_?PH0q~__@4U4eVBK2kIFKTCe#6 z_z?G7`KA>MpV;Jf0a8YF!htFm*i>mR7&mX#))(kE|1s(1&j{8P3m>#eZ7!Z7T_?Xb zbJ4lG+P*5gPde|yT2JpHU2=v@O|H20m|G)fr;=T?M4F4;cdf&4eq;|5so|#Z4RZ7A zc5Qcen+v>`+5E5SQ7W^g3Mf8cRmP@8Hb^u7_ocIcoaO!h_|EUlRD%JP(S}%Z^Igs> zd7ITfw`c9`eNKP>E#9{)-{ufEcPwApkCvx#8>vO8cmDnR<6qGOg!n3(;LE!pd88lD z_lON4YK;LR8Vsi^v`c8g_E)`(9*TUk4E05q*5o5fETK?vjtmTFKTS9c9+dK2gqmQa z@9E(|J!K($;J;?0rHTJ3Ta1kt;DIKY0bL;7tkRFLhQkF-(qN{K z;`4ft;rUFYNgu!F*>;FPut~*xh|w6wPkHuC7+0K8pmJvK;Ot04!xI@Jqzy32=J8l# z$~VlpbQ8ErL5MA4w9@g@X(BH{kWISi8e~ibOYQ+Ik?{DyJu*1>%MyKNJ(S;E-m1ax z1hIqhVrU9cg*K3%Oc)(B{MmMU`=K4Xc2SThC&PSPLim_SZ?wBbQkdB2(Nj8)B>!`y z4lijS>;oa8Hz-@>D?xh-QL)y<+S*#GB%vUk zN#ikS>Fl2ef+?6-34au>&CtX|=I770LCBYbhervU|AryC-iP(&(1E`K@4r_UPDM&E zFJlIsg)=saP;FaX7=J!usxm8Is^AVnVS%cFCR1Hg(?#5r!zWG{fR0DR#>R^B4v2hd zeekelzVW+Hm1nC3_nvZ&NFEb`oyEcJ3g^z%{q6i806v)(ZC|1U-2o?`HsPe%c&Di$ zG^NwQ>SAsO5jrb}Z;S@1jd&w5T_Yq`+#n1u9NKKz2GGe3+*T&6#igZPmAQ;x>x~f8 z<2fQN-Ti6KbY(#ff9Vab+z?TDXYz8&L6XFO0RM}r^@zh56ZTxyrx$Pv$C1I3!V?lr z-#{`RhK4Gr)R~ho>s(hoQB5b+)(Q`djivta$Ht`OgzxEwYc4liBgH_D&Koy(rI}@($8?+p?RBj7KaW$8=vM1B!M0V2dlH` zZX^k>eZ@>}oa`xO+qO;f(`wbuus$njbS0}xzGa1-j=3)frHkZnU49194A7$9x2SU>%Y4{=Ku2h zH4YKUM&S3-e3t_e_{WcJZc3B{qMJxrf#U)vwL#2?d5MTC!!;yAJ$4bdr2Y^F0nsM1 zW7va}2Hr>HH@@d_keS7gkBLy;nyt!+#gJ%$;Ggh0lx}QbeGgBUjf3NegM$Omgbcr$ z6B#rv|CMWMk}sKvK4;|v=ay&^#Quij5~&J>;*t_RsFoX8xu{^m`YLSkg8RQ8cAzF$ zB?PHS1KP~@^^IHriE`#&R{dqg)TW(Ys~J#8_z>g#yGEyfK^Jk#zB~saO?XBN5dskJ#L)UzY;f z{potm^vS>94U3K8bAjUWB18e*!<0ZeY%nphWc)`(r6@2lF_G%FiA3I%%~*o%_m_#{ z-#4~@k5x1}BLWr=xb01LF$zDIFFUZ|k+p z?SPg|bDSNzgtnRIyX+==2XE8al%g(5JmJAVAJ97U(}^5DwqG0;5^C~uZT(~00V;N` zU{+HKA#&KLT0{X<5es<_Q7oe>fYs*nhaBBfUVNV^OqKsqoG7%DLx>eqDxqhaT&rfo z9Q2NeP{BXZ>Cpo$d(~q@UqZp%!|EsjYz|8V56QAjBfN7WV*|b3irW*&6goj zT^@O7Mo&Sg`PEQ0C<44&^o^BcYiS&&j5(v}Wk1gv6ZrYa9~@AE?T|I344MA?Nd!4? zY@Okmf&?`{DkwRNI+q?x=4l9jB;mfBBYw4F@w^GBYy}%%Pz^y_8)k=yo>wk#?*o$gR#4%)-1)a+DLemK5>@I!DnGVb<3H z9uP-mnZV0tX6B5fG!n^moB4XzkbhO`{?=|G=ZKI_nGBd>cc;bezo)gCbR{uSEU_Fq zEB!0!(?p&a=_>%^S%Sw`*J6D0wpiRZkRBNd1h>jrWgy_gQ!1O=-sxd)C(UBp~IPKe>X>**EU^ZX8=N5?!@j7Vt0 zCnBp*M~NS?4)~?j&?kuWDDK*K6My;~;SD2bLr!)ixpJmNlBkaeT86M0kw7E%%lab!?=@LG zqC9cZcgY3(pA6}a*z`)wFoYo8f?aD#c=D!T6~tz(JO{{v*g^rIpdBHe<<2( zoP@(+>hWnEHtyz9D}>6v{Kn-ws|k1?#r&~^G$1yQ98n^e_xo(KY)lDh?o+)blO^L~ z5P;wxw+#-HCy3s+pvupmsLv^u^!) E7k_&fv;Y7A literal 0 HcmV?d00001 diff --git a/master/.doctrees/tutorials/clean_learning/index.doctree b/master/.doctrees/tutorials/clean_learning/index.doctree index 61fed78fdd55ae074bc0008a215d5f383df1675f..365396f5591c4f080608edaa7e1bae224cdbc3d0 100644 GIT binary patch delta 62 zcmX>tep-A(E~8kWwxb$T8e2>vZ1+=g-KFUvWY>Wxml`-p`oR*iJ`Gcl5w&@ RqNz!uv6)%w=6Q^|TmV|A5%&N9 delta 62 zcmX>tep-A(E~8;)a#l)Gibb)0nx&bkiG`tYlBH>)k*R5-iIH)dftiK5fr){IrKOp% RsdL0nx0Nor(T>t<8 delta 221 zcmaFyo%zLg<_%{!4KtIoQj$_EiuKbh%}h-!42_d4O%shwO%qLwjMEIvEX)l|3@j`y z&5TXWQ_K=gl1w-M<&1cwU}RxxXl`U;Xpn4{W|C}_m}F_5oRXT9lwy)>l9*~}xw-Vs hL?$Ids%jJ_Pkgg<^4a&jgbl3v@Q|Ibs_GxP%m7cWNUi_? diff --git a/master/.doctrees/tutorials/clean_learning/text.doctree b/master/.doctrees/tutorials/clean_learning/text.doctree index dba8d72ff3157a5dce83c470675104d674f736c3..f2de21f4585f60a713a7e2fe0b1d368b645a97f6 100644 GIT binary patch delta 13266 zcmeHNS*%@E8P49Prp%8a@7d{grLEh8+ckV>&v~bY+ue@a@b%6+b_~ya@UrG_+p2Sh z$M-B7-tyr2y$yp)nlnB&_aEzr&+l1PZ{0oI|Hn1M&p&wI|L%b+{?s3yw)d;UHy&QS zHn<%jePa8)yWEa@a@utXUZ8uyx%a#Nk&C;Na1XB;e)5qEh8%x>w)gDe?uWPh7e9XF zsYjl_d=R6y!Un2{3L>*)D9bULoV??Vx->j~bZ@_~Xt?>+)kiKnd}8^4d7-@WS};#> z+sY-ayiAO8!vqPmeOh@Dd3Dv16W{sW@_}P6d6s#Il8T_2lPTjLUI&+12z>5w#YOGo zo;ilcWl2-cK_|QT60)1PXzmiu{>}Q6 z237%3*2FAy7CsRl+Z)A~oHE6Tn>)4QqIR37|Kad=2gVSNTi?BGpj_a> zM3se8A~NoMwAlxls0~_#JUV!0eW2>+WHX)?q+?t#oo$x57nW$G6bIhmVJk;RU$0-Q z`jg9wX68_JW4}yd9IKjVzg_hQn&5>UCC->2giRhuOhyupQ?}U5coSYT+P)o)=(@zSvoxqo zE#8y0q~C2~Af)#O=(R1R6UFNjt$pO&qQ3-|Z8=i?peh#ac2TO?TzR;@b(7g-@A|;z zd$z6Hy?eu8onZlBl`cx_1em}YAfxEGCKkFa(7B5F=qbJo!surI#(Gur=9lZ$qX)iGeH!?ZG9(Yc zW*9`JwKENU3;25d$@*8-%;Xnn9(}pm(w|(NHOFqMFKP}Ss!nY-yi%Ro zPnr@FiLs*HlQzDk0iw{0LdD>l6?^NIFT7BFblHH1pp7DtqLV?5-iG8Hr!LE2ypd_# zq0DI~L_l{sDoiGZMJ+&eU<)mCRO1dU)U{oQmTI;*yT0$OB#bHtHY0+gz7vFlZjE6| zI6ZpsakM1#h9-^El|Vg23*rnq&%{zIh;YrZpI7INUO%^frs_+fh_>2*_N~Ygx)h)Z z(nd}k3%NP?a((V-=l83xSA#-n*==KTY2{m>sphgbs!KO2vj}VoT-k1n7%qf!9)OJ$ zy@bbuWlTa>b5)C+&p;#LIyyA5rklHbwW9C0$e)?)Fvw-Kyq|qG)J1jQtd7H z+zU!TFfGUGXa#H_(en~OBm9I*0_z-<+gYbMm_idTLBPR{0amKnb|&q|$t61-+xJ$r zc7}SQ6vtUpuvCW8g`M$+c*`{0LWi+|<-w<9scYc+4FiOBATyd|l(N>BFRGJWS z#KWN2iAU^#Nr(#0Cu_sgcnfTD%`v!2H9K%U(W@`qNcAFcC5WiyP}u}ZVA?q6EJ%+j z3ct+KxV`!Xe>{3_P47Upr*tVx(NgF|zjSr!w8q#vckRUeEYdM8t>o5XqJ%xP1eO$P z#taQYNm$a{0jr+^C0Y9vBGd`8XLXJs^*~G#Ld!Yhw^+!ScEoBMxCay!j3F`x|ZsLUe76cmhQ=NMfG@QU0(?~)*`GBTU-KnQ`biZu`I0%bh*53X)n_RU6+ly!P*7p_7fhCUfYawpDB~pP2VN#lNoS^mj8S`3?A@iR0!N zc!fJ+OQBR~(RW+OiKj-)JEAsuPm;AaI~FxGoF@hu4j5gaF)^!RvI?!7!*0=eNe8z| zu5xQjUy}wkL8YUNQ z{w(V)gHp|Q7n_^UsrvMRY-d-9STLcb227Edy_8KZw4)1NuM;$-mByaXa-bSy1Qhl~ zVG?!-AsiXQY>?20(z2vrZ-tM{fF9wvpnhB+=9-^rN;Nw{E0k<*zM{TqU?Xb>MWSH= zak`jYcybyd#T+=n%@39V7B_fsSZf*)wSgvdfNW$+AZb*MX#!yb^;yGRayVTtodH@^ zLZktkhLH>w8k$$C**V2h$xh7nU0Ywgk#5q9V1@9>a7`u51#FWB8DvJa^)z8xC%nOQ z+xhrXs4~L50YNKW%2HgF`f%y$!hzWqS1UKx=gv&r5??@7I{`>SkzpY8z!kulz)U0` zxJf~Wu!#C4(7~brQepz1A|bN|`e%U@~YJvd)-`3O{?hv{$U`sM)T^Jj!LS5eVW~pX#)YTvA zbIeKx6p*RM=*zN~G5XjV*cdPX&-v_*;0df^%62Y;5r)FY!nrGI&`gHtvAll#>iS#N zz_qpvmjLUoF&bNspA)S(x3Om6^Au62?Yn&x>aq@FFKz8zvXL*I#vF-Wg1DW51qQEy zZ?(n<5mIWQ9_Htf$w6ZpPh+L4Sqhm_KQ3KeI<9wwtF)yBhz%%al7xwvAo~#lGZ@Jd zxdEpz?10@oXF|0B6rQ;Qc9g?UMUN(gwGu3th~2lL;(%HvNwQG|Ycb*=O|}^7l9xzH z6y}04zDh-#*Y1aKm1=gvb>C;|)B6bAptS-HB(`^$3|ceTWTJJDFFzNyba4m9|A1vs zFa_vk|P|Deu;eTx_z7G%O(i#c^B3 zVQVbj8G9i-5yaL=P(~}Z^>!}n7n1kUQ?8xI3fJ;3qgU$2rRXXg6Q7^Q)=b(>b0YLE zZ65t>Pd3XRuWy}3_TY_aWIy3^f{q=gk^MBXFGS}Hv_FmPr;+`lPm-pQ{WP+lM)o00 zBl~wgdoJXm)5v}r+2dC*Cdb>;$iDkEq*8o7jqLyBV}f?3q5WxOKaK3Ck^MBX|92l3 pOe6d8Cmhqrej3?NBm0G42L69V_9I00KV4q@J^az^zTUdtKLLjm6^;M^ delta 13410 zcmeHNS*%@E8P4A4k}{N`(gA2W=h&ivwsg&dFNjf6i44_*C|)dU6j0lGizMJJEwnKa zl~@k4gT&HGA`T5yZ{#>JG(;avEG9fCi3Tv5I1$<>6Jm(pKIgQ(w>D?{z>_&inG={~P{qckkop?0x*4gTFe1-WG0;KALUovsF?U%Dt72N$CXRnJA-)AjVq7rH;x8 zFX#Ss#^RaYJ7-t+TC?q5xqU@X&R*P`o$Wq+Q?a6V^{lFn+)ym-eSP+_-i6z5|KAoq za?k7M1-Ch*&rWZ;W5#XXmeb6G_pVxV=WW~E^rkH{)0;l$w%w6tf}4q#uI*kLZgrbK zou)T!y=`;vmU}zZZ*DGD_MX{sd9S^5Wv|$IQ8~T6x96{`dSBUj*W3QwC4cMm7T@<+ z@6Wr=?;YN?yj#B`Uh$M~Sij(dyH@pPcCYN6wtMy9WTxs3RQqqlVa@LP=-cp^xyN?T zy{Bur4@AoBBy)m#W+kqTI4iSK##_=m^89_xi^xmM<}N>YbWxXB6$7)$YtBSS%6b+& z7s8929sY9gxW+~G&)xj%cbwitRmsNlIcJa$jMh6-vQVIbrfu($k%tvXsX8k1_ zTK_1z4RvMJK2TiOShG6vyJCIy^8>}1T_vfPLQokEUPy88Xi$Wz5V*={>Hcfiw6;uL z%##S*F-{y8&eZ*_tZ3c>aCFK$sZS;E>54=WP_AZiAa^FMrucV2%b_jNdMk% zl$)ozQ6(K>uo34gJg(6j9<9sLN~*D~{?WTz&la8FYz&!bjn))e8LNnoUT2B~X?RQJ^$U z#)ayKYmPNo6FK(xyVkdg9Ss-bSEJ~MZ}`NfYp?&{hd#2YsU1&RJ^rlN>YLYA51m;q z?>6jeaGRG@`>tx8)>Q<=1(2|$Ja|xhF1Y}KIb(TJYH*udrrJaiO@oDYQxRmg1l?!6 zC)_D*ZS~rQa%uI(H_PSyd%jzIq3CiGwW#UK>LiGw23=r57@)Jkbq`_I9$&or>fvHz zM>Ui_bba}*>fnLmtZMCx#aZ0}c7kBskV?%>&UsrCbW>)Yaq_Vh;0!8#yeaB zItE(nabxIhFK~Arf2&f2uuJ2q>Myyke75K|RHZ|NrSTPgjWAVR{#tR_dyScgGM=sU ziGZLp5e@<=VHYjlI_BhgwP#bgY{=qGZr~Wm#@>rM31m&pxDaFw=OvDVZ2YFc9k|XR z$U5jhg67i6au^s6UI!$E%8qBIB(K?eC}W+Nj0Bx?tDO*uLR)PBJ?RjFR4P@ttr5^Z z^?Gq<(e?)5m7YZ&1%4S$LlPD~n-b>ffWG>#K3cw9bjH7euiiQWMQbQ8hKly+Q7Br_ zN<%h{=GKBeg3Ba;r-Yae9^Wt>_HYjYG7wmV9h5MF5nxNOT3V7JvGs51w5F#nhCE0wr1nn3 z1cL!#B{^7*Y8c^aG)oK>hu}Hd<0sBO&VFyP zqv3}5LgX}bq*}PT;k@{9X%h__I)Stf=hb#>1!G?(vObdB~qzD8ECSw(TF@hl@kr5ueT3I!tlon#fC`~#eA%I~T^k1hTf$8saE#R-=j!wc~LzAAQb4@2U!rzL{_&p6=*vMHj zOe5e%Osg0Ww5yXb3}x_Ol5=42#P+)qxJxO+O>rw=L_Gm#f%74ET7a#F0ZAv+#}{}O z$t$6>_Ypx0a$F;g1;VR)XX^3e(en2Yy79F|wd$JIb?xzGYk?ruTOTja0Go@9q|p$> zastz$6H4M8rQks#B$>ArV?<)sXQa!(9itdrQ^=BLVw9#(_hGaUk%dr;77Yw4QO|H% z(8v%G)|vV_zLZn|~pIz#5oZ$w3tYD}a?e zu~4@fdeSXi?Z+ROIj(X|yE>tAUCT7=JANe~ENSkM6vIuzG#MBU!j7d1H1Qk>!Ve5# z$RD#bkz%Alu!PB3jWWnOVo#t{jnr9Wm{WpbP_mG8$};dU${?F+RxjUOA|A@KtWA_a1Uc};9TOZjXAtYwEaW{t=Qsn`=&11M z?z)FZ!%mlCoChsvj>mx_px4qP>;e0Rh~3*`3eZq^r~nOh2c$=;ExXH$x|q-q5W-Ku z5`yy~pef@l84V)gCBkSYRKhR^pS8qCC+jduVz5*==Y&8+i;*SHCYw}0E)HV9+ATAT z>H@r_J$%VLOWag}Tk+BnyZ{~z%BMB9wyJ?S4 z^s6OLB7i&iLhw=${1rW4ZVA1G_U->2K~B!=u53f7d8Ix M|NiU)t<|mn0Q?^}vj6}9 diff --git a/master/.doctrees/tutorials/datalab/audio.doctree b/master/.doctrees/tutorials/datalab/audio.doctree index dc57aa8a96e3c782e9d3900ddf03ceea3be1aa91..aaabae84eb5a2f0fc2a0177d2e40ccf829a2cb14 100644 GIT binary patch delta 8754 zcmeHLO^9Sy6{f5=gpNugnNi7N>e(iY;ON|+bMHCVl@TK-iOCQb5e?1#RgA5BCpQUIPE(YR4Q8yZAGdou%e%0@_=@PAn`)cS#S6}Mf^Yi`O z^Xdy{Uwz^1Pk(WspJsjZrSN39)QU@4vk^)ulZxysX&o$SOUY&x9YyPX{pPKMXKx)W z@cXv)t%K#=KUtOLOSFZxupz@OmYAzzM=3@Qw7!0G`IW9`VtkXW(V0TI)Z}tBS(l<) z%rX1nXTMqAv%d6f_wB_Bp%ANRt2DV(6XPpQl9q$6{BI!ZG$ zxP5xAScgws9PYWfeD`W5qv3(0?!xA)tHdalMN$h?Yly+OP=oTSICgEs)XElVNlJ9w zECsQ#QuG$6iK$Ac1L|{j1F36^Rn9<@iGl_PDi(vCd`Y&64#6rvyz(g=efs(CwZ&>C z_VBkqEI%_F8j0LLeB+PHdwWh4F^z^1l}a!%c`nX7gA8$9p2pJFB+6)q>oa+Fp}O2` zsj9?6DwlCAS2lBLxfBtFlxvHr_@F%#$jf;eF5l?hJN)Rk%Y*gH4|UHiRx`nm=kxsT z*u&+Eof)ovue*N*l!KYbX+~DHDAAb1oC;Z7DyQLn-$fPQyuJKfx2mPN8oWzh5@iB; z#t^s#^o&EMH46UHqHpA_XwYj0(>j|Zv5u5V0V!79^!mql;Mn<{QR@h@nSinZ+0h66 z!*9W>S#KK#oh=B1ErtyFWb%o8DAlb$dIj)WndE{m_%!84nlU<7siah6u`TOy$lg3S z^R30zndYc%(9DdaY@eR1)C95jtac~m2k`xU!|i`8&-67UZx#3vLPgD`sKtA>$$&R4 zMKez3`Bbb9KCngd5T+8K6kJ^t$?W0~TX${(nTyH!s%x?k3f3&XaCTt7RB}`_KnW+1 z&Bp%zm!Vy|BWv2^a%s48(Y?KgW+91)xkRskBcQqxf*PxJ%4QOZvEC6_u{yXE0%mfH4O%NnM6-q{@QIQo z@I*>JXV?iZC7^{!zJ>}rQ+=4!cz0YM$3*60PEz)Aci}@E^eHVX!4oT|jUh!XvKSi( zf9VX$PHA#URASp`c5=n4ZIv7ybTqtgM^v1uD zmYXOQF^~zK({YC8Cj|sY7aVNBNW{l-*3ZQrUO(&}>vxB4YJ}Rg_jh;opnMNWqsmni zWx?POT1ho(lbz5cXeGl&o7SLdjZ#xVRo9v`=xEV_<20Ru2~5U0kTGUUN`mM!=NK|P zWiEc2&bgrDbk4;bVRrTRUB7Y)rlI6kLS@RJ1QT?`U95u7$Z@RT>hIm>JD3(0xTmPH zC!0}g1ACvm29cPSjt%2Wi-K4$Db|T!>}N7MjWLZbMFU49c*W=qBs3mlzOstOn|xybt1HSnkdMy{ zwke^g3SyOFOerhQ`L;Bf@mT=3xw4|bRP z+1ST=cE=~WclJsbhJq?vwIi6Tl#JHCf*D$NH6fez#+*RMNGZIq3KJe|Xevyl$_#hn zgR&;BkVRj>z9A@v!O|@$ zWWyHUU@Lt3Xt4T}3jpVhQ7E%=DuGa7vmmzQV8>392zbuGV;bX|p$y_QiK}ug;vWLf zJS8y`(@%Ol6LUn^U5|J7UDE2q<}}7U9{9C2*guAjxd2zM1fpS##glVlzm?KeM<^_5 zK~f-qYDj~`sS1_=lhGJmqs(+?8#=pZvhnumxuU%Vw3)O6QN_5HqMzwh{;JC+e$ z`+diL-?86!?DrkpTD0GH?AW#J_Z|Cv$9~_j-*@cy9sgy+vfp=18=U>VWB2Z1zwh|Z X9m{^-v9%=n|MwldzVVJTKfm)|?@rD{ delta 8822 zcmeHMO{lG96=u7?OB_?~6>lMdXMdiQ+u-VXf7bi6nkgw1nqF*RgdE@Be$muP5ORVB zLJmZ!K18A#M3f>4!G^-yXsLPTzIKFJKuk{dv3BDlof@vvFs}0O3~NMwUE$MO&xyzpXn#&-+rb0>!cZb zc>HVKgE+M@v>)F4{q(al7m;^nHrh#w%0^aPWbi&0Sqd*N_~GU0SGrj=rYNPHiAj*x z!e=SHlR4ws+4JziThp`icOULvne-wQ?Nv0$s8G^A1{-Ni|d5~w0=%~m^7#d`_{dDUtZiWBlGjm>fGGL2TqF%3JM`EK`_ zJB|6~J^N2Ty7$a8=li`1$dGi!N1@2a3am-vi;iAo>yw$^^o#C^ZZ}H9E{i;3*C_V* z8Tl;$SKz9g)>xa2?lfmuD~Sx+|2>ICjd@~4@!kBoh3;WrH>Bm#><(c z^E%O@6uA;09;GH0Aruu=mcX#%P=|jVb}OQ_LJ$9Vd-|om5qZJ0{o%QHrl)%#E+-ba z7%>ScnUnV}XmE<0vd2wBM*(z&7=kxs9Yuj^M$}#j8598j2!Q<9JKd|3Sq@32S}JlP zZz^~u@hY}dOYEu4Uq1sJ&l+JD0G+j>-hI&BF?`Q-Hw=eA?Ct<}Rf^JPX)R(U5pV&t zwP0%D}y!FhgQjd0|crHleSggB$k5#eRg z8f-2~=VfQ_10l`I(s~hyg7eDzB(g$ciG3>bC*Q{{4_%`|*YIZ}GzFhL-FPv7m2Hib z*4UOz$$*^Hp=L7H#$*LoWwXy(I6eIF3&%}#2K7@6T{Ajc3Q@&URYe2V(n^(A(y`FC zo`{s=1X#*SkdauE5dj)H;@Ps9hYzNgCVeBg{?WIfYmKlgzFj}*K7OlFSp#ZWgI*Le z$5b8UC&v_=m>-?*p6q%TE$5ukRV)z{E$Xba$Uz3_@d$1y1v6;84yb;u1Ykhhiu6WB z(gL#J-5NR{db#`Q~!ZKMBoI-ZzOmweD#2s7Ludl3|zXE z+o;J!?L@&1BLx@{j+Bitkb~m0TVq>~CJ7?~eUL_z%z}lZOwLwMnTuLT+Z&VJ&4Gu> z`%~37qAn-~WjpH5-GzRxL|M5eOlwrgpX5#pkta{LUh4|eS}9#+TJMlTK_1q)fL{yVs(@Y>SVAEnd8>Chn)nq*ie(Ko`0^kMQX*%}D83>ez)=*7!$pw}ROB(iT6H-|nHCmLo_3Arx>RsBTRNB2jl@9 z8Yr3+o|I40RXj>sld|4p^npcz!B3e|D&AQUqGqW90Vm8l$%M9=lYvgKfKN%jV8j4} z!Mg-?a4V8EqU+(S_jVWBffpqE*nQoNy_2>iHlxecggy~4vkE1tIAyffE0WE^II^Ob zD+g1lyukS6JaB*^0z+q-!$$pK(z8++ePGrc8bwkTcmRG=vJR45V;bRkak9HPIgs&gPD~`?rug5EAHLC(sj*8ah5w68^P{Kt_K#=mJ zL9$Q5f?&>kb+T&}%p}SxF@mOyeitfQ5QfZ}Vp>f-N8jmw4Y$~cy(C&AbQ~qw4W}RJ zZr^uzF|ARJIV(InW=DX{X@h|U_7x2x1R+dXQEi6ah@K)~LGbXf!x5g!j+$n;!pASI z{c=ugmFOgaTBtmEnm0dOy+XHET1&dsgYJdqR$}E*8f%I5L2dKwx!s8Tk44OOBeLCy zY&Rm?jmWhtne9eoyAj!LM7A4|3%#vaz%qNDuC)M(|+L@$Wf+SIv=Tvz}paQKRI06LGEKS&n_V_ltGgE`tii8KwwMFlw zw-~bk2&B2Nf_AXyKeE?VZKOjRZ6cR7`XGI9Xh?}5g~(;*6x)0lvDtQeoxQKRiEMmg zH}*kc%odv`pIN^SkQ9ob6E_mGaVEQ@OvcQUjv?DUWp`)Jh;k}r%7F;U8y_NJbexnE z#zJ#x!cH|8f3c(OYOnXEsy&3HeF$2agfT{sNoxQV1*c%iwq8MRt~`RB@{eG0ous2743HQbaI&L>7G7jym`CH&K;5^H5Uvv>ziz@rb0A&C1e&H zLn2F{N?^cQ>k;&Bx^|M-S%G4}$#yj8y{w*gnKi#q&tJWHdw6~M@|A1DuH62O?poaZ qy@h7=JDc5yxG_81^nb7y-9gA*jQ*|qo9qCA8@hp z2Ux`-+{(t%!mKueTO|Z6Od}~3;zSXm%}rys-4q{uuk$fGYqL9Rv#aC7VkO?DK<@5R zMljk570`HTjMq|S4$gAT9U>@W3A_&Gan*0Des%p*Ein;T?wmubJ%X1ZqClRrE6)_0 z`y17xPE>nxvl@M=vvv^CM@2De;0As2IuVyKkBxA*?haZ&fZqtLN-3I zs|S!UVN1<}kE~y7?QDh&Iuq)kVlYufVS|&Bi<0+#XI>ZpT_8}fE;w&<1OS1~3WLV& zVHcWn-`UZ2wby%54W#xQ0+%9S(xe5d6qT2PmpVaV^Lm@jwWA;GRn@KI+h@k>ZUqx| zZxC|HF$eNFD_yb=3CY9&))ME*wT1T1OkF@WlC#CH)Wr*iU=){$OJ&Qs*ni#BDuVFF zCTmMsv5*)o#NJ66Qb>{7V*gE5cd(15I1z(R@(JV3%Pn^LkQ9Jt5t{Wawooff%0?Y{ z45Tdy3|Scpl87Rg828uJxqzZ~t{umV#ni9jsdU)yDjpZw&3l}dhcb)Cu=&sy` qw-%e#uWbGR<|gb^)8A%Kx_2-gF)=DAn5HBrnpz|!nHn1dRVJHQBqbWASr{f6rkE#N sTBKTRSJPr@Vp1ZctVUtFwHDLT>G`@$y@bt_(PR3}PFR__8Pi*40LJh_UH||9 delta 234 zcmZ4Tg=5JVjty5h4KtIoQj$_EiuKbh%}h-!42_d4O%shwO%qLwjMEIvEX)l|3@j`y z&5TXWQ_K=gl1!Ufx!PH|7`L->F)=DA7^bBf8(StDn_DI)n;06UC0SY|S|nK*CL1T2 tm?oPWZCBG`YGP6%q^w3^y0sS5(&_oSOudB7l+k1Q%}!XExf#=2W&lQ&K}!Gt diff --git a/master/.doctrees/tutorials/datalab/image.doctree b/master/.doctrees/tutorials/datalab/image.doctree index 1baa9757b638240146c6ea1fe59c71298c37800f..fc7cade56fc20ef431d41976ac29e1203080a0ae 100644 GIT binary patch delta 29699 zcmeHwd$e6enI~2I+)!wyt)kfZeh=5A88HB`8`vnPk@p2di zLV(6@8&tTE>eUS*ItvtAgvmG?T|Gd2Of!H;8U#msVPew_C?cUjv3bp}&OYbn+zXuQ z>E+CtKMo6lvrnB}ukZ2ue&6@SC!bt!_s#`(es`E}lzi2iQlOMi!?3-^6 zk8OK&=lB;(_FS>*0)0-g{!m|x;)mOJT{)INc0`Zw40AC{muPQk6_=smff8U3$h9&N2Rqxm%b2e8zOYeoGuC zoCP8da-AhX7G{xFLZ_^(56?Ns9$xayNkiC55`<&xUy8gqh{iU*aIjgokPKb-=)Pl@ z{fj-tu5Y()eqkRn{%FZwUFTGZ6Eu}gF|#+ zk8jT;CpG*y$^#{Hm4#f05+W#-7GcR!ScXjJN$a)FL3nK?21x5TRU*ymnFQOCvim&E z(wW2_=%nuhbH|>q3<{VC;#Ejxo8ls#S41nLaf5 z-QRJX4tgOuD{;mH#V$gS0%f0le{0eQ1p{8jSveTP0Vh+S@+H?~s; z=CFIn59wWlW9RN%TWz?P+(*fGEA~BNDA`us{{ym=k_W4o{|C8^kjKqU_mkJ@FY2*V z9w2v9@{HN`5Lr$?U#}|s5m`^3ufFmlvVqbU2F-IXlKIt=N66PHeR0t2wI4l&zA|XG z?V^eK>z!m_b?KwzcuKKf{W3kNezfdyGH>e8v>`0;+;@#_{?L5$vj^y6bIlI&ouP(( zx^4d0Ef*bG@AAf-8S9=*pNX6N6N50Fn) z_dib-HOObGU%yBmru34bdO=qV)eD+7Ko?fo@5omvy{5gO)}xJoAj=14-9Yvrd)U9~ zdp&JSqni15bS3%rVtSNk&h_YVLtE^8&+of?&98g(J40WXyyocxba{jPqFOaf|J5VE zGWhqLYQvuNG;ip4cI*)g?6qu}Nq;c>(+NAEWQzHlpU}{Ja27pkXmCpFEX*m#<1p{X z6FPND>%7f(9;d$f#y)gOwQe7}n2^29Uo4~x&8JVG?=erz#!qL|KONh4(A-MQp{EX! z*>=cgvdrwcA6-tQIdebyAUV8RIzrz~$&uz1pDw4zO=+D|^`uV=NZyb1(*#%Z(82U$9?`}>1n)Yl^{zv!I}V}3 zqvuVr_kXg%rv=qXoDNMH`ix!TSN7X|mVcGtEHAK6UtHL_|I2pL8TBuIa3~${$lcWg zhtmfr`F?f7QS^P3{Mc+ihQ3DbG7rC>ewhAjN^4Dr9ZUa=?5KWtEdB3f=$H0w9~v>I zEc6aHOV6Zx(`VWTJoR{b6#0$0cLjZyNgk&Mn$Ot>yQ&9|$1cgs_KVhe7UcKUjuYsU zv&gIV*=C%;(JSpy4cntSwEFQ%x)w(@+&ZeSpIIMOn$h)ShuNOd)9A{2StsQ5G91+d zIsFStR+$-V>HKQ_S@f0$(G@;iK!&nmto8C{z1I8JVXdp{Im|1U;Lt|b)6aVJQ^WN+ zwjMRlqgPBF+GKyX+~0kU&t8mkyr_QL_&HYi#pQ$K{^~PV(&dBXXVt@>qc;uU1lE3$ zzBatA9t}OZb{+iy1tPQt=!t9TU(tc7W130x&{iyH+SFP)pT7=gHNz|$qnpU=>RV&< zON7ifH-8yNw&n&}kbSF1ZlDiOB_sCPX7YZs|1CJO6Q|Zk_N`m!Rg`{wYU{|p`k(24 zp>$>a;rqAQ4`uz~A8)rGHq;-yJM4#x>JJCpWsiAt^$%MirsS&D+sW1DhW~~m9x!t& zTGEyE4sNXIT5?@Ad^bIjlIyEK`7ZrRV`$4%99Vupeb6^OhJD@GUfEUm(l;o*ZEAhS z__UyU{(JOCL*!2Lw-3-a$=9pDeUKjFk>6CmdYE2L$t%^m?et#=X&C(|1o5BECm(|# z?mew_dJjEDx6nD$TBrBOGjwmVzdM15G5B?pMH+M*dU)a>vrMW%UbU{SZ?E9h+V?5lK^IYU5m7QfbccKBDT}1^%j9b@{T)bZ08e404>}+?7c=FGB-~3J`6`>)!rhZy{q?3 z^Uk8=4f|wW^{;z+uz^En>kRL=boz9&eiuE3%rd{5>77kKRU4p7XL)A>n>{_t%ZACm z=EQ~Gai$n=BgE5t5ajCQ}^DGe+ ze)MbNJ64dJb?@;$;$8uH!&_#i9q3K-(>%{37MFP%YEW1rO*8`4B8haAXGI=WyH5Ak zH~c)w6^o^gf{+PS2AY8yNWqrrDAhqwR@?rocQ0vXSahCfL~2rm2~&9)2^9naTo!1G z++fta>Zp%+w-V>X=C0R0=A74HC(OJ#>Md?6uoVGA&>h90NCa3Bo`YB_IC#4(6z19& zz1h_xAN0;>j37b{L5B&jVWo)UC{3^v&>ozzoJ(``?TtCr3m19cAb!ZAIEr`<_9zf( zj=kn-5hQUQM@hzlq1qAhude6g10cd)!H@T;e%#wCmIs ztz7Dx>|$?@@7R_y+qHMFuS>y1Tt+p&0UcgwRIZA&OJIGLSSlBsNCs*- ziz0=AaSozdl%VNEV%6^+;)6U6Aj+V#0#LL;sGJ$MtWf z+4ln6XTmLO&cn2T=9l1h3z>#22s0%>(k7joilZ{hi>%;SsbHYY0vUj6X9-M79ERqW zrQZB%$MKEZuqP=)Rmfb&4CF446UM>q7I`34SR{G3O=&u2H%I@z!JDqRul;>Pn!i5X zJ7_eNqunZ~;vmh+I7mX+$s&|00JDX3K^E%_ME3Z7t!TJ7daHpqkxj1anxs@cB{fMV zj&>azRM4asdvkrqu7X+v(@1rZztR5fMD4dhV4 zER8ehXc39D$lp!_n^5MoP)aJRfhBBgP-F=%UFK2FGFicHKL>Z=Sb#Zqjknx)%wKEY zArY5R%;hL+S=K_ZGLDfdu&#}3l^{I=@12Kn7)LTPm@g)6gmYS!5 zigcU{2@|M5n?f7Q!Y(rkbk}Bl*ht(K6O0$wQpr_Rh7t!8X%4$0qP9)ZDvC5y3VDV? zXblYwc$Ag6Aq`Q;dACh*%--4)AL%`>(Kmb2j9lU!w2br7q{{_rm@}j)WC=5XG?9WU z2tuq*q-6<)xg&#)jFy$bIn}+-dVfwfIc}<$s8S9=4JM9uo!htqy0&E%@V!l;3LQm7 znlUbNI1I&+!2`q;MU;uKvv(FEeS^y^SSkfelwyEBuufsDL7U48DB)((g;Ob+60+ctGI}3iiI&q_0xR2dUc2XY`l3aL`hhv}(#A2(-V0E*`}@K*9m{{d$85P!<&93ge(p%9O31g0orv{PGl7}{vVX~!Z8bM$8$+%f-_H#}~DJO|BR-t75IAPW?( zzF-`J!p^5b8I?fGp@?7+0E87&oB?jZ%$My8V`Y{?uvmbL5A0_n%H)vPY~pCg*{K%%Jaw$CUBIGG-8cYoQ1wq(JYZ&A_Q%QtqNhK^o z*#gjVROAS|yA;pI1tJxU@&*l@13Q!!hze~51teL9rSA53z2^?|mJfGL-qO0Gh8hdZ zgHL(;9D!IsvQed0To^DEM_i=WZCqQNKdyu_%az3xFmeoz08|8z!aQK`-zCDKHU;4- z!)OCg)DiT&w~1=ykkv`v(shm<|JQWv$UFk~=Z85M3HbX6hazH_=Aa0&GE^agL1cE@ z&Y}s_8vsP2Dkn|_E?Y}hYA^z-)CB^@w*P~zg$0IJK^QM2N>>m}GYJov>O7FDg;Lu= zpKD&@{k`{58>94^w)T2UAxDgLKqt&e3Y(szrbwXTNM%tb;d4Z*s3z_>KS1al*9-ZE z83jRvvLp$72GR!MKeFj<=NGaTo1vJDP<0UJiNb#%GASVCs)QWw=3VwHdd+O^c-;$q z*R12(H`9FW=U%g!Yj`olnQ6+T$hAx$RVj=lDturxRm)e^%!^-?WeRte=@^!Rft%5& zc0zoBf);!gv^UhWss|fXj)~2+}`#DyiYB24Zyx!NHPkEz9 z0BI;O8pQ9Qg)9qEYLt|KP8>!jN+h#r1O{Kg%Oyr1Fdj2FN|@@yx#wB$b7Yh28Yilw zLyG0Z(T)=hI_l^f(~M- zjWtnbhhQ9ZlPxI3|5^@yeWMAJqoO#AB?b!1E`q@=Vu=`BfScjg7|yT0cy;4zWCS1x z;09Wq#o&Me*sU&?C~p!;lJU3f#kGK1DIN2-LUv~09}hV^mJu5j$vfzzl|qdW8@L(= z&R7yA31hGp2z_J3sh0g~^S`}o0nM2Qfb^?X(s6&2Vm_DXPE<*x0(zb2Zk2TGOx7xi zw1Xw=!#Ia}sT^ohLT-_vD69!BJ1!FSn*tJDaMbvLBfv2M1t8p)VGhSq(;bskvYDY& z4*883tVRJTMwkWPgG>eJ5)Mn*jZ$5!FiYk&PWBy(Xsc!O(8h4nLeh}sAY@U6E1;H| z2eBo1v$#NX*LAIa0_G@75v6cYE-D2&D`A~bhzECr0HxzCgGA^6yl*OC<1?8iQN$qk z@HPsdLWnMJiTp#)*<~%mu8GagV;YE%Go%a>1um>$Lfha8^kKw6=Vl<4;p;mlElh5|Lu<^PAwS3LStFN2xIG#TLsUGbM@wnHKEcfQy>njtyNC z*PC$7TYJY=c(~>#jYZ4i(KzXf4tY_+WGbFVD8W@IJr0n$VgO$mNVzCZ+8n*3cC`ZA zhTzb3MH3atA)b?fspH_{wkMp|bZn^BI@lSe(`{w*dGUJid~k?vn(ytr|!TkGddT6R1zX@?sDih|M~{T}HsG zA@V9J3~IkwXVbs~AShG}CEj50Bv>r4jbI~Z=1$k-?6iHdZH8&Fb=$& zr5@ndKsUj=;yNJjXin(BQIuon$V6K|q68A{APbPikT&Uu(5$R#dQ=6-8lu@DEnrBI z4~E4C+Yh*D$K{~hZ9<^dJJ-Cm-Z`dilcJlx-UGDu51@nrB6c-WD{Uv^h~%w?Uhaab4C#9dgKNI&rk) z_$(=E{$#JlyryGEEw?vf3l9XaHSi_k8VzJpBJ(W(0+69m){4xjv33)O!*~enf;1`0 z^=<6}Ld<~cK*dNjRoiYvO2Q8;w+ccBQGY3bbW-#gp-97$g~&z4u`Pdjjx>ADS~9C{ zA0FvFp@9))#yUA4Op20>+lDP=?F{-9KwiUyD5OlFUhT_+OrpXCwIy&#z{@2%Mu5(A z1kZtBHVHd`EGr|Kg<*Zm1lNGyx%LN_Ql=Vo2Na_UKq{g;VkG>*D-3{t~^vXFU48BYjQ zCegxy#cKwh7j+W513PE?O|iH=UTuxvh>k_qhT{a$QCyBk)cE-<6xmPOLC%as~sl@ zWH%AasSsH`fdVc|c!R*V^)28x^#oc1;$8%B9k%ENOm7w;TgTaXc838W$|#|s(^`A!ALm7#1)gT{qI z%{UDi>6Vil;Rp(`N7T$g){#%N`4;FkqVEiuZnM*G%<0~XYyNsKy{E?!;dXZWxOX2S zy5qVWzE#0)C_sPkW2i%l0dYBylR~R%+_^6tf3Nui|ut`YKA*O7i_Vqr$ zv=iLT^%#b5@QKHrWLqO}IBRN624{Ah^qK9Rz;Ac>` z1K-|jZdUKZG3_LkTQnM>=eWz|A$&uE8Hw{)F}P?%G9|1b%5RZ^g*&ole`8~$cl%>q z#!;&r(m*{gYN8UkBy-|u$Fa$d!vka0b5nJqF9S0I@;zuJy8r`Igmln5L=zcUOWwgV zz+fdyraz9x zSx^fGC5XC`(@BnS5AW@NPMCB(s(~%;FGe@0SN9nR0l_9{S$V`G+ zFCn!YRUZKYTVxoKlW&!IHc{>bQAfMGEjU3ahxA(neMNIC>Q1s^0`=#ZxUF@Ld26kU zP#pvShCkT=g>n%}0AaCkP>As07V_>wIbX*Csw0@hcyKJd0JcEnjp}!BT>x^rE*sbn zs)%wXybQ4|WE^TNA@vd@28v6noeh*0_>NiIb#kr=YZqs;?8ip@z_k~=kFi4;TUw_Q zP@N%11?$qk*g_$M(E!JQ$QdpIwfP92QT~oU8zSnYXI)*xZMf;UuSsyzA*PeqOq^|x zGt`~1Zm#dzk|A$4zTNL|=yy2uI~?A&0cVoabM%G4>GeAt`W+7a4hI{szjH&%B&F(i zIP_?-=yy2S4x@gDL!;U6aOih9^gA3TwORB#9Cmky^gA5-9S;2t2is!X?{MgMI85lR z=yy0U)9-NT)x6Q~aOih9^gA3n9V-0}hkl0x{v4)$hl9VU-{H{jaOih9^gA5hp&w^b z-CDoHVRvIizr&&5;ZXmPXZ;R`euo1pmg=&zeuqQ*5BGGm0`xl^>>p;(?{MgMIJ~vP zqP8Uc4u^J!NWa5j*mrdrbc(GVtp>K(y5HgO*6xaahr^`CkbZ}QH@)BC(C=_~=Z=*B ePdXg7?Hv3jImm4I<=`jqfAH`>e>r%=^#2VR#A<{9 delta 29824 zcmeHQYq%X%d3LSYIs4=SxhI&Avv)!+K7UKx z^CV}^npwB+@_z64eesT6^MCMz`M3PrME`7kPL^izrWLu01dshNRU!$5NO%zDEQ%%L zELJKCh0LOar{cD!CjP^pv~?DxOqn>!W6fC}#)&U76Z(0kq9~5!$do~(ZXJ^ki5H9GibzpEDAr0xQt}WV z&P)>Isfp55nLwxI>S_nM&#gKEpG%T7&jXbiVHoF0o`iYeb8UpmE87y$|gg zeY*U>b#J{WIoF)OvdxFxt2>^4m3{R6bihuXN{$}M9zL?y&|^myf9uB40p;9w+jO#M zWbQNbMvmGU|NgI*-}b|upP=o`@Psp+n#2emFq0%fEVOTYfs@cd=a%aRx!te*-n1!g zF0xEVaj1NT&k3!B%#&E_APxc*>8!lv+ClDf>c=NFv1&i^N6vpncrpyT4s+hfWxsNJ z>iX?%TX)YSqmRa%rh9knX`cE^cbe7P`x*Mg=r7BO_nxG?!mb(J6d9+Gw#PC^`qPbJWFAP5*g=)!%)Ur=20m{ zwS(NokD5)KRB~VEnaKqV1P@ZB(ik>E2Z0tD%Xv~sWzC>s`XaJfwi92;DAguOgMjBT zPnhC5W*UlQVjfj%s~zOlW=q7dc z_N47(Djk_Ha^bGS?e?R{w4!k?8KCqN?#YJYlJm$p^U0@+$KOvrIiI{xT>csIy?NwR zd*(f4550My9P`!fWILrr^}}=bk;5su+rHr|WOgCHMCMZRl>$F}jx-+{z_f=PRIY8s z*T{d+N2*uS2gn_i{K(G#CRt0bsMhRy#car(Vw;v|2qx7YLV&P7*WfB>*+jfzc2r0HbMs916Q;I)(f($gsx?$&y3{V3MOV}2V71P7&7zwKne2YOwRymx+uT7T_b!`Le0UB$wMnMC zUmQHL?w^*}r9*h_h{0+@e6SRZ?+np@BrA*ew&-F?US)4uNY~O=5037&P>X0r>51;i zhGOy(iko_qy?+_~2w7?W{80KP`qV)Aod*u3Zzrc0M;=C>AUNu!%jp}vfivA|p0>9v zq(|DjhUrwARbPH^JDp~)2+da*}t zFBTs~zedUS;ulBLRg`?)E2i z-+vul3+ZCV(Tkc-x|dEEvX||o%Kp!BIM$yROOD58nooCr^XM)*$4;3;m)PH)Kvy@P zsUDZ-dFqMui!++P**9>NJ^f6a=*o%q2d|^2&{t0^kIikaIP9%-1CGr-*-&_Cb!`8h z(eugo?Q%okOi!=Y`e{Qi!?7*S=@k^mcFTHtXM>z+@#jIs<>%3LguKoE@O<1!zVGAq z%uP7C_g_HY=Rs(vZK6M&MBZihY{r>gTev&k2cYd?){C;vhUYJ`wF3<0^mj276=KOsFSJ{;};uEXwCkpKF zxJmntZ{nxvdnq*c>d(@ahx57R@7$ldc7wChj{f-=KF<@?>$$gY#jlZJDd-Q{o zE9J(cVQSC(Ep6Fpd&q#j^98!dUil?DY=`&I+4j%(&>8l9d&n&Ng-6M}>z}8y>`mQ| zUTMFz2haZM`Mtwdy@SrPhrfttYhN7m>{9paZ%3c~?j^FYvd?Gy4hr>0SiwyX(8KLx zFXDx!<%bQ9`F|Yfwnxd0>7HLnymo!_jBD3VfAjHxDIFR6!;8Vqle`lKo^UF$&?X0ZGe=rKYFmG@ zcmKq%x`$Jjc1+~znch_TbZK3RjZ?h8p!9c@;d;|l4~DB@518Tof=sk~W_WAKRJ&%T zx1MgQEb6!McL33&XL)*JbM6#;^^ij=bN}N7-c&MVf3v`QbDNnk4fDizQ8Z^M=o}Hc zXrm+)GO3Df%)6j56oouukqQvgahaqk%M+6!W(-3Sv9uuTy-$&$DCKbwbFO@_8nMrn z@k60CIE^Tm++K4)V|MYMi@k4?+F9+FmwIn#2fb&N_TERl70VU#5uk*bQA>|Y)cGkAWJfAUM7O&(iFE|)wr9qY8GHGe8gkzn)$ig z7qgG9^`_f%m^Zhba}lSZ3KSQd^E5&D#|(}?3A49=dh#2NIrgNt_7>fcjUDaR9NVHZjiP5Jn~EU~Ur*DZs}ZACj{m55go1DnV`4Olg0)+4I}IC)8$C{g$>eu)Bc- z%gYnZvp|Cs1DzuR?8<;;Ebjd^6t4w+GYqyaiXt$|d6pU(g8}mWP=}leyLIyzdjie- z7->lnC~d%}2ik{SVM^i^*is0A40Kps`1Z%Wn+Ptv*CJS{eYJ}?<;DiH7u@GH?Xz$3 zmJLVoFzeDkgL8}pSgRC^$$6|Il}i>u0NqW6_L|e6Se5wIQ1JHFPhjZAQU_};ZLCt& z$?DkAHOD8Rf^GYerQYmT-PX20($T@8Ac5y{44pO^H!^|tW$+TIVL^}x%f1Nzg)?|d zqn$uBp{nk@H1{FcS|;G0d2EtIX1rSmTRLEY4v=?n+L~r=K&bJ(n1_&eWsly5^Qu&^ z_X0Gx51i|*t)IM9!3`U{0~h3Bg5@J0qrpG2T&cj9J}#PZBx~$TXL)mqjmsObDS-sK zhWAV1xdj+PWPG9|2xY*8#3u?|D!iM3x6!aQka59{AE*#;AoIaS#-Yywd&*^vSp^*D zKfq=5n%QKs656=;y!Mv|L1=%t)>}5@gOSc7p`#4Pj5Xlk6|zi1@FauHE3rj+H!b*! z4D2N4D1(A=OK&E14cf|YAM)3Z^aQqrTfa|~{4Cp3~qcCD&%#!Y%^Hy_^^4Y$U{@?c*)z?80wwk z8r8%PkS#Sg=Z{sc8j;P%j;=X7f3G)e*X_y~-o>Rm90EDb;vBw$sSHpuPg0oE7&$YM zz^4?ew_*DLTZs-86FKu0SMYJM5IN6NmMWNP*zsROvnofJrhrh10dC4-I0*n911cTh zQ~^yf(NWlr7WSMw%I)hv?48uEnVgm2^w6M#O!G8@T`+LZ0i3S^BthU&Mgf zxKMZ!V7fR50E2pRkpcs$2%aVg8D5QIfXq@2Q+Od0auph69^o8dOOTfYCP7j_8(I3B zy=qu9Z-v~lnt3aa_+9HA*3PrUM=Ssc5i4$tN#GVa2gEP|QXN`XPQ8r`1CqxnP-vEL zAGzIJ@sJ@cX>gIL6xB}JNDwgwq?Q1zx)f0wrEq?E1hkHiic$PoGpXB!Kh%3lhqa`A z`UbDPA{4`doqf?L_%t#NWy~_g%2wknWS6YYHlbRt3Y+aId*j2neA1#R?W7of9qcGsgbsachX6K)NP!|1R+F# zTTv;}sv)lgs>tF2oM?~<iv$RsDu5hq|Z%`SP!Lfu4m`}tiW^jTCJTttP zX1oAkg2Sv?fZYhWh0^z)zeH}kAMs|`v;NI%w~*h41V%xQj4E6ez%`;IM7lU^DN|NK zwKa>JR}XPdTqC?^DXuY9VICm`t2IDpj_kNo!g~NO6RltzaVofM6cA`X6GkIe@Rdt1 zc4EMqX|u|q^WIZd4jm|T#USjquZF|euKr(dZp+W(AYq93e3%mhe`9HmZ<;e zmcW`Si!#pb#DF!Il#NxaI(Z#Cn%5lLs2bL74cA-6fJ2}mQuw+^LyCBsx@@sjVP-TU zcoo~rHUod|zRx?Ou^>dr1JddY=u@U}iKvqSR*xmF7ht6X>!l91a$ic5r+J*~4CN&% z5x_aQ$PjeIi3ti&9X~~w*mL42vS&Qxt!Xjf)?U*BNHhDwL*A4YK(i2ljyX^vU?+A0 zAeChXff4*zS{c+99Egq$^D{6tfZHs|apz!ba+69J|NRga2%8Wvg$7KBc9fEiK<~t$ z3=p5?Fi1M<25L2{2rA!Kvx<_ncw0;0;J7@^eHUa4T7?(gdL`cSnNqB75}O z#++i>u=n@wmU^xs?)dWFYbZ%GW=j@k+W&fo4u()Nf7q9m9-{OMRaiPojDly+RSe@M zv(z_^5{h+!UD1%31)6y`f*tnC@i-xwDN_QzF-xq2ITc*9auqM(*3M(v)7 zbre>3t%V)qCyshF$ZRY?i7Ifn2oz%;_Rpc*5)lU-FiQ!`L#iLy6*uQB)f6B^Tt%7sTVQ;3Km{~&#V!NI_A*vB07 zcb=-G3>1rsf$6;fUTL1+Yw{3I43|@C-h6xeU}HuT;>Cu;j^c$$1TIx2aZf7lr`rJ(R~77s=KuhfqI^U1qdCdoIxhQ zz=#aoc&1XWbT{!*Gr4a+w59R-R^8lA`3}RKc9IbQ&nTmHflmZjgb>yTwno?&!fhaZ z($TySls8Zgwg{EtDnJ0lVS#fE?hx`_BA+gw(GguPfYHI(nHZcupi>004&-Wzw-IAi zaH%3<9ER_;j0(5at)j%B=N!|R+%m8cxSoiqB;yKHbr9qzywo}9LzIedBJi0X1UjsQ3bp$Vw+P=EnIsA6Di!0R&BEu=N`b}(q&yp`uT_n5|{ zwgEFz)|5&EbD>2VLla>t666|^-0$!&t;m(XhX(sW2#07w3FJWm=nx%;TAK0Ly3##d zEBG_WIapPMf5^f4D7ruv1N#I(EWLY2_i9#AImDVpbSDIz@~w#cVIFrWAL1ED3NesK z_*4W2m@~8}XkZxu)X@neYU;6FG&I}gBY;I~E^ZvUtdZ1lF46Qpy?hjl*6eB@Ez<@F zM;HJruYd^{lnb^{Do|9QH^JbSxp}0sVTizI1R9vmAUKkU9Fb3h=RrL;yuldd^8xa} zn41_w{UpYRkZw#Mw2B9L%2&@dOJ4^ax~%Ks1Dl&vS%xrEr3x zjwK>NFaQ9MJO?R_jR6^J?SuS?kyqLEOyeE`9v?0Ss1?wF11Kg8I2}PSQv9H?!!a>! z?^!!rfkEvx?I;V=w3Xhm;XrihoiD&R#JCAWFSs;=h}4x*AkK-wH0-tcH4On(0u#CT zE6A3fH)YINY^i$7=y(U&`|Moup~?fcYj#x<_MPlQ3{um8us|$?kPv-IhzVd`;rtQd zOMA7mC?H~7-ptQp5bo0V&j7p!W$SBH%eev4bx3Q}FqK&2WZdZ*`2H`A8y2 zjeZcg7?AJ)s3BI2pHN*>@{0#mg)tQt1sROYwTo3?rSK+N3sP5+z+7S=kGrvG-3lr! zTDJi3On#|@ZFF>jgEl~hIl!`n1%xqx!GR`fFf(PE473c&bBsb0PlWciG>hT{y<0hm zGngV*klPd24XHo;u15^GHLED2c2;R1s*_yI>5er- zS|0X9qH+ln!xVtD*$YR3kRxaodP)HtBgDYcH(;fLJOhmr2IE6P7?zI{6b3mC(&sLp zVpIkaEkw+K;xOdrL??W&wpF)^3Xaw+Vq7e^Xjl#VVV73~v;f@;3S2to8BPJD63{;~ zxDx)~uUPkX8Tj^Y0INi}@{GN&PL5T#8Yvz}rGlRBb$$+zb}D4*b~aie(*{daMhIxG zMC`^@0!;$J0w)NslIu>j=zRFB+GJV0O)A$YYdx*_IhzR%kTT zkxLX9L}O@B)2N+7p(Qf<-9E8y?n*Neto4{XEoHZhq(N>SjKw1}BGF0dxUyQQ_GleH1l)7>uZFKR1XA%-vFor<_spA{;RU%b~ zB-Usu4HZc}C#|xAHB(j?&M`7=Tm$+7;dD{Sip8OR0MI`MCnM0ijpcOqpi$f-(fo|2 zXqXg4P(A|IAYdp9k{P1ejvGYM7quo186Z9vAjYt8^gJU{hSnizTSkFbU+3!5YUXuX z=eKHR9VJBv?1s-b7XJwgx>OFXI7iktKoJk}Ev}3g@hnOs0>ln51f2k=wn1{#8zKa( zyP|O#S0kTeN7o$PXb1=>*n3}H{0nYPMu?S^2H}}0r0AWxFo9AQ6!-d-Eh)3TL+~01 ze1gP@a;lJq0_!gzq7M4RNmn%tqLSPhp3skgToX7V)H6shm7pj^E<%4yUsqjDNGtLQk5l9~w^ z0tCc(C`dz$j{Lggr=djnD+Bl3!Pjk+r-kr_V4WO^0_=)(8%k0+T&M!OxVOj$#1m`_ z3f&}vO8i?4usKj~%}}Yqkd~`RrZoc%=wZ#g)kf;39aY5nuMuqNhKp7)wvw?U)?Ew> zA$OI3h)-IfX0)V41;3GO#d^qVGnc5PH@*>9TI+iNmPkoKD<`b`u4 zriqv9bQudd`%M$=e$&L*W{oN`>^DvHn6w1hMAc|A3O@Ty6E!^x z{icb2(?nO}e7|X8|J@q>rip&jM89dG-!ws5HFfw^LapC4vA>Rue$&K$T0#0v6KHJh zH%(L}c>Sgc*Y7f}h^^l=@$wBD{icb2(*#Ol`%M%5rip&jMAfR%Z<-j_aMEv@*w@8d z*Rs$lR;%k-KoeTOY2xMDG|EaC{9B7X+cf%36XTmf`b`u4riro5ApNEZ^t+6!740`o zxR&mhYuM;FP4t^4_W%DX)o+^UH%;`LCTe;$`b`t9|4-9|J?im+50J(7tB((yhW|^7 LL;h#rx+(t$-eBuQ diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree index b209e83d684813f2200057bb8cbca04865212d58..9a149ee05b0f1638aeb188230da14760402255aa 100644 GIT binary patch delta 62 zcmZ23wOndLBBNn}xnX>kWwxb$T8e2>vZ1+=g-KFUvWY>Wxml`-p`oR*iJ`Gcl5w&@ RqNz!uv6)%w=1GiGxdBMs5(WSO delta 62 zcmZ23wOndLBBNnua#l)Gibb)0nx&bkiG`tYlBH>)k*R5-iIH)dftiK5fr){IrKOp% Rsd2~hZj1!p%E8BCH(S(tpvgHEj894~5+HP>2@f9-w-tI!8 delta 223 zcmajVtqlS(7y!@|#L-|Ffeq-j-(Sb+4^6-_0ux|w0W9ij2*DGAWCzSGfPf9E-y6nm z7`w|&_q(*uG0S07JRwN$qQ_tn16WrK2^%otJvrn|0U{nJT_>%+_jTC{Mv^}X0_PMs hMuAMsjJA|imk)KCwcGWnKsDQW^-_!Gs^+ae^B>DpLk9o= diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index d29698b41185718fff3fdc8e6a6e674deebcd26c..ab6753f12ec2f271449650a6469b846415ed1894 100644 GIT binary patch delta 606 zcmex8i}Uv^&J8;_4GYW-}juA`uyoROH9o*ENhkeLVKP7f?)loSE6(o;)HGV{`7;)@Fsi+~Cy?@AAo zD9bEPjET=LiiyunEG|hcN=__F0V$sR@P+u~j4a;C7cwN7Vrr*fRAZ8vY?Tp3duzm| z7gREGPTrl_Jb7cbG#|t}aNlg?WE7u#Ad6*kVm46WUPh70@3M?1KhGAMT%K({Str|+ zWKGTfIothn7`-kkm>C&bB$=3)q@*P!nHU>b0)d%Xl8L#6d9tC2X>!W;owiI9nFuS( Ya$quHB&=+oBhztq!pfFBKOmzezUh4|!e>1xb63hI;lUrJAQNLQSE94KCy?#Bl) zJqBdFdQ9!~i)u_VldUqM$j~P?y`YkjbMo%Y=E+T2Vv{9u%$al)CMRUeOy9`KC_edL zw$$VqS?LXDM^;bmIf)QW@(n@CT58#7KW*&MrI~PDMm&H lDJjWm+jrVBO=KdhEX#q(gpshaeU41W*$FFK>dADC833!|v|<1N diff --git a/master/.doctrees/tutorials/datalab/workflows.doctree b/master/.doctrees/tutorials/datalab/workflows.doctree index 98002f9c7ec3c4fae31825816f7205b55302a583..8ddfa93cc9d35a5513ef0f3baa1c2b6355516456 100644 GIT binary patch delta 19393 zcmeHO4SW>kna@n--FyH7h7AD{G6^6FY&J7HvpYMHV8W+>U_ek1FgrUtOLhsnVRu7_ z0s*U4ELJe7uUbWDsjbBixa)QA+M?L&m$rWO+Fnms$H!6;Ov!uC85!<8cX0q~-B>iG6u|CM}Q8Hw2$a>&s(QhF~;ld3^pM_)J-~eO-u~YAf9l;?~&BmPU%I#-RG2YUEl5rHJ^z5^f@P3*0oj*RPF?Bk>`Dn`cvZ zhN*zZ!d#P0{bQKB#BM$)QoZ+VqIy?)vMuyrW-Wm%frU#txTz)7cD(g+Kw;k4*TGfW zGLLm|3kRWk@Sawy_e}eKYlMP2BT-N;nS$z)DX2h{TbzL!rQP0)(lik_({3+$sS6(4 zOkL3B%eF5LX9Cn*RQEc5pQB?UUih!THWYA<8 zzioiYZ7L|aI>ybgmAvWa=4B}nuOv!T&ST%Mic@_X;?$@^aq5fzjZ+lInz-gcQFp8b zNiSUt+P>69qws?+Dr4N%?0|T!fB=6cAcwcoqS`ozg1Bc66>w?}1@UZxTQq2?4`P}@$u70b84$Y_f1HII?3l`A4eY2Ok{Dc71K23(U-wwt0mw2Y!Vvux1vJ=7n&F5_AU<0j&_46Xtn+5?bx zTu;G_TTa28y`F-3XgLM*=JH%A$Ha`3Uw?vP*}sBfd2t2Ba^eOWrq0W$nq@cA+GpA* z_0)}2`N1}-{G~Ro)pp9)KS^i9JuA5-Huag6RNEsrQOg6XXty~xbBnWlDOn@N1y|52 zf9__g__iyk;%Bd*5+2-36&K$^6`x#96(72VDqgvUc5C=lj$+wT{HHZkvFl2zc=wf5 z@#9xg3HR=!ivO^WDn5P{Rea!9>fe^Nv|Ht;a}?WS!{+cbyV^3byUKw zw{ffRlB>Ck@)popOKrO07};D{8?XH3;SfvXp;oa&En;)lu=W!6+!gG|<|4DYAK6^k zg*~#l2;z~=#e*Z83%bA<*<6q#7(BAM7};EmY%a`F7};D{=i`5^%|#kE7bn>gEvU$z zuqJ!)mA7*Xv%Vg=oqK8&y(`Sc+QV!WzN?>GokJb}3R{gQ4sd;0UGE#btCeerYyv8N*)KgsXDADhAi>m4t1%H}9#R<%~K{mclQr!X$oaS0_>Lsr7 z!$^2Fuk#u_`DJd}xft4B=9-7b(1ic}KRG8pwz;qf@BS5c@kb-@hCDGtyM<-&*wSP%@j154;rZ+!-(;z4lTuZ zCE{I1BGt=lu~2&V1?WQNud03&gWJncC)>lL>-HB-95Po>>VRo|V2Mm5#m42ZD zH4tYMPe%10r877NADf6O|EAD5@$NND34Ue@YGu~q@s-HQoWUYiJK>EUZ^iNFDQNsRG9d7**+l;%Gpt0=nGTb_zQ}LSF=wF$Cz>{3a-Ivtk z2`H*?9O_968l8N13@8bsQ%f14n2}8KJ&{xg6rZ-q$dnUQVX4X7p3mHFi)$vr+?$M4 zdn6W)*VQJwx)YIjcM^_YEZLEGELmH>zP2%&&>jlcZY=FeL}IDB+RKJSgCB9By7Hlw zfbFzmOjkmG9w6t8NT)0HshmcGBIs&Ivf#(ogKD@An8#2=81 z*id;RljFo=RjQt+L!7-(CjKdpOR`1s$xD6Te(%<$2_RD;fF(Nlg_6|kWlf& z^KxhsTFU$feo#X1u|F@vyZ0CNrDu7Oz~V>!Xc68&n;DPW{b&V#OF?n`kb>spaScFg zZbpl7+YvM#KYc%{#0M`%7vX2Wgc@<%9OO(NQqeD%4D9%tsY~rREr#hF8r8cS!S5 zH6!B_^HGh3paM9E@-p1E5KXrhLzN5u@~$!FVxsp$z^}ol79r*TZhn+mf}1Zzzh!1( zaS2+%tV!=)f^KA(4Y=kq2>+C22r-OKzI>)=^8_f8L$l0L`0Qmc3U8fYrI~jHdXm8} zejQD`!vzm>0&BpNC;zMP68zTpm~ze|Dd5br?1cVfy|oreR22_Cyr^&n-v9f;@g@y< zyt3%WZ!a#Kj>ny0GenOnDtP7R3cWUy;8z7KM!9LX_sQ5Tvy<>WS3ww_{WUugU%m>B z>%R<7!e&}zx*h=kld`mk3EXUnm6Bl6mGWswy**pU5m!z*&?hs+8)cW{gKcf zOmM~c*(mG8m#l-3w_L*%rO|4%;qTVQsH2y}b_{-d9V+W@3%l`K>(Ez=l7tBJs9C1& z^=MaFB-tL)5}Vs2$z->|^Q7JX?6;iw;PXszso*A|R(+-L2F3G?6TXu;d(=`-=DQhV zKh(8-A8v{YDQ@z;1p1TkDy97=Uzvhi7O)&%@jX=3?|5?TXu++hl3x}|K|a zjyi#=Dx%j%sQ&(y_m+W5zt7{507Ad^ytA0xm%NgMUkaj0cz*|T0UrAV8vC&~qX_@} z8gwP|BkXNQOP!JA1~V!fa>DY=x5__~u#BQ%al89ZKQpyI@U>#x9zew(QC!^C@Y$## z@5kJd?J&Kq)zQ?Cb9zIl+n7>(Zy1&v@8F+@(I1$n&AE-ez=>P7pw;Xn zvoSNNP-e>T_qU+dmfz2sWv#r{M{Xci_eWYav=5ePT8~evFxocg0aL^Br8h8BJ!tGrPZa>7+F^ z?+44?kOTr$+tBcBzASAonA!x;fE&8d|?X>*&m~- zbaE@YpJ5o>x(mt7dltO+OnCT)Boe{V$FD^V{f81^O z5x($wSe9dN58BGiA!xl!1%9yyUC%7FzD>q=Y)1mK64&>lS??#~-R-Dm^hOteHFwVY z&d+^KFREnPiTEaVy$he-%S<)h3cLT)z33Tye-H8%RT2LrvhK2LT^JlRkEta1CZ$u? zp+bh)Z=xJiO}JmGv%H023saeXVh8GBm@iqeIfA$CLi^bxE|NOoji?)MOxuXhRw`4w-I~d)mEG|(t`Y~9qtgD8m2<4a)x}QpFqWOwfSCh@UUp^! zu0B&Z3%6WYcn9bAwF|iUB6N5rG~8XWO#{(?8C6iQb0GS4_=v7(C@4sFcg&0)g>Rs} zr2(J*HrK>9!{=T`CbEt{#d?Xx)eUXA6aNafpn#00S}?xN8anw%XJLp#6U(nJrRfc&Z_bxjE7_>fU(ma3tYS?2-cY|jHikC7IUBo1QsRYn*ss5Z{2)z zpa4E=93f*xJ>Q`LiXeFaLzKc88*=ei^>jo!jrWncI?=6f&KD}?3QZVWVBR7}(;ZrD z6A`H;fdfDHBhFdwhUo;L>j}di&Gk-0OPEiC`m&w|8P=Fcj5;Ws>TDoOt7*jFj9HwYv=Gguh#t;G^bsZI;+)|BV)vaS1SBE0cu*)Jx7v6dYTj|QKlT46G z2Z>odzG3Oqsm{p%TV3I*|6!)Erng(zr!Bn|RBz5cp%X@IvQJoJ?Lo30zHM;gTb@T( zRR<-ns2QT7_;g+Ng%rQ$ktDz5536277Y!^fc1%d$=5Va%cmaNO>X#(1pm;>tuZR7i zpaz|kaM#t&^}EQLD?^RWKGm{N%i?We!r3im@#gu z7?!+BSTm%spv#&bRF$CQH&l-*fORt7U*T}3PrizdGQ1iN`n-y+`Q?xz>ryZ%D5~HW zBu(@MB~{hZ&ow$81(VOO79VbM2*YXZs&-t21uz0PcpRgr8iHT(D5B;O;gr=cYPupB z8vGX69}erP|En*cI9DwIh+rt>h2IG4au`D5lO-h>gdI7LGDP%;Lt!}x zKP2|+vI-~rN?1|CK}GXN}?U{-z<>6&9RS9W=s0G8atSWx5;`Iw& z&8zw~L-7iB$$3K|$s-9tBP0v5E{K2;UgI%BK^PbW5ethmC0FeMb0nWXBrA$08(K(J zeWdWbvRBeok8BPf7?K*^-4Prm>4U#T_cFtxuqtpE5H${mNQ!S1AM!&9g`wa>f+$1T zs6M}<8?sjqg9t^IEu;95&j$v9lqaWJTe`^vU+4X{QH;=FCO=q-&GWte>(@@2=HtJ){^YpF~OXNS?hMA&FlkZ z=~-dNO@(ZWJN=Il$IFH61b6!GEsl3McC;Jggku#8?-sw2a7-@i-d94Nv!r^vj3jxT zFFL`EHzpl!_ET zcT6HOJ^}5HOQScCkMBlrgpX(k1D8*d))~^eiL_pagURU4q!oY%T+zLx^(2DJEpB{M z%Hg_XAE7)|43}F;YfTAUK22JPoQd8>S`$XYWj|>}p|!6t5)ucZrwH+OH~vk^F=zAu zxw&I3Tt4H*P2G;lxpxrCy=8ED(Fqr60$ebmy-vPmN$`xp9Xo zLRz1n2A408*4pWC*>MqEYG%OYenQ(rzJ8Ik;0a>$HplPS6>co`I9_F+ag!(Y?!xlu z5AcBjcS*>Z1Sv delta 25381 zcmeG_33wdUd7ja{T`YlZS+}iYB>B*_t2y`ZE!(m!+wy^p4}3^7yR+V1OImq%<)gKc zO+peAQEbcbNCLtBQc{RHtTtw8iGxYnq#<>Hls5TNz$S$@A;p1`q$LH?|IN(K9$q7G zi1Q_pzmL(I_x|_a@B05Y3;tR8SKq5R{f+T+L%y(I^?PEi0k2DzJiMrSWkrx>MH0jS z=kmBYiSu~9E>U*-U5cd2t^SBF)*6cpM19)uuDrTW)aHM>HlKq3X!tKLQJc>^F=bHm z30|%%8rj2j`64}B3tPXwE3=NzQ77c66LZu_IqKx}y1~dEJ_ljFE(0*KN5}!E*JZ(p zIpFlVEI5h46{Jaw_ikaFNEaTT+QM{Z>Bf`Jx5>6UM_m@2&SDmvUY7-@vzP$~y3s4M z0Cm1I03&!lsLVpi>yDERsaIx0=CTW)VVE9sWbl`p2F#z!G<+`G7?s)Nv#o=>w=?aA^9`?6 zi}BaDGxJPeq`H`8W^q*)v%)NXv5V<6i*I%@>&;?EH?zeoKGe-@G>egDW{Fu`qcAs` z#ljY5k6FB<#RBM4nYm`|=~Qv6!>avas(2BK`Kj3gx2B3VrJOBPezVP|v&uxZiRy^V7r{ISgU}Oj2QYx-Bkt^;%q1c`PovJKzrlRk8H zp!~g-qMds!);_b>Vr}jsW>KoE#~4B<7FqPW_gS({SZw+2rG1u4?q6)Fz({w2sGsc8<)+m4eGZx`H*I9(0TW4W-_^?Izy4x+n=hj<?TQ*pP4{opsKfS@iaNm$c_?;n(@W@7s@Xn}-kJ456bHmK~jM~Egq-${5 zab_^B>;1n0h#sea zyI*12aQp&Oc@-UhlGW!XJmoc}-lDkSHO8Hr;w=1w|6oe+>799YeDGCf_HTvflUcnj zkuiw;F8=wyGtD{0_TcWHGG$lW`LFi>j47o%suQ733PXA*bK39PJiRdKs5QQrzBRAE8zgUmlivy7;t0}%9 z+aHbeYti^VHq_hS6VhU=!UjV-f?AaIMWRuyM~R0beQYGa#)C>c1-&N}4!g2qF~4;*g@qD^1P8#fLgDn=_YTaOA8u}SDb3LmIJGe2$} z<;0^+=nQ3lkm%(? z18#ePo{QgHfhN+A7U8x+#*5!-LEoele8z#C6XQWG-J9`IC#syApXT3PF?a#rpUd_r zsuKbbmgmR1{DJ)bXs9pVP`4;mO;9uxq`~25o#;!~nBKjKMjq8t^fwF@;U@$XnJmxg zk81Ps(|J`SRL#z5CH2RH_HD<5g+o_>!ly*E&Hf#t)V+=Pt9CS}APdnfEMJEl*|nnK zs#9dtR`;yYJJVH%8q)EA@~VoHtX$TDUy;#r>R)k-3(Ws-Mfl*6yurj*+=!#`=VzmZ z_((HVh%e1Ti|~sjcon`FP55REBR{4zCX_LhV=A^E->tcB&cAUxrHX+;+58$FgDx zDgyfNw4+-5FYRasE?NrSA>ljQQJq10+7eVwNEhMfmI8nJs(J5{tLxrJc?kWh5}+1$ zcOduGh#sbv;Iqro+tf5XvI4E5ZhU+tx{abXR+lz5CPdDK+$+!P& zrkXI?Y_>hg!P`yd+wf=oP56P-O9g&zGwQ;NZwBC&;Sz#q3hpOw2ey|FpF1?ssQD(; z;MX&NO1D7OTzCvO?=$;_;LXN4y>3w+e)H~HT=0v$src*`RF4;Ir|gN_HlVG4$YS)^ zb`uNTfOl<0MZ;?XPTap0J#OzOl`y00W9!jv=$1jh65VM`&@3B*`Ix+hVzB`Yc3k>D z&MAm)-s>{n^ym60H1o-3-s=_wZ+5egY!+mR_jt0KMYGxEgucAnq@`Et*d?nw+&$vl z+1>HQwRHJ#&4_)F_sXP^bGp5vM@qx9MCpkEmj>g!lhgmD@Fbgc)Wi>X*_ETW&N%1v zxCB8=Q$ez~cd9|0xRGeeL~8VQ+@+xkd?ZLs7`%rXH_li(bPley(%V^9*J@Jhe+o*s zjr;co^CpN z@s&K?X{>mU`H(!OZI}~HeO=|eGMcvc!fxq@8miV+o$_nlt*@C^gH!*p&)?;E{|;0* zrsdzxn@3wE%kj^5Q~9_m1gC)i#oI&Z9qPOK7L+b1!AJfKRSs^dgB7%?siU_)5{)Z; zaduTCt~E8yV%Njzv%5R{P}$whD)D$Uqz=S2*w(O09}9;}E!wB_=%E;`SL=%#!56<4 zS3*4`2D4a+E98XAcEs6UWgqJcDt$XN7GgQ-pvFeE-pFpv4|v$XKztyovAeZs48k`t zmV|2}197%55)b(_C%Xi?K;*|i;M2o912G**D8TNE46uC~Ac@5lwFfvOJOvb=7Hfec zbYCpwhse-CEY!CH0zw+wKcM!6d~B~4pB#+%i4^{nSa;VkC4x=nT~e+w&O-rs5Jby&3NQAoDSdY zhm+?SJhc~1q0clAw=J)jU7X7glNcvuyJ#BD@9H?Y!86VJxxR4dmnk!U9NzmOjS~J{ zd2eo`OmL>D;7l`q1<{giQVASTM)2Aws=xj*P)D#K*cfc;oP_y(u$Mj)Moa0RHe;$H zPogGcaVKgMFE%x$ML*beJ`!t6%?$9GjI)|?sP1ljp%*=ddwS5so8BihAZnB48l}0B zCXG4ya*AoPb#%^tcvW*^4URFL9B1rQO}R7_#tQ-k65Bgy3}ypD1St+8^|y zr^#PkZN)@w?-I2&QST&v(}(_^qGqSD;WpWD>ug}>F2qxv7P@?Qi|Kd~{9Xk0HMr8YG8G_|qKBGYwW;0gREC`{GjmN*JzH+~&|YA$lJgD_?w&H$N|tyLV^i^{0a>DcU3iFkLVi+8N$?g*;F|FQ>-P^SsdEc)Th zb|U^lYH9+UvXY{n(Ge9_6GTZh45;DLpqRv8{uvsisEY)`@CfQfym>!5LceHOf;j+| z_;1pz8@Bw#q$Q~I(ea{b3YL)gVTu=Ka@rWt8#AJ{GfMC;D{VXJFBf5@f~p=|C^^}N z)%|2qQhFNMMUmcq1=caLd_iJ@EPpXA&TceUvvvIg(NJU{25{C8iX}buYEV^X<4Vn{ z(;T?%3p7_->&Wn;mJBZ%`u_R|J~@Rd!cX16*zs#qP|1oGHWX)lu)M1p8`OIG0|Py5 zJOYcUAsT$61Pga;peJsu(jcba6jRT*_#;}ZZ)ThgD!VoOvlp0}g|Pbf!Qu;h1|Mjn zh25jg?CF6uS<_eKNHnw~L^ctNI+nEE=-@dvHlTvijP(UVzyEp}i=7__i$6a2xilu1 zT+So_d?+?kDi<93G-`JepQ;7@Ly*5POaD@d5$+$j1^j$9K6)Dj^SYm4IC`Z6k4&V! zbcX{M9;Bu>?x4qwt7lh66o00gOl9XM_11;Az0Fikv0g*H$__17m)3s!+f3D<)lT|% z`9smh{QP=$QB+f4JEy=FYEN>r23siDOZEAn8a7AKfj;=F^z4g;Vkw-kr-R%Bac?L! z5R`K>2!Q=sNNPgs>FQH@wYhb;>etNF6cc1m7zp+GjdNA3!C=Ppu(Y{_HS!!O!dBkH zB1ceVZv=8AKnSM!BxOPpiOJ4M&z)7*nC}n8`g@dp4aqihX-nq}zwAV1oCToA^hgfI zsv*4W(Bes{>PS$k4)d)DGz^>EB-{s*HLy0Cv%;n^Hz4WUKNdHb{gK_km|b8#36i;D zIjuSH(a%#Y^jZf#Ig=_Q)5XYYRCM=?OcmuArq(Xbo^U!#^n4_J3?`?ec`|(`bT~)3 z5<~AY97UZXSRuXg9^M$*nSY?Dujwtrr{|aAa~dkMZ!ucWRH5k<^-o5( zBg;{X-DfnAyaoM$1MfOd&(n#lMy+(MWBC3Bi?Ue?mFS5L`Zp#^?>cbJ8+j7mlZX0Q zkK~iwiZ`IBUQP;#eu!0j+_K9js-h^UnqR+9;2sUC?!cVZm@gXYkIyr=dmvl66Du)# zo^2Q5xCF+fjl}V7$6`}p=L>H&xZh8e(!dU=w3U7bX5!mvC+_|lU18rz`oNq{!u-@S z1A1a37@*y$>l43hL$}h36Ca|O754oEdb^WkB!5Xqo%re3srmL>&C0i~L%sB^PF#DK zo@YO7R1)n`TMV?P>+@J0En#AzlQ6N&K48-CzMb}F>+>%R6H|Yi#@6EoTQ*IPk>g#H z5I;9<*I|yR+_PbRX6`i&#q5uY!gAm5o0_?c$nmTbKlInk9C8zaOHZeMAXmoqpqu}O zaeTyn?}ib|?lb6TWqUW`^R=jz|FF^}w`@i?=|gw3wDGoS{VyBb=s7>G)y87o z_QZBq9zBnkqi05|F`(;P$>@<2;_;zN^fW60 zJ(Cs%{K`Bee_$e-B$KOY5k923L>DF4Iq1i~L;S<6Qb7{e^!!$Rl-eIBx|!38M<9_+ zdt1q2NuohmT{UcL+Sq)IK$>Hd?l;xa+dBN#4i~;>A#x=Xw-b=aart`2yE0GWWqiH^ zRog{D&W9|{DB15SqK5|;p(P&+vQkl$lcUUXio>nOaUzOFUSL0Wb9PpFDyaZJ}!j%p!$5PF|*~D8XUJTL-Rit{Saku z??B#<1=&PUKxz^AN~*OLC&q zCr@frDBY?BoNm=JAt$9KT-b?9s&i6F&Wi?2ZEhG#qN$u=iCG36-4eerEkU$-GkjdHp9@7Kv;`G_RYCD?P_#v(Wn65D4-^z$di5GCgo%)OJ z0j^={b<$#5f5Gcz4rlF}DgIb>% z_{UF$QTg>5HLrxxRNBVtG4IJgHqaWm21wQXZ}Tw!e)Ztcx|Na0PCd-v4+R2RRD-~B zjBE_E?zo#r{}xt@^=rP6($lj~??u37lIeD)^(}{)8L(1e;R@bLPi@R3x8bVj{rKQL zgd!vW(r6mn)&^JvrWzvKUnL@!@o8DSVxFYA*agWn5MjP=pjU+}2qcys-`5YaM*<{{ zTsoVDYZ96-uK6#!aWFLh!yph+2$K8m57nB9t>zD3Y6N8r%hWv~ZL> zVk8}C3&%-$03HLunPD?$ndMNgW;)bAZ-(0%F}T>#<2P@1fE&P9Iz&&|!Es0+#n@iR zJhLh!8Txz>`U6+A(q_p}5z%Wv+XEVg$UPu!gzP?CwT(fJ3O)sbK9IU1#_ZE#F(+JY zAz3Ir&k%}1T$y}1)C2!PE-M(>gICp{GMkb5!t=|Ry1{S%77Tw3{MLLJhLgFvq&uP7P7}{7PNM2d+ z37qOtMaiZ3yej9BpyZSJfEo}J=N>^3hE+LEgC93^OD@eNaS+UPdps^)^Ll-j@qqA`GTc{O({UR!;5xpMGrSM8X_DG7NDzewd$(jcadz$E$#RM?h$FNF3lmZ?f z{C*=3Kj7$>;9VgiD?WEX5qv5h8E-2~tT}=H3S<&Rm*mqFkT)QyoUFQ3zuTo~9*y_N zF5a5}*s~zXD3tNqZy|1U!iRo}X4gQRT=0rMP`69sU5eMEx+&k_C8y+8JsKy-s>u6I zA+%8_8$ygq`1xYnX5K9eP7fD~x5l>B9XQa!)~P)2(j<}d!55^GPv8~NC-SlnOe6Yv zP6(J{jrtiPh*g|8_X0Xh4UT4;Iw0GzW^-5P>c#CVyGHZQEa*{GR=2GMk35V@+0o>} zC%=jsS>p01BU9a=S#87kSO^Ry5TkC@xMgopdzH=13cjFw7aVY9z&_!YGy` zuP94?#iR1@!>)qrQ++Tex{_0%ABLhwl2t(fSvAoIIV+#&al_2!af|SQM!FCxOdql) zYhV$-B!lFt#EE_won9X?lR|{}I#u(*bp7ycrH!u{jjS=w1dr3jr;RfSNC|=jBb=8c z1!f2Z0$pDC{sSCN4sddEoQ;;AOCM*#2U{j{*ej^^nZBs5764Ng>G!28(ZkowqcnAFfg{zUB1wcEp%fGU5+hC=E(WIFLVV~3T}Yc zvoC{hXGU+dU>W(rhKg;+hu~JKBXz;mVFo4~$1j4Tw_bk`?BOBA-OM0Ug7Hxavm?m^Q&yNbW2G>t+IVOkNy^) z_!(<^EzkaWILHo7>%|4tw#vlY(`-Lt=wm#7w$XOuU^QHM9V*ek1cBcWh&v#>;4rVO z9uMD6`pr%9;4oQ83S@GizXAu2n0aFt;L-#d7#dHmHR|yk^3xV!!pz}to1Hvg$6K0g z^>m?t4>sBACX@-J@;f(>XN7=IH`$zYt$;5!*=BVg)4RP0_q-2>3Dbvl?hX$GD+to@ z&@;F!oKOCIJ6r&N!a?{HC44<8y+KMhkkadLQ8YY(l)CfaF_Dy>fsZo6lLQ=ZwzbTk zOlrqyPIN_f)_EqN?S;&k(8b% zr6yAPQawDHNomtGc3iwgMHWfeBYI~NBT0J6WkBgkG zobD0uuQ}V)sk@l zJ)u7Bc;`QlCjmKv8~1&IF3mGpdV+q?Li2!$<_XbOUULOBiF^YM{<&zYpp#-vmu$Du X-?R{&GZDQjT^Z4)$tEIEw)y`bx7C-0 diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree index cddf9f7944621e23eab219182d2c99bfcbceeda1..19141b4715e7a1e9944d9fa2f18b9906777a4978 100644 GIT binary patch delta 236 zcmdnlFS4^=WWyd#!vb@|_$ diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree index 49cac562a7444267cd93a6e44b4a9ab0283b3a14..4e27423d4379393a01ca984cb8ae4ac81c46480d 100644 GIT binary patch delta 3917 zcmeHJO^aPc5cS;|F$n>Y#3+cFn?W}kGu7SIUkDLI7XgFOotR|ks_q7LVZ@0b7y`zH znjlIXt}a{|W+M?L#D@zL{0EYa3W5tk+yobHvN2fi%}kg9ll}wq7MFLS=+oy^ojUjX z<(=c@o!_i%S0}t$d^Nrn7izY|%IkncjF7x5s8lql43c3;7L#$VoWF7JzDqZ@zx8=v zLLjBGuB;i0%86>sHj$1XwKkpq=*xGTMVH{hpWAxR#UhhstOkKR5u~6@EeZqc#M7gi zMR4K%GuJPUuU{OUcyV;k<>TG&Cq};w2jA!p^_U2_06LorveVHs2#7VV5a?8g7fyG( z#y_oeM`!nfV(%k+DMP0csZ7yP4%%kTJfuIm-Q$~|b!SIC8Ux57q7%tN017b`);>{$ zVo-|JqU zouf)lRe5GzuxcV<>#J1hY$2@C`TG6tt5Kh7&^0m{7Yah5WTgw0g}V#HR3^thF#h<% zZe`TI!c*5e=o{cuIt#4D!^DDk?1()LJcw< z*#>Jh>FhX-<)T+cbG9fjHdo6s)hZ)t6{}S>X%EKZaO8CN;2NDK`jk!!cha4O;mWn{ zF%wnvS|14Jm8FF@kIkPtwZEUwU^5DmbS)z0B!dG+aUl#cY-zafADOIa*P6DOsIhx| z_2=$`(dky(<^}rDk(U+^KmW|L&n>oQc5`(@LO*|O|M2bAZcpFf7AMj?^5|3sa0CcB zSZg#kH)F zN+|_!(y%0x?@J_=SXQi6-f{&q-M{Okn($LnE#O;Td>oDS8t{O&8@wo2bqu9=89|Jw z$U`n{lS!JO=5UMS(b>61I892|z1V8rW_Oi4k1TAiZfSVSi%o75FAjfw*B#u7$3{Y} zru|ktw!(QU9{=wPV=Eq8`6R1z*V-pfE2Y+wq_tru+ju=mw&L-&xx5vRw~zkyc=Y3K n|8~b`_ME%>?~=vt`R>mrB{cW2JbIde{9rA5S$XeScG`Gur0l8tB)7St|_ zAn|drNM%eH5kj~Kx)M99h@~KQb}8&qhDh#8&7|F z|5kth*68BfqtTuBnm;d&{^(x)pgGw>^2w#(JfUZi?1KYm2{Bu+Nn!Wac5|$6KWpB7 zv^A_WMvBoAFoJj&wJV%OS1e__hlL-StD`n2kOTlxNU>$~pvgyrR3t+onPR(pyUl9< z+(*sNqv1yW{kS#CTO3f}oj*GCG4 za!5V?-TX9aqjlmZx+KyZ4LPqtsVFv-x_1csOa=?@F*&?so-l!K_qXO{ji?N;-9S9Q zwR!36`jsmu+I1{CLn37YRS7C|K0>f5i1j+^V&>=#x~9MTMRR?$J+!IyTK43bcg~$U z{o3nqo*UBYLG;k<*3X{k+MVW^wINz{EH8Fzzc)wLs4l2bv|6z0lU#6Cd=ZJ!D`r10 z)#@{v*x!LJELvGZm~`#QtL(jpykNR@m=zuRFd3z-x14=FE5%aC#+XzyE*?mLp`_Wj-_Vv08Y-v5WqJ@jG`oHKt+s=_ zrvAJ4Pb1y&zIkjBh>Jj61mYqPk1Yc6p&`5o#Q%LD_B9a4ORM8IRvwu?J4Y^Wl~?SS TJI}v=d276}^z5DS()!AO+rdWf diff --git a/master/.doctrees/tutorials/improving_ml_performance.doctree b/master/.doctrees/tutorials/improving_ml_performance.doctree index 177f167cbdfb1d226f83c5d15187f10f706f8dbb..dda87d65868c6b31cf5641d94ce9aeed311b440a 100644 GIT binary patch delta 84 zcmca{N9@KOu?-hE4GYW-kWwxb$T8e2>vZ1+=g-KFUvWY>Wxml`-p`oR*iJ`Gcl5w&@ RqNz!uv6)%w<|fA1TmWVy62kxh delta 62 zcmaDW@m69(AfsVsa#l)Gibb)0nx&bkiG`tYlBH>)k*R5-iIH)dftiK5fr){IrKOp% Rsd|XF8}}l diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree index 72ba2925bc85b2e255181df3866d35a9d44f90f8..ef9ceffa637357fdeab2cc879d5f2f72bfd57af6 100644 GIT binary patch delta 235 zcmexAh2{SgmJOFUZ41l|wYbryy8Y+`DXn3$B3 zVr-mjWRjF-WSN+{IpbF|lM(?%i8Tt7>wYbryylJ-3cXs=!(Y*hmq85Y2!vu*_k@!7w4h+D6~YbNdwMj3o3BZa+4$yF_+#|DRoX z<#zk)O3^;(THT?3E&$Y24>XmJ1|L~1f&Gz3#^w9xgQf)Y$Q*E%Rd0KjVF1Q;b55yAz_%LE&!&fh|d zs9?rLqpVG^03ewG?yYpmIPbL4VjEljm_~zDeHy(>2QnPW{uVlur!apSjTGrE$^ylV z3j!o6OBJO_i8NYb1^l-jDicHRJOdBZ36+Kg2d2S?sH8U?j+bUoPdRZ1^;ggCq9>@3 zhB~h>HOf<91Wa-Wv?ZQX8l0w`E~HbhQI<$~WDeni=6EDg!{w_vbf`%Ea{vLj@(Mz- zEJTJmlUU0jG>tpTFn1QxU|MDkP_0cQ&S3}Kk%$xQ-^wUXe(D&0jURB!wbN<&KpklB zO~Yl9f!*U nQ|Nv+4m(EgMshcj1G|w-AIkrZq^!msp-+3WKWYUf8tMNDHdKOS delta 2236 zcmeHIJ8M=!5M?Dq6pTf{%Hr~AB{A8@?CvZG0f~@+5)ttQqBHxzhzJr>sR_hF@qtK+ zi&%)k2-+Bk@b!uyT3Fi%{sBQOY`y0Dz-V(TyEF^Kp4mO;%pUf~hru5o23J?NshM~& zal+ZL5}XB8hJz(-ErB*gI`k4GhTx3#$q}$!`?~G<$?YLX6Lip{xb%?9#!~RN9e;NH z%+;kYE7j8OIJXh>IKJIjUPvc4lxy$Pvjdd_O)&wWX%-+R8!Sr)*=J=!(M$K9F1CW! zMwjm{R}!N!-rFoOgUTjkqGYmU4K{^fyPqe-;+9Su?0Qvyn-D8?XHwj6J+uBaDc)6p zIHpU`n%k8&YdEZ~impo%9cNh`!=dQ`0G>8a0O7X$V5H8IqEa#K7K6=OnW zH84R04uRMunVeQW7KO3zLeuq9v=XWJ%?nwz@@Pbj)i377o{DvH8KjklbQ1&S0+|_H zi6xnoa$i|NV~||2i5w*B*||`XB!@OQr&Q1Vf0dP>oPnG|gaA1LHBXtNLlb4P*30#- zZckYok)ELknE3!TVL~qEr>hs9e#mFS9Lt zJ;JZ`49njM!DR>8cw)_SQQuiQBDt j=v%Ov$<0g-Z)WoMm-4?e>AO=8#K*0ze`*(MF+TJQfQgEE diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index 7139acae3a2a0c6c0c722451224ba12a272794ca..557c082442c0113d2e85b15fec7dd5fc14b63057 100644 GIT binary patch delta 64 zcmZ3qfN{|R#tl}Ch6Uz^@mZGHmilQarb)?$=0+AKNlD2j28rfosV0Vomc}NA#wJO| U$p(q0CW*#oW~rOA8MpfZ0D#C7ApigX delta 64 zcmZ3qfN{|R#tl}ChMCD(DM=|7#rkQMW~L?*jrin(Trims-#%Ts-7Ul*f1{Ri< UX2z!GDQ1Z#Nv4~#8MpfZ0DOZIwg3PC diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index 4262d644ed1c0364ec84869c274bdfc9fb59562b..85b6b3bf386e569c6e1555ecf6af236fd855253f 100644 GIT binary patch delta 224 zcmX@|fbGZwwhdc24GYW-{iDdSFd!piQfVa#9#05*y}KL7v# delta 224 zcmajVyA8rH5CBk_NC6k@zy|npcecmz`G|m)4agAG2+<)yffUha42m?_12*uh-#E47 z)V|)@9?DTz;%VC@LWtIL!t4+;INuqH!GMV=k;fpEfw7#I61>g{<`pz5u;tIx9Dz7Mr;ewoBV8~^|S diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree index 92167e36e5e57b0a55d40c382580a53c00984094..eb585a5324ce486f9419632cea8d356155ba8592 100644 GIT binary patch delta 7593 zcmeHMPmG;a70=TVS^*K6wkY#`?_;oFVCdZc_a2Fs7>sEGMKLKMNQV12RE?Gh8WxRF z7pAVL8b4P?SH@@p8~lukQo^3V#?(a@E{B*H64!*^_uiY*hvZ${zr~qJCil&`=brQX zb7uChJimYC`Ir83n4hzJ@0;{3+AT?k$gOZHgs7OeCM(WKDlS!!k$J7WG$#LK|L{-u z4^I#uL3|Xkf%q8WI>hyeLx}Or#}PLmZbaOK_ypo+#3vEAAU=h-6|sppf;fsehPVy! zX~bs`w-5V=x4!tLP7|>Zi%eXRGC@1$ge)RPBP0(h^^Dv;r-m2KZ2j(Jrv+I-Tyn{n@=iNxb7qNg$4o9R zEN)jjHM`xRerx-eQ>RMSUdrUM5@dohg{#24cY(+(E>~8c>T$WFf8J^Sb4Md3r-+71 zt#}YY6k$n-5;D&v_7`7oHizzX^TftfCr%-0qil{!aN(qI!J;C=2{Aj`?|#2II^29` z``o0n$_O5!Me$y_T*yRaNGPFr@&+Gx^;~o7(EXtK=VXdCf4ZHo%ZffuE zcb;nQ?Z`1<9rwbc+bm>CPLq)?MKa!IKj0C+voVz^qjy{x%Yup)-H$R@iauJE9SzT% zZeN*nP8M7_jOUVaMiS4~$XqP*k+PsgCAFOMN-8Piypoe=o6m74=!6w#pWXf5liTOd z?{wQKQQ*-VnFJo5Fh1T1Mag*MS(JHR)rY|Bg=VwA^pEDo;mYmp`N;TP8GU zP?W`pPFc}HYwJ;61SNqeViNcX#)U9(1918G$+VKPe`c@YT_xdSKmoOYq-@exTanc!}(OI5j zges{71rZD+{n? zPB3QYU-=1cuR$NAk+LUaGqZ{-57mgpNDqz2OqoTsbrnPnOX#cg&Mf1pHm=L3YY%#W zzOGi>IJ2MaPyeF1ZVD~;(OFlbP=%ax1>dx$l1a<5nA;9a84B7hGC&#)xfme=KqNWn zm~;#DmB@nDjxumM&W1~xnP_t|7C%$&TJ()BVpZn;#k<-^tBLzN?ry&TP7kmtTzIXu zG7gw0FVI=7i_JkFRKbV=PzINV1V}sbZ?W)mJ{Ofk$~~HSY$15UVhlzi5lN_=qYEh{ z0j!d;Iuy1T-b&^f2&a|2v*EpmGj@C~3_3E2$AOW=I9a$?Ribr*SFo++WtqEo3F3eyY+gvUhh8e?+?oWT(5WkvsaE(;@0ck zdcB+fab>;Ut=GHv7R&W|w_fj-cGvZKw_fk?Z;;wvxnA!+XgB`<*1G}g-Cu8b7p&-^ At^fc4 delta 7656 zcmeHL&5I>h73XQ2%$Q7KOixcVUG>UNCJJe%@45HfuLzEa3IoaH3r0c=llzGyq6tZq zECx{*65V8sSgu4t5mYc6EfLh@9}u%J%w`r@wjf5xTK&C`9=iv9wQ~0srx*P$b?V&n z`#7ieuf4c`?ZsDrdz>z%FXWirb9>br&5l&`I!LVpOI3w&RMYFfusKB{_$_^ zADnysiNdY6P_r`Q{kP8g0+_-u_?Jg|vAKWte7o82eWlqNZoj8} zVbUgPyf9j1S3L`6SF|w#5K1xoIJ`Y+|2FA3tj^s}&$SPABdKlw#)ZbUDcEdNam6US zy{;}9Aq-XPmG*vk_Lb(DjZVtIDOX{GNsOO@Eu<3{6_SX_mj231&8gwl&$d6Cbdik8 zzEt6TWdk@R8Cc4ZMeW2fcy1Bng#?+Kp zR>q<4*YImrbsVQ1062iNvnFD#N zEUrLjTZ2=6xbmmw50lZv{cE3Z#CTpbWUoJasrd*2@MpZZ^!(m)Pwia3yxZ+qZJm}n z%BqQr4gnBQ3c3>V42A9hZmT&xgWJjewKtnvhiiAYmnUBvYt{}@pL^tqiw`~gsZT$6 zaWyziK6-lO>g3K-yZv8cyVZ@=HUsLtr{~weU_+&-!6R_PYtLj=Ev%@TV3b;RxE9Y| zssuDMldrL)%p$Xmii%8WnEasm;biJbNm)QO$(faqu126CCYM4Dwam#mbYE?*f^s8? zXOufX9Z5T9+_V5`)z0`<6kC7_L{G|-$)yB!koA1?@2Cftmeq7R zIjt+BZaj~iLE&hfG&Xtz;+chrj3%B{Letf0<)RSKZtFAB-1o)jKPJQjLhOF-1zfRR z{G~HQhsa2^7OA3ws7d&H2ws&SLh^!uo;oXJbLeIr9JfTM;pSmRj`Wd_a%=>__UP%c zTb(iTo$oeV-AIA+E4#Np|4MTc1Tw@3h!GI#p!b|*HJBaWvHL!v~XWVZOQ@wM^NE*r9|LVT>vFS+S{`HHE z=pXrTds|nX&yo!^1KJX!@;Q=A3#xg|Vks>JbBHp*WylDqYh30+F{Wg5@~q<_^XM=H z!ZK6Jkqg7|qs>TCfgX$@MbZ+*W0@Cx98EmqZb~`hwxc5lJm%f_okm zG?IB~hhvEk?C|FP6TbZ@k#p({>q9(@6)F#pXOEFi!X1kVUe`bYgJ+2YH1EqBk?5f_%!l3{}-joMNiOphlP>i(taKqOlCbiaFET z6kR$(JP&+U3Nk0GIPATvnRQmCBnfL2OPr2nUf^^z@f@eWe5^g&X@W%;fe}MW=oi{T z)^f2yMjxd~i&CZpr>`2;=A7Y#ZNQ>)r522#j5TqyaJEIw1r)y1iYh*kdqQLDyi5^ zAQJzvyzv$42FrsOuI$zg3>pFH(bFTB$OnAuMhaY7-d<{L|MjcQ+Ns7{aybMy59c&>)v@VjgG9H>+SDb4tS!P@6r=^%CB^#O>S(qdxC7T!|nwzDX7#dm{ zn;06KBpD|gB$}Ee8k?D=ZvM&n+f?3)m4U&gpeWUjOIO#(z{o_`z(Uu^P{F{!%EZFT z*m$zMcj)8`VFHqd1|~WRMkYXUQ=?P^E5k$}%gWHe++gxWS9@ll?Bt6M$8>dd^>n?R z^otdMATv+FK+mw4iwldf3L0j5#*^>*{N;jMWir_ya-q7Zk)DyEnVy-kp0Tlx0+?s6 zXKAWuWMHYIV5|pZnClrCSx&y_5y6A37HGToWCxctus3dXu@lxe*ZqN&{I$#Q(;S(8=cmD=AF_u9G$Wl88-}O; z)4|4&Yow+DnSij7>T&<+d7Mm~lX=3zB-MZg0p&%&_Q@Z@c_>W+6c+e9oy&%!~{mFxmgVL90IFR(+;t8v&i+mu3I} delta 1570 zcmdn|glp;(E|vz?sf-(0j&K@gCTFE2rC1c}r&*ernphYbCs~>%8kw3Vniv_U8JJm^ z8<-eaSX!DHo0_MXC7L9eZvM&n+f?3^m4U&gpeWUjOIO#(z{o_`zye4s7#LX@8C#i{ zPd*r(%4BId`Jk%^lbOZji4OK4USrJm$rs%CbxrlmjD4N-ixq$%Gf%-l�J-3yUcV z8bFnk3uFIsA({Na*LCvVxEK{fGd)8KBRw-qJwp>y9R*`OQ#~Z6k*S`cx!Gig_y}GU zg+MoWPktX?1at@6ktPmC^sR+#MxFQ*AHa|>h1XCf4*O3^(vlA>7pxJsP_;>T{gv$Ao#r}zLPR(Iv OWB`FyW5%V%Oq&3=mXqQD diff --git a/master/_images/tutorials_datalab_workflows_86_0.png b/master/_images/tutorials_datalab_workflows_86_0.png new file mode 100644 index 0000000000000000000000000000000000000000..e216742ab468caac0a34d95f011c93b2afbd5905 GIT binary patch literal 15325 zcmeHu2UJwqx@H+#+kjjH8AJtCGLkdeDmmv&Ba(B@K~ZQWDXGZ0$Uy|8pa=>Ik|h*K zD3A<=faDDGAMbm2?%c56yKl{!w`R@s>MmPWan3$x|KSV&exa-=MRJzd8qB8W^d-=ZtP@=QZROLu(5Zsv3zvR&D6=+(%z1T zLx6*q?V5#)i-WT;C#UUSzQAGcWX?$*DA)-XIpZL$x{2hU#LxgH|h{|_Uy|O&VK&urhbY6Tp8!347-{Gr8@Zr zsyb)ejpN*B_07YBjVXg*Me?n^gkRuK^%@L) zc{#7Ahlk(+uic3D%F4>_Y8xlPz%XWUq)IL7ra}+=7Qx^wN?+4;!~mt-D|)oQ_VSNE zUKvxiwzsS6>L%=NE*5l29O)nIZaBMpqHSh7lM_Te-y*mD@x#F#eFB9hF+R1OEbhCT ztCph}-pn8ws_fwKMtuLreYN0tqPn^|BaXmfZ*T98KAuMYjrX$hlT#$rp9coCT#16_ zNBjFeVe}G)>FMcjb&IU<`7zlFiP@1f-Kk>Un((-q3;ji|o8NVsoo*>6Dfeb8xVEuZ z=3=qhk-Rovx$s4LS`tV5WtT2pnp$2idG+c~VzB=F_OQjHwbY|rrBv~=zy7LBsCIST zTdcI6YzhmX?d|DVmpEFJh|JpF_Gq>&e>o%Sv%k`8HTvppHR;9vey8}tZbH9E2U8hKs;Lu3owMB53+t^$7 zKPve6@xjjCUV-CelNT&VLtERUdtheE$;ruOxps@?+O@j_`p#iZVKh0;vzg%>VTJ+?^>3o$;$<>t=l^n(7^+EI0Ds>uVf*|*aeMLLFVz~KZ%AmJz z->x^&*w3}c^X&Gf9!|}fPzEj4tSJ^5;53olR#%VKEY{DvmFlC4JYYdd9gC5XQAetT z5xn_co-WZ$DjqZGNXdw+MI$5n7!0Q6QK?`P8wZEx@@Op{BS%rYzuKl-`slf;sw#v_ z)@-VO-H6xGmj96!JOJ$A7o($HEl*F+`J&2E)vYDM#>RjV>&=^zl?1oMrf|A~0V96{ zC5eObp>j(Gned}n)4{i<)Vvn2hAQn#`ufz9MLkuKb(WcRw0=Jt^~9S(%xiPd+(6gJ&@kojaI1cyZf~hKS0&SBcipmfty2Ud;R`J5 z3K`jS-w|A9V7@np&uiTxS;Sqjq;@mm@JFzO#op%P*$Wq9*N2x?EA0qJKpxhrX*Vx2pG+a0dAobNNr98oAC-)^3gRFvjeb>J~{tRZtsal8dE`45cvg z>CW^0_Wnr_gng<1k)M>FlhfPr`FTs9wGM%%W_o`cX>PO5r1|oZFX{J5WSTM~#EBMV z!;4LH?jyz?-rh8WgM;C2GLo{gFDD%zJ<1qgT(qSXba>zGwmzqlX;|ykWLrs?v0&BN z8mh2n-S8^69~;GP4q1ow<|v5_L0L4H=5ApH8x#gcNyV*9=kw|A7e1VP|5;YXJTsPd! z51W?>Ra8<@F}!!xe}9rb4AP0_mtTGfGNx>TB!I`LKiuGyN`>0Rz|H+uwM0uM%ze}| zM{SQGLiCX|_s{#mJL}6+3yO${Sm{$!655~K-f#QEtH+{;+mqq%hVAPK7Grg_ zj!Pp#Qi%jR0lTVc^2zFjV&`&5$9~Kh(>K{k-pfBk%FMeoy}YV>dV4E=|8V?MbF=l- z=hwP59;KOGtJ7_!rP{o1-?ej0nA)E#WrJWPJP9t>%@e zSFh5bq(GKx^w{scMV2DykY*w(At7Tz0LX0uNgS-zp7I-oc|#L*`^tBRje;lij?4g zbfEjrCVuFh?ZU6*kuGyzu0MbFEEghMu`M>~osi4itIUq!VZG(Ly<%=|?w@(QHR_F- zc_JN|lar%%?R6H!uwi6tZIZBvh#o{CbQO)fS)|tC2*pNzJD63PBY#<9L})16hQ5w% z!_@SVqCHMFf6v@>C@w;=H{$$C8+m35KTpCY1eX6#~Xv? zBB9RHx=Kn)#tz*w#V^V#AZ-tp&|60Xd2@kYyl`V-KrRxZps2lF9;r?oMFk)Cch>Of z_fPL^Z_g!I7puVb#Z~WriC8kB>larBoy?$iGla_7V zd0zRLl9Ccc=0e4QVQ-!9o=YQ%09LfAHHMW*24DvABU#@cMkJ64oSuVk8Ac>$_h#Y8+nMTnwsmk_s7u9tezby9uqH|ZZV)K9v^dOXh+3BS7VeBcAg1k zWM*TNFVHIKhf10p-uZpBc6i0-MXKMf48WqAAX55b+u?VXkX%D`zBuAQ$#VGx*q2oQ z!$C)0$;izm0;|llVl>IwvyrK(shi&i)reIDoO@euuNq*U$X3$xrp$T%M~4TP6xM>p zM<&r)dcXgkHrXfJ7(@bLn5TNcA===Y4iOe(HH>pF+27x%&8a5h3vwVs&j$XctsMsq z;yUE8Vdh(6UEEl3-@)Ein_Z>IqDaW641jm6?Cc7hwd;|wY&sdx>xC3fmJ~h=AGoMcAQjyZ&qdr@wU3T>6Ro(9Ih;ZJmj

D%zK$MBn@t7ON&L{fD9VA|Ld3W*#232#G_F_=Rc*(MB#__&(CTH;3&x z%j!QpQYkU4Eq9q$&FQ6zkB{H|7D(!{P*jN^oJiUa>4jf@ctex48YoU4^*{2J3W)N< zy+m3T83*S9zx^#17TLAgE_dD8a5|B4D?H1_;_yIs|65bJ>6sZ~PO6_%Ih}}`JnWBU zyovqSHydadS#^c6Pe$%O{2GuU-TxS6%zU9gX#So`UbF$Ca%k)2KKcZv9MfCtDSR5?2mtj8i8c)B-%czJS1Mh;DerJH@bF-dRb1S#OLQ&t!d1~+_%$Tqb*o+Su6lpJQ(-fx8o53Z z!U=%YR=3P742gsbbix)BA73EIfY0IE-5gREdV2aI?b6@w2Vc;Tmk+JmUzLMomPasB z@5iAr@0Cv!F)1mH(o)-q{Wl0oo2#yA~kz=khH@z?1NEoia1a&#$fzy)_L<;J3|3n)T}1 zT0tLw?B~y)za+bl=8e{RTf^SyLIF5MdR3o@GqtN(k%Z+c();h1LKV$Sw5x8xY(&ou zl%$e#8WsWu&~qPg42ELN>%OF40omPtaG8oK4|!Xp68moeNAo$)$Qw9!@a--b9TDev zAW8^c3q@AYmytz56y1glpy9Xq;(xSfbg(@cfmUaA_*Aw08%vrQ^FogeY!8A^;&{x% zjVp(fcT>fEhdcoEhXI3WY-?-7!W$0NGW7h^ZQmBlE}1Osn#57bA3Da7SGzNlh z?i`Oc@*8~hSU#S6I>W?hZVPQTyy#}q8qF*Tb#jt#8xlv>V8(C!FkalZ`XV*86+9^e zKYzdD;P&$iw1U5%r{ex-(UbLJe0tgx%2qoP6r~p3H>Bt}IwTb)jVWWcy;M+IeQ%5# z;k9MR(yut=CbIla88qrSO9%UQ@o_-gGp-Zw#~Zw_(+N2}02@84~JU@nAe|6KfW?XSwsdy(fBO)KPrG+Q>|njO8eTcU z;F1IWT04sGE+y!?OB|V3$`semk&+77F5XpWw!Dc#CmT}=dv6xv z+OUPiO}592$)8cB#qPptU4a9%H8)E^?de0ZC%+4j)9f|}HE<}%Xsga7A< z@Q0F;L=4){Y2*^>?#2XY6X$Hl>I`bVHdFz~fX?D6Q?iq zZLdsjK(o0GbP?ya$g&aEXlko=@7@!D0xnaZFN&>yxo2swMw5YVafGEFbZ zSYTofBbQK%dRcR*aG;8 z*J8y$`R^Z|IxRmoNC8boIZv`!R1+&1~t)Rb@B7z8(R++UyTz7J`*JCkUyKg5sHfFMtcMbc!j%-j|D zNQ_r8XfENTJ~F#YxaH``$P6GdxoK(d^Xx%0=}oTZtT9<%jv0C51OZ+Rz+S&th=W5B z*v}WJ+8e}z5+vt=T=YTSnO5jB$(+7Gs|@f7*uMIbAdpc6`QKn*NFGY$wakD=imsM( z*BJ)xD-Ic|G(F16%F5b??>M3S@EH}#RM_ELfL;B8TZJ7#m&dGK*}@{Xrna`iXUC}) zWFO2;oT0~+*)1qH*$7hYFVv|9g272G*g64nA)r7@5XN@**Sad4re(#pzXc{hZREEb z$%Wsj7Bw`Du268p89;cuRNtF?UR;0Zg|<4T?207$89=olDQzweYZ0s98-j-ikQ4=P z-YBQ~ZpQb{=R%*YuIc>zSsIaeh@-VQudSs;YzVdhH3&5-{>e#%3lw>=($OAa*+CP0PgsKr3O4sh+R^aW67UWC@$upo^$Cwg55b zD_9&6sJ>Np++o`B@u}SBHJ>AR4L930JWiEkMQ;W z{z%dyJOf%p4yb!b(xS^p;oVrw_h1mjed+>jE~qV^+u8~mrf0fROAz_VeayEKXk{MA zAl9Qbo*qo+4AW>*s5$r9iD&I4Re2|@KPF6DrzDt!0c*mcXLPm^9%|NZxGOts=D zj@No6nB(90jrsI=UpzFP+O zBVWIMJw8W4PHr~h*i2_yEJdN8VDJc@7lAsV_X1B*!P3b3ApkWep{DXA2-w>pm;|&@ z$$Gzo(2hg_kquTB7H&h&X|ha!qCu6Fl^3sEdAvT~+x!*4U}i*z84qlN&4ULIC=qM{ zIq^Cv$tFp}z0!5*D;;aS@tj%}yigET-kW2mk zYRK{9$4B%@@)JAEdI5y>0b!N(-4F{XIK6x{#Lmg71Z0zJG_D`{g+A50cTvXK)iYC_^O?{j)vJ#{za_hPF&#EhE)s$8_Vovv2p@&K*EbM@cNE3y zm)U|;WvPg(inh?&yuOzR*@J2Y>UeKL{Z5ea)?|>krwq1tlMtH;2}X++!?z?nf_!<0qRVSP@vjE-0uCmqQQ` z2o-YdQ3(n8Kw;2UMio|M^|=+=pu*wgP!91RYu<%lDseeNvv!-q!&nWzoyJf+r_O=? zt9nrE5m$AkrKLqyR@OwaERQI8VU}t&~kC&}&P}3)=+iY)^9_|HI)+pB1Q5?}5`WHMLAK2Ey z8up!MGB;y!`qU^7ATl~We!ed@K0YrXAb>lfRXP%H6@%B^b;v-YDd^2ADEH{OfN-@-qiRblF3XK?)pyIsBk#VkAQ2fe=5X7Hkj%v8Nog>lS`^a zif#mf)w~>(Xfa6V68zazMY2X zatFZ1dfuA0ag1rAP*zEwn_Th5ItMIa#$|&pqSDpOh1aFbR5;M}=4NoY>XjxMS5Wz7 zBjFzx_#Z1^(2-f-jLiQSZwx=Yc<~}4+kt+HFEx=;NEJ5#E;m-iMuS4>lXK9=&qFgi z-*|g#=WQLK659E0m;d1;F&|=;}4E7PC zzWHwU*#JK2*oE^AZn@7xf47^zY>%( z>ax@1%4_ubOxD^PSgF4yK%?B-@ATj+}h=#UPAIxwT)$z50{%OJ?6WY zTum4%YLzm(@Hn{}`+WGyC3;Paqw?CHVD0D_`~<^ZmD$T*Eimr})DMaWsa(1HvQ-jU z#`uQ)IJ7pM2jA-Y+X0$@CfJ-YAZP$! zAaL&iJlq2LA`vv4LVyzB*vWx&YV=$R41W|$BL-)dD&cRa_s&KI{HM$gP*=sg*1v${ z+p0ekt7q5!^p|t+2sd3pr9cehSWctj(^oyxMm7LQ=D&IKWknErWaQ(rLHJjnnM&(P zq;F^4X{*#ooEZff*@{3KdH#2Ccjoq~sVT&L{_x?0;v#$u)q1Iwz_(S znmQk35aw&wzR99PshiBoK#4%mdNdl1#$%7_3hMGsqfMulIC6f%i ziGffm9;93gEAohKjW`p>>gyT$;4=Cw&^prY1x6<)7Xfh~0>gui=m8o_8}*cwUi`ZY z;|$=@81N}md^dFvT?Ncq+k2x%e{xcuUhiiSHXA_l5)@nYWZ5cWYQ z;ir$lSdcW+K~F&s9|1k}nu#|r_gHz9Ea>QG11Xk;8G*jCR|?qx8I(EJ=gl(|8U=P156|! zVtpA8L(0v&t^yfS>PX-#a9TkH6!cDf3LyirIz`Oe3K$=8unZ9rDqt<{=pgFP(_B0z zP3Hko$%1yT1!4^!NZgQW^91)X_Oc_;z6(HGN3c6mY#SOI$$-xw&PA06>OJ0kW#SWJ zup)C6zz-Kdis}QY3SZ~zO+qX9>TaN_==nx2mf;;R1%X-g!UCh?;^r*qghbqrzkbW zin}l>0hKN$G10rb%O5@Sw>5m)@X^*I`>Y zUfxe3U=xHN$3X-3*gqF>ePhJv29IsyM(7>z(b$lUDU&dtqPAcY7~)vJte3JK}R$jF2@Gf9~N@c;BWUiS|Mp1X^$ z(db(;$RG%8i5~HQo`$C2%;lT6+1Nruq^+Jrjs^d-QZ5hN9w7@Zf^Wc)68782cBV>j z+S@Oyw*4&O7|svSKqeXs$xV(c zLDWE4Qdmp9!^CP*Jg5uIV1GlH_pMAelaY~OK&TPC`3t?ck9JDRkpu(8oz-+}3^Ig; zINRWE$s;#bQxbFCd3PM;fXB|Jc!TI;|sc){Odh;AZSusLb zV6lSJv$L!m9O2gjovK950mr4?M2gmbFUGdY0*MwGg+i3kb(kgqA>=E8DLv>0EX^wE zQwRksH@7N4k3Q(peP!lKpsrg%$ynkb;rkPeJ}PIj8P;fnj;#)weTCnFm+$s?ux`Cy zEmBWl677%3-CLp3%gG38vdMaXC$Hh_Z?C!F_z?WPsn+oVZ>mM&GIkcWp1bHHW z+61OLggt(wrGVq>=_Ty{z|+f%1yTtHf{<$?arOW(a35uJI9(JY$bH4_vvNanyT>je z_X^~-9a4`(2I9C=IW0NoPfLTMdY9x9BpJX=B+A@ygn1!w^kI|ofCjM;!da&bfre+4+@9YTq z(4<(dU%#iLqeEe^1iHG{#EV;3XlT4!J^?%1H>A^|h`VDFgxIq`XI((0EHG`0Mfx5d z+=y2FY-lFniPj^^Ez;Ydi&Gd#85^gAZA6CvZAKaBKw#bBBaNMy_L6)_`@{k7R<ec?ML1U<-%A zinTRo%wzqBpfV5)j-v#|4~#^}u3S;iPn9#i3B3=t7zXv+tVl0h=m)scrauFX123{% zlL^9zhL_ksmW#Axn>1i<<8OI@$I*ZtBK=IPTHe%30)dfK^hW@qI=_GaUY66mLKmzE zxe9Mj&y_a)kkX?kLm^xKi|T{EOR8~a&YzElxeXX|RP%-pm=#maKZ1-!EG$Gk?>4I( z_SbVv79J`yj{wYwp~@Pfpk^HdpT9SO`}go%rbBeNpCt0dICud-AZ;l}6&z&RFQu7Or-4XO^(`Cy`< z9L(e9tZx8(+Ipin$)Tv?CnIm7BB*#IO`1ZP*Q$Va8Mq9VmzT@wFriR);{~6=I{vT3 z^avWhyQl$jCX5BbdE+(u{c=LTvdF~?Bt|3yLh@2d{Bo3S_!#K>t1at+U<6N5Y9NBwzf z8%8?*)^ra~!hkR>>Mm$qAIM(6jw;!sR#-zwML*&URRPm)}RQea0q#m1H zc&Yk$vRZ>?!6v;NO&FUCXVX+AaY{NVYgSw;=p zN8G41vuo|&UJ54oOCMgepPN@e+qVm7)p+VOtwg*EpOIqL{eU(VMFn_YG;?_PY&)1) zVp64+|F$f9!L}IB!-o%dmxh=77W?fq#JQcXErd3)k7U2ve!~(5L`LXW9_)=ma{9q8 zKD7sTSu1L@iDNubD!1<2Qdi`yZnb~ynr`*u(9;Z2ifMv2N&BzLM*l!6Qrj8Rk+2^X z{Wnw93M!%3`kZ6;A>?MU!wyXV#h-Pej${$7J9q9N^aye6fXhIs#Ht@bBF-aLI(y~F z4H%WFg+V05Fgrvh!U1*S*l3<4%oY}DN0v`Y+r>1uO6cWw45~)mzcsyVUDTt!SJtUs zbrphP0#0F!w;qRERKwT|GNvRGNwCubVg0J_x(duZr#DQ8goNPV7~hA>%H0n-pVuc0 zrCz<>&lh}Vm`Hmc<1~Jg-d4EqOh_dT7wQC|gu8M4fM9Sc;Oy7G2m?i{i}JsV#~kdt z&wu`Btw7b}%9Sgh&C2p%5MX)}W(w7zw@f+$H_00F%d_QAWMyhpm?){2^v4wx>7Lwa z8)#F-lx|+_!W&5tFz98w%!NetMRBFbDf^1Kq21Aaj$=2KSH-6fbVW4W>Ty@hU{+sU zU%wEJ7UXQg$0F#{swScveQIaVoKb;c)Yiqnb|w%v19UDsbuCp*O?>mtV!JY(>Eam2 z!b*O`Eg2EcE-qBQ%unYcfCd(>o^Mn!%I6IxCt}i;gR8T%9qm6b0Tvn)6O+)@+39I! zUS4$=oS5KMV_%;fzudFgLF~bV2=j9u{c$y*0Q@*LxSZGK_ZG`+-Q1~m`G@*vd7eCZ z0@HYK(!|9Id|h=gBsi+SgHFfmN>nd0tknhc5NlynfM+SFSbw0z$;s&#Z=DWPB7%o) zho`M>9UcxS#t>#X3=$R>7mI*QfzH%~^r8y04retg3eLicE*0zIh zF%5p^o#a-7LnPG>Z3^Ix zbIX%7GXtx3;_IRt9ZaKxS{wzsAFk~l9}L$a#+u*GG{r9`PhxSjDEuD)bId4%;8H~} zSm)^#E5XxrMam3doGVP0RO8NLb?*MzB7F(pbS-7zW{N|>Zu|uq1X6dwlo1otL(Kv_ z0fWjlt2t7k%KrHs<*VVqjs7uhOOs3l4GAf2cn7?;>w9$WTEdi^>bKqFF9k+~-t*82({F@w3? z01YuPKKT$%H)z4>Bt!oLS9lRv92-jOD-0D}fk}saUl@dtm6Izte5#!JXOj;6{eSh4 z-g~kEP#Y1uI);dYst6=y4w!?6uDOQ?7S6rsVD6ye07(4xb?;XEJOG3|8wmGSFl~sK z8t{+m0W>`kS2zm+m=-CX$jP7e{mL=F0uWLV3JfI{n5qUqH&@$J0n{)gn5GN*G*aMp z!HlUuW?n=+lwodz6~EkaE42^iAvR!8OYh&LZX5nY#`*V8P7n#W%2Vel(~v24#Dzg_ z0W*~9YyGI)Gej&7r0_Om$Zp#mWR3ORg^~p%hQOFb4sJPGY@^J=bQ?Wsgxe!4g%rMGnBh z^oj-?ThxG>z-S4!u<0fN>zK(9mjq|Vz}3}AQ%q#0y&Kj96Ce0& zxE74X_ankDO#AB~6HhSZ_MCf99L^vjDj95FI?R+Y!{8zewMAy-qdX7zv0CBL&R08hmVh8s*bVJ0RYIroRCg`hUW&8lE_ zh)D*SV1lD>MQ{|21qO`-Mm;ibDkkN=di9DpLW|;ih8#l0g+Teis?)~*S6slq_6|3X aPz?jAzmVWZt>B6%nTLuGihuk4>Hh#v_=;Qr literal 0 HcmV?d00001 diff --git a/master/_modules/cleanlab/datalab/datalab.html b/master/_modules/cleanlab/datalab/datalab.html index 6c56bc5a7..556dbe994 100644 --- a/master/_modules/cleanlab/datalab/datalab.html +++ b/master/_modules/cleanlab/datalab/datalab.html @@ -657,7 +657,6 @@

Source code for cleanlab.datalab.datalab

 )
 from cleanlab.datalab.internal.serialize import _Serializer
 from cleanlab.datalab.internal.task import Task
-from cleanlab.datalab.internal.spurious_correlation import SpuriousCorrelations
 
 if TYPE_CHECKING:  # pragma: no cover
     import numpy.typing as npt
@@ -746,7 +745,6 @@ 

Source code for cleanlab.datalab.datalab

         self.cleanlab_version = cleanlab.version.__version__
         self.verbosity = verbosity
         self._imagelab = create_imagelab(dataset=self.data, image_key=image_key)
-        self._correlations_df = pd.DataFrame(columns=["property", "score"])
 
         # Create the builder for DataIssues
         builder = _DataIssuesBuilder(self._data)
@@ -1034,7 +1032,6 @@ 

Source code for cleanlab.datalab.datalab

             show_summary_score=show_summary_score,
             show_all_issues=show_all_issues,
             imagelab=self._imagelab,
-            correlations_df=self._correlations_df,
         )
         reporter.report(num_examples=num_examples)
@@ -1251,60 +1248,7 @@

Source code for cleanlab.datalab.datalab

         datalab = _Serializer.deserialize(path=path, data=data)
         load_message = f"Datalab loaded from folder: {path}"
         print(load_message)
-        return datalab
- - def _spurious_correlation(self) -> pd.DataFrame: - """ - Assess potential spurious correlations in issue severity scores. - - This method calculates scores indicating the likelihood of spurious correlations - for various issue severity scores in the dataset, as estimated by the `find_issues()` method. - Currently, it focuses on severity scores related to image attributes. - If `find_issues()` has not been called, it raises a ValueError. - - Returns - ------- - `correlations_df` : pandas.DataFrame - A DataFrame containing the calculated correlations for each property, excluding 'class_imbalance_score'. - The DataFrame includes: - - 'property' : str - The name of the property. - - 'score' : float - The spurious correlation score (between 0 and 1) for the property, - where a low score indicates a higher likelihood of spurious correlation, - and a high score indicates a lower likelihood. - - Raises - ------ - ValueError - If the issues have not been identified (i.e., `find_issues()` has not been called). - - Notes - ----- - This method currently focuses on image-related severity scores, with potential for future expansions. - """ - try: - issues = self.get_issues() - except ValueError: - raise ValueError( - "Please call find_issues() before proceeding with finding Spurious Correlations" - ) - - if not all( - default_cleanvision_issue + "_score" in issues.columns.tolist() - for default_cleanvision_issue in DEFAULT_CLEANVISION_ISSUES.keys() - ): - raise ValueError("All vision issue scores are not computed by get_issues() method") - - cleanvision_issues_columns = [ - default_cleanvision_issue + "_score" - for default_cleanvision_issue in DEFAULT_CLEANVISION_ISSUES.keys() - ] - issues_score_data = issues[cleanvision_issues_columns] - property_correlations = SpuriousCorrelations(data=issues_score_data, labels=self.labels) - correlations_df = property_correlations.calculate_correlations() - - return correlations_df
+ return datalab
diff --git a/master/_sources/cleanlab/datalab/guide/issue_type_description.rst b/master/_sources/cleanlab/datalab/guide/issue_type_description.rst index ee6f09fe8..783bc4250 100644 --- a/master/_sources/cleanlab/datalab/guide/issue_type_description.rst +++ b/master/_sources/cleanlab/datalab/guide/issue_type_description.rst @@ -101,7 +101,7 @@ Some metadata about label issues is stored in the `issues` attribute of the Data Let's look at one way to access this information. .. testcode:: - + lab.get_issues("label").sort_values("label_score").head(5) The output will look something like this: @@ -118,7 +118,7 @@ The output will look something like this: ``is_label_issue`` ~~~~~~~~~~~~~~~~~~ -A boolean column that flags examples with label issues. +A boolean column that flags examples with label issues. If `True`, the example is estimated to have a label issue. If `False`, the example is estimated to not have a label issue. @@ -194,7 +194,7 @@ A boolean column, where `True` indicates that an example is identified as an out ``outlier_score`` ~~~~~~~~~~~~~~~~~ -A numeric column with scores between 0 and 1. +A numeric column with scores between 0 and 1. A smaller value for an example indicates that it is less common or typical in the dataset, suggesting that it is more likely to be an outlier. @@ -236,12 +236,12 @@ The output will look something like this: .. testoutput:: - is_near_duplicate_issue near_duplicate_score near_duplicate_sets distance_to_nearest_neighbor - 36 True 0.066009 [11, 80] 0.003906 - 11 True 0.066009 [36] 0.003906 - 80 True 0.093245 [36] 0.005599 - 27 False 0.156720 [] 0.009751 - 72 False 0.156720 [] 0.009751 + is_near_duplicate_issue near_duplicate_score near_duplicate_sets distance_to_nearest_neighbor + 36 True 0.066009 [11, 80] 0.003906 + 11 True 0.066009 [36] 0.003906 + 80 True 0.093245 [36] 0.005599 + 27 False 0.156720 [] 0.009751 + 72 False 0.156720 [] 0.009751 ``is_near_duplicate_issue`` @@ -399,6 +399,76 @@ To detect these issues, simply specify the `image_key` argument in :py:meth:`~cl This functionality currently works only with Hugging Face datasets. You can convert other local dataset formats into a Hugging Face dataset by following `this guide `_. More information on these image-specific issues is available in the `CleanVision package `_ . +Spurious Correlations between image-specific properties and labels +------------------------------------------------------------------ + +Based on the :ref:`image properties discussed earlier `, Datalab can also look for spurious correlations between image properties and the labels in the dataset. +These are unintended relationships between irrelevant features in images and the given labels, which ML models may easily exploit during training without learning the relevant features. +Once deployed, such models would consistently fail to generalize on unseen data where these spurious correlations most likely don't hold. + +Spurious correlations may arise in the dataset due to various reasons, such as: + +- Images for certain classes might be consistently captured under specific environmental conditions. +- Preprocessing techniques applied to the data might introduce systematic differences across classes. +- Objects of different classes may be systematically photographed in particular ways. + +Spurious Correlations are checked for when Datalab is initialized for an image dataset with the `image_key` keyword argument, +after checking for :ref:`Image-specific Issues ` where the image properties are computed. + +Each image property is assigned a label uncorrelatedness score for the entire dataset. The lower the score, the more likely the property is to be spuriously correlated with the labels. +Consider reviewing the relationship between the image property and the labels if the corresponding label uncorrelatedness score is low. + +This issue type is more about the overall dataset vs. individual data points and will only be highlighted by Datalab in its report, if any such troublesome image properties are found. + +Metadata about spurious correlations is stored in the `info` attribute of the Datalab object. +It can be accessed like so: + +.. code:: + + lab.get_info("spurious_correlations")["correlations_df"] + + +The output will look something like this: + +.. testoutput:: + + property score + 0 blurry_score 0.559 + 1 dark_score 0.808 + 2 light_score 0.723 + 3 odd_size_score 0.957 + 4 odd_aspect_ratio_score 0.835 + 5 grayscale_score 0.003 # Likely to be spuriously correlated with the labels + 6 low_information_score 0.688 + + +.. warning:: + + Note that the label uncorrelatedness scores are *not* stored in the `issues` attribute of Datalab. + +``property`` +~~~~~~~~~~~~ + +A categorical column that identifies specific image-related characteristics assessed for potential spurious correlations with the class labels. Each entry in this column represents a distinct property of the images, such as blurriness, darkness, or grayscale, which may or may not be correlated with the labels. + +``score`` +~~~~~~~~~ + +A numeric column that gives the level of label uncorrelatedness for each image-specific property computed while calling `lab.find_issues()`. The score lies between 0 and 1. The lower the score for an image-property, the more correlated the image-property is with the given labels. + +.. tip:: + + This type of issue has the issue name `"spurious_correlations"`. + + Run a check for this particular kind of issue by calling :py:meth:`Datalab.find_issues() ` like so: + + .. code-block:: python + + # `lab` is a Datalab instance + lab.find_issues(..., issue_types = {"spurious_correlations": {}}) + + + Underperforming Group Issue --------------------------- diff --git a/master/_sources/tutorials/clean_learning/tabular.ipynb b/master/_sources/tutorials/clean_learning/tabular.ipynb index 6c4abfb70..b68260d38 100644 --- a/master/_sources/tutorials/clean_learning/tabular.ipynb +++ b/master/_sources/tutorials/clean_learning/tabular.ipynb @@ -120,7 +120,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/clean_learning/text.ipynb b/master/_sources/tutorials/clean_learning/text.ipynb index e86ca813f..836f9471a 100644 --- a/master/_sources/tutorials/clean_learning/text.ipynb +++ b/master/_sources/tutorials/clean_learning/text.ipynb @@ -129,7 +129,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/audio.ipynb b/master/_sources/tutorials/datalab/audio.ipynb index f46e4ba03..efa7401c2 100644 --- a/master/_sources/tutorials/datalab/audio.ipynb +++ b/master/_sources/tutorials/datalab/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index 059b3572f..c59d384e4 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index 2908897d6..e900209e7 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index 256ff2972..4106ce143 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -80,7 +80,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index 81529d474..f2d873dc7 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/workflows.ipynb b/master/_sources/tutorials/datalab/workflows.ipynb index ccd7d003e..462ca3b79 100644 --- a/master/_sources/tutorials/datalab/workflows.ipynb +++ b/master/_sources/tutorials/datalab/workflows.ipynb @@ -1450,10 +1450,10 @@ "source": [ "from IPython.display import display\n", "\n", - "# Get the correlation scores for image properties\n", - "correlation_scores = lab._correlations_df\n", - "print(\"Correlation scores for image properties:\")\n", - "display(correlation_scores)\n", + "# Get scores for label uncorrelatedness with image properties\n", + "label_uncorrelatedness_scores = lab.get_info(\"spurious_correlations\")[\"correlations_df\"]\n", + "print(\"Label uncorrelatedness scores for image properties:\")\n", + "display(label_uncorrelatedness_scores)\n", "\n", "# Get image-specific issues\n", "issue_name = \"dark\"\n", @@ -1466,19 +1466,16 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "\n", - "> **Important Note**: The `_correlations_df` attribute is an internal implementation detail of Datalab. It may change or be removed in future versions without notice. For production use or if you need stable interfaces, consider using the public methods and attributes provided by Datalab.\n", - "\n", "Interpreting the results:\n", "\n", - "1. **Correlation Scores**: The `correlation_scores` DataFrame shows scores for various image properties. Lower scores (closer to 0) indicate stronger correlations with class labels, suggesting potential spurious correlations.\n", + "1. **Label Uncorrelatedness Scores**: The `label_uncorrelatedness_scores` DataFrame shows scores for various image properties. Lower scores (closer to 0) indicate stronger correlations with class labels, suggesting potential spurious correlations.\n", "2. **Image-Specific Issues**: The `image_issues` DataFrame provides details on detected image-specific problems, including the issue type and affected samples.\n", "\n", - "In our CIFAR-10 subset example, you should see that the 'dark' property has a low score in the correlation_scores, indicating a strong correlation with one of the classes (likely the 'frog' class). This is due to our artificial darkening of these images to demonstrate the concept.\n", + "In our CIFAR-10 subset example, you should see that the 'dark' property has a low score in the label_uncorrelatedness_scores, indicating a strong correlation with one of the classes (likely the 'frog' class). This is due to our artificial darkening of these images to demonstrate the concept.\n", "\n", "For real-world datasets, pay attention to:\n", "\n", - "- Properties with notably low scores in the correlation_scores DataFrame\n", + "- Properties with notably low scores in the label_uncorrelatedness_scores DataFrame\n", "- Prevalent issues in the image_issues DataFrame\n", "\n", "These may represent unintended biases in your data collection or preprocessing steps and warrant further investigation.\n", @@ -1486,9 +1483,50 @@ "> **Note**: Using these methods provides a more programmatic and focused way to analyze the results compared to the verbose output of `lab.report()`." ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_scores_labels(lab, property=\"dark_score\"):\n", + " \"\"\"\n", + " Plots the scores of image-specific properties like 'dark_score', 'blurry_score', etc. \n", + " against labels for each instance in the dataset using 'Datalab' object.\n", + "\n", + " Parameters:\n", + " -----------\n", + " lab : 'Datalab' object\n", + " \n", + " property : str, optional\n", + " The name of the property to be plotted against the labels.\n", + " \n", + " Returns:\n", + " --------\n", + " None\n", + " This function does not return any value. It generates a plot of the specified \n", + " property against the labels.\n", + " \"\"\"\n", + " issues_copy = lab.issues.copy()\n", + " issues_copy[\"label\"] = lab.labels\n", + " issues_copy.boxplot(column=[property], by=\"label\")\n", + "\n", + "# Plotting 'dark_score' value of each instance in the dataset against class label\n", + "plot_scores_labels(lab, \"dark_score\")" + ] + }, { "cell_type": "markdown", "metadata": {}, + "source": [ + "The above plot illustrates the distribution of dark scores across class labels. In this dataset, 100 images from the `Frog` class (Class 0 in the plot) have been darkened, while 100 images from the `Truck` class (Class 1 in the plot) remain unchanged, as in the CIFAR-10 dataset. This creates a clear spurious correlation between the 'darkness' feature and the class labels: `Frog` images are dark, whereas `Truck` images are not. We can see that the `dark_score` values between the two classes are non-overlapping. This characteristic of the dataset is identified by `Datalab`." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "nbsphinx": "hidden" + }, "source": [ "### 4. (Optional) Compare with a Dataset Without Spurious Correlations\n", "\n", @@ -1498,7 +1536,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "nbsphinx": "hidden" + }, "outputs": [], "source": [ "# Load the original dataset\n", @@ -1510,8 +1550,8 @@ "original_lab.find_issues()\n", "\n", "# Compare correlation scores\n", - "original_scores = original_lab._correlations_df\n", - "print(\"Correlation scores for original dataset:\")\n", + "original_scores = original_lab.get_info(\"spurious_correlations\")[\"correlations_df\"]\n", + "print(\"Label uncorrelatedness scores for original dataset:\")\n", "display(original_scores)\n", "\n", "# Compare image-specific issues\n", @@ -1522,15 +1562,38 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "nbsphinx": "hidden" + }, "source": [ "When comparing the results:\n", "\n", - "1. Look for differences in the correlation scores, especially for the 'dark' property.\n", + "1. Look for differences in the label uncorrelatedness scores, especially for the 'dark' property.\n", "2. Compare the number and types of image-specific issues detected.\n", "\n", "You should notice that the original dataset has more balanced correlation scores and fewer (or no) issues related to darkness. This comparison highlights how spurious correlations can be detected by `Datalab`." ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "nbsphinx": "hidden" + }, + "outputs": [], + "source": [ + "# Plotting 'dark_score' value of each instance in the original dataset against class label\n", + "plot_scores_labels(original_lab, \"dark_score\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "nbsphinx": "hidden" + }, + "source": [ + "The above plot illustrates the distribution of dark scores across class labels. In this dataset, 100 images each from the classes `Frog` (Class 0 in the plot) and `Truck` (Class 1 in the plot) remain unchanged, as in the CIFAR-10 dataset. There is no apparent spurious correlation with respect to the 'darkness' feature and class labels. We can see that the `dark_score` values between the two classes are highly overlapping." + ] } ], "metadata": { diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index be8265249..635147e61 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/improving_ml_performance.ipynb b/master/_sources/tutorials/improving_ml_performance.ipynb index a1479fe19..47a1e50a1 100644 --- a/master/_sources/tutorials/improving_ml_performance.ipynb +++ b/master/_sources/tutorials/improving_ml_performance.ipynb @@ -67,7 +67,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index eed222f81..e7e3a5555 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index 494af573e..138add5f4 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index f27a2c1a0..7c4abb62d 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index 141d59f05..153e4084d 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index ac364caa8..45eff23b3 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index 6b578cffe..5d26c7f28 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -110,7 +110,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index 02af03482..2bcb0527c 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index fcf356a23..6da5356ed 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/cleanlab/datalab/guide/index.html b/master/cleanlab/datalab/guide/index.html index f3e6320c4..0f81ffb54 100644 --- a/master/cleanlab/datalab/guide/index.html +++ b/master/cleanlab/datalab/guide/index.html @@ -650,6 +650,7 @@

Image-specific Issuesthis guide. More information on these image-specific issues is available in the CleanVision package .

+
+

Spurious Correlations between image-specific properties and labels#

+

Based on the image properties discussed earlier, Datalab can also look for spurious correlations between image properties and the labels in the dataset. +These are unintended relationships between irrelevant features in images and the given labels, which ML models may easily exploit during training without learning the relevant features. +Once deployed, such models would consistently fail to generalize on unseen data where these spurious correlations most likely don’t hold.

+

Spurious correlations may arise in the dataset due to various reasons, such as:

+
    +
  • Images for certain classes might be consistently captured under specific environmental conditions.

  • +
  • Preprocessing techniques applied to the data might introduce systematic differences across classes.

  • +
  • Objects of different classes may be systematically photographed in particular ways.

  • +
+

Spurious Correlations are checked for when Datalab is initialized for an image dataset with the image_key keyword argument, +after checking for Image-specific Issues where the image properties are computed.

+

Each image property is assigned a label uncorrelatedness score for the entire dataset. The lower the score, the more likely the property is to be spuriously correlated with the labels. +Consider reviewing the relationship between the image property and the labels if the corresponding label uncorrelatedness score is low.

+

This issue type is more about the overall dataset vs. individual data points and will only be highlighted by Datalab in its report, if any such troublesome image properties are found.

+

Metadata about spurious correlations is stored in the info attribute of the Datalab object. +It can be accessed like so:

+
lab.get_info("spurious_correlations")["correlations_df"]
+
+
+

The output will look something like this:

+
                     property         score
+0                blurry_score          0.559
+1                  dark_score          0.808
+2                 light_score          0.723
+3              odd_size_score          0.957
+4      odd_aspect_ratio_score          0.835
+5             grayscale_score          0.003  # Likely to be spuriously correlated with the labels
+6       low_information_score          0.688
+
+
+
+

Warning

+

Note that the label uncorrelatedness scores are not stored in the issues attribute of Datalab.

+
+
+

property#

+

A categorical column that identifies specific image-related characteristics assessed for potential spurious correlations with the class labels. Each entry in this column represents a distinct property of the images, such as blurriness, darkness, or grayscale, which may or may not be correlated with the labels.

+
+
+

score#

+

A numeric column that gives the level of label uncorrelatedness for each image-specific property computed while calling lab.find_issues(). The score lies between 0 and 1. The lower the score for an image-property, the more correlated the image-property is with the given labels.

+
+

Tip

+

This type of issue has the issue name "spurious_correlations".

+

Run a check for this particular kind of issue by calling Datalab.find_issues() like so:

+
# `lab` is a Datalab instance
+lab.find_issues(..., issue_types = {"spurious_correlations": {}})
+
+
+
+
+

Underperforming Group Issue#

An underperforming group refers to a cluster of similar examples (i.e. a slice) in the dataset for which the ML model predictions are poor. The examples in this underperforming group may have noisy labels or feature values, or the trained ML model may not have learned how to properly handle them (consider collecting more data from this subpopulation or up-weighting the existing data from this group).

@@ -1554,6 +1608,11 @@

Cleanlab Studio (Easy Mode)Image-specific Issues +
  • Spurious Correlations between image-specific properties and labels +
  • Underperforming Group Issue
    • is_underperforming_group_issue
    • underperforming_group_score
    • diff --git a/master/objects.inv b/master/objects.inv index eef5aeabda3ad4c644ebe4c21175a15df5f48bc1..0a12d8188cbdd4cbaeb194ad561e1488afdcda61 100644 GIT binary patch delta 28768 zcmV)tK$pL!t^(w)0CcaZ`(&i)pRlT~#D`g+s!iKq(DS z;BbM;uLzMzs~ffB+9r@ow@#pJ-*p^_aLZW)X9A0Wvk1B@f|dn)<74Q^^Q7&1`{;F$ zEnLPKfB3=LHVP2E-TP+Wh!o-PNSNs6bB#R4`*ZhO@D9G2kM|=`e=bLVMVJxgEN2F} z0B%N@G2ZfE#?WY_da_A4(=>drw>=IM?~<@UYgEAd&&sTOWN$uP1|RFcM&a&INsoBZ zCv?zC9k5UMj{VIZxk0OOP?dv5A{HzEZs(9>tK=|N56Z_*!>+JjiW zX%{M-_m8{RMd%Ooe}A;mrJ$;1Sp+(?ss@JZ5MF4cVdQ;wqlHR*|BfV}{-zW5=zsIgFsG#1}yF^}e zo~Ns~iWqhEA#xWMQ3-VG>&*@`s1$OhgVzP*)gFQ_fjd1D9K{cDLjFjRCq+9D+7vES zrBA9+^Ep@Xe?72fH=mSCx>d<*Q*DLTX|HlB$7*|Rxq=2d&3AyzndW}RS1PsAAlsI7 ztCIgVtUcz+sT`~AzYXgT!2@JUnh#|q=^*GUs>W6&0?zZb>4w;AvNp%);LYG6xQW`T zOTxdEZkPE9q4`6gXkW;`LKHj8;| zg%4mPY+)V0eQMtRWY(9w_oD;#AwvWINV z!LOkXf8f*D_%c3y7#PdhvkY??MTTfhsbdhOb++w9tOcUD)?UZUGA|x=mi09WUDESE z6d^{cv9tV$Y8u1z&r(_4fxBYl)oKRWqaB(}EvvLCCtrpu&|N~4D$Zf22F#SuuNBl? zLMtnLym)tc`|0D~15-j(D@=}_QWzr}7(ywGf2Hcj-a7sRYIhu zfOlw=(rC-+n0~@9I*5}^mKUXeuzwp1sftCtv$qUOpTx8F8c!EFwZ!<-Mq1>)Ed=gl zvjJo>13R(TuoNztY1xupWU}o=9WHwPo)5ZukL9WJnSM)8OD5InRQ4KP^Ou-?-I1J==|dCo6lFDqEEkm zytw`K=IT7~4{>a@)m$t+;(8LL^vV3V>c-ePoV9LrTuB?|$5l5+KKb~WbdGPbVPtSD z?wBj171AT`W2_juOBCIs$D^;ER#M*pe@9qP_}Hrld#aTqn^d;(z4j@B15`;zOt0LJ zt9q1Pr95QC483vbhVOAz#_@L(Z$0EFJI4bm7CBDJ$0$V)8tFg|P%(R=dPlITs%`>% zcXsXZH4e4bDRV6%zYPl(^sWCi6hghlG*poMxB1IKl((ahfjp4!xykly7TcZXe{}@r zbrH<=E2?lXFecne?9r!qF0lPQ;Q4IJF;%)vcZx&_KWPA*@AbEJ@ z=qf`dqi6odP&HN&Pk*(c8|PGJe|ZcxKi2Wc$53=cqmZNcr9bxV%#`5sXfSO!A<*Moi})P(u*)CfM(iohQ1e;k9qeK^#o@r~l4+MJJ~B5cBL zKC3`8?xw->D9nDeP2WqaKc)unCiv#F3XG#~M%+y+MKc1{5IeEAF}O+OOFMgqgj~pV zvDFR?wdph18y*5Xd_e}5HpzB7%2`n!orb&7lk-mjXpvy~8rQ6TmPpm8{gk<&0#I`t&u0I+iN zVifd$?PE@@;F|dKe^o-GK+^#I0Zir~wB*iyX7MByW{0q>bp*+wVNJqD3cL`mwaWuGNjK3%hc-11A*wPov9e~!j@i%Fl18AK;kj*< zmIe!u-hU$2ufDPxY8Yiw$@mS>;#*gF*u+EUsTs{ssUF)StBvoVqxkA0$JssHf5c|zsTt$2tto(IU1RLSXSfRg>&1Y5ZQauW6*`$(i9y{-t?d3JeuZWM7GtPzENmSObZcOfsGkzI1DV%4p6AxQCUH9@ZU-{&v5X6j#)AWn1GX_W$M)2Z zovAQ8N~mouqhdY`tRMYS=6Fa`=HMBT)9+}hSSj-$?U4r}9+AO{zJM0oy@K|v(v9F0t^8INL=_U1H$ z)s8?_sl_opO3fl)TL!H;C~!MylR>Cz^}>wn8mte)N`B4MTEZ6B%aJ*aVpmg~W;f^I`?-VueUN@_9ieh%KZDrR1fv7l(l#RH z)Sw1`u_zU8hcPWa0*hi7hMa$ZbP#cJWJR-B(}m+C9iA=FU4bx8^2|2p-X13!FK&Oelj%wOqeJmTu9lKo=G@!k zWRi1FCXR9sZHf8aXCdwpeND3#o=aq;t>mXlh_rpjEPjfZvf;f+(OD zu7|3M_6J8__t$L0s~$AWa29$`H=*w>n`Qp|R|j1i8px~w;7W~?ofts7H-W2`Id zU7i{1%4Gk?6yO-^>bn^J{0)1@I^5arH_cf&`a4mE{ExSyEH|xYuPy!UEE|x2qpdgm zeN-3rSW8DaDcNtI%~(Z78*9c0$5>r9n;SD$l;*aF0qjg z#v3qJD3(>HxkJ(y)n%pFilQ0jud)>?cBokA#WuZkSo-HqBepFdq)5|h`azk2f@7gx8zK~TSgO6T9| zN+)H$w+feNFgxORP|-GjCmIe{xta$YtWds#O8idUubDir@5kwKb3)>96>5B7!V#W} zD(-y==@;h}AxF_ZSFp`jD2<4RwyR34bJU?rNDno1e$oORX;$5`^e^^@xuD8u@8Pc- zhGszH-30Zv^}MENP%UWvn+A%`Y!?b?O6cDr4{@51;%H{8G_W>*#Gb4Jk1Q|K7-P5y zyDRbqp2IkRdIqQ;2?aEu>dGN09E z9^-rZ8jbOC9`l)hY|b&hr>p)LFJUmBrRE;vd&-)P@dHf!SgpPHVUWki!d&g8oDWLr zc@(H;G|-%5y;N8I(SDrGoVJ^9#Fy)=JLZpanbUAHjr($awMPD77IWHb#?fD{u=e;r z&PLC6lNSIxBo;Q(1X2!lvmHR4z&fYkNgk*64_p2t)m#^UqW@99#V1HI&HQ7{T)Cuc zwdmn-z1?Ud4MiLiBIkO~p|iHWTDqERz$vHE${644bVFL6c0%}<3g;1P(jxFb+UQeE zKLJyPGOiRjiK1nmm2r~cDDt9B7eSZ6p`N72CMDYXQ?muoEbmas1PBA+7vET)z7c4t*QW_P2o&c-&Okl^VO$Idi*)i zEAC7~-!=L1;@!s!GKMM+xNUJI4b9w7N+t1tF`8O`)ItgBKl4B247!GaAL+&K`~ekd zyxXx`BV-gBz2#LyX)seRsVepc#c8=wxW_asY>&mncU8ear#Ma7t&6DU0hj!YgdAa~ zQC3y>BF^sXnur#UoYNmwoF=82k;gge6(7(-7E2=ERKy)3-S0!_+YS{8guO|BT_)?e zh?ZG@Hqs{t2xu2={!{{JjVhKoY0E63(ifS&Aj+H-%Q;df^P$Sw^>v_7#+eGROa`k& zespQs>lAjUUA$UFtoL}*PXN#>?oh|wE`9W+9_6iE(w$O^b(+WJ^PfEF)v(to>`=RE zy&ld1W33$Lu2I&VYP1LAY6lm3v!wK-VjsnSfX1Q9nS~deV@xRxRjIqiO?F0b5;%;?hZ5@}xC!bs>Dxw(BxK()<7x5OAUTe0+(57&!EUp$_ zSLMOvQ5V_OZ zyS|#5`p~gJcL_~|w}_Ybusn!1d4BIn-vKalQXh8kxuEHz7|?i7nJ)}ysre3;F{MW% z>~~Fw}w2C2**z@5r5I(9TD^u8dX)mq|8uN5odmPaOZFoaDC|(X$DObF zkFr)R=uV?=-gcwDDegvnbGaM!PgLa8|M8?$%U`Rsnu5vdF9u=*75V>a5d8}ha^Vf6 zP-HxPQz9=>yxfppt9%!urC^san!nXBhU&d76t8}-$a0z#D_}T@3RN$ExGR|&!inJew#P->W-$ahNEs~ub84X;}eNhg{iWhu7M<5p>L`a6e~>UCh_-4 z-cQ7z^?Hwdv-^?i)u>f(=L$AI-)Nb%x#-} zWE*0iHo`kH7({U~pP$_#nh_f=2aIR11qae6aj!QVeOKGOw9uJQ1Wdoy2;9lb_k5qGUStwkiXqI=cE`ONHv${2kW_fSw z(l9_gkJ22=h|0YIFj8BITj)(8bPD^>vW$qI7s34#giG%VchL;#{Fq@D{|oE;U)ZDn zMR|+;XvT(rAjh@l;MYj=o5#j5-b_*wuF-4(m_C{zom(@|g(3aLe?Vp*%ZSRo0q{LN zxg4#MyQIW3Sz-Xxj@+$naI)Q{DD!HHTZ(b5sCiS`lcHKF_H8wuO1M8o=F0|piTJIp zFqxKrn$VjiRMYj_8(}1Q|0s27^U&1y87b`_R5bw)i6Qj%K&;$I9S_Y@In%YT3;qneOkiW5+e^yjFI@# zJDF+alxVM<5`QZvgJ&wN4WRaDg(9^t!)QEz2ViZG@n-=hsC*ef`^gJyGpIa(p+xJ~ zB(sLul%B~@Blc^RIs1#sV;V}deodnH=!7GyOg==RO76=xGh4;j9{w$1{$Pi-RkWV( z&|~7?TJtS()gJj!r1owY-N!%NnMdI%5G@|FnMx;fyL)p@Byrc~&(4kR!z=bynSO>vh18op z=8aez2dn+ZskI+*u{MUvlP*fM-b|8z&tiwchhK&X{AsNIAdCaON1un8BJ*Yg)okAO z1{lfiJxb$Mb-&3zdYY)F`Pe7(W&_11XzcYLevoF2#FyURX4roC(Z&EKxI)^j%2 zs!u&`GfAgz2F0gtBq~ijcO!#(ZVdIDKt0!idT9*xl0dywhZ;@M*C}o&kp_T&QX)RQ zi?fI(a!c09lKMrex&LIOGy|aIgC_hy50RB#C3u&{j~Y3jhvYT~H6`?CmA&NpGZ|(d z*MiocdDM#mEgk(Gt?!A3`tb&{5-7#Xg30XitLe@m&`n&ZEz z_8x)10*}cOhQdV^hWEwd;%*y%f1?Sa$q#uJZR4^?zPS*60>P4ALv5b@04;MQHp=fw{gXQ5mShZ}JNQ>+l42G4Wn{vCn^2t(8nA79 zs7s#6O41iC@?uLLkXuD$;4kvsqp8expf}F*svOXn`nKbqVhb#OWPc6tP<4 z>QL}@CH|&{Bdyp@A-Kg{l_*NG2U0x=M&q;Hn1mK!#+0tjAo7mZMZN_@RAA)Q9>b{i zEL>Y?hsjEK-sUm@X-V&Y+%S)Rjqs?U@S}U>X0CFp`kte*ee18Kud03{vzu7fL^V~` z)6>|tO3Nh9vb>DTyioVZq;%{h4apZBWJ$eAi<0F6D$3}A_ya4_1WD!Ks9Vrj2Ztg! zto<>{aD{n%fUZ@Me>;t%yI|sf#b$h@#QD06mIXXR zt+-^eH`p+=H3uK2qM@1vWCbnJb{FAgJp6RJJ1faiZHT?t2G*}-Zxm#$*MH9&1$V&1 zhr!zVm~$+bquLN_*=Eoal2Mo&Lk~vF1!Chd-3KX@J+BT?>voAhD+3PIbf;W=cUPc0 zWv^;aJ|&PhEr?!!abLPlC6RTjv?PnH9-TKc?8rQrEK)e2T5j?cp2r+}sFw6@%|ksX zHk#8PJlf<8py6lHVUg+ba7d$vmb;`S1MMPE^Jw<*;(E?rvc?B@FI z<@v?+*+ul_;_}_EpDxa$i|bDxZ$A7zaLv%OMd>~dF6W%*TTClz&xR2;nzwOrH+Y}G zi-oRlKE8i*b@{(YGkE{zNgDo+VO$qVX$F4GOr9fCwTftXpN>KoN1MWz(%x6{@0(vVR`Pu!zuM2SlJ9Gzw~`;E_H39sAcp3& zObcp9?%6hU6bCP1?m=}=;|WPT@N{ch*m>M~b)sv31dX!lDvs}zh{X*x)Bw=k6VW^U zBGUA?U{tnzCO7!RV$cGKgSpAeD66(wClLB_TEH1ox-@|AsV_iim3FBn<9JF6 zcvDk=&?@axO7CgU;V91F%;YLrPEUxI_L@R>!)A7?MPHM06QOT0DYU9~ zDO_4b5k@73v#4o29ia4UR|Waz0`gfm^q1LxEX~l&$edfDKw#*02;p_&djK4UwWN1# zpcPujWG0X9z1rja;_aKySD&K41$xC@Yr7_9tsrk=nS*h?>fFaNA=1!)&~w{IF;!a! zLaj${QCTEQE%%9&uyry0w<5w=t?^PTv`khgs`~`{)kHF5EJHfyCP39PCI5}HS&XoM zhh|La&JY{&Cz;F1;*92ISXO1eUVAdbub1zBjm|IMUtHf_-dsm#pFiEaeH$3kxidkL zf90tOylVgP=1X*T^ZELdy5fBjRh_3tFpK7{%v_t1?a0j_cP&X@&DYCRj>pq5fKX;yd!c2_5lJ zQRD^Ik-~(%K8d-GWf5l>F3$*SG~#Ee?IbBGI*wsTH>L7m!{ddtbem*0($>oS9`!R+ zsc(LaP}4>}{9RubNfnL|Eb}xk$a0+&RX9{Np@$W;1+8x*v2;R*u~Hw~hS;}%o#?Z% zhcHqH*qG9{dA9LxH=I4$k7a616C&^SK*b$WJ9_8VCIYT0p>Nv|5HeB1OnHy8S*_DW zHYYW((BK3;OlNBv6G*+;8a}A_2(%pa2H;;~oFw&0KapOGvK4hKl8kg@1_C%9Y%l*K`phY4a^vj9}QZDWkY3;zxU- z_gN~JG*dw-9jcB3L)lNq%NYrei|B!#oUj+WWi?sCL{xZIWeZz4yDC~gw-&d@PN|fU z*f1WEHFv#hS+4Cx-)E^@(nJNahF+qm{F=AHTl=v^%2cDQp(2pwLoF|ViHZgSHP1bp&^QaJq`~-MM_Dmb$*U~+qe4!F@3B-aX`(_xIzH(& zd9hCOuhccd$lg1XbJZzqstdd};Z%(dL&b6?!b4MZ+?FIPl}nnauq(h>;weYRdvFK8VE>HEMCR!9|n?KY|lAf^~ z%g(Q^$q-+?;zk`xqk>+Ug{|x|FJlLu)EIAl5+~Z>YU^GtV5(8pL=n7=i!!Po z0fM<|4G$$->oUYwuegy$)dJq21s?WV2)w3?SV-$=iP7bzQpiGo=5NuXD}n!K^cYN* zFcFnLvIy~}h_tN4-uvtGQ!8d7d6nT!wO*&lhc7PhnwsheutSt8C!v) zb&{se*V)quri7#V4sI<#33a8$*$nL!@Wc?~ul&hM(;bNR?`hr=s|y8q;%R!q8w~d~ zFYd9XI3@`CB#tzH&GL*sKg?2+`_Qz9pikmRQ+{wr>`t!~o=R{oZ&VlGB>!froKIN%V)`c1n%iqOh6^xy0Be2#daiJT3!P2>6HDAs0 z4ppLuu3}$`aqdP`E|kRn+9cL*lh|pS#MO2i7mw~0<9s#C+o^=n9~H}3=un^AmZ?r* zSDH8;*l)XkjCBc|Y2{^{zm@Vgq;saK`(gifpScNTLFdkVByF|y((b@64s-NI@8wqSyBH9ope z3hqRI00%sL8cry&L2+7cq6x>%x#fl>aKXfMxMSthnnj%5 z*L(2M;!zZVPaLxuR6!J{+_cRq9qh-1urr-LoX(KXF0>m>Gn|ypGVI@)h$^jum!>cN zTFotjv{twlw4TkgH+4m12|jv0*Ne5r#Bj%dO4pX^y@(N6Sxg&Dqx($m22W7-v&44` z>51^9EfaRjSO_=5)J|-e3XBX#38~%SUs_lyorjjyd3VVzhH-Grh4+ zk(Hhu)dwFSv9OgUP_OUgi{Bw-*9w*7KT4j+5QW?U8R6g7a=(zSyD=t`35q_6qQ;|t zliH{jLo?JK(bU8=K)`a+^}Z?LJYk>0=950~J_{X5CMFbldD%QN$a$m<(ISxPp(;_d zh*xR8j28K~@o8gNBy%KFLYMl($~n#Rd$gLv268kTVwbkSU*p{zR_NoHk-5-Z(|0mg zecDsfqjRA=Ul_4>cKxU=fzYOKq3SMw&r_l4PzNd54nN6iuJJIEDWQ`7eUD0tp|7kO z+o?H;$8>cjyqbh18s3Wuk3o#oP+e*PS4&|hliEA^C!+aKi)2yhI0K@L_Mo;5+*xNC zr^_m(DSqm81W$a9J(*?<(TdukQH1vsXJ{;gaOR}$Y(dWiu;-x#lPhNZvbBtVBDgC? zZmov%0v?E7Ko4d~?~~Ox?9oyKfHuVLEW$tVOP$(tvZgtP(2ObF8Df{_^$V>tj4eZG z#*|(Ru{XhC|K^ZjTGG2S%|n7=1@KQ_-J|8NQC3yG@xuw@qBperUf|?A1{2R0NHhA^ zKj!cpiAr~r=IpP3y{XEZ^|`!%n++8)mT=_$fTon)3j?FYtfU=1a$z8I|LBB5VRQLi z%C0Q;n9O_2wb7RuMjvDteurTqb~zZT++VBHUuayq%y;AAa>@EzNJP3AVlYMOQfOZ9oq@mSD*m~!L%G|QW) z;7D>sfpz4}An7U0m@BfbDDINXz9~(z)F)BX1*3E=wnb}ACK&1xOly%BE8@f}?9vTM zEnzTKKqggx&>acV4aekUA-DqFK^kwB&9%LvZ0v4+o#6VU{ZR)%B%8vb_YTxFU`2Zx zoX}qLOLq-v?5T0B%RrWa4VEv&6J0EI*BW)+%E4GVbOgW|a-r~8(UrWD9W@>BDseo#)WPf!# zy!4kuKe}YvAvB49COA3=x&R$Qt@t_thD?z`T*b7>|z1k zQ|Lot=yKO9uAtrMsq;aphfbV#2&MvJlEVDC`}X%q-cQ7z^?-V$3aAqU$bMPb_KcL{ zKszuQJLFOr0T|HOD5`u;R$s-j^RX(WC)MhYXM0TbRGDUfH`c1A&w)yd51auVVm)B* z=6D>-)}T8$%1=`$BWP3DD_TD_;zh?EbDhHWn(?R97muTt_DoglbJr@ZqTFaF8b2vB ztdknky-p;1KY7}F8KaVWF%vj#mBgdlQOCels#W5YBuzibp?q9vR7Y2(sa0b0Ec4XK#uz|4xTW zS$(DMJ>vIGsI1Ojr4>*6gQH{ve&H0B<&E{-p+ydkeI_ z9xdkC1bs9kDjg#zb?$NhbXs>kkh*gZ_!xp0Q8NsG@*SDPab6Wm6s+=PB}7kJuVJ}C z%lq(=lnP-NGF<0H7^i6nH(qdKtBwo&@K0vSMENHF0OZ1)b6o)1w$ahLHJrP>8m~1^HJ1FB*spHgUEh?VBYbLPe1m zI3z!X^u5He$QKnZLzY@P{F;=T5MH8v3}ugY37~ddUz`NLQU(Fz%@_par+_jD7z6%D zPXG)8${?tp>uU8&w!0#KKtkJpNaAoCXOCfjUT#nkmT0-5Z)y)~qr>CXNpQ)E3w?+b z51@EJiwAA-j-(kbp-(pLeNdc!!RG{%{nm6Ak?|i@vb-msi^0)IEb^btKmYXOHo1ew znBDPzq3Gdse^ir}qJ!M8`B$@UrzoKfY%u83PiN{%gOV9 zVazAYX$a%uj`n=oo*v>Ni5H}$W$~5_(xlnl_3Lp^It_+rv}911q%E;78D#VkT~=~L z{B@Pl%R&@}&L2iXPqBH+zf&1mKuA%*P5w13^N{}v|Ew!3JPrRs{x8&2NNOs4PX2hV zDzGkFr)`GM-X?~Yk-n$DsTwpxUqi-!MHy5ixkg_D{_hbG_CEMZ7pPD6k^S8QmK7ZS zi&M-TvL>1OkZUtho(>1yL&TqI3Kg&?oqhhWA{}lIE-b`VHq?mgAPk&o4z~=E8H%^U=o3_HTN%NUbvc- z2;a|>e2H&P3bo4+G9y7D?wi&wxuPboPPh+D{KuTkd7>-KX2N0rT1_W{@JR!K_^Y%y zsZ=Q5ajn@r+x4s!_3X7d>f_^fXyb*MGYw7AR_ikf-u_S;p4WJEC=Jt zPIjNjzoeE{wPpkDY)Y$T^E;ola*LDM8m=~$bnbx?p)`TIg6QIeHpEk$*H{@ktwEVK zgSv_WWL8-rGWemfSw%X3Qt$GTJ&)Ci3219e1UPpp0GZSn!?8)Nk`4b2!%mPw&5kd< z%mR&-Ug}K&FP%*Rt%iXgjV}Nj^SS zcZ9lQK*R zL*lJDUN1@1CwOmv?eWL}O1K1!i;KmO%rvho)<6=?U#Tp8UTH3UWOA?S5rs1iVP48u zGio+N=(xwJHI!&ZtMF3fO-HNnT;$D1D>vgC|8Eqp9^!0?R%)Z{9u*sK*{`pIH~i<| zYhK*1)BGz2bAz&FyOW?U&68z;Al?eCS!?`~iuvShh#UKVK%09yHM9*#%71ti4HxV}M}l%Yfznm=^mWh@1T8_c zyMv82enB*Ujvs_x!l^=*FwTj-1mm`Yao)q|YWsp{ONzJsvmOX}absOyLU*N}I9Z92 z+zJ$(7U4F8Xqoo6}w1%R0WYSQY_}N;j zU5T2i{mufA(5m?tY$eyOa%rpL^op3CDcEKU&ps&vbCH zIV7yO{BzZIdWwnb!AS^VO=#1G_S7URy&-=qe7YnqDZWp3@Dp*liLv7(#m`LjC0J+L zSa7g^YrsfD#2Yk(LF>LUM+2vu_K6YBP9}RjjA+bI(3}3#%St>g86uCaUXj zBnUiZ4ZfXqu7tt2wd#SWUfQ+YzHT4A=}Hr~9hzU}fQreN6bPTRWTx?=RkceYCW{oqFGJ#9OPRs1 zLG$ZKv}I68%OL!e*dAl?H8jmzujco#qGLhqOPW4kHOM1CyYymOG3Rt#L}iHoutp_+ zsV%ne&NHmi!E+ts4c$x25?rc|(1J#U_1gi~Z#nDt*O#}S#GOe>K$U6;=*Zk57#o;H z-KI7uHFTNUYMk6UoRXEy*2LA=#RU@QWqLIKp8RjRA}(c)ari)NvQioj1?dU%4+G5q zHo%-X1e`>i`sw+9MiTT%rZgmTv{oR0oo!;%9Rn1i?E=yDyiS)Qh-WSkiMw#76TD|z z>x@s(@|iNw&jT@iwdq9A`{#jZK4T%dw~2khUIVDjw( zTEu9(Kom*7T|nmrt?dHynPlL;#;DkEZzFu)yTLIIqq8X_AYF-MR}-5&9lZR1tLSCv zx0Wk81M;)zqA9i^Bj-#I#?l`XMd8m8=*w`^CFFl9qCO<_965%a&3lwShUgm|zW8Mu zl_NM3k$%(Q3S|Q*8?drLU6%Ehp(8Wn%3$<>3OcfbEzCsk^JoQSU+M=W)Wjn5WnPrJ zf^aGd&Hk+fM#dVte(N`H-M;pJ+cYyO8We$5Ue;^)N_~(@T;{vBkq|JmndG-AR#aM2 zplxJC>ea-YGj)xjTTl$4$}b1(F@Dm-dZsQb>_bUtmB5v*B=idpu9?Jxum9iw^Ypsf zq9R%Tct%>m9b|?k>*r;jR@)3eo16sQTuP9M?)LPiTwarF2vS*{+&_?i%Q)Y~1F2@; z-Hije6<@-dC1Xd`$vOw9!o^vk{-pwcr-iz*%N79QbpbLEWqcr7wgXXE4@6pPgN}}})q!|#Kt2NY zfX5aN{)SWIdew6HyO>6QPId=;*v$@A-0ZG6dX9ES4sBQ4>BSDINHc_1r>}B!N)88B z*%4*c#jt~G9D8zk@&KG%+}Ib^!;KAz$Vyi=+tQqS6DcpJk@o2s4#opp$yUV9C3&rGcwhb$x?M}>q-UO z-nHCr8*X*Sehz1UZrFFy=bP_!$5#|sSdH)Pa_I})%*W!MnILd87mFKYmICWc9|{ux z9oUVD3sOLHEi_l`4S`<~*9PNvF-NkUpGGM!rU;J4-L$R4$NtL@wg?VgBBwU z8p7bilmg1n z{Tg^3UNBZ-Wa>A@>hyKMJ_cf>iG5U&ldR^R<~w#??ip!F6)qv=-NtAr24*)6vonDi zwJ2HUwVwn2xtT2VrF}?n#m*r0M>I9pbX5A^rkHnswP}j)4V%OMt*UllzyjeaEnTSu z96xf7LwZ2H@G^?RHz5h?LSwSrLHhDGu?3pV<(4uL;{&uM(VrEig4cT!rncFX^8(^e z4Uc-LegQ$J`d6I^g^ENPJ{g`%yQ;nHuo3FB`Cw3qJ5)eSif6(klHZ^URDdOlQUy9%sgv17k?9I%S#WCl!7x{ttvPoghdZ;||}F?$kr$qEw1tRI<$9eB8e=Vi^4T2|`d z5|Qgt%%Z0Lt*Ankt;o2+Iw64F6?wJ8Hho`zROWM!`#XWVOs!t|fR)!C4PH5)RbMI0 zs;}J4sssx2oF`2bck#$NfRU3!7~a+l&s&DHH(WM5y|+AnN)xbMJhHBFsqD=B^p03TaVzxM0=B3v{)4(?U?AhGzoAhYmy?PryM-#A<%QU6yPFB6y zNC{mYMA6(c>Pw}@bRaULuu(LiMY8Sykk(!YYs?fF;0FO1E_<@>$V!$+0WYB*?ZCX)=`>JqXhPKOKFR7-Q%s<65GYSpFSLPQ zc#R_^tC!jmz4YOvB&%22g1mB5C%5l;`!SZa=j>{~5Z1E*Kah=F`4)YR*P0M$l&7*u=cKt4PM09vn@ zp^QU`;SNVb9Mr_L{V`%F@JqmnYiDt~2UTKk?7ha6^4_ShaPBMI>EvOjlZSODub0n; z1HwA~V|?&|0(8WA`{qBTgk%+${kdcZ&L9V4hQGq@OU^uUc#sIDwZBe(@h9syB{sAe zJFgbQy-6qrC)lWW-xQNeO8zw|22pcZRd{y>hO%V;q&m#=i=?Ui`uv|Am9w9^rrb{lJy!D@VXIyZHrFQFtpGk zh0rJ;FeF`tJQ*}3PMd#!7IvOV(J_VAHfo01XR&S&1NBZ?MT-upfsALWEI^K!uCi_DA(_Q>n1Mw92sYA->jpswO=u< z&lgojP>|1`vGB|)PxRF|B4hGGL(VX4frPS`TzNoLQD#+URBm1vg2S>0VpjnxJR(|AJtfs@`dd+|LYH4~<}il6XhkZWhE z?Qtbk0Z;|wQ~^*0I1eb*uv!Vu{`I&cI1mg3Oy|)N? zNjmRtyTd(a!i2#cWmbi4Wny zCm6wR$pF}0g^$ZP^gxJ_>_cyZ47~-SA?7JNfv$M>e_YB_b{<`F{lEQLdhvfk#uq1S z7n-)IH5mY7p7|ZlFr{eQ7IYfq2{Xlv4dlkSCTC+zXl zfIY+-p)$rPoQ*CwTR0z0M6H)j=BD{+z%+V)&_4}WNo*g~QavusvQ5)qKX*G$&fOBU za?x9U?)H{J=0A74NY4Eiv@-4&zqF^=0A+zn8hYr|#gb2K@Khz7m4}@KccA6UK$1*%P3XWMeT3%!L!{=YDDSz%i4bV-^DB zDU-KjP!@%0{uMeN(}$m_n8Sc3!sytQ@$ctglO1G14G-`bpTio^Pn9cw%14uHWI-7h zJ>7LAogMs>`b=c_^T}yQ9RHtBUPu!#lf`5o0@FZ~=42iMFJF@eWmkXy+&WibobXdL zW>2)sl_dUL(;X-Q_%8?0r0CCuZ|JEWh4fmtQwtgh8>uvm=CmC5?B$$Y> zsHogTJJ!3wT!=s40{Wj8zW+hZB4p%yYZ4t> zypY*~yKE6vH)^+@;OHcc4U^hhj=VxMVUrg!nNO8M z(i8mkPCa$+*nQnUL+$~*lLTib1Ihk!lPzZ(0yCSFN@peluYQwqXSD*$OOq*RL=sdS zJ4ORPhVZIav#f#h+w_^{lYeL*0wn5_plCvWu!+%jk+xTbI)>tJ!f&gzOoZbWBhTVZ z)Z#CYh|>_UvG^~Lu(M_&Gb4YCzGf1%O#0Rtec?=a*-ZMVSo@OMg#zhuhtj=VA#ElA~n0@brh%uet2d{cT@|!{Cvp43 zJq;}jyp_@O9|Q5nNlDmEJmLD=Nw*l?g!rqDY`>~;WLM>cyK%i@bg$yClkyWUV#hBL zw=J>f9M)079T~PW*%UJIYO_qsOP9DUGod5)oYOi;*)Z$(S;@oCRB-0^cXx3WJVYrO z%Yy=9u(zEqnk&b&7qEWT-*}ZeW$~JjZ1NR5+Tmfgn#lh*uFB*ScY82XPu|gS17<); zO2{dliMPj7S^)76O>~Q1^`Vm!cPwa=QBu!82r`msL@7=?{;f1o3fom6kTWvpjJ7uQE!Rf?GVUGix{fUHv z6Q;NrUlQVUM0B=mze$pj_hzxIy$Or7zXralq}w6sQZn6Huogr2{Y>H31Kysn^sJ!R=F#CngsN8jVT#w_hZq=E8 zyyd#Q8{z`t@^oVE9*~TMkt@s&IJP}YOR$>(CiHhWR6|>H^Ls}uzEGH$aqCiarsdBl z@Yj?1x!dMoEzJb~_$e>Q#Lse3sIwovtZfN=yO% zL+s*Fs$teJ*{vVz+J>&bRcKS(D%j@WGn&7;AIsK}r7Kbh)+{Er5WY z|EsfQfqGCa^bBlGAZpY$+Gtti7)K9rI(AG%TAofcEVT##-mqQeTehn_@Z1V-JHP{; zS4viU4=N3b#&flRE!6U(ux>er27c}M)!W~(9q24w-M;W1on4IXXd>3> z7=Nea@L7vnw2et;U6Oya<)v2Jhjtj<-;;L!$i76s)05`FMmO#*EGv~2I%OwMN12_n zlcW2g`?k!4$Tso%eVM()>LpUw`8mFB64F~@_8!BQJ~&eE%0u#hG=7^+S^P6Cw!Cye zO9$`{V_iCEOV?NGCKQrxk7M4~LXlu{Xxvvzx*1+~|Z9yz0;FKJA2zx?$^m>8wK55{ZP268X-sSN=B4L&)!t?*@Bd znct&K>lmMuVt7`6`2@xLM=PFwLf^_~(&jZRki$7

      1>Fnh||1=A2;#J$lsDG}B^`VJj-C^&eM!;nFA*~vYVdq&{ zhdkk$DVaOy!;r#k`ZX_Bh8EDrq3SneK}$x~a4nfQeFK?)qVD_0*=2>t548_#{HqT4 z{R8f@!u!YEN3`4KWGT!X9BNCR--0#p+F%B4`MnxnD8~J(pe+{AVoiOiw$i!<$YyGN z4Q|J{)gNVZ|DVXDaECHP(|-h*Rgp05jI)90@xZ0=GYr^#y(Ar?nnS=>h>Anw6wUG&eXyv1fv4Dk}D*24tHd zjf&C>`Rz{Y2YDu;s8syo^?jBFcSXG0Xetgj>-qig`|IoQ9c2L`)O@e61NtKcWB2Nz zc009yIC#N+N*Mm%i1e1_J$*dBf8QUP8XeJeF8-?vC}?G@%$x}eNLilbkOi2M?SdE( zTspd~KXDspxDD`AJS@#y!<3yksITFip47*6q}cU6oL0n)c+p9+syhaYgxQLCO_*L@ zp7Y1<$*LOGS^FaLV*H)^fEE))T%!`=q;&Uxh`32jR?&5gH+0W2OK_<=MA5@j?SXe- z%@fFS*0dG8<*eUdU*3KaPxrkYkflS=%xoaM@*(--Ijw(s(#+385t_q=hE9cfk{g#j zQ}j)_4M5rb{dj(_f<316trTnhY67q$RDbK<|Ji`k-b}6G=+~foKqB*9??~&id!%)L z&eO9@8dVd!e0-Dq43Fp5W8&1!fZ@UMW0f`ebKlfl2zT;(lOVVL9Z*YtR-o=ws9-5c z77&6Oe7;N9Q+oj-)W;Iex==R^YT%R_$oPOD=~R>Mx$YYJ#`&#gMC$`WiR=_IXviX(gs*vCJ; zI0>G@i+DMyxMu->&t17g_QZH`53QAlPnHV`V4SWaewoiRL;9Sf0SCvxn|c1vB7dfh*ouI^}mG*@|z z0d|4C+6UQ3$&)P456MFoS;eX@XA&%ez^!ibe1|L+d3bpEoh;Sd0a0j;I5)Xa^-YH^ zN!4keR%_#JEPbIfzh{XlB>|PofM%D2^3?uz66!tzV~~Te0)KC7Hp7TzC4<8PKQoDv z0ben!Ze@BiS>+oAUD^+0>N*~Ow>fz|)FW;#)jwE$V)(@ScGJ)(z%g3nbrDU&i}_{M ze+IG5L^_Cb6e5+ySsB0fAoq=A{OyNgKBA4pha{-`|H#S5-I|%l6#_~<>v5o?hkGwG zEiFX7x_LpPa>oo*8rpoLdumbnuL$06L910p(bi2~_oT0nr1}T&c+CcXBYI^hZym`a zq}6({k6O?!9xGsS4D+}=0=Ku3VI3@wz|Ucof%jj0n)zObO! z%%QoMQjXdrM}u3=X?SUFeq)6C?l6tb#b~a6<711ysjCIJq<%4@V|oFB1GX{e2tTUb zaXxN~pp$-y9qA(%Q}1?vqu2wq8&!5Us$PXn9=46u6?c2yX#H(nzYQB4i(&d#hEK76 z;C(XbhwIy_y1cm%RHjf9+YOT(I<|UvzgSm+pw1EDuYz3_8ek9EoMay+_PoLLNToq=$GoQ;Rt@kz^WG0;18=nhu24C9tMbmu4_nf+1v+pGB&(^O11A8PdyZ_*)T z8rUkr8@yZ{LRx@-eYJ+RGX)Hjtc-A|rQ3JHGU<(qo@r@hQ;OcC=#iGxZ>NXehV3FK zbG=#bZtHzaqWSF5)8mH#;cI~)G>Qc|fD7q;{PJiIXV9TLuQ$sVydL1$`X+I6_3*$8 zk&yZ%F0(=tw)vOpejPXatj<&bABk4vdafsB%JOsn&|T$!AAZnbTS0oGX>4#5<2a51 z!*TJtpK8#WhW+&JojbXE_ihB+>0ia$ahR}`Tvob1u{zF)c9^i1T+%!ng#vO96LwQv zjilB&7GCK03)b##8}Bg3#*1j!my7?mm_C4;J#+amgU8q-=qlx};kJrYox#Wwv$1K^ zagIVpdq?|!mZX~dHL%@19{o`1amJz2w%+y%bA2u#wr6{@kZ^$-(%hV zBC+nu9T#OH@}U(&(-QneVhQfmfZ|Jk&#C7ce4y2AjE&}({zh}XQY<{!U4H5BE>lW? zvTeJre2d`A)@>H()3U89{^%Swpc-5Het#K%AD~tWF3MelIRNYJ&Asj=o6fX^cVjvK z2WP`btoga!{YU4Ng0AIVj6bZbBh%@HW`nPnl6pxy;*ZXg^nsdQ{0W`Q5Hi=|S8DHw zKcO$#i1-tFjQOtut|U(DdSZjkCg@%d?djz>S1DNIr)ct#^?6ATHfObn595ovbE zQ9&3Er7xcVVFXNU!kaOX@%+I`b}Gbw5Lp-Ki}`F+CFnMdK$jQ{s}0goF~J6QfL1!8 zu~TzQKo;pRJq&^kjyEQFyfLN{0f0gPr&0^PR*;6}STiw=d76NQWQ`Myy|Dm;p-#v# ztcVJFZ}|Z-Eah%iJ!m zi|On~ux4hmDOo*xxvRJ9CC$Ho6K%ii{TX{8j7XZg6^VRmaD-~b^jhydJ}K|uy3Z=` zFnA7-tMv||FxO>W=}y0LyF2K&`k*a={q6Q<0{nYF&Z|4_TtroOTD9p)97=!}!b@6% zs9*tWR5ibH^!kkYbg24AzWS~Gu)Wh;wtLI@PES*h6!6yjd@{d4_mDDwma(43BPkOw z-wf-uA&qTx=Iy-PRG3vLydcmR%EBYBt0`CQ>8q3Sd-GQ@_0wKLdd>0|O|N+|t>>2` zzM?44dq4k*2=e8`GJfR|QH{h1uI}=i<#h8NoDy+BSwud=<$AVTIM>j@?@CqZLH7GC zxq$R=o383RaC)riyaAkl7RaBTdXiVuzcDQ+h#^Olek(`}JUl$*aAI_^pMUyiH=b4t zE}zQ)GISXaBj-2*VKS0Tp}X3+%<*R#Qbt&Y!UL}WPcB!hL~mDr*9+mCuAY5r3&(q0 zmZk2G-3}bxT|-haMz}n&SU9SR%RUsXzYd<*AiO)?Td|oX`T_)hd~YzNQV8ZwTZ!iI zz`30FJueB^2XTowcX+R)0rTnhZc zmEmLIJ+Fy~LXTATi;xumyQ1;iSD{bgOo@_Cu>dAI~+X~TD znXvzTwJx{w?V|ci(Zf{908UysL?{IBG_r5Kyjz*5;WH|gQpAiRz0+jAfysPUXQ&dd zNXmR|f3w5_C&zV4h4i}?DaR=Zc{Jb;X~EISA_plw%UEbK9ACqOPvPsuX;EdsVY%*+ z)7?*^hmym8AMfq0v^`}Pp|mtn(n;+QIT6RIS(3Sem%>> zWasp(@3G3uKY<=|YV)|-@o z>?JTqz&@Ig?KwaLtVqb@^v$AG&GAgLWp;_8LQm73My|&uyaXYMPpg zQiXY1z|RrUZAN5RC}A$T{H){vJ^RzHf(v5^PZEPZ1FTw?I;mD@Wo4 z2Y@Y1Y+EfuS{4unSKSctzS>OdHW65VfX69(6cW4{B`%|RD=V0Y0&%hUfL8mbvsS_~ zO4n;y&blha7rJzso(uAmL@_wk}MRjrUxmaJs|d zMR{%sero|p_DZy5R%g_^<#L+v2&W43^h$pS*)7v*`)rzQSE?CV+wuJUw%iPVnza}W0Xn! z<%pCfSOre;>13VHXdKt^73N#p_O(VwZ}%V zA-%?nVm3E_A3O&y+lDP~%v@B&ChW6{820I?;wvWeAELV8C6DU9Qcv-kNxt^05^MC* zp9awo{iU%T*PljDAN^^>Wb5zU@OrS?E%m1L@>7{$@p8S`EmwLQ)@xA7OJA|J$(vsP z``-_~Wnh_((ExWhTi*PN3kzCddt`ov*Lb&X3G?oMW-}WYta}&tf(N%3+wHLdaVxHO zliYy-#i3)mJ?^EPtylO#()|rgFHE}Iu=O{}xNKPk#y9nS!XMAdx2O#R-`-&B@j}A= zGn}?ddlRjI`?*U%a4t*a;j?GI<^no6>+p>-mpAnT!lfQOS+;mD=jt=Y#$+1gQiWya zsVSv@zT?aF;DN;L;3;1-)r0Dcv0d@HGy=;buQ9en`JHGCZlO+HV~jvoymr0gjZ%2u zfY7yL;^^3*+tzz;4$HQ4!?RWm%u8?dB%dlc@x(S{?-6RHGd-E;kk94Xi6Ya<&kMCeDL9+twrsh&Jb(h3gNld`C-6ol@56 zXaqjf@cBG|{lLS{rlj+NMVs^*iigkU0c;f>b~FrYh7X5o2F)9h0UX;Pxd)&P-#fx@ zUuDTN0Kl$bprKx7x4;=wg8{K+YSk%!*hl)wp#>}W9`p=78`%36M>!n5lXEzdg#vM& z4^od>l}K&02W1I1BFJZ?D4&r}UV>^T5+8XqCZH(%7QOKrNY)$KWnZwz}f z$~l`?W8i>7;c%xKrL7@G(E5^S*!7p|RRt;XF5%&`iza`{VL8CstmP;phde@m#?xrTMBtOfsX}bsF}`YbGlfgM-&D#(hp@gs&5#i(epDvhQ%-Cr$D`Ig)ilIj})L zrD~Rc%)=FxsrWSuI;X#jtfL-p*YP!-=iIFC%IPH%gu||%!cxrSPgX8Hr6>Jj1YWG~ zl#vTgV2q$VOGe7Z0MeykyrB)rC!^nK2B z{U+?KPrD%%y+t)?wP8n0Wc7@yG^#>W$7VlYDKDr_cE(<9@ugx9&DJmmaMB9xV74Pc zxOoHe+CN*vV@H``c4tn19s}LrWWFFhPI~C!bPuTaw>!OJBXJn)52*_{NiC~6a5?0B3Z5}4Z1@_zr z?1j{z(Q92r0eL3thImkxqS78Z-Awf_i|O@sHS5up2!h>W5`>6<5oCEbEvc3UQ5M8@ z&K{b&=8_e7?=#raN$mpJM%ah}5<9(Jb0-ae8{HsKC->+KRzXP>Xf_E{P@sacDq#Ob zHxqOmA-Za>Rz|lWn0KeEQ>Jbs1&lReHK z{sG*v5&WX3My8@^3h#L_W2K%mbbr_7U;bQve(;BbKaf$c=b7>|{pV-7+vXc;3xADi zGg-3wT>U}+hx-hezCP1`d}f-^LzBX0tgdf&oB4WI)3UL^0fVF0JMZpGUT%|XpR;&% zB*ep8wgc0DiJh2V)!C_f<$lF{VR&?WWRi*D z=JYkMbLurLbLWI?g_LKf<*Pt_JT5-+)PHT%2O%X1DH@m6gg>jB=T=uo?w#$r%nNwU z7+EM010_x5sKqen$MY4uYvd8MN9Tc;%OsY&T?4hn90O3iTTaFr=wb1lSX^2vSG~hQ-SmP zvYO3D5mk(T;C5wJ$=HktO%KLpG-yS$S7Sje`Z4Lq zQjE~NzR0F!9JJ1RffVMB)C7WaCvXL8&&MR6jB4D#>b`R2h&>`f+aa|_Gd>$jU^{(s zo0g}aptotrwtZ?UAdKVL>-{{VOnZGFsW=LE>Wp(^NG1!Ub5FV-Br!&`5(S*J5CyV- zv<`daRJI}0r!sN!sZ5aE=kTjzgMJ!21v`zMfF0}t< zG+55-%W9$bT@`H5-8Gs%A>)Cg;7p2t6c>5CVDPgxTw|{@VP&uzFEclPoutYiFBi&_ z?^_c!?2p>;izX3b$J^SZLhOD`n{1^SO>Xj)=G}ATgSpm4H?WcPw~+{kTg(n3Hic&h z&#?}q%b@rZZiW|ga@G{5A@pXIxjZ1^NiC`$E2c`Z(NF_|LX=3b5#?eY?hRpSO&Er8JgWZ}dNp ztUpqQay-#J7*X|YuBy7Fcb}AtYWw>d(|q3DOtF-Ib{-Ut?68aBBlQDs&K9Dog z4B}GPW5P+EI~>566Nkm}W(^A~r;ISDI|1Ipt@$zirkn^>7no92w^y9|OAML@ArQCfguILkFR}t$pY*31%L=+R1Y#Y3=!IkxjXZS0CmOYv zP4#hJ5tAIAq%lJPzbHP^nBz%;dc#TLd!tFJ(!*wZDUqCfw$fq`y#L^UUvMPUj$Ljf zS~(D1T~S1-hzp|-R2vPJxDeCN|MAK}(V6TyLeceJ8`~DYBvXpYbQXK=^mG^K;}>V3 zk$7xY&$rdSN8`VL167=~LTuNqk^)~$OYC;RA-*>i9Vd+UTFF;y?(){a> zB3awWZY3uW&1srX}Vh(|BnEx>UTN9V>p;mfJ*E_zoelQY=sUkX-225JFa^ST=Mo<2iCE#nPU8 zsm&q!+?{=B1Dx*IR4Y7Un$G$1$gmc~H^Q%P+=VUJ;e(!8O^(K+kRABN-3Y> zm6(j?$HK#V3@9;YlK;Ko-0euc(lYgTBwuOw#dZ>Z6neA0BOq+&Gna>e8O-NNhV%3w zXEvrB9LWofGn3ps6wTttS#j%={WdjJvx?{fD z!J`pkeR&XbZVu<@MA5F6JH;5lt(IU7?Lcg%OOL%@0jXNMOz({vl`Jj3 zukX-*#=cX1$pTw8$nB8+J~}T%AjQm+Mhe(_XfF-nlryvEh8xOsTzhI*pgA<(yQC6_ zFt=BbY^Xb~J1(R(3VfUZ?zEkdP$_0jjAaM->tb2~e&u4XS~{0kYi#!TWNI0~VJ+Gv zW66foAf;WyaXq3ArNO$OEkp5$lUlVP=g-OCuqPx>QAay`a2r*Tb!&1*hKQJjq< z4$|Q37(`3e?sbSGC;bz9@JA6@xHBnwa-Cy!$D~a><4#;dyorbdQUf+@_TA10Dwyjl z$i~1BfmYV!a9R{CH?{ZHFp#ZKHlK5}+?{UKX~Z*-7WL$bNQ;q#0Uf4ALs6 z%tTo6&35K5XE%D7Y-3DGrevkuJy)AAZf@#phs#L8Qb@M2!bHvmwwv<8VVNnrW21;+OBV1 z=cB)WNPaI=NQ-jMTq`ycNx$BIbYK-CifFyW`4%%2n#mR3cbuth{jA&?Z|rOaQb8$9 zsA!e~n7nXZu~OgkRHN`GuI-)Pm^4Q7`VOl2hnac;g!sJqm75d6p;RCAo6FyL(>1|| zFCM}N2d#SAhp5B(mCH23@Nf2R(2?ID*+qH)QN>`K&8Tef%pQWABq29 zx^f+D63rOrVK?#1TZqo2qp<19EuNeK$+Gc1Dc@!yl4|q1e6Oz7i&-OO=72ypj3AxY ziX=9(VZLR=ZxV>45(M|GYGgf(u_iD@Z)T6NFwn~OnG~j2*xMe+q~>yADElmB(`F|+ z9LDLB((&?X3ju~RKLC$^q0BMwWVY(;)Q}KbRws?^T8P-n@%L$?2wqMeB_73^#KulI zI}O@(5^I;^`O9mU?z4MsPR-!xMH@`-D`K=X4SX`pHh+6_uT8@lT%cAUlo&Og(6{ZN zq!h4oh4DfML8@h_Td(!BlS3YeS^+^=L#lWBs6eV7T8gB;P3q!*pILgkU<>B;>gS*S zx%D{?aq5GA!AHBS^0a12J~g3YNq7nllHLkTU$+3W@B;Sh-7VN5wbq<$f@QV6SIV+ej-}G_d$TfeP$D@Ktfs delta 28630 zcmV)nK%Kwjt^%g60jl$iblAg(-Z=Rr)I$)ph9s8TTN`hA7peiRre?%-+{@u_Skl{SO zYSH46?7h>6Xz9s1;vmo;l-h$>zG)XKocGTs*G1?L^nbL`rZG|$f6wtUAX{OBh z1j^0s3zo(CoJG2N~CiL3XuLyunS8vMuP||x> zZ=~1l>idL#^!M1+1r^l0dY8zH&hvEjRuQAFK1A-qA}Wzde|^2#?z2iEXF7OYKwj-3 z=n}ZoGr>{(5GUl16nRp#1EEdfLRI<(7B!!972gAEc2z~Wq+6A|Hq};Wo%SlHa;&!3 zmMdtW(|iZWoN4Z7e5Fz=4YF-Xw<`H>!`fr6oXWA<{@bwr5IjJpr1?-9i4KCkqH1ha zBH%p1mTri>eADg7HnBSD~R%Zz6b)Mhb{t?&Vige|P&w@=O6f1k|ylJ|aepgv^Tf9C5ubN3t5 zJ~KmqfoF9#C{D{wq;e9>p;7jbtvUEL)B$`N8(+q!4+CR4%cDP+QDlh5lsX1cT4&o% z#9APVYwdNsEc4<~XIWp9&?P9U)!&&P_ zf5(-yVSZe7bL5kcpGoKVCL2Zu$KsB;GFl-$@;=6jp}R!UJ$gL)+G!>A4RD0@gpa*? zu%}u%vPoqd-)o;DI6#$j#PrJjxT;6#8NowV%+RBRZulNoWgLGu@zz6*vU5D3Vv*yd ze2h}`ppg#b02Q+*s&@pds_JGOcW2ige_!KJYn|iNBJ$g?U_sydPeUQpTTDX**;<>w z97K6L3K_@)33{9Kyk@c8XG3^=Dmcn9$obfFEMty!=+2|f4FYyrY>&tOwh=ntm0%E;)8~CO)q#(*e-^NN z;~&LPwyJq?)hO<%!t59CxO~p-*kjM^O>h!B3y{U=sb*WqcI1U>*PT zSqmlsP+i7HQ47a87`Y#Wj%M(&je>eLyM7o{lkX8#fn^}ne?90&LQR+-PmSOstqAPF z{>L%++lNDa8s8`$s?GT*D#9l0=CcYk<8B%}kHYLn+w{G(`eSPFZh~((%R|_@ zD?zl2i+GDl<9#cKeS&5Fgt{0ZQ_p(ZK@e`9A|R~J045pbk!~o*d*OV z6CK*rIE1Lm(8S7`Av&YKG^wRaz#L#`dh`9w!eh;Rt3M_nWCU^h1LBtdFv0ETe~W zR*!yQ(UAW!e^wMe`uf3ss^!=w7W+u%Jau9e%uqzJre9 ztB)LK_iz)Nou_7u!?vaXmUX2WTiErN2c6b)hGg`#_m8CwuvpdwXJ3hX^PQ-?0H0u)m=M1Y!h`8-*IbO<2a5w%Q>u# zlkF}|f7S_FMfZ8S&F}Iee~9olDKhfk65;tr1_hCvb2KuwW;}{f+MCl1RyzV!r54BZ zC^d_Gk$>rENt*9>T=f&XCyuUw-w4garw*g;f5TZ$X@U!(ZL ze+Z9*nb1Kv!nHlk;u5M14`=BWTE|sdM&+hJc$23qd?fZhzj*uR^VO&5)2|;dZhyVG zI=>D4usx*hEki`kjcyVvQsj3yGh2s_oSWGshNQ^vaArQDvD(=feb}+tHq_+auKF=2 zHFk%#v1JI#lcDuvQ5rlCY;t@|md5T3e|*3J*gj90)9tY38H{rxE`u1+8-Qc zp>$jmADbV{9}Ci9dW7}hU|(y#N-^8ayOTnX$G^wr)%Tju_hg-!y0Cf9UT-8S+2gin83an!UF4x3g?Oj<(+L_fcKgV=W!! zq-4K+He(eTZLAq19AkCaY;Me0QJUKx2E324a=w>t=X$l1~T2k9pVf+{y-e>sQVuk=Uz zi0rT(EXDoY{q-IEXcV9|V}JbhvrzCOSB_~GK?+nbN?FR$N4XIGzZKV5u` zF3*EQf`11sf#02Is-M>TcQ)LW-lAtKUMZAgCWGss-(Ara6g=yK0NF@-Q}P;axD9&uTM{(Gq>N$Le7o^O zU_MLDIi^dL)gRkOn0T}rwan~eJUyvxIL3ErXEV+0V|-Unf5S0;fXRGTn|X}y>1#B` z%X!RavN^~2p04_1yoAAgmYREv?(9; zG!$`6h@9&^htAsiYUygO0jHcsD`R}G(+z2P+6m!bDx62GNsGY$XroUt{RB)E%D7VC zB#M@KR>nz&qsWUkT?AbMhkBA8o0MqlPt6uUv%Etke-k*6=S@S-U8k@^-BOhKQ;jj# zDCG9`4uedV}eb?m2 zi+3L{f5;fBIN-L$l{7SSKPi>O1IB1-Q41xg|IGi8Gw2!yexw(_^9NL<@ovX%jgV1j z^p;l*rNKI1>BoOu{{dJkF<04vS*+`!p zAfR2e`BMp?HL6(Vq%E_AN?&C9f+%xVEaym_%!evx*VlnU8D}cMG8wEA`O&3iuT$8a zcJXQzvEJiJKLJ3mxI-OxyY$hQdX%?vNq0&u)@dG>&wuiySHoVXutV*t^?Eo5jJ0x{ zf4fFmcdF4IjH?}7=*^PSlZt&50~&`aZ<2IXpv;%9HG7@H4zrk~_ zPbV&TD71c3j7|^&=nYD3W{%Flzf1|8B z)gUqDD)Jk3>0)S8xK`G4P@)H-PvTl%zpb~6p-tgh*=G9ntFHiKLgY?s@A_(L>O;o@ z-6b>;-XdP!!}1{7VnE|TWxg<+rRFUT+U*pVPH3GJlM)>;GvIVK;uDW z-?1eLkQtc=-NjZl)6gMnmqAfAkU#gp+S zCe3Dxwt3;}z)%N5m%yQ>z9V;Q+zZi%OROJ7wLG&+3$b~nMLXq+GO^Lij z@p40Yt@2%rmV#ZzX#Q5ie;BIwwottKy&}tLQmlaCBq~(B;I3qbKt@!qREHB`l`nN0 z=E@~qskP1vnotCMO}yM7XuE|M9py-7WUjP_L)}T7CjUfHT6orf2+Nevl?~Dy@9Ssymvx8jiY|y<&>mj87z16{gC1x(1SLg}$jyP^>VWf1AYLCwV^+f7S!) zlB%Gxi<#`v!)QSdH?LF`l+sdtWnXk97-)sk;$$j>WH#$$MG8gbra*X;rz;%M;K|BL z8JBXnW98GD^iH?z%WQTWmcRuQpSGhvCK=wLWtkVV8I0zQy=-8ODd#f{Jvb_B;0LnV zusrTr&TM6|+##*of04r-tC_8tRof%5r67eXMl;)yCxc*#Ee>kSo+K`r&1h5h0J%!0 z5AQ~miQ<&ojApHNkbd{5W~wofym0ky?%5snE~+V^PrE=e>xjN&Ft=^?k!^^5+6eE+ zU=YQ{e13L|XhNiIi_yr1`xTl#oX+xUng8qVR^MhWen{lD)OpS+z+tO zSqf=G?8hqfe;hEL!4@1ypTxc1aP(bm^U^|R4x(4whpu-K%`&T)EXGP>0m_8PgZAEQ zS)+zM)b2KiPu145mJN(9fqRX!JW|cYWub75qFLU(y8K}(&+67Fn&rKzOTz&1JW6vc zBP#a>z({Q+ZlO1Y&?)Rg%Q7NTj+6M2i0@GH*6ePeNyJg3)Aj6I8woVDLbIwIS4=3s9u? zW*Ci(efAa^&)hdf=FJA`j}6$HVD#yM2`X;}P`kKlul(RO))5MCO8X6#3OcC9OS>e# z^j3e~z*_Us#}3AcylJob2!g#0rk_MmA@yYsf8=-ft5pW6?tOJhyy>m=pn|>jQ_m|* z6Z*1*^0N!pMi_g9VU)(3>gta(*egH!RKo<7F9Ya3;b3ip$p;;#34K~ZGclJFb4;h{ zQl$227_F3jPRufuyHAPMr%ALPjc{U;sV5|qXnmPP^=S!fON=};F-GD`?_{QxQ=+|c ze@gtVoD80+ur`3&qZNwOz6_)B9Dub!#-9b4pz>t^?I$m+&7krCh7zq`lgt`sQ+g&t zjo7bM=Ik#jk7+2;`ZbB(qZ5v-GWigND!DJ)%xo27d-%76`GXzSR?&LCLyw7nYt6UF zReR(^k=naqbRYk4XC8&8K(u(wW-6V`f9>wgHIc+!n~#6989gN8&~U2HiWqR3*?0$P zc{-1e7;^J&NUKLl+}Tq1i4t>$-Yq&~_)F~}6Gdw8hM6~7s{GuEIs@+(GJFQbovqX# zMKNLJ&wjd(r8uyd!qX{g#J;S853qBCt#)qkJUchK53kr;W%?Nw6;f~Zm^Wf=e;lm# zAE(xS#KqbeDo?s7(RwpUK8qa&AAT7o@Tal*gD?*C9(^8Wip-l0RI_>88(<{6_b825 z)%_;>=xL&w=3}4Cn++77pt09~_(7U65?^|Mn`zhjoA$2tH-Ed7t3LI(%_N<= z85Ezok*GBB+>H$CxiQpp0`*)6f9j<%)Jp>OQXOhEMPH}5p+p)0N{RUJF3uvF$SqkX zOX?S?=KhnB(hPu-51Q};Jw#S|mEc_(KWgNB9+KM})RfSlRrZqW&t#Z=Tnk!%=4o@3 z>!-PPV5LELdltGj8y!z1L{=8k2OAwp)=65TVr01D1?Zr}{w<|$YmWb>f7*Kl{t7%M zOBf0lRT$nEi;KH${Ea4vCO_m^w2jLm`Q}3O2?R@e4Yhgp3$%(d^hb1;JPaO#n$%Cm zO0}Sx#6qs+#UpFQ2Exj?D3nnZvC1H)c$JmBGRPmPnV51;isj_u_QwnMNkO^+!o4wo zCdJDXUXJP&q$5iG+bF*$fAvr5j9Zd1gzn&9l}U&<%V-i|`8B@A8gUCBt7x@+tQGtU)mL_N~8`zN-3-%x+>?6V+5%PfugpDlL;Z z%knZV^FrMtlhU!5G$dbikR|mdElQRPs3@Zc;t#Ay6C{;`qi#WC9UO|_jFWd0w#%`3 z?Iz&bk^8XFa)Xxlf3Wt)D8m)z@d3J4MgHwHj_!hq7n|{s66fnOS{CpOwc?V=-eAMf z)*O78iiT?yMw7wITLm8(6=Vy-|?0UjIFB6x;z19|mjdW6rT$ zj%q`!Wt%}yNJe393_Tbv7l@6=bRVQp_Pjbot=lF3tPD6*f76|E@!eg4?v%Z%J^7SC z-n1Zk#eL~Il|w>GhXEYX64GvocOHJiBpPTx$;AjdX{~gt!B9+o*-LW#HXH z3EZ}s**qN6ABx($VN#UMZ5IY-KJFExO8c$lbjG7f50_E&laWo zJh+^5o^LU&s687-*l6Cy#oge20xuT2zWMn6&DG`qBF*6an~(1vNAA`(aI%AiC29CO zhH+ger5X4!GnKjwPPw@^f277?T32=(KR|0h?A9ux;e9#^T^wx+UrKvl$-i%Y(OAj% ziTr9m$4b7hk={yvklM3h>VO!U(=sin9l2-Q&`}(`gt-URJ&h+M@xarqX<_Ga>(z;_ z5j4uGt2n+>A{IB)Py;}BPekwZi%8Sof>GJ>ncUzLi$Mz{4(28=f1|A0YMnsn%V_~; zOzF}T{{}=95c~f=|$bd#!ag{+z zeM@>zU3K;WH~({ zTH0$0-3^=BtrmSv%1wm6#iY=x+NE%56-5}87|x=m@pORFuU!@7n+wQi-OyiVvou39 zBXe$r0)e61A%xe7?*VWa){@?}fmUc8lbJla_iB&xi??q+e_wry{ubyJcdhN3n6-ku ziDeGP^{R6p%Y;Zn|3S}fAH`H{9SF4^y+vh_EVbMxPQup3^xujIW3|Rht{k=XjIj*qoSOhu%ar^#&So*f9-1+wJ40;9pJXm4i!+*=VOf>=dhN*!zh1ukH9Eh1 ze{p?#d2=0|e|`RR^Y(3ENaxN3MgEniCh)5L$D1$F+0EzcPwI;INmO;79>FY{yE1cy zrixL_b7(1x!bw=lDf(|kgt02(r8EY9gAI=t($Z~`*+^R}^Ly0KP^G^4F+xon`S5prStM0BLa@x!ydcYUQdHqk)r1~a z&=$15jl|Lk9mYz1Y#UPc+U}H+(=Gn%(-Ej6~KbEO6O^CeP0~L2j?dY9b zn+Uk3e}ukmLqNzx2{YwA%4W4r7ulTDz(Ru)^e~;RX-pvXW^4GM;v>*<)Ej_*jd7CH zC;dcvEy`B>nUGan#=Bf$E4;zgWUE!$M4e@t?0Ax#A}*)>*hxk97%G-C7XBelD_3%J zUeiU4q|LWvF@j;sri|jEh#&2R-e;*?(o6-Ve{`ri3JhgG9WQ4jJT9UKdUC>E?3UGJ z2@_G_S(Pnp;q0nt{oGpI9y_H{Mq^6Y^}=>U%lc+8dVE;gBEz$Ya#HOE@C0A zqa{X{n@S-InZHGkt_1#{(PJ=K!bDX1$Rfm>BGR%Fd+)E$Ppz1Va1 zD02fE69s7ykR5KaZ}=T%3T12sj@C(N~i#043Cw8fP=KSHKfPjKA_H zD@}JG+P|lHORO#w;EAW{32!jm*SxsLn&Oxs=#x0oG|Myk{4h&N?nBcaf`wce_0o5KrDY3 zlT|Qwu8qK2pTvc3`~^$riq(8I%R5ww9=eKsDaN@QQMphO`)iX}zfEGNZ4y`8ZCpIM zSB&%3EN`b0Mt@W+W1&NRZd;~0ggqiTVM^#ne`D8Gu7+jJ!Q2?z z`1ia3&JTHsqOl;LuIe(*n&rpU+M6s)+wKIT@pdOXhS}VH`H>H}Q*+WNEuE$YM(!!l zUd70YpVY;d`F0DZ_1l68#?|=fJ}I~p0UYq~X*i+82E}Q)i6$I3=aw6mzy%YZw#(sV z1K2>`2ZxDmHVaP4f8mamPiq!&c3M1U_-hW>5uDoO07Pt8}m*6T;4P`fxf! zKD*FvG|g~QI?J$sYa*(&3SOGN_-i${2+~^NTF`nn&)(D(ktO)(`CKp78WY1ED_vWv z_aa7QWif3qjqWqK8$3bT&l2A)q$k3YwoKS9VZ5hmKDT~q0oz3*dIz?7`c2pmHfW*R9nn1n2lP`XUlwB)SlK&`qB105% z2V{hQTg&}Iy6(o9NG2%yB#Ii3PHLlC49!q`L{k&f00GNM*ZZb~^Mrj0n@{?{`z&-M znV3-I$-r4n|wgf_(!iB24JWqwDLmi}K zJNzW8xyHjtri4oR_dO~phQ6|DY^UZV9@EvC@M;p4e`t6wCOif)QbTpA1zatKolI)) z|Wt=Xnl&1Kp*AYDNIre0lF+?kBhei?JPn@B#48oa{ zy0Zm66TqH_7EG>~^~=^Wir}soxwRV33wR)U0X>){y-!x(ut!S`0NN0{vk3pdFLi3q z$(rUEe?l{+bZ3ZNn%6J1&M>wNp&3(pF~r^khy9yFf@w+b&NL4Rh84g+eRYqPzeZVA z^~Mh;jEmmT?t6ig?-)!xUm(rsU;miHb0jL=QJS;A{`ICRZ`SAXZZ=fJSi+I}1DaBH zFAR(pvyyi7$c2H-{i72Kh0W!6DZ8@VV>0h8f7eD|W*B{tVfY<}iP+^}sB(X;PJf|s z=`!Dqhs!1FZz=WY*J)wsOX=J;uw;=wZbnSv8s4 z5UXk04J_5?Imcr`W6F*5(=2bIf+NWl1=f)>gQTZ0W3I@$qPR;k`=&I>QlCUk7mU)i zf7lkSHJM(|{H2X>dY+o!~80aF6hWec_iMbYvLec?MsuYMzSa9I0>; zMM(zUPqkpnmdJ-v5)@-fSBk4{&f6(If3i8ROX*JW(vzyChH|AVb!h00{8i>fvWzM+ z1r%kRWP?YI?UWowv*zH^AZSOH31~Z$LF8!G99$a2dq>{`F(q`V^%j*e9OI4(vUKw_ zVab7Ph+SG>^rp7G-u;W($|SCI9M3Uer{G?S0k!h3RKxKDS^w?g!8hydv=i9tf0H=V zaU^PFsa`jRq*B_MQlynbM6G~(``Az0>|+?xxm4NXP=ob{8tiXXr5-wQ-XWL@h)D|b=kD9z zCwV^+f7S!)kt(203?TbuW!p1Sjsxw$WbBYjVFX}6W230@Iaz%b$Ii#9l%7tv{fQ2sO!~CiD!yt zMy6qfekG3Jn5wP=p;n7i{?rH&Z7Z_x%9u~+XSFNj6N1QDnMgO`j}6nv{IXGmiI!~Q zr;STz1!zI*(jdzIoV_W=fBZWgDrNPRy7!3RH=(jRdzDr^?GKKU4fusqP!sj0?E0kp{-i5g4EdKDMD8un`g*jOXA|_%jHq;spwzj?{nKgP^+4**J>X*qUPR3> z$aiEC$9YvOQLxIFl@L8?y@urmE$_oeQYwU9$Z(w(VVtHR+<3uZf4&Z7ja+aQROwGo zf-@)@Kv9}qDke2f3$Cwga{QyUf_`Y6w>z+!y;c)xC~ip>F{e(ZbEp8_A!(_+9iP6 zaeZ+T{7M-Fj5lKtke>p|AYcsmBRv5y2q=S~ey*$4FWK&j`~eAV{~?LPZJa%ZdAUJF zSfb^IzNtN|jSi1jC&48vF7zQ%Jb>Z>EgrPRJCbI&gg)7{fA>Lg`URg8O!iyTSwzNv zRLSz5d@cq@BeBSTHvjz7kK5!98e?|H|AnH5)BRCRT8a*Gzvf@bf`k`9@K1Q>o8D9U zzy6&JHh($!O8{PDuqzPJ;x8x9hcTZpry-1sJKFPUdwPhABwmn~mc?5#NRwuF*RRJx z=`&f$zu%0mB%t1mphbu%}DY%M|AZ#Ew@Vp%5Da=T9fj}&vEdA+8nC9_{j&@{LT_Q5x zkvTNne}79{O>)BTYLFlCe&HjvHUAipj{$p0Tv6f|Cm}{Dq}qymu{q}Ouz{PU2nzG6 z1n(Qi+Z`Ee_~A4}MO(y+Buz@g8X{8MI+lWXWsGGI2mNf7^g%&7<1m&%hh@;P3_2{8 zZTj*gtZ=&sgGmI!*4)38dEshSB78qj@+H1Ge<{>1L&%H-g}858yX1c*2*nTW^1_GSkk!% zN`%q`>I$NZ6WS0@ab9C(=(Gl9+6?L{3XoZ4g~;HC#%2}iNWIHT_B>W6CZMe?5#ZdZ z0Ax~Q496z5N;dpA3_C#zH9NlaG7B_Te|o7m1-x`N1+*GE9_<>{4l&d{p`A%KqgmAw z42Yp@-s;Rv+QTO32chk_S|$1TSlum3N9l8x(}WoAl6gPSEVAGYlxRYf6#twNPe6-f zwK!nXj+$(Dc|pgkt-6TfU_HuF7_&QLIrL~&4o1Q4lmhjjJ+zIrf0AL5R+PGkFPH}`BHU7h{}@Mj!JJ}& zE)eMW*a1UjO&3tQDTT?%wNA<~B@BtT=6Jm%QJ>(wwZ|g^DB%(?E-n^BGSj@WSOZBk zf2FeYd8N7Zk;%QPM-F zMRziJuM065M2Np)q~_Z``^zErosz-x*MU%y_3VI^G*<5PHB45^Wc>&oG|R~ZypF51 zY&Kl53mpl{?F33!)zjBOOAxdK&F&61*7ya{IDQa%38xBK!Z;`T5{%mp#(58;tL+P- zEh*mi&w3!_#f^1+3Eh=?f8t~%MwSa?Q9)bHHqPR^{&7z;RbN7H?LyE&`#p!~YWfm7 zD|PwFN{*He#L^my-jPW|Y2s&Vsdgo5s`fhzKtikLU$B*2yUNuvN$tW5KDJimWnBMD zRqnMvFSziN;TRRoU>#qgUU#+7h4brn%|Q6n>xN_Uwp;UhZiYbDe{(c~Dueo8@o9|A zXUs>V$9(RIeHveP{>M_7H1JoTAV7_s@r(;y85=umyi#vd^thv&jwa{ z)RGRY?NLjRu-W|@k04H&qFvkA3UHV?0>%ySC7CZru^d|GFuZ@V;2`loR{g*{Co1h z>590NImY1wvB^qlI25EO%s&h;|Jwj_;t+5Waq6e%{~1ZpCz;Za%+Xqbbhe32cMMR7 zwhKhp^EzFMAfCBEB<{kQPVk;>tusDB%V)|!KM%z8f7PZFLGPajqWPTB&jWG%;WKS!@Z60eeVXx zIE>Dwkbrb0l3h(~@^tX>ucDWw-&(HZ49L%-i>BCyjGQw;7)yUl6oo%WpfAHsmyrLd zi29Jwe{I%ZCC^Y-G5*Qh4==!bSymkB9Z_~`EXix-Jd0DUF zEA>GtahdPhMnb^MW|H5gSW#(7fwqwmsaF$of6ml3hHgPIget!ru*djG6YH6}tgsIy zp;ZD`x{}Z@Jh)~O55E3?|IgFwYKw|w`QsUB1$U4cnyjCfd0K5V{A_X(baN>|Cc4|x zn{s(gt|3Teb#nheF5`R`52TuXcQ+2?R(uI-mW&-$C+jd6`w*EnGI+mckyix{?}~W0 zf6+3{OIVfEJpVS#^Chf0c)8$j0WTM{~h}Q+kK$P); zXxR=#VLcFOtqnRl%2o&By#e_M*aIG0IQSb*jq6p*;qPJ^IoTcXVK+NeakIPP=sDUQ zIka7Erx!bOUywUAzL zP!Fpak0V;MUn8^L)Yqb!&3g^3?W89N0%5YGX*o~n%&;nwb@@y~9Kz)C@?6S7l~x zd51DY({scje$2>JQzlE*v8^i=aC_HsyKT7D9s4<)xnbW)pKrd`9bZvkVKu(D%cU=H zGark4W`e-YTr6&oSqiK(eJDu$e|KOvCNdN-k=fp`GGpo+u(q2@$Yo!U4!*T#6+XX3?Es@p? zzAxeV2-AA@K0V}_~&M_(3kch!4*4$)F08*T+>nMf16_7 z)ut)FH*603x2oEK0Sknyv~;BsaQw(Q4(S2)!pkTM--INn3ysNge+TKy+r$=VHkVt< zM2rv6mPCJ6lnP$&O_?DKB2gQOQPP*J-j*A2 zSY^8(W-+rf%1jtv8MC@6(a+*Q%XUsQB5B>ZOjEkZP_sFMT*E$?BE1 zAg|oi$uHW#znE@;G>)cpNd_&xb4NyZN^Lw%=>iPccdp6cwicz!E$CRCTQW*bYAfz& z3K^O#f1K#|V=QaW+0{-eL=7McRWD#zgbUMackST|`B12-*9QTrje{|$_Be)ocnkz$ zAzFs%UBC8hhP-?B?Ep{OZ%~|;o9Rt#p)B3OrU;M}WmQYkzI8*7WVA;_reL42JFQk( zH+tedd8^2hU18PEr?IDkZKBM+{7PvuO>$)Je@X7(@I_yE&&MzJRe+1_aBQqD_c}z( zPiCtmRu~HW67KR{a~^qWtliUVALl|DhZ4i>mWDW}iD~;|#8BXufD_lw;&czH#NOC@ zrz+*WQDNcSSGd#3!%im;>rP%TpA83ub^OQp-~$Edi1YT%e@Y3-DlYqT$&TVdcFGKY ze}#RioO$H%R1-{Vf1Tn_)^AE|Xfbw@FNPbXPz=uYQSZJfCYO}_Yf=oN=CG>pA`c8@ z$^IFBnCBNsQ~CAHzGR!gVtR|VdGR=HgkL$pr6~Zs0R)5S<^BZ%a4ZOerd9L%gp5JJ z8BFO-Gw~$rH7elUC;ko@oupxCp@%J@e^EYQNJk49MCfJ#ZT?x zL2~kjYyBh|OyqRU!=p%&7DUb2g$w{P07yEauqMOPIrBu%Pg$}K7UU$50f+4L z(`VYvE6LXUC;(m9EK9K&G*>^HgVURsd`aWGJG9cUuMJ3JG0KE$&zXpguepQToY^K! zf||*M4S2%TZkSY9N&Luqu;Ho) z5dcKcKv0uQS0&6R7_lziFo6tSsg-e1-Je^Jx<2=CTPl(*n#B;Ujwft~SO;5}qW($R7vQi1LYgy8|p z6Y39~^d2CL?-8k)FwIr`gfD|!J5z0sE1?R2Dj25xI zuh5b{v|s7_zBG<@#vgBHtCCNA2oFBN2!2Zj!0sx1T*jfNQ;cLEdNpO}l@tvzPubag z#jFV9Ql7Gt`jW&5?a$Jb2oo~CIAOccv`wwa02uR}_;9)_McXDjDxGzIq*FCnT@uH_ zNDTsaW(N17et;dCf3!du)Rc8*)|N7$lp4lpUY}ws3AzF&ly`J>@sz%4^sHTbnpbA? z43#=g^Ar_ZanN2=lLVZkUBGHKf>&ZA5Rwbjei;po5`v0!hDXRBTJT1=HPio<*b4OU zUWv^>NXc7!f;2!|lLnl0FH}2WkDmtYA=U_$F;3ysc)8iaf5~woYQ1zaH_cB2rqP4` zX~0Ti`=FNUacP!qng;v1+i`O4mY|i3-tu#|w+u4>x!Xl@?!OSf&a_|r(w<@ilm#kj z=%G^=OFpr|Bc5=J0Cp0{tk;iMz@epW@=sQ@edgZGBEPif-+amSOS>BlhGP)D22?`? zEd-tLdvOyHR3d00H0t5sXzCeQ`;MH<88_L#(M&Tni+`i}WcXhig6Jjfgf7f3*wo`1 zO|)Ka$ZBN~V~E+K@$9SPI-U8FMlZuBj4><+Lp=u5gz&&Ps2T4kev=PlGdm}l`DVbNRxzQK^aRw-E}0L9sHB}Ol0`; z$!SO&|DR7@NK;dj-eeyF6J(SBWF7*qrIR0JS4E87I#*$w@KZEqkJrnUB>r5}9Vn#e z&xLR3sR48^i_jj0m+fcr3j1mN;Beixem<}3ZTy}m8ChK7m6mUgACqeNi?5f-Y9DM-Qi6F!saWg!AOOOp&{H#>jbdvcMV^dKu`Qdf^V zBs_;_rZr&no?INmXqcC0nd}YW*$Q0KvOn)`C6XlwtM=Y=If=`YuVpcUFPL$c?Mi1$i_l1U&|BYcDS&t zz%3Vp4)y9a4?NNn{Pj*fb??}H-9JNC!IK?lCLn1La~{N}GZBkua!xwN`sp=o({xD+ z^;(dzo2~-s1EiBF@ZMRotby~}^a1OWm}nmY z^zxIrXhKIliqUqFwpWEZhQjRF#I{PyL^y6S@?hXZE&c*2N(~Vki~j2vk8(30xUO-m=vd(QvA2p+mqQ3A3)7Lis9nM8Qh7UQ9H9C0_MrMW= z@GO95abCdF0%gE4f(E0$o(J=4jS&Eb-K#NDvrFEMfokA~7x&brDMv}o79nZHWkR~} zQp>E8=VY|uB!6$r+(Ftpb{KNcieNL!BWQU{n&s6A>A~XRSvL2wV=QR3C#jAN2=9+t zykDIJoPayAY`(1t_EetKjwMlbrqG!JyQYkV*v&3O%bl$oc(G=JZZ4^(Y{mdLtC^^q z;#xY^vsHN3!EUCX@IM7?x-)duV%M`(TO7|n{jIBl_J1U9f4HZiWr4Rcdj4Y|{x~TK zyNM@Ue>>?Gqni+a)sgL2HID46oNza;SB&me{B=@(;zjKECE~Uv_MF2yO1LA#b|#xb zCf>7_X?f`qw`C@D#GZ3n2Pqq7{XQ#s5}OLn{QmAPu7ZasC1ZI|Kn(Wk)kSmVnDzqJ z&-xp$vN|kY6Ov87??*d4%vKZm|Hf6BeEe?@X6i9OI&Q!WC`k!9r8DvNcuET({-KF( z(W^dma^jA~SRU;OlQC->4IY`D(C~%IbF(irpPQ3eYa)MMx0sSu%$L1Dk2%zQf}12w zPwPkQe`xRB!@uF}w(;Qagi`0$xYPu^1{sGy;1IMN0)Yd2b#6a;J7uQE!Rf?G>)iGe z2?ZxiaWTrf-q~%ul1@mKmy)FxoKi{X2W^rGO2mKd9rc+?Q8u9^4VST}5-%D!VV>w8 z^J&sU&M|+%@WdB>W2B z(9?;(C0B7KH)}vK8}CZ4j~AzEKzbepV_!K~d#2A^2OjQXJ>zPWFOO<9MM0JJNTa4c zZQ8zjVh!A$sH_k3bn+lIYU?R?t_9L6*3bo%u03~I9}(*0T59MN)P{`lc>xRN$NEbC z_}hPma>XtN*$7|i+xq*@8x9E9O?1~fL#%k%6rXf~-zb zsxx`Zb$K_$1;XX&#N0g~84DvqCzdzO}9Hv>%Q?{KJww&v#dj#zx5FfrrSrRYq{ zpHblNO7nBK&B0ol3I6d@UXY2O*)X^`+p;HGG`7Gx5{mQcFehOq zg?*yQ?XI4*EMZS5X4zRL>$rISm#IihS5}s+r^Dy0$A=~E3B}AkyofBg(v!141;WI; zMsW!@bI^8yR?yqp2whEG=hhi@YC4MaXGRmC{=^B5iSr0r9?g7O^QhDL?72H#Q@nqa zm;(HX2sWo&nBb+v1gZcpC91cyrYiGu)D2>Lfw7VAv4pB>QyoMK3GfRaVW-{|+C|Ggu%kSTN2zZA-~`)YsU1x1+c zJ~oAU6R&@MF>UF2PVqv@s6MYw`0=K%@nh??ifG`u3iUG;8|bS> z0B+0xUY+n&El@UfCTa#lg;3iom7&75essS_yrvEO+VQKmzhgVlS-QG?;XOLL7~RoC ztkW_6PRZf37Pn{{lg_#%|7gogt+o&CFuK1d?fj8_iGHUi&4G<>++BZIRw^rW%1)k+ zGCO4_NB2YbZJ7y?ZQ}L&GJA>DOQf#zb9~(-q_@QEJ%%lPaHQUqhvaGeHk-2eXIgA| z>426F;2p-gbkLTruhdN_B;6jzysw2K!Q{}mua*Toda<6T^SH!`?@YfXVPfS~VQQ z&a<)(dBQbQGI!92A%)rWYhJ7jEufD>)o;jxmW-_7S~79^1~Nt6_m8v73XdOZAJ+I+ z9q#)F++~ILkGYR%x6R2?m^nDqmOQ@&Yv8rP4BGO0HNH@c`&U6*ETF}j`ciGBbqkQq z)cP9Sj&Z9$%I1ImKaok{4rPd@NhH(IV@4L*;9i+MEdLw^ZN`oCg4>!~^Pc>37_b|( z=6my)H~G$I&fp*as2k2d{?U~}xEESav(4Zs%yIQ^BGajxj>mA>QV@6kw`+#Lds!!^ znnhf#l6+Kxy=0dI67A)?6eQHDLiZ8gNlEtnsbh8Xlr(=4u5}#kbrV66!Q&lspC%!N z(l!>4cCbpXWAXYUY_fU`4vC zHbWW}r5Atl+nv@A@=QWesrbd~`z#CYig>rtR2**B^ZViV*Vo}Y$^t~F`CeZK^hXND z?$tx>c4~3(g8h^*{J#6BdxNJjo#oFeTds zF(9~fbX$MoHqLMx;HP+4nzx22J8@87!#O>vkL!O(vFm#{t%w=%qLXA*cMKK@vla20 zFulAy=a1c!RW+=$_C@5y_&fIjEhdV%MkT~a>FyD6lbWoe>lkn7o@18aQgw);ho{;D z@4%WTkmamtD|pLUzrVh`{Uo05dpjUYhoG6+KzQXt^2c*p|MaAppNAqehYJmz3iBj4 zE_;8b=$mpIfU^7h@%&x|drawDDc1Vc1Yk#~{?@(!vjL~QnOeiquR-^KMCQBRk=AAR zNb8)ZXPGprCU*JwCixj2&#lMAsha`AgX704Yx3v5skspD_Izv_pzNxI7CFA1>oGfESIl&2S1yyMR@A*0O@5chuQ~WLy+S_!zK{ ze|m8eJcSqWa#C^60{))6a)<1R@!}+WdQ&qC&lodmkaK?Yy8RrS30Tw~T~XRQ27P}| zU_3sqBwD*c)b~c(Fu5S=ZxgZ%iq6()m^g2)9dMuSLGDrVB**$gvdAX8**$;lY!-(g@MwmtDze#RRk7+fUg*@Zee;OS>-DQUD6Lj>N*~GIC(SFBW^A=KiGX@@WlI0)6giuF-GJ~5pBbZ z`DN9A2eHFMIEZs3B8A0W8Nc>e?ih=ZAl_zGP&@kp3JyVOye?>6A1+`WgMO!y<-IKmPqUvA3W10;{^vY1) zI#NeSi}hk3v0z-hRzT$#=5hHP+}?(Ub+CL6er`+I_*0Od)))26Z}-!yP7Ik)nL6?4 z3k{0Z9NLSi6l(X;D8;> zIkF#B?>HZKL@-IehDG|hi>Y_kD9!*`qsm&N>Qy-8VP>rExZ5+M^&{DUIK(PWtaTadeaP8R(-3xu6Gb^wAoaPX{(bs@fIEWo&;h@d*jsH1gf`;;dRao zbvwcE(Dyd@GMmdpCQ%v^r6dsy+nM#jInW+5n>9jb;0MRSInh2$nEJt~K&?S;(BHP3 zo!&s-mn&@pfw{b@=GT8W7wesVowBa+yiNY_01;r3rus%PP334RqIq~w+IHnPN!}o% zSvZ$md;Tl^F8ve~2I{!*G>r`j{mT9n6ew~qGsoHdP&&R~+ARh;E=Tn+F}DagaQj&Mf?Vz(uYtDVPC0X?2LbW!`Lz-+~w)F5zz@q0!1r4e*g@L9XX|Q>NlZ z_m3Qc!SMSXI|_f28&5sMM=>7=A30a#QhGMTOE}Wr^L`4C**XAS1m)yGtVM{T6>f{vMBhm-aa0F70u~UD{)L zmnNpV;wT=9N|~;9SX*j3n{D_aemU$Mcq}i|#5w@Io8kFp%J5UnkK&sj%iFYGqT(of zX`KlZK40T_?BWCSoV0Pr0}grw$zcY#tb>S;B>(s7o;L^mBHUn+u(WN$G(yrp&|{amo7E$LFo1>c#(VW)*U%@+#BupWf7 z@LPs}&^`hwT>`hwT@M!`3se zu*B&CLYlTWORnjNUdPMr9_Q{CiE~$4TvUL`XRVku9l>8Dj^JJcD8BSzFbPmCH06u zI#1FE8hY_3bS^`rV2fX=eIovZzGOq1)rlo%Xx)bZ;A593-1Fd_XWQg$s5w!J*GHurr z_M=bOkG>g06ebUESK!XqT3QQlEgBZUpenZ`NHU*&Q3{Hh{=A-q4+aU0!K{u4eU>Sn zBu?;*MwBL45>}WPN0LQU7am6hp*WO2ePReJU}Ee1jL8}AA1q}jLX0EJ0&_8+jVgZx zB@qekk_WTZ3hAgkK?imWEp_6?PR%hHGD*kN<3VhL>x~IsZ;UBKz(64bCsGT4Eg&t+ zv36ow^RxjA%9>BG_QqluEOp`>;}sD>+m;_d0oPa;S0Hcka-!LAuqz>F*^^e91 zUM%Kg>1rlsxsS!iyidf+qh8QG3c7!sMmr>(GmNMN95m1P+cVa9y7ro?IqB zxh|%&A3-sg$)RM;?B%ZBu9vixO|&YkO&vDo4N2Ms6_I>u_z2O8>9tnlKQ4doAYo_~ z80(%d;cC5uIL>uhS9;Q~oS_8sRv#plcKsA@w>J|&@cVII-SOliS9PaFo34a^9}If0 z>tVmcMF&&WmY1 zzZ~%uMS9-*`B&s1Urub}cOH?ep%~$-r~GC)-Mk0;KF&}!kgMmPKA=YMqb z(_%sTx{Sp_@9Qvlk0T%^gR&HQevS7Tf0of%#LIwyU=s1x!V%w$x4tRl5l}4)a&*gG@c>@Vl z_A8`kT)nMs=IGIgM-5#eg2MP`bw&)_SFTo2#duQKr#y8+aUb_pL#V=@-|O3IrE0x% z=+!)1U+x@aZxS%aoVKE?^1CWWzusaL^}}kaXAykik4AVkSpa{ct$;MTRQ6fEpoD-mw-zSK|`mQF7+GnP+m44WRScTsfi8nJ!KZdL8e<#Rk?Qt8Y z0>5x)_*i()Ya#-=Bc1&wM8*HEXgq!y5gMZ>{&fT)z%#LsCfiCYdQfRwtf_jko!_>y z=;}m$3+c!HQ*0v!qLqlhf{i&v8+jPd<_pi#a|yziz26okODvz7#e*9Y zeg30`cFruzrbO3#*G3o@6{zPOuX?lxvk~8Pvf};WlgVnmonPv`O8-0ARM&HOA*)#* z89GSitlcQR%)=s^Lf%=DB4s?cgXA!sSp@TEHg{*J4B&1%^D;4i=5z0{>YE+q;#{WA zn-qcUBQSr5z&?_Y?m0jL>`0u+f1KOVd25D0fRF~s;l3Rr%;1>_X$+Z^)p`Xegaf!! zPopEl=X|ES#h?L0KW4aFffApfzHczFJ+Wai$k-tf2Js}w-q{Yt}{s6 zw#G&`eOWkzXaa z)VF`rMqP|fUXf13G4g}sdo^Ed69)$U#P$t-cHJ_}nmlvHwxWl?mtm8gKJM#wvXKt* zae6;Q`2nodWV*PnE;iFHRed_IYPQki3}Sh)J1pvMzCCRR!q7dALhy5BSOIU?d+fhD^&VZghY_0 zpCshk5jl}gZyOU{SId%?4TQo~H%Pp%Hq*L|1UBGx3LgapZ%2vKXeKxX8&NB-iy$&WT}dkAeEVh_UvQ`iuW z%+Qra=!A*naD*^!!A5JmHs2Rq%W%56#^4H!NBME8e}ntR)pQA=dehZ)m|TCioL|$e z>?ic8n*8_~3qUm#4MB{KF$5J5REFSDF6)Az?M6%4J~HH5vb2x7Sr+{O86e@5${856 z2h2&{-puRrLMuCf*VPV<-k!eK53B)_XsI@dfvv!VYLG@5X&7Do=mQOt=MRfyXOX5D zqf87fheaz2m2(n4fd@*$A0d@D!a`WDw6%9Zgi_&9 zzk^In+pGw@cU`fLzW**G*wIGnM8frKtWG>iFI9vq6Y9bQ-SdJ@)B#J@`YQIV=amSU z%Pr@XUCZmzMA%?F?fPzIV(iBWQ8wf$u2+*cxd4WIcZ3hpp8p;9Ka77)!LX#fxH@qd zIWinEO=OPZ;Z6d);Q(Wj05b>hAUju9p zN5I0E9vbwskKOG(eBR8jwjY-V2M3P^2Hj)4DL+i&s{~)=_$t9y5nqLTkN1)Mm!JRV zQ4zwd_6qX$aa04K)R2GlIAPY&MBV_Qm4d9J>}~3O{XryAf__Y>@|FF)2xFo$*R_m_ z%3t1-#3SA#nkJY4X4C-ZY)f#7ojNlwg0Jr$#Xl(S9fSiK+Pycyj%5HG<&GE&1+=(! zUDiNko(vDy*KlyEKezd+oR+&4;F`}6S9%MH9t^V!QUC8XSy_MObiQ(7_U*cN7m^i= z^p$$5SO5gX-a<+W34mo%Q2 zBpF&BFm##&3*sdPmm^XU&A#dBe{H;H>2nF+z<6=co`7fJQ4udp8seKBXYn>7&aZrt zv{7Pel@5|_e&v5jqZqaT>W?0`a?~x1OcpBD|#CKHom3oS4Ci&8@ zO6<`~ep*CB$Rw4(pPM3 zGSlmS|NG&$%vct5G>p54Ei=F3#DY=S8JS;U8t>K}VP0-F18c##cX2NuWqSd~9vdd^ z#Pu@C9TR^*3v{5d$GwEJ{R%%wy1#>bCNDnzbt%ZD z3dhV-(@K5E$@SoYM04L(ny^-RyX) z)YM7o*f=^2bUS+Q&0*ShZ+O-!fqChToa9plC!R1v_FkcuIz9-XE({VYA@P0&yq#%M zNS|Sj57P5xD(J42G%ohhPwjdpyUIV1=z257WFA)P+e<3PH^FC)jIlD9%(E1OLgo-< zY-4{ii>T+eHG%27n*Oab)BpL??@IlDLB;L|J49JonA}v;#rB3tW0CuAZ|L(p)`hrf zY))R+U1MYZqLrj@)*Q+zSJeaLOn93axhDv|?7}tf*a)5j$O3Le>KRo5)XD_zM*MA% zVSa4bK}Xub%4b$i(J{;}Hyz^xtSh~8wh(`ZChmhf$JPW2hz{qRiR%xpeaA>lpHlYe z7z94k@cBFhd*D&$P|}sfqC;V|V_YOPT z7g^#A0AtrMkWe49TfmHgVqvQ-qm)iTKhjSQHCTc7pm*rmz}dHal;fi@dd`Mi}) zakX2KTv+)Edkl$YFl49<7rLUn7>0l6?QFCd8-%RqAOaX-FKzlc^;cg1=MkcXOQJ71 ziM}-1_g!jYOaA=>_nYG16p&4%| zQ>te9*F4-&nT}sGp>z7X$hzwBtd6hgKIdkAS57YxYa6V73QIAYKWVx2l%Dj95qPn_ zQ-&@$fiaH8IE9I>V!AJ~ML=mmZJtLe6X-qoVt(z;0YaIZFXu2{%WA1DjBY?M5F7OO zlV+s?I2JSmTYiIK@`!;l3|@b*geL!y0d_x#q!9TGOj~-^T(OsH`GQDFi-Zk8BVm!e*XB`TUEs`p zz*$Hw8hzGP6p&{MScnH@Au8>q)6G=>vY1|9SF;{diA-=>Osx&Ef-KIa1=Z3_lx1Qk zXAeo;a7hci_YrLArgndUXd|q|0EnG7*W675@QoS>G|4?CgGEqM1lmmk5fq4^tOz)N zQDcIxBg9ngHOivl^;!xH}xm=VY>jbM) z`K7DS!ZU{kof);>h_(YObDfx9)!C_f<$lG|TX=PRWa@IEar&CiIrSQjxpU%diIiuj z<*Pt^ye@w}^2C2_#0MfJ5h)tUYQmq@jdQEJBlgaAUFHS6W~?lvh=GzOa@6uL_s8=U zyldnUv{&bWm&?>>yIljc#T)}ryeuc94fN3XPAp%MR^|J~Z0R`5H_X6d^`$%+aS$*g zTZjV%t4c3D04my4f7{Ig!mt4b)Z5E;Le$Y!Ow@msp{_jYCz)bcdA;7ES8FlFsGrKn zC@D&Tk>W`PTapcCd+RE2^DV{j*&}+k+BVY@KiM#5`l-NueOb-sK_QcUcS=Flt1xgP z`ANWk*<;jt0})XS;dWtG$=HktOb^CoG+;%uPh$Zr`ha9)Du!s@Tx7#C4m#((Knjy1 zHGzNN+zF&$?fIDGlTnQftnQR62ka3E+76*Tn(^7#0>|lt+q69W1iVdyww+Vc0ogd5 zz246=inQ1Fk&3HuC(bw-L$dB3-Fs4gkmNCWZ zTz+*J=%=w;u+!KLSQ5^yBakc!=+>RqngV|tYk5IZaAWB=gcvnY##(taaK<{wYg1X? zZT3!=Jk_?jAYd{lPos1T0b`Z3l?WiK%zY&0M39o2bD)YU5utfe<_1)+T=x zV)tv>L@Ui0aucsKFVB%L=2{QkKu6NwMj{+;u{ww_3eS)|$2yQKgW^wk7+%cDS(BV* zp^a6>@_>jZwWxlq7%Ig^Lk$R$JJWQzCXjM;6?RaL?pYT5B7#7c$WRMR%2?WG5^S+$ zpGv|lw(q&_+#B{1MuD{-_>?DE^^$*baK;|EM#06d&rsk+c1>9WF*0|)dOVg8EV7*i zxVg(9fuqkU_-&-Zab12Jqgn(m^}f1Snw5&M;!5AS2X3&QR@Gfe^On8E=q}21`POwW zq9ukp%GgDV3^g94>_QKdQ!vL--~GDL-*P%8sqj9h5tVq4sZ`@V{!)?mM5%wvhv-U0 zpoK?0))rAWF*`^^F%iQ#!k`ey_`P>CfsH@J4u^1tdZ$$~yqnfq8wAT3m8ksk;ImRM z|1S?dw{AUY@$?MK`gXllz>BWhw`&addCR<%=B3sf{m#8)x{XVLz>D79=EVX4@tv*7R+ei0W zZ(QGf)OXx>A1maH1x$gnV$P7Ve5bWO;H;Rl`nS(MW8MmR>%Y+}sQ)GY`a}6G59gPk z|B*SMUw-~iZ%DuV{9iaI{XLP@Ulg`pLjQ$mDkjj@2Xsc-L0lDhEI5D3dxv8%=Eh-p zdAo*XE4Pd=s5`;D1zYn0{iYlVRTy;p@yBK;H^=wV@NA9|Lz{Q7eAZW@vTm<9_m>zn z4MZSr)e(6aCthR)xIXC*HI@~0YXHPLxEB&lH1f~|o@i8GHr>a0MNFM_qQ(dT{G#}r z##~R5skfXYe{VHOQF?#qY%e7zN1wH{*aPpsIN%pt3AIC)8wpkpNLN=BQ7YoXCKXhlHK7I5?>pP5u<)dr36K_`G(Y`O6l;GQ*{$R#hYqFhQ#=ci z@)lSR1DQCSBk zO;ilXF)BsPfJ`s0mtGoYlfX=7`6#0=mM_!aX?4!jVre<$c?+u|RfVO)(V42l((Uf7 z;f5U}bJy!~xr2X%Y5jA_34TVpC%O5c=S)u9GiwFp6p(`qIy4L|x$``>g#ZZd>08mk#0y#ma*ZDFJTJe*_bX6#@4OeItZWtlGC%(HnxUoy%YAos?Qq zt?*`LI_I2;VIzp!f3I(xnTsm$v0$m5V%|r_@NS&7i-LbkD&=LHdH0n8_?-my?y7U2#Ye&;?N`>m^_|O; z#k`!kuU#C5E6%Hl)HMKit2@-Goq04csxSOsPQq-S7(s&Vh#-pz&wRUB&UrroQY-J< zgfnAmLSio6Ql1*{V~$Aoax>yAOwtBo>~x1S$BDECKaUf)oYoT(BE__cvGf4{TuckV zuUza^OP8=}4M`p!Lo6dEszthF2-R@(pR`9bE=PaVZ#n?&qX|5k;3r{8_XHMgcdo_x zC*5!(dE8<)SzMC9X3K}>iGxtYnKWQ32B9&v8{2WtNwa(p*d)Tpb}B_rh;Quf0Hg_C z+mUOKH-TV~%g>6L3wWp1KJ8{vwOcKWw=$Q5ncZ+ z;>mxDfEG#RwLrQ~cW+N9#sW^Fj`JY{6&DI>NLL-&nE2+Zf{ILgy;l+ke**|wKH z1ee}88=|IuvERF;7KyiNfPy-!h3dtMv8<~GV6y^g=Uu2MO@~{|!CTNs7EEs0*c7gnV zto2)3&gL~&O9E^#gGP+8N#&FQ_$p55cE4XO=C`-N6#Vk_SN$Arc22SAf}Tu+1B>O) zjEp$7D5H`xI;3TkOcBlqd?Fd$??y(&GXC&SnHqc|>5%E(mv0c1gWg9&?gvBP7=VAa zoNtRS&ldD;_u8c@hjkYA?I1hH&^f*C7xVYk;@%;a5bRM#E@dQ2@y#5A^YmLvR2`TK zp)tu!$v62D2x)7**`GhuR;XRte3doVqreB zxx)L7JGJefRZ`-O-OYe12!(Y7%~1fG7oIDY>YJWo6#mAwz0-zCV>Peupo@Qpr#Cq@M=5YXzQCYAO8cL#+(euDD#m%(jd$`Ef)eQ}Y`SuXCl~&)Aaqa4x0xJC zw0T{=S6A!BtWha)K>QX4PR?sZ6q`jL-!jK<5*$e+h-q2X2=*5P3t(j0%o$^1AeEgn zNlY=Zw>>zMn6~J=Ln_+r#DsstI(cGE6sr zdvmW?eos(1USfT~_v zim1L#%HrQyda~dM=Jo2ApZ~G-q5W{{gMYzCyR7o0W=cLHpJGaQ3l5at3ZA}f0nfsV zQ?GZopoi32a?%Nw)%IpR!)v*B?;s$2A`@00K6>{Kz4x%X;CDc=pIqGQZ>17RBwMTM{qSr8?}c$+)W2xU7+OIZxC_&=$MBBLb#EVuvw diff --git a/master/searchindex.js b/master/searchindex.js index 09ac95af9..b15315ff3 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/improving_ml_performance", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/improving_ml_performance.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "Improving ML Performance via Data Curation with Train vs Test Splits", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 84, 89, 90, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 89, 90, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 89, 90, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 68, 91, 95, 96, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 83, 84, 89, 96, 105], "benchmark": [1, 38, 83, 84, 89, 90, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 98, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 61, 62, 66, 68, 69, 70, 71, 73, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 75, 77], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 61, 70, 79, 81, 83, 86, 87, 90, 93, 94, 95, 96, 97, 99, 101, 102, 104, 106, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 59, 61, 62, 65, 69, 70, 74, 78, 79, 81, 82, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 88, 95, 97, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 62, 89, 90, 95, 96, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 89, 95, 98, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 61, 62, 63, 64, 65, 70, 71, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 95, 98, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 89, 93, 98, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 59, 63, 66, 69, 78, 82, 91, 93, 94, 95, 98, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 59, 61, 66, 69, 70, 71, 83, 91, 97, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 60, 61, 62, 63, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 70, 71, 73, 78, 87, 88, 89, 90, 91, 94, 96, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 61, 63, 66, 69, 71, 73, 74, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 97], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 59, 61, 63, 70, 72, 74, 77, 81, 83, 86, 87, 88, 89, 91, 93, 94, 95, 96, 98, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 63, 64, 65, 66, 68, 69, 70, 71, 73, 79, 81, 82, 90, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 32, 37, 39, 42, 44, 47, 57, 62, 63, 65, 71, 73, 74, 75, 77, 78, 84, 89, 90, 93, 94, 95, 97, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 63, 66, 68, 69, 70, 71, 93, 95, 103, 104], "trace": [1, 89, 90, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 87, 88, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 95, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 89, 90, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 89, 90, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 89, 95, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 61, 69, 70, 71, 75, 93, 94, 95, 98, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 86, 88, 89, 90, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 60, 66, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 68, 73, 87, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 73, 97, 98, 101, 108], "better": [1, 5, 10, 44, 53, 61, 63, 71, 73, 74, 83, 87, 88, 90, 93, 94, 95, 97, 99, 102, 103, 104, 105, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 60, 61, 66, 68, 70, 71, 73, 77, 81, 86, 88, 91, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 61, 71, 73, 86, 88, 89, 90, 91, 93, 95, 97, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 69, 73, 83, 86, 87, 89, 97, 99, 100, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 61, 62, 69, 70, 71, 97, 101, 104], "amount": [1, 3, 91], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 91, 94, 95, 98], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 95, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 83, 86, 87, 89, 90, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 88, 95, 96, 97, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 47, 53, 56, 57, 71, 91, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 32, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 96, 97, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 61, 73, 93, 97, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 98, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 63, 71, 73, 74, 86, 88, 89, 90, 91, 93, 94, 97, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 59, 61, 62, 65, 69, 70, 71, 73, 78, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 71, 75, 78, 95, 97, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 61, 62, 63, 65, 66, 69, 70, 71, 73, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 62, 63, 65, 68, 73, 89, 90, 91, 97, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 96, 97, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 61, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 61, 62, 63, 65, 66, 82, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 61, 63, 65, 68, 69, 70, 71, 73, 74, 79, 81, 82, 83, 88, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 73, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 64, 70, 89, 90, 91, 93, 94, 98, 99], "yield": [1, 38, 42, 98], "between": [1, 5, 10, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 59, 61, 62, 65, 68, 70, 71, 73, 74, 77, 81, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 61, 62, 63, 68, 69, 77, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 60, 61, 68, 69, 71, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 91, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 70, 73, 83, 86, 88, 89, 93, 95, 98, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 61, 62, 66, 68, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 68, 69, 73, 75, 77, 81, 87, 88, 89, 90, 91, 93, 94, 96, 98, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 70, 71, 75, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10, 95], "python": [1, 2, 42, 60, 73, 89, 90, 96, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 63, 94, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 86, 87, 88, 91, 94, 95, 96, 97, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 65, 73, 83, 87, 88, 94, 97, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 60, 61, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 70, 71, 73, 86, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 60, 69, 73, 74, 87, 88, 89, 90, 93, 95, 97, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 73, 95, 97, 98, 106], "astyp": [1, 98, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 65, 69, 70, 71, 73, 75, 77, 78, 79, 82, 88, 89, 91, 95, 98, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 69, 73, 74, 91, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 84, 95, 96, 97], "choic": [1, 8, 44, 53, 55, 91, 97, 102, 104], "replac": [1, 56, 60, 71, 86, 87, 89, 90, 91, 94, 95, 96, 97, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 71, 88, 89, 90], "05": [1, 10, 27, 31, 56, 69, 73, 79, 81, 93, 96, 97, 98, 99, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 89, 90, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 89, 90, 91, 95, 97, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 73, 86, 88, 89, 90, 93, 95, 96, 98, 99, 101, 102], "max_it": [1, 87, 88, 94, 104], "10000": [1, 41, 96, 97], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 60, 61, 63, 69, 70, 71, 73, 75, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 63, 68, 78, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 73, 83, 87, 88, 91, 93, 94, 95, 97, 98, 107, 108], "impli": [1, 10, 37, 62, 69, 95], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 61, 62, 63, 65, 68, 69, 73, 77, 81, 88, 89, 90, 98, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 61, 62, 63, 66, 86, 87, 93, 94, 99, 102, 103, 106], "maximum": [1, 10, 70, 78, 82, 95, 107], "minimum": [1, 8, 10, 21, 44, 46, 63, 68, 81, 95], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 68, 73, 89, 97, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 89, 91, 95, 97, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 60, 61, 62, 63, 66, 68, 69, 70, 73, 74, 75, 77, 78, 81, 82, 83, 84, 86, 87, 88, 89, 91, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 89, 95], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 60, 61, 62, 64, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 61, 65, 69, 73, 78, 82, 83, 86, 87, 88, 90, 94, 97, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 59, 60, 63, 70, 71, 73, 75, 83, 84, 88, 95, 96, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 60, 61, 62, 63, 65, 68, 69, 70, 71, 73, 77, 78, 79, 81, 87, 90, 91, 94, 95, 96, 97, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 60, 63, 65, 66, 68, 70, 71, 73, 74, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 88, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 60, 61, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 86, 87, 89, 90, 93, 94, 95, 97, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 60, 61, 66, 68, 69, 70, 71, 73, 74, 78, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 59, 60, 61, 63, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 17, 41, 44, 52, 53, 57, 68, 71, 73, 86, 87, 89, 90, 91, 95, 96, 98, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 66, 68, 69, 70, 71, 73, 75, 78, 82, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 60, 61, 70, 73, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 61, 83, 89, 90, 94, 95, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 89, 91, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 89, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 60, 61, 63, 65, 69, 70, 71, 73, 74, 77, 79, 81, 84, 86, 87, 88, 91, 93, 95, 97, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 60, 61, 70, 71, 73, 75, 77, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 98, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 59, 84], "produc": [1, 2, 5, 9, 10, 17, 49, 61, 71, 73, 75, 77, 83, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 60, 61, 62, 73, 90, 94, 95, 97, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 68, 89, 90, 91, 97, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 62, 69, 87, 91, 94, 96, 98, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 60, 65, 68, 73, 74, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 70, 71, 90, 91, 95, 98, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 70, 73, 78, 86, 87, 94, 95, 97, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 29, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 88, 89, 90, 91, 93, 97, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 63, 66, 69, 89, 90, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 61, 66, 68, 69, 70, 89, 90, 96, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 60, 97, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 63, 66, 70, 71, 73, 75, 78, 82, 86, 88, 95, 98, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 59, 60, 61, 62, 63, 70, 71, 73, 75, 77, 78, 79, 81, 82, 88, 95, 98, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 61, 63, 69, 75, 77, 78, 79, 81, 82, 86, 87, 88, 97, 98, 101, 102, 103, 107, 108], "ball": [1, 96], "bin": [1, 3, 63, 89, 90, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 60, 68, 71, 73, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 60, 61, 62, 63, 66, 68, 69, 70, 71, 74, 77, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 61, 62, 68, 71, 81, 91, 97, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 98, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 79, 81, 82, 83, 86, 87, 88, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 60], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 62, 63, 64, 65, 70, 71, 83, 95, 97, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 61, 63, 71, 73, 83, 87, 88, 94, 95, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 60, 72, 73, 74, 83, 84, 86, 87, 98, 106], "wrap": [2, 38, 42, 51, 60, 70, 73, 83, 86, 87, 89, 90, 93, 94, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 60, 69, 70, 73, 78, 86, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 60, 70, 73, 74, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 61, 64, 70, 71, 83, 84, 86, 87, 88, 93, 94, 97, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 73], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 61, 62, 63, 68, 70, 73, 75, 77, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 60, 66, 69, 70, 73, 84, 95, 97, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 71, 73, 75, 83, 89, 90, 93, 96, 97, 98, 101, 104, 108], "four": [2, 10, 96, 99, 108], "clf": [2, 3, 5, 49, 73, 83, 86, 93, 95, 97, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 59, 60, 70, 72, 73, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 73, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 59, 60, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 32, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 87, 96, 97, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 59, 60, 61, 62, 63, 64, 68, 70, 71, 72, 73, 78, 79, 80, 81, 82, 84, 91, 92, 100], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 61, 62, 63, 64, 66, 69, 70, 71, 73, 75, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 70, 73, 83, 86, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 61, 63, 71, 78, 79, 81, 87, 88, 94, 95, 97, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 61, 62, 66, 69, 71, 73, 83, 86, 87, 88, 89, 91, 93, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 62, 71, 73, 78, 81, 82, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 60, 61, 62, 65, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 59, 61, 66, 68, 70, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 32, 44, 46, 49, 52, 53, 54, 63, 66, 69, 71, 73, 74, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 63, 68, 69, 73, 75, 77, 87, 91, 93, 97, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 60, 61, 62, 63, 65, 66, 69, 70, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 61, 73, 83, 86, 87, 88, 89, 93, 94, 95, 97, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 61, 68, 71, 73, 87, 88, 89, 90, 94], "loss": [2, 39, 60, 71, 73, 91, 98], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 73, 83, 91, 95, 97, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 60, 61, 66, 69, 70, 73, 74, 84, 89, 90, 91, 93, 94, 96, 99, 100, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 60, 70, 71, 81, 83, 84, 88, 89, 90, 91, 95, 97], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 59, 60, 61, 62, 63, 65, 70, 71, 73, 74, 75, 77, 78, 84, 86, 87, 88, 91, 93, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 61, 89, 90, 91, 95, 97, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 62, 63, 68, 69, 73, 75, 87, 94, 95, 97, 102, 103, 106, 107], "clonabl": [2, 73], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 61, 66, 69, 70, 71, 73, 74, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 100, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 68, 70, 71, 73, 74, 77, 79, 81, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 73, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 65, 69, 73, 79, 84, 89, 95, 97, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 61, 62, 63, 65, 68, 69, 73, 83, 89, 90, 91, 93, 97, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 63, 64, 66, 69, 70, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 73, 83, 86, 87, 88, 95, 97, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 73, 83, 88, 91, 97, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 60, 70, 73, 87, 88, 89, 90, 94, 97, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 73, 91], "independ": [2, 3, 10, 62, 73, 94, 95, 98, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 60, 73, 74, 77, 81, 83, 86, 87, 95, 97, 105, 106], "neural": [2, 39, 60, 70, 73, 88, 91, 97, 102, 104, 106], "network": [2, 38, 39, 42, 60, 70, 73, 87, 88, 91, 94, 97, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 70, 73, 86, 87, 88, 90, 91, 93, 94, 98, 104, 105], "initi": [2, 3, 14, 19, 38, 42, 52, 61, 73, 86, 94, 97, 98], "insid": [2, 42, 73, 97, 99], "There": [2, 3, 7, 52, 83, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 66, 68, 69, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 61, 73, 87, 88, 89, 94, 95, 96, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 77, 81, 83, 86, 91, 98, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 59, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 63, 73, 84, 98, 103], "everyth": [2, 69, 99], "els": [2, 69, 89, 91, 95, 96, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 83, 89, 95, 96, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 62, 63, 64, 65, 70, 71, 75, 79, 81, 82, 90, 91, 98, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 74, 78, 79, 81, 82, 96, 97, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 62, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 81, 84, 86, 88, 89, 90, 93, 94, 95, 96, 98, 100], "erron": [2, 3, 37, 44, 47, 57, 62, 63, 71, 73, 74, 75, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 61, 65, 68, 73, 74, 79, 81, 82, 83, 86, 87, 93, 94, 95, 97, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 73, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 73, 83, 86, 87, 97, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 60, 61, 63, 69, 70, 71, 73, 78, 79, 83, 87, 88, 89, 90, 94, 95, 96, 97, 99, 101, 103, 104, 106], "x_train": [2, 86, 89, 90, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 73, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 59, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 87, 92, 100, 101, 104, 105, 106], "pred": [2, 44, 57, 86, 87, 98, 105, 106], "x_test": [2, 86, 89, 90, 99, 102, 106], "might": [2, 5, 10, 52, 61, 73, 78, 86, 87, 89, 90, 91, 95, 97, 103], "case": [2, 3, 10, 14, 37, 49, 52, 61, 73, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 60, 62, 63, 65, 71, 73, 83, 86, 89, 90, 93, 96, 98, 99, 103], "adapt": [2, 38, 40, 57, 59, 73, 104], "skorch": [2, 73, 83, 97], "kera": [2, 59, 66, 69, 73, 83, 97, 103], "scikera": [2, 60, 73, 97], "open": [2, 41, 86, 87, 90, 93, 94, 96, 99, 102, 103, 104, 106, 108], "doesn": [2, 10, 73, 83, 95], "t": [2, 3, 4, 7, 10, 18, 28, 29, 38, 39, 41, 42, 43, 44, 49, 55, 56, 65, 70, 71, 73, 79, 81, 82, 83, 89, 90, 91, 94, 95, 96, 98, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 60, 61, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 60, 66, 68, 70, 73, 83, 84, 86, 87, 89, 90, 94, 101, 108], "made": [2, 5, 17, 38, 42, 53, 73, 86, 87, 91, 94, 95, 97, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 73, 89, 90, 96, 97, 99, 102], "inherit": [2, 7, 39, 73], "baseestim": [2, 42, 73], "yourmodel": [2, 73], "def": [2, 7, 15, 38, 42, 60, 73, 87, 88, 89, 90, 91, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 70, 71, 73, 86, 89, 91, 95, 96, 98, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 62, 63, 65, 66, 68, 69, 70, 73, 77, 78, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 60, 62, 63, 66, 69, 70, 73, 74, 77, 79, 81, 86, 87, 89, 91, 93, 94, 95, 97, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 62, 82, 91, 97, 107], "state": [2, 3, 5, 38, 39, 42, 48, 73, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 70, 71], "et": [2, 3, 37, 39, 70, 71], "al": [2, 3, 37, 39, 70, 71], "2021": [2, 3, 37, 70, 71], "weak": [2, 69], "supervis": [2, 10, 89, 90, 97, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 59, 66, 69, 70, 71, 73, 75, 79, 81, 83, 84, 89, 96, 98, 100, 105], "uncertainti": [2, 10, 46, 70, 73, 97, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 61, 68, 69, 73, 83, 89, 90, 91, 95, 97, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 60, 61, 71, 73, 83, 84, 87, 89, 90, 95, 96, 98, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 59, 61, 62, 65, 66, 70, 71, 73, 77, 78, 79, 81, 83, 84, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 59, 60, 73, 94], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 59, 73, 86, 87, 89, 90, 95, 96, 98, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 62, 69, 70, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 86, 87, 97], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 60, 61, 62, 65, 66, 68, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 60, 69, 73, 83, 84, 87, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 70, 71, 75, 77, 78], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 70, 71, 83, 87, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 63, 73, 83, 87, 89, 91, 97, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 61, 63, 66, 69, 71, 74, 88, 90, 94, 97, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 61, 62, 66, 68, 70, 71, 73, 88, 89, 93, 97, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 70, 73, 86, 87, 88, 93, 94, 95, 97, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 63, 70, 71, 81], "tild": 2, "paper": [2, 4, 10, 61, 70, 79, 81, 96, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 73, 87], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 61, 62, 65, 66, 69, 73, 74, 81, 87, 89, 94, 96, 97, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 73, 84, 97, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 63, 79, 97], "clean": [2, 68, 71, 73, 74, 83, 86, 87, 89, 90, 96, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 73, 88, 95, 97, 98, 99, 101, 102, 103], "messi": [2, 73, 99], "ridden": [2, 73], "autom": [2, 9, 10, 73, 83, 86, 87, 90, 93, 94, 96, 97, 98, 99, 102, 104, 106], "robust": [2, 47, 52, 73, 90, 95, 97, 98], "prone": [2, 73], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 60, 63, 64, 66, 69, 70, 71, 73, 74, 82, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 61, 68, 73, 89, 90, 97, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 61, 77, 81, 88, 89, 90, 94, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 65, 68, 69, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 61, 62, 66, 68, 69, 70, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "tutori": [2, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "repo": 2, "wrapper": [2, 60, 86, 87, 88, 106], "around": [2, 68, 89, 90, 98, 103, 104, 108], "fasttext": 2, "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 70, 73, 86, 87, 93, 94, 95, 96, 97, 107, 108], "along": [2, 49, 63, 81, 89, 90, 91, 95, 97, 104], "dimens": [2, 57, 75, 78, 91, 97, 104, 107], "select": [2, 9, 10, 27, 51, 61, 71, 91, 98, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 99, 100, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 63, 66, 69, 71, 73, 74, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 73, 86, 88, 93, 96, 97, 103, 107], "By": [2, 37, 62, 63, 73, 89, 95, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 62, 63, 65, 70, 73, 83, 87, 88, 89, 90, 94, 95, 97, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 73], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 61, 62, 63, 65, 68, 69, 70, 71, 73, 74, 75, 77, 83, 84, 87, 89, 90, 96, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 59, 61, 70, 73, 84, 86, 87, 89, 90, 91, 93, 94, 95, 97, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 68, 70, 73, 78, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 104, 106], "consist": [2, 3, 38, 42, 51, 57, 61, 95, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 60, 63, 68, 71, 73, 74, 77, 81, 83, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 62, 73, 90, 94, 95], "close": [2, 3, 10, 41, 47, 70, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 71, 73, 97], "equival": [2, 3, 38, 42, 47, 70, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 62, 63, 73, 97, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 62, 99], "certain": [2, 3, 5, 38, 42, 60, 69, 73, 89, 90, 95, 96, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 81, 89, 90, 91, 97, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 60, 61, 63, 69, 70, 71, 73, 78, 79, 81, 89], "filter": [2, 3, 10, 41, 43, 56, 62, 64, 65, 67, 69, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 91, 94, 96, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 97, 102, 103, 106, 107, 108], "particularli": [2, 83, 98, 101, 104], "filter_bi": [2, 3, 41, 44, 63, 84, 97], "frac_nois": [2, 44, 63, 79, 97], "min_examples_per_class": [2, 44, 63, 97, 99], "impact": [2, 4, 10, 89, 90, 91, 95], "ml": [2, 4, 5, 9, 10, 16, 73, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 100, 101, 102, 104, 105, 106], "accuraci": [2, 39, 71, 86, 87, 88, 91, 97, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 63, 75, 77, 79, 97, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 61, 63, 69, 75, 77, 79, 87, 88, 89, 95, 97, 98, 101, 105], "caus": [2, 44, 49, 89, 90, 95, 97], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 62, 63, 64, 66, 67, 69, 70, 72, 76, 78, 79, 80, 82, 83, 84, 86, 87, 89, 90, 96, 97, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 61, 63, 64, 65, 66, 67, 68, 71, 72, 74, 76, 77, 79, 80, 81, 84, 97, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 65, 70, 71, 99], "control": [2, 5, 9, 10, 17, 41, 44, 61, 69, 70, 73, 79, 81, 89, 90, 95, 96, 97], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 61, 62, 65, 66, 68, 70, 71, 73, 77, 81, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 73, 95, 97, 101], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 60, 61, 62, 66, 68, 69, 70, 73, 77, 78, 81, 82, 83, 84, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78, 107, 108], "statement": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78], "big": [2, 41, 63, 69, 73, 99], "limit": [2, 5, 17, 41, 52, 63, 83, 95, 103, 107, 108], "memori": [2, 38, 41, 42, 63, 69, 75, 77, 89, 107], "experiment": [2, 38, 39, 41, 42, 43, 63, 84, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 106], "label_issues_batch": [2, 40, 63, 97], "find_label_issues_batch": [2, 40, 41, 63, 97], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 68, 69, 70, 71, 77, 81, 89, 95, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 84, 99], "label_issu": [2, 41, 44, 63, 66, 73, 75, 84, 86, 87, 88, 91, 94, 97, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 73], "clf_final_kwarg": [2, 73], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 61, 62, 63, 65, 66, 68, 69, 71, 73, 74, 77, 81, 83, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101, 102, 103, 104, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 63, 65, 66, 69, 71, 73, 74, 75, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 63, 66, 69, 71, 73, 74, 75, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 99, 102, 104, 106, 107, 108], "final": [2, 10, 73, 86, 93, 95, 98, 103, 105, 106], "remain": [2, 73, 84, 86, 87, 91, 98, 102, 106, 108], "datasetlik": [2, 57, 73], "beyond": [2, 5, 7, 9, 10, 12, 36, 83, 86, 87, 98, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 60, 61, 62, 73, 81, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 60, 61, 62, 73, 78, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 70, 95], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 93, 95], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 95], "torch": [2, 38, 39, 42, 87, 88, 91, 94, 96, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 60, 61, 66, 69, 73, 83, 84, 88, 89, 90, 91, 97, 99, 104], "tensorflow": [2, 57, 60, 83, 88, 97], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 60, 63, 66, 67, 68, 69, 70, 73, 81, 83, 87, 88, 90, 91, 93, 95, 97, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 77, 78, 79, 81, 82, 84, 87, 88, 89, 90, 91, 96, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 71, 78, 82, 86, 87, 88, 91, 93, 94, 95, 97, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 61, 62, 68, 70, 82, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 73, 88, 97, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 60, 61, 62, 63, 66, 69, 70, 71, 73, 75, 77, 78, 81, 82, 86, 89, 90, 91, 93, 95, 96, 98, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 88, 91, 94, 95, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 61, 66, 68, 73, 79, 81, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 60, 61, 75, 77, 91, 97, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 61, 62, 63, 66, 69, 70, 71, 75, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 60, 71, 83, 86, 87, 94, 97, 104], "eg": [2, 5, 10, 57, 66, 69, 89, 90, 97, 98], "repeat": [2, 57, 61, 101, 104], "appli": [2, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 65, 70, 79, 83, 86, 87, 88, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 63, 70, 74], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 59, 61, 62, 63, 65, 66, 69, 70, 71, 73, 75, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 73, 81, 97, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 61, 62, 63, 65, 70, 71, 73, 78, 79, 81, 82, 86, 88, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 60, 61, 68, 77, 81, 87, 96, 98, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 61, 62, 63, 65, 68, 69, 71, 74, 75, 77, 81, 90, 97, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 61, 63, 66, 68, 71, 77, 81, 89, 95, 97, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 61, 68, 70, 71, 74, 77, 81, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 84, 91, 93, 95, 97, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 60, 63, 70, 71, 73, 74, 79, 81, 96, 97, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 68, 70, 81, 84, 90, 92, 95, 97, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 60, 68, 70, 71, 73, 77, 81, 98, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 60, 61, 62, 63, 66, 68, 70, 71, 73, 74, 82, 84, 87, 88, 90, 91, 94, 98, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 68, 90, 96, 97, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 62, 63, 69, 84, 91, 95, 97, 103], "observ": [2, 3, 47, 54, 88, 89, 90, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 61, 62, 63, 66, 68, 71, 77, 79, 81, 82, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 72, 73, 86, 87, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 61, 63, 68, 70, 71, 75, 77, 90, 95, 97, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 61, 63, 66, 71, 73, 75, 77, 78, 83, 87, 88, 90, 91, 94, 97, 103, 106, 107], "label_issues_mask": [2, 44, 71, 73, 84], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 63, 66, 69, 70, 71, 73, 75, 79, 81, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 63, 79, 84, 86, 87, 97, 99], "significantli": [2, 10, 91, 95, 99, 101, 105], "reduc": [2, 41, 44, 57, 88, 97], "time": [2, 10, 38, 41, 42, 57, 61, 82, 84, 89, 91, 97, 98, 103, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 60, 71, 86, 91, 93, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 73, 88, 95, 97, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 69, 91, 95, 98, 99, 101, 105], "caution": [2, 5, 97, 98], "previous": [2, 5, 14, 57, 70, 73, 84, 86, 88, 89, 93, 94, 98, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 73, 86, 89, 91, 93, 95, 97, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 61, 65, 68, 71, 73, 79, 81, 84, 86, 90, 93, 95, 96, 97, 101, 102, 103, 108], "still": [2, 41, 42, 57, 70, 86, 91, 97, 104], "extra": [2, 38, 42, 57, 60, 61, 62, 73, 91, 94, 97, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 62, 65, 66, 73, 75, 79, 90, 103], "overwritten": [2, 73], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 60, 65, 97], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 69, 71, 73, 78, 88, 89, 90, 91, 95, 97, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 63, 71, 89, 93, 98, 102, 103], "earli": [2, 91], "stop": [2, 91], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 70, 86, 89, 91, 93, 95, 98, 102, 106, 108], "f": [2, 7, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 60, 73, 78, 82, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 61, 69, 70, 73, 75, 77, 87, 88, 91, 95, 97, 105, 107], "access": [2, 10, 14, 38, 42, 73, 90, 91, 96, 102], "hyperparamet": [2, 65, 70, 91], "purpos": [2, 52, 89, 90, 95, 97, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 61, 63, 73, 87, 89, 91, 94, 96, 98, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 73], "yourself": [2, 5, 41, 90, 95], "altern": [2, 7, 10, 49, 54, 57, 60, 61, 71, 84, 87, 88, 91, 93, 94, 96, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 60, 61, 63, 70, 71, 73, 77, 78, 81, 82, 83, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 61, 70, 73, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 104, 106], "offer": [2, 5, 9, 10, 87, 88, 89, 90, 94, 97, 98, 99, 102], "after": [2, 3, 5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 61, 73, 87, 89, 91, 94, 95, 97, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 70, 73, 86, 89, 95], "label_issues_df": [2, 73, 91], "similar": [2, 10, 37, 38, 42, 54, 57, 61, 65, 66, 68, 70, 73, 77, 81, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 60, 62, 63, 65, 68, 69, 70, 73, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 66, 73, 89, 90], "were": [2, 3, 5, 10, 37, 42, 52, 62, 68, 81, 86, 88, 93, 97, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 70, 78, 83, 91, 95, 97, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 61, 62, 71, 90, 97, 99, 105, 108], "num_class": [2, 37, 41, 57, 60, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 78, 89, 95, 97, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 71, 95, 97, 99, 104], "trick": [2, 97], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 61, 69, 70, 71, 83, 89, 90, 91, 93, 94, 95, 98, 103, 104], "account": [2, 37, 61, 65, 70, 71, 87, 94, 97, 99, 101, 102, 104, 106], "word": [2, 3, 56, 81, 82, 97], "remov": [2, 10, 32, 37, 38, 42, 44, 73, 83, 86, 87, 91, 94, 95, 96, 97, 98, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 61, 62, 68, 71, 73, 77, 81, 88, 89, 90, 91, 94, 95, 98, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 60, 71, 73, 75, 83, 84, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 61, 63, 65, 70, 71, 73, 74, 75, 83, 86, 87, 88, 91, 94, 95, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 64, 66, 67, 68, 69, 70, 71, 72, 73, 76, 80, 83, 86, 87, 89, 92, 96, 98, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 71, 73, 98], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 60, 69, 73, 75, 77, 78, 79, 97], "test": [2, 5, 10, 27, 42, 49, 52, 60, 73, 83, 86, 87, 89, 90, 91, 93, 94, 100, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 61, 70, 71, 73, 86, 87, 97, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 71, 83, 87, 89, 90, 93, 94, 97, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 65, 70, 73, 83, 90, 91, 93, 94, 95, 98, 99, 103], "save_spac": [2, 10, 72, 73], "potenti": [2, 10, 37, 44, 56, 63, 66, 69, 71, 73, 75, 77, 82, 84, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 87, 94], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 60, 61, 62, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 60, 62, 63, 65, 81, 89, 98, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 61, 63, 71, 75, 77, 82, 83, 89, 91, 97, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 63, 66, 71, 73, 75, 77, 78, 83, 96, 97, 101, 103, 107, 108], "prefer": [2, 71, 79, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 87, 94, 97, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 73], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 60, 61, 63, 65, 69, 70, 71, 73, 74, 75, 77, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 71, 73], "mostli": [2, 57, 68, 73, 98, 102, 106], "longer": [2, 35, 48, 49, 56, 73, 84, 87, 94, 97, 98, 103], "info": [2, 5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 73, 81, 90, 95, 96, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 61, 62, 65, 69, 73, 78, 81, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 73, 96, 99], "unless": [2, 38, 42, 52, 73, 97], "our": [2, 3, 10, 60, 61, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 73, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 62, 63, 68, 71, 73, 75, 77, 78, 83, 89, 90, 95, 97, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 61, 62, 63, 66, 69, 71, 73, 74, 75, 77, 78, 84, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 106], "label_qu": [2, 61, 73, 87, 99, 101, 106], "measur": [2, 5, 37, 61, 62, 73, 83, 86, 95, 96, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 61, 62, 63, 65, 66, 68, 71, 73, 74, 77, 79, 81, 83, 84, 88, 89, 91, 97, 98, 100], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 61, 62, 65, 68, 69, 71, 73, 74, 77, 81, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 69, 95, 98, 99, 101], "against": [2, 38, 42, 89, 93, 95, 97, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107], "ad": [2, 38, 42, 90, 101, 106], "precis": [2, 53, 55, 63, 66, 69, 95, 96, 97, 99, 107, 108], "definit": [2, 7, 35, 49, 73, 86, 93], "accessor": [2, 73], "describ": [2, 10, 19, 61, 70, 71, 73, 79, 81, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 73, 96], "clear": [2, 38, 42, 54, 73, 87, 94, 106], "save": [2, 5, 17, 38, 41, 42, 69, 73, 95, 97, 103, 107, 108], "space": [2, 5, 10, 70, 73, 91, 93, 95, 96], "place": [2, 38, 42, 52, 57, 73, 86, 101], "larg": [2, 9, 10, 41, 52, 73, 91, 97, 103, 104, 107, 108], "deploi": [2, 9, 10, 73, 91, 97, 98], "care": [2, 10, 38, 42, 52, 73, 94, 95, 97, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 73, 97, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 98, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 73], "__init_subclass__": [2, 40, 42, 72, 73], "set_": [2, 42, 73], "_request": [2, 42, 73], "pep": [2, 42, 73], "487": [2, 42, 73], "look": [2, 5, 7, 10, 17, 38, 42, 57, 73, 78, 86, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 61, 62, 66, 69, 73, 78, 81, 82, 83, 88, 89, 93, 94, 95, 96, 98, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 73], "infer": [2, 42, 57, 73, 78, 82, 86, 87, 91, 101, 102], "signatur": [2, 38, 42, 73], "accept": [2, 38, 42, 54, 55, 71, 73, 89, 90, 97], "metadata": [2, 10, 42, 73, 91, 108], "through": [2, 5, 7, 42, 73, 87, 88, 90, 94, 95, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 73, 97, 99, 108], "request": [2, 42, 73, 86, 87, 90, 94, 95, 96, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 60, 61, 63, 69, 73, 77, 81, 82, 83, 88, 91, 95, 97, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 66, 69, 70, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 73, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 70, 73, 97, 98, 99, 108], "dev": [2, 42, 73], "0487": [2, 42, 73], "get_metadata_rout": [2, 40, 42, 72, 73], "rout": [2, 42, 73], "pleas": [2, 38, 42, 60, 73, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 73, 84, 88, 89, 90, 91, 92, 93, 94, 95, 98, 99], "mechan": [2, 38, 42, 73], "metadatarequest": [2, 42, 73], "encapsul": [2, 17, 42, 68, 73], "get_param": [2, 40, 42, 59, 60, 72, 73], "subobject": [2, 42, 73], "param": [2, 10, 38, 42, 60, 70, 73, 97], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 60, 61, 62, 69, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 72, 73], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 60, 61, 62, 66, 68, 69, 71, 73, 78, 82, 88, 89, 95, 97, 101, 102, 103, 108], "unchang": [2, 38, 42, 73, 108], "relev": [2, 17, 27, 42, 73, 91, 93, 95], "enable_metadata_rout": [2, 42, 73], "set_config": [2, 42, 73], "meta": [2, 42, 73], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 73, 97], "alia": [2, 38, 42, 73], "metadata_rout": [2, 42, 73], "retain": [2, 42, 57, 73], "chang": [2, 33, 35, 38, 41, 42, 46, 73, 81, 86, 87, 88, 89, 94, 95, 97, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 59, 60, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 68, 73], "pipelin": [2, 42, 73, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 63, 73, 75, 77, 78, 82, 83, 87, 94, 97, 98], "updat": [2, 14, 38, 41, 42, 52, 60, 73, 84, 89, 91, 98], "set_param": [2, 40, 42, 59, 60, 72, 73], "simpl": [2, 38, 42, 44, 61, 71, 73, 86, 87, 89, 90, 91, 93, 94, 98, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 61, 63, 69, 71, 73, 78, 81, 82, 84, 89, 90, 91, 93, 94, 97, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 73, 79, 81, 82, 108], "latter": [2, 38, 42, 73, 104], "compon": [2, 42, 73], "__": [2, 42, 73], "set_score_request": [2, 72, 73], "structur": [3, 70, 93, 95, 97, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 61, 70, 71, 75, 77, 81, 91, 93, 95, 96, 97, 98, 99, 103, 108], "channel": [3, 88, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 62, 87, 90, 96], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 62, 63, 84, 97, 99], "un": 3, "under": [3, 10, 38, 42, 62, 69, 70, 90, 95, 98, 104], "joint": [3, 37, 44, 47, 57, 62, 63, 96], "num_label_issu": [3, 41, 44, 63, 78, 82, 84], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 63, 102], "don": [3, 83, 90, 91, 94, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 63, 99], "off": [3, 44, 57, 68, 91, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 63, 66, 69, 70, 79, 81, 82, 89, 90, 99, 107, 108], "confident_learn": [3, 44, 63, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 61, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 75, 78, 88, 89, 90, 91, 95, 97, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 89, 90, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 86, 87, 88, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 68, 69, 75, 77, 86, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106], "As": [3, 7, 83, 89, 90, 94, 98, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 60, 69, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 102], "approach": [3, 37, 41, 44, 60, 86, 93, 95, 98, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 71, 87, 90, 94, 95, 99, 106], "know": [3, 10, 89, 90, 91, 94, 97, 99, 101, 106], "cut": [3, 68, 83, 86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 69, 83, 95, 97, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 65, 66, 68, 69, 71, 74, 81, 96, 97, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 77, 78, 79, 83, 84, 88, 95, 97, 98, 102, 104, 108], "num_issu": [3, 7, 41, 88, 89, 90, 91, 93, 94, 95, 98, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 60, 61, 87, 96, 97, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 62, 63, 65, 71, 89, 90, 100, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 62, 63, 65, 73, 86, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 106], "fashion": [3, 5, 75, 86], "2x2": 3, "incorrectli": [3, 37, 62, 63, 66, 93, 98, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 63, 71, 83, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 61, 65, 68, 74, 77, 81, 82, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 63, 69, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 61, 62, 69, 78, 103, 104], "done": [3, 10, 60, 73, 89, 97, 99, 102, 104, 105], "overfit": [3, 10, 66, 69, 86, 88, 89, 90, 91, 93, 94, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 61, 62, 68, 69, 70, 71, 81, 86, 88, 89, 95, 97, 99, 102, 103], "baselin": [3, 38, 44, 87, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 63, 69, 73, 81, 97], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 61, 63, 69, 77, 79, 81, 82, 88, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 61, 70, 75, 77, 83, 87, 91, 95, 97, 98, 107], "practic": [3, 86, 87, 90, 91, 98, 99, 104, 106], "complet": [3, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 65, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 69, 79, 96], "again": [3, 60, 86, 97, 104], "simplifi": [3, 15, 97], "understand": [3, 9, 10, 37, 62, 69, 90, 95, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 70, 71, 86, 87, 89, 90, 91, 93, 95, 96, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 60, 86, 87, 90, 91, 93, 94, 95, 96, 99, 101, 102, 104, 106], "speed": [3, 44, 87, 96, 97, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 65, 81, 88, 95, 98, 103], "enumer": [3, 38, 42, 88, 89, 90, 91, 95, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 81, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 71, 75, 78, 88, 95, 97, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 65, 74, 86, 88, 95], "eqn": [3, 47], "margin": [3, 44, 47, 49, 71], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 62, 99, 105], "poorli": [3, 47, 86, 95], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 73, 74, 88, 89, 93, 99, 102, 106], "exact": [3, 10, 47, 52, 86, 89, 90, 91, 93, 95, 98], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 63, 68, 77, 79, 81, 89, 90, 91, 97, 103, 107], "percent": 3, "often": [3, 37, 47, 62, 97, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 69, 86, 87, 88, 89, 91, 93, 94, 97, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 60, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 89, 91, 95, 96, 97, 98, 99, 105, 106], "becaus": [3, 47, 53, 57, 68, 94, 95, 97, 98, 99, 101, 103, 105], "littl": [3, 41, 96, 103, 108], "uniform": [3, 71, 96, 97, 99], "20": [3, 7, 43, 82, 88, 91, 94, 95, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 91, 104], "bound": [3, 24, 26, 38, 42, 56, 65, 66, 68, 69, 103], "reason": [3, 23, 38, 42, 53, 70], "comment": [3, 56, 95, 108], "end": [3, 5, 38, 42, 54, 69], "file": [3, 5, 13, 40, 41, 59, 69, 86, 88, 89, 93, 94, 96, 97, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 84, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 99, 102, 104, 106, 107, 108], "five": [3, 66, 69, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 98, 103], "confident_threshold": [3, 10, 23, 24, 41, 70], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 83, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 69, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 107, 108], "u": [4, 86, 87, 88, 89, 91, 93, 95, 97, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 95, 98, 103], "contribut": [4, 10, 19, 95, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 93, 95], "metric": [4, 5, 10, 19, 20, 22, 27, 29, 32, 45, 51, 52, 54, 55, 57, 60, 69, 70, 86, 87, 88, 91, 93, 94, 95, 98, 99, 106], "10": [4, 10, 19, 20, 24, 27, 29, 32, 38, 39, 52, 69, 70, 71, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 70, 90, 94, 95, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 70, 89, 90, 91, 93, 94, 95, 97, 104], "knn": [4, 10, 14, 19, 27, 29, 32, 51, 52, 53, 54, 55, 70, 93, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 61, 65, 66, 68, 69, 70, 73, 77, 91, 96, 98], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 60, 61, 87, 90, 94, 95, 97, 98, 102, 103, 106], "lowest": [4, 10, 61, 69, 90, 91, 93, 95, 97, 98, 101, 102, 103, 107], "fall": [4, 10, 68, 77, 81, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 62, 63, 66, 73, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 70, 95, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 63, 66, 69, 71, 78, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 70, 83, 87, 88, 89, 90, 93, 94, 95, 98, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 63, 83, 87, 88, 89, 90, 91, 94, 97, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 61, 86, 88, 95, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 62, 88, 89, 90, 91, 93, 94, 98, 99], "num_featur": [4, 5, 17, 38, 42, 60], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 68, 70, 93, 95, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 60, 95, 98], "nearestneighbor": [4, 5, 10, 19, 52, 54, 70, 93, 104], "cosin": [4, 10, 52, 53, 55, 70, 95, 104], "dim": [4, 70, 91, 107], "euclidean": [4, 5, 10, 52, 53, 55, 68, 70, 93], "dimension": [4, 27, 53, 57, 88, 99, 104], "scikit": [4, 42, 53, 54, 57, 70, 83, 86, 87, 88, 89, 90, 93, 94, 95, 97, 106], "fewer": [4, 10, 44, 57, 70, 95, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 59, 70, 84, 88, 89, 90, 91, 93, 94, 95, 98, 99], "exce": [4, 52, 91, 95], "transform": [4, 10, 33, 49, 52, 55, 57, 70, 71, 86, 87, 90, 91, 94, 95, 98, 104, 108], "rel": [4, 10, 37, 52, 61, 62, 70, 89, 90, 91, 93, 94, 98, 99, 104], "adjust": [4, 39, 44, 52, 65, 70, 71, 83, 95, 98, 99], "closer": [4, 10, 68, 95, 103], "highli": [4, 90, 91], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 69, 95, 96, 104], "convers": 4, "neg": [4, 10, 68, 69, 89, 90, 95, 96], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 97], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 73, 75, 77, 91, 94, 96, 97], "55": [4, 56, 95, 96, 103, 106], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 88, 91, 92, 93, 94, 95, 97, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 95, 96], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 61, 69, 78, 79, 86, 87, 88, 89, 93, 94, 95, 98, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 59, 63, 70, 73, 74, 83, 95, 105], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 59, 60, 75, 77, 95], "pip": [5, 7, 9, 12, 36, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 70, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 83, 96], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "image_kei": [5, 10, 91, 95], "interfac": [5, 9, 10, 54, 83, 86, 87, 90, 93, 94, 95, 96, 97, 98, 99, 102, 104, 106], "librari": [5, 10, 42, 54, 66, 69, 70, 83, 87, 89, 94, 95, 96, 97], "goal": [5, 106], "track": [5, 7, 14, 15, 83, 89, 96, 97, 99], "intermedi": [5, 9, 90], "statist": [5, 10, 14, 23, 27, 37, 61, 62, 69, 90, 93, 94, 95, 98, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 61, 68, 77, 81, 84, 87, 88, 91, 94, 95, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 91], "face": [5, 10, 13, 17, 91, 96, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 61, 62, 68, 70, 89, 90, 91, 94, 97, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 61, 62, 74, 78, 81, 82, 87, 93, 94, 95, 97, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 61, 62, 65, 66, 68, 69, 89, 90, 93, 94, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 69, 88, 89, 95, 97, 103], "local": [5, 7, 10, 13, 38, 39, 42, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 70, 79, 81, 82, 83, 85, 89, 90, 92, 96, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 86, 87, 93, 94, 98, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 61, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 87, 89, 90, 94, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 66, 68, 69, 70, 75, 77, 78, 83, 89, 90, 92, 96, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 86, 87, 95, 106], "pil": [5, 91], "cleanvis": [5, 10, 95], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 79, 81, 90, 91, 97, 100, 102, 107], "load_dataset": [5, 13, 91], "glue": 5, "sst2": 5, "properti": [5, 13, 14, 35, 38, 42, 95], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 62, 69, 78, 82, 83, 96, 99, 103, 107, 108], "empti": [5, 13, 47, 61, 90, 95, 97, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 61, 63, 66, 68, 69, 71, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 83, 90, 92, 95, 96, 97, 98, 99, 102, 103, 107], "real": [5, 17, 83, 89, 90, 95, 97, 98, 99, 101, 106, 107], "world": [5, 17, 83, 89, 90, 95, 97, 98, 99, 101, 106, 107], "interact": [5, 17, 94, 97], "thereof": [5, 17], "insight": [5, 17, 69, 101], "best": [5, 9, 10, 17, 48, 61, 71, 86, 87, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 75, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 66, 69, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103], "lexicograph": [5, 48, 57, 88, 89, 90, 91, 93, 94, 98, 99, 102], "squar": [5, 57, 73, 96, 106], "csr": [5, 52, 95], "evenli": 5, "omit": [5, 68, 69, 91, 95, 103], "itself": [5, 33, 38, 42, 52, 95, 103], "three": [5, 10, 37, 61, 62, 73, 78, 86, 88, 89, 90, 93, 96, 99, 101, 105, 106, 107, 108], "indptr": [5, 95], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 83, 102, 108], "th": [5, 10, 43, 48, 56, 57, 61, 63, 66, 68, 69, 70, 79, 81, 82, 94, 102, 103, 108], "ascend": [5, 37, 62, 91, 99], "segment": [5, 75, 77, 78, 100], "reflect": [5, 10, 52, 86, 87, 93, 94, 98, 101, 103, 104, 106], "maintain": [5, 60], "kneighbors_graph": [5, 19, 54, 93], "illustr": [5, 95], "todens": 5, "second": [5, 49, 57, 69, 71, 89, 93, 97, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 83, 89, 95, 98, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 61, 95, 97, 101, 108], "unspecifi": [5, 17, 44, 63], "interest": [5, 17, 23, 78, 82, 86, 87, 94, 95, 98, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 73, 74, 95, 96, 106, 108], "random_st": [5, 86, 88, 89, 90, 91, 95, 98, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 83, 91, 95, 98, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 70, 95], "mode": [5, 12, 19, 38, 41, 42, 93, 104], "4x4": 5, "float64": [5, 27, 38, 42, 81], "compress": [5, 10, 52, 57, 75, 77, 95], "toarrai": [5, 52, 95], "NOT": [5, 41, 94], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 90], "suppos": [5, 10, 66, 86, 87, 104, 106], "who": [5, 68, 86, 93, 95, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 60, 89, 97], "clean_learning_kwarg": [5, 10, 11, 24, 31, 97, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 84], "prune_by_noise_r": [5, 44, 63, 99], "report": [5, 7, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 82, 83, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34, 95, 98], "show_all_issu": [5, 34, 95, 98], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 59, 60, 62, 67, 76, 77, 79, 80, 81, 84, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 69, 78, 82, 86, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 63, 71, 82, 95, 108], "onc": [5, 23, 37, 38, 42, 86, 89, 97, 98, 99, 102, 103], "familiar": [5, 95], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 61, 62, 65, 68, 69, 73, 77, 78, 79, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 65, 68, 70, 71, 77, 81, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 61, 70, 81, 89, 90, 93, 98, 99, 103], "issue_summari": [5, 7, 10, 14, 95], "With": [5, 9, 10, 41, 87, 94, 97, 99, 101, 106, 107, 108], "usag": [5, 41, 60], "usual": [5, 13, 33, 34, 91, 101, 106], "ti": [5, 61], "exhibit": [5, 7, 10, 14, 78, 88, 89, 90, 91, 93, 94, 98, 99, 103], "ie": [5, 73], "likelihood": [5, 10, 41, 43, 44, 63, 68, 70, 71, 75, 79, 95], "wherea": [5, 10, 57, 63, 86, 87, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 71, 83, 89, 90, 95, 98, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 10, 23, 38, 42, 96], "non_iid": [5, 10, 11, 15, 27, 90, 91, 93, 94, 95, 98, 99], "hypothesi": [5, 95], "iid": [5, 7, 9, 27, 83, 93, 98, 99], "never": [5, 88, 98, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 71, 103], "123": [5, 89, 90], "456": [5, 86, 87, 88], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 60, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 65, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 89, 90, 91, 93, 94, 98, 99], "789": 5, "get_issu": [5, 10, 14, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 88, 89, 90, 91, 93, 94, 95, 98, 99], "focu": [5, 10, 14, 94, 95, 98, 107, 108], "full": [5, 10, 14, 41, 60, 69, 91, 98, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 62, 78, 82, 83, 107], "specific_issu": [5, 14], "lie": [5, 10, 70, 71, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99], "get_issue_summari": [5, 10, 14, 90, 95], "get_info": [5, 14, 90, 94, 95, 96], "yet": [5, 18, 28, 60, 96, 98, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 89], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 88, 89, 91], "load": [5, 13, 41, 69, 91, 96, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 61, 83, 89, 94, 95], "overwrit": [5, 89], "separ": [5, 37, 49, 65, 89, 90, 91, 95, 97, 98, 103, 105], "static": 5, "rememb": [5, 94, 97, 98, 99], "part": [5, 10, 38, 42, 44, 66, 68, 69, 88, 89, 95, 96, 98, 107, 108], "ident": [5, 10, 23, 57, 94, 95], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 83, 86, 87, 96, 98, 101, 106], "walk": [7, 98], "alongsid": [7, 38, 42, 89, 97], "pre": [7, 8, 10, 38, 42, 83, 89, 90, 106], "runtim": [7, 38, 41, 42, 73, 75, 77, 88, 91, 97, 98], "issue_manager_factori": [7, 15, 89], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 87, 95, 99, 106], "next": [7, 61, 83, 86, 87, 88, 93, 94, 95, 97, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 89, 90, 95], "mark": [7, 10, 84, 103, 104, 106], "regard": [7, 90, 98, 99], "rand": [7, 49, 52, 89, 90, 95], "is_": [7, 10, 89], "_issu": [7, 10, 89], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "whole": [7, 10, 27, 38, 42, 90, 95], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "popul": [7, 94, 98], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 78, 82, 95, 97, 102], "intermediate_arg": 7, "min": [7, 49, 68, 81, 89, 97, 104], "sin_filt": 7, "sin": 7, "arang": [7, 95], "kernel": [7, 95], "affect": [7, 10, 38, 42, 53, 75, 81, 94, 95, 97], "easili": [7, 47, 84, 86, 87, 88, 90, 93, 94, 98, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 83, 96, 104], "sai": [7, 10, 38, 42, 95, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 68, 71, 87, 93, 94, 95, 97, 99, 101, 104], "try": [7, 9, 10, 41, 44, 60, 61, 75, 77, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 104, 105, 106, 107], "won": [7, 38, 42, 89, 90, 97, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 89], "instanti": [7, 17, 41, 60, 70, 87, 88, 90, 93], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 69, 88, 89, 90, 91, 93, 94, 98, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 60, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 60, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 89, 90, 95, 96, 98, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32, 83, 98], "group": [8, 9, 27, 32, 83, 96, 98, 103, 108], "dbscan": [8, 10, 32], "hdbscan": 8, "etc": [8, 10, 23, 33, 38, 42, 47, 60, 61, 79, 83, 89, 90, 93, 94, 95, 97, 98, 99, 102, 106], "sensit": [8, 10, 55, 95, 98], "ep": [8, 32, 69], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 95], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 32, 95], "cluster_id": [8, 10, 11, 32, 95], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 90, 91, 93, 94, 95, 98, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 73, 95, 97, 98, 105], "nondefault": 9, "Near": [9, 97], "imbal": [9, 22, 65, 70, 71, 90], "null": [9, 11, 15, 22, 90, 91, 94, 98, 99], "togeth": [9, 10, 47, 87, 89, 90, 91, 93, 94, 98, 99, 106, 108], "built": [9, 49, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "own": [9, 38, 40, 42, 54, 59, 65, 66, 69, 75, 79, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 60, 95, 98, 104], "fulli": [9, 10, 38, 42, 60, 97], "platform": [9, 10, 83, 86, 87, 90, 91, 93, 94, 96, 97, 99, 102, 104, 105, 106], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 60, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 71, 86, 93, 97, 98, 99, 106, 107], "100x": [9, 10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "faster": [9, 10, 41, 70, 73, 75, 77, 83, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 106], "intellig": [9, 10, 98], "quickli": [9, 10, 39, 86, 88, 91, 93, 94, 97, 98, 102, 104, 105, 107, 108], "fix": [9, 10, 61, 86, 87, 90, 93, 94, 95, 96, 98, 99, 102, 104, 105, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 61, 62, 68, 87, 91, 94, 95, 97, 106], "power": [9, 10, 91, 96, 99, 108], "automl": [9, 10, 83, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 105, 106], "system": [9, 10, 88, 91, 107], "foundat": [9, 10, 83, 86, 87, 90, 93, 94, 95, 96, 99, 102, 104, 105, 106], "improv": [9, 10, 61, 86, 87, 90, 91, 96, 97, 99, 100, 106, 107], "click": [9, 10, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 87, 88, 94, 96, 98, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 86, 87, 90, 96, 97, 98, 106], "free": [9, 10, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 102, 104, 105, 106], "page": [10, 90, 97, 98, 99], "variou": [10, 14, 31, 40, 58, 59, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103], "why": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "matter": [10, 37, 62], "didn": [10, 95, 98], "plu": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "class_imbal": [10, 11, 15, 21, 90, 91, 93, 94, 95, 98, 99], "data_valu": [10, 11, 15, 22, 95], "No": [10, 11, 86, 87, 94, 95, 97], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 68, 86, 87, 108], "issue_scor": 10, "atyp": [10, 70, 89, 90, 91, 93, 94, 98, 99, 104], "datapoint": [10, 32, 44, 49, 57, 71, 74, 83, 86, 87, 88, 89, 90, 93, 94, 97, 98, 105, 106], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 88, 95], "expertis": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "interpret": [10, 96, 97, 99, 102, 106], "annot": [10, 37, 48, 61, 62, 63, 65, 66, 68, 69, 78, 81, 82, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 93, 94], "preced": 10, "incorrect": [10, 68, 71, 74, 86, 88, 89, 90, 91, 93, 94, 95, 98, 99, 103, 106], "due": [10, 41, 44, 71, 75, 77, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106], "appear": [10, 37, 48, 62, 63, 66, 74, 90, 91, 93, 94, 95, 98, 106, 107], "now": [10, 41, 84, 86, 87, 88, 90, 95, 97, 98, 101, 103, 104, 106, 108], "token": [10, 43, 56, 77, 78, 79, 80, 81, 82, 97, 99, 100], "hamper": [10, 91, 96], "analyt": [10, 83, 95, 97, 101], "lead": [10, 68, 71, 91, 95, 98, 103], "draw": [10, 89, 90], "conclus": [10, 94], "let": [10, 38, 42, 70, 71, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 106], "head": [10, 86, 87, 88, 90, 91, 93, 94, 95, 96, 98, 99, 101, 106], "97": [10, 86, 96, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 86, 90, 95, 96, 99, 103], "680894": 10, "41": [10, 95, 96, 98, 103, 106], "746043": 10, "794894": 10, "98": [10, 96, 97, 98, 106], "802911": 10, "give": [10, 49, 71, 99, 101, 107], "li": [10, 70], "especi": [10, 86, 87, 91, 95, 97, 106], "veri": [10, 37, 62, 66, 68, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106], "rare": [10, 44, 69, 89, 90, 91, 93, 94, 97, 98, 99], "anomal": [10, 71, 89, 90, 91, 93, 94, 98, 99], "articl": [10, 41, 97], "blog": 10, "unexpect": [10, 38, 42, 94], "consequ": 10, "inspect": [10, 87, 88, 90, 91, 98, 99, 103, 106], "011562": 10, "62": [10, 95, 98, 99, 103, 106], "019657": 10, "22": [10, 88, 89, 91, 95, 96, 98, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 94, 95, 96, 103, 108], "056865": 10, "smaller": [10, 70, 102, 103], "extrem": [10, 89, 90, 91, 93, 94, 95, 97, 98, 99], "record": [10, 38, 42, 88, 93, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 82], "resolut": 10, "video": [10, 96], "audio": [10, 89, 90, 92, 97], "minor": [10, 56], "variat": 10, "translat": [10, 98], "d": [10, 55, 86, 93, 94, 95, 97, 98, 99, 102, 106, 108], "constant": [10, 32, 73], "median": [10, 31, 55], "question": [10, 23, 83, 99], "nearli": [10, 23, 90, 91, 93, 94], "awar": [10, 84, 99], "presenc": [10, 52, 54, 99], "36": [10, 95, 96, 98, 108], "066009": 10, "80": [10, 39, 86, 93, 98, 102, 106], "003906": 10, "093245": 10, "005599": 10, "27": [10, 93, 95, 96, 98, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 95, 96, 98, 99, 102, 106], "signific": [10, 86, 87, 90, 93, 94, 96, 98, 99, 102, 104, 106], "violat": [10, 83, 93, 94, 95, 98, 99], "assumpt": [10, 93, 94, 95, 98, 99], "changepoint": [10, 93, 94, 98, 99], "shift": [10, 52, 54, 93, 94, 98, 99], "drift": [10, 90, 93, 95, 98, 99], "autocorrel": [10, 93, 94, 98, 99], "almost": [10, 93, 94, 98, 99], "adjac": [10, 52, 93, 94, 98, 99], "tend": [10, 37, 47, 93, 94, 98, 99, 107, 108], "sequenti": [10, 38, 42, 60, 91], "pai": [10, 94, 95], "attent": [10, 95], "realli": [10, 87, 94, 98, 101, 107], "mere": 10, "highlight": [10, 78, 82, 89, 90, 93, 95, 107], "necessarili": [10, 61, 69, 94, 98, 99], "wrong": [10, 61, 66, 68, 84, 87, 89, 90, 94, 97, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 81, 86, 93, 94, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 66, 69, 103], "x2": [10, 66, 69, 103], "10th": 10, "100th": 10, "90": [10, 81, 86, 93, 98, 99, 105, 106], "similarli": [10, 38, 42, 89, 91, 93, 97, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 69, 101], "blogpost": 10, "proper": [10, 57, 61, 66, 69, 86, 91, 94, 97, 101, 103], "scenario": [10, 52, 54, 71, 89, 90], "underli": [10, 43, 54, 70, 79, 81, 108], "stem": [10, 70, 104], "evolv": 10, "influenc": 10, "act": [10, 68, 89], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 60, 62, 68, 71, 75, 77, 78, 83, 91, 95, 98], "problem": [10, 33, 41, 49, 78, 83, 89, 90, 91, 94, 95, 97], "deploy": [10, 86, 87, 99, 106], "overlook": [10, 68, 103], "fact": 10, "thu": [10, 37, 42, 62, 86, 88, 93, 94, 98, 99, 105, 108], "diagnos": [10, 90, 97], "24": [10, 88, 95, 96, 98, 99, 101, 103, 106], "681458": 10, "37": [10, 89, 95, 96, 98], "804582": 10, "64": [10, 42, 86, 91, 93, 95, 99, 103], "810646": 10, "815691": 10, "78": [10, 86, 93, 96, 98, 99, 103, 106], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 69, 97], "rarest": [10, 90, 98], "q": [10, 95, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 91, 94, 95, 96, 98, 99, 101, 108], "75": [10, 49, 89, 90, 95, 96, 98, 101, 102, 103, 106, 108], "33": [10, 38, 42, 95, 96, 98, 103], "68": [10, 86, 96, 98, 99, 103], "excess": [10, 91], "dark": [10, 95, 107], "bright": [10, 108], "blurri": [10, 91, 95], "lack": [10, 60, 95, 98], "unusu": [10, 103, 104], "cluster": [10, 19, 32, 98], "slice": [10, 98], "poor": [10, 95, 98], "subpopul": [10, 98], "faq": [10, 83, 90, 91, 93, 94, 100], "get_self_confidence_for_each_label": [10, 49, 71], "r": [10, 41, 73, 89, 90, 95, 106, 107], "tabular": [10, 83, 85, 89, 90, 92, 95, 97, 98, 101], "categor": [10, 70, 85, 86, 89, 90, 92, 97, 98, 106], "encod": [10, 50, 69, 75, 78, 86, 87, 93, 94, 97, 98, 106, 107], "71": [10, 95, 96, 98, 99, 103, 106], "70": [10, 81, 93, 95, 98], "69": [10, 98, 99, 106, 108], "subgroup": [10, 95], "wors": [10, 95, 101], "ratio": [10, 95], "miss": [10, 28, 38, 42, 57, 66, 68, 97, 98, 103, 106], "pattern": [10, 95], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 70, 97], "quantif": 10, "39": [10, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 106, 107, 108], "32": [10, 88, 89, 95, 96, 98, 101, 103], "valuabl": [10, 19, 95], "exert": [10, 90], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 83, 96], "health_summary_kwarg": 10, "tandem": [10, 96], "view": [10, 38, 42, 43, 44, 77, 79, 81, 83, 86, 87, 88, 89, 90, 93, 94, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 70, 104], "outsid": [10, 97, 102], "outlierissuemanag": [10, 15, 22, 29], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107], "howev": [10, 38, 42, 52, 57, 86, 87, 88, 91, 93, 94, 95, 98, 101, 105, 107], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 62], "versa": [10, 62], "light": [10, 91, 95, 96, 103, 107], "29": [10, 91, 95, 96, 98, 101, 102, 103, 107, 108], "low_inform": [10, 91, 95], "odd_aspect_ratio": [10, 91, 95], "35": [10, 89, 95, 96, 98, 101, 102, 103], "odd_siz": [10, 91, 95], "doc": [10, 38, 42, 70, 83, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "is_outlier_issu": [11, 89, 90, 91, 93, 94, 95, 98, 99], "outlier_scor": [11, 29, 89, 90, 91, 93, 94, 95, 98, 99, 104], "is_near_duplicate_issu": [11, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_scor": [11, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_set": [11, 20, 22, 89, 90, 91, 93, 94, 97, 98, 99], "is_non_iid_issu": [11, 90, 93, 94, 95, 98, 99], "non_iid_scor": [11, 27, 90, 93, 94, 95, 98, 99], "is_class_imbalance_issu": [11, 90, 95, 98], "class_imbalance_scor": [11, 21, 90, 95, 98], "is_underperforming_group_issu": [11, 90, 95, 98], "underperforming_group_scor": [11, 32, 90, 95, 98], "is_null_issu": [11, 90, 95, 98], "null_scor": [11, 28, 90, 95, 98], "is_data_valuation_issu": [11, 95], "data_valuation_scor": [11, 19, 95], "studio": [12, 83, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 102, 104, 105, 106], "data_issu": [12, 16, 17, 34], "issue_find": [12, 16], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 60, 71, 89, 90, 91, 98, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "fail": 13, "hold": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 91], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": 14, "strategi": [14, 49, 95, 97], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 63, 66, 69, 73, 75, 77, 89, 90, 97, 98], "recomput": [14, 87], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 62, 83], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 70, 89], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 75, 77, 98], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 95, 98, 99, 103, 107, 108], "creation": [17, 42, 95], "execut": [17, 38, 42, 89, 97, 103], "coordin": [17, 66, 68, 69, 103, 108], "At": [17, 69, 97], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 60], "vstack": [19, 57, 91, 96, 97, 99, 101, 102], "25": [19, 27, 38, 49, 55, 90, 91, 95, 96, 98, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 89, 90, 91, 97, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 87, 94, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 86, 88, 89, 91, 95, 96, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 68, 83, 86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 70, 71, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "perform_clust": [22, 32], "get_underperforming_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 61, 95, 97, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 65, 68, 69], "scalartyp": [24, 26], "covari": [24, 26, 73, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 71, 75, 77, 103, 107], "empir": [27, 48, 61], "cumul": 27, "ecdf": 27, "histogram": [27, 93, 95, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 60, 91, 95, 98, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 77, 81, 89, 104, 106], "prompt": 28, "address": [28, 87, 89, 90, 94, 97], "enabl": [28, 42, 54, 98], "scaling_factor": [29, 55], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 69, 87, 108], "50": [32, 42, 95, 97, 98, 99, 101, 103, 104, 106], "keepdim": [32, 97], "signifi": 32, "absenc": 32, "int64": [32, 88, 98, 101], "npt": 32, "int_": 32, "id": [32, 61, 89, 91, 95, 97, 101], "unique_cluster_id": 32, "exclud": [32, 34, 43, 78, 82, 89, 108], "worst": [32, 49, 101], "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35, 98], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 70, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 88, 90, 95, 97], "datset": 34, "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 89, 90], "continu": [35, 60, 86, 87, 91, 94, 97, 101, 103, 106, 108], "binari": [35, 49, 57, 63, 65, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 89], "typeerror": [35, 49], "12": [35, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 61, 62, 71, 89, 90, 91, 96, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 86, 87, 88, 90, 91, 93, 94, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 97, 98, 99], "rank_classes_by_label_qu": [37, 90], "merg": [37, 52, 56, 83, 96, 97, 98, 108], "find_overlapping_class": [37, 97, 99], "problemat": [37, 62, 78, 82, 88, 103, 108], "unnorm": [37, 62, 99], "abov": [37, 38, 41, 42, 54, 57, 61, 68, 69, 71, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 86, 88, 89, 90, 93, 95, 98, 99, 101], "df": [37, 57, 82, 88, 95, 97], "overall_label_qu": [37, 62], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 62, 71], "label_nois": [37, 62], "human": [37, 96, 107, 108], "clearli": [37, 71, 91, 103, 107], "num": [37, 62, 96, 99], "overlap": [37, 83, 96, 97, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 71, 95, 98], "vehicl": [37, 96], "truck": [37, 96, 104, 107], "intuit": [37, 62], "car": [37, 96, 103, 107], "frequent": [37, 61, 95, 97, 98, 106], "characterist": 37, "l": [37, 38, 42, 66, 68, 69], "class1": 37, "class2": 37, "relationship": 37, "dog": [37, 57, 62, 64, 78, 96, 97, 104, 105, 108], "cat": [37, 57, 62, 64, 96, 97, 104, 105], "captur": [37, 88, 103, 104, 107], "co": [37, 38, 39], "noisy_label": [37, 89, 90, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 62, 69], "overall_label_health_scor": [37, 62, 99], "half": [37, 38, 40, 42, 62, 96, 108], "health_scor": [37, 62], "classes_by_label_qu": [37, 90], "cnn": [38, 40, 42, 91], "cifar": [38, 39, 95, 96, 104], "teach": [38, 39], "bhanml": 38, "blob": [38, 95], "master": [38, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 69, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 91, 101], "overridden": [38, 42], "although": [38, 42, 70, 86, 93, 98], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 62, 69, 77, 81, 97, 98, 101, 102, 103, 105, 108], "hook": [38, 42, 96], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 69], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 91], "init": [38, 42, 99], "no_grad": [38, 42, 91, 104], "init_weight": [38, 42], "linear": [38, 42, 87, 91, 94], "fill_": [38, 42], "net": [38, 42, 88, 91, 96], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 91], "tensor": [38, 39, 42, 88, 91, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 88], "buffer": [38, 40, 42], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 60], "cpu": [38, 40, 42, 44, 88, 91], "move": [38, 42, 49, 84, 96], "cuda": [38, 40, 42, 88, 91], "devic": [38, 42, 88, 91, 98], "gpu": [38, 42, 87, 88, 94], "live": [38, 42], "copi": [38, 42, 73, 86, 88, 89, 90, 93, 95, 97, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 91, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 83, 89, 95, 96, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 73, 74, 95, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 94], "resolv": [38, 42, 95, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 91, 95, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 91], "break": [38, 42, 91, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 91], "16": [38, 42, 49, 52, 60, 77, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 71, 95, 96, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 90, 91, 95, 97, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 88, 89, 90, 96, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 95, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 69, 89, 91, 95, 97, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 88, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 86, 93], "fire": [38, 42, 96], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 89, 90], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 91, 93, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 87, 88, 94], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 60, 84, 97], "design": [38, 42, 52], "ordereddict": [38, 42], "detach": [38, 42, 91], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 62, 68], "complex": [38, 42, 98], "integr": [38, 42, 54, 83, 97], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 87, 94, 96], "desir": [38, 42, 52, 56, 69], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 88], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 91], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 60, 91], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 91, 97], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 71, 95, 97], "250": [39, 89, 90, 99, 103], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 87, 91, 94, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 91, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 59, 95, 108], "wish": [40, 59, 98, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 97], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 76, 77, 78, 79, 80, 81, 82, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 75, 77, 91, 97, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 91], "loader": [40, 42, 91], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 84], "mini": [41, 75, 77, 97], "low_self_confid": [41, 44, 63], "self_confid": [41, 44, 45, 49, 63, 65, 71, 79, 81, 86, 87, 97, 99], "conveni": [41, 54, 86, 87, 88, 94, 98], "script": 41, "labels_fil": [41, 97], "pred_probs_fil": [41, 97], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 61, 107], "read": [41, 46, 90, 97, 99, 104, 108], "zarr": [41, 97], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 97], "hdf5": 41, "further": [41, 43, 62, 63, 65, 68, 69, 77, 78, 88, 95, 97, 98], "yourfil": 41, "npy": [41, 96, 97, 107], "mmap_mod": [41, 107], "tip": [41, 44, 60, 97], "save_arrai": 41, "your_arrai": 41, "disk": [41, 96, 97], "npz": [41, 108], "maxim": [41, 61, 75, 77, 98, 107], "multiprocess": [41, 44, 63, 75, 77, 91, 97], "linux": [41, 75, 77], "physic": [41, 44, 75, 77, 103], "psutil": [41, 44, 75, 77], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 69, 89, 97, 98, 103, 104], "store_result": 41, "becom": [41, 95, 104], "verifi": [41, 54, 97, 98, 101, 104], "long": [41, 61, 70, 98, 101], "enough": [41, 57, 95, 97], "chunk": [41, 105], "ram": [41, 96], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 97], "shortcut": 41, "encount": [41, 44, 75], "1000": [41, 88, 94, 97, 104], "aggreg": [41, 45, 49, 61, 65, 68, 71, 81, 97, 99, 101], "seen": [41, 97, 98, 104, 108], "far": [41, 61, 98], "label_quality_scor": [41, 65, 68, 71, 74, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 63, 65, 71, 79, 81], "low_normalized_margin": [41, 44, 63], "issue_indic": [41, 68, 91], "update_num_issu": 41, "arr": [41, 97], "chunksiz": 41, "convnet": 42, "bespok": [42, 60], "download": [42, 88, 95, 97, 104], "mnist": [42, 83, 88, 96], "handwritten": 42, "digit": [42, 88, 96], "last": [42, 49, 66, 69, 89, 90, 97, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 71, 73, 88, 95, 99, 102, 103, 104], "templat": 42, "flexibli": 42, "among": [42, 61, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 87, 98, 104], "span": [43, 98], "sentenc": [43, 56, 79, 81, 82, 87, 94], "token_classif": [43, 56, 79, 81, 82, 97], "encourag": [44, 63, 71, 74], "multilabel_classif": [44, 62, 63, 65, 71, 97, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 63, 71, 99], "num_to_remove_per_class": [44, 63], "bad": [44, 52, 63, 68, 71, 94, 97], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 63, 65, 71, 79, 81], "label_issues_idx": [44, 71, 98], "entropi": [44, 46, 48, 49, 70, 71], "prune_by_class": [44, 63, 99], "predicted_neq_given": [44, 63, 99], "prune_counts_matrix": 44, "smallest": [44, 71], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 83, 87, 97], "too": [44, 49, 52, 70, 91, 97, 98, 103], "thread": [44, 63], "window": [44, 96], "shorter": [44, 66], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 97], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 84], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 65], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 65], "softmin": [45, 49, 65, 68, 77, 81], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 95], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 60, 61, 83, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 88, 95], "behav": 46, "unnecessari": [46, 97], "slightli": [46, 86, 87], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": [47, 98], "propag": 47, "throughout": [47, 57, 73, 82, 88, 101, 107, 108], "increas": [47, 55, 68, 70, 71, 88, 89, 95, 97, 101, 102, 108], "dot": [47, 81, 97], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 61], "ensembl": [48, 49, 61, 71, 86, 93, 97, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 61], "format_multiannotator_label": [48, 61, 101], "formatted_label": [48, 57], "old": [48, 57, 84, 96], "check_consensus_label_class": 48, "consensus_label": [48, 61, 101], "consensus_method": [48, 61], "consensu": [48, 61, 83, 100, 108], "establish": [48, 60, 87, 106], "compute_soft_cross_entropi": 48, "soft": [48, 96], "find_best_temp_scal": 48, "coarse_search_rang": [48, 73, 97], "fine_search_s": [48, 73, 97], "temperatur": [48, 49, 68, 77, 81], "scale": [48, 55, 86, 95, 96, 97, 104, 107], "factor": [48, 49, 55, 75, 77], "minim": [48, 68, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 96], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 71], "get_confidence_weighted_entropy_for_each_label": [49, 71], "scorer": 49, "alpha": [49, 65, 68, 89, 90, 95, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 63, 93, 94, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 91, 93, 97, 103], "discount": 49, "s_ema": 49, "175": [49, 91, 98, 99, 103], "underflow": 49, "nan": [49, 61, 86, 93, 95, 98, 101, 106], "aggregated_scor": 49, "base_scor": [49, 98], "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 65], "n_sampl": [49, 95], "n_label": 49, "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": [49, 98], "get_label_quality_scores_per_class": [49, 64, 65], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 88], "wider": 49, "splitter": 49, "kfold": [49, 91], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 91, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 63, 69, 75, 78, 86, 93, 96, 97, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 70], "reli": [52, 70, 87, 88, 89, 90, 94, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 97], "manner": [52, 65, 86, 87, 95, 101, 106], "701": 52, "900": [52, 86, 93, 106], "436": [52, 98], "000": [52, 87, 91, 94, 95, 96, 108], "idea": [52, 71, 98, 103], "dens": [52, 60, 95], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 62, 102], "vari": [52, 68, 90], "exact_duplicate_set": 52, "main": [52, 61], "front": [52, 96], "consider": 52, "capabl": [52, 83, 98], "come": [52, 57, 89, 90, 97, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 61, 86, 93, 95, 98], "slower": 53, "decid": [53, 61, 87, 94, 96, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 70], "spatial": [53, 70], "decis": [53, 86, 89, 90, 98], "That": [53, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 66, 69, 70, 88, 89, 90, 91, 93, 94, 97, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "exp": [55, 70, 71, 89], "dt": 55, "right": [55, 66, 69, 87, 94, 102, 103, 104], "strength": [55, 69, 95], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 83, 96], "thumb": 55, "ood_features_scor": [55, 70, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 88, 89, 97, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 83, 97, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 89, 90, 91, 93, 95, 108], "nbitbas": [56, 65], "probs_merg": 56, "0125": [56, 81], "0375": 56, "075": 56, "025": 56, "color": [56, 78, 89, 90, 93, 95, 99, 102, 104, 106, 107], "red": [56, 69, 89, 90, 95, 96, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 71, 86, 93, 97, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 61, 84, 91, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 69, 94, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 89, 90, 95, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 70, 87, 88, 93, 94, 98, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 83, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 88, 91, 96, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 66, 69, 95, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 69, 78, 82, 87, 88, 93, 94, 95, 99, 108], "jupyt": [57, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 61, 88, 90, 96, 97, 98, 99, 101, 102, 103, 105, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 63], "keraswrappermodel": [59, 60, 83], "keraswrappersequenti": [59, 60], "tf": [60, 88], "legaci": 60, "newer": 60, "interim": 60, "advis": [60, 102], "stabil": [60, 70], "until": 60, "accommod": 60, "keraswrapp": 60, "huggingface_keras_imdb": 60, "unit": [60, 108], "model_kwarg": [60, 73], "compile_kwarg": 60, "sparsecategoricalcrossentropi": 60, "layer": [60, 87, 88, 94, 104], "my_keras_model": 60, "from_logit": 60, "declar": 60, "apply_softmax": 60, "analysi": 61, "analyz": [61, 83, 95, 99, 101, 102], "get_label_quality_multiannot": [61, 101], "vote": 61, "crowdsourc": [61, 83, 101], "dawid": [61, 101], "skene": [61, 101], "analog": [61, 96, 101], "chosen": [61, 71, 97, 101], "crowdlab": [61, 101], "unlabel": [61, 91, 101, 104, 107], "get_active_learning_scor": [61, 101], "activelab": [61, 101], "priorit": [61, 68, 103, 107, 108], "showcas": 61, "best_qual": 61, "quality_method": 61, "calibrate_prob": 61, "return_detailed_qu": 61, "return_annotator_stat": 61, "return_weight": 61, "label_quality_score_kwarg": 61, "did": [61, 62, 86, 87, 88, 93, 99, 101, 106], "majority_vot": 61, "broken": [61, 69, 96, 106], "highest": [61, 69, 89, 91, 98, 105], "0th": 61, "consensus_quality_scor": [61, 101], "annotator_agr": [61, 101], "reman": 61, "1st": 61, "2nd": [61, 75], "3rd": 61, "consensus_label_suffix": 61, "consensus_quality_score_suffix": 61, "suffix": 61, "emsembl": 61, "weigh": [61, 96], "agreement": [61, 101], "agre": 61, "prevent": [61, 97], "overconfid": [61, 105], "detailed_label_qu": [61, 101], "annotator_stat": [61, 101], "model_weight": 61, "annotator_weight": 61, "warn": 61, "labels_info": 61, "num_annot": [61, 101], "deriv": [61, 101], "quality_annotator_1": 61, "quality_annotator_2": 61, "quality_annotator_m": 61, "annotator_qu": [61, 101], "num_examples_label": [61, 101], "agreement_with_consensu": [61, 101], "worst_class": [61, 101], "trustworthi": [61, 101, 106], "get_label_quality_multiannotator_ensembl": 61, "weigtht": 61, "budget": 61, "retrain": [61, 87, 106], "active_learning_scor": 61, "active_learning_scores_unlabel": 61, "get_active_learning_scores_ensembl": 61, "henc": [61, 88, 89, 98, 101], "get_majority_vote_label": [61, 101], "event": 61, "lastli": [61, 93], "convert_long_to_wide_dataset": 61, "labels_multiannotator_long": 61, "wide": [61, 86, 87, 88], "labels_multiannotator_wid": 61, "common_multilabel_issu": [62, 64], "exclus": [62, 102], "rank_classes_by_multilabel_qu": [62, 64], "overall_multilabel_health_scor": [62, 64], "multilabel_health_summari": [62, 64], "classes_by_multilabel_qu": 62, "inner": [63, 77, 95], "find_multilabel_issues_per_class": [63, 64], "per_class_label_issu": 63, "label_issues_list": 63, "pred_probs_list": [63, 71, 91, 99], "anim": [64, 104], "rat": 64, "predat": 64, "pet": 64, "reptil": 64, "box": [66, 68, 69, 96, 103], "object_detect": [66, 68, 69, 103], "return_indices_ranked_by_scor": [66, 103], "overlapping_label_check": [66, 68], "suboptim": [66, 68], "locat": [66, 68, 95, 103, 107, 108], "bbox": [66, 69, 103], "image_nam": [66, 69], "y1": [66, 69, 103], "y2": [66, 69, 103], "later": [66, 69, 70, 87, 98, 108], "corner": [66, 69, 103], "xyxi": [66, 69, 103], "io": [66, 69, 88, 95, 96], "keras_cv": [66, 69], "bounding_box": [66, 69, 103], "detectron": [66, 69, 103], "detectron2": [66, 69, 103], "readthedoc": [66, 69], "en": [66, 69], "latest": [66, 69], "visual": [66, 67, 69, 86, 89, 90, 91, 106, 108], "draw_box": [66, 69], "mmdetect": [66, 69, 103], "swap": [66, 68, 78, 82], "penal": [66, 68], "concern": [66, 68, 83, 90], "issues_from_scor": [67, 68, 76, 77, 78, 80, 81, 82, 103, 107, 108], "compute_overlooked_box_scor": [67, 68], "compute_badloc_box_scor": [67, 68], "compute_swap_box_scor": [67, 68], "pool_box_scores_per_imag": [67, 68], "object_counts_per_imag": [67, 69, 103], "bounding_box_size_distribut": [67, 69, 103], "class_label_distribut": [67, 69, 103], "get_sorted_bbox_count_idx": [67, 69], "plot_class_size_distribut": [67, 69], "plot_class_distribut": [67, 69], "get_average_per_class_confusion_matrix": [67, 69], "calculate_per_class_metr": [67, 69], "aggregation_weight": 68, "imperfect": [68, 97, 98], "chose": [68, 101, 103], "imperfectli": [68, 103], "dirti": [68, 71, 74, 106], "subtyp": 68, "badloc": 68, "nonneg": 68, "high_probability_threshold": 68, "auxiliary_input": [68, 69], "iou": [68, 69], "heavili": 68, "auxiliarytypesdict": 68, "pred_label": [68, 87], "pred_label_prob": 68, "pred_bbox": 68, "lab_label": 68, "lab_bbox": 68, "similarity_matrix": 68, "min_possible_similar": 68, "scores_overlook": 68, "low_probability_threshold": 68, "scores_badloc": 68, "accident": [68, 87, 93, 94, 97], "scores_swap": 68, "box_scor": 68, "image_scor": [68, 77, 107], "discov": [69, 90, 95, 108], "abnorm": [69, 91, 103], "auxiliari": [69, 104, 107], "_get_valid_inputs_for_compute_scor": 69, "object_count": 69, "down": 69, "bbox_siz": 69, "class_distribut": 69, "plot": [69, 89, 90, 95, 99, 102, 104, 106, 107], "sorted_idx": [69, 104], "class_to_show": 69, "hidden": [69, 104], "max_class_to_show": 69, "plt": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "matplotlib": [69, 78, 89, 90, 91, 95, 99, 102, 103, 104, 106], "pyplot": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "prediction_threshold": 69, "overlai": [69, 103], "figsiz": [69, 89, 90, 91, 95, 99, 102, 104], "save_path": [69, 103], "blue": [69, 96, 99, 103], "overlaid": 69, "side": [69, 96, 103], "figur": [69, 95, 99, 102, 104, 106], "extens": [69, 99, 101], "png": [69, 103], "pdf": [69, 70], "svg": 69, "num_proc": [69, 91], "intersect": [69, 97], "tp": 69, "fp": 69, "ground": [69, 96, 99, 101, 106], "truth": [69, 99, 101, 106], "bias": [69, 95], "avg_metr": 69, "distionari": 69, "95": [69, 79, 81, 93, 96, 98, 99, 106], "per_class_metr": 69, "Of": 70, "find_top_issu": [70, 71, 104], "behind": [70, 99], "dist_metr": 70, "subtract": [70, 71], "renorm": [70, 71, 97], "least_confid": 70, "sum_": 70, "log": [70, 71, 84], "softmax": [70, 77, 81, 91], "literatur": 70, "gen": 70, "liu": 70, "lochman": 70, "zach": 70, "openaccess": 70, "thecvf": 70, "cvpr2023": 70, "liu_gen_pushing_the_limits_of_softmax": 70, "based_out": 70, "distribution_detection_cvpr_2023_pap": 70, "fit_scor": [70, 104], "ood_predictions_scor": 70, "pretrain": [70, 87, 88, 94, 98, 104], "adjust_confident_threshold": 70, "probabilist": [70, 86, 88, 89, 90, 93, 94, 104, 105], "order_label_issu": [71, 84], "whichev": [71, 105], "argsort": [71, 87, 91, 94, 99, 103, 104, 106], "max_": 71, "get_label_quality_ensemble_scor": [71, 97, 99], "weight_ensemble_members_bi": 71, "custom_weight": 71, "log_loss_search_t_valu": 71, "0001": [71, 96], "scheme": 71, "log_loss_search": 71, "log_loss": [71, 94], "1e0": 71, "1e1": 71, "1e2": 71, "2e2": 71, "quality_scor": [71, 104], "forth": 71, "top_issue_indic": 71, "rank_bi": [71, 84], "weird": [71, 82], "minu": 71, "prob_label": 71, "max_prob_not_label": 71, "AND": [71, 94], "get_epistemic_uncertainti": [72, 73], "get_aleatoric_uncertainti": [72, 73], "corrupt": [73, 106], "linearregress": [73, 97, 106], "y_with_nois": 73, "n_boot": [73, 97], "include_aleatoric_uncertainti": [73, 97], "sole": [73, 86, 89, 98, 101, 104], "bootstrap": [73, 97, 106], "resampl": [73, 88, 97], "epistem": [73, 97, 104, 106], "aleator": [73, 97, 106], "model_final_kwarg": 73, "coars": 73, "thorough": [73, 97], "fine": [73, 87, 88, 94, 104], "grain": 73, "grid": [73, 98], "varianc": [73, 99], "epistemic_uncertainti": 73, "residu": [73, 74, 97], "deviat": [73, 103, 106], "aleatoric_uncertainti": 73, "outr": 74, "contin": 74, "raw": [74, 83, 84, 90, 91, 96, 97, 98, 101, 103, 104, 106], "aka": [74, 88, 99, 103, 106, 108], "00323821": 74, "33692597": 74, "00191686": 74, "semant": [75, 77, 78, 100], "pixel": [75, 77, 78, 91, 104, 107], "h": [75, 77, 78, 107], "height": [75, 77, 78, 107], "w": [75, 77, 78, 107], "width": [75, 77, 78, 107], "labels_one_hot": [75, 78, 107], "stream": [75, 104, 108], "downsampl": [75, 77, 107], "shrink": [75, 77], "divis": [75, 77, 89], "common_label_issu": [76, 78, 80, 82, 107, 108], "filter_by_class": [76, 78, 107], "segmant": [77, 78], "num_pixel_issu": [77, 107], "product": [77, 91, 95, 97, 98], "pixel_scor": [77, 107], "enter": 78, "legend": [78, 89, 90, 95, 102, 103, 106, 107], "colormap": 78, "background": [78, 95], "person": [78, 97, 103, 107, 108], "ambigu": [78, 82, 87, 88, 94, 96, 99, 108], "systemat": [78, 82, 101], "misunderstood": [78, 82], "issues_df": [78, 91], "class_index": 78, "issues_subset": [78, 82], "filter_by_token": [80, 82, 108], "token_score_method": 81, "sentence_score_method": 81, "sentence_score_kwarg": 81, "compris": [81, 82], "token_scor": [81, 108], "converg": 81, "toward": [81, 95], "_softmin_sentence_scor": 81, "sentence_scor": [81, 108], "token_info": 81, "02": [81, 89, 90, 95, 99, 103, 108], "03": [81, 93, 95, 96, 98, 99, 103, 108], "04": [81, 93, 95, 103], "08": [81, 95, 99, 103, 106, 108], "commonli": [82, 84, 89, 90, 102, 108], "But": [82, 94, 98, 99, 106, 108], "restrict": [82, 97], "reliabl": [83, 86, 88, 95, 97, 98, 101, 107], "thousand": 83, "imagenet": [83, 96], "popular": [83, 101, 103], "centric": [83, 91, 100], "minut": [83, 86, 87, 88, 93, 94, 96, 101, 102, 103, 106, 107, 108], "conda": 83, "feature_embed": [83, 104], "your_dataset": [83, 88, 89, 90, 91, 93, 94, 97], "column_name_of_label": [83, 88, 89, 90, 91, 93, 94], "tool": [83, 96, 99, 101], "catch": [83, 98], "dive": [83, 94, 95, 98], "plagu": [83, 90], "untrain": 83, "\u30c4": 83, "label_issues_info": [83, 90], "sklearn_compatible_model": 83, "framework": [83, 102, 103], "complianc": 83, "tag": [83, 102, 108], "sequenc": 83, "recognit": [83, 88, 97, 108], "train_data": [83, 86, 87, 104, 106], "gotten": 83, "test_data": [83, 86, 87, 99, 102, 104, 106], "deal": [83, 90, 95, 98], "feel": [83, 88, 90, 97], "ask": [83, 97], "slack": [83, 97], "project": [83, 98, 106], "welcom": 83, "commun": [83, 97], "guidelin": [83, 103], "piec": 83, "smart": [83, 86, 87, 90, 91, 93, 94, 96, 97, 99, 102, 104, 106], "edit": [83, 97, 98], "unreli": [83, 86, 88, 93, 94, 95, 98], "link": [83, 88, 96, 103], "older": 84, "outlin": 84, "substitut": [84, 98], "v2": [84, 86, 93], "get_noise_indic": 84, "psx": 84, "sorted_index_method": 84, "order_label_error": 84, "label_errors_bool": 84, "latent_estim": 84, "num_label_error": 84, "learningwithnoisylabel": 84, "neatli": 84, "organ": [84, 86, 93, 95, 96, 108], "reorgan": 84, "baseline_method": 84, "incorpor": [84, 99], "research": [84, 99], "polyplex": 84, "terminologi": 84, "label_error": 84, "quickstart": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "sql": [86, 93], "databas": [86, 93], "excel": [86, 93], "parquet": [86, 93], "student": [86, 93, 98, 106, 108], "grade": [86, 93, 98, 106], "exam": [86, 93, 98, 106], "letter": [86, 93, 108], "hundr": [86, 93], "mistak": [86, 87, 91, 93, 94, 98], "extratreesclassifi": 86, "extratre": 86, "Then": [86, 87, 91, 97], "ranked_label_issu": [86, 87], "branch": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "preprocess": [86, 87, 90, 93, 95, 104, 106], "standardscal": [86, 93, 98, 104], "labelencod": [86, 87, 98], "train_test_split": [86, 87, 89, 90, 104], "accuracy_scor": [86, 87, 88, 94, 98, 99], "grades_data": [86, 93], "read_csv": [86, 87, 93, 94, 95, 98, 106], "demo": [86, 90, 93, 102], "stud_id": [86, 93, 98], "exam_1": [86, 93, 98, 106], "exam_2": [86, 93, 98, 106], "exam_3": [86, 93, 98, 106], "letter_grad": [86, 93], "f48f73": [86, 93], "53": [86, 89, 90, 93, 95, 96, 98, 102, 103], "00": [86, 89, 90, 93, 95, 96, 98, 104], "77": [86, 89, 90, 93, 98, 103], "0bd4e7": [86, 93], "81": [86, 93, 94, 98, 103, 106, 108], "great": [86, 93, 96, 98], "particip": [86, 93, 98], "cb9d7a": [86, 93], "61": [86, 93, 95, 99, 103, 106], "94": [86, 93, 96, 98, 99, 103, 106], "9acca4": [86, 93], "48": [86, 93, 95, 96, 99, 103, 108], "x_raw": [86, 93], "labels_raw": 86, "interg": [86, 87], "categorical_featur": [86, 106], "x_encod": [86, 93], "get_dummi": [86, 93, 106], "drop_first": [86, 93], "numeric_featur": [86, 93], "scaler": [86, 93, 104], "x_process": [86, 93], "fit_transform": [86, 93, 95, 98], "bring": [86, 87, 91, 93, 94, 101, 106], "byod": [86, 87, 91, 93, 94, 101, 106], "tress": 86, "held": [86, 88, 93, 94, 96, 103, 104, 105], "straightforward": [86, 88, 93], "benefit": [86, 88, 105, 107], "num_crossval_fold": [86, 88, 93, 98, 101], "tabl": [86, 93, 96, 101], "212": [86, 98, 99], "review": [86, 87, 90, 93, 94, 96, 97, 98, 99, 103, 106, 107, 108], "iloc": [86, 87, 88, 93, 94, 98, 106], "92": [86, 89, 98, 99, 103], "93": [86, 96, 98, 103, 106], "827": 86, "99": [86, 95, 96, 98, 99, 108], "86": [86, 90, 91, 93, 98, 99, 103, 106], "74": [86, 95, 98, 103, 106], "637": [86, 93], "79": [86, 96, 98, 103], "65": [86, 89, 95, 98, 103], "cheat": [86, 98], "0pt": [86, 98], "120": [86, 89, 90, 98], "233": 86, "83": [86, 98, 99, 103, 106, 108], "76": [86, 98, 99, 102, 103, 106], "suspici": [86, 93], "carefulli": [86, 91, 93, 94, 98], "examin": [86, 89, 90, 93, 95, 98, 103], "labels_train": 86, "labels_test": 86, "test_siz": [86, 87, 89, 90], "acc_og": [86, 87], "783068783068783": 86, "robustli": [86, 87, 106], "14": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [86, 87], "8095238095238095": 86, "blindli": [86, 87, 88, 97, 98, 106], "trust": [86, 87, 88, 97, 98, 99, 101, 105, 106], "effort": [86, 87, 98, 106], "cumbersom": [86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "intent": [87, 94], "servic": [87, 94, 97], "onlin": [87, 94], "bank": [87, 94, 96], "banking77": [87, 94], "oo": [87, 94], "categori": [87, 91, 94, 95, 98], "shortlist": [87, 94, 106], "scope": [87, 94], "logist": [87, 89, 90, 94, 101, 104], "probabilit": [87, 88], "drop": [87, 93, 95, 97, 98, 101, 106], "earlier": [87, 108], "sentence_transform": [87, 94], "sentencetransform": [87, 94], "payment": [87, 94], "cancel_transf": [87, 94], "transfer": [87, 94], "fund": [87, 94], "cancel": [87, 94], "transact": [87, 94], "my": [87, 94], "revert": [87, 94], "morn": [87, 94], "realis": [87, 94], "yesterdai": [87, 94], "rent": [87, 94], "tomorrow": [87, 94], "raw_text": [87, 94], "raw_label": 87, "raw_train_text": 87, "raw_test_text": 87, "raw_train_label": 87, "raw_test_label": 87, "card_payment_fee_charg": [87, 94], "getting_spare_card": [87, 94], "visa_or_mastercard": [87, 94], "change_pin": [87, 94], "card_about_to_expir": [87, 94], "apple_pay_or_google_pai": [87, 94], "supported_cards_and_curr": [87, 94], "lost_or_stolen_phon": [87, 94], "beneficiary_not_allow": [87, 94], "card": [87, 94, 96], "utter": [87, 94], "encond": 87, "test_label": [87, 98, 99, 102, 104], "suit": [87, 94, 95, 96, 97], "electra": [87, 94], "discrimin": [87, 94], "googl": [87, 94], "train_text": 87, "test_text": 87, "home": [87, 94, 96], "runner": [87, 94], "google_electra": [87, 94], "pool": [87, 94, 97, 104], "leverag": [87, 88, 94, 97, 99, 101], "computation": [87, 88, 94], "intens": [87, 88, 94], "400": [87, 94, 98], "858371": 87, "547274": 87, "826228": 87, "966008": 87, "792449": 87, "identified_issu": [87, 106], "lowest_quality_label": [87, 88, 94, 99, 106], "to_numpi": [87, 94, 95, 98, 106], "44": [87, 95, 96, 102, 103], "646": 87, "390": 87, "628": 87, "121": [87, 99], "702": 87, "863": 87, "135": 87, "337": [87, 98, 103], "735": 87, "print_as_df": 87, "inverse_transform": 87, "charg": [87, 94], "cash": [87, 94], "holidai": [87, 94], "sent": [87, 94, 95, 108], "mine": [87, 94], "expir": [87, 94], "fight": 87, "hors": [87, 96, 104], "duck": [87, 96], "me": [87, 94, 95], "whoever": [87, 94], "consum": [87, 106], "18": [87, 88, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "baseline_model": [87, 106], "87": [87, 90, 91, 98, 103, 106], "acceler": [87, 106], "19": [87, 88, 91, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "89": [87, 89, 93, 98, 103, 106], "spoken": 88, "500": [88, 95, 98, 104, 108], "english": [88, 96], "pronunci": 88, "wav": 88, "huggingfac": [88, 89, 90, 91, 97], "voxceleb": 88, "speech": [88, 108], "your_pred_prob": [88, 89, 90, 93, 94], "tensorflow_io": 88, "huggingface_hub": 88, "reproduc": [88, 93, 95, 98, 99, 101], "command": 88, "wget": [88, 95, 103, 107, 108], "navig": 88, "browser": 88, "jakobovski": 88, "archiv": [88, 108], "v1": 88, "tar": [88, 104], "gz": [88, 104], "mkdir": [88, 108], "spoken_digit": 88, "xf": 88, "6_nicolas_32": 88, "data_path": 88, "listdir": 88, "nondeterminist": 88, "file_nam": 88, "endswith": 88, "file_path": 88, "join": [88, 91, 95, 97, 98], "7_george_26": 88, "0_nicolas_24": 88, "0_nicolas_6": 88, "listen": 88, "display_exampl": 88, "expand": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "pulldown": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "colab": [88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 88, "pathlib": 88, "ipython": [88, 95], "load_wav_16k_mono": 88, "filenam": 88, "khz": 88, "file_cont": 88, "read_fil": 88, "sample_r": 88, "decode_wav": 88, "desired_channel": 88, "squeez": 88, "rate_in": 88, "rate_out": 88, "16000": 88, "wav_file_nam": 88, "audio_r": 88, "wav_file_exampl": 88, "plai": [88, 96, 97], "button": 88, "wav_file_name_exampl": 88, "7_jackson_43": 88, "hear": 88, "extractor": 88, "encoderclassifi": 88, "spkrec": 88, "xvect": 88, "feature_extractor": 88, "from_hparam": 88, "run_opt": 88, "uncom": [88, 95], "ffmpeg": 88, "backend": 88, "wav_audio_file_path": 88, "torchaudio": 88, "extract_audio_embed": 88, "emb": [88, 91], "signal": 88, "encode_batch": 88, "embeddings_list": [88, 91], "embeddings_arrai": 88, "512": [88, 91], "196311": 88, "319459": 88, "478975": 88, "2890875": 88, "8170238": 88, "89265": 88, "898056": 88, "256195": 88, "559641": 88, "559721": 88, "62067": 88, "285245": 88, "21": [88, 89, 95, 96, 98, 99, 103, 106, 108], "709627": 88, "5033693": 88, "913803": 88, "819831": 88, "1831515": 88, "208763": 88, "084257": 88, "3210397": 88, "005453": 88, "216152": 88, "478235": 88, "6821785": 88, "053807": 88, "242471": 88, "091424": 88, "78334856": 88, "03954": 88, "23": [88, 91, 95, 96, 98, 99, 103, 106, 108], "569176": 88, "761097": 88, "1258295": 88, "753237": 88, "3508866": 88, "598274": 88, "23712": 88, "2500": 88, "tol": 88, "decreas": [88, 97], "cv_accuraci": 88, "9708": 88, "issue_type_descript": [88, 89, 90, 91, 93, 94, 98, 99], "lt": [88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 104], "gt": [88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 108], "9976": 88, "986": 88, "002161": 88, "176": [88, 96, 99, 102, 108], "002483": 88, "2318": 88, "004411": 88, "1005": 88, "004857": 88, "1871": 88, "007494": 88, "040587": 88, "999207": 88, "999377": 88, "975220": 88, "999367": 88, "identified_label_issu": [88, 94], "516": [88, 98], "1946": 88, "469": 88, "2132": 88, "worth": [88, 99], "6_yweweler_25": 88, "7_nicolas_43": 88, "6_theo_27": 88, "6_yweweler_36": 88, "6_yweweler_14": 88, "6_yweweler_35": 88, "6_nicolas_8": 88, "sound": 88, "quit": [88, 104], "underneath": 89, "hood": [89, 95, 97], "alert": 89, "introduct": 89, "mayb": [89, 90, 94], "your_feature_matrix": [89, 90], "toi": [89, 90, 91, 95, 96, 99, 101, 105], "inf": [89, 90], "mid": [89, 90], "bins_map": [89, 90], "create_data": [89, 90], "y_bin": [89, 90], "y_i": [89, 90], "y_bin_idx": [89, 90], "y_train": [89, 90, 99, 106], "y_test": [89, 90, 99, 106], "y_train_idx": [89, 90], "y_test_idx": [89, 90], "slide": [89, 90, 96], "frame": [89, 90], "x_out": [89, 90], "tini": [89, 90], "concaten": [89, 90, 105], "y_out": [89, 90], "y_out_bin": [89, 90], "y_out_bin_idx": [89, 90], "exact_duplicate_idx": [89, 90], "x_duplic": [89, 90], "y_duplic": [89, 90], "y_duplicate_idx": [89, 90], "noisy_labels_idx": [89, 90, 102], "scatter": [89, 90, 95, 99, 102, 106], "black": [89, 90, 96, 106], "cyan": [89, 90], "plot_data": [89, 90, 95, 99, 102, 106], "fig": [89, 90, 91, 96, 104, 106], "ax": [89, 90, 91, 95, 104, 106], "subplot": [89, 90, 91, 104], "set_titl": [89, 90, 91, 104], "set_xlabel": [89, 90], "x_1": [89, 90], "fontsiz": [89, 90, 91, 95, 99, 102], "set_ylabel": [89, 90], "x_2": [89, 90], "set_xlim": [89, 90], "set_ylim": [89, 90], "linestyl": [89, 90, 95], "circl": [89, 90, 99, 102], "misclassifi": [89, 90], "zip": [89, 90, 91, 95, 103, 108], "label_err": [89, 90], "180": [89, 90, 95, 103], "marker": [89, 90], "facecolor": [89, 90, 95], "edgecolor": [89, 90, 95], "linewidth": [89, 90, 95, 104], "dup": [89, 90], "first_legend": [89, 90], "align": [89, 90], "title_fontproperti": [89, 90], "semibold": [89, 90], "second_legend": [89, 90], "45": [89, 90, 95, 96, 98, 99, 103], "gca": [89, 90], "add_artist": [89, 90], "tight_layout": [89, 90, 95], "ideal": [89, 90], "remaind": 89, "modal": [89, 90, 97, 98, 101], "132": [89, 90, 98, 99, 103], "9318": 89, "006940": 89, "007830": 89, "40": [89, 90, 94, 95, 96, 98], "014828": 89, "107": [89, 90, 99, 102], "021241": 89, "026407": 89, "notic": [89, 95, 99, 101, 103], "3558": [89, 90], "126": [89, 90, 99, 103], "006636": [89, 90], "130": [89, 90], "012571": [89, 90], "129": [89, 90], "127": [89, 90, 98], "014909": [89, 90], "128": [89, 90, 91], "017443": [89, 90], "6160": [89, 90], "131": [89, 90, 98, 107], "000000e": [89, 90, 98], "000002": [89, 90], "463180e": [89, 90], "07": [89, 90, 91, 93, 95, 99, 103, 106], "51": [89, 90, 93, 95, 96, 99, 103], "161148": [89, 90], "859087e": [89, 90], "30": [89, 90, 91, 95, 96, 97, 98, 102, 107, 108], "3453": 89, "029542": 89, "031182": 89, "057961": 89, "058244": 89, "54": [89, 95, 96, 99, 103], "039122": 89, "044598": 89, "105": [89, 103], "105196": 89, "133654": 89, "43": [89, 95, 96, 98, 99, 103], "168033": 89, "125": 89, "101107": 89, "183382": 89, "109": [89, 95, 96, 98, 103], "209259": 89, "211042": 89, "221316": 89, "average_ood_scor": 89, "34530442089193386": 89, "52": [89, 95, 96, 98, 103], "169820": 89, "087324e": 89, "259024": 89, "583757e": 89, "91": [89, 98, 103], "346458": 89, "341292e": 89, "specfi": 89, "new_lab": 89, "scoring_funct": 89, "div": 89, "rem": 89, "inv_scal": 89, "49": [89, 95, 96, 99, 103], "superstitionissuemanag": 89, "unlucki": 89, "superstit": 89, "to_seri": 89, "issues_mask": 89, "summary_scor": 89, "9242": 89, "is_superstition_issu": 89, "superstition_scor": 89, "26": [89, 91, 95, 96, 98, 99, 101, 103], "047581": 89, "090635": 89, "129591": 89, "164840": 89, "lurk": [90, 91, 98, 99], "thoroughli": 90, "8561": 90, "001908": 90, "003564": 90, "007331": 90, "008963": 90, "009664": 90, "0227": 90, "022727": 90, "conceptu": 90, "856061": 90, "355772": 90, "616034": 90, "821750": 90, "926818": 90, "betweeen": 90, "859131": 90, "417707": 90, "664083": 90, "970324": 90, "816953": 90, "375317": 90, "641516": 90, "890575": 90, "910232": 90, "531021": 90, "460593": 90, "601188": 90, "826147": 90, "752808": 90, "321635": 90, "562539": 90, "948362": 90, "890169": 90, "090243": 90, "472909": 90, "746763": 90, "878267": 90, "examples_w_issu": [90, 97], "013445": 90, "025184": 90, "026376": 90, "inde": [90, 94], "miscellan": [90, 92, 108], "428571": 90, "111111": 90, "571429": 90, "407407": 90, "592593": 90, "337838": 90, "092593": 90, "662162": 90, "333333": [90, 96], "952381": 90, "666667": [90, 95], "portion": 90, "huge": [90, 99], "worri": [90, 94, 98], "critic": [90, 105], "60": [91, 95, 99, 106], "torchvis": [91, 95, 104], "tensordataset": 91, "stratifiedkfold": [91, 102], "tqdm": 91, "autonotebook": 91, "math": [91, 98], "fashion_mnist": 91, "num_row": 91, "60000": 91, "transformed_dataset": 91, "with_format": 91, "255": [91, 96], "cpu_count": 91, "torch_dataset": 91, "quick": [91, 102, 104], "super": 91, "relu": 91, "batchnorm2d": 91, "maxpool2d": 91, "lazylinear": 91, "flatten": 91, "get_test_accuraci": 91, "testload": [91, 104], "energi": 91, "trainload": [91, 104], "n_epoch": 91, "patienc": 91, "criterion": 91, "crossentropyloss": 91, "adamw": 91, "best_test_accuraci": 91, "start_epoch": 91, "running_loss": 91, "best_epoch": 91, "end_epoch": 91, "3f": [91, 106], "acc": [91, 99], "time_taken": 91, "compute_embed": 91, "compute_pred_prob": 91, "train_batch_s": 91, "num_work": 91, "worker": [91, 108], "train_id_list": 91, "test_id_list": 91, "train_id": 91, "test_id": 91, "embeddings_model": 91, "ntrain": 91, "trainset": 91, "testset": 91, "pin_memori": 91, "fold_embed": 91, "fold_pred_prob": 91, "finish": 91, "482": 91, "720": 91, "207": [91, 103], "329": [91, 93, 98, 103], "88": [91, 96, 98, 99, 102, 103, 106], "195": [91, 95, 98], "694": 91, "493": 91, "060": 91, "161": 91, "330": [91, 98, 103], "505": 91, "733": 91, "476": [91, 98], "340": [91, 98], "006": 91, "328": [91, 103], "310": 91, "826": 91, "reorder": 91, "hstack": [91, 97, 99, 101], "vision": 91, "grayscal": [91, 95], "max_preval": [91, 95], "7714": 91, "3772": 91, "3585": 91, "166": 91, "3651": 91, "27080": 91, "873833e": 91, "40378": 91, "915575e": 91, "25316": 91, "390277e": 91, "06": [91, 98, 99, 103, 108], "2090": 91, "751164e": 91, "14999": 91, "881301e": 91, "9569": 91, "11262": 91, "000003": 91, "coat": [91, 96], "shirt": [91, 96], "19228": 91, "000010": 91, "dress": 91, "32657": 91, "000013": 91, "bag": [91, 96, 104, 105], "21282": 91, "000016": [91, 98], "53564": 91, "000018": [91, 98], "pullov": 91, "6321": 91, "30968": 91, "001267": 91, "30659": 91, "000022": [91, 108], "47824": 91, "001454": 91, "3370": 91, "000026": 91, "54565": 91, "001854": 91, "9762": 91, "258": 91, "47139": 91, "000033": 91, "166980": 91, "986195": 91, "997205": 91, "sandal": [91, 96], "948781": 91, "999358": 91, "54078": 91, "17371": 91, "000025": 91, "plot_label_issue_exampl": 91, "ncol": [91, 104], "nrow": [91, 104], "ceil": [91, 98], "axes_list": 91, "label_issue_indic": 91, "gl": 91, "sl": 91, "fontdict": 91, "imshow": [91, 104], "cmap": [91, 95, 106], "grai": 91, "subplots_adjust": 91, "hspace": 91, "outsiz": 91, "outlier_issu": [91, 94], "outlier_issues_df": 91, "depict": [91, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 91, "n_comparison_imag": 91, "sample_from_class": 91, "number_of_sampl": 91, "non_outlier_indic": 91, "isnul": [91, 95], "non_outlier_indices_excluding_curr": 91, "sampled_indic": 91, "label_scores_of_sampl": 91, "top_score_indic": 91, "top_label_indic": 91, "sampled_imag": 91, "get_image_given_label_and_sampl": 91, "image_from_dataset": 91, "corresponding_label": 91, "comparison_imag": 91, "images_to_plot": 91, "idlist": 91, "iterrow": 91, "near_duplicate_issu": [91, 97], "closest": 91, "counterpart": 91, "near_duplicate_issues_df": 91, "plot_near_duplicate_issue_exampl": 91, "seen_id_pair": 91, "get_image_and_given_label_and_predicted_label": 91, "duplicate_imag": 91, "nd_set": 91, "challeng": 91, "dark_issu": 91, "reveal": [91, 103, 107], "dark_scor": [91, 95], "dark_issues_df": 91, "is_dark_issu": [91, 95], "34848": 91, "203922": 91, "50270": 91, "204588": 91, "3936": 91, "213098": 91, "217686": 91, "8094": 91, "230118": 91, "plot_image_issue_exampl": 91, "difficult": 91, "disproportion": [91, 95], "lowinfo_issu": 91, "low_information_scor": [91, 95], "lowinfo_issues_df": 91, "is_low_information_issu": 91, "53050": 91, "067975": 91, "40875": 91, "089929": 91, "9594": 91, "092601": 91, "34825": 91, "107744": 91, "37530": 91, "108516": 91, "lot": 91, "workflow": [92, 97, 98, 100, 106], "histgradientboostingclassifi": 93, "cat_featur": 93, "boost": [93, 97, 101, 106], "xgboost": [93, 97, 98, 106], "think": [93, 94, 97, 102, 107, 108], "nonzero": 93, "358": 93, "941": 93, "294": [93, 103], "46": [93, 95, 96, 98, 99, 103], "7109": 93, "000005": [93, 94], "886": 93, "000059": 93, "709": [93, 98], "000104": 93, "723": [93, 98], "000169": 93, "689": 93, "000181": 93, "3590": 93, "051882e": 93, "683133e": 93, "536582e": 93, "406589e": 93, "324246e": 93, "6165": 93, "582": [93, 98], "185": [93, 95, 96, 103], "187": [93, 96, 98], "898": 93, "0000": [93, 94, 96, 98, 99], "865": 93, "515002": 93, "837": 93, "556480": 93, "622": 93, "593068": 93, "593207": 93, "920": 93, "618041": 93, "4386345844794593e": 93, "issue_result": 93, "000842": 93, "555944": 93, "004374": 93, "sorted_issu": 93, "73": [93, 95, 96, 98, 102, 103, 106], "deserv": 93, "outlier_result": 93, "sorted_outli": 93, "56": [93, 95, 96, 106], "96": [93, 95, 96, 98, 99, 102, 103, 106], "style": [93, 95, 107], "font": 93, "18px": 93, "ff00ff": 93, "bac": 93, "unintend": [93, 94, 95], "duplicate_result": 93, "lowest_scoring_dupl": 93, "idxmin": [93, 97], "indices_to_displai": 93, "tolist": [93, 97, 98, 102], "perhap": [93, 99, 101], "second_lowest_scoring_dupl": 93, "next_indices_to_displai": 93, "wari": [93, 94, 97], "your_featur": 94, "text_embed": 94, "data_dict": [94, 99, 101], "85": [94, 98, 103], "38": [94, 95, 96, 103], "9710": 94, "981": 94, "974": 94, "000146": 94, "982": [94, 96], "000224": 94, "971": 94, "000507": 94, "980": [94, 96], "000960": 94, "3584": 94, "994": 94, "009642": 94, "999": 94, "013067": 94, "013841": 94, "433": 94, "014722": 94, "989": 94, "018224": 94, "6070": 94, "160": [94, 106], "095724": 94, "148": 94, "006237": 94, "546": [94, 98], "099341": 94, "514": 94, "006485": 94, "481": 94, "123418": 94, "008165": 94, "313": [94, 98, 103], "564102": 94, "572258": 94, "574915": 94, "31": [94, 95, 96, 98, 99, 101, 103], "575507": 94, "575874": 94, "792090": 94, "257611": 94, "698710": 94, "182121": 94, "771619": 94, "data_with_suggested_label": 94, "suggested_label": 94, "withdraw": 94, "monei": 94, "lowest_quality_outli": 94, "OR": 94, "636c65616e6c616220697320617765736f6d6521": 94, "phone": [94, 96], "gone": 94, "samp": 94, "br": 94, "press": [94, 108], "nonsens": 94, "sens": 94, "detriment": 94, "duplicate_issu": 94, "fee": 94, "go": [94, 95, 96, 99], "strongli": [94, 95], "p_valu": 94, "benign": 94, "curat": [94, 100], "bigger": 95, "make_classif": 95, "5000": [95, 104], "n_featur": 95, "n_inform": 95, "n_redund": 95, "n_repeat": 95, "n_class": 95, "n_clusters_per_class": 95, "flip_i": 95, "class_sep": 95, "faiss": 95, "x_faiss": 95, "float32": [95, 103], "normalize_l2": 95, "index_factori": 95, "hnsw32": 95, "flat": [95, 96], "metric_inner_product": 95, "a_min": 95, "a_max": 95, "create_knn_graph": 95, "assert": 95, "indices_1d": 95, "ravel": 95, "distances_1d": 95, "sort_graph_by_row_valu": 95, "warn_when_not_sort": 95, "50000": 95, "523": [95, 98], "991400": 95, "356958": 95, "362": 95, "619565": 95, "108": [95, 103], "500000": 95, "651838": 95, "999827": 95, "031217": 95, "933716": 95, "627345": 95, "998540": 95, "530909": 95, "296974": 95, "646765": 95, "942721": 95, "332824": 95, "803246": 95, "625202": 95, "999816": 95, "474031": 95, "706253": 95, "655108": 95, "997703": 95, "131466": 95, "912389": 95, "639200": 95, "4995": 95, "998646": 95, "504755": 95, "746777": 95, "680033": 95, "4996": 95, "894230": 95, "340986": 95, "816472": 95, "640711": 95, "4997": 95, "999100": 95, "428545": 95, "592421": 95, "658949": 95, "4998": 95, "986792": 95, "273710": 95, "618033": 95, "4999": 95, "986776": 95, "273524": 95, "618084": 95, "instabl": 95, "proxim": 95, "analys": 95, "comfort": 95, "explor": [95, 103, 104], "third": 95, "parti": [95, 108], "newsgroup": 95, "alt": [95, 96], "atheism": [95, 96], "sci": [95, 96], "fetch_20newsgroup": 95, "newsgroups_train": 95, "header": 95, "footer": 95, "quot": 95, "df_text": 95, "target_nam": 95, "enlighten": 95, "omnipot": 95, "19apr199320262420": 95, "kelvin": 95, "jpl": 95, "nasa": 95, "gov": 95, "baa": 95, "nhenri": 95, "he": 95, "nno": 95, "ge": 95, "nlucki": 95, "babi": [95, 96], "tfidfvector": 95, "feature_extract": 95, "x_vector": 95, "data_valuation_issu": 95, "147": [95, 99, 103], "500047": 95, "500093": 95, "499953": 95, "1068": [95, 108], "1069": 95, "1070": 95, "1071": 95, "1072": 95, "1073": 95, "concentr": 95, "seaborn": 95, "sn": 95, "distinguish": [95, 98], "strip": 95, "stripplot": 95, "hue": [95, 106], "dodg": 95, "jitter": 95, "axvlin": [95, 104], "xlabel": 95, "ourselv": 95, "make_blob": 95, "center": [95, 96], "cluster_std": 95, "n_noisy_label": 95, "meaning": [95, 97, 98, 104], "silhouette_scor": 95, "gridsearchcv": 95, "silhouett": 95, "cluster_label": 95, "fit_predict": 95, "param_grid": [95, 98], "grid_search": 95, "best_kmean": 95, "best_estimator_": 95, "underperforming_group_issu": 95, "328308": 95, "tab10": 95, "domain": 95, "knowledg": [95, 99], "dataset_tsv": 95, "ag": [95, 106], "gender": 95, "educ": 95, "experi": 95, "highsalari": 95, "indiana": 95, "phd": 95, "male": 95, "bachelor": 95, "femal": 95, "kansa": 95, "school": [95, 96], "ohio": 95, "57": [95, 96, 98, 99], "california": 95, "59": [95, 96, 103], "34": [95, 96, 99, 101, 103, 108], "63": [95, 98, 99, 103, 106, 108], "47": [95, 96, 103, 108], "stringio": 95, "sep": [95, 108], "easier": [95, 99], "simplic": [95, 102], "ordinalencod": 95, "columns_to_encod": 95, "encoded_df": 95, "salari": 95, "573681": 95, "underpin": 95, "caught": 95, "whenev": 95, "generate_data_depend": 95, "num_sampl": 95, "a1": 95, "a2": 95, "a3": 95, "375": 95, "975": 95, "non_iid_issu": 95, "796474": 95, "842432": 95, "922562": 95, "820759": 95, "873136": 95, "887373": 95, "825101": 95, "855875": 95, "751795": 95, "835796": 95, "ylabel": [95, 104], "coolwarm": 95, "colorbar": [95, 106], "strong": 95, "evid": [95, 98], "inter": 95, "mitig": 95, "risk": [95, 98], "deeper": 95, "tsv": 95, "tab": 95, "pars": 95, "annual_spend": 95, "number_of_transact": 95, "last_purchase_d": 95, "rural": 95, "4099": 95, "2024": [95, 108], "6421": 95, "nat": 95, "suburban": 95, "5436": 95, "4046": 95, "66": [95, 96, 98], "3467": 95, "67": [95, 96, 98, 103, 106], "4757": 95, "4199": 95, "4991": 95, "4655": 95, "82": [95, 96, 98, 99, 103, 106], "5584": 95, "urban": 95, "3102": 95, "6637": 95, "9167": 95, "6790": 95, "5327": 95, "parse_d": 95, "lose": 95, "intact": 95, "encode_categorical_column": 95, "placehold": 95, "dropna": [95, 101], "category_to_numb": 95, "_encod": 95, "gender_encod": 95, "location_encod": 95, "focus": [95, 98, 99, 101, 102, 106], "null_issu": 95, "833333": 95, "sorted_indic": [95, 103], "sorted_df": 95, "nice": 95, "styler": 95, "combined_df": 95, "concat": [95, 98, 106], "highlight_null_valu": 95, "val": [95, 99], "yellow": [95, 96], "highlight_datalab_column": 95, "lightblu": 95, "highlight_is_null_issu": 95, "orang": [95, 96], "styled_df": 95, "nbsp": [95, 97, 98, 99], "160000": 95, "820000": 95, "460000": 95, "470000": 95, "960000": 95, "620000": 95, "550000": 95, "660000": 95, "670000": [95, 96], "370000": 95, "530000": 95, "710000": 95, "020000": 95, "320000": 95, "990000": 95, "rarer": 95, "fairer": 95, "randomli": [95, 98, 99], "class_imbalance_issu": 95, "countplot": 95, "xtick": 95, "rotat": 95, "ytick": 95, "filtered_df": 95, "xy": 95, "va": 95, "textual": 95, "get_ytick": 95, "nbar": 95, "nimbal": 95, "get_legend_handles_label": 95, "title_fonts": 95, "aspect": 95, "anomali": [95, 103], "enhanc": [95, 99, 101, 103], "artifici": 95, "directori": [95, 108], "subdirectori": 95, "nc": [95, 103, 107, 108], "unzip": [95, 103, 108], "199": [95, 98, 103], "111": [95, 101, 106], "153": [95, 98, 103], "110": [95, 103], "connect": [95, 108], "443": [95, 108], "await": [95, 108], "ok": [95, 105, 108], "986707": 95, "964k": 95, "963": 95, "58k": 95, "kb": 95, "mb": [95, 108], "imagefold": 95, "load_image_dataset": 95, "data_dir": 95, "root": [95, 104], "image_dataset": 95, "img": [95, 104, 106], "from_dict": [95, 97], "darkened_imag": 95, "job": 95, "blurry_scor": 95, "correlation_scor": 95, "_correlations_df": 95, "image_issu": 95, "nimag": 95, "light_scor": 95, "015": 95, "odd_aspect_ratio_scor": 95, "odd_size_scor": 95, "grayscale_scor": 95, "237196": 95, "197229": 95, "254188": 95, "229170": 95, "208907": 95, "793840": 95, "196": [95, 98, 99, 103], "197": [95, 99, 103], "971560": 95, "198": [95, 99, 103], "862236": 95, "973533": 95, "stronger": 95, "frog": [95, 96, 104], "darken": 95, "concept": 95, "notabl": 95, "preval": 95, "warrant": 95, "programmat": 95, "original_data_dir": 95, "original_imag": 95, "original_dataset": 95, "original_lab": 95, "original_scor": 95, "original_issu": 95, "300": [95, 98, 101, 108], "415": 95, "325": 95, "335": 95, "797509": 95, "663760": 95, "849826": 95, "773951": 95, "699518": 95, "balanc": [95, 96], "refin": 96, "instruct": [96, 97, 98], "studi": [96, 103], "mnist_test_set": 96, "imagenet_val_set": 96, "tench": 96, "goldfish": 96, "white": [96, 108], "shark": 96, "tiger": 96, "hammerhead": 96, "electr": 96, "rai": 96, "stingrai": 96, "cock": 96, "hen": 96, "ostrich": 96, "brambl": 96, "goldfinch": 96, "hous": 96, "finch": 96, "junco": 96, "indigo": 96, "bunt": 96, "american": [96, 108], "robin": 96, "bulbul": 96, "jai": 96, "magpi": 96, "chickade": 96, "dipper": 96, "kite": 96, "bald": 96, "eagl": 96, "vultur": 96, "grei": 96, "owl": 96, "salamand": 96, "smooth": 96, "newt": 96, "spot": [96, 97, 103], "axolotl": 96, "bullfrog": 96, "tree": 96, "tail": 96, "loggerhead": 96, "sea": 96, "turtl": 96, "leatherback": 96, "mud": 96, "terrapin": 96, "band": 96, "gecko": 96, "green": [96, 108], "iguana": 96, "carolina": 96, "anol": 96, "desert": 96, "grassland": 96, "whiptail": 96, "lizard": 96, "agama": 96, "frill": 96, "neck": 96, "allig": 96, "gila": 96, "monster": 96, "european": 96, "chameleon": 96, "komodo": 96, "dragon": 96, "nile": 96, "crocodil": 96, "triceratop": 96, "worm": 96, "snake": 96, "ring": 96, "eastern": 96, "hog": 96, "nose": 96, "kingsnak": 96, "garter": 96, "water": 96, "vine": 96, "night": 96, "boa": 96, "constrictor": 96, "african": 96, "rock": 96, "indian": 96, "cobra": 96, "mamba": 96, "saharan": 96, "horn": 96, "viper": 96, "diamondback": 96, "rattlesnak": 96, "sidewind": 96, "trilobit": 96, "harvestman": 96, "scorpion": 96, "garden": 96, "spider": 96, "barn": 96, "southern": 96, "widow": 96, "tarantula": 96, "wolf": 96, "tick": 96, "centiped": 96, "grous": 96, "ptarmigan": 96, "ruf": 96, "prairi": 96, "peacock": 96, "quail": 96, "partridg": 96, "parrot": 96, "macaw": 96, "sulphur": 96, "crest": 96, "cockatoo": 96, "lorikeet": 96, "coucal": 96, "bee": 96, "eater": 96, "hornbil": 96, "hummingbird": 96, "jacamar": 96, "toucan": 96, "breast": 96, "mergans": 96, "goos": 96, "swan": 96, "tusker": 96, "echidna": 96, "platypu": 96, "wallabi": 96, "koala": 96, "wombat": 96, "jellyfish": 96, "anemon": 96, "brain": 96, "coral": 96, "flatworm": 96, "nematod": 96, "conch": 96, "snail": 96, "slug": 96, "chiton": 96, "chamber": 96, "nautilu": 96, "dung": 96, "crab": 96, "fiddler": 96, "king": 96, "lobster": 96, "spini": 96, "crayfish": 96, "hermit": 96, "isopod": 96, "stork": 96, "spoonbil": 96, "flamingo": 96, "heron": 96, "egret": 96, "bittern": 96, "crane": 96, "bird": [96, 104], "limpkin": 96, "gallinul": 96, "coot": 96, "bustard": 96, "ruddi": 96, "turnston": 96, "dunlin": 96, "redshank": 96, "dowitch": 96, "oystercatch": 96, "pelican": 96, "penguin": 96, "albatross": 96, "whale": 96, "killer": 96, "dugong": 96, "lion": 96, "chihuahua": 96, "japanes": 96, "chin": 96, "maltes": 96, "pekinges": 96, "shih": 96, "tzu": 96, "charl": 96, "spaniel": 96, "papillon": 96, "terrier": 96, "rhodesian": 96, "ridgeback": 96, "afghan": [96, 108], "hound": 96, "basset": 96, "beagl": 96, "bloodhound": 96, "bluetick": 96, "coonhound": 96, "tan": 96, "walker": 96, "foxhound": 96, "redbon": 96, "borzoi": 96, "irish": 96, "wolfhound": 96, "italian": 96, "greyhound": 96, "whippet": 96, "ibizan": 96, "norwegian": 96, "elkhound": 96, "otterhound": 96, "saluki": 96, "scottish": 96, "deerhound": 96, "weimaran": 96, "staffordshir": 96, "bull": 96, "bedlington": 96, "border": 96, "kerri": 96, "norfolk": 96, "norwich": 96, "yorkshir": 96, "wire": 96, "fox": 96, "lakeland": 96, "sealyham": 96, "airedal": 96, "cairn": 96, "australian": 96, "dandi": 96, "dinmont": 96, "boston": 96, "miniatur": 96, "schnauzer": 96, "giant": 96, "tibetan": 96, "silki": 96, "wheaten": 96, "west": 96, "highland": 96, "lhasa": 96, "apso": 96, "retriev": 96, "curli": 96, "golden": 96, "labrador": 96, "chesapeak": 96, "bai": 96, "german": [96, 108], "shorthair": 96, "pointer": 96, "vizsla": 96, "setter": 96, "gordon": 96, "brittani": 96, "clumber": 96, "springer": 96, "welsh": 96, "cocker": 96, "sussex": 96, "kuvasz": 96, "schipperk": 96, "groenendael": 96, "malinoi": 96, "briard": 96, "kelpi": 96, "komondor": 96, "sheepdog": 96, "shetland": 96, "colli": 96, "bouvier": 96, "de": 96, "flandr": 96, "rottweil": 96, "shepherd": 96, "dobermann": 96, "pinscher": 96, "swiss": [96, 108], "mountain": 96, "bernes": 96, "appenzel": 96, "sennenhund": 96, "entlebuch": 96, "boxer": 96, "bullmastiff": 96, "mastiff": 96, "french": 96, "bulldog": 96, "dane": 96, "st": 96, "bernard": 96, "huski": 96, "alaskan": 96, "malamut": 96, "siberian": 96, "dalmatian": 96, "affenpinsch": 96, "basenji": 96, "pug": 96, "leonberg": 96, "newfoundland": 96, "pyrenean": 96, "samoi": 96, "pomeranian": 96, "chow": 96, "keeshond": 96, "griffon": 96, "bruxelloi": 96, "pembrok": 96, "corgi": 96, "cardigan": 96, "poodl": 96, "mexican": 96, "hairless": 96, "tundra": 96, "coyot": 96, "dingo": 96, "dhole": 96, "wild": 96, "hyena": 96, "kit": 96, "arctic": 96, "tabbi": 96, "persian": 96, "siames": 96, "egyptian": 96, "mau": 96, "cougar": 96, "lynx": 96, "leopard": 96, "snow": 96, "jaguar": 96, "cheetah": 96, "brown": [96, 107], "bear": 96, "polar": 96, "sloth": 96, "mongoos": 96, "meerkat": 96, "beetl": 96, "ladybug": 96, "longhorn": 96, "leaf": 96, "rhinocero": 96, "weevil": 96, "fly": 96, "ant": 96, "grasshopp": 96, "cricket": 96, "stick": 96, "insect": 96, "cockroach": 96, "manti": 96, "cicada": 96, "leafhopp": 96, "lacew": 96, "dragonfli": 96, "damselfli": 96, "admir": 96, "ringlet": 96, "monarch": 96, "butterfli": 96, "gossam": 96, "wing": 96, "starfish": 96, "urchin": 96, "cucumb": 96, "cottontail": 96, "rabbit": 96, "hare": 96, "angora": 96, "hamster": 96, "porcupin": 96, "squirrel": 96, "marmot": 96, "beaver": 96, "guinea": 96, "pig": 96, "sorrel": 96, "zebra": 96, "boar": 96, "warthog": 96, "hippopotamu": 96, "ox": 96, "buffalo": 96, "bison": 96, "bighorn": 96, "sheep": 96, "alpin": 96, "ibex": 96, "hartebeest": 96, "impala": 96, "gazel": 96, "dromedari": 96, "llama": 96, "weasel": 96, "mink": 96, "polecat": 96, "foot": 96, "ferret": 96, "otter": 96, "skunk": 96, "badger": 96, "armadillo": 96, "toed": 96, "orangutan": 96, "gorilla": 96, "chimpanze": 96, "gibbon": 96, "siamang": 96, "guenon": 96, "pata": 96, "monkei": 96, "baboon": 96, "macaqu": 96, "langur": 96, "colobu": 96, "probosci": 96, "marmoset": 96, "capuchin": 96, "howler": 96, "titi": 96, "geoffroi": 96, "lemur": 96, "indri": 96, "asian": 96, "eleph": 96, "bush": 96, "snoek": 96, "eel": 96, "coho": 96, "salmon": 96, "beauti": 96, "clownfish": 96, "sturgeon": 96, "garfish": 96, "lionfish": 96, "pufferfish": 96, "abacu": 96, "abaya": 96, "academ": 96, "gown": 96, "accordion": 96, "acoust": 96, "guitar": 96, "aircraft": 96, "carrier": 96, "airlin": 96, "airship": 96, "altar": 96, "ambul": 96, "amphibi": 96, "clock": [96, 108], "apiari": 96, "apron": 96, "wast": 96, "assault": 96, "rifl": 96, "backpack": 96, "bakeri": 96, "beam": 96, "balloon": 96, "ballpoint": 96, "pen": 96, "aid": 96, "banjo": 96, "balust": 96, "barbel": 96, "barber": 96, "chair": [96, 103], "barbershop": 96, "baromet": 96, "barrel": 96, "wheelbarrow": 96, "basebal": 96, "basketbal": 96, "bassinet": 96, "bassoon": 96, "swim": 96, "cap": 96, "bath": 96, "towel": 96, "bathtub": 96, "station": 96, "wagon": 96, "lighthous": 96, "beaker": 96, "militari": 96, "beer": 96, "bottl": 96, "glass": 96, "bell": 96, "cot": 96, "bib": 96, "bicycl": [96, 107], "bikini": 96, "binder": 96, "binocular": 96, "birdhous": 96, "boathous": 96, "bobsleigh": 96, "bolo": 96, "tie": 96, "poke": 96, "bonnet": 96, "bookcas": 96, "bookstor": 96, "bow": 96, "brass": 96, "bra": 96, "breakwat": 96, "breastplat": 96, "broom": 96, "bucket": 96, "buckl": 96, "bulletproof": 96, "vest": 96, "butcher": 96, "shop": 96, "taxicab": 96, "cauldron": 96, "candl": 96, "cannon": 96, "cano": 96, "mirror": [96, 103], "carousel": 96, "carton": 96, "wheel": 96, "teller": 96, "cassett": 96, "player": 96, "castl": 96, "catamaran": 96, "cd": 96, "cello": 96, "mobil": [96, 108], "chain": 96, "fenc": [96, 107], "mail": 96, "chainsaw": 96, "chest": 96, "chiffoni": 96, "chime": 96, "china": 96, "cabinet": 96, "christma": 96, "stock": 96, "church": 96, "movi": 96, "theater": 96, "cleaver": 96, "cliff": 96, "dwell": 96, "cloak": 96, "clog": 96, "cocktail": 96, "shaker": 96, "coffe": 96, "mug": 96, "coffeemak": 96, "coil": 96, "lock": 96, "keyboard": 96, "confectioneri": 96, "ship": [96, 104], "corkscrew": 96, "cornet": 96, "cowboi": 96, "boot": 96, "hat": 96, "cradl": 96, "crash": 96, "helmet": 96, "crate": 96, "infant": 96, "bed": 96, "crock": 96, "pot": 96, "croquet": 96, "crutch": 96, "cuirass": 96, "dam": 96, "desk": 96, "desktop": 96, "rotari": 96, "dial": 96, "telephon": 96, "diaper": 96, "watch": 96, "dine": 96, "dishcloth": 96, "dishwash": 96, "disc": 96, "brake": 96, "dock": 96, "sled": 96, "dome": 96, "doormat": 96, "drill": 96, "rig": 96, "drum": 96, "drumstick": 96, "dumbbel": 96, "dutch": 96, "oven": 96, "fan": 96, "locomot": 96, "entertain": 96, "envelop": 96, "espresso": 96, "powder": 96, "feather": 96, "fireboat": 96, "engin": [96, 107], "screen": 96, "sheet": 96, "flagpol": 96, "flute": 96, "footbal": 96, "forklift": 96, "fountain": 96, "poster": 96, "freight": 96, "fry": 96, "pan": 96, "fur": 96, "garbag": 96, "ga": 96, "pump": 96, "goblet": 96, "kart": 96, "golf": 96, "cart": 96, "gondola": 96, "gong": 96, "grand": 96, "piano": 96, "greenhous": 96, "grill": 96, "groceri": 96, "guillotin": 96, "barrett": 96, "hair": 96, "sprai": 96, "hammer": 96, "dryer": 96, "hand": [96, 99], "handkerchief": 96, "drive": 96, "harmonica": 96, "harp": 96, "harvest": 96, "hatchet": 96, "holster": 96, "honeycomb": 96, "hoop": 96, "skirt": 96, "horizont": 96, "bar": 96, "drawn": 96, "hourglass": 96, "ipod": 96, "cloth": 96, "iron": 96, "jack": 96, "lantern": 96, "jean": 96, "jeep": 96, "jigsaw": 96, "puzzl": 96, "pull": 96, "rickshaw": 96, "joystick": 96, "kimono": 96, "knee": 96, "pad": 96, "knot": 96, "ladl": 96, "lampshad": 96, "laptop": 96, "lawn": 96, "mower": 96, "knife": 96, "lifeboat": 96, "lighter": 96, "limousin": 96, "ocean": 96, "liner": 96, "lipstick": 96, "slip": 96, "shoe": 96, "lotion": 96, "speaker": 96, "loup": 96, "sawmil": 96, "magnet": 96, "compass": 96, "mailbox": 96, "tight": 96, "tank": 96, "manhol": 96, "maraca": 96, "marimba": 96, "maypol": 96, "maze": 96, "cup": [96, 103], "medicin": 96, "megalith": 96, "microphon": 96, "microwav": 96, "milk": 96, "minibu": 96, "miniskirt": 96, "minivan": 96, "missil": 96, "mitten": [96, 97], "mix": 96, "bowl": 96, "modem": 96, "monasteri": 96, "monitor": 96, "mope": 96, "mortar": 96, "mosqu": 96, "mosquito": 96, "scooter": 96, "bike": 96, "tent": 96, "mous": [96, 97], "mousetrap": 96, "van": 96, "muzzl": 96, "nail": 96, "brace": 96, "necklac": 96, "nippl": 96, "obelisk": 96, "obo": 96, "ocarina": 96, "odomet": 96, "oil": 96, "oscilloscop": 96, "overskirt": 96, "bullock": 96, "oxygen": 96, "packet": 96, "paddl": 96, "padlock": 96, "paintbrush": 96, "pajama": 96, "palac": [96, 108], "parachut": 96, "park": 96, "bench": 96, "meter": 96, "passeng": 96, "patio": 96, "payphon": 96, "pedest": 96, "pencil": 96, "perfum": 96, "petri": 96, "dish": 96, "photocopi": 96, "plectrum": 96, "pickelhaub": 96, "picket": 96, "pickup": 96, "pier": 96, "piggi": 96, "pill": 96, "pillow": 96, "ping": 96, "pong": 96, "pinwheel": 96, "pirat": 96, "pitcher": 96, "plane": 96, "planetarium": 96, "plastic": 96, "plate": 96, "rack": 96, "plow": 96, "plunger": 96, "polaroid": 96, "camera": 96, "pole": [96, 107], "polic": 96, "poncho": 96, "billiard": 96, "soda": 96, "potter": 96, "prayer": 96, "rug": 96, "printer": 96, "prison": 96, "projectil": 96, "projector": 96, "hockei": 96, "puck": 96, "punch": 96, "purs": 96, "quill": 96, "quilt": 96, "race": 96, "racket": 96, "radiat": 96, "radio": 96, "telescop": 96, "rain": 96, "recreat": 96, "reel": 96, "reflex": 96, "refriger": 96, "remot": 96, "restaur": 96, "revolv": 96, "rotisseri": 96, "eras": 96, "rugbi": 96, "ruler": 96, "safe": 96, "safeti": 96, "salt": 96, "sarong": 96, "saxophon": 96, "scabbard": 96, "bu": [96, 107], "schooner": 96, "scoreboard": 96, "crt": 96, "screw": 96, "screwdriv": 96, "seat": 96, "belt": 96, "sew": 96, "shield": 96, "shoji": 96, "basket": 96, "shovel": 96, "shower": 96, "curtain": 96, "ski": 96, "sleep": 96, "door": 96, "slot": 96, "snorkel": 96, "snowmobil": 96, "snowplow": 96, "soap": 96, "dispens": 96, "soccer": [96, 108], "sock": [96, 97], "solar": 96, "thermal": 96, "collector": 96, "sombrero": 96, "soup": 96, "heater": 96, "shuttl": 96, "spatula": 96, "motorboat": 96, "web": 96, "spindl": 96, "sport": [96, 108], "spotlight": 96, "stage": 96, "steam": 96, "arch": 96, "bridg": 96, "steel": 96, "stethoscop": 96, "scarf": 96, "stone": 96, "wall": [96, 107], "stopwatch": 96, "stove": 96, "strainer": 96, "tram": 96, "stretcher": 96, "couch": 96, "stupa": 96, "submarin": 96, "sundial": 96, "sunglass": 96, "sunscreen": 96, "suspens": 96, "mop": 96, "sweatshirt": 96, "swimsuit": 96, "swing": 96, "switch": 96, "syring": 96, "lamp": 96, "tape": 96, "teapot": 96, "teddi": 96, "televis": [96, 108], "tenni": 96, "thatch": 96, "roof": 96, "thimbl": 96, "thresh": 96, "throne": 96, "tile": 96, "toaster": 96, "tobacco": 96, "toilet": 96, "totem": 96, "tow": 96, "tractor": 96, "semi": 96, "trailer": 96, "trai": 96, "trench": 96, "tricycl": 96, "trimaran": 96, "tripod": 96, "triumphal": 96, "trolleybu": 96, "trombon": 96, "tub": 96, "turnstil": 96, "typewrit": 96, "umbrella": 96, "unicycl": 96, "upright": 96, "vacuum": 96, "cleaner": [96, 98], "vase": 96, "vault": 96, "velvet": 96, "vend": 96, "vestment": 96, "viaduct": 96, "violin": 96, "volleybal": 96, "waffl": 96, "wallet": 96, "wardrob": 96, "sink": 96, "wash": 96, "jug": 96, "tower": 96, "whiskei": 96, "whistl": 96, "wig": 96, "shade": [96, 107], "windsor": 96, "wine": 96, "wok": 96, "wooden": 96, "spoon": 96, "wool": 96, "rail": 96, "shipwreck": 96, "yawl": 96, "yurt": 96, "websit": 96, "comic": 96, "book": 96, "crossword": 96, "traffic": [96, 103, 107], "sign": [96, 107, 108], "dust": 96, "jacket": [96, 103], "menu": 96, "guacamol": 96, "consomm": 96, "trifl": 96, "ic": 96, "cream": 96, "pop": 96, "baguett": 96, "bagel": 96, "pretzel": 96, "cheeseburg": 96, "mash": 96, "potato": 96, "cabbag": 96, "broccoli": 96, "cauliflow": 96, "zucchini": 96, "spaghetti": 96, "squash": 96, "acorn": 96, "butternut": 96, "artichok": 96, "pepper": [96, 97], "cardoon": 96, "mushroom": 96, "granni": 96, "smith": 96, "strawberri": 96, "lemon": 96, "pineappl": 96, "banana": 96, "jackfruit": 96, "custard": 96, "appl": 96, "pomegran": 96, "hai": 96, "carbonara": 96, "chocol": 96, "syrup": 96, "dough": 96, "meatloaf": 96, "pizza": 96, "pie": 96, "burrito": 96, "eggnog": 96, "alp": 96, "bubbl": 96, "reef": 96, "geyser": 96, "lakeshor": 96, "promontori": 96, "shoal": 96, "seashor": 96, "vallei": 96, "volcano": 96, "bridegroom": 96, "scuba": 96, "diver": 96, "rapese": 96, "daisi": 96, "ladi": 96, "slipper": 96, "corn": 96, "rose": 96, "hip": 96, "chestnut": 96, "fungu": 96, "agar": 96, "gyromitra": 96, "stinkhorn": 96, "earth": 96, "star": 96, "wood": 96, "bolet": 96, "ear": 96, "cifar10_test_set": 96, "airplan": [96, 104], "automobil": [96, 104], "deer": [96, 104], "cifar100_test_set": 96, "aquarium_fish": 96, "boi": 96, "camel": 96, "caterpillar": 96, "cattl": [96, 108], "cloud": 96, "dinosaur": 96, "dolphin": 96, "flatfish": 96, "forest": 96, "girl": 96, "kangaroo": 96, "lawn_mow": 96, "man": 96, "maple_tre": 96, "motorcycl": [96, 107], "oak_tre": 96, "orchid": 96, "palm_tre": 96, "pear": 96, "pickup_truck": 96, "pine_tre": 96, "plain": 96, "poppi": 96, "possum": 96, "raccoon": 96, "road": [96, 107], "rocket": 96, "seal": 96, "shrew": 96, "skyscrap": 96, "streetcar": 96, "sunflow": 96, "sweet_pepp": 96, "trout": 96, "tulip": 96, "willow_tre": 96, "woman": [96, 103], "caltech256": 96, "ak47": 96, "bat": 96, "glove": 96, "birdbath": 96, "blimp": 96, "bonsai": 96, "boom": 96, "breadmak": 96, "buddha": 96, "bulldoz": 96, "cactu": 96, "cake": 96, "tire": 96, "cartman": 96, "cereal": 96, "chandeli": 96, "chess": 96, "board": 96, "chimp": 96, "chopstick": 96, "coffin": 96, "coin": 96, "comet": 96, "cormor": 96, "globe": 96, "diamond": 96, "dice": 96, "doorknob": 96, "drink": 96, "straw": 96, "dumb": 96, "eiffel": 96, "elk": 96, "ewer": 96, "eyeglass": 96, "fern": 96, "fighter": 96, "jet": [96, 106], "extinguish": 96, "hydrant": 96, "firework": 96, "flashlight": 96, "floppi": 96, "fri": 96, "frisbe": 96, "galaxi": 96, "giraff": 96, "goat": 96, "gate": 96, "grape": 96, "pick": [96, 97], "hamburg": 96, "hammock": 96, "harpsichord": 96, "hawksbil": 96, "helicopt": 96, "hibiscu": 96, "homer": 96, "simpson": 96, "horsesho": 96, "air": 96, "skeleton": 96, "ibi": 96, "cone": 96, "iri": 96, "jesu": 96, "christ": 96, "joi": 96, "kayak": 96, "ketch": 96, "ladder": 96, "lath": 96, "licens": 96, "lightbulb": 96, "lightn": 96, "mandolin": 96, "mar": 96, "mattress": 96, "megaphon": 96, "menorah": 96, "microscop": 96, "minaret": 96, "minotaur": 96, "motorbik": 96, "mussel": 96, "neckti": 96, "octopu": 96, "palm": 96, "pilot": 96, "paperclip": 96, "shredder": 96, "pci": 96, "peopl": [96, 103], "pez": 96, "picnic": 96, "pram": 96, "prai": 96, "pyramid": 96, "rainbow": 96, "roulett": 96, "saddl": 96, "saturn": 96, "segwai": 96, "propel": 96, "sextant": 96, "music": 96, "skateboard": 96, "smokestack": 96, "sneaker": 96, "boat": 96, "stain": 96, "steer": 96, "stirrup": 96, "superman": 96, "sushi": 96, "armi": [96, 108], "sword": 96, "tambourin": 96, "teepe": 96, "court": 96, "theodolit": 96, "tomato": 96, "tombston": 96, "tour": 96, "pisa": 96, "treadmil": 96, "fork": 96, "tweezer": 96, "unicorn": 96, "vcr": 96, "waterfal": 96, "watermelon": 96, "weld": 96, "windmil": 96, "xylophon": 96, "yarmulk": 96, "yo": 96, "toad": 96, "twenty_news_test_set": 96, "comp": 96, "graphic": [96, 107], "misc": [96, 108], "sy": 96, "ibm": 96, "pc": 96, "hardwar": 96, "mac": 96, "forsal": 96, "rec": 96, "crypt": 96, "electron": 96, "med": 96, "soc": 96, "religion": 96, "christian": [96, 108], "talk": [96, 108], "polit": 96, "gun": 96, "mideast": 96, "amazon": 96, "neutral": 96, "imdb_test_set": 96, "all_class": 96, "20news_test_set": 96, "_load_classes_predprobs_label": 96, "dataset_nam": 96, "labelerror": 96, "url_bas": 96, "5392f6c71473055060be3044becdde1cbc18284d": 96, "url_label": 96, "original_test_label": 96, "_original_label": 96, "url_prob": 96, "cross_validated_predicted_prob": 96, "_pyx": 96, "num_part": 96, "datatset": 96, "bytesio": 96, "allow_pickl": 96, "pred_probs_part": 96, "url": 96, "_of_": 96, "nload": 96, "imdb": 96, "ve": [96, 97, 98, 99, 101, 103], "capit": 96, "29780": 96, "256": [96, 97, 98, 103], "780": 96, "medic": [96, 108], "doctor": 96, "254": [96, 103], "359223": 96, "640777": 96, "184": [96, 99], "258427": 96, "341176": 96, "263158": 96, "658824": 96, "337349": 96, "246575": 96, "662651": 96, "248": 96, "330000": 96, "355769": 96, "251": [96, 103], "167": [96, 99, 103], "252": [96, 98], "112": [96, 98], "253": [96, 103], "022989": 96, "049505": 96, "190": [96, 99, 103], "002216": 96, "000974": 96, "000873": 96, "000739": 96, "32635": 96, "32636": 96, "32637": 96, "32638": 96, "32639": 96, "32640": 96, "051": 96, "002242": 96, "997758": 96, "002088": 96, "001045": 96, "997912": 96, "002053": 96, "997947": 96, "001980": 96, "000991": 96, "998020": 96, "001946": 96, "002915": 96, "998054": 96, "001938": 96, "002904": 96, "998062": 96, "001020": 96, "998980": 96, "001018": 96, "002035": 96, "998982": 96, "999009": 96, "0003": 96, "0002": 96, "071": 96, "067269": 96, "929": 96, "046": 96, "058243": 96, "954": 96, "035": 96, "032096": 96, "965": 96, "031": 96, "012232": 96, "969": 96, "022": 96, "025896": 96, "978": 96, "020": [96, 99], "013092": 96, "018": 96, "013065": 96, "016": 96, "030542": 96, "984": 96, "013": 96, "020833": 96, "987": 96, "012": 96, "010020": 96, "988": 96, "0073": 96, "0020": 96, "0016": 96, "0015": 96, "0014": 96, "0013": 96, "0012": 96, "0010": 96, "0008": 96, "0007": 96, "0006": 96, "0005": 96, "0004": 96, "244": [96, 103], "452381": 96, "459770": 96, "523364": 96, "460784": 96, "446602": 96, "103774": 96, "030612": 96, "110092": 96, "049020": 96, "0034": 96, "0032": 96, "0026": 96, "0025": 96, "4945": 96, "4946": 96, "4947": 96, "4948": 96, "4949": 96, "4950": 96, "846": 96, "7532": 96, "532": 96, "034483": 96, "009646": 96, "965517": 96, "030457": 96, "020513": 96, "969543": 96, "028061": 96, "035443": 96, "971939": 96, "025316": 96, "005168": 96, "974684": 96, "049751": 96, "979487": 96, "019920": 96, "042802": 96, "980080": 96, "017677": 96, "005115": 96, "982323": 96, "012987": 96, "005236": 96, "987013": 96, "012723": 96, "025126": 96, "987277": 96, "010989": 96, "008264": 96, "989011": 96, "010283": 96, "027778": 96, "989717": 96, "009677": 96, "990323": 96, "007614": 96, "010127": 96, "992386": 96, "005051": 96, "994949": 96, "005025": 96, "994975": 96, "005013": 96, "994987": 96, "001859": 96, "001328": 96, "000929": 96, "000664": 96, "186": [96, 99], "188": [96, 99, 102], "189": [96, 99], "snippet": 97, "nlp": [97, 108], "mind": [97, 99], "alphanumer": 97, "facilit": 97, "seamless": 97, "classlabel": 97, "guidanc": 97, "labels_str": 97, "datalab_str": 97, "labels_int": 97, "remap": 97, "datalab_int": 97, "my_dict": 97, "pet_nam": 97, "rover": 97, "rocki": 97, "speci": 97, "datalab_dataset": 97, "number_of_class": 97, "total_number_of_data_point": 97, "feed": 97, "alphabet": 97, "labels_proper_format": 97, "your_classifi": 97, "issues_datafram": 97, "class_predicted_for_flagged_exampl": 97, "class_predicted_for_all_exampl": 97, "grant": 97, "On": [97, 98, 99, 103], "merged_dataset": 97, "label_column_nam": 97, "datataset": 97, "fair": [97, 99], "game": 97, "speedup": [97, 104], "tempfil": 97, "mkdtemp": 97, "sped": 97, "anywai": 97, "pred_probs_merg": 97, "merge_rare_class": 97, "count_threshold": 97, "class_mapping_orig2new": 97, "heath_summari": 97, "num_examples_per_class": 97, "rare_class": 97, "num_classes_merg": 97, "other_class": 97, "labels_merg": 97, "new_c": 97, "merged_prob": 97, "new_class": 97, "original_class": 97, "num_check": 97, "ones_array_ref": 97, "isclos": 97, "though": [97, 99, 108], "successfulli": 97, "virtuou": [97, 101], "cycl": [97, 101], "jointli": 97, "junk": 97, "clutter": 97, "unknown": 97, "caltech": 97, "combined_boolean_mask": 97, "mask1": 97, "mask2": 97, "gradientboostingclassifi": [97, 99], "true_error": [97, 99, 102], "101": [97, 98, 103], "102": [97, 102, 103], "104": [97, 99, 103], "model_to_find_error": 97, "model_to_return": 97, "cl0": 97, "randomizedsearchcv": 97, "expens": 97, "param_distribut": 97, "learning_r": [97, 98, 99], "max_depth": [97, 98, 99], "magnitud": 97, "coeffici": [97, 106], "optin": 97, "environ": [97, 98, 99], "rerun": [97, 98, 99], "cell": [97, 98, 99], "unabl": [97, 98, 99], "render": [97, 98, 99], "nbviewer": [97, 98, 99], "cleanlearninginot": [97, 99], "fittedcleanlearn": [97, 99], "linearregressionlinearregress": 97, "unexpectedli": 97, "emphas": 97, "crucial": 97, "merge_duplicate_set": 97, "merge_kei": 97, "construct_group_kei": 97, "merged_set": 97, "consolidate_set": 97, "issubset": 97, "frozenset": [97, 98], "sets_list": 97, "mutabl": 97, "new_set": 97, "current_set": 97, "intersecting_set": 97, "lowest_score_strategi": 97, "sub_df": 97, "filter_near_dupl": 97, "strategy_fn": 97, "strategy_kwarg": 97, "duplicate_row": 97, "group_kei": 97, "to_keep_indic": 97, "groupbi": 97, "explod": 97, "to_remov": 97, "isin": [97, 104], "kept": 97, "ids_to_remove_seri": 97, "assist": 97, "streamlin": [97, 98], "ux": 97, "agpl": 97, "compani": 97, "commerci": 97, "alter": [97, 98], "email": 97, "team": 97, "discuss": 97, "anywher": 97, "profession": 97, "expert": 97, "recogn": 98, "vital": 98, "leakag": 98, "comparion": 98, "leak": 98, "blueprint": 98, "divers": 98, "parameter": 98, "tldr": 98, "answer": [98, 99], "subtl": 98, "faith": 98, "danger": 98, "inevit": [98, 104], "xgbclassifi": 98, "123456": 98, "df_train": 98, "s3": [98, 103, 107, 108], "amazonaw": [98, 103, 107, 108], "clos_train_data": 98, "df_test": 98, "clos_test_data": 98, "noisy_letter_grad": 98, "018bff": 98, "076d92": 98, "c80059": 98, "e38f8a": 98, "d57e1a": 98, "grade_l": 98, "notes_l": 98, "train_featur": 98, "train_features_v2": 98, "train_labels_v2": 98, "test_featur": 98, "preprocessed_train_data": 98, "preprocessed_test_data": 98, "haven": 98, "features_df": 98, "heterogenou": 98, "full_df": 98, "reset_index": [98, 101], "749": 98, "583745": 98, "291382": 98, "5837": 98, "748": 98, "604": 98, "510": 98, "227": [98, 102, 103], "719": 98, "690": 98, "444": 98, "547": 98, "647": 98, "2914": 98, "611": 98, "687869": 98, "610": 98, "687883": 98, "612": 98, "688146": 98, "609": 98, "688189": 98, "613": 98, "688713": 98, "2913818469137725": 98, "came": [98, 108], "full_duplicate_result": 98, "train_idx_cutoff": 98, "nd_set_has_index_over_training_cutoff": 98, "exact_dupl": 98, "627": 98, "678": 98, "615": 98, "292": 98, "620": 98, "420": 98, "704": 98, "431": 98, "688": [98, 106], "459": 98, "672": 98, "564": 98, "696": 98, "605": 98, "exact_duplicates_indic": 98, "indices_of_duplicates_to_drop": 98, "4a3f75": 98, "d030b5": 98, "ddd0ba": 98, "8e6d24": 98, "464aab": 98, "ee3387": 98, "61e807": 98, "71d7b9": 98, "83e31f": 98, "edeb53": 98, "cd52b5": 98, "84": [98, 103, 106], "454e51": 98, "042686": 98, "12a73f": 98, "tree_method": 98, "hist": [98, 104], "enable_categor": 98, "booster": 98, "callback": 98, "colsample_bylevel": 98, "colsample_bynod": 98, "colsample_bytre": 98, "early_stopping_round": 98, "eval_metr": 98, "feature_typ": 98, "gamma": 98, "grow_polici": 98, "importance_typ": 98, "interaction_constraint": 98, "max_bin": 98, "max_cat_threshold": 98, "max_cat_to_onehot": 98, "max_delta_step": 98, "max_leav": 98, "min_child_weight": 98, "monotone_constraint": 98, "multi_strategi": 98, "n_estim": [98, 99], "num_parallel_tre": 98, "x27": [98, 99], "softprob": 98, "xgbclassifierifittedxgbclassifi": 98, "test_pred_prob": [98, 104], "test_lab": 98, "test_features_arrai": 98, "134": 98, "798507": 98, "370259": 98, "625352": 98, "524042": 98, "097015": 98, "7985": 98, "000537": 98, "000903": 98, "001743": 98, "106": 98, "001853": 98, "002121": 98, "3703": 98, "752463e": 98, "784418e": 98, "09": [98, 102, 103, 106], "477741e": 98, "134230e": 98, "153555e": 98, "6254": 98, "143272": 98, "146501": 98, "161431": 98, "5240": 98, "765240": 98, "771221": 98, "801589": 98, "801652": 98, "810735": 98, "5240417899434826": 98, "0970": 98, "na": [98, 101], "test_label_issue_result": 98, "test_label_issues_ord": 98, "2bd759": 98, "34ccdd": 98, "bb3bab": 98, "103": [98, 99, 103, 108], "bf1b14": 98, "4787de": 98, "865cbd": 98, "32d53f": 98, "5b2f76": 98, "28f8b4": 98, "df814d": 98, "f17261": 98, "1db3ff": 98, "ded944": 98, "124": [98, 103], "343dd3": 98, "homework": [98, 106], "8d904d": 98, "e4f0d5": 98, "d6d208": 98, "76c083": 98, "695f96": 98, "745c23": 98, "13b36e": 98, "5ba892": 98, "9f0216": 98, "003628": 98, "004006": 98, "004031": 98, "007930": 98, "013226": 98, "015255": 98, "017692": 98, "019767": 98, "036197": 98, "054746": 98, "055110": 98, "062675": 98, "112695": 98, "121059": 98, "171280": 98, "181689": 98, "208001": 98, "275028": 98, "346032": 98, "396350": 98, "401493": 98, "474349": 98, "mislead": 98, "breviti": 98, "indices_to_drop_from_test_data": 98, "df_test_clean": 98, "acc_origin": 98, "tediou": 98, "train_features_arrai": 98, "train_lab": 98, "318": [98, 106], "601": 98, "740433": 98, "344154": 98, "588290": 98, "437267": 98, "146423": 98, "977223": 98, "7404": 98, "162": 98, "000072": 98, "348": 98, "000161": 98, "232": [98, 103], "000256": 98, "205": [98, 103], "000458": 98, "000738": 98, "3442": 98, "588": 98, "358961e": 98, "336": [98, 103], "490911e": 98, "269": 98, "122475e": 98, "321": [98, 103], "374139e": 98, "311": 98, "358617e": 98, "5883": 98, "600": 98, "592": 98, "593": 98, "594": 98, "595": 98, "596": 98, "597": 98, "598": 98, "599": 98, "221": 98, "222": [98, 99], "315": 98, "332": [98, 103], "791060e": 98, "243": [98, 103], "540": 98, "379106e": 98, "396": 98, "397": 98, "398": 98, "399": 98, "4373": 98, "165": [98, 102], "550374": 98, "627357": 98, "627496": 98, "627502": 98, "627919": 98, "43726734378061227": 98, "1464": 98, "506": 98, "393": 98, "508": 98, "9772": 98, "402": 98, "401": 98, "aggress": 98, "faithfulli": 98, "label_issue_result": 98, "566": 98, "568": 98, "571": 98, "572": 98, "574": 98, "576": 98, "578": 98, "585": 98, "587": 98, "590": 98, "near_duplicates_idx": 98, "117": [98, 99, 106], "122": [98, 99, 103], "146": 98, "155": [98, 99, 103], "156": [98, 99], "173": [98, 103], "224": [98, 103], "272": 98, "277": [98, 103], "279": [98, 103], "288": 98, "342": 98, "352": 98, "363": 98, "365": 98, "366": 98, "384": 98, "388": 98, "394": 98, "404": 98, "474": 98, "480": 98, "494": 98, "515": 98, "536": 98, "537": 98, "539": 98, "542": 98, "559": 98, "outliers_idx": 98, "143": [98, 102, 103], "159": [98, 102, 103], "163": [98, 99], "193": [98, 99], "194": [98, 99], "208": 98, "240": [98, 103], "241": 98, "242": [98, 103], "247": [98, 103], "287": [98, 103], "295": [98, 103], "299": [98, 103], "307": [98, 103], "350": 98, "361": 98, "378": 98, "379": 98, "392": 98, "419": 98, "432": 98, "479": 98, "484": 98, "485": 98, "489": 98, "492": 98, "504": 98, "511": 98, "522": 98, "535": 98, "543": 98, "567": 98, "579": 98, "591": 98, "idx_to_drop": 98, "276": [98, 103], "df_train_cur": 98, "clean_clf": 98, "clean_pr": 98, "acc_clean": 98, "inaccur": 98, "hybrid": 98, "quantit": 98, "hyper": 98, "default_edit_param": 98, "drop_label_issu": 98, "drop_outli": 98, "drop_near_dupl": 98, "candid": [98, 103], "edit_data": 98, "percentag": [98, 99], "num_label_issues_to_drop": 98, "num_outliers_to_drop": 98, "dedupl": 98, "unique_clust": 98, "unique_clusters_list": 98, "near_duplicates_idx_to_drop": 98, "n_drop": 98, "label_issues_idx_to_drop": 98, "outliers_idx_to_drop": 98, "train_features_clean": 98, "train_labels_clean": 98, "itertool": 98, "finer": 98, "param_combin": 98, "best_scor": 98, "best_param": 98, "train_features_preprocess": 98, "train_labels_preprocess": 98, "depth": 99, "survei": [99, 108], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103, 108], "037843": 99, "614915": 99, "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "magic": 99, "liter": 99, "identif": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "offset": 99, "nquestion": 99, "overestim": 99, "experienc": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "170": 99, "214": 99, "164": [99, 102], "191": [99, 103], "206": [99, 103], "115": [99, 103], "201": [99, 103], "174": 99, "150": [99, 101, 103, 108], "169": [99, 108], "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "172": [99, 102], "157": 99, "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "noisier": 101, "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "zfill": 101, "row_na_check": 101, "notna": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "275": 102, "267": 102, "225": 102, "171": 102, "234": 102, "262": [102, 103], "263": [102, 103], "266": [102, 103], "139": 102, "216": [102, 103], "265": 102, "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "231": 103, "293": 103, "235": 103, "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "283": 103, "303": 103, "316": 103, "323": 103, "327": 103, "226": 103, "228": 103, "219": 103, "239": 103, "209": 103, "202": 103, "230": 103, "215": 103, "220": 103, "229": 103, "217": 103, "237": 103, "204": 103, "223": 103, "149": 103, "140": 103, "246": 103, "268": 103, "273": 103, "284": 103, "136": 103, "145": [103, 108], "297": 103, "317": 103, "192": 103, "324": 103, "203": 103, "320": 103, "314": 103, "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": 103, "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "toronto": 104, "edu": 104, "kriz": 104, "170498071": 104, "99039292": 104, "87it": 104, "plot_imag": 104, "visualize_outli": 104, "txt_class": 104, "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "train_outlier_scor": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "unsur": 105, "price": 106, "incom": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "3d": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "367": 106, "305": 106, "560": 106, "657": 106, "view_datapoint": 106, "preds_og": 106, "r2_og": 106, "838": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "2400": 108, "52e0": 108, "1a00": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "63mb": 108, "inflat": 108, "182": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "103mb": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [59, 0, 0, "-", "models"], [61, 0, 0, "-", "multiannotator"], [64, 0, 0, "-", "multilabel_classification"], [67, 0, 0, "-", "object_detection"], [70, 0, 0, "-", "outlier"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "regression"], [76, 0, 0, "-", "segmentation"], [80, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "metric"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_underperforming_clusters"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[60, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[60, 2, 1, "", "KerasWrapperModel"], [60, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[61, 1, 1, "", "convert_long_to_wide_dataset"], [61, 1, 1, "", "get_active_learning_scores"], [61, 1, 1, "", "get_active_learning_scores_ensemble"], [61, 1, 1, "", "get_label_quality_multiannotator"], [61, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [61, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[62, 0, 0, "-", "dataset"], [63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[62, 1, 1, "", "common_multilabel_issues"], [62, 1, 1, "", "multilabel_health_summary"], [62, 1, 1, "", "overall_multilabel_health_score"], [62, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, 1, 1, "", "find_label_issues"], [63, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[66, 0, 0, "-", "filter"], [68, 0, 0, "-", "rank"], [69, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[66, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[68, 1, 1, "", "compute_badloc_box_scores"], [68, 1, 1, "", "compute_overlooked_box_scores"], [68, 1, 1, "", "compute_swap_box_scores"], [68, 1, 1, "", "get_label_quality_scores"], [68, 1, 1, "", "issues_from_scores"], [68, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[69, 1, 1, "", "bounding_box_size_distribution"], [69, 1, 1, "", "calculate_per_class_metrics"], [69, 1, 1, "", "class_label_distribution"], [69, 1, 1, "", "get_average_per_class_confusion_matrix"], [69, 1, 1, "", "get_sorted_bbox_count_idxs"], [69, 1, 1, "", "object_counts_per_image"], [69, 1, 1, "", "plot_class_distribution"], [69, 1, 1, "", "plot_class_size_distributions"], [69, 1, 1, "", "visualize"]], "cleanlab.outlier": [[70, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[70, 3, 1, "", "fit"], [70, 3, 1, "", "fit_score"], [70, 3, 1, "", "score"]], "cleanlab.rank": [[71, 1, 1, "", "find_top_issues"], [71, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [71, 1, 1, "", "get_label_quality_ensemble_scores"], [71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "get_normalized_margin_for_each_label"], [71, 1, 1, "", "get_self_confidence_for_each_label"], [71, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[73, 0, 0, "-", "learn"], [74, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[73, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[73, 3, 1, "", "__init_subclass__"], [73, 3, 1, "", "find_label_issues"], [73, 3, 1, "", "fit"], [73, 3, 1, "", "get_aleatoric_uncertainty"], [73, 3, 1, "", "get_epistemic_uncertainty"], [73, 3, 1, "", "get_label_issues"], [73, 3, 1, "", "get_metadata_routing"], [73, 3, 1, "", "get_params"], [73, 3, 1, "", "predict"], [73, 3, 1, "", "save_space"], [73, 3, 1, "", "score"], [73, 3, 1, "", "set_fit_request"], [73, 3, 1, "", "set_params"], [73, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[74, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[79, 0, 0, "-", "filter"], [81, 0, 0, "-", "rank"], [82, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[79, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[81, 1, 1, "", "get_label_quality_scores"], [81, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[82, 1, 1, "", "common_label_issues"], [82, 1, 1, "", "display_issues"], [82, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 86, 87, 91, 93, 94, 97, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 88, 89, 90, 91, 92, 93, 94, 95, 97, 99, 102], "creat": [7, 89, 90, 99, 101], "your": [7, 83, 89, 90, 94, 95, 97, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 89], "basic": 7, "check": [7, 83, 95, 98], "intermedi": 7, "advanc": [7, 89], "us": [7, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": [8, 95], "cluster": [8, 95, 97], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 89], "cleanlab": [9, 10, 83, 86, 87, 88, 91, 93, 94, 97, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 83, 91], "mode": [9, 10, 83, 91], "can": [10, 90, 96, 97, 99, 101], "detect": [10, 88, 90, 91, 93, 94, 95, 97, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "input": 10, "label": [10, 24, 26, 31, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 70, 91, 93, 94, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 90, 91, 93, 94], "duplic": [10, 20, 90, 91, 93, 94, 97, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 94, 95], "iid": [10, 94, 95], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 84, 95, 99, 107], "imbal": [10, 21, 95], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 91, 95, 104], "specif": [10, 22, 107], "underperform": [10, 95, 97], "group": [10, 95, 97], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 95], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "valuat": [10, 95], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 95], "paramet": [10, 99], "get": [12, 89, 90, 101, 102, 103, 107, 108], "start": [12, 96], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 97, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 72, 73, 74, 97, 106], "prioriti": 31, "order": 31, "find": [31, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 91], "dataset": [37, 62, 83, 87, 88, 90, 91, 94, 95, 96, 97, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 63, 66, 75, 79, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 89], "token_classification_util": 56, "util": 57, "valid": [58, 91, 105], "model": [59, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106], "kera": 60, "multiannot": [61, 101], "multilabel_classif": 64, "rank": [65, 68, 71, 74, 77, 81, 99], "object_detect": 67, "summari": [69, 78, 82], "learn": [73, 90, 97, 99], "segment": [76, 107], "token_classif": [80, 108], "open": [83, 97], "sourc": [83, 97], "document": 83, "quickstart": 83, "1": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "2": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [83, 90, 99], "sort": [83, 95], "3": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [83, 97], "error": [83, 87, 91, 97, 99, 101, 102, 103, 106, 107, 108], "train": [83, 86, 87, 88, 95, 97, 98, 104, 106], "robust": [83, 86, 87, 99, 106], "noisi": [83, 86, 87, 98, 99, 106], "4": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 103, 104, 106], "curat": [83, 98], "fix": [83, 97], "level": [83, 96, 99, 108], "5": [83, 86, 88, 90, 91, 93, 95, 98, 99, 101, 106], "improv": [83, 98, 101], "via": [83, 98, 99, 101], "mani": [83, 99], "other": [83, 101, 103, 106], "techniqu": [83, 98], "contribut": 83, "how": [84, 97, 99, 101, 102, 108], "migrat": 84, "version": 84, "0": 84, "from": [84, 86, 87, 89, 90, 98, 99, 106], "pre": [84, 88, 95, 97, 104], "function": [84, 89], "name": 84, "chang": 84, "modul": [84, 99], "new": 84, "remov": 84, "common": [84, 108], "argument": [84, 89], "variabl": 84, "cleanlearn": [85, 97, 99], "tutori": [85, 92, 96, 98, 100], "structur": 86, "tabular": [86, 93], "requir": [86, 87, 89, 90, 91, 93, 94, 101, 102, 103, 104, 106, 107, 108], "depend": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "load": [86, 87, 88, 89, 90, 93, 94, 95, 106], "process": [86, 93, 104, 106], "select": [86, 93], "comput": [86, 88, 91, 93, 94, 95, 97, 98, 101, 105], "out": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "sampl": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "predict": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 105], "probabl": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 105], "more": [86, 87, 90, 99, 106], "spend": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "too": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "much": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "time": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "qualiti": [86, 87, 90, 93, 94, 96, 99, 101, 102, 103, 104, 105, 106, 107, 108], "text": [87, 94, 95, 108], "format": [87, 94, 97, 102, 103], "defin": [87, 91, 94, 95, 106], "potenti": [87, 101, 106], "an": [88, 91, 97], "audio": 88, "import": [88, 89, 90, 91, 96, 99, 101], "them": [88, 96, 98, 99], "speechbrain": 88, "featur": [88, 91, 104], "fit": 88, "linear": 88, "workflow": [89, 95, 99], "audit": [89, 90], "classifi": [89, 90, 95], "instanti": 89, "object": [89, 103], "increment": 89, "specifi": [89, 97], "nondefault": 89, "save": 89, "ad": 89, "A": 90, "unifi": 90, "kind": [90, 103], "skip": [90, 96, 99, 101], "detail": [90, 96, 99, 101], "about": 90, "addit": 90, "inform": [90, 91], "fetch": [91, 96], "normal": 91, "fashion": 91, "mnist": 91, "prepar": [91, 95], "k": [91, 93, 105], "fold": [91, 105], "cross": [91, 105], "embed": [91, 104], "7": [91, 98, 99], "view": 91, "most": [91, 108], "like": 91, "exampl": [91, 97, 99, 104], "sever": 91, "set": [91, 99], "dark": 91, "top": [91, 107], "low": 91, "numer": 93, "categor": [93, 95], "column": 93, "construct": 93, "nearest": 93, "neighbour": 93, "graph": [93, 95], "drift": [94, 102], "miscellan": 95, "acceler": 95, "knn": 95, "obtain": 95, "identifi": [95, 97, 98, 103], "explan": 95, "vector": 95, "perform": [95, 98], "visual": [95, 99, 103, 104, 107], "score": [95, 99, 101, 102, 103, 107, 108], "synthet": 95, "result": 95, "predefin": 95, "slice": [95, 97], "i": [95, 97, 99, 105], "catch": 95, "valu": 95, "encod": 95, "initi": [95, 101], "6": [95, 98, 99], "spuriou": 95, "correl": 95, "run": [95, 97], "analysi": [95, 103], "interpret": 95, "compar": [95, 101], "without": [95, 102], "understand": 96, "evalu": [96, 98], "health": [96, 99], "8": [96, 98, 99], "popular": 96, "faq": 97, "what": [97, 99, 105], "do": [97, 99], "infer": 97, "correct": [97, 98], "ha": 97, "flag": 97, "should": 97, "v": [97, 98], "test": [97, 98, 99, 104], "big": 97, "limit": 97, "memori": 97, "why": [97, 98], "isn": 97, "t": 97, "work": [97, 99, 101, 108], "me": 97, "differ": [97, 103], "clean": [97, 98, 99], "final": 97, "hyperparamet": [97, 98], "tune": 97, "onli": 97, "one": [97, 99, 102, 107], "doe": [97, 101, 108], "take": 97, "so": 97, "long": 97, "when": [97, 99], "licens": 97, "under": 97, "answer": 97, "question": 97, "split": 98, "did": 98, "you": [98, 99], "make": 98, "thi": [98, 99], "preprocess": 98, "fundament": 98, "problem": 98, "setup": 98, "origin": 98, "baselin": 98, "manual": 98, "address": 98, "algorithm": 98, "better": [98, 101], "strategi": 98, "optim": 98, "9": 98, "conclus": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "twenti": 99, "lowest": 99, "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "re": 99, "One": 99, "rule": 99, "overal": [99, 107], "accur": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "major": 101, "vote": 101, "statist": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [70, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [72, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [62, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [63, "module-cleanlab.multilabel_classification.filter"], [66, "filter"], [75, "filter"], [79, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "models": [[59, "models"]], "keras": [[60, "module-cleanlab.models.keras"]], "multiannotator": [[61, "module-cleanlab.multiannotator"]], "multilabel_classification": [[64, "multilabel-classification"]], "rank": [[65, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.rank"], [77, "module-cleanlab.segmentation.rank"], [81, "module-cleanlab.token_classification.rank"]], "object_detection": [[67, "object-detection"]], "summary": [[69, "summary"], [78, "module-cleanlab.segmentation.summary"], [82, "module-cleanlab.token_classification.summary"]], "regression.learn": [[73, "module-cleanlab.regression.learn"]], "regression.rank": [[74, "module-cleanlab.regression.rank"]], "segmentation": [[76, "segmentation"]], "token_classification": [[80, "token-classification"]], "cleanlab open-source documentation": [[83, "cleanlab-open-source-documentation"]], "Quickstart": [[83, "quickstart"]], "1. Install cleanlab": [[83, "install-cleanlab"]], "2. Check your data for all sorts of issues": [[83, "check-your-data-for-all-sorts-of-issues"]], "3. Handle label errors and train robust models with noisy labels": [[83, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[83, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[83, "improve-your-data-via-many-other-techniques"]], "Contributing": [[83, "contributing"]], "Easy Mode": [[83, "easy-mode"], [91, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[84, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[84, "function-and-class-name-changes"]], "Module name changes": [[84, "module-name-changes"]], "New modules": [[84, "new-modules"]], "Removed modules": [[84, "removed-modules"]], "Common argument and variable name changes": [[84, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[85, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[86, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[86, "1.-Install-required-dependencies"], [87, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[86, "2.-Load-and-process-the-data"], [93, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[86, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [93, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[86, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[86, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Spending too much time on data quality?": [[86, "Spending-too-much-time-on-data-quality?"], [87, "Spending-too-much-time-on-data-quality?"], [90, "Spending-too-much-time-on-data-quality?"], [93, "Spending-too-much-time-on-data-quality?"], [94, "Spending-too-much-time-on-data-quality?"], [96, "Spending-too-much-time-on-data-quality?"], [99, "Spending-too-much-time-on-data-quality?"], [102, "Spending-too-much-time-on-data-quality?"], [104, "Spending-too-much-time-on-data-quality?"], [105, "spending-too-much-time-on-data-quality"], [106, "Spending-too-much-time-on-data-quality?"]], "Text Classification with Noisy Labels": [[87, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[87, "2.-Load-and-format-the-text-dataset"], [94, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[87, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[87, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[88, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[88, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[88, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[88, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[88, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[88, "5.-Use-cleanlab-to-find-label-issues"], [93, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[89, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[89, "Install-and-import-required-dependencies"]], "Create and load the data": [[89, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[89, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[89, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[89, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[89, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[89, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[89, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[90, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[90, "1.-Install-and-import-required-dependencies"], [91, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[90, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[90, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[90, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[90, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[90, "Get-additional-information"]], "Near duplicate issues": [[90, "Near-duplicate-issues"], [91, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[91, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[91, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[91, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[91, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[91, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[91, "7.-Use-cleanlab-to-find-issues"]], "View report": [[91, "View-report"]], "Label issues": [[91, "Label-issues"], [93, "Label-issues"], [94, "Label-issues"]], "View most likely examples with label errors": [[91, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[91, "Outlier-issues"], [93, "Outlier-issues"], [94, "Outlier-issues"]], "View most severe outliers": [[91, "View-most-severe-outliers"]], "View sets of near duplicate images": [[91, "View-sets-of-near-duplicate-images"]], "Dark images": [[91, "Dark-images"]], "View top examples of dark images": [[91, "View-top-examples-of-dark-images"]], "Low information images": [[91, "Low-information-images"]], "Datalab Tutorials": [[92, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[93, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[93, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[93, "Near-duplicate-issues"], [94, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[94, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[94, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[94, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[94, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[95, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[95, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[95, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[95, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[95, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[95, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[95, "Explanation:"]], "Data Valuation": [[95, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[95, "1.-Load-and-Prepare-the-Dataset"], [95, "id2"], [95, "id5"]], "2. Vectorize the Text Data": [[95, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[95, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[95, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[95, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[95, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[95, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [95, "id3"]], "3. (Optional) Cluster the Data": [[95, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[95, "4.-Identify-Underperforming-Groups-with-Datalab"], [95, "id4"]], "5. (Optional) Visualize the Results": [[95, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[95, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[95, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[95, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[95, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[95, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[95, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[95, "1.-Load-the-Dataset"], [95, "id8"]], "2: Encode Categorical Values": [[95, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[95, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[95, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[95, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[95, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[95, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[95, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[95, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[95, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[95, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Run Datalab Analysis": [[95, "2.-Run-Datalab-Analysis"]], "3. Interpret the Results": [[95, "3.-Interpret-the-Results"]], "4. (Optional) Compare with a Dataset Without Spurious Correlations": [[95, "4.-(Optional)-Compare-with-a-Dataset-Without-Spurious-Correlations"]], "Understanding Dataset-level Labeling Issues": [[96, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[96, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[96, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[96, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[97, "FAQ"]], "What data can cleanlab detect issues in?": [[97, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[97, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[97, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[97, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[97, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[97, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[97, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[97, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[97, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[97, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[97, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[97, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[97, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[97, "Can't-find-an-answer-to-your-question?"]], "Improving ML Performance via Data Curation with Train vs Test Splits": [[98, "Improving-ML-Performance-via-Data-Curation-with-Train-vs-Test-Splits"]], "Why did you make this tutorial?": [[98, "Why-did-you-make-this-tutorial?"]], "1. Install dependencies": [[98, "1.-Install-dependencies"]], "2. Preprocess the data": [[98, "2.-Preprocess-the-data"]], "3. Check for fundamental problems in the train/test setup": [[98, "3.-Check-for-fundamental-problems-in-the-train/test-setup"]], "4. Train model with original (noisy) training data": [[98, "4.-Train-model-with-original-(noisy)-training-data"]], "Compute out-of-sample predicted probabilities for the test data from this baseline model": [[98, "Compute-out-of-sample-predicted-probabilities-for-the-test-data-from-this-baseline-model"]], "5. Check for issues in test data and manually address them": [[98, "5.-Check-for-issues-in-test-data-and-manually-address-them"]], "Use clean test data to evaluate the performance of model trained on noisy training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-noisy-training-data"]], "6. Check for issues in training data and algorithmically correct them": [[98, "6.-Check-for-issues-in-training-data-and-algorithmically-correct-them"]], "7. Train model on cleaned training data": [[98, "7.-Train-model-on-cleaned-training-data"]], "Use clean test data to evaluate the performance of model trained on cleaned training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-cleaned-training-data"]], "8. Identifying better training data curation strategies via hyperparameter optimization techniques": [[98, "8.-Identifying-better-training-data-curation-strategies-via-hyperparameter-optimization-techniques"]], "9. Conclusion": [[98, "9.-Conclusion"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [59, "module-cleanlab.models"], [60, "module-cleanlab.models.keras"], [61, "module-cleanlab.multiannotator"], [62, "module-cleanlab.multilabel_classification.dataset"], [63, "module-cleanlab.multilabel_classification.filter"], [64, "module-cleanlab.multilabel_classification"], [65, "module-cleanlab.multilabel_classification.rank"], [66, "module-cleanlab.object_detection.filter"], [67, "module-cleanlab.object_detection"], [68, "module-cleanlab.object_detection.rank"], [69, "module-cleanlab.object_detection.summary"], [70, "module-cleanlab.outlier"], [71, "module-cleanlab.rank"], [72, "module-cleanlab.regression"], [73, "module-cleanlab.regression.learn"], [74, "module-cleanlab.regression.rank"], [75, "module-cleanlab.segmentation.filter"], [76, "module-cleanlab.segmentation"], [77, "module-cleanlab.segmentation.rank"], [78, "module-cleanlab.segmentation.summary"], [79, "module-cleanlab.token_classification.filter"], [80, "module-cleanlab.token_classification"], [81, "module-cleanlab.token_classification.rank"], [82, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_underperforming_clusters() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_underperforming_clusters"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[59, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[60, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[61, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[62, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[64, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[65, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[66, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[66, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[67, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[68, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[69, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[70, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[70, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[71, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[72, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[73, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[73, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[73, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[74, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[74, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[75, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[75, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[76, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[77, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[78, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[79, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[79, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[80, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[81, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[82, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/improving_ml_performance", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/improving_ml_performance.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "Improving ML Performance via Data Curation with Train vs Test Splits", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 84, 89, 90, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 89, 90, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 89, 90, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 68, 91, 95, 96, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 83, 84, 89, 96, 105], "benchmark": [1, 38, 83, 84, 89, 90, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 98, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 61, 62, 66, 68, 69, 70, 71, 73, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 75, 77], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 61, 70, 79, 81, 83, 86, 87, 90, 93, 94, 95, 96, 97, 99, 101, 102, 104, 106, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 59, 61, 62, 65, 69, 70, 74, 78, 79, 81, 82, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 10, 88, 95, 97, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 62, 89, 90, 95, 96, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 89, 95, 98, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 61, 62, 63, 64, 65, 70, 71, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 95, 98, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 89, 93, 98, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 59, 63, 66, 69, 78, 82, 91, 93, 94, 95, 98, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 59, 61, 66, 69, 70, 71, 83, 91, 97, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 60, 61, 62, 63, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 70, 71, 73, 78, 87, 88, 89, 90, 91, 94, 96, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 61, 63, 66, 69, 71, 73, 74, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 97], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 59, 61, 63, 70, 72, 74, 77, 81, 83, 86, 87, 88, 89, 91, 93, 94, 95, 96, 98, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 63, 64, 65, 66, 68, 69, 70, 71, 73, 79, 81, 82, 90, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 32, 37, 39, 42, 44, 47, 57, 62, 63, 65, 71, 73, 74, 75, 77, 78, 84, 89, 90, 93, 94, 95, 97, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 63, 66, 68, 69, 70, 71, 93, 95, 103, 104], "trace": [1, 89, 90, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 87, 88, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 95, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 89, 90, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 89, 90, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 89, 95, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 61, 69, 70, 71, 75, 93, 94, 95, 98, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 86, 88, 89, 90, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 60, 66, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 68, 73, 87, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 73, 97, 98, 101, 108], "better": [1, 5, 10, 44, 53, 61, 63, 71, 73, 74, 83, 87, 88, 90, 93, 94, 95, 97, 99, 102, 103, 104, 105, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 60, 61, 66, 68, 70, 71, 73, 77, 81, 86, 88, 91, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 61, 71, 73, 86, 88, 89, 90, 91, 93, 95, 97, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 69, 73, 83, 86, 87, 89, 97, 99, 100, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 61, 62, 69, 70, 71, 97, 101, 104], "amount": [1, 3, 91], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 91, 94, 95, 98], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 95, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 83, 86, 87, 89, 90, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 88, 95, 96, 97, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 10, 47, 53, 56, 57, 71, 91, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 32, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 96, 97, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 61, 73, 93, 97, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 98, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 63, 71, 73, 74, 86, 88, 89, 90, 91, 93, 94, 97, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 59, 61, 62, 65, 69, 70, 71, 73, 78, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 71, 75, 78, 95, 97, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 61, 62, 63, 65, 66, 69, 70, 71, 73, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 62, 63, 65, 68, 73, 89, 90, 91, 97, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 96, 97, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 61, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 61, 62, 63, 65, 66, 82, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 61, 63, 65, 68, 69, 70, 71, 73, 74, 79, 81, 82, 83, 88, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 73, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 64, 70, 89, 90, 91, 93, 94, 98, 99], "yield": [1, 38, 42, 98], "between": [1, 5, 9, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 59, 61, 62, 65, 68, 70, 71, 73, 74, 77, 81, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 61, 62, 63, 68, 69, 77, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 60, 61, 68, 69, 71, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 91, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 70, 73, 83, 86, 88, 89, 93, 98, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 61, 62, 66, 68, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 68, 69, 73, 75, 77, 81, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 70, 71, 75, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10, 95], "python": [1, 2, 42, 60, 73, 89, 90, 96, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 63, 94, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 86, 87, 88, 91, 94, 95, 96, 97, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 65, 73, 83, 87, 88, 94, 95, 97, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 60, 61, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 10, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 70, 71, 73, 86, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 60, 69, 73, 74, 87, 88, 89, 90, 93, 95, 97, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 73, 95, 97, 98, 106], "astyp": [1, 98, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 65, 69, 70, 71, 73, 75, 77, 78, 79, 82, 88, 89, 91, 95, 98, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 69, 73, 74, 91, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 84, 95, 96, 97], "choic": [1, 8, 44, 53, 55, 91, 97, 102, 104], "replac": [1, 56, 60, 71, 86, 87, 89, 90, 91, 94, 95, 96, 97, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 71, 88, 89, 90], "05": [1, 10, 27, 31, 56, 69, 73, 79, 81, 93, 96, 97, 98, 99, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 89, 90, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 89, 90, 91, 95, 97, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 73, 86, 88, 89, 90, 93, 95, 96, 98, 99, 101, 102], "max_it": [1, 87, 88, 94, 104], "10000": [1, 41, 96, 97], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 60, 61, 63, 69, 70, 71, 73, 75, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 63, 68, 78, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 73, 83, 87, 88, 91, 93, 94, 95, 97, 98, 107, 108], "impli": [1, 10, 37, 62, 69, 95], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 61, 62, 63, 65, 68, 69, 73, 77, 81, 88, 89, 90, 98, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 61, 62, 63, 66, 86, 87, 93, 94, 99, 102, 103, 106], "maximum": [1, 10, 70, 78, 82, 95, 107], "minimum": [1, 8, 10, 21, 44, 46, 63, 68, 81, 95], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 68, 73, 89, 97, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 89, 91, 95, 97, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 60, 61, 62, 63, 66, 68, 69, 70, 73, 74, 75, 77, 78, 81, 82, 83, 84, 86, 87, 88, 89, 91, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 89, 95], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 60, 61, 62, 64, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 61, 65, 69, 73, 78, 82, 83, 86, 87, 88, 90, 94, 97, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 59, 60, 63, 70, 71, 73, 75, 83, 84, 88, 95, 96, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 60, 61, 62, 63, 65, 68, 69, 70, 71, 73, 77, 78, 79, 81, 87, 90, 91, 94, 95, 96, 97, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 60, 63, 65, 66, 68, 70, 71, 73, 74, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 88, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 60, 61, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 86, 87, 89, 90, 93, 94, 95, 97, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 60, 61, 66, 68, 69, 70, 71, 73, 74, 78, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 59, 60, 61, 63, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 17, 41, 44, 52, 53, 57, 68, 71, 73, 86, 87, 89, 90, 91, 95, 96, 98, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 66, 68, 69, 70, 71, 73, 75, 78, 82, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 60, 61, 70, 73, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 61, 83, 89, 90, 94, 95, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 89, 91, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 89, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 60, 61, 63, 65, 69, 70, 71, 73, 74, 77, 79, 81, 84, 86, 87, 88, 91, 93, 95, 97, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 60, 61, 70, 71, 73, 75, 77, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 98, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 59, 84], "produc": [1, 2, 5, 9, 10, 17, 49, 61, 71, 73, 75, 77, 83, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 60, 61, 62, 73, 90, 94, 95, 97, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 68, 89, 90, 91, 97, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 62, 69, 87, 91, 94, 96, 98, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 60, 65, 68, 73, 74, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 70, 71, 90, 91, 95, 98, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 70, 73, 78, 86, 87, 94, 95, 97, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 29, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 88, 89, 90, 91, 93, 97, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 63, 66, 69, 89, 90, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 61, 66, 68, 69, 70, 89, 90, 96, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 60, 97, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 63, 66, 70, 71, 73, 75, 78, 82, 86, 88, 95, 98, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 59, 60, 61, 62, 63, 70, 71, 73, 75, 77, 78, 79, 81, 82, 88, 95, 98, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 61, 63, 69, 75, 77, 78, 79, 81, 82, 86, 87, 88, 97, 98, 101, 102, 103, 107, 108], "ball": [1, 96], "bin": [1, 3, 63, 89, 90, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 60, 68, 71, 73, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 60, 61, 62, 63, 66, 68, 69, 70, 71, 74, 77, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 61, 62, 68, 71, 81, 91, 97, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 98, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 79, 81, 82, 83, 86, 87, 88, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 60], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 62, 63, 64, 65, 70, 71, 83, 95, 97, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 61, 63, 71, 73, 83, 87, 88, 94, 95, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 60, 72, 73, 74, 83, 84, 86, 87, 98, 106], "wrap": [2, 38, 42, 51, 60, 70, 73, 83, 86, 87, 89, 90, 93, 94, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 60, 69, 70, 73, 78, 86, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 60, 70, 73, 74, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 61, 64, 70, 71, 83, 84, 86, 87, 88, 93, 94, 97, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 73], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 61, 62, 63, 68, 70, 73, 75, 77, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 60, 66, 69, 70, 73, 84, 95, 97, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 71, 73, 75, 83, 89, 90, 93, 96, 97, 98, 101, 104, 108], "four": [2, 10, 96, 99, 108], "clf": [2, 3, 5, 49, 73, 83, 86, 93, 95, 97, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 59, 60, 70, 72, 73, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 73, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 59, 60, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 32, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 87, 96, 97, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 59, 60, 61, 62, 63, 64, 68, 70, 71, 72, 73, 78, 79, 80, 81, 82, 84, 91, 92, 100], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 61, 62, 63, 64, 66, 69, 70, 71, 73, 75, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 70, 73, 83, 86, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 61, 63, 71, 78, 79, 81, 87, 88, 94, 95, 97, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 61, 62, 66, 69, 71, 73, 83, 86, 87, 88, 89, 91, 93, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 62, 71, 73, 78, 81, 82, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 60, 61, 62, 65, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 59, 61, 66, 68, 70, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 32, 44, 46, 49, 52, 53, 54, 63, 66, 69, 71, 73, 74, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 63, 68, 69, 73, 75, 77, 87, 91, 93, 97, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 60, 61, 62, 63, 65, 66, 69, 70, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 61, 73, 83, 86, 87, 88, 89, 93, 94, 95, 97, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 61, 68, 71, 73, 87, 88, 89, 90, 94], "loss": [2, 39, 60, 71, 73, 91, 98], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 73, 83, 91, 95, 97, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 60, 61, 66, 69, 70, 73, 74, 84, 89, 90, 91, 93, 94, 96, 99, 100, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 60, 70, 71, 81, 83, 84, 88, 89, 90, 91, 95, 97], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 59, 60, 61, 62, 63, 65, 70, 71, 73, 74, 75, 77, 78, 84, 86, 87, 88, 91, 93, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 61, 89, 90, 91, 95, 97, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 62, 63, 68, 69, 73, 75, 87, 94, 95, 97, 102, 103, 106, 107], "clonabl": [2, 73], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 61, 66, 69, 70, 71, 73, 74, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 100, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 68, 70, 71, 73, 74, 77, 79, 81, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 73, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 65, 69, 73, 79, 84, 89, 95, 97, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 61, 62, 63, 65, 68, 69, 73, 83, 89, 90, 91, 93, 97, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 63, 64, 66, 69, 70, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 73, 83, 86, 87, 88, 95, 97, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 73, 83, 88, 91, 97, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 60, 70, 73, 87, 88, 89, 90, 94, 97, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 73, 91], "independ": [2, 3, 10, 62, 73, 94, 95, 98, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 60, 73, 74, 77, 81, 83, 86, 87, 95, 97, 105, 106], "neural": [2, 39, 60, 70, 73, 88, 91, 97, 102, 104, 106], "network": [2, 38, 39, 42, 60, 70, 73, 87, 88, 91, 94, 97, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 70, 73, 86, 87, 88, 90, 91, 93, 94, 98, 104, 105], "initi": [2, 3, 10, 14, 19, 38, 42, 52, 61, 73, 86, 94, 97, 98], "insid": [2, 42, 73, 97, 99], "There": [2, 3, 7, 52, 83, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 66, 68, 69, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 61, 73, 87, 88, 89, 94, 96, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 77, 81, 83, 86, 91, 98, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 59, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 63, 73, 84, 98, 103], "everyth": [2, 69, 99], "els": [2, 69, 89, 91, 95, 96, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 83, 89, 95, 96, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 62, 63, 64, 65, 70, 71, 75, 79, 81, 82, 90, 91, 98, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 74, 78, 79, 81, 82, 96, 97, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 62, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 81, 84, 86, 88, 89, 90, 93, 94, 95, 96, 98, 100], "erron": [2, 3, 37, 44, 47, 57, 62, 63, 71, 73, 74, 75, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 61, 65, 68, 73, 74, 79, 81, 82, 83, 86, 87, 93, 94, 95, 97, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 73, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 73, 83, 86, 87, 97, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 60, 61, 63, 69, 70, 71, 73, 78, 79, 83, 87, 88, 89, 90, 94, 95, 96, 97, 99, 101, 103, 104, 106], "x_train": [2, 86, 89, 90, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 73, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 59, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 87, 92, 100, 101, 104, 105, 106], "pred": [2, 44, 57, 86, 87, 98, 105, 106], "x_test": [2, 86, 89, 90, 99, 102, 106], "might": [2, 5, 10, 52, 61, 73, 78, 86, 87, 89, 90, 91, 95, 97, 103], "case": [2, 3, 10, 14, 37, 49, 52, 61, 73, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 60, 62, 63, 65, 71, 73, 83, 86, 89, 90, 93, 96, 98, 99, 103], "adapt": [2, 38, 40, 57, 59, 73, 104], "skorch": [2, 73, 83, 97], "kera": [2, 59, 66, 69, 73, 83, 97, 103], "scikera": [2, 60, 73, 97], "open": [2, 41, 86, 87, 90, 93, 94, 96, 99, 102, 103, 104, 106, 108], "doesn": [2, 10, 73, 83], "t": [2, 3, 4, 7, 10, 18, 28, 29, 38, 39, 41, 42, 43, 44, 49, 55, 56, 65, 70, 71, 73, 79, 81, 82, 83, 89, 90, 91, 94, 95, 96, 98, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 60, 61, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 60, 66, 68, 70, 73, 83, 84, 86, 87, 89, 90, 94, 101, 108], "made": [2, 5, 17, 38, 42, 53, 73, 86, 87, 91, 94, 95, 97, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 73, 89, 90, 96, 97, 99, 102], "inherit": [2, 7, 39, 73], "baseestim": [2, 42, 73], "yourmodel": [2, 73], "def": [2, 7, 15, 38, 42, 60, 73, 87, 88, 89, 90, 91, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 70, 71, 73, 86, 89, 91, 95, 96, 98, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 62, 63, 65, 66, 68, 69, 70, 73, 77, 78, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 60, 62, 63, 66, 69, 70, 73, 74, 77, 79, 81, 86, 87, 89, 91, 93, 94, 95, 97, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 62, 82, 91, 97, 107], "state": [2, 3, 5, 38, 39, 42, 48, 73, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 70, 71], "et": [2, 3, 37, 39, 70, 71], "al": [2, 3, 37, 39, 70, 71], "2021": [2, 3, 37, 70, 71], "weak": [2, 69], "supervis": [2, 10, 89, 90, 97, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 59, 66, 69, 70, 71, 73, 75, 79, 81, 83, 84, 89, 96, 98, 100, 105], "uncertainti": [2, 10, 46, 70, 73, 97, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 61, 68, 69, 73, 83, 89, 90, 91, 95, 97, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 60, 61, 71, 73, 83, 84, 87, 89, 90, 95, 96, 98, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 59, 61, 62, 65, 66, 70, 71, 73, 77, 78, 79, 81, 83, 84, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 59, 60, 73, 94], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 59, 73, 86, 87, 89, 90, 95, 96, 98, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 62, 69, 70, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 86, 87, 97], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 60, 61, 62, 65, 66, 68, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 60, 69, 73, 83, 84, 87, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 70, 71, 75, 77, 78], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 70, 71, 83, 87, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 63, 73, 83, 87, 89, 91, 97, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 61, 63, 66, 69, 71, 74, 88, 90, 94, 97, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 61, 62, 66, 68, 70, 71, 73, 88, 89, 93, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 70, 73, 86, 87, 88, 93, 94, 95, 97, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 63, 70, 71, 81], "tild": 2, "paper": [2, 4, 10, 61, 70, 79, 81, 96, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 73, 87], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 61, 62, 65, 66, 69, 73, 74, 81, 87, 89, 94, 96, 97, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 73, 84, 97, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 63, 79, 97], "clean": [2, 68, 71, 73, 74, 83, 86, 87, 89, 90, 96, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 73, 88, 95, 97, 98, 99, 101, 102, 103], "messi": [2, 73, 99], "ridden": [2, 73], "autom": [2, 9, 10, 73, 83, 86, 87, 90, 93, 94, 96, 97, 98, 99, 102, 104, 106], "robust": [2, 47, 52, 73, 90, 95, 97, 98], "prone": [2, 73], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 60, 63, 64, 66, 69, 70, 71, 73, 74, 82, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 61, 68, 73, 89, 90, 97, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 61, 77, 81, 88, 89, 90, 94, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 65, 68, 69, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 61, 62, 66, 68, 69, 70, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "tutori": [2, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "repo": 2, "wrapper": [2, 60, 86, 87, 88, 106], "around": [2, 68, 89, 90, 98, 103, 104, 108], "fasttext": 2, "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 70, 73, 86, 87, 93, 94, 95, 96, 97, 107, 108], "along": [2, 49, 63, 81, 89, 90, 91, 95, 97, 104], "dimens": [2, 57, 75, 78, 91, 97, 104, 107], "select": [2, 9, 10, 27, 51, 61, 71, 91, 98, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 99, 100, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 63, 66, 69, 71, 73, 74, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 73, 86, 88, 93, 96, 97, 103, 107], "By": [2, 37, 62, 63, 73, 89, 95, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 62, 63, 65, 70, 73, 83, 87, 88, 89, 90, 94, 95, 97, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 73], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 61, 62, 63, 65, 68, 69, 70, 71, 73, 74, 75, 77, 83, 84, 87, 89, 90, 96, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 59, 61, 70, 73, 84, 86, 87, 89, 90, 91, 93, 94, 95, 97, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 68, 70, 73, 78, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 104, 106], "consist": [2, 3, 10, 38, 42, 51, 57, 61, 95, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 60, 63, 68, 71, 73, 74, 77, 81, 83, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 62, 73, 90, 94, 95], "close": [2, 3, 10, 41, 47, 70, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 71, 73, 97], "equival": [2, 3, 38, 42, 47, 70, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 62, 63, 73, 97, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 62, 99], "certain": [2, 3, 5, 10, 38, 42, 60, 69, 73, 89, 90, 95, 96, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 81, 89, 90, 91, 97, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 60, 61, 63, 69, 70, 71, 73, 78, 79, 81, 89], "filter": [2, 3, 10, 41, 43, 56, 62, 64, 65, 67, 69, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 91, 94, 96, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 97, 102, 103, 106, 107, 108], "particularli": [2, 83, 98, 101, 104], "filter_bi": [2, 3, 41, 44, 63, 84, 97], "frac_nois": [2, 44, 63, 79, 97], "min_examples_per_class": [2, 44, 63, 97, 99], "impact": [2, 4, 10, 89, 90, 91, 95], "ml": [2, 4, 5, 9, 10, 16, 73, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 100, 101, 102, 104, 105, 106], "accuraci": [2, 39, 71, 86, 87, 88, 91, 97, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 63, 75, 77, 79, 97, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 61, 63, 69, 75, 77, 79, 87, 88, 89, 95, 97, 98, 101, 105], "caus": [2, 44, 49, 89, 90, 95, 97], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 62, 63, 64, 66, 67, 69, 70, 72, 76, 78, 79, 80, 82, 83, 84, 86, 87, 89, 90, 96, 97, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 61, 63, 64, 65, 66, 67, 68, 71, 72, 74, 76, 77, 79, 80, 81, 84, 97, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 65, 70, 71, 99], "control": [2, 5, 9, 10, 17, 41, 44, 61, 69, 70, 73, 79, 81, 89, 90, 95, 96, 97], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 61, 62, 65, 66, 68, 70, 71, 73, 77, 81, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 73, 95, 97, 101], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 60, 61, 62, 66, 68, 69, 70, 73, 77, 78, 81, 82, 83, 84, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78, 107, 108], "statement": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78], "big": [2, 41, 63, 69, 73, 99], "limit": [2, 5, 17, 41, 52, 63, 83, 95, 103, 107, 108], "memori": [2, 38, 41, 42, 63, 69, 75, 77, 89, 107], "experiment": [2, 38, 39, 41, 42, 43, 63, 84, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 106], "label_issues_batch": [2, 40, 63, 97], "find_label_issues_batch": [2, 40, 41, 63, 97], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 68, 69, 70, 71, 77, 81, 89, 95, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 84, 99], "label_issu": [2, 41, 44, 63, 66, 73, 75, 84, 86, 87, 88, 91, 94, 97, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 73], "clf_final_kwarg": [2, 73], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 61, 62, 63, 65, 66, 68, 69, 71, 73, 74, 77, 81, 83, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101, 102, 103, 104, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 63, 65, 66, 69, 71, 73, 74, 75, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 63, 66, 69, 71, 73, 74, 75, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 99, 102, 104, 106, 107, 108], "final": [2, 10, 73, 86, 93, 95, 98, 103, 105, 106], "remain": [2, 73, 84, 86, 87, 91, 95, 98, 102, 106, 108], "datasetlik": [2, 57, 73], "beyond": [2, 5, 7, 9, 10, 12, 36, 83, 86, 87, 98, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 60, 61, 62, 73, 81, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 60, 61, 62, 73, 78, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 70, 95], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 93, 95], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 95], "torch": [2, 38, 39, 42, 87, 88, 91, 94, 96, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 60, 61, 66, 69, 73, 83, 84, 88, 89, 90, 91, 97, 99, 104], "tensorflow": [2, 57, 60, 83, 88, 97], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 60, 63, 66, 67, 68, 69, 70, 73, 81, 83, 87, 88, 90, 91, 93, 95, 97, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 77, 78, 79, 81, 82, 84, 87, 88, 89, 90, 91, 96, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 71, 78, 82, 86, 87, 88, 91, 93, 94, 95, 97, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 61, 62, 68, 70, 82, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 73, 88, 97, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 60, 61, 62, 63, 66, 69, 70, 71, 73, 75, 77, 78, 81, 82, 86, 89, 90, 91, 93, 95, 96, 98, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 88, 91, 94, 95, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 61, 66, 68, 73, 79, 81, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 60, 61, 75, 77, 91, 97, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 61, 62, 63, 66, 69, 70, 71, 75, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 60, 71, 83, 86, 87, 94, 97, 104], "eg": [2, 5, 10, 57, 66, 69, 89, 90, 97, 98], "repeat": [2, 57, 61, 101, 104], "appli": [2, 10, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 65, 70, 79, 83, 86, 87, 88, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 63, 70, 74], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 59, 61, 62, 63, 65, 66, 69, 70, 71, 73, 75, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 73, 81, 97, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 61, 62, 63, 65, 70, 71, 73, 78, 79, 81, 82, 86, 88, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 60, 61, 68, 77, 81, 87, 96, 98, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 61, 62, 63, 65, 68, 69, 71, 74, 75, 77, 81, 90, 97, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 61, 63, 66, 68, 71, 77, 81, 89, 95, 97, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 61, 68, 70, 71, 74, 77, 81, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 84, 91, 93, 95, 97, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 60, 63, 70, 71, 73, 74, 79, 81, 96, 97, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 68, 70, 81, 84, 90, 92, 95, 97, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 60, 68, 70, 71, 73, 77, 81, 98, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 60, 61, 62, 63, 66, 68, 70, 71, 73, 74, 82, 84, 87, 88, 90, 91, 94, 95, 98, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 68, 90, 96, 97, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 62, 63, 69, 84, 91, 95, 97, 103], "observ": [2, 3, 47, 54, 88, 89, 90, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 61, 62, 63, 66, 68, 71, 77, 79, 81, 82, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 72, 73, 86, 87, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 61, 63, 68, 70, 71, 75, 77, 90, 95, 97, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 61, 63, 66, 71, 73, 75, 77, 78, 83, 87, 88, 90, 91, 94, 97, 103, 106, 107], "label_issues_mask": [2, 44, 71, 73, 84], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 63, 66, 69, 70, 71, 73, 75, 79, 81, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 63, 79, 84, 86, 87, 97, 99], "significantli": [2, 10, 91, 95, 99, 101, 105], "reduc": [2, 41, 44, 57, 88, 97], "time": [2, 10, 38, 41, 42, 57, 61, 82, 84, 89, 91, 97, 98, 103, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 60, 71, 86, 91, 93, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 73, 88, 95, 97, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 69, 91, 95, 98, 99, 101, 105], "caution": [2, 5, 97, 98], "previous": [2, 5, 14, 57, 70, 73, 84, 86, 88, 89, 93, 94, 98, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 73, 86, 89, 91, 93, 95, 97, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 61, 65, 68, 71, 73, 79, 81, 84, 86, 90, 93, 95, 96, 97, 101, 102, 103, 108], "still": [2, 41, 42, 57, 70, 86, 91, 97, 104], "extra": [2, 38, 42, 57, 60, 61, 62, 73, 91, 94, 97, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 62, 65, 66, 73, 75, 79, 90, 103], "overwritten": [2, 73], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 60, 65, 97], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 69, 71, 73, 78, 88, 89, 90, 91, 95, 97, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 63, 71, 89, 93, 98, 102, 103], "earli": [2, 91], "stop": [2, 91], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 70, 86, 89, 91, 93, 95, 98, 102, 106, 108], "f": [2, 7, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 60, 73, 78, 82, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 61, 69, 70, 73, 75, 77, 87, 88, 91, 95, 97, 105, 107], "access": [2, 10, 14, 38, 42, 73, 90, 91, 96, 102], "hyperparamet": [2, 65, 70, 91], "purpos": [2, 52, 89, 90, 95, 97, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 61, 63, 73, 87, 89, 91, 94, 96, 98, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 73], "yourself": [2, 5, 41, 90, 95], "altern": [2, 7, 10, 49, 54, 57, 60, 61, 71, 84, 87, 88, 91, 93, 94, 96, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 60, 61, 63, 70, 71, 73, 77, 78, 81, 82, 83, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 61, 70, 73, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 104, 106], "offer": [2, 5, 9, 10, 87, 88, 89, 90, 94, 97, 98, 99, 102], "after": [2, 3, 5, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 61, 73, 87, 89, 91, 94, 95, 97, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 70, 73, 86, 89, 95], "label_issues_df": [2, 73, 91], "similar": [2, 10, 37, 38, 42, 54, 57, 61, 65, 66, 68, 70, 73, 77, 81, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 60, 62, 63, 65, 68, 69, 70, 73, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 66, 73, 89, 90], "were": [2, 3, 5, 10, 37, 42, 52, 62, 68, 81, 86, 88, 93, 97, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 70, 78, 83, 91, 95, 97, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 61, 62, 71, 90, 97, 99, 105, 108], "num_class": [2, 37, 41, 57, 60, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 78, 89, 95, 97, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 71, 95, 97, 99, 104], "trick": [2, 97], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 61, 69, 70, 71, 83, 89, 90, 91, 93, 94, 95, 98, 103, 104], "account": [2, 37, 61, 65, 70, 71, 87, 94, 97, 99, 101, 102, 104, 106], "word": [2, 3, 56, 81, 82, 97], "remov": [2, 10, 32, 37, 38, 42, 44, 73, 83, 86, 87, 91, 94, 95, 96, 97, 98, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 61, 62, 68, 71, 73, 77, 81, 88, 89, 90, 91, 94, 95, 98, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 60, 71, 73, 75, 83, 84, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 61, 63, 65, 70, 71, 73, 74, 75, 83, 86, 87, 88, 91, 94, 95, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 64, 66, 67, 68, 69, 70, 71, 72, 73, 76, 80, 83, 86, 87, 89, 92, 96, 98, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 71, 73, 98], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 60, 69, 73, 75, 77, 78, 79, 97], "test": [2, 5, 10, 27, 42, 49, 52, 60, 73, 83, 86, 87, 89, 90, 91, 93, 94, 100, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 61, 70, 71, 73, 86, 87, 97, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 71, 83, 87, 89, 90, 93, 94, 97, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 65, 70, 73, 83, 90, 91, 93, 94, 95, 98, 99, 103], "save_spac": [2, 10, 72, 73], "potenti": [2, 10, 37, 44, 56, 63, 66, 69, 71, 73, 75, 77, 82, 84, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 87, 94], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 60, 61, 62, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 60, 62, 63, 65, 81, 89, 98, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 61, 63, 71, 75, 77, 82, 83, 89, 91, 97, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 63, 66, 71, 73, 75, 77, 78, 83, 96, 97, 101, 103, 107, 108], "prefer": [2, 71, 79, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 87, 94, 97, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 73], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 60, 61, 63, 65, 69, 70, 71, 73, 74, 75, 77, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 71, 73], "mostli": [2, 57, 68, 73, 98, 102, 106], "longer": [2, 35, 48, 49, 56, 73, 84, 87, 94, 97, 98, 103], "info": [2, 5, 7, 10, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 73, 81, 90, 95, 96, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 61, 62, 65, 69, 73, 78, 81, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 73, 96, 99], "unless": [2, 38, 42, 52, 73, 97], "our": [2, 3, 10, 60, 61, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 73, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 62, 63, 68, 71, 73, 75, 77, 78, 83, 89, 90, 95, 97, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 61, 62, 63, 66, 69, 71, 73, 74, 75, 77, 78, 84, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 106], "label_qu": [2, 61, 73, 87, 99, 101, 106], "measur": [2, 5, 37, 61, 62, 73, 83, 86, 95, 96, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 61, 62, 63, 65, 66, 68, 71, 73, 74, 77, 79, 81, 83, 84, 88, 89, 91, 97, 98, 100], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 61, 62, 65, 68, 69, 71, 73, 74, 77, 81, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 69, 98, 99, 101], "against": [2, 38, 42, 89, 93, 95, 97, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107], "ad": [2, 38, 42, 90, 101, 106], "precis": [2, 53, 55, 63, 66, 69, 95, 96, 97, 99, 107, 108], "definit": [2, 7, 35, 49, 73, 86, 93], "accessor": [2, 73], "describ": [2, 10, 19, 61, 70, 71, 73, 79, 81, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 73, 96], "clear": [2, 38, 42, 54, 73, 87, 94, 95, 106], "save": [2, 5, 17, 38, 41, 42, 69, 73, 95, 97, 103, 107, 108], "space": [2, 5, 10, 70, 73, 91, 93, 95, 96], "place": [2, 38, 42, 52, 57, 73, 86, 101], "larg": [2, 9, 10, 41, 52, 73, 91, 97, 103, 104, 107, 108], "deploi": [2, 9, 10, 73, 91, 97, 98], "care": [2, 10, 38, 42, 52, 73, 94, 95, 97, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 73, 97, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 98, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 73], "__init_subclass__": [2, 40, 42, 72, 73], "set_": [2, 42, 73], "_request": [2, 42, 73], "pep": [2, 42, 73], "487": [2, 42, 73], "look": [2, 5, 7, 10, 17, 38, 42, 57, 73, 78, 86, 89, 90, 93, 94, 97, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 61, 62, 66, 69, 73, 78, 81, 82, 83, 88, 89, 93, 94, 95, 96, 98, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 73], "infer": [2, 42, 57, 73, 78, 82, 86, 87, 91, 101, 102], "signatur": [2, 38, 42, 73], "accept": [2, 38, 42, 54, 55, 71, 73, 89, 90, 97], "metadata": [2, 10, 42, 73, 91, 108], "through": [2, 5, 7, 42, 73, 87, 88, 90, 94, 95, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 73, 97, 99, 108], "request": [2, 42, 73, 86, 87, 90, 94, 95, 96, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 60, 61, 63, 69, 73, 77, 81, 82, 83, 88, 91, 95, 97, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 66, 69, 70, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 73, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 70, 73, 97, 98, 99, 108], "dev": [2, 42, 73], "0487": [2, 42, 73], "get_metadata_rout": [2, 40, 42, 72, 73], "rout": [2, 42, 73], "pleas": [2, 38, 42, 60, 73, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 73, 84, 88, 89, 90, 91, 92, 93, 94, 95, 98, 99], "mechan": [2, 38, 42, 73], "metadatarequest": [2, 42, 73], "encapsul": [2, 17, 42, 68, 73], "get_param": [2, 40, 42, 59, 60, 72, 73], "subobject": [2, 42, 73], "param": [2, 10, 38, 42, 60, 70, 73, 97], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 60, 61, 62, 69, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 72, 73], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 60, 61, 62, 66, 68, 69, 71, 73, 78, 82, 88, 89, 95, 97, 101, 102, 103, 108], "unchang": [2, 38, 42, 73, 95, 108], "relev": [2, 10, 17, 27, 42, 73, 91, 93, 95], "enable_metadata_rout": [2, 42, 73], "set_config": [2, 42, 73], "meta": [2, 42, 73], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 73, 97], "alia": [2, 38, 42, 73], "metadata_rout": [2, 42, 73], "retain": [2, 42, 57, 73], "chang": [2, 33, 35, 38, 41, 42, 46, 73, 81, 86, 87, 88, 89, 94, 97, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 59, 60, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 68, 73], "pipelin": [2, 42, 73, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 63, 73, 75, 77, 78, 82, 83, 87, 94, 97, 98], "updat": [2, 14, 38, 41, 42, 52, 60, 73, 84, 89, 91, 98], "set_param": [2, 40, 42, 59, 60, 72, 73], "simpl": [2, 38, 42, 44, 61, 71, 73, 86, 87, 89, 90, 91, 93, 94, 98, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 61, 63, 69, 71, 73, 78, 81, 82, 84, 89, 90, 91, 93, 94, 97, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 73, 79, 81, 82, 108], "latter": [2, 38, 42, 73, 104], "compon": [2, 42, 73], "__": [2, 42, 73], "set_score_request": [2, 72, 73], "structur": [3, 70, 93, 95, 97, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 61, 70, 71, 75, 77, 81, 91, 93, 95, 96, 97, 98, 99, 103, 108], "channel": [3, 88, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 62, 87, 90, 96], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 62, 63, 84, 97, 99], "un": 3, "under": [3, 10, 38, 42, 62, 69, 70, 90, 95, 98, 104], "joint": [3, 37, 44, 47, 57, 62, 63, 96], "num_label_issu": [3, 41, 44, 63, 78, 82, 84], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 63, 102], "don": [3, 10, 83, 90, 91, 94, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 63, 99], "off": [3, 44, 57, 68, 91, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 63, 66, 69, 70, 79, 81, 82, 89, 90, 99, 107, 108], "confident_learn": [3, 44, 63, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 61, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 75, 78, 88, 89, 90, 91, 95, 97, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 89, 90, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 86, 87, 88, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 68, 69, 75, 77, 86, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106], "As": [3, 7, 83, 89, 90, 94, 98, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 60, 69, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 102], "approach": [3, 37, 41, 44, 60, 86, 93, 95, 98, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 71, 87, 90, 94, 95, 99, 106], "know": [3, 10, 89, 90, 91, 94, 97, 99, 101, 106], "cut": [3, 68, 83, 86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 69, 83, 95, 97, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 65, 66, 68, 69, 71, 74, 81, 96, 97, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 77, 78, 79, 83, 84, 88, 95, 97, 98, 102, 104, 108], "num_issu": [3, 7, 41, 88, 89, 90, 91, 93, 94, 95, 98, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 60, 61, 87, 96, 97, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 62, 63, 65, 71, 89, 90, 100, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 62, 63, 65, 73, 86, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 106], "fashion": [3, 5, 75, 86], "2x2": 3, "incorrectli": [3, 37, 62, 63, 66, 93, 98, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 63, 71, 83, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 61, 65, 68, 74, 77, 81, 82, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 63, 69, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 61, 62, 69, 78, 103, 104], "done": [3, 10, 60, 73, 89, 97, 99, 102, 104, 105], "overfit": [3, 10, 66, 69, 86, 88, 89, 90, 91, 93, 94, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 61, 62, 68, 69, 70, 71, 81, 86, 88, 89, 95, 97, 99, 102, 103], "baselin": [3, 38, 44, 87, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 63, 69, 73, 81, 97], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 61, 63, 69, 77, 79, 81, 82, 88, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 61, 70, 75, 77, 83, 87, 91, 95, 97, 98, 107], "practic": [3, 86, 87, 90, 91, 98, 99, 104, 106], "complet": [3, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 65, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 69, 79, 96], "again": [3, 60, 86, 97, 104], "simplifi": [3, 15, 97], "understand": [3, 9, 10, 37, 62, 69, 90, 95, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 70, 71, 86, 87, 89, 90, 91, 93, 95, 96, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 60, 86, 87, 90, 91, 93, 94, 95, 96, 99, 101, 102, 104, 106], "speed": [3, 44, 87, 96, 97, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 65, 81, 88, 95, 98, 103], "enumer": [3, 38, 42, 88, 89, 90, 91, 95, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 81, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 71, 75, 78, 88, 95, 97, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 65, 74, 86, 88, 95], "eqn": [3, 47], "margin": [3, 44, 47, 49, 71], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 62, 99, 105], "poorli": [3, 47, 86, 95], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 73, 74, 88, 89, 93, 99, 102, 106], "exact": [3, 10, 47, 52, 86, 89, 90, 91, 93, 95, 98], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 63, 68, 77, 79, 81, 89, 90, 91, 97, 103, 107], "percent": 3, "often": [3, 37, 47, 62, 97, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 69, 86, 87, 88, 89, 91, 93, 94, 97, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 60, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 89, 91, 95, 96, 97, 98, 99, 105, 106], "becaus": [3, 47, 53, 57, 68, 94, 95, 97, 98, 99, 101, 103, 105], "littl": [3, 41, 96, 103, 108], "uniform": [3, 71, 96, 97, 99], "20": [3, 7, 43, 82, 88, 91, 94, 95, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 91, 104], "bound": [3, 24, 26, 38, 42, 56, 65, 66, 68, 69, 103], "reason": [3, 10, 23, 38, 42, 53, 70], "comment": [3, 56, 95, 108], "end": [3, 5, 38, 42, 54, 69], "file": [3, 5, 13, 40, 41, 59, 69, 86, 88, 89, 93, 94, 96, 97, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 84, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 99, 102, 104, 106, 107, 108], "five": [3, 66, 69, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 98, 103], "confident_threshold": [3, 10, 23, 24, 41, 70], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 83, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 69, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 107, 108], "u": [4, 86, 87, 88, 89, 91, 93, 95, 97, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 95, 98, 103], "contribut": [4, 10, 19, 95, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 93, 95], "metric": [4, 5, 10, 19, 20, 22, 27, 29, 32, 45, 51, 52, 54, 55, 57, 60, 69, 70, 86, 87, 88, 91, 93, 94, 95, 98, 99, 106], "10": [4, 10, 19, 20, 24, 27, 29, 32, 38, 39, 52, 69, 70, 71, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 70, 90, 94, 95, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 70, 89, 90, 91, 93, 94, 95, 97, 104], "knn": [4, 10, 14, 19, 27, 29, 32, 51, 52, 53, 54, 55, 70, 93, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 61, 65, 66, 68, 69, 70, 73, 77, 91, 96, 98], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 60, 61, 87, 90, 94, 95, 97, 98, 102, 103, 106], "lowest": [4, 10, 61, 69, 90, 91, 93, 95, 97, 98, 101, 102, 103, 107], "fall": [4, 10, 68, 77, 81, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 62, 63, 66, 73, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 70, 95, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 63, 66, 69, 71, 78, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 70, 83, 87, 88, 89, 90, 93, 94, 95, 98, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 63, 83, 87, 88, 89, 90, 91, 94, 97, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 61, 86, 88, 95, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 62, 88, 89, 90, 91, 93, 94, 98, 99], "num_featur": [4, 5, 17, 38, 42, 60], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 68, 70, 93, 95, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 60, 95, 98], "nearestneighbor": [4, 5, 10, 19, 52, 54, 70, 93, 104], "cosin": [4, 10, 52, 53, 55, 70, 95, 104], "dim": [4, 70, 91, 107], "euclidean": [4, 5, 10, 52, 53, 55, 68, 70, 93], "dimension": [4, 27, 53, 57, 88, 99, 104], "scikit": [4, 42, 53, 54, 57, 70, 83, 86, 87, 88, 89, 90, 93, 94, 95, 97, 106], "fewer": [4, 10, 44, 57, 70, 95, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 59, 70, 84, 88, 89, 90, 91, 93, 94, 98, 99], "exce": [4, 52, 91, 95], "transform": [4, 10, 33, 49, 52, 55, 57, 70, 71, 86, 87, 90, 91, 94, 95, 98, 104, 108], "rel": [4, 10, 37, 52, 61, 62, 70, 89, 90, 91, 93, 94, 98, 99, 104], "adjust": [4, 39, 44, 52, 65, 70, 71, 83, 95, 98, 99], "closer": [4, 10, 68, 95, 103], "highli": [4, 90, 91], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 69, 95, 96, 104], "convers": 4, "neg": [4, 10, 68, 69, 89, 90, 95, 96], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 97], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 73, 75, 77, 91, 94, 96, 97], "55": [4, 56, 95, 96, 103, 106], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 88, 91, 92, 93, 94, 95, 97, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 95, 96], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 61, 69, 78, 79, 86, 87, 88, 89, 93, 94, 95, 98, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 59, 63, 70, 73, 74, 83, 95, 105], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 59, 60, 75, 77, 95], "pip": [5, 7, 9, 12, 36, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 70, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 83, 96], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "image_kei": [5, 10, 91, 95], "interfac": [5, 9, 10, 54, 83, 86, 87, 90, 93, 94, 96, 97, 98, 99, 102, 104, 106], "librari": [5, 10, 42, 54, 66, 69, 70, 83, 87, 89, 94, 95, 96, 97], "goal": [5, 106], "track": [5, 7, 14, 15, 83, 89, 96, 97, 99], "intermedi": [5, 9, 90], "statist": [5, 10, 14, 23, 27, 37, 61, 62, 69, 90, 93, 94, 95, 98, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 61, 68, 77, 81, 84, 87, 88, 91, 94, 95, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 91], "face": [5, 10, 13, 17, 91, 96, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 61, 62, 68, 70, 89, 90, 91, 94, 97, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 61, 62, 74, 78, 81, 82, 87, 93, 94, 95, 97, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 61, 62, 65, 66, 68, 69, 89, 90, 93, 94, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 69, 88, 89, 95, 97, 103], "local": [5, 7, 10, 13, 38, 39, 42, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 70, 79, 81, 82, 83, 85, 89, 90, 92, 96, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 86, 87, 93, 94, 98, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 61, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 87, 89, 90, 94, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 66, 68, 69, 70, 75, 77, 78, 83, 89, 90, 92, 96, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 86, 87, 95, 106], "pil": [5, 91], "cleanvis": [5, 10, 95], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 79, 81, 90, 91, 97, 100, 102, 107], "load_dataset": [5, 13, 91], "glue": 5, "sst2": 5, "properti": [5, 9, 13, 14, 35, 38, 42, 95], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 62, 69, 78, 82, 83, 96, 99, 103, 107, 108], "empti": [5, 13, 47, 61, 90, 95, 97, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 61, 63, 66, 68, 69, 71, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 83, 90, 92, 95, 96, 97, 98, 99, 102, 103, 107], "real": [5, 17, 83, 89, 90, 95, 97, 98, 99, 101, 106, 107], "world": [5, 17, 83, 89, 90, 95, 97, 98, 99, 101, 106, 107], "interact": [5, 17, 94, 97], "thereof": [5, 17], "insight": [5, 17, 69, 101], "best": [5, 9, 10, 17, 48, 61, 71, 86, 87, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 75, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 66, 69, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103], "lexicograph": [5, 48, 57, 88, 89, 90, 91, 93, 94, 98, 99, 102], "squar": [5, 57, 73, 96, 106], "csr": [5, 52, 95], "evenli": 5, "omit": [5, 68, 69, 91, 95, 103], "itself": [5, 33, 38, 42, 52, 95, 103], "three": [5, 10, 37, 61, 62, 73, 78, 86, 88, 89, 90, 93, 96, 99, 101, 105, 106, 107, 108], "indptr": [5, 95], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 83, 102, 108], "th": [5, 10, 43, 48, 56, 57, 61, 63, 66, 68, 69, 70, 79, 81, 82, 94, 102, 103, 108], "ascend": [5, 37, 62, 91, 99], "segment": [5, 75, 77, 78, 100], "reflect": [5, 10, 52, 86, 87, 93, 94, 98, 101, 103, 104, 106], "maintain": [5, 60], "kneighbors_graph": [5, 19, 54, 93], "illustr": [5, 95], "todens": 5, "second": [5, 49, 57, 69, 71, 89, 93, 97, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 83, 89, 95, 98, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 61, 95, 97, 101, 108], "unspecifi": [5, 17, 44, 63], "interest": [5, 17, 23, 78, 82, 86, 87, 94, 95, 98, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 73, 74, 95, 96, 106, 108], "random_st": [5, 86, 88, 89, 90, 91, 95, 98, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 83, 91, 95, 98, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 70, 95], "mode": [5, 12, 19, 38, 41, 42, 93, 104], "4x4": 5, "float64": [5, 27, 38, 42, 81], "compress": [5, 10, 52, 57, 75, 77, 95], "toarrai": [5, 52, 95], "NOT": [5, 41, 94], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 90], "suppos": [5, 10, 66, 86, 87, 104, 106], "who": [5, 68, 86, 93, 95, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 60, 89, 97], "clean_learning_kwarg": [5, 10, 11, 24, 31, 97, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 84], "prune_by_noise_r": [5, 44, 63, 99], "report": [5, 7, 10, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 82, 83, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34, 95, 98], "show_all_issu": [5, 34, 95, 98], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 59, 60, 62, 67, 76, 77, 79, 80, 81, 84, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 69, 78, 82, 86, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 63, 71, 82, 95, 108], "onc": [5, 10, 23, 37, 38, 42, 86, 89, 97, 98, 99, 102, 103], "familiar": [5, 95], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 61, 62, 65, 68, 69, 73, 77, 78, 79, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 65, 68, 70, 71, 77, 81, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 61, 70, 81, 89, 90, 93, 95, 98, 99, 103], "issue_summari": [5, 7, 10, 14, 95], "With": [5, 9, 10, 41, 87, 94, 97, 99, 101, 106, 107, 108], "usag": [5, 41, 60], "usual": [5, 13, 33, 34, 91, 101, 106], "ti": [5, 61], "exhibit": [5, 7, 10, 14, 78, 88, 89, 90, 91, 93, 94, 98, 99, 103], "ie": [5, 73], "likelihood": [5, 10, 41, 43, 44, 63, 68, 70, 71, 75, 79, 95], "wherea": [5, 10, 57, 63, 86, 87, 95, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 71, 83, 89, 90, 95, 98, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 10, 23, 38, 42, 96], "non_iid": [5, 10, 11, 15, 27, 90, 91, 93, 94, 95, 98, 99], "hypothesi": [5, 95], "iid": [5, 7, 9, 27, 83, 93, 98, 99], "never": [5, 88, 98, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 71, 103], "123": [5, 89, 90], "456": [5, 86, 87, 88], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 60, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 65, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 89, 90, 91, 93, 94, 98, 99], "789": 5, "get_issu": [5, 10, 14, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 88, 89, 90, 91, 93, 94, 95, 98, 99], "focu": [5, 10, 14, 94, 95, 98, 107, 108], "full": [5, 10, 14, 41, 60, 69, 91, 98, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 62, 78, 82, 83, 107], "specific_issu": [5, 14], "lie": [5, 10, 70, 71, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99], "get_issue_summari": [5, 10, 14, 90, 95], "get_info": [5, 10, 14, 90, 94, 95, 96], "yet": [5, 18, 28, 60, 96, 98, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 89], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 88, 89, 91], "load": [5, 13, 41, 69, 91, 96, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 61, 83, 89, 94], "overwrit": [5, 89], "separ": [5, 37, 49, 65, 89, 90, 91, 95, 97, 98, 103, 105], "static": 5, "rememb": [5, 94, 97, 98, 99], "part": [5, 10, 38, 42, 44, 66, 68, 69, 88, 89, 95, 96, 98, 107, 108], "ident": [5, 10, 23, 57, 94, 95], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 83, 86, 87, 96, 98, 101, 106], "walk": [7, 98], "alongsid": [7, 38, 42, 89, 97], "pre": [7, 8, 10, 38, 42, 83, 89, 90, 106], "runtim": [7, 38, 41, 42, 73, 75, 77, 88, 91, 97, 98], "issue_manager_factori": [7, 15, 89], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 87, 95, 99, 106], "next": [7, 61, 83, 86, 87, 88, 93, 94, 95, 97, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 89, 90, 95], "mark": [7, 10, 84, 103, 104, 106], "regard": [7, 90, 98, 99], "rand": [7, 49, 52, 89, 90, 95], "is_": [7, 10, 89], "_issu": [7, 10, 89], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "whole": [7, 10, 27, 38, 42, 90, 95], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "popul": [7, 94, 98], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 78, 82, 95, 97, 102], "intermediate_arg": 7, "min": [7, 49, 68, 81, 89, 97, 104], "sin_filt": 7, "sin": 7, "arang": [7, 95], "kernel": [7, 95], "affect": [7, 10, 38, 42, 53, 75, 81, 94, 95, 97], "easili": [7, 10, 47, 84, 86, 87, 88, 90, 93, 94, 98, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 83, 96, 104], "sai": [7, 10, 38, 42, 95, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 68, 71, 87, 93, 94, 95, 97, 99, 101, 104], "try": [7, 9, 10, 41, 44, 60, 61, 75, 77, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 104, 105, 106, 107], "won": [7, 38, 42, 89, 90, 97, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 89], "instanti": [7, 17, 41, 60, 70, 87, 88, 90, 93], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 69, 88, 89, 90, 91, 93, 94, 98, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 60, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 60, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 89, 90, 95, 96, 98, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32, 83, 98], "group": [8, 9, 27, 32, 83, 96, 98, 103, 108], "dbscan": [8, 10, 32], "hdbscan": 8, "etc": [8, 10, 23, 33, 38, 42, 47, 60, 61, 79, 83, 89, 90, 93, 94, 95, 97, 98, 99, 102, 106], "sensit": [8, 10, 55, 95, 98], "ep": [8, 32, 69], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 95], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 32, 95], "cluster_id": [8, 10, 11, 32, 95], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 90, 91, 93, 94, 95, 98, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 73, 95, 97, 98, 105], "nondefault": 9, "Near": [9, 97], "imbal": [9, 22, 65, 70, 71, 90], "spuriou": [9, 91], "correl": [9, 91], "null": [9, 11, 15, 22, 90, 91, 94, 98, 99], "togeth": [9, 10, 47, 87, 89, 90, 91, 93, 94, 98, 99, 106, 108], "built": [9, 49, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "own": [9, 38, 40, 42, 54, 59, 65, 66, 69, 75, 79, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 60, 95, 98, 104], "fulli": [9, 10, 38, 42, 60, 97], "platform": [9, 10, 83, 86, 87, 90, 91, 93, 94, 96, 97, 99, 102, 104, 105, 106], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 60, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 71, 86, 93, 97, 98, 99, 106, 107], "100x": [9, 10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "faster": [9, 10, 41, 70, 73, 75, 77, 83, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 106], "intellig": [9, 10, 98], "quickli": [9, 10, 39, 86, 88, 91, 93, 94, 97, 98, 102, 104, 105, 107, 108], "fix": [9, 10, 61, 86, 87, 90, 93, 94, 95, 96, 98, 99, 102, 104, 105, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 61, 62, 68, 87, 91, 94, 95, 97, 106], "power": [9, 10, 91, 96, 99, 108], "automl": [9, 10, 83, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 105, 106], "system": [9, 10, 88, 91, 107], "foundat": [9, 10, 83, 86, 87, 90, 93, 94, 95, 96, 99, 102, 104, 105, 106], "improv": [9, 10, 61, 86, 87, 90, 91, 96, 97, 99, 100, 106, 107], "click": [9, 10, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 87, 88, 94, 96, 98, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 86, 87, 90, 96, 97, 98, 106], "free": [9, 10, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 102, 104, 105, 106], "page": [10, 90, 97, 98, 99], "variou": [10, 14, 31, 40, 58, 59, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103], "why": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "matter": [10, 37, 62], "didn": [10, 95, 98], "plu": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "class_imbal": [10, 11, 15, 21, 90, 91, 93, 94, 95, 98, 99], "data_valu": [10, 11, 15, 22, 95], "No": [10, 11, 86, 87, 94, 95, 97], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 68, 86, 87, 108], "issue_scor": 10, "atyp": [10, 70, 89, 90, 91, 93, 94, 98, 99, 104], "datapoint": [10, 32, 44, 49, 57, 71, 74, 83, 86, 87, 88, 89, 90, 93, 94, 97, 98, 105, 106], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 88, 95], "expertis": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "interpret": [10, 96, 97, 99, 102, 106], "annot": [10, 37, 48, 61, 62, 63, 65, 66, 68, 69, 78, 81, 82, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 93, 94], "preced": 10, "incorrect": [10, 68, 71, 74, 86, 88, 89, 90, 91, 93, 94, 95, 98, 99, 103, 106], "due": [10, 41, 44, 71, 75, 77, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106], "appear": [10, 37, 48, 62, 63, 66, 74, 90, 91, 93, 94, 95, 98, 106, 107], "now": [10, 41, 84, 86, 87, 88, 90, 95, 97, 98, 101, 103, 104, 106, 108], "token": [10, 43, 56, 77, 78, 79, 80, 81, 82, 97, 99, 100], "hamper": [10, 91, 96], "analyt": [10, 83, 95, 97, 101], "lead": [10, 68, 71, 91, 95, 98, 103], "draw": [10, 89, 90], "conclus": [10, 94], "let": [10, 38, 42, 70, 71, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 106], "head": [10, 86, 87, 88, 90, 91, 93, 94, 95, 96, 98, 99, 101, 106], "97": [10, 86, 96, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 86, 90, 95, 96, 99, 103], "680894": 10, "41": [10, 95, 96, 98, 103, 106], "746043": 10, "794894": 10, "98": [10, 96, 97, 98, 106], "802911": 10, "give": [10, 49, 71, 99, 101, 107], "li": [10, 70], "especi": [10, 86, 87, 91, 95, 97, 106], "veri": [10, 37, 62, 66, 68, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106], "rare": [10, 44, 69, 89, 90, 91, 93, 94, 97, 98, 99], "anomal": [10, 71, 89, 90, 91, 93, 94, 98, 99], "articl": [10, 41, 97], "blog": 10, "unexpect": [10, 38, 42, 94], "consequ": 10, "inspect": [10, 87, 88, 90, 91, 98, 99, 103, 106], "011562": 10, "62": [10, 95, 98, 99, 103, 106], "019657": 10, "22": [10, 88, 89, 91, 95, 96, 98, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 94, 95, 96, 103, 108], "056865": 10, "smaller": [10, 70, 102, 103], "extrem": [10, 89, 90, 91, 93, 94, 95, 97, 98, 99], "record": [10, 38, 42, 88, 93, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 82], "resolut": 10, "video": [10, 96], "audio": [10, 89, 90, 92, 97], "minor": [10, 56], "variat": 10, "translat": [10, 98], "d": [10, 55, 86, 93, 94, 95, 97, 98, 99, 102, 106, 108], "constant": [10, 32, 73], "median": [10, 31, 55], "question": [10, 23, 83, 99], "nearli": [10, 23, 90, 91, 93, 94], "awar": [10, 84, 99], "presenc": [10, 52, 54, 99], "36": [10, 95, 96, 98, 108], "066009": 10, "80": [10, 39, 86, 93, 98, 102, 106], "003906": 10, "093245": 10, "005599": 10, "27": [10, 93, 95, 96, 98, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 95, 96, 98, 99, 102, 106], "signific": [10, 86, 87, 90, 93, 94, 96, 98, 99, 102, 104, 106], "violat": [10, 83, 93, 94, 95, 98, 99], "assumpt": [10, 93, 94, 95, 98, 99], "changepoint": [10, 93, 94, 98, 99], "shift": [10, 52, 54, 93, 94, 98, 99], "drift": [10, 90, 93, 95, 98, 99], "autocorrel": [10, 93, 94, 98, 99], "almost": [10, 93, 94, 98, 99], "adjac": [10, 52, 93, 94, 98, 99], "tend": [10, 37, 47, 93, 94, 98, 99, 107, 108], "sequenti": [10, 38, 42, 60, 91], "pai": [10, 94, 95], "attent": [10, 95], "realli": [10, 87, 94, 98, 101, 107], "mere": 10, "highlight": [10, 78, 82, 89, 90, 93, 95, 107], "necessarili": [10, 61, 69, 94, 98, 99], "wrong": [10, 61, 66, 68, 84, 87, 89, 90, 94, 97, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 81, 86, 93, 94, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 66, 69, 103], "x2": [10, 66, 69, 103], "10th": 10, "100th": 10, "90": [10, 81, 86, 93, 98, 99, 105, 106], "similarli": [10, 38, 42, 89, 91, 93, 97, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 69, 101], "blogpost": 10, "proper": [10, 57, 61, 66, 69, 86, 91, 94, 97, 101, 103], "scenario": [10, 52, 54, 71, 89, 90], "underli": [10, 43, 54, 70, 79, 81, 108], "stem": [10, 70, 104], "evolv": 10, "influenc": 10, "act": [10, 68, 89], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 60, 62, 68, 71, 75, 77, 78, 83, 91, 95, 98], "problem": [10, 33, 41, 49, 78, 83, 89, 90, 91, 94, 95, 97], "deploy": [10, 86, 87, 99, 106], "overlook": [10, 68, 103], "fact": 10, "thu": [10, 37, 42, 62, 86, 88, 93, 94, 98, 99, 105, 108], "diagnos": [10, 90, 97], "24": [10, 88, 95, 96, 98, 99, 101, 103, 106], "681458": 10, "37": [10, 89, 95, 96, 98], "804582": 10, "64": [10, 42, 86, 91, 93, 95, 99, 103], "810646": 10, "815691": 10, "78": [10, 86, 93, 96, 98, 99, 103, 106], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 69, 97], "rarest": [10, 90, 98], "q": [10, 95, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 91, 94, 95, 96, 98, 99, 101, 108], "75": [10, 49, 89, 90, 95, 96, 98, 101, 102, 103, 106, 108], "33": [10, 38, 42, 95, 96, 98, 103, 108], "68": [10, 86, 96, 98, 99, 103], "excess": [10, 91], "dark": [10, 95, 107], "bright": [10, 108], "blurri": [10, 91, 95], "lack": [10, 60, 95, 98], "unusu": [10, 103, 104], "discuss": [10, 97], "earlier": [10, 87, 108], "unintend": [10, 93, 94, 95], "relationship": [10, 37], "irrelev": 10, "exploit": 10, "fail": [10, 13], "unseen": 10, "hold": [10, 13], "aris": 10, "captur": [10, 37, 88, 103, 104, 107], "environment": 10, "preprocess": [10, 86, 87, 90, 93, 95, 104, 106], "systemat": [10, 78, 82, 101], "photograph": 10, "uncorrelated": [10, 95], "spurious": 10, "review": [10, 86, 87, 90, 93, 94, 96, 97, 98, 99, 103, 106, 107, 108], "troublesom": 10, "spurious_correl": [10, 95], "correlations_df": [10, 95], "blurry_scor": [10, 95], "559": [10, 98], "dark_scor": [10, 91, 95], "808": 10, "light_scor": [10, 95], "723": [10, 93, 98], "odd_size_scor": [10, 95], "957": 10, "odd_aspect_ratio_scor": [10, 95], "835": 10, "grayscale_scor": [10, 95], "003": 10, "low_information_scor": [10, 91, 95], "688": [10, 98, 106], "categor": [10, 70, 85, 86, 89, 90, 92, 97, 98, 106], "characterist": [10, 37, 95], "grayscal": [10, 91, 95], "cluster": [10, 19, 32, 98], "slice": [10, 98], "poor": [10, 95, 98], "subpopul": [10, 98], "faq": [10, 83, 90, 91, 93, 94, 100], "get_self_confidence_for_each_label": [10, 49, 71], "r": [10, 41, 73, 89, 90, 95, 106, 107], "tabular": [10, 83, 85, 89, 90, 92, 95, 97, 98, 101], "encod": [10, 50, 69, 75, 78, 86, 87, 93, 94, 97, 98, 106, 107], "71": [10, 95, 96, 98, 99, 103, 106], "70": [10, 81, 93, 95, 98], "69": [10, 98, 99, 106], "subgroup": [10, 95], "wors": [10, 95, 101], "ratio": [10, 95], "miss": [10, 28, 38, 42, 57, 66, 68, 97, 98, 103, 106], "pattern": [10, 95], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 70, 97], "quantif": 10, "39": [10, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 106, 107, 108], "32": [10, 88, 89, 95, 96, 98, 101, 103], "valuabl": [10, 19, 95], "exert": [10, 90], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 83, 96], "health_summary_kwarg": 10, "tandem": [10, 96], "view": [10, 38, 42, 43, 44, 77, 79, 81, 83, 86, 87, 88, 89, 90, 93, 94, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 70, 104], "outsid": [10, 97, 102], "outlierissuemanag": [10, 15, 22, 29], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107], "howev": [10, 38, 42, 52, 57, 86, 87, 88, 91, 93, 94, 95, 98, 101, 105, 107], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 62], "versa": [10, 62], "light": [10, 91, 95, 96, 103, 107], "29": [10, 91, 95, 96, 98, 101, 102, 103, 107, 108], "low_inform": [10, 91, 95], "odd_aspect_ratio": [10, 91, 95], "35": [10, 89, 95, 96, 98, 101, 102, 103], "odd_siz": [10, 91, 95], "doc": [10, 38, 42, 70, 83, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "is_outlier_issu": [11, 89, 90, 91, 93, 94, 95, 98, 99], "outlier_scor": [11, 29, 89, 90, 91, 93, 94, 95, 98, 99, 104], "is_near_duplicate_issu": [11, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_scor": [11, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_set": [11, 20, 22, 89, 90, 91, 93, 94, 97, 98, 99], "is_non_iid_issu": [11, 90, 93, 94, 95, 98, 99], "non_iid_scor": [11, 27, 90, 93, 94, 95, 98, 99], "is_class_imbalance_issu": [11, 90, 95, 98], "class_imbalance_scor": [11, 21, 90, 95, 98], "is_underperforming_group_issu": [11, 90, 95, 98], "underperforming_group_scor": [11, 32, 90, 95, 98], "is_null_issu": [11, 90, 95, 98], "null_scor": [11, 28, 90, 95, 98], "is_data_valuation_issu": [11, 95], "data_valuation_scor": [11, 19, 95], "studio": [12, 83, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 102, 104, 105, 106], "data_issu": [12, 16, 17, 34], "issue_find": [12, 16], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 60, 71, 89, 90, 91, 98, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 91], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": 14, "strategi": [14, 49, 95, 97], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 63, 66, 69, 73, 75, 77, 89, 90, 97, 98], "recomput": [14, 87], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 62, 83], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 70, 89], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 75, 77, 98], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 95, 98, 99, 103, 107, 108], "creation": [17, 42, 95], "execut": [17, 38, 42, 89, 97, 103], "coordin": [17, 66, 68, 69, 103, 108], "At": [17, 69, 97], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 60], "vstack": [19, 57, 91, 96, 97, 99, 101, 102], "25": [19, 27, 38, 49, 55, 90, 91, 95, 96, 98, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 89, 90, 91, 97, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 87, 94, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 86, 88, 89, 91, 95, 96, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 68, 83, 86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 70, 71, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "perform_clust": [22, 32], "get_underperforming_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 61, 95, 97, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 65, 68, 69], "scalartyp": [24, 26], "covari": [24, 26, 73, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 71, 75, 77, 103, 107], "empir": [27, 48, 61], "cumul": 27, "ecdf": 27, "histogram": [27, 93, 95, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 60, 91, 95, 98, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 77, 81, 89, 104, 106], "prompt": 28, "address": [28, 87, 89, 90, 94, 97], "enabl": [28, 42, 54, 98], "scaling_factor": [29, 55], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 69, 87, 108], "50": [32, 42, 95, 97, 98, 99, 101, 103, 104, 106], "keepdim": [32, 97], "signifi": 32, "absenc": 32, "int64": [32, 88, 98, 101], "npt": 32, "int_": 32, "id": [32, 61, 89, 91, 95, 97, 101], "unique_cluster_id": 32, "exclud": [32, 34, 43, 78, 82, 89, 108], "worst": [32, 49, 101], "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35, 98], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 70, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 88, 90, 95, 97], "datset": 34, "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 89, 90], "continu": [35, 60, 86, 87, 91, 94, 97, 101, 103, 106, 108], "binari": [35, 49, 57, 63, 65, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 89], "typeerror": [35, 49], "12": [35, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 61, 62, 71, 89, 90, 91, 96, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 86, 87, 88, 90, 91, 93, 94, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 97, 98, 99], "rank_classes_by_label_qu": [37, 90], "merg": [37, 52, 56, 83, 96, 97, 98, 108], "find_overlapping_class": [37, 97, 99], "problemat": [37, 62, 78, 82, 88, 103, 108], "unnorm": [37, 62, 99], "abov": [37, 38, 41, 42, 54, 57, 61, 68, 69, 71, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 86, 88, 89, 90, 93, 95, 98, 99, 101], "df": [37, 57, 82, 88, 95, 97], "overall_label_qu": [37, 62], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 62, 71], "label_nois": [37, 62], "human": [37, 96, 107, 108], "clearli": [37, 71, 91, 103, 107], "num": [37, 62, 96, 99], "overlap": [37, 83, 95, 96, 97, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 71, 95, 98], "vehicl": [37, 96], "truck": [37, 95, 96, 104, 107], "intuit": [37, 62], "car": [37, 96, 103, 107], "frequent": [37, 61, 95, 97, 98, 106], "l": [37, 38, 42, 66, 68, 69], "class1": 37, "class2": 37, "dog": [37, 57, 62, 64, 78, 96, 97, 104, 105, 108], "cat": [37, 57, 62, 64, 96, 97, 104, 105], "co": [37, 38, 39], "noisy_label": [37, 89, 90, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 62, 69], "overall_label_health_scor": [37, 62, 99], "half": [37, 38, 40, 42, 62, 96, 108], "health_scor": [37, 62], "classes_by_label_qu": [37, 90], "cnn": [38, 40, 42, 91], "cifar": [38, 39, 95, 96, 104], "teach": [38, 39], "bhanml": 38, "blob": [38, 95], "master": [38, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 69, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 91, 101], "overridden": [38, 42], "although": [38, 42, 70, 86, 93, 98], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 62, 69, 77, 81, 97, 98, 101, 102, 103, 105, 108], "hook": [38, 42, 96], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 69], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 91], "init": [38, 42, 99], "no_grad": [38, 42, 91, 104], "init_weight": [38, 42], "linear": [38, 42, 87, 91, 94], "fill_": [38, 42], "net": [38, 42, 88, 91, 96], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 91], "tensor": [38, 39, 42, 88, 91, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 88], "buffer": [38, 40, 42], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 60], "cpu": [38, 40, 42, 44, 88, 91], "move": [38, 42, 49, 84, 96], "cuda": [38, 40, 42, 88, 91], "devic": [38, 42, 88, 91, 98], "gpu": [38, 42, 87, 88, 94], "live": [38, 42], "copi": [38, 42, 73, 86, 88, 89, 90, 93, 95, 97, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 91, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 83, 89, 95, 96, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 73, 74, 95, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 94], "resolv": [38, 42, 95, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 91, 95, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 91], "break": [38, 42, 91, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 91], "16": [38, 42, 49, 52, 60, 77, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 71, 95, 96, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 90, 91, 95, 97, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 88, 89, 90, 96, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 95, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 69, 89, 91, 95, 97, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 88, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 86, 93], "fire": [38, 42, 96], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 89, 90], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 91, 93, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 87, 88, 94], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 60, 84, 97], "design": [38, 42, 52], "ordereddict": [38, 42], "detach": [38, 42, 91], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 62, 68], "complex": [38, 42, 98], "integr": [38, 42, 54, 83, 97], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 87, 94, 96], "desir": [38, 42, 52, 56, 69], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 88], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 91], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 60, 91], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 91, 97], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 71, 95, 97], "250": [39, 89, 90, 99, 103], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 87, 91, 94, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 91, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 59, 95, 108], "wish": [40, 59, 98, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 97], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 76, 77, 78, 79, 80, 81, 82, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 75, 77, 91, 97, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 91], "loader": [40, 42, 91], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 84], "mini": [41, 75, 77, 97], "low_self_confid": [41, 44, 63], "self_confid": [41, 44, 45, 49, 63, 65, 71, 79, 81, 86, 87, 97, 99], "conveni": [41, 54, 86, 87, 88, 94, 98], "script": 41, "labels_fil": [41, 97], "pred_probs_fil": [41, 97], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 61, 107], "read": [41, 46, 90, 97, 99, 104, 108], "zarr": [41, 97], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 97], "hdf5": 41, "further": [41, 43, 62, 63, 65, 68, 69, 77, 78, 88, 95, 97, 98], "yourfil": 41, "npy": [41, 96, 97, 107], "mmap_mod": [41, 107], "tip": [41, 44, 60, 97], "save_arrai": 41, "your_arrai": 41, "disk": [41, 96, 97], "npz": [41, 108], "maxim": [41, 61, 75, 77, 98, 107], "multiprocess": [41, 44, 63, 75, 77, 91, 97], "linux": [41, 75, 77], "physic": [41, 44, 75, 77, 103], "psutil": [41, 44, 75, 77], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 69, 89, 97, 98, 103, 104], "store_result": 41, "becom": [41, 95, 104], "verifi": [41, 54, 97, 98, 101, 104], "long": [41, 61, 70, 98, 101], "enough": [41, 57, 95, 97], "chunk": [41, 105], "ram": [41, 96], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 97], "shortcut": 41, "encount": [41, 44, 75], "1000": [41, 88, 94, 97, 104], "aggreg": [41, 45, 49, 61, 65, 68, 71, 81, 97, 99, 101], "seen": [41, 97, 98, 104, 108], "far": [41, 61, 98], "label_quality_scor": [41, 65, 68, 71, 74, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 63, 65, 71, 79, 81], "low_normalized_margin": [41, 44, 63], "issue_indic": [41, 68, 91], "update_num_issu": 41, "arr": [41, 97], "chunksiz": 41, "convnet": 42, "bespok": [42, 60], "download": [42, 88, 95, 97, 104], "mnist": [42, 83, 88, 96], "handwritten": 42, "digit": [42, 88, 96], "last": [42, 49, 66, 69, 89, 90, 97, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 71, 73, 88, 95, 99, 102, 103, 104], "templat": 42, "flexibli": 42, "among": [42, 61, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 87, 98, 104], "span": [43, 98], "sentenc": [43, 56, 79, 81, 82, 87, 94], "token_classif": [43, 56, 79, 81, 82, 97], "encourag": [44, 63, 71, 74], "multilabel_classif": [44, 62, 63, 65, 71, 97, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 63, 71, 99], "num_to_remove_per_class": [44, 63], "bad": [44, 52, 63, 68, 71, 94, 97], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 63, 65, 71, 79, 81], "label_issues_idx": [44, 71, 98], "entropi": [44, 46, 48, 49, 70, 71], "prune_by_class": [44, 63, 99], "predicted_neq_given": [44, 63, 99], "prune_counts_matrix": 44, "smallest": [44, 71], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 83, 87, 97], "too": [44, 49, 52, 70, 91, 97, 98, 103], "thread": [44, 63], "window": [44, 96], "shorter": [44, 66], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 97], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 84], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 65], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 65], "softmin": [45, 49, 65, 68, 77, 81], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 95], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 60, 61, 83, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 88, 95], "behav": 46, "unnecessari": [46, 97], "slightli": [46, 86, 87], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": [47, 98], "propag": 47, "throughout": [47, 57, 73, 82, 88, 101, 107, 108], "increas": [47, 55, 68, 70, 71, 88, 89, 95, 97, 101, 102, 108], "dot": [47, 81, 97], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 61], "ensembl": [48, 49, 61, 71, 86, 93, 97, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 61], "format_multiannotator_label": [48, 61, 101], "formatted_label": [48, 57], "old": [48, 57, 84, 96], "check_consensus_label_class": 48, "consensus_label": [48, 61, 101], "consensus_method": [48, 61], "consensu": [48, 61, 83, 100, 108], "establish": [48, 60, 87, 106], "compute_soft_cross_entropi": 48, "soft": [48, 96], "find_best_temp_scal": 48, "coarse_search_rang": [48, 73, 97], "fine_search_s": [48, 73, 97], "temperatur": [48, 49, 68, 77, 81], "scale": [48, 55, 86, 95, 96, 97, 104, 107], "factor": [48, 49, 55, 75, 77], "minim": [48, 68, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 96], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 71], "get_confidence_weighted_entropy_for_each_label": [49, 71], "scorer": 49, "alpha": [49, 65, 68, 89, 90, 95, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 63, 93, 94, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 91, 93, 97, 103], "discount": 49, "s_ema": 49, "175": [49, 91, 98, 99, 103], "underflow": 49, "nan": [49, 61, 86, 93, 95, 98, 101, 106], "aggregated_scor": 49, "base_scor": [49, 98], "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 65], "n_sampl": [49, 95], "n_label": 49, "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": [49, 98], "get_label_quality_scores_per_class": [49, 64, 65], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 88], "wider": 49, "splitter": 49, "kfold": [49, 91], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 91, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 63, 69, 75, 78, 86, 93, 96, 97, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 70], "reli": [52, 70, 87, 88, 89, 90, 94, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 97], "manner": [52, 65, 86, 87, 95, 101, 106], "701": 52, "900": [52, 86, 93, 106], "436": [52, 98], "000": [52, 87, 91, 94, 95, 96, 108], "idea": [52, 71, 98, 103], "dens": [52, 60, 95], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 62, 102], "vari": [52, 68, 90], "exact_duplicate_set": 52, "main": [52, 61], "front": [52, 96], "consider": 52, "capabl": [52, 83, 98], "come": [52, 57, 89, 90, 97, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 61, 86, 93, 95, 98], "slower": 53, "decid": [53, 61, 87, 94, 96, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 70], "spatial": [53, 70], "decis": [53, 86, 89, 90, 98], "That": [53, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 66, 69, 70, 88, 89, 90, 91, 93, 94, 97, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "exp": [55, 70, 71, 89], "dt": 55, "right": [55, 66, 69, 87, 94, 102, 103, 104], "strength": [55, 69, 95], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 83, 96], "thumb": 55, "ood_features_scor": [55, 70, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 88, 89, 97, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 83, 97, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 89, 90, 91, 93, 95, 108], "nbitbas": [56, 65], "probs_merg": 56, "0125": [56, 81], "0375": 56, "075": 56, "025": 56, "color": [56, 78, 89, 90, 93, 95, 99, 102, 104, 106, 107], "red": [56, 69, 89, 90, 95, 96, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 71, 86, 93, 97, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 61, 84, 91, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 69, 94, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 89, 90, 95, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 70, 87, 88, 93, 94, 98, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 83, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 88, 91, 96, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 66, 69, 95, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 69, 78, 82, 87, 88, 93, 94, 95, 99, 108], "jupyt": [57, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 61, 88, 90, 96, 97, 98, 99, 101, 102, 103, 105, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 63], "keraswrappermodel": [59, 60, 83], "keraswrappersequenti": [59, 60], "tf": [60, 88], "legaci": 60, "newer": 60, "interim": 60, "advis": [60, 102], "stabil": [60, 70], "until": 60, "accommod": 60, "keraswrapp": 60, "huggingface_keras_imdb": 60, "unit": [60, 108], "model_kwarg": [60, 73], "compile_kwarg": 60, "sparsecategoricalcrossentropi": 60, "layer": [60, 87, 88, 94, 104], "my_keras_model": 60, "from_logit": 60, "declar": 60, "apply_softmax": 60, "analysi": 61, "analyz": [61, 83, 95, 99, 101, 102], "get_label_quality_multiannot": [61, 101], "vote": 61, "crowdsourc": [61, 83, 101], "dawid": [61, 101], "skene": [61, 101], "analog": [61, 96, 101], "chosen": [61, 71, 97, 101], "crowdlab": [61, 101], "unlabel": [61, 91, 101, 104, 107], "get_active_learning_scor": [61, 101], "activelab": [61, 101], "priorit": [61, 68, 103, 107, 108], "showcas": 61, "best_qual": 61, "quality_method": 61, "calibrate_prob": 61, "return_detailed_qu": 61, "return_annotator_stat": 61, "return_weight": 61, "label_quality_score_kwarg": 61, "did": [61, 62, 86, 87, 88, 93, 99, 101, 106], "majority_vot": 61, "broken": [61, 69, 96, 106], "highest": [61, 69, 89, 91, 98, 105], "0th": 61, "consensus_quality_scor": [61, 101], "annotator_agr": [61, 101], "reman": 61, "1st": 61, "2nd": [61, 75], "3rd": 61, "consensus_label_suffix": 61, "consensus_quality_score_suffix": 61, "suffix": 61, "emsembl": 61, "weigh": [61, 96], "agreement": [61, 101], "agre": 61, "prevent": [61, 97], "overconfid": [61, 105], "detailed_label_qu": [61, 101], "annotator_stat": [61, 101], "model_weight": 61, "annotator_weight": 61, "warn": 61, "labels_info": 61, "num_annot": [61, 101], "deriv": [61, 101], "quality_annotator_1": 61, "quality_annotator_2": 61, "quality_annotator_m": 61, "annotator_qu": [61, 101], "num_examples_label": [61, 101], "agreement_with_consensu": [61, 101], "worst_class": [61, 101], "trustworthi": [61, 101, 106], "get_label_quality_multiannotator_ensembl": 61, "weigtht": 61, "budget": 61, "retrain": [61, 87, 106], "active_learning_scor": 61, "active_learning_scores_unlabel": 61, "get_active_learning_scores_ensembl": 61, "henc": [61, 88, 89, 98, 101], "get_majority_vote_label": [61, 101], "event": 61, "lastli": [61, 93], "convert_long_to_wide_dataset": 61, "labels_multiannotator_long": 61, "wide": [61, 86, 87, 88], "labels_multiannotator_wid": 61, "common_multilabel_issu": [62, 64], "exclus": [62, 102], "rank_classes_by_multilabel_qu": [62, 64], "overall_multilabel_health_scor": [62, 64], "multilabel_health_summari": [62, 64], "classes_by_multilabel_qu": 62, "inner": [63, 77, 95], "find_multilabel_issues_per_class": [63, 64], "per_class_label_issu": 63, "label_issues_list": 63, "pred_probs_list": [63, 71, 91, 99], "anim": [64, 104], "rat": 64, "predat": 64, "pet": 64, "reptil": 64, "box": [66, 68, 69, 96, 103], "object_detect": [66, 68, 69, 103], "return_indices_ranked_by_scor": [66, 103], "overlapping_label_check": [66, 68], "suboptim": [66, 68], "locat": [66, 68, 95, 103, 107, 108], "bbox": [66, 69, 103], "image_nam": [66, 69], "y1": [66, 69, 103], "y2": [66, 69, 103], "later": [66, 69, 70, 87, 98, 108], "corner": [66, 69, 103], "xyxi": [66, 69, 103], "io": [66, 69, 88, 95, 96], "keras_cv": [66, 69], "bounding_box": [66, 69, 103], "detectron": [66, 69, 103], "detectron2": [66, 69, 103], "readthedoc": [66, 69], "en": [66, 69], "latest": [66, 69], "visual": [66, 67, 69, 86, 89, 90, 91, 106, 108], "draw_box": [66, 69], "mmdetect": [66, 69, 103], "swap": [66, 68, 78, 82], "penal": [66, 68], "concern": [66, 68, 83, 90], "issues_from_scor": [67, 68, 76, 77, 78, 80, 81, 82, 103, 107, 108], "compute_overlooked_box_scor": [67, 68], "compute_badloc_box_scor": [67, 68], "compute_swap_box_scor": [67, 68], "pool_box_scores_per_imag": [67, 68], "object_counts_per_imag": [67, 69, 103], "bounding_box_size_distribut": [67, 69, 103], "class_label_distribut": [67, 69, 103], "get_sorted_bbox_count_idx": [67, 69], "plot_class_size_distribut": [67, 69], "plot_class_distribut": [67, 69], "get_average_per_class_confusion_matrix": [67, 69], "calculate_per_class_metr": [67, 69], "aggregation_weight": 68, "imperfect": [68, 97, 98], "chose": [68, 101, 103], "imperfectli": [68, 103], "dirti": [68, 71, 74, 106], "subtyp": 68, "badloc": 68, "nonneg": 68, "high_probability_threshold": 68, "auxiliary_input": [68, 69], "iou": [68, 69], "heavili": 68, "auxiliarytypesdict": 68, "pred_label": [68, 87], "pred_label_prob": 68, "pred_bbox": 68, "lab_label": 68, "lab_bbox": 68, "similarity_matrix": 68, "min_possible_similar": 68, "scores_overlook": 68, "low_probability_threshold": 68, "scores_badloc": 68, "accident": [68, 87, 93, 94, 97], "scores_swap": 68, "box_scor": 68, "image_scor": [68, 77, 107], "discov": [69, 90, 95, 108], "abnorm": [69, 91, 103], "auxiliari": [69, 104, 107], "_get_valid_inputs_for_compute_scor": 69, "object_count": 69, "down": 69, "bbox_siz": 69, "class_distribut": 69, "plot": [69, 89, 90, 95, 99, 102, 104, 106, 107], "sorted_idx": [69, 104], "class_to_show": 69, "hidden": [69, 104], "max_class_to_show": 69, "plt": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "matplotlib": [69, 78, 89, 90, 91, 95, 99, 102, 103, 104, 106], "pyplot": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "prediction_threshold": 69, "overlai": [69, 103], "figsiz": [69, 89, 90, 91, 95, 99, 102, 104], "save_path": [69, 103], "blue": [69, 96, 99, 103], "overlaid": 69, "side": [69, 96, 103], "figur": [69, 95, 99, 102, 104, 106], "extens": [69, 99, 101], "png": [69, 103], "pdf": [69, 70], "svg": 69, "num_proc": [69, 91], "intersect": [69, 97], "tp": 69, "fp": 69, "ground": [69, 96, 99, 101, 106], "truth": [69, 99, 101, 106], "bias": [69, 95], "avg_metr": 69, "distionari": 69, "95": [69, 79, 81, 93, 96, 98, 99, 106, 108], "per_class_metr": 69, "Of": 70, "find_top_issu": [70, 71, 104], "behind": [70, 99], "dist_metr": 70, "subtract": [70, 71], "renorm": [70, 71, 97], "least_confid": 70, "sum_": 70, "log": [70, 71, 84], "softmax": [70, 77, 81, 91], "literatur": 70, "gen": 70, "liu": 70, "lochman": 70, "zach": 70, "openaccess": 70, "thecvf": 70, "cvpr2023": 70, "liu_gen_pushing_the_limits_of_softmax": 70, "based_out": 70, "distribution_detection_cvpr_2023_pap": 70, "fit_scor": [70, 104], "ood_predictions_scor": 70, "pretrain": [70, 87, 88, 94, 98, 104], "adjust_confident_threshold": 70, "probabilist": [70, 86, 88, 89, 90, 93, 94, 104, 105], "order_label_issu": [71, 84], "whichev": [71, 105], "argsort": [71, 87, 91, 94, 99, 103, 104, 106], "max_": 71, "get_label_quality_ensemble_scor": [71, 97, 99], "weight_ensemble_members_bi": 71, "custom_weight": 71, "log_loss_search_t_valu": 71, "0001": [71, 96], "scheme": 71, "log_loss_search": 71, "log_loss": [71, 94], "1e0": 71, "1e1": 71, "1e2": 71, "2e2": 71, "quality_scor": [71, 104], "forth": 71, "top_issue_indic": 71, "rank_bi": [71, 84], "weird": [71, 82], "minu": 71, "prob_label": 71, "max_prob_not_label": 71, "AND": [71, 94], "get_epistemic_uncertainti": [72, 73], "get_aleatoric_uncertainti": [72, 73], "corrupt": [73, 106], "linearregress": [73, 97, 106], "y_with_nois": 73, "n_boot": [73, 97], "include_aleatoric_uncertainti": [73, 97], "sole": [73, 86, 89, 98, 101, 104], "bootstrap": [73, 97, 106], "resampl": [73, 88, 97], "epistem": [73, 97, 104, 106], "aleator": [73, 97, 106], "model_final_kwarg": 73, "coars": 73, "thorough": [73, 97], "fine": [73, 87, 88, 94, 104], "grain": 73, "grid": [73, 98], "varianc": [73, 99], "epistemic_uncertainti": 73, "residu": [73, 74, 97], "deviat": [73, 103, 106], "aleatoric_uncertainti": 73, "outr": 74, "contin": 74, "raw": [74, 83, 84, 90, 91, 96, 97, 98, 101, 103, 104, 106], "aka": [74, 88, 99, 103, 106, 108], "00323821": 74, "33692597": 74, "00191686": 74, "semant": [75, 77, 78, 100], "pixel": [75, 77, 78, 91, 104, 107], "h": [75, 77, 78, 107], "height": [75, 77, 78, 107], "w": [75, 77, 78, 107], "width": [75, 77, 78, 107], "labels_one_hot": [75, 78, 107], "stream": [75, 104, 108], "downsampl": [75, 77, 107], "shrink": [75, 77], "divis": [75, 77, 89], "common_label_issu": [76, 78, 80, 82, 107, 108], "filter_by_class": [76, 78, 107], "segmant": [77, 78], "num_pixel_issu": [77, 107], "product": [77, 91, 95, 97, 98], "pixel_scor": [77, 107], "enter": 78, "legend": [78, 89, 90, 95, 102, 103, 106, 107], "colormap": 78, "background": [78, 95], "person": [78, 97, 103, 107, 108], "ambigu": [78, 82, 87, 88, 94, 96, 99, 108], "misunderstood": [78, 82], "issues_df": [78, 91], "class_index": 78, "issues_subset": [78, 82], "filter_by_token": [80, 82, 108], "token_score_method": 81, "sentence_score_method": 81, "sentence_score_kwarg": 81, "compris": [81, 82], "token_scor": [81, 108], "converg": 81, "toward": [81, 95], "_softmin_sentence_scor": 81, "sentence_scor": [81, 108], "token_info": 81, "02": [81, 89, 90, 95, 99, 103], "03": [81, 93, 95, 96, 98, 99, 103, 108], "04": [81, 93, 95, 103], "08": [81, 95, 99, 103, 106, 108], "commonli": [82, 84, 89, 90, 102, 108], "But": [82, 94, 98, 99, 106, 108], "restrict": [82, 97], "reliabl": [83, 86, 88, 95, 97, 98, 101, 107], "thousand": 83, "imagenet": [83, 96], "popular": [83, 101, 103], "centric": [83, 91, 100], "minut": [83, 86, 87, 88, 93, 94, 96, 101, 102, 103, 106, 107, 108], "conda": 83, "feature_embed": [83, 104], "your_dataset": [83, 88, 89, 90, 91, 93, 94, 97], "column_name_of_label": [83, 88, 89, 90, 91, 93, 94], "tool": [83, 96, 99, 101], "catch": [83, 98], "dive": [83, 94, 95, 98], "plagu": [83, 90], "untrain": 83, "\u30c4": 83, "label_issues_info": [83, 90], "sklearn_compatible_model": 83, "framework": [83, 102, 103], "complianc": 83, "tag": [83, 102, 108], "sequenc": 83, "recognit": [83, 88, 97, 108], "train_data": [83, 86, 87, 104, 106], "gotten": 83, "test_data": [83, 86, 87, 99, 102, 104, 106], "deal": [83, 90, 95, 98], "feel": [83, 88, 90, 97], "ask": [83, 97], "slack": [83, 97], "project": [83, 98, 106], "welcom": 83, "commun": [83, 97], "guidelin": [83, 103], "piec": 83, "smart": [83, 86, 87, 90, 91, 93, 94, 96, 97, 99, 102, 104, 106], "edit": [83, 97, 98], "unreli": [83, 86, 88, 93, 94, 95, 98], "link": [83, 88, 96, 103], "older": 84, "outlin": 84, "substitut": [84, 98], "v2": [84, 86, 93], "get_noise_indic": 84, "psx": 84, "sorted_index_method": 84, "order_label_error": 84, "label_errors_bool": 84, "latent_estim": 84, "num_label_error": 84, "learningwithnoisylabel": 84, "neatli": 84, "organ": [84, 86, 93, 95, 96, 108], "reorgan": 84, "baseline_method": 84, "incorpor": [84, 99], "research": [84, 99], "polyplex": 84, "terminologi": 84, "label_error": 84, "quickstart": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "sql": [86, 93], "databas": [86, 93], "excel": [86, 93], "parquet": [86, 93], "student": [86, 93, 98, 106, 108], "grade": [86, 93, 98, 106], "exam": [86, 93, 98, 106], "letter": [86, 93, 108], "hundr": [86, 93], "mistak": [86, 87, 91, 93, 94, 98], "extratreesclassifi": 86, "extratre": 86, "Then": [86, 87, 91, 97], "ranked_label_issu": [86, 87], "branch": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "standardscal": [86, 93, 98, 104], "labelencod": [86, 87, 98], "train_test_split": [86, 87, 89, 90, 104], "accuracy_scor": [86, 87, 88, 94, 98, 99], "grades_data": [86, 93], "read_csv": [86, 87, 93, 94, 95, 98, 106], "demo": [86, 90, 93, 102], "stud_id": [86, 93, 98], "exam_1": [86, 93, 98, 106], "exam_2": [86, 93, 98, 106], "exam_3": [86, 93, 98, 106], "letter_grad": [86, 93], "f48f73": [86, 93], "53": [86, 89, 90, 93, 95, 96, 98, 102, 103], "00": [86, 89, 90, 93, 95, 96, 98, 104, 108], "77": [86, 89, 90, 93, 98, 103], "0bd4e7": [86, 93], "81": [86, 93, 94, 98, 103, 106, 108], "great": [86, 93, 96, 98], "particip": [86, 93, 98], "cb9d7a": [86, 93], "61": [86, 93, 95, 99, 103, 106], "94": [86, 93, 96, 98, 99, 103, 106], "9acca4": [86, 93], "48": [86, 93, 95, 96, 99, 103, 108], "x_raw": [86, 93], "labels_raw": 86, "interg": [86, 87], "categorical_featur": [86, 106], "x_encod": [86, 93], "get_dummi": [86, 93, 106], "drop_first": [86, 93], "numeric_featur": [86, 93], "scaler": [86, 93, 104], "x_process": [86, 93], "fit_transform": [86, 93, 95, 98], "bring": [86, 87, 91, 93, 94, 101, 106], "byod": [86, 87, 91, 93, 94, 101, 106], "tress": 86, "held": [86, 88, 93, 94, 96, 103, 104, 105], "straightforward": [86, 88, 93], "benefit": [86, 88, 105, 107], "num_crossval_fold": [86, 88, 93, 98, 101], "tabl": [86, 93, 96, 101], "212": [86, 98, 99], "iloc": [86, 87, 88, 93, 94, 98, 106], "92": [86, 89, 98, 99, 103], "93": [86, 96, 98, 103, 106], "827": 86, "99": [86, 95, 96, 98, 99], "86": [86, 90, 91, 93, 98, 99, 103, 106], "74": [86, 95, 98, 103, 106], "637": [86, 93], "79": [86, 96, 98, 103], "65": [86, 89, 95, 98, 103], "cheat": [86, 98], "0pt": [86, 98], "120": [86, 89, 90, 98], "233": 86, "83": [86, 98, 99, 103, 106, 108], "76": [86, 98, 99, 102, 103, 106], "suspici": [86, 93], "carefulli": [86, 91, 93, 94, 98], "examin": [86, 89, 90, 93, 95, 98, 103], "labels_train": 86, "labels_test": 86, "test_siz": [86, 87, 89, 90], "acc_og": [86, 87], "783068783068783": 86, "robustli": [86, 87, 106], "14": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [86, 87], "8095238095238095": 86, "blindli": [86, 87, 88, 97, 98, 106], "trust": [86, 87, 88, 97, 98, 99, 101, 105, 106], "effort": [86, 87, 98, 106], "cumbersom": [86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "intent": [87, 94], "servic": [87, 94, 97], "onlin": [87, 94], "bank": [87, 94, 96], "banking77": [87, 94], "oo": [87, 94], "categori": [87, 91, 94, 95, 98], "shortlist": [87, 94, 106], "scope": [87, 94], "logist": [87, 89, 90, 94, 101, 104], "probabilit": [87, 88], "drop": [87, 93, 95, 97, 98, 101, 106], "sentence_transform": [87, 94], "sentencetransform": [87, 94], "payment": [87, 94], "cancel_transf": [87, 94], "transfer": [87, 94], "fund": [87, 94], "cancel": [87, 94], "transact": [87, 94], "my": [87, 94], "revert": [87, 94], "morn": [87, 94], "realis": [87, 94], "yesterdai": [87, 94], "rent": [87, 94], "tomorrow": [87, 94], "raw_text": [87, 94], "raw_label": 87, "raw_train_text": 87, "raw_test_text": 87, "raw_train_label": 87, "raw_test_label": 87, "card_payment_fee_charg": [87, 94], "getting_spare_card": [87, 94], "change_pin": [87, 94], "supported_cards_and_curr": [87, 94], "card_about_to_expir": [87, 94], "beneficiary_not_allow": [87, 94], "lost_or_stolen_phon": [87, 94], "apple_pay_or_google_pai": [87, 94], "visa_or_mastercard": [87, 94], "card": [87, 94, 96], "utter": [87, 94], "encond": 87, "test_label": [87, 98, 99, 102, 104], "suit": [87, 94, 95, 96, 97], "electra": [87, 94], "discrimin": [87, 94], "googl": [87, 94], "train_text": 87, "test_text": 87, "home": [87, 94, 96], "runner": [87, 94], "google_electra": [87, 94], "pool": [87, 94, 97, 104], "leverag": [87, 88, 94, 97, 99, 101], "computation": [87, 88, 94], "intens": [87, 88, 94], "400": [87, 94, 98], "858371": 87, "547274": 87, "826228": 87, "966008": 87, "792449": 87, "identified_issu": [87, 106], "lowest_quality_label": [87, 88, 94, 99, 106], "to_numpi": [87, 94, 95, 98, 106], "44": [87, 95, 96, 102, 103], "646": 87, "390": 87, "628": 87, "121": [87, 99], "702": 87, "863": 87, "135": 87, "337": [87, 98, 103], "735": 87, "print_as_df": 87, "inverse_transform": 87, "charg": [87, 94], "cash": [87, 94], "holidai": [87, 94], "sent": [87, 94, 95, 108], "mine": [87, 94], "expir": [87, 94], "fight": 87, "hors": [87, 96, 104], "duck": [87, 96], "me": [87, 94, 95], "whoever": [87, 94], "consum": [87, 106], "18": [87, 88, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "baseline_model": [87, 106], "87": [87, 90, 91, 98, 103, 106], "acceler": [87, 106], "19": [87, 88, 91, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "89": [87, 89, 93, 98, 103, 106], "spoken": 88, "500": [88, 95, 98, 104, 108], "english": [88, 96], "pronunci": 88, "wav": 88, "huggingfac": [88, 89, 90, 91, 97], "voxceleb": 88, "speech": [88, 108], "your_pred_prob": [88, 89, 90, 93, 94], "tensorflow_io": 88, "huggingface_hub": 88, "reproduc": [88, 93, 95, 98, 99, 101], "command": 88, "wget": [88, 95, 103, 107, 108], "navig": 88, "browser": 88, "jakobovski": 88, "archiv": [88, 108], "v1": 88, "tar": [88, 104], "gz": [88, 104], "mkdir": [88, 108], "spoken_digit": 88, "xf": 88, "6_nicolas_32": 88, "data_path": 88, "listdir": 88, "nondeterminist": 88, "file_nam": 88, "endswith": 88, "file_path": 88, "join": [88, 91, 95, 97, 98], "7_george_26": 88, "0_nicolas_24": 88, "0_nicolas_6": 88, "listen": 88, "display_exampl": 88, "expand": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "pulldown": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "colab": [88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 88, "pathlib": 88, "ipython": [88, 95], "load_wav_16k_mono": 88, "filenam": 88, "khz": 88, "file_cont": 88, "read_fil": 88, "sample_r": 88, "decode_wav": 88, "desired_channel": 88, "squeez": 88, "rate_in": 88, "rate_out": 88, "16000": 88, "wav_file_nam": 88, "audio_r": 88, "wav_file_exampl": 88, "plai": [88, 96, 97], "button": 88, "wav_file_name_exampl": 88, "7_jackson_43": 88, "hear": 88, "extractor": 88, "encoderclassifi": 88, "spkrec": 88, "xvect": 88, "feature_extractor": 88, "from_hparam": 88, "run_opt": 88, "uncom": [88, 95], "ffmpeg": 88, "backend": 88, "wav_audio_file_path": 88, "torchaudio": 88, "extract_audio_embed": 88, "emb": [88, 91], "signal": 88, "encode_batch": 88, "embeddings_list": [88, 91], "embeddings_arrai": 88, "512": [88, 91], "196311": 88, "319459": 88, "478975": 88, "2890875": 88, "8170238": 88, "89265": 88, "898056": 88, "256195": 88, "559641": 88, "559721": 88, "62067": 88, "285245": 88, "21": [88, 89, 95, 96, 98, 99, 103, 106, 108], "709627": 88, "5033693": 88, "913803": 88, "819831": 88, "1831515": 88, "208763": 88, "084257": 88, "3210397": 88, "005453": 88, "216152": 88, "478235": 88, "6821785": 88, "053807": 88, "242471": 88, "091424": 88, "78334856": 88, "03954": 88, "23": [88, 91, 95, 96, 98, 99, 103, 106], "569176": 88, "761097": 88, "1258295": 88, "753237": 88, "3508866": 88, "598274": 88, "23712": 88, "2500": 88, "tol": 88, "decreas": [88, 97], "cv_accuraci": 88, "9708": 88, "issue_type_descript": [88, 89, 90, 91, 93, 94, 98, 99], "lt": [88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 104], "gt": [88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 108], "9976": 88, "986": 88, "002161": 88, "176": [88, 96, 99, 102], "002483": 88, "2318": 88, "004411": 88, "1005": 88, "004857": 88, "1871": 88, "007494": 88, "040587": 88, "999207": 88, "999377": 88, "975220": 88, "999367": 88, "identified_label_issu": [88, 94], "516": [88, 98], "1946": 88, "469": 88, "2132": 88, "worth": [88, 99], "6_yweweler_25": 88, "7_nicolas_43": 88, "6_theo_27": 88, "6_yweweler_36": 88, "6_yweweler_14": 88, "6_yweweler_35": 88, "6_nicolas_8": 88, "sound": 88, "quit": [88, 104], "underneath": 89, "hood": [89, 95, 97], "alert": 89, "introduct": 89, "mayb": [89, 90, 94], "your_feature_matrix": [89, 90], "toi": [89, 90, 91, 95, 96, 99, 101, 105], "inf": [89, 90], "mid": [89, 90], "bins_map": [89, 90], "create_data": [89, 90], "y_bin": [89, 90], "y_i": [89, 90], "y_bin_idx": [89, 90], "y_train": [89, 90, 99, 106], "y_test": [89, 90, 99, 106], "y_train_idx": [89, 90], "y_test_idx": [89, 90], "slide": [89, 90, 96], "frame": [89, 90], "x_out": [89, 90], "tini": [89, 90], "concaten": [89, 90, 105], "y_out": [89, 90], "y_out_bin": [89, 90], "y_out_bin_idx": [89, 90], "exact_duplicate_idx": [89, 90], "x_duplic": [89, 90], "y_duplic": [89, 90], "y_duplicate_idx": [89, 90], "noisy_labels_idx": [89, 90, 102], "scatter": [89, 90, 95, 99, 102, 106], "black": [89, 90, 96, 106], "cyan": [89, 90], "plot_data": [89, 90, 95, 99, 102, 106], "fig": [89, 90, 91, 96, 104, 106], "ax": [89, 90, 91, 95, 104, 106], "subplot": [89, 90, 91, 104], "set_titl": [89, 90, 91, 104], "set_xlabel": [89, 90], "x_1": [89, 90], "fontsiz": [89, 90, 91, 95, 99, 102], "set_ylabel": [89, 90], "x_2": [89, 90], "set_xlim": [89, 90], "set_ylim": [89, 90], "linestyl": [89, 90, 95], "circl": [89, 90, 99, 102], "misclassifi": [89, 90], "zip": [89, 90, 91, 95, 103, 108], "label_err": [89, 90], "180": [89, 90, 95, 103], "marker": [89, 90], "facecolor": [89, 90, 95], "edgecolor": [89, 90, 95], "linewidth": [89, 90, 95, 104], "dup": [89, 90], "first_legend": [89, 90], "align": [89, 90], "title_fontproperti": [89, 90], "semibold": [89, 90], "second_legend": [89, 90], "45": [89, 90, 95, 96, 98, 99, 103], "gca": [89, 90], "add_artist": [89, 90], "tight_layout": [89, 90, 95], "ideal": [89, 90], "remaind": 89, "modal": [89, 90, 97, 98, 101], "132": [89, 90, 98, 99, 103], "9318": 89, "006940": 89, "007830": 89, "40": [89, 90, 94, 95, 96, 98], "014828": 89, "107": [89, 90, 99, 102], "021241": 89, "026407": 89, "notic": [89, 99, 101, 103], "3558": [89, 90], "126": [89, 90, 99, 103], "006636": [89, 90], "130": [89, 90], "012571": [89, 90], "129": [89, 90], "127": [89, 90, 98], "014909": [89, 90], "128": [89, 90, 91], "017443": [89, 90], "6160": [89, 90], "131": [89, 90, 98, 107], "000000e": [89, 90, 98], "000002": [89, 90], "463180e": [89, 90], "07": [89, 90, 91, 93, 95, 99, 103, 106], "51": [89, 90, 93, 95, 96, 99, 103], "161148": [89, 90], "859087e": [89, 90], "30": [89, 90, 91, 95, 96, 97, 98, 102, 107, 108], "3453": 89, "029542": 89, "031182": 89, "057961": 89, "058244": 89, "54": [89, 95, 96, 99, 103], "039122": 89, "044598": 89, "105": [89, 103], "105196": 89, "133654": 89, "43": [89, 95, 96, 98, 99, 103], "168033": 89, "125": 89, "101107": 89, "183382": 89, "109": [89, 95, 96, 98, 103], "209259": 89, "211042": 89, "221316": 89, "average_ood_scor": 89, "34530442089193386": 89, "52": [89, 95, 96, 98, 103, 108], "169820": 89, "087324e": 89, "259024": 89, "583757e": 89, "91": [89, 98, 103], "346458": 89, "341292e": 89, "specfi": 89, "new_lab": 89, "scoring_funct": 89, "div": 89, "rem": 89, "inv_scal": 89, "49": [89, 95, 96, 99, 103], "superstitionissuemanag": 89, "unlucki": 89, "superstit": 89, "to_seri": 89, "issues_mask": 89, "summary_scor": 89, "9242": 89, "is_superstition_issu": 89, "superstition_scor": 89, "26": [89, 91, 95, 96, 98, 99, 101, 103], "047581": 89, "090635": 89, "129591": 89, "164840": 89, "lurk": [90, 91, 98, 99], "thoroughli": 90, "8561": 90, "001908": 90, "003564": 90, "007331": 90, "008963": 90, "009664": 90, "0227": 90, "022727": 90, "conceptu": 90, "856061": 90, "355772": 90, "616034": 90, "821750": 90, "926818": 90, "betweeen": 90, "859131": 90, "417707": 90, "664083": 90, "970324": 90, "816953": 90, "375317": 90, "641516": 90, "890575": 90, "910232": 90, "531021": 90, "460593": 90, "601188": 90, "826147": 90, "752808": 90, "321635": 90, "562539": 90, "948362": 90, "890169": 90, "090243": 90, "472909": 90, "746763": 90, "878267": 90, "examples_w_issu": [90, 97], "013445": 90, "025184": 90, "026376": 90, "inde": [90, 94], "miscellan": [90, 92, 108], "428571": 90, "111111": 90, "571429": 90, "407407": 90, "592593": 90, "337838": 90, "092593": 90, "662162": 90, "333333": [90, 96], "952381": 90, "666667": [90, 95], "portion": 90, "huge": [90, 99], "worri": [90, 94, 98], "critic": [90, 105], "60": [91, 95, 99, 106], "torchvis": [91, 95, 104], "tensordataset": 91, "stratifiedkfold": [91, 102], "tqdm": 91, "autonotebook": 91, "math": [91, 98], "fashion_mnist": 91, "num_row": 91, "60000": 91, "transformed_dataset": 91, "with_format": 91, "255": [91, 96], "cpu_count": 91, "torch_dataset": 91, "quick": [91, 102, 104], "super": 91, "relu": 91, "batchnorm2d": 91, "maxpool2d": 91, "lazylinear": 91, "flatten": 91, "get_test_accuraci": 91, "testload": [91, 104], "energi": 91, "trainload": [91, 104], "n_epoch": 91, "patienc": 91, "criterion": 91, "crossentropyloss": 91, "adamw": 91, "best_test_accuraci": 91, "start_epoch": 91, "running_loss": 91, "best_epoch": 91, "end_epoch": 91, "3f": [91, 106], "acc": [91, 99], "time_taken": 91, "compute_embed": 91, "compute_pred_prob": 91, "train_batch_s": 91, "num_work": 91, "worker": [91, 108], "train_id_list": 91, "test_id_list": 91, "train_id": 91, "test_id": 91, "embeddings_model": 91, "ntrain": 91, "trainset": 91, "testset": 91, "pin_memori": 91, "fold_embed": 91, "fold_pred_prob": 91, "finish": 91, "482": 91, "720": 91, "798": 91, "329": [91, 93, 98, 103], "88": [91, 96, 98, 99, 102, 103, 106], "195": [91, 95, 98], "853": 91, "493": 91, "060": 91, "923": 91, "330": [91, 98, 103], "505": 91, "625": 91, "476": [91, 98], "340": [91, 98], "897": 91, "328": [91, 103], "310": 91, "677": 91, "reorder": 91, "hstack": [91, 97, 99, 101], "vision": 91, "max_preval": [91, 95], "7714": 91, "3772": 91, "3585": 91, "166": 91, "3651": 91, "27080": 91, "873833e": 91, "40378": 91, "915575e": 91, "25316": 91, "390277e": 91, "06": [91, 98, 99, 103, 108], "2090": 91, "751164e": 91, "14999": 91, "881301e": 91, "9569": 91, "11262": 91, "000003": 91, "coat": [91, 96], "shirt": [91, 96], "19228": 91, "000010": 91, "dress": 91, "32657": 91, "000013": 91, "bag": [91, 96, 104, 105], "21282": 91, "000016": [91, 98], "53564": 91, "000018": [91, 98], "pullov": 91, "6321": 91, "30968": 91, "001267": 91, "30659": 91, "000022": [91, 108], "47824": 91, "001454": 91, "3370": 91, "000026": 91, "54565": 91, "001854": 91, "9762": 91, "258": 91, "47139": 91, "000033": 91, "166980": 91, "986195": 91, "997205": 91, "sandal": [91, 96], "948781": 91, "999358": 91, "54078": 91, "17371": 91, "000025": 91, "plot_label_issue_exampl": 91, "ncol": [91, 104], "nrow": [91, 104], "ceil": [91, 98], "axes_list": 91, "label_issue_indic": 91, "gl": 91, "sl": 91, "fontdict": 91, "imshow": [91, 104], "cmap": [91, 95, 106], "grai": 91, "subplots_adjust": 91, "hspace": 91, "outsiz": 91, "outlier_issu": [91, 94], "outlier_issues_df": 91, "depict": [91, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 91, "n_comparison_imag": 91, "sample_from_class": 91, "number_of_sampl": 91, "non_outlier_indic": 91, "isnul": [91, 95], "non_outlier_indices_excluding_curr": 91, "sampled_indic": 91, "label_scores_of_sampl": 91, "top_score_indic": 91, "top_label_indic": 91, "sampled_imag": 91, "get_image_given_label_and_sampl": 91, "image_from_dataset": 91, "corresponding_label": 91, "comparison_imag": 91, "images_to_plot": 91, "idlist": 91, "iterrow": 91, "near_duplicate_issu": [91, 97], "closest": 91, "counterpart": 91, "near_duplicate_issues_df": 91, "plot_near_duplicate_issue_exampl": 91, "seen_id_pair": 91, "get_image_and_given_label_and_predicted_label": 91, "duplicate_imag": 91, "nd_set": 91, "challeng": 91, "dark_issu": 91, "reveal": [91, 103, 107], "dark_issues_df": 91, "is_dark_issu": [91, 95], "34848": 91, "203922": 91, "50270": 91, "204588": 91, "3936": 91, "213098": 91, "733": 91, "217686": 91, "8094": 91, "230118": 91, "plot_image_issue_exampl": 91, "difficult": 91, "disproportion": [91, 95], "lowinfo_issu": 91, "lowinfo_issues_df": 91, "is_low_information_issu": 91, "53050": 91, "067975": 91, "40875": 91, "089929": 91, "9594": 91, "092601": 91, "34825": 91, "107744": 91, "37530": 91, "108516": 91, "lot": 91, "workflow": [92, 97, 98, 100, 106], "histgradientboostingclassifi": 93, "cat_featur": 93, "boost": [93, 97, 101, 106], "xgboost": [93, 97, 98, 106], "think": [93, 94, 97, 102, 107, 108], "nonzero": 93, "358": 93, "941": 93, "294": [93, 103], "46": [93, 95, 96, 98, 99, 103], "7109": 93, "000005": [93, 94], "886": 93, "000059": 93, "709": [93, 98], "000104": 93, "000169": 93, "689": 93, "000181": 93, "3590": 93, "051882e": 93, "683133e": 93, "536582e": 93, "406589e": 93, "324246e": 93, "6165": 93, "582": [93, 98], "185": [93, 95, 96, 103], "187": [93, 96, 98], "898": 93, "0000": [93, 94, 96, 98, 99], "865": 93, "515002": 93, "837": 93, "556480": 93, "622": 93, "593068": 93, "593207": 93, "920": 93, "618041": 93, "4386345844794593e": 93, "issue_result": 93, "000842": 93, "555944": 93, "004374": 93, "sorted_issu": 93, "73": [93, 95, 96, 98, 102, 103, 106], "deserv": 93, "outlier_result": 93, "sorted_outli": 93, "56": [93, 95, 96, 106], "96": [93, 95, 96, 98, 99, 102, 103, 106], "style": [93, 95, 107], "font": 93, "18px": 93, "ff00ff": 93, "bac": 93, "duplicate_result": 93, "lowest_scoring_dupl": 93, "idxmin": [93, 97], "indices_to_displai": 93, "tolist": [93, 97, 98, 102], "perhap": [93, 99, 101], "second_lowest_scoring_dupl": 93, "next_indices_to_displai": 93, "wari": [93, 94, 97], "your_featur": 94, "text_embed": 94, "data_dict": [94, 99, 101], "85": [94, 98, 103], "38": [94, 95, 96, 103], "9710": 94, "981": 94, "974": 94, "000146": 94, "982": [94, 96], "000224": 94, "971": 94, "000507": 94, "980": [94, 96], "000960": 94, "3584": 94, "994": 94, "009642": 94, "999": 94, "013067": 94, "013841": 94, "433": 94, "014722": 94, "989": 94, "018224": 94, "6070": 94, "160": [94, 106], "095724": 94, "148": 94, "006237": 94, "546": [94, 98], "099341": 94, "514": 94, "006485": 94, "481": 94, "123418": 94, "008165": 94, "313": [94, 98, 103], "564102": 94, "572258": 94, "574915": 94, "31": [94, 95, 96, 98, 99, 101, 103], "575507": 94, "575874": 94, "792090": 94, "257611": 94, "698710": 94, "182121": 94, "771619": 94, "data_with_suggested_label": 94, "suggested_label": 94, "withdraw": 94, "monei": 94, "lowest_quality_outli": 94, "OR": 94, "636c65616e6c616220697320617765736f6d6521": 94, "phone": [94, 96], "gone": 94, "samp": 94, "br": 94, "press": [94, 108], "nonsens": 94, "sens": 94, "detriment": 94, "duplicate_issu": 94, "fee": 94, "go": [94, 95, 96, 99], "strongli": [94, 95], "p_valu": 94, "benign": 94, "curat": [94, 100], "bigger": 95, "make_classif": 95, "5000": [95, 104], "n_featur": 95, "n_inform": 95, "n_redund": 95, "n_repeat": 95, "n_class": 95, "n_clusters_per_class": 95, "flip_i": 95, "class_sep": 95, "faiss": 95, "x_faiss": 95, "float32": [95, 103], "normalize_l2": 95, "index_factori": 95, "hnsw32": 95, "flat": [95, 96], "metric_inner_product": 95, "a_min": 95, "a_max": 95, "create_knn_graph": 95, "assert": 95, "indices_1d": 95, "ravel": 95, "distances_1d": 95, "sort_graph_by_row_valu": 95, "warn_when_not_sort": 95, "50000": 95, "523": [95, 98], "991400": 95, "356958": 95, "362": 95, "619565": 95, "108": [95, 103], "500000": 95, "651838": 95, "999827": 95, "031217": 95, "933716": 95, "627345": 95, "998540": 95, "530909": 95, "296974": 95, "646765": 95, "942721": 95, "332824": 95, "803246": 95, "625202": 95, "999816": 95, "474031": 95, "706253": 95, "655108": 95, "997703": 95, "131466": 95, "912389": 95, "639200": 95, "4995": 95, "998646": 95, "504755": 95, "746777": 95, "680033": 95, "4996": 95, "894230": 95, "340986": 95, "816472": 95, "640711": 95, "4997": 95, "999100": 95, "428545": 95, "592421": 95, "658949": 95, "4998": 95, "986792": 95, "273710": 95, "618033": 95, "4999": 95, "986776": 95, "273524": 95, "618084": 95, "instabl": 95, "proxim": 95, "analys": 95, "comfort": 95, "explor": [95, 103, 104], "third": 95, "parti": [95, 108], "newsgroup": 95, "alt": [95, 96], "atheism": [95, 96], "sci": [95, 96], "fetch_20newsgroup": 95, "newsgroups_train": 95, "header": 95, "footer": 95, "quot": 95, "df_text": 95, "target_nam": 95, "enlighten": 95, "omnipot": 95, "19apr199320262420": 95, "kelvin": 95, "jpl": 95, "nasa": 95, "gov": 95, "baa": 95, "nhenri": 95, "he": 95, "nno": 95, "ge": 95, "nlucki": 95, "babi": [95, 96], "tfidfvector": 95, "feature_extract": 95, "x_vector": 95, "data_valuation_issu": 95, "147": [95, 99, 103], "500047": 95, "500093": 95, "499953": 95, "1068": 95, "1069": 95, "1070": [95, 108], "1071": 95, "1072": 95, "1073": 95, "concentr": 95, "seaborn": 95, "sn": 95, "distinguish": [95, 98], "strip": 95, "stripplot": 95, "hue": [95, 106], "dodg": 95, "jitter": 95, "axvlin": [95, 104], "xlabel": 95, "ourselv": 95, "make_blob": 95, "center": [95, 96], "cluster_std": 95, "n_noisy_label": 95, "meaning": [95, 97, 98, 104], "silhouette_scor": 95, "gridsearchcv": 95, "silhouett": 95, "cluster_label": 95, "fit_predict": 95, "param_grid": [95, 98], "grid_search": 95, "best_kmean": 95, "best_estimator_": 95, "underperforming_group_issu": 95, "328308": 95, "tab10": 95, "domain": 95, "knowledg": [95, 99], "dataset_tsv": 95, "ag": [95, 106], "gender": 95, "educ": 95, "experi": 95, "highsalari": 95, "indiana": 95, "phd": 95, "male": 95, "bachelor": 95, "femal": 95, "kansa": 95, "school": [95, 96], "ohio": 95, "57": [95, 96, 98, 99], "california": 95, "59": [95, 96, 103], "34": [95, 96, 99, 101, 103, 108], "63": [95, 98, 99, 103, 106, 108], "47": [95, 96, 103], "stringio": 95, "sep": [95, 108], "easier": [95, 99], "simplic": [95, 102], "ordinalencod": 95, "columns_to_encod": 95, "encoded_df": 95, "salari": 95, "573681": 95, "underpin": 95, "caught": 95, "whenev": 95, "generate_data_depend": 95, "num_sampl": 95, "a1": 95, "a2": 95, "a3": 95, "375": 95, "975": 95, "non_iid_issu": 95, "796474": 95, "842432": 95, "922562": 95, "820759": 95, "873136": 95, "887373": 95, "825101": 95, "855875": 95, "751795": 95, "835796": 95, "ylabel": [95, 104], "coolwarm": 95, "colorbar": [95, 106], "strong": 95, "evid": [95, 98], "inter": 95, "mitig": 95, "risk": [95, 98], "deeper": 95, "tsv": 95, "tab": 95, "pars": 95, "annual_spend": 95, "number_of_transact": 95, "last_purchase_d": 95, "rural": 95, "4099": 95, "2024": [95, 108], "6421": 95, "nat": 95, "suburban": 95, "5436": 95, "4046": 95, "66": [95, 96, 98], "3467": 95, "67": [95, 96, 98, 103, 106], "4757": 95, "4199": 95, "4991": 95, "4655": 95, "82": [95, 96, 98, 99, 103, 106], "5584": 95, "urban": 95, "3102": 95, "6637": 95, "9167": 95, "6790": 95, "5327": 95, "parse_d": 95, "lose": 95, "intact": 95, "encode_categorical_column": 95, "placehold": 95, "dropna": [95, 101], "category_to_numb": 95, "_encod": 95, "gender_encod": 95, "location_encod": 95, "focus": [95, 98, 99, 101, 102, 106], "null_issu": 95, "833333": 95, "sorted_indic": [95, 103], "sorted_df": 95, "nice": 95, "styler": 95, "combined_df": 95, "concat": [95, 98, 106], "highlight_null_valu": 95, "val": [95, 99], "yellow": [95, 96], "highlight_datalab_column": 95, "lightblu": 95, "highlight_is_null_issu": 95, "orang": [95, 96], "styled_df": 95, "nbsp": [95, 97, 98, 99], "160000": 95, "820000": 95, "460000": 95, "470000": 95, "960000": 95, "620000": 95, "550000": 95, "660000": 95, "670000": [95, 96], "370000": 95, "530000": 95, "710000": 95, "020000": 95, "320000": 95, "990000": 95, "rarer": 95, "fairer": 95, "randomli": [95, 98, 99], "class_imbalance_issu": 95, "countplot": 95, "xtick": 95, "rotat": 95, "ytick": 95, "filtered_df": 95, "xy": 95, "va": 95, "textual": 95, "get_ytick": 95, "nbar": 95, "nimbal": 95, "get_legend_handles_label": 95, "title_fonts": 95, "aspect": 95, "anomali": [95, 103], "enhanc": [95, 99, 101, 103], "artifici": 95, "directori": [95, 108], "subdirectori": 95, "nc": [95, 103, 107, 108], "unzip": [95, 103, 108], "199": [95, 98, 103], "111": [95, 101, 106], "153": [95, 98, 103], "connect": [95, 108], "443": [95, 108], "await": [95, 108], "ok": [95, 105, 108], "986707": 95, "964k": 95, "963": 95, "58k": 95, "kb": [95, 108], "mb": [95, 108], "imagefold": 95, "load_image_dataset": 95, "data_dir": 95, "root": [95, 104], "image_dataset": 95, "img": [95, 104, 106], "from_dict": [95, 97], "darkened_imag": 95, "job": 95, "label_uncorrelatedness_scor": 95, "image_issu": 95, "nimag": 95, "015": 95, "237196": 95, "197229": 95, "254188": 95, "229170": 95, "208907": 95, "793840": 95, "196": [95, 98, 99, 103], "197": [95, 99, 103], "971560": 95, "198": [95, 99, 103], "862236": 95, "973533": 95, "stronger": 95, "frog": [95, 96, 104], "darken": 95, "concept": 95, "notabl": 95, "preval": 95, "warrant": 95, "programmat": 95, "plot_scores_label": 95, "issues_copi": 95, "boxplot": 95, "refin": 96, "instruct": [96, 97, 98], "studi": [96, 103], "mnist_test_set": 96, "imagenet_val_set": 96, "tench": 96, "goldfish": 96, "white": [96, 108], "shark": 96, "tiger": 96, "hammerhead": 96, "electr": 96, "rai": 96, "stingrai": 96, "cock": 96, "hen": 96, "ostrich": 96, "brambl": 96, "goldfinch": 96, "hous": 96, "finch": 96, "junco": 96, "indigo": 96, "bunt": 96, "american": [96, 108], "robin": 96, "bulbul": 96, "jai": 96, "magpi": 96, "chickade": 96, "dipper": 96, "kite": 96, "bald": 96, "eagl": 96, "vultur": 96, "grei": 96, "owl": 96, "salamand": 96, "smooth": 96, "newt": 96, "spot": [96, 97, 103], "axolotl": 96, "bullfrog": 96, "tree": 96, "tail": 96, "loggerhead": 96, "sea": 96, "turtl": 96, "leatherback": 96, "mud": 96, "terrapin": 96, "band": 96, "gecko": 96, "green": [96, 108], "iguana": 96, "carolina": 96, "anol": 96, "desert": 96, "grassland": 96, "whiptail": 96, "lizard": 96, "agama": 96, "frill": 96, "neck": 96, "allig": 96, "gila": 96, "monster": 96, "european": 96, "chameleon": 96, "komodo": 96, "dragon": 96, "nile": 96, "crocodil": 96, "triceratop": 96, "worm": 96, "snake": 96, "ring": 96, "eastern": 96, "hog": 96, "nose": 96, "kingsnak": 96, "garter": 96, "water": 96, "vine": 96, "night": 96, "boa": 96, "constrictor": 96, "african": 96, "rock": 96, "indian": 96, "cobra": 96, "mamba": 96, "saharan": 96, "horn": 96, "viper": 96, "diamondback": 96, "rattlesnak": 96, "sidewind": 96, "trilobit": 96, "harvestman": 96, "scorpion": 96, "garden": 96, "spider": 96, "barn": 96, "southern": 96, "widow": 96, "tarantula": 96, "wolf": 96, "tick": 96, "centiped": 96, "grous": 96, "ptarmigan": 96, "ruf": 96, "prairi": 96, "peacock": 96, "quail": 96, "partridg": 96, "parrot": 96, "macaw": 96, "sulphur": 96, "crest": 96, "cockatoo": 96, "lorikeet": 96, "coucal": 96, "bee": 96, "eater": 96, "hornbil": 96, "hummingbird": 96, "jacamar": 96, "toucan": 96, "breast": 96, "mergans": 96, "goos": 96, "swan": 96, "tusker": 96, "echidna": 96, "platypu": 96, "wallabi": 96, "koala": 96, "wombat": 96, "jellyfish": 96, "anemon": 96, "brain": 96, "coral": 96, "flatworm": 96, "nematod": 96, "conch": 96, "snail": 96, "slug": 96, "chiton": 96, "chamber": 96, "nautilu": 96, "dung": 96, "crab": 96, "fiddler": 96, "king": 96, "lobster": 96, "spini": 96, "crayfish": 96, "hermit": 96, "isopod": 96, "stork": 96, "spoonbil": 96, "flamingo": 96, "heron": 96, "egret": 96, "bittern": 96, "crane": 96, "bird": [96, 104], "limpkin": 96, "gallinul": 96, "coot": 96, "bustard": 96, "ruddi": 96, "turnston": 96, "dunlin": 96, "redshank": 96, "dowitch": 96, "oystercatch": 96, "pelican": 96, "penguin": 96, "albatross": 96, "whale": 96, "killer": 96, "dugong": 96, "lion": 96, "chihuahua": 96, "japanes": 96, "chin": 96, "maltes": 96, "pekinges": 96, "shih": 96, "tzu": 96, "charl": 96, "spaniel": 96, "papillon": 96, "terrier": 96, "rhodesian": 96, "ridgeback": 96, "afghan": [96, 108], "hound": 96, "basset": 96, "beagl": 96, "bloodhound": 96, "bluetick": 96, "coonhound": 96, "tan": 96, "walker": 96, "foxhound": 96, "redbon": 96, "borzoi": 96, "irish": 96, "wolfhound": 96, "italian": 96, "greyhound": 96, "whippet": 96, "ibizan": 96, "norwegian": 96, "elkhound": 96, "otterhound": 96, "saluki": 96, "scottish": 96, "deerhound": 96, "weimaran": 96, "staffordshir": 96, "bull": 96, "bedlington": 96, "border": 96, "kerri": 96, "norfolk": 96, "norwich": 96, "yorkshir": 96, "wire": 96, "fox": 96, "lakeland": 96, "sealyham": 96, "airedal": 96, "cairn": 96, "australian": 96, "dandi": 96, "dinmont": 96, "boston": 96, "miniatur": 96, "schnauzer": 96, "giant": 96, "tibetan": 96, "silki": 96, "wheaten": 96, "west": 96, "highland": 96, "lhasa": 96, "apso": 96, "retriev": 96, "curli": 96, "golden": 96, "labrador": 96, "chesapeak": 96, "bai": 96, "german": [96, 108], "shorthair": 96, "pointer": 96, "vizsla": 96, "setter": 96, "gordon": 96, "brittani": 96, "clumber": 96, "springer": 96, "welsh": 96, "cocker": 96, "sussex": 96, "kuvasz": 96, "schipperk": 96, "groenendael": 96, "malinoi": 96, "briard": 96, "kelpi": 96, "komondor": 96, "sheepdog": 96, "shetland": 96, "colli": 96, "bouvier": 96, "de": 96, "flandr": 96, "rottweil": 96, "shepherd": 96, "dobermann": 96, "pinscher": 96, "swiss": [96, 108], "mountain": 96, "bernes": 96, "appenzel": 96, "sennenhund": 96, "entlebuch": 96, "boxer": 96, "bullmastiff": 96, "mastiff": 96, "french": 96, "bulldog": 96, "dane": 96, "st": 96, "bernard": 96, "huski": 96, "alaskan": 96, "malamut": 96, "siberian": 96, "dalmatian": 96, "affenpinsch": 96, "basenji": 96, "pug": 96, "leonberg": 96, "newfoundland": 96, "pyrenean": 96, "samoi": 96, "pomeranian": 96, "chow": 96, "keeshond": 96, "griffon": 96, "bruxelloi": 96, "pembrok": 96, "corgi": 96, "cardigan": 96, "poodl": 96, "mexican": 96, "hairless": 96, "tundra": 96, "coyot": 96, "dingo": 96, "dhole": 96, "wild": 96, "hyena": 96, "kit": 96, "arctic": 96, "tabbi": 96, "persian": 96, "siames": 96, "egyptian": 96, "mau": 96, "cougar": 96, "lynx": 96, "leopard": 96, "snow": 96, "jaguar": 96, "cheetah": 96, "brown": [96, 107], "bear": 96, "polar": 96, "sloth": 96, "mongoos": 96, "meerkat": 96, "beetl": 96, "ladybug": 96, "longhorn": 96, "leaf": 96, "rhinocero": 96, "weevil": 96, "fly": 96, "ant": 96, "grasshopp": 96, "cricket": 96, "stick": 96, "insect": 96, "cockroach": 96, "manti": 96, "cicada": 96, "leafhopp": 96, "lacew": 96, "dragonfli": 96, "damselfli": 96, "admir": 96, "ringlet": 96, "monarch": 96, "butterfli": 96, "gossam": 96, "wing": 96, "starfish": 96, "urchin": 96, "cucumb": 96, "cottontail": 96, "rabbit": 96, "hare": 96, "angora": 96, "hamster": 96, "porcupin": 96, "squirrel": 96, "marmot": 96, "beaver": 96, "guinea": 96, "pig": 96, "sorrel": 96, "zebra": 96, "boar": 96, "warthog": 96, "hippopotamu": 96, "ox": 96, "buffalo": 96, "bison": 96, "bighorn": 96, "sheep": 96, "alpin": 96, "ibex": 96, "hartebeest": 96, "impala": 96, "gazel": 96, "dromedari": 96, "llama": 96, "weasel": 96, "mink": 96, "polecat": 96, "foot": 96, "ferret": 96, "otter": 96, "skunk": 96, "badger": 96, "armadillo": 96, "toed": 96, "orangutan": 96, "gorilla": 96, "chimpanze": 96, "gibbon": 96, "siamang": 96, "guenon": 96, "pata": 96, "monkei": 96, "baboon": 96, "macaqu": 96, "langur": 96, "colobu": 96, "probosci": 96, "marmoset": 96, "capuchin": 96, "howler": 96, "titi": 96, "geoffroi": 96, "lemur": 96, "indri": 96, "asian": 96, "eleph": 96, "bush": 96, "snoek": 96, "eel": 96, "coho": 96, "salmon": 96, "beauti": 96, "clownfish": 96, "sturgeon": 96, "garfish": 96, "lionfish": 96, "pufferfish": 96, "abacu": 96, "abaya": 96, "academ": 96, "gown": 96, "accordion": 96, "acoust": 96, "guitar": 96, "aircraft": 96, "carrier": 96, "airlin": 96, "airship": 96, "altar": 96, "ambul": 96, "amphibi": 96, "clock": [96, 108], "apiari": 96, "apron": 96, "wast": 96, "assault": 96, "rifl": 96, "backpack": 96, "bakeri": 96, "balanc": 96, "beam": 96, "balloon": 96, "ballpoint": 96, "pen": 96, "aid": 96, "banjo": 96, "balust": 96, "barbel": 96, "barber": 96, "chair": [96, 103], "barbershop": 96, "baromet": 96, "barrel": 96, "wheelbarrow": 96, "basebal": 96, "basketbal": 96, "bassinet": 96, "bassoon": 96, "swim": 96, "cap": 96, "bath": 96, "towel": 96, "bathtub": 96, "station": 96, "wagon": 96, "lighthous": 96, "beaker": 96, "militari": 96, "beer": 96, "bottl": 96, "glass": 96, "bell": 96, "cot": 96, "bib": 96, "bicycl": [96, 107], "bikini": 96, "binder": 96, "binocular": 96, "birdhous": 96, "boathous": 96, "bobsleigh": 96, "bolo": 96, "tie": 96, "poke": 96, "bonnet": 96, "bookcas": 96, "bookstor": 96, "bow": 96, "brass": 96, "bra": 96, "breakwat": 96, "breastplat": 96, "broom": 96, "bucket": 96, "buckl": 96, "bulletproof": 96, "vest": 96, "butcher": 96, "shop": 96, "taxicab": 96, "cauldron": 96, "candl": 96, "cannon": 96, "cano": 96, "mirror": [96, 103], "carousel": 96, "carton": 96, "wheel": 96, "teller": 96, "cassett": 96, "player": 96, "castl": 96, "catamaran": 96, "cd": 96, "cello": 96, "mobil": [96, 108], "chain": 96, "fenc": [96, 107], "mail": 96, "chainsaw": 96, "chest": 96, "chiffoni": 96, "chime": 96, "china": 96, "cabinet": 96, "christma": 96, "stock": 96, "church": 96, "movi": 96, "theater": 96, "cleaver": 96, "cliff": 96, "dwell": 96, "cloak": 96, "clog": 96, "cocktail": 96, "shaker": 96, "coffe": 96, "mug": 96, "coffeemak": 96, "coil": 96, "lock": 96, "keyboard": 96, "confectioneri": 96, "ship": [96, 104], "corkscrew": 96, "cornet": 96, "cowboi": 96, "boot": 96, "hat": 96, "cradl": 96, "crash": 96, "helmet": 96, "crate": 96, "infant": 96, "bed": 96, "crock": 96, "pot": 96, "croquet": 96, "crutch": 96, "cuirass": 96, "dam": 96, "desk": 96, "desktop": 96, "rotari": 96, "dial": 96, "telephon": 96, "diaper": 96, "watch": 96, "dine": 96, "dishcloth": 96, "dishwash": 96, "disc": 96, "brake": 96, "dock": 96, "sled": 96, "dome": 96, "doormat": 96, "drill": 96, "rig": 96, "drum": 96, "drumstick": 96, "dumbbel": 96, "dutch": 96, "oven": 96, "fan": 96, "locomot": 96, "entertain": 96, "envelop": 96, "espresso": 96, "powder": 96, "feather": 96, "fireboat": 96, "engin": [96, 107], "screen": 96, "sheet": 96, "flagpol": 96, "flute": 96, "footbal": 96, "forklift": 96, "fountain": 96, "poster": 96, "freight": 96, "fry": 96, "pan": 96, "fur": 96, "garbag": 96, "ga": 96, "pump": 96, "goblet": 96, "kart": 96, "golf": 96, "cart": 96, "gondola": 96, "gong": 96, "grand": 96, "piano": 96, "greenhous": 96, "grill": 96, "groceri": 96, "guillotin": 96, "barrett": 96, "hair": 96, "sprai": 96, "hammer": 96, "dryer": 96, "hand": [96, 99], "handkerchief": 96, "drive": 96, "harmonica": 96, "harp": 96, "harvest": 96, "hatchet": 96, "holster": 96, "honeycomb": 96, "hoop": 96, "skirt": 96, "horizont": 96, "bar": 96, "drawn": 96, "hourglass": 96, "ipod": 96, "cloth": 96, "iron": 96, "jack": 96, "lantern": 96, "jean": 96, "jeep": 96, "jigsaw": 96, "puzzl": 96, "pull": 96, "rickshaw": 96, "joystick": 96, "kimono": 96, "knee": 96, "pad": 96, "knot": 96, "ladl": 96, "lampshad": 96, "laptop": 96, "lawn": 96, "mower": 96, "knife": 96, "lifeboat": 96, "lighter": 96, "limousin": 96, "ocean": 96, "liner": 96, "lipstick": 96, "slip": 96, "shoe": 96, "lotion": 96, "speaker": 96, "loup": 96, "sawmil": 96, "magnet": 96, "compass": 96, "mailbox": 96, "tight": 96, "tank": 96, "manhol": 96, "maraca": 96, "marimba": 96, "maypol": 96, "maze": 96, "cup": [96, 103], "medicin": 96, "megalith": 96, "microphon": 96, "microwav": 96, "milk": 96, "minibu": 96, "miniskirt": 96, "minivan": 96, "missil": 96, "mitten": [96, 97], "mix": 96, "bowl": 96, "modem": 96, "monasteri": 96, "monitor": 96, "mope": 96, "mortar": 96, "mosqu": 96, "mosquito": 96, "scooter": 96, "bike": 96, "tent": 96, "mous": [96, 97], "mousetrap": 96, "van": 96, "muzzl": 96, "nail": 96, "brace": 96, "necklac": 96, "nippl": 96, "obelisk": 96, "obo": 96, "ocarina": 96, "odomet": 96, "oil": 96, "oscilloscop": 96, "overskirt": 96, "bullock": 96, "oxygen": 96, "packet": 96, "paddl": 96, "padlock": 96, "paintbrush": 96, "pajama": 96, "palac": [96, 108], "parachut": 96, "park": 96, "bench": 96, "meter": 96, "passeng": 96, "patio": 96, "payphon": 96, "pedest": 96, "pencil": 96, "perfum": 96, "petri": 96, "dish": 96, "photocopi": 96, "plectrum": 96, "pickelhaub": 96, "picket": 96, "pickup": 96, "pier": 96, "piggi": 96, "pill": 96, "pillow": 96, "ping": 96, "pong": 96, "pinwheel": 96, "pirat": 96, "pitcher": 96, "plane": 96, "planetarium": 96, "plastic": 96, "plate": 96, "rack": 96, "plow": 96, "plunger": 96, "polaroid": 96, "camera": 96, "pole": [96, 107], "polic": 96, "poncho": 96, "billiard": 96, "soda": 96, "potter": 96, "prayer": 96, "rug": 96, "printer": 96, "prison": 96, "projectil": 96, "projector": 96, "hockei": 96, "puck": 96, "punch": 96, "purs": 96, "quill": 96, "quilt": 96, "race": 96, "racket": 96, "radiat": 96, "radio": 96, "telescop": 96, "rain": 96, "recreat": 96, "reel": 96, "reflex": 96, "refriger": 96, "remot": 96, "restaur": 96, "revolv": 96, "rotisseri": 96, "eras": 96, "rugbi": 96, "ruler": 96, "safe": 96, "safeti": 96, "salt": 96, "sarong": 96, "saxophon": 96, "scabbard": 96, "bu": [96, 107], "schooner": 96, "scoreboard": 96, "crt": 96, "screw": 96, "screwdriv": 96, "seat": 96, "belt": 96, "sew": 96, "shield": 96, "shoji": 96, "basket": 96, "shovel": 96, "shower": 96, "curtain": 96, "ski": 96, "sleep": 96, "door": 96, "slot": 96, "snorkel": 96, "snowmobil": 96, "snowplow": 96, "soap": 96, "dispens": 96, "soccer": [96, 108], "sock": [96, 97], "solar": 96, "thermal": 96, "collector": 96, "sombrero": 96, "soup": 96, "heater": 96, "shuttl": 96, "spatula": 96, "motorboat": 96, "web": 96, "spindl": 96, "sport": [96, 108], "spotlight": 96, "stage": 96, "steam": 96, "arch": 96, "bridg": 96, "steel": 96, "stethoscop": 96, "scarf": 96, "stone": 96, "wall": [96, 107], "stopwatch": 96, "stove": 96, "strainer": 96, "tram": 96, "stretcher": 96, "couch": 96, "stupa": 96, "submarin": 96, "sundial": 96, "sunglass": 96, "sunscreen": 96, "suspens": 96, "mop": 96, "sweatshirt": 96, "swimsuit": 96, "swing": 96, "switch": 96, "syring": 96, "lamp": 96, "tape": 96, "teapot": 96, "teddi": 96, "televis": [96, 108], "tenni": 96, "thatch": 96, "roof": 96, "thimbl": 96, "thresh": 96, "throne": 96, "tile": 96, "toaster": 96, "tobacco": 96, "toilet": 96, "totem": 96, "tow": 96, "tractor": 96, "semi": 96, "trailer": 96, "trai": 96, "trench": 96, "tricycl": 96, "trimaran": 96, "tripod": 96, "triumphal": 96, "trolleybu": 96, "trombon": 96, "tub": 96, "turnstil": 96, "typewrit": 96, "umbrella": 96, "unicycl": 96, "upright": 96, "vacuum": 96, "cleaner": [96, 98], "vase": 96, "vault": 96, "velvet": 96, "vend": 96, "vestment": 96, "viaduct": 96, "violin": 96, "volleybal": 96, "waffl": 96, "wallet": 96, "wardrob": 96, "sink": 96, "wash": 96, "jug": 96, "tower": 96, "whiskei": 96, "whistl": 96, "wig": 96, "shade": [96, 107], "windsor": 96, "wine": 96, "wok": 96, "wooden": 96, "spoon": 96, "wool": 96, "rail": 96, "shipwreck": 96, "yawl": 96, "yurt": 96, "websit": 96, "comic": 96, "book": 96, "crossword": 96, "traffic": [96, 103, 107], "sign": [96, 107, 108], "dust": 96, "jacket": [96, 103], "menu": 96, "guacamol": 96, "consomm": 96, "trifl": 96, "ic": 96, "cream": 96, "pop": 96, "baguett": 96, "bagel": 96, "pretzel": 96, "cheeseburg": 96, "mash": 96, "potato": 96, "cabbag": 96, "broccoli": 96, "cauliflow": 96, "zucchini": 96, "spaghetti": 96, "squash": 96, "acorn": 96, "butternut": 96, "artichok": 96, "pepper": [96, 97], "cardoon": 96, "mushroom": 96, "granni": 96, "smith": 96, "strawberri": 96, "lemon": 96, "pineappl": 96, "banana": 96, "jackfruit": 96, "custard": 96, "appl": 96, "pomegran": 96, "hai": 96, "carbonara": 96, "chocol": 96, "syrup": 96, "dough": 96, "meatloaf": 96, "pizza": 96, "pie": 96, "burrito": 96, "eggnog": 96, "alp": 96, "bubbl": 96, "reef": 96, "geyser": 96, "lakeshor": 96, "promontori": 96, "shoal": 96, "seashor": 96, "vallei": 96, "volcano": 96, "bridegroom": 96, "scuba": 96, "diver": 96, "rapese": 96, "daisi": 96, "ladi": 96, "slipper": 96, "corn": 96, "rose": 96, "hip": 96, "chestnut": 96, "fungu": 96, "agar": 96, "gyromitra": 96, "stinkhorn": 96, "earth": 96, "star": 96, "wood": 96, "bolet": 96, "ear": 96, "cifar10_test_set": 96, "airplan": [96, 104], "automobil": [96, 104], "deer": [96, 104], "cifar100_test_set": 96, "aquarium_fish": 96, "boi": 96, "camel": 96, "caterpillar": 96, "cattl": [96, 108], "cloud": 96, "dinosaur": 96, "dolphin": 96, "flatfish": 96, "forest": 96, "girl": 96, "kangaroo": 96, "lawn_mow": 96, "man": 96, "maple_tre": 96, "motorcycl": [96, 107], "oak_tre": 96, "orchid": 96, "palm_tre": 96, "pear": 96, "pickup_truck": 96, "pine_tre": 96, "plain": 96, "poppi": 96, "possum": 96, "raccoon": 96, "road": [96, 107], "rocket": 96, "seal": 96, "shrew": 96, "skyscrap": 96, "streetcar": 96, "sunflow": 96, "sweet_pepp": 96, "trout": 96, "tulip": 96, "willow_tre": 96, "woman": [96, 103], "caltech256": 96, "ak47": 96, "bat": 96, "glove": 96, "birdbath": 96, "blimp": 96, "bonsai": 96, "boom": 96, "breadmak": 96, "buddha": 96, "bulldoz": 96, "cactu": 96, "cake": 96, "tire": 96, "cartman": 96, "cereal": 96, "chandeli": 96, "chess": 96, "board": 96, "chimp": 96, "chopstick": 96, "coffin": 96, "coin": 96, "comet": 96, "cormor": 96, "globe": 96, "diamond": 96, "dice": 96, "doorknob": 96, "drink": 96, "straw": 96, "dumb": 96, "eiffel": 96, "elk": 96, "ewer": 96, "eyeglass": 96, "fern": 96, "fighter": 96, "jet": [96, 106], "extinguish": 96, "hydrant": 96, "firework": 96, "flashlight": 96, "floppi": 96, "fri": 96, "frisbe": 96, "galaxi": 96, "giraff": 96, "goat": 96, "gate": 96, "grape": 96, "pick": [96, 97], "hamburg": 96, "hammock": 96, "harpsichord": 96, "hawksbil": 96, "helicopt": 96, "hibiscu": 96, "homer": 96, "simpson": 96, "horsesho": 96, "air": 96, "skeleton": 96, "ibi": 96, "cone": 96, "iri": 96, "jesu": 96, "christ": 96, "joi": 96, "kayak": 96, "ketch": 96, "ladder": 96, "lath": 96, "licens": 96, "lightbulb": 96, "lightn": 96, "mandolin": 96, "mar": 96, "mattress": 96, "megaphon": 96, "menorah": 96, "microscop": 96, "minaret": 96, "minotaur": 96, "motorbik": 96, "mussel": 96, "neckti": 96, "octopu": 96, "palm": 96, "pilot": 96, "paperclip": 96, "shredder": 96, "pci": 96, "peopl": [96, 103], "pez": 96, "picnic": 96, "pram": 96, "prai": 96, "pyramid": 96, "rainbow": 96, "roulett": 96, "saddl": 96, "saturn": 96, "segwai": 96, "propel": 96, "sextant": 96, "music": 96, "skateboard": 96, "smokestack": 96, "sneaker": 96, "boat": 96, "stain": 96, "steer": 96, "stirrup": 96, "superman": 96, "sushi": 96, "armi": [96, 108], "sword": 96, "tambourin": 96, "teepe": 96, "court": 96, "theodolit": 96, "tomato": 96, "tombston": 96, "tour": 96, "pisa": 96, "treadmil": 96, "fork": 96, "tweezer": 96, "unicorn": 96, "vcr": 96, "waterfal": 96, "watermelon": 96, "weld": 96, "windmil": 96, "xylophon": 96, "yarmulk": 96, "yo": 96, "toad": 96, "twenty_news_test_set": 96, "comp": 96, "graphic": [96, 107], "misc": [96, 108], "sy": 96, "ibm": 96, "pc": 96, "hardwar": 96, "mac": 96, "forsal": 96, "rec": 96, "crypt": 96, "electron": 96, "med": 96, "soc": 96, "religion": 96, "christian": [96, 108], "talk": [96, 108], "polit": 96, "gun": 96, "mideast": 96, "amazon": 96, "neutral": 96, "imdb_test_set": 96, "all_class": 96, "20news_test_set": 96, "_load_classes_predprobs_label": 96, "dataset_nam": 96, "labelerror": 96, "url_bas": 96, "5392f6c71473055060be3044becdde1cbc18284d": 96, "url_label": 96, "original_test_label": 96, "_original_label": 96, "url_prob": 96, "cross_validated_predicted_prob": 96, "_pyx": 96, "num_part": 96, "datatset": 96, "bytesio": 96, "allow_pickl": 96, "pred_probs_part": 96, "url": 96, "_of_": 96, "nload": 96, "imdb": 96, "ve": [96, 97, 98, 99, 101, 103], "capit": 96, "29780": 96, "256": [96, 97, 98, 103], "780": 96, "medic": [96, 108], "doctor": 96, "254": [96, 103], "359223": 96, "640777": 96, "184": [96, 99], "258427": 96, "341176": 96, "263158": 96, "658824": 96, "337349": 96, "246575": 96, "662651": 96, "248": 96, "330000": 96, "355769": 96, "251": [96, 103], "167": [96, 99, 103], "252": [96, 98], "112": [96, 98], "253": [96, 103], "022989": 96, "049505": 96, "190": [96, 99, 103], "002216": 96, "000974": 96, "000873": 96, "000739": 96, "32635": 96, "32636": 96, "32637": 96, "32638": 96, "32639": 96, "32640": 96, "051": 96, "002242": 96, "997758": 96, "002088": 96, "001045": 96, "997912": 96, "002053": 96, "997947": 96, "001980": 96, "000991": 96, "998020": 96, "001946": 96, "002915": 96, "998054": 96, "001938": 96, "002904": 96, "998062": 96, "001020": 96, "998980": 96, "001018": 96, "002035": 96, "998982": 96, "999009": 96, "0003": 96, "0002": 96, "071": 96, "067269": 96, "929": 96, "046": 96, "058243": 96, "954": 96, "035": 96, "032096": 96, "965": 96, "031": 96, "012232": 96, "969": 96, "022": 96, "025896": 96, "978": 96, "020": [96, 99], "013092": 96, "018": 96, "013065": 96, "016": 96, "030542": 96, "984": 96, "013": 96, "020833": 96, "987": 96, "012": 96, "010020": 96, "988": 96, "0073": 96, "0020": 96, "0016": 96, "0015": 96, "0014": 96, "0013": 96, "0012": 96, "0010": 96, "0008": 96, "0007": 96, "0006": 96, "0005": 96, "0004": 96, "244": [96, 103], "452381": 96, "459770": 96, "523364": 96, "460784": 96, "446602": 96, "103774": 96, "030612": 96, "110092": 96, "049020": 96, "0034": 96, "0032": 96, "0026": 96, "0025": 96, "4945": 96, "4946": 96, "4947": 96, "4948": 96, "4949": 96, "4950": 96, "846": 96, "7532": 96, "532": 96, "034483": 96, "009646": 96, "965517": 96, "030457": 96, "020513": 96, "969543": 96, "028061": 96, "035443": 96, "971939": 96, "025316": 96, "005168": 96, "974684": 96, "049751": 96, "979487": 96, "019920": 96, "042802": 96, "980080": 96, "017677": 96, "005115": 96, "982323": 96, "012987": 96, "005236": 96, "987013": 96, "012723": 96, "025126": 96, "987277": 96, "010989": 96, "008264": 96, "989011": 96, "010283": 96, "027778": 96, "989717": 96, "009677": 96, "990323": 96, "007614": 96, "010127": 96, "992386": 96, "005051": 96, "994949": 96, "005025": 96, "994975": 96, "005013": 96, "994987": 96, "001859": 96, "001328": 96, "000929": 96, "000664": 96, "186": [96, 99], "188": [96, 99, 102], "189": [96, 99], "snippet": 97, "nlp": [97, 108], "mind": [97, 99], "alphanumer": 97, "facilit": 97, "seamless": 97, "classlabel": 97, "guidanc": 97, "labels_str": 97, "datalab_str": 97, "labels_int": 97, "remap": 97, "datalab_int": 97, "my_dict": 97, "pet_nam": 97, "rover": 97, "rocki": 97, "speci": 97, "datalab_dataset": 97, "number_of_class": 97, "total_number_of_data_point": 97, "feed": 97, "alphabet": 97, "labels_proper_format": 97, "your_classifi": 97, "issues_datafram": 97, "class_predicted_for_flagged_exampl": 97, "class_predicted_for_all_exampl": 97, "grant": 97, "On": [97, 98, 99, 103], "merged_dataset": 97, "label_column_nam": 97, "datataset": 97, "fair": [97, 99], "game": 97, "speedup": [97, 104], "tempfil": 97, "mkdtemp": 97, "sped": 97, "anywai": 97, "pred_probs_merg": 97, "merge_rare_class": 97, "count_threshold": 97, "class_mapping_orig2new": 97, "heath_summari": 97, "num_examples_per_class": 97, "rare_class": 97, "num_classes_merg": 97, "other_class": 97, "labels_merg": 97, "new_c": 97, "merged_prob": 97, "new_class": 97, "original_class": 97, "num_check": 97, "ones_array_ref": 97, "isclos": 97, "though": [97, 99, 108], "successfulli": 97, "virtuou": [97, 101], "cycl": [97, 101], "jointli": 97, "junk": 97, "clutter": 97, "unknown": 97, "caltech": 97, "combined_boolean_mask": 97, "mask1": 97, "mask2": 97, "gradientboostingclassifi": [97, 99], "true_error": [97, 99, 102], "101": [97, 98, 103], "102": [97, 102, 103], "104": [97, 99, 103, 108], "model_to_find_error": 97, "model_to_return": 97, "cl0": 97, "randomizedsearchcv": 97, "expens": 97, "param_distribut": 97, "learning_r": [97, 98, 99], "max_depth": [97, 98, 99], "magnitud": 97, "coeffici": [97, 106], "optin": 97, "environ": [97, 98, 99], "rerun": [97, 98, 99], "cell": [97, 98, 99], "unabl": [97, 98, 99], "render": [97, 98, 99], "nbviewer": [97, 98, 99], "cleanlearninginot": [97, 99], "fittedcleanlearn": [97, 99], "linearregressionlinearregress": 97, "unexpectedli": 97, "emphas": 97, "crucial": 97, "merge_duplicate_set": 97, "merge_kei": 97, "construct_group_kei": 97, "merged_set": 97, "consolidate_set": 97, "issubset": 97, "frozenset": [97, 98], "sets_list": 97, "mutabl": 97, "new_set": 97, "current_set": 97, "intersecting_set": 97, "lowest_score_strategi": 97, "sub_df": 97, "filter_near_dupl": 97, "strategy_fn": 97, "strategy_kwarg": 97, "duplicate_row": 97, "group_kei": 97, "to_keep_indic": 97, "groupbi": 97, "explod": 97, "to_remov": 97, "isin": [97, 104], "kept": 97, "ids_to_remove_seri": 97, "assist": 97, "streamlin": [97, 98], "ux": 97, "agpl": 97, "compani": 97, "commerci": 97, "alter": [97, 98], "email": 97, "team": 97, "anywher": 97, "profession": 97, "expert": 97, "recogn": 98, "vital": 98, "leakag": 98, "comparion": 98, "leak": 98, "blueprint": 98, "divers": 98, "parameter": 98, "tldr": 98, "answer": [98, 99], "subtl": 98, "faith": 98, "danger": 98, "inevit": [98, 104], "xgbclassifi": 98, "123456": 98, "df_train": 98, "s3": [98, 103, 107, 108], "amazonaw": [98, 103, 107, 108], "clos_train_data": 98, "df_test": 98, "clos_test_data": 98, "noisy_letter_grad": 98, "018bff": 98, "076d92": 98, "c80059": 98, "e38f8a": 98, "d57e1a": 98, "grade_l": 98, "notes_l": 98, "train_featur": 98, "train_features_v2": 98, "train_labels_v2": 98, "test_featur": 98, "preprocessed_train_data": 98, "preprocessed_test_data": 98, "haven": 98, "features_df": 98, "heterogenou": 98, "full_df": 98, "reset_index": [98, 101], "749": 98, "583745": 98, "291382": 98, "5837": 98, "748": 98, "604": 98, "510": 98, "227": [98, 102, 103], "719": 98, "690": 98, "444": 98, "547": 98, "647": 98, "2914": 98, "611": 98, "687869": 98, "610": 98, "687883": 98, "612": 98, "688146": 98, "609": 98, "688189": 98, "613": 98, "688713": 98, "2913818469137725": 98, "came": [98, 108], "full_duplicate_result": 98, "train_idx_cutoff": 98, "nd_set_has_index_over_training_cutoff": 98, "exact_dupl": 98, "627": 98, "678": 98, "615": 98, "292": 98, "620": 98, "420": 98, "704": 98, "431": 98, "459": 98, "672": 98, "564": 98, "696": 98, "605": 98, "exact_duplicates_indic": 98, "indices_of_duplicates_to_drop": 98, "4a3f75": 98, "d030b5": 98, "ddd0ba": 98, "8e6d24": 98, "464aab": 98, "ee3387": 98, "61e807": 98, "71d7b9": 98, "83e31f": 98, "edeb53": 98, "cd52b5": 98, "84": [98, 103, 106], "454e51": 98, "042686": 98, "12a73f": 98, "tree_method": 98, "hist": [98, 104], "enable_categor": 98, "booster": 98, "callback": 98, "colsample_bylevel": 98, "colsample_bynod": 98, "colsample_bytre": 98, "early_stopping_round": 98, "eval_metr": 98, "feature_typ": 98, "gamma": 98, "grow_polici": 98, "importance_typ": 98, "interaction_constraint": 98, "max_bin": 98, "max_cat_threshold": 98, "max_cat_to_onehot": 98, "max_delta_step": 98, "max_leav": 98, "min_child_weight": 98, "monotone_constraint": 98, "multi_strategi": 98, "n_estim": [98, 99], "num_parallel_tre": 98, "x27": [98, 99], "softprob": 98, "xgbclassifierifittedxgbclassifi": 98, "test_pred_prob": [98, 104], "test_lab": 98, "test_features_arrai": 98, "134": 98, "798507": 98, "370259": 98, "625352": 98, "524042": 98, "097015": 98, "7985": 98, "000537": 98, "000903": 98, "001743": 98, "106": 98, "001853": 98, "002121": 98, "3703": 98, "752463e": 98, "784418e": 98, "09": [98, 102, 103, 106, 108], "477741e": 98, "134230e": 98, "153555e": 98, "6254": 98, "143272": 98, "146501": 98, "161431": 98, "5240": 98, "765240": 98, "771221": 98, "801589": 98, "801652": 98, "810735": 98, "5240417899434826": 98, "0970": 98, "na": [98, 101], "test_label_issue_result": 98, "test_label_issues_ord": 98, "2bd759": 98, "34ccdd": 98, "bb3bab": 98, "103": [98, 99, 103], "bf1b14": 98, "4787de": 98, "865cbd": 98, "32d53f": 98, "5b2f76": 98, "28f8b4": 98, "df814d": 98, "f17261": 98, "1db3ff": 98, "ded944": 98, "124": [98, 103], "343dd3": 98, "homework": [98, 106], "8d904d": 98, "e4f0d5": 98, "d6d208": 98, "76c083": 98, "695f96": 98, "745c23": 98, "13b36e": 98, "5ba892": 98, "9f0216": 98, "003628": 98, "004006": 98, "004031": 98, "007930": 98, "013226": 98, "015255": 98, "017692": 98, "019767": 98, "036197": 98, "054746": 98, "055110": 98, "062675": 98, "112695": 98, "121059": 98, "171280": 98, "181689": 98, "208001": 98, "275028": 98, "346032": 98, "396350": 98, "401493": 98, "474349": 98, "mislead": 98, "breviti": 98, "indices_to_drop_from_test_data": 98, "df_test_clean": 98, "acc_origin": 98, "tediou": 98, "train_features_arrai": 98, "train_lab": 98, "318": [98, 106], "601": 98, "740433": 98, "344154": 98, "588290": 98, "437267": 98, "146423": 98, "977223": 98, "7404": 98, "162": 98, "000072": 98, "348": 98, "000161": 98, "232": [98, 103], "000256": 98, "205": [98, 103], "000458": 98, "000738": 98, "3442": 98, "588": 98, "358961e": 98, "336": [98, 103], "490911e": 98, "269": 98, "122475e": 98, "321": [98, 103], "374139e": 98, "311": 98, "358617e": 98, "5883": 98, "600": 98, "592": 98, "593": 98, "594": 98, "595": 98, "596": 98, "597": 98, "598": 98, "599": 98, "221": 98, "222": [98, 99], "315": 98, "332": [98, 103], "791060e": 98, "243": [98, 103], "540": 98, "379106e": 98, "396": 98, "397": 98, "398": 98, "399": 98, "4373": 98, "165": [98, 102], "550374": 98, "627357": 98, "627496": 98, "627502": 98, "627919": 98, "43726734378061227": 98, "1464": 98, "506": 98, "393": 98, "508": 98, "9772": 98, "402": 98, "401": 98, "aggress": 98, "faithfulli": 98, "label_issue_result": 98, "566": 98, "568": 98, "571": 98, "572": 98, "574": 98, "576": 98, "578": 98, "585": 98, "587": 98, "590": 98, "near_duplicates_idx": 98, "117": [98, 99, 106], "122": [98, 99, 103], "146": 98, "155": [98, 99, 103], "156": [98, 99], "173": [98, 103], "224": [98, 103], "272": 98, "277": [98, 103], "279": [98, 103], "288": 98, "300": [98, 101, 108], "342": 98, "352": 98, "363": 98, "365": 98, "366": 98, "384": 98, "388": 98, "394": 98, "404": 98, "474": 98, "480": 98, "494": 98, "515": 98, "536": 98, "537": 98, "539": 98, "542": 98, "outliers_idx": 98, "143": [98, 102, 103], "159": [98, 102, 103], "163": [98, 99], "193": [98, 99], "194": [98, 99], "208": 98, "240": [98, 103], "241": 98, "242": [98, 103], "247": [98, 103], "287": [98, 103], "295": [98, 103], "299": [98, 103], "307": [98, 103], "350": 98, "361": 98, "378": 98, "379": 98, "392": 98, "419": 98, "432": 98, "479": 98, "484": 98, "485": 98, "489": 98, "492": 98, "504": 98, "511": 98, "522": 98, "535": 98, "543": 98, "567": 98, "579": 98, "591": 98, "idx_to_drop": 98, "276": [98, 103], "df_train_cur": 98, "clean_clf": 98, "clean_pr": 98, "acc_clean": 98, "inaccur": 98, "hybrid": 98, "quantit": 98, "hyper": 98, "default_edit_param": 98, "drop_label_issu": 98, "drop_outli": 98, "drop_near_dupl": 98, "candid": [98, 103], "edit_data": 98, "percentag": [98, 99], "num_label_issues_to_drop": 98, "num_outliers_to_drop": 98, "dedupl": 98, "unique_clust": 98, "unique_clusters_list": 98, "near_duplicates_idx_to_drop": 98, "n_drop": 98, "label_issues_idx_to_drop": 98, "outliers_idx_to_drop": 98, "train_features_clean": 98, "train_labels_clean": 98, "itertool": 98, "finer": 98, "param_combin": 98, "best_scor": 98, "best_param": 98, "train_features_preprocess": 98, "train_labels_preprocess": 98, "depth": 99, "survei": [99, 108], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103, 108], "037843": 99, "614915": 99, "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "magic": 99, "liter": 99, "identif": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "offset": 99, "nquestion": 99, "overestim": 99, "experienc": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "170": 99, "214": 99, "164": [99, 102], "191": [99, 103], "206": [99, 103], "115": [99, 103], "201": [99, 103], "174": 99, "150": [99, 101, 103, 108], "169": [99, 108], "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "172": [99, 102], "157": 99, "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "noisier": 101, "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "zfill": 101, "row_na_check": 101, "notna": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "275": 102, "267": 102, "225": 102, "171": 102, "234": 102, "262": [102, 103], "263": [102, 103], "266": [102, 103], "139": 102, "216": [102, 103, 108], "265": 102, "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "231": 103, "293": 103, "235": 103, "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "283": 103, "303": 103, "316": 103, "323": 103, "327": 103, "226": 103, "228": 103, "219": 103, "239": 103, "209": [103, 108], "202": 103, "230": 103, "215": 103, "220": 103, "229": [103, 108], "217": [103, 108], "237": 103, "207": 103, "204": 103, "223": 103, "149": 103, "140": 103, "246": 103, "268": 103, "273": 103, "284": 103, "110": 103, "136": 103, "145": 103, "297": 103, "317": 103, "192": 103, "324": 103, "203": 103, "320": 103, "314": 103, "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": 103, "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "toronto": 104, "edu": 104, "kriz": 104, "170498071": 104, "85531172": 104, "07it": 104, "plot_imag": 104, "visualize_outli": 104, "txt_class": 104, "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "train_outlier_scor": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "unsur": 105, "price": 106, "incom": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "3d": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "367": 106, "305": 106, "560": 106, "657": 106, "view_datapoint": 106, "preds_og": 106, "r2_og": 106, "838": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "2400": 108, "52e0": 108, "1a00": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "inflat": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "182": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [59, 0, 0, "-", "models"], [61, 0, 0, "-", "multiannotator"], [64, 0, 0, "-", "multilabel_classification"], [67, 0, 0, "-", "object_detection"], [70, 0, 0, "-", "outlier"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "regression"], [76, 0, 0, "-", "segmentation"], [80, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "metric"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_underperforming_clusters"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[60, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[60, 2, 1, "", "KerasWrapperModel"], [60, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[61, 1, 1, "", "convert_long_to_wide_dataset"], [61, 1, 1, "", "get_active_learning_scores"], [61, 1, 1, "", "get_active_learning_scores_ensemble"], [61, 1, 1, "", "get_label_quality_multiannotator"], [61, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [61, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[62, 0, 0, "-", "dataset"], [63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[62, 1, 1, "", "common_multilabel_issues"], [62, 1, 1, "", "multilabel_health_summary"], [62, 1, 1, "", "overall_multilabel_health_score"], [62, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, 1, 1, "", "find_label_issues"], [63, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[66, 0, 0, "-", "filter"], [68, 0, 0, "-", "rank"], [69, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[66, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[68, 1, 1, "", "compute_badloc_box_scores"], [68, 1, 1, "", "compute_overlooked_box_scores"], [68, 1, 1, "", "compute_swap_box_scores"], [68, 1, 1, "", "get_label_quality_scores"], [68, 1, 1, "", "issues_from_scores"], [68, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[69, 1, 1, "", "bounding_box_size_distribution"], [69, 1, 1, "", "calculate_per_class_metrics"], [69, 1, 1, "", "class_label_distribution"], [69, 1, 1, "", "get_average_per_class_confusion_matrix"], [69, 1, 1, "", "get_sorted_bbox_count_idxs"], [69, 1, 1, "", "object_counts_per_image"], [69, 1, 1, "", "plot_class_distribution"], [69, 1, 1, "", "plot_class_size_distributions"], [69, 1, 1, "", "visualize"]], "cleanlab.outlier": [[70, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[70, 3, 1, "", "fit"], [70, 3, 1, "", "fit_score"], [70, 3, 1, "", "score"]], "cleanlab.rank": [[71, 1, 1, "", "find_top_issues"], [71, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [71, 1, 1, "", "get_label_quality_ensemble_scores"], [71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "get_normalized_margin_for_each_label"], [71, 1, 1, "", "get_self_confidence_for_each_label"], [71, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[73, 0, 0, "-", "learn"], [74, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[73, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[73, 3, 1, "", "__init_subclass__"], [73, 3, 1, "", "find_label_issues"], [73, 3, 1, "", "fit"], [73, 3, 1, "", "get_aleatoric_uncertainty"], [73, 3, 1, "", "get_epistemic_uncertainty"], [73, 3, 1, "", "get_label_issues"], [73, 3, 1, "", "get_metadata_routing"], [73, 3, 1, "", "get_params"], [73, 3, 1, "", "predict"], [73, 3, 1, "", "save_space"], [73, 3, 1, "", "score"], [73, 3, 1, "", "set_fit_request"], [73, 3, 1, "", "set_params"], [73, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[74, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[79, 0, 0, "-", "filter"], [81, 0, 0, "-", "rank"], [82, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[79, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[81, 1, 1, "", "get_label_quality_scores"], [81, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[82, 1, 1, "", "common_label_issues"], [82, 1, 1, "", "display_issues"], [82, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 86, 87, 91, 93, 94, 97, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 88, 89, 90, 91, 92, 93, 94, 95, 97, 99, 102], "creat": [7, 89, 90, 99, 101], "your": [7, 83, 89, 90, 94, 95, 97, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 89], "basic": 7, "check": [7, 83, 95, 98], "intermedi": 7, "advanc": [7, 89], "us": [7, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": [8, 95], "cluster": [8, 95, 97], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 89], "cleanlab": [9, 10, 83, 86, 87, 88, 91, 93, 94, 97, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 83, 91], "mode": [9, 10, 83, 91], "can": [10, 90, 96, 97, 99, 101], "detect": [10, 88, 90, 91, 93, 94, 95, 97, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "input": 10, "label": [10, 24, 26, 31, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 70, 91, 93, 94, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 90, 91, 93, 94], "duplic": [10, 20, 90, 91, 93, 94, 97, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 94, 95], "iid": [10, 94, 95], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 84, 95, 99, 107], "imbal": [10, 21, 95], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 91, 95, 104], "specif": [10, 22, 107], "spuriou": [10, 95], "correl": [10, 95], "between": 10, "properti": 10, "score": [10, 95, 99, 101, 102, 103, 107, 108], "underperform": [10, 95, 97], "group": [10, 95, 97], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 95], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "valuat": [10, 95], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 95], "paramet": [10, 99], "get": [12, 89, 90, 101, 102, 103, 107, 108], "start": [12, 96], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 97, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 72, 73, 74, 97, 106], "prioriti": 31, "order": 31, "find": [31, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 91], "dataset": [37, 62, 83, 87, 88, 90, 91, 94, 95, 96, 97, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 63, 66, 75, 79, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 89], "token_classification_util": 56, "util": 57, "valid": [58, 91, 105], "model": [59, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106], "kera": 60, "multiannot": [61, 101], "multilabel_classif": 64, "rank": [65, 68, 71, 74, 77, 81, 99], "object_detect": 67, "summari": [69, 78, 82], "learn": [73, 90, 97, 99], "segment": [76, 107], "token_classif": [80, 108], "open": [83, 97], "sourc": [83, 97], "document": 83, "quickstart": 83, "1": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "2": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [83, 90, 99], "sort": [83, 95], "3": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [83, 97], "error": [83, 87, 91, 97, 99, 101, 102, 103, 106, 107, 108], "train": [83, 86, 87, 88, 95, 97, 98, 104, 106], "robust": [83, 86, 87, 99, 106], "noisi": [83, 86, 87, 98, 99, 106], "4": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 103, 104, 106], "curat": [83, 98], "fix": [83, 97], "level": [83, 96, 99, 108], "5": [83, 86, 88, 90, 91, 93, 95, 98, 99, 101, 106], "improv": [83, 98, 101], "via": [83, 98, 99, 101], "mani": [83, 99], "other": [83, 101, 103, 106], "techniqu": [83, 98], "contribut": 83, "how": [84, 97, 99, 101, 102, 108], "migrat": 84, "version": 84, "0": 84, "from": [84, 86, 87, 89, 90, 98, 99, 106], "pre": [84, 88, 95, 97, 104], "function": [84, 89], "name": 84, "chang": 84, "modul": [84, 99], "new": 84, "remov": 84, "common": [84, 108], "argument": [84, 89], "variabl": 84, "cleanlearn": [85, 97, 99], "tutori": [85, 92, 96, 98, 100], "structur": 86, "tabular": [86, 93], "requir": [86, 87, 89, 90, 91, 93, 94, 101, 102, 103, 104, 106, 107, 108], "depend": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "load": [86, 87, 88, 89, 90, 93, 94, 95, 106], "process": [86, 93, 104, 106], "select": [86, 93], "comput": [86, 88, 91, 93, 94, 95, 97, 98, 101, 105], "out": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "sampl": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "predict": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 105], "probabl": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 105], "more": [86, 87, 90, 99, 106], "spend": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "too": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "much": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "time": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "qualiti": [86, 87, 90, 93, 94, 96, 99, 101, 102, 103, 104, 105, 106, 107, 108], "text": [87, 94, 95, 108], "format": [87, 94, 97, 102, 103], "defin": [87, 91, 94, 95, 106], "potenti": [87, 101, 106], "an": [88, 91, 97], "audio": 88, "import": [88, 89, 90, 91, 96, 99, 101], "them": [88, 96, 98, 99], "speechbrain": 88, "featur": [88, 91, 104], "fit": 88, "linear": 88, "workflow": [89, 95, 99], "audit": [89, 90], "classifi": [89, 90, 95], "instanti": 89, "object": [89, 103], "increment": 89, "specifi": [89, 97], "nondefault": 89, "save": 89, "ad": 89, "A": 90, "unifi": 90, "kind": [90, 103], "skip": [90, 96, 99, 101], "detail": [90, 96, 99, 101], "about": 90, "addit": 90, "inform": [90, 91], "fetch": [91, 96], "normal": 91, "fashion": 91, "mnist": 91, "prepar": [91, 95], "k": [91, 93, 105], "fold": [91, 105], "cross": [91, 105], "embed": [91, 104], "7": [91, 98, 99], "view": 91, "most": [91, 108], "like": 91, "exampl": [91, 97, 99, 104], "sever": 91, "set": [91, 99], "dark": 91, "top": [91, 107], "low": 91, "numer": 93, "categor": [93, 95], "column": 93, "construct": 93, "nearest": 93, "neighbour": 93, "graph": [93, 95], "drift": [94, 102], "miscellan": 95, "acceler": 95, "knn": 95, "obtain": 95, "identifi": [95, 97, 98, 103], "explan": 95, "vector": 95, "perform": [95, 98], "visual": [95, 99, 103, 104, 107], "synthet": 95, "result": 95, "predefin": 95, "slice": [95, 97], "i": [95, 97, 99, 105], "catch": 95, "valu": 95, "encod": 95, "initi": [95, 101], "6": [95, 98, 99], "run": [95, 97], "analysi": [95, 103], "interpret": 95, "understand": 96, "evalu": [96, 98], "health": [96, 99], "8": [96, 98, 99], "popular": 96, "faq": 97, "what": [97, 99, 105], "do": [97, 99], "infer": 97, "correct": [97, 98], "ha": 97, "flag": 97, "should": 97, "v": [97, 98], "test": [97, 98, 99, 104], "big": 97, "limit": 97, "memori": 97, "why": [97, 98], "isn": 97, "t": 97, "work": [97, 99, 101, 108], "me": 97, "differ": [97, 103], "clean": [97, 98, 99], "final": 97, "hyperparamet": [97, 98], "tune": 97, "onli": 97, "one": [97, 99, 102, 107], "doe": [97, 101, 108], "take": 97, "so": 97, "long": 97, "when": [97, 99], "licens": 97, "under": 97, "answer": 97, "question": 97, "split": 98, "did": 98, "you": [98, 99], "make": 98, "thi": [98, 99], "preprocess": 98, "fundament": 98, "problem": 98, "setup": 98, "origin": 98, "baselin": 98, "manual": 98, "address": 98, "algorithm": 98, "better": [98, 101], "strategi": 98, "optim": 98, "9": 98, "conclus": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "twenti": 99, "lowest": 99, "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "re": 99, "One": 99, "rule": 99, "overal": [99, 107], "accur": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "major": 101, "vote": 101, "statist": 101, "compar": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "without": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Spurious Correlations between image-specific properties and labels": [[10, "spurious-correlations-between-image-specific-properties-and-labels"]], "property": [[10, "property"]], "score": [[10, "score"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [70, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [72, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [62, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [63, "module-cleanlab.multilabel_classification.filter"], [66, "filter"], [75, "filter"], [79, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "models": [[59, "models"]], "keras": [[60, "module-cleanlab.models.keras"]], "multiannotator": [[61, "module-cleanlab.multiannotator"]], "multilabel_classification": [[64, "multilabel-classification"]], "rank": [[65, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.rank"], [77, "module-cleanlab.segmentation.rank"], [81, "module-cleanlab.token_classification.rank"]], "object_detection": [[67, "object-detection"]], "summary": [[69, "summary"], [78, "module-cleanlab.segmentation.summary"], [82, "module-cleanlab.token_classification.summary"]], "regression.learn": [[73, "module-cleanlab.regression.learn"]], "regression.rank": [[74, "module-cleanlab.regression.rank"]], "segmentation": [[76, "segmentation"]], "token_classification": [[80, "token-classification"]], "cleanlab open-source documentation": [[83, "cleanlab-open-source-documentation"]], "Quickstart": [[83, "quickstart"]], "1. Install cleanlab": [[83, "install-cleanlab"]], "2. Check your data for all sorts of issues": [[83, "check-your-data-for-all-sorts-of-issues"]], "3. Handle label errors and train robust models with noisy labels": [[83, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[83, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[83, "improve-your-data-via-many-other-techniques"]], "Contributing": [[83, "contributing"]], "Easy Mode": [[83, "easy-mode"], [91, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[84, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[84, "function-and-class-name-changes"]], "Module name changes": [[84, "module-name-changes"]], "New modules": [[84, "new-modules"]], "Removed modules": [[84, "removed-modules"]], "Common argument and variable name changes": [[84, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[85, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[86, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[86, "1.-Install-required-dependencies"], [87, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[86, "2.-Load-and-process-the-data"], [93, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[86, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [93, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[86, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[86, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Spending too much time on data quality?": [[86, "Spending-too-much-time-on-data-quality?"], [87, "Spending-too-much-time-on-data-quality?"], [90, "Spending-too-much-time-on-data-quality?"], [93, "Spending-too-much-time-on-data-quality?"], [94, "Spending-too-much-time-on-data-quality?"], [96, "Spending-too-much-time-on-data-quality?"], [99, "Spending-too-much-time-on-data-quality?"], [102, "Spending-too-much-time-on-data-quality?"], [104, "Spending-too-much-time-on-data-quality?"], [105, "spending-too-much-time-on-data-quality"], [106, "Spending-too-much-time-on-data-quality?"]], "Text Classification with Noisy Labels": [[87, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[87, "2.-Load-and-format-the-text-dataset"], [94, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[87, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[87, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[88, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[88, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[88, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[88, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[88, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[88, "5.-Use-cleanlab-to-find-label-issues"], [93, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[89, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[89, "Install-and-import-required-dependencies"]], "Create and load the data": [[89, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[89, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[89, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[89, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[89, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[89, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[89, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[90, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[90, "1.-Install-and-import-required-dependencies"], [91, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[90, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[90, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[90, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[90, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[90, "Get-additional-information"]], "Near duplicate issues": [[90, "Near-duplicate-issues"], [91, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[91, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[91, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[91, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[91, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[91, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[91, "7.-Use-cleanlab-to-find-issues"]], "View report": [[91, "View-report"]], "Label issues": [[91, "Label-issues"], [93, "Label-issues"], [94, "Label-issues"]], "View most likely examples with label errors": [[91, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[91, "Outlier-issues"], [93, "Outlier-issues"], [94, "Outlier-issues"]], "View most severe outliers": [[91, "View-most-severe-outliers"]], "View sets of near duplicate images": [[91, "View-sets-of-near-duplicate-images"]], "Dark images": [[91, "Dark-images"]], "View top examples of dark images": [[91, "View-top-examples-of-dark-images"]], "Low information images": [[91, "Low-information-images"]], "Datalab Tutorials": [[92, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[93, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[93, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[93, "Near-duplicate-issues"], [94, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[94, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[94, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[94, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[94, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[95, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[95, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[95, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[95, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[95, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[95, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[95, "Explanation:"]], "Data Valuation": [[95, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[95, "1.-Load-and-Prepare-the-Dataset"], [95, "id2"], [95, "id5"]], "2. Vectorize the Text Data": [[95, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[95, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[95, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[95, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[95, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[95, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [95, "id3"]], "3. (Optional) Cluster the Data": [[95, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[95, "4.-Identify-Underperforming-Groups-with-Datalab"], [95, "id4"]], "5. (Optional) Visualize the Results": [[95, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[95, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[95, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[95, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[95, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[95, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[95, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[95, "1.-Load-the-Dataset"], [95, "id8"]], "2: Encode Categorical Values": [[95, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[95, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[95, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[95, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[95, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[95, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[95, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[95, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[95, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[95, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Run Datalab Analysis": [[95, "2.-Run-Datalab-Analysis"]], "3. Interpret the Results": [[95, "3.-Interpret-the-Results"]], "Understanding Dataset-level Labeling Issues": [[96, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[96, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[96, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[96, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[97, "FAQ"]], "What data can cleanlab detect issues in?": [[97, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[97, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[97, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[97, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[97, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[97, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[97, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[97, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[97, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[97, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[97, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[97, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[97, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[97, "Can't-find-an-answer-to-your-question?"]], "Improving ML Performance via Data Curation with Train vs Test Splits": [[98, "Improving-ML-Performance-via-Data-Curation-with-Train-vs-Test-Splits"]], "Why did you make this tutorial?": [[98, "Why-did-you-make-this-tutorial?"]], "1. Install dependencies": [[98, "1.-Install-dependencies"]], "2. Preprocess the data": [[98, "2.-Preprocess-the-data"]], "3. Check for fundamental problems in the train/test setup": [[98, "3.-Check-for-fundamental-problems-in-the-train/test-setup"]], "4. Train model with original (noisy) training data": [[98, "4.-Train-model-with-original-(noisy)-training-data"]], "Compute out-of-sample predicted probabilities for the test data from this baseline model": [[98, "Compute-out-of-sample-predicted-probabilities-for-the-test-data-from-this-baseline-model"]], "5. Check for issues in test data and manually address them": [[98, "5.-Check-for-issues-in-test-data-and-manually-address-them"]], "Use clean test data to evaluate the performance of model trained on noisy training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-noisy-training-data"]], "6. Check for issues in training data and algorithmically correct them": [[98, "6.-Check-for-issues-in-training-data-and-algorithmically-correct-them"]], "7. Train model on cleaned training data": [[98, "7.-Train-model-on-cleaned-training-data"]], "Use clean test data to evaluate the performance of model trained on cleaned training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-cleaned-training-data"]], "8. Identifying better training data curation strategies via hyperparameter optimization techniques": [[98, "8.-Identifying-better-training-data-curation-strategies-via-hyperparameter-optimization-techniques"]], "9. Conclusion": [[98, "9.-Conclusion"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [59, "module-cleanlab.models"], [60, "module-cleanlab.models.keras"], [61, "module-cleanlab.multiannotator"], [62, "module-cleanlab.multilabel_classification.dataset"], [63, "module-cleanlab.multilabel_classification.filter"], [64, "module-cleanlab.multilabel_classification"], [65, "module-cleanlab.multilabel_classification.rank"], [66, "module-cleanlab.object_detection.filter"], [67, "module-cleanlab.object_detection"], [68, "module-cleanlab.object_detection.rank"], [69, "module-cleanlab.object_detection.summary"], [70, "module-cleanlab.outlier"], [71, "module-cleanlab.rank"], [72, "module-cleanlab.regression"], [73, "module-cleanlab.regression.learn"], [74, "module-cleanlab.regression.rank"], [75, "module-cleanlab.segmentation.filter"], [76, "module-cleanlab.segmentation"], [77, "module-cleanlab.segmentation.rank"], [78, "module-cleanlab.segmentation.summary"], [79, "module-cleanlab.token_classification.filter"], [80, "module-cleanlab.token_classification"], [81, "module-cleanlab.token_classification.rank"], [82, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_underperforming_clusters() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_underperforming_clusters"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[59, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[60, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[61, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[62, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[64, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[65, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[66, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[66, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[67, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[68, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[69, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[70, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[70, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[71, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[72, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[73, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[73, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[73, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[74, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[74, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[75, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[75, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[76, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[77, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[78, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[79, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[79, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[80, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[81, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[82, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file diff --git a/master/tutorials/clean_learning/tabular.ipynb b/master/tutorials/clean_learning/tabular.ipynb index fd425ea02..644be8c52 100644 --- a/master/tutorials/clean_learning/tabular.ipynb +++ b/master/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:14.190249Z", - "iopub.status.busy": "2024-08-20T02:13:14.189893Z", - "iopub.status.idle": "2024-08-20T02:13:15.741967Z", - "shell.execute_reply": "2024-08-20T02:13:15.741315Z" + "iopub.execute_input": "2024-08-21T00:38:23.829302Z", + "iopub.status.busy": "2024-08-21T00:38:23.829129Z", + "iopub.status.idle": "2024-08-21T00:38:25.080193Z", + "shell.execute_reply": "2024-08-21T00:38:25.079552Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:15.744709Z", - "iopub.status.busy": "2024-08-20T02:13:15.744377Z", - "iopub.status.idle": "2024-08-20T02:13:15.765049Z", - "shell.execute_reply": "2024-08-20T02:13:15.764575Z" + "iopub.execute_input": "2024-08-21T00:38:25.082901Z", + "iopub.status.busy": "2024-08-21T00:38:25.082445Z", + "iopub.status.idle": "2024-08-21T00:38:25.100491Z", + "shell.execute_reply": "2024-08-21T00:38:25.099905Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:15.767526Z", - "iopub.status.busy": "2024-08-20T02:13:15.767219Z", - "iopub.status.idle": "2024-08-20T02:13:15.909588Z", - "shell.execute_reply": "2024-08-20T02:13:15.908955Z" + "iopub.execute_input": "2024-08-21T00:38:25.102735Z", + "iopub.status.busy": "2024-08-21T00:38:25.102340Z", + "iopub.status.idle": "2024-08-21T00:38:25.258889Z", + "shell.execute_reply": "2024-08-21T00:38:25.258314Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:15.941170Z", - "iopub.status.busy": "2024-08-20T02:13:15.940735Z", - "iopub.status.idle": "2024-08-20T02:13:15.944576Z", - "shell.execute_reply": "2024-08-20T02:13:15.944095Z" + "iopub.execute_input": "2024-08-21T00:38:25.290166Z", + "iopub.status.busy": "2024-08-21T00:38:25.289738Z", + "iopub.status.idle": "2024-08-21T00:38:25.293435Z", + "shell.execute_reply": "2024-08-21T00:38:25.292975Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:15.946688Z", - "iopub.status.busy": "2024-08-20T02:13:15.946342Z", - "iopub.status.idle": "2024-08-20T02:13:15.954811Z", - "shell.execute_reply": "2024-08-20T02:13:15.954360Z" + "iopub.execute_input": "2024-08-21T00:38:25.295476Z", + "iopub.status.busy": "2024-08-21T00:38:25.295164Z", + "iopub.status.idle": "2024-08-21T00:38:25.303395Z", + "shell.execute_reply": "2024-08-21T00:38:25.302840Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:15.957011Z", - "iopub.status.busy": "2024-08-20T02:13:15.956687Z", - "iopub.status.idle": "2024-08-20T02:13:15.959396Z", - "shell.execute_reply": "2024-08-20T02:13:15.958850Z" + "iopub.execute_input": "2024-08-21T00:38:25.305638Z", + "iopub.status.busy": "2024-08-21T00:38:25.305312Z", + "iopub.status.idle": "2024-08-21T00:38:25.307821Z", + "shell.execute_reply": "2024-08-21T00:38:25.307370Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:15.961590Z", - "iopub.status.busy": "2024-08-20T02:13:15.961269Z", - "iopub.status.idle": "2024-08-20T02:13:16.492235Z", - "shell.execute_reply": "2024-08-20T02:13:16.491677Z" + "iopub.execute_input": "2024-08-21T00:38:25.309939Z", + "iopub.status.busy": "2024-08-21T00:38:25.309500Z", + "iopub.status.idle": "2024-08-21T00:38:25.827776Z", + "shell.execute_reply": "2024-08-21T00:38:25.827237Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:16.494794Z", - "iopub.status.busy": "2024-08-20T02:13:16.494399Z", - "iopub.status.idle": "2024-08-20T02:13:18.632020Z", - "shell.execute_reply": "2024-08-20T02:13:18.631415Z" + "iopub.execute_input": "2024-08-21T00:38:25.830272Z", + "iopub.status.busy": "2024-08-21T00:38:25.829915Z", + "iopub.status.idle": "2024-08-21T00:38:27.730582Z", + "shell.execute_reply": "2024-08-21T00:38:27.729902Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:18.634886Z", - "iopub.status.busy": "2024-08-20T02:13:18.634055Z", - "iopub.status.idle": "2024-08-20T02:13:18.644480Z", - "shell.execute_reply": "2024-08-20T02:13:18.643943Z" + "iopub.execute_input": "2024-08-21T00:38:27.733405Z", + "iopub.status.busy": "2024-08-21T00:38:27.732797Z", + "iopub.status.idle": "2024-08-21T00:38:27.743240Z", + "shell.execute_reply": "2024-08-21T00:38:27.742797Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:18.646750Z", - "iopub.status.busy": "2024-08-20T02:13:18.646452Z", - "iopub.status.idle": "2024-08-20T02:13:18.650757Z", - "shell.execute_reply": "2024-08-20T02:13:18.650211Z" + "iopub.execute_input": "2024-08-21T00:38:27.745348Z", + "iopub.status.busy": "2024-08-21T00:38:27.745054Z", + "iopub.status.idle": "2024-08-21T00:38:27.749349Z", + "shell.execute_reply": "2024-08-21T00:38:27.748910Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:18.653087Z", - "iopub.status.busy": "2024-08-20T02:13:18.652746Z", - "iopub.status.idle": "2024-08-20T02:13:18.659774Z", - "shell.execute_reply": "2024-08-20T02:13:18.659338Z" + "iopub.execute_input": "2024-08-21T00:38:27.751347Z", + "iopub.status.busy": "2024-08-21T00:38:27.751019Z", + "iopub.status.idle": "2024-08-21T00:38:27.759589Z", + "shell.execute_reply": "2024-08-21T00:38:27.759174Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:18.661673Z", - "iopub.status.busy": "2024-08-20T02:13:18.661496Z", - "iopub.status.idle": "2024-08-20T02:13:18.775965Z", - "shell.execute_reply": "2024-08-20T02:13:18.775376Z" + "iopub.execute_input": "2024-08-21T00:38:27.761623Z", + "iopub.status.busy": "2024-08-21T00:38:27.761294Z", + "iopub.status.idle": "2024-08-21T00:38:27.873862Z", + "shell.execute_reply": "2024-08-21T00:38:27.873367Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:18.778214Z", - "iopub.status.busy": "2024-08-20T02:13:18.777806Z", - "iopub.status.idle": "2024-08-20T02:13:18.780766Z", - "shell.execute_reply": "2024-08-20T02:13:18.780193Z" + "iopub.execute_input": "2024-08-21T00:38:27.876020Z", + "iopub.status.busy": "2024-08-21T00:38:27.875661Z", + "iopub.status.idle": "2024-08-21T00:38:27.878456Z", + "shell.execute_reply": "2024-08-21T00:38:27.877996Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:18.782931Z", - "iopub.status.busy": "2024-08-20T02:13:18.782591Z", - "iopub.status.idle": "2024-08-20T02:13:21.085811Z", - "shell.execute_reply": "2024-08-20T02:13:21.085149Z" + "iopub.execute_input": "2024-08-21T00:38:27.880370Z", + "iopub.status.busy": "2024-08-21T00:38:27.880037Z", + "iopub.status.idle": "2024-08-21T00:38:30.018806Z", + "shell.execute_reply": "2024-08-21T00:38:30.018038Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:21.088966Z", - "iopub.status.busy": "2024-08-20T02:13:21.088109Z", - "iopub.status.idle": "2024-08-20T02:13:21.100164Z", - "shell.execute_reply": "2024-08-20T02:13:21.099584Z" + "iopub.execute_input": "2024-08-21T00:38:30.022393Z", + "iopub.status.busy": "2024-08-21T00:38:30.021364Z", + "iopub.status.idle": "2024-08-21T00:38:30.033059Z", + "shell.execute_reply": "2024-08-21T00:38:30.032580Z" } }, "outputs": [ @@ -786,10 +786,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:21.102404Z", - "iopub.status.busy": "2024-08-20T02:13:21.102072Z", - "iopub.status.idle": "2024-08-20T02:13:21.144817Z", - "shell.execute_reply": "2024-08-20T02:13:21.144212Z" + "iopub.execute_input": "2024-08-21T00:38:30.035104Z", + "iopub.status.busy": "2024-08-21T00:38:30.034922Z", + "iopub.status.idle": "2024-08-21T00:38:30.076162Z", + "shell.execute_reply": "2024-08-21T00:38:30.075625Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/clean_learning/text.html b/master/tutorials/clean_learning/text.html index 4a0a588a5..c71da7fb6 100644 --- a/master/tutorials/clean_learning/text.html +++ b/master/tutorials/clean_learning/text.html @@ -817,7 +817,7 @@

      2. Load and format the text dataset
       This dataset has 10 classes.
      -Classes: {'card_payment_fee_charged', 'cancel_transfer', 'getting_spare_card', 'visa_or_mastercard', 'change_pin', 'card_about_to_expire', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'beneficiary_not_allowed'}
      +Classes: {'card_payment_fee_charged', 'getting_spare_card', 'cancel_transfer', 'change_pin', 'supported_cards_and_currencies', 'card_about_to_expire', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'visa_or_mastercard'}
       

      Let’s print the first example in the train set.

      @@ -880,43 +880,43 @@

      2. Load and format the text dataset
      -
      +
      -
      +
      -
      +
      -
      +
      -
      +
      -
      +
      -
      +
      @@ -1219,7 +1219,7 @@

      Spending too much time on data quality?Cleanlab Studio – an automated platform to find and fix issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. Try it for free!

      The modern AI pipeline automated with Cleanlab Studio

  • diff --git a/master/tutorials/clean_learning/text.ipynb b/master/tutorials/clean_learning/text.ipynb index b254946e7..39a2b9ea5 100644 --- a/master/tutorials/clean_learning/text.ipynb +++ b/master/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:25.297540Z", - "iopub.status.busy": "2024-08-20T02:13:25.297364Z", - "iopub.status.idle": "2024-08-20T02:13:29.014190Z", - "shell.execute_reply": "2024-08-20T02:13:29.013610Z" + "iopub.execute_input": "2024-08-21T00:38:33.330886Z", + "iopub.status.busy": "2024-08-21T00:38:33.330718Z", + "iopub.status.idle": "2024-08-21T00:38:36.484677Z", + "shell.execute_reply": "2024-08-21T00:38:36.484040Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:29.016881Z", - "iopub.status.busy": "2024-08-20T02:13:29.016376Z", - "iopub.status.idle": "2024-08-20T02:13:29.019927Z", - "shell.execute_reply": "2024-08-20T02:13:29.019442Z" + "iopub.execute_input": "2024-08-21T00:38:36.487289Z", + "iopub.status.busy": "2024-08-21T00:38:36.486833Z", + "iopub.status.idle": "2024-08-21T00:38:36.490269Z", + "shell.execute_reply": "2024-08-21T00:38:36.489799Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:29.022049Z", - "iopub.status.busy": "2024-08-20T02:13:29.021711Z", - "iopub.status.idle": "2024-08-20T02:13:29.025287Z", - "shell.execute_reply": "2024-08-20T02:13:29.024806Z" + "iopub.execute_input": "2024-08-21T00:38:36.492216Z", + "iopub.status.busy": "2024-08-21T00:38:36.491870Z", + "iopub.status.idle": "2024-08-21T00:38:36.494763Z", + "shell.execute_reply": "2024-08-21T00:38:36.494336Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:29.027335Z", - "iopub.status.busy": "2024-08-20T02:13:29.026994Z", - "iopub.status.idle": "2024-08-20T02:13:29.075882Z", - "shell.execute_reply": "2024-08-20T02:13:29.075323Z" + "iopub.execute_input": "2024-08-21T00:38:36.496912Z", + "iopub.status.busy": "2024-08-21T00:38:36.496575Z", + "iopub.status.idle": "2024-08-21T00:38:36.571627Z", + "shell.execute_reply": "2024-08-21T00:38:36.571055Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:29.078179Z", - "iopub.status.busy": "2024-08-20T02:13:29.077812Z", - "iopub.status.idle": "2024-08-20T02:13:29.081326Z", - "shell.execute_reply": "2024-08-20T02:13:29.080863Z" + "iopub.execute_input": "2024-08-21T00:38:36.573906Z", + "iopub.status.busy": "2024-08-21T00:38:36.573550Z", + "iopub.status.idle": "2024-08-21T00:38:36.577167Z", + "shell.execute_reply": "2024-08-21T00:38:36.576719Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:29.083377Z", - "iopub.status.busy": "2024-08-20T02:13:29.083026Z", - "iopub.status.idle": "2024-08-20T02:13:29.086409Z", - "shell.execute_reply": "2024-08-20T02:13:29.085871Z" + "iopub.execute_input": "2024-08-21T00:38:36.579100Z", + "iopub.status.busy": "2024-08-21T00:38:36.578767Z", + "iopub.status.idle": "2024-08-21T00:38:36.581977Z", + "shell.execute_reply": "2024-08-21T00:38:36.581476Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_payment_fee_charged', 'cancel_transfer', 'getting_spare_card', 'visa_or_mastercard', 'change_pin', 'card_about_to_expire', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'beneficiary_not_allowed'}\n" + "Classes: {'card_payment_fee_charged', 'getting_spare_card', 'cancel_transfer', 'change_pin', 'supported_cards_and_currencies', 'card_about_to_expire', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'visa_or_mastercard'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:29.088580Z", - "iopub.status.busy": "2024-08-20T02:13:29.088248Z", - "iopub.status.idle": "2024-08-20T02:13:29.091546Z", - "shell.execute_reply": "2024-08-20T02:13:29.091076Z" + "iopub.execute_input": "2024-08-21T00:38:36.584048Z", + "iopub.status.busy": "2024-08-21T00:38:36.583623Z", + "iopub.status.idle": "2024-08-21T00:38:36.586832Z", + "shell.execute_reply": "2024-08-21T00:38:36.586300Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:29.093715Z", - "iopub.status.busy": "2024-08-20T02:13:29.093277Z", - "iopub.status.idle": "2024-08-20T02:13:29.096626Z", - "shell.execute_reply": "2024-08-20T02:13:29.096091Z" + "iopub.execute_input": "2024-08-21T00:38:36.589029Z", + "iopub.status.busy": "2024-08-21T00:38:36.588703Z", + "iopub.status.idle": "2024-08-21T00:38:36.591835Z", + "shell.execute_reply": "2024-08-21T00:38:36.591373Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:29.098647Z", - "iopub.status.busy": "2024-08-20T02:13:29.098331Z", - "iopub.status.idle": "2024-08-20T02:13:33.247807Z", - "shell.execute_reply": "2024-08-20T02:13:33.247159Z" + "iopub.execute_input": "2024-08-21T00:38:36.593876Z", + "iopub.status.busy": "2024-08-21T00:38:36.593536Z", + "iopub.status.idle": "2024-08-21T00:38:40.983007Z", + "shell.execute_reply": "2024-08-21T00:38:40.982346Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "93bc055fa52a41b2950890a95f668b90", + "model_id": "dd7949c1606c4f2e812fdd8feba321ae", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "096dc29eb7324ce69b2cb344b4ffa096", + "model_id": "2b46b6b742b140a6ae76b5e2138240c1", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3ed05c40d2fa482887cb58e68a24a7dd", + "model_id": "a2aeb2f3cd514c72a5ef14cb7caf2cc3", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "351e2dae192e4a1fb0d9836dae7b8263", + "model_id": "f51effc7e938409b8c53ba4884203b53", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a6b32367c5e54c2abfe2fcac9a3c9e2e", + "model_id": "a784357269da4d7db70a9fe43b14d88d", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fa8ed40b26114425b8c9bbaac37e63ea", + "model_id": "fa72872e9a97455ebab3643b242d3ade", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "070d5eb5eaaf422c8c695692525cfd41", + "model_id": "9666e98df47f4be0bdfdd8df4312620a", "version_major": 2, "version_minor": 0 }, @@ -601,10 +601,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:33.250914Z", - "iopub.status.busy": "2024-08-20T02:13:33.250501Z", - "iopub.status.idle": "2024-08-20T02:13:33.253597Z", - "shell.execute_reply": "2024-08-20T02:13:33.253018Z" + "iopub.execute_input": "2024-08-21T00:38:40.985911Z", + "iopub.status.busy": "2024-08-21T00:38:40.985496Z", + "iopub.status.idle": "2024-08-21T00:38:40.988485Z", + "shell.execute_reply": "2024-08-21T00:38:40.987985Z" } }, "outputs": [], @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:33.255841Z", - "iopub.status.busy": "2024-08-20T02:13:33.255514Z", - "iopub.status.idle": "2024-08-20T02:13:33.258329Z", - "shell.execute_reply": "2024-08-20T02:13:33.257788Z" + "iopub.execute_input": "2024-08-21T00:38:40.990478Z", + "iopub.status.busy": "2024-08-21T00:38:40.990142Z", + "iopub.status.idle": "2024-08-21T00:38:40.992691Z", + "shell.execute_reply": "2024-08-21T00:38:40.992245Z" } }, "outputs": [], @@ -644,10 +644,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:33.260492Z", - "iopub.status.busy": "2024-08-20T02:13:33.260148Z", - "iopub.status.idle": "2024-08-20T02:13:36.104497Z", - "shell.execute_reply": "2024-08-20T02:13:36.103793Z" + "iopub.execute_input": "2024-08-21T00:38:40.994652Z", + "iopub.status.busy": "2024-08-21T00:38:40.994313Z", + "iopub.status.idle": "2024-08-21T00:38:43.738218Z", + "shell.execute_reply": "2024-08-21T00:38:43.737407Z" }, "scrolled": true }, @@ -670,10 +670,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:36.107815Z", - "iopub.status.busy": "2024-08-20T02:13:36.106954Z", - "iopub.status.idle": "2024-08-20T02:13:36.115772Z", - "shell.execute_reply": "2024-08-20T02:13:36.115327Z" + "iopub.execute_input": "2024-08-21T00:38:43.741629Z", + "iopub.status.busy": "2024-08-21T00:38:43.740827Z", + "iopub.status.idle": "2024-08-21T00:38:43.749086Z", + "shell.execute_reply": "2024-08-21T00:38:43.748390Z" } }, "outputs": [ @@ -774,10 +774,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:36.117946Z", - "iopub.status.busy": "2024-08-20T02:13:36.117600Z", - "iopub.status.idle": "2024-08-20T02:13:36.121612Z", - "shell.execute_reply": "2024-08-20T02:13:36.121061Z" + "iopub.execute_input": "2024-08-21T00:38:43.751277Z", + "iopub.status.busy": "2024-08-21T00:38:43.750964Z", + "iopub.status.idle": "2024-08-21T00:38:43.755023Z", + "shell.execute_reply": "2024-08-21T00:38:43.754558Z" } }, "outputs": [], @@ -791,10 +791,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:36.123613Z", - "iopub.status.busy": "2024-08-20T02:13:36.123260Z", - "iopub.status.idle": "2024-08-20T02:13:36.126649Z", - "shell.execute_reply": "2024-08-20T02:13:36.126178Z" + "iopub.execute_input": "2024-08-21T00:38:43.756945Z", + "iopub.status.busy": "2024-08-21T00:38:43.756770Z", + "iopub.status.idle": "2024-08-21T00:38:43.759896Z", + "shell.execute_reply": "2024-08-21T00:38:43.759379Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:36.128813Z", - "iopub.status.busy": "2024-08-20T02:13:36.128480Z", - "iopub.status.idle": "2024-08-20T02:13:36.131316Z", - "shell.execute_reply": "2024-08-20T02:13:36.130829Z" + "iopub.execute_input": "2024-08-21T00:38:43.761950Z", + "iopub.status.busy": "2024-08-21T00:38:43.761678Z", + "iopub.status.idle": "2024-08-21T00:38:43.764518Z", + "shell.execute_reply": "2024-08-21T00:38:43.764042Z" } }, "outputs": [], @@ -852,10 +852,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:36.133349Z", - "iopub.status.busy": "2024-08-20T02:13:36.132994Z", - "iopub.status.idle": "2024-08-20T02:13:36.140010Z", - "shell.execute_reply": "2024-08-20T02:13:36.139442Z" + "iopub.execute_input": "2024-08-21T00:38:43.766493Z", + "iopub.status.busy": "2024-08-21T00:38:43.766165Z", + "iopub.status.idle": "2024-08-21T00:38:43.772969Z", + "shell.execute_reply": "2024-08-21T00:38:43.772387Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:36.142361Z", - "iopub.status.busy": "2024-08-20T02:13:36.141945Z", - "iopub.status.idle": "2024-08-20T02:13:36.372901Z", - "shell.execute_reply": "2024-08-20T02:13:36.372301Z" + "iopub.execute_input": "2024-08-21T00:38:43.775162Z", + "iopub.status.busy": "2024-08-21T00:38:43.774838Z", + "iopub.status.idle": "2024-08-21T00:38:44.072927Z", + "shell.execute_reply": "2024-08-21T00:38:44.072374Z" }, "scrolled": true }, @@ -1022,10 +1022,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:36.375451Z", - "iopub.status.busy": "2024-08-20T02:13:36.375077Z", - "iopub.status.idle": "2024-08-20T02:13:36.552406Z", - "shell.execute_reply": "2024-08-20T02:13:36.551800Z" + "iopub.execute_input": "2024-08-21T00:38:44.075707Z", + "iopub.status.busy": "2024-08-21T00:38:44.075253Z", + "iopub.status.idle": "2024-08-21T00:38:44.251092Z", + "shell.execute_reply": "2024-08-21T00:38:44.250553Z" }, "scrolled": true }, @@ -1073,10 +1073,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:36.556115Z", - "iopub.status.busy": "2024-08-20T02:13:36.555126Z", - "iopub.status.idle": "2024-08-20T02:13:36.560262Z", - "shell.execute_reply": "2024-08-20T02:13:36.559741Z" + "iopub.execute_input": "2024-08-21T00:38:44.254586Z", + "iopub.status.busy": "2024-08-21T00:38:44.253624Z", + "iopub.status.idle": "2024-08-21T00:38:44.258696Z", + "shell.execute_reply": "2024-08-21T00:38:44.258173Z" }, "nbsphinx": "hidden" }, @@ -1120,7 +1120,48 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "055fe0a871fb4fe69018452ce7ef5c3c": { + "0beeef95ca324819a7a556186f580722": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "158ccfd001f14e3da9a25d5a214f783e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_21b06630011d4efe81774b80b927c745", + "placeholder": "​", + "style": "IPY_MODEL_93cbee914adc41baacab2106dc363b75", + "tabbable": null, + "tooltip": null, + "value": " 665/665 [00:00<00:00, 117kB/s]" + } + }, + "19250e9d6c9947d09b9bfbeb50926001": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1136,17 +1177,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9270c50c5efa4e73b36d67ce95825802", + "layout": "IPY_MODEL_1b41edd805ad445eb0f5d0831783323a", "max": 231508.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_6f1e3fd08d7e49758f58d1752ffe4506", + "style": "IPY_MODEL_f511493f3ab646a1b4dba9af4c42c8de", "tabbable": null, "tooltip": null, "value": 231508.0 } }, - "06d8e9ace4414941a2f9050fd9b087d0": { + "1b41edd805ad445eb0f5d0831783323a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1199,55 +1240,53 @@ "width": null } }, - "070d5eb5eaaf422c8c695692525cfd41": { + "1d30b41605514cd481da76c57107f813": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1df0589734f34233a25b061eb3cd7589", - "IPY_MODEL_055fe0a871fb4fe69018452ce7ef5c3c", - "IPY_MODEL_f8f8eb266dd44a3588b219743907bdd3" - ], - "layout": "IPY_MODEL_d971caad58e9427690646f301f850142", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d3b31f2e0d674aacb8cce39b53fbed99", + "placeholder": "​", + "style": "IPY_MODEL_bbb892f672564c5c8bc7d97066da021f", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 232k/232k [00:00<00:00, 34.9MB/s]" } }, - "096dc29eb7324ce69b2cb344b4ffa096": { + "1d351ae497ba4a6a9a7333770b580cca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_462e69ae51b343eba287cad86bc5076b", - "IPY_MODEL_38d74b8c997e40618da499009bb9dcf0", - "IPY_MODEL_8fa0b5f9fe9b44c5b5606ed89058b164" - ], - "layout": "IPY_MODEL_3f95be06bdf04a2ab5bd89d34dfeb3ac", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d067da44214046a494a3659a9e95a325", + "placeholder": "​", + "style": "IPY_MODEL_6dc917b97bdb41058359a47d94e76071", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "config.json: 100%" } }, - "0c1ac714c1eb422c8d40a852a85687f5": { + "1df5b5316b4547588a5ba15f4cdec67a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1265,7 +1304,7 @@ "text_color": null } }, - "0d5eb2260d5e476bace523b656bc860e": { + "21b06630011d4efe81774b80b927c745": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1318,43 +1357,80 @@ "width": null } }, - "125ddc26f8d94c6ba61435beeb355723": { + "27a0979c3b0b4624a8afe6c2dc1ec2d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7595399bc472490d85458281c465641f", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ec10f7becdbe4cf997fdea1c08e44754", + "tabbable": null, + "tooltip": null, + "value": 54245363.0 } }, - "15993cbf756a49a5982d962cee0b574f": { + "2a7a44c14ea148f082d747e6d1175fd6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e7108d0894614578b3bbd0612b46dcb9", + "placeholder": "​", + "style": "IPY_MODEL_3cc7860d1a8847fb9ceaa31af5c8b85e", + "tabbable": null, + "tooltip": null, + "value": "README.md: 100%" + } + }, + "2b46b6b742b140a6ae76b5e2138240c1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2a7a44c14ea148f082d747e6d1175fd6", + "IPY_MODEL_f55cebe4efbd4e5291f7c4d622337a8d", + "IPY_MODEL_54607978dd894f50a9c66659d30a2cfb" + ], + "layout": "IPY_MODEL_66ac216a08344aabb72d1bdbc1426ce7", + "tabbable": null, + "tooltip": null } }, - "19bb266885174e60beef1fb21c4e3a2c": { + "31e4e23f7a724aee83c3f9014ded48a4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1407,7 +1483,7 @@ "width": null } }, - "1ab3092c6783490a9bdb16babf07fd46": { + "361fc2e3afea4a68b9056eb4dd0a4726": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1460,7 +1536,7 @@ "width": null } }, - "1c5b68b428214f388edb6131cc0744d2": { + "3c668a3af1b9482fb5ddbd7607dc2c4b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1513,7 +1589,25 @@ "width": null } }, - "1df0589734f34233a25b061eb3cd7589": { + "3cc7860d1a8847fb9ceaa31af5c8b85e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "42eff919e9224a989452da87a6b3f408": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1528,31 +1622,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1c5b68b428214f388edb6131cc0744d2", + "layout": "IPY_MODEL_361fc2e3afea4a68b9056eb4dd0a4726", "placeholder": "​", - "style": "IPY_MODEL_8ca36d8deb584cbb813a8123a14b6d04", + "style": "IPY_MODEL_9a8e230d18e942bbbe8e577ab2572d54", "tabbable": null, "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "203790a6cedf410885567e30e5973908": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": " 54.2M/54.2M [00:00<00:00, 250MB/s]" } }, - "25ba5f2768f040e694d64167cb091089": { + "454b081196074307babc5ac26cedcb17": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1605,7 +1683,30 @@ "width": null } }, - "25fd591522ef47b8b215fd29648c5cd1": { + "45bb8af29d514e1ca3077bd339847441": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_70d73a10a88c449eb4c7e850319c95d7", + "placeholder": "​", + "style": "IPY_MODEL_b7212be11d7f4e3fa91c6f198ca26e41", + "tabbable": null, + "tooltip": null, + "value": " 391/391 [00:00<00:00, 68.9kB/s]" + } + }, + "4f283715a49a487bbbf2179b1e5a7033": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1658,7 +1759,46 @@ "width": null } }, - "29c7eb8b49724d3784c6f19b345ece5e": { + "51f42d4da1de4dd2ae98854954be49c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "54607978dd894f50a9c66659d30a2cfb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b950216a348043a7aa40347788264a75", + "placeholder": "​", + "style": "IPY_MODEL_781e7291545c4881ae262f0919404a6b", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 368kB/s]" + } + }, + "57e644a3c8ce4cf48d2f169eace3fa3a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1711,7 +1851,25 @@ "width": null } }, - "2ad837c31e9647afa48b039f653329f4": { + "5b1639e93af346bd8e8c439110ca6efc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5bb5ecf96f614583b184a132a8cddd67": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1764,7 +1922,7 @@ "width": null } }, - "33faf72dbeab42f39db9d5b29f766224": { + "5d7c2640d8dd47be8bd7c9e8d9a69ebd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1817,64 +1975,32 @@ "width": null } }, - "351e2dae192e4a1fb0d9836dae7b8263": { + "66767b1724ac4703b12d16f84a4cba0a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9012315606e641e09944f19a77e95f03", - "IPY_MODEL_505fbcb71d64462292649e2e6e5b7116", - "IPY_MODEL_72c07457d97b413a9aa0258c8a4056d3" - ], - "layout": "IPY_MODEL_4f9b471d669e4044a43a70f9d3f81f52", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "38d74b8c997e40618da499009bb9dcf0": { - "model_module": "@jupyter-widgets/controls", + "66ac216a08344aabb72d1bdbc1426ce7": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_603677c42e6b4a17b3534bfea893e667", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_606071c94b514c5f904fd8bb03a67993", - "tabbable": null, - "tooltip": null, - "value": 2211.0 - } - }, - "3b60d197e93c403cb561846fa3f2653b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -1920,7 +2046,67 @@ "width": null } }, - "3bc94c95bc2d4b05af5dc6fe44a750e4": { + "6ac348d6f4a64d23bbd9fbc5e19c74cf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6dc917b97bdb41058359a47d94e76071": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6f5402708f3b48fda19991f4e0cbc285": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_454b081196074307babc5ac26cedcb17", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_74b536f043ac489093685989b7bac63a", + "tabbable": null, + "tooltip": null, + "value": 466062.0 + } + }, + "70d73a10a88c449eb4c7e850319c95d7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1973,31 +2159,23 @@ "width": null } }, - "3ed05c40d2fa482887cb58e68a24a7dd": { + "74b536f043ac489093685989b7bac63a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b583f2bf47524b2d99ace6e275987a00", - "IPY_MODEL_8b877c5b2d3d43d4831ce4957d102b18", - "IPY_MODEL_9b5ea5d8f654466a8d0a0ae39180c525" - ], - "layout": "IPY_MODEL_e24a2604a9284f809556d07371b12d3b", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "3f95be06bdf04a2ab5bd89d34dfeb3ac": { + "7595399bc472490d85458281c465641f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2050,7 +2228,7 @@ "width": null } }, - "446c89b162a946aba088e8762ebaffcb": { + "77d0d8f9997f41d89095165700b42e52": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2103,30 +2281,43 @@ "width": null } }, - "462e69ae51b343eba287cad86bc5076b": { + "781e7291545c4881ae262f0919404a6b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0d5eb2260d5e476bace523b656bc860e", - "placeholder": "​", - "style": "IPY_MODEL_6fd4625560d3453c9ad9b5d19a9165c9", - "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "78dc0d8767684affb9a0a7fde2150c86": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "496d004c2bcc498bbab9236991f1cd34": { + "82cd7d5ad59a4e93986b0176899180c0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2179,7 +2370,7 @@ "width": null } }, - "4974fdd808714a78b41e1228b0ec3bcb": { + "838b2be1e012438ca6645ca329338643": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2194,15 +2385,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_651b54415d8c4d63ba1c6016cc36f0d2", + "layout": "IPY_MODEL_85dfc83db7c948b49c6ba5d73bb5257a", "placeholder": "​", - "style": "IPY_MODEL_53e4c3a230a34a8cb58694aa13076508", + "style": "IPY_MODEL_ededc57012f14706bbd511a0761b23a1", "tabbable": null, "tooltip": null, "value": ".gitattributes: 100%" } }, - "4a633e12f6354ffe96dbcd44a31e8ac8": { + "857f13dc0af84e3292118114e5bd84a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2255,7 +2446,7 @@ "width": null } }, - "4f9b471d669e4044a43a70f9d3f81f52": { + "85dfc83db7c948b49c6ba5d73bb5257a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2308,7 +2499,7 @@ "width": null } }, - "505fbcb71d64462292649e2e6e5b7116": { + "8ff6495e5038419baf3675d133ba0cdb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2324,33 +2515,85 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_25ba5f2768f040e694d64167cb091089", - "max": 54245363.0, + "layout": "IPY_MODEL_ba48eeb492c640688669b8135ebfbb60", + "max": 665.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_203790a6cedf410885567e30e5973908", + "style": "IPY_MODEL_f001cf510b4b4f0e8a559b6b483cab37", "tabbable": null, "tooltip": null, - "value": 54245363.0 + "value": 665.0 } }, - "5390eef7a0394e93b0b475f0e307470f": { + "93cbee914adc41baacab2106dc363b75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "94a72e1b64754253b3e149a07b6c48f6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b95501d2323f47b4b85a2ebc38ec7cc8", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_51f42d4da1de4dd2ae98854954be49c0", + "tabbable": null, + "tooltip": null, + "value": 48.0 + } + }, + "9666e98df47f4be0bdfdd8df4312620a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_effea0613b8f42ec8891770db2348844", + "IPY_MODEL_19250e9d6c9947d09b9bfbeb50926001", + "IPY_MODEL_1d30b41605514cd481da76c57107f813" + ], + "layout": "IPY_MODEL_e2be676963f549bbb39b03e04de781d0", + "tabbable": null, + "tooltip": null } }, - "53e4c3a230a34a8cb58694aa13076508": { + "9a8e230d18e942bbbe8e577ab2572d54": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2368,7 +2611,7 @@ "text_color": null } }, - "603677c42e6b4a17b3534bfea893e667": { + "9d2470607e264898993ea7dc32a16baa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2421,23 +2664,7 @@ "width": null } }, - "606071c94b514c5f904fd8bb03a67993": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "651b54415d8c4d63ba1c6016cc36f0d2": { + "a0db5196a81d47b18fd7775dceedb14c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2490,116 +2717,84 @@ "width": null } }, - "688d3eff390048b581743548dcdfdd75": { + "a2aeb2f3cd514c72a5ef14cb7caf2cc3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1d351ae497ba4a6a9a7333770b580cca", + "IPY_MODEL_8ff6495e5038419baf3675d133ba0cdb", + "IPY_MODEL_158ccfd001f14e3da9a25d5a214f783e" + ], + "layout": "IPY_MODEL_e29d931c6e154278aaa9b46261cd52e0", + "tabbable": null, + "tooltip": null } }, - "6f1e3fd08d7e49758f58d1752ffe4506": { + "a62613b338474d69bef94c0124c72c31": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3c668a3af1b9482fb5ddbd7607dc2c4b", + "placeholder": "​", + "style": "IPY_MODEL_0beeef95ca324819a7a556186f580722", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 8.38kB/s]" } }, - "6fd4625560d3453c9ad9b5d19a9165c9": { + "a784357269da4d7db70a9fe43b14d88d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e87a592e65bb4bd288ff9c63593434b1", + "IPY_MODEL_6f5402708f3b48fda19991f4e0cbc285", + "IPY_MODEL_b361bf71e73747b5a80566e7db142419" + ], + "layout": "IPY_MODEL_4f283715a49a487bbbf2179b1e5a7033", + "tabbable": null, + "tooltip": null } }, - "724f5f6802da4499a4650b4543c536f4": { - "model_module": "@jupyter-widgets/base", + "acc01238884e40b3bb29f87d9d349622": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "72c07457d97b413a9aa0258c8a4056d3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, @@ -2608,77 +2803,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3bc94c95bc2d4b05af5dc6fe44a750e4", + "layout": "IPY_MODEL_f6147bf6692346939408087d6307a178", "placeholder": "​", - "style": "IPY_MODEL_7ab55b457ba74a8b89d6e37c517a13c0", + "style": "IPY_MODEL_1df5b5316b4547588a5ba15f4cdec67a", "tabbable": null, "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 240MB/s]" - } - }, - "7ab55b457ba74a8b89d6e37c517a13c0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "884e29bf23f94c21b4aecf51f0867189": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "pytorch_model.bin: 100%" } }, - "8b877c5b2d3d43d4831ce4957d102b18": { + "b361bf71e73747b5a80566e7db142419": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3b60d197e93c403cb561846fa3f2653b", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_de85a78397a44e1eb89ce127ccc566e4", + "layout": "IPY_MODEL_9d2470607e264898993ea7dc32a16baa", + "placeholder": "​", + "style": "IPY_MODEL_c9cecbfe69154a548a57ce29f1006d16", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": " 466k/466k [00:00<00:00, 11.7MB/s]" } }, - "8ca36d8deb584cbb813a8123a14b6d04": { + "b7212be11d7f4e3fa91c6f198ca26e41": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2696,69 +2852,60 @@ "text_color": null } }, - "8d86bd407df244d6a97581777c4d5ef9": { - "model_module": "@jupyter-widgets/controls", + "b950216a348043a7aa40347788264a75": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8fa0b5f9fe9b44c5b5606ed89058b164": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_25fd591522ef47b8b215fd29648c5cd1", - "placeholder": "​", - "style": "IPY_MODEL_e45055d337d34745bacc0a8dd560049b", - "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 388kB/s]" - } - }, - "9012315606e641e09944f19a77e95f03": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bd346b97c993472ca93984fa93b6ccf3", - "placeholder": "​", - "style": "IPY_MODEL_acf4af1c3658460d8866be9503588bbf", - "tabbable": null, - "tooltip": null, - "value": "pytorch_model.bin: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "9270c50c5efa4e73b36d67ce95825802": { + "b95501d2323f47b4b85a2ebc38ec7cc8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2811,119 +2958,60 @@ "width": null } }, - "93bc055fa52a41b2950890a95f668b90": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4974fdd808714a78b41e1228b0ec3bcb", - "IPY_MODEL_cc7c83236be140a48a5a4bed2bd58372", - "IPY_MODEL_ca9dcf0779564768960bd9b26164a352" - ], - "layout": "IPY_MODEL_4a633e12f6354ffe96dbcd44a31e8ac8", - "tabbable": null, - "tooltip": null - } - }, - "9b5ea5d8f654466a8d0a0ae39180c525": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_29c7eb8b49724d3784c6f19b345ece5e", - "placeholder": "​", - "style": "IPY_MODEL_b0a8f103a79243a292ee19dff070fa38", - "tabbable": null, - "tooltip": null, - "value": " 665/665 [00:00<00:00, 123kB/s]" - } - }, - "a2853c22d7664841a79cd40be6c46b73": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_446c89b162a946aba088e8762ebaffcb", - "placeholder": "​", - "style": "IPY_MODEL_125ddc26f8d94c6ba61435beeb355723", - "tabbable": null, - "tooltip": null, - "value": "tokenizer.json: 100%" - } - }, - "a6b32367c5e54c2abfe2fcac9a3c9e2e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a2853c22d7664841a79cd40be6c46b73", - "IPY_MODEL_d03a29877b5943248ffddffd7668b588", - "IPY_MODEL_e314cffd1c164e16bf13ea0fc5493cdc" - ], - "layout": "IPY_MODEL_e584cdb684314e6f90939eb3185e7fb4", - "tabbable": null, - "tooltip": null - } - }, - "ace83bdc38ef437eaad216ba35b70e1a": { - "model_module": "@jupyter-widgets/controls", + "ba48eeb492c640688669b8135ebfbb60": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "acf4af1c3658460d8866be9503588bbf": { + "bbb892f672564c5c8bc7d97066da021f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2941,7 +3029,7 @@ "text_color": null } }, - "b0a8f103a79243a292ee19dff070fa38": { + "c9cecbfe69154a548a57ce29f1006d16": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2959,7 +3047,7 @@ "text_color": null } }, - "b583f2bf47524b2d99ace6e275987a00": { + "ca9ad702b48c471b83a43526355229ac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2974,15 +3062,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c767d2b8739942ecaf0c88b59f62a2fe", + "layout": "IPY_MODEL_857f13dc0af84e3292118114e5bd84a3", "placeholder": "​", - "style": "IPY_MODEL_0c1ac714c1eb422c8d40a852a85687f5", + "style": "IPY_MODEL_5b1639e93af346bd8e8c439110ca6efc", "tabbable": null, "tooltip": null, - "value": "config.json: 100%" + "value": "tokenizer_config.json: 100%" } }, - "bd346b97c993472ca93984fa93b6ccf3": { + "d067da44214046a494a3659a9e95a325": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3035,30 +3123,7 @@ "width": null } }, - "bef4cc84da664d0aa4f74611b6e8ac48": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_496d004c2bcc498bbab9236991f1cd34", - "placeholder": "​", - "style": "IPY_MODEL_ace83bdc38ef437eaad216ba35b70e1a", - "tabbable": null, - "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 8.80kB/s]" - } - }, - "c767d2b8739942ecaf0c88b59f62a2fe": { + "d3b31f2e0d674aacb8cce39b53fbed99": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3111,149 +3176,84 @@ "width": null } }, - "c939ec3f4eb6467bbdec24238589ab4a": { + "dd7949c1606c4f2e812fdd8feba321ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2ad837c31e9647afa48b039f653329f4", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5390eef7a0394e93b0b475f0e307470f", - "tabbable": null, - "tooltip": null, - "value": 48.0 - } - }, - "ca9dcf0779564768960bd9b26164a352": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f1309e9c55d64d16b1857a0bccb11007", - "placeholder": "​", - "style": "IPY_MODEL_d6e7cdc9da4b4b088b83d9af59517869", - "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 63.3kB/s]" - } - }, - "cc7c83236be140a48a5a4bed2bd58372": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f5088a4eecc24ca49a90cff133bec2b5", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8d86bd407df244d6a97581777c4d5ef9", - "tabbable": null, - "tooltip": null, - "value": 391.0 - } - }, - "d03a29877b5943248ffddffd7668b588": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_33faf72dbeab42f39db9d5b29f766224", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_688d3eff390048b581743548dcdfdd75", - "tabbable": null, - "tooltip": null, - "value": 466062.0 - } - }, - "d0ec19cffc274551b3741d23ed4f19f4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_724f5f6802da4499a4650b4543c536f4", - "placeholder": "​", - "style": "IPY_MODEL_884e29bf23f94c21b4aecf51f0867189", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_838b2be1e012438ca6645ca329338643", + "IPY_MODEL_fe9f4e2c5a23427f9f5a782e1d11a974", + "IPY_MODEL_45bb8af29d514e1ca3077bd339847441" + ], + "layout": "IPY_MODEL_82cd7d5ad59a4e93986b0176899180c0", "tabbable": null, - "tooltip": null, - "value": "tokenizer_config.json: 100%" + "tooltip": null } }, - "d6e7cdc9da4b4b088b83d9af59517869": { - "model_module": "@jupyter-widgets/controls", + "e29d931c6e154278aaa9b46261cd52e0": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "d971caad58e9427690646f301f850142": { + "e2be676963f549bbb39b03e04de781d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3306,23 +3306,7 @@ "width": null } }, - "de85a78397a44e1eb89ce127ccc566e4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e24a2604a9284f809556d07371b12d3b": { + "e7108d0894614578b3bbd0612b46dcb9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3375,7 +3359,7 @@ "width": null } }, - "e314cffd1c164e16bf13ea0fc5493cdc": { + "e87a592e65bb4bd288ff9c63593434b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3390,15 +3374,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1ab3092c6783490a9bdb16babf07fd46", + "layout": "IPY_MODEL_57e644a3c8ce4cf48d2f169eace3fa3a", "placeholder": "​", - "style": "IPY_MODEL_eee849d11d6649019d0a89774aa24040", + "style": "IPY_MODEL_66767b1724ac4703b12d16f84a4cba0a", "tabbable": null, "tooltip": null, - "value": " 466k/466k [00:00<00:00, 15.6MB/s]" + "value": "tokenizer.json: 100%" + } + }, + "ec10f7becdbe4cf997fdea1c08e44754": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "e45055d337d34745bacc0a8dd560049b": { + "ededc57012f14706bbd511a0761b23a1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3416,131 +3416,128 @@ "text_color": null } }, - "e584cdb684314e6f90939eb3185e7fb4": { - "model_module": "@jupyter-widgets/base", + "effea0613b8f42ec8891770db2348844": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5d7c2640d8dd47be8bd7c9e8d9a69ebd", + "placeholder": "​", + "style": "IPY_MODEL_78dc0d8767684affb9a0a7fde2150c86", + "tabbable": null, + "tooltip": null, + "value": "vocab.txt: 100%" + } + }, + "f001cf510b4b4f0e8a559b6b483cab37": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "eee849d11d6649019d0a89774aa24040": { + "f287da3709284494862bdb1092c48724": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "f1309e9c55d64d16b1857a0bccb11007": { - "model_module": "@jupyter-widgets/base", + "f511493f3ab646a1b4dba9af4c42c8de": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f51effc7e938409b8c53ba4884203b53": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_acc01238884e40b3bb29f87d9d349622", + "IPY_MODEL_27a0979c3b0b4624a8afe6c2dc1ec2d4", + "IPY_MODEL_42eff919e9224a989452da87a6b3f408" + ], + "layout": "IPY_MODEL_77d0d8f9997f41d89095165700b42e52", + "tabbable": null, + "tooltip": null + } + }, + "f55cebe4efbd4e5291f7c4d622337a8d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5bb5ecf96f614583b184a132a8cddd67", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f287da3709284494862bdb1092c48724", + "tabbable": null, + "tooltip": null, + "value": 2211.0 } }, - "f5088a4eecc24ca49a90cff133bec2b5": { + "f6147bf6692346939408087d6307a178": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3593,51 +3590,54 @@ "width": null } }, - "f8f8eb266dd44a3588b219743907bdd3": { + "fa72872e9a97455ebab3643b242d3ade": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_19bb266885174e60beef1fb21c4e3a2c", - "placeholder": "​", - "style": "IPY_MODEL_15993cbf756a49a5982d962cee0b574f", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ca9ad702b48c471b83a43526355229ac", + "IPY_MODEL_94a72e1b64754253b3e149a07b6c48f6", + "IPY_MODEL_a62613b338474d69bef94c0124c72c31" + ], + "layout": "IPY_MODEL_a0db5196a81d47b18fd7775dceedb14c", "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 22.5MB/s]" + "tooltip": null } }, - "fa8ed40b26114425b8c9bbaac37e63ea": { + "fe9f4e2c5a23427f9f5a782e1d11a974": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d0ec19cffc274551b3741d23ed4f19f4", - "IPY_MODEL_c939ec3f4eb6467bbdec24238589ab4a", - "IPY_MODEL_bef4cc84da664d0aa4f74611b6e8ac48" - ], - "layout": "IPY_MODEL_06d8e9ace4414941a2f9050fd9b087d0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_31e4e23f7a724aee83c3f9014ded48a4", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6ac348d6f4a64d23bbd9fbc5e19c74cf", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 391.0 } } }, diff --git a/master/tutorials/datalab/audio.html b/master/tutorials/datalab/audio.html index 3845b6377..590dbc03e 100644 --- a/master/tutorials/datalab/audio.html +++ b/master/tutorials/datalab/audio.html @@ -1347,7 +1347,7 @@

    5. Use cleanlab to find label issues -{"state": {"1f12fa55c4fc4be0bc20fbba411da2e9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1f896e7e51434d7b86c65a7bf32571e8": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a260e435697f413bb8fd9fe4034f5f14": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1f12fa55c4fc4be0bc20fbba411da2e9", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1f896e7e51434d7b86c65a7bf32571e8", "tabbable": null, "tooltip": null, "value": 2041.0}}, "7b255d9953714b26b929e1a88de1ee98": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b55e22275bc048308d11871dd0e4d89f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0ae382b560ee4c38ba6b76d39f6e5a52": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7b255d9953714b26b929e1a88de1ee98", "placeholder": "\u200b", "style": "IPY_MODEL_b55e22275bc048308d11871dd0e4d89f", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "70b99bb1eb654ba58bcbe9099f0adb46": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7af4fae1c62540258d593c548fe8266a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b8f2e16fd63742e884a5382ff528fdad": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_70b99bb1eb654ba58bcbe9099f0adb46", "placeholder": "\u200b", "style": "IPY_MODEL_7af4fae1c62540258d593c548fe8266a", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007455kB/s]"}}, "f86c417e8b0248bfbe0158e3b80d68c5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bb1597d0d870452985978f3cacca9fdf": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0ae382b560ee4c38ba6b76d39f6e5a52", "IPY_MODEL_a260e435697f413bb8fd9fe4034f5f14", "IPY_MODEL_b8f2e16fd63742e884a5382ff528fdad"], "layout": "IPY_MODEL_f86c417e8b0248bfbe0158e3b80d68c5", "tabbable": null, "tooltip": null}}, "95b9cbff80754e6ea57e50ee6c69cb7f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b19cb22ad1764144b18b796517e5c3d8": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b10df4a88b13490aae2b2d14d879af09": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_95b9cbff80754e6ea57e50ee6c69cb7f", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b19cb22ad1764144b18b796517e5c3d8", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "ae1dc90b7949401199c887a327547269": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3b0fdaabaa854674b0597b8bf201a2f4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7dac1cfefb10485fba6169c6ef64984e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ae1dc90b7949401199c887a327547269", "placeholder": "\u200b", "style": "IPY_MODEL_3b0fdaabaa854674b0597b8bf201a2f4", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "b22cb16d166649c0a048bf3b53cf447f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c071a9bda30c4cd286fb1cf6946f2cf0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0aa35638cb5843cba19475d397318f18": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b22cb16d166649c0a048bf3b53cf447f", "placeholder": "\u200b", "style": "IPY_MODEL_c071a9bda30c4cd286fb1cf6946f2cf0", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007179MB/s]"}}, "f479911b04ba49d08d445fb8fe6de23d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a4f44f91680a44a78288c0d246fc98ce": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7dac1cfefb10485fba6169c6ef64984e", "IPY_MODEL_b10df4a88b13490aae2b2d14d879af09", "IPY_MODEL_0aa35638cb5843cba19475d397318f18"], "layout": "IPY_MODEL_f479911b04ba49d08d445fb8fe6de23d", "tabbable": null, "tooltip": null}}, "c5ed67413afd4566bc609f26d8d30733": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a552914353d64ab2bef2f9bb31612d98": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "444279cef61f455ebfc50a1f11a2f695": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c5ed67413afd4566bc609f26d8d30733", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a552914353d64ab2bef2f9bb31612d98", "tabbable": null, "tooltip": null, "value": 3201.0}}, "52d3694d35474ad9bcf75a5dbca70cae": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7b69ddda57644d11b3d230da1a183af7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4be3a23dff404b82be1852b430e88878": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_52d3694d35474ad9bcf75a5dbca70cae", "placeholder": "\u200b", "style": "IPY_MODEL_7b69ddda57644d11b3d230da1a183af7", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "b858401a5110408f8c983019b29dfe67": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fc7b370e04bb4a1da9b4d555985e8d70": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "64165acac15341d09074d476f84d9e2d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b858401a5110408f8c983019b29dfe67", "placeholder": "\u200b", "style": "IPY_MODEL_fc7b370e04bb4a1da9b4d555985e8d70", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007651kB/s]"}}, "4c83a2d3fa8a4231a4179a6c2ea4a357": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8219887d84994d49897097a3ff753897": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4be3a23dff404b82be1852b430e88878", "IPY_MODEL_444279cef61f455ebfc50a1f11a2f695", "IPY_MODEL_64165acac15341d09074d476f84d9e2d"], "layout": "IPY_MODEL_4c83a2d3fa8a4231a4179a6c2ea4a357", "tabbable": null, "tooltip": null}}, "77a3e97a657a4c8a862a973a9190bb9c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "faef0f0c9bd84d53b345910d22b29b6c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8672f7b6edd34418836bf290bb8c5569": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_77a3e97a657a4c8a862a973a9190bb9c", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_faef0f0c9bd84d53b345910d22b29b6c", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "e06d85079f334801b8cc402d9f4b822e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "74111ea432b44453a50806e65ca2c6cd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c217bd2ca3324c9a86ffea39fbdd7535": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e06d85079f334801b8cc402d9f4b822e", "placeholder": "\u200b", "style": "IPY_MODEL_74111ea432b44453a50806e65ca2c6cd", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "d0e509a38b604476bda68fbd36f075e4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2c40bbfec0b1424a8943f1d00c2aac9f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "76e1f425a81f49759863f3452f9cf9ba": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d0e509a38b604476bda68fbd36f075e4", "placeholder": "\u200b", "style": "IPY_MODEL_2c40bbfec0b1424a8943f1d00c2aac9f", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007282MB/s]"}}, "6482fb4e81a24263bc749ca08ca8873c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "eeeb9de518f94357a0e663be243a4e17": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c217bd2ca3324c9a86ffea39fbdd7535", "IPY_MODEL_8672f7b6edd34418836bf290bb8c5569", "IPY_MODEL_76e1f425a81f49759863f3452f9cf9ba"], "layout": "IPY_MODEL_6482fb4e81a24263bc749ca08ca8873c", "tabbable": null, "tooltip": null}}, "4481edabe29f4513a108428c17ffb4c3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "84b2a30884cd4cce8760ab3913fbd705": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "03639c5b3d9043cc8e099a4c7b6cff47": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4481edabe29f4513a108428c17ffb4c3", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_84b2a30884cd4cce8760ab3913fbd705", "tabbable": null, "tooltip": null, "value": 128619.0}}, "716ec95cb223473aa95a0214e725333e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a7d6a74d27754280b5578482c41f32c8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "922625b537344c26a88ac9cc6711afbc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_716ec95cb223473aa95a0214e725333e", "placeholder": "\u200b", "style": "IPY_MODEL_a7d6a74d27754280b5578482c41f32c8", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "b92e3afcd1564215b9dfe6b8d30c7b9d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f0bfb2b67dc749e89a207b7e8694c39b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9621cf10810e4cd883aff33f6efcbcdf": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b92e3afcd1564215b9dfe6b8d30c7b9d", "placeholder": "\u200b", "style": "IPY_MODEL_f0bfb2b67dc749e89a207b7e8694c39b", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20077.94MB/s]"}}, "99d2a7466a9f4735bff947a89aa005cc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "01bbd305db734d28b0736d49859fcfe4": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_922625b537344c26a88ac9cc6711afbc", "IPY_MODEL_03639c5b3d9043cc8e099a4c7b6cff47", "IPY_MODEL_9621cf10810e4cd883aff33f6efcbcdf"], "layout": "IPY_MODEL_99d2a7466a9f4735bff947a89aa005cc", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"df6da3d71872427fadace0754baa794f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7471343ea52d4cdeb5ca2c1dd1facac6": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b54aa36d130145beb7ada2b8fc91e454": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_df6da3d71872427fadace0754baa794f", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7471343ea52d4cdeb5ca2c1dd1facac6", "tabbable": null, "tooltip": null, "value": 2041.0}}, "1885d3c5b43646889c82d3a8b02db44d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ba465a16f6fe43578f88883bd252f8a4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5c8708449d2e48de9f370379ed5ea5f2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1885d3c5b43646889c82d3a8b02db44d", "placeholder": "\u200b", "style": "IPY_MODEL_ba465a16f6fe43578f88883bd252f8a4", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "7208a5878f6e407285fc4cecaca1768a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6726032db64f473292cffe93f2e35a66": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e0ed845b86074501a249da85dc6ee443": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7208a5878f6e407285fc4cecaca1768a", "placeholder": "\u200b", "style": "IPY_MODEL_6726032db64f473292cffe93f2e35a66", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007472kB/s]"}}, "cecc824b53fd47998af6df3f98089b0c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e3d6c2e6d2ee433799435a0ed5563e09": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5c8708449d2e48de9f370379ed5ea5f2", "IPY_MODEL_b54aa36d130145beb7ada2b8fc91e454", "IPY_MODEL_e0ed845b86074501a249da85dc6ee443"], "layout": "IPY_MODEL_cecc824b53fd47998af6df3f98089b0c", "tabbable": null, "tooltip": null}}, "e8aa83788bf94ee9a96f9e9060d575ff": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3d8fb8da57f34983ae4a63301abe89ec": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cc1302a8a6694d38b0b6db3f81993068": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e8aa83788bf94ee9a96f9e9060d575ff", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_3d8fb8da57f34983ae4a63301abe89ec", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "7b4a07227d384d92ab67d5652aa84a67": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3eb80215330746759e5cf3de0dad40cd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3c7dfcdd880349efabd691674bc15640": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7b4a07227d384d92ab67d5652aa84a67", "placeholder": "\u200b", "style": "IPY_MODEL_3eb80215330746759e5cf3de0dad40cd", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "52faa345177b4ed08189bcbd43dfccbe": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "edf5e965b68b4c44a3a997f93d879c48": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f463813c0c93453b8b71a4bddface1f1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_52faa345177b4ed08189bcbd43dfccbe", "placeholder": "\u200b", "style": "IPY_MODEL_edf5e965b68b4c44a3a997f93d879c48", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007176MB/s]"}}, "f363fb54736e4739a9818c46b469de56": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2b596d46bbcf41738b300b00f783fc1c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3c7dfcdd880349efabd691674bc15640", "IPY_MODEL_cc1302a8a6694d38b0b6db3f81993068", "IPY_MODEL_f463813c0c93453b8b71a4bddface1f1"], "layout": "IPY_MODEL_f363fb54736e4739a9818c46b469de56", "tabbable": null, "tooltip": null}}, "e9b630cacbaa4f5ba186673b2fc434a2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bd31969731734aad95d37e5a88c75a14": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5ab56e1eb3ba471786d7c5672bdca04f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e9b630cacbaa4f5ba186673b2fc434a2", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_bd31969731734aad95d37e5a88c75a14", "tabbable": null, "tooltip": null, "value": 3201.0}}, "688aa4a77b6d4021993e4ca02311bc2d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b93e428868914101a140ce8113df4d1f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c9f4f0b9f39b4dc086b3c7a6ca371f83": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_688aa4a77b6d4021993e4ca02311bc2d", "placeholder": "\u200b", "style": "IPY_MODEL_b93e428868914101a140ce8113df4d1f", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "a349871da56848f9a5e7ceb2d68f616a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5496fe51194a4bcfaf8de8b88171e3d7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "eb9efbb6cc01468d9ad9141e9e66ee69": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a349871da56848f9a5e7ceb2d68f616a", "placeholder": "\u200b", "style": "IPY_MODEL_5496fe51194a4bcfaf8de8b88171e3d7", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007791kB/s]"}}, "d964705122404fa7823941221ca63bbf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4daf4cecb5804969b6b82b4affdd2d59": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c9f4f0b9f39b4dc086b3c7a6ca371f83", "IPY_MODEL_5ab56e1eb3ba471786d7c5672bdca04f", "IPY_MODEL_eb9efbb6cc01468d9ad9141e9e66ee69"], "layout": "IPY_MODEL_d964705122404fa7823941221ca63bbf", "tabbable": null, "tooltip": null}}, "81c4d647a13b492a86122fed86191deb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c4b851c067d64760bd6e54135f59d5f0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cf800ab3cb72457c994b05baa5952eee": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_81c4d647a13b492a86122fed86191deb", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c4b851c067d64760bd6e54135f59d5f0", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "89b64a04e7e144c8a3449414ea12c584": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dcc402ff215f4bf090e5ff526b8d197a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8e69b255f365498db78877ca9c252cd6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_89b64a04e7e144c8a3449414ea12c584", "placeholder": "\u200b", "style": "IPY_MODEL_dcc402ff215f4bf090e5ff526b8d197a", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "507f3dcfd9e74c288291ae69309e9cae": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8ce785c8a0c643cc992e07b614282fb6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "716d75e17de642579293f80297c5c099": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_507f3dcfd9e74c288291ae69309e9cae", "placeholder": "\u200b", "style": "IPY_MODEL_8ce785c8a0c643cc992e07b614282fb6", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007268MB/s]"}}, "0cab0f93faac4626b3fe5bbb09c0c12f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2a162e87870b46d3ab6ae424d70047c1": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8e69b255f365498db78877ca9c252cd6", "IPY_MODEL_cf800ab3cb72457c994b05baa5952eee", "IPY_MODEL_716d75e17de642579293f80297c5c099"], "layout": "IPY_MODEL_0cab0f93faac4626b3fe5bbb09c0c12f", "tabbable": null, "tooltip": null}}, "1e78a2efa85b417c99127f6e70a262ca": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e5d0352396c74dad9d0e8f68d22ddea3": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3c12f80b533441c4bd8e4910b2254ef7": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1e78a2efa85b417c99127f6e70a262ca", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e5d0352396c74dad9d0e8f68d22ddea3", "tabbable": null, "tooltip": null, "value": 128619.0}}, "01d771703e154dfcbb2116e67dfc5eba": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f689400de9d742d3878a840c70f76903": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8926911117304103ab5dcb12764b8ea1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_01d771703e154dfcbb2116e67dfc5eba", "placeholder": "\u200b", "style": "IPY_MODEL_f689400de9d742d3878a840c70f76903", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "2a6d5ab9907e471fb0e1573f683e6336": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bcd9ca6220334050ba347383c7458c43": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9556ccb226f24c6192b7e05fa9558074": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2a6d5ab9907e471fb0e1573f683e6336", "placeholder": "\u200b", "style": "IPY_MODEL_bcd9ca6220334050ba347383c7458c43", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u200710.2MB/s]"}}, "06fadefff7874fa5938408b9e2232854": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "01e1a9e6418340c09e2419d54e843e1f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8926911117304103ab5dcb12764b8ea1", "IPY_MODEL_3c12f80b533441c4bd8e4910b2254ef7", "IPY_MODEL_9556ccb226f24c6192b7e05fa9558074"], "layout": "IPY_MODEL_06fadefff7874fa5938408b9e2232854", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/audio.ipynb b/master/tutorials/datalab/audio.ipynb index 5c43d377a..0e298d017 100644 --- a/master/tutorials/datalab/audio.ipynb +++ b/master/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:40.195963Z", - "iopub.status.busy": "2024-08-20T02:13:40.195789Z", - "iopub.status.idle": "2024-08-20T02:13:46.594528Z", - "shell.execute_reply": "2024-08-20T02:13:46.593974Z" + "iopub.execute_input": "2024-08-21T00:38:47.644249Z", + "iopub.status.busy": "2024-08-21T00:38:47.644074Z", + "iopub.status.idle": "2024-08-21T00:38:54.112467Z", + "shell.execute_reply": "2024-08-21T00:38:54.111846Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:46.597071Z", - "iopub.status.busy": "2024-08-20T02:13:46.596714Z", - "iopub.status.idle": "2024-08-20T02:13:46.599826Z", - "shell.execute_reply": "2024-08-20T02:13:46.599363Z" + "iopub.execute_input": "2024-08-21T00:38:54.115118Z", + "iopub.status.busy": "2024-08-21T00:38:54.114765Z", + "iopub.status.idle": "2024-08-21T00:38:54.117966Z", + "shell.execute_reply": "2024-08-21T00:38:54.117531Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:46.601832Z", - "iopub.status.busy": "2024-08-20T02:13:46.601652Z", - "iopub.status.idle": "2024-08-20T02:13:46.606793Z", - "shell.execute_reply": "2024-08-20T02:13:46.606362Z" + "iopub.execute_input": "2024-08-21T00:38:54.120021Z", + "iopub.status.busy": "2024-08-21T00:38:54.119669Z", + "iopub.status.idle": "2024-08-21T00:38:54.124399Z", + "shell.execute_reply": "2024-08-21T00:38:54.123965Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-20T02:13:46.608751Z", - "iopub.status.busy": "2024-08-20T02:13:46.608576Z", - "iopub.status.idle": "2024-08-20T02:13:48.269878Z", - "shell.execute_reply": "2024-08-20T02:13:48.269047Z" + "iopub.execute_input": "2024-08-21T00:38:54.126535Z", + "iopub.status.busy": "2024-08-21T00:38:54.126266Z", + "iopub.status.idle": "2024-08-21T00:38:55.795303Z", + "shell.execute_reply": "2024-08-21T00:38:55.794501Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-20T02:13:48.272728Z", - "iopub.status.busy": "2024-08-20T02:13:48.272510Z", - "iopub.status.idle": "2024-08-20T02:13:48.283370Z", - "shell.execute_reply": "2024-08-20T02:13:48.282888Z" + "iopub.execute_input": "2024-08-21T00:38:55.798105Z", + "iopub.status.busy": "2024-08-21T00:38:55.797897Z", + "iopub.status.idle": "2024-08-21T00:38:55.809089Z", + "shell.execute_reply": "2024-08-21T00:38:55.808523Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:48.285601Z", - "iopub.status.busy": "2024-08-20T02:13:48.285208Z", - "iopub.status.idle": "2024-08-20T02:13:48.291129Z", - "shell.execute_reply": "2024-08-20T02:13:48.290644Z" + "iopub.execute_input": "2024-08-21T00:38:55.811394Z", + "iopub.status.busy": "2024-08-21T00:38:55.811062Z", + "iopub.status.idle": "2024-08-21T00:38:55.818505Z", + "shell.execute_reply": "2024-08-21T00:38:55.817935Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-20T02:13:48.293361Z", - "iopub.status.busy": "2024-08-20T02:13:48.293147Z", - "iopub.status.idle": "2024-08-20T02:13:48.779094Z", - "shell.execute_reply": "2024-08-20T02:13:48.778533Z" + "iopub.execute_input": "2024-08-21T00:38:55.820636Z", + "iopub.status.busy": "2024-08-21T00:38:55.820214Z", + "iopub.status.idle": "2024-08-21T00:38:56.495601Z", + "shell.execute_reply": "2024-08-21T00:38:56.495094Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:48.781311Z", - "iopub.status.busy": "2024-08-20T02:13:48.781074Z", - "iopub.status.idle": "2024-08-20T02:13:49.455972Z", - "shell.execute_reply": "2024-08-20T02:13:49.455320Z" + "iopub.execute_input": "2024-08-21T00:38:56.498001Z", + "iopub.status.busy": "2024-08-21T00:38:56.497507Z", + "iopub.status.idle": "2024-08-21T00:38:57.206792Z", + "shell.execute_reply": "2024-08-21T00:38:57.206297Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-08-20T02:13:49.458422Z", - "iopub.status.busy": "2024-08-20T02:13:49.458234Z", - "iopub.status.idle": "2024-08-20T02:13:49.476805Z", - "shell.execute_reply": "2024-08-20T02:13:49.476263Z" + "iopub.execute_input": "2024-08-21T00:38:57.209391Z", + "iopub.status.busy": "2024-08-21T00:38:57.208907Z", + "iopub.status.idle": "2024-08-21T00:38:57.227422Z", + "shell.execute_reply": "2024-08-21T00:38:57.226967Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:49.478880Z", - "iopub.status.busy": "2024-08-20T02:13:49.478553Z", - "iopub.status.idle": "2024-08-20T02:13:49.481706Z", - "shell.execute_reply": "2024-08-20T02:13:49.481242Z" + "iopub.execute_input": "2024-08-21T00:38:57.229421Z", + "iopub.status.busy": "2024-08-21T00:38:57.229123Z", + "iopub.status.idle": "2024-08-21T00:38:57.232237Z", + "shell.execute_reply": "2024-08-21T00:38:57.231762Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:13:49.483600Z", - "iopub.status.busy": "2024-08-20T02:13:49.483307Z", - "iopub.status.idle": "2024-08-20T02:14:04.209189Z", - "shell.execute_reply": "2024-08-20T02:14:04.208571Z" + "iopub.execute_input": "2024-08-21T00:38:57.234020Z", + "iopub.status.busy": "2024-08-21T00:38:57.233865Z", + "iopub.status.idle": "2024-08-21T00:39:11.766292Z", + "shell.execute_reply": "2024-08-21T00:39:11.765732Z" }, "id": "2FSQ2GR9R_YA" }, @@ -617,10 +617,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-20T02:14:04.212003Z", - "iopub.status.busy": "2024-08-20T02:14:04.211645Z", - "iopub.status.idle": "2024-08-20T02:14:04.215446Z", - "shell.execute_reply": "2024-08-20T02:14:04.214943Z" + "iopub.execute_input": "2024-08-21T00:39:11.769092Z", + "iopub.status.busy": "2024-08-21T00:39:11.768633Z", + "iopub.status.idle": "2024-08-21T00:39:11.772767Z", + "shell.execute_reply": "2024-08-21T00:39:11.772281Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -680,10 +680,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:04.217455Z", - "iopub.status.busy": "2024-08-20T02:14:04.217280Z", - "iopub.status.idle": "2024-08-20T02:14:04.939210Z", - "shell.execute_reply": "2024-08-20T02:14:04.938601Z" + "iopub.execute_input": "2024-08-21T00:39:11.774876Z", + "iopub.status.busy": "2024-08-21T00:39:11.774517Z", + "iopub.status.idle": "2024-08-21T00:39:12.518278Z", + "shell.execute_reply": "2024-08-21T00:39:12.517696Z" }, "id": "i_drkY9YOcw4" }, @@ -717,10 +717,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-20T02:14:04.942267Z", - "iopub.status.busy": "2024-08-20T02:14:04.941852Z", - "iopub.status.idle": "2024-08-20T02:14:04.946876Z", - "shell.execute_reply": "2024-08-20T02:14:04.946360Z" + "iopub.execute_input": "2024-08-21T00:39:12.521953Z", + "iopub.status.busy": "2024-08-21T00:39:12.520997Z", + "iopub.status.idle": "2024-08-21T00:39:12.527737Z", + "shell.execute_reply": "2024-08-21T00:39:12.527232Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -767,10 +767,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:04.949489Z", - "iopub.status.busy": "2024-08-20T02:14:04.949079Z", - "iopub.status.idle": "2024-08-20T02:14:05.062400Z", - "shell.execute_reply": "2024-08-20T02:14:05.061706Z" + "iopub.execute_input": "2024-08-21T00:39:12.531310Z", + "iopub.status.busy": "2024-08-21T00:39:12.530381Z", + "iopub.status.idle": "2024-08-21T00:39:12.643117Z", + "shell.execute_reply": "2024-08-21T00:39:12.642433Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:05.065011Z", - "iopub.status.busy": "2024-08-20T02:14:05.064625Z", - "iopub.status.idle": "2024-08-20T02:14:05.077492Z", - "shell.execute_reply": "2024-08-20T02:14:05.077005Z" + "iopub.execute_input": "2024-08-21T00:39:12.645771Z", + "iopub.status.busy": "2024-08-21T00:39:12.645187Z", + "iopub.status.idle": "2024-08-21T00:39:12.657945Z", + "shell.execute_reply": "2024-08-21T00:39:12.657478Z" }, "scrolled": true }, @@ -870,10 +870,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:05.079641Z", - "iopub.status.busy": "2024-08-20T02:14:05.079323Z", - "iopub.status.idle": "2024-08-20T02:14:05.087417Z", - "shell.execute_reply": "2024-08-20T02:14:05.086844Z" + "iopub.execute_input": "2024-08-21T00:39:12.660191Z", + "iopub.status.busy": "2024-08-21T00:39:12.659738Z", + "iopub.status.idle": "2024-08-21T00:39:12.667794Z", + "shell.execute_reply": "2024-08-21T00:39:12.667233Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:05.089559Z", - "iopub.status.busy": "2024-08-20T02:14:05.089275Z", - "iopub.status.idle": "2024-08-20T02:14:05.093782Z", - "shell.execute_reply": "2024-08-20T02:14:05.093195Z" + "iopub.execute_input": "2024-08-21T00:39:12.669798Z", + "iopub.status.busy": "2024-08-21T00:39:12.669482Z", + "iopub.status.idle": "2024-08-21T00:39:12.673835Z", + "shell.execute_reply": "2024-08-21T00:39:12.673286Z" } }, "outputs": [ @@ -1018,10 +1018,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-08-20T02:14:05.095859Z", - "iopub.status.busy": "2024-08-20T02:14:05.095539Z", - "iopub.status.idle": "2024-08-20T02:14:05.101435Z", - "shell.execute_reply": "2024-08-20T02:14:05.100846Z" + "iopub.execute_input": "2024-08-21T00:39:12.676026Z", + "iopub.status.busy": "2024-08-21T00:39:12.675661Z", + "iopub.status.idle": "2024-08-21T00:39:12.681320Z", + "shell.execute_reply": "2024-08-21T00:39:12.680745Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1148,10 +1148,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-20T02:14:05.103654Z", - "iopub.status.busy": "2024-08-20T02:14:05.103331Z", - "iopub.status.idle": "2024-08-20T02:14:05.217593Z", - "shell.execute_reply": "2024-08-20T02:14:05.216991Z" + "iopub.execute_input": "2024-08-21T00:39:12.683436Z", + "iopub.status.busy": "2024-08-21T00:39:12.683094Z", + "iopub.status.idle": "2024-08-21T00:39:12.793769Z", + "shell.execute_reply": "2024-08-21T00:39:12.793288Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1205,10 +1205,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-20T02:14:05.219909Z", - "iopub.status.busy": "2024-08-20T02:14:05.219565Z", - "iopub.status.idle": "2024-08-20T02:14:05.326151Z", - "shell.execute_reply": "2024-08-20T02:14:05.325640Z" + "iopub.execute_input": "2024-08-21T00:39:12.795851Z", + "iopub.status.busy": "2024-08-21T00:39:12.795663Z", + "iopub.status.idle": "2024-08-21T00:39:12.903443Z", + "shell.execute_reply": "2024-08-21T00:39:12.902943Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1253,10 +1253,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-20T02:14:05.328241Z", - "iopub.status.busy": "2024-08-20T02:14:05.327930Z", - "iopub.status.idle": "2024-08-20T02:14:05.431128Z", - "shell.execute_reply": "2024-08-20T02:14:05.430628Z" + "iopub.execute_input": "2024-08-21T00:39:12.905632Z", + "iopub.status.busy": "2024-08-21T00:39:12.905337Z", + "iopub.status.idle": "2024-08-21T00:39:13.006224Z", + "shell.execute_reply": "2024-08-21T00:39:13.005745Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1297,10 +1297,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:05.433418Z", - "iopub.status.busy": "2024-08-20T02:14:05.432979Z", - "iopub.status.idle": "2024-08-20T02:14:05.539121Z", - "shell.execute_reply": "2024-08-20T02:14:05.538595Z" + "iopub.execute_input": "2024-08-21T00:39:13.008493Z", + "iopub.status.busy": "2024-08-21T00:39:13.008042Z", + "iopub.status.idle": "2024-08-21T00:39:13.108143Z", + "shell.execute_reply": "2024-08-21T00:39:13.107604Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:05.541324Z", - "iopub.status.busy": "2024-08-20T02:14:05.540963Z", - "iopub.status.idle": "2024-08-20T02:14:05.544235Z", - "shell.execute_reply": "2024-08-20T02:14:05.543626Z" + "iopub.execute_input": "2024-08-21T00:39:13.110353Z", + "iopub.status.busy": "2024-08-21T00:39:13.110062Z", + "iopub.status.idle": "2024-08-21T00:39:13.113203Z", + "shell.execute_reply": "2024-08-21T00:39:13.112777Z" }, "nbsphinx": "hidden" }, @@ -1392,103 +1392,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "01bbd305db734d28b0736d49859fcfe4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_922625b537344c26a88ac9cc6711afbc", - "IPY_MODEL_03639c5b3d9043cc8e099a4c7b6cff47", - "IPY_MODEL_9621cf10810e4cd883aff33f6efcbcdf" - ], - "layout": "IPY_MODEL_99d2a7466a9f4735bff947a89aa005cc", - "tabbable": null, - "tooltip": null - } - }, - "03639c5b3d9043cc8e099a4c7b6cff47": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4481edabe29f4513a108428c17ffb4c3", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_84b2a30884cd4cce8760ab3913fbd705", - "tabbable": null, - "tooltip": null, - "value": 128619.0 - } - }, - "0aa35638cb5843cba19475d397318f18": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b22cb16d166649c0a048bf3b53cf447f", - "placeholder": "​", - "style": "IPY_MODEL_c071a9bda30c4cd286fb1cf6946f2cf0", - "tabbable": null, - "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 179MB/s]" - } - }, - "0ae382b560ee4c38ba6b76d39f6e5a52": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7b255d9953714b26b929e1a88de1ee98", - "placeholder": "​", - "style": "IPY_MODEL_b55e22275bc048308d11871dd0e4d89f", - "tabbable": null, - "tooltip": null, - "value": "hyperparams.yaml: 100%" - } - }, - "1f12fa55c4fc4be0bc20fbba411da2e9": { + "01d771703e154dfcbb2116e67dfc5eba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1541,85 +1445,31 @@ "width": null } }, - "1f896e7e51434d7b86c65a7bf32571e8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2c40bbfec0b1424a8943f1d00c2aac9f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3b0fdaabaa854674b0597b8bf201a2f4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "444279cef61f455ebfc50a1f11a2f695": { + "01e1a9e6418340c09e2419d54e843e1f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c5ed67413afd4566bc609f26d8d30733", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a552914353d64ab2bef2f9bb31612d98", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8926911117304103ab5dcb12764b8ea1", + "IPY_MODEL_3c12f80b533441c4bd8e4910b2254ef7", + "IPY_MODEL_9556ccb226f24c6192b7e05fa9558074" + ], + "layout": "IPY_MODEL_06fadefff7874fa5938408b9e2232854", "tabbable": null, - "tooltip": null, - "value": 3201.0 + "tooltip": null } }, - "4481edabe29f4513a108428c17ffb4c3": { + "06fadefff7874fa5938408b9e2232854": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1672,30 +1522,7 @@ "width": null } }, - "4be3a23dff404b82be1852b430e88878": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_52d3694d35474ad9bcf75a5dbca70cae", - "placeholder": "​", - "style": "IPY_MODEL_7b69ddda57644d11b3d230da1a183af7", - "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" - } - }, - "4c83a2d3fa8a4231a4179a6c2ea4a357": { + "0cab0f93faac4626b3fe5bbb09c0c12f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1748,7 +1575,7 @@ "width": null } }, - "52d3694d35474ad9bcf75a5dbca70cae": { + "1885d3c5b43646889c82d3a8b02db44d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1801,30 +1628,7 @@ "width": null } }, - "64165acac15341d09074d476f84d9e2d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b858401a5110408f8c983019b29dfe67", - "placeholder": "​", - "style": "IPY_MODEL_fc7b370e04bb4a1da9b4d555985e8d70", - "tabbable": null, - "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 651kB/s]" - } - }, - "6482fb4e81a24263bc749ca08ca8873c": { + "1e78a2efa85b417c99127f6e70a262ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1877,60 +1681,31 @@ "width": null } }, - "70b99bb1eb654ba58bcbe9099f0adb46": { - "model_module": "@jupyter-widgets/base", + "2a162e87870b46d3ab6ae424d70047c1": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8e69b255f365498db78877ca9c252cd6", + "IPY_MODEL_cf800ab3cb72457c994b05baa5952eee", + "IPY_MODEL_716d75e17de642579293f80297c5c099" + ], + "layout": "IPY_MODEL_0cab0f93faac4626b3fe5bbb09c0c12f", + "tabbable": null, + "tooltip": null } }, - "716ec95cb223473aa95a0214e725333e": { + "2a6d5ab9907e471fb0e1573f683e6336": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1983,25 +1758,57 @@ "width": null } }, - "74111ea432b44453a50806e65ca2c6cd": { + "2b596d46bbcf41738b300b00f783fc1c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3c7dfcdd880349efabd691674bc15640", + "IPY_MODEL_cc1302a8a6694d38b0b6db3f81993068", + "IPY_MODEL_f463813c0c93453b8b71a4bddface1f1" + ], + "layout": "IPY_MODEL_f363fb54736e4739a9818c46b469de56", + "tabbable": null, + "tooltip": null } }, - "76e1f425a81f49759863f3452f9cf9ba": { + "3c12f80b533441c4bd8e4910b2254ef7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1e78a2efa85b417c99127f6e70a262ca", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e5d0352396c74dad9d0e8f68d22ddea3", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "3c7dfcdd880349efabd691674bc15640": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2016,15 +1823,73 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d0e509a38b604476bda68fbd36f075e4", + "layout": "IPY_MODEL_7b4a07227d384d92ab67d5652aa84a67", "placeholder": "​", - "style": "IPY_MODEL_2c40bbfec0b1424a8943f1d00c2aac9f", + "style": "IPY_MODEL_3eb80215330746759e5cf3de0dad40cd", "tabbable": null, "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 282MB/s]" + "value": "embedding_model.ckpt: 100%" + } + }, + "3d8fb8da57f34983ae4a63301abe89ec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3eb80215330746759e5cf3de0dad40cd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "77a3e97a657a4c8a862a973a9190bb9c": { + "4daf4cecb5804969b6b82b4affdd2d59": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c9f4f0b9f39b4dc086b3c7a6ca371f83", + "IPY_MODEL_5ab56e1eb3ba471786d7c5672bdca04f", + "IPY_MODEL_eb9efbb6cc01468d9ad9141e9e66ee69" + ], + "layout": "IPY_MODEL_d964705122404fa7823941221ca63bbf", + "tabbable": null, + "tooltip": null + } + }, + "507f3dcfd9e74c288291ae69309e9cae": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2077,25 +1942,7 @@ "width": null } }, - "7af4fae1c62540258d593c548fe8266a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7b255d9953714b26b929e1a88de1ee98": { + "52faa345177b4ed08189bcbd43dfccbe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2148,7 +1995,7 @@ "width": null } }, - "7b69ddda57644d11b3d230da1a183af7": { + "5496fe51194a4bcfaf8de8b88171e3d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2166,96 +2013,325 @@ "text_color": null } }, - "7dac1cfefb10485fba6169c6ef64984e": { + "5ab56e1eb3ba471786d7c5672bdca04f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ae1dc90b7949401199c887a327547269", - "placeholder": "​", - "style": "IPY_MODEL_3b0fdaabaa854674b0597b8bf201a2f4", + "layout": "IPY_MODEL_e9b630cacbaa4f5ba186673b2fc434a2", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bd31969731734aad95d37e5a88c75a14", "tabbable": null, "tooltip": null, - "value": "embedding_model.ckpt: 100%" + "value": 3201.0 } }, - "8219887d84994d49897097a3ff753897": { + "5c8708449d2e48de9f370379ed5ea5f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4be3a23dff404b82be1852b430e88878", - "IPY_MODEL_444279cef61f455ebfc50a1f11a2f695", - "IPY_MODEL_64165acac15341d09074d476f84d9e2d" - ], - "layout": "IPY_MODEL_4c83a2d3fa8a4231a4179a6c2ea4a357", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1885d3c5b43646889c82d3a8b02db44d", + "placeholder": "​", + "style": "IPY_MODEL_ba465a16f6fe43578f88883bd252f8a4", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "hyperparams.yaml: 100%" } }, - "84b2a30884cd4cce8760ab3913fbd705": { + "6726032db64f473292cffe93f2e35a66": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "688aa4a77b6d4021993e4ca02311bc2d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "8672f7b6edd34418836bf290bb8c5569": { + "716d75e17de642579293f80297c5c099": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_77a3e97a657a4c8a862a973a9190bb9c", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_faef0f0c9bd84d53b345910d22b29b6c", + "layout": "IPY_MODEL_507f3dcfd9e74c288291ae69309e9cae", + "placeholder": "​", + "style": "IPY_MODEL_8ce785c8a0c643cc992e07b614282fb6", "tabbable": null, "tooltip": null, - "value": 15856877.0 + "value": " 15.9M/15.9M [00:00<00:00, 268MB/s]" + } + }, + "7208a5878f6e407285fc4cecaca1768a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7471343ea52d4cdeb5ca2c1dd1facac6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7b4a07227d384d92ab67d5652aa84a67": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "81c4d647a13b492a86122fed86191deb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "922625b537344c26a88ac9cc6711afbc": { + "8926911117304103ab5dcb12764b8ea1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2270,15 +2346,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_716ec95cb223473aa95a0214e725333e", + "layout": "IPY_MODEL_01d771703e154dfcbb2116e67dfc5eba", "placeholder": "​", - "style": "IPY_MODEL_a7d6a74d27754280b5578482c41f32c8", + "style": "IPY_MODEL_f689400de9d742d3878a840c70f76903", "tabbable": null, "tooltip": null, "value": "label_encoder.txt: 100%" } }, - "95b9cbff80754e6ea57e50ee6c69cb7f": { + "89b64a04e7e144c8a3449414ea12c584": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2331,7 +2407,48 @@ "width": null } }, - "9621cf10810e4cd883aff33f6efcbcdf": { + "8ce785c8a0c643cc992e07b614282fb6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8e69b255f365498db78877ca9c252cd6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_89b64a04e7e144c8a3449414ea12c584", + "placeholder": "​", + "style": "IPY_MODEL_dcc402ff215f4bf090e5ff526b8d197a", + "tabbable": null, + "tooltip": null, + "value": "classifier.ckpt: 100%" + } + }, + "9556ccb226f24c6192b7e05fa9558074": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2346,15 +2463,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b92e3afcd1564215b9dfe6b8d30c7b9d", + "layout": "IPY_MODEL_2a6d5ab9907e471fb0e1573f683e6336", "placeholder": "​", - "style": "IPY_MODEL_f0bfb2b67dc749e89a207b7e8694c39b", + "style": "IPY_MODEL_bcd9ca6220334050ba347383c7458c43", "tabbable": null, "tooltip": null, - "value": " 129k/129k [00:00<00:00, 7.94MB/s]" + "value": " 129k/129k [00:00<00:00, 10.2MB/s]" } }, - "99d2a7466a9f4735bff947a89aa005cc": { + "a349871da56848f9a5e7ceb2d68f616a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2407,7 +2524,7 @@ "width": null } }, - "a260e435697f413bb8fd9fe4034f5f14": { + "b54aa36d130145beb7ada2b8fc91e454": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2423,41 +2540,71 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1f12fa55c4fc4be0bc20fbba411da2e9", + "layout": "IPY_MODEL_df6da3d71872427fadace0754baa794f", "max": 2041.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_1f896e7e51434d7b86c65a7bf32571e8", + "style": "IPY_MODEL_7471343ea52d4cdeb5ca2c1dd1facac6", "tabbable": null, "tooltip": null, "value": 2041.0 } }, - "a4f44f91680a44a78288c0d246fc98ce": { + "b93e428868914101a140ce8113df4d1f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7dac1cfefb10485fba6169c6ef64984e", - "IPY_MODEL_b10df4a88b13490aae2b2d14d879af09", - "IPY_MODEL_0aa35638cb5843cba19475d397318f18" - ], - "layout": "IPY_MODEL_f479911b04ba49d08d445fb8fe6de23d", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ba465a16f6fe43578f88883bd252f8a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a552914353d64ab2bef2f9bb31612d98": { + "bcd9ca6220334050ba347383c7458c43": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bd31969731734aad95d37e5a88c75a14": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2473,25 +2620,72 @@ "description_width": "" } }, - "a7d6a74d27754280b5578482c41f32c8": { + "c4b851c067d64760bd6e54135f59d5f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c9f4f0b9f39b4dc086b3c7a6ca371f83": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_688aa4a77b6d4021993e4ca02311bc2d", + "placeholder": "​", + "style": "IPY_MODEL_b93e428868914101a140ce8113df4d1f", + "tabbable": null, + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" + } + }, + "cc1302a8a6694d38b0b6db3f81993068": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e8aa83788bf94ee9a96f9e9060d575ff", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3d8fb8da57f34983ae4a63301abe89ec", + "tabbable": null, + "tooltip": null, + "value": 16887676.0 } }, - "ae1dc90b7949401199c887a327547269": { + "cecc824b53fd47998af6df3f98089b0c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2544,7 +2738,7 @@ "width": null } }, - "b10df4a88b13490aae2b2d14d879af09": { + "cf800ab3cb72457c994b05baa5952eee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2560,33 +2754,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_95b9cbff80754e6ea57e50ee6c69cb7f", - "max": 16887676.0, + "layout": "IPY_MODEL_81c4d647a13b492a86122fed86191deb", + "max": 15856877.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_b19cb22ad1764144b18b796517e5c3d8", + "style": "IPY_MODEL_c4b851c067d64760bd6e54135f59d5f0", "tabbable": null, "tooltip": null, - "value": 16887676.0 - } - }, - "b19cb22ad1764144b18b796517e5c3d8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": 15856877.0 } }, - "b22cb16d166649c0a048bf3b53cf447f": { + "d964705122404fa7823941221ca63bbf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2639,7 +2817,7 @@ "width": null } }, - "b55e22275bc048308d11871dd0e4d89f": { + "dcc402ff215f4bf090e5ff526b8d197a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2657,7 +2835,7 @@ "text_color": null } }, - "b858401a5110408f8c983019b29dfe67": { + "df6da3d71872427fadace0754baa794f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2710,7 +2888,7 @@ "width": null } }, - "b8f2e16fd63742e884a5382ff528fdad": { + "e0ed845b86074501a249da85dc6ee443": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2725,68 +2903,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_70b99bb1eb654ba58bcbe9099f0adb46", + "layout": "IPY_MODEL_7208a5878f6e407285fc4cecaca1768a", "placeholder": "​", - "style": "IPY_MODEL_7af4fae1c62540258d593c548fe8266a", + "style": "IPY_MODEL_6726032db64f473292cffe93f2e35a66", "tabbable": null, "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 455kB/s]" - } - }, - "b92e3afcd1564215b9dfe6b8d30c7b9d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": " 2.04k/2.04k [00:00<00:00, 472kB/s]" } }, - "bb1597d0d870452985978f3cacca9fdf": { + "e3d6c2e6d2ee433799435a0ed5563e09": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2801,110 +2926,32 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0ae382b560ee4c38ba6b76d39f6e5a52", - "IPY_MODEL_a260e435697f413bb8fd9fe4034f5f14", - "IPY_MODEL_b8f2e16fd63742e884a5382ff528fdad" + "IPY_MODEL_5c8708449d2e48de9f370379ed5ea5f2", + "IPY_MODEL_b54aa36d130145beb7ada2b8fc91e454", + "IPY_MODEL_e0ed845b86074501a249da85dc6ee443" ], - "layout": "IPY_MODEL_f86c417e8b0248bfbe0158e3b80d68c5", + "layout": "IPY_MODEL_cecc824b53fd47998af6df3f98089b0c", "tabbable": null, "tooltip": null } }, - "c071a9bda30c4cd286fb1cf6946f2cf0": { + "e5d0352396c74dad9d0e8f68d22ddea3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c217bd2ca3324c9a86ffea39fbdd7535": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e06d85079f334801b8cc402d9f4b822e", - "placeholder": "​", - "style": "IPY_MODEL_74111ea432b44453a50806e65ca2c6cd", - "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" - } - }, - "c5ed67413afd4566bc609f26d8d30733": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "bar_color": null, + "description_width": "" } }, - "d0e509a38b604476bda68fbd36f075e4": { + "e8aa83788bf94ee9a96f9e9060d575ff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2957,7 +3004,7 @@ "width": null } }, - "e06d85079f334801b8cc402d9f4b822e": { + "e9b630cacbaa4f5ba186673b2fc434a2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3010,31 +3057,30 @@ "width": null } }, - "eeeb9de518f94357a0e663be243a4e17": { + "eb9efbb6cc01468d9ad9141e9e66ee69": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c217bd2ca3324c9a86ffea39fbdd7535", - "IPY_MODEL_8672f7b6edd34418836bf290bb8c5569", - "IPY_MODEL_76e1f425a81f49759863f3452f9cf9ba" - ], - "layout": "IPY_MODEL_6482fb4e81a24263bc749ca08ca8873c", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a349871da56848f9a5e7ceb2d68f616a", + "placeholder": "​", + "style": "IPY_MODEL_5496fe51194a4bcfaf8de8b88171e3d7", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 791kB/s]" } }, - "f0bfb2b67dc749e89a207b7e8694c39b": { + "edf5e965b68b4c44a3a997f93d879c48": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3052,60 +3098,7 @@ "text_color": null } }, - "f479911b04ba49d08d445fb8fe6de23d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f86c417e8b0248bfbe0158e3b80d68c5": { + "f363fb54736e4739a9818c46b469de56": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3158,23 +3151,30 @@ "width": null } }, - "faef0f0c9bd84d53b345910d22b29b6c": { + "f463813c0c93453b8b71a4bddface1f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_52faa345177b4ed08189bcbd43dfccbe", + "placeholder": "​", + "style": "IPY_MODEL_edf5e965b68b4c44a3a997f93d879c48", + "tabbable": null, + "tooltip": null, + "value": " 16.9M/16.9M [00:00<00:00, 176MB/s]" } }, - "fc7b370e04bb4a1da9b4d555985e8d70": { + "f689400de9d742d3878a840c70f76903": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index 135854bb4..d04d31ffe 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1291,7 +1291,7 @@

    Functionality 3: Save and load Datalab objects
    -
    +
    @@ -1566,7 +1566,7 @@

    Functionality 4: Adding a custom IssueManager -{"state": {"f486c9ac3dcc46059aea4ed02ced34c6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d43b7af756e14f66b961078063ac1ede": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2f00ff2df3984d7d99d0c5bbada2fe64": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f486c9ac3dcc46059aea4ed02ced34c6", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d43b7af756e14f66b961078063ac1ede", "tabbable": null, "tooltip": null, "value": 132.0}}, "4487f6f64fd94b3cb5c3c17b8220113b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a15664cb56d948b8a7fc666198715958": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "24a06b021b9e4d4193ec3a210f966391": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4487f6f64fd94b3cb5c3c17b8220113b", "placeholder": "\u200b", "style": "IPY_MODEL_a15664cb56d948b8a7fc666198715958", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "bf99dfbdaff34107be9d5cb677d00e81": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f997cd87c3c248a79bb5302e023796a7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3c61a57e77984cbf9541191905d39dcd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bf99dfbdaff34107be9d5cb677d00e81", "placeholder": "\u200b", "style": "IPY_MODEL_f997cd87c3c248a79bb5302e023796a7", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200712169.96\u2007examples/s]"}}, "39e37c4b0cbd47d19bf35db2dddc029c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "29ed670888974a96a2bc9190ff8a2bec": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_24a06b021b9e4d4193ec3a210f966391", "IPY_MODEL_2f00ff2df3984d7d99d0c5bbada2fe64", "IPY_MODEL_3c61a57e77984cbf9541191905d39dcd"], "layout": "IPY_MODEL_39e37c4b0cbd47d19bf35db2dddc029c", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"a8e5ae2e343f4958ae1452652ca72421": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2b6571b200694ba3b94df122c7601917": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "83a49d9e7af64bc3bca48751c311f8e5": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a8e5ae2e343f4958ae1452652ca72421", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2b6571b200694ba3b94df122c7601917", "tabbable": null, "tooltip": null, "value": 132.0}}, "c2e541c6e0834f8a8fae58f4f0e6dcf9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f1a8f33efc7747b8bcd74da075a1892d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b2ce6bcc658e4dddb4e66225d107c979": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c2e541c6e0834f8a8fae58f4f0e6dcf9", "placeholder": "\u200b", "style": "IPY_MODEL_f1a8f33efc7747b8bcd74da075a1892d", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "f82e92d5a42b4742a6928bfc3c436454": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0a27653d59324f22a363402374ee5004": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a8f6a3da63c94dcfa8e0ed1268333e6a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f82e92d5a42b4742a6928bfc3c436454", "placeholder": "\u200b", "style": "IPY_MODEL_0a27653d59324f22a363402374ee5004", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200713191.84\u2007examples/s]"}}, "722adb513f104ce797257512a99b4267": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "50b6b867ef49413092d8aee1b7f5a76f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b2ce6bcc658e4dddb4e66225d107c979", "IPY_MODEL_83a49d9e7af64bc3bca48751c311f8e5", "IPY_MODEL_a8f6a3da63c94dcfa8e0ed1268333e6a"], "layout": "IPY_MODEL_722adb513f104ce797257512a99b4267", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index 442884cae..cd95fafc8 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:09.631310Z", - "iopub.status.busy": "2024-08-20T02:14:09.630813Z", - "iopub.status.idle": "2024-08-20T02:14:11.103762Z", - "shell.execute_reply": "2024-08-20T02:14:11.103186Z" + "iopub.execute_input": "2024-08-21T00:39:17.056989Z", + "iopub.status.busy": "2024-08-21T00:39:17.056816Z", + "iopub.status.idle": "2024-08-21T00:39:18.254226Z", + "shell.execute_reply": "2024-08-21T00:39:18.253679Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:11.106401Z", - "iopub.status.busy": "2024-08-20T02:14:11.106094Z", - "iopub.status.idle": "2024-08-20T02:14:11.109292Z", - "shell.execute_reply": "2024-08-20T02:14:11.108792Z" + "iopub.execute_input": "2024-08-21T00:39:18.256790Z", + "iopub.status.busy": "2024-08-21T00:39:18.256394Z", + "iopub.status.idle": "2024-08-21T00:39:18.259452Z", + "shell.execute_reply": "2024-08-21T00:39:18.258894Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:11.111555Z", - "iopub.status.busy": "2024-08-20T02:14:11.111217Z", - "iopub.status.idle": "2024-08-20T02:14:11.119696Z", - "shell.execute_reply": "2024-08-20T02:14:11.119234Z" + "iopub.execute_input": "2024-08-21T00:39:18.261966Z", + "iopub.status.busy": "2024-08-21T00:39:18.261485Z", + "iopub.status.idle": "2024-08-21T00:39:18.270205Z", + "shell.execute_reply": "2024-08-21T00:39:18.269650Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:11.121764Z", - "iopub.status.busy": "2024-08-20T02:14:11.121432Z", - "iopub.status.idle": "2024-08-20T02:14:11.126387Z", - "shell.execute_reply": "2024-08-20T02:14:11.125955Z" + "iopub.execute_input": "2024-08-21T00:39:18.272341Z", + "iopub.status.busy": "2024-08-21T00:39:18.272022Z", + "iopub.status.idle": "2024-08-21T00:39:18.277180Z", + "shell.execute_reply": "2024-08-21T00:39:18.276618Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:11.128529Z", - "iopub.status.busy": "2024-08-20T02:14:11.128125Z", - "iopub.status.idle": "2024-08-20T02:14:11.136093Z", - "shell.execute_reply": "2024-08-20T02:14:11.135510Z" + "iopub.execute_input": "2024-08-21T00:39:18.279328Z", + "iopub.status.busy": "2024-08-21T00:39:18.278990Z", + "iopub.status.idle": "2024-08-21T00:39:18.464242Z", + "shell.execute_reply": "2024-08-21T00:39:18.463710Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:11.138313Z", - "iopub.status.busy": "2024-08-20T02:14:11.137860Z", - "iopub.status.idle": "2024-08-20T02:14:11.514567Z", - "shell.execute_reply": "2024-08-20T02:14:11.513985Z" + "iopub.execute_input": "2024-08-21T00:39:18.466893Z", + "iopub.status.busy": "2024-08-21T00:39:18.466445Z", + "iopub.status.idle": "2024-08-21T00:39:18.841190Z", + "shell.execute_reply": "2024-08-21T00:39:18.840599Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:11.516818Z", - "iopub.status.busy": "2024-08-20T02:14:11.516496Z", - "iopub.status.idle": "2024-08-20T02:14:11.539518Z", - "shell.execute_reply": "2024-08-20T02:14:11.539079Z" + "iopub.execute_input": "2024-08-21T00:39:18.843643Z", + "iopub.status.busy": "2024-08-21T00:39:18.843209Z", + "iopub.status.idle": "2024-08-21T00:39:18.867565Z", + "shell.execute_reply": "2024-08-21T00:39:18.866957Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:11.541775Z", - "iopub.status.busy": "2024-08-20T02:14:11.541334Z", - "iopub.status.idle": "2024-08-20T02:14:11.630963Z", - "shell.execute_reply": "2024-08-20T02:14:11.630315Z" + "iopub.execute_input": "2024-08-21T00:39:18.870030Z", + "iopub.status.busy": "2024-08-21T00:39:18.869533Z", + "iopub.status.idle": "2024-08-21T00:39:18.881225Z", + "shell.execute_reply": "2024-08-21T00:39:18.880780Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:11.633549Z", - "iopub.status.busy": "2024-08-20T02:14:11.633190Z", - "iopub.status.idle": "2024-08-20T02:14:13.700141Z", - "shell.execute_reply": "2024-08-20T02:14:13.699497Z" + "iopub.execute_input": "2024-08-21T00:39:18.883253Z", + "iopub.status.busy": "2024-08-21T00:39:18.882952Z", + "iopub.status.idle": "2024-08-21T00:39:20.940870Z", + "shell.execute_reply": "2024-08-21T00:39:20.940310Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:13.702873Z", - "iopub.status.busy": "2024-08-20T02:14:13.702273Z", - "iopub.status.idle": "2024-08-20T02:14:13.724503Z", - "shell.execute_reply": "2024-08-20T02:14:13.724012Z" + "iopub.execute_input": "2024-08-21T00:39:20.943489Z", + "iopub.status.busy": "2024-08-21T00:39:20.943007Z", + "iopub.status.idle": "2024-08-21T00:39:20.963896Z", + "shell.execute_reply": "2024-08-21T00:39:20.963411Z" } }, "outputs": [ @@ -830,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:13.726695Z", - "iopub.status.busy": "2024-08-20T02:14:13.726511Z", - "iopub.status.idle": "2024-08-20T02:14:13.744474Z", - "shell.execute_reply": "2024-08-20T02:14:13.743990Z" + "iopub.execute_input": "2024-08-21T00:39:20.966264Z", + "iopub.status.busy": "2024-08-21T00:39:20.965761Z", + "iopub.status.idle": "2024-08-21T00:39:20.983447Z", + "shell.execute_reply": "2024-08-21T00:39:20.982985Z" } }, "outputs": [ @@ -937,10 +937,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:13.746608Z", - "iopub.status.busy": "2024-08-20T02:14:13.746411Z", - "iopub.status.idle": "2024-08-20T02:14:13.761608Z", - "shell.execute_reply": "2024-08-20T02:14:13.761085Z" + "iopub.execute_input": "2024-08-21T00:39:20.985466Z", + "iopub.status.busy": "2024-08-21T00:39:20.985127Z", + "iopub.status.idle": "2024-08-21T00:39:20.999401Z", + "shell.execute_reply": "2024-08-21T00:39:20.998950Z" } }, "outputs": [ @@ -1075,17 +1075,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:13.763573Z", - "iopub.status.busy": "2024-08-20T02:14:13.763395Z", - "iopub.status.idle": "2024-08-20T02:14:13.784048Z", - "shell.execute_reply": "2024-08-20T02:14:13.783505Z" + "iopub.execute_input": "2024-08-21T00:39:21.001562Z", + "iopub.status.busy": "2024-08-21T00:39:21.001246Z", + "iopub.status.idle": "2024-08-21T00:39:21.020481Z", + "shell.execute_reply": "2024-08-21T00:39:21.019899Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "29ed670888974a96a2bc9190ff8a2bec", + "model_id": "50b6b867ef49413092d8aee1b7f5a76f", "version_major": 2, "version_minor": 0 }, @@ -1121,10 +1121,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:13.786143Z", - "iopub.status.busy": "2024-08-20T02:14:13.785806Z", - "iopub.status.idle": "2024-08-20T02:14:13.800225Z", - "shell.execute_reply": "2024-08-20T02:14:13.799741Z" + "iopub.execute_input": "2024-08-21T00:39:21.022471Z", + "iopub.status.busy": "2024-08-21T00:39:21.022206Z", + "iopub.status.idle": "2024-08-21T00:39:21.036669Z", + "shell.execute_reply": "2024-08-21T00:39:21.036127Z" } }, "outputs": [ @@ -1247,10 +1247,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:13.802307Z", - "iopub.status.busy": "2024-08-20T02:14:13.802005Z", - "iopub.status.idle": "2024-08-20T02:14:13.807853Z", - "shell.execute_reply": "2024-08-20T02:14:13.807318Z" + "iopub.execute_input": "2024-08-21T00:39:21.038641Z", + "iopub.status.busy": "2024-08-21T00:39:21.038348Z", + "iopub.status.idle": "2024-08-21T00:39:21.044092Z", + "shell.execute_reply": "2024-08-21T00:39:21.043537Z" } }, "outputs": [], @@ -1307,10 +1307,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:13.809814Z", - "iopub.status.busy": "2024-08-20T02:14:13.809517Z", - "iopub.status.idle": "2024-08-20T02:14:13.828929Z", - "shell.execute_reply": "2024-08-20T02:14:13.828366Z" + "iopub.execute_input": "2024-08-21T00:39:21.046000Z", + "iopub.status.busy": "2024-08-21T00:39:21.045707Z", + "iopub.status.idle": "2024-08-21T00:39:21.062920Z", + "shell.execute_reply": "2024-08-21T00:39:21.062428Z" } }, "outputs": [ @@ -1447,80 +1447,65 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "24a06b021b9e4d4193ec3a210f966391": { + "0a27653d59324f22a363402374ee5004": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4487f6f64fd94b3cb5c3c17b8220113b", - "placeholder": "​", - "style": "IPY_MODEL_a15664cb56d948b8a7fc666198715958", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "29ed670888974a96a2bc9190ff8a2bec": { + "2b6571b200694ba3b94df122c7601917": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_24a06b021b9e4d4193ec3a210f966391", - "IPY_MODEL_2f00ff2df3984d7d99d0c5bbada2fe64", - "IPY_MODEL_3c61a57e77984cbf9541191905d39dcd" - ], - "layout": "IPY_MODEL_39e37c4b0cbd47d19bf35db2dddc029c", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "2f00ff2df3984d7d99d0c5bbada2fe64": { + "50b6b867ef49413092d8aee1b7f5a76f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f486c9ac3dcc46059aea4ed02ced34c6", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d43b7af756e14f66b961078063ac1ede", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b2ce6bcc658e4dddb4e66225d107c979", + "IPY_MODEL_83a49d9e7af64bc3bca48751c311f8e5", + "IPY_MODEL_a8f6a3da63c94dcfa8e0ed1268333e6a" + ], + "layout": "IPY_MODEL_722adb513f104ce797257512a99b4267", "tabbable": null, - "tooltip": null, - "value": 132.0 + "tooltip": null } }, - "39e37c4b0cbd47d19bf35db2dddc029c": { + "722adb513f104ce797257512a99b4267": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1573,30 +1558,33 @@ "width": null } }, - "3c61a57e77984cbf9541191905d39dcd": { + "83a49d9e7af64bc3bca48751c311f8e5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bf99dfbdaff34107be9d5cb677d00e81", - "placeholder": "​", - "style": "IPY_MODEL_f997cd87c3c248a79bb5302e023796a7", + "layout": "IPY_MODEL_a8e5ae2e343f4958ae1452652ca72421", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2b6571b200694ba3b94df122c7601917", "tabbable": null, "tooltip": null, - "value": " 132/132 [00:00<00:00, 12169.96 examples/s]" + "value": 132.0 } }, - "4487f6f64fd94b3cb5c3c17b8220113b": { + "a8e5ae2e343f4958ae1452652ca72421": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1649,25 +1637,53 @@ "width": null } }, - "a15664cb56d948b8a7fc666198715958": { + "a8f6a3da63c94dcfa8e0ed1268333e6a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f82e92d5a42b4742a6928bfc3c436454", + "placeholder": "​", + "style": "IPY_MODEL_0a27653d59324f22a363402374ee5004", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 13191.84 examples/s]" } }, - "bf99dfbdaff34107be9d5cb677d00e81": { + "b2ce6bcc658e4dddb4e66225d107c979": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c2e541c6e0834f8a8fae58f4f0e6dcf9", + "placeholder": "​", + "style": "IPY_MODEL_f1a8f33efc7747b8bcd74da075a1892d", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "c2e541c6e0834f8a8fae58f4f0e6dcf9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1720,23 +1736,25 @@ "width": null } }, - "d43b7af756e14f66b961078063ac1ede": { + "f1a8f33efc7747b8bcd74da075a1892d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f486c9ac3dcc46059aea4ed02ced34c6": { + "f82e92d5a42b4742a6928bfc3c436454": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1788,24 +1806,6 @@ "visibility": null, "width": null } - }, - "f997cd87c3c248a79bb5302e023796a7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index b93509401..ba9fe5565 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:16.901911Z", - "iopub.status.busy": "2024-08-20T02:14:16.901739Z", - "iopub.status.idle": "2024-08-20T02:14:18.364026Z", - "shell.execute_reply": "2024-08-20T02:14:18.363510Z" + "iopub.execute_input": "2024-08-21T00:39:23.980569Z", + "iopub.status.busy": "2024-08-21T00:39:23.980411Z", + "iopub.status.idle": "2024-08-21T00:39:25.175906Z", + "shell.execute_reply": "2024-08-21T00:39:25.175359Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:18.366625Z", - "iopub.status.busy": "2024-08-20T02:14:18.366169Z", - "iopub.status.idle": "2024-08-20T02:14:18.369251Z", - "shell.execute_reply": "2024-08-20T02:14:18.368758Z" + "iopub.execute_input": "2024-08-21T00:39:25.178380Z", + "iopub.status.busy": "2024-08-21T00:39:25.177978Z", + "iopub.status.idle": "2024-08-21T00:39:25.180854Z", + "shell.execute_reply": "2024-08-21T00:39:25.180393Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:18.371308Z", - "iopub.status.busy": "2024-08-20T02:14:18.371127Z", - "iopub.status.idle": "2024-08-20T02:14:18.379946Z", - "shell.execute_reply": "2024-08-20T02:14:18.379495Z" + "iopub.execute_input": "2024-08-21T00:39:25.182850Z", + "iopub.status.busy": "2024-08-21T00:39:25.182673Z", + "iopub.status.idle": "2024-08-21T00:39:25.192070Z", + "shell.execute_reply": "2024-08-21T00:39:25.191561Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:18.381762Z", - "iopub.status.busy": "2024-08-20T02:14:18.381587Z", - "iopub.status.idle": "2024-08-20T02:14:18.386252Z", - "shell.execute_reply": "2024-08-20T02:14:18.385823Z" + "iopub.execute_input": "2024-08-21T00:39:25.193872Z", + "iopub.status.busy": "2024-08-21T00:39:25.193695Z", + "iopub.status.idle": "2024-08-21T00:39:25.198516Z", + "shell.execute_reply": "2024-08-21T00:39:25.197972Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:18.388398Z", - "iopub.status.busy": "2024-08-20T02:14:18.388057Z", - "iopub.status.idle": "2024-08-20T02:14:18.396690Z", - "shell.execute_reply": "2024-08-20T02:14:18.396199Z" + "iopub.execute_input": "2024-08-21T00:39:25.200635Z", + "iopub.status.busy": "2024-08-21T00:39:25.200458Z", + "iopub.status.idle": "2024-08-21T00:39:25.383481Z", + "shell.execute_reply": "2024-08-21T00:39:25.382877Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:18.398709Z", - "iopub.status.busy": "2024-08-20T02:14:18.398370Z", - "iopub.status.idle": "2024-08-20T02:14:18.774250Z", - "shell.execute_reply": "2024-08-20T02:14:18.773669Z" + "iopub.execute_input": "2024-08-21T00:39:25.385899Z", + "iopub.status.busy": "2024-08-21T00:39:25.385675Z", + "iopub.status.idle": "2024-08-21T00:39:25.759439Z", + "shell.execute_reply": "2024-08-21T00:39:25.758831Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:18.776433Z", - "iopub.status.busy": "2024-08-20T02:14:18.776078Z", - "iopub.status.idle": "2024-08-20T02:14:18.778743Z", - "shell.execute_reply": "2024-08-20T02:14:18.778316Z" + "iopub.execute_input": "2024-08-21T00:39:25.761666Z", + "iopub.status.busy": "2024-08-21T00:39:25.761337Z", + "iopub.status.idle": "2024-08-21T00:39:25.764207Z", + "shell.execute_reply": "2024-08-21T00:39:25.763630Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:18.780701Z", - "iopub.status.busy": "2024-08-20T02:14:18.780429Z", - "iopub.status.idle": "2024-08-20T02:14:18.890959Z", - "shell.execute_reply": "2024-08-20T02:14:18.890474Z" + "iopub.execute_input": "2024-08-21T00:39:25.766292Z", + "iopub.status.busy": "2024-08-21T00:39:25.766112Z", + "iopub.status.idle": "2024-08-21T00:39:25.800111Z", + "shell.execute_reply": "2024-08-21T00:39:25.799663Z" } }, "outputs": [], @@ -638,10 +638,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:18.892980Z", - "iopub.status.busy": "2024-08-20T02:14:18.892796Z", - "iopub.status.idle": "2024-08-20T02:14:20.999564Z", - "shell.execute_reply": "2024-08-20T02:14:20.998967Z" + "iopub.execute_input": "2024-08-21T00:39:25.802098Z", + "iopub.status.busy": "2024-08-21T00:39:25.801927Z", + "iopub.status.idle": "2024-08-21T00:39:27.874005Z", + "shell.execute_reply": "2024-08-21T00:39:27.873352Z" } }, "outputs": [ @@ -685,10 +685,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:21.002285Z", - "iopub.status.busy": "2024-08-20T02:14:21.001645Z", - "iopub.status.idle": "2024-08-20T02:14:21.021940Z", - "shell.execute_reply": "2024-08-20T02:14:21.021435Z" + "iopub.execute_input": "2024-08-21T00:39:27.876509Z", + "iopub.status.busy": "2024-08-21T00:39:27.876188Z", + "iopub.status.idle": "2024-08-21T00:39:27.894832Z", + "shell.execute_reply": "2024-08-21T00:39:27.894359Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:21.024123Z", - "iopub.status.busy": "2024-08-20T02:14:21.023809Z", - "iopub.status.idle": "2024-08-20T02:14:21.031035Z", - "shell.execute_reply": "2024-08-20T02:14:21.030516Z" + "iopub.execute_input": "2024-08-21T00:39:27.896911Z", + "iopub.status.busy": "2024-08-21T00:39:27.896731Z", + "iopub.status.idle": "2024-08-21T00:39:27.903109Z", + "shell.execute_reply": "2024-08-21T00:39:27.902682Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:21.033200Z", - "iopub.status.busy": "2024-08-20T02:14:21.033017Z", - "iopub.status.idle": "2024-08-20T02:14:21.039166Z", - "shell.execute_reply": "2024-08-20T02:14:21.038534Z" + "iopub.execute_input": "2024-08-21T00:39:27.904960Z", + "iopub.status.busy": "2024-08-21T00:39:27.904786Z", + "iopub.status.idle": "2024-08-21T00:39:27.910643Z", + "shell.execute_reply": "2024-08-21T00:39:27.910192Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:21.041209Z", - "iopub.status.busy": "2024-08-20T02:14:21.041020Z", - "iopub.status.idle": "2024-08-20T02:14:21.051654Z", - "shell.execute_reply": "2024-08-20T02:14:21.051068Z" + "iopub.execute_input": "2024-08-21T00:39:27.912650Z", + "iopub.status.busy": "2024-08-21T00:39:27.912260Z", + "iopub.status.idle": "2024-08-21T00:39:27.922499Z", + "shell.execute_reply": "2024-08-21T00:39:27.921943Z" } }, "outputs": [ @@ -1200,10 +1200,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:21.053899Z", - "iopub.status.busy": "2024-08-20T02:14:21.053551Z", - "iopub.status.idle": "2024-08-20T02:14:21.062658Z", - "shell.execute_reply": "2024-08-20T02:14:21.062079Z" + "iopub.execute_input": "2024-08-21T00:39:27.924654Z", + "iopub.status.busy": "2024-08-21T00:39:27.924252Z", + "iopub.status.idle": "2024-08-21T00:39:27.933462Z", + "shell.execute_reply": "2024-08-21T00:39:27.932887Z" } }, "outputs": [ @@ -1319,10 +1319,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:21.064906Z", - "iopub.status.busy": "2024-08-20T02:14:21.064569Z", - "iopub.status.idle": "2024-08-20T02:14:21.071291Z", - "shell.execute_reply": "2024-08-20T02:14:21.070783Z" + "iopub.execute_input": "2024-08-21T00:39:27.935608Z", + "iopub.status.busy": "2024-08-21T00:39:27.935209Z", + "iopub.status.idle": "2024-08-21T00:39:27.942032Z", + "shell.execute_reply": "2024-08-21T00:39:27.941536Z" }, "scrolled": true }, @@ -1447,10 +1447,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:21.073343Z", - "iopub.status.busy": "2024-08-20T02:14:21.072998Z", - "iopub.status.idle": "2024-08-20T02:14:21.082039Z", - "shell.execute_reply": "2024-08-20T02:14:21.081586Z" + "iopub.execute_input": "2024-08-21T00:39:27.944151Z", + "iopub.status.busy": "2024-08-21T00:39:27.943805Z", + "iopub.status.idle": "2024-08-21T00:39:27.952822Z", + "shell.execute_reply": "2024-08-21T00:39:27.952264Z" } }, "outputs": [ @@ -1553,10 +1553,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:21.084116Z", - "iopub.status.busy": "2024-08-20T02:14:21.083792Z", - "iopub.status.idle": "2024-08-20T02:14:21.100152Z", - "shell.execute_reply": "2024-08-20T02:14:21.099567Z" + "iopub.execute_input": "2024-08-21T00:39:27.954983Z", + "iopub.status.busy": "2024-08-21T00:39:27.954660Z", + "iopub.status.idle": "2024-08-21T00:39:27.970717Z", + "shell.execute_reply": "2024-08-21T00:39:27.970282Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/image.html b/master/tutorials/datalab/image.html index 3655619e3..9ac0e60ed 100644 --- a/master/tutorials/datalab/image.html +++ b/master/tutorials/datalab/image.html @@ -727,31 +727,31 @@

    2. Fetch and normalize the Fashion-MNIST dataset

    -
    +
    -
    +
    -
    +
    -
    +
    -
    +

    Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

    @@ -1064,7 +1064,7 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    +
    @@ -1096,7 +1096,7 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    +
    @@ -1128,7 +1128,7 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    +
    @@ -2041,35 +2042,35 @@

    Low information images - low_information_score is_low_information_issue + low_information_score 53050 - 0.067975 True + 0.067975 40875 - 0.089929 True + 0.089929 9594 - 0.092601 True + 0.092601 34825 - 0.107744 True + 0.107744 37530 - 0.108516 True + 0.108516 @@ -2097,7 +2098,7 @@

    Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

    diff --git a/master/tutorials/datalab/image.ipynb b/master/tutorials/datalab/image.ipynb index a1a667c7d..8733ed39c 100644 --- a/master/tutorials/datalab/image.ipynb +++ b/master/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:23.925032Z", - "iopub.status.busy": "2024-08-20T02:14:23.924856Z", - "iopub.status.idle": "2024-08-20T02:14:27.016805Z", - "shell.execute_reply": "2024-08-20T02:14:27.016161Z" + "iopub.execute_input": "2024-08-21T00:39:30.707451Z", + "iopub.status.busy": "2024-08-21T00:39:30.707266Z", + "iopub.status.idle": "2024-08-21T00:39:33.654586Z", + "shell.execute_reply": "2024-08-21T00:39:33.653966Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:27.019513Z", - "iopub.status.busy": "2024-08-20T02:14:27.019217Z", - "iopub.status.idle": "2024-08-20T02:14:27.023375Z", - "shell.execute_reply": "2024-08-20T02:14:27.022936Z" + "iopub.execute_input": "2024-08-21T00:39:33.657326Z", + "iopub.status.busy": "2024-08-21T00:39:33.657023Z", + "iopub.status.idle": "2024-08-21T00:39:33.660735Z", + "shell.execute_reply": "2024-08-21T00:39:33.660181Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:27.025468Z", - "iopub.status.busy": "2024-08-20T02:14:27.025101Z", - "iopub.status.idle": "2024-08-20T02:14:29.012079Z", - "shell.execute_reply": "2024-08-20T02:14:29.011486Z" + "iopub.execute_input": "2024-08-21T00:39:33.662880Z", + "iopub.status.busy": "2024-08-21T00:39:33.662538Z", + "iopub.status.idle": "2024-08-21T00:39:36.748194Z", + "shell.execute_reply": "2024-08-21T00:39:36.747710Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cd6b09e86f8c40f38a15de31fd966867", + "model_id": "a20e61f2133d4a678bd2b2e50042b1f3", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f0b797b78688457792e471764aadcac5", + "model_id": "463d739b98d0435d9baf793cf87f15e3", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d40a68c9c6774397bdea2fbe6bb9e2cb", + "model_id": "3f585e537a3d44e192823e0223eb4127", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "aabff29de5e044afa3f214ce59f8d064", + "model_id": "0d0a8ce6b3874ba39d794c1add79af3a", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fc6b594ae32e4d7789e07642981bb1cb", + "model_id": "5916bec07eac422cab70586495cde9c8", "version_major": 2, "version_minor": 0 }, @@ -260,10 +260,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:29.014307Z", - "iopub.status.busy": "2024-08-20T02:14:29.013979Z", - "iopub.status.idle": "2024-08-20T02:14:29.017756Z", - "shell.execute_reply": "2024-08-20T02:14:29.017217Z" + "iopub.execute_input": "2024-08-21T00:39:36.750537Z", + "iopub.status.busy": "2024-08-21T00:39:36.750183Z", + "iopub.status.idle": "2024-08-21T00:39:36.753899Z", + "shell.execute_reply": "2024-08-21T00:39:36.753423Z" } }, "outputs": [ @@ -288,17 +288,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:29.019769Z", - "iopub.status.busy": "2024-08-20T02:14:29.019421Z", - "iopub.status.idle": "2024-08-20T02:14:40.711282Z", - "shell.execute_reply": "2024-08-20T02:14:40.710695Z" + "iopub.execute_input": "2024-08-21T00:39:36.755910Z", + "iopub.status.busy": "2024-08-21T00:39:36.755571Z", + "iopub.status.idle": "2024-08-21T00:39:48.255444Z", + "shell.execute_reply": "2024-08-21T00:39:48.254912Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5faa54627d394ff5be9347e2a821a5d5", + "model_id": "c59aab2b6a7e4c4c980d67c2b0a3e630", "version_major": 2, "version_minor": 0 }, @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:40.714147Z", - "iopub.status.busy": "2024-08-20T02:14:40.713749Z", - "iopub.status.idle": "2024-08-20T02:14:59.249566Z", - "shell.execute_reply": "2024-08-20T02:14:59.248980Z" + "iopub.execute_input": "2024-08-21T00:39:48.257988Z", + "iopub.status.busy": "2024-08-21T00:39:48.257756Z", + "iopub.status.idle": "2024-08-21T00:40:07.067772Z", + "shell.execute_reply": "2024-08-21T00:40:07.067241Z" } }, "outputs": [], @@ -372,10 +372,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:59.252407Z", - "iopub.status.busy": "2024-08-20T02:14:59.251972Z", - "iopub.status.idle": "2024-08-20T02:14:59.256948Z", - "shell.execute_reply": "2024-08-20T02:14:59.256404Z" + "iopub.execute_input": "2024-08-21T00:40:07.070526Z", + "iopub.status.busy": "2024-08-21T00:40:07.070190Z", + "iopub.status.idle": "2024-08-21T00:40:07.075111Z", + "shell.execute_reply": "2024-08-21T00:40:07.074534Z" } }, "outputs": [], @@ -413,10 +413,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:59.259100Z", - "iopub.status.busy": "2024-08-20T02:14:59.258704Z", - "iopub.status.idle": "2024-08-20T02:14:59.262833Z", - "shell.execute_reply": "2024-08-20T02:14:59.262295Z" + "iopub.execute_input": "2024-08-21T00:40:07.077043Z", + "iopub.status.busy": "2024-08-21T00:40:07.076750Z", + "iopub.status.idle": "2024-08-21T00:40:07.080992Z", + "shell.execute_reply": "2024-08-21T00:40:07.080444Z" }, "nbsphinx": "hidden" }, @@ -553,10 +553,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:59.265013Z", - "iopub.status.busy": "2024-08-20T02:14:59.264751Z", - "iopub.status.idle": "2024-08-20T02:14:59.273828Z", - "shell.execute_reply": "2024-08-20T02:14:59.273254Z" + "iopub.execute_input": "2024-08-21T00:40:07.083423Z", + "iopub.status.busy": "2024-08-21T00:40:07.083014Z", + "iopub.status.idle": "2024-08-21T00:40:07.091943Z", + "shell.execute_reply": "2024-08-21T00:40:07.091414Z" }, "nbsphinx": "hidden" }, @@ -681,10 +681,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:59.276087Z", - "iopub.status.busy": "2024-08-20T02:14:59.275664Z", - "iopub.status.idle": "2024-08-20T02:14:59.303828Z", - "shell.execute_reply": "2024-08-20T02:14:59.303212Z" + "iopub.execute_input": "2024-08-21T00:40:07.093993Z", + "iopub.status.busy": "2024-08-21T00:40:07.093589Z", + "iopub.status.idle": "2024-08-21T00:40:07.120316Z", + "shell.execute_reply": "2024-08-21T00:40:07.119719Z" } }, "outputs": [], @@ -721,10 +721,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:14:59.306556Z", - "iopub.status.busy": "2024-08-20T02:14:59.306131Z", - "iopub.status.idle": "2024-08-20T02:15:33.542504Z", - "shell.execute_reply": "2024-08-20T02:15:33.541888Z" + "iopub.execute_input": "2024-08-21T00:40:07.122525Z", + "iopub.status.busy": "2024-08-21T00:40:07.122249Z", + "iopub.status.idle": "2024-08-21T00:40:40.782324Z", + "shell.execute_reply": "2024-08-21T00:40:40.781725Z" } }, "outputs": [ @@ -740,21 +740,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.207\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.798\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.694\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.853\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "de4a40cbeae5420eaa285c1e15ff5c2b", + "model_id": "81607a3e18ca4baeb1b8f8f0aa78fd4b", "version_major": 2, "version_minor": 0 }, @@ -775,7 +775,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "45ddc6839105425c957fa8cc282296cd", + "model_id": "e18ca4639102462dac92c3c5a84ab0f0", "version_major": 2, "version_minor": 0 }, @@ -798,21 +798,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.161\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.923\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.733\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.625\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "df490d58807c40f381869a6efc0f5427", + "model_id": "c115bb12c8ec4ff9a7eb01faca32c461", "version_major": 2, "version_minor": 0 }, @@ -833,7 +833,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "56ca127f2df5437f87fbbafdc821e5c3", + "model_id": "65d287d8c3144fc2b78a43f0bbd2cad9", "version_major": 2, "version_minor": 0 }, @@ -856,21 +856,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 5.006\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.897\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.826\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.677\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c04185b16fe24db68ca78fe46f88c7f6", + "model_id": "18d825b02ab240c8b132e33d7d8f86e8", "version_major": 2, "version_minor": 0 }, @@ -891,7 +891,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "441cfdef564242b99b8b1cc22c5d0f4a", + "model_id": "f64b8b29b1784e22abb666c97681a3dc", "version_major": 2, "version_minor": 0 }, @@ -970,10 +970,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:15:33.545264Z", - "iopub.status.busy": "2024-08-20T02:15:33.544679Z", - "iopub.status.idle": "2024-08-20T02:15:33.562115Z", - "shell.execute_reply": "2024-08-20T02:15:33.561639Z" + "iopub.execute_input": "2024-08-21T00:40:40.785014Z", + "iopub.status.busy": "2024-08-21T00:40:40.784590Z", + "iopub.status.idle": "2024-08-21T00:40:40.802127Z", + "shell.execute_reply": "2024-08-21T00:40:40.801583Z" } }, "outputs": [], @@ -998,10 +998,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:15:33.564262Z", - "iopub.status.busy": "2024-08-20T02:15:33.564075Z", - "iopub.status.idle": "2024-08-20T02:15:34.044704Z", - "shell.execute_reply": "2024-08-20T02:15:34.044079Z" + "iopub.execute_input": "2024-08-21T00:40:40.804293Z", + "iopub.status.busy": "2024-08-21T00:40:40.803995Z", + "iopub.status.idle": "2024-08-21T00:40:41.274993Z", + "shell.execute_reply": "2024-08-21T00:40:41.274435Z" } }, "outputs": [], @@ -1021,10 +1021,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:15:34.047591Z", - "iopub.status.busy": "2024-08-20T02:15:34.047128Z", - "iopub.status.idle": "2024-08-20T02:17:24.286699Z", - "shell.execute_reply": "2024-08-20T02:17:24.286013Z" + "iopub.execute_input": "2024-08-21T00:40:41.277482Z", + "iopub.status.busy": "2024-08-21T00:40:41.277118Z", + "iopub.status.idle": "2024-08-21T00:42:32.523063Z", + "shell.execute_reply": "2024-08-21T00:42:32.522397Z" } }, "outputs": [ @@ -1063,7 +1063,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a1976bceab224f84a094c80cde4e8466", + "model_id": "d2f20d6f0ba44123bab8b7d235b6515d", "version_major": 2, "version_minor": 0 }, @@ -1078,7 +1078,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "Removing grayscale from potential issues in the dataset as it exceeds max_prevalence=0.1\n" + "Removing grayscale from potential issues in the dataset as it exceeds max_prevalence=0.1\n", + "Finding spurious correlation issues in the dataset ...\n" ] }, { @@ -1108,10 +1109,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:24.289218Z", - "iopub.status.busy": "2024-08-20T02:17:24.288839Z", - "iopub.status.idle": "2024-08-20T02:17:24.758407Z", - "shell.execute_reply": "2024-08-20T02:17:24.757697Z" + "iopub.execute_input": "2024-08-21T00:42:32.525907Z", + "iopub.status.busy": "2024-08-21T00:42:32.525282Z", + "iopub.status.idle": "2024-08-21T00:42:32.984283Z", + "shell.execute_reply": "2024-08-21T00:42:32.983705Z" } }, "outputs": [ @@ -1257,10 +1258,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:24.760793Z", - "iopub.status.busy": "2024-08-20T02:17:24.760383Z", - "iopub.status.idle": "2024-08-20T02:17:24.822881Z", - "shell.execute_reply": "2024-08-20T02:17:24.822298Z" + "iopub.execute_input": "2024-08-21T00:42:32.986800Z", + "iopub.status.busy": "2024-08-21T00:42:32.986351Z", + "iopub.status.idle": "2024-08-21T00:42:33.048656Z", + "shell.execute_reply": "2024-08-21T00:42:33.048105Z" } }, "outputs": [ @@ -1364,10 +1365,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:24.825273Z", - "iopub.status.busy": "2024-08-20T02:17:24.824880Z", - "iopub.status.idle": "2024-08-20T02:17:24.834267Z", - "shell.execute_reply": "2024-08-20T02:17:24.833809Z" + "iopub.execute_input": "2024-08-21T00:42:33.050934Z", + "iopub.status.busy": "2024-08-21T00:42:33.050587Z", + "iopub.status.idle": "2024-08-21T00:42:33.059646Z", + "shell.execute_reply": "2024-08-21T00:42:33.059194Z" } }, "outputs": [ @@ -1497,10 +1498,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:24.836217Z", - "iopub.status.busy": "2024-08-20T02:17:24.836040Z", - "iopub.status.idle": "2024-08-20T02:17:24.840828Z", - "shell.execute_reply": "2024-08-20T02:17:24.840359Z" + "iopub.execute_input": "2024-08-21T00:42:33.061792Z", + "iopub.status.busy": "2024-08-21T00:42:33.061531Z", + "iopub.status.idle": "2024-08-21T00:42:33.066696Z", + "shell.execute_reply": "2024-08-21T00:42:33.066258Z" }, "nbsphinx": "hidden" }, @@ -1546,10 +1547,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:24.843031Z", - "iopub.status.busy": "2024-08-20T02:17:24.842608Z", - "iopub.status.idle": "2024-08-20T02:17:25.361966Z", - "shell.execute_reply": "2024-08-20T02:17:25.361360Z" + "iopub.execute_input": "2024-08-21T00:42:33.068703Z", + "iopub.status.busy": "2024-08-21T00:42:33.068372Z", + "iopub.status.idle": "2024-08-21T00:42:33.570790Z", + "shell.execute_reply": "2024-08-21T00:42:33.570202Z" } }, "outputs": [ @@ -1584,10 +1585,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:25.364423Z", - "iopub.status.busy": "2024-08-20T02:17:25.364053Z", - "iopub.status.idle": "2024-08-20T02:17:25.372684Z", - "shell.execute_reply": "2024-08-20T02:17:25.372122Z" + "iopub.execute_input": "2024-08-21T00:42:33.573203Z", + "iopub.status.busy": "2024-08-21T00:42:33.572793Z", + "iopub.status.idle": "2024-08-21T00:42:33.581715Z", + "shell.execute_reply": "2024-08-21T00:42:33.581137Z" } }, "outputs": [ @@ -1754,10 +1755,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:25.375054Z", - "iopub.status.busy": "2024-08-20T02:17:25.374715Z", - "iopub.status.idle": "2024-08-20T02:17:25.382037Z", - "shell.execute_reply": "2024-08-20T02:17:25.381578Z" + "iopub.execute_input": "2024-08-21T00:42:33.584046Z", + "iopub.status.busy": "2024-08-21T00:42:33.583654Z", + "iopub.status.idle": "2024-08-21T00:42:33.591299Z", + "shell.execute_reply": "2024-08-21T00:42:33.590838Z" }, "nbsphinx": "hidden" }, @@ -1833,10 +1834,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:25.384048Z", - "iopub.status.busy": "2024-08-20T02:17:25.383770Z", - "iopub.status.idle": "2024-08-20T02:17:26.157567Z", - "shell.execute_reply": "2024-08-20T02:17:26.156930Z" + "iopub.execute_input": "2024-08-21T00:42:33.593318Z", + "iopub.status.busy": "2024-08-21T00:42:33.592983Z", + "iopub.status.idle": "2024-08-21T00:42:34.056756Z", + "shell.execute_reply": "2024-08-21T00:42:34.056146Z" } }, "outputs": [ @@ -1873,10 +1874,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:26.159824Z", - "iopub.status.busy": "2024-08-20T02:17:26.159488Z", - "iopub.status.idle": "2024-08-20T02:17:26.175731Z", - "shell.execute_reply": "2024-08-20T02:17:26.175276Z" + "iopub.execute_input": "2024-08-21T00:42:34.059043Z", + "iopub.status.busy": "2024-08-21T00:42:34.058682Z", + "iopub.status.idle": "2024-08-21T00:42:34.074639Z", + "shell.execute_reply": "2024-08-21T00:42:34.073983Z" } }, "outputs": [ @@ -2033,10 +2034,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:26.177913Z", - "iopub.status.busy": "2024-08-20T02:17:26.177579Z", - "iopub.status.idle": "2024-08-20T02:17:26.183161Z", - "shell.execute_reply": "2024-08-20T02:17:26.182701Z" + "iopub.execute_input": "2024-08-21T00:42:34.077116Z", + "iopub.status.busy": "2024-08-21T00:42:34.076692Z", + "iopub.status.idle": "2024-08-21T00:42:34.082334Z", + "shell.execute_reply": "2024-08-21T00:42:34.081776Z" }, "nbsphinx": "hidden" }, @@ -2081,10 +2082,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:26.185198Z", - "iopub.status.busy": "2024-08-20T02:17:26.184883Z", - "iopub.status.idle": "2024-08-20T02:17:26.656780Z", - "shell.execute_reply": "2024-08-20T02:17:26.655714Z" + "iopub.execute_input": "2024-08-21T00:42:34.084405Z", + "iopub.status.busy": "2024-08-21T00:42:34.084069Z", + "iopub.status.idle": "2024-08-21T00:42:34.857016Z", + "shell.execute_reply": "2024-08-21T00:42:34.856444Z" } }, "outputs": [ @@ -2166,10 +2167,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:26.659587Z", - "iopub.status.busy": "2024-08-20T02:17:26.659376Z", - "iopub.status.idle": "2024-08-20T02:17:26.668899Z", - "shell.execute_reply": "2024-08-20T02:17:26.668289Z" + "iopub.execute_input": "2024-08-21T00:42:34.860006Z", + "iopub.status.busy": "2024-08-21T00:42:34.859508Z", + "iopub.status.idle": "2024-08-21T00:42:34.870236Z", + "shell.execute_reply": "2024-08-21T00:42:34.869719Z" } }, "outputs": [ @@ -2297,10 +2298,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:26.671473Z", - "iopub.status.busy": "2024-08-20T02:17:26.671274Z", - "iopub.status.idle": "2024-08-20T02:17:26.677173Z", - "shell.execute_reply": "2024-08-20T02:17:26.676589Z" + "iopub.execute_input": "2024-08-21T00:42:34.872762Z", + "iopub.status.busy": "2024-08-21T00:42:34.872562Z", + "iopub.status.idle": "2024-08-21T00:42:34.879826Z", + "shell.execute_reply": "2024-08-21T00:42:34.879252Z" }, "nbsphinx": "hidden" }, @@ -2337,10 +2338,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:26.679475Z", - "iopub.status.busy": "2024-08-20T02:17:26.679286Z", - "iopub.status.idle": "2024-08-20T02:17:26.887524Z", - "shell.execute_reply": "2024-08-20T02:17:26.886920Z" + "iopub.execute_input": "2024-08-21T00:42:34.881993Z", + "iopub.status.busy": "2024-08-21T00:42:34.881798Z", + "iopub.status.idle": "2024-08-21T00:42:35.084506Z", + "shell.execute_reply": "2024-08-21T00:42:35.084013Z" } }, "outputs": [ @@ -2382,10 +2383,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:26.889720Z", - "iopub.status.busy": "2024-08-20T02:17:26.889548Z", - "iopub.status.idle": "2024-08-20T02:17:26.897595Z", - "shell.execute_reply": "2024-08-20T02:17:26.897104Z" + "iopub.execute_input": "2024-08-21T00:42:35.086568Z", + "iopub.status.busy": "2024-08-21T00:42:35.086393Z", + "iopub.status.idle": "2024-08-21T00:42:35.094375Z", + "shell.execute_reply": "2024-08-21T00:42:35.093906Z" } }, "outputs": [ @@ -2410,47 +2411,47 @@ " \n", " \n", " \n", - " low_information_score\n", " is_low_information_issue\n", + " low_information_score\n", " \n", " \n", " \n", " \n", " 53050\n", - " 0.067975\n", " True\n", + " 0.067975\n", " \n", " \n", " 40875\n", - " 0.089929\n", " True\n", + " 0.089929\n", " \n", " \n", " 9594\n", - " 0.092601\n", " True\n", + " 0.092601\n", " \n", " \n", " 34825\n", - " 0.107744\n", " True\n", + " 0.107744\n", " \n", " \n", " 37530\n", - " 0.108516\n", " True\n", + " 0.108516\n", " \n", " \n", "\n", "

    " ], "text/plain": [ - " low_information_score is_low_information_issue\n", - "53050 0.067975 True\n", - "40875 0.089929 True\n", - "9594 0.092601 True\n", - "34825 0.107744 True\n", - "37530 0.108516 True" + " is_low_information_issue low_information_score\n", + "53050 True 0.067975\n", + "40875 True 0.089929\n", + "9594 True 0.092601\n", + "34825 True 0.107744\n", + "37530 True 0.108516" ] }, "execution_count": 29, @@ -2471,10 +2472,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:26.899613Z", - "iopub.status.busy": "2024-08-20T02:17:26.899267Z", - "iopub.status.idle": "2024-08-20T02:17:27.096728Z", - "shell.execute_reply": "2024-08-20T02:17:27.096135Z" + "iopub.execute_input": "2024-08-21T00:42:35.096382Z", + "iopub.status.busy": "2024-08-21T00:42:35.096048Z", + "iopub.status.idle": "2024-08-21T00:42:35.290511Z", + "shell.execute_reply": "2024-08-21T00:42:35.289937Z" } }, "outputs": [ @@ -2514,10 +2515,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:27.099097Z", - "iopub.status.busy": "2024-08-20T02:17:27.098748Z", - "iopub.status.idle": "2024-08-20T02:17:27.103289Z", - "shell.execute_reply": "2024-08-20T02:17:27.102744Z" + "iopub.execute_input": "2024-08-21T00:42:35.292770Z", + "iopub.status.busy": "2024-08-21T00:42:35.292408Z", + "iopub.status.idle": "2024-08-21T00:42:35.297161Z", + "shell.execute_reply": "2024-08-21T00:42:35.296589Z" }, "nbsphinx": "hidden" }, @@ -2554,69 +2555,76 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "021d8612a48e43178fed0c0b15ea876c": { - "model_module": "@jupyter-widgets/controls", + "0090a6e1a0314bd092156ae36614df7f": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "03b02631a61b45db80f1674b2e513637": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ac4efbc3798b4fea9362751bc3c2aad7", - "placeholder": "​", - "style": "IPY_MODEL_2f619565724a4f5e85f34435f4797cc1", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "07026fa3ce9f40908f1cad23fb8730ee": { + "03ac94efe0b7409880cc3ace36a81a78": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9be7f183d4c34b5491249ea2e89e3ee2", - "placeholder": "​", - "style": "IPY_MODEL_a54ea9c9e9b0433fbd1836e54c5b2b7f", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "0a118557c0514ce7ab2b47cb0d244f86": { + "0863f7aeecb3467cb344c965276dd26d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2631,54 +2639,51 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a8959e27ece346309771bfdaf0c7265a", + "layout": "IPY_MODEL_451e831e5f8a41168bb1dd5ba0d41113", "placeholder": "​", - "style": "IPY_MODEL_1d1ce77c588e44e596fd34478e46d70d", + "style": "IPY_MODEL_7dd8bc4d9c98453c97ed63c835daeb7a", "tabbable": null, "tooltip": null, - "value": "100%" + "value": "Computing checksums: 100%" } }, - "0c312ef42cba4cd699cf564f02f23ad2": { + "09585ef64c004c5580086dc174f84a49": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4149612229a94b399cbad5fd221f93bb", - "placeholder": "​", - "style": "IPY_MODEL_476ee1c7fa68476895326f117eb002ce", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0d3cbe2df0bc47b5a91766e8876fb0ad": { + "0ab9658c5c5a45f88f7ecd42ad837a28": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0e3b3fa140cb40be8653cfde627d3d79": { + "0c37e49fea114e05970daebd3b46af90": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2731,7 +2736,31 @@ "width": null } }, - "10ac5d66ea3743dca0e0beb7ed0cae31": { + "0d0a8ce6b3874ba39d794c1add79af3a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_160d9773829e45be894d59de39f0e2bd", + "IPY_MODEL_bd24b93e83db495ba8c68c0735f0c8ae", + "IPY_MODEL_9df7eba39a454111be100a3d45fa73fa" + ], + "layout": "IPY_MODEL_7cd87c6834604df0bd153d20f18f4e8d", + "tabbable": null, + "tooltip": null + } + }, + "0e594dc4853e47c6814600a0605eaf6e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2746,15 +2775,83 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7fea1137ff84487eb48fd3148ffe61c2", + "layout": "IPY_MODEL_e40f660a323041a893eb609d3636575b", "placeholder": "​", - "style": "IPY_MODEL_2871941f876c4f2cad18e45cc151987b", + "style": "IPY_MODEL_0f564a4e6d284a50a0d7f5933dcbbbd6", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "0f564a4e6d284a50a0d7f5933dcbbbd6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0fcb53e027ed415fa4ecca4336afdc56": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0863f7aeecb3467cb344c965276dd26d", + "IPY_MODEL_118af324753e435ea1a9b770847e158c", + "IPY_MODEL_42f1baee75ee478daa5f6c4120c81508" + ], + "layout": "IPY_MODEL_a9eb2f5fb9f34588be298081076acb6f", + "tabbable": null, + "tooltip": null + } + }, + "118af324753e435ea1a9b770847e158c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_248ea55ebc014df79811279a04e5c43a", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_03ac94efe0b7409880cc3ace36a81a78", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.25it/s]" + "value": 2.0 } }, - "11fb5c3f3d134685a778b4ef5db8251b": { + "123a7f9faee24b9ca7cc1d97cd06f494": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2807,7 +2904,25 @@ "width": null } }, - "1479a4d143bd4e9d87f38b85478b15cf": { + "1361c07af5134f28b730f630eb4f8b22": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "160d9773829e45be894d59de39f0e2bd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2822,15 +2937,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6d2bb728d5434cc1bf7bcbe5114c6c1c", + "layout": "IPY_MODEL_c622402929c843b68cf0ad96de113751", "placeholder": "​", - "style": "IPY_MODEL_a176f3f55a0546dea71efaa2fd058327", + "style": "IPY_MODEL_f2ac84087dc44396ba038fe66dda6f94", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 59.13it/s]" + "value": "Generating train split: 100%" + } + }, + "18d825b02ab240c8b132e33d7d8f86e8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5ff09e218d274b8fac53538c84ef1288", + "IPY_MODEL_8ae2ae2784f24f19b8ebc8c5bdd03310", + "IPY_MODEL_1988929822c34023ba03542b5ac855b6" + ], + "layout": "IPY_MODEL_dfd1882b8a264cf5856df21b7c839b64", + "tabbable": null, + "tooltip": null } }, - "15368d6fe0714cc4aea2a2bb2fb50799": { + "1988929822c34023ba03542b5ac855b6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2845,68 +2984,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f458b392945444ba8b10eed0a3dd1645", + "layout": "IPY_MODEL_797fd5f4177a4751935f48bd5e57a811", "placeholder": "​", - "style": "IPY_MODEL_73aa47eccdb342e1873ef0de4dfaaba4", + "style": "IPY_MODEL_0ab9658c5c5a45f88f7ecd42ad837a28", "tabbable": null, "tooltip": null, - "value": " 9.02k/9.02k [00:00<00:00, 1.14MB/s]" + "value": " 40/40 [00:00<00:00, 57.49it/s]" } }, - "15cdf804328e4b5ebac5a69a308917a0": { - "model_module": "@jupyter-widgets/base", + "1eb1014045dd499c802757478058bea8": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_57e13432b1304559996a38ae76cf5d5b", + "placeholder": "​", + "style": "IPY_MODEL_a621fe07134a4a1eb8e7dde558240f6a", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:51<00:00, 1227.40it/s]" } }, - "169af65c6da24ccbbbc9686554ad7330": { + "1ef99d81d54c48f582aaf0afccc25569": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2959,7 +3068,7 @@ "width": null } }, - "169ff7283fd74d6ebb245d342d9b49cf": { + "20952cf3175f4767be6b403c62274466": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2975,294 +3084,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f28fbbbba2984229af4e67f6ca6e8831", + "layout": "IPY_MODEL_871146bf317f42a7aff7d941ef3918f0", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_d8b8c8d3b7c74f13b7163f40115a9f0c", + "style": "IPY_MODEL_d5301367ac6a4b84bbc0c321a286117e", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "16ac3905f01949b98855f4fb0b92cae0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "17cb2066ebd14043923368c02dca93dc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "19e4dd2c86be43e7bb8e1c25f8072e28": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1d1ce77c588e44e596fd34478e46d70d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1f82a06521d2455cb39afe53180dadc6": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "20a722caad7641c2bf13bb841c20bb2a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "24f08ffd209d481fab5118b595a9616f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "26346069256c47abb0faed0d533560b7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "282d9a64728c471b8355926115fd9898": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2857a837de394de48bfed929ebf8f0b1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2871941f876c4f2cad18e45cc151987b": { + "240319243e0f4665b9fd592c100d171c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3280,7 +3112,7 @@ "text_color": null } }, - "2a912c7f6ced4e7a8e4d717be022a5c4": { + "243390ab71bb4bbcb83f468711fd42e8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3333,64 +3165,7 @@ "width": null } }, - "2b2e2700e5624405b4e39b6c8e47acbf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_de45faae5c3247e0b8fe29686b0e8c63", - "placeholder": "​", - "style": "IPY_MODEL_6348c64e32ba485d8591358508480b82", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" - } - }, - "2d29eafef9b4432998bb385936904368": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2f619565724a4f5e85f34435f4797cc1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "32cbff0f839c4350996a8211f56b5f3e": { + "248ea55ebc014df79811279a04e5c43a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3443,25 +3218,7 @@ "width": null } }, - "36fd180883244492b72497cfcc34ef46": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3a660752b251462d88b557c02564d921": { + "2562e71fd2f64d07b631e639debc9636": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3514,41 +3271,7 @@ "width": null } }, - "3eec7bf90b544f90bca30420429fbeb9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "3f91e82b6e7f4a78b379a4a6eb6e398b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4149612229a94b399cbad5fd221f93bb": { + "26e1b5518ff240278ff1bc974b8295ad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3601,49 +3324,30 @@ "width": null } }, - "43a104c3fa0b434b93f6fbbcca42fc2b": { + "294a233cb4384c7b95501bb1ed8e2c44": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "441cfdef564242b99b8b1cc22c5d0f4a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9e0d6e57b4884960881ed582f7dadf4a", - "IPY_MODEL_7d8319efcc6040fe906197c851c669b9", - "IPY_MODEL_a9b6a871bfb845f28df4e04109b1543f" - ], - "layout": "IPY_MODEL_f4bfeea21b8f49b2a7d30a142e3e8549", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d96d30dd619344a99a12676a4c6e5277", + "placeholder": "​", + "style": "IPY_MODEL_92eccb9eb18148b3bff9e4144ca6cb6d", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "45727302ad624b9d93ae556eb9c288a0": { + "2b7dd9a344a84205bb7c1076b2a000f8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3659,49 +3363,7 @@ "description_width": "" } }, - "45ddc6839105425c957fa8cc282296cd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f7d925790daf4835a17e53ef72c2a004", - "IPY_MODEL_9f5b5b7578b844b59a8287cdc9ee5b32", - "IPY_MODEL_ecb05f4c4e5545a39c8106713cdaf17f" - ], - "layout": "IPY_MODEL_876437f018d640669a40965c5c35b6c2", - "tabbable": null, - "tooltip": null - } - }, - "476ee1c7fa68476895326f117eb002ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "49a2422b46d84a7fa25f880ea56876e5": { + "2c9c0982e5e04ae29886550c55c4a461": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3754,71 +3416,23 @@ "width": null } }, - "4b3e49364f734945ac6d89bd9ea490b7": { + "2fe33272a38c439895dacf4dd38fc306": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4fac98ba7f4543f5bc1d5ec5a3190f4a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5c1cb462f7f84c29a968da6975977b0d", - "placeholder": "​", - "style": "IPY_MODEL_43a104c3fa0b434b93f6fbbcca42fc2b", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 290519.38 examples/s]" - } - }, - "50b6e3cbb73145a48b3d84c0312098d4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_20a722caad7641c2bf13bb841c20bb2a", - "placeholder": "​", - "style": "IPY_MODEL_82d376f635054d3c97c64764d549725e", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:50<00:00, 1167.72it/s]" + "bar_color": null, + "description_width": "" } }, - "5125f4c4f5c44b49aa982831d87ecfc9": { + "2fed369fd0be40feacbcbaad93cf93c1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3871,33 +3485,30 @@ "width": null } }, - "5128eb3887f0470b94f4145cada81762": { + "3019243807544f6d987545bce5dd8f3d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_941416d121634b03b754227b88786641", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3eec7bf90b544f90bca30420429fbeb9", + "layout": "IPY_MODEL_e86dbaa5d3c04bc18c5c77dd4d794c63", + "placeholder": "​", + "style": "IPY_MODEL_cd2d53dd06fa461284b75a1bdd83f18d", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": "Generating test split: 100%" } }, - "5164ccb60fd54e12936c4d1b1c831021": { + "3056551dc5924bdba2dbe296d659c029": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3912,39 +3523,82 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f3a7be966cfe40f99217128504a15ed7", + "layout": "IPY_MODEL_8b0f204fc563494eb11d422e1b3cc342", "placeholder": "​", - "style": "IPY_MODEL_827679259b2e4576b4086a2372057a7b", + "style": "IPY_MODEL_240319243e0f4665b9fd592c100d171c", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": " 9.02k/9.02k [00:00<00:00, 1.11MB/s]" } }, - "56ca127f2df5437f87fbbafdc821e5c3": { + "316b8fd82b284560a819f71e49826760": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "31da7fbc4ceb4e4cab95640e5f63a387": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0a118557c0514ce7ab2b47cb0d244f86", - "IPY_MODEL_f485eb58c46447509184d1339495c90b", - "IPY_MODEL_59a27ef3f4be4456aa0c7658a7c4d615" - ], - "layout": "IPY_MODEL_11fb5c3f3d134685a778b4ef5db8251b", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_849276a9e26042a5802402a3126e6a90", + "placeholder": "​", + "style": "IPY_MODEL_b1a61c6a0ca149e18ceb1f5c66b6b1b8", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 40/40 [00:00<00:00, 55.79it/s]" + } + }, + "33c29b72ee814236b2a49a1d616ec399": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_af4046f51ba94e69ba881c964e8c725a", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7d9d07fb376a462ab7ddd16bb3640027", + "tabbable": null, + "tooltip": null, + "value": 30931277.0 } }, - "59a27ef3f4be4456aa0c7658a7c4d615": { + "352544fb47c84a44811ee627291a517a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3959,15 +3613,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a2f438e3c9f34e7c86ce9e7f8fdc59de", + "layout": "IPY_MODEL_9d8068af7425429db8de8f0963a041cf", "placeholder": "​", - "style": "IPY_MODEL_df7ee9c286654bd68af21f47b249bad5", + "style": "IPY_MODEL_316b8fd82b284560a819f71e49826760", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 49.65it/s]" + } + }, + "3887d5672b5c4b778866106fc0b5e8a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_af2375ac8a9e451fb0f53889b73ae3e5", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b74fa9222c5a4f7e8db4ce0334c11beb", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.78it/s]" + "value": 60000.0 } }, - "5aab81f6c2d64bb88c7793decdfa9866": { + "3b7f9d53d82c471f83bfd6fcefbec3e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4020,7 +3700,7 @@ "width": null } }, - "5afce49183404bd7bf49147a59d70e88": { + "3bf9d068ebd84e0bb766ec5f71d6673d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4073,23 +3753,60 @@ "width": null } }, - "5b9f00a107af4384b3eb9bca9747f3d6": { - "model_module": "@jupyter-widgets/controls", + "3d95a4e2520046d8b2e2cf38369b6f03": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "5c1cb462f7f84c29a968da6975977b0d": { + "3f01e2b264754f87a9a995d2a2604758": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4142,7 +3859,7 @@ "width": null } }, - "5faa54627d394ff5be9347e2a821a5d5": { + "3f585e537a3d44e192823e0223eb4127": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4157,42 +3874,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_2b2e2700e5624405b4e39b6c8e47acbf", - "IPY_MODEL_5128eb3887f0470b94f4145cada81762", - "IPY_MODEL_67d99925319848799714a5cfcfdfb9a8" + "IPY_MODEL_0e594dc4853e47c6814600a0605eaf6e", + "IPY_MODEL_ba8be8878e814fbdb2ec97737d5d0c72", + "IPY_MODEL_a855a088baee4aa9bf215cf977aae4d1" ], - "layout": "IPY_MODEL_3a660752b251462d88b557c02564d921", + "layout": "IPY_MODEL_a8a73917f4c1495894e238554bff6e8a", "tabbable": null, "tooltip": null } }, - "5fd4de48b98142d5a3599af54b5d671a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8283f4d0ca7840aebcb70e8e46d2dcf7", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ff8a90c9270247469c47cb689ae7fa73", - "tabbable": null, - "tooltip": null, - "value": 30931277.0 - } - }, - "6348c64e32ba485d8591358508480b82": { + "404d82b5437a44238131a5ca28a319e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4210,7 +3901,7 @@ "text_color": null } }, - "640a63ead30f4d6495b024df6003c7e4": { + "4279ccb833f743cc83462d1929f6d9a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4228,7 +3919,7 @@ "text_color": null } }, - "645adb2f2e8a4782a6706ad5bb72e2e6": { + "42f1baee75ee478daa5f6c4120c81508": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4243,39 +3934,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9be5a25f943643afab148adea37a5fae", + "layout": "IPY_MODEL_cf059ef88023434e9444ba2768dbf5ee", "placeholder": "​", - "style": "IPY_MODEL_36fd180883244492b72497cfcc34ef46", + "style": "IPY_MODEL_1361c07af5134f28b730f630eb4f8b22", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 2/2 [00:00<00:00, 644.83it/s]" } }, - "6465989afcb4403ca6a39f2ea17206ea": { - "model_module": "@jupyter-widgets/controls", + "451e831e5f8a41168bb1dd5ba0d41113": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b6e6e3493e064f8da58e5e536cc2ce76", - "IPY_MODEL_bb58bae10ed84144aee42b5cc9a8b053", - "IPY_MODEL_ca100aaca873437fb6b72cf630544e59" - ], - "layout": "IPY_MODEL_e7b3780db8b641268b1b36ccb9f65ac2", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "67d99925319848799714a5cfcfdfb9a8": { + "4541751edf6f4d81883ddc88e0c16bf2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4290,64 +4010,57 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d76c142c55eb451eb96210587ef44c54", + "layout": "IPY_MODEL_da0f6b8dbb074da790d9b8769166d088", "placeholder": "​", - "style": "IPY_MODEL_17cb2066ebd14043923368c02dca93dc", + "style": "IPY_MODEL_effb478ca69e40e1bab98c72607eff2d", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 7540.37 examples/s]" + "value": " 10000/10000 [00:00<00:00, 245384.26 examples/s]" } }, - "6a43e294c6f74c6cb08fd794af7afcd1": { + "463d739b98d0435d9baf793cf87f15e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_71755205f31040fb88636ddebe7ea6b2", - "placeholder": "​", - "style": "IPY_MODEL_894c8e01d7f54e70af9af02bfeb74e54", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_73929fdff9274b2b8a7cb8d1b19f2eef", + "IPY_MODEL_33c29b72ee814236b2a49a1d616ec399", + "IPY_MODEL_77738e7da60e4c1690167ced2483e9dd" + ], + "layout": "IPY_MODEL_862bcf6293a64e3782f865bcc6acec02", "tabbable": null, - "tooltip": null, - "value": "Generating test split: 100%" + "tooltip": null } }, - "6b482844912e48149e135cc81b6f7430": { + "47d2e80a277b4481a1e94ed7767afeb4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0e3b3fa140cb40be8653cfde627d3d79", - "max": 9015.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_26346069256c47abb0faed0d533560b7", - "tabbable": null, - "tooltip": null, - "value": 9015.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6d2bb728d5434cc1bf7bcbe5114c6c1c": { + "496c3062480544deba301515e6ec2ef2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4400,7 +4113,7 @@ "width": null } }, - "6ed4f63d8dbc4a19805095fe5cad8d36": { + "4b81090f62c343ef973baf71a0ec5eb7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4453,33 +4166,41 @@ "width": null } }, - "706c8293f8d54f9a988e2a93e8822821": { + "4cd513870c6d47ffa0c1f6c2d8f77251": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6ed4f63d8dbc4a19805095fe5cad8d36", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e0fe440774ca496bba6c8da4ed382fee", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4f1bd609a09a470b9425e9ba1cae55f9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "71755205f31040fb88636ddebe7ea6b2": { + "4f1ced536d3348d49571c317bef4d8f3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4532,74 +4253,60 @@ "width": null } }, - "73aa47eccdb342e1873ef0de4dfaaba4": { - "model_module": "@jupyter-widgets/controls", + "51fba05ef28a4d009399006bff596d17": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7529ce6a42c144c09718560bf4d72c37": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_df8d27e594ac4d2ca6e68c52122e1e10", - "placeholder": "​", - "style": "IPY_MODEL_b34e0e13666d40fdbe78185113c34056", - "tabbable": null, - "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 68.0MB/s]" - } - }, - "7d8319efcc6040fe906197c851c669b9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5125f4c4f5c44b49aa982831d87ecfc9", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2857a837de394de48bfed929ebf8f0b1", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "7fea1137ff84487eb48fd3148ffe61c2": { + "57e13432b1304559996a38ae76cf5d5b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4652,25 +4359,31 @@ "width": null } }, - "827679259b2e4576b4086a2372057a7b": { + "5916bec07eac422cab70586495cde9c8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3019243807544f6d987545bce5dd8f3d", + "IPY_MODEL_f8bf518bc6d647f3ab8307b77bad2787", + "IPY_MODEL_4541751edf6f4d81883ddc88e0c16bf2" + ], + "layout": "IPY_MODEL_0c37e49fea114e05970daebd3b46af90", + "tabbable": null, + "tooltip": null } }, - "8283f4d0ca7840aebcb70e8e46d2dcf7": { + "59cf986d09524c0187606571fee4f3b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4723,25 +4436,7 @@ "width": null } }, - "82d376f635054d3c97c64764d549725e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "83ebe6ddba4141b79fcfc3aa72d6c7dd": { + "5a187012e508496c86e0fce898aceeb1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4794,7 +4489,53 @@ "width": null } }, - "876437f018d640669a40965c5c35b6c2": { + "5f98f31916c648f68bfb47f43f499c12": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2fed369fd0be40feacbcbaad93cf93c1", + "placeholder": "​", + "style": "IPY_MODEL_d4d856c67fd0471bb8cde67ec9492417", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 6750.49 examples/s]" + } + }, + "5ff09e218d274b8fac53538c84ef1288": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_123a7f9faee24b9ca7cc1d97cd06f494", + "placeholder": "​", + "style": "IPY_MODEL_4279ccb833f743cc83462d1929f6d9a7", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "60fb64a0bd414b7c917b4ff1bdca5aad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4847,33 +4588,49 @@ "width": null } }, - "87f3b023162a4a51b40375f9ab156184": { + "65d287d8c3144fc2b78a43f0bbd2cad9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c9b769e39cc74d9ca29efc05e10f0d16", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_45727302ad624b9d93ae556eb9c288a0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_acf57c33bde8495bb35aa1c319b1fa96", + "IPY_MODEL_20952cf3175f4767be6b403c62274466", + "IPY_MODEL_352544fb47c84a44811ee627291a517a" + ], + "layout": "IPY_MODEL_4b81090f62c343ef973baf71a0ec5eb7", "tabbable": null, - "tooltip": null, - "value": 60000.0 + "tooltip": null + } + }, + "65f5dece1f9240d2827276e09bfd633e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "894c8e01d7f54e70af9af02bfeb74e54": { + "6a42590401ea4ef185f377565a117445": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4891,7 +4648,23 @@ "text_color": null } }, - "916d7ec8225247f5a69cb02b2a7305ca": { + "6b34491e13c547409316044573da1b5b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6ebc890b826e49cfa02da4b052372853": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4944,33 +4717,128 @@ "width": null } }, - "91c644ade8be41a892c784aa00bda296": { + "73929fdff9274b2b8a7cb8d1b19f2eef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ae9f542f295140ef9e997964192c04a9", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_19e4dd2c86be43e7bb8e1c25f8072e28", + "layout": "IPY_MODEL_c9631aad5f7941199f0008bf9a7d8eb2", + "placeholder": "​", + "style": "IPY_MODEL_09585ef64c004c5580086dc174f84a49", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": "Downloading data: 100%" + } + }, + "7433c7f747d04645899ca1df242fc635": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_89dc7f171aff4c4e89a4cad4a4ae1687", + "placeholder": "​", + "style": "IPY_MODEL_76c1a3f4bef844669ad6060c282aa4ce", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 51.03it/s]" + } + }, + "76c1a3f4bef844669ad6060c282aa4ce": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "777214f0e66b4c89a70fafc58fae1c98": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "77738e7da60e4c1690167ced2483e9dd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_91c40a13bef54f7eae7b3023c8459a9a", + "placeholder": "​", + "style": "IPY_MODEL_65f5dece1f9240d2827276e09bfd633e", + "tabbable": null, + "tooltip": null, + "value": " 30.9M/30.9M [00:00<00:00, 37.1MB/s]" + } + }, + "7899f705574c42a18d00bc86a49e0688": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "93ef2bffc5564a48a0726b4109066352": { + "797fd5f4177a4751935f48bd5e57a811": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5023,7 +4891,7 @@ "width": null } }, - "941416d121634b03b754227b88786641": { + "7cd87c6834604df0bd153d20f18f4e8d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5076,25 +4944,91 @@ "width": null } }, - "941db0717364426d85aa393b06259844": { + "7d9d07fb376a462ab7ddd16bb3640027": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7dd8bc4d9c98453c97ed63c835daeb7a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "81607a3e18ca4baeb1b8f8f0aa78fd4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_294a233cb4384c7b95501bb1ed8e2c44", + "IPY_MODEL_c5bb5aa64dce4297ae18dc2041a1453e", + "IPY_MODEL_a32ea251b0434dcb8b24a04ee9ae1486" + ], + "layout": "IPY_MODEL_1ef99d81d54c48f582aaf0afccc25569", + "tabbable": null, + "tooltip": null + } + }, + "82dd1d0abee14d1782e84af236b2ad6b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f45e40d8fe894c54a435f99ca83a9af5", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2b7dd9a344a84205bb7c1076b2a000f8", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "9be5a25f943643afab148adea37a5fae": { + "849276a9e26042a5802402a3126e6a90": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5147,7 +5081,7 @@ "width": null } }, - "9be7f183d4c34b5491249ea2e89e3ee2": { + "862bcf6293a64e3782f865bcc6acec02": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5200,98 +5134,7 @@ "width": null } }, - "9e0d6e57b4884960881ed582f7dadf4a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e234015c7d62414da3934570b21d7543", - "placeholder": "​", - "style": "IPY_MODEL_3f91e82b6e7f4a78b379a4a6eb6e398b", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "9f5b5b7578b844b59a8287cdc9ee5b32": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e637799c134042c7a6d9acb0f78b7da0", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2d29eafef9b4432998bb385936904368", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "a176f3f55a0546dea71efaa2fd058327": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a1976bceab224f84a094c80cde4e8466": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cd4d8aa076334a959da64b5994f34397", - "IPY_MODEL_87f3b023162a4a51b40375f9ab156184", - "IPY_MODEL_50b6e3cbb73145a48b3d84c0312098d4" - ], - "layout": "IPY_MODEL_a39fea6f724442939c6d757896211d50", - "tabbable": null, - "tooltip": null - } - }, - "a2f438e3c9f34e7c86ce9e7f8fdc59de": { + "871146bf317f42a7aff7d941ef3918f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5344,7 +5187,7 @@ "width": null } }, - "a39fea6f724442939c6d757896211d50": { + "89dc7f171aff4c4e89a4cad4a4ae1687": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5397,25 +5240,7 @@ "width": null } }, - "a54ea9c9e9b0433fbd1836e54c5b2b7f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a87598836b1149b09e3daf786f13fc43": { + "8ae2ae2784f24f19b8ebc8c5bdd03310": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5431,17 +5256,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ce31247ca26948a7adb32aca9be54346", - "max": 60000.0, + "layout": "IPY_MODEL_26e1b5518ff240278ff1bc974b8295ad", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_5b9f00a107af4384b3eb9bca9747f3d6", + "style": "IPY_MODEL_2fe33272a38c439895dacf4dd38fc306", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": 40.0 } }, - "a8959e27ece346309771bfdaf0c7265a": { + "8b0f204fc563494eb11d422e1b3cc342": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5494,77 +5319,25 @@ "width": null } }, - "a9b6a871bfb845f28df4e04109b1543f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_49a2422b46d84a7fa25f880ea56876e5", - "placeholder": "​", - "style": "IPY_MODEL_c9b27b9e8c944335b1f722200f97d579", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 57.02it/s]" - } - }, - "aabff29de5e044afa3f214ce59f8d064": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_dd09d559306d4589801c8822d6d3bd4d", - "IPY_MODEL_a87598836b1149b09e3daf786f13fc43", - "IPY_MODEL_4fac98ba7f4543f5bc1d5ec5a3190f4a" - ], - "layout": "IPY_MODEL_1f82a06521d2455cb39afe53180dadc6", - "tabbable": null, - "tooltip": null - } - }, - "aac7844c662c4628957dad5607a50f7e": { + "8d022ff203f0409f8ec0a2a51684ce93": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_916d7ec8225247f5a69cb02b2a7305ca", - "placeholder": "​", - "style": "IPY_MODEL_941db0717364426d85aa393b06259844", - "tabbable": null, - "tooltip": null, - "value": "Downloading readme: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "ab000ca85bbc419cbc7aaa248eaa7d43": { + "8ecf783e8b0948e1abe86bfc856f097b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5580,7 +5353,7 @@ "description_width": "" } }, - "ac4efbc3798b4fea9362751bc3c2aad7": { + "91c40a13bef54f7eae7b3023c8459a9a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5633,7 +5406,25 @@ "width": null } }, - "adac4c5de55c4e81a72528a679019e7c": { + "92eccb9eb18148b3bff9e4144ca6cb6d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9d8068af7425429db8de8f0963a041cf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5686,7 +5477,80 @@ "width": null } }, - "ae9f542f295140ef9e997964192c04a9": { + "9df7eba39a454111be100a3d45fa73fa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3bf9d068ebd84e0bb766ec5f71d6673d", + "placeholder": "​", + "style": "IPY_MODEL_c94092d1c89542e8905dd73925ed12d2", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:00<00:00, 279470.88 examples/s]" + } + }, + "9f612dabc2054fb2b008cc6f8aafdc94": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_60fb64a0bd414b7c917b4ff1bdca5aad", + "max": 9015.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4f1bd609a09a470b9425e9ba1cae55f9", + "tabbable": null, + "tooltip": null, + "value": 9015.0 + } + }, + "a20e61f2133d4a678bd2b2e50042b1f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dc08cd9a666743908df5482245d9aebd", + "IPY_MODEL_9f612dabc2054fb2b008cc6f8aafdc94", + "IPY_MODEL_3056551dc5924bdba2dbe296d659c029" + ], + "layout": "IPY_MODEL_243390ab71bb4bbcb83f468711fd42e8", + "tabbable": null, + "tooltip": null + } + }, + "a306574ec68049899cf9cc7a5396209d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5739,7 +5603,30 @@ "width": null } }, - "b34e0e13666d40fdbe78185113c34056": { + "a32ea251b0434dcb8b24a04ee9ae1486": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2c9c0982e5e04ae29886550c55c4a461", + "placeholder": "​", + "style": "IPY_MODEL_47d2e80a277b4481a1e94ed7767afeb4", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 56.69it/s]" + } + }, + "a621fe07134a4a1eb8e7dde558240f6a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5757,7 +5644,7 @@ "text_color": null } }, - "b6e6e3493e064f8da58e5e536cc2ce76": { + "a855a088baee4aa9bf215cf977aae4d1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5772,15 +5659,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fbd7d4ea73254be2b2deaaa3b2315879", + "layout": "IPY_MODEL_fa1b285a6d474628abba13fe7f5952ab", "placeholder": "​", - "style": "IPY_MODEL_dd0a8fa2b4a145bc8a9622e2304ea68e", + "style": "IPY_MODEL_6a42590401ea4ef185f377565a117445", "tabbable": null, "tooltip": null, - "value": "Computing checksums: 100%" + "value": " 5.18M/5.18M [00:00<00:00, 11.9MB/s]" } }, - "b95797c6ae9a4df98d457db1eb2fb8cf": { + "a8a73917f4c1495894e238554bff6e8a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5833,33 +5720,7 @@ "width": null } }, - "bb58bae10ed84144aee42b5cc9a8b053": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_24f08ffd209d481fab5118b595a9616f", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_16ac3905f01949b98855f4fb0b92cae0", - "tabbable": null, - "tooltip": null, - "value": 2.0 - } - }, - "be7218c23a8d40d5a8e4cc89aea8e025": { + "a9eb2f5fb9f34588be298081076acb6f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5912,75 +5773,30 @@ "width": null } }, - "c04185b16fe24db68ca78fe46f88c7f6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_03b02631a61b45db80f1674b2e513637", - "IPY_MODEL_706c8293f8d54f9a988e2a93e8822821", - "IPY_MODEL_1479a4d143bd4e9d87f38b85478b15cf" - ], - "layout": "IPY_MODEL_d23a593cb7f74cb792dc483b2374871d", - "tabbable": null, - "tooltip": null - } - }, - "c202c26bb2474bdaa7d3c2a58438479f": { + "acf57c33bde8495bb35aa1c319b1fa96": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2a912c7f6ced4e7a8e4d717be022a5c4", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ab000ca85bbc419cbc7aaa248eaa7d43", + "layout": "IPY_MODEL_5a187012e508496c86e0fce898aceeb1", + "placeholder": "​", + "style": "IPY_MODEL_8d022ff203f0409f8ec0a2a51684ce93", "tabbable": null, "tooltip": null, - "value": 5175617.0 - } - }, - "c9b27b9e8c944335b1f722200f97d579": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "100%" } }, - "c9b769e39cc74d9ca29efc05e10f0d16": { + "af2375ac8a9e451fb0f53889b73ae3e5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6033,95 +5849,7 @@ "width": null } }, - "ca100aaca873437fb6b72cf630544e59": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fda1346f54894eeea4d244e48e2db6cc", - "placeholder": "​", - "style": "IPY_MODEL_cea23fbe18da41f0bf94307e2eb51b75", - "tabbable": null, - "tooltip": null, - "value": " 2/2 [00:00<00:00, 635.50it/s]" - } - }, - "ccd8827e2a944562b8b468656223e737": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "cd4d8aa076334a959da64b5994f34397": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_be7218c23a8d40d5a8e4cc89aea8e025", - "placeholder": "​", - "style": "IPY_MODEL_4b3e49364f734945ac6d89bd9ea490b7", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "cd6b09e86f8c40f38a15de31fd966867": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_aac7844c662c4628957dad5607a50f7e", - "IPY_MODEL_6b482844912e48149e135cc81b6f7430", - "IPY_MODEL_15368d6fe0714cc4aea2a2bb2fb50799" - ], - "layout": "IPY_MODEL_db9954416fd745479c8a65268d728215", - "tabbable": null, - "tooltip": null - } - }, - "ce31247ca26948a7adb32aca9be54346": { + "af4046f51ba94e69ba881c964e8c725a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6174,7 +5902,7 @@ "width": null } }, - "ce6a0ffa671241eea3f88477f4ddbf33": { + "af94cf49177e4ca99d9ef7362491c300": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6227,25 +5955,7 @@ "width": null } }, - "cea23fbe18da41f0bf94307e2eb51b75": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d0412e26abe34ee69d35916d383bdb76": { + "b1a61c6a0ca149e18ceb1f5c66b6b1b8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6263,7 +5973,7 @@ "text_color": null } }, - "d23a593cb7f74cb792dc483b2374871d": { + "b34cc838b5ae454599dc1029a141a9ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6316,49 +6026,76 @@ "width": null } }, - "d40a68c9c6774397bdea2fbe6bb9e2cb": { + "b74fa9222c5a4f7e8db4ce0334c11beb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5164ccb60fd54e12936c4d1b1c831021", - "IPY_MODEL_c202c26bb2474bdaa7d3c2a58438479f", - "IPY_MODEL_ddc5e4989a394c2ea0d0d886360380a1" - ], - "layout": "IPY_MODEL_32cbff0f839c4350996a8211f56b5f3e", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "d6c1ad93fa194a85ba4c17e581452467": { - "model_module": "@jupyter-widgets/controls", + "b8c0b3c7d50e401db96d91b13a8b7c0f": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "d76c142c55eb451eb96210587ef44c54": { + "b90299d229cb43ef84b8401cbc26a1fa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6411,23 +6148,77 @@ "width": null } }, - "d8b8c8d3b7c74f13b7163f40115a9f0c": { + "ba8be8878e814fbdb2ec97737d5d0c72": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b34cc838b5ae454599dc1029a141a9ea", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c259d846fb094cd2abcb6cc72e54bed7", + "tabbable": null, + "tooltip": null, + "value": 5175617.0 + } + }, + "bb04fbaf87d044b2b91c56fa329b8320": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bd24b93e83db495ba8c68c0735f0c8ae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_59cf986d09524c0187606571fee4f3b5", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d23aa9df31b2419abd3b5df9353122d2", + "tabbable": null, + "tooltip": null, + "value": 60000.0 } }, - "db9954416fd745479c8a65268d728215": { + "bddd506fdb3a4a64b9a2cae95a5dced5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6480,7 +6271,7 @@ "width": null } }, - "dd09d559306d4589801c8822d6d3bd4d": { + "be7d4b0207f64b00ad22457592bea685": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6495,15 +6286,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ce6a0ffa671241eea3f88477f4ddbf33", + "layout": "IPY_MODEL_efa526cc016749f6974e047bc1f2dd4e", "placeholder": "​", - "style": "IPY_MODEL_d0412e26abe34ee69d35916d383bdb76", + "style": "IPY_MODEL_beb1aac9eee84fdcb6f35930b0d90bdd", "tabbable": null, "tooltip": null, - "value": "Generating train split: 100%" + "value": "100%" } }, - "dd0a8fa2b4a145bc8a9622e2304ea68e": { + "beb1aac9eee84fdcb6f35930b0d90bdd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6521,30 +6312,47 @@ "text_color": null } }, - "ddc5e4989a394c2ea0d0d886360380a1": { + "c115bb12c8ec4ff9a7eb01faca32c461": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_169af65c6da24ccbbbc9686554ad7330", - "placeholder": "​", - "style": "IPY_MODEL_282d9a64728c471b8355926115fd9898", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_be7d4b0207f64b00ad22457592bea685", + "IPY_MODEL_82dd1d0abee14d1782e84af236b2ad6b", + "IPY_MODEL_ef6b1664aa3a43e0b06f7e8ae609fd18" + ], + "layout": "IPY_MODEL_3b7f9d53d82c471f83bfd6fcefbec3e6", "tabbable": null, - "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 60.8MB/s]" + "tooltip": null + } + }, + "c259d846fb094cd2abcb6cc72e54bed7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "de45faae5c3247e0b8fe29686b0e8c63": { + "c38aca92612847bebfe8ef830ec4911f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6597,7 +6405,7 @@ "width": null } }, - "de4a40cbeae5420eaa285c1e15ff5c2b": { + "c59aab2b6a7e4c4c980d67c2b0a3e630": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6612,58 +6420,42 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_645adb2f2e8a4782a6706ad5bb72e2e6", - "IPY_MODEL_169ff7283fd74d6ebb245d342d9b49cf", - "IPY_MODEL_edd95e979e4e4e3a92e99bd7c323c9d4" + "IPY_MODEL_e9868a4dddaf429ead7561f39ce566d2", + "IPY_MODEL_3887d5672b5c4b778866106fc0b5e8a4", + "IPY_MODEL_5f98f31916c648f68bfb47f43f499c12" ], - "layout": "IPY_MODEL_adac4c5de55c4e81a72528a679019e7c", + "layout": "IPY_MODEL_51fba05ef28a4d009399006bff596d17", "tabbable": null, "tooltip": null } }, - "df490d58807c40f381869a6efc0f5427": { + "c5bb5aa64dce4297ae18dc2041a1453e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_07026fa3ce9f40908f1cad23fb8730ee", - "IPY_MODEL_91c644ade8be41a892c784aa00bda296", - "IPY_MODEL_10ac5d66ea3743dca0e0beb7ed0cae31" - ], - "layout": "IPY_MODEL_15cdf804328e4b5ebac5a69a308917a0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4f1ced536d3348d49571c317bef4d8f3", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6b34491e13c547409316044573da1b5b", "tabbable": null, - "tooltip": null - } - }, - "df7ee9c286654bd68af21f47b249bad5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null, + "value": 40.0 } }, - "df8d27e594ac4d2ca6e68c52122e1e10": { + "c622402929c843b68cf0ad96de113751": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6716,7 +6508,51 @@ "width": null } }, - "e054db68c7e444c5b8609c34a3c3af1c": { + "c630d7221896432296ac4efbd43b54c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b90299d229cb43ef84b8401cbc26a1fa", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d255dc48b8144714a9a03aeaf1c8fc9d", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "c94092d1c89542e8905dd73925ed12d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c9631aad5f7941199f0008bf9a7d8eb2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6769,23 +6605,48 @@ "width": null } }, - "e0fe440774ca496bba6c8da4ed382fee": { + "ccade3805cd149779865aea4796f21e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3f01e2b264754f87a9a995d2a2604758", + "placeholder": "​", + "style": "IPY_MODEL_bb04fbaf87d044b2b91c56fa329b8320", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "cd2d53dd06fa461284b75a1bdd83f18d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e234015c7d62414da3934570b21d7543": { + "cf059ef88023434e9444ba2768dbf5ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6838,7 +6699,63 @@ "width": null } }, - "e2f28585bb144f48969f706e8e93bb3d": { + "d23aa9df31b2419abd3b5df9353122d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d255dc48b8144714a9a03aeaf1c8fc9d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d2f20d6f0ba44123bab8b7d235b6515d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ff6312b6a0234759a0f54044414bace6", + "IPY_MODEL_dc15ab979a6346508cd44fa115d9e65e", + "IPY_MODEL_1eb1014045dd499c802757478058bea8" + ], + "layout": "IPY_MODEL_6ebc890b826e49cfa02da4b052372853", + "tabbable": null, + "tooltip": null + } + }, + "d30eaf4ee76a40ba95c2d3b1c0489325": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6891,7 +6808,41 @@ "width": null } }, - "e637799c134042c7a6d9acb0f78b7da0": { + "d4d856c67fd0471bb8cde67ec9492417": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d5301367ac6a4b84bbc0c321a286117e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d96d30dd619344a99a12676a4c6e5277": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6944,7 +6895,25 @@ "width": null } }, - "e7b3780db8b641268b1b36ccb9f65ac2": { + "d9d8067a523048f2a00f0bfd5a5ba22f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "da0f6b8dbb074da790d9b8769166d088": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6997,7 +6966,7 @@ "width": null } }, - "e872e61f12c440d89bacf54f54ece5f0": { + "dc08cd9a666743908df5482245d9aebd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7012,38 +6981,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5afce49183404bd7bf49147a59d70e88", + "layout": "IPY_MODEL_bddd506fdb3a4a64b9a2cae95a5dced5", "placeholder": "​", - "style": "IPY_MODEL_d6c1ad93fa194a85ba4c17e581452467", + "style": "IPY_MODEL_d9d8067a523048f2a00f0bfd5a5ba22f", "tabbable": null, "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 235311.17 examples/s]" + "value": "Downloading readme: 100%" } }, - "ecb05f4c4e5545a39c8106713cdaf17f": { + "dc15ab979a6346508cd44fa115d9e65e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e054db68c7e444c5b8609c34a3c3af1c", - "placeholder": "​", - "style": "IPY_MODEL_640a63ead30f4d6495b024df6003c7e4", + "layout": "IPY_MODEL_c38aca92612847bebfe8ef830ec4911f", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8ecf783e8b0948e1abe86bfc856f097b", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.48it/s]" + "value": 60000.0 } }, - "edd95e979e4e4e3a92e99bd7c323c9d4": { + "dd84a3f49c1c4c929acb96633fa78b1f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7058,15 +7030,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ee32229609ad4940a22f0eacf858eab6", + "layout": "IPY_MODEL_b8c0b3c7d50e401db96d91b13a8b7c0f", "placeholder": "​", - "style": "IPY_MODEL_ccd8827e2a944562b8b468656223e737", + "style": "IPY_MODEL_404d82b5437a44238131a5ca28a319e4", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.07it/s]" + "value": "100%" } }, - "ee32229609ad4940a22f0eacf858eab6": { + "dfd1882b8a264cf5856df21b7c839b64": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7119,7 +7091,7 @@ "width": null } }, - "f0b797b78688457792e471764aadcac5": { + "e18ca4639102462dac92c3c5a84ab0f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7134,42 +7106,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0c312ef42cba4cd699cf564f02f23ad2", - "IPY_MODEL_5fd4de48b98142d5a3599af54b5d671a", - "IPY_MODEL_7529ce6a42c144c09718560bf4d72c37" + "IPY_MODEL_ccade3805cd149779865aea4796f21e4", + "IPY_MODEL_e796075aa1d84be9ad454da1c89700d8", + "IPY_MODEL_7433c7f747d04645899ca1df242fc635" ], - "layout": "IPY_MODEL_e2f28585bb144f48969f706e8e93bb3d", + "layout": "IPY_MODEL_496c3062480544deba301515e6ec2ef2", "tabbable": null, "tooltip": null } }, - "f177efbf8fcd4299a5c5ef5d2c18ae24": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5aab81f6c2d64bb88c7793decdfa9866", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0d3cbe2df0bc47b5a91766e8876fb0ad", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "f28fbbbba2984229af4e67f6ca6e8831": { + "e40f660a323041a893eb609d3636575b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7222,60 +7168,33 @@ "width": null } }, - "f3a7be966cfe40f99217128504a15ed7": { - "model_module": "@jupyter-widgets/base", + "e796075aa1d84be9ad454da1c89700d8": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0090a6e1a0314bd092156ae36614df7f", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fb083abb666e4d57838a474c630e6824", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "f458b392945444ba8b10eed0a3dd1645": { + "e86dbaa5d3c04bc18c5c77dd4d794c63": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7328,33 +7247,53 @@ "width": null } }, - "f485eb58c46447509184d1339495c90b": { + "e9868a4dddaf429ead7561f39ce566d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_83ebe6ddba4141b79fcfc3aa72d6c7dd", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_021d8612a48e43178fed0c0b15ea876c", + "layout": "IPY_MODEL_af94cf49177e4ca99d9ef7362491c300", + "placeholder": "​", + "style": "IPY_MODEL_f4fca8311ad64e47937de89ecc8e9dab", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": "Map (num_proc=4): 100%" + } + }, + "ef6b1664aa3a43e0b06f7e8ae609fd18": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d30eaf4ee76a40ba95c2d3b1c0489325", + "placeholder": "​", + "style": "IPY_MODEL_7899f705574c42a18d00bc86a49e0688", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 58.38it/s]" } }, - "f4bfeea21b8f49b2a7d30a142e3e8549": { + "efa526cc016749f6974e047bc1f2dd4e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7407,30 +7346,25 @@ "width": null } }, - "f7d925790daf4835a17e53ef72c2a004": { + "effb478ca69e40e1bab98c72607eff2d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_93ef2bffc5564a48a0726b4109066352", - "placeholder": "​", - "style": "IPY_MODEL_fad3a25235b9448b94450b285a255bda", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "fad3a25235b9448b94450b285a255bda": { + "f2ac84087dc44396ba038fe66dda6f94": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7448,7 +7382,7 @@ "text_color": null } }, - "fbd7d4ea73254be2b2deaaa3b2315879": { + "f45e40d8fe894c54a435f99ca83a9af5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7501,7 +7435,25 @@ "width": null } }, - "fc6b594ae32e4d7789e07642981bb1cb": { + "f4fca8311ad64e47937de89ecc8e9dab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f64b8b29b1784e22abb666c97681a3dc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7516,16 +7468,42 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6a43e294c6f74c6cb08fd794af7afcd1", - "IPY_MODEL_f177efbf8fcd4299a5c5ef5d2c18ae24", - "IPY_MODEL_e872e61f12c440d89bacf54f54ece5f0" + "IPY_MODEL_dd84a3f49c1c4c929acb96633fa78b1f", + "IPY_MODEL_c630d7221896432296ac4efbd43b54c4", + "IPY_MODEL_31da7fbc4ceb4e4cab95640e5f63a387" ], - "layout": "IPY_MODEL_b95797c6ae9a4df98d457db1eb2fb8cf", + "layout": "IPY_MODEL_a306574ec68049899cf9cc7a5396209d", "tabbable": null, "tooltip": null } }, - "fda1346f54894eeea4d244e48e2db6cc": { + "f8bf518bc6d647f3ab8307b77bad2787": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3d95a4e2520046d8b2e2cf38369b6f03", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_777214f0e66b4c89a70fafc58fae1c98", + "tabbable": null, + "tooltip": null, + "value": 10000.0 + } + }, + "fa1b285a6d474628abba13fe7f5952ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7578,7 +7556,7 @@ "width": null } }, - "ff8a90c9270247469c47cb689ae7fa73": { + "fb083abb666e4d57838a474c630e6824": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -7593,6 +7571,29 @@ "bar_color": null, "description_width": "" } + }, + "ff6312b6a0234759a0f54044414bace6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2562e71fd2f64d07b631e639debc9636", + "placeholder": "​", + "style": "IPY_MODEL_4cd513870c6d47ffa0c1f6c2d8f77251", + "tabbable": null, + "tooltip": null, + "value": "100%" + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index 74379a792..741f01a59 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:30.675390Z", - "iopub.status.busy": "2024-08-20T02:17:30.675213Z", - "iopub.status.idle": "2024-08-20T02:17:32.099766Z", - "shell.execute_reply": "2024-08-20T02:17:32.099202Z" + "iopub.execute_input": "2024-08-21T00:42:39.020177Z", + "iopub.status.busy": "2024-08-21T00:42:39.020002Z", + "iopub.status.idle": "2024-08-21T00:42:40.165165Z", + "shell.execute_reply": "2024-08-21T00:42:40.164554Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:32.102440Z", - "iopub.status.busy": "2024-08-20T02:17:32.102010Z", - "iopub.status.idle": "2024-08-20T02:17:32.121474Z", - "shell.execute_reply": "2024-08-20T02:17:32.120839Z" + "iopub.execute_input": "2024-08-21T00:42:40.167673Z", + "iopub.status.busy": "2024-08-21T00:42:40.167399Z", + "iopub.status.idle": "2024-08-21T00:42:40.185888Z", + "shell.execute_reply": "2024-08-21T00:42:40.185329Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:32.124240Z", - "iopub.status.busy": "2024-08-20T02:17:32.123782Z", - "iopub.status.idle": "2024-08-20T02:17:32.161903Z", - "shell.execute_reply": "2024-08-20T02:17:32.161310Z" + "iopub.execute_input": "2024-08-21T00:42:40.188316Z", + "iopub.status.busy": "2024-08-21T00:42:40.187910Z", + "iopub.status.idle": "2024-08-21T00:42:40.224793Z", + "shell.execute_reply": "2024-08-21T00:42:40.224253Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:32.164301Z", - "iopub.status.busy": "2024-08-20T02:17:32.163892Z", - "iopub.status.idle": "2024-08-20T02:17:32.167503Z", - "shell.execute_reply": "2024-08-20T02:17:32.166961Z" + "iopub.execute_input": "2024-08-21T00:42:40.226826Z", + "iopub.status.busy": "2024-08-21T00:42:40.226427Z", + "iopub.status.idle": "2024-08-21T00:42:40.229894Z", + "shell.execute_reply": "2024-08-21T00:42:40.229350Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:32.169604Z", - "iopub.status.busy": "2024-08-20T02:17:32.169259Z", - "iopub.status.idle": "2024-08-20T02:17:32.176549Z", - "shell.execute_reply": "2024-08-20T02:17:32.176095Z" + "iopub.execute_input": "2024-08-21T00:42:40.231979Z", + "iopub.status.busy": "2024-08-21T00:42:40.231580Z", + "iopub.status.idle": "2024-08-21T00:42:40.239438Z", + "shell.execute_reply": "2024-08-21T00:42:40.238991Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:32.178752Z", - "iopub.status.busy": "2024-08-20T02:17:32.178403Z", - "iopub.status.idle": "2024-08-20T02:17:32.181096Z", - "shell.execute_reply": "2024-08-20T02:17:32.180623Z" + "iopub.execute_input": "2024-08-21T00:42:40.241382Z", + "iopub.status.busy": "2024-08-21T00:42:40.241211Z", + "iopub.status.idle": "2024-08-21T00:42:40.243885Z", + "shell.execute_reply": "2024-08-21T00:42:40.243336Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:32.182992Z", - "iopub.status.busy": "2024-08-20T02:17:32.182822Z", - "iopub.status.idle": "2024-08-20T02:17:35.334471Z", - "shell.execute_reply": "2024-08-20T02:17:35.333927Z" + "iopub.execute_input": "2024-08-21T00:42:40.245971Z", + "iopub.status.busy": "2024-08-21T00:42:40.245666Z", + "iopub.status.idle": "2024-08-21T00:42:43.325922Z", + "shell.execute_reply": "2024-08-21T00:42:43.325277Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:35.337140Z", - "iopub.status.busy": "2024-08-20T02:17:35.336953Z", - "iopub.status.idle": "2024-08-20T02:17:35.346018Z", - "shell.execute_reply": "2024-08-20T02:17:35.345550Z" + "iopub.execute_input": "2024-08-21T00:42:43.328986Z", + "iopub.status.busy": "2024-08-21T00:42:43.328446Z", + "iopub.status.idle": "2024-08-21T00:42:43.337987Z", + "shell.execute_reply": "2024-08-21T00:42:43.337426Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:35.347913Z", - "iopub.status.busy": "2024-08-20T02:17:35.347740Z", - "iopub.status.idle": "2024-08-20T02:17:37.530220Z", - "shell.execute_reply": "2024-08-20T02:17:37.529582Z" + "iopub.execute_input": "2024-08-21T00:42:43.340231Z", + "iopub.status.busy": "2024-08-21T00:42:43.339898Z", + "iopub.status.idle": "2024-08-21T00:42:45.300234Z", + "shell.execute_reply": "2024-08-21T00:42:45.299626Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:37.532667Z", - "iopub.status.busy": "2024-08-20T02:17:37.532314Z", - "iopub.status.idle": "2024-08-20T02:17:37.551727Z", - "shell.execute_reply": "2024-08-20T02:17:37.551251Z" + "iopub.execute_input": "2024-08-21T00:42:45.302539Z", + "iopub.status.busy": "2024-08-21T00:42:45.302223Z", + "iopub.status.idle": "2024-08-21T00:42:45.320815Z", + "shell.execute_reply": "2024-08-21T00:42:45.320344Z" }, "scrolled": true }, @@ -609,10 +609,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:37.553782Z", - "iopub.status.busy": "2024-08-20T02:17:37.553599Z", - "iopub.status.idle": "2024-08-20T02:17:37.562552Z", - "shell.execute_reply": "2024-08-20T02:17:37.562008Z" + "iopub.execute_input": "2024-08-21T00:42:45.323090Z", + "iopub.status.busy": "2024-08-21T00:42:45.322698Z", + "iopub.status.idle": "2024-08-21T00:42:45.330546Z", + "shell.execute_reply": "2024-08-21T00:42:45.330098Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:37.564682Z", - "iopub.status.busy": "2024-08-20T02:17:37.564263Z", - "iopub.status.idle": "2024-08-20T02:17:37.573623Z", - "shell.execute_reply": "2024-08-20T02:17:37.573057Z" + "iopub.execute_input": "2024-08-21T00:42:45.332636Z", + "iopub.status.busy": "2024-08-21T00:42:45.332312Z", + "iopub.status.idle": "2024-08-21T00:42:45.340860Z", + "shell.execute_reply": "2024-08-21T00:42:45.340292Z" } }, "outputs": [ @@ -848,10 +848,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:37.575828Z", - "iopub.status.busy": "2024-08-20T02:17:37.575492Z", - "iopub.status.idle": "2024-08-20T02:17:37.583145Z", - "shell.execute_reply": "2024-08-20T02:17:37.582687Z" + "iopub.execute_input": "2024-08-21T00:42:45.342856Z", + "iopub.status.busy": "2024-08-21T00:42:45.342550Z", + "iopub.status.idle": "2024-08-21T00:42:45.350113Z", + "shell.execute_reply": "2024-08-21T00:42:45.349629Z" } }, "outputs": [ @@ -965,10 +965,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:37.585205Z", - "iopub.status.busy": "2024-08-20T02:17:37.584870Z", - "iopub.status.idle": "2024-08-20T02:17:37.593427Z", - "shell.execute_reply": "2024-08-20T02:17:37.592949Z" + "iopub.execute_input": "2024-08-21T00:42:45.352205Z", + "iopub.status.busy": "2024-08-21T00:42:45.351869Z", + "iopub.status.idle": "2024-08-21T00:42:45.360446Z", + "shell.execute_reply": "2024-08-21T00:42:45.359939Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:37.595497Z", - "iopub.status.busy": "2024-08-20T02:17:37.595153Z", - "iopub.status.idle": "2024-08-20T02:17:37.602696Z", - "shell.execute_reply": "2024-08-20T02:17:37.602233Z" + "iopub.execute_input": "2024-08-21T00:42:45.362378Z", + "iopub.status.busy": "2024-08-21T00:42:45.362073Z", + "iopub.status.idle": "2024-08-21T00:42:45.369252Z", + "shell.execute_reply": "2024-08-21T00:42:45.368714Z" } }, "outputs": [ @@ -1197,10 +1197,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:37.604723Z", - "iopub.status.busy": "2024-08-20T02:17:37.604387Z", - "iopub.status.idle": "2024-08-20T02:17:37.611506Z", - "shell.execute_reply": "2024-08-20T02:17:37.611059Z" + "iopub.execute_input": "2024-08-21T00:42:45.371424Z", + "iopub.status.busy": "2024-08-21T00:42:45.371097Z", + "iopub.status.idle": "2024-08-21T00:42:45.378113Z", + "shell.execute_reply": "2024-08-21T00:42:45.377624Z" } }, "outputs": [ @@ -1306,10 +1306,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:37.613742Z", - "iopub.status.busy": "2024-08-20T02:17:37.613408Z", - "iopub.status.idle": "2024-08-20T02:17:37.621320Z", - "shell.execute_reply": "2024-08-20T02:17:37.620872Z" + "iopub.execute_input": "2024-08-21T00:42:45.380217Z", + "iopub.status.busy": "2024-08-21T00:42:45.379888Z", + "iopub.status.idle": "2024-08-21T00:42:45.388315Z", + "shell.execute_reply": "2024-08-21T00:42:45.387730Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index de73d6518..447c41a86 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -791,7 +791,7 @@

    2. Load and format the text dataset
     This dataset has 10 classes.
    -Classes: {'getting_spare_card', 'card_about_to_expire', 'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'beneficiary_not_allowed', 'visa_or_mastercard', 'lost_or_stolen_phone', 'cancel_transfer', 'card_payment_fee_charged', 'change_pin'}
    +Classes: {'apple_pay_or_google_pay', 'change_pin', 'beneficiary_not_allowed', 'getting_spare_card', 'lost_or_stolen_phone', 'cancel_transfer', 'card_payment_fee_charged', 'visa_or_mastercard', 'card_about_to_expire', 'supported_cards_and_currencies'}
     

    Let’s view the i-th example in the dataset:

    diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index e8c1c1367..944c7f70a 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:40.653105Z", - "iopub.status.busy": "2024-08-20T02:17:40.652539Z", - "iopub.status.idle": "2024-08-20T02:17:43.889364Z", - "shell.execute_reply": "2024-08-20T02:17:43.888668Z" + "iopub.execute_input": "2024-08-21T00:42:48.197839Z", + "iopub.status.busy": "2024-08-21T00:42:48.197661Z", + "iopub.status.idle": "2024-08-21T00:42:50.967466Z", + "shell.execute_reply": "2024-08-21T00:42:50.966936Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:43.892128Z", - "iopub.status.busy": "2024-08-20T02:17:43.891640Z", - "iopub.status.idle": "2024-08-20T02:17:43.895466Z", - "shell.execute_reply": "2024-08-20T02:17:43.895014Z" + "iopub.execute_input": "2024-08-21T00:42:50.969963Z", + "iopub.status.busy": "2024-08-21T00:42:50.969666Z", + "iopub.status.idle": "2024-08-21T00:42:50.973228Z", + "shell.execute_reply": "2024-08-21T00:42:50.972662Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:43.897587Z", - "iopub.status.busy": "2024-08-20T02:17:43.897195Z", - "iopub.status.idle": "2024-08-20T02:17:43.900227Z", - "shell.execute_reply": "2024-08-20T02:17:43.899787Z" + "iopub.execute_input": "2024-08-21T00:42:50.975166Z", + "iopub.status.busy": "2024-08-21T00:42:50.974858Z", + "iopub.status.idle": "2024-08-21T00:42:50.978037Z", + "shell.execute_reply": "2024-08-21T00:42:50.977508Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:43.902374Z", - "iopub.status.busy": "2024-08-20T02:17:43.902037Z", - "iopub.status.idle": "2024-08-20T02:17:43.948123Z", - "shell.execute_reply": "2024-08-20T02:17:43.947597Z" + "iopub.execute_input": "2024-08-21T00:42:50.980278Z", + "iopub.status.busy": "2024-08-21T00:42:50.979852Z", + "iopub.status.idle": "2024-08-21T00:42:51.018730Z", + "shell.execute_reply": "2024-08-21T00:42:51.018187Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:43.950404Z", - "iopub.status.busy": "2024-08-20T02:17:43.950033Z", - "iopub.status.idle": "2024-08-20T02:17:43.953987Z", - "shell.execute_reply": "2024-08-20T02:17:43.953498Z" + "iopub.execute_input": "2024-08-21T00:42:51.020813Z", + "iopub.status.busy": "2024-08-21T00:42:51.020467Z", + "iopub.status.idle": "2024-08-21T00:42:51.024267Z", + "shell.execute_reply": "2024-08-21T00:42:51.023800Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'getting_spare_card', 'card_about_to_expire', 'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'beneficiary_not_allowed', 'visa_or_mastercard', 'lost_or_stolen_phone', 'cancel_transfer', 'card_payment_fee_charged', 'change_pin'}\n" + "Classes: {'apple_pay_or_google_pay', 'change_pin', 'beneficiary_not_allowed', 'getting_spare_card', 'lost_or_stolen_phone', 'cancel_transfer', 'card_payment_fee_charged', 'visa_or_mastercard', 'card_about_to_expire', 'supported_cards_and_currencies'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:43.956096Z", - "iopub.status.busy": "2024-08-20T02:17:43.955753Z", - "iopub.status.idle": "2024-08-20T02:17:43.959032Z", - "shell.execute_reply": "2024-08-20T02:17:43.958569Z" + "iopub.execute_input": "2024-08-21T00:42:51.026219Z", + "iopub.status.busy": "2024-08-21T00:42:51.025887Z", + "iopub.status.idle": "2024-08-21T00:42:51.029160Z", + "shell.execute_reply": "2024-08-21T00:42:51.028719Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:43.961194Z", - "iopub.status.busy": "2024-08-20T02:17:43.960798Z", - "iopub.status.idle": "2024-08-20T02:17:47.539339Z", - "shell.execute_reply": "2024-08-20T02:17:47.538779Z" + "iopub.execute_input": "2024-08-21T00:42:51.031153Z", + "iopub.status.busy": "2024-08-21T00:42:51.030819Z", + "iopub.status.idle": "2024-08-21T00:42:54.855542Z", + "shell.execute_reply": "2024-08-21T00:42:54.854980Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:47.542112Z", - "iopub.status.busy": "2024-08-20T02:17:47.541704Z", - "iopub.status.idle": "2024-08-20T02:17:48.414944Z", - "shell.execute_reply": "2024-08-20T02:17:48.414342Z" + "iopub.execute_input": "2024-08-21T00:42:54.858207Z", + "iopub.status.busy": "2024-08-21T00:42:54.857857Z", + "iopub.status.idle": "2024-08-21T00:42:55.761897Z", + "shell.execute_reply": "2024-08-21T00:42:55.761312Z" }, "scrolled": true }, @@ -451,10 +451,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:48.418075Z", - "iopub.status.busy": "2024-08-20T02:17:48.417646Z", - "iopub.status.idle": "2024-08-20T02:17:48.420650Z", - "shell.execute_reply": "2024-08-20T02:17:48.420142Z" + "iopub.execute_input": "2024-08-21T00:42:55.764920Z", + "iopub.status.busy": "2024-08-21T00:42:55.764523Z", + "iopub.status.idle": "2024-08-21T00:42:55.767436Z", + "shell.execute_reply": "2024-08-21T00:42:55.766944Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:48.423130Z", - "iopub.status.busy": "2024-08-20T02:17:48.422741Z", - "iopub.status.idle": "2024-08-20T02:17:50.512788Z", - "shell.execute_reply": "2024-08-20T02:17:50.512084Z" + "iopub.execute_input": "2024-08-21T00:42:55.769883Z", + "iopub.status.busy": "2024-08-21T00:42:55.769512Z", + "iopub.status.idle": "2024-08-21T00:42:57.751703Z", + "shell.execute_reply": "2024-08-21T00:42:57.751042Z" }, "scrolled": true }, @@ -521,10 +521,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:50.516360Z", - "iopub.status.busy": "2024-08-20T02:17:50.515474Z", - "iopub.status.idle": "2024-08-20T02:17:50.559350Z", - "shell.execute_reply": "2024-08-20T02:17:50.558793Z" + "iopub.execute_input": "2024-08-21T00:42:57.756032Z", + "iopub.status.busy": "2024-08-21T00:42:57.754848Z", + "iopub.status.idle": "2024-08-21T00:42:57.780427Z", + "shell.execute_reply": "2024-08-21T00:42:57.779909Z" }, "scrolled": true }, @@ -654,10 +654,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:50.562005Z", - "iopub.status.busy": "2024-08-20T02:17:50.561575Z", - "iopub.status.idle": "2024-08-20T02:17:50.571250Z", - "shell.execute_reply": "2024-08-20T02:17:50.570668Z" + "iopub.execute_input": "2024-08-21T00:42:57.783964Z", + "iopub.status.busy": "2024-08-21T00:42:57.783026Z", + "iopub.status.idle": "2024-08-21T00:42:57.793469Z", + "shell.execute_reply": "2024-08-21T00:42:57.793043Z" }, "scrolled": true }, @@ -767,10 +767,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:50.573299Z", - "iopub.status.busy": "2024-08-20T02:17:50.573083Z", - "iopub.status.idle": "2024-08-20T02:17:50.577651Z", - "shell.execute_reply": "2024-08-20T02:17:50.577171Z" + "iopub.execute_input": "2024-08-21T00:42:57.795468Z", + "iopub.status.busy": "2024-08-21T00:42:57.795293Z", + "iopub.status.idle": "2024-08-21T00:42:57.799640Z", + "shell.execute_reply": "2024-08-21T00:42:57.799166Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:50.579760Z", - "iopub.status.busy": "2024-08-20T02:17:50.579414Z", - "iopub.status.idle": "2024-08-20T02:17:50.585985Z", - "shell.execute_reply": "2024-08-20T02:17:50.585437Z" + "iopub.execute_input": "2024-08-21T00:42:57.801519Z", + "iopub.status.busy": "2024-08-21T00:42:57.801343Z", + "iopub.status.idle": "2024-08-21T00:42:57.807871Z", + "shell.execute_reply": "2024-08-21T00:42:57.807330Z" } }, "outputs": [ @@ -928,10 +928,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:50.588204Z", - "iopub.status.busy": "2024-08-20T02:17:50.587870Z", - "iopub.status.idle": "2024-08-20T02:17:50.594858Z", - "shell.execute_reply": "2024-08-20T02:17:50.594371Z" + "iopub.execute_input": "2024-08-21T00:42:57.809785Z", + "iopub.status.busy": "2024-08-21T00:42:57.809618Z", + "iopub.status.idle": "2024-08-21T00:42:57.816205Z", + "shell.execute_reply": "2024-08-21T00:42:57.815747Z" } }, "outputs": [ @@ -1014,10 +1014,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:50.596980Z", - "iopub.status.busy": "2024-08-20T02:17:50.596628Z", - "iopub.status.idle": "2024-08-20T02:17:50.602883Z", - "shell.execute_reply": "2024-08-20T02:17:50.602388Z" + "iopub.execute_input": "2024-08-21T00:42:57.817972Z", + "iopub.status.busy": "2024-08-21T00:42:57.817801Z", + "iopub.status.idle": "2024-08-21T00:42:57.823337Z", + "shell.execute_reply": "2024-08-21T00:42:57.822851Z" } }, "outputs": [ @@ -1125,10 +1125,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:50.605052Z", - "iopub.status.busy": "2024-08-20T02:17:50.604708Z", - "iopub.status.idle": "2024-08-20T02:17:50.613784Z", - "shell.execute_reply": "2024-08-20T02:17:50.613286Z" + "iopub.execute_input": "2024-08-21T00:42:57.825390Z", + "iopub.status.busy": "2024-08-21T00:42:57.825059Z", + "iopub.status.idle": "2024-08-21T00:42:57.833536Z", + "shell.execute_reply": "2024-08-21T00:42:57.832966Z" } }, "outputs": [ @@ -1239,10 +1239,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:50.615869Z", - "iopub.status.busy": "2024-08-20T02:17:50.615531Z", - "iopub.status.idle": "2024-08-20T02:17:50.621241Z", - "shell.execute_reply": "2024-08-20T02:17:50.620655Z" + "iopub.execute_input": "2024-08-21T00:42:57.835599Z", + "iopub.status.busy": "2024-08-21T00:42:57.835187Z", + "iopub.status.idle": "2024-08-21T00:42:57.840572Z", + "shell.execute_reply": "2024-08-21T00:42:57.840031Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:50.623564Z", - "iopub.status.busy": "2024-08-20T02:17:50.623056Z", - "iopub.status.idle": "2024-08-20T02:17:50.628693Z", - "shell.execute_reply": "2024-08-20T02:17:50.628220Z" + "iopub.execute_input": "2024-08-21T00:42:57.842661Z", + "iopub.status.busy": "2024-08-21T00:42:57.842352Z", + "iopub.status.idle": "2024-08-21T00:42:57.847636Z", + "shell.execute_reply": "2024-08-21T00:42:57.847079Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:50.630804Z", - "iopub.status.busy": "2024-08-20T02:17:50.630492Z", - "iopub.status.idle": "2024-08-20T02:17:50.634294Z", - "shell.execute_reply": "2024-08-20T02:17:50.633704Z" + "iopub.execute_input": "2024-08-21T00:42:57.849566Z", + "iopub.status.busy": "2024-08-21T00:42:57.849393Z", + "iopub.status.idle": "2024-08-21T00:42:57.852910Z", + "shell.execute_reply": "2024-08-21T00:42:57.852365Z" } }, "outputs": [ @@ -1449,10 +1449,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:50.636366Z", - "iopub.status.busy": "2024-08-20T02:17:50.636088Z", - "iopub.status.idle": "2024-08-20T02:17:50.641705Z", - "shell.execute_reply": "2024-08-20T02:17:50.641097Z" + "iopub.execute_input": "2024-08-21T00:42:57.855166Z", + "iopub.status.busy": "2024-08-21T00:42:57.854784Z", + "iopub.status.idle": "2024-08-21T00:42:57.860086Z", + "shell.execute_reply": "2024-08-21T00:42:57.859637Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/workflows.html b/master/tutorials/datalab/workflows.html index d94142c5e..1e34b68e5 100644 --- a/master/tutorials/datalab/workflows.html +++ b/master/tutorials/datalab/workflows.html @@ -3140,224 +3140,224 @@

    6. (Optional) Visualize the Results - +
    - - - - - - - - - + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
     AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
    8nannannannannanNaTTrue0.000000
    1nanFemaleRural6421.1600005.000000NaTFalse0.666667
    9nanMaleRural4655.8200001.000000NaTFalse0.666667
    14nanMaleRural6790.4600003.000000NaTFalse0.666667
    13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
    15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
    056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
    246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
    332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
    460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
    525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
    638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
    756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
    1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
    1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
    1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
    1nanFemaleRural6421.1600005.000000NaTFalse0.666667
    9nanMaleRural4655.8200001.000000NaTFalse0.666667
    14nanMaleRural6790.4600003.000000NaTFalse0.666667
    13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
    15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
    056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
    246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
    332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
    460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
    525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
    638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
    756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
    1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
    1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
    1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
    @@ -3503,8 +3503,8 @@

    1. Load the Dataset
    -
    +
    @@ -3590,6 +3590,7 @@

    2. Run Datalab Analysis

    Interpreting the results:

      -
    1. Correlation Scores: The correlation_scores DataFrame shows scores for various image properties. Lower scores (closer to 0) indicate stronger correlations with class labels, suggesting potential spurious correlations.

    2. +
    3. Label Uncorrelatedness Scores: The label_uncorrelatedness_scores DataFrame shows scores for various image properties. Lower scores (closer to 0) indicate stronger correlations with class labels, suggesting potential spurious correlations.

    4. Image-Specific Issues: The image_issues DataFrame provides details on detected image-specific problems, including the issue type and affected samples.

    -

    In our CIFAR-10 subset example, you should see that the ‘dark’ property has a low score in the correlation_scores, indicating a strong correlation with one of the classes (likely the ‘frog’ class). This is due to our artificial darkening of these images to demonstrate the concept.

    +

    In our CIFAR-10 subset example, you should see that the ‘dark’ property has a low score in the label_uncorrelatedness_scores, indicating a strong correlation with one of the classes (likely the ‘frog’ class). This is due to our artificial darkening of these images to demonstrate the concept.

    For real-world datasets, pay attention to:

      -
    • Properties with notably low scores in the correlation_scores DataFrame

    • +
    • Properties with notably low scores in the label_uncorrelatedness_scores DataFrame

    • Prevalent issues in the image_issues DataFrame

    These may represent unintended biases in your data collection or preprocessing steps and warrant further investigation.

    Note: Using these methods provides a more programmatic and focused way to analyze the results compared to the verbose output of lab.report().

    - -
    -

    4. (Optional) Compare with a Dataset Without Spurious Correlations#

    -

    To understand the impact of spurious correlations, it can be helpful to compare our results with a dataset that doesn’t have artificially introduced biases. In this case, we’ll use the original CIFAR-10 subset.

    [37]:
     
    -
    # Load the original dataset
    -original_data_dir = "CIFAR-10-subset/original_images"
    -original_dataset = load_image_dataset(original_data_dir)
    +
    def plot_scores_labels(lab, property="dark_score"):
    +    """
    +    Plots the scores of image-specific properties like 'dark_score', 'blurry_score', etc.
    +    against labels for each instance in the dataset using 'Datalab' object.
     
    -# Create a new Datalab instance and run analysis
    -original_lab = Datalab(data=original_dataset, label_name="label", image_key="image")
    -original_lab.find_issues()
    +    Parameters:
    +    -----------
    +    lab : 'Datalab' object
     
    -# Compare correlation scores
    -original_scores = original_lab._correlations_df
    -print("Correlation scores for original dataset:")
    -display(original_scores)
    +    property : str, optional
    +        The name of the property to be plotted against the labels.
     
    -# Compare image-specific issues
    -original_issues = original_lab.get_issues("dark")
    -print("\nImage-specific issues in original dataset:")
    -display(original_issues)
    -
    -
    -
    -
    -
    -
    -
    -
    -Finding class_imbalance issues ...
    -Finding dark, light, low_information, odd_aspect_ratio, odd_size, grayscale, blurry images ...
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    +    Returns:
    +    --------
    +    None
    +        This function does not return any value. It generates a plot of the specified
    +        property against the labels.
    +    """
    +    issues_copy = lab.issues.copy()
    +    issues_copy["label"] = lab.labels
    +    issues_copy.boxplot(column=[property], by="label")
     
    -Audit complete. 0 issues found in the dataset.
    -Correlation scores for original dataset:
    -
    +# Plotting 'dark_score' value of each instance in the dataset against class label +plot_scores_labels(lab, "dark_score") +
    -
    -
    -
    -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    propertyscore
    0dark_score0.300
    1light_score0.415
    2low_information_score0.325
    3odd_aspect_ratio_score0.500
    4odd_size_score0.500
    5grayscale_score0.500
    6blurry_score0.335
    -
    -
    -
    +
    -
    -
    -Image-specific issues in original dataset:
    -
    +../../_images/tutorials_datalab_workflows_86_0.png
    -
    -
    -
    -
    -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    dark_scoreis_dark_issue
    00.797509False
    10.663760False
    20.849826False
    30.773951False
    40.699518False
    .........
    1950.793840False
    1961.000000False
    1970.971560False
    1980.862236False
    1990.973533False
    -

    200 rows × 2 columns

    -
    -

    When comparing the results:

    -
      -
    1. Look for differences in the correlation scores, especially for the ‘dark’ property.

    2. -
    3. Compare the number and types of image-specific issues detected.

    4. -
    -

    You should notice that the original dataset has more balanced correlation scores and fewer (or no) issues related to darkness. This comparison highlights how spurious correlations can be detected by Datalab.

    +

    The above plot illustrates the distribution of dark scores across class labels. In this dataset, 100 images from the Frog class (Class 0 in the plot) have been darkened, while 100 images from the Truck class (Class 1 in the plot) remain unchanged, as in the CIFAR-10 dataset. This creates a clear spurious correlation between the ‘darkness’ feature and the class labels: Frog images are dark, whereas Truck images are not. We can see that the dark_score values between the two +classes are non-overlapping. This characteristic of the dataset is identified by Datalab.

    @@ -4196,7 +4013,6 @@

    4. (Optional) Compare with a Dataset Without Spurious Correlations1. Load the Dataset
  • 2. Run Datalab Analysis
  • 3. Interpret the Results
  • -
  • 4. (Optional) Compare with a Dataset Without Spurious Correlations
  • diff --git a/master/tutorials/datalab/workflows.ipynb b/master/tutorials/datalab/workflows.ipynb index ea12d845c..eb842aff3 100644 --- a/master/tutorials/datalab/workflows.ipynb +++ b/master/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:54.342678Z", - "iopub.status.busy": "2024-08-20T02:17:54.342516Z", - "iopub.status.idle": "2024-08-20T02:17:54.787105Z", - "shell.execute_reply": "2024-08-20T02:17:54.786589Z" + "iopub.execute_input": "2024-08-21T00:43:01.171888Z", + "iopub.status.busy": "2024-08-21T00:43:01.171708Z", + "iopub.status.idle": "2024-08-21T00:43:01.599347Z", + "shell.execute_reply": "2024-08-21T00:43:01.598723Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:54.789748Z", - "iopub.status.busy": "2024-08-20T02:17:54.789305Z", - "iopub.status.idle": "2024-08-20T02:17:54.923597Z", - "shell.execute_reply": "2024-08-20T02:17:54.923027Z" + "iopub.execute_input": "2024-08-21T00:43:01.602168Z", + "iopub.status.busy": "2024-08-21T00:43:01.601787Z", + "iopub.status.idle": "2024-08-21T00:43:01.731428Z", + "shell.execute_reply": "2024-08-21T00:43:01.730880Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:54.926017Z", - "iopub.status.busy": "2024-08-20T02:17:54.925610Z", - "iopub.status.idle": "2024-08-20T02:17:54.948848Z", - "shell.execute_reply": "2024-08-20T02:17:54.948254Z" + "iopub.execute_input": "2024-08-21T00:43:01.733775Z", + "iopub.status.busy": "2024-08-21T00:43:01.733383Z", + "iopub.status.idle": "2024-08-21T00:43:01.756845Z", + "shell.execute_reply": "2024-08-21T00:43:01.756289Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:54.951750Z", - "iopub.status.busy": "2024-08-20T02:17:54.951205Z", - "iopub.status.idle": "2024-08-20T02:17:58.333690Z", - "shell.execute_reply": "2024-08-20T02:17:58.332962Z" + "iopub.execute_input": "2024-08-21T00:43:01.759422Z", + "iopub.status.busy": "2024-08-21T00:43:01.758972Z", + "iopub.status.idle": "2024-08-21T00:43:04.525314Z", + "shell.execute_reply": "2024-08-21T00:43:04.524747Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:17:58.336453Z", - "iopub.status.busy": "2024-08-20T02:17:58.335863Z", - "iopub.status.idle": "2024-08-20T02:18:06.978320Z", - "shell.execute_reply": "2024-08-20T02:18:06.977689Z" + "iopub.execute_input": "2024-08-21T00:43:04.528021Z", + "iopub.status.busy": "2024-08-21T00:43:04.527475Z", + "iopub.status.idle": "2024-08-21T00:43:13.293687Z", + "shell.execute_reply": "2024-08-21T00:43:13.293070Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:06.980664Z", - "iopub.status.busy": "2024-08-20T02:18:06.980310Z", - "iopub.status.idle": "2024-08-20T02:18:07.140407Z", - "shell.execute_reply": "2024-08-20T02:18:07.139847Z" + "iopub.execute_input": "2024-08-21T00:43:13.296149Z", + "iopub.status.busy": "2024-08-21T00:43:13.295770Z", + "iopub.status.idle": "2024-08-21T00:43:13.454429Z", + "shell.execute_reply": "2024-08-21T00:43:13.453846Z" } }, "outputs": [], @@ -838,10 +838,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:07.143040Z", - "iopub.status.busy": "2024-08-20T02:18:07.142679Z", - "iopub.status.idle": "2024-08-20T02:18:08.680980Z", - "shell.execute_reply": "2024-08-20T02:18:08.680491Z" + "iopub.execute_input": "2024-08-21T00:43:13.456937Z", + "iopub.status.busy": "2024-08-21T00:43:13.456583Z", + "iopub.status.idle": "2024-08-21T00:43:14.817910Z", + "shell.execute_reply": "2024-08-21T00:43:14.817401Z" } }, "outputs": [ @@ -1000,10 +1000,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:08.683287Z", - "iopub.status.busy": "2024-08-20T02:18:08.682919Z", - "iopub.status.idle": "2024-08-20T02:18:08.998377Z", - "shell.execute_reply": "2024-08-20T02:18:08.997764Z" + "iopub.execute_input": "2024-08-21T00:43:14.820072Z", + "iopub.status.busy": "2024-08-21T00:43:14.819706Z", + "iopub.status.idle": "2024-08-21T00:43:15.269488Z", + "shell.execute_reply": "2024-08-21T00:43:15.268851Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.001136Z", - "iopub.status.busy": "2024-08-20T02:18:09.000600Z", - "iopub.status.idle": "2024-08-20T02:18:09.014081Z", - "shell.execute_reply": "2024-08-20T02:18:09.013591Z" + "iopub.execute_input": "2024-08-21T00:43:15.272042Z", + "iopub.status.busy": "2024-08-21T00:43:15.271492Z", + "iopub.status.idle": "2024-08-21T00:43:15.285246Z", + "shell.execute_reply": "2024-08-21T00:43:15.284785Z" } }, "outputs": [], @@ -1115,10 +1115,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.016120Z", - "iopub.status.busy": "2024-08-20T02:18:09.015940Z", - "iopub.status.idle": "2024-08-20T02:18:09.039533Z", - "shell.execute_reply": "2024-08-20T02:18:09.038905Z" + "iopub.execute_input": "2024-08-21T00:43:15.287513Z", + "iopub.status.busy": "2024-08-21T00:43:15.287177Z", + "iopub.status.idle": "2024-08-21T00:43:15.307560Z", + "shell.execute_reply": "2024-08-21T00:43:15.306987Z" } }, "outputs": [], @@ -1146,10 +1146,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.042064Z", - "iopub.status.busy": "2024-08-20T02:18:09.041579Z", - "iopub.status.idle": "2024-08-20T02:18:09.283734Z", - "shell.execute_reply": "2024-08-20T02:18:09.283109Z" + "iopub.execute_input": "2024-08-21T00:43:15.309775Z", + "iopub.status.busy": "2024-08-21T00:43:15.309322Z", + "iopub.status.idle": "2024-08-21T00:43:15.549642Z", + "shell.execute_reply": "2024-08-21T00:43:15.549085Z" } }, "outputs": [], @@ -1189,10 +1189,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.286529Z", - "iopub.status.busy": "2024-08-20T02:18:09.286191Z", - "iopub.status.idle": "2024-08-20T02:18:09.305536Z", - "shell.execute_reply": "2024-08-20T02:18:09.305009Z" + "iopub.execute_input": "2024-08-21T00:43:15.552675Z", + "iopub.status.busy": "2024-08-21T00:43:15.552274Z", + "iopub.status.idle": "2024-08-21T00:43:15.571649Z", + "shell.execute_reply": "2024-08-21T00:43:15.571180Z" } }, "outputs": [ @@ -1390,10 +1390,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.307549Z", - "iopub.status.busy": "2024-08-20T02:18:09.307369Z", - "iopub.status.idle": "2024-08-20T02:18:09.476687Z", - "shell.execute_reply": "2024-08-20T02:18:09.476131Z" + "iopub.execute_input": "2024-08-21T00:43:15.573738Z", + "iopub.status.busy": "2024-08-21T00:43:15.573396Z", + "iopub.status.idle": "2024-08-21T00:43:15.740795Z", + "shell.execute_reply": "2024-08-21T00:43:15.740213Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.478997Z", - "iopub.status.busy": "2024-08-20T02:18:09.478812Z", - "iopub.status.idle": "2024-08-20T02:18:09.489242Z", - "shell.execute_reply": "2024-08-20T02:18:09.488671Z" + "iopub.execute_input": "2024-08-21T00:43:15.743277Z", + "iopub.status.busy": "2024-08-21T00:43:15.742918Z", + "iopub.status.idle": "2024-08-21T00:43:15.752623Z", + "shell.execute_reply": "2024-08-21T00:43:15.752133Z" } }, "outputs": [ @@ -1729,10 +1729,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.491411Z", - "iopub.status.busy": "2024-08-20T02:18:09.490973Z", - "iopub.status.idle": "2024-08-20T02:18:09.500699Z", - "shell.execute_reply": "2024-08-20T02:18:09.500225Z" + "iopub.execute_input": "2024-08-21T00:43:15.754632Z", + "iopub.status.busy": "2024-08-21T00:43:15.754360Z", + "iopub.status.idle": "2024-08-21T00:43:15.763787Z", + "shell.execute_reply": "2024-08-21T00:43:15.763179Z" } }, "outputs": [ @@ -1919,10 +1919,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.502731Z", - "iopub.status.busy": "2024-08-20T02:18:09.502549Z", - "iopub.status.idle": "2024-08-20T02:18:09.529479Z", - "shell.execute_reply": "2024-08-20T02:18:09.528984Z" + "iopub.execute_input": "2024-08-21T00:43:15.765948Z", + "iopub.status.busy": "2024-08-21T00:43:15.765602Z", + "iopub.status.idle": "2024-08-21T00:43:15.791328Z", + "shell.execute_reply": "2024-08-21T00:43:15.790866Z" } }, "outputs": [], @@ -1956,10 +1956,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.531581Z", - "iopub.status.busy": "2024-08-20T02:18:09.531237Z", - "iopub.status.idle": "2024-08-20T02:18:09.534052Z", - "shell.execute_reply": "2024-08-20T02:18:09.533586Z" + "iopub.execute_input": "2024-08-21T00:43:15.793538Z", + "iopub.status.busy": "2024-08-21T00:43:15.793210Z", + "iopub.status.idle": "2024-08-21T00:43:15.796045Z", + "shell.execute_reply": "2024-08-21T00:43:15.795529Z" } }, "outputs": [], @@ -1981,10 +1981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.536250Z", - "iopub.status.busy": "2024-08-20T02:18:09.535919Z", - "iopub.status.idle": "2024-08-20T02:18:09.555307Z", - "shell.execute_reply": "2024-08-20T02:18:09.554757Z" + "iopub.execute_input": "2024-08-21T00:43:15.798174Z", + "iopub.status.busy": "2024-08-21T00:43:15.797769Z", + "iopub.status.idle": "2024-08-21T00:43:15.817188Z", + "shell.execute_reply": "2024-08-21T00:43:15.816725Z" } }, "outputs": [ @@ -2142,10 +2142,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.557515Z", - "iopub.status.busy": "2024-08-20T02:18:09.557152Z", - "iopub.status.idle": "2024-08-20T02:18:09.561596Z", - "shell.execute_reply": "2024-08-20T02:18:09.561108Z" + "iopub.execute_input": "2024-08-21T00:43:15.819091Z", + "iopub.status.busy": "2024-08-21T00:43:15.818917Z", + "iopub.status.idle": "2024-08-21T00:43:15.823437Z", + "shell.execute_reply": "2024-08-21T00:43:15.822989Z" } }, "outputs": [], @@ -2178,10 +2178,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.563658Z", - "iopub.status.busy": "2024-08-20T02:18:09.563335Z", - "iopub.status.idle": "2024-08-20T02:18:09.592021Z", - "shell.execute_reply": "2024-08-20T02:18:09.591552Z" + "iopub.execute_input": "2024-08-21T00:43:15.825477Z", + "iopub.status.busy": "2024-08-21T00:43:15.825162Z", + "iopub.status.idle": "2024-08-21T00:43:15.852907Z", + "shell.execute_reply": "2024-08-21T00:43:15.852367Z" } }, "outputs": [ @@ -2327,10 +2327,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.594263Z", - "iopub.status.busy": "2024-08-20T02:18:09.593908Z", - "iopub.status.idle": "2024-08-20T02:18:09.919384Z", - "shell.execute_reply": "2024-08-20T02:18:09.918757Z" + "iopub.execute_input": "2024-08-21T00:43:15.855074Z", + "iopub.status.busy": "2024-08-21T00:43:15.854635Z", + "iopub.status.idle": "2024-08-21T00:43:16.219163Z", + "shell.execute_reply": "2024-08-21T00:43:16.218556Z" } }, "outputs": [ @@ -2397,10 +2397,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.921742Z", - "iopub.status.busy": "2024-08-20T02:18:09.921399Z", - "iopub.status.idle": "2024-08-20T02:18:09.924438Z", - "shell.execute_reply": "2024-08-20T02:18:09.923873Z" + "iopub.execute_input": "2024-08-21T00:43:16.221443Z", + "iopub.status.busy": "2024-08-21T00:43:16.221085Z", + "iopub.status.idle": "2024-08-21T00:43:16.224381Z", + "shell.execute_reply": "2024-08-21T00:43:16.223904Z" } }, "outputs": [ @@ -2451,10 +2451,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.926626Z", - "iopub.status.busy": "2024-08-20T02:18:09.926286Z", - "iopub.status.idle": "2024-08-20T02:18:09.942337Z", - "shell.execute_reply": "2024-08-20T02:18:09.941698Z" + "iopub.execute_input": "2024-08-21T00:43:16.226481Z", + "iopub.status.busy": "2024-08-21T00:43:16.226086Z", + "iopub.status.idle": "2024-08-21T00:43:16.239073Z", + "shell.execute_reply": "2024-08-21T00:43:16.238514Z" } }, "outputs": [ @@ -2733,10 +2733,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.944789Z", - "iopub.status.busy": "2024-08-20T02:18:09.944595Z", - "iopub.status.idle": "2024-08-20T02:18:09.959330Z", - "shell.execute_reply": "2024-08-20T02:18:09.958838Z" + "iopub.execute_input": "2024-08-21T00:43:16.241149Z", + "iopub.status.busy": "2024-08-21T00:43:16.240818Z", + "iopub.status.idle": "2024-08-21T00:43:16.253851Z", + "shell.execute_reply": "2024-08-21T00:43:16.253394Z" } }, "outputs": [ @@ -3003,10 +3003,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.961553Z", - "iopub.status.busy": "2024-08-20T02:18:09.961186Z", - "iopub.status.idle": "2024-08-20T02:18:09.971554Z", - "shell.execute_reply": "2024-08-20T02:18:09.971112Z" + "iopub.execute_input": "2024-08-21T00:43:16.255788Z", + "iopub.status.busy": "2024-08-21T00:43:16.255473Z", + "iopub.status.idle": "2024-08-21T00:43:16.265699Z", + "shell.execute_reply": "2024-08-21T00:43:16.265145Z" } }, "outputs": [], @@ -3031,10 +3031,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.973798Z", - "iopub.status.busy": "2024-08-20T02:18:09.973436Z", - "iopub.status.idle": "2024-08-20T02:18:09.982920Z", - "shell.execute_reply": "2024-08-20T02:18:09.982407Z" + "iopub.execute_input": "2024-08-21T00:43:16.268027Z", + "iopub.status.busy": "2024-08-21T00:43:16.267560Z", + "iopub.status.idle": "2024-08-21T00:43:16.276845Z", + "shell.execute_reply": "2024-08-21T00:43:16.276285Z" } }, "outputs": [ @@ -3206,10 +3206,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.985172Z", - "iopub.status.busy": "2024-08-20T02:18:09.984839Z", - "iopub.status.idle": "2024-08-20T02:18:09.988286Z", - "shell.execute_reply": "2024-08-20T02:18:09.987820Z" + "iopub.execute_input": "2024-08-21T00:43:16.278895Z", + "iopub.status.busy": "2024-08-21T00:43:16.278593Z", + "iopub.status.idle": "2024-08-21T00:43:16.282208Z", + "shell.execute_reply": "2024-08-21T00:43:16.281682Z" } }, "outputs": [], @@ -3241,10 +3241,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:09.990507Z", - "iopub.status.busy": "2024-08-20T02:18:09.990126Z", - "iopub.status.idle": "2024-08-20T02:18:10.042804Z", - "shell.execute_reply": "2024-08-20T02:18:10.042240Z" + "iopub.execute_input": "2024-08-21T00:43:16.284237Z", + "iopub.status.busy": "2024-08-21T00:43:16.283887Z", + "iopub.status.idle": "2024-08-21T00:43:16.335023Z", + "shell.execute_reply": "2024-08-21T00:43:16.334498Z" } }, "outputs": [ @@ -3252,230 +3252,230 @@ "data": { "text/html": [ "\n", - "\n", + "
    \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
     AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
    8nannannannannanNaTTrue0.000000
    1nanFemaleRural6421.1600005.000000NaTFalse0.666667
    9nanMaleRural4655.8200001.000000NaTFalse0.666667
    14nanMaleRural6790.4600003.000000NaTFalse0.666667
    13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
    15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
    056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
    246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
    332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
    460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
    525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
    638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
    756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
    1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
    1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
    1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
    1nanFemaleRural6421.1600005.000000NaTFalse0.666667
    9nanMaleRural4655.8200001.000000NaTFalse0.666667
    14nanMaleRural6790.4600003.000000NaTFalse0.666667
    13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
    15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
    056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
    246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
    332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
    460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
    525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
    638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
    756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
    1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
    1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
    1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
    \n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3551,10 +3551,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:10.045338Z", - "iopub.status.busy": "2024-08-20T02:18:10.044784Z", - "iopub.status.idle": "2024-08-20T02:18:10.052047Z", - "shell.execute_reply": "2024-08-20T02:18:10.051488Z" + "iopub.execute_input": "2024-08-21T00:43:16.337295Z", + "iopub.status.busy": "2024-08-21T00:43:16.336882Z", + "iopub.status.idle": "2024-08-21T00:43:16.342563Z", + "shell.execute_reply": "2024-08-21T00:43:16.342023Z" } }, "outputs": [], @@ -3593,10 +3593,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:10.054394Z", - "iopub.status.busy": "2024-08-20T02:18:10.053951Z", - "iopub.status.idle": "2024-08-20T02:18:10.066067Z", - "shell.execute_reply": "2024-08-20T02:18:10.065481Z" + "iopub.execute_input": "2024-08-21T00:43:16.344534Z", + "iopub.status.busy": "2024-08-21T00:43:16.344225Z", + "iopub.status.idle": "2024-08-21T00:43:16.355308Z", + "shell.execute_reply": "2024-08-21T00:43:16.354768Z" } }, "outputs": [ @@ -3632,10 +3632,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:10.068250Z", - "iopub.status.busy": "2024-08-20T02:18:10.067916Z", - "iopub.status.idle": "2024-08-20T02:18:10.246354Z", - "shell.execute_reply": "2024-08-20T02:18:10.245759Z" + "iopub.execute_input": "2024-08-21T00:43:16.357487Z", + "iopub.status.busy": "2024-08-21T00:43:16.356999Z", + "iopub.status.idle": "2024-08-21T00:43:16.572206Z", + "shell.execute_reply": "2024-08-21T00:43:16.571628Z" } }, "outputs": [ @@ -3687,10 +3687,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:10.248597Z", - "iopub.status.busy": "2024-08-20T02:18:10.248414Z", - "iopub.status.idle": "2024-08-20T02:18:10.256426Z", - "shell.execute_reply": "2024-08-20T02:18:10.255950Z" + "iopub.execute_input": "2024-08-21T00:43:16.574287Z", + "iopub.status.busy": "2024-08-21T00:43:16.574098Z", + "iopub.status.idle": "2024-08-21T00:43:16.582508Z", + "shell.execute_reply": "2024-08-21T00:43:16.581942Z" }, "nbsphinx": "hidden" }, @@ -3756,10 +3756,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:10.258571Z", - "iopub.status.busy": "2024-08-20T02:18:10.258299Z", - "iopub.status.idle": "2024-08-20T02:18:10.653195Z", - "shell.execute_reply": "2024-08-20T02:18:10.652443Z" + "iopub.execute_input": "2024-08-21T00:43:16.584541Z", + "iopub.status.busy": "2024-08-21T00:43:16.584367Z", + "iopub.status.idle": "2024-08-21T00:43:17.017635Z", + "shell.execute_reply": "2024-08-21T00:43:17.016929Z" } }, "outputs": [ @@ -3767,25 +3767,25 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-20 02:18:10-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", - "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.110.153, 185.199.109.153, ...\r\n", + "--2024-08-21 00:43:16-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", + "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.109.153, 185.199.108.153, ...\r\n", "Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.111.153|:443... connected.\r\n", - "HTTP request sent, awaiting response... 200 OK\r\n", - "Length: 986707 (964K) [application/zip]\r\n", - "Saving to: ‘CIFAR-10-subset.zip’\r\n", - "\r\n", - "\r", - "CIFAR-10-subset.zip 0%[ ] 0 --.-KB/s " + "HTTP request sent, awaiting response... " ] }, { "name": "stdout", "output_type": "stream", "text": [ + "200 OK\r\n", + "Length: 986707 (964K) [application/zip]\r\n", + "Saving to: ‘CIFAR-10-subset.zip’\r\n", + "\r\n", "\r", + "CIFAR-10-subset.zip 0%[ ] 0 --.-KB/s \r", "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.02s \r\n", "\r\n", - "2024-08-20 02:18:10 (38.2 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", + "2024-08-21 00:43:16 (39.0 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", "\r\n" ] } @@ -3801,10 +3801,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:10.655777Z", - "iopub.status.busy": "2024-08-20T02:18:10.655572Z", - "iopub.status.idle": "2024-08-20T02:18:12.615828Z", - "shell.execute_reply": "2024-08-20T02:18:12.615269Z" + "iopub.execute_input": "2024-08-21T00:43:17.020182Z", + "iopub.status.busy": "2024-08-21T00:43:17.019968Z", + "iopub.status.idle": "2024-08-21T00:43:18.913423Z", + "shell.execute_reply": "2024-08-21T00:43:18.912849Z" } }, "outputs": [], @@ -3850,10 +3850,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:12.618289Z", - "iopub.status.busy": "2024-08-20T02:18:12.617996Z", - "iopub.status.idle": "2024-08-20T02:18:13.092642Z", - "shell.execute_reply": "2024-08-20T02:18:13.091988Z" + "iopub.execute_input": "2024-08-21T00:43:18.915816Z", + "iopub.status.busy": "2024-08-21T00:43:18.915543Z", + "iopub.status.idle": "2024-08-21T00:43:19.385731Z", + "shell.execute_reply": "2024-08-21T00:43:19.385086Z" } }, "outputs": [ @@ -3868,7 +3868,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8bb8c2257ff642589da749e1f2b50557", + "model_id": "67422fd209454e4487fc32db492ca2c1", "version_major": 2, "version_minor": 0 }, @@ -3884,6 +3884,7 @@ "output_type": "stream", "text": [ "Removing dark, blurry from potential issues in the dataset as it exceeds max_prevalence=0.1\n", + "Finding spurious correlation issues in the dataset ...\n", "\n", "Audit complete. 0 issues found in the dataset.\n", "No issues found in the data. Good job!\n", @@ -3897,9 +3898,9 @@ "\n", "\n", "\n", - "Here is a summary of spurious correlations between image features like 'dark_score', 'blurry_score', etc., and class labels detected in the data.\n", + "Here is a summary of spurious correlations between image features (like 'dark_score', 'blurry_score', etc.) and class labels detected in the data.\n", "\n", - "A lower score for each property implies a higher correlation of that property with the class labels.\n", + "A lower score implies a higher likelihood of a spurious correlation between that property and the class labels.\n", "\n", "\n", "property score\n", @@ -3950,10 +3951,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:13.096544Z", - "iopub.status.busy": "2024-08-20T02:18:13.095622Z", - "iopub.status.idle": "2024-08-20T02:18:13.113469Z", - "shell.execute_reply": "2024-08-20T02:18:13.112926Z" + "iopub.execute_input": "2024-08-21T00:43:19.388156Z", + "iopub.status.busy": "2024-08-21T00:43:19.387960Z", + "iopub.status.idle": "2024-08-21T00:43:19.402565Z", + "shell.execute_reply": "2024-08-21T00:43:19.402004Z" } }, "outputs": [ @@ -3961,7 +3962,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Correlation scores for image properties:\n" + "Label uncorrelatedness scores for image properties:\n" ] }, { @@ -3992,13 +3993,13 @@ " \n", " \n", " 0\n", - " dark_score\n", - " 0.000\n", + " odd_size_score\n", + " 0.500\n", " \n", " \n", " 1\n", - " light_score\n", - " 0.180\n", + " odd_aspect_ratio_score\n", + " 0.500\n", " \n", " \n", " 2\n", @@ -4007,18 +4008,18 @@ " \n", " \n", " 3\n", - " odd_aspect_ratio_score\n", - " 0.500\n", + " light_score\n", + " 0.180\n", " \n", " \n", " 4\n", - " odd_size_score\n", + " grayscale_score\n", " 0.500\n", " \n", " \n", " 5\n", - " grayscale_score\n", - " 0.500\n", + " dark_score\n", + " 0.000\n", " \n", " \n", " 6\n", @@ -4031,12 +4032,12 @@ ], "text/plain": [ " property score\n", - "0 dark_score 0.000\n", - "1 light_score 0.180\n", + "0 odd_size_score 0.500\n", + "1 odd_aspect_ratio_score 0.500\n", "2 low_information_score 0.015\n", - "3 odd_aspect_ratio_score 0.500\n", - "4 odd_size_score 0.500\n", - "5 grayscale_score 0.500\n", + "3 light_score 0.180\n", + "4 grayscale_score 0.500\n", + "5 dark_score 0.000\n", "6 blurry_score 0.015" ] }, @@ -4072,35 +4073,35 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 0\n", - " 0.237196\n", " True\n", + " 0.237196\n", " \n", " \n", " 1\n", - " 0.197229\n", " True\n", + " 0.197229\n", " \n", " \n", " 2\n", - " 0.254188\n", " True\n", + " 0.254188\n", " \n", " \n", " 3\n", - " 0.229170\n", " True\n", + " 0.229170\n", " \n", " \n", " 4\n", - " 0.208907\n", " True\n", + " 0.208907\n", " \n", " \n", " ...\n", @@ -4109,28 +4110,28 @@ " \n", " \n", " 195\n", - " 0.793840\n", " False\n", + " 0.793840\n", " \n", " \n", " 196\n", - " 1.000000\n", " False\n", + " 1.000000\n", " \n", " \n", " 197\n", - " 0.971560\n", " False\n", + " 0.971560\n", " \n", " \n", " 198\n", - " 0.862236\n", " False\n", + " 0.862236\n", " \n", " \n", " 199\n", - " 0.973533\n", " False\n", + " 0.973533\n", " \n", " \n", "\n", @@ -4138,18 +4139,18 @@ "

    " ], "text/plain": [ - " dark_score is_dark_issue\n", - "0 0.237196 True\n", - "1 0.197229 True\n", - "2 0.254188 True\n", - "3 0.229170 True\n", - "4 0.208907 True\n", - ".. ... ...\n", - "195 0.793840 False\n", - "196 1.000000 False\n", - "197 0.971560 False\n", - "198 0.862236 False\n", - "199 0.973533 False\n", + " is_dark_issue dark_score\n", + "0 True 0.237196\n", + "1 True 0.197229\n", + "2 True 0.254188\n", + "3 True 0.229170\n", + "4 True 0.208907\n", + ".. ... ...\n", + "195 False 0.793840\n", + "196 False 1.000000\n", + "197 False 0.971560\n", + "198 False 0.862236\n", + "199 False 0.973533\n", "\n", "[200 rows x 2 columns]" ] @@ -4161,10 +4162,10 @@ "source": [ "from IPython.display import display\n", "\n", - "# Get the correlation scores for image properties\n", - "correlation_scores = lab._correlations_df\n", - "print(\"Correlation scores for image properties:\")\n", - "display(correlation_scores)\n", + "# Get scores for label uncorrelatedness with image properties\n", + "label_uncorrelatedness_scores = lab.get_info(\"spurious_correlations\")[\"correlations_df\"]\n", + "print(\"Label uncorrelatedness scores for image properties:\")\n", + "display(label_uncorrelatedness_scores)\n", "\n", "# Get image-specific issues\n", "issue_name = \"dark\"\n", @@ -4177,19 +4178,16 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "\n", - "> **Important Note**: The `_correlations_df` attribute is an internal implementation detail of Datalab. It may change or be removed in future versions without notice. For production use or if you need stable interfaces, consider using the public methods and attributes provided by Datalab.\n", - "\n", "Interpreting the results:\n", "\n", - "1. **Correlation Scores**: The `correlation_scores` DataFrame shows scores for various image properties. Lower scores (closer to 0) indicate stronger correlations with class labels, suggesting potential spurious correlations.\n", + "1. **Label Uncorrelatedness Scores**: The `label_uncorrelatedness_scores` DataFrame shows scores for various image properties. Lower scores (closer to 0) indicate stronger correlations with class labels, suggesting potential spurious correlations.\n", "2. **Image-Specific Issues**: The `image_issues` DataFrame provides details on detected image-specific problems, including the issue type and affected samples.\n", "\n", - "In our CIFAR-10 subset example, you should see that the 'dark' property has a low score in the correlation_scores, indicating a strong correlation with one of the classes (likely the 'frog' class). This is due to our artificial darkening of these images to demonstrate the concept.\n", + "In our CIFAR-10 subset example, you should see that the 'dark' property has a low score in the label_uncorrelatedness_scores, indicating a strong correlation with one of the classes (likely the 'frog' class). This is due to our artificial darkening of these images to demonstrate the concept.\n", "\n", "For real-world datasets, pay attention to:\n", "\n", - "- Properties with notably low scores in the correlation_scores DataFrame\n", + "- Properties with notably low scores in the label_uncorrelatedness_scores DataFrame\n", "- Prevalent issues in the image_issues DataFrame\n", "\n", "These may represent unintended biases in your data collection or preprocessing steps and warrant further investigation.\n", @@ -4197,9 +4195,68 @@ "> **Note**: Using these methods provides a more programmatic and focused way to analyze the results compared to the verbose output of `lab.report()`." ] }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "execution": { + "iopub.execute_input": "2024-08-21T00:43:19.404760Z", + "iopub.status.busy": "2024-08-21T00:43:19.404582Z", + "iopub.status.idle": "2024-08-21T00:43:19.550076Z", + "shell.execute_reply": "2024-08-21T00:43:19.549530Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHNCAYAAADrIvo2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA7SklEQVR4nO3dfVxUZf7/8TeMMNwo3gSiGAJKeZM3FCaaEbKpqGlR+s3NNm9Sty1NC2uTbkSrFSs1K03LrbB1KzczrTQVTctKc9W19Ou9obbecJMKCooDc35/9GV+ToAwogxHXs/Hg0fONde5zufMYZh351xnjodhGIYAAABMytPdBQAAAFQFYQYAAJgaYQYAAJgaYQYAAJgaYQYAAJgaYQYAAJgaYQYAAJgaYQYAAJgaYQYAAJgaYQYwGQ8PD02aNMndZVz11q1bJw8PD61bt+6i/SZNmiQPDw/l5ORc0Xq6d++u7t27u7zcwYMH5eHhoWnTpl22Wir72gDVhTAD/J+0tDR5eHg4/TRu3Fjx8fH68ssv3V1ele3cuVOTJk3SwYMH3V0KAFxWddxdAFDTPP/884qIiJBhGMrMzFRaWpr69u2rzz//XP369XN3eZds586dmjx5srp3767w8HB3lwMAlw1hBvidPn36qFOnTo7HI0aMUHBwsD788ENTh5nqVFRUJLvdLm9vb3eXAqAW4DQTUIEGDRrI19dXdeo4Z//8/HyNHz9eoaGhslqtatWqlaZNm6aSG9GfPXtWrVu3VuvWrXX27FnHcidOnFDTpk11yy23qLi4WJI0bNgw1a1bVz///LMSEhLk7++vkJAQPf/886rMje3/85//qE+fPgoICFDdunV1++23a+PGjY7n09LS9D//8z+SpPj4eMdptIrmPHz88cdq27atfHx81K5dO3366acaNmyY05GdC+dkzJw5Uy1btpTVatXOnTslSV999ZViY2Pl7++vBg0a6K677tKuXbuc1vP7MUuUzEe5kIeHh8aMGaN//vOfatWqlXx8fBQdHa1vvvmm1PJHjhzRgw8+qODgYFmtVt1www169913S/X773//q8TERPn7+6tx48Z6/PHHVVhYeNHX5vdycnJ07733KiAgQNdcc43GjRunc+fOOZ6Pi4tTx44dy1y2VatWSkhIcGl958+f18SJExUdHa369evL399fsbGxWrt2bbnLvPrqqwoLC5Ovr6/i4uK0Y8eOUn12796tgQMHqlGjRvLx8VGnTp302WefuVQbUN04MgP8Tm5urnJycmQYhrKysvTGG2/ozJkz+tOf/uToYxiG7rzzTq1du1YjRoxQVFSUVq5cqSeffFJHjhzRq6++Kl9fX82fP1/dunXTM888oxkzZkiSRo8erdzcXKWlpclisTjGLC4uVu/evdWlSxe9/PLLWrFihVJSUlRUVKTnn3++3Hr/93//V7GxsQoICNBf//pXeXl56a233lL37t319ddfKyYmRrfddpvGjh2r119/XU8//bTatGkjSY7/lmXZsmUaNGiQ2rdvr9TUVJ08eVIjRoxQs2bNyuz/3nvv6dy5c/rzn/8sq9WqRo0aafXq1erTp49atGihSZMm6ezZs3rjjTfUrVs3bd269ZJPd3399ddauHChxo4dK6vVqjfffFO9e/fWpk2b1K5dO0lSZmamunTp4gg/QUFB+vLLLzVixAjl5eXpsccek/Rb6Lz99tt1+PBhjR07ViEhIfrHP/6hr776yqWa7r33XoWHhys1NVUbN27U66+/rpMnT+r999+XJD3wwAMaNWqUduzY4ahRkv79739r7969evbZZ11aX15env7+97/rvvvu06hRo3T69Gm98847SkhI0KZNmxQVFeXU//3339fp06c1evRonTt3Tq+99pr+8Ic/aPv27QoODpb02+9St27d1KxZM02YMEH+/v7617/+pcTERH3yySe6++67XaoRqDYGAMMwDOO9994zJJX6sVqtRlpamlPfJUuWGJKMF1980al94MCBhoeHh7F//35HW3JysuHp6Wl88803xscff2xIMmbOnOm03NChQw1JxqOPPupos9vtxh133GF4e3sb2dnZjnZJRkpKiuNxYmKi4e3tbRw4cMDRdvToUaNevXrGbbfd5mgrWffatWsr9Xq0b9/euPbaa43Tp0872tatW2dIMsLCwhxtGRkZhiQjICDAyMrKchojKirKaNy4sfHrr7862n788UfD09PTGDJkiNP2XzhmiZSUFOP3f6ZK9svmzZsdbYcOHTJ8fHyMu+++29E2YsQIo2nTpkZOTo7T8n/84x+N+vXrGwUFBYZhGMbMmTMNSca//vUvR5/8/HwjMjKyUq9XSY133nmnU/sjjzxiSDJ+/PFHwzAM49SpU4aPj4/x1FNPOfUbO3as4e/vb5w5c+ai64mLizPi4uIcj4uKiozCwkKnPidPnjSCg4ONBx980NFWsn98fX2N//73v472H374wZBkPP74446222+/3Wjfvr1x7tw5R5vdbjduueUW47rrrnO0rV271qXfJeBK4zQT8DuzZ89Wenq60tPTtWDBAsXHx2vkyJFavHixo8/y5ctlsVg0duxYp2XHjx8vwzCcrn6aNGmSbrjhBg0dOlSPPPKI4uLiSi1XYsyYMY5/lxxROH/+vFavXl1m/+LiYq1atUqJiYlq0aKFo71p06YaPHiwvv32W+Xl5bn8Ghw9elTbt2/XkCFDVLduXUd7XFyc2rdvX+YyAwYMUFBQkOPxsWPHtG3bNg0bNkyNGjVytHfo0EE9e/bU8uXLXa6rRNeuXRUdHe143Lx5c911111auXKliouLZRiGPvnkE/Xv31+GYSgnJ8fxk5CQoNzcXG3dulXSb/uyadOmGjhwoGM8Pz8//fnPf3apptGjRzs9fvTRRx3jS1L9+vV111136cMPP3ScOiwuLtbChQsdp7hcYbFYHHOS7Ha7Tpw4oaKiInXq1MmxbRdKTEx0OqrWuXNnxcTEOOo7ceKEvvrqK9177706ffq04/X69ddflZCQoH379unIkSMu1QhUF8IM8DudO3dWjx491KNHD91///1atmyZ2rZt6wgWknTo0CGFhISoXr16TsuWnLY5dOiQo83b21vvvvuuMjIydPr0ab333nul5oFIkqenp1MgkaTrr79eksq9nDo7O1sFBQVq1apVqefatGkju92uX375pfIb/39K6o+MjCz1XFltkhQREVHmGOXVlpOTo/z8fJdrk6TrrruuVNv111+vgoICZWdnKzs7W6dOndLbb7+toKAgp5/hw4dLkrKyshx1RkZGltonZdXtSk0tW7aUp6en074bMmSIDh8+rPXr10uSVq9erczMTD3wwAMuravE/Pnz1aFDB/n4+Oiaa65RUFCQli1bptzc3Arrk357zUrq279/vwzD0HPPPVfqNUtJSZH0/18zoKZhzgxQAU9PT8XHx+u1117Tvn37dMMNN7g8xsqVKyVJ586d0759+0p98F8NfH19L3nZssKdJMcEaVfZ7XZJ0p/+9CcNHTq0zD4dOnS4pLErq6xtSkhIUHBwsBYsWKDbbrtNCxYsUJMmTdSjRw+Xx1+wYIGGDRumxMREPfnkk2rcuLEsFotSU1N14MABl8crec2eeOKJcicjlxdkAXcjzACVUFRUJEk6c+aMJCksLEyrV6/W6dOnnY7O7N692/F8iZ9++knPP/+8hg8frm3btmnkyJHavn276tev77QOu92un3/+2XE0RpL27t0rSeVOlA0KCpKfn5/27NlT6rndu3fL09NToaGhksoPDGUpqX///v2lniur7WJjlFdbYGCg49RKw4YNderUqVL9LjzCdaF9+/aVatu7d6/8/Pwcp7rq1aun4uLiCoNCWFiYduzYIcMwnF6jsuq+mN+H1P3798tutzvtO4vFosGDBystLU0vvfSSlixZolGjRjlNBK+sRYsWqUWLFlq8eLFT3SVHUcqq7/f27t3rqK/kqKCXl9clhSvAnTjNBFTAZrNp1apV8vb2dpxG6tu3r4qLizVr1iynvq+++qo8PDzUp08fx7LDhg1TSEiIXnvtNaWlpSkzM1OPP/54meu6cDzDMDRr1ix5eXnp9ttvL7O/xWJRr169tHTpUqfTGZmZmfrggw906623KiAgQJIcwaGs0PB7ISEhateund5//31HgJN+u4po+/btFS4v/TZvJyoqSvPnz3da544dO7Rq1Sr17dvX0dayZUvl5ubqp59+crQdO3ZMn376aZljb9iwwWleyC+//KKlS5eqV69eslgsslgsGjBggD755JMyLz/Ozs52/Ltv3746evSoFi1a5GgrKCjQ22+/XantLDF79mynx2+88YYkOX4XSjzwwAM6efKkHnrooVJXybmiJAAZF1y6/8MPP2jDhg1l9l+yZInTnJdNmzbphx9+cNTXuHFjde/eXW+99ZaOHTtWavkLXzOgpuHIDPA7X375peMIS1ZWlj744APt27dPEyZMcASD/v37Kz4+Xs8884wOHjyojh07atWqVVq6dKkee+wxtWzZUpL04osvatu2bVqzZo3q1aunDh06aOLEiXr22Wc1cOBApw90Hx8frVixQkOHDlVMTIy+/PJLLVu2TE8//bTTxNrfe/HFF5Wenq5bb71VjzzyiOrUqaO33npLhYWFevnllx39oqKiZLFY9NJLLyk3N1dWq1V/+MMf1Lhx4zLHnTJliu666y5169ZNw4cP18mTJzVr1iy1a9fOKeBczCuvvKI+ffqoa9euGjFihOPS7Pr16zvdX+qPf/yjnnrqKd19990aO3asCgoKNGfOHF1//fVlTmZt166dEhISnC7NlqTJkyc7+kydOlVr165VTEyMRo0apbZt2+rEiRPaunWrVq9erRMnTkiSRo0apVmzZmnIkCHasmWLmjZtqn/84x/y8/Or1DaWyMjI0J133qnevXtrw4YNWrBggQYPHlzqu2VuvPFGtWvXTh9//LHatGmjm266yaX1lOjXr58WL16su+++W3fccYcyMjI0d+5ctW3btsz9ExkZqVtvvVUPP/ywCgsLNXPmTF1zzTX661//6ugze/Zs3XrrrWrfvr1GjRqlFi1aKDMzUxs2bNB///tf/fjjj5dUK3DFue9CKqBmKevSbB8fHyMqKsqYM2eOYbfbnfqfPn3aePzxx42QkBDDy8vLuO6664xXXnnF0W/Lli1GnTp1nC63NozfLqm9+eabjZCQEOPkyZOGYfx2abK/v79x4MABo1evXoafn58RHBxspKSkGMXFxU7L63eXZhuGYWzdutVISEgw6tata/j5+Rnx8fHG999/X2ob582bZ7Ro0cKwWCyVurT2o48+Mlq3bm1YrVajXbt2xmeffWYMGDDAaN26taNPyaW/r7zySpljrF692ujWrZvh6+trBAQEGP379zd27txZqt+qVauMdu3aGd7e3karVq2MBQsWlHtp9ujRo40FCxYY1113nWG1Wo0bb7yxzG3JzMw0Ro8ebYSGhhpeXl5GkyZNjNtvv914++23nfodOnTIuPPOOw0/Pz8jMDDQGDdunLFixQqXLs3euXOnMXDgQKNevXpGw4YNjTFjxhhnz54tc5mXX37ZkGRMmTLlomNf6PeXZtvtdmPKlClGWFiY4zX44osvSl3mfuH+mT59uhEaGmpYrVYjNjbWcdn4hQ4cOGAMGTLEaNKkieHl5WU0a9bM6Nevn7Fo0SJHHy7NRk3jYRiV+HpRAFfUsGHDtGjRokof8XCnqKgoBQUFKT093S3r9/Dw0OjRo0ud4jOT1157TY8//rgOHjyo5s2bu7scwPSYMwOgTDabzTHxucS6dev0448/qnv37u4p6ipgGIbeeecdxcXFEWSAy4QwA8DhwnshHTlyRK1bt9akSZP09ttvKykpSX379lWTJk30l7/8pdJjlnz5X22Xn5+vDz/8UA899JC2b99e7iRwAK5jAjCAMjVs2FDR0dH6+9//ruzsbPn7++uOO+7Q1KlTdc0117i7PNPJzs7W4MGD1aBBAz399NO688473V0ScNUgzAA1QFpamtLS0txdhpP69etr4cKF7i6jFLNO8wsPDzdt7UBNx2kmAJedYRg6e/asu8u4rK7GbQKuFoQZoJb69ttvdfPNN8vHx0ctW7bUW2+9VarPe++95/guGqvVqrZt22rOnDml+oWHh6tfv35auXKlOnXqJF9f3zLHK/Hiiy/K09PT8cVylbF582YlJCQoMDBQvr6+ioiI0IMPPujUx26367XXXlP79u3l4+OjoKAg9e7dW5s3b3b0KSoq0gsvvKCWLVvKarUqPDxcTz/9tAoLCyu9TadOndJjjz2m0NBQWa1WRUZG6qWXXnLcEgBA9eI0E1ALbd++Xb169VJQUJAmTZqkoqIipaSkKDg42KnfnDlzdMMNN+jOO+9UnTp19Pnnn+uRRx6R3W4vdZfoPXv26L777tNDDz2kUaNGlXujxmeffVZTpkzRW2+9pVGjRlWq3qysLEe9EyZMUIMGDXTw4EGnO5lL0ogRI5SWlqY+ffpo5MiRKioq0vr167Vx40Z16tRJkjRy5EjNnz9fAwcO1Pjx4/XDDz8oNTVVu3btKvWNw2VtU0FBgeLi4nTkyBE99NBDat68ub7//nslJyfr2LFjmjlzZqW2CcBl5MbvuAHgJomJiYaPj49x6NAhR9vOnTsdX6ZXoqCgoNSyCQkJRosWLZzawsLCDEnGihUrSvXX/33JnWEYxvjx4w1PT08jLS3NpXo//fRTQ5Lx73//u9w+X331lSHJGDt2bKnnSr7IcNu2bYYkY+TIkU7PP/HEE4Yk46uvvqpwm1544QXD39/f2Lt3r1P7hAkTDIvFYhw+fNilbQNQdZxmAmqZ4uJirVy5UomJiU7fc9KmTZtSd0u+8E7Yubm5ysnJUVxcnH7++Wfl5uY69Y2IiCj3bsuGYWjMmDF67bXXtGDBgnLvZF2eBg0aSJK++OIL2Wy2Mvt88skn8vDwKPNGiyWXmy9fvlySlJSU5PT8+PHjJUnLli1zai9rmz7++GPFxsaqYcOGysnJcfz06NFDxcXF+uabb1zaNgBVx2kmoJbJzs7W2bNndd1115V6rlWrVo4PfEn67rvvlJKSog0bNqigoMCpb25urtOdvy+8Y/Tvldywcs6cObrvvvtcrjkuLk4DBgzQ5MmT9eqrr6p79+5KTEzU4MGDZbVaJUkHDhxQSEiIGjVqVO44hw4dkqenpyIjI53amzRpogYNGpS6S3dZ27Rv3z799NNP5d4vKysry9XNA1BFhBkAZTpw4IBuv/12tW7dWjNmzFBoaKi8vb21fPlyvfrqq6Umu154FOf3unXrpm3btmnWrFm69957Lxo4yuLh4aFFixZp48aN+vzzz7Vy5Uo9+OCDmj59ujZu3Ki6deu6PF5llLVNdrtdPXv2dLpB44Wuv/56l2oBUHWEGaCWCQoKkq+vr/bt21fquT179jj+/fnnn6uwsFCfffaZ0+motWvXurzOyMhIvfzyy+revbt69+7tuIu4q7p06aIuXbrob3/7mz744APdf//9+uijjzRy5Ei1bNlSK1eu1IkTJ8oNS2FhYbLb7dq3b5/atGnjaM/MzNSpU6cUFhZWYQ0tW7bUmTNn1KNHD5frB3BlMGcGqGUsFosSEhK0ZMkSHT582NG+a9curVy50qmf5Pwldbm5uXrvvfcuab0dOnTQ8uXLtWvXLvXv39+l72w5efJkqS+ci4qKkiTHJdUDBgyQYRiaPHlyqeVLlu3bt68klbriaMaMGZKkO+64o8Ja7r33Xm3YsMHptSpx6tSpUvezAnDlcWQGqIUmT56sFStWKDY2Vo888oiKior0xhtv6IYbbtBPP/0kSerVq5e8vb3Vv39/PfTQQzpz5ozmzZunxo0b69ixY5e03i5dumjp0qXq27evBg4cqCVLlsjLy6vC5ebPn68333xTd999t1q2bKnTp09r3rx5CggIcASU+Ph4PfDAA3r99de1b98+9e7dW3a7XevXr1d8fLzGjBmjjh07aujQoXr77bd16tQpxcXFadOmTZo/f74SExMVHx9fYS1PPvmkPvvsM/Xr10/Dhg1TdHS08vPztX37di1atEgHDx5UYGDgJb0+AC6RW6+lAuA2X3/9tREdHW14e3sbLVq0MObOnWukpKQ4XZr92WefGR06dDB8fHyM8PBw46WXXjLeffddQ5KRkZHh6BcWFmbccccdZa5HF1yaXWLp0qVGnTp1jEGDBhnFxcUV1rp161bjvvvuM5o3b25YrVajcePGRr9+/YzNmzc79SsqKjJeeeUVo3Xr1oa3t7cRFBRk9OnTx9iyZYujj81mMyZPnmxEREQYXl5eRmhoqJGcnGycO3fOaayLbdPp06eN5ORkIzIy0vD29jYCAwONW265xZg2bZpx/vz5CrcHwOXlYRjcLAQAAJgXc2YAAICpMWcGgFtlZ2eruLi43Oe9vb1dvpQbQO3CaSYAbhUeHl7qy+ouFBcXp3Xr1lVfQQBMhyMzANzqn//850Uv027YsGE1VgPAjDgyAwAATI0JwAAAwNRMcZrJbrfr6NGjqlevXqXvqQIAAMzNMAydPn1aISEh8vQs//iLKcLM0aNHFRoa6u4yAACAG/zyyy+69tpry33eFGGm5IZ0v/zyiwICAtxcDaqbzWbTqlWr1KtXr0p99T2Aqwfv/9otLy9PoaGhFd6Y1hRhpuTUUkBAAGGmFrLZbPLz81NAQAB/zIBahvc/JFU4xYQJwAAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNRcDjPffPON+vfvr5CQEHl4eGjJkiUVLrNu3TrddNNNslqtioyMVFpa2iWUCgAAUJrLYSY/P18dO3bU7NmzK9U/IyNDd9xxh+Lj47Vt2zY99thjGjlypFauXOlysQAAAL/n8r2Z+vTpoz59+lS6/9y5cxUREaHp06dLktq0aaNvv/1Wr776qhISElxdPQAAgJMrfqPJDRs2qEePHk5tCQkJeuyxx8pdprCwUIWFhY7HeXl5kn674ZjNZrsidaLmKtnn7Hvg6lFQUKA9e/ZU2O/M2UJ9v/2A6jXYqLq+1ov2bdWqlfz8/C5XiagBKvt3/4qHmePHjys4ONipLTg4WHl5eTp79qx8fX1LLZOamqrJkyeXal+1ahW/qLVYenq6u0sAcJkcOHBA48ePr3T/lyvRZ/r06WrZsuWlF4Uap6CgoFL9rniYuRTJyclKSkpyPM7Ly1NoaKh69eqlgIAAN1YGd7DZbEpPT1fPnj3l5eXl7nIAVMLBX/OVX1hc7vONW92kD1pFVTjOoZwzem1thsbFRygssO5F+4a3vE6+vhf/H15/q0Xh1/hXuF7UDCVnZipyxcNMkyZNlJmZ6dSWmZmpgICAMo/KSJLVapXVWvpwopeXFx9mtRj7HzCHjJx89Zz53WUazSJrk0jN3SVJZy/edf1PlRpx7RPdFRFIoDGDyv7Nv+JhpmvXrlq+fLlTW3p6urp27XqlVw0AcIP8wiJJ0sxBUYpsfPGjKRWOdbZQX6zboH7du8q/gjkzFdmfdUaPLdzmqA9XD5fDzJkzZ7R//37H44yMDG3btk2NGjVS8+bNlZycrCNHjuj999+XJP3lL3/RrFmz9Ne//lUPPvigvvrqK/3rX//SsmXLLt9WAABqnMjGddWuWf0qjWGz2XQ8SLoprCFHZlEul79nZvPmzbrxxht14403SpKSkpJ04403auLEiZKkY8eO6fDhw47+ERERWrZsmdLT09WxY0dNnz5df//737ksGwAAXBYuH5np3r27DMMo9/myvt23e/fu+s9//uPqqgAAACrEvZkAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICp1ci7ZgMAzKuw+Jw8fY4oI2+PPH2qdm+moqIiHS06ql0ndqlOnap9ZGXknZGnzxEVFp+TVLXbLKBmIcwAAC6ro/mH5B/xhp7edPnGfHPFm5dlHP8I6Wh+lKIVfFnGQ81AmAEAXFYh/mHKz3hUrw2KUssq3jW7qKhI3337nbrd2q3KR2YOZJ3RuIXbFBIfVqVxUPMQZgAAl5XV4iP7uWaKCGilttdU/a7ZGXUy1KZRmyrfNdt+Llf2c9myWnyqNA5qHiYAAwAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAU6vj7gIAAFeXs7ZiSdKOI7lVHiv/bKE2Z0tNDp2Uv6+1SmPtzzpT5XpQMxFmAACX1YH/Cw0TFm+/TCPW0T/2//syjSX5W/nou9qwRwEAl1WvG5pIklo2ritfL0uVxtpzLFfjF23X9IHt1app/SrX5m+to4hA/yqPg5qFMAMAuKwa+Xvrj52bX5axioqKJEktg/zVrlnVwwyuTkwABgAApkaYAQAApkaYAQAApkaYAQAApkaYAQAApkaYAQAApkaYAQAApkaYAQAApkaYAQAApkaYAQAApnZJYWb27NkKDw+Xj4+PYmJitGnTpov2nzlzplq1aiVfX1+Fhobq8ccf17lz5y6pYAAAgAu5HGYWLlyopKQkpaSkaOvWrerYsaMSEhKUlZVVZv8PPvhAEyZMUEpKinbt2qV33nlHCxcu1NNPP13l4gEAAFwOMzNmzNCoUaM0fPhwtW3bVnPnzpWfn5/efffdMvt///336tatmwYPHqzw8HD16tVL9913X4VHcwAAACrDpbtmnz9/Xlu2bFFycrKjzdPTUz169NCGDRvKXOaWW27RggULtGnTJnXu3Fk///yzli9frgceeKDc9RQWFqqwsNDxOC8vT5Jks9lks9lcKRlXgZJ9zr4Hap+Su2YXFRXxN6AWquw+dynM5OTkqLi4WMHBwU7twcHB2r17d5nLDB48WDk5Obr11ltlGIaKior0l7/85aKnmVJTUzV58uRS7atWrZKfn58rJeMqkp6e7u4SAFSzX85IUh1t3LhRR3a4uxpUt4KCgkr1cynMXIp169ZpypQpevPNNxUTE6P9+/dr3LhxeuGFF/Tcc8+VuUxycrKSkpIcj/Py8hQaGqpevXopICDgSpeMGsZmsyk9PV09e/aUl5eXu8sBUI1+PHxC2r5ZXbp0UcfmjdxdDqpZyZmZirgUZgIDA2WxWJSZmenUnpmZqSZNmpS5zHPPPacHHnhAI0eOlCS1b99e+fn5+vOf/6xnnnlGnp6lp+1YrVZZrdZS7V5eXnyY1WLsf6D2qVOnjuO/vP9rn8ruc5cmAHt7eys6Olpr1qxxtNntdq1Zs0Zdu3Ytc5mCgoJSgcVisUiSDMNwZfUAAACluHyaKSkpSUOHDlWnTp3UuXNnzZw5U/n5+Ro+fLgkaciQIWrWrJlSU1MlSf3799eMGTN04403Ok4zPffcc+rfv78j1AAAAFwql8PMoEGDlJ2drYkTJ+r48eOKiorSihUrHJOCDx8+7HQk5tlnn5WHh4eeffZZHTlyREFBQerfv7/+9re/Xb6tAAAAtZaHYYJzPXl5eapfv75yc3OZAFwL2Ww2LV++XH379uWcOVDLbDv0qxLnbNSSh7soKuwad5eDalbZz3/uzQQAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEytjrsLAADUPgUFBdq9e3eF/fYcO6XC4/u1a4ev7L82uGjf1q1by8/P7zJVCDMhzAAAqt3u3bsVHR1d6f6D51fcZ8uWLbrpppuqUBXMijADAKh2rVu31pYtWyrsd+ZsoZat3aA74ruqrq+1wjFRO11SmJk9e7ZeeeUVHT9+XB07dtQbb7yhzp07l9v/1KlTeuaZZ7R48WKdOHFCYWFhmjlzpvr27XvJhQMAzMvPz6/CoyjFxcVau3atik4e0fmz+erYpbMsFks1VQgzcXkC8MKFC5WUlKSUlBRt3bpVHTt2VEJCgrKyssrsf/78efXs2VMHDx7UokWLtGfPHs2bN0/NmjWrcvEAgKvT4sWLFRkZqZ49e2rGjBnq2bOnIiMjtXjxYneXhhrI5TAzY8YMjRo1SsOHD1fbtm01d+5c+fn56d133y2z/7vvvqsTJ05oyZIl6tatm8LDwxUXF6eOHTtWuXgAwNVn8eLFGjhwoNq3b6/169frww8/1Pr169W+fXsNHDiQQINSPAzDMCrb+fz58/Lz89OiRYuUmJjoaB86dKhOnTqlpUuXllqmb9++atSokfz8/LR06VIFBQVp8ODBeuqpp8o9XFhYWKjCwkLH47y8PIWGhionJ0cBAQEubB6uBjabTenp6erZs6e8vLzcXQ6AK6i4uFht2rTRDTfcoE8++UTFxcWO97/FYtGAAQO0c+dO7dy5k1NOtUBeXp4CAwOVm5t70c9/l+bM5OTkqLi4WMHBwU7twcHB5V5i9/PPP+urr77S/fffr+XLl2v//v165JFHZLPZlJKSUuYyqampmjx5cqn2VatWcdldLZaenu7uEgBcYdu3b9fBgwf18MMPa8WKFY72kvd/bGysli1bpmnTpql9+/buKhPVpKCgoFL9rvjVTHa7XY0bN9bbb78ti8Wi6OhoHTlyRK+88kq5YSY5OVlJSUmOxyVHZnr16sWRmVqIIzNA7ZGXlydJGjVqlOrWrVvq/R8bG6sJEyYoLCyMi0hqgZLfh4q4FGYCAwNlsViUmZnp1J6ZmakmTZqUuUzTpk3l5eXldDiwTZs2On78uM6fPy9vb+9Sy1itVlmtpS/B8/Ly4sOsFmP/A1e/0NBQSdKePXvUpUsXR3vJ+3/Pnj2Ofvw9uPpVdh+7NAHY29tb0dHRWrNmjaPNbrdrzZo16tq1a5nLdOvWTfv375fdbne07d27V02bNi0zyAAAaq/Y2FiFh4drypQpTp8b0m+fN6mpqYqIiFBsbKybKkRN5PLVTElJSZo3b57mz5+vXbt26eGHH1Z+fr6GDx8uSRoyZIiSk5Md/R9++GGdOHFC48aN0969e7Vs2TJNmTJFo0ePvnxbAQC4KlgsFk2fPl1ffPGFEhMTtXHjRp09e1YbN25UYmKivvjiC02bNo3Jv3Di8pyZQYMGKTs7WxMnTtTx48cVFRWlFStWOCYFHz58WJ6e/z8jhYaGauXKlXr88cfVoUMHNWvWTOPGjdNTTz11+bYCAHDVuOeee7Ro0SKNHz9et912m6M9IiJCixYt0j333OPG6lATuXRptrvk5eWpfv36FV6ahauTzWbT8uXL1bdvX86RA7VIyTcAf/nll+rTp4/i4+M5IlPLVPbzn3szAQBqJIvFori4OOXn5ysuLo4gg3K5PGcGAACgJiHMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAABqpOLiYn399df65ptv9PXXX6u4uNjdJaGGIswAAGqcxYsXKzIyUj179tSMGTPUs2dPRUZGavHixe4uDTUQYQYAUKMsXrxYAwcOVPv27bV+/Xp9+OGHWr9+vdq3b6+BAwcSaFAKYQYAUGMUFxdr/Pjx6tevn5YsWaKYmBj5+voqJiZGS5YsUb9+/fTEE09wyglOCDMAgBpj/fr1OnjwoJ5++ml5ejp/RHl6eio5OVkZGRlav369mypETUSYAQDUGMeOHZMktWvXrsznS9pL+gESYQYAUIM0bdpUkrRjx44yny9pL+kHSIQZAEANEhsbq/DwcE2ZMkV2u93pObvdrtTUVEVERCg2NtZNFaImIswAAGoMi8Wi6dOn64svvlBiYqI2btyos2fPauPGjUpMTNQXX3yhadOmyWKxuLtU1CB13F0AAAAXuueee7Ro0SKNHz9et912m6M9IiJCixYt0j333OPG6lATEWYAADXOPffco7vuuktr167Vl19+qT59+ig+Pp4jMigTYQYAUCNZLBbFxcUpPz9fcXFxBBmUizkzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1C4pzMyePVvh4eHy8fFRTEyMNm3aVKnlPvroI3l4eCgxMfFSVgsAAFCKy2Fm4cKFSkpKUkpKirZu3aqOHTsqISFBWVlZF13u4MGDeuKJJxQbG3vJxQIAAPxeHVcXmDFjhkaNGqXhw4dLkubOnatly5bp3Xff1YQJE8pcpri4WPfff78mT56s9evX69SpUxddR2FhoQoLCx2P8/LyJEk2m002m83VkmFyJfucfQ/UPrz/a7fK7neXwsz58+e1ZcsWJScnO9o8PT3Vo0cPbdiwodzlnn/+eTVu3FgjRozQ+vXrK1xPamqqJk+eXKp91apV8vPzc6VkXEXS09PdXQIAN+H9XzsVFBRUqp9LYSYnJ0fFxcUKDg52ag8ODtbu3bvLXObbb7/VO++8o23btlV6PcnJyUpKSnI8zsvLU2hoqHr16qWAgABXSsZVwGazKT09XT179pSXl5e7ywFQjXj/124lZ2Yq4vJpJlecPn1aDzzwgObNm6fAwMBKL2e1WmW1Wku1e3l58ctci7H/gdqL93/tVNl97lKYCQwMlMViUWZmplN7ZmammjRpUqr/gQMHdPDgQfXv39/RZrfbf1txnTras2ePWrZs6UoJAAAATly6msnb21vR0dFas2aNo81ut2vNmjXq2rVrqf6tW7fW9u3btW3bNsfPnXfeqfj4eG3btk2hoaFV3wIAAFCruXyaKSkpSUOHDlWnTp3UuXNnzZw5U/n5+Y6rm4YMGaJmzZopNTVVPj4+ateundPyDRo0kKRS7QAAAJfC5TAzaNAgZWdna+LEiTp+/LiioqK0YsUKx6Tgw4cPy9OTLxYGAADV45ImAI8ZM0Zjxowp87l169ZddNm0tLRLWSUAAECZOIQCAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMjTADAABMrY67C0DtVVBQoN27d1fY78zZQn2//YAaBm5WXV/rRfu2bt1afn5+l6tEAIAJEGbgNrt371Z0dHSl+79ciT5btmzRTTfddOlFAQBMhzADt2ndurW2bNlSYb89x04p6ePtmvE/7dWqaYMKxwQA1C6EGbiNn59fpY6ieB76Vdb1Z9WmXUdFhV1TDZUBAMyECcAAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUuNEkrpiMnHzlFxZVeZwD2fmO/9apU/VfWX9rHUUE+ld5HABAzUCYwRWRkZOv+GnrLuuY4xdtv2xjrX2iO4EGAK4ShBlcESVHZGYOilJk47pVG+tsob5Yt0H9uneVv6+1SmPtzzqjxxZuuyxHjAAANQNhBldUZOO6atesfpXGsNlsOh4k3RTWUF5eXpepMgDA1YIJwAAAwNQIMwAAwNQIMwAAwNQIMwAAwNSYAIwrorD4nDx9jigjb488fap2NVNRUZGOFh3VrhO7qvw9Mxl5Z+Tpc0SFxeckVW1iMgCgZiDM4Io4mn9I/hFv6OlNl2/MN1e8eVnG8Y+QjuZHKVrBl2U8AIB7EWZwRYT4hyk/41G9NihKLav4PTNFRUX67tvv1O3WblU+MnMg64zGLdymkPiwKo0DAKg5CDO4IqwWH9nPNVNEQCu1vabq3zOTUSdDbRq1qfL3zNjP5cp+LltWi0+VxgEA1BxMAAYAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZ2SWFm9uzZCg8Pl4+Pj2JiYrRpU/nfWT9v3jzFxsaqYcOGatiwoXr06HHR/gAAAK5w+RuAFy5cqKSkJM2dO1cxMTGaOXOmEhIStGfPHjVu3LhU/3Xr1um+++7TLbfcIh8fH7300kvq1auX/vd//1fNmjW7LBuBmuesrViStONIbpXHyj9bqM3ZUpNDJ+Xva63SWPuzzlS5HgBAzeJhGIbhygIxMTG6+eabNWvWLEmS3W5XaGioHn30UU2YMKHC5YuLi9WwYUPNmjVLQ4YMqdQ68/LyVL9+feXm5iogIMCVcuEmH206rAmLt7u7jHKtfaK7IgL93V0GgArYbDYtX75cffv2rfLtTGA+lf38d+nIzPnz57VlyxYlJyc72jw9PdWjRw9t2LChUmMUFBTIZrOpUaNG5fYpLCxUYWGh43FeXp6k336pbTabKyXDTeKvv0Z/u6utWgT5y9fLUqWx9h7P1V8/3aWX726j65tU7T5PkuRvteja+t78LgEmUPI+5f1aO1V2v7sUZnJyclRcXKzg4GCn9uDgYO3evbtSYzz11FMKCQlRjx49yu2TmpqqyZMnl2pftWqV/Pz8XCkZblRXUlZW1cf57cxQHWXt3y7r8aqPJ0k7L88wAKpJenq6u0uAGxQUFFSqX7XeNXvq1Kn66KOPtG7dOvn4lH/X4uTkZCUlJTke5+XlKTQ0VL169eI0Uy304+ET0vbN6tKlizo2L/+IHoCrj81mU3p6unr27Mlpplqo5MxMRVwKM4GBgbJYLMrMzHRqz8zMVJMmTS667LRp0zR16lStXr1aHTp0uGhfq9Uqq7X0RE8vLy9+mWuhOnXqOP7L/gdqJ/7+106V3ecuXZrt7e2t6OhorVmzxtFmt9u1Zs0ade3atdzlXn75Zb3wwgtasWKFOnXq5MoqAQAALsrl00xJSUkaOnSoOnXqpM6dO2vmzJnKz8/X8OHDJUlDhgxRs2bNlJqaKkl66aWXNHHiRH3wwQcKDw/X8eO/TXqoW7eu6tatexk3BQAA1EYuh5lBgwYpOztbEydO1PHjxxUVFaUVK1Y4JgUfPnxYnp7//4DPnDlzdP78eQ0cONBpnJSUFE2aNKlq1QMAgFrvkiYAjxkzRmPGjCnzuXXr1jk9Pnjw4KWsAgAAoFK4NxMAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADC1ar2dAXChgoKCSt3Ta8+xUyo8vl+7dvjK/muDi/Zt3bo19+8CgFqGMAO32b17t6Kjoyvdf/D8ivts2bJFN910UxWqAgCYDWEGbtO6dWtt2bKlwn5nzhZq2doNuiO+q+r6lr5n1+/HBADULoQZuI2fn1+ljqLYbDadzMlS186duNEcAKAUJgADAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTM8Vdsw3DkCTl5eW5uRK4g81mU0FBgfLy8rhrNlDL8P6v3Uo+90tyQHlMEWZOnz4tSQoNDXVzJQAAoLqdPn1a9evXL/d5D6OiuFMD2O12HT16VPXq1ZOHh4e7y0E1y8vLU2hoqH755RcFBAS4uxwA1Yj3f+1mGIZOnz6tkJAQeXqWPzPGFEdmPD09de2117q7DLhZQEAAf8yAWor3f+11sSMyJZgADAAATI0wAwAATI0wgxrParUqJSVFVqvV3aUAqGa8/1EZppgADAAAUB6OzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzKBGmz17tsLDw+Xj46OYmBht2rTJ3SUBqAbffPON+vfvr5CQEHl4eGjJkiXuLgk1GGEGNdbChQuVlJSklJQUbd26VR07dlRCQoKysrLcXRqAKyw/P18dO3bU7Nmz3V0KTIBLs1FjxcTE6Oabb9asWbMk/XaPrtDQUD366KOaMGGCm6sDUF08PDz06aefKjEx0d2loIbiyAxqpPPnz2vLli3q0aOHo83T01M9evTQhg0b3FgZAKCmIcygRsrJyVFxcbGCg4Od2oODg3X8+HE3VQUAqIkIMwAAwNQIM6iRAgMDZbFYlJmZ6dSemZmpJk2auKkqAEBNRJhBjeTt7a3o6GitWbPG0Wa327VmzRp17drVjZUBAGqaOu4uAChPUlKShg4dqk6dOqlz586aOXOm8vPzNXz4cHeXBuAKO3PmjPbv3+94nJGRoW3btqlRo0Zq3ry5GytDTcSl2ajRZs2apVdeeUXHjx9XVFSUXn/9dcXExLi7LABX2Lp16xQfH1+qfejQoUpLS6v+glCjEWYAAICpMWcGAACYGmEGAACYGmEGAACYGmEGAACYGmEGAACYGmEGAACYGmEGAACYGmEGAACYGmEGwBXXvXt3PfbYY5Xqu27dOnl4eOjUqVNVWmd4eLhmzpxZpTEAmANhBgAAmBphBgAAmBphBkC1+sc//qFOnTqpXr16atKkiQYPHqysrKxS/b777jt16NBBPj4+6tKli3bs2OH0/LfffqvY2Fj5+voqNDRUY8eOVX5+fnVtBoAahDADoFrZbDa98MIL+vHHH7VkyRIdPHhQw4YNK9XvySef1PTp0/Xvf/9bQUFB6t+/v2w2myTpwIED6t27twYMGKCffvpJCxcu1LfffqsxY8ZU89YAqAnquLsAALXLgw8+6Ph3ixYt9Prrr+vmm2/WmTNnVLduXcdzKSkp6tmzpyRp/vz5uvbaa/Xpp5/q3nvvVWpqqu6//37HpOLrrrtOr7/+uuLi4jRnzhz5+PhU6zYBcC+OzACoVlu2bFH//v3VvHlz1atXT3FxcZKkw4cPO/Xr2rWr49+NGjVSq1attGvXLknSjz/+qLS0NNWtW9fxk5CQILvdroyMjOrbGAA1AkdmAFSb/Px8JSQkKCEhQf/85z8VFBSkw4cPKyEhQefPn6/0OGfOnNFDDz2ksWPHlnquefPml7NkACZAmAFQbXbv3q1ff/1VU6dOVWhoqCRp8+bNZfbduHGjI5icPHlSe/fuVZs2bSRJN910k3bu3KnIyMjqKRxAjcZpJgDVpnnz5vL29tYbb7yhn3/+WZ999pleeOGFMvs+//zzWrNmjXbs2KFhw4YpMDBQiYmJkqSnnnpK33//vcaMGaNt27Zp3759Wrp0KROAgVqKMAOg2gQFBSktLU0ff/yx2rZtq6lTp2ratGll9p06darGjRun6OhoHT9+XJ9//rm8vb0lSR06dNDXX3+tvXv3KjY2VjfeeKMmTpyokJCQ6twcADWEh2EYhruLAAAAuFQcmQEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKZGmAEAAKb2/wDC158FDdXeagAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "def plot_scores_labels(lab, property=\"dark_score\"):\n", + " \"\"\"\n", + " Plots the scores of image-specific properties like 'dark_score', 'blurry_score', etc. \n", + " against labels for each instance in the dataset using 'Datalab' object.\n", + "\n", + " Parameters:\n", + " -----------\n", + " lab : 'Datalab' object\n", + " \n", + " property : str, optional\n", + " The name of the property to be plotted against the labels.\n", + " \n", + " Returns:\n", + " --------\n", + " None\n", + " This function does not return any value. It generates a plot of the specified \n", + " property against the labels.\n", + " \"\"\"\n", + " issues_copy = lab.issues.copy()\n", + " issues_copy[\"label\"] = lab.labels\n", + " issues_copy.boxplot(column=[property], by=\"label\")\n", + "\n", + "# Plotting 'dark_score' value of each instance in the dataset against class label\n", + "plot_scores_labels(lab, \"dark_score\")" + ] + }, { "cell_type": "markdown", "metadata": {}, + "source": [ + "The above plot illustrates the distribution of dark scores across class labels. In this dataset, 100 images from the `Frog` class (Class 0 in the plot) have been darkened, while 100 images from the `Truck` class (Class 1 in the plot) remain unchanged, as in the CIFAR-10 dataset. This creates a clear spurious correlation between the 'darkness' feature and the class labels: `Frog` images are dark, whereas `Truck` images are not. We can see that the `dark_score` values between the two classes are non-overlapping. This characteristic of the dataset is identified by `Datalab`." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "nbsphinx": "hidden" + }, "source": [ "### 4. (Optional) Compare with a Dataset Without Spurious Correlations\n", "\n", @@ -4208,14 +4265,15 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 38, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:13.117053Z", - "iopub.status.busy": "2024-08-20T02:18:13.116150Z", - "iopub.status.idle": "2024-08-20T02:18:13.628191Z", - "shell.execute_reply": "2024-08-20T02:18:13.627646Z" - } + "iopub.execute_input": "2024-08-21T00:43:19.552545Z", + "iopub.status.busy": "2024-08-21T00:43:19.552159Z", + "iopub.status.idle": "2024-08-21T00:43:20.077354Z", + "shell.execute_reply": "2024-08-21T00:43:20.076712Z" + }, + "nbsphinx": "hidden" }, "outputs": [ { @@ -4229,7 +4287,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "84c47a9fab904f3d8908756c3b332bed", + "model_id": "d3c19809a6204f20ac5cac77fe50ad95", "version_major": 2, "version_minor": 0 }, @@ -4244,9 +4302,10 @@ "name": "stdout", "output_type": "stream", "text": [ + "Finding spurious correlation issues in the dataset ...\n", "\n", "Audit complete. 0 issues found in the dataset.\n", - "Correlation scores for original dataset:\n" + "Label uncorrelatedness scores for original dataset:\n" ] }, { @@ -4277,13 +4336,13 @@ " \n", " \n", " 0\n", - " dark_score\n", - " 0.300\n", + " odd_size_score\n", + " 0.500\n", " \n", " \n", " 1\n", - " light_score\n", - " 0.415\n", + " odd_aspect_ratio_score\n", + " 0.500\n", " \n", " \n", " 2\n", @@ -4292,18 +4351,18 @@ " \n", " \n", " 3\n", - " odd_aspect_ratio_score\n", - " 0.500\n", + " light_score\n", + " 0.415\n", " \n", " \n", " 4\n", - " odd_size_score\n", + " grayscale_score\n", " 0.500\n", " \n", " \n", " 5\n", - " grayscale_score\n", - " 0.500\n", + " dark_score\n", + " 0.300\n", " \n", " \n", " 6\n", @@ -4316,12 +4375,12 @@ ], "text/plain": [ " property score\n", - "0 dark_score 0.300\n", - "1 light_score 0.415\n", + "0 odd_size_score 0.500\n", + "1 odd_aspect_ratio_score 0.500\n", "2 low_information_score 0.325\n", - "3 odd_aspect_ratio_score 0.500\n", - "4 odd_size_score 0.500\n", - "5 grayscale_score 0.500\n", + "3 light_score 0.415\n", + "4 grayscale_score 0.500\n", + "5 dark_score 0.300\n", "6 blurry_score 0.335" ] }, @@ -4357,35 +4416,35 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 0\n", - " 0.797509\n", " False\n", + " 0.797509\n", " \n", " \n", " 1\n", - " 0.663760\n", " False\n", + " 0.663760\n", " \n", " \n", " 2\n", - " 0.849826\n", " False\n", + " 0.849826\n", " \n", " \n", " 3\n", - " 0.773951\n", " False\n", + " 0.773951\n", " \n", " \n", " 4\n", - " 0.699518\n", " False\n", + " 0.699518\n", " \n", " \n", " ...\n", @@ -4394,28 +4453,28 @@ " \n", " \n", " 195\n", - " 0.793840\n", " False\n", + " 0.793840\n", " \n", " \n", " 196\n", - " 1.000000\n", " False\n", + " 1.000000\n", " \n", " \n", " 197\n", - " 0.971560\n", " False\n", + " 0.971560\n", " \n", " \n", " 198\n", - " 0.862236\n", " False\n", + " 0.862236\n", " \n", " \n", " 199\n", - " 0.973533\n", " False\n", + " 0.973533\n", " \n", " \n", "\n", @@ -4423,18 +4482,18 @@ "
    " ], "text/plain": [ - " dark_score is_dark_issue\n", - "0 0.797509 False\n", - "1 0.663760 False\n", - "2 0.849826 False\n", - "3 0.773951 False\n", - "4 0.699518 False\n", - ".. ... ...\n", - "195 0.793840 False\n", - "196 1.000000 False\n", - "197 0.971560 False\n", - "198 0.862236 False\n", - "199 0.973533 False\n", + " is_dark_issue dark_score\n", + "0 False 0.797509\n", + "1 False 0.663760\n", + "2 False 0.849826\n", + "3 False 0.773951\n", + "4 False 0.699518\n", + ".. ... ...\n", + "195 False 0.793840\n", + "196 False 1.000000\n", + "197 False 0.971560\n", + "198 False 0.862236\n", + "199 False 0.973533\n", "\n", "[200 rows x 2 columns]" ] @@ -4453,8 +4512,8 @@ "original_lab.find_issues()\n", "\n", "# Compare correlation scores\n", - "original_scores = original_lab._correlations_df\n", - "print(\"Correlation scores for original dataset:\")\n", + "original_scores = original_lab.get_info(\"spurious_correlations\")[\"correlations_df\"]\n", + "print(\"Label uncorrelatedness scores for original dataset:\")\n", "display(original_scores)\n", "\n", "# Compare image-specific issues\n", @@ -4465,15 +4524,55 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "nbsphinx": "hidden" + }, "source": [ "When comparing the results:\n", "\n", - "1. Look for differences in the correlation scores, especially for the 'dark' property.\n", + "1. Look for differences in the label uncorrelatedness scores, especially for the 'dark' property.\n", "2. Compare the number and types of image-specific issues detected.\n", "\n", "You should notice that the original dataset has more balanced correlation scores and fewer (or no) issues related to darkness. This comparison highlights how spurious correlations can be detected by `Datalab`." ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "execution": { + "iopub.execute_input": "2024-08-21T00:43:20.079729Z", + "iopub.status.busy": "2024-08-21T00:43:20.079373Z", + "iopub.status.idle": "2024-08-21T00:43:20.227878Z", + "shell.execute_reply": "2024-08-21T00:43:20.227303Z" + }, + "nbsphinx": "hidden" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHNCAYAAADrIvo2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA99ElEQVR4nO3deVyVZf7/8TfrYVE0E0EMRaFccqEw0dSQSSW3onKybHJJmRbNElukKVFrpEVNS8tqMiyncjKzRVOJ1HKSTB1Lx91cGheWVBBQPHDu3x99OT9PgHBkveX1fDx44LnOdV/35+bmcN7e93Wf28UwDEMAAAAm5VrbBQAAAFQGYQYAAJgaYQYAAJgaYQYAAJgaYQYAAJgaYQYAAJgaYQYAAJgaYQYAAJgaYQYAAJgaYQYwGRcXF02dOrW2y7jsrVu3Ti4uLlq3bt1F+02dOlUuLi7Kysqq1nr69OmjPn36OL3coUOH5OLiopkzZ1ZZLRX92QA1hTAD/J/k5GS5uLg4fDVr1kzR0dH66quvaru8Stu5c6emTp2qQ4cO1XYpAFCl3Gu7AKCumT59ulq3bi3DMJSenq7k5GQNHDhQX3zxhQYPHlzb5V2ynTt3atq0aerTp49CQkJquxwAqDKEGeAPBgwYoK5du9ofjxkzRgEBAfrwww9NHWZqUmFhoWw2mzw9PWu7FAD1AKeZgHI0btxY3t7ecnd3zP55eXmaNGmSgoODZbFY1LZtW82cOVPFN6I/e/as2rVrp3bt2uns2bP25U6ePKnmzZvrxhtvVFFRkSRp1KhRatCggX755RfFxMTI19dXQUFBmj59uipyY/v//Oc/GjBggPz8/NSgQQPdfPPNSktLsz+fnJysP//5z5Kk6Oho+2m08uY8fPzxx+rQoYO8vLzUsWNHffrppxo1apTDkZ0L52TMmTNHoaGhslgs2rlzpyTpm2++Ue/eveXr66vGjRvrtttu065duxzW88cxixXPR7mQi4uLxo8fr3/+859q27atvLy8FBERoW+//bbE8kePHtX999+vgIAAWSwWXXvttVq4cGGJfv/73/8UGxsrX19fNWvWTBMnTlRBQcFFfzZ/lJWVpbvuukt+fn668sor9eijj+rcuXP256OiotSlS5dSl23btq1iYmKcWt/58+c1ZcoURUREqFGjRvL19VXv3r21du3aMpd55ZVX1KpVK3l7eysqKko7duwo0Wf37t0aOnSomjRpIi8vL3Xt2lWff/65U7UBNY0jM8AfZGdnKysrS4ZhKCMjQ6+99ppyc3P1l7/8xd7HMAzdeuutWrt2rcaMGaPw8HCtXr1aTzzxhI4ePapXXnlF3t7eWrRokXr27Km//e1vmj17tiRp3Lhxys7OVnJystzc3OxjFhUV6ZZbblH37t310ksvadWqVUpMTFRhYaGmT59eZr3//e9/1bt3b/n5+enJJ5+Uh4eH3nzzTfXp00fr169XZGSkbrrpJk2YMEGvvvqqnn76abVv316S7N9Ls2LFCg0bNkydOnVSUlKSTp06pTFjxqhFixal9n/33Xd17tw5/fWvf5XFYlGTJk309ddfa8CAAWrTpo2mTp2qs2fP6rXXXlPPnj21devWSz7dtX79ei1ZskQTJkyQxWLR66+/rltuuUWbNm1Sx44dJUnp6enq3r27Pfz4+/vrq6++0pgxY5STk6PHHntM0u+h8+abb9aRI0c0YcIEBQUF6f3339c333zjVE133XWXQkJClJSUpLS0NL366qs6deqU3nvvPUnSfffdp7i4OO3YscNeoyT9+OOP2rt3r5555hmn1peTk6N//OMfuueeexQXF6czZ87onXfeUUxMjDZt2qTw8HCH/u+9957OnDmjcePG6dy5c5o7d67+9Kc/afv27QoICJD0++9Sz5491aJFC02ePFm+vr7617/+pdjYWH3yySe6/fbbnaoRqDEGAMMwDOPdd981JJX4slgsRnJyskPf5cuXG5KM559/3qF96NChhouLi7F//357W0JCguHq6mp8++23xscff2xIMubMmeOw3MiRIw1JxiOPPGJvs9lsxqBBgwxPT08jMzPT3i7JSExMtD+OjY01PD09jQMHDtjbjh07ZjRs2NC46aab7G3F6167dm2Ffh6dOnUyrrrqKuPMmTP2tnXr1hmSjFatWtnbDh48aEgy/Pz8jIyMDIcxwsPDjWbNmhm//fabve2nn34yXF1djREjRjhs/4VjFktMTDT++GeqeL9s3rzZ3nb48GHDy8vLuP322+1tY8aMMZo3b25kZWU5LH/33XcbjRo1MvLz8w3DMIw5c+YYkox//etf9j55eXlGWFhYhX5exTXeeuutDu0PP/ywIcn46aefDMMwjNOnTxteXl7GU0895dBvwoQJhq+vr5Gbm3vR9URFRRlRUVH2x4WFhUZBQYFDn1OnThkBAQHG/fffb28r3j/e3t7G//73P3v7Dz/8YEgyJk6caG+7+eabjU6dOhnnzp2zt9lsNuPGG280rr76anvb2rVrnfpdAqobp5mAP5g/f75SUlKUkpKixYsXKzo6WmPHjtWyZcvsfVauXCk3NzdNmDDBYdlJkybJMAyHq5+mTp2qa6+9ViNHjtTDDz+sqKioEssVGz9+vP3fxUcUzp8/r6+//rrU/kVFRVqzZo1iY2PVpk0be3vz5s01fPhwbdiwQTk5OU7/DI4dO6bt27drxIgRatCggb09KipKnTp1KnWZO++8U/7+/vbHx48f17Zt2zRq1Cg1adLE3t65c2f169dPK1eudLquYj169FBERIT9ccuWLXXbbbdp9erVKioqkmEY+uSTTzRkyBAZhqGsrCz7V0xMjLKzs7V161ZJv+/L5s2ba+jQofbxfHx89Ne//tWpmsaNG+fw+JFHHrGPL0mNGjXSbbfdpg8//NB+6rCoqEhLliyxn+Jyhpubm31Oks1m08mTJ1VYWKiuXbvat+1CsbGxDkfVunXrpsjISHt9J0+e1DfffKO77rpLZ86csf+8fvvtN8XExGjfvn06evSoUzUCNYUwA/xBt27d1LdvX/Xt21f33nuvVqxYoQ4dOtiDhSQdPnxYQUFBatiwocOyxadtDh8+bG/z9PTUwoULdfDgQZ05c0bvvvtuiXkgkuTq6uoQSCTpmmuukaQyL6fOzMxUfn6+2rZtW+K59u3by2az6ddff634xv+f4vrDwsJKPFdamyS1bt261DHKqi0rK0t5eXlO1yZJV199dYm2a665Rvn5+crMzFRmZqZOnz6tt956S/7+/g5fo0ePliRlZGTY6wwLCyuxT0qr25maQkND5erq6rDvRowYoSNHjui7776TJH399ddKT0/Xfffd59S6ii1atEidO3eWl5eXrrzySvn7+2vFihXKzs4utz7p959ZcX379++XYRh69tlnS/zMEhMTJf3/nxlQ1zBnBiiHq6uroqOjNXfuXO3bt0/XXnut02OsXr1aknTu3Dnt27evxBv/5cDb2/uSly0t3EmyT5B2ls1mkyT95S9/0ciRI0vt07lz50sau6JK26aYmBgFBARo8eLFuummm7R48WIFBgaqb9++To+/ePFijRo1SrGxsXriiSfUrFkzubm5KSkpSQcOHHB6vOKf2eOPP17mZOSygixQ2wgzQAUUFhZKknJzcyVJrVq10tdff60zZ844HJ3ZvXu3/fliP//8s6ZPn67Ro0dr27ZtGjt2rLZv365GjRo5rMNms+mXX36xH42RpL1790pSmRNl/f395ePjoz179pR4bvfu3XJ1dVVwcLCksgNDaYrr379/f4nnSmu72Bhl1da0aVP7qZUrrrhCp0+fLtHvwiNcF9q3b1+Jtr1798rHx8d+qqthw4YqKioqNyi0atVKO3bskGEYDj+j0uq+mD+G1P3798tmsznsOzc3Nw0fPlzJycl68cUXtXz5csXFxTlMBK+opUuXqk2bNlq2bJlD3cVHUUqr74/27t1rr6/4qKCHh8clhSugNnGaCSiH1WrVmjVr5OnpaT+NNHDgQBUVFWnevHkOfV955RW5uLhowIAB9mVHjRqloKAgzZ07V8nJyUpPT9fEiRNLXdeF4xmGoXnz5snDw0M333xzqf3d3NzUv39/ffbZZw6nM9LT0/XBBx+oV69e8vPzkyR7cCgtNPxRUFCQOnbsqPfee88e4KTfryLavn17uctLv8/bCQ8P16JFixzWuWPHDq1Zs0YDBw60t4WGhio7O1s///yzve348eP69NNPSx1748aNDvNCfv31V3322Wfq37+/3Nzc5ObmpjvvvFOffPJJqZcfZ2Zm2v89cOBAHTt2TEuXLrW35efn66233qrQdhabP3++w+PXXntNkuy/C8Xuu+8+nTp1Sg888ECJq+ScURyAjAsu3f/hhx+0cePGUvsvX77cYc7Lpk2b9MMPP9jra9asmfr06aM333xTx48fL7H8hT8zoK7hyAzwB1999ZX9CEtGRoY++OAD7du3T5MnT7YHgyFDhig6Olp/+9vfdOjQIXXp0kVr1qzRZ599pscee0yhoaGSpOeff17btm1TamqqGjZsqM6dO2vKlCl65plnNHToUIc3dC8vL61atUojR45UZGSkvvrqK61YsUJPP/20w8TaP3r++eeVkpKiXr166eGHH5a7u7vefPNNFRQU6KWXXrL3Cw8Pl5ubm1588UVlZ2fLYrHoT3/6k5o1a1bquDNmzNBtt92mnj17avTo0Tp16pTmzZunjh07OgSci3n55Zc1YMAA9ejRQ2PGjLFfmt2oUSOH+0vdfffdeuqpp3T77bdrwoQJys/P1xtvvKFrrrmm1MmsHTt2VExMjMOl2ZI0bdo0e58XXnhBa9euVWRkpOLi4tShQwedPHlSW7du1ddff62TJ09KkuLi4jRv3jyNGDFCW7ZsUfPmzfX+++/Lx8enQttY7ODBg7r11lt1yy23aOPGjVq8eLGGDx9e4rNlrrvuOnXs2FEff/yx2rdvr+uvv96p9RQbPHiwli1bpttvv12DBg3SwYMHtWDBAnXo0KHU/RMWFqZevXrpoYceUkFBgebMmaMrr7xSTz75pL3P/Pnz1atXL3Xq1ElxcXFq06aN0tPTtXHjRv3vf//TTz/9dEm1AtWu9i6kAuqW0i7N9vLyMsLDw4033njDsNlsDv3PnDljTJw40QgKCjI8PDyMq6++2nj55Zft/bZs2WK4u7s7XG5tGL9fUnvDDTcYQUFBxqlTpwzD+P3SZF9fX+PAgQNG//79DR8fHyMgIMBITEw0ioqKHJbXHy7NNgzD2Lp1qxETE2M0aNDA8PHxMaKjo43vv/++xDa+/fbbRps2bQw3N7cKXVr70UcfGe3atTMsFovRsWNH4/PPPzfuvPNOo127dvY+xZf+vvzyy6WO8fXXXxs9e/Y0vL29DT8/P2PIkCHGzp07S/Rbs2aN0bFjR8PT09No27atsXjx4jIvzR43bpyxePFi4+qrrzYsFotx3XXXlbot6enpxrhx44zg4GDDw8PDCAwMNG6++Wbjrbfecuh3+PBh49ZbbzV8fHyMpk2bGo8++qixatUqpy7N3rlzpzF06FCjYcOGxhVXXGGMHz/eOHv2bKnLvPTSS4YkY8aMGRcd+0J/vDTbZrMZM2bMMFq1amX/GXz55ZclLnO/cP/MmjXLCA4ONiwWi9G7d2/7ZeMXOnDggDFixAgjMDDQ8PDwMFq0aGEMHjzYWLp0qb0Pl2ajrnExjAp8vCiAajVq1CgtXbq0wkc8alN4eLj8/f2VkpJSK+t3cXHRuHHjSpziM5O5c+dq4sSJOnTokFq2bFnb5QCmx5wZAKWyWq32ic/F1q1bp59++kl9+vSpnaIuA4Zh6J133lFUVBRBBqgihBkAdhfeC+no0aNq166dpk6dqrfeekvx8fEaOHCgAgMD9eCDD1Z4zOIP/6vv8vLy9OGHH+qBBx7Q9u3by5wEDsB5TAAGUKorrrhCERER+sc//qHMzEz5+vpq0KBBeuGFF3TllVfWdnmmk5mZqeHDh6tx48Z6+umndeutt9Z2ScBlgzAD1AHJyclKTk6u7TIcNGrUSEuWLKntMkow6zS/kJAQ09YO1HWcZgJQ5QzD0NmzZ2u7jCp1OW4TcLkgzAD11IYNG3TDDTfIy8tLoaGhevPNN0v0effdd+2fRWOxWNShQwe98cYbJfqFhIRo8ODBWr16tbp27Spvb+9Sxyv2/PPPy9XV1f7BchWxefNmxcTEqGnTpvL29lbr1q11//33O/Sx2WyaO3euOnXqJC8vL/n7++uWW27R5s2b7X0KCwv13HPPKTQ0VBaLRSEhIXr66adVUFBQ4W06ffq0HnvsMQUHB8tisSgsLEwvvvii/ZYAAGoWp5mAemj79u3q37+//P39NXXqVBUWFioxMVEBAQEO/d544w1de+21uvXWW+Xu7q4vvvhCDz/8sGw2W4m7RO/Zs0f33HOPHnjgAcXFxZV5o8ZnnnlGM2bM0Jtvvqm4uLgK1ZuRkWGvd/LkyWrcuLEOHTrkcCdzSRozZoySk5M1YMAAjR07VoWFhfruu++Ulpamrl27SpLGjh2rRYsWaejQoZo0aZJ++OEHJSUladeuXSU+cbi0bcrPz1dUVJSOHj2qBx54QC1bttT333+vhIQEHT9+XHPmzKnQNgGoQrX4GTcAaklsbKzh5eVlHD582N62c+dO+4fpFcvPzy+xbExMjNGmTRuHtlatWhmSjFWrVpXor//7kDvDMIxJkyYZrq6uRnJyslP1fvrpp4Yk48cffyyzzzfffGNIMiZMmFDiueIPMty2bZshyRg7dqzD848//rghyfjmm2/K3abnnnvO8PX1Nfbu3evQPnnyZMPNzc04cuSIU9sGoPI4zQTUM0VFRVq9erViY2MdPuekffv2Je6WfOGdsLOzs5WVlaWoqCj98ssvys7OdujbunXrMu+2bBiGxo8fr7lz52rx4sVl3sm6LI0bN5Ykffnll7JaraX2+eSTT+Ti4lLqjRaLLzdfuXKlJCk+Pt7h+UmTJkmSVqxY4dBe2jZ9/PHH6t27t6644gplZWXZv/r27auioiJ9++23Tm0bgMrjNBNQz2RmZurs2bO6+uqrSzzXtm1b+xu+JP373/9WYmKiNm7cqPz8fIe+2dnZDnf+vvCO0X9UfMPKN954Q/fcc4/TNUdFRenOO+/UtGnT9Morr6hPnz6KjY3V8OHDZbFYJEkHDhxQUFCQmjRpUuY4hw8flqurq8LCwhzaAwMD1bhx4xJ36S5tm/bt26eff/65zPtlZWRkOLt5ACqJMAOgVAcOHNDNN9+sdu3aafbs2QoODpanp6dWrlypV155pcRk1wuP4vxRz549tW3bNs2bN0933XXXRQNHaVxcXLR06VKlpaXpiy++0OrVq3X//fdr1qxZSktLU4MGDZweryJK2yabzaZ+/fo53KDxQtdcc41TtQCoPMIMUM/4+/vL29tb+/btK/Hcnj177P/+4osvVFBQoM8//9zhdNTatWudXmdYWJheeukl9enTR7fccov9LuLO6t69u7p3766///3v+uCDD3Tvvffqo48+0tixYxUaGqrVq1fr5MmTZYalVq1ayWazad++fWrfvr29PT09XadPn1arVq3KrSE0NFS5ubnq27ev0/UDqB7MmQHqGTc3N8XExGj58uU6cuSIvX3Xrl1avXq1Qz/J8UPqsrOz9e67717Sejt37qyVK1dq165dGjJkiFOf2XLq1KkSHzgXHh4uSfZLqu+8804ZhqFp06aVWL542YEDB0pSiSuOZs+eLUkaNGhQubXcdddd2rhxo8PPqtjp06dL3M8KQPXjyAxQD02bNk2rVq1S79699fDDD6uwsFCvvfaarr32Wv3888+SpP79+8vT01NDhgzRAw88oNzcXL399ttq1qyZjh8/fknr7d69uz777DMNHDhQQ4cO1fLly+Xh4VHucosWLdLrr7+u22+/XaGhoTpz5ozefvtt+fn52QNKdHS07rvvPr366qvat2+fbrnlFtlsNn333XeKjo7W+PHj1aVLF40cOVJvvfWWTp8+raioKG3atEmLFi1SbGysoqOjy63liSee0Oeff67Bgwdr1KhRioiIUF5enrZv366lS5fq0KFDatq06SX9fABcolq9lgpArVm/fr0RERFheHp6Gm3atDEWLFhgJCYmOlya/fnnnxudO3c2vLy8jJCQEOPFF180Fi5caEgyDh48aO/XqlUrY9CgQaWuRxdcml3ss88+M9zd3Y1hw4YZRUVF5da6detW45577jFatmxpWCwWo1mzZsbgwYONzZs3O/QrLCw0Xn75ZaNdu3aGp6en4e/vbwwYMMDYsmWLvY/VajWmTZtmtG7d2vDw8DCCg4ONhIQE49y5cw5jXWybzpw5YyQkJBhhYWGGp6en0bRpU+PGG280Zs6caZw/f77c7QFQtVwMg5uFAAAA82LODAAAMDXmzACoVZmZmSoqKirzeU9PT6cv5QZQv3CaCUCtCgkJKfFhdReKiorSunXraq4gAKbDkRkAteqf//znRS/TvuKKK2qwGgBmxJEZAABgakwABgAApmaK00w2m03Hjh1Tw4YNK3xPFQAAYG6GYejMmTMKCgqSq2vZx19MEWaOHTum4ODg2i4DAADUgl9//VVXXXVVmc+bIswU35Du119/lZ+fXy1Xg5pmtVq1Zs0a9e/fv0IffQ/g8sHrv37LyclRcHBwuTemNUWYKT615OfnR5iph6xWq3x8fOTn58cfM6Ce4fUPSeVOMWECMAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDWnw8y3336rIUOGKCgoSC4uLlq+fHm5y6xbt07XX3+9LBaLwsLClJycfAmlAgAAlOR0mMnLy1OXLl00f/78CvU/ePCgBg0apOjoaG3btk2PPfaYxo4dq9WrVztdLAAAwB85fW+mAQMGaMCAARXuv2DBArVu3VqzZs2SJLVv314bNmzQK6+8opiYGGdXDwAA4KDabzS5ceNG9e3b16EtJiZGjz32WJnLFBQUqKCgwP44JydH0u83HLNardVSJ2pefn6+9uzZU26/3LMF+n77ATVsnKYG3paL9m3btq18fHyqqkQA1YTXPyqiou/51R5mTpw4oYCAAIe2gIAA5eTk6OzZs/L29i6xTFJSkqZNm1aifc2aNfyiXkYOHDigSZMmVbj/SxXoM2vWLIWGhl56UQBqBK9/VER+fn6F+lV7mLkUCQkJio+Ptz/OyclRcHCw+vfvLz8/v1qsDFUpPz9fvXr1Krff3uPZeuLTnXr59g66pnmji/blf2aAOfD6R0UUn5kpT7WHmcDAQKWnpzu0paeny8/Pr9SjMpJksVhksZQ8nOjh4SEPD49qqRM1r1GjRurWrVu5/TwP/ybLxvPqGH69wltdWQOVAaisg1l5yisovGgfnxZtyx3H2zVblsDz8m7RVj7lhJlfcyXlXvx/8r4Wd7Vu6lvuelE3VPQ9v9rDTI8ePbRy5UqHtpSUFPXo0aO6Vw0AqAUHs/IUPXNdlY45aen2Khtr7eN9CDSXGafDTG5urvbv329/fPDgQW3btk1NmjRRy5YtlZCQoKNHj+q9996TJD344IOaN2+ennzySd1///365ptv9K9//UsrVqyouq0AANQZxUdk5gwLV1izBpUb62yBvly3UYP79JBvOROAy7M/I1ePLdlW7hEjmI/TYWbz5s2Kjo62Py6e2zJy5EglJyfr+PHjOnLkiP351q1ba8WKFZo4caLmzp2rq666Sv/4xz+4LBsALnNhzRqoY4uLnxoqj9Vq1Ql/6fpWVzDNAGVyOsz06dNHhmGU+Xxpn+7bp08f/ec//3F2VQAAAOXi3kwAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDUCDMAAMDU3Gu7AADA5aWg6JxcvY7qYM4euXo1qNRYhYWFOlZ4TLtO7pK7e+Xesg7m5MrV66gKis5JalSpsVC3EGYAAFXqWN5h+bZ+TU9vqroxX1/1epWM49taOpYXrggFVMl4qBsIMwCAKhXk20p5Bx/R3GHhCm1W+SMz/97wb/Xs1bPSR2YOZOTq0SXbFBTdqlLjoO4hzAAAqpTFzUu2cy3U2q+tOlxZudM5VqtVB90Pqn2T9vLw8KjUWLZz2bKdy5TFzatS46DuYQIwAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwNcIMAAAwtUsKM/Pnz1dISIi8vLwUGRmpTZs2ldnXarVq+vTpCg0NlZeXl7p06aJVq1ZdcsEAAAAXcjrMLFmyRPHx8UpMTNTWrVvVpUsXxcTEKCMjo9T+zzzzjN5880299tpr2rlzpx588EHdfvvt+s9//lPp4gEAAJwOM7Nnz1ZcXJxGjx6tDh06aMGCBfLx8dHChQtL7f/+++/r6aef1sCBA9WmTRs99NBDGjhwoGbNmlXp4gEAANyd6Xz+/Hlt2bJFCQkJ9jZXV1f17dtXGzduLHWZgoICeXl5ObR5e3trw4YNZa6noKBABQUF9sc5OTmSfj9lZbVanSkZl4HCwkL7d/Y/UPdV5Wu2ePmqeO3zt8R8KrqfnAozWVlZKioqUkBAgEN7QECAdu/eXeoyMTExmj17tm666SaFhoYqNTVVy5YtU1FRUZnrSUpK0rRp00q0r1mzRj4+Ps6UjMvAr7mS5K60tDQd3VHb1QAoT/FrdsOGDTrcoGrGTElJqfQY1VEXqld+fn6F+jkVZi7F3LlzFRcXp3bt2snFxUWhoaEaPXp0maelJCkhIUHx8fH2xzk5OQoODlb//v3l5+dX3SWjjvnpyElp+2Z1795dXVo2qe1yAJTjv8dyNHN7mnr16qVrgyr3N9tqtSolJUX9+vWTh4dHnakLNaP4zEx5nAozTZs2lZubm9LT0x3a09PTFRgYWOoy/v7+Wr58uc6dO6fffvtNQUFBmjx5stq0aVPmeiwWiywWS4l2Dw+PSv8yw3zc3d3t39n/QN1XHa/Zqvj7z98S86nofnJqArCnp6ciIiKUmppqb7PZbEpNTVWPHj0uuqyXl5datGihwsJCffLJJ7rtttucWTUAAECpnD7NFB8fr5EjR6pr167q1q2b5syZo7y8PI0ePVqSNGLECLVo0UJJSUmSpB9++EFHjx5VeHi4jh49qqlTp8pms+nJJ5+s2i0BAAD1ktNhZtiwYcrMzNSUKVN04sQJhYeHa9WqVfZJwUeOHJGr6/8/4HPu3Dk988wz+uWXX9SgQQMNHDhQ77//vho3blxlGwEAAOqvS5oAPH78eI0fP77U59atW+fwOCoqSjt37ryU1QAAAJSLezMBAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTu6R7MwEVcTArT3kFhZUe50Bmnv27u3vlf2V9Le5q3dS30uMAAOoGwgyqxcGsPEXPXFelY05aur3Kxlr7eB8CDQBcJggzqBbFR2TmDAtXWLMGlRvrbIG+XLdRg/v0kK+3pVJj7c/I1WNLtlXJESMAQN1AmEG1CmvWQB1bNKrUGFarVSf8petbXSEPD48qqgwAcLlgAjAAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA199ouAABweTlrLZIk7TiaXemx8s4WaHOmFHj4lHy9LZUaa39GbqXrQd1EmAEAVKkD/xcaJi/bXkUjuuv9/T9W0ViSr4W3vssNexQAUKX6XxsoSQpt1kDeHm6VGmvP8WxNWrpds4Z2UtvmjSpdm6/FXa2b+lZ6HNQthBkAQJVq4uupu7u1rJKxCgsLJUmh/r7q2KLyYQaXJyYAAwAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAUyPMAAAAU7ukMDN//nyFhITIy8tLkZGR2rRp00X7z5kzR23btpW3t7eCg4M1ceJEnTt37pIKBgAAuJDTYWbJkiWKj49XYmKitm7dqi5duigmJkYZGRml9v/ggw80efJkJSYmateuXXrnnXe0ZMkSPf3005UuHgAAwOkwM3v2bMXFxWn06NHq0KGDFixYIB8fHy1cuLDU/t9//7169uyp4cOHKyQkRP3799c999xT7tEcAACAinB3pvP58+e1ZcsWJSQk2NtcXV3Vt29fbdy4sdRlbrzxRi1evFibNm1St27d9Msvv2jlypW67777ylxPQUGBCgoK7I9zcnIkSVarVVar1ZmSUUsKCwvt3yu7z4qXr4p9X5V1Aah+vGbrt4ruc6fCTFZWloqKihQQEODQHhAQoN27d5e6zPDhw5WVlaVevXrJMAwVFhbqwQcfvOhppqSkJE2bNq1E+5o1a+Tj4+NMyaglv+ZKkrs2bNigww2qZsyUlJRKj1EddQGoPsWv2bS0NB3dUdvVoKbl5+dXqJ9TYeZSrFu3TjNmzNDrr7+uyMhI7d+/X48++qiee+45Pfvss6Uuk5CQoPj4ePvjnJwcBQcHq3///vLz86vuklEFtv6aIdd9K3RVl05q7e9bqbEKCwv1Q9oPiuweKXf3yv3KGpl5ct23XTf0GKTrg5tVaiwA1e+nIyel7ZvVvXt3dWnZpLbLQQ0rPjNTHqfeGZo2bSo3Nzelp6c7tKenpyswMLDUZZ599lndd999Gjt2rCSpU6dOysvL01//+lf97W9/k6tryWk7FotFFoulRLuHh4c8PDycKRm1JKPgqHxbv6Znt1TdmK9//XqVjOPbWsooCJeHR4sqGQ9A9Sn+D4y7uzt//+uhiu5zp8KMp6enIiIilJqaqtjYWEmSzWZTamqqxo8fX+oy+fn5JQKLm5ubJMkwDGdWDxMJ8m2lvIOPaO6wcIU2q9z5nMLCQv17w7/Vs1fPSh+ZOZCRq0eXbFNQdKtKjQMAqDucfmeIj4/XyJEj1bVrV3Xr1k1z5sxRXl6eRo8eLUkaMWKEWrRooaSkJEnSkCFDNHv2bF133XX200zPPvushgwZYg81uPxY3LxkO9dCrf3aqsOVjSo1ltVq1UH3g2rfpH2l/2dmO5ct27lMWdy8KjUOAKDucDrMDBs2TJmZmZoyZYpOnDih8PBwrVq1yj4p+MiRIw5HYp555hm5uLjomWee0dGjR+Xv768hQ4bo73//e9VtBQAAqLcu6Zj9+PHjyzyttG7dOscVuLsrMTFRiYmJl7IqAACAi+LeTAAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQuKczMnz9fISEh8vLyUmRkpDZt2lRm3z59+sjFxaXE16BBgy65aAAAgGJOh5klS5YoPj5eiYmJ2rp1q7p06aKYmBhlZGSU2n/ZsmU6fvy4/WvHjh1yc3PTn//850oXDwAA4HSYmT17tuLi4jR69Gh16NBBCxYskI+PjxYuXFhq/yZNmigwMND+lZKSIh8fH8IMAACoEu7OdD5//ry2bNmihIQEe5urq6v69u2rjRs3VmiMd955R3fffbd8fX3L7FNQUKCCggL745ycHEmS1WqV1Wp1pmTUksLCQvv3yu6z4uWrYt9XZV0Aqh+v2fqtovvcqTCTlZWloqIiBQQEOLQHBARo9+7d5S6/adMm7dixQ++8885F+yUlJWnatGkl2tesWSMfHx9nSkYt+TVXkty1YcMGHW5QNWOmpKRUeozqqAtA9Sl+zaalpenojtquBjUtPz+/Qv2cCjOV9c4776hTp07q1q3bRfslJCQoPj7e/jgnJ0fBwcHq37+//Pz8qrtMVIH/HsvRzO1p6tWrl64Nqtw+s1qtSklJUb9+/eTh4VFn6gJQ/X46clLavlndu3dXl5ZNarsc1LDiMzPlcSrMNG3aVG5ubkpPT3doT09PV2Bg4EWXzcvL00cffaTp06eXux6LxSKLxVKi3cPDo9JvZqgZ7u7u9u9Vtc+qYv9XR10Aqg+v2fqtovvcqQnAnp6eioiIUGpqqr3NZrMpNTVVPXr0uOiyH3/8sQoKCvSXv/zFmVUCAABclNOnmeLj4zVy5Eh17dpV3bp105w5c5SXl6fRo0dLkkaMGKEWLVooKSnJYbl33nlHsbGxuvLKK6umcgAAAF1CmBk2bJgyMzM1ZcoUnThxQuHh4Vq1apV9UvCRI0fk6up4wGfPnj3asGGD1qxZUzVVo847ay2SJO04ml3psfLOFmhzphR4+JR8vUuefnTG/ozcStcDAKhbLmkC8Pjx4zV+/PhSn1u3bl2JtrZt28owjEtZFUzqwP+FhsnLtlfRiO56f/+PVTSW5Gup0bnvAIBqxF90VIv+1/4+ITy0WQN5e7hVaqw9x7M1ael2zRraSW2bN6p0bb4Wd7VuWvbnHAEAzIUwg2rRxNdTd3drWSVjFX9oVqi/rzq2qHyYAQBcXrhrNgAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDX32i4AAFD/5Ofna/fu3eX223P8tApO7NeuHd6y/db4on3btWsnHx+fKqoQZkKYAQDUuN27dysiIqLC/YcvKr/Pli1bdP3111eiKpgVYQYAUOPatWunLVu2lNsv92yBVqzdqEHRPdTA21LumKifCDMAgBrn4+NToaMoVqtVp7Iy1KNbV3l4eNRAZTAjJgADAABTI8wAAABTI8wAAABTI8wAAABTI8wAAABTu6QwM3/+fIWEhMjLy0uRkZHatGnTRfufPn1a48aNU/PmzWWxWHTNNddo5cqVl1QwAKB+KCoq0vr16/Xtt99q/fr1Kioqqu2SUEc5HWaWLFmi+Ph4JSYmauvWrerSpYtiYmKUkZFRav/z58+rX79+OnTokJYuXao9e/bo7bffVosWLSpdPADg8rRs2TKFhYWpX79+mj17tvr166ewsDAtW7astktDHeT058zMnj1bcXFxGj16tCRpwYIFWrFihRYuXKjJkyeX6L9w4UKdPHlS33//vf0zAkJCQi66joKCAhUUFNgf5+TkSPr98wasVquzJcPkCgsL7d/Z/8Dl79NPP9Xdd9+tgQMH6t1339WJEycUGBiomTNnaujQofroo490++2313aZqAEV/ZvvVJg5f/68tmzZooSEBHubq6ur+vbtq40bN5a6zOeff64ePXpo3Lhx+uyzz+Tv76/hw4frqaeekpubW6nLJCUladq0aSXa16xZw3036qFfcyXJXWlpaTq6o7arAVCdioqK9Mgjj6hr164aM2aMsrOz5e3trezsbI0ZM0YZGRmaMGGC3N3dy3wPweUjPz+/Qv2cCjNZWVkqKipSQECAQ3tAQECZNwz75Zdf9M033+jee+/VypUrtX//fj388MOyWq1KTEwsdZmEhATFx8fbH+fk5Cg4OFj9+/eXn5+fMyXjMvDTkZPS9s3q3r27urRsUtvlAKhG69evV0ZGhj755BNFRkbKarUqJSVF/fr1k4eHh5o2baqbbrpJfn5+ioqKqu1yUc2Kz8yUp9pvZ2Cz2dSsWTO99dZbcnNzU0REhI4ePaqXX365zDBjsVhksZS8B4eHhwcfZ10Pubu727+z/4HLW2ZmpiQpPDzc4fVe/Pc/PDzc3o+/B5e/iu5jpyYAN23aVG5ubkpPT3doT09PV2BgYKnLNG/eXNdcc43D4cD27dvrxIkTOn/+vDOrBwBc5po3by5J2rGj9HPKxe3F/QDJyTDj6empiIgIpaam2ttsNptSU1PVo0ePUpfp2bOn9u/fL5vNZm/bu3evmjdvLk9Pz0ssGwBwOerdu7dCQkI0Y8YMh/cN6ff3m6SkJLVu3Vq9e/eupQpRFzl9aXZ8fLzefvttLVq0SLt27dJDDz2kvLw8+9VNI0aMcJgg/NBDD+nkyZN69NFHtXfvXq1YsUIzZszQuHHjqm4rAACXBTc3N82aNUtffvmlYmNjlZaWprNnzyotLU2xsbH68ssvNXPmTCb/woHTc2aGDRumzMxMTZkyRSdOnFB4eLhWrVplnxR85MgRubr+/4wUHBys1atXa+LEiercubNatGihRx99VE899VTVbQUA4LJxxx13aOnSpZo0aZJuuukme3vr1q21dOlS3XHHHbVYHeoiF8MwjNouojw5OTlq1KiRsrOzuZqpHtp2+DfFvpGm5Q91V3irK2u7HAA1pKioSGvXrtVXX32lAQMGKDo6miMy9UxF3/+r/WomAAAuhZubm6KiopSXl6eoqCiCDMrEjSYBAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpEWYAAICpudd2Aai/8vPztXv37nL77Tl+WgUn9mvXDm/Zfmt80b7t2rWTj49PFVUIADADwgxqze7duxUREVHh/sMXld9ny5Ytuv766ytRFQDAbAgzqDXt2rXTli1byu2Xe7ZAK9Zu1KDoHmrgbSl3TABA/UKYQa3x8fGp0FEUq9WqU1kZ6tGtqzw8PGqgMgCAmTABGAAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgBQJxUVFWn9+vX69ttvtX79ehUVFdV2SaijCDMAgDpn2bJlCgsLU79+/TR79mz169dPYWFhWrZsWW2XhjqIMAMAqFOWLVumoUOHqlOnTvruu+/04Ycf6rvvvlOnTp00dOhQAg1KIMwAAOqMoqIiTZo0SYMHD9by5csVGRkpb29vRUZGavny5Ro8eLAef/xxTjnBAWEGAFBnfPfddzp06JCefvppubo6vkW5uroqISFBBw8e1HfffVdLFaIuIswAAOqM48ePS5I6duxY6vPF7cX9AIkwAwCoQ5o3by5J2rFjR6nPF7cX9wMkwgwAoA7p3bu3QkJCNGPGDNlsNofnbDabkpKS1Lp1a/Xu3buWKkRdRJgBANQZbm5umjVrlr788kvFxsYqLS1NZ8+eVVpammJjY/Xll19q5syZcnNzq+1SUYe413YBAABc6I477tDSpUs1adIk3XTTTfb21q1ba+nSpbrjjjtqsTrURZd0ZGb+/PkKCQmRl5eXIiMjtWnTpjL7Jicny8XFxeHLy8vrkgsGAFz+7rjjDu3fv18pKSmKj49XSkqK9u3bR5BBqZw+MrNkyRLFx8drwYIFioyM1Jw5cxQTE6M9e/aoWbNmpS7j5+enPXv22B+7uLhcesUAgHrBzc1NUVFRysvLU1RUFKeWUCanw8zs2bMVFxen0aNHS5IWLFigFStWaOHChZo8eXKpy7i4uCgwMLDC6ygoKFBBQYH9cU5OjiTJarXKarU6WzJMrnifs++B+ofXf/1W0f3uVJg5f/68tmzZooSEBHubq6ur+vbtq40bN5a5XG5urlq1aiWbzabrr79eM2bM0LXXXltm/6SkJE2bNq1E+5o1a+Tj4+NMybiMpKSk1HYJAGoJr//6KT8/v0L9nAozWVlZKioqUkBAgEN7QECAdu/eXeoybdu21cKFC9W5c2dlZ2dr5syZuvHGG/Xf//5XV111VanLJCQkKD4+3v44JydHwcHB6t+/v/z8/JwpGZcBq9WqlJQU9evXTx4eHrVdDoAaxOu/fis+M1Oear+aqUePHurRo4f98Y033qj27dvrzTff1HPPPVfqMhaLRRaLpUS7h4cHv8z1GPsfqL94/ddPFd3nTl3N1LRpU7m5uSk9Pd2hPT09vcJzYjw8PHTddddp//79zqwaAACgVE6FGU9PT0VERCg1NdXeZrPZlJqa6nD05WKKioq0fft2PooaAABUCadPM8XHx2vkyJHq2rWrunXrpjlz5igvL89+ddOIESPUokULJSUlSZKmT5+u7t27KywsTKdPn9bLL7+sw4cPa+zYsVW7JQAAoF5yOswMGzZMmZmZmjJlik6cOKHw8HCtWrXKPin4yJEjDrdtP3XqlOLi4nTixAldccUVioiI0Pfff68OHTpU3VYAAIB6y8UwDKO2iyhPTk6OGjVqpOzsbK5mqoesVqtWrlypgQMHMgEQqGd4/ddvFX3/N8W9mYrzVkUv0cLlxWq1Kj8/Xzk5OfwxA+oZXv/1W/H7fnnHXUwRZs6cOSNJCg4OruVKAABATTtz5owaNWpU5vOmOM1ks9l07NgxNWzYkPs61UPFH5r466+/cpoRqGd4/ddvhmHozJkzCgoKcpiP+0emODLj6upa5qcFo/7w8/PjjxlQT/H6r78udkSmmFOfMwMAAFDXEGYAAICpEWZQ51ksFiUmJpZ6vy4Alzde/6gIU0wABgAAKAtHZgAAgKkRZgAAgKkRZgAAgKkRZgAAgKkRZlCnzZ8/XyEhIfLy8lJkZKQ2bdpU2yUBqAHffvuthgwZoqCgILm4uGj58uW1XRLqMMIM6qwlS5YoPj5eiYmJ2rp1q7p06aKYmBhlZGTUdmkAqlleXp66dOmi+fPn13YpMAEuzUadFRkZqRtuuEHz5s2T9Ps9uoKDg/XII49o8uTJtVwdgJri4uKiTz/9VLGxsbVdCuoojsygTjp//ry2bNmivn372ttcXV3Vt29fbdy4sRYrAwDUNYQZ1ElZWVkqKipSQECAQ3tAQIBOnDhRS1UBAOoiwgwAADA1wgzqpKZNm8rNzU3p6ekO7enp6QoMDKylqgAAdRFhBnWSp6enIiIilJqaam+z2WxKTU1Vjx49arEyAEBd417bBQBliY+P18iRI9W1a1d169ZNc+bMUV5enkaPHl3bpQGoZrm5udq/f7/98cGDB7Vt2zY1adJELVu2rMXKUBdxaTbqtHnz5unll1/WiRMnFB4erldffVWRkZG1XRaAarZu3TpFR0eXaB85cqSSk5NrviDUaYQZAABgasyZAQAApkaYAQAApkaYAQAApkaYAQAApkaYAQAApkaYAQAApkaYAQAApkaYAQAApkaYAVDt+vTpo8cee6xCfdetWycXFxedPn26UusMCQnRnDlzKjUGAHMgzAAAAFMjzAAAAFMjzACoUe+//766du2qhg0bKjAwUMOHD1dGRkaJfv/+97/VuXNneXl5qXv37tqxY4fD8xs2bFDv3r3l7e2t4OBgTZgwQXl5eTW1GQDqEMIMgBpltVr13HPP6aefftLy5ct16NAhjRo1qkS/J554QrNmzdKPP/4of39/DRkyRFarVZJ04MAB3XLLLbrzzjv1888/a8mSJdqwYYPGjx9fw1sDoC5wr+0CANQv999/v/3fbdq00auvvqobbrhBubm5atCggf25xMRE9evXT5K0aNEiXXXVVfr000911113KSkpSffee699UvHVV1+tV199VVFRUXrjjTfk5eVVo9sEoHZxZAZAjdqyZYuGDBmili1bqmHDhoqKipIkHTlyxKFfjx497P9u0qSJ2rZtq127dkmSfvrpJyUnJ6tBgwb2r5iYGNlsNh08eLDmNgZAncCRGQA1Ji8vTzExMYqJidE///lP+fv768iRI4qJidH58+crPE5ubq4eeOABTZgwocRzLVu2rMqSAZgAYQZAjdm9e7d+++03vfDCCwoODpYkbd68udS+aWlp9mBy6tQp7d27V+3bt5ckXX/99dq5c6fCwsJqpnAAdRqnmQDUmJYtW8rT01OvvfaafvnlF33++ed67rnnSu07ffp0paamaseOHRo1apSaNm2q2NhYSdJTTz2l77//XuPHj9e2bdu0b98+ffbZZ0wABuopwgyAGuPv76/k5GR9/PHH6tChg1544QXNnDmz1L4vvPCCHn30UUVEROjEiRP64osv5OnpKUnq3Lmz1q9fr71796p379667rrrNGXKFAUFBdXk5gCoI1wMwzBquwgAAIBLxZEZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgaoQZAABgav8PcPXdLYHvrmAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plotting 'dark_score' value of each instance in the original dataset against class label\n", + "plot_scores_labels(original_lab, \"dark_score\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "nbsphinx": "hidden" + }, + "source": [ + "The above plot illustrates the distribution of dark scores across class labels. In this dataset, 100 images each from the classes `Frog` (Class 0 in the plot) and `Truck` (Class 1 in the plot) remain unchanged, as in the CIFAR-10 dataset. There is no apparent spurious correlation with respect to the 'darkness' feature and class labels. We can see that the `dark_score` values between the two classes are highly overlapping." + ] } ], "metadata": { @@ -4497,7 +4596,41 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "09d859b199ab4ee2a2de717d6ca51736": { + "03c08335072148cf8dbacc47ff28ca56": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "06b3bdd5c40c4fdba6437bb907aba3c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "168972fc72c6400a99f9ea3f7bc73407": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4550,7 +4683,48 @@ "width": null } }, - "2398e6a1af584aaba59c05e8699e3753": { + "18fdf4b6e48c494187f77fb7a6562511": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ee087271a2184081ac73ea40a8ffc98d", + "placeholder": "​", + "style": "IPY_MODEL_06b3bdd5c40c4fdba6437bb907aba3c8", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 780.10it/s]" + } + }, + "1f357fae3f0c4acb97b38e9290214405": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2a5d21cd5a6344b48424a1cc39662887": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4603,7 +4777,30 @@ "width": null } }, - "24952c20b8b346ac9b084346c51fbf3d": { + "2c5f368d477a4ead996c3bb5453c9243": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4eb97da01abf44978575805a598ae750", + "placeholder": "​", + "style": "IPY_MODEL_5dd3230bed404c01bac2fdedb5290113", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "4eb97da01abf44978575805a598ae750": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4656,7 +4853,7 @@ "width": null } }, - "489c2248d5144a178a9519840de75f05": { + "514121ecbf4c4f3a94b65b7815999ae0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4709,60 +4906,25 @@ "width": null } }, - "4a6b856449354da8b14232bcbc8b363d": { - "model_module": "@jupyter-widgets/base", + "5dd3230bed404c01bac2fdedb5290113": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "84c47a9fab904f3d8908756c3b332bed": { + "67422fd209454e4487fc32db492ca2c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4777,102 +4939,88 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f2b0ca892ecd4763b131ed7aeb82a602", - "IPY_MODEL_98f1a186392b47e19b37a3ca9a22516d", - "IPY_MODEL_b2cb5e5e7e1d4556bb403df989cb47ea" + "IPY_MODEL_9fb657ca84d74c3bb0790803a16b399a", + "IPY_MODEL_a773d2855db44ad283fa4529255879f3", + "IPY_MODEL_18fdf4b6e48c494187f77fb7a6562511" ], - "layout": "IPY_MODEL_489c2248d5144a178a9519840de75f05", + "layout": "IPY_MODEL_acddbab6185044e791172f2332e42cdd", "tabbable": null, "tooltip": null } }, - "8bb8c2257ff642589da749e1f2b50557": { + "9fb657ca84d74c3bb0790803a16b399a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f3364cea9c5f4b05b6bd76ae8e185619", - "IPY_MODEL_f1b67d668edc41089a2e95c5dfbca124", - "IPY_MODEL_f2779ea6cdeb4969a8d547b8e025b31d" - ], - "layout": "IPY_MODEL_b116e430c62d4c21a3c315c6993d102f", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2a5d21cd5a6344b48424a1cc39662887", + "placeholder": "​", + "style": "IPY_MODEL_1f357fae3f0c4acb97b38e9290214405", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "98f1a186392b47e19b37a3ca9a22516d": { + "a0e60495fe9542f8a33ede9f27b9fc28": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_09d859b199ab4ee2a2de717d6ca51736", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c9e4952cd17e4976b25d127135b0a413", + "layout": "IPY_MODEL_d807af4c3d014f4b9687ce45cf5dd744", + "placeholder": "​", + "style": "IPY_MODEL_d66bedec1b3c4628b39ca083bf69a8c7", "tabbable": null, "tooltip": null, - "value": 200.0 - } - }, - "9c12178b80954bf985fffa0e2d4bd440": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 200/200 [00:00<00:00, 628.60it/s]" } }, - "a23e656b249a43d1b9b8965083fe1c2d": { + "a773d2855db44ad283fa4529255879f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b351ae1776cc46d78a233838f95ec1e3", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_03c08335072148cf8dbacc47ff28ca56", + "tabbable": null, + "tooltip": null, + "value": 200.0 } }, - "ad296183677a464fbc049d192e0f4e38": { + "acddbab6185044e791172f2332e42cdd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4925,41 +5073,7 @@ "width": null } }, - "af34f8c6871040d4af3afbf3ac7fa2cb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b00e7d6746e640ab978861e99c5355f9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b116e430c62d4c21a3c315c6993d102f": { + "b351ae1776cc46d78a233838f95ec1e3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5012,46 +5126,57 @@ "width": null } }, - "b2cb5e5e7e1d4556bb403df989cb47ea": { + "c5f6722062614240bac644be7f94fb07": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4a6b856449354da8b14232bcbc8b363d", - "placeholder": "​", - "style": "IPY_MODEL_dc64845b227a4e3c84cc38795c873170", + "layout": "IPY_MODEL_168972fc72c6400a99f9ea3f7bc73407", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ef6032e0622b46b19b02a48262fac63c", "tabbable": null, "tooltip": null, - "value": " 200/200 [00:00<00:00, 728.61it/s]" + "value": 200.0 } }, - "c9e4952cd17e4976b25d127135b0a413": { + "d3c19809a6204f20ac5cac77fe50ad95": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2c5f368d477a4ead996c3bb5453c9243", + "IPY_MODEL_c5f6722062614240bac644be7f94fb07", + "IPY_MODEL_a0e60495fe9542f8a33ede9f27b9fc28" + ], + "layout": "IPY_MODEL_514121ecbf4c4f3a94b65b7815999ae0", + "tabbable": null, + "tooltip": null } }, - "dc64845b227a4e3c84cc38795c873170": { + "d66bedec1b3c4628b39ca083bf69a8c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5069,7 +5194,7 @@ "text_color": null } }, - "e087293c6406416a98b63905ab4b3cab": { + "d807af4c3d014f4b9687ce45cf5dd744": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5122,99 +5247,73 @@ "width": null } }, - "f1b67d668edc41089a2e95c5dfbca124": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_24952c20b8b346ac9b084346c51fbf3d", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b00e7d6746e640ab978861e99c5355f9", - "tabbable": null, - "tooltip": null, - "value": 200.0 - } - }, - "f2779ea6cdeb4969a8d547b8e025b31d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e087293c6406416a98b63905ab4b3cab", - "placeholder": "​", - "style": "IPY_MODEL_9c12178b80954bf985fffa0e2d4bd440", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 752.80it/s]" - } - }, - "f2b0ca892ecd4763b131ed7aeb82a602": { - "model_module": "@jupyter-widgets/controls", + "ee087271a2184081ac73ea40a8ffc98d": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ad296183677a464fbc049d192e0f4e38", - "placeholder": "​", - "style": "IPY_MODEL_a23e656b249a43d1b9b8965083fe1c2d", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f3364cea9c5f4b05b6bd76ae8e185619": { + "ef6032e0622b46b19b02a48262fac63c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2398e6a1af584aaba59c05e8699e3753", - "placeholder": "​", - "style": "IPY_MODEL_af34f8c6871040d4af3afbf3ac7fa2cb", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } } }, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index 896ea40ee..f8e94adc5 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:17.805542Z", - "iopub.status.busy": "2024-08-20T02:18:17.805087Z", - "iopub.status.idle": "2024-08-20T02:18:19.246385Z", - "shell.execute_reply": "2024-08-20T02:18:19.245826Z" + "iopub.execute_input": "2024-08-21T00:43:24.975874Z", + "iopub.status.busy": "2024-08-21T00:43:24.975689Z", + "iopub.status.idle": "2024-08-21T00:43:26.130072Z", + "shell.execute_reply": "2024-08-21T00:43:26.129440Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:19.248964Z", - "iopub.status.busy": "2024-08-20T02:18:19.248482Z", - "iopub.status.idle": "2024-08-20T02:18:19.251383Z", - "shell.execute_reply": "2024-08-20T02:18:19.250938Z" + "iopub.execute_input": "2024-08-21T00:43:26.132687Z", + "iopub.status.busy": "2024-08-21T00:43:26.132421Z", + "iopub.status.idle": "2024-08-21T00:43:26.135360Z", + "shell.execute_reply": "2024-08-21T00:43:26.134813Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:19.253494Z", - "iopub.status.busy": "2024-08-20T02:18:19.253140Z", - "iopub.status.idle": "2024-08-20T02:18:19.265298Z", - "shell.execute_reply": "2024-08-20T02:18:19.264725Z" + "iopub.execute_input": "2024-08-21T00:43:26.137797Z", + "iopub.status.busy": "2024-08-21T00:43:26.137353Z", + "iopub.status.idle": "2024-08-21T00:43:26.149676Z", + "shell.execute_reply": "2024-08-21T00:43:26.149205Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:19.267347Z", - "iopub.status.busy": "2024-08-20T02:18:19.267029Z", - "iopub.status.idle": "2024-08-20T02:18:24.466640Z", - "shell.execute_reply": "2024-08-20T02:18:24.466146Z" + "iopub.execute_input": "2024-08-21T00:43:26.151609Z", + "iopub.status.busy": "2024-08-21T00:43:26.151435Z", + "iopub.status.idle": "2024-08-21T00:43:30.893896Z", + "shell.execute_reply": "2024-08-21T00:43:30.893274Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index 0b8cd97f3..506e7c76d 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -831,13 +831,13 @@

    How can I find label issues in big datasets with limited memory?
    -
    +
    -
    +
    @@ -1702,7 +1702,7 @@

    Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

    Professional support and services are also available from our ML experts, learn more by emailing: team@cleanlab.ai

    diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index be294f45e..f92c95774 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:26.824446Z", - "iopub.status.busy": "2024-08-20T02:18:26.824273Z", - "iopub.status.idle": "2024-08-20T02:18:28.260323Z", - "shell.execute_reply": "2024-08-20T02:18:28.259751Z" + "iopub.execute_input": "2024-08-21T00:43:33.124706Z", + "iopub.status.busy": "2024-08-21T00:43:33.124531Z", + "iopub.status.idle": "2024-08-21T00:43:34.258108Z", + "shell.execute_reply": "2024-08-21T00:43:34.257543Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:28.262978Z", - "iopub.status.busy": "2024-08-20T02:18:28.262672Z", - "iopub.status.idle": "2024-08-20T02:18:28.266248Z", - "shell.execute_reply": "2024-08-20T02:18:28.265673Z" + "iopub.execute_input": "2024-08-21T00:43:34.260791Z", + "iopub.status.busy": "2024-08-21T00:43:34.260358Z", + "iopub.status.idle": "2024-08-21T00:43:34.263745Z", + "shell.execute_reply": "2024-08-21T00:43:34.263180Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:28.268522Z", - "iopub.status.busy": "2024-08-20T02:18:28.268073Z", - "iopub.status.idle": "2024-08-20T02:18:31.923865Z", - "shell.execute_reply": "2024-08-20T02:18:31.923205Z" + "iopub.execute_input": "2024-08-21T00:43:34.265950Z", + "iopub.status.busy": "2024-08-21T00:43:34.265625Z", + "iopub.status.idle": "2024-08-21T00:43:37.615038Z", + "shell.execute_reply": "2024-08-21T00:43:37.614383Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:31.927361Z", - "iopub.status.busy": "2024-08-20T02:18:31.926431Z", - "iopub.status.idle": "2024-08-20T02:18:31.972856Z", - "shell.execute_reply": "2024-08-20T02:18:31.972092Z" + "iopub.execute_input": "2024-08-21T00:43:37.618146Z", + "iopub.status.busy": "2024-08-21T00:43:37.617403Z", + "iopub.status.idle": "2024-08-21T00:43:37.660445Z", + "shell.execute_reply": "2024-08-21T00:43:37.659796Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:31.975898Z", - "iopub.status.busy": "2024-08-20T02:18:31.975497Z", - "iopub.status.idle": "2024-08-20T02:18:32.024339Z", - "shell.execute_reply": "2024-08-20T02:18:32.023682Z" + "iopub.execute_input": "2024-08-21T00:43:37.663149Z", + "iopub.status.busy": "2024-08-21T00:43:37.662756Z", + "iopub.status.idle": "2024-08-21T00:43:37.699432Z", + "shell.execute_reply": "2024-08-21T00:43:37.698818Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:32.027241Z", - "iopub.status.busy": "2024-08-20T02:18:32.026842Z", - "iopub.status.idle": "2024-08-20T02:18:32.029883Z", - "shell.execute_reply": "2024-08-20T02:18:32.029410Z" + "iopub.execute_input": "2024-08-21T00:43:37.702287Z", + "iopub.status.busy": "2024-08-21T00:43:37.701804Z", + "iopub.status.idle": "2024-08-21T00:43:37.705054Z", + "shell.execute_reply": "2024-08-21T00:43:37.704587Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:32.031947Z", - "iopub.status.busy": "2024-08-20T02:18:32.031634Z", - "iopub.status.idle": "2024-08-20T02:18:32.034472Z", - "shell.execute_reply": "2024-08-20T02:18:32.034036Z" + "iopub.execute_input": "2024-08-21T00:43:37.707228Z", + "iopub.status.busy": "2024-08-21T00:43:37.706791Z", + "iopub.status.idle": "2024-08-21T00:43:37.709625Z", + "shell.execute_reply": "2024-08-21T00:43:37.709171Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:32.036493Z", - "iopub.status.busy": "2024-08-20T02:18:32.036308Z", - "iopub.status.idle": "2024-08-20T02:18:32.059976Z", - "shell.execute_reply": "2024-08-20T02:18:32.059445Z" + "iopub.execute_input": "2024-08-21T00:43:37.711757Z", + "iopub.status.busy": "2024-08-21T00:43:37.711365Z", + "iopub.status.idle": "2024-08-21T00:43:37.738363Z", + "shell.execute_reply": "2024-08-21T00:43:37.737812Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d82d5feb5be34f61b1a570c3dd0179b0", + "model_id": "e88b11d2fc2c4e1dabf9d5ab29054a5a", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a2f0c54e98dd4c02b9cf7548afd53f0d", + "model_id": "7ce54cb5c4f340b7bb0a813fe148c2ac", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:32.065764Z", - "iopub.status.busy": "2024-08-20T02:18:32.065412Z", - "iopub.status.idle": "2024-08-20T02:18:32.071940Z", - "shell.execute_reply": "2024-08-20T02:18:32.071514Z" + "iopub.execute_input": "2024-08-21T00:43:37.744690Z", + "iopub.status.busy": "2024-08-21T00:43:37.744352Z", + "iopub.status.idle": "2024-08-21T00:43:37.751032Z", + "shell.execute_reply": "2024-08-21T00:43:37.750612Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:32.074109Z", - "iopub.status.busy": "2024-08-20T02:18:32.073667Z", - "iopub.status.idle": "2024-08-20T02:18:32.077079Z", - "shell.execute_reply": "2024-08-20T02:18:32.076644Z" + "iopub.execute_input": "2024-08-21T00:43:37.753066Z", + "iopub.status.busy": "2024-08-21T00:43:37.752736Z", + "iopub.status.idle": "2024-08-21T00:43:37.756637Z", + "shell.execute_reply": "2024-08-21T00:43:37.756202Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:32.079272Z", - "iopub.status.busy": "2024-08-20T02:18:32.078890Z", - "iopub.status.idle": "2024-08-20T02:18:32.085244Z", - "shell.execute_reply": "2024-08-20T02:18:32.084783Z" + "iopub.execute_input": "2024-08-21T00:43:37.758695Z", + "iopub.status.busy": "2024-08-21T00:43:37.758365Z", + "iopub.status.idle": "2024-08-21T00:43:37.764764Z", + "shell.execute_reply": "2024-08-21T00:43:37.764295Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:32.087316Z", - "iopub.status.busy": "2024-08-20T02:18:32.086982Z", - "iopub.status.idle": "2024-08-20T02:18:32.132301Z", - "shell.execute_reply": "2024-08-20T02:18:32.131651Z" + "iopub.execute_input": "2024-08-21T00:43:37.766873Z", + "iopub.status.busy": "2024-08-21T00:43:37.766456Z", + "iopub.status.idle": "2024-08-21T00:43:37.807572Z", + "shell.execute_reply": "2024-08-21T00:43:37.806830Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:32.135193Z", - "iopub.status.busy": "2024-08-20T02:18:32.134697Z", - "iopub.status.idle": "2024-08-20T02:18:32.180547Z", - "shell.execute_reply": "2024-08-20T02:18:32.179925Z" + "iopub.execute_input": "2024-08-21T00:43:37.810644Z", + "iopub.status.busy": "2024-08-21T00:43:37.810107Z", + "iopub.status.idle": "2024-08-21T00:43:37.853337Z", + "shell.execute_reply": "2024-08-21T00:43:37.852723Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:32.183314Z", - "iopub.status.busy": "2024-08-20T02:18:32.182928Z", - "iopub.status.idle": "2024-08-20T02:18:32.318818Z", - "shell.execute_reply": "2024-08-20T02:18:32.318227Z" + "iopub.execute_input": "2024-08-21T00:43:37.856040Z", + "iopub.status.busy": "2024-08-21T00:43:37.855648Z", + "iopub.status.idle": "2024-08-21T00:43:37.987449Z", + "shell.execute_reply": "2024-08-21T00:43:37.986885Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:32.321628Z", - "iopub.status.busy": "2024-08-20T02:18:32.321051Z", - "iopub.status.idle": "2024-08-20T02:18:35.406655Z", - "shell.execute_reply": "2024-08-20T02:18:35.405994Z" + "iopub.execute_input": "2024-08-21T00:43:37.990134Z", + "iopub.status.busy": "2024-08-21T00:43:37.989581Z", + "iopub.status.idle": "2024-08-21T00:43:40.945105Z", + "shell.execute_reply": "2024-08-21T00:43:40.944425Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:35.409123Z", - "iopub.status.busy": "2024-08-20T02:18:35.408927Z", - "iopub.status.idle": "2024-08-20T02:18:35.471131Z", - "shell.execute_reply": "2024-08-20T02:18:35.470526Z" + "iopub.execute_input": "2024-08-21T00:43:40.947439Z", + "iopub.status.busy": "2024-08-21T00:43:40.947245Z", + "iopub.status.idle": "2024-08-21T00:43:41.002087Z", + "shell.execute_reply": "2024-08-21T00:43:41.001550Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:35.473400Z", - "iopub.status.busy": "2024-08-20T02:18:35.473199Z", - "iopub.status.idle": "2024-08-20T02:18:35.520888Z", - "shell.execute_reply": "2024-08-20T02:18:35.520350Z" + "iopub.execute_input": "2024-08-21T00:43:41.004111Z", + "iopub.status.busy": "2024-08-21T00:43:41.003920Z", + "iopub.status.idle": "2024-08-21T00:43:41.046065Z", + "shell.execute_reply": "2024-08-21T00:43:41.045584Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "1f15f0b7", + "id": "a7cb8e5a", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "cc67f639", + "id": "ce44f993", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "5a601c1a", + "id": "1f258ff1", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "b72d4fd7", + "id": "4e739e39", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:35.523105Z", - "iopub.status.busy": "2024-08-20T02:18:35.522924Z", - "iopub.status.idle": "2024-08-20T02:18:35.530530Z", - "shell.execute_reply": "2024-08-20T02:18:35.530069Z" + "iopub.execute_input": "2024-08-21T00:43:41.048111Z", + "iopub.status.busy": "2024-08-21T00:43:41.047923Z", + "iopub.status.idle": "2024-08-21T00:43:41.055443Z", + "shell.execute_reply": "2024-08-21T00:43:41.054977Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "dfcac1fa", + "id": "2f5c2abd", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "34d13b9d", + "id": "33fc0025", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:35.532400Z", - "iopub.status.busy": "2024-08-20T02:18:35.532228Z", - "iopub.status.idle": "2024-08-20T02:18:35.552090Z", - "shell.execute_reply": "2024-08-20T02:18:35.551600Z" + "iopub.execute_input": "2024-08-21T00:43:41.057268Z", + "iopub.status.busy": "2024-08-21T00:43:41.057097Z", + "iopub.status.idle": "2024-08-21T00:43:41.075807Z", + "shell.execute_reply": "2024-08-21T00:43:41.075358Z" } }, "outputs": [ @@ -1521,13 +1521,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "61354613", + "id": "1c822d98", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:35.554430Z", - "iopub.status.busy": "2024-08-20T02:18:35.553975Z", - "iopub.status.idle": "2024-08-20T02:18:35.557509Z", - "shell.execute_reply": "2024-08-20T02:18:35.557025Z" + "iopub.execute_input": "2024-08-21T00:43:41.077653Z", + "iopub.status.busy": "2024-08-21T00:43:41.077482Z", + "iopub.status.idle": "2024-08-21T00:43:41.080541Z", + "shell.execute_reply": "2024-08-21T00:43:41.079995Z" } }, "outputs": [ @@ -1622,7 +1622,23 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0dad9db9a31a477eab9098311e808d21": { + "04b4be0e4d19425da37bd75a621a45da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "06b040da52cd4d0dab588972574990b6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1675,30 +1691,7 @@ "width": null } }, - "18da78389b0a44748edd4b3b775ef556": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_becc393342754010a03f20446ee58214", - "placeholder": "​", - "style": "IPY_MODEL_79cf1ecc3d0c4149996ba7fdc2676887", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "1f5e0d326b3a47219ac0b8db78a5c5f6": { + "1a4ac14e40014e26bf41208c22165933": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1751,30 +1744,49 @@ "width": null } }, - "2307eec64ab643ebae747e11b0720729": { + "301c779c7c62461ab1db96bd825d2cc4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "43304c8946bc4880b89aec27ab90e342": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9d5235bb7ed04190b18a773b3d3efd63", - "placeholder": "​", - "style": "IPY_MODEL_34bf61dba240468e8fcb01b02ed66521", + "layout": "IPY_MODEL_4ab0ce0465ae4c6297c0bb0536eb02af", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_301c779c7c62461ab1db96bd825d2cc4", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1433803.03it/s]" + "value": 50.0 } }, - "34bf61dba240468e8fcb01b02ed66521": { + "442d25dbb7a644b0ae076d819cf21b22": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1792,7 +1804,7 @@ "text_color": null } }, - "38acf3c857144639b987af77cca244a4": { + "4ab0ce0465ae4c6297c0bb0536eb02af": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1845,7 +1857,7 @@ "width": null } }, - "58dd4d9670a148249692956b66935771": { + "5e1035df5c2841d4b219f51fa2703747": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1860,101 +1872,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f6348c95b91347648513c9f5f70c8254", + "layout": "IPY_MODEL_1a4ac14e40014e26bf41208c22165933", "placeholder": "​", - "style": "IPY_MODEL_7d4a99434bb348e19319de2ba1293527", + "style": "IPY_MODEL_fc1c2fe4f5a8470f9a43d58552b2d6ca", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "64251c3cc8304107a9c59f4e758083e8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": " 10000/? [00:00<00:00, 919722.83it/s]" } }, - "711562c442544d2ba9ae58ac3bf3ebde": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "79cf1ecc3d0c4149996ba7fdc2676887": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7d4a99434bb348e19319de2ba1293527": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "83e348af905f47528631d5c89a2eaaa0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "923e2ee08922452996a9811a6733f07b": { + "60127a1d6661482792d110c71545f0a1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2007,7 +1933,7 @@ "width": null } }, - "9d5235bb7ed04190b18a773b3d3efd63": { + "61b6c0ee7d4d4941b70dec5a3a2b0fd8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2060,7 +1986,30 @@ "width": null } }, - "a2f0c54e98dd4c02b9cf7548afd53f0d": { + "79db81ca82b94628b05387fc709be4dc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f4a3c03dd523493e898274484c4a9c45", + "placeholder": "​", + "style": "IPY_MODEL_442d25dbb7a644b0ae076d819cf21b22", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " + } + }, + "7ce54cb5c4f340b7bb0a813fe148c2ac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2075,16 +2024,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_58dd4d9670a148249692956b66935771", - "IPY_MODEL_ed35e4581e304b12a9fcd8aac50efddd", - "IPY_MODEL_2307eec64ab643ebae747e11b0720729" + "IPY_MODEL_79db81ca82b94628b05387fc709be4dc", + "IPY_MODEL_e47850dfbc5f4009989ab0289c307870", + "IPY_MODEL_aaa8065daa9447e9b1ac9c75175cf03f" ], - "layout": "IPY_MODEL_b93db824989f44a1a6f83be666d704c1", + "layout": "IPY_MODEL_61b6c0ee7d4d4941b70dec5a3a2b0fd8", "tabbable": null, "tooltip": null } }, - "b93db824989f44a1a6f83be666d704c1": { + "8939e7811fea43b28098a0d858e5b425": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2137,7 +2086,89 @@ "width": null } }, - "becc393342754010a03f20446ee58214": { + "992eecd86a69461b9810f1af292a1cfe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "aaa8065daa9447e9b1ac9c75175cf03f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8939e7811fea43b28098a0d858e5b425", + "placeholder": "​", + "style": "IPY_MODEL_992eecd86a69461b9810f1af292a1cfe", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1357204.25it/s]" + } + }, + "af82f9cb368e40eba50a8fc6bd68bcbe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_60127a1d6661482792d110c71545f0a1", + "placeholder": "​", + "style": "IPY_MODEL_bfb61fbfbd2e4f2bb2af7ff0a2d508c4", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " + } + }, + "bfb61fbfbd2e4f2bb2af7ff0a2d508c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d05d41a4661944da894031ceb487c6a9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2190,54 +2221,7 @@ "width": null } }, - "c897a1b1a3354c639a5022c78bfe800b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_923e2ee08922452996a9811a6733f07b", - "placeholder": "​", - "style": "IPY_MODEL_711562c442544d2ba9ae58ac3bf3ebde", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1126048.11it/s]" - } - }, - "d82d5feb5be34f61b1a570c3dd0179b0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_18da78389b0a44748edd4b3b775ef556", - "IPY_MODEL_ed07d000c7324841a053ac613f7e0f37", - "IPY_MODEL_c897a1b1a3354c639a5022c78bfe800b" - ], - "layout": "IPY_MODEL_1f5e0d326b3a47219ac0b8db78a5c5f6", - "tabbable": null, - "tooltip": null - } - }, - "ed07d000c7324841a053ac613f7e0f37": { + "e47850dfbc5f4009989ab0289c307870": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2253,43 +2237,41 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0dad9db9a31a477eab9098311e808d21", + "layout": "IPY_MODEL_06b040da52cd4d0dab588972574990b6", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_64251c3cc8304107a9c59f4e758083e8", + "style": "IPY_MODEL_04b4be0e4d19425da37bd75a621a45da", "tabbable": null, "tooltip": null, "value": 50.0 } }, - "ed35e4581e304b12a9fcd8aac50efddd": { + "e88b11d2fc2c4e1dabf9d5ab29054a5a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_38acf3c857144639b987af77cca244a4", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_83e348af905f47528631d5c89a2eaaa0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_af82f9cb368e40eba50a8fc6bd68bcbe", + "IPY_MODEL_43304c8946bc4880b89aec27ab90e342", + "IPY_MODEL_5e1035df5c2841d4b219f51fa2703747" + ], + "layout": "IPY_MODEL_d05d41a4661944da894031ceb487c6a9", "tabbable": null, - "tooltip": null, - "value": 50.0 + "tooltip": null } }, - "f6348c95b91347648513c9f5f70c8254": { + "f4a3c03dd523493e898274484c4a9c45": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2341,6 +2323,24 @@ "visibility": null, "width": null } + }, + "fc1c2fe4f5a8470f9a43d58552b2d6ca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/tutorials/improving_ml_performance.ipynb b/master/tutorials/improving_ml_performance.ipynb index 294db8b4d..36a9a7528 100644 --- a/master/tutorials/improving_ml_performance.ipynb +++ b/master/tutorials/improving_ml_performance.ipynb @@ -60,10 +60,10 @@ "id": "2d638465", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:39.079038Z", - "iopub.status.busy": "2024-08-20T02:18:39.078872Z", - "iopub.status.idle": "2024-08-20T02:18:40.521690Z", - "shell.execute_reply": "2024-08-20T02:18:40.521131Z" + "iopub.execute_input": "2024-08-21T00:43:44.323922Z", + "iopub.status.busy": "2024-08-21T00:43:44.323504Z", + "iopub.status.idle": "2024-08-21T00:43:45.482662Z", + "shell.execute_reply": "2024-08-21T00:43:45.482106Z" }, "nbsphinx": "hidden" }, @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -99,10 +99,10 @@ "id": "b0bbf715-47c6-44ea-b15e-89800e62ee04", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:40.524199Z", - "iopub.status.busy": "2024-08-20T02:18:40.523738Z", - "iopub.status.idle": "2024-08-20T02:18:40.527321Z", - "shell.execute_reply": "2024-08-20T02:18:40.526891Z" + "iopub.execute_input": "2024-08-21T00:43:45.485461Z", + "iopub.status.busy": "2024-08-21T00:43:45.484927Z", + "iopub.status.idle": "2024-08-21T00:43:45.488591Z", + "shell.execute_reply": "2024-08-21T00:43:45.488149Z" } }, "outputs": [], @@ -140,10 +140,10 @@ "id": "c58f8015-d051-411c-9e03-5659cf3ad956", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:40.529321Z", - "iopub.status.busy": "2024-08-20T02:18:40.529040Z", - "iopub.status.idle": "2024-08-20T02:18:40.830470Z", - "shell.execute_reply": "2024-08-20T02:18:40.829983Z" + "iopub.execute_input": "2024-08-21T00:43:45.490643Z", + "iopub.status.busy": "2024-08-21T00:43:45.490301Z", + "iopub.status.idle": "2024-08-21T00:43:45.766813Z", + "shell.execute_reply": "2024-08-21T00:43:45.766258Z" } }, "outputs": [ @@ -273,10 +273,10 @@ "id": "1b5f50e6-d125-4e61-b63e-4004f0c9099a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:40.832627Z", - "iopub.status.busy": "2024-08-20T02:18:40.832279Z", - "iopub.status.idle": "2024-08-20T02:18:40.838038Z", - "shell.execute_reply": "2024-08-20T02:18:40.837573Z" + "iopub.execute_input": "2024-08-21T00:43:45.769098Z", + "iopub.status.busy": "2024-08-21T00:43:45.768752Z", + "iopub.status.idle": "2024-08-21T00:43:45.774608Z", + "shell.execute_reply": "2024-08-21T00:43:45.774168Z" } }, "outputs": [], @@ -312,10 +312,10 @@ "id": "a36c21e9-1c32-4df9-bd87-fffeb8c2175f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:40.840027Z", - "iopub.status.busy": "2024-08-20T02:18:40.839707Z", - "iopub.status.idle": "2024-08-20T02:18:40.846682Z", - "shell.execute_reply": "2024-08-20T02:18:40.846218Z" + "iopub.execute_input": "2024-08-21T00:43:45.776485Z", + "iopub.status.busy": "2024-08-21T00:43:45.776314Z", + "iopub.status.idle": "2024-08-21T00:43:45.783218Z", + "shell.execute_reply": "2024-08-21T00:43:45.782653Z" } }, "outputs": [ @@ -418,10 +418,10 @@ "id": "5f856a3a-8aae-4836-b146-9ab68d8d1c7a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:40.848706Z", - "iopub.status.busy": "2024-08-20T02:18:40.848382Z", - "iopub.status.idle": "2024-08-20T02:18:40.853255Z", - "shell.execute_reply": "2024-08-20T02:18:40.852680Z" + "iopub.execute_input": "2024-08-21T00:43:45.785398Z", + "iopub.status.busy": "2024-08-21T00:43:45.785009Z", + "iopub.status.idle": "2024-08-21T00:43:45.789740Z", + "shell.execute_reply": "2024-08-21T00:43:45.789307Z" } }, "outputs": [], @@ -449,10 +449,10 @@ "id": "46275634-da56-4e58-9061-8108be2b585d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:40.855222Z", - "iopub.status.busy": "2024-08-20T02:18:40.854921Z", - "iopub.status.idle": "2024-08-20T02:18:40.860716Z", - "shell.execute_reply": "2024-08-20T02:18:40.860248Z" + "iopub.execute_input": "2024-08-21T00:43:45.791748Z", + "iopub.status.busy": "2024-08-21T00:43:45.791456Z", + "iopub.status.idle": "2024-08-21T00:43:45.797389Z", + "shell.execute_reply": "2024-08-21T00:43:45.796810Z" } }, "outputs": [], @@ -488,10 +488,10 @@ "id": "769c4c5e-a7ff-4e02-bee5-2b2e676aec14", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:40.862798Z", - "iopub.status.busy": "2024-08-20T02:18:40.862460Z", - "iopub.status.idle": "2024-08-20T02:18:40.866494Z", - "shell.execute_reply": "2024-08-20T02:18:40.865924Z" + "iopub.execute_input": "2024-08-21T00:43:45.799517Z", + "iopub.status.busy": "2024-08-21T00:43:45.799174Z", + "iopub.status.idle": "2024-08-21T00:43:45.803248Z", + "shell.execute_reply": "2024-08-21T00:43:45.802813Z" } }, "outputs": [], @@ -506,10 +506,10 @@ "id": "7ac47c3d-9e87-45b7-9064-bfa45578872e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:40.868698Z", - "iopub.status.busy": "2024-08-20T02:18:40.868378Z", - "iopub.status.idle": "2024-08-20T02:18:40.933865Z", - "shell.execute_reply": "2024-08-20T02:18:40.933191Z" + "iopub.execute_input": "2024-08-21T00:43:45.805238Z", + "iopub.status.busy": "2024-08-21T00:43:45.804914Z", + "iopub.status.idle": "2024-08-21T00:43:45.870308Z", + "shell.execute_reply": "2024-08-21T00:43:45.869741Z" } }, "outputs": [ @@ -609,10 +609,10 @@ "id": "6cef169e-d15b-4d18-9cb7-8ea589557e6b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:40.936337Z", - "iopub.status.busy": "2024-08-20T02:18:40.936127Z", - "iopub.status.idle": "2024-08-20T02:18:40.946629Z", - "shell.execute_reply": "2024-08-20T02:18:40.946140Z" + "iopub.execute_input": "2024-08-21T00:43:45.873236Z", + "iopub.status.busy": "2024-08-21T00:43:45.872722Z", + "iopub.status.idle": "2024-08-21T00:43:45.883273Z", + "shell.execute_reply": "2024-08-21T00:43:45.882789Z" } }, "outputs": [ @@ -724,10 +724,10 @@ "id": "b68e0418-86cf-431f-9107-2dd0a310ca42", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:40.949049Z", - "iopub.status.busy": "2024-08-20T02:18:40.948678Z", - "iopub.status.idle": "2024-08-20T02:18:40.968181Z", - "shell.execute_reply": "2024-08-20T02:18:40.967688Z" + "iopub.execute_input": "2024-08-21T00:43:45.886413Z", + "iopub.status.busy": "2024-08-21T00:43:45.885359Z", + "iopub.status.idle": "2024-08-21T00:43:45.908212Z", + "shell.execute_reply": "2024-08-21T00:43:45.907674Z" } }, "outputs": [ @@ -931,10 +931,10 @@ "id": "0e9bd131-429f-48af-b4fc-ed8b907950b9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:40.971331Z", - "iopub.status.busy": "2024-08-20T02:18:40.970401Z", - "iopub.status.idle": "2024-08-20T02:18:40.976342Z", - "shell.execute_reply": "2024-08-20T02:18:40.975848Z" + "iopub.execute_input": "2024-08-21T00:43:45.911694Z", + "iopub.status.busy": "2024-08-21T00:43:45.910777Z", + "iopub.status.idle": "2024-08-21T00:43:45.916622Z", + "shell.execute_reply": "2024-08-21T00:43:45.916119Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "id": "e72320ec-7792-4347-b2fb-630f2519127c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:40.979841Z", - "iopub.status.busy": "2024-08-20T02:18:40.978920Z", - "iopub.status.idle": "2024-08-20T02:18:40.985001Z", - "shell.execute_reply": "2024-08-20T02:18:40.984506Z" + "iopub.execute_input": "2024-08-21T00:43:45.920115Z", + "iopub.status.busy": "2024-08-21T00:43:45.919169Z", + "iopub.status.idle": "2024-08-21T00:43:45.925271Z", + "shell.execute_reply": "2024-08-21T00:43:45.924781Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "id": "8520ba4a-3ad6-408a-b377-3f47c32d745a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:40.988510Z", - "iopub.status.busy": "2024-08-20T02:18:40.987585Z", - "iopub.status.idle": "2024-08-20T02:18:40.998815Z", - "shell.execute_reply": "2024-08-20T02:18:40.998368Z" + "iopub.execute_input": "2024-08-21T00:43:45.928777Z", + "iopub.status.busy": "2024-08-21T00:43:45.927850Z", + "iopub.status.idle": "2024-08-21T00:43:45.938066Z", + "shell.execute_reply": "2024-08-21T00:43:45.937663Z" } }, "outputs": [ @@ -1205,10 +1205,10 @@ "id": "3c002665-c48b-4f04-91f7-ad112a49efc7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:41.000752Z", - "iopub.status.busy": "2024-08-20T02:18:41.000579Z", - "iopub.status.idle": "2024-08-20T02:18:41.004955Z", - "shell.execute_reply": "2024-08-20T02:18:41.004507Z" + "iopub.execute_input": "2024-08-21T00:43:45.940879Z", + "iopub.status.busy": "2024-08-21T00:43:45.940142Z", + "iopub.status.idle": "2024-08-21T00:43:45.944832Z", + "shell.execute_reply": "2024-08-21T00:43:45.944412Z" } }, "outputs": [], @@ -1234,10 +1234,10 @@ "id": "36319f39-f563-4f63-913f-821373180350", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:41.007070Z", - "iopub.status.busy": "2024-08-20T02:18:41.006752Z", - "iopub.status.idle": "2024-08-20T02:18:41.119533Z", - "shell.execute_reply": "2024-08-20T02:18:41.119022Z" + "iopub.execute_input": "2024-08-21T00:43:45.947654Z", + "iopub.status.busy": "2024-08-21T00:43:45.946915Z", + "iopub.status.idle": "2024-08-21T00:43:46.067274Z", + "shell.execute_reply": "2024-08-21T00:43:46.066714Z" } }, "outputs": [ @@ -1711,10 +1711,10 @@ "id": "044c0eb1-299a-4851-b1bf-268d5bce56c1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:41.121743Z", - "iopub.status.busy": "2024-08-20T02:18:41.121479Z", - "iopub.status.idle": "2024-08-20T02:18:41.127184Z", - "shell.execute_reply": "2024-08-20T02:18:41.126702Z" + "iopub.execute_input": "2024-08-21T00:43:46.069789Z", + "iopub.status.busy": "2024-08-21T00:43:46.069405Z", + "iopub.status.idle": "2024-08-21T00:43:46.077810Z", + "shell.execute_reply": "2024-08-21T00:43:46.077302Z" } }, "outputs": [], @@ -1738,10 +1738,10 @@ "id": "c43df278-abfe-40e5-9d48-2df3efea9379", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:41.129468Z", - "iopub.status.busy": "2024-08-20T02:18:41.129152Z", - "iopub.status.idle": "2024-08-20T02:18:43.315688Z", - "shell.execute_reply": "2024-08-20T02:18:43.314995Z" + "iopub.execute_input": "2024-08-21T00:43:46.080126Z", + "iopub.status.busy": "2024-08-21T00:43:46.079767Z", + "iopub.status.idle": "2024-08-21T00:43:48.070424Z", + "shell.execute_reply": "2024-08-21T00:43:48.069820Z" } }, "outputs": [ @@ -1953,10 +1953,10 @@ "id": "77c7f776-54b3-45b5-9207-715d6d2e90c0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:43.319532Z", - "iopub.status.busy": "2024-08-20T02:18:43.318405Z", - "iopub.status.idle": "2024-08-20T02:18:43.333322Z", - "shell.execute_reply": "2024-08-20T02:18:43.332786Z" + "iopub.execute_input": "2024-08-21T00:43:48.074100Z", + "iopub.status.busy": "2024-08-21T00:43:48.072890Z", + "iopub.status.idle": "2024-08-21T00:43:48.087651Z", + "shell.execute_reply": "2024-08-21T00:43:48.087161Z" } }, "outputs": [ @@ -2073,10 +2073,10 @@ "id": "7e218d04-0729-4f42-b264-51c73601ebe6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:43.336884Z", - "iopub.status.busy": "2024-08-20T02:18:43.335952Z", - "iopub.status.idle": "2024-08-20T02:18:43.339988Z", - "shell.execute_reply": "2024-08-20T02:18:43.339477Z" + "iopub.execute_input": "2024-08-21T00:43:48.091142Z", + "iopub.status.busy": "2024-08-21T00:43:48.090218Z", + "iopub.status.idle": "2024-08-21T00:43:48.094330Z", + "shell.execute_reply": "2024-08-21T00:43:48.093698Z" } }, "outputs": [], @@ -2090,10 +2090,10 @@ "id": "7e2bdb41-321e-4929-aa01-1f60948b9e8b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:43.343505Z", - "iopub.status.busy": "2024-08-20T02:18:43.342554Z", - "iopub.status.idle": "2024-08-20T02:18:43.348202Z", - "shell.execute_reply": "2024-08-20T02:18:43.347701Z" + "iopub.execute_input": "2024-08-21T00:43:48.097756Z", + "iopub.status.busy": "2024-08-21T00:43:48.096840Z", + "iopub.status.idle": "2024-08-21T00:43:48.102318Z", + "shell.execute_reply": "2024-08-21T00:43:48.101826Z" } }, "outputs": [], @@ -2117,10 +2117,10 @@ "id": "5ce2d89f-e832-448d-bfac-9941da15c895", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:43.351804Z", - "iopub.status.busy": "2024-08-20T02:18:43.350840Z", - "iopub.status.idle": "2024-08-20T02:18:43.384316Z", - "shell.execute_reply": "2024-08-20T02:18:43.383808Z" + "iopub.execute_input": "2024-08-21T00:43:48.105802Z", + "iopub.status.busy": "2024-08-21T00:43:48.104884Z", + "iopub.status.idle": "2024-08-21T00:43:48.133986Z", + "shell.execute_reply": "2024-08-21T00:43:48.133511Z" } }, "outputs": [ @@ -2160,10 +2160,10 @@ "id": "9f437756-112e-4531-84fc-6ceadd0c9ef5", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:43.387211Z", - "iopub.status.busy": "2024-08-20T02:18:43.386773Z", - "iopub.status.idle": "2024-08-20T02:18:43.934525Z", - "shell.execute_reply": "2024-08-20T02:18:43.933974Z" + "iopub.execute_input": "2024-08-21T00:43:48.137043Z", + "iopub.status.busy": "2024-08-21T00:43:48.136416Z", + "iopub.status.idle": "2024-08-21T00:43:48.664903Z", + "shell.execute_reply": "2024-08-21T00:43:48.664340Z" } }, "outputs": [], @@ -2194,10 +2194,10 @@ "id": "707625f6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:43.937351Z", - "iopub.status.busy": "2024-08-20T02:18:43.936985Z", - "iopub.status.idle": "2024-08-20T02:18:44.067674Z", - "shell.execute_reply": "2024-08-20T02:18:44.067055Z" + "iopub.execute_input": "2024-08-21T00:43:48.668839Z", + "iopub.status.busy": "2024-08-21T00:43:48.667904Z", + "iopub.status.idle": "2024-08-21T00:43:48.799618Z", + "shell.execute_reply": "2024-08-21T00:43:48.799015Z" } }, "outputs": [ @@ -2408,10 +2408,10 @@ "id": "25afe46c-a521-483c-b168-728c76d970dc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:44.071135Z", - "iopub.status.busy": "2024-08-20T02:18:44.070004Z", - "iopub.status.idle": "2024-08-20T02:18:44.079002Z", - "shell.execute_reply": "2024-08-20T02:18:44.078493Z" + "iopub.execute_input": "2024-08-21T00:43:48.802587Z", + "iopub.status.busy": "2024-08-21T00:43:48.802251Z", + "iopub.status.idle": "2024-08-21T00:43:48.808846Z", + "shell.execute_reply": "2024-08-21T00:43:48.808361Z" } }, "outputs": [ @@ -2441,10 +2441,10 @@ "id": "6efcf06f-cc40-4964-87df-5204d3b1b9d4", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:44.082548Z", - "iopub.status.busy": "2024-08-20T02:18:44.081615Z", - "iopub.status.idle": "2024-08-20T02:18:44.089637Z", - "shell.execute_reply": "2024-08-20T02:18:44.089115Z" + "iopub.execute_input": "2024-08-21T00:43:48.811963Z", + "iopub.status.busy": "2024-08-21T00:43:48.810885Z", + "iopub.status.idle": "2024-08-21T00:43:48.818883Z", + "shell.execute_reply": "2024-08-21T00:43:48.818393Z" } }, "outputs": [ @@ -2477,10 +2477,10 @@ "id": "7bc87d72-bbd5-4ed2-bc38-2218862ddfbd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:44.093142Z", - "iopub.status.busy": "2024-08-20T02:18:44.092209Z", - "iopub.status.idle": "2024-08-20T02:18:44.099634Z", - "shell.execute_reply": "2024-08-20T02:18:44.099137Z" + "iopub.execute_input": "2024-08-21T00:43:48.822356Z", + "iopub.status.busy": "2024-08-21T00:43:48.821424Z", + "iopub.status.idle": "2024-08-21T00:43:48.828749Z", + "shell.execute_reply": "2024-08-21T00:43:48.828250Z" } }, "outputs": [ @@ -2513,10 +2513,10 @@ "id": "9c70be3e-0ba2-4e3e-8c50-359d402ca1fe", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:44.103125Z", - "iopub.status.busy": "2024-08-20T02:18:44.102204Z", - "iopub.status.idle": "2024-08-20T02:18:44.108338Z", - "shell.execute_reply": "2024-08-20T02:18:44.107839Z" + "iopub.execute_input": "2024-08-21T00:43:48.832200Z", + "iopub.status.busy": "2024-08-21T00:43:48.831242Z", + "iopub.status.idle": "2024-08-21T00:43:48.837286Z", + "shell.execute_reply": "2024-08-21T00:43:48.836796Z" } }, "outputs": [ @@ -2542,10 +2542,10 @@ "id": "08080458-0cd7-447d-80e6-384cb8d31eaf", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:44.110735Z", - "iopub.status.busy": "2024-08-20T02:18:44.110563Z", - "iopub.status.idle": "2024-08-20T02:18:44.115117Z", - "shell.execute_reply": "2024-08-20T02:18:44.114675Z" + "iopub.execute_input": "2024-08-21T00:43:48.840754Z", + "iopub.status.busy": "2024-08-21T00:43:48.839819Z", + "iopub.status.idle": "2024-08-21T00:43:48.845405Z", + "shell.execute_reply": "2024-08-21T00:43:48.844997Z" } }, "outputs": [], @@ -2569,10 +2569,10 @@ "id": "009bb215-4d26-47da-a230-d0ccf4122629", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:44.117018Z", - "iopub.status.busy": "2024-08-20T02:18:44.116864Z", - "iopub.status.idle": "2024-08-20T02:18:44.191518Z", - "shell.execute_reply": "2024-08-20T02:18:44.190902Z" + "iopub.execute_input": "2024-08-21T00:43:48.848112Z", + "iopub.status.busy": "2024-08-21T00:43:48.847491Z", + "iopub.status.idle": "2024-08-21T00:43:48.923292Z", + "shell.execute_reply": "2024-08-21T00:43:48.922762Z" } }, "outputs": [ @@ -3052,10 +3052,10 @@ "id": "dcaeda51-9b24-4c04-889d-7e63563594fc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:44.195789Z", - "iopub.status.busy": "2024-08-20T02:18:44.195385Z", - "iopub.status.idle": "2024-08-20T02:18:44.204480Z", - "shell.execute_reply": "2024-08-20T02:18:44.203923Z" + "iopub.execute_input": "2024-08-21T00:43:48.926332Z", + "iopub.status.busy": "2024-08-21T00:43:48.925595Z", + "iopub.status.idle": "2024-08-21T00:43:48.935839Z", + "shell.execute_reply": "2024-08-21T00:43:48.935360Z" } }, "outputs": [ @@ -3111,10 +3111,10 @@ "id": "1d92d78d-e4a8-4322-bf38-f5a5dae3bf17", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:44.207795Z", - "iopub.status.busy": "2024-08-20T02:18:44.206903Z", - "iopub.status.idle": "2024-08-20T02:18:44.210712Z", - "shell.execute_reply": "2024-08-20T02:18:44.210291Z" + "iopub.execute_input": "2024-08-21T00:43:48.938763Z", + "iopub.status.busy": "2024-08-21T00:43:48.938336Z", + "iopub.status.idle": "2024-08-21T00:43:48.941682Z", + "shell.execute_reply": "2024-08-21T00:43:48.941148Z" } }, "outputs": [], @@ -3150,10 +3150,10 @@ "id": "941ab2a6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:44.213385Z", - "iopub.status.busy": "2024-08-20T02:18:44.212803Z", - "iopub.status.idle": "2024-08-20T02:18:44.223231Z", - "shell.execute_reply": "2024-08-20T02:18:44.222657Z" + "iopub.execute_input": "2024-08-21T00:43:48.943690Z", + "iopub.status.busy": "2024-08-21T00:43:48.943523Z", + "iopub.status.idle": "2024-08-21T00:43:48.953778Z", + "shell.execute_reply": "2024-08-21T00:43:48.953320Z" } }, "outputs": [], @@ -3261,10 +3261,10 @@ "id": "50666fb9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:44.225400Z", - "iopub.status.busy": "2024-08-20T02:18:44.225210Z", - "iopub.status.idle": "2024-08-20T02:18:44.231940Z", - "shell.execute_reply": "2024-08-20T02:18:44.231250Z" + "iopub.execute_input": "2024-08-21T00:43:48.955857Z", + "iopub.status.busy": "2024-08-21T00:43:48.955527Z", + "iopub.status.idle": "2024-08-21T00:43:48.961904Z", + "shell.execute_reply": "2024-08-21T00:43:48.961466Z" }, "nbsphinx": "hidden" }, @@ -3346,10 +3346,10 @@ "id": "f5aa2883-d20d-481f-a012-fcc7ff8e3e7e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:44.234067Z", - "iopub.status.busy": "2024-08-20T02:18:44.233893Z", - "iopub.status.idle": "2024-08-20T02:18:44.237411Z", - "shell.execute_reply": "2024-08-20T02:18:44.236700Z" + "iopub.execute_input": "2024-08-21T00:43:48.963753Z", + "iopub.status.busy": "2024-08-21T00:43:48.963585Z", + "iopub.status.idle": "2024-08-21T00:43:48.966870Z", + "shell.execute_reply": "2024-08-21T00:43:48.966412Z" } }, "outputs": [], @@ -3373,10 +3373,10 @@ "id": "ce1c0ada-88b1-4654-b43f-3c0b59002979", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:44.239332Z", - "iopub.status.busy": "2024-08-20T02:18:44.239159Z", - "iopub.status.idle": "2024-08-20T02:18:48.319121Z", - "shell.execute_reply": "2024-08-20T02:18:48.318603Z" + "iopub.execute_input": "2024-08-21T00:43:48.968877Z", + "iopub.status.busy": "2024-08-21T00:43:48.968552Z", + "iopub.status.idle": "2024-08-21T00:43:52.986642Z", + "shell.execute_reply": "2024-08-21T00:43:52.986089Z" } }, "outputs": [ @@ -3419,10 +3419,10 @@ "id": "3f572acf-31c3-4874-9100-451796e35b06", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:48.322465Z", - "iopub.status.busy": "2024-08-20T02:18:48.321697Z", - "iopub.status.idle": "2024-08-20T02:18:48.325214Z", - "shell.execute_reply": "2024-08-20T02:18:48.324785Z" + "iopub.execute_input": "2024-08-21T00:43:52.989780Z", + "iopub.status.busy": "2024-08-21T00:43:52.988877Z", + "iopub.status.idle": "2024-08-21T00:43:52.993710Z", + "shell.execute_reply": "2024-08-21T00:43:52.993266Z" } }, "outputs": [ @@ -3460,10 +3460,10 @@ "id": "6a025a88", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:48.327316Z", - "iopub.status.busy": "2024-08-20T02:18:48.327002Z", - "iopub.status.idle": "2024-08-20T02:18:48.329876Z", - "shell.execute_reply": "2024-08-20T02:18:48.329469Z" + "iopub.execute_input": "2024-08-21T00:43:52.995821Z", + "iopub.status.busy": "2024-08-21T00:43:52.995483Z", + "iopub.status.idle": "2024-08-21T00:43:52.998348Z", + "shell.execute_reply": "2024-08-21T00:43:52.997886Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index c1a97fbf9..6ff79093e 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:51.681853Z", - "iopub.status.busy": "2024-08-20T02:18:51.681681Z", - "iopub.status.idle": "2024-08-20T02:18:53.129044Z", - "shell.execute_reply": "2024-08-20T02:18:53.128476Z" + "iopub.execute_input": "2024-08-21T00:43:56.140800Z", + "iopub.status.busy": "2024-08-21T00:43:56.140620Z", + "iopub.status.idle": "2024-08-21T00:43:57.343557Z", + "shell.execute_reply": "2024-08-21T00:43:57.343015Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:53.131558Z", - "iopub.status.busy": "2024-08-20T02:18:53.131088Z", - "iopub.status.idle": "2024-08-20T02:18:53.134587Z", - "shell.execute_reply": "2024-08-20T02:18:53.134019Z" + "iopub.execute_input": "2024-08-21T00:43:57.346298Z", + "iopub.status.busy": "2024-08-21T00:43:57.345733Z", + "iopub.status.idle": "2024-08-21T00:43:57.530661Z", + "shell.execute_reply": "2024-08-21T00:43:57.530087Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:53.136980Z", - "iopub.status.busy": "2024-08-20T02:18:53.136531Z", - "iopub.status.idle": "2024-08-20T02:18:53.148739Z", - "shell.execute_reply": "2024-08-20T02:18:53.148175Z" + "iopub.execute_input": "2024-08-21T00:43:57.533119Z", + "iopub.status.busy": "2024-08-21T00:43:57.532920Z", + "iopub.status.idle": "2024-08-21T00:43:57.544404Z", + "shell.execute_reply": "2024-08-21T00:43:57.543955Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:53.150948Z", - "iopub.status.busy": "2024-08-20T02:18:53.150659Z", - "iopub.status.idle": "2024-08-20T02:18:53.391414Z", - "shell.execute_reply": "2024-08-20T02:18:53.390934Z" + "iopub.execute_input": "2024-08-21T00:43:57.546292Z", + "iopub.status.busy": "2024-08-21T00:43:57.546113Z", + "iopub.status.idle": "2024-08-21T00:43:57.781144Z", + "shell.execute_reply": "2024-08-21T00:43:57.780517Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:53.393846Z", - "iopub.status.busy": "2024-08-20T02:18:53.393517Z", - "iopub.status.idle": "2024-08-20T02:18:53.419044Z", - "shell.execute_reply": "2024-08-20T02:18:53.418597Z" + "iopub.execute_input": "2024-08-21T00:43:57.783496Z", + "iopub.status.busy": "2024-08-21T00:43:57.783061Z", + "iopub.status.idle": "2024-08-21T00:43:57.809126Z", + "shell.execute_reply": "2024-08-21T00:43:57.808529Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:53.421156Z", - "iopub.status.busy": "2024-08-20T02:18:53.420796Z", - "iopub.status.idle": "2024-08-20T02:18:55.596000Z", - "shell.execute_reply": "2024-08-20T02:18:55.595347Z" + "iopub.execute_input": "2024-08-21T00:43:57.811664Z", + "iopub.status.busy": "2024-08-21T00:43:57.811098Z", + "iopub.status.idle": "2024-08-21T00:43:59.890782Z", + "shell.execute_reply": "2024-08-21T00:43:59.890150Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:55.598602Z", - "iopub.status.busy": "2024-08-20T02:18:55.598063Z", - "iopub.status.idle": "2024-08-20T02:18:55.616511Z", - "shell.execute_reply": "2024-08-20T02:18:55.616058Z" + "iopub.execute_input": "2024-08-21T00:43:59.893622Z", + "iopub.status.busy": "2024-08-21T00:43:59.892889Z", + "iopub.status.idle": "2024-08-21T00:43:59.910894Z", + "shell.execute_reply": "2024-08-21T00:43:59.910318Z" }, "scrolled": true }, @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:55.618658Z", - "iopub.status.busy": "2024-08-20T02:18:55.618308Z", - "iopub.status.idle": "2024-08-20T02:18:57.218343Z", - "shell.execute_reply": "2024-08-20T02:18:57.217657Z" + "iopub.execute_input": "2024-08-21T00:43:59.913118Z", + "iopub.status.busy": "2024-08-21T00:43:59.912629Z", + "iopub.status.idle": "2024-08-21T00:44:01.485996Z", + "shell.execute_reply": "2024-08-21T00:44:01.485331Z" }, "id": "AaHC5MRKjruT" }, @@ -729,10 +729,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:57.221005Z", - "iopub.status.busy": "2024-08-20T02:18:57.220309Z", - "iopub.status.idle": "2024-08-20T02:18:57.234346Z", - "shell.execute_reply": "2024-08-20T02:18:57.233776Z" + "iopub.execute_input": "2024-08-21T00:44:01.488797Z", + "iopub.status.busy": "2024-08-21T00:44:01.488082Z", + "iopub.status.idle": "2024-08-21T00:44:01.501841Z", + "shell.execute_reply": "2024-08-21T00:44:01.501318Z" }, "id": "Wy27rvyhjruU" }, @@ -781,10 +781,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:57.236411Z", - "iopub.status.busy": "2024-08-20T02:18:57.236099Z", - "iopub.status.idle": "2024-08-20T02:18:57.319189Z", - "shell.execute_reply": "2024-08-20T02:18:57.318628Z" + "iopub.execute_input": "2024-08-21T00:44:01.503912Z", + "iopub.status.busy": "2024-08-21T00:44:01.503642Z", + "iopub.status.idle": "2024-08-21T00:44:01.590531Z", + "shell.execute_reply": "2024-08-21T00:44:01.589895Z" }, "id": "Db8YHnyVjruU" }, @@ -891,10 +891,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:57.321670Z", - "iopub.status.busy": "2024-08-20T02:18:57.321188Z", - "iopub.status.idle": "2024-08-20T02:18:57.536110Z", - "shell.execute_reply": "2024-08-20T02:18:57.535559Z" + "iopub.execute_input": "2024-08-21T00:44:01.592709Z", + "iopub.status.busy": "2024-08-21T00:44:01.592483Z", + "iopub.status.idle": "2024-08-21T00:44:01.806762Z", + "shell.execute_reply": "2024-08-21T00:44:01.806173Z" }, "id": "iJqAHuS2jruV" }, @@ -931,10 +931,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:57.538284Z", - "iopub.status.busy": "2024-08-20T02:18:57.538098Z", - "iopub.status.idle": "2024-08-20T02:18:57.555022Z", - "shell.execute_reply": "2024-08-20T02:18:57.554545Z" + "iopub.execute_input": "2024-08-21T00:44:01.809115Z", + "iopub.status.busy": "2024-08-21T00:44:01.808792Z", + "iopub.status.idle": "2024-08-21T00:44:01.825931Z", + "shell.execute_reply": "2024-08-21T00:44:01.825443Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1400,10 +1400,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:57.557201Z", - "iopub.status.busy": "2024-08-20T02:18:57.556872Z", - "iopub.status.idle": "2024-08-20T02:18:57.566684Z", - "shell.execute_reply": "2024-08-20T02:18:57.566222Z" + "iopub.execute_input": "2024-08-21T00:44:01.828060Z", + "iopub.status.busy": "2024-08-21T00:44:01.827758Z", + "iopub.status.idle": "2024-08-21T00:44:01.837905Z", + "shell.execute_reply": "2024-08-21T00:44:01.837364Z" }, "id": "0lonvOYvjruV" }, @@ -1550,10 +1550,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:57.568776Z", - "iopub.status.busy": "2024-08-20T02:18:57.568456Z", - "iopub.status.idle": "2024-08-20T02:18:57.661709Z", - "shell.execute_reply": "2024-08-20T02:18:57.661129Z" + "iopub.execute_input": "2024-08-21T00:44:01.839879Z", + "iopub.status.busy": "2024-08-21T00:44:01.839580Z", + "iopub.status.idle": "2024-08-21T00:44:01.935954Z", + "shell.execute_reply": "2024-08-21T00:44:01.935375Z" }, "id": "MfqTCa3kjruV" }, @@ -1634,10 +1634,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:57.664109Z", - "iopub.status.busy": "2024-08-20T02:18:57.663766Z", - "iopub.status.idle": "2024-08-20T02:18:57.807373Z", - "shell.execute_reply": "2024-08-20T02:18:57.806736Z" + "iopub.execute_input": "2024-08-21T00:44:01.938342Z", + "iopub.status.busy": "2024-08-21T00:44:01.937987Z", + "iopub.status.idle": "2024-08-21T00:44:02.078263Z", + "shell.execute_reply": "2024-08-21T00:44:02.077615Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1697,10 +1697,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:57.809598Z", - "iopub.status.busy": "2024-08-20T02:18:57.809366Z", - "iopub.status.idle": "2024-08-20T02:18:57.813238Z", - "shell.execute_reply": "2024-08-20T02:18:57.812677Z" + "iopub.execute_input": "2024-08-21T00:44:02.080783Z", + "iopub.status.busy": "2024-08-21T00:44:02.080438Z", + "iopub.status.idle": "2024-08-21T00:44:02.084408Z", + "shell.execute_reply": "2024-08-21T00:44:02.083813Z" }, "id": "0rXP3ZPWjruW" }, @@ -1738,10 +1738,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:57.815295Z", - "iopub.status.busy": "2024-08-20T02:18:57.815004Z", - "iopub.status.idle": "2024-08-20T02:18:57.818743Z", - "shell.execute_reply": "2024-08-20T02:18:57.818208Z" + "iopub.execute_input": "2024-08-21T00:44:02.086440Z", + "iopub.status.busy": "2024-08-21T00:44:02.086169Z", + "iopub.status.idle": "2024-08-21T00:44:02.090052Z", + "shell.execute_reply": "2024-08-21T00:44:02.089491Z" }, "id": "-iRPe8KXjruW" }, @@ -1796,10 +1796,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:57.820752Z", - "iopub.status.busy": "2024-08-20T02:18:57.820413Z", - "iopub.status.idle": "2024-08-20T02:18:57.857122Z", - "shell.execute_reply": "2024-08-20T02:18:57.856626Z" + "iopub.execute_input": "2024-08-21T00:44:02.092030Z", + "iopub.status.busy": "2024-08-21T00:44:02.091746Z", + "iopub.status.idle": "2024-08-21T00:44:02.128325Z", + "shell.execute_reply": "2024-08-21T00:44:02.127730Z" }, "id": "ZpipUliyjruW" }, @@ -1850,10 +1850,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:57.859267Z", - "iopub.status.busy": "2024-08-20T02:18:57.858911Z", - "iopub.status.idle": "2024-08-20T02:18:57.899267Z", - "shell.execute_reply": "2024-08-20T02:18:57.898774Z" + "iopub.execute_input": "2024-08-21T00:44:02.130318Z", + "iopub.status.busy": "2024-08-21T00:44:02.130002Z", + "iopub.status.idle": "2024-08-21T00:44:02.171110Z", + "shell.execute_reply": "2024-08-21T00:44:02.170530Z" }, "id": "SLq-3q4xjruX" }, @@ -1922,10 +1922,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:57.901394Z", - "iopub.status.busy": "2024-08-20T02:18:57.901043Z", - "iopub.status.idle": "2024-08-20T02:18:58.003043Z", - "shell.execute_reply": "2024-08-20T02:18:58.002311Z" + "iopub.execute_input": "2024-08-21T00:44:02.173124Z", + "iopub.status.busy": "2024-08-21T00:44:02.172810Z", + "iopub.status.idle": "2024-08-21T00:44:02.280606Z", + "shell.execute_reply": "2024-08-21T00:44:02.279967Z" }, "id": "g5LHhhuqFbXK" }, @@ -1957,10 +1957,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:58.006068Z", - "iopub.status.busy": "2024-08-20T02:18:58.005525Z", - "iopub.status.idle": "2024-08-20T02:18:58.110250Z", - "shell.execute_reply": "2024-08-20T02:18:58.109590Z" + "iopub.execute_input": "2024-08-21T00:44:02.283100Z", + "iopub.status.busy": "2024-08-21T00:44:02.282915Z", + "iopub.status.idle": "2024-08-21T00:44:02.392853Z", + "shell.execute_reply": "2024-08-21T00:44:02.392282Z" }, "id": "p7w8F8ezBcet" }, @@ -2017,10 +2017,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:58.112453Z", - "iopub.status.busy": "2024-08-20T02:18:58.112218Z", - "iopub.status.idle": "2024-08-20T02:18:58.323254Z", - "shell.execute_reply": "2024-08-20T02:18:58.322659Z" + "iopub.execute_input": "2024-08-21T00:44:02.395138Z", + "iopub.status.busy": "2024-08-21T00:44:02.394895Z", + "iopub.status.idle": "2024-08-21T00:44:02.630946Z", + "shell.execute_reply": "2024-08-21T00:44:02.630356Z" }, "id": "WETRL74tE_sU" }, @@ -2055,10 +2055,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:58.325554Z", - "iopub.status.busy": "2024-08-20T02:18:58.325088Z", - "iopub.status.idle": "2024-08-20T02:18:58.549365Z", - "shell.execute_reply": "2024-08-20T02:18:58.548707Z" + "iopub.execute_input": "2024-08-21T00:44:02.633172Z", + "iopub.status.busy": "2024-08-21T00:44:02.632982Z", + "iopub.status.idle": "2024-08-21T00:44:02.858035Z", + "shell.execute_reply": "2024-08-21T00:44:02.857391Z" }, "id": "kCfdx2gOLmXS" }, @@ -2220,10 +2220,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:58.551633Z", - "iopub.status.busy": "2024-08-20T02:18:58.551390Z", - "iopub.status.idle": "2024-08-20T02:18:58.557774Z", - "shell.execute_reply": "2024-08-20T02:18:58.557277Z" + "iopub.execute_input": "2024-08-21T00:44:02.860575Z", + "iopub.status.busy": "2024-08-21T00:44:02.860188Z", + "iopub.status.idle": "2024-08-21T00:44:02.866265Z", + "shell.execute_reply": "2024-08-21T00:44:02.865703Z" }, "id": "-uogYRWFYnuu" }, @@ -2277,10 +2277,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:58.559834Z", - "iopub.status.busy": "2024-08-20T02:18:58.559507Z", - "iopub.status.idle": "2024-08-20T02:18:58.775893Z", - "shell.execute_reply": "2024-08-20T02:18:58.775301Z" + "iopub.execute_input": "2024-08-21T00:44:02.868556Z", + "iopub.status.busy": "2024-08-21T00:44:02.868207Z", + "iopub.status.idle": "2024-08-21T00:44:03.086365Z", + "shell.execute_reply": "2024-08-21T00:44:03.085768Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2327,10 +2327,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:18:58.778369Z", - "iopub.status.busy": "2024-08-20T02:18:58.777982Z", - "iopub.status.idle": "2024-08-20T02:18:59.833777Z", - "shell.execute_reply": "2024-08-20T02:18:59.833215Z" + "iopub.execute_input": "2024-08-21T00:44:03.088869Z", + "iopub.status.busy": "2024-08-21T00:44:03.088487Z", + "iopub.status.idle": "2024-08-21T00:44:04.135646Z", + "shell.execute_reply": "2024-08-21T00:44:04.135093Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index 95d3b75d7..073024f68 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:03.522991Z", - "iopub.status.busy": "2024-08-20T02:19:03.522832Z", - "iopub.status.idle": "2024-08-20T02:19:04.942768Z", - "shell.execute_reply": "2024-08-20T02:19:04.942212Z" + "iopub.execute_input": "2024-08-21T00:44:08.536925Z", + "iopub.status.busy": "2024-08-21T00:44:08.536756Z", + "iopub.status.idle": "2024-08-21T00:44:09.687224Z", + "shell.execute_reply": "2024-08-21T00:44:09.686734Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:04.945469Z", - "iopub.status.busy": "2024-08-20T02:19:04.944979Z", - "iopub.status.idle": "2024-08-20T02:19:04.948001Z", - "shell.execute_reply": "2024-08-20T02:19:04.947540Z" + "iopub.execute_input": "2024-08-21T00:44:09.689870Z", + "iopub.status.busy": "2024-08-21T00:44:09.689408Z", + "iopub.status.idle": "2024-08-21T00:44:09.692521Z", + "shell.execute_reply": "2024-08-21T00:44:09.692073Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:04.950109Z", - "iopub.status.busy": "2024-08-20T02:19:04.949813Z", - "iopub.status.idle": "2024-08-20T02:19:04.957738Z", - "shell.execute_reply": "2024-08-20T02:19:04.957121Z" + "iopub.execute_input": "2024-08-21T00:44:09.694579Z", + "iopub.status.busy": "2024-08-21T00:44:09.694245Z", + "iopub.status.idle": "2024-08-21T00:44:09.702175Z", + "shell.execute_reply": "2024-08-21T00:44:09.701716Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:04.959689Z", - "iopub.status.busy": "2024-08-20T02:19:04.959510Z", - "iopub.status.idle": "2024-08-20T02:19:05.007494Z", - "shell.execute_reply": "2024-08-20T02:19:05.006846Z" + "iopub.execute_input": "2024-08-21T00:44:09.704223Z", + "iopub.status.busy": "2024-08-21T00:44:09.703803Z", + "iopub.status.idle": "2024-08-21T00:44:09.750825Z", + "shell.execute_reply": "2024-08-21T00:44:09.750317Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:05.009955Z", - "iopub.status.busy": "2024-08-20T02:19:05.009768Z", - "iopub.status.idle": "2024-08-20T02:19:05.026808Z", - "shell.execute_reply": "2024-08-20T02:19:05.026271Z" + "iopub.execute_input": "2024-08-21T00:44:09.753056Z", + "iopub.status.busy": "2024-08-21T00:44:09.752765Z", + "iopub.status.idle": "2024-08-21T00:44:09.769433Z", + "shell.execute_reply": "2024-08-21T00:44:09.768993Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:05.028834Z", - "iopub.status.busy": "2024-08-20T02:19:05.028656Z", - "iopub.status.idle": "2024-08-20T02:19:05.032389Z", - "shell.execute_reply": "2024-08-20T02:19:05.031915Z" + "iopub.execute_input": "2024-08-21T00:44:09.771586Z", + "iopub.status.busy": "2024-08-21T00:44:09.771104Z", + "iopub.status.idle": "2024-08-21T00:44:09.774951Z", + "shell.execute_reply": "2024-08-21T00:44:09.774438Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:05.034336Z", - "iopub.status.busy": "2024-08-20T02:19:05.034163Z", - "iopub.status.idle": "2024-08-20T02:19:05.052377Z", - "shell.execute_reply": "2024-08-20T02:19:05.051801Z" + "iopub.execute_input": "2024-08-21T00:44:09.777032Z", + "iopub.status.busy": "2024-08-21T00:44:09.776653Z", + "iopub.status.idle": "2024-08-21T00:44:09.792096Z", + "shell.execute_reply": "2024-08-21T00:44:09.791502Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:05.054757Z", - "iopub.status.busy": "2024-08-20T02:19:05.054411Z", - "iopub.status.idle": "2024-08-20T02:19:05.081157Z", - "shell.execute_reply": "2024-08-20T02:19:05.080588Z" + "iopub.execute_input": "2024-08-21T00:44:09.794285Z", + "iopub.status.busy": "2024-08-21T00:44:09.793887Z", + "iopub.status.idle": "2024-08-21T00:44:09.819917Z", + "shell.execute_reply": "2024-08-21T00:44:09.819351Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:05.083440Z", - "iopub.status.busy": "2024-08-20T02:19:05.083115Z", - "iopub.status.idle": "2024-08-20T02:19:07.231377Z", - "shell.execute_reply": "2024-08-20T02:19:07.230719Z" + "iopub.execute_input": "2024-08-21T00:44:09.822110Z", + "iopub.status.busy": "2024-08-21T00:44:09.821731Z", + "iopub.status.idle": "2024-08-21T00:44:11.811688Z", + "shell.execute_reply": "2024-08-21T00:44:11.811036Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:07.234251Z", - "iopub.status.busy": "2024-08-20T02:19:07.233645Z", - "iopub.status.idle": "2024-08-20T02:19:07.240565Z", - "shell.execute_reply": "2024-08-20T02:19:07.240009Z" + "iopub.execute_input": "2024-08-21T00:44:11.814185Z", + "iopub.status.busy": "2024-08-21T00:44:11.813766Z", + "iopub.status.idle": "2024-08-21T00:44:11.820401Z", + "shell.execute_reply": "2024-08-21T00:44:11.819834Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:07.242853Z", - "iopub.status.busy": "2024-08-20T02:19:07.242453Z", - "iopub.status.idle": "2024-08-20T02:19:07.254962Z", - "shell.execute_reply": "2024-08-20T02:19:07.254495Z" + "iopub.execute_input": "2024-08-21T00:44:11.822461Z", + "iopub.status.busy": "2024-08-21T00:44:11.822116Z", + "iopub.status.idle": "2024-08-21T00:44:11.835628Z", + "shell.execute_reply": "2024-08-21T00:44:11.835052Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:07.256913Z", - "iopub.status.busy": "2024-08-20T02:19:07.256739Z", - "iopub.status.idle": "2024-08-20T02:19:07.263271Z", - "shell.execute_reply": "2024-08-20T02:19:07.262692Z" + "iopub.execute_input": "2024-08-21T00:44:11.837751Z", + "iopub.status.busy": "2024-08-21T00:44:11.837353Z", + "iopub.status.idle": "2024-08-21T00:44:11.843662Z", + "shell.execute_reply": "2024-08-21T00:44:11.843107Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:07.265460Z", - "iopub.status.busy": "2024-08-20T02:19:07.265040Z", - "iopub.status.idle": "2024-08-20T02:19:07.267720Z", - "shell.execute_reply": "2024-08-20T02:19:07.267271Z" + "iopub.execute_input": "2024-08-21T00:44:11.845794Z", + "iopub.status.busy": "2024-08-21T00:44:11.845414Z", + "iopub.status.idle": "2024-08-21T00:44:11.848002Z", + "shell.execute_reply": "2024-08-21T00:44:11.847541Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:07.269736Z", - "iopub.status.busy": "2024-08-20T02:19:07.269397Z", - "iopub.status.idle": "2024-08-20T02:19:07.272660Z", - "shell.execute_reply": "2024-08-20T02:19:07.272134Z" + "iopub.execute_input": "2024-08-21T00:44:11.849966Z", + "iopub.status.busy": "2024-08-21T00:44:11.849626Z", + "iopub.status.idle": "2024-08-21T00:44:11.852992Z", + "shell.execute_reply": "2024-08-21T00:44:11.852471Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:07.274827Z", - "iopub.status.busy": "2024-08-20T02:19:07.274428Z", - "iopub.status.idle": "2024-08-20T02:19:07.277013Z", - "shell.execute_reply": "2024-08-20T02:19:07.276590Z" + "iopub.execute_input": "2024-08-21T00:44:11.855027Z", + "iopub.status.busy": "2024-08-21T00:44:11.854692Z", + "iopub.status.idle": "2024-08-21T00:44:11.857204Z", + "shell.execute_reply": "2024-08-21T00:44:11.856762Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:07.279076Z", - "iopub.status.busy": "2024-08-20T02:19:07.278677Z", - "iopub.status.idle": "2024-08-20T02:19:07.282955Z", - "shell.execute_reply": "2024-08-20T02:19:07.282393Z" + "iopub.execute_input": "2024-08-21T00:44:11.859154Z", + "iopub.status.busy": "2024-08-21T00:44:11.858846Z", + "iopub.status.idle": "2024-08-21T00:44:11.862989Z", + "shell.execute_reply": "2024-08-21T00:44:11.862452Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:07.285399Z", - "iopub.status.busy": "2024-08-20T02:19:07.284844Z", - "iopub.status.idle": "2024-08-20T02:19:07.313264Z", - "shell.execute_reply": "2024-08-20T02:19:07.312797Z" + "iopub.execute_input": "2024-08-21T00:44:11.865075Z", + "iopub.status.busy": "2024-08-21T00:44:11.864770Z", + "iopub.status.idle": "2024-08-21T00:44:11.893446Z", + "shell.execute_reply": "2024-08-21T00:44:11.892897Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:07.315544Z", - "iopub.status.busy": "2024-08-20T02:19:07.315122Z", - "iopub.status.idle": "2024-08-20T02:19:07.319938Z", - "shell.execute_reply": "2024-08-20T02:19:07.319454Z" + "iopub.execute_input": "2024-08-21T00:44:11.895680Z", + "iopub.status.busy": "2024-08-21T00:44:11.895363Z", + "iopub.status.idle": "2024-08-21T00:44:11.899971Z", + "shell.execute_reply": "2024-08-21T00:44:11.899406Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index 0045fc3d5..55be504a5 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:10.411320Z", - "iopub.status.busy": "2024-08-20T02:19:10.411152Z", - "iopub.status.idle": "2024-08-20T02:19:11.855342Z", - "shell.execute_reply": "2024-08-20T02:19:11.854698Z" + "iopub.execute_input": "2024-08-21T00:44:14.676045Z", + "iopub.status.busy": "2024-08-21T00:44:14.675498Z", + "iopub.status.idle": "2024-08-21T00:44:15.874773Z", + "shell.execute_reply": "2024-08-21T00:44:15.874228Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:11.858020Z", - "iopub.status.busy": "2024-08-20T02:19:11.857673Z", - "iopub.status.idle": "2024-08-20T02:19:11.877980Z", - "shell.execute_reply": "2024-08-20T02:19:11.877379Z" + "iopub.execute_input": "2024-08-21T00:44:15.877397Z", + "iopub.status.busy": "2024-08-21T00:44:15.876909Z", + "iopub.status.idle": "2024-08-21T00:44:16.071071Z", + "shell.execute_reply": "2024-08-21T00:44:16.070463Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:11.880496Z", - "iopub.status.busy": "2024-08-20T02:19:11.880001Z", - "iopub.status.idle": "2024-08-20T02:19:11.893035Z", - "shell.execute_reply": "2024-08-20T02:19:11.892560Z" + "iopub.execute_input": "2024-08-21T00:44:16.073651Z", + "iopub.status.busy": "2024-08-21T00:44:16.073324Z", + "iopub.status.idle": "2024-08-21T00:44:16.087152Z", + "shell.execute_reply": "2024-08-21T00:44:16.086700Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:11.895218Z", - "iopub.status.busy": "2024-08-20T02:19:11.894778Z", - "iopub.status.idle": "2024-08-20T02:19:14.510745Z", - "shell.execute_reply": "2024-08-20T02:19:14.510214Z" + "iopub.execute_input": "2024-08-21T00:44:16.089136Z", + "iopub.status.busy": "2024-08-21T00:44:16.088951Z", + "iopub.status.idle": "2024-08-21T00:44:18.704832Z", + "shell.execute_reply": "2024-08-21T00:44:18.704201Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:14.512935Z", - "iopub.status.busy": "2024-08-20T02:19:14.512739Z", - "iopub.status.idle": "2024-08-20T02:19:15.874543Z", - "shell.execute_reply": "2024-08-20T02:19:15.873988Z" + "iopub.execute_input": "2024-08-21T00:44:18.707234Z", + "iopub.status.busy": "2024-08-21T00:44:18.706898Z", + "iopub.status.idle": "2024-08-21T00:44:20.047215Z", + "shell.execute_reply": "2024-08-21T00:44:20.046656Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:15.876840Z", - "iopub.status.busy": "2024-08-20T02:19:15.876649Z", - "iopub.status.idle": "2024-08-20T02:19:15.880654Z", - "shell.execute_reply": "2024-08-20T02:19:15.880101Z" + "iopub.execute_input": "2024-08-21T00:44:20.049763Z", + "iopub.status.busy": "2024-08-21T00:44:20.049407Z", + "iopub.status.idle": "2024-08-21T00:44:20.053503Z", + "shell.execute_reply": "2024-08-21T00:44:20.052933Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:15.882794Z", - "iopub.status.busy": "2024-08-20T02:19:15.882352Z", - "iopub.status.idle": "2024-08-20T02:19:18.024351Z", - "shell.execute_reply": "2024-08-20T02:19:18.023702Z" + "iopub.execute_input": "2024-08-21T00:44:20.055507Z", + "iopub.status.busy": "2024-08-21T00:44:20.055225Z", + "iopub.status.idle": "2024-08-21T00:44:22.125480Z", + "shell.execute_reply": "2024-08-21T00:44:22.124862Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:18.026941Z", - "iopub.status.busy": "2024-08-20T02:19:18.026511Z", - "iopub.status.idle": "2024-08-20T02:19:18.035086Z", - "shell.execute_reply": "2024-08-20T02:19:18.034546Z" + "iopub.execute_input": "2024-08-21T00:44:22.128137Z", + "iopub.status.busy": "2024-08-21T00:44:22.127601Z", + "iopub.status.idle": "2024-08-21T00:44:22.135349Z", + "shell.execute_reply": "2024-08-21T00:44:22.134822Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:18.037295Z", - "iopub.status.busy": "2024-08-20T02:19:18.036946Z", - "iopub.status.idle": "2024-08-20T02:19:20.557491Z", - "shell.execute_reply": "2024-08-20T02:19:20.556891Z" + "iopub.execute_input": "2024-08-21T00:44:22.137450Z", + "iopub.status.busy": "2024-08-21T00:44:22.137123Z", + "iopub.status.idle": "2024-08-21T00:44:24.871164Z", + "shell.execute_reply": "2024-08-21T00:44:24.870540Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:20.559617Z", - "iopub.status.busy": "2024-08-20T02:19:20.559437Z", - "iopub.status.idle": "2024-08-20T02:19:20.563117Z", - "shell.execute_reply": "2024-08-20T02:19:20.562661Z" + "iopub.execute_input": "2024-08-21T00:44:24.873731Z", + "iopub.status.busy": "2024-08-21T00:44:24.873390Z", + "iopub.status.idle": "2024-08-21T00:44:24.877293Z", + "shell.execute_reply": "2024-08-21T00:44:24.876833Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:20.565077Z", - "iopub.status.busy": "2024-08-20T02:19:20.564763Z", - "iopub.status.idle": "2024-08-20T02:19:20.568388Z", - "shell.execute_reply": "2024-08-20T02:19:20.567836Z" + "iopub.execute_input": "2024-08-21T00:44:24.879356Z", + "iopub.status.busy": "2024-08-21T00:44:24.879021Z", + "iopub.status.idle": "2024-08-21T00:44:24.882335Z", + "shell.execute_reply": "2024-08-21T00:44:24.881908Z" } }, "outputs": [], @@ -769,10 +769,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:20.570408Z", - "iopub.status.busy": "2024-08-20T02:19:20.570101Z", - "iopub.status.idle": "2024-08-20T02:19:20.573344Z", - "shell.execute_reply": "2024-08-20T02:19:20.572863Z" + "iopub.execute_input": "2024-08-21T00:44:24.884241Z", + "iopub.status.busy": "2024-08-21T00:44:24.884064Z", + "iopub.status.idle": "2024-08-21T00:44:24.887414Z", + "shell.execute_reply": "2024-08-21T00:44:24.886955Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index 87cb82783..32d0f5ddc 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:23.360886Z", - "iopub.status.busy": "2024-08-20T02:19:23.360718Z", - "iopub.status.idle": "2024-08-20T02:19:24.792942Z", - "shell.execute_reply": "2024-08-20T02:19:24.792381Z" + "iopub.execute_input": "2024-08-21T00:44:27.446117Z", + "iopub.status.busy": "2024-08-21T00:44:27.445691Z", + "iopub.status.idle": "2024-08-21T00:44:28.649409Z", + "shell.execute_reply": "2024-08-21T00:44:28.648789Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:24.795672Z", - "iopub.status.busy": "2024-08-20T02:19:24.795198Z", - "iopub.status.idle": "2024-08-20T02:19:25.977880Z", - "shell.execute_reply": "2024-08-20T02:19:25.977145Z" + "iopub.execute_input": "2024-08-21T00:44:28.652026Z", + "iopub.status.busy": "2024-08-21T00:44:28.651696Z", + "iopub.status.idle": "2024-08-21T00:44:29.855030Z", + "shell.execute_reply": "2024-08-21T00:44:29.854307Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:25.980582Z", - "iopub.status.busy": "2024-08-20T02:19:25.980189Z", - "iopub.status.idle": "2024-08-20T02:19:25.983474Z", - "shell.execute_reply": "2024-08-20T02:19:25.983045Z" + "iopub.execute_input": "2024-08-21T00:44:29.857690Z", + "iopub.status.busy": "2024-08-21T00:44:29.857268Z", + "iopub.status.idle": "2024-08-21T00:44:29.860479Z", + "shell.execute_reply": "2024-08-21T00:44:29.859998Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:25.985536Z", - "iopub.status.busy": "2024-08-20T02:19:25.985218Z", - "iopub.status.idle": "2024-08-20T02:19:25.992912Z", - "shell.execute_reply": "2024-08-20T02:19:25.992481Z" + "iopub.execute_input": "2024-08-21T00:44:29.862482Z", + "iopub.status.busy": "2024-08-21T00:44:29.862134Z", + "iopub.status.idle": "2024-08-21T00:44:29.868426Z", + "shell.execute_reply": "2024-08-21T00:44:29.868003Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:25.995066Z", - "iopub.status.busy": "2024-08-20T02:19:25.994673Z", - "iopub.status.idle": "2024-08-20T02:19:26.314231Z", - "shell.execute_reply": "2024-08-20T02:19:26.313627Z" + "iopub.execute_input": "2024-08-21T00:44:29.870503Z", + "iopub.status.busy": "2024-08-21T00:44:29.870145Z", + "iopub.status.idle": "2024-08-21T00:44:30.361705Z", + "shell.execute_reply": "2024-08-21T00:44:30.361008Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:26.317208Z", - "iopub.status.busy": "2024-08-20T02:19:26.317004Z", - "iopub.status.idle": "2024-08-20T02:19:26.322547Z", - "shell.execute_reply": "2024-08-20T02:19:26.322090Z" + "iopub.execute_input": "2024-08-21T00:44:30.364838Z", + "iopub.status.busy": "2024-08-21T00:44:30.364463Z", + "iopub.status.idle": "2024-08-21T00:44:30.370026Z", + "shell.execute_reply": "2024-08-21T00:44:30.369463Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:26.324528Z", - "iopub.status.busy": "2024-08-20T02:19:26.324198Z", - "iopub.status.idle": "2024-08-20T02:19:26.328062Z", - "shell.execute_reply": "2024-08-20T02:19:26.327504Z" + "iopub.execute_input": "2024-08-21T00:44:30.372147Z", + "iopub.status.busy": "2024-08-21T00:44:30.371809Z", + "iopub.status.idle": "2024-08-21T00:44:30.375913Z", + "shell.execute_reply": "2024-08-21T00:44:30.375349Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:26.330057Z", - "iopub.status.busy": "2024-08-20T02:19:26.329758Z", - "iopub.status.idle": "2024-08-20T02:19:27.344062Z", - "shell.execute_reply": "2024-08-20T02:19:27.343427Z" + "iopub.execute_input": "2024-08-21T00:44:30.378099Z", + "iopub.status.busy": "2024-08-21T00:44:30.377758Z", + "iopub.status.idle": "2024-08-21T00:44:31.233478Z", + "shell.execute_reply": "2024-08-21T00:44:31.232810Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:27.346665Z", - "iopub.status.busy": "2024-08-20T02:19:27.346299Z", - "iopub.status.idle": "2024-08-20T02:19:27.553795Z", - "shell.execute_reply": "2024-08-20T02:19:27.553289Z" + "iopub.execute_input": "2024-08-21T00:44:31.236084Z", + "iopub.status.busy": "2024-08-21T00:44:31.235599Z", + "iopub.status.idle": "2024-08-21T00:44:31.476832Z", + "shell.execute_reply": "2024-08-21T00:44:31.476343Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:27.555986Z", - "iopub.status.busy": "2024-08-20T02:19:27.555679Z", - "iopub.status.idle": "2024-08-20T02:19:27.559876Z", - "shell.execute_reply": "2024-08-20T02:19:27.559433Z" + "iopub.execute_input": "2024-08-21T00:44:31.479096Z", + "iopub.status.busy": "2024-08-21T00:44:31.478660Z", + "iopub.status.idle": "2024-08-21T00:44:31.483153Z", + "shell.execute_reply": "2024-08-21T00:44:31.482587Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:27.561898Z", - "iopub.status.busy": "2024-08-20T02:19:27.561565Z", - "iopub.status.idle": "2024-08-20T02:19:27.928742Z", - "shell.execute_reply": "2024-08-20T02:19:27.928127Z" + "iopub.execute_input": "2024-08-21T00:44:31.485319Z", + "iopub.status.busy": "2024-08-21T00:44:31.484888Z", + "iopub.status.idle": "2024-08-21T00:44:31.942164Z", + "shell.execute_reply": "2024-08-21T00:44:31.941558Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:27.931148Z", - "iopub.status.busy": "2024-08-20T02:19:27.930962Z", - "iopub.status.idle": "2024-08-20T02:19:28.265530Z", - "shell.execute_reply": "2024-08-20T02:19:28.264985Z" + "iopub.execute_input": "2024-08-21T00:44:31.945300Z", + "iopub.status.busy": "2024-08-21T00:44:31.945115Z", + "iopub.status.idle": "2024-08-21T00:44:32.281383Z", + "shell.execute_reply": "2024-08-21T00:44:32.280733Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:28.267564Z", - "iopub.status.busy": "2024-08-20T02:19:28.267388Z", - "iopub.status.idle": "2024-08-20T02:19:28.634288Z", - "shell.execute_reply": "2024-08-20T02:19:28.633645Z" + "iopub.execute_input": "2024-08-21T00:44:32.283744Z", + "iopub.status.busy": "2024-08-21T00:44:32.283409Z", + "iopub.status.idle": "2024-08-21T00:44:32.647591Z", + "shell.execute_reply": "2024-08-21T00:44:32.647010Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:28.637582Z", - "iopub.status.busy": "2024-08-20T02:19:28.637364Z", - "iopub.status.idle": "2024-08-20T02:19:29.079339Z", - "shell.execute_reply": "2024-08-20T02:19:29.078714Z" + "iopub.execute_input": "2024-08-21T00:44:32.650921Z", + "iopub.status.busy": "2024-08-21T00:44:32.650725Z", + "iopub.status.idle": "2024-08-21T00:44:33.090696Z", + "shell.execute_reply": "2024-08-21T00:44:33.090049Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:29.083840Z", - "iopub.status.busy": "2024-08-20T02:19:29.083451Z", - "iopub.status.idle": "2024-08-20T02:19:29.516951Z", - "shell.execute_reply": "2024-08-20T02:19:29.516329Z" + "iopub.execute_input": "2024-08-21T00:44:33.095146Z", + "iopub.status.busy": "2024-08-21T00:44:33.094951Z", + "iopub.status.idle": "2024-08-21T00:44:33.515097Z", + "shell.execute_reply": "2024-08-21T00:44:33.514471Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:29.519252Z", - "iopub.status.busy": "2024-08-20T02:19:29.518938Z", - "iopub.status.idle": "2024-08-20T02:19:29.737047Z", - "shell.execute_reply": "2024-08-20T02:19:29.736513Z" + "iopub.execute_input": "2024-08-21T00:44:33.518293Z", + "iopub.status.busy": "2024-08-21T00:44:33.518095Z", + "iopub.status.idle": "2024-08-21T00:44:33.709538Z", + "shell.execute_reply": "2024-08-21T00:44:33.708870Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:29.739475Z", - "iopub.status.busy": "2024-08-20T02:19:29.739154Z", - "iopub.status.idle": "2024-08-20T02:19:29.938318Z", - "shell.execute_reply": "2024-08-20T02:19:29.937762Z" + "iopub.execute_input": "2024-08-21T00:44:33.712115Z", + "iopub.status.busy": "2024-08-21T00:44:33.711896Z", + "iopub.status.idle": "2024-08-21T00:44:33.894449Z", + "shell.execute_reply": "2024-08-21T00:44:33.893894Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:29.941047Z", - "iopub.status.busy": "2024-08-20T02:19:29.940662Z", - "iopub.status.idle": "2024-08-20T02:19:29.943743Z", - "shell.execute_reply": "2024-08-20T02:19:29.943177Z" + "iopub.execute_input": "2024-08-21T00:44:33.897345Z", + "iopub.status.busy": "2024-08-21T00:44:33.896986Z", + "iopub.status.idle": "2024-08-21T00:44:33.899743Z", + "shell.execute_reply": "2024-08-21T00:44:33.899308Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:29.945776Z", - "iopub.status.busy": "2024-08-20T02:19:29.945606Z", - "iopub.status.idle": "2024-08-20T02:19:30.990728Z", - "shell.execute_reply": "2024-08-20T02:19:30.990184Z" + "iopub.execute_input": "2024-08-21T00:44:33.901739Z", + "iopub.status.busy": "2024-08-21T00:44:33.901417Z", + "iopub.status.idle": "2024-08-21T00:44:34.864741Z", + "shell.execute_reply": "2024-08-21T00:44:34.864144Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:30.993374Z", - "iopub.status.busy": "2024-08-20T02:19:30.993177Z", - "iopub.status.idle": "2024-08-20T02:19:31.135358Z", - "shell.execute_reply": "2024-08-20T02:19:31.134850Z" + "iopub.execute_input": "2024-08-21T00:44:34.867449Z", + "iopub.status.busy": "2024-08-21T00:44:34.867242Z", + "iopub.status.idle": "2024-08-21T00:44:35.005594Z", + "shell.execute_reply": "2024-08-21T00:44:35.005140Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:31.137483Z", - "iopub.status.busy": "2024-08-20T02:19:31.137182Z", - "iopub.status.idle": "2024-08-20T02:19:31.361162Z", - "shell.execute_reply": "2024-08-20T02:19:31.360532Z" + "iopub.execute_input": "2024-08-21T00:44:35.007763Z", + "iopub.status.busy": "2024-08-21T00:44:35.007407Z", + "iopub.status.idle": "2024-08-21T00:44:35.145240Z", + "shell.execute_reply": "2024-08-21T00:44:35.144745Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:31.363266Z", - "iopub.status.busy": "2024-08-20T02:19:31.363077Z", - "iopub.status.idle": "2024-08-20T02:19:32.051327Z", - "shell.execute_reply": "2024-08-20T02:19:32.050669Z" + "iopub.execute_input": "2024-08-21T00:44:35.147522Z", + "iopub.status.busy": "2024-08-21T00:44:35.147162Z", + "iopub.status.idle": "2024-08-21T00:44:35.837392Z", + "shell.execute_reply": "2024-08-21T00:44:35.836743Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:32.053777Z", - "iopub.status.busy": "2024-08-20T02:19:32.053483Z", - "iopub.status.idle": "2024-08-20T02:19:32.057205Z", - "shell.execute_reply": "2024-08-20T02:19:32.056645Z" + "iopub.execute_input": "2024-08-21T00:44:35.839731Z", + "iopub.status.busy": "2024-08-21T00:44:35.839542Z", + "iopub.status.idle": "2024-08-21T00:44:35.843337Z", + "shell.execute_reply": "2024-08-21T00:44:35.842774Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index 96cf5c422..67a9ff17c 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -780,7 +780,7 @@

    2. Pre-process the Cifar10 dataset
    -100%|██████████| 170498071/170498071 [00:01<00:00, 99039292.87it/s]
    +100%|██████████| 170498071/170498071 [00:01<00:00, 85531172.07it/s]
     

    -
    +
    @@ -1130,7 +1130,7 @@

    Spending too much time on data quality?Cleanlab Studio – an automated platform to find and fix issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. Try it for free!

    The modern AI pipeline automated with Cleanlab Studio

    diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index d44506520..121ffa164 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:34.499280Z", - "iopub.status.busy": "2024-08-20T02:19:34.498882Z", - "iopub.status.idle": "2024-08-20T02:19:37.717028Z", - "shell.execute_reply": "2024-08-20T02:19:37.716470Z" + "iopub.execute_input": "2024-08-21T00:44:38.066360Z", + "iopub.status.busy": "2024-08-21T00:44:38.066183Z", + "iopub.status.idle": "2024-08-21T00:44:40.896600Z", + "shell.execute_reply": "2024-08-21T00:44:40.896031Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:37.719892Z", - "iopub.status.busy": "2024-08-20T02:19:37.719263Z", - "iopub.status.idle": "2024-08-20T02:19:37.738735Z", - "shell.execute_reply": "2024-08-20T02:19:37.738151Z" + "iopub.execute_input": "2024-08-21T00:44:40.899402Z", + "iopub.status.busy": "2024-08-21T00:44:40.898897Z", + "iopub.status.idle": "2024-08-21T00:44:41.226395Z", + "shell.execute_reply": "2024-08-21T00:44:41.225910Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:37.741325Z", - "iopub.status.busy": "2024-08-20T02:19:37.740862Z", - "iopub.status.idle": "2024-08-20T02:19:37.745006Z", - "shell.execute_reply": "2024-08-20T02:19:37.744463Z" + "iopub.execute_input": "2024-08-21T00:44:41.228949Z", + "iopub.status.busy": "2024-08-21T00:44:41.228477Z", + "iopub.status.idle": "2024-08-21T00:44:41.232327Z", + "shell.execute_reply": "2024-08-21T00:44:41.231896Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:37.747360Z", - "iopub.status.busy": "2024-08-20T02:19:37.747036Z", - "iopub.status.idle": "2024-08-20T02:19:42.256454Z", - "shell.execute_reply": "2024-08-20T02:19:42.255864Z" + "iopub.execute_input": "2024-08-21T00:44:41.234396Z", + "iopub.status.busy": "2024-08-21T00:44:41.234010Z", + "iopub.status.idle": "2024-08-21T00:44:46.003284Z", + "shell.execute_reply": "2024-08-21T00:44:46.002701Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 851968/170498071 [00:00<00:21, 7726348.04it/s]" + " 1%| | 917504/170498071 [00:00<00:20, 8249212.65it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▋ | 10715136/170498071 [00:00<00:02, 58990173.15it/s]" + " 5%|▌ | 9306112/170498071 [00:00<00:03, 50615669.56it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 21692416/170498071 [00:00<00:01, 81629044.14it/s]" + " 10%|█ | 17891328/170498071 [00:00<00:02, 66243488.74it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 32604160/170498071 [00:00<00:01, 92256260.34it/s]" + " 16%|█▋ | 27983872/170498071 [00:00<00:01, 79535198.51it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 44007424/170498071 [00:00<00:01, 100003938.21it/s]" + " 21%|██ | 36208640/170498071 [00:00<00:01, 80500379.19it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 54886400/170498071 [00:00<00:01, 102923099.77it/s]" + " 27%|██▋ | 46039040/170498071 [00:00<00:01, 86481939.37it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 65667072/170498071 [00:00<00:01, 104452371.65it/s]" + " 32%|███▏ | 54755328/170498071 [00:00<00:01, 86441499.46it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 76972032/170498071 [00:00<00:00, 107058916.63it/s]" + " 38%|███▊ | 64061440/170498071 [00:00<00:01, 88437234.98it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 87719936/170498071 [00:00<00:00, 106652264.44it/s]" + " 43%|████▎ | 72941568/170498071 [00:00<00:01, 88504042.73it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 98435072/170498071 [00:01<00:00, 104959293.28it/s]" + " 48%|████▊ | 81920000/170498071 [00:01<00:00, 88819896.51it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 109477888/170498071 [00:01<00:00, 106599779.14it/s]" + " 53%|█████▎ | 91160576/170498071 [00:01<00:00, 89878347.40it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 120160256/170498071 [00:01<00:00, 105376043.64it/s]" + " 59%|█████▉ | 100171776/170498071 [00:01<00:00, 88552034.31it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 130711552/170498071 [00:01<00:00, 100681796.58it/s]" + " 64%|██████▍ | 109608960/170498071 [00:01<00:00, 90217856.34it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 141819904/170498071 [00:01<00:00, 103650641.61it/s]" + " 70%|██████▉ | 118652928/170498071 [00:01<00:00, 88798720.02it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 152240128/170498071 [00:01<00:00, 102641067.98it/s]" + " 75%|███████▌ | 128450560/170498071 [00:01<00:00, 91496573.36it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 162562048/170498071 [00:01<00:00, 100813373.82it/s]" + " 81%|████████ | 137625600/170498071 [00:01<00:00, 89580266.26it/s]" ] }, { @@ -380,7 +380,31 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:01<00:00, 99039292.87it/s] " + " 86%|████████▋ | 147128320/170498071 [00:01<00:00, 91113760.17it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 92%|█████████▏| 156270592/170498071 [00:01<00:00, 89857702.55it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 97%|█████████▋| 165773312/170498071 [00:01<00:00, 91343882.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:01<00:00, 85531172.07it/s]" ] }, { @@ -498,10 +522,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:42.258763Z", - "iopub.status.busy": "2024-08-20T02:19:42.258577Z", - "iopub.status.idle": "2024-08-20T02:19:42.263590Z", - "shell.execute_reply": "2024-08-20T02:19:42.263140Z" + "iopub.execute_input": "2024-08-21T00:44:46.005425Z", + "iopub.status.busy": "2024-08-21T00:44:46.005245Z", + "iopub.status.idle": "2024-08-21T00:44:46.010091Z", + "shell.execute_reply": "2024-08-21T00:44:46.009632Z" }, "nbsphinx": "hidden" }, @@ -552,10 +576,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:42.265560Z", - "iopub.status.busy": "2024-08-20T02:19:42.265239Z", - "iopub.status.idle": "2024-08-20T02:19:42.792402Z", - "shell.execute_reply": "2024-08-20T02:19:42.791889Z" + "iopub.execute_input": "2024-08-21T00:44:46.012218Z", + "iopub.status.busy": "2024-08-21T00:44:46.011792Z", + "iopub.status.idle": "2024-08-21T00:44:46.552461Z", + "shell.execute_reply": "2024-08-21T00:44:46.551864Z" } }, "outputs": [ @@ -588,10 +612,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:42.794517Z", - "iopub.status.busy": "2024-08-20T02:19:42.794333Z", - "iopub.status.idle": "2024-08-20T02:19:43.311733Z", - "shell.execute_reply": "2024-08-20T02:19:43.311064Z" + "iopub.execute_input": "2024-08-21T00:44:46.554759Z", + "iopub.status.busy": "2024-08-21T00:44:46.554411Z", + "iopub.status.idle": "2024-08-21T00:44:47.061482Z", + "shell.execute_reply": "2024-08-21T00:44:47.060868Z" } }, "outputs": [ @@ -629,10 +653,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:43.313896Z", - "iopub.status.busy": "2024-08-20T02:19:43.313703Z", - "iopub.status.idle": "2024-08-20T02:19:43.317387Z", - "shell.execute_reply": "2024-08-20T02:19:43.316911Z" + "iopub.execute_input": "2024-08-21T00:44:47.063597Z", + "iopub.status.busy": "2024-08-21T00:44:47.063395Z", + "iopub.status.idle": "2024-08-21T00:44:47.067074Z", + "shell.execute_reply": "2024-08-21T00:44:47.066614Z" } }, "outputs": [], @@ -655,17 +679,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:43.319247Z", - "iopub.status.busy": "2024-08-20T02:19:43.319077Z", - "iopub.status.idle": "2024-08-20T02:19:55.699364Z", - "shell.execute_reply": "2024-08-20T02:19:55.698752Z" + "iopub.execute_input": "2024-08-21T00:44:47.069202Z", + "iopub.status.busy": "2024-08-21T00:44:47.068736Z", + "iopub.status.idle": "2024-08-21T00:44:59.482222Z", + "shell.execute_reply": "2024-08-21T00:44:59.481608Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "642acd4483d444aba595b064e7e139f2", + "model_id": "2aece906d5414d149f1b677c20ee62ea", "version_major": 2, "version_minor": 0 }, @@ -724,10 +748,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:55.702022Z", - "iopub.status.busy": "2024-08-20T02:19:55.701836Z", - "iopub.status.idle": "2024-08-20T02:19:57.881011Z", - "shell.execute_reply": "2024-08-20T02:19:57.880414Z" + "iopub.execute_input": "2024-08-21T00:44:59.484767Z", + "iopub.status.busy": "2024-08-21T00:44:59.484373Z", + "iopub.status.idle": "2024-08-21T00:45:01.580531Z", + "shell.execute_reply": "2024-08-21T00:45:01.579978Z" } }, "outputs": [ @@ -771,10 +795,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:57.883556Z", - "iopub.status.busy": "2024-08-20T02:19:57.883182Z", - "iopub.status.idle": "2024-08-20T02:19:58.113830Z", - "shell.execute_reply": "2024-08-20T02:19:58.113258Z" + "iopub.execute_input": "2024-08-21T00:45:01.583216Z", + "iopub.status.busy": "2024-08-21T00:45:01.582715Z", + "iopub.status.idle": "2024-08-21T00:45:01.835720Z", + "shell.execute_reply": "2024-08-21T00:45:01.835061Z" } }, "outputs": [ @@ -810,10 +834,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:58.116207Z", - "iopub.status.busy": "2024-08-20T02:19:58.116028Z", - "iopub.status.idle": "2024-08-20T02:19:58.775793Z", - "shell.execute_reply": "2024-08-20T02:19:58.775175Z" + "iopub.execute_input": "2024-08-21T00:45:01.838410Z", + "iopub.status.busy": "2024-08-21T00:45:01.838179Z", + "iopub.status.idle": "2024-08-21T00:45:02.484647Z", + "shell.execute_reply": "2024-08-21T00:45:02.484044Z" } }, "outputs": [ @@ -863,10 +887,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:58.778247Z", - "iopub.status.busy": "2024-08-20T02:19:58.778067Z", - "iopub.status.idle": "2024-08-20T02:19:59.073646Z", - "shell.execute_reply": "2024-08-20T02:19:59.073079Z" + "iopub.execute_input": "2024-08-21T00:45:02.487053Z", + "iopub.status.busy": "2024-08-21T00:45:02.486880Z", + "iopub.status.idle": "2024-08-21T00:45:02.775155Z", + "shell.execute_reply": "2024-08-21T00:45:02.774552Z" } }, "outputs": [ @@ -914,10 +938,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:59.075669Z", - "iopub.status.busy": "2024-08-20T02:19:59.075494Z", - "iopub.status.idle": "2024-08-20T02:19:59.313635Z", - "shell.execute_reply": "2024-08-20T02:19:59.313009Z" + "iopub.execute_input": "2024-08-21T00:45:02.777542Z", + "iopub.status.busy": "2024-08-21T00:45:02.777200Z", + "iopub.status.idle": "2024-08-21T00:45:03.004237Z", + "shell.execute_reply": "2024-08-21T00:45:03.003698Z" } }, "outputs": [ @@ -973,10 +997,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:59.316178Z", - "iopub.status.busy": "2024-08-20T02:19:59.315831Z", - "iopub.status.idle": "2024-08-20T02:19:59.397580Z", - "shell.execute_reply": "2024-08-20T02:19:59.396927Z" + "iopub.execute_input": "2024-08-21T00:45:03.006715Z", + "iopub.status.busy": "2024-08-21T00:45:03.006213Z", + "iopub.status.idle": "2024-08-21T00:45:03.079353Z", + "shell.execute_reply": "2024-08-21T00:45:03.078862Z" } }, "outputs": [], @@ -997,10 +1021,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:19:59.400410Z", - "iopub.status.busy": "2024-08-20T02:19:59.399851Z", - "iopub.status.idle": "2024-08-20T02:20:09.496202Z", - "shell.execute_reply": "2024-08-20T02:20:09.495583Z" + "iopub.execute_input": "2024-08-21T00:45:03.081841Z", + "iopub.status.busy": "2024-08-21T00:45:03.081489Z", + "iopub.status.idle": "2024-08-21T00:45:13.396780Z", + "shell.execute_reply": "2024-08-21T00:45:13.396110Z" } }, "outputs": [ @@ -1037,10 +1061,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:09.498840Z", - "iopub.status.busy": "2024-08-20T02:20:09.498416Z", - "iopub.status.idle": "2024-08-20T02:20:11.827863Z", - "shell.execute_reply": "2024-08-20T02:20:11.827207Z" + "iopub.execute_input": "2024-08-21T00:45:13.399549Z", + "iopub.status.busy": "2024-08-21T00:45:13.398957Z", + "iopub.status.idle": "2024-08-21T00:45:15.614825Z", + "shell.execute_reply": "2024-08-21T00:45:15.614327Z" } }, "outputs": [ @@ -1071,10 +1095,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:11.830805Z", - "iopub.status.busy": "2024-08-20T02:20:11.830187Z", - "iopub.status.idle": "2024-08-20T02:20:12.036080Z", - "shell.execute_reply": "2024-08-20T02:20:12.035582Z" + "iopub.execute_input": "2024-08-21T00:45:15.617532Z", + "iopub.status.busy": "2024-08-21T00:45:15.616897Z", + "iopub.status.idle": "2024-08-21T00:45:15.830910Z", + "shell.execute_reply": "2024-08-21T00:45:15.830305Z" } }, "outputs": [], @@ -1088,10 +1112,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:12.038552Z", - "iopub.status.busy": "2024-08-20T02:20:12.038185Z", - "iopub.status.idle": "2024-08-20T02:20:12.041256Z", - "shell.execute_reply": "2024-08-20T02:20:12.040807Z" + "iopub.execute_input": "2024-08-21T00:45:15.833496Z", + "iopub.status.busy": "2024-08-21T00:45:15.833180Z", + "iopub.status.idle": "2024-08-21T00:45:15.836370Z", + "shell.execute_reply": "2024-08-21T00:45:15.835883Z" } }, "outputs": [], @@ -1129,10 +1153,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:12.043442Z", - "iopub.status.busy": "2024-08-20T02:20:12.043116Z", - "iopub.status.idle": "2024-08-20T02:20:12.051808Z", - "shell.execute_reply": "2024-08-20T02:20:12.051353Z" + "iopub.execute_input": "2024-08-21T00:45:15.838493Z", + "iopub.status.busy": "2024-08-21T00:45:15.838071Z", + "iopub.status.idle": "2024-08-21T00:45:15.846417Z", + "shell.execute_reply": "2024-08-21T00:45:15.845889Z" }, "nbsphinx": "hidden" }, @@ -1177,7 +1201,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "169d58f4735041f7a00a218864eaf538": { + "05cb4eceb3ba4299af1cc0c45c1f092f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1195,7 +1219,7 @@ "text_color": null } }, - "2b9840e8eb314e8ba7b76bccb5b7d86b": { + "176ee49c435f4edf9d7acb298474bcdb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1248,7 +1272,88 @@ "width": null } }, - "482db617aa45471dbd4788d5ea3eaf8d": { + "20c649fead4345b59c9999de2c49dda6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_728c44e458d84e538ef30537097e692f", + "placeholder": "​", + "style": "IPY_MODEL_05cb4eceb3ba4299af1cc0c45c1f092f", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 229MB/s]" + } + }, + "21025599e811444b9ac64a873166ceb5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2278bbdcd34d42c685310e394def87da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2aece906d5414d149f1b677c20ee62ea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7a2cd802a8d24314a46149b1d522ec92", + "IPY_MODEL_3acfa8bb44be4473a45db7c728dc9a96", + "IPY_MODEL_20c649fead4345b59c9999de2c49dda6" + ], + "layout": "IPY_MODEL_176ee49c435f4edf9d7acb298474bcdb", + "tabbable": null, + "tooltip": null + } + }, + "350df538a7eb407fb0e4a66284132eea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1301,47 +1406,33 @@ "width": null } }, - "642acd4483d444aba595b064e7e139f2": { + "3acfa8bb44be4473a45db7c728dc9a96": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b8d81524ba4c4b99ab6d0d6217cf18c8", - "IPY_MODEL_c8851ece38b7471fb2bda870c287b422", - "IPY_MODEL_f91634ed9c494ec4a95bbc683c0d5570" - ], - "layout": "IPY_MODEL_f1c1be1a57e44c73a36e7a8d3ac16f26", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_350df538a7eb407fb0e4a66284132eea", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_21025599e811444b9ac64a873166ceb5", "tabbable": null, - "tooltip": null - } - }, - "a673b7221a2a4306a9d68253bd529778": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null, + "value": 102469840.0 } }, - "b2d6e40503a2481bbf4ebb46fcfd3dde": { + "45d23e20356141f8b282232e7a970845": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1394,56 +1485,7 @@ "width": null } }, - "b8d81524ba4c4b99ab6d0d6217cf18c8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2b9840e8eb314e8ba7b76bccb5b7d86b", - "placeholder": "​", - "style": "IPY_MODEL_169d58f4735041f7a00a218864eaf538", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" - } - }, - "c8851ece38b7471fb2bda870c287b422": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_482db617aa45471dbd4788d5ea3eaf8d", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a673b7221a2a4306a9d68253bd529778", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "f1c1be1a57e44c73a36e7a8d3ac16f26": { + "728c44e458d84e538ef30537097e692f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1496,25 +1538,7 @@ "width": null } }, - "f8338a6f5da64d57b669fd0a68596611": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f91634ed9c494ec4a95bbc683c0d5570": { + "7a2cd802a8d24314a46149b1d522ec92": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1529,12 +1553,12 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b2d6e40503a2481bbf4ebb46fcfd3dde", + "layout": "IPY_MODEL_45d23e20356141f8b282232e7a970845", "placeholder": "​", - "style": "IPY_MODEL_f8338a6f5da64d57b669fd0a68596611", + "style": "IPY_MODEL_2278bbdcd34d42c685310e394def87da", "tabbable": null, "tooltip": null, - "value": " 102M/102M [00:00<00:00, 269MB/s]" + "value": "model.safetensors: 100%" } } }, diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index c266f0fdb..e8381488b 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:16.211959Z", - "iopub.status.busy": "2024-08-20T02:20:16.211775Z", - "iopub.status.idle": "2024-08-20T02:20:17.625109Z", - "shell.execute_reply": "2024-08-20T02:20:17.624532Z" + "iopub.execute_input": "2024-08-21T00:45:20.030885Z", + "iopub.status.busy": "2024-08-21T00:45:20.030716Z", + "iopub.status.idle": "2024-08-21T00:45:21.238274Z", + "shell.execute_reply": "2024-08-21T00:45:21.237657Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:17.627810Z", - "iopub.status.busy": "2024-08-20T02:20:17.627188Z", - "iopub.status.idle": "2024-08-20T02:20:17.646081Z", - "shell.execute_reply": "2024-08-20T02:20:17.645467Z" + "iopub.execute_input": "2024-08-21T00:45:21.240674Z", + "iopub.status.busy": "2024-08-21T00:45:21.240417Z", + "iopub.status.idle": "2024-08-21T00:45:21.258244Z", + "shell.execute_reply": "2024-08-21T00:45:21.257816Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:17.648526Z", - "iopub.status.busy": "2024-08-20T02:20:17.648175Z", - "iopub.status.idle": "2024-08-20T02:20:17.651475Z", - "shell.execute_reply": "2024-08-20T02:20:17.651004Z" + "iopub.execute_input": "2024-08-21T00:45:21.260491Z", + "iopub.status.busy": "2024-08-21T00:45:21.259990Z", + "iopub.status.idle": "2024-08-21T00:45:21.262962Z", + "shell.execute_reply": "2024-08-21T00:45:21.262506Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:17.653391Z", - "iopub.status.busy": "2024-08-20T02:20:17.653196Z", - "iopub.status.idle": "2024-08-20T02:20:17.738201Z", - "shell.execute_reply": "2024-08-20T02:20:17.737589Z" + "iopub.execute_input": "2024-08-21T00:45:21.264900Z", + "iopub.status.busy": "2024-08-21T00:45:21.264725Z", + "iopub.status.idle": "2024-08-21T00:45:21.356509Z", + "shell.execute_reply": "2024-08-21T00:45:21.356026Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:17.740445Z", - "iopub.status.busy": "2024-08-20T02:20:17.740254Z", - "iopub.status.idle": "2024-08-20T02:20:17.744806Z", - "shell.execute_reply": "2024-08-20T02:20:17.744337Z" + "iopub.execute_input": "2024-08-21T00:45:21.358702Z", + "iopub.status.busy": "2024-08-21T00:45:21.358375Z", + "iopub.status.idle": "2024-08-21T00:45:21.538107Z", + "shell.execute_reply": "2024-08-21T00:45:21.537485Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:17.746909Z", - "iopub.status.busy": "2024-08-20T02:20:17.746590Z", - "iopub.status.idle": "2024-08-20T02:20:17.995978Z", - "shell.execute_reply": "2024-08-20T02:20:17.995401Z" + "iopub.execute_input": "2024-08-21T00:45:21.540685Z", + "iopub.status.busy": "2024-08-21T00:45:21.540349Z", + "iopub.status.idle": "2024-08-21T00:45:21.783605Z", + "shell.execute_reply": "2024-08-21T00:45:21.783082Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:17.998260Z", - "iopub.status.busy": "2024-08-20T02:20:17.997904Z", - "iopub.status.idle": "2024-08-20T02:20:18.002417Z", - "shell.execute_reply": "2024-08-20T02:20:18.001833Z" + "iopub.execute_input": "2024-08-21T00:45:21.785804Z", + "iopub.status.busy": "2024-08-21T00:45:21.785616Z", + "iopub.status.idle": "2024-08-21T00:45:21.790197Z", + "shell.execute_reply": "2024-08-21T00:45:21.789742Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:18.004416Z", - "iopub.status.busy": "2024-08-20T02:20:18.004107Z", - "iopub.status.idle": "2024-08-20T02:20:18.010552Z", - "shell.execute_reply": "2024-08-20T02:20:18.010097Z" + "iopub.execute_input": "2024-08-21T00:45:21.792282Z", + "iopub.status.busy": "2024-08-21T00:45:21.791871Z", + "iopub.status.idle": "2024-08-21T00:45:21.798042Z", + "shell.execute_reply": "2024-08-21T00:45:21.797612Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:18.012700Z", - "iopub.status.busy": "2024-08-20T02:20:18.012394Z", - "iopub.status.idle": "2024-08-20T02:20:18.015066Z", - "shell.execute_reply": "2024-08-20T02:20:18.014531Z" + "iopub.execute_input": "2024-08-21T00:45:21.800226Z", + "iopub.status.busy": "2024-08-21T00:45:21.799851Z", + "iopub.status.idle": "2024-08-21T00:45:21.802377Z", + "shell.execute_reply": "2024-08-21T00:45:21.801941Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:18.016989Z", - "iopub.status.busy": "2024-08-20T02:20:18.016723Z", - "iopub.status.idle": "2024-08-20T02:20:27.069419Z", - "shell.execute_reply": "2024-08-20T02:20:27.068809Z" + "iopub.execute_input": "2024-08-21T00:45:21.804417Z", + "iopub.status.busy": "2024-08-21T00:45:21.803994Z", + "iopub.status.idle": "2024-08-21T00:45:30.720019Z", + "shell.execute_reply": "2024-08-21T00:45:30.719430Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:27.072424Z", - "iopub.status.busy": "2024-08-20T02:20:27.071784Z", - "iopub.status.idle": "2024-08-20T02:20:27.078857Z", - "shell.execute_reply": "2024-08-20T02:20:27.078386Z" + "iopub.execute_input": "2024-08-21T00:45:30.722952Z", + "iopub.status.busy": "2024-08-21T00:45:30.722298Z", + "iopub.status.idle": "2024-08-21T00:45:30.730061Z", + "shell.execute_reply": "2024-08-21T00:45:30.729593Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:27.080771Z", - "iopub.status.busy": "2024-08-20T02:20:27.080596Z", - "iopub.status.idle": "2024-08-20T02:20:27.084327Z", - "shell.execute_reply": "2024-08-20T02:20:27.083864Z" + "iopub.execute_input": "2024-08-21T00:45:30.732078Z", + "iopub.status.busy": "2024-08-21T00:45:30.731875Z", + "iopub.status.idle": "2024-08-21T00:45:30.735786Z", + "shell.execute_reply": "2024-08-21T00:45:30.735212Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:27.086155Z", - "iopub.status.busy": "2024-08-20T02:20:27.085985Z", - "iopub.status.idle": "2024-08-20T02:20:27.088961Z", - "shell.execute_reply": "2024-08-20T02:20:27.088413Z" + "iopub.execute_input": "2024-08-21T00:45:30.737738Z", + "iopub.status.busy": "2024-08-21T00:45:30.737562Z", + "iopub.status.idle": "2024-08-21T00:45:30.740611Z", + "shell.execute_reply": "2024-08-21T00:45:30.740093Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:27.090982Z", - "iopub.status.busy": "2024-08-20T02:20:27.090808Z", - "iopub.status.idle": "2024-08-20T02:20:27.093742Z", - "shell.execute_reply": "2024-08-20T02:20:27.093293Z" + "iopub.execute_input": "2024-08-21T00:45:30.742610Z", + "iopub.status.busy": "2024-08-21T00:45:30.742345Z", + "iopub.status.idle": "2024-08-21T00:45:30.745340Z", + "shell.execute_reply": "2024-08-21T00:45:30.744896Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:27.095505Z", - "iopub.status.busy": "2024-08-20T02:20:27.095333Z", - "iopub.status.idle": "2024-08-20T02:20:27.103648Z", - "shell.execute_reply": "2024-08-20T02:20:27.103189Z" + "iopub.execute_input": "2024-08-21T00:45:30.747324Z", + "iopub.status.busy": "2024-08-21T00:45:30.746923Z", + "iopub.status.idle": "2024-08-21T00:45:30.754976Z", + "shell.execute_reply": "2024-08-21T00:45:30.754402Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:27.105701Z", - "iopub.status.busy": "2024-08-20T02:20:27.105524Z", - "iopub.status.idle": "2024-08-20T02:20:27.108032Z", - "shell.execute_reply": "2024-08-20T02:20:27.107562Z" + "iopub.execute_input": "2024-08-21T00:45:30.756957Z", + "iopub.status.busy": "2024-08-21T00:45:30.756628Z", + "iopub.status.idle": "2024-08-21T00:45:30.759233Z", + "shell.execute_reply": "2024-08-21T00:45:30.758769Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:27.109992Z", - "iopub.status.busy": "2024-08-20T02:20:27.109810Z", - "iopub.status.idle": "2024-08-20T02:20:27.243262Z", - "shell.execute_reply": "2024-08-20T02:20:27.242644Z" + "iopub.execute_input": "2024-08-21T00:45:30.761134Z", + "iopub.status.busy": "2024-08-21T00:45:30.760955Z", + "iopub.status.idle": "2024-08-21T00:45:30.893602Z", + "shell.execute_reply": "2024-08-21T00:45:30.892927Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:27.245552Z", - "iopub.status.busy": "2024-08-20T02:20:27.245355Z", - "iopub.status.idle": "2024-08-20T02:20:27.361934Z", - "shell.execute_reply": "2024-08-20T02:20:27.361332Z" + "iopub.execute_input": "2024-08-21T00:45:30.896298Z", + "iopub.status.busy": "2024-08-21T00:45:30.895880Z", + "iopub.status.idle": "2024-08-21T00:45:31.004776Z", + "shell.execute_reply": "2024-08-21T00:45:31.004239Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:27.364305Z", - "iopub.status.busy": "2024-08-20T02:20:27.364121Z", - "iopub.status.idle": "2024-08-20T02:20:27.869112Z", - "shell.execute_reply": "2024-08-20T02:20:27.868560Z" + "iopub.execute_input": "2024-08-21T00:45:31.007132Z", + "iopub.status.busy": "2024-08-21T00:45:31.006711Z", + "iopub.status.idle": "2024-08-21T00:45:31.507243Z", + "shell.execute_reply": "2024-08-21T00:45:31.506612Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:27.871683Z", - "iopub.status.busy": "2024-08-20T02:20:27.871465Z", - "iopub.status.idle": "2024-08-20T02:20:27.968366Z", - "shell.execute_reply": "2024-08-20T02:20:27.967776Z" + "iopub.execute_input": "2024-08-21T00:45:31.510047Z", + "iopub.status.busy": "2024-08-21T00:45:31.509565Z", + "iopub.status.idle": "2024-08-21T00:45:31.607269Z", + "shell.execute_reply": "2024-08-21T00:45:31.606674Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:27.970537Z", - "iopub.status.busy": "2024-08-20T02:20:27.970355Z", - "iopub.status.idle": "2024-08-20T02:20:27.978993Z", - "shell.execute_reply": "2024-08-20T02:20:27.978433Z" + "iopub.execute_input": "2024-08-21T00:45:31.609387Z", + "iopub.status.busy": "2024-08-21T00:45:31.609207Z", + "iopub.status.idle": "2024-08-21T00:45:31.617879Z", + "shell.execute_reply": "2024-08-21T00:45:31.617346Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:27.980976Z", - "iopub.status.busy": "2024-08-20T02:20:27.980669Z", - "iopub.status.idle": "2024-08-20T02:20:27.983505Z", - "shell.execute_reply": "2024-08-20T02:20:27.982960Z" + "iopub.execute_input": "2024-08-21T00:45:31.619747Z", + "iopub.status.busy": "2024-08-21T00:45:31.619574Z", + "iopub.status.idle": "2024-08-21T00:45:31.622204Z", + "shell.execute_reply": "2024-08-21T00:45:31.621752Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:27.985617Z", - "iopub.status.busy": "2024-08-20T02:20:27.985178Z", - "iopub.status.idle": "2024-08-20T02:20:33.646162Z", - "shell.execute_reply": "2024-08-20T02:20:33.645558Z" + "iopub.execute_input": "2024-08-21T00:45:31.624156Z", + "iopub.status.busy": "2024-08-21T00:45:31.623983Z", + "iopub.status.idle": "2024-08-21T00:45:37.204902Z", + "shell.execute_reply": "2024-08-21T00:45:37.204285Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:33.648626Z", - "iopub.status.busy": "2024-08-20T02:20:33.648210Z", - "iopub.status.idle": "2024-08-20T02:20:33.657502Z", - "shell.execute_reply": "2024-08-20T02:20:33.656918Z" + "iopub.execute_input": "2024-08-21T00:45:37.207254Z", + "iopub.status.busy": "2024-08-21T00:45:37.206859Z", + "iopub.status.idle": "2024-08-21T00:45:37.215288Z", + "shell.execute_reply": "2024-08-21T00:45:37.214729Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:33.659776Z", - "iopub.status.busy": "2024-08-20T02:20:33.659372Z", - "iopub.status.idle": "2024-08-20T02:20:33.724158Z", - "shell.execute_reply": "2024-08-20T02:20:33.723533Z" + "iopub.execute_input": "2024-08-21T00:45:37.217502Z", + "iopub.status.busy": "2024-08-21T00:45:37.217153Z", + "iopub.status.idle": "2024-08-21T00:45:37.285251Z", + "shell.execute_reply": "2024-08-21T00:45:37.284642Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index 85f7cd47d..652b9b904 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -800,13 +800,13 @@

    3. Use cleanlab to find label issues

    -
    +
    -
    +

    Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

    @@ -1196,7 +1196,7 @@

    Get label quality scores -{"state": {"4a6e786e95754789891f444f6729577f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2ad6882dafb0480eb58a27ba49cc67d7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c2690650d8f940448e566013bcbd9b6d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4a6e786e95754789891f444f6729577f", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2ad6882dafb0480eb58a27ba49cc67d7", "tabbable": null, "tooltip": null, "value": 30.0}}, "ca7d7ce8e6344f5f8c60061f793599fd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "22a4cdf07a6c4f79a7e15c4e3ac0bc7e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b163d9ef099f46a2ac2a8bf65c62d0b5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ca7d7ce8e6344f5f8c60061f793599fd", "placeholder": "\u200b", "style": "IPY_MODEL_22a4cdf07a6c4f79a7e15c4e3ac0bc7e", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "c66fcc42f7664ff18bb679b5b0e0ab49": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1c27a0e7b0d84a52a9f260278ef6d758": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6e50310098b544a19737c4f5d7fa8392": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c66fcc42f7664ff18bb679b5b0e0ab49", "placeholder": "\u200b", "style": "IPY_MODEL_1c27a0e7b0d84a52a9f260278ef6d758", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007756.90it/s]"}}, "7578525b2f514e5aaa6e3395aad786e8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "20304eeec37340f3bf2a39a2a20b2a67": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b163d9ef099f46a2ac2a8bf65c62d0b5", "IPY_MODEL_c2690650d8f940448e566013bcbd9b6d", "IPY_MODEL_6e50310098b544a19737c4f5d7fa8392"], "layout": "IPY_MODEL_7578525b2f514e5aaa6e3395aad786e8", "tabbable": null, "tooltip": null}}, "4566f1b5eb54489594173fe431f6a633": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fe94923cf8c4419fbecd40d47b31e2cc": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "91322ed8f24d43028fb52abc8cafafe7": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4566f1b5eb54489594173fe431f6a633", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_fe94923cf8c4419fbecd40d47b31e2cc", "tabbable": null, "tooltip": null, "value": 30.0}}, "e278f7e634e34744a940c3916deea3e7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6bf693b0dd6a42deb08a8cb23352003a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3194630074f14cc1b3c31c5c4f417fb4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e278f7e634e34744a940c3916deea3e7", "placeholder": "\u200b", "style": "IPY_MODEL_6bf693b0dd6a42deb08a8cb23352003a", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "e9e09eed33ab444aa236194760c97d41": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "36ceae7207ef4aee869328e2dd159812": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5c855f4dd6444186b08b31267b96fa86": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e9e09eed33ab444aa236194760c97d41", "placeholder": "\u200b", "style": "IPY_MODEL_36ceae7207ef4aee869328e2dd159812", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:26<00:00,\u2007\u20071.11it/s]"}}, "1ffe23b3f652481aa93ea0ac901abcf2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8c7558622fee406090521d6bf9363191": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3194630074f14cc1b3c31c5c4f417fb4", "IPY_MODEL_91322ed8f24d43028fb52abc8cafafe7", "IPY_MODEL_5c855f4dd6444186b08b31267b96fa86"], "layout": "IPY_MODEL_1ffe23b3f652481aa93ea0ac901abcf2", "tabbable": null, "tooltip": null}}, "16eabb41716a4846a4d2f6eee0a6f533": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "463396d07b1f400d8c5344d51b674b66": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e93a0babe1554530b3504fa43d76dac9": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_16eabb41716a4846a4d2f6eee0a6f533", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_463396d07b1f400d8c5344d51b674b66", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "f89d246cf8b54bb39db18c2335209540": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e2e836a8d2cc4a968d4e1bbcc7dc945b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bd807accdb4e449cb7d89dfffeb98e21": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f89d246cf8b54bb39db18c2335209540", "placeholder": "\u200b", "style": "IPY_MODEL_e2e836a8d2cc4a968d4e1bbcc7dc945b", "tabbable": null, "tooltip": null, "value": "100%"}}, "fff19527d7e141968d248732ad79fb99": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1db9d16f72b34b4989ac635108c8f7f8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a97f41bdbd83410f9e6888112502cef6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fff19527d7e141968d248732ad79fb99", "placeholder": "\u200b", "style": "IPY_MODEL_1db9d16f72b34b4989ac635108c8f7f8", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007151883.45it/s]"}}, "bf492bb649084225be6a95fa1a052eb4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a8201274110a4756b2e8dcd5b6c33705": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_bd807accdb4e449cb7d89dfffeb98e21", "IPY_MODEL_e93a0babe1554530b3504fa43d76dac9", "IPY_MODEL_a97f41bdbd83410f9e6888112502cef6"], "layout": "IPY_MODEL_bf492bb649084225be6a95fa1a052eb4", "tabbable": null, "tooltip": null}}, "6103a8251ce84cf99ee39c9762412abe": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "41c1230126ad4129bedb0b6d03869b38": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "aadd08a551464931a9cede90779759b8": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6103a8251ce84cf99ee39c9762412abe", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_41c1230126ad4129bedb0b6d03869b38", "tabbable": null, "tooltip": null, "value": 30.0}}, "0c81e88003f74845b11cfdb1378da0a5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2f7a9f12d0e041f3b5d5bbff0977cb8c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b9834f1a2dc04e4998fd45d36ec2c1b0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0c81e88003f74845b11cfdb1378da0a5", "placeholder": "\u200b", "style": "IPY_MODEL_2f7a9f12d0e041f3b5d5bbff0977cb8c", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "51eb0e0e2c224533a81774e7a2b9b26c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1deef56448864c7ba7e84efef26455a7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1e72e6404b524e239765c4eeba5e36f4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_51eb0e0e2c224533a81774e7a2b9b26c", "placeholder": "\u200b", "style": "IPY_MODEL_1deef56448864c7ba7e84efef26455a7", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200720.51it/s]"}}, "ea93594660ea4558b68dea51defcbd82": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fd70f6b98c08483496128064bb09d766": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b9834f1a2dc04e4998fd45d36ec2c1b0", "IPY_MODEL_aadd08a551464931a9cede90779759b8", "IPY_MODEL_1e72e6404b524e239765c4eeba5e36f4"], "layout": "IPY_MODEL_ea93594660ea4558b68dea51defcbd82", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"4a3319c6e43541b2b2f27922fbe1efc4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5d19bd5647ec42128328b78586198614": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "74621bc7913a48ef96c46924241da661": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4a3319c6e43541b2b2f27922fbe1efc4", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5d19bd5647ec42128328b78586198614", "tabbable": null, "tooltip": null, "value": 30.0}}, "b76f5e93644c4938af33c52c2d7ce56f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9bbce7e5c89a4306a44fb35244c2c716": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9e09dfd9179141cca31fff3b1b54b771": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b76f5e93644c4938af33c52c2d7ce56f", "placeholder": "\u200b", "style": "IPY_MODEL_9bbce7e5c89a4306a44fb35244c2c716", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "9802781a2a8e40be9d859638dc96a7ea": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3deb2b14670b4c7f84c3b79cac74e89c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "83f54bbb146d486391e763ef70ac9e29": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9802781a2a8e40be9d859638dc96a7ea", "placeholder": "\u200b", "style": "IPY_MODEL_3deb2b14670b4c7f84c3b79cac74e89c", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007829.72it/s]"}}, "dd9b1ca63d2a449986a8249d6a6a0c3e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5990bcf3d14946b580823f2cc6231b4d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_9e09dfd9179141cca31fff3b1b54b771", "IPY_MODEL_74621bc7913a48ef96c46924241da661", "IPY_MODEL_83f54bbb146d486391e763ef70ac9e29"], "layout": "IPY_MODEL_dd9b1ca63d2a449986a8249d6a6a0c3e", "tabbable": null, "tooltip": null}}, "393f9e2ed4a44b9080882b753cdd387a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0fe4bfde0a7f4678b46d06110f9e6bda": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c00138335b3d4b8da48267ab1602ff6d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_393f9e2ed4a44b9080882b753cdd387a", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0fe4bfde0a7f4678b46d06110f9e6bda", "tabbable": null, "tooltip": null, "value": 30.0}}, "449595bc9d5d4e498476d0be97293a2d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "54a8a2b5291c49709e90e70256ef2f9c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0f52557a110c435da6cd2255b1c93de6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_449595bc9d5d4e498476d0be97293a2d", "placeholder": "\u200b", "style": "IPY_MODEL_54a8a2b5291c49709e90e70256ef2f9c", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "a3f5250f0cd742e98ab0971c6f3a0579": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "87d1f25f83e443f8b5a7079934af0bbe": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6b2b871eccd144daa320c528f01aedda": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a3f5250f0cd742e98ab0971c6f3a0579", "placeholder": "\u200b", "style": "IPY_MODEL_87d1f25f83e443f8b5a7079934af0bbe", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:25<00:00,\u2007\u20071.17it/s]"}}, "2cc9ea967e07414a996cf63abc110f69": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e932bfd1a1e2432aa3d1c447df10a9f1": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0f52557a110c435da6cd2255b1c93de6", "IPY_MODEL_c00138335b3d4b8da48267ab1602ff6d", "IPY_MODEL_6b2b871eccd144daa320c528f01aedda"], "layout": "IPY_MODEL_2cc9ea967e07414a996cf63abc110f69", "tabbable": null, "tooltip": null}}, "10a9ac878fc24f9888f4f9559fe953fd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d48bf4432ea44c698cc1cce4b981da38": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "fc0b5589ede043f88d506c7ed679ed48": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_10a9ac878fc24f9888f4f9559fe953fd", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d48bf4432ea44c698cc1cce4b981da38", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "83ba1e12a5554684829a27e055f7eb5d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0900c46b98f5437d9b1f784baef4ebde": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2710f83352d24eec8bdbd2e709475bf0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_83ba1e12a5554684829a27e055f7eb5d", "placeholder": "\u200b", "style": "IPY_MODEL_0900c46b98f5437d9b1f784baef4ebde", "tabbable": null, "tooltip": null, "value": "100%"}}, "5c030a9494414e1a96908cfe9cacbde9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b08b8194bb7945319e4226faa4dc1e95": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1ed3042925fd4edeb6cd2a122cc32efb": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5c030a9494414e1a96908cfe9cacbde9", "placeholder": "\u200b", "style": "IPY_MODEL_b08b8194bb7945319e4226faa4dc1e95", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007154171.56it/s]"}}, "732c081a8ca94521a1fc41159f91fd82": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5297291313004a85837ee0d01806ef8b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2710f83352d24eec8bdbd2e709475bf0", "IPY_MODEL_fc0b5589ede043f88d506c7ed679ed48", "IPY_MODEL_1ed3042925fd4edeb6cd2a122cc32efb"], "layout": "IPY_MODEL_732c081a8ca94521a1fc41159f91fd82", "tabbable": null, "tooltip": null}}, "33b7de8d4f0a4696a82a1f237a1989be": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f7912b89c28040ddba731c7206a718b0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "34ce7f1803eb4dadaec339d206a66ec7": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_33b7de8d4f0a4696a82a1f237a1989be", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f7912b89c28040ddba731c7206a718b0", "tabbable": null, "tooltip": null, "value": 30.0}}, "c9b41af5601c453b938a8eac0a2474a3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "32419686799246b4b7d88d55530e8737": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "422655b6abb04e76ad979c7d6db811b9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c9b41af5601c453b938a8eac0a2474a3", "placeholder": "\u200b", "style": "IPY_MODEL_32419686799246b4b7d88d55530e8737", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "312adce86b924cd083b68359b7ff3cda": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cbe2a9d9d09948828a6ef3b196589414": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fced5e1f3d504623bfd6adc490f06fc2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_312adce86b924cd083b68359b7ff3cda", "placeholder": "\u200b", "style": "IPY_MODEL_cbe2a9d9d09948828a6ef3b196589414", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200720.63it/s]"}}, "8880728d23aa4c138b6db1d8798a792d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f84fe5a33d8e4296b46f14b0aa8b9961": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_422655b6abb04e76ad979c7d6db811b9", "IPY_MODEL_34ce7f1803eb4dadaec339d206a66ec7", "IPY_MODEL_fced5e1f3d504623bfd6adc490f06fc2"], "layout": "IPY_MODEL_8880728d23aa4c138b6db1d8798a792d", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index 4ac3af7d6..7b6da3e55 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:36.888231Z", - "iopub.status.busy": "2024-08-20T02:20:36.888053Z", - "iopub.status.idle": "2024-08-20T02:20:38.537307Z", - "shell.execute_reply": "2024-08-20T02:20:38.536594Z" + "iopub.execute_input": "2024-08-21T00:45:40.466811Z", + "iopub.status.busy": "2024-08-21T00:45:40.466640Z", + "iopub.status.idle": "2024-08-21T00:45:42.883520Z", + "shell.execute_reply": "2024-08-21T00:45:42.882755Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:20:38.540226Z", - "iopub.status.busy": "2024-08-20T02:20:38.539748Z", - "iopub.status.idle": "2024-08-20T02:22:01.964653Z", - "shell.execute_reply": "2024-08-20T02:22:01.963964Z" + "iopub.execute_input": "2024-08-21T00:45:42.886008Z", + "iopub.status.busy": "2024-08-21T00:45:42.885816Z", + "iopub.status.idle": "2024-08-21T00:46:48.432528Z", + "shell.execute_reply": "2024-08-21T00:46:48.431818Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:22:01.967334Z", - "iopub.status.busy": "2024-08-20T02:22:01.966936Z", - "iopub.status.idle": "2024-08-20T02:22:03.406051Z", - "shell.execute_reply": "2024-08-20T02:22:03.405489Z" + "iopub.execute_input": "2024-08-21T00:46:48.435091Z", + "iopub.status.busy": "2024-08-21T00:46:48.434899Z", + "iopub.status.idle": "2024-08-21T00:46:49.596397Z", + "shell.execute_reply": "2024-08-21T00:46:49.595894Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:22:03.408486Z", - "iopub.status.busy": "2024-08-20T02:22:03.408194Z", - "iopub.status.idle": "2024-08-20T02:22:03.411443Z", - "shell.execute_reply": "2024-08-20T02:22:03.410981Z" + "iopub.execute_input": "2024-08-21T00:46:49.598800Z", + "iopub.status.busy": "2024-08-21T00:46:49.598484Z", + "iopub.status.idle": "2024-08-21T00:46:49.601969Z", + "shell.execute_reply": "2024-08-21T00:46:49.601513Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:22:03.413581Z", - "iopub.status.busy": "2024-08-20T02:22:03.413241Z", - "iopub.status.idle": "2024-08-20T02:22:03.417640Z", - "shell.execute_reply": "2024-08-20T02:22:03.417037Z" + "iopub.execute_input": "2024-08-21T00:46:49.604008Z", + "iopub.status.busy": "2024-08-21T00:46:49.603652Z", + "iopub.status.idle": "2024-08-21T00:46:49.607367Z", + "shell.execute_reply": "2024-08-21T00:46:49.606937Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:22:03.419956Z", - "iopub.status.busy": "2024-08-20T02:22:03.419536Z", - "iopub.status.idle": "2024-08-20T02:22:03.423128Z", - "shell.execute_reply": "2024-08-20T02:22:03.422694Z" + "iopub.execute_input": "2024-08-21T00:46:49.609599Z", + "iopub.status.busy": "2024-08-21T00:46:49.609187Z", + "iopub.status.idle": "2024-08-21T00:46:49.612699Z", + "shell.execute_reply": "2024-08-21T00:46:49.612255Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:22:03.425108Z", - "iopub.status.busy": "2024-08-20T02:22:03.424794Z", - "iopub.status.idle": "2024-08-20T02:22:03.427666Z", - "shell.execute_reply": "2024-08-20T02:22:03.427206Z" + "iopub.execute_input": "2024-08-21T00:46:49.614723Z", + "iopub.status.busy": "2024-08-21T00:46:49.614324Z", + "iopub.status.idle": "2024-08-21T00:46:49.617188Z", + "shell.execute_reply": "2024-08-21T00:46:49.616743Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:22:03.429508Z", - "iopub.status.busy": "2024-08-20T02:22:03.429330Z", - "iopub.status.idle": "2024-08-20T02:22:41.737114Z", - "shell.execute_reply": "2024-08-20T02:22:41.736373Z" + "iopub.execute_input": "2024-08-21T00:46:49.619230Z", + "iopub.status.busy": "2024-08-21T00:46:49.618837Z", + "iopub.status.idle": "2024-08-21T00:47:27.817727Z", + "shell.execute_reply": "2024-08-21T00:47:27.816997Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "20304eeec37340f3bf2a39a2a20b2a67", + "model_id": "5990bcf3d14946b580823f2cc6231b4d", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8c7558622fee406090521d6bf9363191", + "model_id": "e932bfd1a1e2432aa3d1c447df10a9f1", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:22:41.739813Z", - "iopub.status.busy": "2024-08-20T02:22:41.739590Z", - "iopub.status.idle": "2024-08-20T02:22:42.185977Z", - "shell.execute_reply": "2024-08-20T02:22:42.185387Z" + "iopub.execute_input": "2024-08-21T00:47:27.820727Z", + "iopub.status.busy": "2024-08-21T00:47:27.820316Z", + "iopub.status.idle": "2024-08-21T00:47:28.498355Z", + "shell.execute_reply": "2024-08-21T00:47:28.497855Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:22:42.188223Z", - "iopub.status.busy": "2024-08-20T02:22:42.187806Z", - "iopub.status.idle": "2024-08-20T02:22:45.261325Z", - "shell.execute_reply": "2024-08-20T02:22:45.260739Z" + "iopub.execute_input": "2024-08-21T00:47:28.500634Z", + "iopub.status.busy": "2024-08-21T00:47:28.500194Z", + "iopub.status.idle": "2024-08-21T00:47:31.527168Z", + "shell.execute_reply": "2024-08-21T00:47:31.526595Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:22:45.263692Z", - "iopub.status.busy": "2024-08-20T02:22:45.263239Z", - "iopub.status.idle": "2024-08-20T02:23:18.319788Z", - "shell.execute_reply": "2024-08-20T02:23:18.319233Z" + "iopub.execute_input": "2024-08-21T00:47:31.529441Z", + "iopub.status.busy": "2024-08-21T00:47:31.529101Z", + "iopub.status.idle": "2024-08-21T00:48:04.004533Z", + "shell.execute_reply": "2024-08-21T00:48:04.004033Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a8201274110a4756b2e8dcd5b6c33705", + "model_id": "5297291313004a85837ee0d01806ef8b", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:23:18.322035Z", - "iopub.status.busy": "2024-08-20T02:23:18.321611Z", - "iopub.status.idle": "2024-08-20T02:23:33.160852Z", - "shell.execute_reply": "2024-08-20T02:23:33.160296Z" + "iopub.execute_input": "2024-08-21T00:48:04.006657Z", + "iopub.status.busy": "2024-08-21T00:48:04.006345Z", + "iopub.status.idle": "2024-08-21T00:48:19.210511Z", + "shell.execute_reply": "2024-08-21T00:48:19.209851Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:23:33.163471Z", - "iopub.status.busy": "2024-08-20T02:23:33.163029Z", - "iopub.status.idle": "2024-08-20T02:23:37.018940Z", - "shell.execute_reply": "2024-08-20T02:23:37.018366Z" + "iopub.execute_input": "2024-08-21T00:48:19.212955Z", + "iopub.status.busy": "2024-08-21T00:48:19.212766Z", + "iopub.status.idle": "2024-08-21T00:48:23.062562Z", + "shell.execute_reply": "2024-08-21T00:48:23.062040Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:23:37.021102Z", - "iopub.status.busy": "2024-08-20T02:23:37.020906Z", - "iopub.status.idle": "2024-08-20T02:23:38.513908Z", - "shell.execute_reply": "2024-08-20T02:23:38.513311Z" + "iopub.execute_input": "2024-08-21T00:48:23.064997Z", + "iopub.status.busy": "2024-08-21T00:48:23.064564Z", + "iopub.status.idle": "2024-08-21T00:48:24.536520Z", + "shell.execute_reply": "2024-08-21T00:48:24.535926Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fd70f6b98c08483496128064bb09d766", + "model_id": "f84fe5a33d8e4296b46f14b0aa8b9961", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:23:38.516247Z", - "iopub.status.busy": "2024-08-20T02:23:38.515872Z", - "iopub.status.idle": "2024-08-20T02:23:38.544661Z", - "shell.execute_reply": "2024-08-20T02:23:38.544076Z" + "iopub.execute_input": "2024-08-21T00:48:24.538968Z", + "iopub.status.busy": "2024-08-21T00:48:24.538770Z", + "iopub.status.idle": "2024-08-21T00:48:24.569011Z", + "shell.execute_reply": "2024-08-21T00:48:24.568449Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:23:38.547154Z", - "iopub.status.busy": "2024-08-20T02:23:38.546759Z", - "iopub.status.idle": "2024-08-20T02:23:44.720017Z", - "shell.execute_reply": "2024-08-20T02:23:44.719500Z" + "iopub.execute_input": "2024-08-21T00:48:24.571321Z", + "iopub.status.busy": "2024-08-21T00:48:24.571126Z", + "iopub.status.idle": "2024-08-21T00:48:30.731445Z", + "shell.execute_reply": "2024-08-21T00:48:30.730921Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:23:44.722331Z", - "iopub.status.busy": "2024-08-20T02:23:44.721965Z", - "iopub.status.idle": "2024-08-20T02:23:44.778242Z", - "shell.execute_reply": "2024-08-20T02:23:44.777700Z" + "iopub.execute_input": "2024-08-21T00:48:30.733701Z", + "iopub.status.busy": "2024-08-21T00:48:30.733360Z", + "iopub.status.idle": "2024-08-21T00:48:30.789508Z", + "shell.execute_reply": "2024-08-21T00:48:30.788852Z" }, "nbsphinx": "hidden" }, @@ -1038,113 +1038,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0c81e88003f74845b11cfdb1378da0a5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "16eabb41716a4846a4d2f6eee0a6f533": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1c27a0e7b0d84a52a9f260278ef6d758": { + "0900c46b98f5437d9b1f784baef4ebde": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1162,66 +1056,46 @@ "text_color": null } }, - "1db9d16f72b34b4989ac635108c8f7f8": { + "0f52557a110c435da6cd2255b1c93de6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_449595bc9d5d4e498476d0be97293a2d", + "placeholder": "​", + "style": "IPY_MODEL_54a8a2b5291c49709e90e70256ef2f9c", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: 100%" } }, - "1deef56448864c7ba7e84efef26455a7": { + "0fe4bfde0a7f4678b46d06110f9e6bda": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1e72e6404b524e239765c4eeba5e36f4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_51eb0e0e2c224533a81774e7a2b9b26c", - "placeholder": "​", - "style": "IPY_MODEL_1deef56448864c7ba7e84efef26455a7", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 20.51it/s]" + "bar_color": null, + "description_width": "" } }, - "1ffe23b3f652481aa93ea0ac901abcf2": { + "10a9ac878fc24f9888f4f9559fe953fd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1274,83 +1148,30 @@ "width": null } }, - "20304eeec37340f3bf2a39a2a20b2a67": { + "1ed3042925fd4edeb6cd2a122cc32efb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b163d9ef099f46a2ac2a8bf65c62d0b5", - "IPY_MODEL_c2690650d8f940448e566013bcbd9b6d", - "IPY_MODEL_6e50310098b544a19737c4f5d7fa8392" - ], - "layout": "IPY_MODEL_7578525b2f514e5aaa6e3395aad786e8", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5c030a9494414e1a96908cfe9cacbde9", + "placeholder": "​", + "style": "IPY_MODEL_b08b8194bb7945319e4226faa4dc1e95", "tabbable": null, - "tooltip": null - } - }, - "22a4cdf07a6c4f79a7e15c4e3ac0bc7e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2ad6882dafb0480eb58a27ba49cc67d7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2f7a9f12d0e041f3b5d5bbff0977cb8c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null, + "value": " 4997683/4997683 [00:32<00:00, 154171.56it/s]" } }, - "3194630074f14cc1b3c31c5c4f417fb4": { + "2710f83352d24eec8bdbd2e709475bf0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1365,49 +1186,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e278f7e634e34744a940c3916deea3e7", + "layout": "IPY_MODEL_83ba1e12a5554684829a27e055f7eb5d", "placeholder": "​", - "style": "IPY_MODEL_6bf693b0dd6a42deb08a8cb23352003a", + "style": "IPY_MODEL_0900c46b98f5437d9b1f784baef4ebde", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: 100%" - } - }, - "36ceae7207ef4aee869328e2dd159812": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "41c1230126ad4129bedb0b6d03869b38": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "100%" } }, - "4566f1b5eb54489594173fe431f6a633": { + "2cc9ea967e07414a996cf63abc110f69": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1460,23 +1247,7 @@ "width": null } }, - "463396d07b1f400d8c5344d51b674b66": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4a6e786e95754789891f444f6729577f": { + "312adce86b924cd083b68359b7ff3cda": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1529,7 +1300,25 @@ "width": null } }, - "51eb0e0e2c224533a81774e7a2b9b26c": { + "32419686799246b4b7d88d55530e8737": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "33b7de8d4f0a4696a82a1f237a1989be": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1582,30 +1371,33 @@ "width": null } }, - "5c855f4dd6444186b08b31267b96fa86": { + "34ce7f1803eb4dadaec339d206a66ec7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e9e09eed33ab444aa236194760c97d41", - "placeholder": "​", - "style": "IPY_MODEL_36ceae7207ef4aee869328e2dd159812", + "layout": "IPY_MODEL_33b7de8d4f0a4696a82a1f237a1989be", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f7912b89c28040ddba731c7206a718b0", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:26<00:00,  1.11it/s]" + "value": 30.0 } }, - "6103a8251ce84cf99ee39c9762412abe": { + "393f9e2ed4a44b9080882b753cdd387a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1658,7 +1450,7 @@ "width": null } }, - "6bf693b0dd6a42deb08a8cb23352003a": { + "3deb2b14670b4c7f84c3b79cac74e89c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1676,7 +1468,7 @@ "text_color": null } }, - "6e50310098b544a19737c4f5d7fa8392": { + "422655b6abb04e76ad979c7d6db811b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1691,15 +1483,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c66fcc42f7664ff18bb679b5b0e0ab49", + "layout": "IPY_MODEL_c9b41af5601c453b938a8eac0a2474a3", "placeholder": "​", - "style": "IPY_MODEL_1c27a0e7b0d84a52a9f260278ef6d758", + "style": "IPY_MODEL_32419686799246b4b7d88d55530e8737", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:00<00:00, 756.90it/s]" + "value": "images processed using softmin: 100%" } }, - "7578525b2f514e5aaa6e3395aad786e8": { + "449595bc9d5d4e498476d0be97293a2d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1752,57 +1544,60 @@ "width": null } }, - "8c7558622fee406090521d6bf9363191": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3194630074f14cc1b3c31c5c4f417fb4", - "IPY_MODEL_91322ed8f24d43028fb52abc8cafafe7", - "IPY_MODEL_5c855f4dd6444186b08b31267b96fa86" - ], - "layout": "IPY_MODEL_1ffe23b3f652481aa93ea0ac901abcf2", - "tabbable": null, - "tooltip": null - } - }, - "91322ed8f24d43028fb52abc8cafafe7": { - "model_module": "@jupyter-widgets/controls", + "4a3319c6e43541b2b2f27922fbe1efc4": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4566f1b5eb54489594173fe431f6a633", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fe94923cf8c4419fbecd40d47b31e2cc", - "tabbable": null, - "tooltip": null, - "value": 30.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a8201274110a4756b2e8dcd5b6c33705": { + "5297291313004a85837ee0d01806ef8b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1817,111 +1612,127 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_bd807accdb4e449cb7d89dfffeb98e21", - "IPY_MODEL_e93a0babe1554530b3504fa43d76dac9", - "IPY_MODEL_a97f41bdbd83410f9e6888112502cef6" + "IPY_MODEL_2710f83352d24eec8bdbd2e709475bf0", + "IPY_MODEL_fc0b5589ede043f88d506c7ed679ed48", + "IPY_MODEL_1ed3042925fd4edeb6cd2a122cc32efb" ], - "layout": "IPY_MODEL_bf492bb649084225be6a95fa1a052eb4", + "layout": "IPY_MODEL_732c081a8ca94521a1fc41159f91fd82", "tabbable": null, "tooltip": null } }, - "a97f41bdbd83410f9e6888112502cef6": { + "54a8a2b5291c49709e90e70256ef2f9c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fff19527d7e141968d248732ad79fb99", - "placeholder": "​", - "style": "IPY_MODEL_1db9d16f72b34b4989ac635108c8f7f8", - "tabbable": null, - "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 151883.45it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "aadd08a551464931a9cede90779759b8": { + "5990bcf3d14946b580823f2cc6231b4d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6103a8251ce84cf99ee39c9762412abe", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_41c1230126ad4129bedb0b6d03869b38", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9e09dfd9179141cca31fff3b1b54b771", + "IPY_MODEL_74621bc7913a48ef96c46924241da661", + "IPY_MODEL_83f54bbb146d486391e763ef70ac9e29" + ], + "layout": "IPY_MODEL_dd9b1ca63d2a449986a8249d6a6a0c3e", "tabbable": null, - "tooltip": null, - "value": 30.0 + "tooltip": null } }, - "b163d9ef099f46a2ac2a8bf65c62d0b5": { - "model_module": "@jupyter-widgets/controls", + "5c030a9494414e1a96908cfe9cacbde9": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ca7d7ce8e6344f5f8c60061f793599fd", - "placeholder": "​", - "style": "IPY_MODEL_22a4cdf07a6c4f79a7e15c4e3ac0bc7e", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b9834f1a2dc04e4998fd45d36ec2c1b0": { + "5d19bd5647ec42128328b78586198614": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0c81e88003f74845b11cfdb1378da0a5", - "placeholder": "​", - "style": "IPY_MODEL_2f7a9f12d0e041f3b5d5bbff0977cb8c", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "bd807accdb4e449cb7d89dfffeb98e21": { + "6b2b871eccd144daa320c528f01aedda": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1936,15 +1747,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f89d246cf8b54bb39db18c2335209540", + "layout": "IPY_MODEL_a3f5250f0cd742e98ab0971c6f3a0579", "placeholder": "​", - "style": "IPY_MODEL_e2e836a8d2cc4a968d4e1bbcc7dc945b", + "style": "IPY_MODEL_87d1f25f83e443f8b5a7079934af0bbe", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 30/30 [00:25<00:00,  1.17it/s]" } }, - "bf492bb649084225be6a95fa1a052eb4": { + "732c081a8ca94521a1fc41159f91fd82": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1997,7 +1808,7 @@ "width": null } }, - "c2690650d8f940448e566013bcbd9b6d": { + "74621bc7913a48ef96c46924241da661": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2013,17 +1824,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4a6e786e95754789891f444f6729577f", + "layout": "IPY_MODEL_4a3319c6e43541b2b2f27922fbe1efc4", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_2ad6882dafb0480eb58a27ba49cc67d7", + "style": "IPY_MODEL_5d19bd5647ec42128328b78586198614", "tabbable": null, "tooltip": null, "value": 30.0 } }, - "c66fcc42f7664ff18bb679b5b0e0ab49": { + "83ba1e12a5554684829a27e055f7eb5d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2076,7 +1887,48 @@ "width": null } }, - "ca7d7ce8e6344f5f8c60061f793599fd": { + "83f54bbb146d486391e763ef70ac9e29": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9802781a2a8e40be9d859638dc96a7ea", + "placeholder": "​", + "style": "IPY_MODEL_3deb2b14670b4c7f84c3b79cac74e89c", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 829.72it/s]" + } + }, + "87d1f25f83e443f8b5a7079934af0bbe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8880728d23aa4c138b6db1d8798a792d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2129,7 +1981,7 @@ "width": null } }, - "e278f7e634e34744a940c3916deea3e7": { + "9802781a2a8e40be9d859638dc96a7ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2182,7 +2034,7 @@ "width": null } }, - "e2e836a8d2cc4a968d4e1bbcc7dc945b": { + "9bbce7e5c89a4306a44fb35244c2c716": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2200,33 +2052,30 @@ "text_color": null } }, - "e93a0babe1554530b3504fa43d76dac9": { + "9e09dfd9179141cca31fff3b1b54b771": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_16eabb41716a4846a4d2f6eee0a6f533", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_463396d07b1f400d8c5344d51b674b66", + "layout": "IPY_MODEL_b76f5e93644c4938af33c52c2d7ce56f", + "placeholder": "​", + "style": "IPY_MODEL_9bbce7e5c89a4306a44fb35244c2c716", "tabbable": null, "tooltip": null, - "value": 4997683.0 + "value": "number of examples processed for estimating thresholds: 100%" } }, - "e9e09eed33ab444aa236194760c97d41": { + "a3f5250f0cd742e98ab0971c6f3a0579": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2279,7 +2128,25 @@ "width": null } }, - "ea93594660ea4558b68dea51defcbd82": { + "b08b8194bb7945319e4226faa4dc1e95": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b76f5e93644c4938af33c52c2d7ce56f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2332,7 +2199,33 @@ "width": null } }, - "f89d246cf8b54bb39db18c2335209540": { + "c00138335b3d4b8da48267ab1602ff6d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_393f9e2ed4a44b9080882b753cdd387a", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0fe4bfde0a7f4678b46d06110f9e6bda", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "c9b41af5601c453b938a8eac0a2474a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2385,31 +2278,25 @@ "width": null } }, - "fd70f6b98c08483496128064bb09d766": { + "cbe2a9d9d09948828a6ef3b196589414": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b9834f1a2dc04e4998fd45d36ec2c1b0", - "IPY_MODEL_aadd08a551464931a9cede90779759b8", - "IPY_MODEL_1e72e6404b524e239765c4eeba5e36f4" - ], - "layout": "IPY_MODEL_ea93594660ea4558b68dea51defcbd82", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "fe94923cf8c4419fbecd40d47b31e2cc": { + "d48bf4432ea44c698cc1cce4b981da38": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2425,7 +2312,7 @@ "description_width": "" } }, - "fff19527d7e141968d248732ad79fb99": { + "dd9b1ca63d2a449986a8249d6a6a0c3e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2477,6 +2364,119 @@ "visibility": null, "width": null } + }, + "e932bfd1a1e2432aa3d1c447df10a9f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0f52557a110c435da6cd2255b1c93de6", + "IPY_MODEL_c00138335b3d4b8da48267ab1602ff6d", + "IPY_MODEL_6b2b871eccd144daa320c528f01aedda" + ], + "layout": "IPY_MODEL_2cc9ea967e07414a996cf63abc110f69", + "tabbable": null, + "tooltip": null + } + }, + "f7912b89c28040ddba731c7206a718b0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f84fe5a33d8e4296b46f14b0aa8b9961": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_422655b6abb04e76ad979c7d6db811b9", + "IPY_MODEL_34ce7f1803eb4dadaec339d206a66ec7", + "IPY_MODEL_fced5e1f3d504623bfd6adc490f06fc2" + ], + "layout": "IPY_MODEL_8880728d23aa4c138b6db1d8798a792d", + "tabbable": null, + "tooltip": null + } + }, + "fc0b5589ede043f88d506c7ed679ed48": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_10a9ac878fc24f9888f4f9559fe953fd", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d48bf4432ea44c698cc1cce4b981da38", + "tabbable": null, + "tooltip": null, + "value": 4997683.0 + } + }, + "fced5e1f3d504623bfd6adc490f06fc2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_312adce86b924cd083b68359b7ff3cda", + "placeholder": "​", + "style": "IPY_MODEL_cbe2a9d9d09948828a6ef3b196589414", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 20.63it/s]" + } } }, "version_major": 2, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index f4d8f6f7e..edd89e062 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -710,16 +710,16 @@

    1. Install required dependencies and download data

    diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index 8177bb470..e3b73ccfd 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:23:47.189790Z", - "iopub.status.busy": "2024-08-20T02:23:47.189361Z", - "iopub.status.idle": "2024-08-20T02:23:48.403988Z", - "shell.execute_reply": "2024-08-20T02:23:48.403347Z" + "iopub.execute_input": "2024-08-21T00:48:33.131555Z", + "iopub.status.busy": "2024-08-21T00:48:33.131391Z", + "iopub.status.idle": "2024-08-21T00:48:34.477099Z", + "shell.execute_reply": "2024-08-21T00:48:34.476468Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-20 02:23:47-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-08-21 00:48:33-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,8 +94,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.236.99, 2400:52e0:1a00::1068:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.236.99|:443... connected.\r\n" + "169.150.236.104, 2400:52e0:1a00::1070:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|169.150.236.104|:443... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "connected.\r\n" ] }, { @@ -122,9 +129,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K 5.63MB/s in 0.2s \r\n", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-08-20 02:23:47 (5.63 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-08-21 00:48:33 (6.33 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -136,24 +143,24 @@ "Archive: conll2003.zip\r\n", " inflating: data/metadata \r\n", " inflating: data/test.txt \r\n", - " inflating: data/train.txt \r\n", - " inflating: data/valid.txt " + " inflating: data/train.txt " ] }, { "name": "stdout", "output_type": "stream", "text": [ - "\r\n" + "\r\n", + " inflating: data/valid.txt \r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-20 02:23:47-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 16.182.69.145, 3.5.9.145, 3.5.25.176, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|16.182.69.145|:443... connected.\r\n", + "--2024-08-21 00:48:34-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.63.33, 52.217.95.209, 3.5.27.229, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.63.33|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -174,9 +181,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M 103MB/s in 0.2s \r\n", + "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.09s \r\n", "\r\n", - "2024-08-20 02:23:48 (103 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-08-21 00:48:34 (182 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -193,10 +200,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:23:48.406808Z", - "iopub.status.busy": "2024-08-20T02:23:48.406400Z", - "iopub.status.idle": "2024-08-20T02:23:50.001165Z", - "shell.execute_reply": "2024-08-20T02:23:50.000519Z" + "iopub.execute_input": "2024-08-21T00:48:34.479751Z", + "iopub.status.busy": "2024-08-21T00:48:34.479377Z", + "iopub.status.idle": "2024-08-21T00:48:35.780789Z", + "shell.execute_reply": "2024-08-21T00:48:35.780239Z" }, "nbsphinx": "hidden" }, @@ -207,7 +214,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@8bc7cc91f720f852a8b18530ef5dcbc166653031\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@b9796a540c4b8fcfe0647dc7dafe447a3738499c\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -233,10 +240,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:23:50.004031Z", - "iopub.status.busy": "2024-08-20T02:23:50.003445Z", - "iopub.status.idle": "2024-08-20T02:23:50.007127Z", - "shell.execute_reply": "2024-08-20T02:23:50.006582Z" + "iopub.execute_input": "2024-08-21T00:48:35.783186Z", + "iopub.status.busy": "2024-08-21T00:48:35.782857Z", + "iopub.status.idle": "2024-08-21T00:48:35.786293Z", + "shell.execute_reply": "2024-08-21T00:48:35.785824Z" } }, "outputs": [], @@ -286,10 +293,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:23:50.009438Z", - "iopub.status.busy": "2024-08-20T02:23:50.009017Z", - "iopub.status.idle": "2024-08-20T02:23:50.012211Z", - "shell.execute_reply": "2024-08-20T02:23:50.011731Z" + "iopub.execute_input": "2024-08-21T00:48:35.788435Z", + "iopub.status.busy": "2024-08-21T00:48:35.788082Z", + "iopub.status.idle": "2024-08-21T00:48:35.791210Z", + "shell.execute_reply": "2024-08-21T00:48:35.790645Z" }, "nbsphinx": "hidden" }, @@ -307,10 +314,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:23:50.014371Z", - "iopub.status.busy": "2024-08-20T02:23:50.013919Z", - "iopub.status.idle": "2024-08-20T02:23:59.245717Z", - "shell.execute_reply": "2024-08-20T02:23:59.245080Z" + "iopub.execute_input": "2024-08-21T00:48:35.793110Z", + "iopub.status.busy": "2024-08-21T00:48:35.792936Z", + "iopub.status.idle": "2024-08-21T00:48:44.878008Z", + "shell.execute_reply": "2024-08-21T00:48:44.877430Z" } }, "outputs": [], @@ -384,10 +391,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:23:59.248529Z", - "iopub.status.busy": "2024-08-20T02:23:59.248146Z", - "iopub.status.idle": "2024-08-20T02:23:59.253721Z", - "shell.execute_reply": "2024-08-20T02:23:59.253260Z" + "iopub.execute_input": "2024-08-21T00:48:44.880606Z", + "iopub.status.busy": "2024-08-21T00:48:44.880228Z", + "iopub.status.idle": "2024-08-21T00:48:44.885938Z", + "shell.execute_reply": "2024-08-21T00:48:44.885464Z" }, "nbsphinx": "hidden" }, @@ -427,10 +434,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:23:59.255898Z", - "iopub.status.busy": "2024-08-20T02:23:59.255557Z", - "iopub.status.idle": "2024-08-20T02:23:59.636940Z", - "shell.execute_reply": "2024-08-20T02:23:59.636377Z" + "iopub.execute_input": "2024-08-21T00:48:44.887970Z", + "iopub.status.busy": "2024-08-21T00:48:44.887607Z", + "iopub.status.idle": "2024-08-21T00:48:45.236413Z", + "shell.execute_reply": "2024-08-21T00:48:45.235748Z" } }, "outputs": [], @@ -467,10 +474,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:23:59.639442Z", - "iopub.status.busy": "2024-08-20T02:23:59.639072Z", - "iopub.status.idle": "2024-08-20T02:23:59.643596Z", - "shell.execute_reply": "2024-08-20T02:23:59.643126Z" + "iopub.execute_input": "2024-08-21T00:48:45.238797Z", + "iopub.status.busy": "2024-08-21T00:48:45.238594Z", + "iopub.status.idle": "2024-08-21T00:48:45.242741Z", + "shell.execute_reply": "2024-08-21T00:48:45.242293Z" } }, "outputs": [ @@ -542,10 +549,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:23:59.645735Z", - "iopub.status.busy": "2024-08-20T02:23:59.645420Z", - "iopub.status.idle": "2024-08-20T02:24:02.450516Z", - "shell.execute_reply": "2024-08-20T02:24:02.449822Z" + "iopub.execute_input": "2024-08-21T00:48:45.244879Z", + "iopub.status.busy": "2024-08-21T00:48:45.244540Z", + "iopub.status.idle": "2024-08-21T00:48:47.886104Z", + "shell.execute_reply": "2024-08-21T00:48:47.885240Z" } }, "outputs": [], @@ -567,10 +574,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:24:02.453944Z", - "iopub.status.busy": "2024-08-20T02:24:02.453026Z", - "iopub.status.idle": "2024-08-20T02:24:02.457210Z", - "shell.execute_reply": "2024-08-20T02:24:02.456664Z" + "iopub.execute_input": "2024-08-21T00:48:47.889759Z", + "iopub.status.busy": "2024-08-21T00:48:47.888760Z", + "iopub.status.idle": "2024-08-21T00:48:47.893081Z", + "shell.execute_reply": "2024-08-21T00:48:47.892524Z" } }, "outputs": [ @@ -606,10 +613,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:24:02.459333Z", - "iopub.status.busy": "2024-08-20T02:24:02.458986Z", - "iopub.status.idle": "2024-08-20T02:24:02.464337Z", - "shell.execute_reply": "2024-08-20T02:24:02.463806Z" + "iopub.execute_input": "2024-08-21T00:48:47.895029Z", + "iopub.status.busy": "2024-08-21T00:48:47.894719Z", + "iopub.status.idle": "2024-08-21T00:48:47.900629Z", + "shell.execute_reply": "2024-08-21T00:48:47.900158Z" } }, "outputs": [ @@ -787,10 +794,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:24:02.466242Z", - "iopub.status.busy": "2024-08-20T02:24:02.466067Z", - "iopub.status.idle": "2024-08-20T02:24:02.492938Z", - "shell.execute_reply": "2024-08-20T02:24:02.492457Z" + "iopub.execute_input": "2024-08-21T00:48:47.902736Z", + "iopub.status.busy": "2024-08-21T00:48:47.902396Z", + "iopub.status.idle": "2024-08-21T00:48:47.928872Z", + "shell.execute_reply": "2024-08-21T00:48:47.928414Z" } }, "outputs": [ @@ -892,10 +899,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:24:02.495013Z", - "iopub.status.busy": "2024-08-20T02:24:02.494699Z", - "iopub.status.idle": "2024-08-20T02:24:02.499367Z", - "shell.execute_reply": "2024-08-20T02:24:02.498819Z" + "iopub.execute_input": "2024-08-21T00:48:47.931025Z", + "iopub.status.busy": "2024-08-21T00:48:47.930625Z", + "iopub.status.idle": "2024-08-21T00:48:47.935094Z", + "shell.execute_reply": "2024-08-21T00:48:47.934549Z" } }, "outputs": [ @@ -969,10 +976,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:24:02.501377Z", - "iopub.status.busy": "2024-08-20T02:24:02.501054Z", - "iopub.status.idle": "2024-08-20T02:24:03.978603Z", - "shell.execute_reply": "2024-08-20T02:24:03.978055Z" + "iopub.execute_input": "2024-08-21T00:48:47.937284Z", + "iopub.status.busy": "2024-08-21T00:48:47.936831Z", + "iopub.status.idle": "2024-08-21T00:48:49.344989Z", + "shell.execute_reply": "2024-08-21T00:48:49.344481Z" } }, "outputs": [ @@ -1144,10 +1151,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-08-20T02:24:03.980976Z", - "iopub.status.busy": "2024-08-20T02:24:03.980606Z", - "iopub.status.idle": "2024-08-20T02:24:03.984644Z", - "shell.execute_reply": "2024-08-20T02:24:03.984222Z" + "iopub.execute_input": "2024-08-21T00:48:49.347279Z", + "iopub.status.busy": "2024-08-21T00:48:49.346950Z", + "iopub.status.idle": "2024-08-21T00:48:49.351135Z", + "shell.execute_reply": "2024-08-21T00:48:49.350554Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index 9daa3b840..352b1d7de 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.6.6", - commit_hash: "8bc7cc91f720f852a8b18530ef5dcbc166653031", + commit_hash: "b9796a540c4b8fcfe0647dc7dafe447a3738499c", }; \ No newline at end of file

    Types of issuesNon-IID Issue
  • Class Imbalance Issue
  • Image-specific Issues
  • +
  • Spurious Correlations between image-specific properties and labels
  • Underperforming Group Issue
  • Null Issue
  • Data Valuation Issue
  • diff --git a/master/cleanlab/datalab/guide/issue_type_description.html b/master/cleanlab/datalab/guide/issue_type_description.html index 1aa61d2ab..34ecc5481 100644 --- a/master/cleanlab/datalab/guide/issue_type_description.html +++ b/master/cleanlab/datalab/guide/issue_type_description.html @@ -1135,6 +1135,60 @@

    y$U@IOdp}j<4$Nz6AeYY&plO3ILpkKveplsn=AQuZQ5uQ^QL}X~4=;#h}Cx zert(kvzB#CK8@FzN`i_@Z`v|d&}qyI_s11CNv-*TX9n=zW9!B79{FRV#WQ$OeD+4m zqh$3|m&iQEzsQ43RVEcgXtDTccP+Ld&1-c`dh3>Dma}Xs#l>;@x$mtJd_y%;q~A=a z=M-yHY?(| zn+E`QGjy^TcWFP31trI>rmWXdv9ZtGBmEM?^YLEHyAc8-PnGL`@hrS9)qD%iQ4R=`MDb` zHk02y;K>(Huw}9bl)Is}yHssKC(!lepkK2|r#OB&_i|l6d86e~F4L>y{oluVtxc8$ z_BWLS9kBEXw;ueb-l8I1h3m9(!Mx1C&iSmS0Cjd@`8Ko&!gK(venL)b0GX%*f8%9h z?fIkn+t5e#x1nJI>$*tnWuloq768OW;yDR@{rQVOSaKMJlDCQL{0PY}2bB&~tbg^+ zLW)6HT*^;+%*ku|`Svk<*C*M5JZt%&61-#a_8r(X!iS6f+gLB0vtK^Ji=G|6l`W>w zxb4YL$c@)|C&b3<2=_|0OWZ!E4eWq^ZyF>8#{Q;t|-4=#!FmWu->Y zh8j2;9K#cPL{?#SX|-U$@wha=h%H>xJe`+#j@pMBb2eHhMob4ejhCoz%9p4qg51v? z1z&*KWyy>Z;Bo_ZfZ#tJTDv;?iTIaAG4^z^#3jEH>>SnEKnvo|vr;SO)XsJ*;6Iep%SOhtSYh z@(K;ysa!#kz^wZIz;aQH`xxN=czM-!$nutneNVx0V{79{+za3%SIVi5u?=wGq}&EL zL~)>-57PFXB=P(7N!;_$27n*N4yj(kP?`RLcijM)#S;PAw;ex|EfAvDD~2I85njZ`4Sy>{I4tBbyo#wkuwaX-rwRUAcfq2g}f z2Ivyv(W0+T$^)k>3oZLJ_5`JcnyXXDqYB`TA+0d9*S1h63GD z4jvGyT!tMcr7gO8=AzA(uzfA|&41QR<>MZtv6;XJDK7IVnd0(4Mf@5Z1CF}|mw3W-%II3=h*LDfWi&*;qzH_5 zj~LoYmCUWpI;hfSc&{tN1WT>&Ah_V?%bcG6#7)a)Kh}&2hMwN&l-w_DL~GDfI(D46 zj%Cqe%$5QIdM!oJkIN09z@j^A0F3tqC@}O2$op>m2l96|ir}PbD$Cf|4WEt}XPiiv`)d|+w9@@O#%w&)Z$bsCZ21)-no zEw@j-U@fR-?H@+D=;Pm<&@aogA1MMV4A|5&S?j25gxwR27U|~}X^SA;C!T=|)2z>! zPl0FQGjNkM>r?C;Wq~a@b4oq~cZSwr(}$a_z1VG9>_iaH!12PltpbXR@fm|=d8yZv zKuwIO$G|Pbo6Fn$tPRc4r*#oZ9ckZ+l{!s&15%7VEk%f>HF!*z1z3|=bz1C1@FGG5 zDME3eMnuSO6lg7JV(mSMJgswmn$}>${|d79V0~#Zas>o0T=f@7TN_+6;O%EJ7U`Oy z_QB~y{>Bh1TyL06`M5c2Wna!39A=%s!;a{2Ty&sM!>pNX0i}g9zi}EKZnk!F!McqZ z)qF8%5Me#Y)=+Y|<=rIG+Jb#Si*X!WbDAHHw7#MupemQdSSzxhDFTWG2%*KTtyBaz z+4Q$I6}{mYUU(-cvsMEM+7mjl&lJ20J8mo*HQLISUca8N1 zYek{)vR67SL7U7G*Wi_6W9r=fcR6+LL9uY^+zmDntooaCIDZ}_8|YkokO5ZzfQrH* zr@D2z%2b$1-24xK{+qibAVf>~-PLk&VkV5PxB~ddC4&-qn;P)S?fl<)Q4MP!ZSn6i z)49Y=R=Lq{ddpql74Y`iKKK-(`2LQNdP*&8OVXd3%O1ZFpy0DFY$2tJ3M!XsZLMwk zU8V*%(`rzV&h$HXroXu{eJjn{+ACB1$R{wzk9?M|ZSClH23W|1+F7s6_$GgA06!OC zP2qWdrVzQRx#q@iT^(yjul!t*Gs-n(&^7R;v`OAy5h3yYq*4@9=zixoDKlNUEs{cG zNDhJcB^*8K7#DjMO7Ij@ocM*OnBbQ@bp-28{T_Yb5qXb3ao}Ko9$(-3lA8KjR%K}8 z{PXp#{Y)%Xka4a`LG^m>D}@vT0Or0P<2gM{DXzP`DxN>Jd{7xas-d+XYfe~T+AGcr z)9hwv1H>oI@<%taW|~-6inCc{q&l6I$*=Zj#jODN#77frIG?dID3a&>86PVCOk<-w zu!b90m=K$$K!}{v6a&IYh%HgT1pBwn%B0n5rA82d8cc|NO>1Dt(eqVMjaLppZp?@6 zpXAH(B60Vr%4KJ}1SGQECJas6ier zT3c(g3bfj21Hd@jfJ{0(X&uIzP*`NrKxdMv)CeX}gV!>;(;9<5R4eqqf6Dp=%b~DH zf0RytvQi`HLk%|KrA+I~> zQox+#n8lW_*xzpQKJo*FM&}+H-#(oEN$KLPkI2qec%RJwJn=qU3iycAXCKq#)ol){s(9UV8B2=byD^ z#bf}@1#|S5+Fe7cXlQ~#B2)(tMhyZ5l}XQK!JCW8qr{qse`A5Lr8`5{esVqSPmyoVIDAsiFA zZ%}s74fI6r3{i~2HG`4$>rq4b2feLdv5zP;PW6|A?BY!Ka#~}|slGig=TsYMHBK16 zIZtN#znqsd{UYeLBAIIlu7A@I*x=+{VPoW8Jd5x3vo=(PLU)3D8>87dMHq3@*b^U* z`YXjawO%GwuPr??xWU$% zEQ!LPZsPwSx~cw$OE+&1v8EB-=-*xfUZ@*|7wTr+@MmKb*|0QgsC5)mfDP3=t;ix& zqW~iQ-eJ~iYBAzh8xD)zp8o;=%y4T*6(3dW_lI1yfNI4p-24aG)?^dQr36v66Li&1 zpf$Kq#;o9*v=|r4fPkw+ih!A}4s1CE##JH!V^)v?gZ`aa!7nL-lR9c&L6F*iGTn>z z?~Q>ejsk3Ge;1`L#yJ%bskY1k$5!xBdoQTk<4;+v=hA zm3im|;?d}nfftBR#$0guB(BW;M32JIpnrP^_@K@yAAMzBosveK12C$P0+W@wQjE%a z+X0!M3`z%;r2ygsf=Y>@=PnONmDUpvdMfy+=c|UE=N=nWGk@9()A1NKT(3mJgBgNE1W9AfV8|~l)K5q*2^TX~W$oQovBllmB9e>XSK6k2h zoObmB4|&O&&59m^s;5^k8>pD!ZSb=7w&s5^zxFh%W@3RCi4(hpWj#}BzUbnO1a7}# zou!q%$X}gqUC0t1f?r8CzqEm$Au_E-N6;Hb^&>L28Cs4mvvZug@S3%*ua=j z$_Psv%(3P(1sMBnOWjb;z`bFvb)|{zrs$~k?Yh>t(;DXh8O$T+TNAXipwk;;%Cqwn z233ECHt@PsJ+`gth<>zfHKq3eGt@n0rt3cN67gNsJpiNbDX`Ri`ft60dEP>6Ijzhk zzImaw0*j~EC|RjX#3_<5xt!uKw^k-fHw43+4DejnI=du)auIBOG^IpwRDo&*?4AJY z`2T`^`WAroe;8QS+i>XE`u{+b<_U|Tt<(Nruss5dKMV{LPY?lv`HXkKz^gCuRqt5K zvo#b4)wq(XG2c+*<|WojUe%biVPqLkC&fWmF(mr#h^5wBOesd+{nhYYe4nIdo^=8H zgUW`k`}-w1VEj&NoUWT}zIREF?GI=@w(2fzRnTRZbGXI!H0ia#2fdc^(Y-d|GV$8Y zp|%dDOVVj6tZTps!#2IBSiG&m3Ezi&;_=il zx@6Wf@wQK4ANi>(0X(TyLMi+)<-L-nw5P7f8!1_C66|{#XYzYw*7LVg1r!l8h~I+ldk$}_eRYLn z&iRl6Au@^k3<%7p?%7~%&59H-k#oL$MJ8<@C^dor)L_2z#Hr-+j9mqtI5Yc3J`!Ls z9|>Y$KGJ)8WIpm^;6U?{bIbchGm0P&NxpeSCL{&8Oh`5oyg$Ce7jLrGj0f$g3Ca0X za7akj%#SXxmeg1}l^7RSa4n=Vdx{ogvM&9qyrJQV05>#BFZ|c)&p$plFj!vD=;00h z`yZ?ayzujaKGGX{uPxTMy`u;7l%L>8%Or1D-~424r(!{Zu^sR8v-J_L<>>CZ=y*^# zYf3rdnV*F8MgctJ7way@X&oxoOGDqKK&WPZl`q|Dou#5eY9qG*%7nNMOXD8b%R#nKz{Wq z8OZNl#ev)mz9{#MFJ8qUr2%P-u=}c9CGNP2sVQDzk98z#P3fT$GOkG_WYC(Zz1HWo-q(1}lA%eguTmpUW%lG5 ztF7@owfitYD&_*=|IKB3aOW+OadjWt9Ae=sH@Td#r5zN}Fxlp+Wd zn|>zE+b^5vvasm~Y#-Z1v0SqdK54!66(I^vJ+vZXJQO8&=QE+m&*`2hPSs=94O*!p ze(spH7LWf71eN#F2btn{&Np-qpC9@R?y!Yd9h9trzC%t}YsVYiL_b1Yf^vQCgw@WJ z64Yv>q$|EVp#2LDpeqpHy->OtzEeTRQqr|B0{0T!Faq}$zc2#BFJBS3*D1)6cwUhR zJ8j*>98_>Hg!767Db~5qeEu;baM(&qalY~E;bpkr@78D@?r0yz+pe@Ev1x>vjKvmG z;%xlOMYv(i+gI8g#%r9mX7c#6)@f`p0fjHf4(VdzLeK5Ac}4QMy2PekGudYzP-`jF z2=$i&J zK5`tb0f()^cjeV?33wRIovnztY#qWWs!Jg{uVT>qnstC6;@s?n&o9yj*x#K~PcmuiyM<<+g+CQ94q;xT^Ubqgs$+Ky( zNCn2v5+!suQ^6E5k?-0j#}6EDc3HKM&^&>J1J28Q%5T=;`PFY)<4kNLrH-NCo9i+Z zd_!woYa4CPb(y@|N2_tb+{M@Lro)tW;<^k9>ORCE|o zI|v1|&_2H|L+yvXA)Qx;5<~sgx*_#ji`E$WZF58F_i0*VHg^<2#K&Dnr5NWQDL3T&Ls!az#kMnSAti@8 zc~jTPo3sXXQjpd03G=EO0laVRj%n;;T8~Qkh$`hvLn%|twtB?j^r#4YME-|)@>$m^ zFqkLQ?HF&~0nD1!?U=}Rc`(~XnH@2hb@aDY^vVn^pfE#SVGhl+cvn-ng{c%9Cb+E# zBTS$G8YWPR(FC(q6Y!=%wm(?>pTx=02BrR#ep!mvpbbDbm9?}#dD`6(Nvsa7MibQf zllW!RKjmC_{Ph5y*06a6q89zRGT?(bILb%gU+Y3?W9AruQHKF*eFUKx7`##c&oZ3_dnmEv=@Bbe4qSqe6#_cYgNdi4PyUPx&hx9VY|zgQ+jBF zJlzI)v<7W}8Q#L}ehKEU{tV!z9ezpd8w!M$_>x-UM`8)nfO-|8vyJgr-+l*nXbQ?s zH^mW398CehXbK8UOyOBvP}cDTQ;H3DzDdcWDHK3d<=_}wsuz6RK@GS`+}8&_nnEFq zrdVQ_0@o4ip1&9>2JQwtt6)T^38J5v2QRrU7ZMFABO{vD7sW<2tvoONK_th|Z#{EU zUo>{3m}s8PH%Uk7chl%7nAz-bQ)V_ZDIRdtGn;LoTC8;H-*gFx%ZoSMz-4ALbcQzp zwRqbD_8vvRlrc!JKs4s8I0QD8c!uEYm+xNX}pQZ^gtR z^~;H5+c=gz~hJ6MWv8$OK<~!1kD~Qv^9(FZ-8F@Ck4^ zU7sy})&GmHscy@N2a(k&dV(l$Dix>b_!z|kS`2-t{lamNHbbvr>&@Pz#Kt5S@E#vgylSbY{8Uwl&`e3)$? z>rCmPQab!CmC}LM7)lwUD`gn1Mx_j*O0oDn0e_3^+YgkD^tU0^LqkQW)7^{= z+=;*SfLTbfP*caKrY=fNnPEVXS=K{;%YeC$;u!&RH&hGZ3cyafa2PP-ZV@jvIzzN5 zR;0tNz!VCN(Xt9HL5*RwREiBZNWUffMhl818V5PeDdlYXrS^8Wl&%qPbd6})H5BT& z6{wU53z;ejg7Pz>TJ$YfqcPwqV*&;|I&zYhW59b!2#W#lW$_CG9{lni@P_g^%Le&# z*3R~tm(X{to$U>_#I5mq=zEJ4>mtmY@mQfRjraYma}s~PgDsbROsHcJjPb%Rdo|yj zY@5%%r@)xB+bFe(Plb9u()dB=Vj!AmTLQ&uxCNUzy`$Fqjm>}RR2Cr|wu&eD6 zb5^>NXLhxPu@Fj@#Ky9;9Aje{Q9@&*f{Nc!nE0&iSxsAD=I@&PWBA|)mN-_8(vjyH zVzVo<+O$}tXu<@b^J3}~eD|0KPw?|SY~fxAl<#R9##*@((5l_$XM5UactLolm(9Yu zc|ph@-rF|Bq+;NvmC;r`nk#KZHTCFg8);&rDOEQ$=_v~Z6{Go7iewC6lSMHOV5@JD zXugC(W8ix0whUZv(HdjKT7O%PSf9~q9FEuCCei%6+j7VXye*@-(Pn+f0yY@96gD_s zroP=RCX`agQjF#buo1V8QfOT6DS$@YQi?HdExaw`*1X#!niso6dIKuu9yCXM{+u#0 zbP|0>>Lixpp-zh5F?3=|Ab`+jdv+f_S52=nG$kI>vIP1TC~zZ}9gr}o3nduGYl~kP$KjW+IR4cOw)eb*@MYs+ZQfQ8aK;a4vmV0RkYb(t%=wQQ z!t=Itt}a4&X+C0tZ9MBiSjfe!7pB?I-6f0Ju@nUtvm@`y#q6-VGLpaQ0r9c{fl=H$ z6B)&O0k%gJrwDQ}+u|-RX3Gk28OFa5zr>#y#^J&CRDM18a!o#KiY+=GnxKaAR-(YE za}4FqckZ6$9l!59h;5(%BB=AV4QfAfR7bsIRR4<7B~krXT8`mrt0R%3rI z^^Y;CYsvq}NcY8E8R?8R>su|r28VTpjWMiy7GtPWij85twIYld))hcwSXYX1&?xqg z40ZRx$z2QAY)TKcGDO$P5L#nsWs3mCi3_kntte~^t#}q=uv3Z+ zt$d^iBebFb8d_0`Q7Z!ttr)@XE;x<|C>QR^fN~E07QyZ)<%1rFZ%T+#r^6Y+?(cu} zV0W8hp{j0DRcZIofy~hR^*1H{kGko=V(~Qt zeVldDEO|tJD5c~P=Z8|DM0_YEqe}J%g8F;npHIc3AZy_tNb-7EN^N#nC;+v#_n!PB z$pKOVb;2cQ4t(^<0Dh6A--ou}*dK(jd}Z>yD8abnCzrjHH($2G_Sz#n=zD#gEryT% z$kr%~QUf!MNa(?%R@xG@f51;y+Df_A=Z%lIm`?CtSK2xUmAwywCEO3-iML;Px`ZL7 z9x5X4i>_0aC$2AFJyzkOcj5E*`0-V?L9u&DlXYEYL*1MXqcY4uHNR7ZpjIXgO28-o zs9i&Ftp@*Cv)6;xC(h3nC9hetOW|Ktur3?<{UZqfeNUKm7|)&E?+JdiPVo{8`(;P+ zIl)&$_|Ko%lC;kEdB)tasXR3~HHzCO+iLT56KW@Fru%&IT3hWPAsl$a=RCvS^(j8E z+l44zd>w4Cjum2{OJv`dE-{Lf=*{?FxI`%L7jiY2N36GPWRwNR3xIdm+qSVc2xoX1 z1?EQOK6|8&wtk4c6<_ih3tC|;4|QDD;DQV^KJbT77JuL%@Qn~ z>5iXx#MB2r@qb^}!o#R2aL8Z0*_80LEst%b+~LipRy_P0+f?nH`=YNz^Esb}{$xH3 zqKem=%s_;{zQLBEHcVtTJO!aT(JxWvd~3@v{|z+6)dKvn`&(N&`-h4kayHuS`(o7B z?+6%843Rzh=6#&a#9k+Ox(j75zAv90XjRT$(;WLiXC;2jEoZO6$~+)`h^$IJ@XAVm zBq932|IcdsCfjs#BjE6Cfvp8=;=!STcMf{LulsNg@a{pUcn=Lw-Qp*B_`263{PHV* zZ-Y;p_M{SEW~|?&{uS9kS}dAw20&i*N811|7|p8|RAhFq7!9`Aa=c(5kLg}9(w1t8 zUNDfyTkaTPLVTwKx8ciPeo%pD{cNl4g}~T6?J2g}od7ng%P+QM6$8_6h9dQiB@adB z`){>X)xv%tRQ2A{^EcaE_8TeZ*jt)xvpKXM9?0IZYo(TNJ_>5Z-U3AU((SfS8Knjt z81CIq++nNFu25oV5rGl0)3)9V#^fOXy6j)C7?IBoEUjX=^+quMkb}RxPM81 zz=>m4a=DN=1yYYcpgW#(sa=`;!@F(sG_BIVA`q12x$7&}E9nEi82|U~Q>F5Y_Sw#v z!s-xKx=O$KPV2xLlX9ujyp5B?`PzfFG*ca(w*n&XnvI&x-1c8xtw4yscF0!W8^zS- z=5DOF2gRogwAM~yR}R}Im`CZvv^xLFH&>{1VvXLObUOXkGi{`NUoz#WZHXyt8eyk5 z?57{JmFx{tE*rM#N9`5UG})$}TeO|#CC)Yh4Sp&vvJ|7lP!2M%R+hsbl>=1rX;^fA ze4*`(N&5m#(uj|(8<|4HukMK^U)wHfRk5=9XW*RFC#e$KO2rkc0&UB`a%ddes%*$( z$H*{M?EZa%26Rx0^l9PZN1ql#Jno!d?yRl9$$VAl^G^6+?drecgG~K7ekiC%kyesl zoAMx$&neOZ_`LJBC4SMx0*mpaKW$Z6Ec|lKQ6LWMSKNvh5bheNbiMd!6 z9{FOG6lneW2eu4ev^X-P!wdqVNBNnrKc18Dri;u$eAGW$3104otutFqScnh)$rNUs z7tYzMiUsn`(@U4(WA14U*w+*hKbznkhvzJv6wfdJY5SG!q$rqy{H++@yzTjV?6^`R z4#q=G+7?I5!Z^Rm>=La-P2stC00C9C)qXCFF9g( z!7bZ!tgHeiZuFG|Fd;=XrA9~rH9`tr_pX>#Ln zcUJpn*aixUJo0rOTa_BY18R^5ekkG~twtXGo^9>H<8l-`U2|%1`ifS^sQ>+h{%$+~()yV7(;8sS$`g8dW3W^~U*3*jdj4#J^ z=sK)Hc4}C$Vu&Ua*Nub_f{LEF#^3rEOuI7x#rzX=8+G)VPTd(Z*b#B&XIOLEBwR4f zi8E(tPiwqZLq~PimR5_UlBo?(y8=fW#Cw^Z%cZUwPrGEV8-_A24w7>72PMsQ`ISKX zqol)el!nnGTx+iJ{>@%&GB4|*fBaA(79CrgP&q}KT#m}4X)zeAJ%6M9|=25Fm&%g}n5`Ke?_G;dkX zUdue$Np-TB&w-=?&-_ykw@7e`cY^vx#zZ%Q6Q(^M%(o}npVi(s^U6u~TI>T45tn(V z7%3;|OALxIhQs%YR+TCp@6iydCOMV=vAlh6*pGynZp9xf*nef)NVzoLiHi1jv>$cj z&8=j=rX7>U6NS5*f@e`$ay?{7p)V&@Da3a$@`Xz`;DvR}A=>BQh{=wc`KOcZAHl0t zeujf_xdZ1Xd#jn&;JxB#mC}(C5q_cqB7XOp_Cac~+=+uG2p@E+=ha&Fz9wd) z1W`R>b@hy;HK?AMx_V|QH9|cze5q%VZ}q&Qs|WbuxS{Yf^y6L}lYgm>y{w5T<=DVc zMgyb1da-8y-g@@-Cbp9biw*ouZ{TmV21o04qobbF&inDrA>+!k3$$8{o7!1lt^Ct# zE3cO=9naG*heT+n^rix5Y^uW9XsTy%)kgMVOer?*7RLD#$3|CB0Fms##^4G{F>2}; zRa1Ok6MH^uLg}HR8u-hO(ty?&ih^`9Dykc;Mn!e@_t9JW`FravhN3z^z34K)85N~) zHWcMq{LicA#!M;3K7$Vqy-ejpMJa$tc0h)`zKW0gykmzquf`Tqd_3soiI4YslwwqL zJy3++=Y&i0CtKPNvJI3TDmq_RbUv*?MHjTP&(`)rwU|Hbr`4|cgSOk3wom%|oI7j> z95Hv;PD$e2q3}6VHSLye+B>uwP5YNGX7Dv>FEd`lw7?N34hlz{I6&*s*h=dSV|y0& zd)hvVDaB~)N&8q`Rz1MIS15o;w#I%|NySHFeQp@5|4ZXCOzUM#!5dgG<(}xsFfEZq z;w2+>{tFYDHs*l=fjnbK=Spla6#^4l{b3hCOb-%Abu94+Q&89BKdcFv%|RwZn!kb@yKrWW9D^GAK5rFk$p-V zjGkGPV6LTo0!c!z39N5n0}~QhtdVGqzC7aZ9&@zj1$%lvVh+outqNH9oc&3*iVB07 zs~w_*u98-uIcf$jNGoP4Rt$0-Zx)ZymczVHq_HaWuz$r)QzFI!<{~Y|c^Z8GXm(Hg zbQJ-(wp%!_*(0~)B+8c|L=qV?^D?nIVn54lRvQ{7aLccPB zkW9>K*bW{mgkR1XwMZ$+WTL4QU*Evq*mI?t9Ehffp{4)=@4%XMW-Xrfy1k0vQi>P# z?DdGtR+|Nd! zQCF}wQ>MzsrQ}n?T6E%Dzc$0g$wBtYe8M36Jk1u!qXye6Fb9J``ch)DDR`Do$~oqd#K4TF&OkVX%6VEJp6KXF(Yy&@b%BZP~bh$n-c8BQ9*b0 zc;4)BvAq5y`=fk>99_0_Fh4yFrv0U061@yeYBCyP)*G z!!H!)JNLqP@;LJkYq0G6Rw@~4l8X|m$+1$CqjXJ9+;3jTR#UXc*5pT0lcU@;nSLzF zpU)YUnZ(=8vDfDJX4@B=_XI=Uadc))wvS3+cqY7VF=7~KZ7TI8;L#SGgF zfPBgK@kuHMFnX*hHhkqwY+jpwB6j$_ZzrB!t&ATpT4+D-*Ayh-qxO$WWzDHfLj4P; zbWH^UVsTU4yvKEDZKT1%7+-IgJMn@pnK3+dHLO!|m)N;^A=q)&GnvV35oPc4 zW^KMNg}#RhRj1N0I&^!)@MN9?f+QuwG!}lSo?GH`cm2JgH*SWmzfl*=1K2MV@3Hl_ z#bDvmUrugnCqDjt`x)(82=BWb)=t+cPeW-}d@1c8R9XoyUda1SyWEKPd^0oZu?E!( zA^f!uVOey63WiP?7V74N=kyky(UsUVf!Y@tWlr66$4cfMIRyrsw^5-cPWkOMK}}AfNp1BMrlI*V^q`Xdr*r zZ$NqW3>8k8q4@KngpLKB_?*cwOXv_Phk}kj2M%L1Dca+@GM_!!-qO^8o2Jq^!ls&) zL-@&c_P@=afv{0`%{AE4n$d93^@iz{F9akChrh0BT&PSH7XO;Pd)NDFFme zuYkb7V?5hS!SGznPM!QIrACm48hO6wxPNjetu@F42q7QCgMPHX!h*txg^-6|m~29< zQX_akjjIV2X|0Qg$&W{^f?0FX*S%neOtd0~zx@+vswo9WHVt()ZIv3q25MYvo};w} zn}(ijg0|Xi%tFDD&1juXu2Lh|K#hydELv-@8LhCv6GdM9H@iLKaH8lnZY}Q@Z_>{Z zQ8;;ys6G?th&slK14Hs8(HDYinmAMRT^O&r-Tq`ee4b4mF&j`*!dao3`QL1}e`{h} zsK7>ccsnh|fnZA*ueQtnsy74?@lLuUn1M3?wyIx4Zy4eP&2@JS4OnFDv2XT;U=Al9 zhVyB`;z|v_dMbtptvqXd*GJ4*<1i4!=Op_DuYsCUUd5Z z#gFA3PT3Q^;AdTQq_CU+0YAM(NVFIH2A3RlSwMtak5K_pE$1&eDyqe}g;*b~BKCXh zfK|nQ@4?HCLROv9LvK!wklvh3YlJuFw|~pQOy(A_^MUT%iUJt!oF3uBojXMMa_1(1 zBHXzNr6>=J4GO8I4T0(saOhzetwx_7K*0XCi9b(9wDl74?NhR?p~NY_4z;Ja^vZPs~k_}CYRZ@h76eg$UA?i{d7 z?g6%CCc#|!?le`szQ zse5y43S@Y5Mx+mK?ilIIo0|d(cr%}{RbNAH$xh;EouMF*u+DHdUW2s3zSvkJ<;evv zBPQ?>p6ud-PW*bLbmBKWSiI(o1(z(mjQ_v^of!U)PF!e@s$yOX8p99&t#@OgUkq8} zi_Zp-ck1)CRX$NKKc67aApsNNY_8@=KZ8PXZZnzkGW?8|7W5sOl%Mv%K1*XKX*rJF z%~}LBV&`cw&VWuv@+l@qYc~X8uYTO_&#T5eEZRSjd`Ucvy!R=#bdU)wRlDP>xq(r< z-!VrWwYkQ=-MWwcLZZuvXn?C={nODPIp6WIUs*2_!Dg17A3tP|;wuiq7?Ko4`j1N- zo^#mV1m>Ba9JVL&(Z?K>RQ9k*)j2xb3s>GVz|q2usko4rGHqTnmO)uL^@ba&ilW65 zGTwu>VmUnX9Tem^%ATV%g^3n6^{dbN(^BO0Tohjx4B^-Vp6Bg@cg?Ks2w?)ydCayx z?_ZQ3!<*lPEY0>%N4QGGIIT9#or(r*=Z8Als0ipucxsD#LqLrva=K|mf9Ffpi1 zdzR8e%XBF&Ez^b8pk)$EI%aEQpjucahgQ3SjA;~Kf7#pdmluosw9N40(lWy-Mdukg z#;@fkCYa|H50np|FQ7occ93Z6A@OB*Tt&_>X7w2{(uR4KmE z=2?u-oGZmBw=v>wEiOmg-`vEm!`H!x3*Q;?uC4vW|K9kglAEXfpX6zG?DgF2pZ0ZPiU!OuJUf}8?V-(R zd!@~2`@Aj#VnV4Vur#i+BZDcxIHuytXf%})JE;PQ_=PqWr{bf5ZaEE<5A(qq8kbw|_QfTb*|f$m&T8E_YiPBre`+gz87JSjaXyg7VINSEZXI-|(?Yu`km#V=c3&1c z>eE8N5rJb~3{zh_Vr)0wP&Qsv}J;Ht=Kq1OAI? zjt;)?lOK)`--0j6->vP=A5X>HuMOd$A;rfN)1K}BxQ?T-${+Dp2m6=hsdZuY)%HIS z*;&_-sS+`i(3|3;vwI40r5>DdQ;IPn%>>WTBa%1?tfhwYjJ}Qxtz0-B1J=rh^C?e2 z0%Q(lVWhR*5XH{4R)4#r9-q{}u~u6hEw2);p;+jNE2DjkO!?8?mL_nGu#TM2e*pDx zUY;$ZBta1UiOQwXQtmh4*ajS5*5$6nvpxt*VZXcK=sCGlZo=2i|E7uK88f?2!Nr+o z(;c1>;V8@Q&OYw^q=KRM^yw8)pJmWu;XP&m zcTh0|uLNU8o-8j@QC@hPtVVuzYsYK;Y=j5dp+NRpiho%KKMW0_Ah@EMNQ;Fa+RzwY zqn+a^6#?XE$s@xfLrNIJ)R4jqjLARM&he(k7Ew|-PKpJO_FfEMbP!fi%W1V7nZ;Zn z&xf5piSaTQa9{oCU!7kBFKKjgwDKZ>Yf1tKG2V%H)MLMRm*PhsQta_2g}MYJ8ZpGF z^^7C+q2gSW;#~GF&L2L+`TPGDhj_6|oIsvd&p%C-M|f6o!L=M1}`AyTe~|}nE3Z`FBIp;!k>!db$UQF zXb8(>S06>6uNSL3C;Tv~gmdCrvMnt|->etQ^LxSsM1l9_o3*5Grp0pb%^G}eFNd8C zq2%!C2&4I_x-ZA-_b8TyhiHH-+E47OQ?02(bG zs-E4Jo5Zs5hCYIxGDc81JMaX@8z9O)hj(H7pY#?QZTXk>H5@Sv?LlnbUSWIXS=QQb~9n0B! z6dIQSOXK7+U@5JUtIs+9HOyat=1iaYC$oH7kF%i9z;s^E(QJ;BGXl`MYm*N8)I7h6 z(XWUi)W7~RxawNW)BD1*ct)I@zfF&m^Ujhbq17;*DV7b7a~L*? z5yiwtKWcSK$`n#Pih#4PG`{;;h$G$)H8(Gb3TL#f@B){;zNv;li|2_BtvahpiMl48 zrpf}O0UY@Y2+?9nQo;3!=SVj^ed0OXO?o&%{eojIn?j-S$=Hds1eJ2wK(x%ICbQPu(cr3sF7MvFMway-$?a6>OfI8pi{J}gTI z6K6Pq?lal=ksyT@S;I>KR#!OAIA1mkNY8n*5)RFD8m;D7i$8z(pv@pYy7tyot@E;u@E@=F?)l ziZZj5yu{^+fLDh;bVo1)An)^@e^Z|I?SqPZ(|hm%U=>&FSL}KnX3k$xTntjctmjNv zwkrr2q?V?(ev}}kI88WvjdH|Db&!@Aqu@SKjH4hJM;t2Q+h#f5VmBx>Myji&WTd)E zYcOGjXG(%g>)V#0rHQA?b&*IX2A1{_u3}2dZA-AMD_n6rQ(^`bk?S{8ikR!KQCbev zwP+1S#p=G;G%PI#X@w0Y`+*JazbkCydQY4w=~P;7k#?cH(vD{jHu+-JTe1qHtn@P_ zzzZ{C3NOrvfqF3`rl{A5fu6{anRbr%BgS0K=qfd?{dqPm`|HO}dg&L|xAj=PLF>wK!L?pH`z?cl+XX z(wklJTm|q#yDGfUeQxRQbH{_tU%uFw%lL91V1rxI@PFf6MVT`4Tt$2twKELTN|o`^ z50brcz;hMu9B}8pc^T=J86F&(`r^=5a`5JtzykeJ(G~h7I0^ct;v|M&dKULy>)%#& zDV)G#M%_w<72}`^h-C3?2!$*r8Rvp!M3T|z(>FhG9A=9sJ?Yb+7W8RagQFB~NUnow zvF-IKtu{RR6JM(Pwv62KP`fnlNUj1LF-onXB+am zHwH%Vv7dJup$#j`PwgLHfn`%nw8fCJK02hWtXxN_Ht$rJSVJ2CRU(nxhf;IR>9w9^ zWgHMd(1g(tId8HT!)b!taRndOco4t)< zVY7en)$9Ylnw?NCdzXmOIO)WR}?Uj6`BfQ;$FafrA82d z8nF(5RYzuWD6PeH0KUr^FP8yA-rCQ{@{fOT%wiiTC}ytmbrxHd8o>f;fW-)Qkk%l1 ze3H{3-~T5^E-Ru?Ncpl(`GHa+C_@bjf8}RKB4Y`}yht9OX$2Tu#en#zp(Y3Yd$URu z7MUa^NDb9dY6KIgK_>XDXa=n|m;j8z1TP)*ps>iKo6cmIQX`l^jbMV0i#lkn!2>{? zJa9SY#d)*q#mnW`;vJ6a&gB?|lgqJ$cwCN=s{l&`OI(h9kif_6bPR~ECzMTBV~JGz znApQ-8P-r?jb|CYpvAZtTazH4Wl#`sebjGP{YP0J8NF@tY5y>`igFasaelei@tuk7 zpv5?h<~C{R&#&!sboV<1b#iy^2!+DY^Z;nvYclTl1fH>Za-Hz(4+M_uY18IIQZk~q ziy~B-S?02VJHLL@zq%JOaO>$_g4}v~;KpAbL(%T~5+bOa+sEPoJ zZy)ags^}2EF?QszLo>08<)B^8kyB3Y!^ivc@S~3YTFr7i=O}E2r&1VDp?;Dkh3{VP zZI`o=w-&$)NKX!9XQMlmr6S&}FO5uXG#ns3GX!Th*M|{YG)jl7rPD@r{ zl$E|n23|PTRe0f47nF-rT}8P#3CjBZ>6lQ;982-ug#wJzRlIi*l1RK1r@IOu;OqA; zlw!FVA+8pceKIDa+Kms2|urBgd7 zRXLQ1JV72*L!N-Yv&DgzqS2|BK8)4JiC#P#(*(c@JzHUg{pZI-*?)ebLLjT}AI55z zH&)n*fEA_+;QvOd;EzO^D!Ayu<=n%#-1No;(*^Eau!FKB*+IjTh}Vm@Xdy{HLRZNo zx&HCeLxBbMP(^3hL&0CLhbsPpzKmxtm14Yyp_Y7`)0U-E5wT+`Fh~sVVJOAu*nOnN zoQ^H-V({EnZ~5gv@sHy(6B|q^OZNt~h;%`JT7#qY8}}VQm?tLb-aVPtyS!U_(U{Z__#UyS|&(Z#I{rBTMM3}Ax3 zr?gD^9@L0Lh+<6QdsGfAKIuPhl?si+JD%f@FHbs(^g<8(u7TrLtN576=mRYii45n^ zx-DqjE!Kk46TZi%7CMr}=K|2(@GadQ<>eExy(lbtK=<-KI_Z$|UOTDlE!}6J9x@fY z{&`1b!OW!&{%)ZhJF#RN8&}y?f=VbCHZGmbpn?b`@WKlO>;Av~&lp&EsYslVT3TLC zQ}Zac>@?zj$~&?xo=1IG@xI64IHY2CF-uL%Hm07ja+24KkcN-CG&cpLxC9Y4;DatZ zS~?AoKQd}u8xz}0aOBh0JIl-7zmwKD%>i#3rc4arc|W#msa*n*MPB*}1w_MK@MV}= z(lBakFyQ_uO;Wx#!-`7qUrokdE%E zNO!jn^9G;GY6B0=Hnw(GaoAj$ad7vfd23If^=5J;4t!PtqtCtp^)P%EZ?Fw&Vuk0f zb0|aMv|1k?{R3n%_Mr%T?RsKs`55?Q1tS)l?AqS+PbF9ns`NO)^b|S`5RQc*$}+i-s<_G#txp1& zc=UF>gpFER9j)#%@fH7(N!I7s^HhQ4zbcdY4VIt*>?H~o!9EKV;#pHrw`I08A!aDf-#T?1e*s~lT`u_g^WC4yN5!y zf!48>$6N~SxPM*{KR3|YgFQ)wpjP|a@HK<1xokhhcnHamy>Oo?1md&CheJ%)G8%)r zmQ1ZJGsdM!=D381D5t`wgoo33AfBPn@T=<#1!A=F4CSKG63Av8p^O}6 z<=&?xyyI}Ijm4*ucE(eZ7y@yflHBnxPD#dC7x0`XQe*husZERGd~h#olPbg5t@{PF zbA_>KIT^-|O!dqv>LWD8F!rF-VE#+Lpy>&11c=75qeyK;R#8UX$O3DP#_}oLeBgF0 z1*8Avr}E7s!8H^D?810oVGbqO`B-@&Bm~|%%DT&=Jglv^h!J#Ak=1UogSMR>3h2X} zl-Qi-t9Vv(tBLmj4o^l2#Cr)EE6&;drV% z%BNO`_gb(Y2kQ@zjcUsSI*Q)gM1@x6Vjx~|qrSeaj2&*E7#y0e<5@W{SoqFdzqPIG zhpd?Ks@AR%WC^@v+rkbS@D_XTO3K^Zd;0)yvrbe?<9vswF3(aXxc64*;jU~v zPg`!yR_Sr?y;!I;Kwr>S9$2(lVSSjLrtHv0Ck-2&q!_f(?}m*oPz>7WSJOt`QK-7|abH=q&j(0O`_R|bHNWplpA_e2YP+@EorNU;Tc!Ni+ zwk~A~7-M5YKqnC!1JA>#&pcsnOZB+kj7cc41^Ek8#~Sk($eMZ_+dI#)re?hwsDv0Y$Q`#A~OQumWtoEdKejIGBtagOz zVB$Jc;uzs`IIbJ%XjE(vAH3c=hEb4QE#$P5_UP2kZ4WaYO&POsxj^R%*Kz?S6kIMe z-X`jS%Z2UY7cLjJ^Mj?Bk!%9D(W-e57EE2Yip z{1#doCoQF*Ih`wDIjTYp#Hc#3y`0aBc359yPf>nooc)Gz_EQWR=Y(OLHz@{xOamOXDcgOyhWi2j6WiV+t690UzBBy+!LloKFM;)Pl$sv)vVXG|r>aINCs7 zvIf>XIqi)htGyhuI<%LwO&2P`bh<17mQKgdUuC6v&?7s@gWn=bDU7BS@PjLTMGdBO zK!=KGEX?el;KjKwcoL8p*Bb{@hB)^`6={Lm08zx)t7dhe+8YzlS`RuS9r|j|D*XJA z^)S1W7RLGKHVQH49|er_52i!!Giv`BrNY|p@l*Tf{M8<^q1y|K;3#B#6`4v6;(t8? zi!}<87aO+_i(GA5#GHbZu?43fI=Z>0AQ%GWj`e3z7o38A5x;N>f?s}jte@?(UhnfG zh+FEv2ZhULGkMF$teaWGj-Z2Uz{MFXoIqSN*uN9?YMc+AWeFYmsQuQ5T>(H^MD7#= zJ9-8Hy9m{AV(HTn2KJYNV|miVp#BL70#2uw5K;#b1x(~%%I)hKxVvS~tDPOUy;P@?` zPbe5CL;M!cR}?HJLkkp?-{MgyASRm6??`V}pEPDL;7axp6@-bm6)#zvY7q@Gz)_6O z7sSh>nk4bte#~plLI_;6a}wX!$r7;TzWyzF_)mG!&}EMQ-Y8aYkikd2V(q{v8*Wyw z1?3{DCkP5(wO08c*t#$%pJjLwSb#HM`Ac4*N`W!rzeSy}&l$CT@xVH3c~A;#1UyR1ZkrC|k3*zAD3(;*piyeVH$E5N7ss*)+Es!?-|m5ag9^E|J67( zonLz2+JZlz<<5%t!M*G&s0ut((_B9e4FnNL96~DWL0OjH0du!KXl?=&QRk8W5-stL zI>!%8X`M)Qz-bD2(tEk}IfjAJ0o88BE>TH%s(sEGRLi2MBwQEm`6;*`Uvs}TnqT@U zxG8Hv3&6@KgIA0S?8cisU=@$}j(fn`lHYKsQ5&AvHNSOiLs6LaSzyom{}S9sm4p4; ztE{3S=HB0!(Y(EUY;73T0(()(6bR)DC@yQi%8=(k{Xe$e!KTr|xG0=NA?Bh`0b}Je zttFxS&QGlAdSxem^0c)hTS`fBWmwMl?eQBxt?ncj$I#?taeOpr!fIher zF56)#5C7~T-*QqKPpnbnsB62{GSE!;_=czk4g~LuUpNrJFTVpp(#+X`yy30za1z|v zTk2yB2>r?m&u~!V;7aoc0&$H2>;Bak(3vMaPzCQdeGdVU#kc3xu+U7XfNS8vOIm@M z@<1eB!H7#*fWez!HMw0=SsRK5k2X$3pbRckv`llE67QoPWeqarXrp}thvC*y`ZEpq zhi9y9EkgkQ@P?o<2~a>CYt9gB$gu`L#x~MJkpf=wy|tcWjcJ}HET8hlh{!Ao!A^{! z#Zm#rUfcjGEuMRPepAqk%tlM&&VPBP42vwM7};(A3QW^)0K4R20635O9a@Abk_4NnkB|e6CfPPjLr(eMgDXI6&}PZd+3F14;6^%A41d7wq}eL zmfblsEfPLj)-Np4@*ilZ+@X#V5ynV|KIl*DW1tD7LwjhQ92??WYm9g+ikRUG zZ}4^=v{Y3a!w*X`WxSyjT1Z5x9_6$5sj^-hQh(|Dgtp0j`!Dpa4dSO z%F53ktZKCXo~oG|+fKN1+?s98lIPDHp3V{<)_Ps9x|`K0#l$}Cu`FKM9L|#uQw)xe zC65QS7wCgc0R5&HdhdUN+FKq2n`N~gQOdrccw7@lJs311O?=LAeMp6^*UW{bOPAhK zCLX6V*2v34Tx;ahhKxTb4^&~tyXhUYEFS$bXb_yOdVO1t3c83Jd!Y^DO<`57w;T$J zVXbKiRPp$SL52TJ#qN}cmx_bEu!@RfywIkKU0Er`O7)(K%DZCql3P~|b+?v-@bSbQV`LbBa+2aVFi{HophE$Eyrp+y)jnle+xv@z;WC*z>e3PS;OoOMiQV zVo(y=3ef0pA9$hB-=5Ak{Ovo6|A+qewIQQHXHSnpD*+lEF47B)8oH=kc%fa?ZjWn6 zi~K{6bBXCkd6+HYQZnBQttdI!3r&>l%H~n@KlC}!0DaEYVyh`HQ&E8ipW{=0vf@oa zbT=2xHor8cyY2QWgYE__6n9(Mtm-Cqn3hF%JJ?ye+nW?)x*MR;-A;R<(cKPqHr(we zivNf1cGi#)+{LH60UF({u@@R!63|(%R&@*a!eT=L*6nRsw8%g7HkXcrDG##|4ITOP zzhxtu26PdY`XvPYy0UVL{)dhRBGA!XZMBZ_GIbPaF}QJxMsITw-a|18q3Lapd6hwL z0~U(6jY+MlVQ2(J#hAtdGggA|nnPQETEy*a|473zl!cdurCwO7VYwHUXxNoiQ}jP{ zHK?UrK~Oi`{hams1b!f=DuEvv zJtA0d(4F6$Q&pU>MQj=3$a~hcbPs_CM&je`EVMgyaq%qZM)5t{XbQ#?mC)|;^%aEx z&x<~u+q*vJMX*n+W!b_!gm6`2w|nPpQj9;HA*UYnJls8T>GUu%9e zD?i&Z1n}RV56)u4C@BUvPW={=sSoPzXO}*@JFk4kp3EzPwMG#Q1hG5Apmx%T4zcM1 zga$TFg@h&tCyhu|HNkj+h-6#J0DtbM;54?-LlYUu*5^r0VjmA^&|rP&lG$@+l`krt zzxbB26{3oV8fD4Iwokbj*;Z_Zk!`QCUgqYIn>dTzL^Z-2WhSK&h@h16Mp<3&5mkj6 zdx+9vliUaTCQcvGpTQ3^9E0a!=v&WGu$yAvAHkDU3Q>g^Q;{%vGPDcK1j#vZI|vt7 z6eGQR-TA_*jvD)nAUTTo1e9|2$)C>PhYzLr$L*?c6)pRzel>$1enmt{5j~}dc;A){-h4W4RDxG?P`}`Kn!~=WI?85KaoF@b0z;NGUgQFA z)*EOI#DC)9b2J7}@Pl8Bs8vaYF%nIojijbjXb>+MI5L(;eh(wyrSGb0*$plkf;DvX zbiU)O5t;frsNFVkp(rFIDgJ6w#&n)wUR2em8&3!g$xOgBhQ{K^(v)u8@DJ)}iU|kl+)jL$4UGE`F$o3<;{^Oj1NhXEM$-m6Zpn z{Dqw0uBvzsuQAF#*h3z&){GAf<5Oo;g~TbQGs2?j-FZ>e@&q1rG`N_3N416t)3`|d zjR2!PV9LWUe7`ueDpg~_J&9joaNN>U2FEQFgTvt7LBXk(<~`w=>~&3(SOUePd7Ae0 zGZv@y^ktrX7e^$J@xi#)4dU^65pVHk#JfM}fD!Lp4;_q%cVB;si~!~$;;pt5M!Zco zF%`k5M?fKbdL-&vOR7E-YEoO(n$7ktxYVEEa-V`rOM_ebv_S2Kszm0~0&OhULgn%G zlXbpzxZ0l%H%lEDtvrXLqo-Q9i)<29I~?oQmKSwKNVU zcf9`KXttl~FUAnHAWF-e6r7-f&3WkME1<_DNJT9?g=hda5*eZwd&msYi{(|nvhOHA z>%PYQ6k)$;@6?&=X8OuqS{%W=|Lf6%jol&r9yPL`x@qh(Ez&eG2yI38rA|2|f+b z#Jb_}-?M#oUJFgu1f7(0eH7(0dnMxU;}x@rhpMQeb4LMdqW2?cES ziA`5Pk9|U+$3F2Icr2YDg4e=z2X=ofH<3WiYQeNWfo>9yJs7uZ(H6Z;15Bl`xY7_)Ee zffm8Ov5(?$x_DSNhPNL+1AZjZZ0HI$n0xFaj5lCFJWdzh;>}L+Cg^~Rr?)+HF!m8A z{CUMEz8uqI8)52!a|P&Qc8K4M4)KSV+{}snGT|vS-)TmczP{!tj}BqV#SY=K{%tJH z`x+f0p|8(A*|e`89nz!@m+cX56^tIC=wS8;Z!q=`_OJc^+V($v zef6)(1^G!NhGRTwL?s9DJqz-)7zN49raSsdi(KE=Z4ooGiH0&bW;W3nw=1jzfpB?i z<$|aOW;XpPeqm-4{PL68G>4zPx9WNy8J=@r3@&G}{fN_J5>pg`xRRLu2N|B*S$o1* z<}ao7<4F%z^=Ca5j7V7m44zoD?niPqeP~wJs-JO~5Z=%8Frf+8ez7zSm6wkuK{>d5 zG$sKE)Z>H*Djbg!M!p<8kIkT9@X~*s!`X)KcqKT9O{aYEoZ#hGf+4%BQh|$iJ~0I6 z00Te>j&I)}W1;A_Hn5J*m+-IcC*2lmOQQT3eX9^48s!Ip{Ntzd26#voClm$G*$z zMn5@$zCkfKfoA>{Xyh+`4$5Kv;+M1#n(I@4<~rxoTq1ul#;lMLtp^=2?NiYKhaViO zy}@Dsg@BI&#-Z|6@YCrqBt8jM7DMCyeq?BD-5)Fx>-81QBmq_o^~sBQ%UKUv8pp;i z6k?8z3K;D+y=_ESOMd@gKJ@_W#0n{yFqxLei?&qxc;0Gae{`^D#laes-4Vh^9mi7IRDH-Epyt6b@*V)%FkYCOcQtu?1EV-K{>?# zT!+6`nBuADNEyv24^#n9(gBTGDQ&&bnDODF?&gJdQM;3%2GJt!Oo1yqoOX$sNO^cG zImZjFD7nlFO_c1)R#WspOcnqIF)zi{Vs}tprlJBZ@=_k8Xv|A-5k5&V3Za=U@RC=V zoNuNM)cVW07rYI#1$;PrSzUjbE${{9;BuIMk}Yr=yvCg^;9HV0!SCpAUIBw!q;dT0 z3suo!x5()|FgKW&d>34rP$xW`W((X!T^^_RhWnQE3aUH(YcM=XxtG=f8)7$Ti8%uB z!<@TuSA`z+A_coCFh@Y4z++ES2V>Q7KNv^k2;4)sxTd;{TzOdj^@ZR#jeSi@$aCn= zK{HGgfFHgzyFkI{>!0V!YypM9Los7cKXnC)$!vk70Yo|)pv3?qTL6BTih0N}vIUyJ zjky2M0GKVnhEQfGX8_2-lmYnRSB{Y~&`-*V_ibpIGT_xZ)I&(hKp7Q>o*+^N*b)jZ zYP_US2mLTnKp_xzNHj$mi2_uVSE9g8lr!{kBT--j)XAMFa2+XQdXVo#0aLn>C=i}& zBnmu6xR6AF=LX1K%Ed!um+}mX_mLy;>HxV*QAZctrI?b9bAJ#ha|9I09=>9f-7|pX z2<-g{as(8s8B1vBHfD~%d0HQsC5;?`9|RZ|+%VDM&cxX;hN)8Qtm1EZCfDFQxJFoJuE4!HZm6ajBA?ijtn7~E69W^nIus=pZBm{Jg> zVTynPHm9MNu7DncdkQ`7SpOb?J67!nzV9gPL@Gutj@Hi%AiLJ@DR0q;$wyaW!T`c~5b`cnz5`Vt91b;pif5!a{e@2TxR`F+< z_;a85bGP{OrA3g5KaYuP{qQ;lTpHX*7_UR7Ymwo+wa9HPa$1XA)*^?sNWFG>SyO`& zwOQoW<^%BywfRV>gxci0wOQ=eW}EmW40K>mL_4(9`B9NQ_>Ojy>vL-xK7%=k-}%_G z$W^F`+tl#UfU8A=UMKzx7j+-#w!%sAs~dwqy~UqHu);2TRs8v;3HvvY_%ze(h2kf^$Rl1IDZ@8vgsID}5r2-0Kltp% zH{u>UUWs2NlB+RmJ6y!kqQsvaVhbhqX3NVCN)K2KjXv!brmsO>Ki?Onr0Go? zc0jT)a^<@*aeUOA4w=MS#!CoAgL!U}ZIUY1Lt~?;m&W|u)R4B8tHCDwHg`>9*HX=k zo>*I;tr52D!7B!}2;*nA6x3%#13w(bJN;Z8!W8j4$2w>FbosmM?eZ`@*aq;zOj}c) zGp{VY?&H?B7Mf)@)b8{jk+b#PgW(Y++X8;9jqO+czk_+jS!Xx)7OgTm?s3z7yc^}? z!TkK}<=J}jVE#jzZA#YsnPszP%<8eU)102&x_0T2)p6TaWIU zT{3(0?Afhz*Y2~rm3EoY)zooIv^~-C1}N97vMiIq53>V_)@yW5Kxj98Rkp>BO(9|W zON068$CqbtOFP?c7BGa+ias7&cDE<7Hbm@ias?rT#dEd)NM`2_q=X5>z=2sNzwxWY zX4(S+0e5L8Cbie@k*28WqDAvlKO}_3(-s7oxI_a{eAD@!r95X^b^y=mXuH;Dv)=OW zo3$lxxo>O+zdOVB5G$Z{hQ6Q9&;1$Nt8h308w#%fA4p!!rV_>+BByx+w(hCNM-p}Z%cn27nlLNUkyFc{SB(aqL@y+hIaTHDKXK;vO5D2f4H zKNa5C-L|%2F;JUd1o(+>Y84R6D1lg=ChG%-h+u3M-@YR%j6c)V7R4{DSr`^AsAWJl zU?}`59>S0Juys$EBEYm8452!fu7yv3VJ8R^L^!9z*eWNw!JeeSw2T~Eo?|kM_stM`<{KrW61-GVYGXz;W>KO0PQquLN(IEF9bR~- z%(10tY!xk8`|k1r-7!=~GaM9yvtP+ZIA<+C9FStUd1x?C&L~V{n`t5FO%Pbl(6h8n zqC&mBN8Rm1F|1($$KW~ntX+&*A!AJk((!~oV{`?HrAJePVj--x~GQNrfKX`${8*8 zv0<@~DaK{7j+S4cvf5*TY3z53H;whPA7kmmOk*8fsZnDYaZwPA#!>{Mu@ndzYk!_C znJHj2R?^M00{AIDJC!93BmE97MoSZm-7&)UmC6b0ic7jK!;B?eH_8p_YAorp`H5uc zI$|;Dy`;+lV)v4c_IMVhLo3H32{CxH>>F2X425s{G zC|f>rP_QtEAiy}ALQp%ZdL+9+DVta$nTv<2l(MIPxITq%9c}B#FQ(dX>FDB%t*Dg6 zR#YI^ikrvSu2Y#}wPy&k_TZ;FTf&65;>Qz~NK@d)i%J28&r1yz5u2Ip1FA5N5AO$dcFeE~Ak5v!V zzLpiKxictCe|H#F+IYn}V>t0r7~*>cZ*G8h@A&CvfsI*vfhN`HT6e=_+j=cvIKX-B zu=$y61ZCi^jy`m_jKq4a-p7%uv=3g;g$!A-(k}-N=PkF`JF>2*lyGHy5W4&H`PV{xKEvJ8x~L30WQg~Sm66g ziwfh93egxaJ0^Z%zzlw2d@KGHv73#7&3hTHXN`6j=QK?N+LnDYh*!C(}|i~%SVHPjZharPG7Kn-SIsk=56@1)QCit3COyo?&y-hNqHb()6e$ymTw^5 zhM}U4cSQfIja3tMSq@>0fnwz|dj$ID-)`Rnmz4cJaL+q{jkRi67 za%X+=mg4$2fTC+8Q#8QsHHEku^vR&iR%Zhq8?ZwB}*iNvl5oDx*dC%BqcO+n!XKnuXy>2i+wY*>o z%OTv!X4{9*vi>9FX1mWC+g>)F(usX9e4{*i5?JEgQ&U@LBji^5z{+Lg*;79&U;vSRF9T}SzlTb8THJU9|RadG1yW)6&@ni5bwLaVGCIt zIEB{?FNxugq&p(SR1w6dl{>>44uDFV0SLHdBLWbViwr=t1q*JpO=={H%ZNjjPzV0W zI~|_iDWSiB)3LoBH714}V3ZicKjsC6e5KuHXDexS%;Dl13KqkK1q$-Q+X{+&P~doR zt0#rNGN0pkp@@L-BA=hS5LKTSXI!%e_O%ec<77w>b5OAm-B_qUk#Du^GN=)`%h69ilFtiwIR>y}q#(|xl&KLddHo8Q zF2385t$z*@Znbq|UtW%>5i$An3YdQ1&AyUdyc{#*)2Dw(X7RqOZG>LDjHQ@5=K)(| z{_0lS0=;Pg?{{W#)Z1E!x0|Zv%kz#>e+>2}5|4iZ2@3Up{nh~{u{6LfHMobiO`+$cyBZQ-f126hb z|Ez%bd=Mg$Ur=JK;o}e5R6P#$Q#~yG|hwJmg;2Q@2H~>yF@AW4XiHEzbN39 zyKU_}2t@4cfh9+~u&6?!HrfveCOmBG=Rp7xw%j?Y18YUgy9Au*>u9Ey_wZ>W=kB!O z(@}eD!4cFNu*VCWJ4Bxhz9epyO#lxOLAaB9Z2!^N7%CE-b!4G*){zv0&bpvbI_n~e zF`adOp&w_p7J4}AYyb#n1ySg%iYRne1%d&aid9-NQ^44i_Lm*q*j7cMch(e!Qvi}5 z-f!!nlGnblI)zuPp52{2OiS1LB>&_ITT7K3rMIuMrLY(NfAZJrZ0miHzwla43On)t zlec=xmf=AzoU&qmXczVwB^N%U7R1VTc-mH~f<>@P&xZyh9>FthD+B7LJ!88{;~5*| zS_eF$P#Y;7B48x(W^jmP9@T8}20aPTgO{hWRum0hF;h<*>Bk{DjKnXn>Q(u?a;m+b z-V6$g&#pG3EJQ4H%c`Vweb7jL`UQx&4xw1n?FRUhGHN8c9ZFda(;`U0&#o#`iVoVw z=mCHc-wRf1h<>O*(3VYJw0)`;)I?k4l-RqlDykv2g*W}#5_`T%k8J@)cD03wwbuP` z$kt9{cT$GfJ8v@@<2H&h8)LuG7bYl^th`VBACW#97C+ESvJfw#XPIJ4Ob@U|Z~696d?T8zn#YkWbO3sfLa6(>unGGKb4e z9VTS!g8(3gOOTiKtfP52<%fn*6u^pYJXsjW6fllgxT3aGdNC`h1*KtHFUeBDXqfh( zGZ``J^4_$qf~WK;L$u7+QT%kRBav+-n7YEZZOIn)Bmr?$>W=qd5IsP_I8{D5iZ_4X zw#b7(^tF%d(AWM;32?3if&~uyEh<5gy8cTv*5^h&_Km^>sx3W&nvn&JQHUzfOGVuG zR!OE!;8`neSvOaF9?WZMT7~Ij3uI0wWat81=5*#1$PP0 z6KfY*7Cq&_TWzwnB0rAOugG*1Tm*I~;^%kShJ{l$=X>?!999(3XoKeq zbK+F_=;#kC?U)asj)&~>p!rxs1lRLk$<*4-7g>8l_%#*I5!I8P} zS$b>l)_@Ek^?g&lQryFFaR(UovktNCfckTp<+h!1l2w@xYN~xp4?K zwsbCr&GO_yLbE*AK>|R;K|-H&!8aBDxDOHpgd8LYTp0%Rl7zhG;!j%HRmD-fkz`$+5+d82vhIomLO3dF>IU)76O+%t^vQ7>-`3KvDOhk_0mP~7Xx4&73m znbZN)bA6BF$ST+OID7>Yp&&p0ZA&;zIB%PvTTw(N&rHjV)|T+2QDPU#s@%^}|M+?uK z$7^mZ>CQLS_G`_b`^(l*j~XL9(QuOpp7jy*OmMv<{khT7O@vn9COf2?jC^@sD$5uH z{Lru4j*)KCox*gWc^~#=P%4Gi`_rZ z-b`cpq!NZVju0Rkg`^sg6Q-$Sj1#6}$^)}ECkvapvNsz?)aQ%|^c>3+$#}9vAugl; zi%aYflU&X#ZnMPJ9Sg8Oty$JUoiJx}%@~ohnZQ@^MuT}&`=T&DJ=lIhe_)Kv-h7Bw z8Bd$;lWrt3MR>`|&e8h*G4hycRj9qHex0`3vJ2Fi{?5Ek41Sp2Cl*_cUh!2wf9w7;(*9F;1^3rdenJjQDse&+>u8qYNmo!(yu`Pzc2Vk}-r)1hAHV(nvN9G>mgbu6FI*k0g6R^}&`K)&%&#|nKW$a>m7kj!I0 zig(ar$o*F24o^Z*46+A|oBfj%i|hfbu*WmS6SNqzKVq=|gkq3AV9bNX?X&!JW}-SNXC)kq3&kdg)D-)N) z?zN{zLpkH{Fjq)@XRJ(Dep7(y$o9PAlpwnORLU?&XK@b~6d5Z&y zy1z2*Lo_y?!etKFI01@-b<+qV*;%2*DfS?Uw;KNMp4_iC?YU~UxiQ%ZP#>+t6R}_Os z8kPw%@)9@!c*TnLfJL+nNPICZn``m*-o`2bVm=}f6I>e)-1yQa_C%hvLT|4FcMMo6 z+%YbvKxAC4t#c+*z!(`YkK8&_MIby-7*2IY9*%TprOE>r0GZ?LbM>JUWYW=a%Emn( zYlBIR#!QgYaqf7WjuXs=F!oD|no%8`8LCi>CVVcNSU){pK6oD1(fJp1D#AsIaMc9a z096!&4RDLm09z==9TC!QA`0*DXaa46K+0TLApsjfk${b$K+u4Al%#;M5%4JK5Y+?2 zGfF|EPe_?JJDip??f;%({|_kIwEsJ#I-mQszj2_a2uAxW5Mh69xnO9#n+k1!2YXM9 zuy4><#6;@Rq7gzT^2*GWEy5`REB;l1y@a)-U<|-Qc}&v|r5H@p&Z3ZLk){o0@q5Bb zS!7=FR*L{$*a;Gb2P#w|5ge$n(G)6dGzEf()gSz|WFnhHS$GcBF-D|`mce@||0%L> z)fZ0WC8O>4vBeZESkUphv1Cy;QHHtaf_`Z$V)<)h?9c0KCi3gX+HLG=%D`;-4L~E( z{WemxyXE!ufQCl~<^g76(bNR{fiS}_?%M(OjV>~UysjqPPjMB~8=7w4}-@A`R>qnr8w_2OC zBZPpPCr{r1S{wtOp=hZ8O#Lfb^WYO)JmHN zez{aH3+Z5b5!NPXXhwIbCQ!z&&f>`QD$D9h&|(!}PyV44NL#_hKf?^S#EC zJ)N`Unx@&>WYXbVLfpxwm8ZvY{e+cuBGhoxa+DZ(ws}7xlME8A#lg=sl>C;q%i{G+FijZbr*hMLUmx> z%p2@ybxV(_!F<)wMd_>;rE}Xt>&DN|aqXN2O*KuiZP=m?#J$s{duLCT_r9_zGwj`X z19dV53x|ym1zj0~4t~Dk?-V|*;_o;Dp7E@Aw(TkLK0+Nu1&E%tV74OPXg?kZB<8)S9G+U}Fh_Ku{s z#_RP?qqa`U3vV=@Tz9l1+eN`xTT#$e+n%DfJ^6vsW|2%`;890IR+U;uS7&VDWsEda zs*F3IN)HLsQY1Ove2kgu_8RwHH#MXJDi{wf(Fl*}MaF^g*FqE?7=I&v;ej#y!UN-o zwju}}Blh7Cf91)GbLa5SZnt0MD;oRAR{K7tPlNJg-)=->FPYU5422u7zv*8^V~1{u z{UMeYHdz4A1+J|g$D+Li1{@{*0s>UoOf z_C%(GqIh7UC@MyRgiD@AIY{-y;OD;G_5h8A7K8O%9SDtb>5l4b7EQqi+pH?oih21X z_UUSQ4^hVD2SpTo5i_=K;vV}@i=JJ~cRp&rj&-5Dap0Ts7~J~pO~JS>=~B$u_Ubg1 z0NbI2FAwB>9=9*iM;7zFkK1!u5v6vwgI-Wfrur$x*aiW@eR$TKxH$gTetXv#(^f{@ z66B&;6-7l|y^Cf7f3algSS;6d$#wQTOF&U z9(PBv^tf%5+N|mAw5IpVni}3VlIU%`gbM;gp0zJg1$tD`C|Ye+(H(9e3=Ny57t3X0 z)O!hGF+=4Lt~kPn&)I9)M^txQX1p&TxXg%}R(J4u`%N1AjTXX<*iXfB5Bw9wVEC}% zbh##ro=)5tC+3RQtFrk)t^^30PnSy(Z~$I3X<8qFPvAMHY#qS8aUZ5gz=O40n@G)i^QX%q-Hdd@L>8dJdTB_Hp*gKXZFGDzD0xP7WhitY8v zacJ)rCB*O1-@NIuy%n(8-Wivt$M#l8F>Y|PFxmj!)!e(@wD*IXB$O34_sA02+#@Ll zn|tF`ZKmi8O8Duw?XB4&igve*KEH$v-PRJb=k9!?sIxvB0CuVXS`ZC^6W&&;1RBzte(d}9nJPVce?BNG<^V7UZd<=Cmiw&t;ooAP^-i(ewjNbP zh)m$u1;iNq#KXvk^lzX#108MH8Cuq~$yd}SzYv??9`iG46ZQ!u#;xB+B~qo=OQ=dl z{%@;N>O(@WmI6Zb>Qa|<%Kl%ArEe+Z@Ahlkn)Rn7ZuMZDS-Rh~?HgW-EheU*vqSe%KJ*JX`|qysa_8wzr(lu0Wr2dc=)<|)R0`ZDVrFe6rN9LQh^XD;=<9<3 zvuM|N5@12sR*TnG_V2;h)%@L#mw#<*7Gp8E*))r`i&s2j z@8W+6VjAa}Z|!-iP%%G~m7P(vGZl*W>^7dU|H)pUU~|BDnSycc@j@vd@jXOYy$P^m zyzfa6Aqu*T)SYXq|L)Ge{J|cnGVstfLAJT7E2PwGnZh=ZGJlmLT5nnE_D*w)sVpLZ ztFgtTi+s~rjV)%Q834j9W{miSTTJ*RbCTPVEhgq9!wV5aV32M1YbC5A(%IXKklSY0U=4B0w*@I@bU;S5igt!7l}sj7;dkBmnb>5m6Dz$ zn&a8AAO!0ju3w7H+z4dqOY#M=*kX`e4hE2 zJ%}G0zbLlu{O|T0jV&hCGcrjR2@u^gQWKC&(v{#e_zq|d<$;-`PM-CqU1pN@`X6W< z$rKeZrIbQk?eZ_)0tMqt;e|ntIGI;kbI~5CTke4xVqWPzGiYAv>h!S9QyeGt*Jtov znxg|dLhFxdrLXc$N9?_0e)W9BlxyK z)h3%SI2!X~%^(W=Kc?(XPal6+B^FlE zpPeC7U!eoT{@i%8_Ab#ojkj;MiQn|?8z19}5XDQIbuQ&8jUBZSN(q_#`dwqkDfT<`=NwS){9=JdCpXkXIHoOGa5gYvMS-5-1(UHJi?o z>8g!qaZG6KN=smTGs`T2iJ>F2yNqH5v=}lP4#mW~u~R4p834u|gPl*Yn79d8Xr2)| zC;$nq@XGl!38qX|Uf&F~}Y;ZuZ+K7TE*V#U8b<7+OA^)zM=R~7 z+jpWEWDgj@p6A>*D=nO2kv(7)_Lwv~o)$wUqi4&c*;y2Wf&t@VfJw8y9nc7BpS{D8 z)i4w+U_QL_t9*EelF0z~*_krHJ+hr6JzCJn*LOAv4MJz}nszHYCIksE9f!}8?uG$w zj`JL+YU3!pr$=^uZc;%1o6l~c+)mHE9)hJE9Ivu_DOikBiDmZ)5b9?n%POR12Ite1 z6oY?t0)qQY=)L%iO8;1AA71mRJ-F`d{f;n=y-jH_sBmJo3@V(U7>oseKU?md&r*zg zbE=<#HWZ(E^;)s~0lp)WGr;IFwNnpw7^$5g45JH*FpMrJ5Rss^rHkWP)^rY3$hEdM z@0=!6Fz#icpxnzU6y{#GGo`@2Y|}Y%FY8T!d)dLh2qIfJN2of9IVr(xFeBwwsSF+t zB=&H?ecx%6sYf_^?i>-09u!WCm|Nc2Tx;$yzIEVb@TGI)S;!_ZytoKr>SKhQr_JF9 zUtXEuL;iu@4x4`c92mo$1K16|Wv{!OY;MYi+dPFnWn=JPsk?{S3^i4=i3{RK!N)`> z=ymWLcw>bhczsboUDN)KeHwd7QC6hYyf{aC@{1H>MngXaw1|eDqG+)2Ozoq~Rq)$6 zGBOIr#mMM;b7W-nJ<0|nqxxLgUjpV*r*&m`=?&)k=`WFU)&8P`2#k;_A}~SS89>JUd6Q^43A%+%;^R8P?-)Y8bLY^YkG2UYwlYb?RKsm zKdcF;>zD6nrn60oPQtlvm@A#@28uDA>j6Lu=X!{ug>&im`K!nNxvFFBf`TG*a~EZS zj&%ebD>a-VfOluUcdjE_^T+>vPqzXA=vImVbStPFx|LEnbSnh{!*UWISzryU`_C9h zt;Q}=h0wV$`3Q-NrkjJs5~=GJJw3o-z=gr7*aTCy#Yp z$4k=7BUJ{bYqg&zU8^HyWV%*5pnc9<-RCK;MFunDJBJtNa&#!A=3+2Q6=Uw^5Pa|% zk}YudHfR(R;&W_~Z#eeWU3}f4Yit755TlA6jyPtp=@cw1V1a`2EiG>fd`qj+lR}>` zkH38sR+S2Y(3MoHi3}r-nJ1oa8x}!THD0;84%|zQz;!#PJC5n>E-DCD5ZmU-uCa|` zuxlLuuVcUdG@wP-c$T8EYdq<%9bTHJc8$lOpy(QpQx@3VC46DF{xP6Gb+lrqC>lG6 zIFiyo@+aooc`~F9L%X(WWiK7XWc|Lfx%fYPCNP;NwT@1(=<|(_BnHeUZtdo-HQ<|i zIef%zBIlcvJmYIe0?wi^YyAR_H<6ho3v#xG_KVVstVYhEsgW7qj_RXb59A z$M^4dS2*^tO3D-cY0-S?Pm3r9{R!X4S_f$1PuEkl@F(qBKTWZDzT!^s$)VDLjs&)b zG7#Q`De@1`mnrglC>ERh_~i0zKN6mjjjfACg2V%4SX9a&DK7gS{7UF zp;eA$Oeu%0_Pvi*J5%G>%C;&>i&o=M9r4-|rx@g&$;!K{V4QY$9EERXtXu8KX8R}! zuIap)bX(&{SDE0k>n&gnpS68E4&Wd5ZKny!k9X(eODHf!og00^-_s!m(>t zo};x`YWce?Sbp79TR{8?FV0`|*COEy@De@l9c#br+nVQm7uHb!1KJ4=r`a!5G#JwMO}&HVtNw$8s(8{hSp341F8C#rDf2}55R)k( zo+pzj$6e=G?<>03_Ik%BteDmtyxfTHO(tMNf%Uijt23Gc5x{QD4?H!$Der%SV-T;H z;Rw^=I0}Vgh|h=6vV{v|h;Q3Z`Juey2FE_OhN#9dQnPA-jPp4b$V|$lzT@)PRR&bQOhuv|G<*efhY z$z)h=+yWAo6Erd`_lD4*d;vdsrz1OIp#amc+yvTs_$D?Uj{KLZjbXWl)-m-A%NZS~ z=F>pNj#0jN?%#Ze;~YCp!E&i}N`Pp9P9eqH>_0D*x7mO7q>e2!sf~B2e*~+;z#Dg# zlm!7epq^StZnK9klDF9-76IDjuR^65!qf;sh4SRJ4meJIqa?iXW%%NS_EwAJh4z%o z@ilJACtVp|ywl$Ma{P=7^4(2-aX$4luC;qvO|iKd6rDn4;_Nh0K+u>l-uVoQuAnry z1YNR7ErVn0jM*u`=){|1bCA}VSs z(@;+0mlnyWsJC#8igs8mqoNtU<+k%Dw}&YgBci_KVnkGt>tQcLMb%y+zo%UG7yO{s z!bNqk_+O~8xr&Nn2|07Ibl{m3gATlEv2@^Cia`g)wQ{w;YF)orbzj{E0Ff~WqR@2} zQRun~1lOPgp-?n*D=vS4?;G04qR3yWY5vQps$8RUZPLrb&)!2x^o%isoyN)}q z*Vr*C6lbm1%Vnp3onlLPDtx+cD4>1DUE?d{{vO0&AP&Uf{vQ5s2I4wZ7=gGf-`qR;;g*@#jQ>9?#|nd?oD zM=Q&(fPCFWh$Sjq@nq)F1+Cb%mnVn%#Pg)G&=_xWzWXD1{{Obi)1&s&PQnx3ig+9X zUjYX(hCqxI{%M8kxW}QO zaNOgRh3U8#04?HDe^E3@=*)Md%+A*QNeQY{{T8I4-@^YfE|pj*<5EeLKKnz9NsRmQX{qrBXw*r2;`)9{t|2lqq1eWie<$ZHW(Ie646KZ27ri%g-qWZHW(I zG*}`Z!qAuabel{5s>(uEuKhEq zLby6p3L?X!NudJ zT0g9>T*8aKSdqqRD1qq?&Lw`j)^*ZGI!rYY39It-D)_euEiR*cFtk{?M1~eimQWRq zJ05kkxHc1>74uND3*XVFWnkT?3yzVResl@n`KKd|9j8>LvTyiP_5)Md=l*iEYin*L z+RDYkD}Px6Qv+FXZa<^^C~?y z=V8M*kDJE9xa)yZEliE1z@oP5#^LF#fZ*^1jVc~Zp%j5beon)R33?lN!(M!oCyk=b5u)`nKf_tpGPweI7Yrv39$PNs(abtb zJc%!E@hQ@9z*ivH!~4WId#DAmhX;X3F_l?>mDtSY#5(igF(XAkQLkCDUb83y>UE=D z1BBx0-D-+4tF+QzmDbBDS->GMPNv%dAZD>yMx_){SSbZ!#K_w6nr1->y!>H@mF-qk za7W7?r(lehK|v8MOBS@jJo5LYkt(ejH+zZFV%%)^G8s2hgqd^ad%g%TZl(~xa9NOW zMmQC^zY)zA4;iZT7U++V$_m&;X|+n*NzK=?C=!cMA)LVs2u za#bY)X9^fS%S`6mNwvbInNk{=;6tYhSh|b|ob3noMX;uh@-e;TF@Lo?Xto*#&dgRb zUOiRh;j5bp1jm}uz}*;YaMy^ho_?!nBHHFlqiw#V7;GDTg>0LE6{^n}kLxwy2fI4` z#pNScc(l)7M*Dy`Y#&7&wvPfq)8Z4T3K-i5^Wn0oQrI*~L8ON#P-ig(Y&Ol16|!lD zQ9kab(FR?va-(5^Af8DvIx`trj7L!wnbYl3as92Q|WA>C-xtRZP1^=j@GnM_Quy)T@&8){nXsskm%i3;T4EpA1QIZ^fVMX({)S*l9#7&XQ8wJ>{%d-@?uE{A9-6vdr>NcS4V%= zNY|>w_n_bg)}u38^1bgn1NkE#I49{%t9b2^Wz7T{7ek6P>?o$5#`Pg@JL%i;%9ompFsO^N2m{~K8!?*e z&rPrUYMir~W|<6C!pql_tHkB&QhxOAoG|{;Axn#`nT@ngcz>ApXfnDP??2IbGu#Gq z_SV5?MM@e^YVYi$J;bNAcedo0X2av2=O;NAhHkbPDc$`1!bMH%ai`U#V%*J9zlK=s zpkV*<(Mi0ze?bVJwjd;u0m$qe2_gxX=NhF zXis8z>Id4=O)RdsYLy7X?=7A?kP@bYxghVyxavAVAdRc8@D&(AT+>C1=BIv02#fd8 zfMp<3e(a@sx^s)qj(JbLo45|_cQZWfN-GMptr5`qoq%2LRDW4~-wfx=EZj!g14SKQ zZR_3GTT)q=O-6Cx^Dr;6WJ-ovSP3?nIoH%iz6{gTt5{dF7^cJ((Gr-nRbZCDl(_wK zoj0@jv>3{p4aG!CoRwmb0bnre>#wQvbJ*1sjagrS#;h-wqKnI%(-?fn-E>Rjf4jkd zH^m@-z##vm$x&_D(-e*T0j==I+oEsMV#wu~P2LtgO))4LFfIldit^Fy&=@c&Pnxip zPu*1An2%!fq8dg3BQqZLki0TVX=Oa>$0`|*`nKGe*+|gHcvPeve!)L^r^E9*B>;Q1 zPyRw2Lf#q09vLgBTyvr5k%?tLi;}cEN7FL6M*67I`3h@A!JeeXQ0`6IX(@alB9oHh z#^F@MIpKWD%lVD@j+65e_^JQSgU>K6a~9~m?ELI9=P1^Pl7O2VPwVvH`^LC-N)LHH zMKQ#Vn~4Bn8m@iroD@qcXC$*_+WF2Euvb-7!gWG``D_8f71YmF z^1~!ARyk8NwuY9(bH!D5xqDwlF&JfogOwLP3Wsb78S&$gnT%ZQ-92GTi=cqtLq>BIQbiTu0rfSGcgrb$% z>=*@$V`TkhJFkta9_~%BMI8K|_Emn*Gu5eTd5`8WVkU}e=$7qjoCnw+l&7a#8fjfB zsaT3Tg*AF`OjELfHN@r39r=L)Pc*B3Ph-s-q?cgB#W`fd#Zio}hRb%yhU-ELV#A3~ z`|`?SXTp}6*u)qw=k4e4)oLA(f*-$ePzTK+8%=c=1~2eXN*jfNl23MrSWJ zhk~)qilJ^v)hQ}LZBq3}Rz=I=-VDmNPp(c@%eoKtucPH%yff?I>tvCws*_YAk484` zMk-aoMt-VQ^?U3t%Gj*SgA|PN?sD)2>z!FX2&z-7Td`+-5oEN13VBIDhdt`6eDntA z1n=@31)TCla3QsNkV@cDc_W+7yYjE5RqtTGQ=Vq!8#sxRV_#!0VUpb~h9GSbCV zQKCo0NKgAe)}A{silTdOFAzuuNC+gfkc8e#AcRhkUP4hpL3$^EfC>oYZuf#f0uhJ? zhTa6F7byn_5~N6xX8ZJ06zpKb-u3t9&ED;sy$$-)k3TlY%)I`ly*E1>b??OLn%N_k zy*fS2|IU+{a7SldN(_5M%}m)NYSJ3qrT6ab*~8kD8_4togz9MKd2>>Nr7j%a9Gr zKPO~Hh-EoWWW!cwW`r#UWPI46@p1fmn}ao29>pD;yR;`@&=JRrLc0E{Oq{peV!&=! zE3$oMYbpwS9|kZ6UQq4CPdt^`ncsSpl?bw8GqMS#@-L#y)qn*N$OHq+DD#@kXcs%L z@GByjXF#3e4WBc#X6m}k-fD@^z_N8|!?pJ_d7t%}&De*uy(Rhe!X*FFCV9Lic?B7C zQaE^XL*@vT1MCiCH)hsjVIEs|h^3%pg4UkSOmjdo`RUB2EcWjrDZMGPx{3rNktZ$v z;wb`%jEZT-SW`4Y8$C-#BS*j#DUK3!Q)r267(0uSz&Zkt5-b{}f3J=5$iqKlD1fyV zfVXJoX0{6Tswo~B&nr1g9$Fg$XvFcAAruW-a8rw9ceV$%rsDGn3urY^83_SOX9D>i zJRgH@E54+l0R=o>1b^{((GHJH8t$^8Y{Hk!>6=^#)&q)UYmdB=f>c=uHyA`ace4kU<)b=qI{baCA;u$y-ocJ@%~ni1R*Uh0#=#1W!| zn7FBb;-1Wvn!A?QylJxz1qm8itKltV>}cu@T3KAXS;p!>m1PI20+{vp;1n$Uu$KNX zy;tXzuJ^3Ny3=ADsH=Fn_W*PT1pqtRdj~SBut5|+%sXyD!no11b|?f+q7T^tG@t;h zg63*_+ZblDUzq~q7##aS&n;{oEk@pk#Z{@t7SUpy6X$t(@53-^C;&E6=1aw)q*@<= zea|x#ryTRwdFE?-yu9HxSm{1TtF0k#S78P_>a_;@>*4A5(mjg#DVb-ye8{oPbd|D= zXS1owvl!wldS&t>!W(qRV1zlAZfS@kwm+WPjoqe#z>L^|_oQ3#0t=i`~{H0=*B z&%5dATSz1BI+@uuj_yPQG{tUs@9@68;>zk!gz@WG@eAYE@QeFW9;qHH0-7-*M2%4$ zv)6<#y%Ad;uJF7)gU6rB>=1jIL_!1TKbRo{*&oaZ1hSz70@FuMi7&_vyNfboU`8 zP$zVlJLw-sySNqU9{ST4#re*X^&+|c%%f3!(D}?gYy=@@2Bn9KA`C8=9}A!ii2!mL zZnUjbj_t+7x#mpz!GQsO|@mQ(zsh2Xlm$tY!lf^kaZHxrdKi07V z?|eCPaBMo!hpGIG;ktB9XzA};wOB`&1|=fLlDt*4eg+=F9E&I+ITlfufmEl7UsH79 z8{@dKcvvd`?Ul?2v`adV{z-4d8`W$S?YbaXZOr#%CMRmMb?*CpW^ysX5V+AkSX`Iv z!h63ot_J&DphB1V*mRkjqy*~FWhVZ6m-(WX6XM1H9Px>tGyD6mzmeJ1#UczMgj~!Q z7ezFxMX8f)NI44XlnqIw4FI=uHl&>4miY`MYLlj~-pj&L35wuV?F&Wa` zFq0uYDLa@9>B_&}CGy7|D@C;Ym+Iu8&Z2OxZ+tPP@PWAzS`zS!L;uQrlX=>>j5_`u z?~3&GRFDvJBU24>G3}Itl_UH+Ze&KdG;YYx+^?V-z*|4zzU`fvt>Be`D$&~0hP;k; zx36C$XHR-6@OrP0W4y$Nng8U*Pw=tH%c5shcIN?iL*E$JkiieDzX%hSJ}644r!A5O z!Ha1Z8ZsTyB+|2%U;a3AEjv#UfIp@42H|7=NeU~#o9iW&p2(oMvw`0YTiW#HN2X=O zi^yt)RRwKbW%zS9Gk0oV8+`b!%tq{6$_i@oE27EYQIpBqeuMj3d;9T$A7=iOn`Z-T zYM&W=!{@N9{ESjX4VLoRH25iz=p$2uFFffPz%xtFYP%|}I@~F>=gZ6%tf~ME3|_c2 zTerv4l`nbiz9_A}Pr6G(+6IIi>GI)HTDnUMAKvE>wjY=>L&oC;f7G5;ef<8i@Ohw6 zYR1=@3*CKvaPA^^TX%LZrDUxHdsBLYeRA~&^!U)B{o{DT#h&eAoJeB!R3RyJ71}h> zCqBf|UIRS|%WK&%ivnKOf%D0V72Gl!0y0UUAHSMkGnROIL| zKJ16gRgS~=mVed%r}2cn_cic;{$pl27u#>so|!`1LyEyJI2-*ts&BHB1SdHO?LaEy zMX=XeZzbOH*US&uTNDm6Kd<{_4(+OsIs~RcT;G&)GH1!{wK*_KOi|y{ciS!SWoowF!&@$TZ$I zaFIOE&}h*{X7D2Bz^~Ijex>=$)c6-gF&%YwDqbYMY6f!%e0C*DKn2D;xz^cXhb=+d z;HLRE<{8K;(_%ZQx&8$XiLr=!B02UfEyh^Hx;ZjA76O1_lEY5zF*&BR$7Q2sar2rA zg*CKzgL0lt>?*}+x43z$sR}AW2={@qM3lHMXhKbleM9k~fxeUm;+MaLpg3$HoNN>E zxU>y>oVc!Kn_^HMv`y^ePPPeyQehjQCTtU=Cd?B2PcZY0Gw zW#%gs025RBP5_ws3IRZYo^fiAnXi!cGV^uF2>>%+3V==ck}|*(Dm-Ssu27to@Nd#$ z6#fbrM`XSf02`@jCsM-QKeOB&lOhFmJSi^bo=croBt`xNZ&@{?BKwn)M}KeB!@F3k zI9I-58m|C~*VoI>B@SM5u6(OBVvc-ey)0CUuzXnxhHKd+qax~P?Vws51ZYpIt-jNS zqV6%*sqX**e4$h!fG?DSKseGV0^vxfl;B9$sG~_*B z^Y#h_LGQ}3LuixdavbXv5;hCQNDC^=VNYq()N_(;pg57a`YE2~Y%48BXW1~97o>R7 zRR9~QvQDIgv-}2w6&V}-si~gFH1--Lg5%;9@CM;5S7;4pFz;#U>C8T+#W=nI0OmOq z08Eemq_h?3QGr~fN0qh$`LeE&VZ2mpSUW|`Bkmg@fYw%k(Ar7~TDw#m&pRxUqOeaM z<{@VVba-1&w!6tZ*g0ejsK9%7g>xOvDGt5o#$SbLTiNfOIwp#d8z%zJgKrL zo{N;Us{zle<0U-ck{zYf_M5M}-pnwDNGZY{|;Y1hD za0dWX6h*!kw6k3rs^6&>ArnFT1z;0QWodVFHP#~P8H#p)w&e%-l}$j4V}OFzTA;lQz+!=R$q9EdT%u>~ zZQdlPg9kG;z>n)Q1wWoWm_<+$Rf)3)+KgUDN5pwgKnuGe$VEy{mWKSb93e=XaQay(! zESpuICv=jd6%K&~2@~q^hs+W&wDR9NdKeF%>gf?|C_FC|T~dzB*1S5^vxSYOOp0N! zOolZI)isB~91#djm1jFE=ZGzA8GqYHJU3lobA+^QQeb&Bmm;#H_1UFeY)RX7x~D#2 zub!ml$>G`4VWH!p2vOv>r+b>R&9oS&6adJW;i+x|5X*w2GdwMsp90`00RVj;^9%?D zz?Jklr}ns#RyeZh)?|LBsoP&?dZw@&6cdgm%V)uo>Lx8lhHij?XM6gp0J!W}KN}qB zR|q^P&|hS!Ooftb#>GWIEw2Z|!0ct~g;p^T1V6 zkPg1b>uM=SqdiZ|h%8Gs*`!0@`G?d6q|<=7Sr5zh^kee~2@qz7(xN^iYE_ z>zz-}s>b4JHR6Zr0Dg>DJL@PUUY!k$%6K&ekn!qCz^aH>i#9S|-9wPgUclQwGplj@ zTv1Hp)l;a@cmoP#>{4BY1)fYm20o%Fc&SQ#d1k*ftsgX6wn(H z)5`i+ukfU}+0zsj$6EaM@^)H`nt6I5U%19|P6fa($v?PnR(*Di0^nE+0BoJ7rV4u7jm3JMd^NeFyNU)t-TT($QHZR2FQOH^o!TXC*XJD08^H zN){zJK2L@jK_oODeb&>##rn{exCQN*E4QFMX$|aL7Hi{jJ?+r#X-Q!~-ogUxJwn2}+X53$GT21*xu($2Z^xcnQ>i40ui6Vx}wb~OA6Y1D99 zV?~CmLbbSiusW><%Z}8No*@3*@Cg|i?g9O7(5$vvJXDJPOgsg{zJihAE>JBt9^Gg) z`U_q-*omUP_X)YF5gudhJb(c1JQM;L83uvSkraW@k(3g2q=APa$S{L4fsR!D2v|&~ z#pp;gp5QMW@pK6Vz}0M?Q+r&^DgG&v=~|2`UE;t z2*6=>(y1*@9}03CTV@PdWlOkK7?_5*74KHyd6#`jY2Z+C%k-*SvY@@)QT?R zH(sArl@(h=-7)w%zpzEbwMs9t?7!jVzD=~dpg;sSfCd^`p@D{0O7IStMyFuoq!e4) zY(|+7+Ki3P;G`v?v>o_98>96bGMbhnzr=5xf-@f?7(ktEr(;-*xk&|=f9=Tzz z3`NXV=!j6nW1=K5eq$(N@N*A@^YG=B?=TkjzgtK4s zW;MZ)8DbJ}JHm`{)wLziM0DgO6xiy>N1$4Cd1#EfiuLAR!0T`7@|-JVC3Un za1wFJ*>z{!?@-*g2yUEK04zL$I?IU? zqWY%(u&bUY-R@?K%{L;NQ;?uqTuph>b`QQwDdQ4%FP3o$7(K;{5HZ#|z`V!0(PIAD z>z)Oyk%BMy9>fE*7?)B2fbT&l0O+mw9z+HO5H9bAhVng#5C|OHGVK5wP{8*fl=ik! z#N@sn1;)W`{ac<~mQRb3H+&CbH7&-$Eq^h;{$EHuDF8N7<|`MWr0_k6{S>FQqI_Yo zTu~O#YA}=e!Zw_yQOtCHv9)NkFDet|W_SN$`TB!G(8j9SG=$Y>x4-9cv5zS))*$sI zEk><;yqHh8;aTkffCJK9OQ^Ski8TN?@xJE)6~M-u`D%vB8;tu9OB1@_d!BVyl&^%9 zTO8~n81)dhlg83TC+Qj(qi94KvSJj4fWSK%75!Nsd2YM3wo7E7qL7wvf8u$V^|T@H znUG<1q6X473OskkCzauEe(LdS1MiIgr<;&Z9Cs)DO$xyu;~(;wC(W%*mjvPz27&`e zIGf{l5fH^+SpI!U-3I^2MX2I9Zws59@^!QJI4kM!uuYsI!*gqs#Af-C1@hGsAuiOu!Eb!$d4ydM za-i_1m&i9v&XN+S6C-)<`pr{}H~7KxRxc+K|KeWUuYdIn;_VE*D8Jl) zQW^h+A3bn!=uIMq`R>Z6qKJk#C?7H?jc4n*6zuZr|~^5@8kc#Wq}``xR*#v%j3s1Z!4BYNs3{&^k`8+ zjRd);4Q!fJJWeo5$``acpu=(HC-hoj$gY|L3v3hlKT30 z7WKMZ+WI`cC)^A75m4f&tF?Ar?Lb{6yGH_sy=@+fkCtjJ=^N}tgdJo7&b+$uuMidyA5hRDG%}kpwNewnkNtP zLoc)r^2ZAb=0X1QQW4hWR}Q0rAjA89GH^Kmw2U{;aU|XJkH-rRI-0=UAC7Cv$HaPX zu}7(tumm(y1ye{dr~zk)e@pb`db5l1J>T?9XLAU4nI*Vg@K~#|q|~IDk@ciZ62Rvq zkFXV_f&7x>(kEq-An!>Tqp$pDW)!dceb1JB`*rDl7^B~5HN&&~=O`kK)t|OnV6eY; za??KS25p9ju0b=AOZbY`AOfff<`RCVwHWJ%T8#ArpL^%cjOD|g@An{!eTq03puf-c zl*C?*Rv`A$Pg&TLX)T_9FU^O$bn{JtfF{;$_x5EyXj2rRi%DVttw9n{gV~D2s@^JW zEUiWwT^wjk=`wjJGiXz!0k`0xk`~b#qyaTSC9S5lNFp7?8*) zq)fnMJSp$}TGB>u91ZQvEX<#Rk-1O8<$&J$@qk;M{U%X&!EaLH+*c%@xQ7^jDrZcz zgKD%*-+JB~OBZ`_)U~%a-xN^WM@@r+dY8h7u$mMN?(nOL65QcWgdt7@$8R_A)^M@A zX-kZFwau4t)V8z+BVM-au?FVLkjWt0Fc=%q9)N0bq8!&CWAbI}3lv9UpZ7tj2!H`e z41g&lF#x8NV5IZ00`ForPazo$A1tE97(SSnFRrnL7qy#uYpGCH3}HQm!WaUemoWr| zj)1@z!gF>24ai`CRB4YpQp>_-Izy32#1QjAf}iSIV0)9Rp~y1Mba3SRSY4f^W+OJxuXWWo=Pbpm)1IqXE?W$cAdOx7lw=%>GAtzfG%3xrlN3-c?D1x_BKUb z*xQs63^)JT$y=Q%#n^A~#Q958-zu-pv zN{JXW{jc`+!s}xhln1mUz9aQ8Eyjpk#xn7aRQE_)5gh#i1+>I;2|^mdk1Lj zGNpkYasgaGyf1Kp)>t0$iRmFXX*JlgP4T5#;09n}kQh;neU|y@I$bvqG zFLCJc|2h~)yu_sd*hrbLorIDaKHj^CeNS;BsVU=&H)X%mVkGrF z=i4*9(^UW)Df1;1m6TW-oP}OwE)8(d?=jJPkBik>PCJb_6;N%t?9$a}4R-0YhrDOB zwB>Sba5t^ChUd0W9qesAm#gc7mQX21{+1M0bmV2?F1Jz3%@fpPXf>c7sg0mmr!1G* zN-=Tc32H!#>jC(S7r13FmlwD#u;FRK(;C%Dc2QjU7KeCk8=%0HWGIK?+O{1g;$0z# z#m#UE;zKH8IL#T=$!n7wM;K5yjxdV4afDGyaBbn4?j6OHV)T}hGrWD+b;^_QmRQ=5 ztSv6i@NyLiW}%ZnEz~_4&GasCu_7z%?g5wh;)w5}HRv8!UYUJBi-&4)Xe5DFqYW#< z?Y}|KsJ%j66U0HK@QgSLW~~_8L$z3tcA(Y5>6Q(fk}R$j4kAupp}HI(M&E$H)>?7& z3b|I~>HXv^YWeR-ifpPxW-So`3oa2AHqng01e#G%3z|_W!HMFU&-)o$N<~34;wNs` z&|>WLOIL8?H*b$n0Q{!yZm0J8@3009A%J7+38(hB-%#4y1{E{Ks)&N~#GiA$+t^za zCyIjKyS+h+QIxk2E0W>h7|t24IJ?w-X~O7|>AYtWHy zABe1>C9af1Lls($*6;ISyJXi&;z{*Z20aOehN@*q=)p{t0xcXY6k7P2)!h_*w0O-* z@FiZeQrhBy`>VO$8tgs=K)hxJ0O(K(06LUXg5$!eC%ny6%-E%ifH-EC#)Bm(`SOTE zwS1YsO@ghyc*kWiC62L=Tv1XMa$+E~_`pyKPjgjz#Jz1LjL?x<65Bx`M0i`GWHwa$8F?Q-r6QmD8w#e*Arku22WwESt(h}T^VH2N-@*W4Fwd}0Der6ibR-s z489N$NHJIPKb-Gf<<`Dii7Dm;=axVw7SzzA1>gH-QoA@BrwVW&0%dq9VB{(&!Xzyd zzc5J)zhsj3v`B)*2#sR6+tjUjDE{>o-qnsl?ydhS$UT@F;oca3!&TnKE>=VER7NlW z842)sGs<0s6hi~SSML9UDhH}Xd19NQMfm#PMn~~>Pt5MfQV220LqV@nEn^*c$Y{Ds zM7=*`Jt&Bb->#AY?+&YM0dF=kr0r0vEk?a((-s&lonf`GqTWx@W=M1~G!s$p4YURk zKus{9yPMXEXsZUb81)8bt*G}|+6>X3GSR<5YY;uu1kry;YY{!v2GAq-7>@p(HbeA3 zo9H7~6CXhIP!mL7p4I~T2`(G z)F6JNeM${>h*l$hs1D%A__?zK-ywdU3c~`%&ncvgpI2H%;^)xLjGuojm`Gj4udSJ# z9N$zFYzH;t=?bWI*u3N# z;%YdjM2Zp|_bRWF@$~)&z3`?*ZQ2rp3f0%hIlMZpv34Ns*O-ezS{+;rLZ!7BTqCFO zk5|jMWGko?tISpuGPwU3y~f;sjHT6pc%(LxVx781?mxgJa{mEnag7OoasQFCMlLcI z+VC{tw@+pyyC|-u7Kgb102H{S2<1@hKX#gkcZVRpGH|kr_^<#}bFz zfDEP*l=ir+wEWymB`6XJKQ~heNfarr7V!<9x@*l;LVa2f9$~)0Q+q9Ow$!yUl_1>0 zN+nnpAi*UD5vUuTNxl;VSuq6Y4bsRSolxU^Sj*)(IarD{ej zxT}Dliq&HRxFmeqm18Plfx?yu7tC8LJL^1JgPj#q2^)c7v2)u*t3_w!c-((Im1oyl zwY#o{O3__cQ&?+Lc*aD1mR4J+Pf^sbgrdeS3nZ*<;Vm%t)SU8(>~m*~pHhrJNQ`b_ zZcHBlD%=|?++q&{6=4rkRD?ZDDY4QAN-_2oOdnKUXLJ2n+K`N{m_DF&cv>C1Pouw! z1Jefz4%}1B0UelLfl;JBZ+J6YtRKaSV|d?n(k=SZ8gvW1b!ZY)i!i}tT8%^Pgmt7( z&0HtL1mNLQ#k(bAp%OfT_t+&DA?OVFT1g(%h^)a=HiV|1Ev8u4tV2IT(^;p{0k;SO z2XUk6KnygUA_kgHDG`I?vTNR-*a=ErSPnPo=V&SJgioyFJKptH4sFj_X?+2E+X(=> zvO>VtmCcNS!WmBHzU$ug>|2U6$l9;86vtm^$9FU;Q-R;U;hm~N+31-sLaFq`(9sLD zO`T-n2i^^^16fbp7oDWadg&xpXpQA0ZJ}B?NgAz2CuzN&I7#>Qs*^N_N-=CSr(l++ zjDTw4DWhn$HEax{s2^JIrS~OvisB49%geMBSv$2JuAMY0 zhqmV^%e!`f5(07HMh~42|IlmjcD>U}s0eJVnt^(iRpDm|U@PipGG<9d zgw~*+VazfKs)e6brPb(X2^)x?)!(4{Sw*N6epZo!S<_P|s1`F{7g}xkSqF-`?*?_| z1JpP@!Cz~78o$Auo+dbB97{1ylNhb(2~gqmq;QK)3)(@aRkVXntCU!w%N3M9IxdDT zH_&4AjujhZ=rRNVN5y?k?J;y2+Wxr-RU@66qnj(uZN6iEQ%I4-id)i?$>H`}ozjyiKutU=9heVvmErxQDx7>ieP%jk%sUM{sHXu{cD10}kB8g>oo1 zabHQyyxvFl+`|_X>8}n*#Rg76iv1UKjb>GJjb>F!(5%@}`go=kqt{oC)*G;@PZOUM zULQ*vLS10<{(Q7v%>fBcMk#hAan4BKc<;*b2`U!!uu-4{;$i&j82uSGkYdH9L;t5` zcj-@S(81u$-2m<3r}>EpnB*U&)jNtG>Q;JcylWTysHc~!>ZsTY}OSh(4XeAeFaosDJf=>pEV>_@T!+3tB zH8NNp3IB&1W3*zh-xl%w*A-&oMbTG8Nx*y<&%biL>Q3!8DDk7|HQ6^50JU`GVAEux zqu->C#7?tByx!e)%TiJ7#{`&A!B0(nAi19M`0Qxym8U6}=8KiJHvvc>Dve>H8lr@- z+LT{@V?YtVH$l&HYaKW7=&E`m>rBBcv);|8{unT8pH0C*utqh#YK*lxt|ABOwww5% zYI+UUmf{i?!^vq3EyXDS+T&6uq`h3~Jmv%tRRiuB4Fy1#Sl|TkWevTq4M5!0*tw>@ zo~@<;7+?XG+Sk&LsQ|WV$&|Jw1;z<5r?&nH+fR!vcRfmrQTqLxc%{1fWfj0is)kgo zN($C#u2f+c^NV9OHU-_l%Iwe}A~8R{Joq`~#mekBgZNuC(C36{zig689p^?s0fVP4 zWm1O*PXoju!YY$G(VL+NlRBlvFHGvdufmf$;Air)-H$ib^Bt2q|Kd~H@aDo`@s3C| ze=SA7#_9={0=);iftk~(MT$*+hsb;zuq{UBDWr_dSJ_M= z^U%(W%RqfS}bGi)$E{qX&WoX zewG&F;CWh<;NV$pGsf8Y+BAJ8`+zpY>GQqKa{7Fa*2o>v(S-Zmzk(Jp681Z-$ANZz zx#r2P&1AJ1{*0VIK@Tzz_WfqL+yojpcPcb+?o>)}?kv|)Z^o2jTnxMegv4Uttm<}TLu8IUsQ_ORT9(=}h0(cyFrt*};`{hyJm%?D^T3NvMHkz^Ot1~UdDq%hj9 z%`#)q2P(xLuMY(cE;eU9V=gu`X*FOTsXa!q&U;2?41|hswFzi(wF!T5wYl~gxw>C( z!viOlzOAHkxXt1a7n^_r7n`9RipA!OCgM{eh%x+HK)Jl+fLW|K70kHeYzbK5K6_Q) zXj#PqXj$F_A{R2;`jsQO3Y}nv>|cjccCKZ!oh3^`0e;*78}IEf6jd%ofC3J>N`N zP*G&wKq*1um^ZlRS(!Ju&zW`~N_&W;Eu38B4gP{EZm|`r*fmqZbx7Bg>4EtQb+Hkg z^Q;_b=Fl4KnwTC~2YkUsu*3#Z9nRBOqlP?fOJo~u4dr|LvvNrn=$tE{QgqH01lat% zv3Skkq{Pim(`xMYOOA|8c2UfiLos9j1PWICn| z7lm2uO`sy|O^S-JHz_69oAB)dr5HN`rUxo+v3CU8kn|=@570U*Jy8Ge;=uHPf&;z6 z03DcKfm@U}V9p#0Ta(k9<*M&Ra5=F>8K%$?Ta>|~BrtX176rc|JbQ~AyFC;Djo7H~ zxMUa92FLFCTU7U$29?4+rcuz~*u8FxId*TL)i`#qp;)(Xv5nn;7JUQ$;@Ew1iyXU8 z+wj2Wf`yw=T$e2laqI>ZICh6}D8}wjOvE=s5KDKXn7?(vEXHmHv+%aqsRSF*IG(ocXqnoR2uvwD*6@8Y=l2+VCEI5=L2^VHu(^5&!Za0et~rs;LqW;>ENO3jkSj6Kjwj6G<{ zTcukhZ4J7GwRNLwQwtZzt=nZv+1k1}gZN85rXSF>Yg^@&FV2m4{n>igIJ%S$(1i82 z+_8Nph~kdzd+`f*Z1Ah_9UDx#=3OZtFX1~nXLgFk!+PcdGl2gsxD(^5(cb;mlE4>G zp+tNEwf-N1%&+hWegRdKkT0N$I(h652;g-n@OO%?|C8%bU+lSpUHBu1^Q#!3X@UaHvifMdI^_`5TYX;cw#>zjQ_DvkB;*Y ztfqD|fJvU$xMiEf*`gAUhf+4JW_<6niz@Q9x%$l5dX9K_{U`Ks>?El}nG{y+eyJ>hv0@K-^S*`#&WjVy}{F3qQ|YtUtqHxG_STyAFfRxxFRjuN&LoGy^_GecxA39yJG=IS5Hix01gy*jW&;f z6Ip9Y$C^WBU3Mo~%^T?jfROdI6)-Mua>iXhh&v!A6v0R8QVeJ8xP7C+acFIeMVP{)?#;vgYu1e)DNZW5R0WqtpZoQHbc);xI!XFH|q_; z8USv-?(Sm^Sfdas^(-o-T_%yV_oGYjxM%h1PL%w;pVdpbR8nA}bTW>bTv7d_gZOW5 z(JN|Ne<1UdK866KN--1waho(RxG*Wqzj3?%o5sda)}jBy6%UrKrb%nhSyz``QAFa*) zW0Rr@-}4*1B144GZtURgPv~iU*k~hyU%oQDegZLGFG=V!pa~rK$l{HU=vln$>GYCJ zlm`cXoO^#err*bYq{Y_UyZ!|j%P#}%8b(@8Y>-aD+~P7rMUtzq?9Jp2k$mK%~5W0GAvNx!VQQwTPWm?S6-KY9WZPzv`plbB6I zG%UXjG~q>kflKQK)Vj@X$a>g#F-`A9+rntep$vHx3nzQIQOK zSx@3+&g-vhQ+M*u&g(7IYNXNUg5H>IaKap^&ELu2xS+Su7VhMiTtyf0KgP=$env~3&*qo?1{YiR5~$|y==%)7e?zrJ)>|F9uK92}^I z(Nd*H`t)r*O#@IIncBUh z&(fCclG_(3#O+HczRK71$!w!DzH8U?K|y?d-qrK9=On(80#9HhEmxc84e^z&R4*}q zZoV(ylV2+!1Mwi#*s%BX1nmr2w)Au6y8frC zADio&O_ebQr=#BQ>!&pBOCX@G5e9_%f?P50_(*^5FQ)hoa*E&fvHln~Khe(V`-sd`qtsGGr)7 zaqxp7qXe%o@5?eg^@S1TdBe~2N3^)zeA8#(W=d-`)s!d8M)EqJ>qFdKc8Bu~Tbji1 zwV&&7RX*j#T2FM^ZS_|;AF}rV%*4mO&|4GBjg#61lI%+uMM6p9H}xid2_yJ~-Tc~@ zdTTbxnb>%fSlWf^r6sA=&o*iANGjvD-aM4lvWN~v_-nWIiQ3}b{O+%TQl2xVC#YEP z2AU9S${#T$xp&8b%Dmp<4~y~L-{=vJq+k9nKNX5LUd^T| zuVO=1y;(@bjbvT=e`ZI8*2wMz z>~w?v&^K!}_XI;hMEj3P?yBy=EJbW0Aw{J8y4PbB`MEy<%aA=wrx=-R7-=U*3ya;c zv`%5yaap0D3XBmg`4r8lr1jjx7imUMZI~nPGbQhX{+f6HMz`^>#+Fmga2{)4)L6sT z(_&=!_V2^s%HnWifwmlwixu|eaN~Jx&mK9CL17@OMpQXVvXd{_iE~z^2(0!YJ3>?c zig%nSZoJ8^P^JP70U?|SBbvQQ>l6*QiZtqlID~=SkL0t*?Ep?>4iq+PSJq}$0`{f%YjYWm^ z%UPw2iLCKnTfa?H-WuK0W94u{(8>68qgAsw(QqQk-TB+xR(6xk)?ZR zub6%YEb~RLcB!mlhKN>G{#HEj{vpMT5iP(stg=zV1|VYRSNiN|$$p>!rm+652?m6K z6!q8)l_L#Bb?m>GXnf{!$3F+@)bzNRI9g}vAI`*`s$7BpS;aWR5}t$dK*$%Pa^F-n znzEX-7-dL!j{B+^wHyH6sAe=`Et~*`R|j<{6j1+1svARD4+>!Ee|!z2vj((4|I4)p zfu_hk!2bh-9vQzDhsrOz%ztYd3)p0eAIav`G6u65wAdoswzknxn~Y@3a@aUT^6hg< zNAm-lwh~|4%$UT^g~25eogn!$IKLK8>iR($|I~U$HFt*-LXK17@sfC)7mthLaYZ~{ z6^}Q><1O)cM?BsWkN3snBk}n3IsRrtqjUcP@t>38aYj7OiO0+0aalZG5s%l!<4y5+ zTRh$sj~n9gp?G`(kI}gi4-cO)a`==-$4`DJKjSmdR0|`9NW5H1yzj3i2CbdYddK-Q z8ylsx`(68hf?GU_h)1}16c>+3@hBl4rNkpzJYvM7ta!wUM|tt6C?4_RksuyP;!$-U zf4_;*Is6O3evN&0UbjnLzx!LfCZ-shwATChnG~Z#=~e=JTX>AlK-_nS;65pFH`w== zmUo@=vs5EdOSxYl9Vi}y#bcOwj1-SC;xS%4CW^;oc$jn_388yl((Nwk7CJ8U^~A%t z(8B0k*f{@SOJh`=bJ7b&m0AhSmi38?a6|9#_pMs2qe~MZgkNTUqSwkeCh|{5#AB#< z3=)s0#bdpAWD5!AipNb3*zy-czh@x zH^gJ5*jsb)I4U0cVe$M!VE9!$T8l>u@u(}t-dga;ji~kLv_~gDJbw7Z+WEaQz86c7 zZ^WaVXi-)?vcy9dkICXOQ9KO6vqwDM5&wNlJVpz@8X+Ee;<4ztaGiXvLntB#m5_}J z$VTCFQ1BcSItK;LL1D8|&}~rx8ZB|Nv>CMFx*H&n>G2*{yG#q--Xs?PgG}<83XyBF4iCld@etBkT$PJ{y z=3}R@bYQyty5;nAZ5#BpGP4_NzCAp;gHcs@{PXRNO720h8r?9fO??S>HU#dp3FlYg z!t#N2-nVXps&43J{A%5SJ^9%VMi%=th~a&BT?%3|B6j7ci^!~&-B4+0ggkj)RA zDsu3oHf0;|9o>yVtj_*`u1$#(YLXID;tUI2q+D?KiELezujpayV$Df&TyR$>t(w5n5BmU z2t^w0h2GP{JYdk7G!2!g6z~IFtRG}FVULiOLKr;F@c%&;C6PVY$M~4drN~eupDB`$ z)`+OfvUO=AT>E*S^_k7sDq4x*mSG-uJ&l8O;^5!>-i0d+_yN$3$qc2c#3nl6ra6r2KUV9X{2Q#PJCx% zHAlgYdlzkJ3BHXAeh3AhLButW&}=-w zw~sdNQK<<(u4ehM*)+s8iyh#z#u(|2?i}ybS;5wdJC_=3lRKP@?h&W!EfE zYtW`fYY5yIOiX*g-S{A^FNU^j!kW-VmOUFDB#zwXpmbyif+rKBCP}RWIrL#5Cw+MD zB#4{bOYsW5x!_|#2aU2%MSWIPoTMvKg}Sk`xcr5OjJ8SEc{SW^} zn?$K%JfgxB2qH|Q#Tbv6bdYbDVx+17HcvFK234to=I`W*)&Gts-kNHxU~4H)Xt$N7 z-B!{X^u+3qfa~s|#i-Ghszw!OHMlfrH>e2THQgBPz6GB1pSjywu+M25a7ObD{ZFYg{%|lP{c8;#wWa!jCb}fh zlrDMhF=H5Ge$wqwfv>0vtV><;&NA2L!^^u;$XQR-O9H;>Pn%^-fa`K7W!V#h$?rx` zCzIdFv=vH!`?>PTEcYfLrIfkd-*n@VIAskk_Yz{Q%!lnSm%^VnjE-y?rHaAbhe?U$p!^}9F@nt@b;2bf zEoIrbv9vLTmuabKS&(p9=I4DE7!`S=mqv#1%pFEswu&M{ftUMvyQM|~TTW}xEQ^}E zWB7mP7>QxKp^h*4wRjwFxWp*K_9{&`7$dZu)Gp8am*pA5$k=FpOcW>uf_|Zu`G5gl zu!+qhxQQk(b(JvB=%>AH%9Jkx!v-fi55-^@0W2;)tq>VcqxRA%K{e?zJda*T;u;vr$F z$*lSzTesAz9Fq2_LTjWzNsz;xxX|dNwK&AD+~+CJUtVa`Wv!HkLY&k?RP_vvQ;qAPS-;xgt%9kiI)YvK0{HJIQYHZ?jMvJhwp_rd|v|0>5Dz2-# zrnC~udW$H_{Yk*~ukSNz5wo|HYyvF@otc#dQfINp2nl-!{hk}cwD7}n&>4KlVBEVL zq+*BdPF?)4bn4=?2BjLc#)#nsy8*P(a!A;&tvoX-ED>7qU$>`J=fjG$jo>?%8zop3 z1rj86RpwVSjaGa;>^9u>4x4=zwi``|psl2!Kt3R7Y0J)LWf6f#-bhlIuvb?Zy4KT_ zv(XQJ#_R4jqIk|~NcZ%mjG+m8nZov>H34BeYNHSHZEIj?9;;LfiAG9^u6KN}v_=Gq z;9smY=>Dm-lnUrLNM%-b|7)pmjQwhz@gC!p6_nvAQ--H#4azWWgV9pkewgpw0K)H7 zs)Y<&iB7uiZ8o55_vr()`FKBZGZR zr4aLT!Uv?pa(eg`3&DUM?RnDWjrIAt&BhY<&md#;wt*G+l+@})`0QtlhT2_6_>O0c z2249by1~~%Ie!r4up_3+zW%IHmAGsNshnRA^T;j6H1;duM7(N{P8`^53SVRmI`DU- zxy3j~QxDl{{Nio|WRc&m5{owuO9dABv2zD&vlb!DrtrKcpkJ&Hb46e$(>fgCOST(B z2(KL_ugOQaYlqRDB~u)7(G^^X44`%BVgOZkC!FI@pllMF1R4ld?vA~KaQ-E`j0T$K zJHiY07!BDRN)1&HUkF#EaX%5z|E;}7H6oLF5PkL$c}vc01rr4IIF7@cp_q)r&nm5i zsh_sf+Z&)~8;dP^QTvVYOra-rsE#);QBtT#V72c7qmK$|Q=~~{1}ZYnS&{Y*Wx5yb z3v$`}@j;_UVI8Vssd>$~#}Bi>50p_{^?plAh;!CDWGvN6JTEL)p1*m>h-IaoCp`yc zjC@{x$vaJRMG#~4kPaCByj-G$5ja8s-U)8T*Sq5@##@8G2}xO!!c9M7+*_D%?;SCo zVJ!#|`EFV>Qeu&XUpQLyma+AyqsB(og|rM=+xL~iP;7E-fB!LKf;RAZInBOz%&5kO zQanOIu0g!*QX`QKq80EqaWy{Wo9lJiR9cJ*9rQeJavWCF3V?7LqTPEXLl2nR?MIMU zV#={)Yym84^Gp_R7r7!u(yCXPq>DXP4|$T<0ZM=V=9Ub$f5qFkWzePZ8emGz=-%X#?c%{PXxe zKyCb)$IQ=2{^FcfXzzHY-W5l{1!&usAj%MS6qIiUr9*tkJh!ZX;v~5ItT8{qc@nf7 zwf(5$F}&|NV`(hJyMsiCt?|ua=tO3U`iFgi6m^1Ns*-q=7XkcO@t7?3Srf(Mx|o%& ziN|d*1biVLO@uxhiANj?1dnMMkVw2soB%3}Poz0nh=6OF%&;rlKdzVOk4;<%%{ z)fJ<8gHhr?W8pD+T1HjDS4;5_Tx9eYRXFmPNy7V&;)#hk2bM)+jwct&Uo}R=-Yr1U zweXjTPQEV=ElsQUKZ@^**O?(&KMIfF`{JS`_`Wz+WeB2=aNoGf9_{X<%la;?=D+fq z@pdt7-BG@w)4aYN*9au2y@~%`d!=~d6$5VFuk&S5{?fpOCD}@W9R*r>lrMhQ$WPiM zN-(=c>r5Upc7r-@%sf6muCU7CvyP|mpWicEu_wS1CAno zLg35}4Sbk3EGL=$khZ}$OIEyZeC}f3({ji;Lz-=e5ut&!R;GFBN5)j``=h*ebk-Xx zfEcXeEm{>EXf@8sir4CHQx9sG;(xJiKvE?&JhoVo4tmqndmZvDc?Yo}1M? z2E_rZV4#|P4x5RFv{(eH-O$kA_~P#Kk=1OL1P0bKAZ{?U!T*O4X4F80Sq|C*L?%oGzGv$rk;boa4gSlm)A|3eT?_{ z&gj8B6gNhWXCAW_Jj6r|9MFkl>Haz28|yU2DIO7=C?j0jbfrcT_NilXv9yG=wG4*S z`N5x!Ixe=GG?3ZNHZA6KWPVzVdf0u8H$FHmNd>@(&?25JiEsaF;{NY{HQKn?Ta=7t zg&VXOslRoM|M0s}MFp@?H^XzUOX_jXqRVO6V%gLe^$^}Z$2YPXEwMBgP;*O|J3fFR z7fwPfjVfQ7?|fuoGK+ozssk=Bqed1XbD>?5wh=zE^nmX_EPeMq$Zn1* zNO*y#X}+pXZ8cvV)`Fr40HoK;s-^;1%f%i}0AIO%tyO>^H*ByIzK~Uahi5Iso8O_ka_?3=@~ZK7hvZdf&1tc) zup1h}b$5C9s}RCsWUw|*nNxyN>qldKTU}b8T_#?S=)`Dqk9#C`xe79)H}wt%C2cTYJKU@KyHR%N9_G==O73 zYL6V}(f4J=uxtVeb9`1Met&|mWnsMBSeG?EfpTs!0>5xQ3h%Cp4aTrtuF3M7u@$GI;%s~ckl1P5B_rw}XMJ}x2{m9(wL;UYI*?bt&26^5$nTn9AJP?v!v zQ=+tHz6y$T?M%)B(zT|X**vaA0k2cr*Hv44)bIOs`MwBkZ~>0!@lM0Wn^Nxs3wYxd zzDj&wQ(q_T{sJz9jcX4?%#BVzK@a^IunVs&nOp3k5tFAqI%V3U`5D`e^Q0rb+N_yq z6>uS33L8V`z{#}~U&;EYeY4KeYC!g@mih0Xg?yV9^6Xk5HeMu{587BL6coZYT-;mE ze<0Ndw}I~gt(2TIq`HGv((9XF#@i{8fF>`r@>LAeP89H@3iI!AglQfEGc?V&*sWbH z;I3z~`c`(L(=iAmlp3#1Dd6pYJYLTw4WKQ9zv`H<2(=#{t_#UQ?I-@5RVPyXrdn^6 zkpo4!MJ5h^bo68SrUmb)|MVIrBgc7Kj&D?9PTZ%nuV%n4q1U8nktftnSL}pkS{w+8 zL5e_~Wf1IiySn&3(W;p^0-Y|2;=oQ<;)GodMNXi;!ncY}ZhBu~OydxF$DWrykmoHg zTgE@CyU);A4?&-(vuA>}07@Sk&=VcY#AI>jaWH)}k8U)-GSOXWex>q?s@gb3fgK~M z?4nx}{f$udS9DdBKe@NBiCgp86zHW$P=OgC3LNqORABWxD{!U@ENd>mdBK=f6WR7V zX)(*x;uhKn_h(J}`MzU^X|Y(g*B};n+yNFHOF4O0(BJ20=P4d*o&5?e#+Bpw6TJQd zzM(1rEGy)Z<;L`k&PxQ?@^$znhVb-xLJx2NI(mTbU3QB!h-y>|*c>$J$#b_~wDWx+*4I0v9}5tSDbpkkyNYy-3^@r2(kmX+h=4n=|h`Vvw&L zIaWlCVoAuy5As!a2uV=CfIgW!xv*~7d$2F3u=U56gMB}-=2Q?|f25ESi<5w^IUhc1 z(};vSH-c|m?8__T|8}Tvii`Co_;3M2d-g`tuP8oTf&2vpxP+DT?6ku>Q{WRIQ>*#n zgDa8of@~oxkugwb8x;4B^!0Pil_&yZVirY#UHYLH?PKDY7ahh#Dh=U6jES+%b^b%6 zed9H@gX#*SMSGg8Xv+4}VvH6+L!Q=j1-C(nOJ>f{#v;Dr7L8Y@teCDg77O^w!98QT z-^mgfeQQ0z_g^=Am!iequ%p$Aj_hMvjN1ih$a}V4QI!{+;wzt&&@0^rR{LMpl#ZJn^MD z(c0yc_T|~jiade!a>5+n3hgE|E^MXztEu{rB{-~<+dS@bxwKzS7QRw;X>xiC!f^jw zpRPrmDtw__EC_=BEf&f*u4dKMJ^*F!%kD{b%`clhAh1HljS1D6oTX@qMV zJq0BJZx-thI#0xyoKOUEr%Fo*$|E_-qPa9LwaQmjyYG}bLi80h3z;N(L7nPqyxczA0;gP4 zS^HNGjbW=5+(Ds#J{JI?RmPh9UCakKE*QxwSf{3-7dfK}faJx=*8hw68+E^AjiId}udL>;M1$ z_K~1J3W&-w?z^8sSpm&fVo%{`KnEGCXmIFY_-Z);HwDdUJG>lP?%W7oe;qKt44<;gcZhLN&V3h ziwjopkg{VLFO)#u?5hcY7fix=g#eB2|k% z6I2q0E=!&%TuYHqXVcOVzwZ&3R>wpVm<(!CB&epCGj=sap821siNANmw~zG|1j!hx z^qQN6Y3VOq^(&sV#}|y7+};B&^^i?l6R4oJMcTMfZM}cY7wyvK+qCsKMS|Lz5~8hf zXVj_F*}k|)i!G#XU4hj<#M&%etj#jsgtZccPqn>g?2EEp3jcw@|D_YYt=f5LT-c)Q zF1K7@y(Gb5tY-^0w&IOW`rgpqK2!L@tY`?Fe#*C4`|M2NV|tg3D`&DoG00s2EwOOIFB~%~^Q1Q|ADi;xu2feF zKe3$b;FAT}LWZq|P-p9q4`1-byIj2_jzE9xL2;mmrM_hEj}2e?pY%t6`%AubH=A}R zWi=>FS%nyYdtb3!_sY`wsjeqg9WAEv*}7qFh>rNXulk0%wyP@ILQ$ZK@SKWC9a4%`Z`2MH(&bO1Jz#)zxOF!BXq<{K5HMb8UlY-cLPfO zd*9bBjI9v1Dr`o4xG?Yf3zN*`!=G7OhDVjl3*)Ju`f>}4slN58?`ift>8Zqb;`p$lzJywi+a(7ic*|RrDw)a6QyQlx zH*MT#WV10%M-vjA}Zv>G08wTln|D?g6Bj(1nMmbk->H+a^ z!dh&SXiNpp)8V5k;-EeeD93@9fI!hT@|w81{|$i_Iw0Zi|KMwu_*dd^*Utw}hNS|R ze8cekru@p9BSjL@;J>-j?xX&`zxoEc z;0NFNo9|rnDS{;-+9MfTAzS3h|7%(DGXRMDR&Fg{GzS24Tk{it9xTHz*Z4AmfA+gC zQ9F8^5BqR#)$nA9e&?2l%)?+``C=LOKr}A5_aprF<(s|3GG?6)=ez44t5Ng-bgJCC zd|jh2>$`n`H+u7trns zFFb#;LHxpO&_?kK6W^Aq z48flR1F|j@a~)Q_lbl)}|Gzl39MwQ5v3OR=n1g~R9H_-FU}P_zB#h&?J!?jh!^>(r z>7eI?&x*s#g;nC=<-w6zdt;A=y3e5oB`~a5ayZYUuYZ5svIwo^@EE=p0{)$@6md{RMr9(LyN63{Ag6x1TFHs zJl(8-iZM0bqH3OQR;c1phtSi_RAAf-B+wE|JpqBL$vL>@m zwAf;QLbzLs{iU8BAZO+T{#|lN8)aEf~%D=qn6VD$% zdS0GCo=$P&`QwMrlk>-x63yex3OYQ0d?G$;y2h4JJR)9QhM3(vyPSJooK1IQN3rot3ui}>DObjaqm4v7blBQB6mB`iZb zWP3Roh0`{82;!sKS)Z_Sv=|j3P9U>HT8xS)cR_vz)B!*oLr!)Az+=b?fOS5hqZ0rg zLskGRmijvZ#5KrDagYIBX`B-PUcRSLu=S}9g{aGapkWqVCuLBimg8j8V$_#$fzNB4 z^^gjH;(v9xTV1x&31C}tR#O|m@vLgRWRt8^w!;ZveUq$ODu9rtn&oBYDQs%|z{*UV z!gihFSKsrs;>NeWIC2u(f;UfMQ+Rn2`_YuFTbk=N0p6J3K3%pfzy4x$5*d*LZ*Nkz z|IUa^j%44Wu$HdBp~a}{TNmV!>`(wak{$Lk=^g<9Jd&*d*i`qRbOhQ#sp_;!FWV2W zTWT8|3QLb<*LxWcuoF8C4+RJi!(-L0B{6a&+afmUFJOD#fzhd19mvzkYFr8o_2ejwYVqrcvG?WLl6$o2L zULZxIRHY4~I%j?5($>8!4`^F@%yj?|BXTT7VM)jT?3xt}un*g`CPjPUj#q^~dIAJ#qVTTT0qi6an*d5t2$KuiHRkD7)!^s+-duMnm& zx9?mRFxPf+lDiN$*xoy9B`barAk5{gd{??CDY0Y^;N2@va^Ja;pZiv4#gh|^DO!z- zLA7GuqN<=$h+Y$+&eAKM{_H)jb`iepo~-j)I};J;_QbmU?vWG^sigo_+n^OSG#J!MdboMQX!>^-v4C5OST5Y}<9bFMQTFul8SkV%}Y)G}?N&7@q}#_{Q)qD@_x zRokU4wTbp5MS`MvLqwZ?>2D7<33ryNzamv=K>he7dqDlDB1j;hexmcLj=XsutU+hx zWmV*Z^0F%Pce|`g;I+G~D$9TCvMP}`e=@5ouhex_RemWiE1Z{mGAogPpO;n1<>9XJ zi_7wUT~{^xhbZ{zZmY^_ZvwA{b=pCu3%@S8hXCr(?yJV~AM>*kc*h>A%J8KF|AKcK3E>Z}%?p{=9y#-yghQmdorsGtWGIW_O+k`Df)f zLiGmDuZn)XZGIipVBq}bs4wm^cy@kUl(Qn#81?E8Pfy=AzZvA(IM8QCW3nQV9gO*qr0N%mUEtK^*`h5O;q1`stz`<*N)rLM5vs_ds@^Os*kczTTV$?$Y zj<)x+=?TwRTZX=SF@GOFTpmI(WkcyPu)cGBQN6qJ8&aPT_S{x! zbvGi_$VIAcj@RKx&XTzGxF_dVBtL>?d}#01zol zVkwu9FZWU1*YZ~i$1u+*r#c{ulDTC%GFKgCr8Mk{Jj?R)`6}B<3ZFU4^Lq)^wo?O< z4JW@{$~eW-Pso<`*X8*)2#x7x1z_@u{Cfok0Pk=bs%o%8M(Hwe?()=|8d2y|0*upx zMc-bT--{D^#!cgv@p98oFkY~Z8tCQM^IgIn^do{B06A9Y-ytwS8r)XOxY@T8+%j}= ztBxv$+dM|Xy=6`Q=p@{OQZ)G9#fY`}UvR>+G@^O<;N<={;ozizZYKCYyB!^UGrt=P zfbq{%X{+20VC0GH2I&@x%(dTERS|#U4PPC2hQM7rjkJdJGaotlCcEquT0q-dB)VoS(^FSu;QxhevJop8>Aq9pD#nH?EG;*yqAAmxJWl^VRstAMysvQcW^?j9e|Xgoxt8NTlb^`MkQh?IE!pto3q<1v~; zl`&}tC6iY1LH>V*(KJ3ggh(sK&c9EXL&Fl5P1u3H{Ve|p7C@tnhxHImq>S#*Rb^B^6yLBT z=H|&k!h0AQ1C@-zGmT23FY?E6{7!igMJKE9=pY3GkYy=yXbO@9=AQ{ zaJal~5mju@FG}7k`}h1Ne2cFQ4;==k$X{kQ#dx)VDl+ob3N8aTSkUy=#p#0j`FxeH zC6Y~s3m9}8ozy)A)nzr00Wk3rH$tLtR%AwV zD*EiFq43RsTFks+3SY&ELUkDf`9vX!FlQOu?1&d;xZ2JN^9Frk7TpfN&*BbvomPv@ z7jU?}7N6H@vw3a7pa&jG!kn}h5$0V9gt@)E&Yc)9TA06)NUag(4H{CvrzQ2j7v@$m zN)xTFlu4+GPOZ*|T*xCr^(cu>{f0Jl%Eo`szWgZH3gx{Go6R-*^LtaN2vmWy%1D@` zAwa5|9LR6ZaaIi15^cX>ekLT%C~l$)?A8LKl?U??*E!D;z9a&FpNzsDX$aT`gTVJd z8;|Di=T63`m_X?N6E{HPWJrXz=ZusuM2O3c~R1emrTa}e*{w;|elsvDM=&6XTSwrBYFN*p1i?MGC9ceoa65kc|OZu zx6@dZzl?+1UN5wYcfv-7%^ju&e&5DGSW&LGQ!C2nHAFt6CGu5>^5z(oD`TE_Ra%tC z0dd*yDjtzYsS#z9=oJ0-fY%=Ic!D;I#pm)l+;)fCVz=0RLB9>HJ+QYpD@i9aBBps7 z%n4bsbxrdDd7a^%tZ6QQ6eg@`eq<+WFh&F3jKTQ#qP#ms!@ZThm=c6(P+ZB0^e$*_~l;aO2kmWzMFzB8Zq1pWD1hRZC2ExknmvOQj z)lm5@EtRiAmVb$nnaFaIR~wg^E6MR^BAw8dQ~5a*{o8-9;~JyfQ}btYe4p=)ZAmrx z;!TbO5Aj~}3G+Fgzx#V*J5pN<^G@5)GaMiI-q?=RkAcK!zi85Y3wHxvhXujuRD*_4 zZM`+zI>=SuX0-pF^iJ}QFDvn>X_FKwJ?M<~p%cPPSY}LL$iejM9YQW)KHW?Xrf0(X zaT%_7fO@xVsEVd{3|WL#TBsE0jkZsjKY#_(oM*R`X+fh+WWwlG*!`VDD9JU2wP@Uv zd0kM?E}@OWE*dRzA8#ks0_$&tsSGzja=V5`XXrnR9_bp|nj)N}0Oh-Ss&BB#>!3%F zWSeeL=YwAvF!R9f%zaOi!6EGj_H4e^4=R{82&@jz-~?B;G}8yHOGnl0p)q_rc?{)f zzBN4td0kfb2kq-Jcm-KM)S_nlTqcKuKKkS{zbyS{%F_DCvewHP+AIvj2sFgBerGFn z$Kh_enaJ9}AJ9jx&;T6(l9l~IJ%By#P)`;>BW3;cxPxEDMPKP2f+XyrxKStnfO=jZ zIxbA6pJ+zyuQw`r7o$%Y)cl4}?E5j2hhn*g)vw~&6p7Tt`%B;%#cD{Q8-3=+5S*NU zsNwZydJw|vm2tdY@^5)BZVjDF z5eCtt5<7hI^(GeKKDwDqHfR@mV_;}73!s_o5xvRC2SNHm3F{<==n2LU;hYToWSI@h zd;4cGLI%<~0iLnaiMrOhqdK~OQ0RJou7;np>46A8^LA-JZk(`73htCF&-&OCJJd%1 znX&u;ya}VK$mrF*2%JI*O9CP_`H}TVjeay1 zg!=GI6$IraO4|6h#zpseLhZTeSP$H|=50S3hhf`gtjy9-u%+Af)LSoL@N5pXdoa`p zZO_>}U;R6q@B5>1fVNvZT6FV+q1Gw<-9H*fXuri^Vi6iS9_sodVG`F2WjjLj2W<6! z)L~FvOeUH^R}m?1jd6%X6G>d|pOVXsdLIrw%L&Dr`I+xi&cp_$kWA#fz8b4qdYq1g zU#gLcm+^E4=3$Y!V=gAtz#-OKS0 z?KW1xPB9o(0dE58vLD!X-mRl~v_pW$@PRGeqB0~pF)!4Z7v^9dQHshaic3a?9znWV zyk^(_swlf4v_@ExXn^i|10>S4EmKuyZeR6+liwoCl;Vgt;^_=D?R|+eil*VD<=Np- zC!YUNBbeXQgAgbD;cl%HeqSc;|Eg-2r>QIIbqH)nbx1W!*N&*V$9P2?JX2+rTx9xB zN$4RyOCCcp9WCiG$bxF_(JqMFQ)yL85>?z^Ro`KfDLB(y->ZqXN zOnGQTEq=@%;~2sxOVmSq*cc)R>%}p|op?-b3~?KDj*B5~!I)8!e-$4S4X4CA0ZA6A zBq3j%y{M%Lb$;`_L=*P>EV}8%&_k*GdZ3Guby_N;@~#9A)@jv}Q0waamwSw@)4DjA zek((Fr1C%QF}6-$#9&zK^o~S-{-rp%dtO8QQ`MGsBvL`s{wl(Qg)!nwhbFX+YWk6NgU`Fbrv+@1JxWuDAxd;Sg^4Tzu+gcL~EWl6WFyjJMx zkc9Bcm!UU=TlYe%VylShAbBMQ(aqRkq(Dbh`toKQ3!$+XJ#+*%n!P=A3nz?;8*vnj zxcimO2LJfk(`y^&^Uq)$&F&NunWgGtR zUe*}=im@^<20z0y)fn`eyE#4j^X|~Mkdq$mSP^O&GY41bF^D-hvR7*ke%||kWe)CS zRu*Rt_|E&Zo1zZ;n03entRnkE^WnxCtR%trpZCe+zeyTGvI!Tsdob7#-H$&169-}X zIW&O_Vu&87-kU{@bw54~C}3#Ze6X~*eASKfJHzLCcw0o>ed$1+voDKiNgxIwgKkmz z8;$%Dy1S|{6V?*bd9B}m)JWb8#zfoy2(8M}&!GU*D884xxT$wIZ;bFZJv+&)@dnkR zBC7zyH>2P(qsNZCb0;T!NOg^K%9CZ(>G9;WiaTgHHLc<|Q5J&JDe`@!g?QDxkScJo5%4fb$krim7B0YkB^BzKf7P{X*0af$ zCZ$$11I9>At=Jv@lv69>H8ZIdp+QQmco%*mn@&YqORLGL6_ZY@Nv)_ZPaz^L#w6-% zOSi;NJ);`fY7m6$E{5(i1>ug1%VP@!d_K4);IX+qZqXMEnyprEz-RGB&E|r!RkK`v zmjhB}icWvfVzc=j9=Fr(GCQ44pAEhU3A&@>RuwGZGJQU$&xOC<^9IZ|5kAKD*gZCH zz;E&T?JjFnY=Dk&SxIKJqkpOv+@6_uMzsIfEOQ5|+uT*0G^uk|D~H|ewcBiFyWa&E zIjmlf+2;_=4xi8J2#Wq_&SY4H$!-nUd{&ReDtfFoj|+b#?r_^Y9kj&Ra-g& zkjvEP_5+P=USOlwW%au~LAx7Lp1RPuo%_ncMB4VaL@vMV?+Sd+c_21V3&2C)Ky0f*bb@WZ$ z9)F+}VUx|{uv&qRL5I~2*H8j*MaAp$+W-x7z~zY^c&*^ks+oyzVWI3*vl~V0W$lk} zlN0mE+X@7u-=Lu*2Hw%9?|>1BWz%WV^!B(D5Y29B^+4w=6nL#5BQxQWd}wg>*&Q<- zB7D#ax?%}9yztGo(`&U`ZQfwO<8oUAj%dZ!X^&PlIYfu(H2d5(uib3(*@JEoB+%vc zidK)q>2{;F6|);g#osrUa4lVarwxBc=ynEdqQmS032=iYhVKdiYn0;!#&143=Lasy z#K?bL!QiCxrXPD*>}au=6z~DU=wF@!M!Rk z@D1eJYXc5?;i)6whbx43m)Gow=FOZ2t4%U#-jvzqtU%)VylCxB5eMSB7qsu}a#8wa z4Z7{#fC#2KDB3)b?AY#w=>cbdFyOU%qB-wQ12dT9&Q~<&4zz%q44g~E7L9gU6N+R| zWVI^^rEH*G=$C$x3{#Q?q3q4mI+{TCL=Y-xz-@(FKvpp8pb|Dm&|?i+9Cj-fAlYJO z23&S9=2o}UW3vU!5VW{`V2+$VpU>`az^COir!|ab-CR(@WqMtpuy(J-Z}r>YAD7ka z3)tLtr{64Eyyn^CK*py$vu_t?N<6t2?d(@@yUCwq;6is5J!-eWNJGWQV|7* z6tv8A`;`qW2f%np7DHN(7qAbS!Q?sJ78|%~xa0yiUHn1t zUm`G+cF|x;APDulf)4Qf4hN{C=n*{u2nt-H&u)pr(l>Hhmc(UUX{2oQ@{2gZ7{WLJF`pA{YyZyliH;x#1Pv zX1F;WHGfp_NL7B^E%Bi z4wxTczQcyEd^iGjXf#K6e6sNI_ixMKEDy1 zfm<|NtY+c?fG7bG6xjwc?{R{evIj*pxa(XwfXqrVt(B--%Y@S+Q?up zLHNK8_$+=13hfXM`a#IP>xA*dNVm>lokfR5Rx;3RpUVyLkj3M+IXqquScHJf3DJhv z6AY4_6^XjQxtT3?Kipw=1YLd*E{HT8W>}Rs0I`hS?zBXKo13{zD2ZV8SuA)3HkZu| zo&&ZNqBr31figQ~Ass#&Z|V}x?3H9R$)pIvVKcgKF6`9I9xrUwEItQB6gHeE!s~}+ zc|BfmRuF_ncTArPsul1bFxV(MGG!2XxGKw)j?@m0PLF2?{&Cr zfK$iih1p+~coUCpegq~gz z%oA94@N7<-Q$(ju7B`G8vh9Od5|hto4cY=;ht1)H+9PnXVzXFXc9$EJ8kvt2G?eyh zSxKh0q3&zpY$VCd+0`O#(f&h7xXvZ(9E4p#NMhm=;o`6jwu&Ab9Cv{Ew^@DQ{^S*9 zxm>n@#qAARAnJyjmuA?i27E!gIViduPBZxP#p4P#!X^xkK+J9sR-Xl&1KzbcZDzj( z?$=`n7sT5fh`W+ZDLaHDQ%ak)&)zF&2M00`T8V%b9E8~1;Af$d3mi1L-DYsbeybvs zzJSZ>_4}+Y*wVoTJCDb2!72$>!zl*LnAET}o{06x3q5>3m(A}1y#$@~*n&1c9W zoDihLKLJp$fYa)Q8|)A{LTu!M2t$+)>|mD=um=4iY%XE*1xJoSyUTBe{R^BO!4^51 z_tLb5oC&Aw34l>`!ew|{5aLh~wtseuFW?LW?LI59ow9xL7eC@+q@v& z(Zws^gdocdyLT`RPAd!qW&-@R-3zBYV1a#ppaI0yjS4n^BS<`@bncjBMzjNt8_+F3 z!D$HW$KXs596H2+VD-U)27*9Pi`i!j01EQif!PkRvCkWH+8y|;7`BeEk#qp9190@= zw8_D5&=qvSNsYtdCx?4DF1El1-3Ers>4kWN3VxGJ>yw>w;%N~vc_eTg^lL%eE*48y zJLS+Iel`2R6hKlC*iOUC3lZ#a&?=gPF1u)srvEqxjvW))_^}@Ad{%gnl z@o!(Q9rIs1=1=&B;o33(wPXHk$Ncz3@3mw8z_nw3`u&KqS-W=3f9;t6+A;sNWBzN$ z{046pt{wAVJLbQ3%zy2e-<0I-!nI?5&8rLbnBR^T?wcy`;}cx#n5%Oe0$;Uih(=s^ zCzRwy?IdK*SlAGq+&}fX3{p@+z6z+`Ed@37sjK1UO-U!TP(0oxr5K>oUwO|K#L&gL zDUf-$I2Rz`zXRbKXK^m>T$~HtsuVww+mv9{KKB*)Gnd?1T8e*>TCuOxwB6q2l<6m#=LxVqic1jIQDY$E~32}LoGkLg;{`9X?KdZrSl(^INvjBfKBX;2H(^P7yxogfHz}ZZ~{C?}S?zaF&bK?t9*Z z<{zF~8-03zq)vnP@%)52_!msRc0I~jlh+uXob;kUd(C=yN-`9&{iNF|UjdB{OxW~L zW21+jiJR=``5qNb(B1=wo1-s#RJ6svveBk9>D7hbsi{c~+{V99Eif^;0t1uGnet-u z=yQKg{e%<#p?V;40czaosZ)i^bhCQj>gKSrt{zW>w`hL$dp^{*{0 zlAd46*imw0ML)jz0W|3Jl>S1?11hZ$zL~{0J%D1jkf`C(;)jb4K0EaTUU1SwNEf&+ zOf45~q?=XzO&6z*;hhIi>BXtH>41)C6ZQ*t>4UDjH1$plDqNo0fd$1&Z=f!{u7s=g z09t$fQ#lzTHJr)7gVt^>Yk)GV7xqET+SW{CN5Rx>qq4P4 zJpRh9I&-bU#eB_!1byKo`LH$6z|xl>%}r~^Qk_v&ykW|egK zbUV2kdOMH_uB?&z@7)q0=a%N8$B_~t&@HM2pyqW8UlRHsgcjLm62p~oE7d~v?p&`h z*XY^GdWG`@F9kgqBp;xDs$~j1|Was*!oD);kij6m8EDRXe8=h$xH@bBpRBZH0 zV<>zZL61TB*8gWM-+KQX$F~j!WFwg$4W30GZCAJ+^54<4BZhcr`$CscK{peU7XOTn zwlAEm1Mqr>!kdJb^#J;JEPR~>(D2|j10I<4c>n~)m*D%qj`Ci}Z^_B|DoMq@?V0mh zbDy&u`IM%nCO6$j@QmUJPR`P|OW}(t+|MjW_S0h!j{G-{BOm?D=3~%DJ`poenS~K9 zscJe`4{>RQs)VH-GM2Df@JwBgQmXfiwXh%0b;iR;i5c4HxvQ-b7dl8oKn(toqi`nA z^~7Liw14N~R=Qw2v|!uZh37b^e?!2gf4d-?%Fdu#;2#w*BF0MD9KPKll9!9G5C3Nk zRjoskz%%8cX&S?0$X-XcsC0^M=vjCxCrreoQ~VbZ^NGC+dkOh;GZFKNhtQWd7EWRT zG*bJUfz-CqM?sO=W56HmpaXCA~c{*0f3@E73oR?O_ly{W?MMj-#h z!%NZqi9P#kq91Q6d|ddDUb{+?FX(1Mk`E7|!FNt*#sZM!4dStxeT1KA0J22@0Hua0 z6;PdzM@d0&&*_ zWNMy?DqNzjaHzaO)30n+#umSl!X>rUlCG&}t+^0q+Gosu3d|j|b7L?aMoiJ8GR7E)o7qqeseDY^7RMRHB)t@P1DCk$Nbdr*+B>2ZV!kvw9x2KRY}q4TFHF zkVA;&XtF8%3Od*-+<+a5xX@Ou!+nG^^iagU|M)A~(mFhj1t4c(7lL~#cF=s}1xu>YoY23>xWf;(y#+9AULYqAa1e-@qJDO{5i9@h{O(rBv6 zw@{Bt|5;TX`a{N{eTRx!&A#8agjxEc7V|}y%)|ex0^q+zJ z5XFDfz|*LUJf~UYKQw-tOu&Chi==!{Uq|>#D&OdLZ6;uq@9Sk=)c>9JIdy-RG67$} zV`?)2|0T;M<9$wI%#>Zk)p?({DZ$Y9J}P1Q{mv@o&A%HfWp8+XHh+-~x(t{Aa{2-1d?S0#u zQVttST@`qyN*!67@9ywSo;S&ZC~Ip$4?@;fA;|g9I8eYr^H{%&8IbmEu zjx3EdaS}RA_i)ublM+5Y4V6aH3)EQV2UseB!$k8Q2(RX!)eva{Jq96CAdW~69Imus zPQv=Z4C~_q|D}huyQr6$btpEbg(n=T%5Q?+MmFYNncC|mc(5^@gJE|yZad0q7N#?Q zsx~_}4rK4>@VKh{{=>$*r{`iY?C$AZATzsrdRdk<#<(-GKvMtGEvgQ{FXGrL(5V+P z;LCu=!Y`Th&%c$Pd1&#pMqSbEkB46qn*2eDB}v)Yh-!(S1tIgxVXrB1rx(!yOGd+J z$`j%BDMB}DJo2`Jj)9cQw)A);2QcbYvvt+z9TUR$@Ip^|gtgCv?-2UZE$Nw42J$`s zK*OF5m$7}}Q0M{SUb-(i4}!j{CWRkk`)UHFB{K8k5R0yOF8o9_VJtl=iJS)(gkKe& zqMOyox#oaPCH&Yw(AQJLBUn%prIUAsB{V1r>;T|IVR$wRpuuyg9-btJFpYUUA6GHj zM#?I^3FWxx`VMO_LIyGSDtM+bwBHtoLn-`!GrRf9M!mee|V6 zYyD@@n&sj1obVS-N0q!6=w?FRzy3g5D#9)ufOa#&Hw$S;D9um+KAjPMlm*BeG$|YT zXNJ2ACI$ctCCqScCP)Q?l7@jF88I+Jf0bzZY}NGRnm*jkXvZyK^;Et$M#F$@z2I4l zZPER6!WTGhgaocIY&Z>$8OGg;xFKP>a8j=$tj#w-6bIu;3ctnzX#_-eRgvanIfo`Fg+i7ulx6!N47B7Wg6fR(1 zDlrE+i8xEOP$RW}IXpT;|5GeW)J%DY?VcW|Lu2HTOJ;aE0q)}A~0l$bZt;rPD z!-b|e4_Z5%(z5?xd~1d#qt;3*c*ySn_2!qgr7@C*BHYqBSGtHA2y~VIQ{v zFD-%YHI*6ho-{awTnpa_-@v+xNVibjPm6{>5NaQT7Dd&_Y0Z@=oYpj;n~9v)K8B{Q z3um(c8nJa=rP%gl#Fmty>VAxM>Q0Q1f!x~QnJTyVAPwz%vfR!Ok;hO3cMv@W5!~yK zX$9AItkQyO(x)rnNp$gMW>N7HJn5KLf+sTTQ1%5^HiWm-|Sq%^|8U`BB1)ixIFzA=?Vt#-O zt_XiW8k`8f{kT^6yBx2y@VC)lg(Cc48q`50D|=S6vI#V5nuE$GrIk?!mDz{GFW2Db z9ydOy+$ocO_Hp*0at16Imn?e@kEuPVd=fgxl`MN4V@65eRlFwKM#%xNNatN4p~-($ znhgF8s<>%MLcKEkL?Q|M$}HOD?{M1`{&ygYk(n^b1)_eD;31AIN7Hjqy{F%5iuQjI zZilAy+ME%6_#8g!JO_m%n}zSxb!#2t##uOjdZXyYi{XEGzUB#I`{9TIvi9Sk#25an zIDz~`hbd^0t+*Ed{(ka;=PC{@o5)z4Jt7@iCKluzTz;z|8aeuws?q!Uz3?OK>QAsT z!9RwOYL6Tya9{IA3GX zS2kClr4{|ge*~S46k?=I@GTNJC`8`DHBb+yUeSYS(SiIlB>udn3;y$Q{<{;#`tV@f zFc<3;eaZilKoiEsKv+%K2;^ox>1!u+%n~iK@ECSlbPL7i^$m)42=z}=vWQ)1d-5`G z_VhHVlC%`AJad)OmlrR6xTq7?4OQ%+_8pxu5(d)O0iLnahknf{8VVbDGK3;~ed!^H z2Q#14daw>BD=mCUJlHgYnwzn*Rov6;3ZJ0S(|EDRq!m(LY;3cl*|oV@c!=xK^d5N` zx?6#nGE*u}vYxCA7LGmHL_Dt6lRXBV<2>0|jNSj{$x0{*(f4F3Z9ZdZ^RbpTlso%C zqK(F#J=~!vJC!?xwtO1a{{-Ym8JhzVI0U^7#G>z0xxewuJ&ZSHC*$CJ&Z6q6d^PxP zZfX8tT{cvg@3S3{D2uE z1K82?nPx12CZz82Z*l&qkLpLJtX$;eD^AfavA0l$@i4GT5qPFrrI80C>Cqc*F0yd^ za(NKNF1<<*LVV&(wD?!XCq_I0nKx!QX(stP|WJlTZ0d zj}cnz|B~49dvF;loya?mj$97PNh`{sKGM74Pa*}B<-U1P(S+gr{eP1EhweLirQF`V zcrf`L{i$Zt-P~Qc!Gfl@E>0KJFZ6EsQ^#KSfO-E%d#%(7#MG+9`nUX;-;u1Ivdu-( z>RH=NzRu&900E4I=wX?&izRRnBK&zC|Ms88^7D8c2>vXO|2TpCOpJl3^3!2qXNksH zkr{N6(jq+?Pu0@+Dh%?2G7^>BO-zx>oDO=sXo+x+o?W%2++P&qi7h?%CtCDQk(&k3 zn8v9wG$`lHDy>l74Mi3@r9*T@J|(nfkVtm_D6kTu_> zm`>B0pa>B8hPekCcS})%_X{7(^Sh)WWJ}2nz+mJRL4wx{U&O&;lZo!?Ta;=1a^dS3 zkZLrsEZI+Mov!J$j$3L0crqlv3X{1hM)S%X!2H0L*2Si(1;3#UH;0gje|8hfDa-3E z%*2QpSgPp^e{duxS*np;io2oDZ!Q{*;8zcBwKSq)tya<_5^FX0w065W{dA?{x+HH4 z;96;-g5vzHIH}votV)qO9N=+(CXu?sG6zmbL(ry+OF=p7l8WAmxB;*Y;~KOWfhb@}f~+b_eHbvdt2kKM$N-%#CxwrqwiPrbHzbt&oU1GuTNBW=4- z>rG&N*6h#kt^4l5A(Qz5X#m=C@#Fq64!W+7gCjv#-ap3M)7~){LLJqvxj~=3nJ}4g53Qc;hC@uQ(2gT!B@n8O9ym1{Q zFZpvk54~~y6gOOt29*|9r!3goe{?L^>sag>VqKG8(foT0cAJbwC4(|Tn#(F_C^@^J zD`z+|LtCyZP9SF^WE2{nA%ZH~Fuwg6V-X9)fsh@n>x{98jfsIUBF3km(FS7|^hkYH zOX{nzTSH^CPIUSgEjm{G7blDXYS6r8P86StjYM_AThO-p`!wj40b(+65*B|T@WhkF z_hmteB}>p_xBF~CAC&WkTGSRX2o;!YP}Iz03CM*WGohS{8;V0iAzvF*oP~nA4xafk`NBdF*jLd6?<&@7cc4c_9j3$+2S}|)ba?5s+9szLa%n;3Q#;h?gc_(&?9t*5m_1NE530ci+;5M=1sayS(zX4oT+y&L?yiSK7*9i;Q zJyKcidab9egaUPmrgY%~H|EU5Q%Z^NpuD4iep)@PRi@~5L$w~L2n0F8pa!Q4ie?6& zN}D?Y0VsrSvDn61)*lT z6DrL@JuZ(OmK6-zEx;5HE=;P_Id>+WRVqA}cv1&aDq*FfW9z21?`*eIm9T;!FgCL@ z0M*u@E}=IFl4gdIJyx$v^gCR>XgWerr^gFP0-b&+y9ue#>`=)N{&EGaKB&m-aR;Ha z(D{vxqSMFBhO%=B83ZM~neyOCWKvT)D+$^Bv9fbnNfu>C>0cCdFhRXeH&j)E8nRA1 z6kme6wxC8JSfD}B?uDwKKN}Y%CK{II zHH%Pe73A7$CZ!2I0Si?8HG}v%p+LOoj;8;-@(2_uO*}2y^4YYzlFdrAtBV;5M?uwK zhg@(D#10D6i+~-JG!xBcw;SpgJ3UrVDk!WPh0^r6Sf>}NoOz%EBor%#x_G!+DHIw7 z##=;O1x>1kWpesGKC>?v2*R3dE+`NSRUm;VjzAE~DY|S?s51z4+7eIbaHDbQ`^}k& zCzOg|4gY#tTN6;(2elmiW(O|X2(`X(Rn4H)3za5=Hk-_kOsMT;##J9ZR?!C)6D=+W zAn6N2AzVk$;=^^=n?^VH-1i!n>46G#4yy}FQ$tZjpVwn{L#;rt6;3Fs7&ObZ=8{Yr zB&D#DO=|W`gRCYuMQWh2U8lA0=%&hGLFH#CmuL2hU^Ad1CD=8a4d@B>z~K)-HO;)) zz!WHh2Zd^(KD$eVQh`t`+v0NhM85@=2E`h!N?l(&m=j!J z)C%Q?JzfhGyn|AFUZ{KNfNIWeRl726HmD*7mBWJ$a}X*Z2E0(FQ}lqB#A53}Ij8qQ zk-?L5e&Di_%xpz{kAVLI*P3W%qG27ZpcS%q*`c^JuC@#nUZIRA6bke~JvJzX?e#%L zT&S4#1bEu*ch4SPwWZhL_WS){O`xDMcrmXP>NJXekJ)2(Sv|;{H?2|hQQz#9TuU#m z@n(fWuuziJ3vMj{#Xc=w8&qj_xm+myVJIGzwF{hC^8_=a{f|wvW;qki8FWfz!M{H} z?K-Hj4(b59Za0H!i%>HTBn+yuxuLo(6s(U{Y@G)7KIn5og-J00ctJr*2sof-uHSBl z%5(OB%a5{O#I?{n7p&ki!6rhy0iM8Yw?aiq5sJ;({5B_)kG1*T0kn8}S<`4QpMz z?g<1%sBRBd6u4xEI*>Ly6c6`Xz+bt&pi5BqHkx&FK?&E=;j{!nxB`Bt(rq)lTvjNO zYr(_0e0Dnmm!c?L;>q1Uw0Y#TAy82>@yywqp&so1NSV;Z?y^JTRi~_c0bJkGE;`*o ztJUTb%`m+W!Yc@1vEo1lNjG?5qJ5bVADe;UR!}6cv{nz4i^O$8>^=_^4faJLw%WvH zLZMZti3r8Up|~s*?gmmpaZ3+`kx(enX^)OO4VAdFl1xgf*o!7Gafv3x#;`3K)Hu=^ z*KoCqZVyDQP`(~i1bi4&afd?W4yavhSE__tU}0WwFyIrtW~h`7Ws7arASjmTvv@o{ zIS@8E9RV0nOe+P$kCvkb zXiQe*y3Q^O<>R0Pv<0ew23%l@Z59WVC3k}Vh8oj82!_DagFJyvfeO-YKkQRnQ0Nvi z>3X1eJ#>Yl_f{xIYNk~#F?XyQC4xG+31rmaW>qc;;XF!3RWNLc7KJ<=mb8;97uz6X zaKP_@m4Gzb!QYuh7nCIRnVmr(icfZQF4*}%$O5rG6w3BN=~|~lgrd@JvlS!&Di@p0 zP>)!u7A{&HRyWicwffy61TH=oE@TfH4SEO#fYE+znhpsQgp%n{As&KZpBJix!{$fXttFWj zdBz}fR+3r0*jEqh>g?*aQ7Yzk`z=6nhXeLoz#ThmTOgVR` z1Sk%nu@?d@2X=3EcMzg^yvJAEnmaLXG!;@4i=@rT>R1wr1r;4LC0P{$cR=c?&c1dU za_ux^DQCKN8q#mj&=CXg=+k$=h-;@Iu``%!ry3xAh%FgZF z@cg7C$>si$($F1VF}DfY)j#rFhJIx-srDR6&J?RXNB)YdJ+~`m(HSTNw|Z_fG|zgx z1%K%v%DyAgvH2&E)wm>W%vg`V%lJ`&E`HB=&#c_~kmakyh8o+CJNUnkpapkCZcUjB z;H$fAXp8C$iqs0iU{Eyf5)`B<&c#C%6PV)Mzu|UIaW3?wi^;u-Khz<~^xne1NLin^ z@h_6!{2ly@B;||ZUnEP@I{XVhUL?ij@Y3Oo}` z@GPWABzVM{A1fR*in}K*Y-lX=hdB z5y>0Xh;AV{MAFWpJtHCuboySW?VE*vHyt_q92Clq_MF0Mo>#wy7XC9 z|Ax{BuQbY1YO7)1NE2S@t(}Cw@htkvAMpw|(oaa1IB^%>PPm(HCaDW=JR98`h?H_H zga(ZaJv1JSOy$R(MWaSV9u>yXNc{H0+VxMw>SD6@t;(&8x__P4=a`18#N(P!ST+WEBe?CpeF=T$K6Rk-T#3&gAIUM_`pE6+cIU)wKjK#KX!(ZObE13rp!$sRgWF zr<;iJcguGx7EHt4M9{Y<$_kFF6gP0KJt=E=|77OUKP267jp27 zil$(TWm0|Tz{YZM0D1&MthRKEiZc8n_W@esLKljF-*L@lJ0i6uOy+_|q3u5pSc2_`r@jqbsNp8K0E^waz-gl90dp zR-{=2e#r$Q(`{8sh&m9;bVR7%N-*6R9pK6c^>{|8d%e5L&VQp3>g}{dYJ~brc%~8R zvF*xV<&QE#-A_17k3ppRyEv)-@&bE}O<%x>K%4ZRDZ)32Srl`fZE^GI9l49z%c2b~ zl4ZcXoHJ7m#b*x;V~rsqFdC_qer(#!klm~p3q1?BSw5T7!%#`Kwe8U<(r5Ue8t6Wk+wPD{Sz&fVPQMh5>o8wwY;7Y*Plm;hyT!k8$kNpx^o;ds)h@{FA5B(asQ@9-?swfTFCG@9SC>nJ9EiyVo z|5Lnx)sIBR z3AjCmFxik7(=8a5fBX_6>9v@?8u|G`2chVeqmhQZu$Uf@OtFk^A-Vv4P}zw{E4DM) z^#61s@|5sC4WVrMYoH}3BSZPcmr(W_Q!;fxZ#xwU3)}TUZ|G6}a0;F_efurVSXhGN zFEm&T$Gq#ykF%XMbof$-4w7})dphztCtRY3B@nIxo8I3Mj6@voEehRtqmsa8iAA)2>pNu!L?V zY=(}g2UpUCg&;EVj&A2{zN8P^StApF$}&NtCkfvvzGMw2d_@mS+{Va{XSjr&bTdH> zI!3+KO4{mykh(3uYeCZR*ouMagv?b-I-%>EK2}F(PI5qXKH&hVX!G1R8?vyPwVu{n zE0+Jp^y*c{RYx1p@>s3`;;2YnmCfXnuu_IQ0>hoRt1EK#@p))g+}v{8zL~@Gwh|lP5%b)+y;$i=PC&*@RW9!>J{g z_n0WbL&nTgO-feR;>)gRFSV;MVjN7Qqd!F*m0l=njR_XE*xN<#N6#(s+kfycS*_U4E<-( z_ex5drUV}lCqFPIacTH!FU+x+z@!C(YY0~OFrfwlgCgz z)>wKB;<1KtC>xbDptNoX$7&tD0*YBg>kOW?n5(WOUh7_f30SS0$DprhU7vX+)0*&a z1A<0c_pVIjHzat_x*>0rn40pRaK>6!OHPce!W{XcWLOh^Cr7l7O6#m@-S8L;O1}s@ zT}bOp@+z+8h}u!an+Gk>gVj5lO44Br-J;So>i)H)0VkyJl#r{Hc52hjM95Qk#Q$D0 zodwXy;TtmQ^o-J>9o?eh0KZ7Iv5v{sjw^6-7PPo^iMq}2hVe0w$IkGKlE(q-($UX< zl#Jo}OG7B)cq=^w5l0(O#E~!Bgt~MqX{)C9)W=pjdNz1=;b+Kxrh;^o)32!@?~A3wvLL%4fIxA9 zH;WqU3S(IejupltUMq}`LCe((W6dF@R!-Q1S)|x@?a958rjKSoLL=At?$WhMPgrs$ zFX)Oo-cwpC@F~>fWFvQ(uYvA5cUWxDUV1wNf2-($=*#=L3skcz+vweUOGjtuKZ|z1 zuk=1nXid*Z{6#0ag{WQY6m;ADrG+|ud+PNq8dkcB?WM(DvQSL&VSD2#%VU-UNNLFuzB1L zkHzc57ycow4g3uFP{sEAqAW12*7SkKtRtR+mXs7jlVZ^O6MiXOMOD;p zeCbfOug2bvj4_THk8FnxW*_^6%0g0*_B^3V%+Q{}Xc!pU(-JSJ?_AKfCxNgH(4Zp_ zOeuD@UNve6vKzjLvQP=V8$J!9LhptRkR|7+`p*=D@hIas;)SwjHLXx~2lP~Tp@c@w zCYJVW!rxQPI6!|=CiM^r9>StMGfHdOO>njNMhQ@6PR|J=wmov3u$DC;N8>Z_SdQGF4sK)Q~ESNIu%{_EiC$BdJMv%$hV~qVLaVTX!md`YVlp^U={%5+fem|&&YE= zl!^v_uq-DdNR6V3RMfn)bPF%cp&nANEf&ztc;+s+Bj`POlbD({ew1f?_gPbC<;|Kj zOOC&pku)ehE2A_c73IA4MmO~EkEJvC_frwKyYwkx13edc5B|#TQc?JbZYCd(Z%9Sr zp3-hCfM%xW@0#yo38eS|bw9^#;O zh;R0mKEq!~MT7R04iPTVLy)ccLg#@_Le=V&0uYv6N<~BWmv+(sDB_->*PnOx zmYk4JW31K1kc=1uOq@O4qG|{_epq$(xGpxo5SB!reZPRGQ%tnxTcvsMO!bq~Q|H%< z-hQO?QZ0U+Jc#1&-=+s4`>Ms&wfm}h@V**HOv^R_ddoMFsw4*PKspC8Ska|3rQZnq zXd=a!{Ttnig(D63Q#AfMlykQ9I#f7eP#qSY7%TFo^PF}7eqVJo<9ulc7JwM;+BGy< z!c0~RedVw;VZpGFQG)Qk9xus#gH{(y-x6BWIRk32p`t$C358}IUzT9oG8-mfk8o!&*eem@{*C)XitS{)2pmgOMY7o;|THj7z`UBz6PJ%vJv78XrVVM_)U>O zQ;;0twxwHC^P$MXr5eCW*a;6FQFb3B1cfZZZV#lxg|vJQ$SCW94158LgZ=f%_ zWBOc3x8=84y^yNdX@}f(wjg8#bvw+W6SDJJA$w%NFJ%~$l2u!RBAj4Y{6Q;ZoAo;( zd9+`IjA&jDq`rnkUQ)7ZDF<4Txg98LRN3vBiRVUH-xiqBhEZj;OpsE|8FWCJTgZ-W z^FrEKNb(D*+;EmbNU3W@kP}QvBI$wTVh$Vha6ng=*X3~reUQ2qGD|ukU9uf*89S#* zbmaFNAr-C7BRU|#vf1l~Y}Pij+Zym$Jr=VVbVCk2H%gxkc@!aA-*V2BczQ2MM{7zp zGf9NDW?WexlQ#&YgA8*xWtk1A4JoVrkmJqaglx``W)#m1sUAsENVnSw+0C4=Tu21% zaY7PSyH&IVM2i*D9eZ$oz9!K%Mblp8Oje%*@`pMDPA6~&GAO(4kOL7PI^pcPe#nKY z=C4jRf8LbY7Dxk@Xl9bU)QJvFENh)=fh@#b-Dqt&YLaPn2dqv=jV}7UkZ{xw8BBv# z$b4pj+^as(BBi?=d1e-*yG(reC8eQzbQg+nlN0mF%%(X@BBYw^)k%n^X0J9SUYHvx zS<&ohN`BeB*Oc#?@?BFtt%vykK=~H#n=0@Z!I#33x$eb^l$w$kryVK&R;nTDx3sL> z=$PgB(y~<<`q#Ck8~0>O9J_H({+b8()o#yy9$(N#ThZWUWxM#MHBsl~Wmf)9xOlX@ ztSkTcMO3l8EHmX+_#AUk*NR@L@L(akH$?EJE7XwnJ* zPOpjHSW(tva?_eM;AZ`uaQUV<_i^~Zxi}Ywf&bz$igS0v#}380XW?+ZICmKwzZB=D zvTpNHkP$!`<{AwdNv|g<=>_O(zngUqocA-WqVnG9S_YK*b-JC?K6}M`}9gs&epO< zsN}|qekt2vrGrmTxlP!?3|@cHK>o{`DEs2uIn+>%B^6|c!e=#4d{8!?KU@q-Ml}7ljrgZFdi0Z1+9Y zYQ7d)_Ho%WY+pTp6QdK%4Q&M$WzSA-^eRy7*4hPr6o{f}z z)1iF)&GU~F;FS|U4&kYxMcV(~6g&F-JGcyffFUASv5dV`iz)|b)y}e9qi0>dFZ)Wk zNWme(zq7T_JwKE^A)KY3Xl%;;66*A%C}&sMHlbl{N>8!6P_&hAsWU*p2j!}HtJ+#- z$am8j0Q~N>G2Nmr7J`Q+g>5Dg@`p_N&j4F|R@8qY%JFY%fW(7k(+pe^ z+J3NXy--4vAA7fqVycB&`-Pv&avSSEtAVx*YuG%B4wb#e2`^LNhy+lk6nj zqS8U3Zv`-3xf*;DSO-BUb@yF0C3E73SIiK(8C*p$Hbc+H!^(ab-+iwq04{R)gL3MW z2ZSbcOFB4Y^z*Li8EEqhb-GZ7aY6j33P$8YaOVUV$rt8n(xB{m<)Dzq%3f{6UoQ}a zq$XQpJQ=wTJRrejm*Zij43m!+HS zP<@Pyp{Q~mJqA(bhXt)F2VhZg=jsMXV^ua#x#+$c<#4rq1_M2hBNc)j`|q460y621qn(o3$e_XLD!>Fu7T@=@!FobXH|z2pk}J@Oce^bVoNAkuqdnpS$9 zY3$iPO)ClmEVzdLV9`e#Vz;B>KmV8lGqB&*O_K0e?yjHdQ2tH*#oD{;i^<(}VGg~9 zlf`efiG3|SGfn#~+$7*o+)+EdAhhMB8Dov~@7d1faCLnPo=>r}8vQHQ<1*PQk(;yM z(4aU}O4}waH16gsZjVhuHio~@EhNm^mL_>KrZ4tpltECg(lcu$Uyso(6dQ+HRIwxX z*zkqxIeW|0uRLqkp}K2c%A~?GO78Gy*!6PTR7LBp<)e^yKa3(v9{OT`SuOs)ng|OW zNMS8L~xJE^zsB}5_HF{J+gEe#undh}SXylp59)anr znMX-cK$AbACF^%n`MZWYlJkvVM{;}b^5=y;3^ovXns!kws>~@2ex0Oe$k6W;{h?3! zhn(;iHG)Lj3v>%!a|-l9;t!F(+0L3pzbg}$o(&P=N_iO?)MW)M8#YP^ge2ttfXT%` z?sy05vL4BY5i*FUM#3}7GQi8`=&ZrzW{#gM52CoFXX!zROBz*I>yk#+)d{F*)=+p5 zQ=$J%k)&m9H_{8{L05q|#W+5FAVB>r{(6r!ww$QUa00opz&~H!B)O8{S(E zXGNb;<4N+moo*pa{;V$g@xJl`oxTV4`exi;K9=pP5s3Y=K+tGPqMbgh{5f7YPmcq$KHE@Nl|5e<5n>QnHu5*(o8o|;?Ow|bOtbyWXvcc9n}#P1QcBn1`!-U zrn{%%4j=+zVnGB0Z9sxy%?hS91BTT#AgJrEVfFjnTUA}Rs;j%<_5FX}^ZXz7*_~~w z>fC$MJ@=e*&%GC9swR~o_DfrG&g6!dGXQF&VzY1GxwK(O#ZK_S7C{eT zAmtM?QrK+A6Q>D^ycaagc5K)7xORHI9!;^yqSvS6onEiWS(_g2NUYDdX+sWQv~mDB z9BwEkB;0U=7**O;RXxPF%T)cWc1Be{y`A3s%0dVW8?wCH5!HyybiQKfKwnvLyN)Ea zGT*Xg_3y;?(1TVo@3T!PCVp`B5&56it#=iY?>^hqO56zS^<@{DoBp#RntSEOQFgJj zwxO_@_(VHn*@XtvQrWMXh9PqvS^Xc{tA$Ma7!LZ)+aLZ~`RBBTBJrhm#&Qg;tH|gJ0u9?zBG zp`F2|hLsg!WBcsdxjqACW~$-ca&bfZ>{{4d**`kBeOe3GZ%7Ul@K1eBP*naPT{X^X zf_Qo7RKipK-mo#-O!oWV8@5RwQ1Ph>%Cda#a!)wzsCcj8%2M-pskQGl_{5^`c|h4+ zF8B~W$S>S;(*4<07q9rJAtHX?UXEFKC}L3f8x$t--LeUZ?0z#=kZS*NL!($!(m|s@ z@zVDlXjmeZbI%F$(l;M$s1-{(kWQa8^fCjx;**9ok|P7`{7)O^QLuMEZ5S=_z0rBO zJ7GJuPv@c7fCj)%pEcC$0Sxs0#f(0-L{j*VhFOAiDc>sV?13+E#@A*1W7gTF9ms?) z8*bAB7&^PztTX2B@$A(kj$bT%T0pwLTbHgaWc$OHbbm&ws(Jt{Ex3H{(!L8W?%!8px~RQ8QS}@iKXw zwS1{0Mhe7f#mrioj=6z~0Ini|8ydP5^sU8V7}Q(}we*35*sh45Sav>b*l04xqgCEy z(!<~iDR%teJ7$a7n^TA!Y`I%w%eGc)MzMagOqO@bTrupxeW^V5y0{xs&E~XTpdj*; z3=XHY!V()Qi2I6}(`wUBCe{qtWFt(=6Z*-!tNv&~?A>Fd$w}Q~Q^bSC*?rh(x{0(8 zOV1_|p3uZ0-kYI}IMzoe3+B+SHVWg|E#ZW;G;&(PfA);k3Q|c4CwyiJ=k<;ak;?hU zvKv=IO8Uf3)&nq0IImA^lr)$JV3x3?gji0BU7rDPu~cpL?S*|~3-#X`?ANtvvN()$ zS)JGVX;z1x%phJ~!dsnDg%ph}`WM7IgVBMrHb$&dnoy0-&3qfo=+u@NC%hn8-!j%s zJ4Pjok)-*GJT6*Y7Nf(c+on-xFW8Vt9p|BKlBwft&c@2vsm0=}CD}c+#R~ghD$#pr z&zG=?zVu<*rqSGNqNG>o=lc68%l?$PxrNgNb8|x(A_!#9?+xJlO}j|-vbvGd@4T!G zlgzI&NA&h4b-`(|e-+{Q1hjLhsSnjwIR~aoDN`5Nn|xX6J@a*|k zQ&>+1?8I>FgCgN%4YumOI*X~hJUI=kGdN;dsqA$%D>W)1&J@p(#D9#EICfjpNa* z$A(Euc>rpq+R_i963jblWxaw_|K6`y56ybIlLu6Ly6=Wq5B<03sTcYAhS(r!D-Xcz zAyBKkG3L+%Fnf65#+XNXng>vNNKOAs>{dY!VK8!w)BNO^!vf*?b7H3o()+q*Y1GZk z^(XvehTi+7q<(H}ogRRpcmBLsf9XdafT0I~59Yj4bd-EM|mE))Dsoo0gRsSRS+ zGTsD_lsc7x&MY>#1n)E(y!E6+1Dk;qAlk4-AMo0jjW3_SjwWb zS)(DIj5c|{kNFxGQ{?`XCBB?zAXGGNxOjv)zuq%6C;SE!th@v6*JHE}My zq)9>Co}qzT%tWxsD1u`*!QZB3kkj3h*2i$JUGGku$PHm#SA{IzhUaRMwA~P^mrmhZ zql%O5XO}1F5Ezo$YPqV!#mA1#qN)NAS@>bLpXFwwMhvc zn%ShAJ29JtqK*}#V%({ES&(Dyp!qwMmHsS8bx~S`=VW|TYM$otF&Ls`T zYir>kZDJ^y_d^|j3Z51@jZhTk<4!u4Q22lxzBV?r?0MR((GczGWMYVRP~`rUAsVWn zLK$Xmh}by-C7t!tPlwLgW!x6;G#RT4C-qOn{#_v2J7>2-jS4E2GCZtM^WCvI&BYO& zvsIQ&&jrfcB{T4gW-5FjX%c^|ZmCHowNxp5C%d>rOM{_di9b^EX;omV# zpX^LNeyR4ge{oMV{l_n6pkJ5ebIS*@p9HBz7mg)NKKFhUJ40&2KW0?7=t9o?IA+%aFn@F2 zt55cqtULhoHvuqke{7W=fc5b88^t}y;r}*kPPWu^>?t{TP_?h71F_zEP}TKrK@J~? z*`!fCl-l864#sNqPzE;dQ`pRNNS;FYCmPSlj!(2Hgq}7bTuF{3Fb$|?_i~CxmPsUn zcbb7=iOp`G#l8?0$W5p-Ngdw=n@O(fVvO!0Sb^qK3|X*cbBg&pRr&|A%qfhxN7BSG zH;zZlFr{pfY2&68=a;c1t%SX-1-dd}A+e!#rKZvCKNTsw+C?|7h%a@KQw`f`J)v$?T$lJDK&TM|dDTMjF!We^l0qBX7s?>$9*`@xw%o)9dn>y*o*p&r>mDKHu znP(aXC}(t(qiG<5S*7gfSo7wBo%TF5`zp`S47laL$7%|MY6>@u%=>hHscDLNtO`eJ zUX}w5cG_~6uJYv4qN`B_f7kP$o#|#||FKUky%aS5)j8KNOr6m@-bE;yMcJ;1TbUag zTEu5dbGYa70{8_jfAQ;tQWM`QYV*63k6Xtb(mMVz zEzoa<4_P^^3B>loc$M^!5khS0O0eyCjOHCTV_MquGp`60A@Y`a7H^YlgG)(t&j<~v7mo8eZf;`ljcU_wcJs$?~QjUrE##LuK)txDsy65pE<(})?SG?QV? zZ62>|DQ_B^TNa<3C)xEnX8f!H_`f9?CTW!)!bdFzxORKn-#1PNTP-x^ENCoz+>M9n^;J_3?>>aats`MA`IjvA3&G02@cVzo8 zi3g#3sk)P@&>EW*;~|*3YC4vGs`e()UCs zXl}!adI};>lVT9b`skXo#HYHkKSaW@+8s?-y99*N_IXJGYW64kSjpEUysU~$_j_lrJsWl%LNnmkFS>KC*YDN<# zbjc=P&n6X)4DAtTwnVRiudblH=!W8zLqvuUrQURucb}Y1C;&+Ab-|{my*RSl8^pkn`Hg; z7u&utg#Kd1;X~;!R$w=b{$gpN;rP|5mIZhx(}&Djo*AC#hYCsGA@MdHCr|{~#7}?0J<4*-h5kEPl|tYuJLV$WOB{3I zCaZ?V=Sg$8ZrCvwr8jap!a+%?@&_Y8|q5~U^F7tBDHqeIzPj8SSn_(qh? ztMm|w)j*6LBC&>VV*2)n#$!c_ogtyMR3ulA=v$&^NVKkwKU0+A8c?kLFV*qWrCr=} z*)NKZhDGsarPI?Ayk1@i+C~8p!G>lhv&v7w-u> zAtOUzIt`)zPA~q6COTC`J7X|qoON*%k2ZBWIGyexBXJQV$C^me{(0 zg?plXt!mn-q&iX;u;l(|4B4}EcriJg*mINQ=bDq(4z_OE)mN(KA2U_*Tgc=~;}_}y zr~o;3PLN6DdzW|ZS5Jw*CyEm-@-Z5k)Xp{mU@M_~6B?DIOE{k1?#oWmn2jd+z00#G z-s%Kms7|;R?=TRRoB=!1_WDS?V>2W;L{f;HPi zljYs8+W5WMCcyvH#vhTM(MbY{$I{*06OGzb*Qs$)koIvejWgvuncF-(*?0Haa0v&a zHAtkZHD*t^e~EV-uj#EUS6mZcDYmrA@={q{VCC9itUjE< z>Mt$nMdu@*$NFc%mNK~~Pny;+e$lXEObi&AlxAn_{}5cn{&>8aEA_DhO#o|&IC>?^ z97`yS!#@2HpC{@IxolCV59f7;BThSx6!my~9*FtqE39l8sFxY(8|1DVWoXoB|Nig!LrE+a zm&jMM0h0v`92{D<^2M*Tpx69pV;PdrH zJ`c%ReQn0*J5)xqVaeP6Ol5xbC`3`W^}+r|RX!xM(xA%Ls4eLAdxKt|$LDjoap0>X z;_}+P9#$OVqFPw+j_?H=d|)$iUvOjqE*U zHBPDAWn(#?A*dd@w7<~ZxCg=8owsZ19)!d5uxNK|aoiHdW)-jIi(D8ox)J**&`&zpX;()L0w`vFJC0c|jk&h($FOF5ss#700f^ zdsHSLg$loa6e>(hY{V_H95{o#N#>+ci^DEkz~c+~Lpb-?<%B+mBREGo81V#gAhRPB zq*`2W$@dXc;^%WH@h38o&l;3?Plgh2GBEglBZH4wi9b~NdsIryxcBc2E&fsFp1~MH zi-(i7ahO*BE%6ERuZjPjZxyin_3F61lg3m-zm;(+>cMd0wEJAL?%@0)^3Q)iHHg~m zDHu;^iMvC~w7DOQ%|YS46rHQFPNTxRO=rqq6i~8n8b4Ett$P?%|3`ylju<6#?5h6{ zRWwJT`hOg)>R;J|nIKN}FPGVDRQ*68h=bJq;fOn8bGZW1fHUf_yFwASKk5tHJT6lA zJ5)d4M^yE(bgFVWV|g)c$j7x*_FdQY&|C7GdoW90sBJL2oJylSZDb!p z2JNz0zs;KWE2iAlWZw;Oxg5*PK^ZqtA@yX68}Dror4Jk=*0a7n=WX}ysh>i7fPz1# z-F?!$K5Fe2rZYxz%6+xWNP}{Jeh+dXizx##_C;!n=2iM%BsYOI@{#w&hYP}L3ddgn ztAPwRf{>r@k3TMKl38uI|5XDUl?Kx}DzHC{)7B-4uH1cRR~tBerIFLeuGY3RtC?D7 zi7X2@$J6`nXdEnjPU+I>6h5JdWQl|Ko62F<1Mz=iW5tnJE;&q4ko!F?hflY}u^$6_ zd1LW&xJ_6ZLnj(RxWz2;-PZW&MI?LmGvtlxj_C zSJ1w)NG*zYuwlyRVKqf3ZjY}Nu=9d8p(Zcp^G&ei#nruxT#5EN+T=x+ybc-vn1PUo z^n^UfV_`^nZPpQ@hAWRf9zRofjkc1*4BV#h`(?Qacy$Y(h;I}2Q!sNYuq*>&>yz=p z!gmxRhqf(GgXy*H1#)l+5Tw=k;v*S+-Q4SFw9R6!ZIC=$XI`y4dJ1yxK=xLw?1=#) z5KdJry|b%IH@xFih2E3p+!g;?6fj-THdI~l@og|&>D8O*3O8?eBL_DCWaBQ9C(qR@ zH(6Vbb^;bJ?``xhBQibQ3|uqxWO%}Eo@RQHTN}1h2x2?#IZMi9qF?--XK}}aKblC9e?M0$l`0G)b@y|I!B0EQGKYBZjx!821K#Y-`0Hfnz47v9wW?V-n{R=c zg_HXjrw~sc+0^Nl8q6&KJE5ev`8%M>jNTX2Iw-4=WOsD+RfRcNcUWQFP5d`(C*AsY z;vPY|oquj%`}bzB{OVe%c49q`a!x;C;Cu0HW#%hpt;nm^IydR}etfd@D32FgH+zVC zqDf6c9}(!-p4ymljs!l!^iR7Erg%tHdI~uiEo4H(kB_Z^uC!cnPV>NlKDH8ZG%K0 z2G`(7#&43U zP6C4InSh>Heg^-97T5_@WO^!IzT(;zy?blz4l!w0#g3l&EKE8Y?1q`NBCmsf@>RTT zXLzEFQML!pvXHIU{AB=#K$QuoiU2(dTDa+G5ZG+eioDirE>5zoc_N-|74pIsiN~dN zJpWihDxKnz8hhX)M z%L@}XhyZIRC0^5aLD!)xG%@Z_=;v{i>F1wlSd-U^66p|+o@^(4&)A$UMgNZCl4W>) zgLj7ES=lymLrbx+uYRqwRbQ?VHa>p@3$VF}n^V7`TG{QyzO|~c-`BIge+kD4t_ilR zoQ0r?of3~)vY1I_9(aOmyP~v`T--UaSsG4JQwIz)mqWNGTA%pE<`C>@bCedR8oMOE zY$lE2J~f)lPZde<&B>DBpJ*MBD=nHN*qK?ED_oR!1&k`>nP`Z1f_P_;#LL!1QK498 zki^Y=BTN#teT|X`lIhRKx$`En;7f&IF@L8r3w37PiDwxeB+?{DUPWT5UGKWKoELe& zju0cmicE$kq%yzAmWYvvX6%Il+Lf0 z!7&=f+?M!NTmriFxBP0Fd~pWIuKL6badp4!3K&#DDD%<^D9(gLu!PHL;A8`LFE(=b z*aNWfY4$QpoyWRemfO0CZ)7n3byLRIT%KqkrC-2-+en}9~8^E+j5)dV~Qy0e*p zl^Gz+1UxOPps9sjmj==0Ma9(+iN1{ER*k)NrBC!PG;;UYO~BGLdviK#*ox9|76N<=F|LoZo=2xU1|5&N&CTxj^wrT6P?JN=O$W>^9Y}J!w4B`nB(djRS=NM)mqhQ!iFfc&sMwrK2`+(E&yi z7m}r7aB?cbQJ3EqcKdubTntVNFYP{$Kj4W(L$;{fMYb-EFSh3X#-Y?*&IP%+Qq7b@ zZzvqPX@K6q-7vst;6gy0H*iyc_MbCwuPA*Vi;wf5%s$S*ZI;<*X5e1PF(y7zI)5%b zCa8}iyq8_6Kh1z(_U)eo*c5BZ-LKLhY5ilHqo2-Dz|98kZZvZD*bUq}Y4+wcaQ!aR zqR~tPXC27YmE(8$KxRY?{HCsr=pUHf2K}U9V0NxI zQ%?Q!4AgVoiGS;7m2yzW>-4b>`&LH#_ zPH)ubjRu2(XgGvbsE9j+d1CMU+br(fUlIGvcxUlmkehATw^LZOVW584uY)A!uN}b^ ze=IhzXc5rIn=PL()l-OHDsa934^k0VD}6VHtyRE z%C3QZ(;#{c{AY#+zG-0ZUL$*tecY>uE)VIObKIXXJIA;ePA5k$N@OH#Mh!9>`*3ci zz>l!mJj6aX;cn)0cuZ0>qfI_>i&F+=HyJL4ixPRH1W*YMab{&QP%=OvvW4``kghCmM0M!a$yH)*(=%%e zkpFY$>RhG&V=!03e>FyOGv_a+qlcO-p_J?kCvvQhM-(JFR;nI6^HxrxU^$k@ugn0W zrc3ZrF!S;R_3Y%1l{(9X`sj93bxQe*p3na_^7+{9mU_H)9=o++$4uN6VNo8Y->h(NL7M4lmqlpG!}$dnu+(i4?$6HoC20sf=j#~fxgxPEq;%MtYZgFe)(h8&KNJ8X-(0ormPX=g<^@(x9>l$cQ{=bk0)${-U4E`tZgg>{J?(Jd=iRzLky_`2s zp8GW-Jh8ht721$kBS^pT0%XVSu>%$gY@A%#IS2SqKIcFWferOisp-e;=2qRu@}XGw zCjKh*?Nqsb7qD+(Is`oqA?dVuN_2(uP{`ay{P$ zTgMGyO;mqe=fyTz_UeK)f3^yVq6ZUkX|s;Ybf5M{ z?uph?s%R_bI_U}SrE$^x8-?q91M&f2Z5~QoBuX#vuwZz9}|j-g+$Ik~$dy z+RzVGovuT)+IfB{x%KhH?2Hy_r2a^uTq6q+o_i90m&%5F=jA=S$fj;Kc%j;9D_QSvc(XHfDho=U98?K7+iRmU&m zn_xPA4o)l7>-ZQX&H2L!j-*!iFX8yjA;EOqoSM{*T?wlw#d)SOL0R6r-6yT&A2St; z+sPeIL-R8Mm@(XB1Zaj2Wn-v^pf>6$%s2NY$240M0_rfN8S>e?<1Ck_=h8VzVu9m zfuB0`QO5xXi#oXc!%K=rsXTg~YN6_b{f|mPMslMIdY`WpWPR6If5B-CIyyS}L8F#h z?YnJf39%kX+$IioX3xW&s~|8?ZUgEz=wLz+#42a@r0GRQ7;@hysBE0z%$_t2q(St) zZa=3n*60ZGlvra=m-YP%ftQZO#~x~oOY=CV-MZoPY-61&?V=2>FUa6}d)+n(oW9sZ zw*Dh=Df##-Oy0O0x)_-S?SXbZ^g3BSF0;WpRY87@Dj#km26}jv2>(nhq&=L$_Nrs+ zulnFzahohd({^X(Zg&aUEjCW1?KuIG@wp@4!!|8 z{gKCaCQ7Ig-@B6u2`W| z#xkFG`*y?dNsiaQ!2_(p#NAbQ#lSfBTaJr1B6@F^Lm+?oHopq8Ih?CmtF{Mc=Ro3!|nJa9jWQGVX@n& z4KqO!Z*^%dP2x59Xmt8>`C#j57d4K~W1yGF26}9dJ3P`e6iwA*Vg`CQ_e3K>9XVgK zYbeOPhn_4*y?Sw@O_cU=-y6;Jw~7q;HrckCRQ=?}(So#}hgGlea7thBk6CEAA3H*) zH15y?7y_g3%sOMc^0?+QDf*XA`t06-Hl+KfT+m(U(V&dOsukX8v%`eX7p=z))C^jk z8hY{2HK%PDN~(WM6mv@qtvs^&s@rr;v1Oa5dhvYJa8hOSN3KgEF3{6-E{_$R@i^_S zk!jMr|J3Bm8oeh9GiVbzRts7whec1ra-?z=7rh2eyvoCFCn%dp+cjPgQRC6;zVOrh z{*2+OQvQ$JctJshGR)kKXM(;@&y>53OyMHR^)gfROIxYmXEdJIOn8PilVd@#M#V;M z1NQUX>l>eMCcH)Aa;zv$%7E*1Q{&KP!e0G>G16K83>rFW#D=d+QC{XO`zq z$_AeO$L`{fR?%>?J+~F6I<4yM3{ulP-Z8bWu5rB}b@FnZvux4fZLR{c`=zZe$;!W@ zcA`BfX$Lv*CfaHl8dwa<+LT2{gN{ zFPU7is*wD5exsiZTi95n$I)PgW~V9V=%5>1$=eGXKa@uE-O1$LxuFG_xM{abI-7sT z$fIAYn6;8-QrOsvIND2=);9+9PzJPbG($VT@tjBYh|AKBRMls= zOLB=}f3;AYQ!s&KYVCvJDw|f7VEbHQy=0=1O{FZ^>eLQ9c)B2iBFlSmXiZxzxqIlSw zy(Xhk5zV(GKDJS*$zaz@enlS)=~Vj;ZPaL2Uqg!-KE=xvHGX6t^N9vaIX%h2lU_c( z5_I=vSAq(>LsJIJYF*QKW;3zMmpxPRp@PbA86H;k(7MJan~60(mMJkk(B=yx3>Uqp zcHY~#NJu?$Z{r$44EVC=PJT!?qPMX_eDWeRF->D8`C7W)o7MBAdlq;Iz@{6iTbcmN8>z={ zZhS#{R7W)3Nc|N5gswq~kNW7St>!i{7n(H6bOz+mUDV>f92gau0Lz=F%N}fO-%>mX zRaH;&=K5@J0;cv!H%^O3a`ZXS1o$W>LKiubYP?G-@^hNOeDc=Z6Kx>j7fTHcA%P1{ zD<+o58&^qPxi95ahkrcY*hlKgKV}|vS3kMziN-1ufVZ9ifZGhH!S1$S{R& z9$%K0vG7kaDHuWGJG6KlixeHnHT^dC5-0ifW@IA8D$87QKHh0&gv}*iKGoPL&QjV? z{qbx0HrT{5*>4=L=ljzW2TR+SW6yl@Jd};mQI?suS&N?Z-uE3c9htG^fjx*V*I(Fp zlJqD~f-bgv$Zw1-@9^tQ5A*PNdgR!Wf1>eN)v$9(-RrnC>BuvUi!HfhkRkGyTb^wk zn z8?Cf*l*wiYu!093rA!L3sg4^F^ER*ZiYE`z4~C%>qb!5Lhj;qHkow`(#*iRhpfsY6 zhI9Ew*l4I4VjK;=A^Oo^j=3D6n!f|0%u-#`3P_o(sWAE$8R%QUqh=T+buxXNAGPp} z#*3jSV!ts>HMfQ^uf@wdfKMZjjBU~8E(|g6f;#_|3~rZbWSaDu;lLs zmb_(T2^XO5lUZVLqe?$&EEB~aAk%ES@gG%Dk>TM+J+!}Zi6|Bf&A#BYI|F9>CyoCV z#NwgZy{1>vFln!8U+5m}ECKJu_cD}jpBdv{Gcx|zeWooc8h&|V%B`?}r!#UT8T&=! z1Zm7rPU_4^oxwfP#-gh1AIV0l@0X491!*GpsWD5oUqOj)jv?2Zf0Eh3=X5kF9v#`a zsqq|BckU~b)>TJ_xpVV|vN2=o&K)uVmfbn`H;u1JF`g>al|`f`{s}u5Cq@oF&^Utg ztiCsCQ$>h+bENO~Mh96}J-@ptN-*ziGlRt*0OUYKrdzZ1%I{7je{GfYlQT9TZ$64ALg(954>S5U z1BPW7=l+EpNwRB`n~-yfF!QvIWLxXxWtQBw;3L_!dF7ouYAU!TQH^i-#b!C|DWOK= z!S`_`^L$EEF_(K{1{)t1FDC2OPAEw2mXc#dDaL(ov>cNZt>oKe?hTpH{>fIU zb#0SR3euf?11#lqTl?f#>0bUZ3kmKVMh16Crc3|~cRxR72KrdXeqZ37e)y&C z>6F|jh%JWe$6vGITqA7!eK*YLOMQWXLD#C(1z~gaWnaqt9r|EeHseGfW#UUQ8^eh7 zDEO&FI(hsI!_$U$^6<3pxXmWQ3%IvDx#2{T*w@ImeCIg0{U${=XARe<{l^ZM)BZl% zw9&7!4bK?5{iHz@L3ObFkNm1xoSx)k&q4!xZZWclbFSve>@hf35A{#p(42JturbFO zBhM)qt(98Al^3I zsEYHuFf@AlvcBW+@PmsCQ_%|Xv)T5HPPDuu(U--_cv9$i1d!h|4bqI*9+3jS# zbAQ#UH8ep@e6>G0d*Z98wLHh`o0EZ=r_@~rHg!wdn*ht6Quh(b_a*zuylPWV$inF+A$DE&4nc~xuil9NpnUtLYW)IOP;bXAT%t4x4p zEzmPnwY91w&mh&43~tf`JGS={mjXxrI<|Vsv@CXdA>Kh){9;1=*~v%6dz3a*H|Z|E z4Q8g7oopN%3z;Z1Gi{E&oB%R^r&5LjZk{roqeSc2UPn**1kfuo9Y#;-GIIC%$!gN$ zX(WI?=Sk2xNuQi-bdp|CNKtDfd30q5iGQN8S0&)0JOp$+#YjNAQM@%sTHJhHY#>IbN_XmvF8ImJj*JM_s{eDD+;4NajuG+mHE)4ADb z`u-9K<@595xn7l(fZ7ZK&i#`FOwB{U>I?#!vJlWX_sLe|@(Z!F`DrTsc$TC5=qm-otL1j#JAU_N;$&j2Pkv0cT5c~&9lkBuMG)qvS)b#wsec*UO5L(J z`KTZy(!l1`oPu(z`qkCC@I<(hNvv7z1=U8KJxl&lfBnl?$~InH#~z-1nwA%HOs%=~ zT`DBgufxeA`<5jqOE2=h!~Bi6a1S(H$1i66Iuy#`$=`B*)u|A&R>BjU;;vVJ(~NGp z!b^R-ax3h}^TUQ#OaqqgCat7b>aFC=L~;OGxw&x^{pFWV7{N21#xJe-CoFzBVT3V$ z>21;n(`_|=={6#J?)fAWU^#xdC7HaYr8sbeY5X$41WfId#V^Bh^m&E}u&gF}W~&BU z74?KdQg_Gv^7O49G|{xC&0W33i-9B`z+6bVmc`nihj-ezXDiqp)+QUonMxa~#h=c% z!7TnIBaEZxJSGb*fH6m(S$wPcJC(GF2GTMjm^;yxK7v^-6JiVi?kCR4a4{d@(bqZp z+eR22{nd~azx>wz+S~gVa>Ge>*K!jOEM)Fls_dTR5R@F#-c<`?$TD7*P5PGHJzPbO z+?OmSlkZE;wB$A?xNGaaWIm6pfz;i(u9Dnwe{!^R;z$l%=5e*)o@lzHN^6Ef?6n({ z-w09}_pQ<6nxzoSwDK_Oy>)84@@EQK?9MS zdHf7Rb)!rq=ZE;-5rU$y?+NI8AIjdIACzTSuidAr1_YVM_cR!z(QD1E(@)AxK*{=*>U z-;7e`Jj$PCDeKeMWY5!(@wt;WlwqYb*@?7$1|mB7nPe-{Bgp#!_{y*IH0XTgS1{W2hsSOoWilu6 z@{lv*{1c7Is&`R9;sxuA$%1#1k4V4J&ei$M;3}Ue$!leNYw|)5|0J{hw#5E!a;7!+ z4stlLEa)CwI?pC`JC(zNdcc;>+>^{6N+<;#QxCkCoLW%SpZ}C}Z!ynG_Kw*+RdR68 zN%v=05wZWNV%NC6IJZ>jFB9Ps$8BPU8?4MR(ad@0A zkImzE;5=iOHxLZkqJc;lhn_o~ZjUWU4!*IuI8`MqSRzT#xOuyZjNm z(;W)oa%@l3>vEDklNJ=Gb{}5xu3*jGwbxJldsm!g&C|D+Y_lyH+~04r<6zr4a|T*_ z`0bvsH-dAR9d3uq8+8Xf{!q~72s#2@r_CKo?d!b!ngWa8We*2!Uc1-nak(6xu+JR` zIQ`C`&Es(UeXi8{>z3^nDgq%dXbE{dju37f_2Kr4a3Bnly#co^>P>C)FW)Ix^K=*> zfe}k=`8p)~<}J6Aw!@aUCm+7IqO2n7a{Gc#zr*ixyIihd0OvH?BH($z84lY$sUvGQ zPb;YKIs*Y*eHsddgHD$tV)uESk*Ezvs)TX-X)v{J)8gHN)$VqBd|{ma3Tj=U5N<9H zI0BAf&=C!~ZC<}WwPysVsL0tLHle#$I4W{>7a(;L1d5FTE z?3WkxtH3~TMqObWJ#g1$3q*pUpw|}h;ppA4BOD_3IuK>GFPT(O5%mT9wvgZ9wLxWF zP*|5Ygp+#xfe5Zkfr`hMtK-WZ4Z9#UC7P%2_TO%>k&Av<(bnR^X!h70xVRe@p>W=I}R5PcziA|=x{q7o~YgKjRb8rM~GnDbV}_WzW;uqBIJajh`JnT%LOGs zqx5jnsLc^|I0Io)J$FIz_RkjlRj}siJt&Vd^p>;d?r$xykv7AYpJWL~ePM?;f|w)_ za)lis+}MDlk=+gu7{LuyDHtl~CB{|61{3D-c*3~cAsmc&aleDxZg+;9E*sfX2@&oc zxL}iD@wy%UP{b1eDR!6)o8OD?U>uM`U*vXXUq;inQ zS83yhS_Dk+|@0F1Od~hngCH|^8?U63`WYJkjoDB4S55&lFa49#bn;F zOCDzHT>F;_6%MGW!viCU;TR0l*Uk`H^0}N)Xg@h}xL%#b@^tMY!%N87dAnw#?Bf#B zrabBl0B=~m5YFhfMg4w<-D`(fZ7!HZGQB-1#TZ*~ae>9>@OmIUw?7C8x^cJ`f^JX1 z;q*FeZg0Sw!f@OrSlo6GjDFAq-F3Snc8A}IDLib)slPs_-G-C2mhUe~+4k<-C|Gm$ z90_~b2(#wtHb}N%wxbhSAB!FLphP|HkS7c#0|~I*?}3Bib_K#-r&Atc7R&-++?V3Q zbO5tw5Bi*Lx8LEh47{LXJql1}DVl^Ef>= zr_UDPh{@MC8)$jEwtH51$yXE z>ZAs)I2HTb@=FTJZLonMf5_v7_k(d4#_SsnMxa{$2rMClRFax9dvU!mH;<(3`T-Qm zt)Wr<*LfIcS0^@0KEhx>dy{n^Zf;(IQ`~I6D6GHDABLkB4Fq8oeL=V19l$I>_RU=e z%SaWq!tM!#oPL`-YP0)YeoS0Gw>#>J25mt<%r4nIX+eqNJO+bsdIAx6I$bcvI6~+7Hh$cdxKB%yZ1wEt}KERFnReXgFYprw(tx=XXUSkpLz(mkZuP z#DRnVVFn*x3^RyB_#95?pdDzr?3fRtewWkcjW{9@VGw)22dD$iiaSnhHh5eCc$V~* zlb|Pv$t>!DBaL?5itlL2-EBxV9C^BhbVn@lkUKA1ZXN7&SGsLi%uM@`5pU4x_1VHW zt=!|X!*>kYgOrs)Kg>%2bj`(FZSlA~aNS{Y5Xrb~PR!^q6H!yAinY<_;H3)b$2aZE0jZk;Em7e3EJVsQCHg;4n*MuMD5Nf zSs!0qssv?uI`xq12Ubk5=IIm%hCHxhCdY@c9*p%A62}D}xQ5Y?Lz$Od(Ll%#V+UqHm{C|0d)OTb z!JoJLaS}iE`|X1 zU_(@9hrMvSLvZc`QCKTG#vHstMbi*cMxzdY7>3LS+Z=^B9f&Al24LWDr%YWVoMCw` zgUQMzsIY$68ITcV%ZBBa3OAaEpJ(?W#)A9pMG)n; zBk|<+hY>)hwk;$WW?@gr9tdM};b>VGb?Om7BEobdE=J-zfIc6fd^JdtA!79gLP1jV%g#w~#M!Xj0*d>Jf*9f>D+OP)wDjGQn+7Kan* z!;lRLs{qU*feVQw56gIXykS4WQ|LMpraoj6kza(hiz0m-4f+Eq1a9zgbNA}Tq)oG< z`MT}CdvWg-4-tP$XppVasf;XVz=K?@8{WFxj%gX8V9@RM0$HSx!hROq(u@?1mZ=2Y z_y&PIvgNAJZH*6VAd&rX)n#(03Lui#pCk4_=Zt+Z#U z$brvDaRv2j0}eNhMm%t55K-FU_96~*!tzH+VAgWQT2vsH4A%q{VhFkX4#Xrb7}#hC zIXUPu=P_1zTyD6{$csgM$dtp&@gO0FtYr`|5l3p;OR)a=IzD*qVu#h4yHCYcTo>No z8n(~h<$^IlY~!NI5k!>E2<{n1 zzEE|0BjK>$9r1hpI4d3IB7l?~Zf**DVUL_4KV1CA#YipY>6T0xvBYl8(<@TVGze=~ zyrTPHq&#e1E(n8>4Y_bnR0Iwp&TO{_yjWmCF5io_7e7K;Ik<$e4A8Zt2<#;cID%;8 zu0lwtx-sZN4nEsy&PCT4pqaKH1c--j%uNS3!%FmDj9Cn(-vO@% z;Q{i@PB%hqgbNYa4P;4eHboHTi3{=x6^*pL(OMik#R0{I~e z1x-de5>XeHrR+8Ys?HEdg6GEO;VNmty@EA&&+yF-77%-$Ug_G{g@ZlzN|%otQivXC zR>g))jK>8rz(2J4kuZg);b!?7me+v!4Tn5PHDa=MIou(*lhJ?=i6lh6eh;!MYhf7W zsVkaWE(T{Wj~*JPt~?xzs#BLG4^=F=VTCgc7aWG!kEz>+K?9TK^&`83oFG!&{*?XM z1y{ozfz1mec7n4NK``P)fQE%7OcJr@+57ED>*D8iI5;(ZKcy6TM;?*L{SBv>L5B{2oZBNFgqbR+TN zaw7GH*~{sHeS{Wc@=8J15N+A8_~$`T9Rg>d28gxnaBOL&4#_tf_0YxUd_A%;Wy#Ya zb`+8xHQ>m>J4Br4#N-=|B63pGYcNp=v=CIojdVqkxdjz)Q9~g+ zG6_C)y}@n^V2*(Qh*{g^gwtq)!;GjBOV=R;H(bnU$ngA z&nwGed5A*&2Qr5~MUirXVZm}cmz=l2 zZvbPWaN}X|;6lRIg}fd&GR0Wo^Vm}eX%K(q={llhLUVVkBbqz*j)>0#PkeUO^w?GFdy6APkX7j!V-?O=Xih*mBFtFnr*HI%30euFHm1K;(h_SpEwj z=EwR=1bJ>pG$Lz&9DyN1LG=<6TRtq=A~A=&J&h8a2XIQK|fhMZpbtu9Om@LL^TtOteY!Z#F;)p$+$cM`E=)MNL%J#Iu@0p!sl zKI9tV@xq&;X)YpE+>OPA8&R`iLBpm4;IuN5jRRIl$r=@o}QI; zXGhLnLv}e=Pv^68l-JPsj75TExkWzZ!!f{YbNSc9#XG0Gj{{l%Q!V+BDTae4aI zBC#Ho{z|)(o7dnIAQOsww3nu3Vcn6NffJ6UN-t(_jQd~e=_+6DYrj*~XOXqS+}r~4 z>IY69#WW-y^Kgv%i^`mqhagtsVMU&W`Rj-x5i_~`0gMY|DKLj&a)^dhhY`UF%0HZ5 z6p#7kLMcpZD5Hzej65=NEG5FmnbjKxxIcolfrnaeLvg`CwF#5wSUwkTj^*`c3kFEep5gT}cdL+P>@A4O9Clv_b`onX zC{w2OV5mVxIVFDC9CFR6g)Wt&LId>~C~iQVZ2*NzSRM)^fOBC9g3rKVDKG4Uf93T! zk#T@aidA2lxIrozbrH}DTHIHWyIXPqCA8K&oiej;BP=X)*x;}u&O)&i;^GjJH^|#! zY~ZI2Sy{#RMfH>uvzP}}NJx;t!^BDxsvupM{QSt!QO81^!;s5?^*|k#7r~tyet!^7 z3rZDHW?;jr6wTT&H#t|YivOFhSLRn77_p=!U2-lRVe2z>=1`k$h|M-|(kzU9uN{6s zrI#Ojv{nNPlrRoR@4)*($rS7%*1@nyfu(VpWSdsdE!PE+^feBZ@K~CcoqKf zD*WSB_{Xd8&5HkzSK-tBEqO}S_tMJ*z1#YD*_uhizRrtrN z@Q+vFvjeS;SK%wA|HrHFk5}Pm?vglOg-=gbJYI#*>i&;c;UBNUKVF4@yb3>a6TtB* zd}ZIl@hbe|RrtrN@Rh@Y^KA$@UWI?W3jcT&{{Jtl@K5?{Q>l2t%M>KJM`; zCa?Up>GVAJpq9{^3yR5Uo0_JT-B_;ONx+@WPbNHhOE>b*O-(CGCzyUg*6&?a-7-Yq zHNKd#4~U;8bYTBl+46)F#@DXG-&*n_soA*fJ#qc1q}_u}-WE?;TAi@8FR2=GsK5AN zA9BNkO-^yuNo31|O+8zB`{Lc;X=HH8S7qe82b(&#xYvd!qex)=qCsR(*;k!f)~>`Y z1WUV;>7GL+*2-82mE+FUbh=F}@9*QVdj97g`RwaFq*tRhdnwW@2&8r-9~w8wR1Z_lrK zbggZMi$#_eh6C4LIp~V30+-R|e#O0OORd+DDfcC<&1y?eB}=z8b(2Hd1 zeeF#4cOnq0ucheKGqma%CiTDoPv+KA1nOtic2;_Q1plmM(tVWvvY`9g?ey1f`YT0$ zJp^QGAEUq40HNB)>8~L`s`d%`i(PE-B>i>Bi9b8&uiZef_9^j~^zi>$e+4uRabDKfm$XR1< z8cR|SH&sa=(s%6Uj(2e51n$fj{~q@Q@933hO9O*vUNw#W?}|`uI2iWL7#zjHB{&Dz ziPP@rX)!qL(iyd3Ga$BB`fxn56Gz_R;JP3-B<){iA?+?abRxO9Zb~7sy*@7}>`S>G zZ7LM|{7k$0jsE$A{t-{ZpXT&WEBdF9{%LbsD>7{FJa6y+&@XxG+0 z{B`~o?31)R)wD)znT?Qr`#@ZePns49!cw^n+XH7=$l?2z4C2`0GJ&Mm8HxiolGvoW zUj05vn-3F#jAvGOynO%Ak)nlO;jW`Ww_5I$Z;)Mdl+~adcw(NLtl7A0vb0mjWK3tJ zPjXK*Js}Ugv#d7TyFq_n)@{Y8`E#VVIasRs-O1KXyZTBW@sFA4-#(p8zBGQJ9>8Ev zE|RI@@sWiv>z_@#1mR!Vg)qqkl8ylj-e@D7qwE>DZKSluqw;k%}p0-12p14Z=bJV6|!w5MLA)}L>WU8GiehVg#6HfP9} zk8RwAiRZ7o2)z(9n)*qVAmoBAvDN`Vu zn=F&KCmIh_)-7Pyap(DHF}p07gnHEdRl1IAj#*u93^mB&<9n3VnSa9JK-%_L*jv3H zdcqwC++w3aY%!kA^r|>cY`5bbC$`h-+L4L9>pl`U8$`8{Z-a?yd4{NNKSO`#ojJnn zD%zgr?^K4a1xhA2(K6~jG*I^*kD1{jymw^kxJzj3erRY5~dxtaC5U*`Y6 z&d}f5`u!R5t*sx^CXKhYzN0AV+})azN^ercR4t;nww_Xt*Gmg7pLx|(#3Mc7an??y zTAg;b(oU4(Q>@oiAv;5afn?vaP37WEyGZr2x{*@9Gd1Nf4$?k&r%AiYQ`berRd4HG z-PS4fsJAZOOgMwK)s1XDFn?q(Gv@qP#^_YJ9r&X!53TE3AWWoSL&=0Y>O1u|0UOs! zFv4A0RoBo=xPrnBBlA9;U&>vfo1Tfr6{q2J*HH>1$hICUhl-VF8m&d2Gfl24>`6Jo z3t|WpMDwYEnUUE?CyAd_NwA?^G&dEcuxis)+kKSnanIGQu|-Fj&9n`9$ZL4=pPLqS#q!MCDZJXl@)ZPKl$9>hjAm za;i5^sMb7w(fD!PsR9O<;zyF*(bZF>krWA4^$g4#uQ0EQ|Asn|MC!fr9;t?Z%)E&y zHwSu26Zyx&BOAsGqsb+GR=Q2T-+KGwmC}{Q@5Rxr$cw|S?XCx)-baNd*a>F1@t$0% z=E?CqVK;$h(I>L2@5=gYlkenyEB_;{(cwyOjGG5(wWN%=1x{R6iUqPK5@n z94|zAWfO89)G|s?lb7|YqU3(5IE;FqbYtF?=(}) z#`_c%S-;~w3@HRSkbfmM$%Or55siLJi-UH_)`voN~-7;=hhWs@GDx=llOvgDU1hDif-05s4Az-sr( z>-7Kzy_;tygPK2)2i>41KPd!kW}U(A56qXRlrk@K5-NxZ3~I5lt7%0r^`5AIXrc;2LljPH^#UHawp zl@kT&M;?|L*aL^AkC1-jA2WseaZIXw^h%2X!k{1znDs^#q?GSpBbf{wt67iTeHOXJ zo@4c@VI9kTZI}hi@y?(ci^r{OD~Q9CMpV`C^Nld`(R-|M7AzmD*9{h8Wx<*mkSy=U zOjx-#i#n{RS-D2Kn&P6G7MeURy^?#v5i6a&^2#jlQn#N?Wp^tFXq5XtMG}1DOzvd& z+a(35>&{&{T96v~23VGAHUEUky>Tp=eg4Wl|A)Qz4vea3`-V9u2`wkoB=lr~&_Yc} z2)%a*U3v>7Ktf3%p-D{uArK%Tfg!uu>}D4fq@%EkB5*5~8>Lu4Lz#nSUEdTKgTnc zoX+vWjq?<(zSL=@`>c7wZfB$r&-a+Y@jwM6PhLFxCKlEe#a8jC?xMVjt&AogH)XRo zXY|E*393nE0oe+AP}*~93Jxc9t%I|I=k%1q1VQW;kFG~=8D=<*`Hkn~aU>R&5yheL zDD$bjp@vhK(jx1lo5$;>Fk&SBd)AhL0HT9gi88uLB(xzLT)`CJ@4^`xoV04WKTcd7 zuZNRNtiD-vEZ3Qq4o0pn*c>a`WgZHeSRoG@Ax~k$qnxThjpf*J6*t!wcb`DlPvEs0 z6M5-cjd5OC)V$57YTv1g3<6E!8(yLDnofQtG{o73C``P@Lc`FZ^H_vn@c176hIe z?-W)Sr7j>7;kD`r)apu6YpD-RCUEG73!+2Uqbzy~4&$czv2ce~vOzRV(S+D`K?~ci z7YgIVIfL|JJCn#^0%|jGo(gJc$h(C*#kDfI60xfxIgQw~L43r{7^II_V@WBdMHuH{ z5h+qH@WbL5EL>5|Je+3FL(#Z}t3ymPuyEDjVxhgP_}(D8aAk-zD`eB3AEaNodS?(@ zxq6ZC^6z=k9Jx{WlPLBaY~H}Hsx+OW;5;p?NWbTK`RBqbf_PSDqQJ-*$b`a($IGJ!2LHEU zB*5Re%~1XRk0p(J<+ z4d;rbhUlOKRh(YfKo22ziBw8t{Urz~Bg;ViZf*|T>sC%K)K zm93)%)Z}Jikmq(K>uN#Rz+6)4xpl@ac~a%3N0>zB5^=~79%1?pF+iAJ#6Hk3kB>0p zRmV_-2{&$-xEk6eu0g`FlT|%G23vy!=>)8u;?24BAvI9iXKMpcXJ?g~(i^Y<1)UQ^ z(1}oMh5_m1YSymOWg~*$t67`s2{@Emuc`p8LH6$tSGVHX;T_18L#P}hT3-nDT}^AU z*(i8sE$dvV>QEpBoflUEDL79?FVBG5))-N$3o^lgtqDw~rmH&?bqcrU>IpbYSY>Ts zjjZEe-gxiVdkT`KV<>MVKj~~2=|Y( zPVyH+hnbJ&$_20qiAGbeqxFoR*l?KnXf8yh(XjRtdozLgM7-%0i=T52nd@8|NgKl7 zL)u?ehxlrep26L%`$TChHj0Yu9A-6;6@m@H7fbYAFY9bG%u4NTT_G)nwNcDk3{tcP z=$X*RdPS7hgG_)~TVOK9to6gtFa521^aLDcwU)JkH8O2riY5cf8>nH{`K@c?#21ID zm_=LlQ6h&4Xg!DX^q__A#9JST@5($B%sK~oP|SJ>hq8Xq|J*PYv*_B0iM$xJQtAWK zXu{!N6tj8+7&lO=oj6>t-2*5YhgtWTb^x<1!>kp{iDARdF>9b~|60TKm{ol^!z};d z2AFk!m;q+p14{li%<2VV!G}qPaV8mzMKp8xKq9`^Fmd}tYo`El&Tw;d+A51OlhI>z z8k=an6dpPL|HVWQqW<4o3$wtUL4s90FWWYlcdY zt@CU1tv^ejL#7-QzGp;A7vYT?qtfE=BK*ti)J6D}&*a7lrBFhBt2XucgVbsQBLBg8 zT1?T?aS@BHtNer-jE4dup(6kf3L@eN-kbj!{$B!-8zvw^mFuTht~V5n!;l_04=V>S zJDEni|2tAlg8o|J10AbD#fO?G32Q*n0mbwxV zVMIUns?|*p8^&NlO;e~h%{JaNVEmKMOasP0_`sECevb7;Q8+@__?U8bD9uJLhZzq{ z_uOV{BR}DF)vRIWC$4&X5f9I|Iz-{3N*rrA^B<A~dybBAd23dejSU*z(>c>HN* zj4a9GVH91$eK*euDDV61V9(s`)(V1D{s|BXT>GD*vIS-6^v$>elxnr!l`a|VmuTe83B1vAnE!94U%c!UgcppAf0j4? zuduIN}V z=?0{s-ah`qE3x9Sk*HO@ya;_w#M=$Dlau!hbfS<=4q8vM4;K7U<^~96jg8ihe>dPl zuaniQw{#l*+TfHnZSkc^@_|wO5pD9_bNo%;xVX63=xNiYdJg`wYKIWhU=+SWC}Um2 z>Vn#%U=PtLWI!1kSRG=d_(SR}!48%~BsoXHHwa}bXW{QzAf?N}HGvzYwEpQYA z-y1#KqJ`z5>LKCY(O1QqqtM)UtR2GZW9f7J=FdwmNFfTRw8fe(D@bWi6vheYdVIC2 zQYVt5bg19HV{K-6m<>_F`jBdk$71;uI^Jwh8HO-01=RP$S*s%)UQW{T6rOic<x4jqODZckD@7$5}cDLUY?4rs$kHxG=!SZIOjKNnXvQtQ%*|e@~ zTnG7$Yry{{?6Xq{!|aq?nu5vUCF|uxb86}pHm)^* z`?*v8*8SYLs@qBZbT~qO;o*eItz3OM7QA~%J0Q1m%`)k&+=17vOQqAG8g?u9UmyjG zKwA-ENN?pDXR=$l?|p{%$AUhFcGB|R0WQ@&u^&u5*8UaJM?SdYlbB3KD1*kn)vZaKYY-4)cN{C8<_!2RXaKUb0H)3- zaGq*FL{GR5p3x)#Z5x*LZ}C&kl2;%jYRNaeEO}y#e(}UaXtMuY-#AY(R34Vg;LIRZ zvBFq=j0BDa#^P2_%HllC3ap-N9GUfAIWcl9MW5Q*&|E_wD~skvD50mVHhy6w?IgNW zGq;@(K@vJtt3+7x%OzzoKe(Gf7heO2U`nHZ=w(+r5K)E_a<87xL?O2FVUUTOLB{b0 z0X`qi48kp!%ni5QEhj!XmTu&LORkzxE-^_KGIBh+>oO;6S$T28Sh`YTNOFTGxf)}` zrnilyD<$Bbu~y4{g+yH_xsG>ngbZqVaWa-qzlk&2$m~z>X7_!y)yVGW6}z)F37@eV zUqN?hABU)XgYyHZ7}P_&=Zav4x=( zeQc9Z<36^E!ZIWzZw^6E^tH8lR2p=;pDjd;8pm%vs<9MbSH76gg2{)M8YcC(O-Ebu zvudJ{cv}b5y&$U|`nkWY4q7+>U)*Xkz&0po>WqXr)04(eN=u&8Xgs>!b4xXJFnnVW zDlW(x^SGq-#qQ(ybwo|P#$MumA8%`qZg0z~j>-+O#iBfv6^0T}RxNaAuq_nr+>SE} z2iaPdXEG8I(J7SG@exRBX(Wx76|5;BH$7N{4;#lXTWS)vQYF;2MzQHQ{+31vPVquN z*l5@-4VVHTyUQ?JzO({+NySRKmZu5QQ5FQ!KT5;wu4|a|Hfqs0ecw??sx=v3Y|{ny z!371CJ$0Y3H50@mG83g?9)?V4!z{*esYj}9xZS`TAW#<|0_hsf8s@!Gz8dCLuZH=t zPJZQRXWcQj27>sTkA^c`HuqgdkFoyDSlea+_3*bvqiYvS>Vd!Y)j*WlO!sn@89jqX@e&*|ybh%=ogX+rHX0(W(Snj5HDQ zpcATbI0bjjbVAhyRYKKpY*W#Z$hKjCB45?Vv@L;<`c|KGJ~;y^kF=K@XBGh*TyZ*%asD_?O3%WDen} zmrmM!f0>B_l6@c(3X-iSP>=+7_M4)*U2L`eQj}|Q#^SR{m`UE{`My9hV*)>VnX8ju z0ZCz@ZL1(|!~)_Al!kEktZei3j2?qzt;IG$6pJUAclif-nxhR?EfK{16HEuh@g9YQ zSSC!wQxWGfTeP@#0_lQ#R$V7gM6^5Yb7?{Sy#r_}pRJ+%3fmvj$HY;}tc4y*idkvv zDt!TyX=r{t0i9cEi`Nryq4_Vf&@@9FDa(dJjVICQ#Vp%zQl*JNJUVR-0x2L+Evs!a zLyhx1C97?3`ALlcA=`%2+SFxPaLB-OeVwg~D8)iD`Wi(123rfM6HF$rLHOZkqT3&>!wdchX!rV zL}_c+2I~p9%04lwjGhdEh5=UJutjTs^alU7iFz=}C&HM3NiNRgz~n~0t&SibkeMi8 zvKKO;V6uH8KjO-r$OfglWgQc#>9ETr?}cr)yS|ro;?JUz^&u_Le~|4->AKF?@3mwW+N^@~8{o%>Z7KOuEo8^`0iLnh?nD{ghn`Rnc^UshY~XbAP*Wdag+F%X*tOtW{g!}*ZGa}6yH|CeL-ljXNSvX z5vBR0eqj5$Xx5pH9i?S3nKsV(lRWEo+VDH1JjGCHGhaA}lu^933_W=Ixn=0)GqwtP zTFzV5%)Aw9tPZ-dOKa5h9{o|xKXqr7^b90onYia56A-$m-?O%R;yK2m!gl;(Pr_FJ zQbH;658X)_Rt=>!%xo#W4VfMaDCi(~x$EF0{iMo7eA2of(h3{t0?~Wf;~uU_zj*qK zPA_HP5We5`geX)&m6zGP&K+r;OLN%)6(>{Y;laZzDVqlfsLlbK1)Y5Uxe&VO;2AJ$ zb0;mau27$_^?FfGW81-t?Xu@>9Ymoup&JH{HfkjORT6auc46`EX2N8CivNq;GIS3y zKzp-+1xx`kvF8QbYtm$_t-b-=_pEIp&49_I0r=s9=&2XhTJ#iL5Kk}*;)i&8s?O8o z61uRN*hf3FoI?aMiRNtPF&NF{Q3zodW1(QpPRN2{P2OZ4YqBT*w}N+;P9^W)eHYiH z58iV+HI(3WoUqx$g_}ebAHh3MHvBh?2M*p-S8a1G!hJ&LBRa3}bVv3SEyNE9Apv*s zhqid&-idPT8P z#{>|tbg0=5q-a6nxl^yGz9{tvnczOpFqll^8y7_WpRH}iQIHMS2_!j@rwAgf6_k%f z59$}SL8*z+L3##U134-i4$90nDq)JI1-jFyNL~0Px2o~=TjCmZFK!(X%cNbbVFJqS zV#t?kON1Sa8aIi#!`Ai>gv7K(Y)s%=#F_+si!hOsz`&=qytUY#&u=UUa6Ma9a&puT%V5NKlE5fuyBMrw5Yu zQ>Z({hEw=>44b0&#f2|cMFtX+Kv(!ag=^%C%CaEs64)ZP?@(?}?urMa$us--dq(#w z`bdq9l-GSUl?;KyW1RqcJQ9*yR3PO!5K)VNPs6wvF3UBFS z>~&I^397t`^RyVFH-yR!ExI5IpD`XvcY77`px|=G%bBlEd1P=2H&zA9Nx=mVTo-Lo zCoSIHtu&SIZp%%DdMIsW|HvZzZeasFATe8HN|KFTkJ00H^5p2E1A^FQs`(<*Y%dzu z*rMiw*n6t^I{X5aM&C5Tr}D$VayZ3nrw5vg^|3HTbFX5+MDbok-8Y5b|aA7PPN=?w>l-?LEo~oaN+DL6Cfx4YJ2n-87=cW|x z7DSKCM2XbrArl&@PV9gER?&7GKX9waMBqp029e1veyZQsoPJ+G(YSu_I@1sIgS(~| z^(!y>CGt07HJoy z%0sI^eoyzYYW7Fz>1v`o(_gNNCco+*;Hh)(J^g1TTXWEyD0G+P^fV zcJQ3oT!deu`xX=hlZqc(LHjzDSq9fq+ZZ7K$>!*5GgDF5F^l8s^>iIHy&$9-q zJETaP6NDydrTJd3D$dhd2-zA!^S2gV5~3Lk1rl3A7Ex8L9q=7l4iT#+=@HRbTJ{*7 zah_t^PQI@9;xPl%Z4wlW1H|!6HvouB3yW@+7M4>M+O0gJQ%>={Wj8EAd3}oD3A05c zp+mJq!kkCO@ks_f?-(K?Y@?5jj9oxT7$YNf`(eFl4)CS{C(QOT({K}m^X{Stf^e3w z@i8%2B};RL@xb6X;_0GvQMjs_)yKp@xq7b=cimm|r6Al=iCZ?`dPHCgjm*48z-d)w z&<%!!H>q>P=e?qHFXx#%9$RD}@0iC2&!wtoXcG-J4s4XW4~$#z-BPj1G<_%5aGH4& zt&j86ChEDizsOGzyUX-S`|JYg>5!%AG`@k>pZ4Espa)GFD7iK(&f`=|g`#mSbQV($ zw9u;0740r7Zkk4iEQSs9McL%|-LZK^bhnir{9H%=tc{#Wo5QPR5Vm~VoP~LMjf#_r zaDS_99#$iOddXnYPOb7U&MGH(tANJ&GP4TTI2)WO>K7n>irs296Zu6JZh}hR(i{mZs{|wGzyN>G+INfE`bn*)gAm{*H_@`Dkf+ave&Ax!?1zjxnxa#2 zjuz;^N4WuL&ZVLr(i2bsx`H_jq-eO{v3yu`O_ZjBOfcA(36nD`KoSWY^U8)EVX09Ee_r{0H9G!D!@VCn%dyYX33 zQaSP0>E`pVF|q@Gp01yN-I-3O0imA|o;;F$Ky(k&FQLCn1p8Y+raYiQtYtjNpcZL5 zL+|j$Gt3>{0Ox5Am#1F{KS(syQ}cGwNB&};8Rlr_l1La4A z)2+qi=WtORJ;NN`p7-K`Un!bEDsLfrM*LZ{T@+``FbBFfRB}Dgbwg1lMIFTESbF`c zK!X|jJ|^M#3z31uK+rRf4{=}9j z4j_~#0ALehM-_@o+jFFsAyW=Juc<-<{psQkWCnt#W?8$swSi~)Rne{DS0cpAT)bT* zRhj_IdpJ*vH#(VlvYfq-_@m520hn8m2L+fbUaov^hJLhUBJ?8w%q(QodGF$D5Ak2BR zshzBkX?km>1`!bk^<&Rz?tt(xh8xX3^Yr#f2w$)u46tCGm?3bnPudV zWZof`gDre4hN@YO^EC_=riOrx-2Er+mGzWr}&DZHDvojdn#tdv<_0 z2tVG8zvgJzRwu~b7?7fGt9?^gTa6(+`L@~&GxVC{G$E4xt+qN+jSQ-X(Hw{1HML8Y zW|yHK6!r|{%>vr$Qf3yet9-i?|xgtsfIC<$N;qtL#W>73h-3 zZ>_6UpRj3<@7B5l4GqYv>T$NUyTqWMKtSNbed<#|zk_t}RM1Z;?5Q9~#-0k&%)48a z2E>}L&i>g>_9bQ~**bK#Z;&Eq0#0OB6y6A=Xl)JuqIh(KX*jft{Z~+iptdu&^|0?YD?iMjJig^<|3FW`jhQ^MEug%p?xupoFu=}Rfmd{Zx^k~G zPFReF{tm_k3kbc*&?g<|VTh6262;P|`q)C;Rn~!XX-%| zssZZHyth5Yw?c1vD|AAy(92L7GMfV6@S;v3W$sXafPH{)g>Yg0xM5pACp+Ln#zOaQ zGa5P&e`VBpJu3)J`|MD2)MB6=KjZGsl!WgH*Wrfu2tME$qVRZo6h2IaDLNqT<$JAB ze5{hGSaIP&Rx@EHMR4I1Z}}Hz>d`x@eqm%FF_D54r(9c7AJPmyW6fa7V0*U!smUxz zjNhpM_ffw7Yf<_Gn!x^7<*?u0oQDPG7~5q zm_Q3a{EN2xdu33!#1mCf_i^?V3p_~XUG#`t^y)Z!uG#g4u)qUxsM3whS<+Id1qGnR zAjO;e1J8vTdD8@GJt)PW{1(cx8=a7o{BGEGKqiASeK*Vr(%HLVxFmZw43dC%!;U}- z`feC5D8Cy9N#t7SyJ2rY8tvV%?X%dsVUUbMe*-Pb{S0)XScGTn>)SHd2q6?-M@H~erFc_mE1%E_;U z5j}OUgy97GN?2$uk|XyE_!n&!70c##yJ@MLV|hq@=+tkS)xmpVnp%q8V63v`2biMO zjLOfpJItEZiP`o8p>)$<#xg)xa^Bjl46RpvA&mZI@IqKiqA5{Vdm-#0`b{fHX*rv| z5LUV`rpsxG&X4{f7!8dr=o2Rs$uD|&Y!dlJ z@5f9gzbFY3ODdZxza50O5BB;Drj?S)3Iws&YkiesD58_YsW`E`KCtTQoSb!D}^ zzw{$yMKOK;8hcw2i+f;=y}Mpq(ihjkW@P9wAdqo}reRGVrf9}O*PgP!EY+B!d5}H9 z779|d(q+-9>ajIF4cFQ6b7_r05oX|)Fohbp(H!JnZ(kh*%gQzzvB91$b%PXC(QmG- z2u4kF?EOScyCBED+@PM3kV>g%??${J3hQA{xM`M=A5VjtvGveBo9uU_Iglp}mjy6| z)-q=f8j)*nWKeb;Up9#FQ{3JPmFzC4it25)hoRIwdyt+1=Ro;cHg7S@Y_Xq}oUkIY zYztg3Kdz>uq-RrM3UH1a;>|uv_ktCk8dX70ZaY<9_!13`$Gw2Efb$utS#JIODVeJ{5Boux zU6r;~@-*0P-{~*>$#^K!tKT6Hx=8i)9DY6E>Kr!8*Ijuu)&LzkwLc{USOiG8wAh{- z?%O9#m`_GK?7gK{shC!VSB87dL5jxL6XdiH6M{O!OtwUjQ(_-2^#TUqB+ zw8CY7PJ(27%aI=}gVi!jfhn3GsO}ECda7yi4tuPShVD!Q{+dlhG4WRl&g1;Ge5d`X zib6Kyq4?`5$bNHVKFxGg% z-b)bPC0y7%7`*MIVb!y&y_{n#@Nhim{^1Vj>M{E|HUS?0$KmGW&jR6d!iilAGURlK zJh+Y-+GWEe!{REh9H9(uP`)e=- z#K5gr?2AH;TLfBm!v31nG!2*5wSmSUMdRc-c+&1KNbNu-4@GY>%^*F4BAB9a#J|X> ze85>96b&i57AuZS)9bPn!1&D%%=ACT-zF;0Je#$xQ3X#LaVISf=)nSOkRXoH;|2Onm+bh1w*%(#TlE@EH7}arD6Ke7~h&apkuJ_;cdlD%!**kb_25l z*s@)I&AzIf_zad(zx$(Uro5)LW3GPprvzIt%h6qW;v|0Hn{Ehi;51u@Yg0k)q1Vvp zgh>uwMb}u_s>C9Xs`ZCnvGajp?9}<*-p)_F<0E!9$hH5V#?F=7_I-Y$IL|zGwtLYC zck$#~tTN9$cAi#g^s#f(D|SBMEc`BSVc$;|8ku;tVq%n6z9jJ>v3K~9V{hO*+JZss z^_xe12x9NW-|aW+i%Ij$WAB(O+?09x*qeksppU(Nn2XnTV{csL-wVL!73(}k0B&Qd zgAIgyraHH~_6HkcqO=*)z}YZY#zY1`9BY`kQ;B+wSrfP{T&8Fz)u^(6!cn<#9En z4{U{;esyYrvWoiHYOL&#uL1+1AcI}Sb^8yv;MrLSNP zJ^V&rN52n~6@u-~;&FNc&QIIq%0H9+bTu6v3OYIfh^Lgm;+fj+xD=TIVu6^esur`` zn3O8O*lz9%Q#%2#WyNcUO3!pv} zg3>{XCaWUP(|#x~qheL$Y$^GBM(!?75v0|CfK4KDU(UO$l{g%bK5IluO%IuA>Yz{d7w1c_K#oND(3e1pR@!s*Kyd?6dK+Z2 zJxDF$UXTTV4A|Tirf4h`d%l9|e#kuobv~@HK0feO_cyRC^A)MuWIFUY&f}&-tB+!N z(dDW6l4sS?;%HG6=X2-2AU`^vy_rF$M&N4X=jhZYc5oQnSP^#h%s5X`@?DcRDd?&p zQCEzX4AOS29={lyyxjL()b<8b4%uiq%n^b?Ec zn~%?wcPVU)9*@tyKT~|jUpz41e1f1nN1@W7{aNm6o)#C1TltA6=9|wFl=moX%(Utt zZ9DUWxEc$}9rxm#K#zOzKJb0q%V@@+yhrg;23s^W4r6rkV)5os6Cg>tRGf?UtSv4t zE||?eZ}B^jON(NqEp%ls0IdA5_-RR60HTQYtHUoBca?%+GKEiR0s7%`ahjfhL(lH= zjbm6n(+Z|&0--@yiq(_h^o8gS3-pU-ZHXKvpc9MpIMCVqaq%iq93eBoD`!!DC;JCN z9u#OgE#QGB774CmatB*kyw9tAJTk=4ifkdqM4{`~ir1LAY3cRi66q^TyF%$&o)3mQ@-nst5 z%RP05<(9XPV>vnJy!lmeBR}zD%{iItvieDvi9(8psdr9$dFMFsP90HsnASvQx=?SD zXS=ECx z+4B6iKNRm0TP-w4wT-g7G&X^^i!X>>7nQQ4MKk4+t%EA>hXfd{822(WW z;9qn&Xg7J*!rQFr%&ef_Ok;Kd{bsqJi)#dmIao@w6|FT{BqP`?uH2rn&cV?31Y zr+mnR;`E9|{19p3A_grOsOz5C6=@~}Cx~q|N5lVbJ`}qiUkoVpq9y*RMGJp;!Bio>aDVo%t_Dvl@LXfZ+ zCn*P=*w%VRGshOG97x|fw`4q;)7&vx#Am?icX}ZeJAALr=#)nYV716c9DLNmvB#`w z*jhSfn;eNkVXYiHrLI6sHj3;7QZ#MxFWL{RBM+qnqrp**U!_5yBpauUgei2KGH5aS zGulzCFUyTn*2|3s*324Q;}}O*L7K;N4Vr^faQM>mQ{SPk>-S-acE1#W;$s|3(3Ccg zX%Z=+xP>=xj!}Jd&JHEebVo15Ir61#kRt_{e2}7*_8e>LXevlMKqikc%5xWx0Y$%X zn4+=7zo_w@sPfC})Js})ghrokK80@eLQ4BZQt%m-u6*X>TORyp=TmBHNJ5kmX^lWIcEIe{*E1H#y{KNv0ci7 z)+ELcUjb4y-4(tcP{8o~IKWXslyX5)-W8W*S3q{m6);7s0Noy>xq`eYEbil6@hr3= z*8x6*^Hf)Ox(;z92Z*n8UU(JKQ!gCw^1?GlUN8}uc7Y~&<3>3)n%Vu&QI6-N-=OJe z(BB0qz$}(Aj*q0$OK^(PMCi%I3NVF0b0tzn0nsIvj8t?z))9t29qX8(C+E;wkZ=0J z>KS;!6ip!fiw0O3bSgey1uydSsTjLN-*%#jj3#ZTC6gAO+1ob3;U|fMWF|`683373 zuf;9l+fK_R>X3z;9|$#;oX+{fjq?<(B6V7M4_+4Gn)ElJ=IazuCYiHmIer!Mu%Kp# zFrs9$Z(`)dFK_!?o@08N&2cmqMAs7YsbxE!7`>C~_(VLs#C&SmT_w@Y3{aECj@HPs zVM{Hrqd8wTr*a$vnv6{@VT$Hs#fbe(uGD**^GjwxEKK+#N_EATnG#8}PDd8QDW4f5Uj0FOu;%6))=Yo5$5mReqR zO!AYCf};GeZ;GNCEJG(_#ucE{lXxbWfKbdaNkYrFv@#boBxm(Uc~_`^uW=VNM!;Xy>K1}92cuOoA`-| zG7|+j5+D-_9Pul7;OMpDzXcqp%RWNOsa)&RNR)S22OFE1J^(gu)^Wa6NqlyNIc&Tm zoBkQX48q0^lHdg!n=mT~8>9gT66^de)OZ8<{}FU2%QEGQ*A0<=8RtJB%I=-Ium?zE@fdSZNL%Grefu?BWb5ErzT#$BY#!jfNTItMETC zLvyI{A!lfM(dPr+(vOcC!(=IZqXz2O*V!)M9^ST3Ko<&vtB0Bl9Cr0}zAX)33H(o& zuZDmWt@+_!v}4?k@;c&|b{_O|b`zuoP?R4=SY=ruJBD>IMXLa{8t7EFZ|Iw{%U9~r zUTmx`gXz2Va|2Zo6w4M>~qj~J=n1&V*m0w}=s*?Lu8EIMjn*7Y-`cF2sdsRtOi-Fz zB?`iMs)O0%s&&UYmx#?|9*UEjKpxb|A(_<4;5=OrDyiTME2HzViOkf;CV7L#JC~WY zt?T2R&q))BEDE;LwlxlCcmC^MW=|eGTC^p^RDUKIte!=?B*QsFh(bc6S>4sWlSvno zK)7F#4X3O|LgTR2NSLDeRSC=5omvuGfIAx+LA=jUa`#4Ph6 zO@ypf0$~P+G!sbz8`1=7*TedvJH2sJR=*j72NzN=T&>#d{?c+}m@EXb%OmJchcsKM z_Fzb}g=x=Ch4NNAKk*m$XVLHh&wFXx-LvG%_b__h^Io2VInG@o`!eTqInF~O`Zdm3 zC*SgMHFSGXmIb`-rSV(N^YeVN+4-u!c+N*`JzfqO}Uos6uCfDAfm< z44<3A6oStcNEsYHbXWfECg{#tye&W4>P$ne?an9k95~e8BkK-DU{-)Bnowv_u`^#9 ztdoG8svHPXw9=j@9nJ(nngBBSfy9fl0FVJ2NK7wrz9G$oq;xwi9j4IUY33^QmCKo^ zFU#rql2J8u3;`?FBuDLcXb`SG$|_n{=?4;s2xHPa72rIsce3tuz9)*$$xM`y#6ie} z_DMyn_~Bx~DudyoiRiRrGRX^n)|nn^;@Vx$I(JE5>dZ@A`x!_9+Md|soN1QVb+2YT z@&KbKuGZV_0aTeAfZfM=s@*)f`eZnOy--P-6HYR_WARiKl>H%8`#I-jaUzz}tUoU$KNmEPk>mdS z$>*K%f|$D6ygx6?)1aOHT{wvq*YMko_l%7F z3vcYl@4{16YqQSFI3Urj_nr1|WAsyk^;48t>}-K9e}Frb`Pg)76wsb}9!SA?3i9v0 z==?!i1@c%&y#c1su4>g9w#=z3%XL-zWnExh>`>lsA3E_KryFwRF2x-*qeaCZIWJ0w zASvxlUxX=C#6xRPvyYv_y~@@_gFA(Up)RLa2B32vJHw?jMx^~daSqUva@rj>l8|)7 z7O1agTg5Lg1nQoAan8q2c!hs{GD7%~#HDuj_7;&!@e9|pe24QiSf;Otd~wy85FiFV z#kwb@dnx-AU_!f>pV#o+%Xe$^-HWmK?DmRD-kqbIR+s|pQ1q>dwB%-%;3ez=MOY6O zw!DCDJ?Cg7Z8j2A$jNJl>A3?S3!XB-Whk0YVGn+Pu#P9?2WN~R9V2xrSkASVAB>`r zesneRwi7>H^rjEm+eWlQ%jSi6j@`k%wsaBF(#G~FOreeK;#26vPtLpgvRsS#(WstB zXfeMTw3yoB@dzNBav_#4`V7d$gBuD(_UCaO%-L4 zWzv6~6T}28tJ$EejKmgMCNgq-$Ee%y&eP(&wdP~8ATN>?_nke&thMIL{=q7Vt_u~$ z5mh>(^B-na2FJd7t$mcX5pHZ?Y-&2Ht%>sdOM=n6e>$%O9U$(L+lc%kp)zn^xR+cNV>C1A}v^1(FFJWI|2+%`Q5(Ng9ERp)^sv_rxdw~?KH2y{7 zq63W!PZg=;BS9JoitzR9jZJEO9O~B{^;WhCF;Hl?Y~=AEQt`(QQo_t|4t*c zCjIwpoTs&5+JASfRD#M0IgEz_M%j=D1*7@vcrcp1PTze)C4dA3j3SKl6no8-6U+-(JUeqes^n zK*e*!KuVYRm!>zV!1s@;zF#)K?p-PyI#h;akAJ(8UXoZFuV7i4}!d!P%_p6p~$;v2MMKKDvm*Or<9D8mSQui;Xvj&mc<~&n|MzU zeG$Ynd}_(R@jLyXEWyyah&~mw1twF3Tc3?CH{9FMfMD5#8l@tYC3NzNva?gtT%_dZ50^Y$$`UNjX6ra6 z5gLE0Bs)feLs96;%^i@U1vL8TUnT#N#0?-m=2E~W=e0kt1I&Ednomybq>Q5*F5(1HkKf)7n`o{A4g-ze!Pi2Y@9Wi-?W zl2c@8y@5xDrW;tZQBEpk9y|~kVr(%oA__Ip=l8ctmYDe^=ik^bOLcZ7y9&Cl47jB~5M7)pr>u*Wj z(}}N4lPkYp@}3xyV~$aSWE)q>q1t1NO8%gvmmoIGF~_KpJPm4espLhmO^!K4O;Snp z5LGdUhp2n9<&<3uo%6{Dpdw(3=1%;J_HolHJ}S^B=kR^pG-d?Q#|2#}xfCR3VJXet z-Iyb5wgOLP;MJ(5*ns-0QPVINuRd-nuJZ5oaWiBAh*=(0_2-!CppQGqROkA*(%+Tz z@)zIs5kJ@E+TT*+=lt!G=lsP_e8kVMUNrabmNfMjzxNS96)G`|ev27VIdLGq?iD}> zjm*4{H}m87aaUA3vqcf#VHkm~|F$?7x$l=uG(*;Ef0PtT%{Bu6(;lx0NYTRE6aFWj zbW80)Cj0n#*YTkt==L9e0qAVaFRCENgOV~*cUbDe*Ut_THf|MM^*L%hpV6(NRi(tEl#snW#L zHE^Eh>D#CFRrc(u=z715*j8qucsdp`p`Nb0iT8AkP5MsUL~7#X2;)4(H7hGUDl#YG zI`wN!Qt14L&^mLjZsN0SBn6uJW3ntisx+87RoJ) z9cPfnm7^kZxq?(~UBT3aG>t14OZ4N)(KN1H8-sE*Z3R~_&Y&Po zcE`51~?~ow5uLWjOwKn?@-@WN9H-9zN?e`)1m#muKheQ#?@Xf z@aGs;XZdHhv92fNpARBjz00Xmp+ntV)sb_&%O9mQP;1F);OZ(DztF(dMgDncoU51o zb5cWBcTLtPbZ3C88sqYMLsuQZer^xOJ`9$QTA`Hg)5sMrvz*yT6)|CgYS~JSRegV$ zpsEu!(bYv`7>y2fB=(!=ij;Ysm+}p&}9x@p^MJW^*sY=x{ zQk5z@($z=iKXw799O7bMS|k87rd$~JS= zlj~^NOx1jDGu5XDo2l-|ouZ01sJW|;#xRCOnzJRA=U8)9-;bNC_6u*Ja(OUSb?Uwr zuI_T>xrwfL$na1TEFon$t);7`T&Qjm^g;|uYlI7}Oj2b%k)#?dwUw&Op;l_$dD9?+ zSmwst(^NNxPls-dWp1n#h1L2t%GF$!qIR^aJqWnUYjAAQGE1UWgFB*CQ{9VJW9!-s zR}Yyi*?o1tkwq6h@v?oV_o4ehnkA! zSYutWvJh!ARnfxRxO!;i<5+;*io7ll&r1#sZM!Yu1)m0O^EfcM4sw+a)@11r~sgdsV85?NzA`wpXRP)n4__xir<68#_RNZO6iXWk<~Lw+^oQa;=t*DwYZJR44B3 z2xV!}HXzvC9ZOifyUQYzcIvKj316g&ajv_oCy-kKd_vp4huRcp^-zV` z*F$Bqd9fd0u%gUJF=)848e z6MCzH6!%sIS-Dgdq-!5nKbiTaJ~}}tm{&u0`?wm&1;YEP9E9bnAcy+u1ZmB>z-s-} z0mh(ystlX^sT}66P-Tefugb8ZzfOi2W{eX9uvRzwtFEauz|{@t9>egmLZ+*!ENSOV z)nqpZxCYCqT?VRxtQ^R3z&KP5t;kYi`;{zJrnGo{v<#hwi_Tf&DvdslcZJEkAH=Jg zU0GqGZmPJU=? zFfA||!5anw=`0hP=|7T*Q%xwOdSp74xLjO#x{+U?)GqJ*ui2j*aDKqzfCRXY^ z=%0y|I(q+SVnt_o|4gj@uS~4EiOV;cAD~z#?-DNAq(4BhXcK>cVhZNsb%0_L*~n8i zApg>t=q#{J`Ka4;2iP_pI6$#ixAUl+zsanzDg<@Nc14zti)xz~+qzA3Vk>m3L3Rxk zlkJLviFwu6Ru|vIdyr;_r_(C46A-6aMfgICwB9u(P~+PfU5LuAkBZj2M(9%K?#QYq zUdGlmJ9D_ei}SV(t~TXV&gg>;uC_JRKU;M!V4wPA^4!>De(YzN%2|Kx=U>>9`jd%! zIp5y#*dhaY*FOHCjTBjc3me&?4d2_e__F@m-NC42lk44}I-9k)lCRb{H@ntJ4L~}5 zlQcKiHBzjzneC)QD*k@WI#m{p^P@t|7Ej(@$G_;&f&yZgswmBMG{BQy;K~)H6i}YOV6shC6!K(>!W8dX ziqN5FTrE)Kc2`GfHRMkYKZIw36mMD=b)DzO?JoSC%PpWNFWe4UILM9)7Yb9f3eZ3s zcPPPOb43UT(Dh3t+V$1Fq(+l73A=Hgb|!&df7x5)I$c(HlkrfFB%Fpk=#hj&oB1ON zyEhvgJ~0uToJ)9!)!tyC)%6+Iuux;)pk2?nN~HflgVIwVtm_j&Y$Y>MOxYYVp{A^n%bT)t zuKsj~iPY4J#(7v!+B!Z%m5&`Ze`i7*i)+#!)*Pi%MCmO0A8>tEMJ$ECsEq$DD`4=N zjs-XC626gRIgPQyhc{0hbWIS%)w$+if19U4=&CaAEks<7yz@;KJ}L z!q}uif6mM;pOrkBezdZu!i%oGWJ$(b{X*CaFaX($3uCk<1H{nW3On?p$fYP74xPm*DMY`dK1TpaZiUfzU4Y1tt4{m zVq_Ue(JJ*E`nRjOC~X3nd{@z<3TuLp0XzDZ@{TK4azavio~|elJ#p4GTq=S&+)IZixn+bJY`%=b?G$Tn(iYkOetc2fmrzM`rO7@n{rU`AmA{&=){?O-cHhakTI} zK1KI_9dF^xUbCk-A81+exl$g2<-G4IkR*_f=v%~TAGlVC{#yv3cLSd%?=M$dY770cy_u1?4~r}2^>VwX z?j@H+kXpj(xg(DQ{=rAgB&TY^#&T(v}L6v*UbcC0J_ zWI%^E7MP;3#J?zdOs;}1#FeRvdVJ#AFU^4!(5r!ApSmKY1u&TeydN%zF5ItI$AIF8 zPjRrV<0-^BThQFA_;9hV3a*JHnduPjTZfrC1f)ZZvBwTKz+<&TyD=;)pZVKMgffBl z-8fG_!a!eMcYTkCYLtb7?580Mg6zT}RQG9DFu3c#n?_@8^=qugqO*5KO!Ah0q4iYW z?~MG2E6|TBZs~+qMiozg>8fA8m8Dg5`>3|<@!5bo-@2YaRY4=n|0F_XCmyAx9~>p!SIbisKNKH4u6qDeX({v9X$=Szl>j|;3h&jys%|THOVYk zR?s-*LFrPZMpqI`m1^ERx>a;c^Hy!~|9w~;VXNOqUGuK_qrh9PMn>j;f>S~7wnt#l z4vqWSC5g@Q&Bu0jRUvI`w=2Jykk1e8Zf!B>;bGvip&d*C&1~#1S}4D4Z^0~X@@x9pusi!tCUcssfZy~w?_vU{Mkn+UBNvOEn^ zG^=cV+x?N`0a@%^{|T5v$0444G*QHib!9n_y(BvxR>kJQFh#2zS^eDVH4N&)@BG{i z#IIxrC|>-W2x9`S*KnQ&u3fjEtnB&S-~GNIKH$7~A2Oj{{Km_R*Yfq#HxsFe14B*n zmXy^r^1@f435vQvMpu(oRRYU=4GVNSw8^X~;%S$=oV$-8b}ukTxnE>+cVYCHCNt+8`3TK0S&F+#Xrk@a+<%DWwwgy~gcnJL8t(aGjjiT^*;FOb2j-7VA1*LI=4^eL zxAo&M1y@sz?GxrcuH^$1#35Vxt|@*i4+vFsFEZm%!JB?4s;)cHbD)lUw}8fkyW{X= zJP-e`%e2&amZXHKGc0NIQqz*=Wh}NN&rX|_oRn@!u*^uFJ|k(KWoqiYc}cSpGLlp0 zSW>51GG-)XsHM?~cSEXqnpoVW1@ZscN)WE(9_rG-Es4onDayqd4Ughv8&6|K;SF&Y z9a>)05>;sEo`A41vOG;1VLU^l8oQhPS1nSbi91*j{s(I-BcL>QriAWabJ6Ep!_bhT z?CNnwCK~12M9=z_Dn$%55LxQGD|-&saqkk)*E?}c{ue`rc=L9Zf|OEaN|l;WK;NGp z{XbVRs@69@NL{v(ll!uHmKd6FEeehBXl+wu^FO}W~`YW=^VDSSf-t|0PRbCS4?A|H` zgQD!Upxedn_EK$_Ovj$V+mN-3d#0X%8+-1O{R``-pd1cUyd~PN^A;V1_UYzsfR6mZ z<`J34uk}RXf4a(v*|T|^?t~@P2A^aKAta!hJ>4xTX3R)}D2t-{yK8qU4{&!ht~7@DP8q7xQFgCw{9LKiHvK5u*gx#Mzs7mE4mwo)m(F)y!)@^?T$6q|W0lTh z%5ui_1M5NpIa`OJdwt!(=#|acWxTWc_H$Pi9auB7U6i-vXe?s&;ROgh{^`Io>Wadu zyPNZ=ttsw{2e;9&QWqn@KgYAzEg9rAhPvbpa5t6sl&}hLyZz)g^D)*%wJO~hODx>R z&*oRjepPT2`i>3!VTu+fiZ`!3(!l=>dn6wC6So2Yz0J(5jrl#1gWcx^bZnTrJL)=e zRb^CRn7hZearno2%d(yy^dHr9SAbcX%O`P$F69lmn z;u}(X1ffr9NC(Ecd!n>Pq5dfKtq=*FPr#$dD0J1rUDSG_yCJGF(Onk{`uzlVJtpYalibybpjFYiiSCVmi7J9M?&;XkW=Ch* zddc|7WOwJkZV?OmCE@SUSDfk&5*H$Kkm#+7tOto9xDDvfEatcVr`5p*K2C5ZJqAEB7W$@^^?6w zZp?6x62I|b`WY&T-t?!uOuvUSJ+#xK;Paf|M}Uh9U#yBm%WAvfCz+~mr&s~ddG;)K zih#za;|_Lm``mJ9{Zjnc@7pJxUC_8W?kZ?c;{N6gw)d!io{V~-3c5eXU76-?i`-Qi z4MOmE%7n zWA?0q`6>1B1Ttk7dBI!m=5T3l$0SXz`f<9jr0skcHidq&Q=6^RM+X0j2w z#gdE%c?wgKc2?@`2VrM?_jauX7yJBzeNjl0qts3FREQEiLC#(#C;9) zpuD3V8nDtG`;TpjW5_=RH2x;0P}_#E!Sv?s=7Z@k_{c~5v)t9FJG4lrf&M=h=Qu$B zmjQfrG+^~VMrHB+UyJbS=;f-8AkneieA@M!8r=G^|Dx^uv}+1Z@j661i64kP{@m+~ zIud)7xmREax?t&3wR=505{QiKH#;qLUPi*449lR@jHJlO_LdQN)pYV?elc|NWJ^Lu z#=PVy^D~n0Xv~r@$C8ZpNBxN(SQu2hOl`b@)iWU@fh?n1`ej&VCoHy1oslqSdXgn| z9-4Fam#`IpMPfcoJ>5aF@@a|aR{Hb&cY<@Z^Ye}AFS)4lGGAAi1 z(UP8#Fl835ZB9ngylDwjlhT{v<=i>x$%%OPY<_z3oauPeEXk5Kf6A=nsg~JEn0+D< zEK!p*oz$=Z6C?&&rYu%OM0xkt)aqXM|5y5>3)AZaqbFYps1j5KdL0efTpZk_f<6r7 zYe0?JGR+kjp_QvR zsjXWy-?!dftxOfh2&GkX)RgK&X=vbB3R&P-V9u%kJR70gPC2;2T}`S2s~y^4YKRmI ziRhLTW;ZCu{f4At#~CzOR=ai~J1SfQaM32U^gOla=Z)@H1Zf;7fvDJ{WU)u-a>$o8 z#^mC?ve_`13Wf=O$aSxibOfAWA+lh@eG67H?#Psf?B@lC(9eGeHPHDj?kPG`_RV)6 z7wVGq4yap!yD6U;kIogiGo(DI0T(ybjN*od+_|mpd6L5iX$?bCd?a4zjlS9Dj?_uh z7`Y>>946er?sX0;SQP|=vT27Bx|gmdJyc}_`&H=-C_v9& z17@{lW^edr#vM6VM9?)l`aQdSR<|TbU-C7AwjO3+Jx{A5w_A{Yhh#KFe=S5Uit%>t zueux(qI5eq$O?dghA1ZJmY-8oPr!w!MV8~rI->bVOtn>X(s)56kta2gpYB+P1J>5)1+En!{~9aG>FHDu_Ko|Iu3#fBK@&cYu; z(SlvgEBqC@*UyZqAa&8%i)^WP1SwkZ;9qnTv>6^$;ZycC-W`!@nLh^)Q1I9V4@AiL z1RwlKn3{nqN4aYZXl6;yuuR2crzuI68A-F!rp=#a$wfq${c= z%Bs=hL5ZnJ>2n%oSY{+FNJ2|Ka)qOk8yiCVlA#l+DRo}*|6%XF}Z%w2~?aWMz9lc9vxr2MeVFh*}&MLx%}CJA*gQOp1Np1+XC~15eN}OV7z$k z#7?747ND#(I%Z~sPd9LuJHa%_GHe_SI;iE-Q&Uz?&HROijWi9hj;|$zLKY4q6(G(* zI3J^ei4FWB5EhTJJH*}oyRe%Mk5Sa6sU zQT&__7A{g^_ikRRVT5H^()ckWOjCKD*{WEMSvP`*Hp|7-B-q1?#wg0ehj9=%H)(Yo zSkopqz5$$G_|t_o2`d82o4R8E(JL1(Hqf zBiX4FAbLpdAjt=+dU7r3r!2THke#}UWYI$sq+b9Cj$@}DfYf2R(od78`$2@OB}dkY zS4$k6Kz)%cq(Ir7QZj{aoqb*Mu$WTpl%gXdR5egEKR4h2ZQOd%hABWH?1=_Vx<+p@ zW|+)Ig(gF7fqOs(y;hg5HmlVtv(*AtoS(h0UA-Phr^HG{7mbYpx2NXT4sBo? za|Gbv^`?l-fCIX5>xFyyl_A-_O*`;k#ik4=y3*2$Fr6165xhQ_6`^Qzj}Km-zFs~^ zWI9L1R2Byty!8kD;d=RH=Gg%tICy>Idilk>EI)|A9H~i&pETk?#bA+`2Z+V|>dST$ z{c&#p{A38MLIPA(7qnunJkv_Ns?iqg}EZ_JsVf3WE*!bN{QyEetzm}DUQMlo^1 zpugS#26i_~U{^ud*nVy-M2={{%fxB5vG+VlglOf<*^PJ&5)J%9R)eAj zUKoH_R*|e$C?ePh#4?IxjZzD`nR4UHs8!ksHBj`=O_U5otcg@s^z(vPQ7qzrjW0y4 z)&ku6yl!rG|l#MwfT_skP}&#U*`Kl|OMG(C5n*b;i~-z9zPKLNfKE$+Du;7&$v zjTp(P4(_4B-Me$jf^Rc&V`U0qcZk_2AGFe#lXS(6xTO$NFai{n-PRNshUUh|)POo- zs^nt$F1vagu?A4Rbj&Jtf&2 zzQ=}eHbJ&latP;tCC_Sd=JvlIeff`A_+V@@aPlj5&?C9Px<_npIB@cx#tcQ!qo8&+ z=J6kS@bbXnicf+JWk2_ulyE3}B48-%k?QK*;;#PHXHOgbeSK+WPhZ92opq*q@1fRF z+)g=|wlFuoJedN60l~voxz(AZO~g<{6v^_nzha^cih%0Tqtoco!||r0Wmrarb)0n+ zj5b752DGgnxY5}p(K>#NHGPV=FAaclfmfnA_Ch*4U z+$zhES)+@))Cb0*j)!5ZBP?9pDzpgG1iYuOhhZ4w6Gy@gQTR0M z2otmzi-f6Q0cKbyLs7y#YlsBiKJ{Zlr3T1YMp?&?PloZfC@unTT@M=%?}9er71&e(3nhSlh&B7&{_>}GHq4swcer?*`q@fOc`oTh9O;N&?^-hg+&AZ zHbEBErgVLVNtNy`&I5<3_zbmLr%AV(AZr;KvqEdunJs#q$!f4F4O*R-+C29#q&|3s zY8Y|1Sdmylg=SC$OMxwxI}!0#xHYOWs?(u#bsDA4WHgv{YNJAHGHcB0bZ{gO#CXq_ zncFWk!I-X8DfI@kL1ENt%o#?5HX|d$q_CC@#cIFxk$)R>GejdNtbT1nl(n9 z(F9*!(CEzut3stUtChgCIlGECg_*mRN(^4L$&7g^san`S&8-V6EXuA3ZePl+(@d*M zHYkQoXf}R8tr;_#B-S!3l{%|Ntw`5FI@483lR90k)TToPsVz!{%KQ9T7SvD)_nCov z7hN&l!BZAxQ8R<9NolMFD{bGk&!Ds}t=n`ORDxk@M5TiZ&r)kZ6JXgsH#VUJu0T?m z#f{<>MvFmfG%Jlps7$L>Wl~wJdL?v|bdy%8_nu$AW=v>&y3vaL(4y4C553N;(pr=% zy;7|;D@+=YX@L4qq2?~85{!lnrAcXk)}b#&cNRCR?Xa61ZnnaQFu>XZhxPOmp3XRdCG^(tM42@O2du;aD&>Cv1P7A5m z7)=_eS+mh>FzU1lgF3^iO!ww2UwQ=Drdg40GC;U=i$^KQ+PvU+L{d*Z_1qq zY1(7V#Bsw$PaF@+;iGK8l(a9lIzCe}+JB~mor1GxO2F8;NtM8yqcJfcKWSf535QhR z;g3|y;YuK-b>3>ZCrlo;&RZKhX(U`=2)IxMA z*|rW{#R5)&ZuX_u!*;_d^^!W^vGr*^ddvin(k`z#-DotJ-Y%~;U3Uz~X_psAuO9>U zwaaTk51jyBw##b}Gk5}oiL_3Ear2{aNZM*!^Ql17K2J~2ngm9+&#Or*rhp~w^BU5s zsleMlFFEq#84#pF#;{SArohzUNen2{A+JJM*!wWG21p(8v?efg$a|Ci@qIA4Ltb}! z-3)NLLtY)a{2cJSL*838-^+vrD_N`%ffcF)#qT#A4-e^DSKGc@0J?U}t51)f2c~w+ zYZ!HR0W2Ca%%WRu>$MCNc7$|4T?8I?%uAprEe27Y@~YIR_aQ7&kzI6ZI%?vG5lttV zMohGhUu`@4A>4z@s~g=JzFCEk=vUj`hmVyksRuSrdKw4HpZd5$b=yxUlYv*Bpc6xw zmesZs@ByDCwNa_M^tct^Zl}Cvv>RGtTAnWKHFzc4lFDG&l&7&BjW9lHNen)K3=vFd z3KzzjatCx)+wzev-t-wzQ_g;THpm@Xz<aw7=(C>L%e%2)Pt(by-RX82#D$9m+lV!Vt%lwGHui@`? zIJf*9l>1)hO!VJ(P~=&*(euzR5`PwyJpRT2PZy!@NsG}hl6)4FGWta_&cfo&!XnMW zLd>#_g96X8xiKsfU6u_AEelI0Yoe_x$L&d2z_#Tb>Z4tL)FDf!dk&kg(q#b@g{ z3;uk8zK)=;uIT3`$~}(0%0SuL`az4g-9l*<(Vw@_Pbc*A6-xUWeceW1`@6Z>1lk0o*g&%2ph`#U>207?5e*8SbBa{}0FQ5j7i)eE*p@S@hP z-ScWDVz~vhc@PC&XdP7+6rGD|0`_*#yT-&zW3J9&KEh(wqPB5K=m^-htWI0=I(Jvq z7c*fiSqU|jSUmw1g2_GeerJs08a`S&DvaXrmzjep7vR4Xh##vu5PzRudAFFJV*IRZ zx^Xq!VrxLM`L1_f%~)(9fvBp#mv@XAEs3hq2$($4Y_i2cRL-YE5t%B0~XJC*k6x!D!T}wQ!Bdq%p(0 z{_m`-4&vuOtq3-!=P{MC{QROXSb5O_km|{d1J7n`v?O`ZlPy@i!gA~e#)i$|;NH~3 z!{X#JP46Gpg7Vh93Ctd%8vH`o#D$^q|)Y}gF`nz^w$h|0*@!yF?DfXp}dGzCwz z`R_4j$Yiv-O&tRTL-N$Z@@R3pCZvzG_l}V)6J(tr6}=HQe`wxv>U$73EH9gRL}EsJ zSe1ALQ7nQ7o7wH0`$SQKc(k1Z7TNOtqF>wMT|7K5gktC|Fdy4m)@HnMLLe>2BK)gXAvvv^{*1SJj~ktRgKaU>K8ywSk>{+PU@6r&c@2d@eMBgW;u&9oqs z@!o=Z3y2t>*IEc55=_M5xB=MRxyJ}3Xqlv zo)TF>^e2npBlC)hd3TtRWODSemA#pXWD4eHl{ zIrN8Hu)EgxyQ__dtrG|fE?j_zOd_Y|?WZ?F4c1=P7Cg(1NF>2Yiv9@;uQ?c#-!7Vf>Lvk&Y%hVt z!;|Q-(ui?DBH3_6%dFp*kzr{Xj95p|01k)c;=4-gn z?e+E#VoF5@;!B*k=&_(&X=E%708)8Q;mrk;%AW zF8?vuqRZC_0Yu%*S(at8cD9$FrqAzBYd!|o_4$Jt9f@1i&7Ws6s6OVRHi)7;AM7Kb zamM^-Od3%@+`C_3akUSQOVlfK1PEC`_Y9@A$p48MPF9D-GUQ{h;f?%Z%n&k1B$i7O zVnN|I!0~2&0ln~J(6?p&dr^xB4BX?OcUtBzWL6OA=yA|CAhO=!IB>32eyDan9K;0%kl{yb5w#o0#kWiRQqMNxUA!Iznk){JugeGDg zZ^K579O67~o8Oc9i=;v{#CgEh^E+7t4{=VvlYfti$|Yon9~!;hF5ke!kjdC?qH@8A z_WAXM0KEUzmjb}|)(C148QS*}w2|YKSbm&BN(G;Jl+hPllFF~=JAAvmZKjs)nJest zyCG72vj@?U{LV0s?}hO*hwanyjiK~N4vDWDwvkBiO#{7haX(DFjMEtuP0z3Ce}9zZ zfS>@sk0+Ct+#}!r;-BCk@$)iU8&SF9F~n*C^}Y)QdiBg-6-s*`dGP%W+<9h?XV@ps zePZB@D=ms*72;+Q!TIE1km|Fw$t)cXVTzpK2cwUHy(fMGI zgt&8+sV@&Vfh?gL@Cg~NW@YHRTY!`kd-9b`;ic+hs67R>S*qvpLP7M&eDWT4Di50i zaS!{bjQqwiR82rR^J}b1ycGw~ZQqjob?5l2hLDoyM&nR|3M{Xk6-~TrN9766jsA&@ z%QuoL@oE4(m*(u*$9G4L03@AKNPzkoo*PB{6K6C!viu9rXn1#jke|s=Ly!!}+bMX} zKICe)u;9>y_AkzdhBbv3+p{UN6NxBl9yWqz&5wu8T$?|H0n?A?zX@i2Gdq^JTAhb# z?1vHr%EEVku&fgoudGho571E{>qe1~Oo6C_hsjFG`WwHj+2NA3MZ$4~j4$J>Ee?yt ze?Ut7V9eB&vEG^X{7j0vCa;5ToJ21Bbx`5$t$$H)*}`wSvO4G+0J}nCpGr~x;bBv@ z2`;(kHDU3?3N>+2QWFORnrO(7ax0B*kDyCo*;u$uz`g2QN#AamFZS)+9r@QQ(rxnb z3`5eVCvwcag^-ax-3lcH_;ka3zfb3+tZWnsYZTa7&};mq%xn}_e<@uWGd>A3PB`^= zmT{3&uQ{1-jii_5iw|4#nx#Tm&s@U7L$99wWxkpLcSnC1PH)K%(mMnIwz`+!F%opD zx;2PPzvYJ#8d4T3YLQEi=S6+*aArehj9AvM?$f{eg^hhW`1~Zz1d^_0%D-U;uh~KN zN2uYxq#7ch*pVgsi^CjqwynZ5 zltZ8pg|7v617qLWS|bEL76`Cmb%wS5JtzKztNRt4nBK&4O_@xCXK=_05l;c#!gNaAb65`T49Zo}36EGKC9d@ymH^iUfgVJ*K+Jl1BmVapTh zfb5?efNsvM(qp7;97%Oq98eEz|7-+Fm$s5Oc<~@Zc<@N}q1*oudVVtDo_xa#} z={H}mh2O@kwM{I01{L8S@_bb^lnZhX)HW+?V+LDriIa_?eabJ zxd52{k=yQ-p~r5Q@1Y<1VFW!i-C?`l{`JgkQt% zc`6NBE!#KwTIfVEkaxBt=(2XlCENxx24?yFfUWK zErGO;LkX>kvWuUU z;*;&E=_x^U@DoSeM86JjS50RH(ZL@9Fu1R#*V^U%x$Nt#l~05chu3!ahe+cBG|(S1 z_;>ud{OhIl=QFG*34cDtN`dfa<9pkpYSP(Hz_YLNDtmiO+!k4r{ua_K=gn0(KEJjL zz4;E5r_h^EiTFGL>;8M*9L?2TN^j1ozPu6T5L;6vheXE!U>|Mv-pbyVUXO0(koV}z z5v-P*ut?w`NZ3;Y1o%@$F!=CRC;!R4)|BFq_jNrNq{3r^op^tQ;zdPjwHNi}mB23J z_8=4Ob$%2=vuo%OJANf73C`?_tK~F`gd7O8@#=nmmJ|^0LSCP*PH*St;wvl-A{cVueV!{Bu?agv&3hyS;8@I?5^U zlbz!YSe9-t%v4e;!HqcFH^W zbFTKDEIjP8+qU0+kfDb{&V?@+^8=h{F0hJ+nci#r)krWglk;53vA4WqXh*bzy+eT~b0PrquMwAd-KNlgDwt?Ch0Y zc_LT$tGIFoD+^+=ES;5waQNq4F?ai;2x=yhfb<$oI2UU3r%(p zr9l8}n+@A9M1Y9{Uf!A@>grMkt=T)lYv54Gq4ZrlS)wo)fJ#`+>;+-6nuoWkbl z&w#C}RJYJ`Tfz$ep64Fss(%H~rIup83CCT`@-1@QdJnd*jRl>bZ49Tkx#c@zFBjsR z$0C95`|h9H>&MZb1hJq80WklLvBPVPJEhr!456!3U`LC2P#wg~4Tfc6S&R0n7K>!P zP%P_LcU=!hcIn2^?^Fmrj;8(+>*04PJ&@gUl>&J^bmpWJQ-F;a>VfT+8y3iWa_;~b zwp%t9$al*o9}Fm(YWEL^sEXj;96R|u!0#gYzp5V(t58}$9)YS3c&uU=D+i)y)*J0H zmFal}^3FVt<83y=NbWq(L<#Ie6Or%2SK(Ph9EL{$@IYUM*Bw5wByyEGzBX{Si&96OadX%lKy%yf7yv9LpJl83d zn%5kiZue4jN};?PTR1Vi$-+Z7{__KSb(-#0h}~Fn=Ww(bhS)g-gJ;|K0>_{YQ6PP` z{U~iJl<%ac`SA!F*ybR!fwMWddoQyR5#Lj%5SJ=D6ZwPVFhCQ$z|a!8;K3^M?59cy zc|XI3yjS=>a|E*%io@?(DC9l%BO(Rnaf=w<@CEkK6tj)U#KFJu{48)O$0dotYbst> zosQZ~fN`;>=R3MaFb9cr6nhFnU`bHn`JOiz5(Gu9CxMjojSA)>34ub_5rnsR&!Og& zR4plBUmNB=2?N7EWcK*>E?8$UIp*EF>6g38l72dHfr=*y?A@qn>ktZR`F4~bq90?*5@wjn-k2FM_6(V8PZVFI|9 z7FQ|OfO14DX&a(fr9MimwIs15DFV}?n79UgA*q2V*p`ztR<@BMQ~0XEw2$nY<<1Hy zfPGu6^npP3#67kN|A~A2SHOw;1Nu%_2=HgT&5qA9m(1X5TPF{gwa#9RwtB#Zb#^7) zD+iogXKzG30l%)ZH=$P*f(GmDsUZWPJfrjXX?j~Bes~NUMpb6np5WhA&^@wju)u4? zA?m4!7JPE%ee{LT*GxlS_$bA6^o0i=Gtd_l8MyH6yqV!h25@w-*?*XG(+0aUoL<2i z7;%`h&)+)C83#HpdKw8%^SQR3LDD5e<+hV2jyb6zfb!e1|1Y`yI ze3yMX)0{|W`8v4U-k(+#f$DqgW2M0M?y-+&x&(kt_u2=Bz*<1J^82bXWOZUu)L~l< zl3d(s#E~gHbK&4-MvrPA?X}O7lhyjY_I=C;Bt`h#*)$@BK*!kuybm6pJ4*;&NY5TQ z8ob}0!K@|FvF}W07lEV$_G(NvnS;+Z@aFag%Pd)qx9EU<5X}^kQ24Y457jad3ZF>w z?mlcEK{20`pr`|f4+Tyuw%eE!WCo(7B9AkL#d#ETJ!*d|_ApVB7Y;h2RLy(zs69J` zc}A4L{8EoW(FuEX=CL3Hy;=O96ZW?ldI!YAH6j2V7GcX*21f?Z3WMLC&+I8oWwH>a z93y25g+R=psEw^Mn0C^xW9pG*IfRj??8D>;Fi4bt^K*MEQTbyl>wphV+SN=4iSowN z_8w6rgIpW1_q5%^^d|vuqqFyneK};U!xwg?uojW*-(qF|T~OKMBV7UdA}xnK09bt1 zZVadA?BI|7)#RaCOIZ#&p1u02{Vc_-B3Td_U0(@M+(eNi5Vq3ohJ7(pKqAD)ARRkc zuW*n#BCoJYRMjnfMU3~>P5YV<<^&0fk0a6ZzV5}GC6lp1oB-YK+7l$oFTb?E9dlQr ze5-rVfCBMfzGrXA{3ua=5PLa3@&z*uI2W zD9AxgQjaJ05zHns8J}N+0M(w_-;n@V`qbWm@kjxvf3PnX0*J`ANsx^njqm)-9!W80 zNTj&UI|+6^w|~r>Br`-fM@Znr$Iqpm5gH;s7dTF^tcQ=Ezt|}}`1TCd>Kkc^4!%8s zd2sm0EzID9Z#h5N`_MGAi$&r)`1blP0tr6&_V1nI1L#k7vU7030d#5d*#qb@d9GjV zd*r(QDgUwGVp<|%{5=mka^8YS;R%IbSV#-mu0MF8rMT<&4*Jbror-#w#K(@Fw*77& z$P6IT+0oOxf7sul-`xc^{b8R966!l%XGmD_P-qpaWs(v+6e@v%wE``7-Edb+FW?k3 z{V+&fn)x;}7f~joh3turzvwL@9d9I2U>#@e66-i~mxPWAlqlJC|fy>lo5_Kj1E=k^AS!rakRwn+TPr%;^eK^qPLMdT zgmwf-$nlC2D#1(dvtF7M&bVMi9Rhwveh z^vc3K-oD^HD$yXZieoihkHg{X$7+)}u=L9B5!+YUJ+Ee8C9wA&uwp{_O5WMk9E0ho zG*rKD<%R87%GY$PW8Njw(V}iYP$Ax7qto_)>G6(%3<)OgQ~s2Zx}24sN^o44>s~)e zbR1*mlCHP76&4i{S5vAMeCyO^g<}{U@0Fx2 zK?({_?sAom9TcM?Nx`G|WH0cj9R?;@kb_3?cpBH5Ovb8!0H0_aZKFs4Zlc~;>zL2< zA|dcZozgk_(GYB)4z^h&81|mJyh3VAP>(Grd^cFCcl2&hcDHXKoCm5a0mPd1xkj;N zy!8!^G>Vx<5`{Noa*U2f%p5Wqi({G>)NAhWMv(v&Q!6vqJOD2V}!{@WDCa{7=L zpdA$gU1KS9c)5XW9Qf7+ba~5BoFKhg3QOUgoCuJ!C?**Uc-ygwc}x<5TdnVj6aufU zwPSd!be{K7Ye#Yj6Y>e+Jh+K~lf`h*xgB)-NHPx_XUHeuQ9Fl81cg?ernh&fnVM1n z5gi=EL;%SAw{&p4$25}y=+V*9UjhKn(o@9%A&>!(`69HM2m;O1dx#6ukp7lwjuoP^ zh@9Wk;8@!#1u(C(V~PYoO{P^#X0jB(r(GOMA%MtI-{Q=JR1CYfM5YjGjC8H=Z-5`E zw?Ip60`~?wYSO;Z=z2tk%!FtS%;QH3c-s3`cgNT;%FE*LjTUy1IPhp;%O~Q|!kSOm zFe>|Dd|Ft>ve*f)3@d~BI{d5zM7UG;z;ml$H~+SPdhWg#u%Mr#kb)<*2Rdp1&)wN? z6IX5U4VR6R@=F#4+|b|O-w{XAk$c5)IXui5F%0N9(2-47-z(m`=Rqd>LGVb*cdUi_ z39+IAqTs08oCJO6tw|}daqeUauT}VkTY>4Nx$Ontb@KH{2N`15aW6IlJ}L){y*YbE zqQ#)HXfv#4t=S6SZqg~uN|RQvNLO1d3Z)*tR0UR?pPiLZQlX^pW>*2nM>~4N@LR;Z zgyw>#V;t~~aCpQVK2!~6jd8RlZieZ&mkiBo6bb3{4_QjQ7zXdlafa^`(FcTgLBlWU zY8-UW5a={cV0EimVTodRrerwEQsC@($6!f&TgKJvW`Q>y_~@Ij7Jx#VqY@b0a%C*= zeDl?O_Rr-L9g`$cWQ$RN?}j-ZfUwCjlHCACO=cyFt`-7ECp*&Uh47x0DKODzVJpM} z4IZW=CDDa`iQ-nOPH+>=DUFHZLkW@l#8KVh`=qQi!KBJiq-!-+qrn0nw^FFg#`Fw5 zyxP~4VbQ`XeZj0hXD>W1{n|h_KcH^* z#CYyPF?{v2vbjH zGA@eY!0;K4d>9xjtBmV@2%$2r1t{YvObK|Fos<{u=Mu;i=sKcC{0>OnxuUW+ah9VF z#WdMZ_!b_cj?HxRVl-qj9-cPY4{FVZy-Og#s@aYdrmYk}@*Ias0ss$B-;)AJnd|5( z1P~4H?)y!LARAvUshj7R9Xb&r1s6tq6BlBexF1}Z=V;EnPu7Dc7K7(Irqh%6T$LY{T%~vGBF6%XIt-GRI65)K0X2NS#Ic_~7*NA^Tn&4J*MM)Zl(rh+Tq-}$ zX|l|b0eAdKYVbzYWAEdYj|u^#O`x6iXzK%t1lz>Io@UdAOUbY zwB^vuHq|)~3IN}-E2u#v#57KbOG*@CHE)}PeGVtSGFJfE^W2^_iRXuu34lcUeANsB@SecKCVfa%Pd zN)oV3ufuh-F=E&d2+NvYU~PkLK#19r5LCs~s&ubIAoQlA6|-7g1m$eH30EHlI7Ra4 z!D*s=D$1EO+p<-4mEYWHMIAoHM_l~;4@*?H*;RN@BQ_eF&B7_2PoM_BL$32=EMplF4G{%xCNFGtBjL%JU zK=II_0}ZRimXm;;BZj4i9R|fu;m$%}J=s!aZ~Xup&cL$Uq{?1-2Af}DS!CPqK6lJw z_DTWZMpghI5??<~eAdHkQzIijWZMa(ZStapUw9R>4^ZYVD5;PMJl_yo8Pxg7F<)*A z_sCC0IY|B)j-#aWyoEnI;%FxP2rTX!l3~wz@r$DaQ-MszJ^%}{ zJ`f18KGxZnsU?P>!;gS9zdC9Pt0?}}F@({G%SIujK8xxPM!$6Q2M>R9loP^Y^6LH$ z=fQ2o2vB8Les?Sv0w8S?1FCVHHc5f7n-F9QA-+L>^27D>*$eda$Ron}hYisoGyfRE zvP1^o9sbKPtREnvjAA@OUZa~pjM5(@91mt6h&n3MJi794Iy)QfVKr|27SQCxUy3P0Jm zi(x=PIp>G;!z1#W5k-Cw;VR9iN5o5JZkQ6VN<#_@uhPi43rLQ3{wCv;-c}WzMvAFb zOt=z0vXDTe@P^{k#39@y#7YpLWJ(}s=L9x3Yuj=?^*+dH>V)T)efxKl5kWGZGXds_ zX6_fOJ6kZ+Dh>(soE7;WcZei$V8@wWEOwj;#X`rCCY;^BlgZoL&?&!vM<0Y02>oTB zfPCMB4fh&357X2Y!~uCX32*yBmEfFC7M0b<$u;JVd#5`=F z(m9WYBM?8V=zez|wvr!K=s@R-#SXL&rUW<;DKvJOlT6{2?6dlsz_fK!Wp8VpvkFzh z(!n86G%Pk5*!9kZV0fA{f?n!jk4-f>3bFaZtavlpVsH+RmCo}f8J#=nsJ0{^8=pnJ z;dC>diFEEb*c(uOZI62Az3I%R7!poAO;6_JM^@}z(aJf1Vuq1uMMGMp1Q>fLXmzUd zCdGU}!m?AQx1Gt%d@>n({s%`v-PX=&LIBY?M$J|B{!w-uGnv4`tB74ho!Q3ujM+{U zVB4JyZJk3I51EW>-+mMfddK;W5I|JBma9Fl#M-NQ=eBd+r4Kf*3 zABqZs-~QFPP812kE$}Sv{2Nf46k#w3iN>?l;+H%^)a?sRib2CcfJMG0#b@nPin zi25|B^3i!EVzA^h8Pcrr>J#YD+qs14PSPhb?G{{x0#JO~flT4;4u0XGNvhz+{qyb( zdTKNzt6pE{-cT_3vNN9c4YuZy7;v94_ET}6G3--+pOMqY z(I|$nAfkFS)~XYnp?78Oz{jk8B4lkhNf_!;h?~E5u&nWs4Bql)=MHU1_W30CChfDp z>CsYOB8)+HdIxfPx$vofr}ufaCANN%km&GZ!U1=gV}u4o{Vomj_+f*u-+gf28AZ``j>!*H|Ke`>PGaHV zjxW>cKnpPZl5+;Yo4qYBIrq@oV|dtFPb%CatPC5Z>&H+QD5`~22TzwddxN`QI%m;s zj>(T;%lV;&9dP_HtQI-~(hio8*J04dBy{qZSSPQ(1N;joi6%$!C@)UNy1}#dU)KQm z6zvS851%36aL1{TT6BtbDw%^?B%*Dp#&JyI_bRVDT@;f|g29)_>VT-5P7||{OvW8g z_Azkkrn9*aKvYi+iF(-aD_JvdQSb{lM72Qlfrb9-h*R#vncp$q5XWj4w2nmd$TUQU zU>%WVWcTVO(9Og4ZP)^!O+ghyw3WlPNr{-djIAV@jIF^aI8E z&B>tUFV3Y5a{>bU+Dp6x`Z|$9Aa3y==Xaq@H6jxYD7!JW$Q0ZVRyzUi|LIH=mK8OG zlR0USm9Y&WnZj2Ozp$mj2q&T;giBzRzz>@a)uGyhBE5?rmbFDh$+U)V!#q)I*pqVA ztx1_#9KObI5Qzg1%sQSB_j_-jU>#Ag4KK|BJEND*^EOU&&7_$uQk0@0?DrA^^Cs1H z{X#Q<1jBQaBRAd&1D)!*RLo{F@A;>W&hRFO>-AjqB!HUKcXelqq{`QK^$?a9Df5v8 zZCIJH((Hm74PE{P46MV^4PABMQ*#0xUPh$I=bYNsE3|VuM3N}5 z3U36c@Zt%7hlb+Tu8!uuk{ zRgR+n9mERW2>^WmE!SssnUnHX(8UMhw}J~@_cehYAi6C4WNC~bL0YCz!MG>r1)^hj zR|ehMxbox%Gm&jw@Op$dPeKr~hf8cur119QL)<@%9n1tTWd_u&ij}>!+qq_iMD-*Q zva5Lb>b(9$I=(uO?s*d2>*N~BkPz(6d0ACwHDSh*0C@HS0scsHrAYux?(Ay7%#i~4 zwX@40OH(!pfv)pIG>z%%QcF~EzN@P_;~)Vzn!MI-u6dMH9dSKegP8*)2pp0vLUq7M zZSs895YAReF?&b#bnT-;?w;iCl_T?bMd6+_K|0T;#IdY(JnQ9pC}SPqS#Ot{`I)2? z4}V?|DMX!2AJ_0$nY<7CxaQO4Pl1@eu4E?q6om4b8|1wWSl!oUrlP=#+eJ!n{#?aq zV%|BM69S2tJFgmI3iXcZ=ekcZjY*7H0rgLL3kSI7Q%rp_OVlgRmBNkB(-jYL9bw)k zLGh@eV6f{grX!h*hjVYA0v%1RB|-pEUGt^t!V7F9XS_IlYFfgo>Au;uq=cpS$>74E zz0JU(bk}fZvVcak+dP3t;cM}(vAFW7sCi^2>z%d?R~GXjkzYGH zd=5^Gh3ysz!7g%RORi4>U`vJoqDE+q6fMYZwWM5mi}Km+rZ6Zh!79XSuf6wG8(pDtI2Fs7!7Kr(rQo`EGiJ4eW$Y5(_wD^(38&I zXp{=Q$(XJ+W@xN>Ei9?d9+Ms8O`+y4rV^|ch2El2DAM(6mBye^niN{KDP5;jXXvep z3^llS(N)=d{~(p5UW&HygV zSX0&OS-5B$6|Xc{OnQUb01vmBG#b6eV1;Lj%xbee;m_7IBI;g}FD%Jqg zTZIYIu@K4~p|Z zW$*cSv-^iuS1PqSRk{XBOQW%<%qF7=a%@Uhn={m2)8IQtsf2WcQEx(L_S9;vCS9jC znzRa)DqU|dXFz=`5V9)X6lU&LDzSum&6t~beULh>W{~*hTqWqb%+*MvRH}3ejUid7 z95$iZ_yM)Bs+1X8tHPp&*Vd|`@u`$XQ@X-zu$c7*lQvzO;k~eY&FIjC5{?{#obN%5 zckq-&S=7wny3*=uLHlUmwa=imF0I>i8dQRz>V>6Cke#{KfF{7QeQs=G30&zw&b~X1 z;-O+P)aeGTUI|T8Z8RGVdQ*m8pPp_~X*4F*N)rrfc*+uxt0B1r`B3ET7%LG-P5d8nT#3f7K6!@u2onwEEW*`YgT3NtZ8?yQwhPV z*04@jQq?)>bL)ch6X!;P&o{dwYU&`J=|*_#uu`qj>of+fQk`zh&}P81p$3&VC41?Z z&;-3jV=@{wYK_?pOIwvjwbE#@LPJ%mjB2e4H4If)r>m(&2lp&SonB#5Y78okQD;;c zwK}s-2TOX-*SK?pO3Vmar`G3h!7JtctvQH)>rQp>*Hh$l7OhIHHJkO&L^MjH!mKoy z^m?^fZBavE>bylOvY}x@M&Jopiy3N6q0t$vhKzKxLTOg0tQMUP@&nt>81IqyVcQU| zQY-XUYr0NjGV3&ItJ!4LYxGtnEUZ^4^xlMekfEAED+TxF0aaoNRVqQ!GFKn9QlnNI z6zXJ!ns7F=QEf3JQ5s;YtuetCB*UOKTXi~}MX%6!Q|$n%sHB6Frp>UKXMHWGiu8J= z(0iw#7q7wM=F{LW9vKRw?+J>Ne)U+^K?KRsWt zPWPXl@1LGeesJFoZZ-+S;AV!O1vtPeaGEA zR{GL=_Q3*Nng788{8zw(1=piZa2mWMB*QdzwQUN#SbIr*@cyEw^}|=&4Dc?=B`WZI z(Nk6EYTE~UKzyjXJ@qdzG}Qej+$Gu?>TXLt0#8ESP3RiMpn4g1AG+aDFsY1tB0c^% zcv8mQJS+_EuPiZvZp)uG1iixC&CBZH;@J}YP*D8Ix@Hj;(*)B9lXl(;4Us@40_~ zzVHU^O!S2pvS*<$yl9z;zVN!(Z1jaz8YbF`VUQEJ_U*hW;Yj6hbz!UjeFpvO?#toy zN35|C?=y`0o9{C;+4wXbG-$q}T%}cr4!mZGzF_4t?=uL?u^TO0Kj+?OkjupHGjyoz z-pU*ys$t`14-zSm1iag~^>go_7&p8i{w$Hnu95$$bgP&vWHMR~rOpC(RkvQEd~`K; zBj&rn^4{!f?z)r&z=P^;8}n-*0C3iDJB8)(<~MVi7aV&h{aFwd@9riniZ5eZ9PjSL z#FOPY+La0J1c~x965N9sg+zIMqWc43d9)Z?6Y7E88R^J9woJ;Fjgw4CazA6*ktoq7 zGXcrHrze2KhuXfZ<$i+-?FT{Gz>B7J-0PXaBqq2b*9KIr>z+>!I1O^@x{omf$ZSMn zMV>_N&8a?Mh2H&EY%iiDZv}9VXhn7Kc7695dd_JO-N5}RGmj|9S_Ibc5;7S{H3}8< zEoX*-3w=^63t>g%aPQ}2mPAf9@9akIYZUD|4f;26r!xg)#aPRao4D68yUAp{U|(?B zd#|axJ0*k=QBjeN*>jXkMFoYs4nL;;Lf3$CS<+%Xl=6=?gos8Oh!j*=_Y5uju!4Z5&$7@xHU{$ z2>|cPH{2?Cc$myWTo5i4%W^@I$U0w_mhLYYGYN@>GVlzT+{!(L8A#?}vK80qddvhe z8IuhGHm10>LI6ZWJnvpr0*Qc2>2JbY4<@I&`!mZ(r1)IW5+a3{DEvZOtsSeg_wf#V z%YA{#Axg5Zlx#c$7QGFvej}M9l1fdMAhH?&Unz<8dRn_jg)#?8P%M_cXS`F}yXR5N zUNQ^IrEy1hYvvr8jO79$KJVy;k!1o1><@$2w{5`O6F|U5f`$;krnz+@2odE85|rck zE0PypWFVoddp1+%3z)+7r))<@6DfRYZ-s8|B#Mb6GI1|LSNZ}h=?)Q9B6IL2oyU2& z0n?C7##7`h^41>Y{skH%Q4|M85_%ZG>Vd?@##xamJbn;i=JkMX@rS3q1bVnc%1{)% zejer#dO+baL(<*lX?U*{#^KY$V-g3}!?gfCoc}@?VZuRh_{~-*A>Ztk4{eJ`vY(NeH9( ztU^_YjttbzslL2XBqGb#IH02nt+L=Fl1oB|P8d02HHTruVR#9!e?abY6`v3$@n#T2 z9HT|z7$Fu1aiVq@D-Pk6b>4R;yVFAH#bRt~f8A;^94&uGq@(@oHlXnm_k8Lu*s;WY zkRhSi;nao?-A$N3NFdZPhQNaCsrNvLQA^!zneyid>p~E)hH}f?OQh(6F-j32WRY73 zDs*zif%xU_7$%8?N8v#b{_1k~9wCLo@kW~O)^yT$gNX{vSn2i$^1(8gtK1)!p)4#8U&CY~ao~n24ITp)hViulnY-QbWd-58BohP` zIFwI1&s%N1`zpmOCPjzCcl{=urs8fIBM}6Z(7lZU39(OLP}_xK$|qSAwcj5L#RS`L z&}y^$9S{u}_8&ewL?Xa4asl6`3LoWe$tNCKq%gC8x!OH*8P;xoo2eg$AZ3_e7IPr#tNFu`&!9Nz69 zD;N2>?}k;<5rX;oM|*iU$4|JNV|86+IvfF*Y&GHZYrtw-0{kz#4}MP^T$nIN$DBbV z$h42ASPhZ`=z;s($7%XI&WwBw9$44P@k;*G9!+dtL79)q89X>vj6F%40jGV-bi^ZXv;eOB!LHiT}& z!9!84C|J-Tk_1PRqLM-89d~6SAiN$}apM(wk`m1A2Y9G0rZUL;%sp6crcv#r`vfzY zlqC*doj|1UJbSyGa<2$s<`J3f>75VB6g-ohcfq^n3-@kHSXk8IzvT2p)`sI&z1PpV zjWm-_qQ&#pRu|o!88?}XYsNwZLFRE%c9&M8CZOXtNc(Wv{vSQ*`u2 z)@XhHS?(fHBeuF<#a8#Dgw@HAjOVw~d9WJXKSv5~Nx|M!etl+bx+O=L@2Zp*Bw-@% z3@}f`-Njq(zbLx5h`XL765RTvTogC`hKs^^qcr*K$tsz=8FzV23C`x=Qx=)90^waL z9|-6VJZ|j@46rUpf0H%-~E1oTpVr0+akSV-D zddJi)xJ^ZUhqUOMsIsxu)9M#wGS7%~HnzG`gMtavcc8dI!F7g&V#9-Zk-g;TC#&^F zH!Aocgo(VwSH_+h<-z_V0mgQ`BqE-E@GQB&KLt@VE6`I7Ku)IuevPUws!XQKs0H)< zM(#~f6x61`8{G@|adk@)7#nw^OJd`$b*a?GT}PS+NFesx*JW;Xz-)~bvNejN4B0+$ ztHW@XEn-N$N>dQ|I`tt!(E`kRkr^jBtggsiov;Y*8+e!3L}NO9jl+UV?9#}1gjYPQ z9)3x}`i3Iv$Z_2(kET6lI$=j(zK|30x3|Y4kefFfOrwC6E z;u13+#mE2@4%@o^kP-zAbR*aGgI{mZ)Ss-zD(qY+t+82tEW$?ODyuR2(*SGTFQu+e z#OiwWVR%o!zJhtHcT>-TJovQNmxOuXVa4cP1$~+3WHKIBsJ;YsdKY{y1Q2!lz+W?g zG+3v9`#rwJz?XlUz7&o!2O>ITnv8xh&);MKdwTtNtvkK$YXgU+KnGf1=lOlC%%-Qitpy6|LK>) zHsi>bY@6XiIK^#79z+<>W91;q{#Kh&Kv;rwn}I|E?(c${@{NIBiseDH7(cP{5Vjaz z<@TSAKbV{8fwOF}WMAFA+i-PGxDd>}fycwU7QTjl>}8>A zje=5IWAX68*(x?7Q^d0O1y0mT+8Big>6QN2c)l4hO&Ono}Jl9w>Oh zBwZn#U9@=cwcpl=GN?gMkip9hpS}a#rmXZ|t~2H+d;{-ewCrf1 z^{2xHbHRhd1smz!93r13_9PLpvz{wrOEg^h+m@&}%3C64Xs(E%Op*?fC4L}a$am0u z!>0wG(OV#~a)$UHPW&5La5%U*_w!dRz^>y3z1drL`MjXDM0p&f5`L9HgUUxC#L&3#dC~}Anx0fe2rC-X zL~}QBkOq$%-V%6;6JM*Mr<+|Bx%e5HiI8yGh@UZI| z^J4)OPXGI=eDm;40L;T*3&xkF%Ur|l193SCKeYPA2ZKc#+Q0@UsQ6+ER{r$o0d{y) zQuv3(!hiMg&`H1aOXHRdC{A1D@0rlG#dND{LbrV58sQkChTI7A2)9H#r47Oghtu?X z91>rz^e%}6yJqS&aj#^&#&+R?oq!+?T0)Ccg+2LijwswJx56DCS-6*3gh=xlJdRac zK&0@z!!NuR5)W29fu}OlnZg4UvxX=tUNB1J0`y6A>=>0y;VS^;%NP0=jPO;EyG5$l zK}u1iib9x2r~)nej;>HRo&p2b5l!T25(CzQH$V@C*My@38ESDGDV^sNl@c9dmslXd z%>5~1?l+P&Q5*RS%N*ZEf{%VIYUF*=v2dXdv}?GdA^KdcqpMw)ZzG#?>WI58Y$GdQ zXXk^jU6*Jhf8lIW&_wBD>jk{5y=Ec3r-S{38J7@Yo%V!|27=<%dw^!hQAlhfw&< zO$#f2x+|nnxGmcbDl=d%-Uf+)l>Mu>kpJSSUvMp`Hy++lxLdB_ShTTlSu7cW%j?D4 zY*S$<#atxm#I4FXB84vwzi_Kk2bg-dt?WI#x$q;3xl0rkw<`5GIg;qumYz%rte^>4 zae!~>@dclMh|KF(RISVa>?O?O%?s@*f&ARUOgi=kYofk}zS0c>2X0{g3Q+7zPO*Z9 zUYdG#=S3#(T7KavCIwaKGYGsv`6iLV6XUJ0t*{@>bS5&zqHW2EmPEjs2${m81n_}s zzQOk06i5%}MB-b>8A^&o)M{H{9wAoLf$nz}=F;?Bkz6xLBv`H^Z-^bndPCT7%TSHu zjAZg6JUmB%n^^_00^w$sQ$WAOW>);^!mCxm7P=tTn{>MHZdLj-NVeQ?trw?&V=PwK z7R~>*@TLab9sOZAeeH&PgH-l)wsGMBA64_%)%15a2Gd8{-&gG1tLi{2-Z zV4umjDfXFxH%sj^3Bg&LD_||qdA7ltgwB&EV8qvDR~YCqCeTM9rE+evh!g%n79P6E z*%_V}3G{`V@*Z+00H*mSPeKBH@20$mXnp6rZVEkQAN+g7%1*?VK^|K|xZFXCE2xKb zI_ycJnR2%X55ZP`Zc$8CFy`w8WkAa<6{|6^WC6ShQ|=Zx9J_9U1nA(nbty~(2>|b~ zPd)Hpo}e<3Z7<{47SNBcHLG^q^9_?iV#TLF8lCW{n090`K4Fq_3wTd>I!FK{f97ez z^pyhG{h4Qo5I{uS3Mt~cg|CS5Za?XHKr!P4SkYTxysN)Y=0O3*m(6~S4f)Es5TT^U z-ST!h?P)2(A*z3sRQ-5Qixd~(yfeP=`1?qFqh`)6p{s8~RLQvddYDIak7!c!)mcw< zir&W|@wvK}M1oyC_mj?|$ah}gPMQY3Qx zdqTEQuOD&AGk~VxlhNOJYNFuTq8BSWM3N{lQ{M+Lb?^U(sj62!#}lN-Sx`N=?S2Df zo`d&cMql&XmmB*=UiZK^G@E}#crqT6>4_9V+cR!>hR4d}{dq$q zPlQ*-cDlhlq3wV!`6J4JUSE0cfsr9Qqd>Q>JU>!n{36d>IJ-SFlEjE*-sdZ9NW>aq zH*oKThlp2};Q-r^Ox_Q72=2DbR+L52n6_)50@J&z8^K+Ek--1~FTMqH+kzd*;QW1$ z9!$UInMLhHoCJvtILo=NheZavjm)n-T_|`1KZKKx1^7}70yZq#(E!zH0QUQy;qd(p z2-^a05JIK^7w~r=-9isEibSgLjqHm*UO8IERJ>&$c>0D! zQMdWx+_4CJMe6HBI(tPbbsKDcBf9|+??4N$Z4Id$mnw}tI$7gVK;Z*+or zLf`OqeD3*-qK9)xeC_H`5(##Pp0~yAYNy*0?Wzpv$R`q{^B}djnF$3eLUSsEdp~(@ zGb@9L?RAD7HIvwaimmWxk=Rn|6xX2(MPhT29E;r0E)*MTx6A+HvD5TPk=TxtNU+$7 z0>oy&EgX50d=Q#L5=)fM^GU1*12Q+vu1Rq#ZGl72A7NF(q2~_*PJBbpC4YEgwBW;! zXNS{~cjU*PwK&O#-@#S{8xp;`NU5W1+>sxDUJ8J@H>~KThHi34e*8Hviq&xV9e(_| zeN__*{wW-O{=iwFV3m%P89V$WQ+Nq`Pj4y8pqW098Gmbohjs9{c?ZTsCgWjUpF7@= zyrMaj5JEIeYQbG}Kvs#3vjkP9mJ_NHdAIw(o;vixJ3{ZChv<^=?%Awfd=n%zYPzzm zXaKy2oI~RC?oA{TY^IB#+J&odv+tDJOk+uI3G(hZiu^-BJYd2cofUC(nj}VKt|tW? z`OLMWt7rv9KMZ22JvcQyVBw*qnhJ_uQ1ov>EcO3k?YRS@IJ(a+h{z2n(iD`UU_%jm zFQ~Dj*kX-}-LuDNG*&cGvG+-0Y*C}e65+U8?#^zK&ooP#X&So*EB5YhW_I`X?c6RV z-}m#6bD5d<=Cyfm`tB%%9!q%&ld1z9Yvl%o@99icI$P1{-8;4F|nC(61ck8}O=?O789(zRkZRNLqZaWLCx zdX~41x@Z4q+t`uIvGSgtl?+G*$I5gaE2>pQxU$y!2pcGx0y;w(ipti?IEZC5*q`;# zN65k_f6g-Q3@!2k*>N~)f{#ER;50Lgk31kA!(jUc&dPQ%$4jEq&&sj1U{Cf6C-SL* z6B&LqD_*##mu-Flvc0L7ZSwA5>7B2$iVNhL@szW~)KoJGIHxzYiltT!wa9yXta0pY z(L%qmZ;cr>_U)C{2VU&n{O1Pr3ZApfc&;zgtBx4zaP-1ge`}IFt!b$CwDJ3_?LNXA zIOALve8p7jD&{Im?jnN|Q#yV!OYjwjvYPRU#%rQ++Q*qC4ENZ5;RW30m#i5+0+}cy zVy3{g3|-Di51hxc*m6qRIoY%tp5q&9&2#_6w9I_?{y%i>Gz6~=`XpZXOfTH61qgSu zPPl9VA^LRIOW}x&Lba!Z5CwBPJH0sBeC~gCJ7520#LjI!J2xOLobSogv7^`uu5~V} zorun}u2ZtXarV@kirR{tSGrE{nXyjo*Cykp=d&h>rO%u9r0(%3$mxfyYGRf1tRrPO z3VW)8U}18$HVX4QkMl>^8wg$k&ikKCrN<>sw(Hk?5-;{YukXOTNhDy_f$1en2Xww;Wm&0YUz7DYecw7-e1=>*^$}t;&@tqR)Tnxliin)ZO$+clRV9dvBO_YZW5$8 z?;WCgRd8n@1}3;~yaacc3Jy$jn2=0`7H^zKm}Wz|vPB6+M*9F%4uxQxm65G=V1h0H zc~J(z84?T0Bj~if020{?Fmx1d*l4c5P=(>4ZZifiZIBUe=sPPHmB$s8F6egxl)r%U zv$Gn6(+c>_QkDw_-qW9wsjB?H+6a)KkV576DjB8gWz?6K5!f%)Tb2>GUy5x85T;Qy z1@w&mQm#&WSH?lY8QTybEcS@DfN*xp3z+Q;5Y~BsjlH4U9U{{7~FUlj(notNhlj160A|891GKxV(XPszTCeu34pG2#z| z+-LR_?ZT|oFoi*gub>+6q-ojf&HPQ3>De!1jkh1DP0nt?<0fWQ!INiXpFo8!0=ZDv z6eEHZlBWzLRp2;$Xxk?P!i@{zdKuZC;T-c(FQrcs#4;E4{ym1)U@|~0Me;Zw_2I1S z=YrTkL87{;x)2F91R)*^pJv0;Dy1&!I|C*}vxz6;JeBL3IM|i#S)25pMHx(L($As{ z(D9*m0?4%NC2{&i^ZAqdiY-i$!O1>mG7;MqH=Lba9Y4(^ZIeC0n|xtUOHWz_amhvV zEnBNg_pM2?0Kj&M9S%Fj1eeX`iDeo zGACcG6EH#7yqM#tuqiu19CJzUI7ZUCO&rH?lE*oY+MBbzQl;_u zZP~?fllNBy;gs#!G3Y-K8(sJ&OE#|U+0)P$FoSA1R2!AfSE@NkBy)IsO87od76_PK zff~Led!^46x%No>pB>rt(RENy-BI%6>yc#V-?D zRL3B%>0icU_GFhuK`@8S#~#>2=!%EQv>gW0g2X1+rWZH9y(`;|OZ#^S(j(vqU8oQm zaJfL?u%~jpMGEaeei3V|E!!cW){r)?)hssD`qzuYaJD_$hI&Cz)`fWEGCt_Yo{HXp zIb17VYKBxgDrKjUg?tFh5wzS0mM!E%_JF1MyST95%SBr65+cEC3rl%UEiR;0nzY_b zk_TEZT|OD+&fX}B+Y}^f>)is8u-3cmGT(YLFaNvNYv%Rc2eJzb=s1)V+kA5CV0KM( z3MR9bcN|YUlv7(Xae}w^8Fapjs0G2)f;V-f$q7qj?gVY2O3zMlJd`Ll@@rQ3oJp^f}gHd%@ zm>F}4E3}iAlAyJvy#{2cJf!b(HW6DEz{7q6U>sL$NtjghX!g7ypH-9nasKJeA=2hw zvR4L)Z(PBh$}VY%Z*K~S1tc6cz@n0nvTZ>VaYz9qAmuJ)s8YE<4^u!}cyyU-KG%IV zC5Z16(qQwMMMY=Qd}fe5uKD!1n*E25xK2T$HlH;R32Q!cukg)h2H}nN>i(aCUj-~& z(fZCTxVK6n{C&&ucNCJw^`^h{=I`}e*_-^uiyVLFAQHyk_g?&c$t zI8SYsEp@Evh6NiN@2o^_9O3w|T!ng4r;+zQ$!;fz<*%9#3)(9t6)(e+f%n2^*<^vM z?p5=ie`hb4)i1IIL2P~1yzAf71H(*!jNQzg_9|}wE`NI@oz4HZ| zewg^DU`r6Ekh8GR;3pAg%?y5mPLOOWD^Ik=2;xcwiE8l6AQEN}(}zEUWo{BE{ z|1b!vxk0cifA)J>gj>gmI!-+8XL~N5D!?GdDvJ6^1}6s5&)+sw5U&Wt2W}OM+p^2Yv+Ta~aK)B|vpEjF!eMM>KfAGB15 zmF@zK{dsmn^Z`s}z3ruc;~z@fD(L~(;Id-0tv31$0N}? zw7&N%o?g+`kPH~z6>T-enx}DoMO$C7@@d?ulC6>O5-+Jl{@ijN->PJ5UHBoH$Xpoz zHePx%FTSufIFJ0*6Q^vt*;}miH~uQoHdri@hpSY!m7GzMsbajA)Vg;h(D5zVsJU^H?_< zJeV`&e|#{fX`tkb$L_gV9KTt|78KH!Qo%eR{UQ{YyqcpgCx_EF^ORR}%re=lImheT zwxM@GHS%KuZ-W#<0_%{znTKD_SQ~|f`nKDF@52J}t!&W^Y(3E;kS^cKwtxHfR^t14 zxL8A5Qv|_S3oT8^lv|Vfs0^$clWCEv_Y)76v zsNV*P0w&mu$F0V;E~HU3Z({3#z5?ag-b{c}SvWoX4^U2SYU?2UfsZz|bwQ^KK&huP0m@TE zuTvg7m9VO%t&>k+0;o^%KFJ3HFaC_gMfK{4>=uRM&S zlOQ{EvMJ5>9a;hrvu?tIYxtW^wsL3z%%R-`pcUn*7%!aCl+L!-1+)W#5?PQ7dAi!# zi(9YZzFlpl1Gj=~MQPi*+9soeAYE?bs|(qjrPR0(%# z+9eccPTTB6MXz(s1yHQKc>P6vGjF1_fQ{?-O@T3K-G{}pmk7;Pne=n z?)Bb@SfAj9GpnJLTDXrRW?-cV|dY!>ZN0X2T_4J%Kg>BZ?W>@l-#@GkCJV#E!7GYGw*X`7#y z2_|`<8PILf-@RvRE{Mqr64lbHKqS=Cg_5}1dK+AI4!+@;O~?p$RSE-&0R&JJ4>w`O zJy&BzH>t$t5PA{(`fV@WW$MYcmu1&BG{v{(*}lZ_!yM(&SV-;d%$#`7=7~`^@VQy* zo1t#x^%q&t-EZh;bkbv8l`MdEHlY(^OtIQ{uF7u-&00YECTI<APLYoeN3vD+HEQf{5UQ2981HT72mC)63scjVc z8Kldh3oWy?6TZhimf89u2qn)TTv$eisCf{G#$Hl>%5qy}eR+<)TL$z|2mcD;-j_XI z_6pm3W*)EoO4|_>c@xN;^#{UlV(Thf3lt7>mX)-phKGO@V4S5_+pH#e(%RLwIwEQS z0OdnV9zT=nr(9?bk>j|$6@#JykX9S{Vnb$xgOlfa_E?Z9J^9%YvByn)JMKoYn1r*= zBoDM>x{Oq2jjf-LI8H&Lw&T$d35!_0Zt@YU^G$<@1(^bLu!v=xr}7sqzv7U#!FCOO z03<>0!jHovzg^T2ZGg#a66S-Oa`#XNz-D|jd6zYkH|t?<`NW2OP%gwuD(i#}!W33d z?oE8}Q=5w``^EC^=m(>+Ssj)n;5D0V1M%WzYXbF99CZms)KO~)1Bihn^S5hr!|YLt z$DIBjP&gC)-z9lK|MV)7jyr6>iN$ZpHl(V*=q-SQssE{$`tRQK`0;ZGGAf$12YLCw zV9nRoS+>rjAF6Sv5_!~&>y_0bE#D)w8Kv=b97BocaLpB~n zcv{YyM-)#C9(yJzP@3+rMF`@=Tl_kMhN7p37X7?($6NeDLp_q>wa@^?EiW{{6rkF9 zPTLn~6IHevh*)ELCe2MkJ76+fw>diS7heRRmGndRkEA?olV>9)BQXDH%N zlo1ju{`47U2ue2W$kW;F{Y-3*_(xBcixJh1c*&L6dvS&rIZ|ei^=M<-jjqW6Qn#W=nuZ)S$S>S^+U(aD%%g1fW zZfk)ESm!whXSB?Lo#&mm_4a8(E49yf<2*tm>rVV35_$|amNV9#a;!aqlySZ5`!Z`_ zQ+b8Noa05rh#HuB(nwr4rwImOBEBfoECM0Y4MF$OiF5$WAPOy<(oI{#ymzTJ0<6ok2o*iylJ=f z!04K`m@X?vOeGxXz2@sg)m}lU85I!JOu;+KjZ{-vq2#^W^3c}UqVcs>Ic{_SR!1i? zV)ud+O;@Vgd;7>!Sp}C$$8o=A=sVr))tx^%Yxs@UWzzP4A$giLu(p4%ZBErf;(Y~) z+UvRlk+1-D#!J+{-qjb#jnjKFvx`Uvx)KV+Hh0YJb_NfO`@NBKN$h!tnJqY}rTLV(DhRGN zllWA!HG?h1SHHu$OyItZQmlYJ7C}+Tu?VJUx|Qnm%;_VbIfN&VZL{(C!CpDZXfaG? z1Nb?2aJ$|)uNwgD>zz{pZ7>38+9&6Z9)Rm&tx!0HB(eq)0aG-h{qe}92TS25eRDoC z3vRdi=6oMvJWuG4r#5uf#zp$)OvDpDwMXFf{d0<;Uv-qzk^N7&NP12;^b^crvGycL z(TKv|r;}J~lGkB?W}@^-81dyDz4v`aahkNZ$0QH5H#%9hdtgqSfFozfv6kId6LuG1 zV2w?<%lsO!l*iOkz%ecpYFV^3&LefOXq#p7oCjmB^<6!4uS3$fXxohB5#~U&eK|B| zi@!MNu6eX|DfW_nS08Qr-j$6%JnsK)&NDp!!P+2c>9m~rg81`Y^B5cH!K06{yJeM#AIY`|y3osw z^s$83$G?xU&pZl|W2~_qIc2Gr^4v4i)H$4w49f>$g)R0Q`t?5KxxGHvD2EJ(g?vU6K#~Owj}^jaiTrBA{KgKDDj09q?MyX``4gL?CbH4_cH%t}$~%ST?1=Hc=gc z$!uQDeGmV%-+Nay05ob%Y99te22=PV|yMOpCpTfa|R~6C}N7vG*6mBSiCN;jE}~G5SFn zD+y=A1MO9O#Gme)hqEXzn4-aUEQ%NJn}@Cn9vFS-+IJsk_1gFc zlM2Sh&V_k12IVEMl6P__{SrU2>mJ^is~0*}4BWFw@)jUany zZ6>{pT_jKMv!$tJ?L|f0r#*1hUqcM6i(!Aj`|4c}^uF4JS~jRK&LdPZU){yzjR?lv zGmg2(kTlL$KaiONzS>>E{@5axcxdjL`zYcMd#HEK#UIM9`31$vyXFTE^sYJXKWi&l zC}GeO{Od7AH(&|Iu9-=s{X@OF+dMQ^cT19|sau`FD_z&#%1<2j(A){T6jBDu@WcuK z-Pr!UpE&uUxf4F-1yi-9y^5ch`Oti_ZC_Jfx%l%T9{0eWMBX>GFB1ZN z9%VegA9AYI-T*|hx3A`yWkS+W2A@vkYHNPHgAwx0s(5|z4M65}Lijm2jV zaaN$CowkoQRW0!+RdrpQ_SP_q1rp!!lXY>@ydL(^<>{otb>jY!~2314U;tEO?wvsO$3?p8h_e1 zE`+bYX^+QM``KHg>97DBEll(hUlE1&w-nmP02r-Cym79*69^qD6r@j{K!Yh7JULr_ zaj&PpPmbu-5qFUaVeI&fR%{YGwvs%}nXn1q;{)uw{Kc;nBld$LEju@UfN2 zKs$_OOtHM|Zk$I5W#JGWyK%H| zT}{!H-(w~W;u&X-wU-oyND9YpYm@KB0e63C!1Z`wurPxE8gI|VKaaN`6DoOd)iRtS zZlRG})dcqQMZBji&ogvA>N*!DQAx20xZ}!{`9Gv2G`$%2>AvRrJ!go3;C<)9rtlt;|-NVLyeoKpL4x+V~g`oN4cgHo_b>PrMGKfcg_N>?6XB^Q4^_ z_Dcf#3IOt(t%fP=LIko`ul=5Vs1W!EfK|NuH}Bi~p$i~g-tIPej=i<`hazDJ#vJWa=v`9y6HuCK$sr_T=j^QJ;08&}tzbn{Z^>wgPpbT}y{C^j=ZSf5ZG#ug zi}m*7qPY5r`H=ZD4~%ZeER3Q2RL8LkmPdh^-kwhkoDUS7Jb4FGfT9m>wqG!7lFlvm z3+M-`QMKpCx4(J`38TI9DNMXN&kZmYe6fbu{lW@})rw%Z$`J2089feCr| z^mcnWeR<9)xfKDy3RysofhigZn{5} zsnsrfpdeOPFnO8+#KfAyQ?I7*RNoYgsh3x0jq_IT(OR`vNG1&+9in>c~cNM?)-qv}tpS<3LbxhE{-kS7$`ZCbuL_H*K#r{+!K4<3)y*KThkh^wEP zH;D@#7`{mm4pU)kcxuoZpzP$<08@a%KgzXlM_*CJsTR-9I2-{fT50mdtcq-YA%Pno zciPXOpFl}Iw%k#8fY{`r5KPhVmTIR52+x}%#**h5-cF>04adVs2}b5 z!f_nlpW_q1+J~W{&jGKre-1iy>f?r%=ZtJ0|L5d< z@XC^*`1x=4pHaC2Ae$&vmXRSv|K~J5B;$kexs?TS#o!@xcg6g7zmH;tf8f zqri|=6&=)o>}y~O5MtD6&DW3-YY4uzZhySkn-Btrtvx95CJv_?$fooc94F$?c_98GvQ>@hgs=bha&_us23&MgZ(& zu#OzAUpYY$Fl2|FjF)!bwEGLy&kf|d@5-2=mJOS6s6)_GNtPt*r$rKzDAkfv5LBX@p4kTqDEK8XQI5_G1t9Pxlc*T*lFgI?k*Xzb z6-?;tm-d^!bx2LP+K?iNs2;47O{3I$$*v#S9>YX9ZVM-X9d&+LUPo;uRwHE zsBP~>ty+TMG&g`)>33g;L~d_?iC6eJYDce%^Q@j%kc0FTNCYGQ9WV0dD#VOu|aR1sG!S__leCdO4SaUgP3F#s5j9I@zg9w3ooCXs{PE9rZF=Gvr{ z^66-WWL?Evkj_*{U8cxwv6tM`5`-BOxf#VzwE^or0bOIb66Dy6{(?MERmNyN#03gT z5R^<6H400T+7xpH2d%$Z&Oe1(cU&H5)?A7A8 zG41lm)+8^ol*2P&t;h6KmGfah0qbSxyy_W;A2*fm4>+XIKs`5Y|mnO`3G8qOE?!$)6J3A3bx zeoz3#CWmvFqM4EOU9#h;fF!Ckwf{~{7W5X?N1Y)8c|HZEXed?748-|<+8e|4%~7(g zS7&Y~p{Z~ku46idu?}NIEk~vx+>mjo=9UL>FmwBbH@9PofOK~(8q+Q>br|QVe3ih$ z+bu(+(RCehLX55*d)kg#bg}$Y=iz#e7cs`&DYfKyoG-0N!hsDO|3QfYPzLK;k!K^S zHgvp+%EKJiw~7ZT1eeSy3HK}#7_nMadXEIv<(#G zN1A07q?`W%(sL~wZ=nMPAd6R!xeG?dZEaEc(yM?*oHZ>S6VPw4Lbj;WsFkBXItP=f z429qD!&Z(4`tqE%%Nc2#t{ud{$~9rC7F=1^+_eXJ{Y9KUPttBCE+m@A7?I?0F=kd< z$6!A(PC=r!`e=xRjS>Sy+^LQOo)Z*BeUvdKUvBZnc`9qIOjzr{vDOY!#rd<=I@Z(x zL{=C67DcOws}*zhHC$Hcpr~W03{Qg3sP2wVKH?M+pZt4oXG54CUNCifJIJ!a0z&UN zcPGPBbOSvw`gk))#K9T+>WgV!@@-Az>lJsPAmz9NQ#7l=&-yt&z-M3Py^X)GP`EI1 zQ_-mbh;@5%L5c>as$_f-x!Y54smb1oqt6$MzjBKEnbxKHPEK(@$bttaf~8>t9btl) zui50XTC>|)AP#1dzk7-72hJposh2xGCV3Tym~?zjUYuP?@L~NP@Jde!AJ(G0_k#zK z{ovPzlKtSz50lGFs*z$I0qFLFClQoI&cMq{N{|#Uy+dl5-eX{jxBeEeAd2q{cias( zwh-y5)lo=zMc9nSLUx%XoI2969gU$ps3ydm;L;!6t=Og^xzP}8och!k1$XG?7q}NAQ6Si@Rny zQUk==42Q9|JgsQ1hA-7zl)PsyKXPe3G1-^-%kWYZE5Bti6vyp!lmgr54%N!6WTCXF zcKcs#C;vsEhDz;KlCg4<8OlortcVYiB?I=9lS?=8g2Ep~NyU~sCJFeP%^xFNsmMn` z^zZisaSjoOSs<$%AkQ((mXVS`R&u3dhmVMTSs*KCbcVSO4^tTDw+juGPJQSYCrC#= zbdYPgw-Sa(P&3@4(_DpTatAvbXUbXl%NLjN;0=y3=&~+@&Xykio^%SI!DQAc zyo}u&9hLOusbh=10E%kwZ5YX#ID0U>S|NQCPoj03_^(8g=kZ^dZJO)8)$!CvY^xwq`<1OA66VKh z6yp6@Vj;aBGbUdS;wE`7c5)t>ar6$y(c6$1u2(Wn$C28dwC;A?6~z^W%v<49MGH%1 zc+v{bXE}QNh?@(UcPHm~!8q)W-$XHo&}-J6T;_q%cPAGW!ouyd4FoT#jw4d_>QzAT z$-N4g;%zHyaK^d~NqDczu^U~a(o@|k+d+B`q-e1CH@9O%xJh2Gy_}-hli7lw-t=Bj z#3rWqR2DSsKDzcfstIDGfH%^)-LFS5^><utatCdu{7LS%8ntF|<4C*e$yJ@YAD?S!gdPC~s2!>}y9ubOa`|nU1}FIOQ8h zJv{(7({Wg#BKOr)NIk!GG!xM!SP$zTvv_a=CbQ}<`N3a*};#!y8E zRUmg=VG0mpn-h-jP1Gw@KIzC1Vhf&DBQYvv(18$q_6Nr&W*gZ)_|fqLs#h4835}vY zwF(!(JABzR;_OhcZ+6I%Ev27@fA76I7Z2<71`apl&^7moI@R=(PKb(8TQ6IUC;8U+Umh0iU zDJ?&X-1USM%Vq~tG$rEWe>;9NGnf5&j!o#Yjt+V};Q~m}Fi9t_ImQU+9>`?w1Wd1o zD#SqqQu?8fqQpSaUo$#oM)gFyog+~INXP8y1<@ZD&380H5JKMK(sbb3WE2Ad*o?C1 zFCBF3Zy*@e(G!&IR`%T#*oz@9Z@SK-Rz z{H-fPasQ`|S!Rvs(No7C;l?i_$j@;wd+p(4kG7W-v;FZ0FCFc~8Q1agkG5A5i``rmEL9dWZm()0H4u)inj*CjzFKuqsw*Zu zSoK6|=U1AXE?k&~7ddaH`L49Cd5qT!Qd@DwV|-1JQiY?qo+xz?w>`s|qSW1Q1KC!# zup;hgzgdwKu38v}_(=6ca&t@vAE}>MQox`4NK?e&KDe^4^ro2ZgBSQp1BJ8r7X7n) zVcemR^r7E;5}X&d#7lgoC_McOM`@hkCl&LHA>v=y2+!DeGY0qalVS^c)7uzZMBmH9ih@a>eThjZP zezA4HU+5Q`qC7>v*tF)a^otGPf1_Wl|M@%pVx88=Kj_GE8obmsT0#C-`Gw*MTtU`yx`JAd+o?#6>3KnKj9y><8z~3P9H>l-jgAS)^Wx zv{@)~OyAE?j|Ccci105Ksfs^saiqhr1$XKk)CzY-QZg!CM5QI72;TTSH?>0~NKtBB z*zWLVr@|PjmY7I{j%yf7;NWcJwEe{&XyYrxcZ1 zg(T8HXeUd(X`?a;N#n=@er#5m#0UfGtpoyhnpQdzrxuf1Mnq6}CVlqBBuYyx>oBUR z5BZQfmGy5S&@bF+f8>=)eQEjL$ z@j)C~F`h1#>UR3;>Y)FyL7zev6CZJO9UG zT%#@TIh`tTaK;17uW@QcIJH6blHInS&MLaq})D;a?J@i{!9~yPQ-8 z&!{a0h#6$kf6}oy98g|ritfV7&Pn@H$p!wK%S+WgMHyW_6{Ns~*Hn#^y76+$D%}mKiY2_b@yCg{$MKa-7uc}lTrNQbL70ati ztxi^E77I zI9)5U)#-Yf-4!NXPm%VEs4lFJ8C^{aF7&#Tk7~jkW~F6Y693T_CMy8a-j>o-K@UL% z0c@mgzo0tW0I8*_1MJt7 z>sbqnP%YrI-I1^KaVqH{q1`Z(nckV3QhVfp$<*}3-4?v2qm-lvIOpT)j*c3Yotq|| z(3hn`h}T?eZExb3Dsj_xyajNL2;lHU%FJ zgwfETJe@%m6StH5do$uIp7%s~12uGDeWeaW1BAZ(z&Uk9Kg4<>hP1Vm>we3UaQ=jSZBPnKq3ZM@WpKZK%ew0e zbB5Ya<^$3p%Q&o;v_lYkG7%)>+h2x-;igj-lm+5WHvpwJZbtaQKGI?I79^81=C}SO z!f|~i&;1bnH?OTFE@9MaTc{S&%9Jh_ztJ_5DW>8HB5rg_&CrxTl zr$7p*tLI>1P{w)EZ-b?_0?G$~IKRrdc-&1;iQ$;_-sL7Z{dH_`xN{jZbbkR_1R z%Z3f4E9rq?=Tf}uxHyc|QJRMk^O5XgbpV{@ejr;5WC~NyFBP&%O9fO5BIOM2BLh$t zyJAO5_eInkf-;BMY>ZSFwS&pbVKyh0GDfPe2jIy3*q|;J2_WH`rpOl?vVEfXp~2+U z(~-FUJgGBy%}aBUTfMQXE|$LLB}`?Yh8}E(Hz<|g0<;kF$zovgjTJ4>N|;Oop|B7K zuaHWwe#__M}n!ZDeo{qbudpJ15>;dleM+c%O45Pw#!C ztof2#5MK+TF{hMBoKDu=X{>s@fF9c2z|zp;-A{Rdb05 z;DU0sA6HglvRAcDoLa*aYbJSqZK3b5w?~a!sh}81m%NoinyOTJR0c-zD#@JYB=b8j z8L+GBlq?zjt|}?VE}gQ7j|u1c4OE(RE-3Uokm1SJjbewTM*if;e*PJ$3)l#(fjsmA z`RW@fy)d~aiGVb~#ccB;z-C|#4k^!AJdh>pIecYobij5^{Y0ezmC#UD zLZOlAZx5dI&$RHTM+9Jfb%w1Ga7C5)ib z)BNEuTB}JjA58MJWcrvoS5sSKP8JOoS_vPo9pXd zAjAKX$dR9$6r=!iP4mDpN8mBn{}h$?uG_pMx`Rj*x(sHnI@1^zy>E<(Fr};KrE3C; zDF&>K^_!xK;iOAaE{cLVor;}_$KjWyL{tqXvmPWVh=WhGiqu1}UTV=s{o_z`9zrBl z47?(Jpa)=mx#R~@8tP^Qz((~tnrL4Rgui}fZ6g7SM6+`8#UjRF`s|M~uEz(5tQmd6&MzE}F`^j}_o`^n#uuK=Lib?O^l2Qb;3TA1_ z*a4H7GDtz3VkuNg55Z*nRX&+r*~deOtBT>&JJLr60HJrKZRofW08@sJCQcb|8L`U5 zwC|qOQb1QAR!#G_U^3;0blZM^AibwA&($@-s4h6Q5Ux!vKvTf9b-bb@IRoc^93F~K zJd(`DdeYd(Qlx<5fA9!X!_6_o+0F%+3KoHp2;we5t}KL@tLE zm;$Q%;|15pqmRi6-SA0EuIBtZ(;7{je@Bw1Ie*fPDz>U#?iO+x48x!XfDsS_3jp1N z`2f%{*kJf=LN@CO8|O(&#oWQZVXIUrts0}Q6O$n=*W$JqiHo(kjKaBjBHE-Pv3kR9 zGlFGPD8_W*-j-ZXbfRyD2?zC3-UnsGg(nxu(@R-$qTIOxIqRmA^Dhtwlk;IOIlKO) zoFk0+DS}VOwWpb?H#+g!H@!SsuR0crG zD_wg+bGxESFquvBmMM<=h2;*`18{!fn4&;fqdWD>3wR+!A9)%xPNS9ESSJpiYaOaD@^()yTOvSRTg zUzu=RlFH;370_{*Lo3tPPEv0xm3@ozYvjuJ3Pl_R@zx%a#to_4$h?6e_2^2uPJeL(!(lw6_E%oy z85Y71sRxJ1L+VZxD?g-eL%8?qAGf5m!QtG$A5#koIaFdqO$M_KOe*U+seH^!1q`P@ zl%>KArPu^&dd(v0@E`&b`p^b|NdckaHnp@si{FBhD zKMA41O!UAok$MIvc3J-7MlaL*&`9{JdEx&TV`=pQ8f=^ne_{Kz7Od&1IQ)sGYd*ae?lhdR7kG`q5SDq3PNBTlXcPMX zmqk^lJPSaN zI10OILW78pC}Q4mEGGi+avV!2dHzU?l_oWu5yC8#0v&Ej`Ol$ILEPVbnep< zqHmbFM$@trr4{a?K7{|mp-L80Uoeq-+b+zlccM8pD>of_C*78LUvm+;B`xtAjKcR0}k z9uVq4LN&>~R!Ck0=|eO^ZuE%g3Ce11890x+)+U7Ic0P(}`Y%#9MjCrNf`fHVUMqxC z>Z~6SZQRFE3i;vSz4JV`+_Pt_Fwr2q-eM)C&&0zllLeuA7eGH<}m)cHF1TA=uh;V|x;lu&g0 znCTXtqJ9u2cTUbzth|r;opA5vV@^@p{x=^JtdL{wW0+Ku!}S`k5^k>XN+eI~j;eE~ z3x3b7=P$MoH}^5`DWtTK;farFb0POzfAP(5b04$83ue*v+!%jx6rtCwbF$9^qw_Ih z%W!$-w0byidX>WU!mn2L!%7w^0VwbELH*cx$c_AzQOCmBFH2+Gd5o@D0*Yx@gmNlqPU%t)Ta;$lhkrANzEsc zg12`-7J#m(kYbGUNGWEbG5ApG3QrLAy1Y;L5od%tz3!zyp<_nzq&TkUnlLG*sI!o7+=aK?roRZ*{F{mCX7ouS8Y;y_TBYj-Lz$2MZ%o>|Ak4 zI{MX)VT-Cx@>a<3lI9)51&Wl1$neCK{gUjQAc*glGWo7n$!-j$Xj+v%tL41!gCwdW6F2thzcs5R^__p4xv|9!oTtoI zWTrH9+R-^3C3G$F3`o%k$Lkw8N0{VEv5lSS0(t}h`Ng$;3R4id?3-W;sBTZ^SX$aW!a{8=>8z)6{q z&RUI0Uh9_5EHix+ZRMPX`cqmwmO=ILCP>j(mY%k9&htT|K_<>x;UX8rw{!MH6Lrb$ z4z<8N+dEr{qa*Pr?VaVkp``omozn!gzzghf2j^o7#uo8)m2tu6w4z{0EoQ5y1Jj&W zMf52|%?_JQ>f&sScEe(}e5R}D80y?Fe z^Bp}X70T9_H=F|c0Rm)Ep^WM7bc+Ovai^n@YfmPpY)Z#u08MN1hJozmCYQD2l}Lw)yDr=*mA z&T(cYd9MT|%iKlXnAG6*)o#Y?&2z9O&F7z8QsI40O&% z{U8dasb2>O~3fSV1XM~T1U|54jBJMfFxz>zXG}M_NVSF-_9Hk7cS9^6@ zL_lHI@%5b3XMcH})BjCeK&JGq&NuviBD?MvR=`c`->f7?1>^7$&O{$;q2f4ogmZ}B zAH-oUY>LmFyxB~AqXd3F!dbEKk2J0Qa9l0!T6-UBuSh&~q_c)tFA8UkbViD^qwx15 zoi%4HAOgy?QskM|D6-6-NpR9%iZRpr2I;h9S}CSXf`R_lW94VlU+p0JIx1y$?qxmw zVh0#D&@Z;}Wh4D!tNowQFE*FBiGGpJbcNTfo9QQuaa-sYb9bN8FJ@a?=@(G}PFYZ? zA3ks>G752aqY147eD*n_MNE|uuIoP~vob!~wcq@vAqE6so^O*nfVDpaO$;Afs zrZ|H_u6y{PU!-!A)6M#FayR{Dlzh6`B#)hL-Z9m=*iy2Ts)6hH+!kk}6=N?3M}%vM zlm^!Ee;HL|^~|+V(ihX5U;Ci)paeb0To&)ma8|Zd)sh)DeAX@oi{(q<=Chntyny2H z+F8!7mJ~Cf_OqRT8US^B&lzv&VgwXO$s&Scv+Z~A%o)x*CH1rIfNtFBrn3x2bDVW8 zgL!2AKkyIsA!XU27>gIsl{wCamUm2ngyJbB8Fbd`)(D(E*IC|@Szuu*p|p9Kq=)6PN$H78 zoYxVkfCLR9hj>j6%7Ir%8#5sFG-EK{xXalY9JSFvmD9QqlpSorY3FAYk=|Y5Y%ky! z6Bi+A> zhE=lTjJR0KSwT2@_JYcI>>6hlE*3fm;lizE74@X;6Ee)j-ogMa?Jt<{R(Y*93h7S{ zCgKgdoY8E4gq{XjOW9NWBtP8!h~$xmqpp0>;rje_&I6+0q{M0O4LTqWHd_CrG#h+? zb3q^B;8RYob3srvfDStPFy=;j@`h+!nFL+1+v#q!LvvAZL0(qoCA6%Fz~xgJF$MRHAKQ1qdl6R3D^~_pE@(9oNbdcZie{ADQ5*i z*$C!6bM}DX*B>mqE0a$an%PC9Wq)(tM<@oe+hlLNXO~rx822J>@2y`jfZ00)3g{ow_B=+98{X4esCF2%ZmfO= zvKA%B#N|{cd7R5xbKiNuPwb>1QC&_4h=jSE`mwyrsUB-E`DjRal22lZ?rt<_y+GR>}rU<(F!T@SZZ;U4bW0GaR}ewW&W<-#vo-ZcT8Yb z6>;TRKs9pjd1rvDoW(azGj~l>-^9xOECAzW?_G=pz?Qatw73pfN&&>I?Z$%yPfbE8 zJTBf9!?Ki1y~gDD=R;>bAHPLqN0A91dAmg;5njgn5Cg;muOwXO}mQpWYOrKy&s z42e1tWVn!KH3pkXM)xttSO&Y)yk_Q?9*{380RB(+G#E%plqyglg+0|Bu zgW3P=GR*$Ln0E>eZs;m4Za;v}9muE{4p{&MWXwEf4L4$jOg&d=|DoqnAuszEzbM0x z*bnKbSNGd=tn4}^o-Si<|4v27zsumn{&!SywGqUdWz6mW5D$Y#RdwwXUl1`7^9K*R zXy*To3PR`gy+a#o^vstmJ#Ai6`W2zYaco%Mzilp6p{@yJvvRo!)1v?P|*%$yiu z8GPceMM;(#Ak`Bm#Kf|AWi8hp1Yne4Ij**=vE_9hi1oh-P(U3LE_Fa$96x1dztP4j zSGHT7){PeF=}K{AS&tF3dpw3ynoO*C2+8BD*jCTAL=fLskf?5a7DU3#cyw9bjSnfS zcjJaKCk>a_v2mlk(NJrY-d6lML9gFtu~SFA>c+zxyXFew(Xz~pleO!-HT$})$ofke zejT}BtzyQ?X)7yOU;5$b6xS8J;oPi19GBv{E&f*4+_WF@c%=EwT%!c>Zz4Q1*DfeW z@4h755XbFt?T5?qu6?ImLjUqBl&QS;0;T{(mySCaCs|s$vII+bJZIm3w{q3BM1xe# zzQg13)Yh&=2*7x`+8~7mSaSic_E8&6tJ(?B*W>k8+KiH8Vx>(;9%rT9+fiTJS3#m! zX<%=FqzJzKU4v@4=^q*XVyk%GR-45CV_P-zxp~{x6yS5`kqY!v8}G|ps8bu;JGvgA zb%0=e4o+>XA@KT_Ro*8lUZGy61A1=XBtBQ{?3!-*j@HIcReY@_YVpxCRZ$tAs~#RI z)#&0vK9=9LqViaP>wzXIh5=E^Jy4k9(KAl!u2}{<8Te2$ibIbVw6N%;qi_59B#*O+ zB|ThGf>!H`~gA&Z$ReMD}8q8b$ zT~!3}Z6YzVP~268A+LhCqCMU!HGvPrbyxwtvx2gc!!S(o=mjqu=z7=0Zes_zezokR zI^^wkyOwBRx9PIozBkx4MYOoIqO4!aMremYBJ+Pur^Xj23X+DoHh4kc{$DPyYx&6p zWK`=z^}RtlUR=`Na@hoAN}EIRULcIFMrx;N=20SGipP>jPq_b!&pck49U2@|P9JE}X_Y2{rZ36US|dAr zFm0mizBo<6q4tK}g*cc~8B&gqFn!C(?pk;Fz?f<_kriW{M~G#fWww0bO3Gwcu89VM z-X(_nIVVsyWZS7F0u7X!;)?RI?9=k(Fn2`I(E9o|fS%-E8qy~RQJCUk7`I#Gn)M1< zEMc~@da-M&$!LGsV%KKNSdCoP7OCmPjM5S{DbX)xlxuNT&$*$}jcbn1f@Qi^)UYkD zR~UmRw#X!>@_4(gZvtjt|~fiOVGv=8x6Q(PJ}Gt($|oLUvS*VE_jQl z2D`}smMz4_m6=+ndUCCrgKO2OGa$W2&000n(+3P1RHMeg>NN)psa`LAu=M$Z*;@qh zVR`v2Bn{^-1?OdrC1PS^Cn2DDt3kag&GaoK;U%Lv-DvEz-3-?7DWq3$vHG#&3*YO6 zQmj3Mbf5gGJcRU+@&F$~A_?pvq_CnDJPp8OjJxp3juCNX7RJ7!(sce!ByZvAOq8yj zyrLas%g&j;iDc5kzFqG+9AUgy4eYmMlz8@AvcJ6cTkfq}mNHKzpuLOqDwbDT2@rc1 z$*&;+Tv(SJ(z_LgM{IH>_%$SpNeips{O}89@a^Ak28xx-;OSNNk%Dq%4Gw&u0cmO<%nr;kh@u+lo9Jifh|bQNn> zpwAW6nnCN!w9-m4t(D1KMyAzD;4-bBk{(8;wFU_^nbz&>m*UGL@btGPh0?Zfrjb9b zY$>)A{bI|vo#_{w*z7{TSUBiPzgQ=;8~q~P8nS)!4f@HVYj^s^!buPM#T;r+`b89u zPhNU|hQG2AQS$79{Hcm9%17G0-St@^aa0A`m4JI8hy0IwA=_WP8IDWsaRr4~DH$wA z(J#^oG1&{LFDG|ord5#lLYm~Uy^xEuTr&{{mB=r>tOO~90M;*>R)KAV#QkUa7QrQ^ z9w_a|aRmwZV27y)zx>(~pr%C$XbS*m`=3h_U^zIbTkv2F5?PqC_#hjEO1a}Ii@(iv z%|ULM%yvS**ts9!T~60%(N+PMcDa7kgHl%vDh!mjali`YZ7oyWt}oCp5IbAB8@bnY z0-b@$S<=}KIO|JSGk~?2305g!zpJKz?&#p@Zuk)gT(i&`Fx?D{7X4*`;4$6`6+zL@O`n=tRL@&S`bT^@UiiA`bk5 zO!Cx#nAov{m^s8q`g}ufN=u$*EricDwwA!RkGL#2rs$zUc*gYT06cY#wJI()%_k7m zhv4i`LXC>74;P{tf%3RYRgyvPcc=_NfVtuP_&1{P)~0z?ro41Bx!}s^ z10?ZY@_>qAt)1U=inc)t=xIKnUFA8KEwBh%@vQK@YcF!ZWOmeIKTM(A_>eM~U2d-{ z%=q8)j=L^8!9$3Sig?m-*K|F0YPx_qDBH_M~ZoDI=Rbgq62` zZ93_?C5n$2sIv9z?BU?JQW|JEFHqWs>AHdU6B>HKGk@p3zcdJMyzFA9fMf8|1{vXo z1S{`+K!mKD9u8A98>c&la#5v9pzYG*B{AheidLF@vE6_zv5+?{6z89EO+j@*N%{4R zrZ9zBY28Y=)NkbJ6J1%(!L*je1uK>x&v@~h>o-B@Av2%6t78lVdhC}7%M~H(>GaT?@NBVc{yu#il$`2}!zUunG%#KU_?b?m}6N#9V z-U{nTgckxSnh2$Od9Hy13I~~(xuj^A!dwz5BfBJBVa+8a^AKWqB2K>HTCK-UBKw=D z87#{}Bq=-prpu}?%QcMYvSmX~IIRqU`ion%RF@r)R*Phm}S5Qb2m^;n!%AT<~Zl++zpw@t0g{2)K3K7rSzEio7*H0 z_#1i)$;uZl2cG-FbzCf3Sw^HbQ&brsV$JkXBJXu>C+fWpU8Xi^GxBU;!R)QX%ib;; zg42TCzETCj-OC5nrbKvJq`trKp@9t9y*7b`+#?0l0)lFNp!P7CHBnL!XPv7S5xvS+ z5MHDI=$dH=*|u)g;owxb#-MttLNop|{oNkd$`%YyM3cQ4;}xl^SH_NoQs*4(D3YgF zpLDs1`=KB%7j<{WyPNDSkG_L6>(&gvCYbbVhBlJowPpyZWXm!!Fh%2u ze6hAcb-E0!lbz-Mv4s1s zh`K|>%=vbyg5yfLQ&AU~!`M4;Wq3_A944y(l}fwo>j9YPrWlotjCQAcm5s+cqTPvT zkr6<(823;;0HbE?2GJLP9pi3+*7Hz4gm#=XeoQ3;u!FJghA4}N5DC}a#n8;U}oSf>wXJefdI@5ro_8@GfvpUUOII! zu-F9mcJ#~(tYkU&O3F@F_Ms?!Wt?T~HLwge%<5L&{SJyq0%okKKL#c<^+zOO>q4Rh z9ROF=0fVZji;OU7nfQ6xj0Cka%{FhgOwvcU=9CVT=+>0v>D?o4ym@e89Fyp7EA~?m zsnM+uM8sTV>m=SqHck4cF7g$w=9n&QGsYHjjAcT4IKMwf$Czg|J;@yrE^bR=tLgFD zq_#GK{8<+N78#r@rk8x(T|QiNCh?2u9+1==W$%v$0N*UMJxc@kJXYl@x z2D(z2Lf=B92Dboxk|b|XSnMU=IdVz;>N+$H=Eh@Til%+?#TIME`^bL$t?}-OzUT=R zqw2?*7k+@7O>z%J4`4>tBzHfAs(Kf-PIlMS7iCQ#cEuoH+;O^ZITURG)bU++oF0fh zhO&VsCmWQHn&R%OFVC*{TT-cMRLBJX2j^fqN=y3vsd* z*cqm5})b7vRpc(YB>lauw4Wg;cUB(jVrd0b?9w%FZU zT(00ygUS+!g9Vi-$$U^5pZxz5R8kktLzBI-TaE$GRL~)VDsbfryETfjYEBc6k zB=h^UG*vHGbnvSTPeM!7YWFf9@p>`~Ens`92D6rj0ozlhtTq3~-gn1WRVZ6py)$UisfPF zH@oMYduGo)=LYff`Tg~MpHFz#-JRK)*_qkda%S^q36?jv=dTvTKY#)Lo~edppBssL zlDYbHQDY%eo?~1d;yw-HE`F(Cw#13pm491m7=?_D1-MbTgetBNw2`-YxW>!?+0Ju& zJ%rdWitOBz-YIJ} z4WxVwz+?pg@`nmiB<@ig!$e%n#xOFP ztT>VXEf1g@!^=hk!S>N`_eh{h(D(`GJK6UIBcu8GU>GIHWIh-Ib^Lr_dDoI(D2THa zBrLKqV5o)Fk~GRBm%?Xw`0y6*Yf4ClEM^D1<}-!k6C(XYDwQ(w@% zqrd&dW_ zHx0M$Z+9eMg{=1{3yS^0l?aiV8iJnJ%B&Ota3k(l)suk zpPczP-=9aIa`wAHQCbKQ3V@ zA4|lN?lc&P;&Is{4g^4GvJo%Ovi0Qgc9OS};w0DgXs*vL`O&k;vr&3#)t zMbL+2c=sIPiZyp`T|8jqIpQiv%FMgKa2Tk;b}V_@X5VDBLAU`dC|tCFAr;`4>pm zV{L_n=}o+rZ+@T)hKW>so|D5&T+BSo#5mI8=ltJz0Oo+1KV6Oim;(j?n!^c&rqdJ# zITF43fWjx52Cy%=4(JB|E!wMz`R|1~7(K=OL#N*ku(bX)f4?A}Q;?|k@4`r!{U7oW z_1?H=w*L^!o<<)0ViC_`(r5O1_e%zhtH(O79$_i1C!G%Dp}bdwYE#{aV3nz1^pzb)Pg5grnI5O&&cC zm1x6h8C%L4Cy1M($S$EoWpc2zb+|MiwUl2Xi1)K5N=tAtGmZK2#)E_)ND z%|-yX%2>Pd0I;{(M|#VsZDCn!3g1>YlOIsV2lFOhGs7hsx1^fCmUo|i|0Gf)Dyc(}}dFSJKJ2WAe&cngRb$(>x ziMQPs0l0~notsxo(9gu>6EOYiOgyi$wUQtBK2(Ieo=GGwjoA4XKR*Tp&!F-0k;(^Prs`Xc~M}qlu@~Inyx52sz`Wd=BuuQKas53Mc zoIHi#5;V{ct7}@}DarY=BrA<~hXQkCNvJmvCTCh-+HmB9(qwRrq9oFCKiooC4=pr3 z!e1`G4A}Tv2y>vs!)0Jfz0q!YCB*uvDA{O#?&%NqU(j^*t&x$ios_4wtt|xU0)}Nf zDWk)!4Wy57Fa(Uu=5&k*+)|S?rCha0RFeYAQR# zK~1c18iI?dL-c`$@|L70M8l@mSSeZ$Ay!Ewr4W4`Z&MCSWY zQj&gTN*8dsYCadt6(WW$LCosnz1iz4iF(hsmE%O+UU3b#HYT4ZS^JVUBdpQxU!};r z?p8^B2R;Ha+rO%)y!mxZ#tRwg-C3(c*+i`PJ$ z5LTnKFPesjsGXABwpQ(1^TUbyZ_T&L@>RVcmLc;b#b`}9_s*lIJ1m*R#EaaaPZCoU z><-Cx= zhYPp_VGL-mDH?mLEhCAypHz-He&stt7K^%WciT^sPGCO->?hI!KjHnF1qxEth~{FX z%!sm*^Z~>OkQ9EB%!~ng@6M#IXIG6m&tZO39%hsl>~)SGHGY`c%^Dzx&Lned>7_{B zCd0!rRO(@!Cx};*%l5(~2+C~LIm`{ghY4qr^kKs5is+u#KvK;O#1)qp zAvD+9N4e%6_OT)Iyb>-XY=Lm0KD02lk#NAq+ekSmd43yN*WY?m>Px#bv5`rC*G7g7 z)YOPQ(>JL(ZzJP5=6D+!D~kr%hy~`DC?9dTf<(26moO4$6H}V&ZDK4)<{#R`)?pem zo;Gnz9$I7*hdKIHn}C_6vLIe)Zf+B+6e)io!-Gx046+bTGn$**#CkmpfjOfdd6Wt> zSWZ=|Kk3~9B69f85#o0sJu^eu>PEvG%DF~0?QVVd<59zfTl-JnN#62~+krbB0F+DP9v6u)iZc2IZ9 zz1pEHCBq~Jz6*8k7}zp-rnR$=;6sGf5WlLP>0d1oIP*;3wa|yWcd2gH@X1zVUK2`b z%o}1{2YoP=xMDu}uw{Rfmipi~0_bzIKvWmCa=x{^AixK7tG#WteX7X1y^I6gRLG0g zIf5{ViGW;by}cIc{YqXH!+p9!JunH#vHmQKcEjRFM722gt{aT^PijY zSu%JYPhVl(A&TW%$+o6iOW9T$6Y?JFla~5<{Gl?g&tNTPj_%+Z&E~mz+_m^{gwRTF zBXK~Lhm8=hk;a?XTE7(gv@)N`D=6=d^^{S-S`bX6pCx~twVoiRwKAX1gFFDiJnE60 z4c5!zRFIn4{9V%x$JV;zM?^OXi)kizDa!$X~>o zL>85Y)9X`s*j2lb?_vNp-Y|AS$#WY9`DUwiuka@UTZB){1;dox&Jdz9M;<0WV$LNFhs_ynvC-` zYBCdAo10884?t!zKtwNcd4shs?f(Vx)^TesIyD(jF9Y2;IP(z(Qr26NE7unVphMrb zt)J6`lHc+s=R=yDks0lm<-wUzv-gzg<>f0dy`05Lg3Sn$cmw(EB`qA@50pQ@6+Jj$ zT^NG*pf%-$Un~+iBL}Cu4_cR-okX=hWL+i+ZLlrUo!7r87m9Uy;?0&{ZSM27HAs}o zbHMz*w)$!_Mkin6`0NG2YivSfY>rPlpiDEwmiRuY@VW5G5FlT2 zT1yDx_ifC**e*Q`5w5|+AL_IQl9%4Kb{78x$(ham>XXnnWCc)DjzVq(U?`e|u3TRo z$rDohQ+cWjcq}tHy2K?&bx)tu)WSn}ViS0%6lOW(xgy#!-R3>lhkj(uOnO{|(J22ROl()q zTl~)-sM^yuWtxWEJY~3Mr zr3hHw950Jz^<8ES3+O|xFvJaO9M!0=AIBwg>L9?i=DUhpKv7K%X!TqMHtD)Ik>)Xx zB1Kp#i-LCx@B5LH$9E->%9Y@7Xcx3FbPK{OGUaRQi$> zhvBE?%u{QKAU*IRs7ZfUQ0E1k`zy`eR8TcUTew)ZJs+r-Zf`EB5>ST%btm~={m%;|63FR zwx^5GyL0@g6I-oNTNCnEIa_VACdgKrv<Gp+o8`pR_WGcwyCUVk z9r;!ZFp(|W`Z^^G7fo^R$U@+zxWf?n-l}LzA`g~8tW$uM04YivR#4R z$o@kn8%4gqn(0JiGLC8js6(1qxr4b9Sd^it*nt@fQi3WJLpa$PY&$5{>tH_qHV+Ii z{`Dwu9U@h=4HV-$m}|m0H!!COLV5D|D_e7N`%Z2p6z}}{ykhND-HTX-ERws+o{W?s zT^0tX49z}J0^f!8A>Nq}Ei?~}mO;WCnetIXHu#}4kyKSeoW*JJtQU2-p^S&qLmjG;BVo47;>TVz;d2jQ(1iLFt~S+#dSrJf=tO9F zo4lkPZr3c8{X6UpLJs@! zUq5JAav2=Hu7X>>Uq47H^&>40o<#f)T7yex4+SBus+vi9H?&n>1-~;Ep>@jc`J1=__`{&ZC9wIDbC<#ZDI%&|iO%Y4(VJm^3>j$yTG%8rm~kICYPpM zu__m_UMF&>lP#Wyy5n;uoRsZli;>!6C`Jze?CET4%>%HT7`+nhvE+|IwldKQop>l64V7dXracP{>r-r91?hF%nI^7-xR{CH^-g4KFIyB3pzFS}-2Lun z>He+WHaM*>!2P&|FI~gMw0og|T^%!(JTSnmVvfuQpL{5R6y2)q-wZ?iMe8Da()o#E7z7Xih8Lolg9PJ z>}L01+de@`!bq9jFttkNirs3J)S1kD!S)glrITz;xx={5q))y7whKatJT&{pFk3fK z%0f+8Dh(vq5E)sTS7bW5Dg6C7p$^%fDhHLI3(z7dd*}zht!vpSg7DSoEHP~oR zSUL51W~QyZkN6=2MXApbhw%oW^iWh(GM@*30dHH%Z8+JIKI5i@k~hcN&Plg9eyJMY z!zEOWeV~o})d$y@W%&6`-&nX!{upOl&g0cdtE&M?bPk6_7L!)RF6Pqe?g=YPD{7)` ztB+Wlfg)+4LF(lRst(d)|D_3HwA^h|Ek&ROKQvXQ5_cu% zg`YjkR$dfWVZpYYx3UgW!|4W~)SyE!GL3HdMb9w1=aQ=lr7Drv=GrDpdoj(_c_Z{o zpAY>iE}7&gNI5UQ%b2L4ZeEvl&|c*rPFu~O#iAAJbvtDv7uZ@s&MyU#vN2Znx(A}I z%gTu7y686+;Zdlqwi>YS%55wfi%HI8V^Y_1k!?$miT?Znb&`KqU`+{-S?n5829>zk zc88g7$=M-8mcYJ!Vg{j$bjj%AC(C7KL2 z=N7m>G=+N$apIJ&+-_>wiIfU2dNNLyfU>EOld?O&a%;8ie`UlK3L;fcmU$qedNQr6 zeiLK>Nf3*=vhA^EMjo|D2ZHl3xOUmb63Z^zLh%6z z5Ozz^d56~NS1Ja6JLG-JSqj=6JE{m%*(+tjEUgNYopTgp8{cxC#6y;1t#0})>FV9E z<50JxyS`={>7SGo8Iu&96x}p2VeE90{KmQ}$gc z?m2LI9s{@3Xy7a_@3-|6#8>43L3hF3x|mW%$p^ek9TCgugEogC9+xF-2vf-eX4l)c zBtbkY%Mc|G*7~XGhH(p#-7{3M zCPfNBgc@Eps>iJlYw&&Y-lA`lYtu;c$JhE z2Eg)mN!fR78>EQth#@v5LDorMa`_z_e7lV6SlkP(<+#@qY~M*(D|9e~$i3-XRoBt% zf-rciWJ3pOAckP8i-_)QBc-l3#BB^%P~+6pL#Nw_*^i5Nez0WY|6vSj@!@4khnIQ(BGjY!kY=v>^WU~f;(Y~=I_=-{z(c3~ zkGt!q{fphXX+OwBbnJehah+;yON#M)m3y!$3+>!j?7?_ZckbJMY+FF2X%9=2Q#Vd0 zk-t8M!<|OZ#65o8NnZm%2Pb{#Yqg5x>L)hc*J_w#`F;T|LAY%fY}ciMv^O<^)i$$6 z;9{m51ACBumu%yB0B!qevJt@C0$T(Rpi`#xX37*|OtUKZEu7$4IxLn(ne^a8%8i;V z4VND4pdP7Kk5d8U$1Aq+;t>Ups#=FU@KDv-+C#tcSVzYLeW7K{g&a_t)E%sMM!R`{ zkLB6X@n;?y^{LDP(kMGA`yuGjBaLP_+))k*ucq&9EO@BVr~gEaj$E@H^&Z-#G$!lr zRt_W^Kef#cF?KR&ZlSG#*fPaZuE;i9;9+%2 z{f?s4m|EtfLvV>kzruTpl~Zb#1~w;!*XIS4HZQJnF4QA^rk74WzGK@5*QgalszPt} zKtvUKQHtJI&P|cy8*U|S%!aJhCUwpJt4#u0_PY0U?49+X3eG*zPJz>tz18<@AtlAn zb?n{pKt$R5z=J&}ut#HGxJGld$D0wADVY1bOVuyNShz7`>ezinxJm@&tNm#TS0+jL>OZ=b& zEfu7aK)EU}dg{|MIXe%&q+aDaX8MHj8@OQ>W| z62+|w4)-+WfrCv`y*#F=UeD^si4a3dC!@^miSdiU?u< zj!uPT(Ny>>2Jk{Lf@{)SKkY^IR;Rsn_jk7?uoRlVzCig*aca07KK6kIs-3w5ST-}Y z1!Vlp6agjreHe+;z1y$|{X~$|3AMjY68+(!_u8TM zqvA;gqiSZyJup%;+tpidW(1`CY~hlLq{+hCn%Cg0Ys&6r5rT(~6w0ii#m#&Y8E$V! zQoGw5l+~!#7C1~le)Q0f!e`QtV#a2X?BtW{*)v2btPj!_=HwgV5~e6&eaMuCb}Qdj zrzk7T6va%0H5+Lnq}ljDYJJ+;S@O}`Y-fiulnO6yw;R;++F@DH*uGB?#>!|^oyhXQ zLv^BWAEp!N7JoOgt_$>Dd<0#La9`mRpVN(XHBLqdef0igt;`6g8;hgtW2Jo>cCDL8zDabR5OdzLy*wvMkWDF~(j|kUpl}BR3L8=;bKs7A~gR zA$&|ys?RCnr|8FXXrD}rRPmun^eQA3%CHf-D7zuxp!bE!_-(E+;DI*eC-p@Tr z_5q?)6C-7P)oE$(FV)4xv@d_!5EPFcU~VBf&Fx#spBn=Gc?7!7&lq)nr~H{9QlYi| zhSUmo!qR|h@wU|nl%AId8&3j$Js)?|28%?!1^*f0;vN6~aD_NlLco zl@zBbh*aB}tVcB2w!N&-S8rPV$>YJ#WLjpfVq#a#Rd5z{wGL#M>#Mh@Z8H7XqBc~x z_wN*J##R)e%6%Th%s7_&>I)JIty`WQzSYsfhNDjcRjGdtd2mT*?%>h#aI9 zTyvdHeQl%|Orclwvcnz9zc5nGcuMv|6tKSjvIO?Er|JN7o!v9)jNRHW(L&`M=K<#p zSwg%f{djGRpagl*#`;i?96j9&`u70)a8c}}AX2rly$2%d>6`V_&;IrM{nOdMV2Fu6 zveZJk(5`1Fh2Q=Z2l?G4f}6M}25J$nXcL8iU2^doLhUpf$O5T7jjaK1g; zEM1*tKP{E$k0ik8-#psB4S=G?*qi8p=t8&}ZcphEZ}cMtYwe+YTb&hEFk+rsk(uLb zo^Ais`%ZJp5wd3mq;(!K&OTM@gsEb;Onc%IMrWt~WX*VcJl_`RY)>A2>R%?bJpyps zrF!otrG^g)`@JyOGJ2w26v&^8OO&zXBm?F@u~a+-4(}VF=O|gezFYly|9OK_ z<;8zqgL<9+jGJfo^A&$q5UKw22Mj6J<8F%D9f-` zn_MM!ICWA!;4K?6z&mF(pkCw5IqhVCrOzV!K_8)of=J~o(E}0XEPQ~Tvl;{3GXr}x z&V+FG-MC5JzGWIyT&TjPhD_*y-*!pkcu?>DTwQM8A-qVr7-@JJq^F`z^JHk)b@?&R zUP=&NW{htLy%kIz&0Z902-{x|OQx-~FBW!bpl#pG4Kdtff58pP@50O;px=c_14cb2 zDJ(MiL>HI1$GRi=X0`pUbde64Iw>)O{TP?9N#G(`@v?n3-;}Lkzcy%kX{|ksZ>lrW zEHfhwHm1{$2v@hdLv5A}&3_N-peyRfhZmAIwf(X#4@eUc#ULY4a1?_GsBj6jb4c0X8L zQj`v1SP;i*=^d_wO5)|mi~EU(29ffQPqyL#*oQc6(|1HlA7UtWSafKR#d*>W54z~P z2qSIDnU2Ka?_eMK9UbMG;{$C-RPA+j_{LPw=*HVQ174V_!AbX?tR20?Crrco7+y7e z&j6S$qiWZlADNgQ6O)h-ml>Iu85@-ula!g7nh}#3nHC)zmywhdXF2k}#jguumBA$U z$;m+NTZfb@3er-8-AYAg8Tm6#MEQpXovV}w)LR!Lh7P7S)+f#AlBD|nF&;t&{K9#3 z3;SRHT2;`rX=t&$5aHL8XMO#FV6rE5V=TF{<4lQ=Ao$N!J~O6{-I!g4vXWRufG?P{ zo5TOn0&*uMxRMk}Yvee$Bl+EKZyZ{j+(_z*%E1kW0+}itU|`ovRl#AN*ePLMT%z@- z!hPZco&|=xoYOuyBsMWRBP~8EAvHBNE;b=5BP}B~Au%x{E;BVIGc_yG67XBzB;Q)8 z@d+_$3DMC}snMyiF_H19Ng45p(Qz?p8FA4`2_#^`lFF9dv7fIJY9=PeMP;UE#w4aC z0J^NS=(LQ~#DvK7=){DySQ6HWRJJ%DZN4sq7SnMCDg40RKg4^-@WNI6=17ur-d-Uj zIxQ(NHZn6YGc6`6HZw6TH6bk_J}o^xEiNq~BQc)1UMGQ;DvW%U8T9)JjXtNQ{b$j!jFAO^;1WN=i+O z&xp*3kB&-6&x(RaY2I2=`Q+Ut`-RYAx=$mi?N&w>+cU5eMdtj+UOOZ$IwL+aHZm?U zCN(-XF)A%BD>gGNEjB(YJu4$7BZC}G+7xIBjaoU(w^m|IOk!$$R$NAEd~8NsLRx%$ zQdUM}YJ6f`QhaG$b2pkSt~0kDn2GQGb1TIHYqkUJvJ3?v81KPC&r{lX2ivj zupI{#Zi?wWlU!YMFe=1*$5ABg<%5Z2)lGYN@uf1SFnNg{6 z37N66=?O8ZG4YuRsfigesp(PiS<#lOYqw1D4Jqa_4M|?O1O!lP%SvIP*D*>@tPOp3 z?LA~+bpPgf?Rem}XWn4L@~Nqu8y zAemaq@piCrwhfeMg&mM>I8UM)t(#Ozxhh1GbHp1JS&c{16>DM#8b8n=Vp{e-mLX+T zu>r)!Yycv;+xArzCk!TEm2o7ODg_^{tqL1UCM~js`D8bMo0w%CbxVc9Et6G|Gs)#^ zwn(4sw*ASGvW`xrRzgs^Dscvx(*J%S36LCh#mvE^!rn7+3nu^>dD#?K9^jz=QVe+j zN&lsAdD)q?&5Z1-N;a2VNURns>Yk6GG z(%|723(k%UKbY9dXRQxQ$R^Z7%3azxG!Gupv&Qft{oK}QtWfk)tF4F?08YS z??DX{)IFJ=3zZxW@mCLe?wQk*uuNQ4a@wRBQ`0jyX8#Sc$e7BGWm4b}qhS*RhOp1E z$;cqbS+VvI8r>_y)^^&-vSlfd$*7$Vc1Vr>1{s^H02Qq~sA$_eqa@^M6%K(SJgMS% zB6i0_Fx_cxN=4Y;A%I-0=4euyIt+--PZFWJ<8aSRH$ChZWp&kdl( zLz;!K%b9+rqY_oL(}wtwfzJzhkK*@0l{Zc3Fi0FfQr>DlNvgvh|+b`gwPea@Uf+N zV~~OLF|MJMAaRtFDZ%(! zAW1`k0p|BS2dAO|D4Wfq5*!OdIB_ZVq{&p0zX16o!7)Or%k@EDq^gZdGyz)9Cptb7 zeA*6`m%PEot^CO2bG52kzG&_^=OeX4hzL9XJh=aMZK)eBW-qZs#;0*cAj)BEd4Cs70XH9&pR zJ5*>P9vezu=!qu1>kFj=Px^vK@tc~Nl`&~T>ez`Jvz;KVsGlmfB8$2?s#Vg|pq5O` z{-NY>H%EemJD2UbQg_E2(ly*AJ6ZJW;aKGZt%+;37)TEGa9j|+hS%&I)kQ$HDaFyx z09EClj?biDJW#di>L1Bcppax9+ys>3J07xSz??Y`#9`U=nLlN z6KXUNV{ccswCv}oUs7!Pf;=rf`gi5Zeb*=yvIsnmP25|Ua~Xi5_q`T(G%Po2^o z1o{g?;DFl;X|v%QS;N$6*@u<5l%Zo7c2UHy(0|^c2#?W!LZ~*@p#QX|6>aH1kLZ7X zPyeY%|Fb;(htPjE(tqaAe`dlzS|UT*#q#Wh6n`GWy`16AV>t5|zU2(pa)u|5;eZ4I zYUs?UV-jT4v0se3gOo%@9h-0%bxhA0b^oO#GV1&&O%)k=Y#1qd*^^=Pl2=BIRO9FX za%E*ic~barPHkmAeg6e=C+y1va=T&aGQv5s=N`mDm&QA0iXSVQPvhv#XWuR>Fr`sq z=Og1Bp}ut7$e8Gg^;i`A`Mr?7(nH!Qny9*vwN0{0BCLNRta5bz9R*==-n1c9Em04R zXb&ENIaX2x8amOjL99AV<3@wXhC)BSn^%qchoRZUpC42pN%KyZs}wa%6%zdg zw3uXiM%^s^k`BCnI2!4Mj-rh==TCDQAO5am>+q1J7;XLS>^Yq*HpKZpYP~W zLYjf#<=_yYmEbT?b{!atJd=HqOM}D3UO<(McpT_a*O^9S@{^aUk;o@6RrlEdRI+T4 zn=l@Bc(QI7ySG(SBSp!H$Kj)i=g88fj-SLs!^r$)jwjM#jESClR?;visp}35lanOA zg_>fyC3h}ejr7TLSioZZRyd-h_fSLmd)P8J4`je=Y7k3C0i9P0dy={<9gF#fbP_|I zD>1>l&(itQRgPuC_oUov$13R|?p()^l9}%QGvKt$UgLN}kV+2Mw39@YwT5qgVRaL! z94@8T8pM*r$+fkP_I!JG*wtyBW0Vw%0oZr}06Qn-I?#zgna9Q9UggiS?|BRwH|+G< zQaCO_!>1^2I9Q%X_PySiY${8nUQJ|8Pr*%CkbY{T15VRN;Bs~=aBY)CjioGH%p^Br zIN840(ToRp+~iI;Dc@>Tm^9l6U?zdUjO&2`+`c(7Oj@A_@PUTpkxy<59zvt(6+MIq zG>X^p2*9oq@%mGIoohVen)f!>!i6Z}&U4O1TJ5&OVrjOW2@88#(Qp0I7 zSGcb?VXH|L_uwI5i3c??&hP}1zYN7_5Ie#Vhx>BZD4Gz^$&kCh43%t@cotqk=%Bj` zbq4A{tJH5O=*6xPM;$i=@rHs#xrQQL!${aG8SjqJUqLxDg1>?iu={94Wh6O72D_VR z!q7J-9BYG&$DO?V4$O9CM*=1mV#37AM!GaALA|Uv2_tP%SH_}=4K5kQi48_li_*ka zm*O-LTWzS*iEZ>L$0UKof99y=eq_2e#=v9-VR)Z}lavQCBr}CKfgXd52#mEUI@Ts)!l*`|lsV&M*5D%mB|U=0$L82tMqJHs;G}h$${vwb zcEw1P)8KKnwMpW#k?gtPplKAToC!^P>~b7s-Q%;BF_boSaKY4Cw)L9ifJMQ|D5;{@ zCzC_vOPQbI`t@RMM)(-l?OmP>!Eo0hSEPpg@C2s!h7}u zBk}*Gil4cyU=y_^qgq$4VL5Tj(N2(}N1iei~`$1zusCg46< z1YB}+(=d-T zz^qb56T}JsF{dik09FooEcYCZN(x_4PSyY*P^X)6#2*|T1u;TFqR!OyF%mlK2$hJ-#~Fx{ zhn7v{Z(kcL7W*n9#JEmXIzBTPfBU-h%Mk)}#7{4MWH!`q%o_a9@n0z$Q>>=WVqcbz z26+Bk$3En?k5iX|4U;He*vBQBNG;obaqJPKO|(1J$I%5Ivi~>!?wB_E-QgZnm}@H% zmKg1rZeR~{9P-!E56Tk3Az0oY4#-Y@K^xd9dyjRa3gDif*tnix1K(g#rj3#=IE`W4jdu6c=88NX5JE-Ijln9WsP)5xe& z&XxuMY~7x21kk0lvlkCQXNdZ4r?u%dCF4xWRU<0#IyXqmm5;~Tn~{+3{G54a;rGfi z&hMm6m}nY)hpa~>+OWbeHZk2HsTr@Q71Ib_;M`IZ^MD{7L`dZgHMagf zfs2`p52leP<(!#j0Ph(AgjN6vwC{hcxvSQcy-l=NPc;cIDJ z(RoXd9%0nlp29Dc(vi|CO)CUB_wh{`>aT;G?W7v|_C7!Z zNiJKWh5^K-U}q1hsUE_gQVqt#QVGE2?n=%fiC(G#8h|g5+=$hR1Y)`qhPDELFxJxZLf5G zMcZfm)`-ezun-X}f2nugo^rg=EKb69o~gz zti!k0=~Ox8>wZj%Y+`Lc7kw>5>N+7&j9&&KMe8sC7t;qf-Of%=P*I7}d`+B+*-t|U7P1)&02*UxGE0=kB5z6Ubr z=*8nGvQWWtw4-y2AcVT{;MdSK6wBQx*a)Z@8^vGc;S#>mD{P_BP<^H!s$$YN8jV%9 zd#vQ;oUyiB4s>-M7Nq`}NH=t=i7jqKs15Z7Cf<~E>!F3-EZNi)CN%f7H<5N`;ta+? z9q$Y*O{XmGDaaU9N3aZIU{k}iO#Q4kF7t2AdS=Y*>#Z?E6Z{Ako|zMv6y0QZ)RURj zGZrt`F>?uHV9cEMVCE<=qa;ydJFLcoDX)i2>RJxa7~z+=kiAO$4LaagbWb?q)dxp1 z20Et+Vx=te-NJlDT`FX;k%ZmCVS}AF1u;C!e7Eqd2h5S7PRQ;Vo2CE6ShKW?ZWzwe z1b-5i=k$1o_lcqnYRWDe1C>QFki3{M7M6)sI2Fuj* zBCv`#?&s0oOpIi zIGYl;tV3B$lTPRC9*mKbqn(pT=5nWYAn_SSz?gc^gDE>O^^EosZanB9eHI2hF$n`0 zYyPA8K`S#_H)!Zcq7>ADXG3wofN{?BGNiX-V`;G=L)6DG2KblqokzXV`WT?jXgLNb zPf_b*fKsF7aaA>*C8_hJ1pc!a;8&#T#xVdB&2XJ)hU!IwqJTlNXmn8k986TVq|9;7 z^%ds;>t?4D0~GPhl#zhH>G7hoZV7S4Xmfuv+5_g>#ZEY#*ak%NDGfA#GuI8{_BVa* z7d95;F%UWZagZ&ES z7=g@s_$KEqDb5S%K_gJcG)AV8N*-<2CJCDH1hVf1>_V%mUbHilIid&DxdSOn+bzzo z1Yw*EuFei)FgSCh{l_pRMw_wl?87nW5i)hMxWj}{b`Wk-cXhkQglF8bX^cMZSdR&J z=SIGBczI<~ZU-#W-=<7>SrMoo{~wU?z=~i?@M|qd&z;V91qX%ghcfkO?37N4^TPPKxdY3jbWKikSN!)Ci=9YSZZ<*f=kf&KH1~E zD*Zu+O!eQ|)|>BGRLqR{53=$#XFT6tXT(KD>d5YarM&Kp7Nk%;QnAKZ^4VVJmr@N} zqr-aJ2rElK*7Z$iksu{vSdD|WxR~v1B#tHb_c_yf0C?FnoIE_;wUN|U58wls$<=F% z!*~eR#iO0Cl_WzBIAf&@J(vjn+&kdRH-KV0wKI(XMjvv{=K*w5_`*mE)YLFBOXX~dIpX|W5Kk&dRQo@Ukudw;1^Im8W(PWC zBV+kM%9wn4;bBr|KW^dxX!>U2I_30u>#&gHK+SFR^$F)5@z=5Dk-#5{(ElfcgXOnc zlFKZ=5-InNvotwkah50dPdbCh?Xl~dQZz)Bm@i4r%uNk4Zbc4U%dcq(eb;$Mka7?nbY`*~7c&=; zlTH48&bh-3V4D#@z4x5WH~>rPd(N70P=gz@uYwBRcfKV;7qdTbHs&C-+r%ymq>?o3 zyfck&uX7HKm9fB*kVA-W9|GtNj8r#_O^ra=)$l$SoPEXbvPo2*+qKB#A8t329%DRg zQg}eRTy%Dp9^eW}Tc9?dMJgS93z*v8ZWn}_q9G;p;<#nvCFeOo3Lb~Fj>(|XII{Y( z^SD$A*Xa6*Qu--B&Rak9f;2kUR*B;T$CMbCXmpbAu4=AFOLEn19Pdm!Q#wtYX$Pp& zIny2=(WBsW1&QiRM`0w)nf4f`ccvZ2$wtl{ZJUtJPGXGffLbA66cBI zmE|{D2Q@u2%v}~H{yENklF0NxIHB2@By#9BMc6jfpM2B|J`92XYz#Y9eg05lOT&f# zL^mpK@({lsr%$4HMNuqnt&hbl&mOo0srX<3fGd;%e098j=VsS95ZM5)^Zq$Rr8;WsxT)P}9h3QM@Y5~RTxR$G~k!o|sXuAagK%hJ-W z5TVwl-f#bl{cpj>26AM~pRouGLjtqY-TVSP|-Ee0KxT&t}fCQJp$;G%&X)g1^}b}y*^R; z!U*6$fvyN1Ko@|PDj^RS7OFSpBHvYZxi8Z(58AB!o^a7`qC1Yd^UAgkWhcULn1oS2 zP={s+8f)|jcKzxj)>d$+VN?i4686y60xrDhmZUxtpLvonTWmb8f%wtCmkLjvK8|+P zAZ^<&tBc%RSB?cW%BXRCcTLjf?t$7QC)5>2a_$}oBx{fFE|1DWkGxuzJiL3Lw3s>3 zJP>K5j7gf@4Qyl23UPH8#F-P#om`9_hO|AoJD3~@bG4UajaS25gT4zx$UKs zSPOK)#&K>O;BHj~IoPP4?9$GNE@K2N*vR+LqvOx6N5upiy-IkQP8oyZB)6$B2A^X3 zbkW8iGJ`1E=+w~F!cVNla2THv4OYgn`Xqg%QDu@GY4}buh&28%8p~fPZT~FN=%bKB zm7qA$^wo)`7Z7UZMtV>t+#h*33oHxTyFM4Cv$#X|lz9P{(mB?jwu2F46JQRx z)83Usc6D}@0~mx zw`+{l6xX@FJF)h=ljX$P9DtTs`*RG%G~?aL zN@8sef+;9XtSvpp5G=bkG?cSza}abW&<8`e3>ac|3J#BD*OsQx`3h&())s0-2Ec6l z60&P2r9m3w*r*Ja6*wU-EfG=?$7DpO$H&B^$EBu4DcQA~OkvrzQRIJ5L0V%9G8+1v z5u*AFgN{|IS!V4xnQD|-Tci4}8L(ky?c(^5Gi%odVu_YnyAk}Sl3BY6Wdmo{h60v; zD5xW?(JA7+5*w25ht^&dT5PwvB-fM)WmwFj)ajmL4o=h2@TeVbn88{$a)s>8R@}PUkbcjAyH6ptr zA2bnnPbNJkxLS(YQ{<$e6jfd}Ac21=hCBwDmrY^vvUh`7&d6)H@Q8{H{<3MabW zDNTAGK2uuUE$cE$+>`bX6ZhQu{XrmUG4HfgX$Pf-4JQ2s6qqFL;oHetdt{27xW}Xp z68FTDPv*FmNFSn3w3#qx{g}NNx@DpboG>ObH&t~ z4$5)060Va?Ij*TZ5Os7l0jWGcbT2C}baBrtxCzH4h!zE`BFMxerAn!(n$+avL0Ugb zz8zoOgiZP1EOK=arOLP*&ait)HE{`xlxQ0@QhI~z*;P=5EZkZUP9m1NX7dQxOn-T) zD@|&q$0Amq3b!N*8t?!|XXl5LtQ`d{q+}z2xyxOHc>wkTP(P!#Yx7(k__mClOry3e zOAg1nZgiBSKAhCp=V{GWy7o&8FiyIc6|TuUL>^ZR$)pGK7t6@9aw?m@P(~IFHp~;& zGG(EKYn~h@!W9SVJ zhIal z)D=`4M+cw^Tpr8Y1uzy3Xc%cDC$WiwpkVg}<}#cMksk4S(;!-}~_Q0sNhZ zzYpQ>0{mUHd~3PX;fT+L>B_1D6Rv5Vd~M65?#7scv(h!p0aKSET*Aia8tIc=5W+WQ z!}-XdX_IjUo%yCZ=2v(!FXu~pIcCB5!!$c3mETZ2|ZfREm)L zV*s`V06mnMS};`y01vT}eNzi!r7R4flEfk}j$fUWHyDVD#;YXfSiZ02&a{GLL3$Bm zW)$|CQ4k?5#l@6DA81H&Z~9i{A(+6n;Kq!)7iW-zGYi`BZJB26H){L(tb#UtTZY$a z)OOG8f^fbqP(55Kz-^gGfrb?i&Sdj#brRZSAR)G%HZ~X4iEk%Y6G~Mgf6XnJDE+AK zSa?X@n^(|KdWb7@{q8pDH^{hOQZ&DSkAtq%+FD1bMjmf0&@OKT&qPMAn_B~+jt_$@ zEnY0BDhM$$4mAvl#5ma8T4Sa@3<{jdAI+K2%&v^959P?Tvbp{3cxkG4nH&L(9EWWuGW;0r8sIi zi(ghG(ax0p3%y3hLmh8Vh{B6MOQ`jUL;6y7wBm$c>m3=4#f?CWl`ys3Wb#HI$TE8q#t`D#3!#5qk?H zxMq%Fb?Q{X2$t=EU=p=qAw%CRa9_(|dmt=r*ZJAJvwDwqY2vKTLLG8ebYXq!t%5qD z_=SQ*byS~YB+OA=n5}nIXJ_-9Ak^dnH6=z=cnJW=>VpL&*m$GMk6auW7)K@_D#(%o z=V+Ma)pY z>eN_KCk(o*);k68cNzY!z~5E)`w#qm1b-jH-zV^Q4gNlbzw7XK1O7gPznk!P%Tnu| z!ehZcxpU+-WiZBz)8;}<-6*eYqV~fi12;@D2kMg@nhxJ%Q=#j0DIO=p_k1~**CG~3I4pDj^ zBLt?x$*zPujik%Cm~tk(PmX_F*qm>#g-&<$?R@|-IeIEEl!suPOdi=WLi$k;0X@vR zR=ALFuVW;}fDv{A5@IrZin%0lS)Nz|y=rrLzY;uG8+CmE5eRk2uh2_c9c~of5MvY^ zs#}S~IOIjeT)kTfoXf{Q#)PxIjBw*R)d#er+4GDpg>zQ`cdm~hMfVDm(FO3~GCSIp zEHdThq8DpL#ze+uW@e_xB*erbost88C{ZmgBy1>aGagBe-zpMps*IXlCs{PJiSvmpM3bBa1{Cw zSDQfxC{#FPR6DIFzbqUlkhdQd_BU*=W^;A7C-=s}Q%hGK7FHr_GuD?QBflyfPsATg z1e`{)e~<-CKg=Vx9}0Vl%N@l3M<`TeOGf-ySVr72g}zVKvY3liMsn@xmaBaB=v_%i zKa-NuoGmryF|$K@T5TRPJ6=y0ge0aX#Kk4XM@MI6!duPpkx7wp(NP)kX<11z@i9?J zICp5L~Z0IDSXDvLzfU)2GmHP6f&S9^{oaa^m`#yeS?AW zf2h7=-C|}!DAvxY2(x4nA`MQLMX39l;qv!|zl#fjFaF}7#`|2Q^Z7D3T;J{WuyCXx zuAQg9E~vre=wV2snfv=A&D}k7e<%4rb9%4$7k7i~`D=t4u4Qgq?sXB9{G56Eg;Bar z@}u;Ue+~_w<`%ttb#|WF7Se)al}#^b$n_ z#D6O|)OhDzjDy8HZ_j7(4$2ep2D$2ARKq7*&ADMrz5FSqaUIaf);xBOGf#_qIA1@3 zd?)h(6UfzHi=3n?IBoLLZ$7S7eo@)Be;Tj4fj3;}U9fKG25b{^(ncZ_HLlYYZFr%I{i>Z_L&NH@fUily>VO z#OVvjX8}c>cmUm^;1e@T2{K`>LZu@2Mgz_GD!#vfw~cd@4inpOL7iqBqXLWWi?$Q}yd^G5S^JMZJENdXdwwgH=Gkn!OKJ5egL= z+p1Mi{i+E__=u+zl;DU56X{j6wpG)F&)Kl>zeN#(2eI9GVtds9VylW^3>l`xrg{+D z{dtLPRm+4}nsCpP*q1qCH_X4{M}7|}N+SRH5TyH-DZzU^2!0t#@D$6koq3437|-)m z-XrpLJCqi#r@0SJTB2FB8}rU zTc=r(#iE7$tZ*P9Jc>x zL|MIzpJS07+ePrS&#k3!c^s{Ad! zgNyvii=}hTWv?cu)?k*7E?QPjtdeUk{3U8Xdf`8og-^Hb4jd|~>yxc&HkJ?zv5GPO zS4_;GIk%ob8eR@|&(%3Mv=7$>>c9@PeK^aDbBZ2T60;c&MW&IwxfL zi@S66M-y9&guh8I{O7Rs778gl7kZn4El=Mrnk7i(7opMCg)f`kh)|p4k*6yY@o3SS zV&W8tHO2-tC51_3jiarvgc+{4DU=U7DorGwv zH7;g>O8g?y>7AmcJOIRt;pFvqAQbLx1kmy%#5^WFq!|GuT8ftQ09r&k-3Va*siGJj zKo>i0SHz5EB99y{(WFFnoz`L}nj>G_zKC}(TPPhSvC}4~)5T6t&lEirPbfGbc47~x zU=%EL+ObHl!J8Jz?t}Yq!GvaZYHw1v+othD)8vbHG=7A&@Z1)rMR(iiCdbYrd(p4r zZyG1L%NKQ(o?vjs%9kFj+yqu|3NjN)*$#nmovOPhxGbEWb7%NskKk{y>hRgV*}NGK z{m7{sr<2G?KUjG;hgxkc@isvMVA2O?eJ<18KXnenl*+qjxJ1LN(rzn;_Awr`XY#av z{~l}@tU3$p?-xzUp65X}yjb9!>>y*Z$;}Tm#qpH%K@V#8@zk#U5U8E`7f}1IDYXs{ zYWF=awJ%=OsD;x_U-It7qPSA?9i{%2ef=z9D}zTKB!AD5yy4MRKQdmajh4wD7d?=MVNiCeF?b0%{R!+9 z48}F=B2Lbw{0M0xE@l^T0ASa(q8U5@^YClwjgTA+KoeStOZ>?BmQ%xc0G)?dGx~C5 zvki{**Ne7@(iV(WHwoWWW(N+I?IGY2O{S#UElthX>k#iO;b(_qv^SI4;V{(cW{0_j zMTf-#1&6w_zJPHspK4j6Us)d}so&zW2orkQ(%QIA)sG*2o?&6QF2EKcfZFpb>tAGs zv}jshS!ZP=L}taOB_*auCdMYl#3sc@MJGna$EKx4CS@eV$CGte7A+4gwiR7k3xOo+ zNfCP<$m204Ek68B8ODH@P=wA-Skt32COBeMJ;<1-Vw}(Zw4Z2`H zuE+?0-FoAC(D}F;ihMCs@?HZj(L9f8+qJort?c=a5=(i9B`(##^y>H&h}Ai)H-0E` zh_w_Ps>7;|ae%{WAuQF0vrm{;s7zgvjDIT14T*^nc#)QjX^qJJ%`bC>nJVGsD4f%iUy?1<+ zMb|&#@=d*x`?G9&o(P+5BbGSA#>+iaRJ*z70DYvkA z_4*jfdT^y9y4?%}zFw=q@E)5~;8TwhI96R?ca!NZX)+QuZ;UKWMfd)&DU=-g25BdB z{rcGQ@n?OIO{lb>VGTj{*6^dZtLFv}LMsf`28|rDydkIY&^M&(jJ&u+6s-h2)h>m77sO*T0aUk}DTE!l#D)yj9iTwz@52;=6MErHC;;)g4 zAJ-7XpLr6*|Daa!_o|A&2EQn3V^5Hd;-3tEEV9*6Ope3yaL~q@)vtm7i`sXNM4LE;MNkI<3}{oo6x{tvXAV zAqxs_D#$9bW*aOpvYXT7L&u!$!XtA=*3JvGv2|vgWkNc0Sr!`qer0?nENW#~w9ik< zeCe5l88cePC1jbhvQ2tZp1#PWGZvbxR%ieQg9V5JXn^}Ctej9ky3TFUsPwD(VdZf# zs}=~e>aH780_4{tcgTo7{knARJtDuZHkoHGkbeCLmFW|nX&r|Ox6WxAQ+J6_uJ6jU zSR*w5B3+&dOa_d>VzL-@S%#uQqd`|>wwev)dzY>R`zk857%h53KD1h+QD-U2E6gu2 zY72~6c?MmfJ|A^DFuzH8jxc9|5NpvH^!h?DFTJtAXwd4ji}IlU^YXLvtwq+NLTZZ4 z#Olu5KuqkBdB<1GPeP|B&k4Y0)-bjZT3JyRwz5KlF$>xhn0dazqB9p17FrD~|2;kD z46h#z#$qu*6D=@XjrxMZJZ-i$J3mivFqrgOE!x<7B|O7QS}E){Hku7uZI-b}XUxyn z^bsbb$)L?Mn6$CjO9m%B=w@^Ty0L<6=P)NKxl_q2I$kXz{OcuXBMj~$g>pa z%tcxHJcAMXxNM6RZiY1JwAuOKX^PO%@ny}*D_WqfLX0H~JVIUpl*wS!X^Sj{5S3)> zbb6CkpI=x+P3w`_vYzY_xk68tjoutv*;=Q|&NgHiO`K)r6@j;gp4n)DIVL^yX@zF1 z#Z+X~S>XspVP1Ksm5ZT%9*RTeB{*m^MqNCs3e`#U>?;hrC(d?R+`tm9#JZ^ zw*zzp8!qo`5Np&_R)DO%c}Y4fvnh1uC!t)VCj{Dmn`r^_z_doyHZ7l5}c*XgjW zK|lsEmJR~HLak8;hq_F#S0}Fsg2Sw={Jd=1LDS9*%*p`$m{nhp59h#)7E5+ffzec8 zFc;?Qp=(1Mt5LJ^(yRqrgqXUsM#8U$^)Zjg*xfs8kk1>H9b!#7=w=JG5HslY;IW{V zbXi%(!Yr#k&yuG%mqQ={rO`oOU1Wm(DLdP2%!fEW3+l13s1Slkqse5&F@!q`)ON99C_pz5CXE$`G1K{xh@y3xukr|u@1E&citnlj>U z%-Lf>SahAmK@|@xTcM6`%{QUq*A~NF<*2gvzeBWthiLx}(YOKKze6;reI=&e=ztRRAjQ^lR%8i&E2A3jtDZMH5H2;C zH#(GX*1*B7d80AHJd$!AqyXCco<;`zIhtJbm5C{G&9)X(jn1oeObjCS%Ry|M<$}N8`zJ3ZUdzKGOwVm)2dz9e4DE+&5>S^KV|Kn2{ zCk?ig&~7+mvR;cRSZA%}6%FZkbSZyG34KMQmfy%L8beLCQq4=N`-JKIKSD!ef$8c^vnvilhg zK5KH%Axh|A(~8?l(32f(1~jd=&0p+RLN_o|+^+U$WOWejdV)E^$yzRG`R%^S<3})5P}k(Cgi8k83*e zNMxtm&)sc{HQjhNIp5K79zBRENq}1$SL867Wm{I{Yz{=;aLT{$VH+c8p5s2D=U~V7 zf)+o4XOrxoW7$g*$g&To*%#EEy-edwW{Jk}4&Owc!%5E!D;nH};-Q%hyx4dn2v;4+ zRJgbJPe{#%_p`0l?B?0BlJja#;JVUN$uPELu^{< zx1^-jA-3L{fochKMYc{{QPXHq!=M1z1JqX3z5RAHFF!fdcCnsjGLO1(AUxU3N;i@J zft2nIo`XMa0F23bs3M`NjYjf05jtliIOx^#Gys2Mq-})sdjh{h<TZS56aOqv52cpXRBKvOW9zOdnde|FSz?#OqDPFfy{QRZz_nCt(TU!!Aw%g4 zNQq#-7kLCJegTPlxJQt@X|>9<!+8#G>!lCgG@*s#Y_DnZB}#*{D`6u!jyDaOG2XUXGm-m^K7RBH&%s6^ zE?{pTNxqc@Ndu_Bd{*4sM@yMny>B0R)%vtbO5AzG@>pK6fx<^_dJUJn5=1VpnuZ@i z+D)>G5~m+Q__5)D9k@6&PQ($34i%4hy)kz#cPso3hCt8dmd8!9eIkg*83x;X9q^d~ zWAz*U;+_Ra_Bi*}1=4NG>Ls9iuhoBZmu{4#bdvq3v-iB0DnLfkQw_KIVjz5~A#>e9 z-^W_bUV-1If9UhrV}nf%9(%0agcl1t_@}4qwR&T^HXHtp)9Tyk4Q-5BNLXnr6fG8{ zE44Kd&Dkh-zO5tv`{+trIa)W%7L;zvFdO=G&U`5j{(F90oHj%MlE1$SR9p&tiT0M+ z{_*GVtBP$K6LsbcUA8{MY{}3WO|9b$8Kw-5)SEJNS!Ptc$~L%>8$1KQ(O#PyOKr|~A#<71hO!X#k6D)cftfH4%Q(^B4)zVbr!KeJMy~(lvV?+7BI+8=^ z`4u+J|FVr-T5ZclmsZ#sMf^Wi<}PB|Liw#EUO%$O?MG-J1Q#`v6M^*?%8#Voh7L<| zLICcW4#2%Cn?j-o1l0RP6uj2vIhv8X)&|c3f=JwLBmu*~kJZ)352k*O-MvwYFZv(% zmTg!)aS8)+cl47KK)9nH30@)V!%*(En!yWcaXcrjpg2vr;&{Xpfclzp?nmT(mFo!4#z%%5;Sb$o zfobUIX4^DWvdtDK1t7zSGkjVy94uc*p8%^RGdrJvoKJ=X2ILZvNO?2( z1nw+)?X{&#za`@&c$6~z8!^r_^2@>CzOCyW6tEt`b)lY^8i9E;K zAb=t<^IfQA7$4m$e80W;(jqcG%24z9zbfI~W2@OambVvQr)gEkR`-=@=>hkL2~Rde zclX;~(k$o8?A6^Go*jJSKwn`IYFciKm3=?;WIWQ|THZyoi~pW9mF0`bpp+XW{-cz} zT@vfA10BVqb(G|xGA(_K&v3wYUl7lbq})(3$>SIM)MIyyN~?ovzth$Q9mOh|FSmN) zP3(Tqg-=Y++wvT5?V_6pZJrBC$v}v_f(DPXU$S{#K@0c?YpafN(4X+TXB>pcm2^E1 z+g=bND2&@fhAo!EU=JxSmV3xQ7s)&%oT976UD5H7df8aZ?Gr=qL7r1#t1oD}U>V$g zaN-`A;aQCAM{S>Ka`+#x$;5cI+CrsD=rn%MW40ZlbupeH>!B&)A&AB2FGg!VgGrct z{uk0}?|)`9YNqmRcY>17ZO=;+kO`srYTv%~1x)=&z_H{_ypks|$wz>Qcn)khhvKP> z6822d#^bhk1*S0Rw1f&$- z%fGD$plHu0Gm@kq%ZicAim|osVvu)=l!fP;2Yq}r>I4kcHGlBJkXq?;24*rJTf#LF zT%LOHA$>1and0;*ND(4WA^d@IPuot{mP4Zadv^|D4XNM28Sd>mx(OoiX8Gp;|JqsG zQ&M;%})Q$HcK411h?5p)a-j(2hCu42I5mo(BAKDOEgdMzsM@Z{lZRvfWmF7 zFZZpYZN;9qJuPTva-Yz)HEjtx{R6BxOyhr%Wt7H>@^al7$!gy%o}~84{NSDowhuIK z^BIyuquz#-uBJOYuav}tab=`^WFG^5fr53C!U1&eifurqN*~!LTLs_Uwct)t_===e z_3-Uf($Y@y&SjWvy}%cXghr<K!+DzqPpmv?d)OehN%5l055;cFzRrN-oNP{J>8{m7~1D49i@xQVr?S5Di7g)nj;DG{%4dgHMTnXaP#RA|CT(*R z&k-7Z+*eqNavOad8^H5PlYfQhurFIjR`ryE${KA0cAF)yQ$dW80N)nJP z&#HY())A%Ode#vgY6-|fqBMbLA@MhPf=2j5w{Pf%Du&sbpu@3MdbD`q^gxAH5>ZqN zyz%F^jH_4TjsOMeYF=!H%3D^MYD?B!o(!vERZ7(BIU)CO0fa&3&XDL^FZ);@%^|NVJqNo`l&sglcj5d+J{4b=w3V04_PVnv0jHm!YKWs!Wvx#rML{5#~yu=Cs}67RQ0N&h|*QxsR~toRs3s%hb2XD2NlnCuR1P@ z7nhTuLaR1#>Bf}(15GbkB`(kHUG;`Qmcq&h_O2=w#G2)`hZ=q5Nae%(R_zkSzd(o5 zr`o)s#vo4`NvI)wkBg^AaSN73a`WtmSqqee8@y_1xWRKgCQ?%V_kgMiq9$bp*YJoJ zSo;+8R$87-dMo&l2G5cdq|eTO8iIk&@)Tmq3UvMHs-w~@$SbE8234hNo>WU<9SmKe zBnRUAh$|~nOVE2rRkkz%5$VmLRT^|?NL6diRJBxHhE}ywPnE5iua+QvSXHt#fy}8D z)Mliy>gorrleGf_+9GP$~Qez)j|-zW;kxg zc3c63jrIK%a>uq~#sAn?A5pkTlENvhR{RBWl8y!LNebgO+c&LMx-_8?nw@%8arLCv zc&4!`@Lx$30(-o37gg7iCq&BKd z;le2<%Tox$khRy{YY;G_A0wA6MzSxGao$13kei4txl3_-|$W9!e_W%$*liG(;HoIt=DB)hv9db zW!bB%eiekDD2&^%E-G-aVSTYuZdiv`N)1b0d^+K;{+qjKeI-Rx8kTRF+_37G@nvxv z*3R2iN20~Jvf2mPPcr34)AV3ecQsc_qeWd=?LFTLMVkAmSL;QKoyuzO`ObOLNG+;) zncSl4L)jD-#jA^26wmQga|ycB!tg6LvEZu7A#fUx8tkx#8#+w^T}cQPp0X? ze7?%NS`{F+LA9IDSVfu^}M!>fy$56|(`a|t@} z>eWNFwcQQVuP)NO1_kw)7HPY)IF1*oeC>>@-F!5q+>i8h2Dzhn70)J?Sc=fTIagaq z6I9K)Iz_Wx<=gW2=U#0rNI#aD?P;blUOZ|UJjW|AP{cBRkhC3g1N#}M7~V2YVu|Xo zjBns~&NA>+dg#2X14Z!$19Dr&H3bm1jPH=#GQNR2L8V3cp|nAIGqmJ&TmXm4cn&rP?zgXN5i(hG+pWU z>*7_zHa}l?I;oYkTqU=XU?``;N_f>#E8#hwIxj(*M)rBNS;>w@_SLmb6b%iu@6s#= zWk@V2b^*un=Hjlhw^08EOPiqOLG~)mTJB4Fyl-P;`w-1$2^$~p>$iGB8nX4D?uTXs z+e5^)t7tzbNiQ>)^-OuZG_;@NIbQkDnh^W8T1y&gKNhZj!VyAP_lZ>!1A0!ZlE0KE zR)uqDSD3wnxM?9hu)1{_J+NA`iX2$=Sqt6E!eq3g-klV2Izk)6?d`^lA`Qsz4kkg1>bN;>@AizbTnfX50F!YRtw9|erI z>l|UiWy;vp4H%y!fF`RcBM?hRB>0UoI;8?5(iR>@byN>oGeOYI*1$dWwIf_;Oc~)? zVC+n^hYQh^@m)4BI$R6%MR)%j8Hf)5RqZ3B(x2`?b;*CqqCeeDwwr}6lpcVqYjs~| zGoe3a%zgqGebSww!n2fdwl6S7k9Rf^UZ9LmTG?BarPxD+sr2uN4EP|{WN#|WrHn0D z?uwIuxr{P8#JMroqyAcZ9=ZY$!cO|*_ZIkZ_(*M2^h&Bd2$uJu?D=TPtrm@#;=iEZ zJv2c(TKrLA02-GDE#^DQ{SZSFRoW;cuPZQSW`i`hC?hQ%7&+5i&FG(#`oW)>HLhlY zFPhy3v^)tnha>4wJ54AfyEiZvKk>XTI`p?IQi!MAxwyd&T-K>6lL`jwICawj!0wo7 zj~Cif#>4KwI61w#iSPtvOil&{X%0_OMnWzyemj3HUdW@2Z?O$!>A;4@Q$~+A!1z!H zu3|c6%ud1>dV8z@$6;}{8SQ|vd;cgOv_AcMGog%ff5GO{!C(&)Hc>{$SYX_KDm0i0 zy@#^V7HzaApoql{*HV8pcB6~eN7K-m?|f&JD=>7;CY&6nawz!ZPjd2rYC7WklkW>0&pCQyAwm_TI(a?ak1Ys_K^F9LBD|K6Tv9>UQE% z#+hUWPV)!VgT!@=vkto*NZL`{!8lWKYh6Fp(Ez2V-)Js=OvGS0i$!d9=oVG(b-ad0;gw&_N&c%N~)f*V6`HQCkMk4AVt z>u?QpKp)~J`tZVyfnq4*q~n&=IJ72QjANYJ*voW?Eg#I%rZfJRxGUJ5QqxUr!#JxF zfOB&1$Ck1&H9lf@#x28!GQVd{FY!snxr0>{HMnM=Xl0zDmcZ#ZqQ)$aW1Kg!b%swn z+LmCw%D6qT3qJHpO?R<`aN4881MDHQ-md@HW1}^zAxd})QxTXd!&EY+HeuUVY@-j^B$IKg; z`V>?D#ndTGeSxXVnA(J?YD^u#)NhzNi>Z2V0`)1T8e{5nOhser8m3Y)wGmTUnA(r2 zE|^*g)U46{F^MqqSxgaxY`UX>TG4&&+mSJi&rq*L>9j10->JX+5VCoM{ zeSxXJF!dd#E@H}tsoybm3sbviVe(H*Zo!oA8laA1stKkpU@9I{_b`=#sqL6*i>b?) zdID3oG4&Lt?qezsQ(t0gJf=Ru)O1X(#ne1ZxiD3>rs1r|MlZ$WCd~W^Q+qIV8dHZb zwGC5WV`>$qe!$ePm~vq12Ta|=R28NkV9J51fVDtf$5b;+oy1fUrnX{AkExF^HLD{g zk7KeoroO|}5KMiBsUl3>#MDceT8^n=OdZ73B24YU)SH<41yfrvbp=x&VCn-*9mUko zm^z86_b_z{Q(xDg1>|*1Zotf6G4&g!#J7OjfvF%&eT%6mOudh(R+u`EDKnqxz-Ne*-Ox?%SyO{D>2h<5ng<|R*OvPbp4W`nc#^hB@w!u_6rn+P5 zO-wzBsShz_#ndrOjl53q3W+K1$e(Y(wqc z(Vo1TV5I#Xh723g?BRCZ@(B)K&3cRw3a5%kuU&_NGn_FfZoQ)qj7u&Iw!bfY?D-HC z7bp0O@XeVa_D;fTFMs55yDvIBuR2@YunxtavYWWU%T1c`y7|?K5R zdpi1}X2b1CV&HnTw2!MZ>R$*#L)u_eIp~@O{e^DEpp!dm!cfFB&^i0z-{D1_9row| zZy_3BE*x~;@=`D?Xm1>2kHumU?5t-2yX|@;tb+n%tDvVX&w1##@+Uy+ z*Pg-CBkfx8IhFyui|G+R!D=54L8zL%BWj0RkY{fzu4Hh_IJn_e4hy7{ZL>xi=Q&gBOK<2nNFtRA$`OY^iN9&+XLRa?k^lv&EkMJ3sGE;W}mfp z5}__h+pv2o8j-e<{xxkIx@T{gQROImq$q4aRYUFF%FaR6lJ@w3z{%RR2DGuh1LK6CZ$GpLpjW5Cgw%R8(hr@u?(&Dx+sH}w zeq0l8zQNPnW)E`pLpu_tG-q)^ABNeJ!_0ZxMKIxgz{@WOpw^qO`3v3Um|ZrIjYwiA z061lj@iaGx){?|&40Q^Jy5a5X0qCc(FgBbd$C{|bI@6}QADTO(K@1wX<(fv^!T>jO zfPqKdVm6)tLzj(m)OAW!q5N7d>M+qBFMiJe&v1Y?=QURDkwudmp}_xwHJp^Aexri= znzJA3cxgupit7nsyny<@X74OM;E*Rwv!|dvBdc2of64LwP~s7@wOOk(V96Fk32A8W z9D8?C-#KF(Oh%iwK`@%|GPr~k{IkL(Bw;Rf34A40C4jI?roeD!7zH2f1wVBGs_5CN zc8ln0j)a7_t7H)ew3FRNyAK|LE%tL=Bx4?-t%riP$a#deJt1l<*O%Nn$F1=LmP zWM>$u<-2cHgRKm+WLeeP(=UPprd?M;E^6+;zPkfVIL}n zgE5Sj14f!3yiFV{iaX^@6!v21Y|i`b ze%s^y&g6sl`?Cak$Ma13@4V9EJ@LeJ~1I1al-> zikZ$~9$949!;BncqA>rKn9Izc6YcQpY)^(qPl<>_Ik?ixQ1%l`?3uzKRm>;V zG5b#i%v;uuz9@JpOdigsz;AHCpDnc;;GJ7FIcKY55^Jfy9BiYU!of_3N0qaBfSk9M z+j~G|t6}a|$K3lnxV|nc!M!;sW)+87x)h>|Zx-2u$|eLPpcy;-e9<#y&;eXg%>gD+ z)U->ao`hgBK6o>=>_B9Fo3((lq0j(u4(N2OCXve`0Dq&XKnV0UfsJ!@N6@#ehWU*S z485%v9c}pXI)hIw(?p_lb@+*3n_2v3GgTE&Sq_GIw|hWs3dOq#`-wa_dIRq-Ii zli?AU`r}(Lx3h}jt>o|~46fFoS2x{^MejAd7K~?cRf-QW9s?yF0*shAgB{pFvZ*8Z z{NgndCXoosvjiaiu$g*;lg?`_&iWo>@h;)aW*lRg>y3sWnfQbU8^I^sXR`iAWrg%1 zXvR(mGPYl66o{7C8wDfB+c53-v#P*%iNG)|jPs(y2FQj8eUkD>Sa_+|b4g`!9nO@6@(o_F+yi?&^shJ#2_K)%XjTY z@yU0Pb&|a=2h#r?k4LPU0e$S^PwjqaSDPT1=ig%2fT0qk**sFI1N5-q-J6Zk$j|K! z(X5k!4N%qy@Vzq?=&ur?JBd@@@i<1J<0UU{_Cq(efrr>jGuX{%K!UH!AHh^zT(6)2 zG-HG#Slpq&-m1hV5$!{~7W4emK^pXM2bACn&EOKB!9R1M1Qoj>gCiFM1K_!zKtFV4 zr`=!tQIX3zWiES*9RtywWlcdmi1EaLcd2>%q2L2xx)Y|`Vf_hf+?|UF&d$M4{kTqB z#0=(g9#xf`cZaLGYobAei|f{+7|DYt1DTK%arP>k3@+e;V<{+cuM5H#X@XqC4=wzm~R z=})o*3Xjy`-3>ibJi*|< zmco<4GOQA%gO?a;aQF+yRpCFY8{QAC{LCII{>k$AT{Vx2nZXUv*w3K|zo_PMPnrkm z;lL@A7`QJuA5RPn?w&9+39|#L*-{;iCj1nkr#)cB4HxN5&U{mCM(JPL)5X49Y3H}3 z#+4}aLc)1TzxTvekK@NvR%qAp;HGHFSI~mSvUDBqxI)mKuVBG(G)c_)uTg|Sn_|IM zw9)7ylS~BY_Sg0lv6RP{@C~f0FOmx|Unama=Yk{HOvD~O^*7(zlZ0Jz3AR%S8Xrp! z5Vm?c7b3uk6A-+7$3yfvX>SdYJJtYKh!eFz3=)6iQ=dHrQT)&H)ORJRNwq%K?2(QqeP%swDc-;+mM{VK@E|Rp)1X)xcXXq5~a*e zbePdIux=$j!!SqQxRwZ=z6@>V%nU?GZP1K!_HeO;rM~m&^+Z@u z$Emr%;I(aN<5{Q0J*A2EpNDQ~3rn)(OX%NP{{Tzto8{>?ZsX=qZKqQ;}=ubB~q z8op%P2Wz(@SRPR&?rFW@1XMPyH)Ok1wL@lwq%wq=UW5>|%LX%Kuc{$T-7YoWl5azk z7{WRpA?m7KC&1nlC>WN3EA1+8X~mUbOl;Un+H0yEBH*Ju&L%t9;9)hKPoy~R8lC8{ z_Z1yHM1&J2=BhjpTuZy+EzHJW>^bOnr#&6!UN`;>wJ~y)p9bA+^aQF6 zK_^_WVL`wQd9h#`)m@3=U*2L7+|)r$5>el#4juS;M=c*py_Jhsf0;p))nCP zp#UE12jC;*;KMoaIX3`&h#L6Qb$~CZ0SCH3j$6Xv=G_EaoU4ZWniQ9K7SK3xR8aBm z3L_O?eajvRSJ8uVn4+J(4c`Bd2bQa}k9T-lAW?3IJ1{1+%SE(tB8J@spZAjoi))J) zy&}TykE3_#iUolkxw1(zsWUNXCk~t1(Z--b!r$)LiL?k1)F17;ZV!i9GWdyi^FEl- zS^QxK^{ODayzIoG25o8*jUL>B{;$hU>M02Dd%xR*QSR9$KIr1F(1*i4$$-x3p~FsI z4=;OAc-gPcJx|64WTK71AQ( z|A7`6hx*rd&?!-B|CxfrA8q&tYC9S&^>N6T@tW`A>m&!wXy3FITK@p{A3ctd`a%E< zsaO;5`w*ICdk+lPEZYz!HTNtCK=`^j*t2Q!%3`qg@f2|khX~Te3(u<|!u%*m>p>(X z2Vqr9{(D{VyR~BhRi_Db5WMaY zLI^Y39_&aFr|=N}G<7sXLAo#>)H4M7C^!!YQgYs5;%-Sx6!UtciPu9+q)Nm$`C=oS zlxyQ8M5Ryw zw@M{FMQOOBnfMp4iY1W_U(~P})YTsZhttBZGA+E(7gaTbdXIUJtM^EBFOpXP`XB<# zs2S$+_1+XSI*TEYlrQ|HzALq%@yOQP;Uo6sVY|y=LCzT1k}89R%Oe0*2toJa0UZQZ zDYY5Z8yyx&`-oZZaSdrvv?B%fPhv=})UUiJt^2FFNY^klgVz1qyo~GRGD0`e01b|H zBnxZhg03clie<9$oBN|}0ikKM@=x;M-^js1+F&#=9xCcfIr!%U9QJr(EeNmRf3gv? z1kxNJ?$mXFpS*@~Mug$!Q!O0HV$dE=CFfc=(qSp9Q>sKI4fl9d0)6ffF_TYXOmd_O ztw|Ej6}7^QPW477@9|VPvFWzSkmUeA{U^!b&icvI_pT-V$unUI=tw3sm&rUxw-iT) z@S+@Kd@UePR)xh;kX1a$nN}dlN;$}~T0pwpaZBm21_pi^@{|SAlzYcII}3Z6(1xH07^mPZK;uWz zeLO^u-d+CXH2;dR5J{4~9v_elIajfFug5M(T5XmiS~%}X7J{~9feyZt3x3)wIGpt8 zpY4eAjMle*&@7N`i@wj{gjpQTh2P}a|Gd{bWKY6dA{Y7=j+^x2^Mx<17`^sI;jx99 z=f~xbnG7$HKR*WZ*1w1@wsRD<+yK8#9^C@(oN9yrM~;N~0h630>&2dLYK)FfabmcrJ)7X5D|PgRXM3{-GCe30(n77_IYLi$o%S+FPnw4 z)O+^P>0yZEx;pfzbl#1Yh|H588Q=&*r41qi(4bC^5OBfpJHNAM%RWydB5Q7aJ3Cs6 z7a7_Q92%_32cYQ39XW9A2FBow=nN4Qoo+on0L71Tz*BcHV?-v!U+Ch97k%HSveidR z`?~vTC?!Osc>m4acvmng&W&h@rEG+Tb%lc}0{v1pll?#~8={CA-5eRHR}aSmL~u`= zTu~lK4Jr+Zfc^2g(0`@%bmVe!r{QcmizoNd+5%OO+S-f@L5zZ|tYq|XM2lnJM|(em zt#z^z>>1!lL5+JlBH{QC`3Z~6nP|cL9_@mlQ$)m6u|f`X1UZPv8kBRWCKNU94RPU8 zFC-`QV$AIoIK6;{`BNc@XaO*fI*D(P7JV2t)>z?Gq|3Tqv(Wfu^r#~D&N=3qxP?VM*&;>_Q zcc9V7#l#Qf3y$$0@QQpIRSpD8f0Cx}&!=}QGM4C2?5jZP1%4DR@DiW+K&rsMo`MK( zHbtDtBZ9tC(8zPm8lr1YJHo|R6^K)nh+efd9t_UtMd6jy&x)uAqOK`=P(b*7%E6 ziUM5mDwnkQlHt(egZERb4MhF(p;LEPP7C4kXKC=Z#)G5k!gkCYzmVd zj^KG@KeQe19<)N7G0`hFr|)t5JuQrEN4b;dh!Hn3pmiJ&+5GegcB`iYnm0hF^P%0q zWT}cKV7AmF`%14S$XfQ_1&&y>ZIs)ba_3(UD0=}aYrsAI7cMX z4uh;ezXj)|AetL5=_($0HAE_N)box+K}W&hW&{ry*?U$ofr1625u>50q!BRA)udns zYb8lAO~kj7nJ+k!ka?V2H?U)|Cu%%iQv9c+$w~1+zFLYOF2H33xXdd!G2La>gQJy| zbn%Ctwm?ey%Xld1Q3`RGgK(F$gYXG~;L7(AX0Y<@SC-EQeZH=FC<-ccXz=@(ShgAt z7>b;XCVX1sgDTfH*Pz>lV7#~$z)>qKDwmH_nh#L~h>sN^Ze|@D#0^9-b8!dS5j9^- zx4*$`yBSTG3`25DISrz&lsQ@KVMf9Wi#-Hvto!{$)(rL40YQ0~z>Sm0Q3F2j9Ij_VFZnxeaNB16&Q zR~*e?p~VBqX=gg-b{1a&B-X%$AHgC%nC3_l_c3@F_DaPD=Nw0ox4r6!g=3&<$lDai zq@|pj4z9D3AzzjwyW0yB{L>lG30_czKd*p?UVbQA_)25|`gSq7Txkn{3+e=pDJ~~69BIcy`lG{RBmGcx zOpQORh>+Z6S!fkm5YLM<`aiTw2f>?cTSE}&EgqF78@tQ*1R@z9cjXH znnkHRiBRm>+Hyc)1W0Sspq=8DZ>8Xoopi{S@oTt#eg zaTBOWTNv0kptdes2-9vqZ`&3kHi7fZ(!E{52WWuA84cM>pRgDLz+XziD-*!ezW^XH z?z>H+qEPx0h_A0Kb>xcc*CFjPM=xx2#2bNG6K~YdYlP6``k}L>js&ro$vT6V)!l}p zQStGbCg{Xc*vU0bA?Fk(C*YEN3^X6utzkG4k9RBJQ}E)E1Jv2Y zeh=?=A0#0B{d4-7yX@k+8m5x5*C52o+GP%w{8s>C}$86L+ z%6-f^5KUYI78-!=ZHCaw4Q4>&$3*#+6~_3X;V;682|xU^BD`vVxvXR1vH)58p@`Km zrP!8&XLI1OH(}#w)+WN6r9jiaUT96?8$H{j3#cAHb_ z`^|NxqPXc%tx&%sun{Xy6?=pfn^YQTn>3COL20AlWa^O3+++wjl)eRL$a<9{AGs$( zHWMt_>hwk=tapq_!ly2|xrjeMR?bBPd_w0UG@q!qzx>eY?a@uk`o_RmcN2-r;TuK6@k7>K4ze?YY}S2aGfaiHWvH;t*Mkb( zUleM5Kgg%d6%8ZNOVI(S<8Od!!rv%R^(g*p_Z(a%pz(3sws##S@i~@7A(zGNDb55y zZ;ei0i}rIj88!3~QgqT}{63-DZ-9SeGep&_MqD1v(z&%6#geJE7h>sdC)s}AgP%~3 zaJMD&b7ZdV0LhoDoe#0{V$kW4*CTQ55DixD01aMY#k)j{2M{4>PdylFoI31`Ma6O9 zTGZhd1a3d7Y7gE}XLUmA`^GMZLG**QRqVbSz`xyHgVD#k9TP2L=UNID!SJM zK=kR>J2~-^y~m*wO$i@bQLox7B}{34e#ILG4bDCAm~X3qLSd)WHj9aw zg=Vqmn4=>MxMcFJP{$)h{rfXVhWItZJI>(|`A+{FlTzjr+W^IW;RuDxDrLY&)q&kp zFd5?S4EPrg_@CPl%xE1kte&Ws_m8MF z;!?zC56j!=u*1^WCHW+*qAaFJ3wR{ZYhN_JB0d03IPVM*OB6_RiGZD8FI&9LL3U{p z&oUm$0^Wv*_7M-bAsEq8-EB!c~ya0sgCM%&e0a0k2z`s4Tc=yG&u4{DrO>TyfCf_$~h0HK}Y0j)Epu1 zkSjcq_1PaBCZRJ$?Z~5oHeV3iDPSz>Fk3G;%&-B32seg@A#D ze8}N1KCgf-Qb3ba%D-L$=(QAjH4jakKR~xd74HLJnF4UR0+19LWQ{~4uE6~ER}}RN z9@Q)Go$qTJp`5p!!QwFmbcH%}sm-BLFrsX*oC3G77Tl0upJ&*$B^NEEf4auiEx?`%n9BdL-Fv6hdm~+tN`X7d#Gm7t@bQdE_SAi z(^(F$a5-Eq#=5;!lZuW+JA;LnRe|B=E;ZRnbn=bp%n-LRXLH+>{J+6d2547?FVhFN%<(Dx0U$*}j*od$Lx z`8zWp{{&x;G|=c@wG|Z;Qv8GQLzyr#9u^bDy}~#hWewU0nX461Rv1>ez|SiishUXoH|&2SpO8t3%rb6LLRJ&!sNjAGu9-P2m-!TySvDbYH`v)+ z_#LMro9yxFB*=+%ApjGMqBmosco3ODhrRdc@3INj+q9Z(a~hG+G?|mX8tP0E<3FP= zA_nbk22F$@!VN1hM#*jg3nCD!3Xy1Hgp*$ZX@-`DJ3EU_At~P(goXiLUxwF^tT-Sz5<dQPO;d ztpTx%F9%1W4QpC3*VKxBBx^&-m@BDv2vA-YhI8mcNo*;_? z*lwmK|1JgQ>{iZ+aLU39XOqKuYqs?97V&7pq+~zRS^lJ&!$nUH#OvHvhE0QLeNv0&VfQt%%I@|H@nsS3s1ZWCnSu%aCaVla1ZH@`b43HT4$O#jR8*K z0AaA*85Pe@h9Ke;*`)1(<|g4L62Zw{2VorQuXmE6GI1J5_24wNFkqOj_DDK>4U9qW zUQUWY6h?3deGG3zio4G5R@Vd}+n+G+ z@SXy3rvlL}YKC}~Ay&#IoZx^S;Iabif&z<--?nsdwiJWDB(*APz9iL9)&{oA{|V^3pJ#|goRlN4LPg_gKrvr|HBx~^X6ak>awdyq3~M=)&eh8~Oe|GEETRzN zxG(6q8axM%YVpQ@=AURx2(F3nle~NqYwg-jcUF)gHoml4tooAry2$sKuM@A3JhC_^ z0!s(|Aacc5dUBEL#rDeJ@Tc}Ha=p@?M6RLB;3FEjvQYGQK=%aYm%gN->yL!l0bR_b zTTh7>ZuJ$Ftg@|pSt=QAd|DDxw?MO>glOEo=s_xbOjvRZnE()beMNo46MzFwm)u|h zV6ZF&jlC=+IR%|6g~+2T{+W;0I%8C_4n+X{p8`)dnPI&s$AXEg0h|{eF9#cgW$r9K z59wL(M~v{vL12V$Gtl*N(AdGwaWG9LlWVmCipclo5T{8z#h|{GL*aFhvaV28ucyU& zl@$031u&UQy*H z-3iiVA?<94oLk^u6oczH%q5*n2u$+1wMdFSZzRCN2~!L^kb{M}+0?SJ$?fQ^8?XUd z1-4J^u;=rf=@1VQ*kTSA=8#9j&`Avq#!u=(!k&-V>;C9cx0WGv7H|*6-NoVF{f=m% z719eIt_{07Bq8JEyK}L(3NE;zXDgU8j(H4V7D1 zg*MJ|#?WmaWUpn-s+JMdXPsfVCwW}5lV#XkDB6R{C^l>PjRO5kubfbQ)5O0R)E_*Q zdzTFin_oytCXu7~s{-o3Owc=6P!chchSm~-4!DZ3Q!zNSq;F}1AO(kLWTcn?p|rF+ zj{TN)$6grH3WmMn)WHrr0yBVzA)%7CI0e>K@M=mw1z>M=z_qW!dIhK=0(C@0P(haE~q}f_z6Jux$$DcNNG) z0ga2DTDVz}fL`E1p#c?&=M^yDDPTar8Dc}Y=>uP_2>a+t-TfP>4kBCJGf-kOX9+v% zN+tgOG0b3LyQFUVp#^iCDWdrVs`?BD7c$t~xz6FRc}WJAUK?0nbl^V_CFL_IVV|5t zN)puFwWJu)$r-Ty05;4?g&eAi3lUQ;a+CmWDZ_;wauQqwVs=5=j8@#@hX5Pqr08#` zqLT=;@dAiI4>5GuFegQiyNScb1%G8jQ$6 zlaaZt;QISg@YIPXc%6lWw&UhWPJY zaYl-Mr)U*4fPZlnz-aneQ9LDA{6hr}Y1&_{g{Ey{5PAmT9je4FXq8y@E3E5HcnA(M zQ-Rw06!o~0I_Qh;u7hYZkD-oWs9xt7H=|V)DvfFpOc!5=D`1DH!$P6c#U%`OA%lhT z=Ag>!$!xiGo&xMY3NW(Ua>OQQf_RXD9bjOvCH86YLj}b93J6jO$6ij2K$%~`ZlG$0 z<6<}x4bt@r(XN2CDPYN9Z`&4Uk`RWL?uPg(6fNBk!7Es22zp_wa|rC1S^A#Dxi-QK z>RiPqPEs!bRz|Eo1}fb%_yH>>W3-3FZQz}PDCch%nS~<5Gx9!)6=%z)ujBrK3$LCf z@Une{!%)=@I$|Mnq#5rG=T@-4&7Ye}~UmA+Lks1Yq=~TK?L)an*+|21?<7rR)P9n^8dz@(yvJ%byzyXtK z(9*rmY&gm%Q|}pdI1-ti-v^PI?-^=;_0P}%1s58T1tlWs$c!|$SwlEOY?2%2K2XOd zBbes(DeLk5NAruWj$&}f(|J?Ur~e4N$G&+x`@cu@T#;La5_(TWsM#93Yc0y>bj3~Dt8 z1v{W&z2)zkc)Z?1RH7&?yl^ioE!R%xq%}ZyV;~x4*k5qiw3Xs7$Vl^;s=%<#LWT~y zgte=0AU^nwfx-nWo~r86#%)*qzI8?jaQUoC1;G<#43vxnr=6xgbqcX$;#0|N|1icM z?B$aY;h9&s?QrC|DY!A?jI(>$Yb^Q_Iw0L8#ms-(?{EM{AJj<3&(?6$V*S=Cr^N=W zWz%8x!Jq~-OBWBmLK830m=T=qYoho)wcLkt%n?62 zCkcPck?yM^k-M3G zTSq!vcACZE41EZP4honIvr}qt16AROV!PO#aO1yw-hUp${SSw`V?QkFo(@QF4;lLV9QxrZ=PR&qrv|sHb~unaTeLGc8wW>(B`U`205DCZ27FN! znDpsuo#4qEpQG)e5xRHJU3Z@h$NmiJPO>N<_@ll5l{7P7oJLV|MAfcq(3iDm*ljp$ z*z_|_$dV%&Ye!1E0Ug3D>>D3djmB8p0kDc4}<%YgCn~RY&~wJq4ocT3HIORz`sa`5mPu`2`4wh~;7+=KAd6u*0d;z1 z7p}pB9=|zX6b54^@AIBI@9}xyOiF|jns}}(@%cZTGx1hjNX)snS(riFojCoxC+;Pp zSpRfd;KdIj%03xd)?dyUFykac+gS(N(Z8J?;W-b2Rw+Y!>mTRqFx4bOyHE#O`a@?| zh=z^^z@)DR9rbs4lpV4%$TbfRbP}FyPl6BTc2*Sh9l_NbLLmZXk%FPcqN^0&g@SXC zp&8WC((1d~K{Q0riezX|304%BmPrFoc#}g7cccQhlaFgDTnt4Zm&+i>`?}@|rK&)S z)PN?Sz6uv zl7T;?aV>#euWALqrjB;Mk*mEJ{Udd*%~4fjS9f9#-vzp63E}8WGZ){Yo8S+WEjqZd zYoXYafpqtRvW zd9S(4ir%}K>0Lk;;Fy%Oglp6xiE#76T?X+C!-YvYx2}dXb4`Ku4jB@xs;cRVApI2K zGKmiu(qCRAknk0_Wlo0lYaK|YD3@7GyFltsOu0Y?yrcsCqFvL(qzm#%r-Tc1BntkB zgv;RI$P~l?;t#yxGPq8{H+cCZ{5;lx+p0%i9KI9l@)2LYK<6yAe(Zi=@g3(~$;{{e3T?3DQkhQ~;t?K^T)9&E zoHn8?(G@NpRG=PUYWWZn^E>nslU#}79fo+5N3;!sS>U@#uC8LW0?nmFBNJSYw{#^S zpH$ZZT1@xB^|-QQ+5l9#UmJvq+qwMFU#TwsmX*+pw8}s>Qe~h4QZ)+8UIfr`cN6yT?o;AAviq<1ADgNfEz zG+NNZm53@@=$fDoKWlwaqeQ5$c(bIw{_!G_`T~8*>WegnXq_&K9h~iWiB?v-OI&5a z#C?C!0vj)+D{AITp4uU*^vMEMKFB5N( z34I7G7ew|%dmo3es{3V6C6Q_`=;BI)Fxe~Wj5^VS(1b&}hA1-A6)a4XXE8;Q1u?5- z-CU_K=j+X4yF3eGR3i`Q5>W2vP>Jii1Ns&@I^3f#D*&;p!%w)9VB*({{(}^qm|72* z{l#kL^l`=mM`{zaj%!m~$ebf|GUV^E;DYh$TK(hPiK4}~TDb2Hgl$oSSX>K-qu`N& z1a!2&OTND|76z;Q0HSrYzA@Xy1lO+)g7~-#PSzdGIt4=r_ia7FWw&)fX!yd$erQBr z2=6-KZ|HmiHz(ZTCr^7Jdq?~BbHzZ2Lr}+YsN{y4zZOKnKGd%I#%O&{y)Qc5LGMd8 zzrNsw=5+KN=F%_?UbC7wguY=xyw0%xt^|mBNG@x*T;K*V@Q+>f3FwpyPN1w(#a-#e z6$^i&y%7|Hm{VKwn>T;})e$}%mtlIP$K894=T2QL`lt|IJ57UIoU6I|I5GvEhT4#R zqlqUer#8E+O2#aRa$ipvaD|4keyGz>s1tyR#LhF6M!p{M}yil+j=1B@3BPWf=r>ri)$+zKFh*J>N$iWc)&J|nn%$UTS; z7es}jBST%$utVG(_5;hQoS)H1>DUS4|RJ zsnT8*xs3vu#L&>7e2~5fYGVS+W2`(6PnDoO;WwM2z)`MdaFU*sP$vB-MIPk2A>(td zNbxNO|E3(?{c4mSg>Uk_3*Tg>2ERf956XEGbr|hxE`H76kIUiNrE_iIOuZWBQFY8d zV*vAahWSe^n0SfP5P)`F0b}Sm7L4JZY8JOWS&$9~yaw@W4?WI_?zaWMMEEu@pA4Ax zb#SnobaSh!y)#)ev+YgAUN$;v>T?wiH^G8EJaoi)x~?{le!rVl7fv~2+M65 zz=ON!WQa>u5Xt)0xXG?o;&F!fnH=%-NA|{O=Fa^wsPz&@2wYPqgM~A~P*adWH> zj503+H{JM1N+nuHyp?SuJ)u!s9DR89{Gu3Ju13Sfu|C?;--?p?T9z8k+rErq0@qP_ zB~-WrEV*RdzOR70SmQ2GxM(jX^M(uHNAoR_FIXZe;r$jO;rle?#|pCaA|(7nOWOOE zG|j?`;W7@5c1fXm-KHt7H?m6eIZGsUr$#Kr&_uaHtzR2esO1kFrkuOL%(GubLEqZMX<_0}I%h1$e@~E{v6ACW zWM$qnF*S$}c@24Ew23&%L?qKby#iJ5YDs)u5>X5!^S&#K%Ci+F&Z{O44qofSpW#Ji z**B8&rR3mR)@0tIacVe!uZ1I&eP)6kGQmiw3yz{veAX(&|Fun_{2>`mDouW z?3f8=`xs8L>TMLGSjxK%#b^nh@Se9ArEEpKIq#sl{LjR@YvNHJ-LknTUaaO7ycC7! zE0$OGg3b!wMNv~n{A`*MuPNS|%2Hx~vIT6c=oM^S+Ut|mpS@u#*aIxteJ$DKF~_zQ zl@;rG1$(~2hSRhW_xf5$I?s|uR{m-S3Sg|{6|@f(8s*{*?-iA|;U-@TC^~J+o$40yk2PT;}%~FI7ZDZG)slpFYlwUj^d5>0bYjZ?e%(r zUXIOqx@9mQ{{r&%lFwYBIKmPCWU^hbcx!FD|31c`=H=Z*6~xjP5lw3)8lM6At`Cb+ z#O2!-aGb+u0jK@do;^hgwy_#_w8F(5vB^CD_0&MVa9_(1UTvTwO5DV40e{RAPF@Ge z<1uzYLa$KZy3qN{Qp@pzAE2Q0!H5CZa$Cf()G`M0mhgQT)%#M5;WH%$jGy2q5E4XpLZ5V%Wu&5o2aTts13Jzm&O}^ddFnk+#&j?HxiGg2t zVjWF{b|%8)(#{dW{XQ)5$2tVt#ond7-H;DhgIthXc! z1LwH;`Z0}#a{vyfM)EQfP$g|JQP-NNw8C-QS4H)4DG5nlv+niWKE~hkTsl^hU{{zD2@%5zyTUiTzAocU;jO|3^jFGUlXjC875Av9(1B8 ziOrX=7bGmBG1A*`cWOocUtww#9T>~znTT^tMAG1tQ$-Eghm!cdB<6QPf~!t}X$gDs zR_k&+Xadyuo(a3ngr(wVem*yueB+T2KYRQ_JIE_slDm2cV zK~rV4MZsL4=x5sl0$ zZqhTZ+?#jBJ9P-<;Xs?j`vANUhvdlkg*>NpAp1h1IuN|N$yAvyqEB)Fpyj5b7T zT+L{}VHogHxL+@$0r!-|O*P^+you)fhH9c@OGFkuQM)*l=Qc%${^?iHl9*(S2Sb66 ziU(bUSoW5TXM-^wvKF*livQN5c^F@^5cIW1Iz|G$bhhE5HqL^v2rj!YU_I^1 zUvjl5nYER1wDON5nqx&l7|$LKTO6)aT%9kvhQa6NmiVS7JbBL6>loX%OZ<~YJPmN? zHU&QS?Y3BG@cfnX{Me?pL3~`IGZZIpTBRe;I-P_%h+)HqN*^=T#1r; zQr+SNEgiUwQT%RD(-Ld^Z@19J`9hM97|GrOqzpe?DJ_!k`5S6FXo>&Sgh$TJ=0E*| z40c1q^Pv04w_ZEbgj)=cd@QXjAC>5gg6CL??euYJ{1%=>LxGolZl=vk^m?MzAQLNQHyjWX$07|sjuolKYeWQJ8p0g&cJU_5Atr~A(b40V((CYNB*OpOS znK;4K7U0mw3}=0rR!)oHYZ<{8Y6N=bp$O8yOe@1%+E9-lF-36D6af_gV>hIS^0}uG zj*@Xp#&ScA1xs`)X(`Ak>8Q@Gn%Eu_8`{a{SlXH>S7sz!(TbQjZVPeXh9RLHnzkqH z#M{yv@SWd3DGOkn3>V^1>y1hxl~O_rOW1n~ho zGfMLfFJ^>tPpBh;y)EN;Q;7$AIb}Tg$1|GnjQJTs+RYg2jghT+WMnH#I~uVcBpiG8 zeCj@4+L3Gf-U#~E5=5={HW7~c?4cyxS4g^B=da3W$|pWm7;U>_1pi|Rrkw;+qZ}<+ zy{no>)aLUlI^@z2atoX*tt-36$~u`iA517bS^T5w6*#h_qSq^Qg=49EK3`qIu~2g| zY|YH$`4t`NU2r*iKsN4*oY}ad6=!<>Bg;Kk!4bn=m7*>+imG>3b1FI-+7=lld_|84 z85>29TvI+pD~2W_+lbn{TYqILzt5|gUUxoqRVz5(8;E&)I;$R=AdzH4o&McbpBq!> zeRHfMp8X|dzOKj&4o=Qk>k30-$5EMAS(h2bS67B=p#y)_x)s4Oo*n1V?)jts@26E9 zwORZ%t+=a-P4D6eS3=`9fiT`+D9~|lXU6i^OSz+2EV|zQC0)g9yivx5EJ3A3cckZw zahM0`A)#GWsJE?_$~tK%Wv-w-Zxjz#+JM8x1{7uU?kSE?et$~4P<|pF!I=}HYp z0y`x^$5jxT5Dj^LNLDaU4s=Gd?@Y*V%t%sU-S(K^DqR!)`ap8;sa$VWk;E%6ZHK{% zny4jio8W(&;kM@-gLuu_j&iK-btDzSVh>urK(o8ewBh-WWK?sF{?f{kB;IJCw;@N(0gMLXh^mOJO8j0v^5%vf$UTYTpVUTNH6E4o zs3PUFo^XMF65rd1_s&Hm@rEy>VA-Axe6|ta-3l+w+F($JXnr9F`SLj#$6R9^x`B5t z%2H>WW*Z}#Wr|2IZg2KRal2E-vE3L4)k?eipwQi7guY{flDqtJs6!;bwi^QxXC)Mi zbp3TtK67C;-0FTmH1JLv$=G#mP&=(>sxrV)lZD*U3>wIza?w{KTcQh?gDKNx!~Kj` zf}a}dZ#vl((b^UJEX|)80uc)&bg=^UmKm9t9W_AbTSM25a5Q8GBx;|6qE7DW z>ZqV14`o&0yK-TTkBv~=acj^cBqcAc#oQ9=P@rD7?1;%xgM1h$G@z(2cWWg2auxs9 z42$)^Q?wd?Wuu~SPSRaJlZ9J5_jC;Bv&LXPFN*%fSpSz1Z_V|8^(P!nSbGV_B5euh zH=l3}#nh+xZX{uqvlVH`Xh$ShQA84(rM;Ltl73;V$HS{^Y?L%Htaje{6=Te@fC;0I|gBr(+c;Q z6^=|^mS4D$70A;kVvyjr1plprPc(zcFe_JI{F^qtgjr6jD6W~JpdAlgCp+r0By`Wk zfoF+4?`dxy_f86R!R#j9nr6DI@Pru_)}J~Rqb9v2FI(Z!FoDiv6W*K0LixEFjySem z;sb}X%y>7=;sZ|o*GQ~k#G;YsAuknn;pH}eRY2(r>quRyrlq&7Y@&`{N z1wUHSPnzg@c@{q#{l36|HKUf~M_%w6)mxM$@p_rXxZSS?v_$JAN?;+PUt#{A36J45 zJ8L4L4Hc+&Vy*PbxsG~R@?s#>5&xs(2_B|^spoe*6ML;jG=iY} z-o+M*!AAUmN8q1xjAx4_bb$h;Hsz$$b~p>-d6d5Mjl37Ed1zvfWBVlUV}(cU8t`Ix zw-+7dvDU?q{P(SSWGr-*sxpU!UQ(cXYvyoPaR47OAB8ZMh5DQ5oHdy?q&)qyBaxN6 zt$9EcpSRfS0d#|M@mlm`a$2E`&*;`Jgim<|iYO!g$&|~(#9OoRsI&Cy0!KC8b}`1* zs8K-HnmejpFn?*GBbt|A;y23H!XHGF2JNqDqii&$q>uiHRl9Ns_i34e8A=K;`-g_) zgswPkYHwyR4_ksPGEEm==}%9-?HdZCvEjQ*9F^H7iQK3lwYKSmuF?GLQb!eRCYg2ukZCW4WU|8z{-Rs@G0#ip zStHY%^)hhtw?Rgnhhe4Cmg|w+@VlCwa6ZHqEf-TttMLtWy9V=BrQA^%pUKCO59dSpcvPP3 zdcJEF-g7I8RxC#HS0~!(W>g=(c~95UeC{@MLt^h~Hm}I@KJ?3*T1mCtQQuZh{G?{f zD8BJMf1B$z>LhvXjXbgA06QrSs5BEwH_9}LnruXc?E-3o5jEC?BB>g@k4Df&iCSkw zd1vXcB4a|=>U`-~SF~-lk&MHh4e6y8V)xzXv>uma9Kh_azsL{KbN$AM`qG5b{pFrS z-8Q1?euVV?ZA4)t#UK^d_f5v(&dWY?WT7m*xKEC*URdj>%ez(S7Rf{B!QB$+7h}h$ zns{q2YM=bXk%C<^gzT*&8}4)T$DoIZ!U*ba0?}fO*FJS5RxlSus{&BL$%!g$RY1>K+JcoMryZ$0 zqd{T3?U;~3E;i}@w5J9RO+qr%eOq7Ssv)^kXybp*iMDH+)R?9h$)(i`+n>Q%;TTe= z#1C)jUXJHD& ze?Em%Zuog_ilZql)QuBhed<=w!dFT4k({c9l ze)KCISVHevL&=8N?N^F#d8uaw?mUhnyOE5ez8Xit2}fI2_knRVycS{;qv492R4V>< z(vi-FYarg~G<=Hun#A36%F&k%G@<(GD6&4RM%KsRCDcJ1$7#c4ou2x6*u3?+OBLAK z2bu@m>50Qt-yn>7Hwot(e{ziD$FeU+RLt2MU|M)Ha&LgP@aA#+Xj*u4?c)Idi}iLR z0`I~b#vf?q#B202jqe!XD-Zg!%Tlhe!E)^y`_m-cc_AE*+IP5P#C$LM)zfT2yw~r@ zZ{mar-pS?F9Vi&q6{pHP{KpZ(_s3?}<>mgyRG;mk(JBupnoM?2740OwO-5 zt*vLGd*oX*Dy(elD5CAeBhPt{=xK+;75&#VWjyrdBr@|WXHkET*2QI`9%_CGNHp*J zhocXB%p~0i!e+9e4}IB&&Xd@4&QZs-i!t|6EoX61AQWJKO8B5;%+XY8W+h+>) zkcveG-Gl8n!9Fp=D8aY?bTmSN?XwRnR$)}!c`iF}0D9A$SRQr>)^VBGMUPImU2u~BDrXj-f7e^L z5DmS8Fn-P9Xolk0fXwhmQeK4JsXA;6(S`Fg3D=zGh|4j6y^Os^t(_hDgK+Fpevv{O z3t(*8jMLVF(20$g2lqgG6T;etl%GT72nMbQ5rxu)ki9TSr6# zjqhElQoW`1pjn&Ne}-wkUpYl*kmDBYxFC{q+fa}A-lFxN0#;)fXVXmW+~v{0x8aYXU# zgI8jyc)^*6ltM#9{j4LRbTs}4P2z0A?PNFhY6g*@Q!}VGQKr6=Q{q4wP&6zL52+)eRoekL} z$r-P59=60#{IfP^HnW>xPnu!0_U$+3Y{}M2+8ZhjGX|p=H-TO=gRuMOF&-c24CJj# zIV0FnN&8x*(KJCp8E1X*kCoULChieSZtluyy>Z%35U~GB>@6#7J^H^z)A7$V|9`{8 zziQ@_HkVuuW8$~!}d!8)q&0$?_aoSIYELB;&%~H)o#m&kvXI<7y zLVFsabGyJ+aG!d7{qw!$2_fAq@tsY0=z9j6BgxMg$zDx&w9T~SO*iqVx-DO$Pi6iv z0!`>W(awdMk9)IxnU#Ugcz(WmpFkcvrYMSUD(h6&FTUv`Hk#|sWN`evi_T0|TK8Kj z#}-99YqLvIY-}9x*Rr>GugnjH_KxMfo8UZ&bCwCfxnDxx3ZC-U`{kS!F;6(Ts#ENr z>=o~n)e_kd2UUdgN#&hQv1<}Psa0_>x5a9>s3bS7bf)#`bC>stk|#H$Y0%b2C=TZ! z8&>A=XZwWm;Z^$LtgMPy#^1siM>D=F4*3jK9z@ONODZ{Qq4`CkjxtjF{NX6iH+<8l zK3@@og77gTYlJ56&;VblK;!Kn#yS)Eq^e%ip>rS3=TvrP@P2WA##-bHPR42$;4_vt z`E)?Xg0lT8%H-o78KKkfjDmVgz{>paojy3KJoWj$<@wA6lo&~+v>ctt z6O#OLwAa@fqZ?6vy!a_k80qx=CyQ}T#1~(CpUGf zb$MK%ull9Aq8s&{)zDQ!*etPgtC_PCM`(E_>B8^(#q!ASuSD?%ku$+IRf`4twtTUmyHbwlE`>#N z=J%_>ufN<67fjDaQGvZ&7E#$LD%L8{=i20eaZQ}DI75TdfPGs&I@Tl;y*dwX3MO`N zSunXZvwAZyj}em(YK2r&ho4mA#YXXm&74(iIK#;T`-KlnhJ@P5khm%x_Rz+D5)LSa zOlwkzwVv3T^_gn`Eh1+jL86_bZovr*;*+^+Y|=8r?wgvWOoIT~HTlWI&M~!e@SAB2 zphbXLdNmjO#I7HBkyYyk1F^zS4{hL6(IKVzmyXUp zY=9*7RY+fVa?ZB(GLm{env~PU*@(R$N%M3PZQe#JJVd0pDSx6X5~-+yGf@E{94I2aRCFcM6GFIAp1O6>%#o`HM;GGiDT%t9|-ojBsC4rzcA2yBJE`< z@1G9l|qyxst%sN5EqJ zjO5<_WU>}yCu`y0GMO-~wu;@VoFd1Y71m;JNIev6$2}di?}_`uD9U(ER|YNic;PW; zWwu|6{D~$q5Ye0(134p|Epc+DK?S=NL3imYpyHoDj!`q0;NB%vP2k83WIvJGDt%S`~Khw<|SxN~gi)`J8t!85Al0 zN$o|I7B3!w|6;VWBEudZ8X(Ou;;Hf?{IPC>gZO)6P+qn*;#*ncX}t8f-5JX!N&I*t zo+i!;#-eR$H$tDZhEo6M{5Ys&tp?>Sc6qZJDFhRIVH^@S(NxWi+}HfM_f5nOtFvKRu6z4wm-MzX#4{A~r^9?%k4nhE$CBDKMVEx2NJeZg?U{GYe!!nQi|`|JtTqW z92latp7;ifVJ%T{-v#CRaee3gNo>fdlb2|OzI_scTC3dR9#_EqS zPJUEybO;u!tRx?1 z2`5jT47ar{*J3D8V(|KD1Yh^=ut$u^ z7F$Luek<~*C7PpP`Dty@>vslOWf<0ILd|}FGFc|T;je{a1&m2Hp5t$l|H|GG;Y^&R6O@2?zVzEuvHX} zPhzJ^ixF6^^S34VrX?7q?ie(;ZmdR0k;G4J@T(e7=%!-v58kTvc{Ogs^rKQNkg>OM zxM)8O)Y}LmgHIY=T$ZnR9W9V-BeJ^@NyFqHu5#AJBo4_o*NDVYX<00EuQs#>-%tu? zz05XpXBoLv4xCzza$u*%-EQQ13j-V^v(6d7hg}+8dS&v^AT5F|#t7aqMnHD|c`dpS zXSE1$If1`Yz4Nr*s$!k9CN@18bo`?w_tJU{$b|5Otx!M4e>QoGb+}UupKyOTHVbWl zdP|C*Oc@n(t6TidCQk7>w-KVIYRD!E5(7M$I4IHzlwt%?*17f;3ZRi1C|3a?=fv>y zaU&vm?b(oRm?d(s5lJp}^KH0PfrebHAmL4IvE9i^w)vKzdz%3|pn>-JgJSr^ek02A zv+qE*k1dfO8j)n;l3UT;a%)J3f<#tqfvrwfvRyQSsBuw>GPQ2dSD01xbqC|x?1+}L0ndv_W!E*=CJ%yO`9xL6@SctGwNI() zT%3}NTd+THRz}~G^zfz>8<1#D>$0gA7yt8!I9_Kr8p7*MvagZKSj7|eX^m4TBb#^q z5c3H?Xw(xb6{ADtIDnP-@S`JeA@hjBQ1-ov`mGhUCx7B2WE!jz5jMN8QmGB3$$D}` zJRkZoWW8ge{$ovjW-qAqxa|v2Ye#E_BMtabqxsxlM^xaUe{TzA$@$a)<*;iFDwA&a%~0=f>}SML-R@AdHgtT+f9SaCcjlqv`0r@wxMl)=GYuVYIBFO= z{+;I@fz7}tN%u!vAfuzbw~#XG!U@q8De!$z;opn}$t-%8I-p*BOxQ z-gD9K z7Wiu7|HAmN?Pw9>u6nP;N<_G)-YOz0=5BrKOk%qwewTu$<^51dHGbi!v%I*$-hzw^ z?XAeP0ky;8yhNV684HdsNc%2Uod^bfPs^Mbj%0ZszMZ>EYJGmAf4n8O=KEq?C@%u5Pq z0k9qa^+&%+-$r_9+(dQp6q*Rh;zO=Ds$Q0RCx1!pe;mn+lioO0N<2xISZqzf>fm3T z)%nh~!W)02c`TpQiZ|NJ`6>Yd@BayX>$MX3hJxJni?acbybX_9`ybTs$2UN7@w-V8 zuPI5vV9Ia4dY~rnUJSn@rw#JS-59}O?eZ~r##2+krERc`C0PIW?cDjaT z%gRwPj}f@si*UW_ng<5y9%u`oETj*Mo$jp-i-}dPD_ay+X5W^Vqhft|3CbzQ*&W9sWC+ak8vIysMJ@DXhmc%iZL~75T zDn@&Dy+&N46ZylFPMj%s1+)IEERicMkyNK#zKVX}_k`qs-GjEMO+hN9g(gsG1fO&B zu_|V=-8!*@L4#_5dj+G2v>JaPBW-=|GARLH{5(8hR5H67t|ELt9|Sm z6oWP-pHR_P#nMvSbV!7)#snUqfN_3Y7$aYul3h8tJ{P=~Vm8{uk4_ z^ELVl3Z1sdKO5?bE=Sz7N0m3zZ(pg!$4|p@gf#`2U1?)P zwuXZmLWQRhse96*!ZT-h;`xs6!*HAXEl2&H!obEk?7xU18E_Id6GY||b zEt0?XZ!Wj#7-(8)(XJy#kq6+#p2fWOS4KfUujHTc^!-a7X*8#1G@7>pBZ|`!%O1h5F1E`?eg3JL z>b!0$%5F0I(;F@qs^I;{; zbDAsXD$*XP0Wq3|y0viDV10?A)@r?C^!Z!{&HnkEgT6&^mi0G&5C(tFU=!rkB{bKVzB}5Ez2l2 zSVuw4iib-IgZa*?t~iX9QanE@@nnp{q9lrEL-p}hv?T;5Eu%PQ9R<}*O%o9ITs2oX zD~Tm)V#iJi-l!%FNaY5ZT2IiVisP&C11%=tP`M_!ngbi#EKGgZKQ>WY+3qTi`mc1< zTEWU@gbAx_Mc|q=Y`@H^tQ7%wgRvtaUC3fQPqj^DpP!PJZdG?Bv&W_Md5ZKvMDc=U zVqZeZt1&#I{e)_o;KRi~sa4ewiicVr*e9~Fsf!kwkrPEFyXv!LlD@=9*Osk=zOtsP zp>3g&`?4jMT1siPTs7H2$^F#GrDF$6*LJnD?KLv@STd=ZJiLypHuFd(E_LwPku*U| zX-N|gZC5MvadqL7myPs4E$O6*1@(}f(86zlj7+yiqam5;Em$aqJ}IugXx!6V!&;^Y z@m6k2(KSr=+f(0_EE@MdZkCa&+weNOT8USy3CYtfqiJIq4VLi4g{%nhu25}s_i{tt zH)MZVIfRR@fG_Te#<*#vJhWDww_S#HhzA;>Ju=QR?lG2elj?qI>`E2=179?2jL~Gj zi0YJ#bK=K|HMQy3RhH4Lw2X#ksiT^?>WDsrHyU1)>8%&ZKD3scBIyxuwFb`vM@`O_s#Xxy5h1jK2#{MXU7gTnz$8>7F5hqfr$oQ@fvvuQ9y-^=yVxC)wni%%|%@iVD-tx25P%xErZZr+#Xx}}-xjxUrleD#m6ZNvKgxH!#b zaFLF%(=ATA+11|F03`-qnHmHrJ34w*9v$be^5PC?c6O7*&R$}pVOW_N`udb)?&*kj zMh8nQiViC*IoJ8RPnP15on0|(resg|vUe_qCC3I`Ezfs+GD)5xFvT(gln+)B(9~V2 zuC4_3wq(EQWq;7s)d6|mN(m?htYFmkF4Y}M_(8%>cwx)3J!Q3PKhAY`wM1UG!hUOw zrLnf8o~|bBp~T+zV#S)&mD#S=I40f-_>VO(DiVi!cgbpd$~HW4#Mp_SsNku= zMiWWxD2%G6HNDUIH@z$WXKs4O|0kQ?3HZ^}^mg1gG`;5`9ip=^icju`&h2B^FeCa2 zjVBfv%D~6^quI8bq(rx06oG7)NzNVBeB~dl1Z(iuv~v9T09T;xXI-Q02OPqR8B$i5-rmTY&9LbWy z(-%Rvh9!XENmF5@6!DU0S z8$k0W9htEsAb@XJI-`Qd4N5RtEFi&XF{%KT&M2&DYo&3U`?$2iJ!6ckHEU`DH8O!{ z01jrtJx?P7qxlxQtBmbQ4f(ha=`~dr%QGQ|n~+q1?i}Z8gp0i?&C7fsDv>k?6=}XO zBQTOTXx3f3H;FAV!55m~-h`Lo=jRlL@~}CD5m-e|(H!(e<5dC91S^^m#@%z^3!j?c zdrffiueRF)BKYx)nbEvGXwbCjG5tdWD#?kVz_LI!7F|Q zkNmr22v3>nieQx!wR~JD(d!ys`QycZMbZ2dE1zieis(e6S7^q3p|C#dESVjAOs@@b zO2{FkO&qesvP{f$o!QSjUiQ6K*nTU^-W}T4t+MQ0b5I$;UOUrOl`T)?nP0l)cB%pb zskdR1gf2 zP-}Ss?m%^=^UZH6Lef~*Eu6LeiC4%QCLymXLef}Qh3cA-%2p>M@oU>48*QI*M?am! zFO+dbv&ia36P3m-EMn7qD1H%Q0ZU?eG_h*kDbiQ96z98QS-Ye5MO65ucaUjV^jvRld)+mLo$t-_TIQE6`xgGkZ}4iYlmsLp3G0psMHSku zuObRHN!LnI_CJO_)?(C}y+*sxF}wANNnamH zeeJI9Ymrc?a8JG8D0LEcc*%1}=zy#qHApyHSAJt58b#w8;DjBT zlwQD|sjHo))JgngYK6BKmB^l!&>0F;WQ7%XG4pvM_G&pCaULMs z%F`_AlTCDLhi_eqPTpoo-=xsJ%1p&!{#MfBgbOJxX%Si=S574LXbr{h*D9M;D4P{Y zO|DvZsRnj|7&LjIhF%niT!wDyk(J(-Y=u=`TO)83PalVoq{Xkf(lP0>>~;K;VTc3A z06{z(4ljeXv`GozNyI-C5hF5vB|$1*ztWXp>m=gr#2w{|XNzvw*tk6-q~@s6(xlP77CrHQW?HE~~R?Q=sKHD0O-6@S~i z$7c}6XmV(w~_f{5m{0-@TQ=ry&}elnyV+Y2_q zKuwZ;N%!SR3_R)JF-9<*(RgpIt31CDIHxkdx;r3P%ll7Q#)It!hIqWWGn6lR8xx1C zl*m>ZBZIneI#ghfVE*hvT&y$W9Sndhw~Pmy4rDx}c<720UrxN18=}wEyIhrDc%gJ< zp9>y*bzlfzoQ2lquZjtFG{b-{O<(>@p_Lr+gBHt)WZ%ji+PC-MyCvR*nizxj*%F{= z-f=5>X#WyO@#-r-C+d9#DCQk*|i!U@sX=X(zpI)>gEs3W$LyM_^FT3q}l#~)}+aR z4`^lTa&0~?vKG(Z>*{S}9kO7#KM>_}m6CSP2e|s&)w5i&_@~e*c{4`lO`0}l;)K`4 zFVu3C3c%dPTC#B%luwgsiZx5w-!%L@n3%N;1@$Y+x+4&Ca0A}Jej*? zarmm2<`@S^Bf}wM2_rZ4WQ-#mz~hWj^?vIb5+BNvR)_siXt1m;2S1JVuV=6PvWosINy8JO&x_&{JE<-2H*`8 zv>bu8p!E1OzmZg74~6pVmnc)Z8Y!I=im;Y#jWAjZUhwUuFf@Oue~`IcY1(1<30pUl zuj10?uU+9d42Dv>eucNO@*Dw`JU_QK^;?oW{@H!xeskWj@8`dN<9dRP-LH96fBcV@ z-2*g_TCGVd#@QLTRGrP%-qBi)haP1u$C{(AuHrCVVU5K%yvuKn8s+=Cw$F!7edii! zEB1wm=1abJHN}a!2F({~G178{!rK1z$@*iiIxM1&R-YhN9JtxU-B4_f{MpY3Ld1(K zW(?l&ge#XdR)f1wxSp^zFb2nxY^&fYr(BI$KQ;I#r(7*?q`V>aZ0q31e{i*7Gu7aa z{|J|uZVW!fI(WtyPcyb!4Sw=G>eAPZ!B_Z#Q+WUbkRiWN3_0+IvOwip`@$ydN6EeS zx3@8PlDLYe9joJKNp@2YB29^dlKss9V+%dH>iApn))`Czl&`B<5iw#H#BZ+VEV{0- z0E(bDnI^!Rl;;QXacF{GBeI%jjE^q0)+XUT(a~EVcg^IWN z5id31ajV^d>}Nf6G^O89j*TsiEXDg5n6g#YfQs}@U0(ef?Q9L2l;g^AEOJ`YQ6l|D;l zdZG1n{nOBZm-)vX9q{Y}bT$_CUtEQ!Jy_^nwcQEJYuh-RW2dIOLdo_ip?u4Og>`wv z-)MQaPvIB;ad+et=Y+pqY1n0Kh%@c~iIX`>@ThyPxX8wSo112+kxoOT%N8zbEV~@j z)L7s77qgv{jj>Mn|6&a&sm0pFFV@XUthPUK*z^7I>+lboY)HkWkw#yVC5XQnl0V}N@i z%%ms8Udo+;18WVTaiIjn@+HKtZ})PbyA3v~=!m!=r0fWVP%7VpiVDTa`sIS%wXic) z54JMcU0+<>zapnxEi<+E;xVu~oo}gCj z!8dfn@~(-e3d7li23jGM+d?i=#k{$QMA6vj24<&Yi}i5Q>lPS=o39JUUTEO+x*N;f zsXQ&p-IncA89zt4+hbRnA%R=18AqbsBiWB?@Hu7OO~uh!{`xs)9h`b_1?Al7>>r&` zj@K;@5&kkVu3IyxrO>^CyC1S`UL|B(XfT@JtKc4jv&)wy`We0~z0lkin(%Ymrj^|F zFa)S0_EmB>76*v{p%@{xq0b1DFBM`~_}Z)9VXL7^;IgsqYS_$bh#$KcLDL+s506Z8 z)5Tqsg2>A5Seyc_M?a^PJ04474bjiS<#FC~wGu?hGkEXv#?){W3s-!}cUN(zqi1G_ zew7maO6_mz839U-H(ew;qCcXWyE3lP)u}IZb0^xqGm7+$A`%wwr}8t^+{u^<)x!;n zcc<7qMroXiG?x`=z%xig3i4%c4E4@Sl6GF%!;J$%8X22i6&op95{1jC^w;XhR$E&= zG(T3|oyuC7f;Xo(nXG9eZ6*#lgG6Nd(Mj$~Vgr&_82+0$g?Eez_k6!W zND0`qrn@P7#T4)*1f1c?vPm((p^B>y&OMOF(9f%JsX0GZ3ugIL!F8$auEX}4aC>C3 zl<=fkF&Kvfi+$+`4z1oHZ|ba+9z5y~oTc`=3G}NDq8b%>g7otOf4{D`EFCTW&cfmw zQ4(nVfsj{~&i4A5mrC)J6n893Y^;@hlV0<7xv}J>sb8k6(pXz0bjp87;NK3xrb*4n zj=}uwH?C1NqdEqg7YVr$!f${8bvB~XrhpI&B?HyJct@pmzeq*qE)Cs-%i0@=l_>{C5;z{JpE0?IjALRPoRAUa6>t z@*DfiOlG2yg6(SX^G)21u&!N5s|0_?Iyj9KoKSFYf$}ze`_7QZM#(sWGnKf z3Ypm)wf!|Cq}T`XD`Q2sg_Uoj*_$*_wWYfyi*91fz!6P+TJx2TteF}xva36RH8uro zKyNZxJscJy^N6o3V*^#d_15m{te*+c+YIm)Kh@bYDnPU?*h~{(x(=YsfuvBbHJX#U z+FMniXj-t%Cg3Is1b~3>D00(0Qo81*tu`qAxH*}q)Blv@(i_o{J8y!X)fG&GSQui= zL79sG*1VEEFa^0M<+!b@mNX;AKCr-54?pKOc%{Op*s*WDLUz$&hB>XNfYVure+rtr?&XiKpr;V z6z&Bn!Mvts4@0|24^IxZ)f9fSIlRxo&~VbjlYbpEg+FQzpLrGyk+o@S6J-_mmqK~D zr@JA$ZlYY#DVkF?)x6Yb9P-k{W?GIV?;tO&*34+#D)fe|OF%dnx&0aVp%`h%J*tce zZ|LoA%mzzp{qHW-U;|9RzRiSvVmN4)3>x<S>~6vs&P5W3oRSvq4@N=y&;+>O z%+L~AFn3)!S&k>F;fD@IW3*bT$*lAylf|TJO(F2etWXY_8Cs_AlbZQj(~MD?8*E|^NcGQwJEyo)*t2TDmbpmg)24tkq)^jRRSPxa-~X~MQKoH!iuo?jU7xKr zVcsxfHa_Ma!#-ETK0eajiXAqEJzx=5OwDFjT;G)MdK^wtq*5YB;iwq+kYRZ6f=(fA zLL)|PlILfS@C5QtpTN8T&HQqdJm&P^E{-ejC z^d?ix5I(Ej??K+6n*%knk8yMw7!6H~6cYn|hE#rNy1TlqzY@I7Qz#z$n1bh+f|Cej zidjlMSmd&aLFx!Qy`iowc*?X? z3gszt+|5~7OCu$i-elSiancGBWT}BD(4uOn|kI z0EE8;z*j2Zm6rhc+yprM2*A?$5E%8oUPZ>djNX2c2~hY5K)qMojaYaq1@Q4JC^15K zucdw^9!@%33g3nzslkgR8C{wdmK8uor9be?G z%7&=nIxI#89%z&W$A=49dbjc!)$8M-JZA~?H%Dc_$;0{iB^YLX#t52e0+AfxVZ3pzpHWMT7g@}};M-TalUb@7ydKA}VH0EU zhL*uovYOV9ua!-Uhw{eNj&C<{{G_}oqvB_bnKn8;FTQ==w7jXKro|7y*NM}yPVT0cdnrAS(eprz!cNLq@drSzFJeae`L)2HJ9rc4<%E|2G4zg!Vj zfFa?1e3Fyppnk9A=sQ~F^t~4vucBF>oF&Ic#8~7T;S}1 z4+~?oSNpC=`{vU`7AG#-DCQz4R>mK)0XoDLN2mc2G1}?=H+}_q&n#iHh zVCz8sWvONL_=%4(d2-3fy=cu{w%5Img{Em$0Ga5OPcZ2j#Cx6bvo)6C;f2XWm?2H& zr}v?^ouV?ve2RHetP1jH)U;+$vGvk^G)HoDMmb*T0A`VU7#Ust8B{VLTT{t^B_JYu z(NOh-Q_3kFYs>BEE}L;L%P1ON@h-`Jk%&qu@m!iHCDgH&Ifu~~->ip>=B19H$GFKD zawCOQHYOc$C$X>9aAQA1{febp{)#!GB8=qqu*I{H_vSyHS zZ-0T(s5EbM3fT||kLIhsboXGP>Bgpb5WUG{iVQR<$-{Pfmz6eDD8s&XcVsChN*$d- z=7CnImRyHJ;^obZBvr~kql0txU^YVA@ zo@}-$%&c^N<8Lg4NY_SdfUuOK)iL)dZ1>P{caFKovTY{ZyXpS5$Cct;J*c+Ew4fgN z%M^oE7Z|F@X`!d~UUQ)unlkR5X-z&J$iUjDul62Ozj^rQXHS5 z(~tc)P())p2RZLfIt82eu}j<1#CrcGHvL_UvS6Koko$Tb0mX#mzdL#x;!i8m>fG~_?=9TrA5N$07F%B0i7GwwcYvy9|=EjdTV zHkl&XXh@#kwE9X99nI&gMkDQWQ|QB*h&YDaKaB?--`!9aBrX;6)*t8z6qzuEmKd#( z#j0H8Ic|3hfB4$&5Luq1LcQkhSu#8`l#gApyA97jkD;^hOs%nn)M7d8d3RTIx;9?- zE1U!A1r^Sk$ljTB8P($JT2u`#x+D0W%kCk3)kSwEA5`S-%n94{Pj_!#+JRzx{W{*+ zf#Estkti(-(XtsMJ1?VZn(0Qg zL+n4g!E;^nLZ^G&gZPH)e$cDDm&3Qstr_1obkA^pz8F?W$kMVD zsVn`8do-5Cy?@Kk3OL>gFElIQlsoY^Eu^{1CtpRk(BGG&Wj5a-Jw-KZ<=3_8lclef zV>wxT*)_BUbNGdSpnH;_-F5dcRE`D-x+)S_Y2&B6npGCPvnPbVcLP@G@elN3+q|bA zKl6{*Dqq}mkKr%;t6AmHzi!;jnCpzuGx~+UprIYAKBnA41y$;a-qW=wk{|ldoyU*5_6*|V9(Yr{=#G09Z}rgKQfUR0Y^PT^RK6XL z{AkXKz8>kiEAP1%@R~M{8l+)6QOIWU9X8KPtVBDtwv*;gvGG^`L(2i{0YW@V&x(fy zc*1$hHXn88bppImeE+~bf&Uxe7sUvpR97Cl$J<^NIL$LweCV0VmXaXqR*yxRXzZ1C zR2QPgycyMB6NIq@8!`*sPKvxE-~$t3ED4A+d3YRyge(D=Gfz z)amDAO<@*_F!@(|#L1Ek<`N0^g+#kIJOEpSaaePJl$-0;y8Qb6%l+Yk2u0awnCt;pMM{HQ8F7=jVcSS_$m zMhbjj<3|b7F9X{v1@YY=&vsU_y|Gp;(cZsS9US86kNX`UmCU%Ip`M{E(-bZZ;d0^U z?Nxg;`VE#i8?tz{7Jo2ml(M|cLZ^(INy(3?y{X(v1WKPV}orSvCE;lJ0yvjehm zfO=eO9H6=tLo82zU1&J4CbF!jB97<3Skco7lGB-8IFY)VNA36rbkLT}yzRearbS4I zX~|5lkPvOjOmF;XI#;JIUivMWiKnQvB{PVH)Na$>Q9op3v~mJaTD6Y{$_&w)1m+XV zA`@gA#qHif_afhd+R45UQ9M2p{i_KSOsNsaiWgaIbO+suVmuQtU?OxQqKe|q7*B?6 znK9rJb3n09tkT_&$I|R9E?dzNCn|ep;z%E%VI}VOeF(oc{<~3oyWuu-WX<1HL{-l~ z+b@JrO5C56REy|;kMlIb3537$M; z^1Rx9g5&sIywEzfU{L;nB;<68CTV@>?lzyG3|sVZIP0#0U#{-yfMY%l;EoDd0iiBQ z<=bj_64*qQk(A`AEzalj7jBF-gNCu|C3~8%S5?N|WKV0`QX^xLKZ6no2P04ILdw*7 z%m=!u=UCM8bYw>*JhrDi#{&0~3IP?HebLe9sidLubv$huwi44k1Hwh~?R7j&`5UF& zk+veEWQB@k7drZ!7Q1>UvG7g`V{AQ7CJX6gENlaD0Krfcnz#*I?N=^H@ib-))bJ6L zkqPT*;T507&Z*X(ma!Ywg_Ni*?n9|%e;8Pz#OM|)lD#J`PQF-}%wOoeuL{5Z6c#CD ztI#mnsxY@B}+Gv+jQ35c${ZC%hSV@3ZNL11d?ChV1zRg08`9}o~Y3E5}f0=;SbDl8m!+C0O*9HC-9;<8A&xga-rPs4u-EO_ zA1`y?XchZrXHN!tdi=qOHG%Aq9vC-Fbcg2mn?ir0B@{OeLtSwJwZv7@gyB6r4cVV6 zA)%)ym7O;c&UVqAhRW)&Y)@Mp31b_E#sTDx=5J=h(I1)u-q)gLcTmL%p8<#}4-!SU z+}2+YbmRF=(2#DVFmLtp46xPb8;AQ{N4m* zARbG%QrWO>TIsNKjvRt#gH6x@-Fyn6h2pdIFxqBhHp>*|DJjU*Zaz&=B50}jdKDlx zm9sS_z^X?8PK-oT@-r3i{NtWncE|+S{|Er>M82#7XeaWYCcybe0KPkXIFp~~RT#*E zyZe+E%`1%d^kAjB8!f`%LGW$0Jf=onH_cP0P!K+tS?d_9K247 z;@}mZKGK@%+L03eFa`G@8~ zp)M5&>}{2T<<^1xQlpCr{G+a-g-JJ{`xB8@N^U=b&ZT#|ARrziC!urdxj^)*3-!7=Fgz)5A{$<2z$|YVe=d$ z0?HA7!*k@dZmR-XKZk}$D-)pkBLE|x_taszDxm0jPa`(W1Q@IX zghg>Y^2HZ0%&<+@EzJTSD^u8nzxN_q+)Gtx>6g%VTV#U1qCs(%8enpud?|sk7fk3* zH0cBRs`;LZbKk_MO*fl;t@sGEuM{5<_D$j=-2S`xVD_KIN0fcL_$Xn&D?Wnk*Tsj; zenor)*iVR$6#Gx&qlA5*_VQKn5o33Yk23a~;-i%PEAe5oza>5b?4QgPpC#-+h>tS% z&$N#(#YbtoLwuC9Z`8i+5g!qDoY*hIbM56p@lnS9zV_`q@eyhNRead&tHeiyeVzD- zwjU55M@4&)_$XyxCO&NTKeXRYYA?40l$a|5 zzAnC&wErzWg6zMDk9hky~+W!(C%)V3mI4VAD_6_2rr2QZ9 z5n$h@{U(ka#BaN`-%e}4i36y*h1d^^k3hRPQV0Ly5+6bK^V-Wp+Q)tI5n|sVKIVql zFN@D;`zi5ZvtJV*q4p27j{@;g*M32Kl(MfE9})I<#77zXG4WB!E`}WuZngLbwg0Jo zd@Mdf>~DyVAp1w+Bf$Q-_U$$C5o|A{559GQCyg?}u-ELJaGg#bx%4oMSAQm=!Efw+#G{{h4A_fIXdfj093mdW#AAeb!1J>{VGm}{Y^a1;xWoD+)cb+DUPjtT|C~vW0YNZoOpi(r={7y5Rb3Lpn5Ee+o9__@VgLrfjk1pcTO+0#tM|KE5 zzSvWp9KL`&d?{d}5GPp*$ltxM3drBZH&LLIx(mqry{`%=8|dFeHW1%L8DBv8LH{N) zhVR>4$|An6lvng`BGc&KMDEeQiEN~Q6WK_76E#Hv_`Ztk5^=~4Fif^L6DxfSXzWqwyy39p>6kkQ2EuhS*e-pV@ z|0c4p{!Qd#4OfUq4G!^SmLtQ5E5zf7E5zdnhj>oQ(Re&@g?K#S z5RWf8GO%R1f;_~yLOjH9h=-gU8Eaf29&}tG9&|XwgHVo)J{;o7$Taa-o6h zMX7Eympa1aJxc0g1bUIl)FMaigSn;Iyo|&yFxsgbBLETIWnxfLOi~&Xl;`` z(z{3=@?9Yw`&}U(|0VRv`)^_6%_En7Tji|pn-J&yN-gcjIp}w}RPSwP{qo8}b1{KG zMge++Xb)e-{~x_tEcb0^xJlQ3-9^t^i2uK~(4Bs~%td!!ivPzh6*^QUzNI;)Fj+Q+ zXs2|0UWp9bP3_>x`8s77Z$yP6(*Qb15wfbBuQQ&?oD1 zonao;yWy%dkK(wf?)cwZtIQ*$Qdpq%)_TFzTk9Q1*T~r@B3?r8CNRT)53#q_2Ns9c z7l@qt$5F#~oRR+goP%IvS>mmu)OVaUP=%}B!S3Nky7!K=Q)zzM;iT}DqDufDGi+W8Sh5Vz zW;vjK4j^bHuQ?x>#pv)RldAxAa{;Fqk_qtYTEO0QfUnjAA~pa@e*hS|5%BS*EZ~|C z0kb!Adi)^Amo;}QOfR+r%I*h@{RFV>pleyI8JO~us!F*{{whl2JHO~@aGl4nX7>KYn&`U zM{;^&uESLG2B6k$z^@E9?*O9j0gB!S%yICf70V93|eDFJ9>K}l=0m)g~S7v(O zJ%MfYQ$XlHfHe#~{{=i?sPh7l{tDLW;U0i*iU5MV0J9lx1FQ!Cd8Xw8uE&}|OY#9! z4rU*Q_e%j1N&|M30c3?_0gIOfyusiX3P>vts1e2~@^djKHLwayp;ZA5>H+pJjEV%j zQXil(L^lNZHR51nK!qlNlT87>tpU>*ZUF4341UN)(pg%AwxE7vIN1rXv@>8{7eIbj z!2RxkYq0=FPqy^|Z0HN9*$=P-kgR=XmU7hqn7ju8#tsF%7zLO&8qjbIpnzf4Sit6S zfWhMdMK!+u?&*Mi3>7mty**}njV8hLl;O;DK+X)n!kK_?X92ps3YanFsjz zHNfKe0RIJ?5^oxC{r!!Q_Sr(fjHQ6*4BM6gx@Rp1>I?%{0FEcB@>ze`9w*YQ$1q5#ce8G^m1F(NDpwd3R z{>A$Muj~hS9^|ywo26cS1g0KG0jItK#GVBF&G7Em96ZHAhNEWyub%}hJ`Z?O062dU zko7H~&Lu#`kANQ;I{n01@Qw+WJ22}iY{oT!{xcx+7r+ySMK=M1?*IxIn%xDgXJ~j2 zP|OKqF<*{@-C_CK)o z`WLXb7@lie6bBq<=vo3W-V4yBB;Xf@*SrCLGNkzcdiwH1@Q z3?L;O(5MMsKfS^=1y z0~o&&@Xsp17pnn3tOfj;wI0|r4{%`vVB7~>J)6zyS+ohJURwa$wgHZ82Q1$KNZbjy zvyXk%)`ZpyPcKQbpT_li3?XgLK|qs3fXRme&lpnA0rbm&W#0o@|Hv1x;3vS6tAM!c zfGNLly1cyMq&~d`Q@~w7>^;E3`+$u90BJ7(cNmtw!V4M?z*j{9$BO~xl>k)r1hn)5 z%qj^O?G3o+1Gwo6Sm+1H8W;eq5C{kf0yHWG7+V^!G6YbpJm3Yxf-pd>2*BDZ0H5lB zMKu7!Y61SJ1NfpIpnrWpW;9?{Q$SivKuB9a-}Zp#9RbBVGjs*q?8@6SzOjI)9)OBH z0ej*AGX?;b4+88M0`M3HSTr0EHWILk!8aMOhM~?_z#)ci;{e|=j2#bn!tiMdpt%P4 zf}zF)fPOH_ShN-&%*Y~m;Kht6%)e%peNm;T+f-Y(fvyx?<;3`{X3xG?w<-q;r5r-?HzgW}eX)k+n8h=V8GBD0vM~1AB{F zo1X!#v3IC#!nRzWI-Xdy*R$>c-$049)eiw%u>jN#qVH+{U@4?kd;&PcFytv9 zpP?Uy7cK2?z?lC4_py@IS``KO6bIZb37G8%s1yi@C$%Nqh(Gza9j1f+K2*ac<= zdN-Jw_5f7x38>Kv&?TNdwwfN9{a|X6)t_zen6{q7V4FT1a4doCxN^A(3r53~FcuIy z9uPMXkdh8)mI*jCjeWl}eQ734WfuV^Ee4ES0@%F_;I$I4=uLpnDu7=upjOs9z>;eK zZ>$3}-2iyPu>XC)iB_k*cKe>UkVVr^{6B*~Ej zN8E}KW-h>hae&JyfU;8ngXgl%!4Z#`X+FXRoX9Db73s|!O;JL8`>c7Zl{5N?k zV8uSblS3SLw;4C!I7~q&0H@CYCKdozUSf|wOph8r!jyImQ0q3}ErWxP02QAA-hKw? z_?#nPK;VY-$M#W@Jl{$~W+A98dIit1&3pl0;VDylP!3SJA|Rj!;Defg-E{yZA_1uk z7wQ8ZGyvd_9$+YL3)s+(w|##%%k`iWOr5&02_v6WYNJ?~YWHB%8C94weX;M9BnL5E zn%I7DINBfZd^meyxRHnxN5S-HG+^KaK$FQ#ZZpZp(_#932Aj^RR2NI4`%K;|8~nC; zfV3s-blJ4u&4Fn`)|a-9{G)z$sGr;F=Ysmd zP|DFU+VfA2`r(5fgfJQK&xh)#FGg|>Zc;y(I5>pSntwh~KdaTx$Li+`^@FL0T`;8M zXX@0YMYPHCChEXAir?yt$Qp<(f;p>}`i)PToRBX0n~hwKPAWJACq8|Mz$2yn=AxI>qH z)(%-hJ7oFmkn>K5mc>h4hpglrvPN^r;>;oIDu+zt4wySCsArs|d znXw!)DLG^|a>x|pkZHsr6USniCLA&WIAm~jXt%N?drYn<#Cbs;x*Re*Ib<+$$SCBH zA;%%3j6;SOhYTDJ83G(~n>*y*b;wQYkQ>Y)_mo3!BZu5R4!Kzza#uKTBjD`UA%~a_ z>F^He*beE}4(ZkoIlo*i$CryW?$e7k?$V3p>~gW3TrQSfK8KuJE|%WBSUU4!Ika3X zU3sze5tkP!Fc#nOov%W36eIjnTZS>1Nc zb@no^DVMM5+$_NB+zX`6e$2M7X(M^>b2c$k*+^aXIosNSH}*Lj*@3V2Ia}KSul>%( zcA(>a=RiA-HofprJmQoC`$*~TpGMlS8Y7Xfcywn|&TyOgSd zexi;aJKLJRKe2Ch>|Saq*Dc?7ZrHw;X!FO;re=LV?OPv0-hk&Zjsn0=Y9lEjmrl*%#luOj*pj(Pd4mvy8iCj8pcauw0_K;g%35V=T zxI{Y-*&XN-{c*@{=1bJ$uw9FnXv1M=EB7LO=Z(#`Vt#aki*$T$PzgKV>YqAmM5@9c z=E9f3=B(STvY&Tn6^-W=%<+>wXxA`3gknN<{4L<%Mt+nXA6k-fiii4CT;=YWHVrYW zWBXS6&(dZz>5p>t>Az2%K4!rry+*v#J7+poIO1$u$}OK|Y(F~PgLVh%RqQN$DJM8I z&^`V+_A5Js-aF>3M|tPV`IatJh$g&!{QXP{I_m6L&Mo;nY>&cbG8c}rMl`I*dH7Py zQKt{(9d#CW&m)F6oik?A_0!I(wwpISI_fM`lx%i8GgB2Myj7@QuzPjfV>XZik2<3$ z@lrXQH21&d9qR5;iFdTe0}7R?Y}w3llM7wb4EEbH+b&KB-53%YP|7{2gX~h|RZ2MK ztnYp$;jhA;y^xF8(!I9J^1k`G1s>EORL9>!DH^@uHiUAY8kgq`?LztwEPRFmst); zq)slpKFL-6AUvi*S=u`LmcLcY;_@}S^e6YLVaIYQX=Br^@`~da_-K!b`h4wdKpAx^ zlqyq*p1l_IhIJk^&mYYyc|}dE;9b~h&pJ5mU+;1X53xJ0Wb!4Sp9F63ptLJaNu^fd z1j6}frRWD96!{E%eD4aCDgCzY>we9p_~51cMhduuTM-`33#TxIk7PD&@}PfzRVmcV zU3$y2u+M=_@LBSq2aPaPDexg~`LJO3TvqdO&hX7#8=dO8HQOvSiB^59*)G}v{LgGQ zY;|B5+e#k3Ur@r)|X$N}m|!Wp`2W3E2;y0iRIDDQAE4rWAYf zC$O(R=s{8cpi#nK4Xa|^B0_(J!z8WuVQO{SS_#eopmzW&yZZB~e_6^^W zk&j4^W>xmIT27MO^Bvf`S7>&=GtoWPvn#M4y2`Oex!X@)g}ojA;7WmWwAmdcoj9E4 zXIm4vu<*xg*Pefp2IJESQviKgC_ll209)cUX22mhL^T3R+5O~v&7%-ah3z9pmn&9 z-T8$sav$`#2YhV}b9aSD6-s~l1CZODW(SD*I^60267>ilOK#95Dh2ipuSyU9=d_wf zJofOJWzS!Ev>4%D4a4~u^UdFB?xn)j^FE(!j`@TA2T;sqr3c6-p z?5@ksk`3Kz{5iX1;1pCfNT;U=D*7vKkjs2NiaV2UpC~Fg5LV3|nS_6r{d<-yLOZ_& zf8%gObqfDD!c}47RPG-*E%}E#Ni=0Vz7=KFwy>+2ZS^mA$Y_;9{>58Cg&~8(=Udg)7(!PH<}8EhpI?z>;^L}dlrgSqaSAL_xrBQvx7clEDcW$= z?uQb6Ln+vMm*y)P>Fz(0kGI#Bq3mnUzGfE`|LtX9PYWqRlTKkqNE}=>!c_(0FgFAa ze}qt*Ur?UxD?t?~Z%tJ%tL?<47@v~QD$7?i#68a?Z2zYmh23xtb+`NSf%=H@Z0|`c zsII?zfl|wZEE8rHsNi9EHM6=UtLkB3$46Mz{Y4c7RdpZW>K;&qru^)TGcyxYIX4F}1TTh4m!WK=_t|1_kLx159A?Y@mT z#l~D?(e&s_^-y|r-x(O>cI7Gjet|cQxaEwc@LARUtOk;TmTv;`KvPP*qJR1M{F7 z4GI^fMnCXt`>CRIt^v)b#Ol6{t+kOPv7KEa2Uu0?F%Usj#WbbyZxqOk(cC@J{@jTvC(6|9vj064|dNmpY17QY2NQVf=Aa1rOE?qxfYL-@656A$sNaI z_;B~QAC7~)>v$D6d_=A4b{$HzLE}OHmO>41>r-BGt%yPeDx!gHp3eOmGs|OVxO>Xo z_{Ep^(^b^?cC{j`MT8{0ms#HobBxOCP^*gFGQx*tfS(3XlXf1zEu&gy54TJ>hk4SL zjflkf+EwkTQurs#uUudzACptNEMyQP2qUJYxFB_7`V*3hQcC^{Ge64I|u zfm)qnR^y4wf!E+NeZE};w~1T$*ZFm$f9F$vkV>K&UAtPjr1?xE9)1hpF(07XXgt4% zq}u2kZlmX@{*hDgOw;z6v$a`#A&#=+ku|jRnLVkAefm<^?=R&^Fq(4q+^%VrSJ=Op zUA;^#B*Gum38TdNb*;%nJU-$#pPDb{fdcaadlWRUTiQM6Zu~;jPs>%s#UH#~wNMUD zW;?G?!!gG%o1Q+#8ZRV=0sI=(t`%JJUKBO5u5Y3E$Cw?mlIA|Q7qAj5WhLzA-{b{_ zTvrv!D^c0nZxfGeZ^9$%EsoiX=3WW6+EU0BZ-K1ywkmYq=DLLo-STa)8LPP)_jAA0 z?A5UUxZ3O^59$<-^?=zQZ^Yhfr( z75Bku`aYSV=+W9p`#Db7*O~o!UlDqh=eOO(>Q|wdeUa7}CN3}7YmlOqT!dOf%0R1Vua5|rJnev-A_C4B5r@Z0cKopgnz8bxH*PoU!$ z>-$u&?g{bxn&07Tankgo3zO?lwC)PwyMxjmoTU8X`Yf{#i2XU+7k^E|O6b|{_IJMK z^iGjcLVvx2TY0;m;&cFo$`f9WkbXz0R*4-YTFICG~0U_CE?>KYEe6d+RgJ6{Mtd?jr1IbiAaV;(iwk zH}_j`p_jPJkH>V-z_o%Dy7nc|2|v;`A3e=ItMngXKm8*|%W${RD}t*8p--65>b?@La-S%eZk!zNtL z_^8m_YIjOha8JO=Z&N1yVzmNI`a7yl?iW$^?t-K<3A}de7s~e6yO@O*`yXr{cN512 zdQ%F#6=iMI3%QVA%#6UFy$sMhQ^H?SuKhTn2i*aE><-g$?q$wrdyTtA)b?alvFJM1 zUaLfFdKdIE0QVZosT$qM>YPHaW4hEm+7+l@qxc}*+x=3C zI^i(EDGn5s935FG+1boqbn@I8?;h(HwztrETJGg;@2xL-w=bkBP^yWD<6-lg>( z=2RewKVkcX$7V}whkip)^`t+!C)N3l=9Si4m??>=;qP!c_cxs_ty^QU*iZ9Iv7XN< zw2a=ap<5DVpTmCaZ!3pq|JXVF%{h$cFt70vkD)gnuhP)lT0sik^Iy<4{fg4c)1dP{ zYgo=+0t&x}U$(7Pyr_M8Ql(Jz=KKckE;qU?<%HPV+LFRCc4=CIc82K9%+m<5cj5PT z2jRV4=~Fo8Xi+HTar{PalafW%X$uPGP2c?5(6?~uI`hlE7vPk~7bi}s&l=k63CZVY z_L=0(`A6oCZB)|gVnWX2cZBbH)3H$8&C4%0EL$NVVPbMxLV`6oi`O&u8sS4H%3;SS z;5$@dAv)CubSqz`TbrYZMC;)Td#Inf!c|%we&JX(+%s;OSNx0G$Bi{Z-H7V^Qu3TK zW;~jA?W1~Dp(WxnP}<;dE_73~M#Vm!Utz9-SD2+nch_uE)p`;Zx*-^CV{NNAC+i@n za^<%{w17G^qP*QiVme(HEN zYIP(bzvMT?*Ts=GjJcPfMCuD64!XbNZ{AP3-(q&F1l&=>rCE%|?cfotU09rBLML0ifdts>o3V z&5Kd`#yj>ofMlM?Z?vZlRy8Otb3eRe-0G$xa4fP<6WqQck|ou-wd-| z{0p%^@oVyJ6S%q}DJHdPvBLeYcLL}ZiBi>+xATtu;3m0u=NIcgOHu{QnbkC)aOCs+ z%KfOZX5XIGqHybG^1Jw#$8otDk?&hCv3K|-{mvRCRngnHH{$>e_Tv*cmh~hjMJbp7 z``fAXUlqNbyZ@$C*z0F-HMel@-);GY|9>YHrT1cR>qPBqT8{GDw6vafBuPL19ANom zzPh&VNv`KF1h!A3_SN)G?nxfuj|TS7E=uRy^4<8woywF~ysI@=OOjvmCk0!w=y5eY z);-CCS+K{?r(V_d-tP89{_tSwBHB@1x3=pfowfWeLSqLPttmbFscGSU)5!t0-4g0k zR}ZJ`8hV5|z)94&B}^_g$D_PITG`7GMT5~QF5`NSq`2Rk`WJ4}$Yr3rtWYg}_3x&E zg*wwf{t`mV;d{xNb|ukS{Bgvfm8!2F?cCaaXF%9-{MCdLUrq3kyNV{2YF4|@Q1Lf^ zP_cKlIaEZ|XckZ*Js~+YW6I1zH`M3+$;GL)a=+!));-=w4Sn_^XZM_-aEYgP(tCAF2k~{Mx#Yd&?K_haCeya4R8wcJGdtHFL;S zj>UH$+Hrtfr55ucf@T-Ty`m+Nxvz~4p6o_dzf2>jse=DkvUYX+8wk<>L zzG@p_R-)ZR;H?jEm^S3@N?$Od{y}Q{_#NM4h|Cw^%>?r8&(N@(8y#S0heULoQA%u%(dc;9yY>ttbSi&9bm;|m%gPiJ&;f@wB|Eql65?~4eP&}1wVB?GDy-;e zuTg}3gTFqy;X#RD%O_=IOtf!&p&xmG-e0sBCDp(+7gX+G@1F|&Wl_+(igB@<(TK+O zB1On!#Xx41pmS|O?rN+DxnEdz36Q~_X2RjaI)+vlpE7YwW^$S}@JJd}JmFT`OJ%Uk zyOWnSdI{UY3v5csVzj3UO2>(mb*)&$V`fQs^z|-AK{ZW}a#P1770P0iH(b8+DMl|i zk?j7RLPOK1j+&TU$my;RoG$v(`WRfx+NQd75+|Ab;tO($pP30aL!tGI_$=VhwK@l= zRtTHbsca`iM>n^>{Uvss?D3(p%}$9*R35A@n~2I z9s^2KLUa3BQ|!s5Vb2a>dn>y3N2ikZ1B=i(A)tQ`b-R?%@ktZM7OIP){6X2T<;_}` zUKh2vgS~o@bpB(X$zf*OFYVx3y$C%&40PED)vWKW>1?lFgsm9?_KhlB#%6S5O^26m zu{BjdKd(l+Tk2iSv0I{fSBHIS4HYe>l^)+UV8`Nn%fJ348IjxL=}>WZ=yX%?phmW!i#n z-<}fN>efpq60J{r*zb4bf_8Hsj{fQh`yZW(sd)=4l~68b1h#OyTC=ajFV>m;x)kFv zxYFBs9qp4o#dZaI5r5;YB^v5c&29mO%Jd7fe|J}XphE9%LGJbL6AQ9(55A!~yW1P| zfZeyJYL9yDbzk>EBdjOLytrbt8+UVV*4+w)MuXjPV8;zGhm^p1cMFeI(+7Z_Ge|}{ zdeN+7i9(T=4FbD%h}rQonsy8=H#4K~7_fZ^TpkTI`+ZcGj$zgwlvKtm!$40RZdPe{ zSdW?%-?D=@#q{X-(oMDyPMXh1RnXkzj^Tx;kP0I?p^-GVqu$W{>fd7f2RYWgnHC#N zS619D++lr^;j<)}f;!ntaw*(uwug>22e}xIoBq7JefTXtwa3C|%UIgcNpIqw??JXV z8>ecWB<}T+vGzWN#O*o`J}1Xf`_8&`G$8iNY#%V5mUY&fnXf%RraqnYQdA|ZM{V+1 zf7f2+ivJ(u;r|i-@K9$Q8RXTCEj%zBP61m}NUO>= znaeOmrI~*<)_Rf_GI`M&8OlV_MUzI%RbSmFD;NCx<~Cs{4B z{cgoVJz~=&(9Mv$EDrZ9Y>6dqT5Q$At=)7goR&=EdkD|S{bKQ6U^hM3{a#%?4IUq$ zD3T01Rx4}OCRZ?Z2I%7R6}^h)Es3?CI)pC+N;~J^VG&QELt{(Q?j^CF^zUxNI_49% zs}8umjgOsV@uxk16G651`H0s(Bi<}V0n@Mv)gV@HY~HX!bjOz<+6LkqwlW>x+OsrW z+iO@`zT&Zm;Bot1Iuon+GMBkxfATKuv({KS7F}oOc!hJkxQ06R&>NXGA*TA+{ML%# z6D+BT3uAlLwFVragTZKb-lMZUbn9giu|H+|m|f)E)84ia`xJcIrk&qQaXsxPMzLSp z3;V`TXj@M`tf8udU%5n42Vr-u%X=I`P|<%eecq($TrWM0J}Vzr+j>Y5I*;AAVbfJr z@QiT%`R*c0)=nyS1-31uigKQ7dMxm%nvz-!mPHJzeAkB_phLFk8I zwC}&Ou3^Xb2&x+RR4V9uS{SEWuQrLP^-plY`<9R5bnA6iu|GpiYkyuXM)AXO4T;nG zSQ|>hdR+rs<_0b8i|3~Jx_u(;dq(K${AF~#pJ`HmMF&ybXGR6H62znR&+w@G3s+qQ zN<7rZ?kK{x`UUK&o5JQ!?Nf%r3;KjKa=(&|H{tQtE$c$Z-$qbf=vux|Cm7kZelZNC zfAnGBDs};dUvv+Ahi6=VYuzCBCFn<*;~^P+?L7yvzl%=}wRiC6+WP6k%$64WmPfE} zeq4<52kG@Nc=RoAOKf;(4p{$|pNzx1{0K-j;31MB;QYsq?ZMeJcuVBhkD^84#O z+%r4K_HIvInU$i?{O{Rgti&Ds6h5ClRrQMNu1ePf@7aU2xSVH~#?QFL!|Bn(K7Mq} zyKi~Bn~6`~XYd*Ew|igQt@X1`sl+7}tk&@ml|v+R&Rnhz~49=LhNC z+^gvhe81XVX_s4RqO@D9eR8^9m#h=jo;S+kf*O&IAK8^54qZ2yxuVhak z;#ZNsvM*AqI1d@+Y4>Tv8n=WE=g;py389`t?EN^ge;oq*jB>Pkh(6dHP{qC&AL(m{ zE10=zEBGsY)oJf=rwtCHN<;OI=Cz2a8NT7y)>baAMv}x81A-|2^#LJvXBMaJ{E2@t zyoZ^>_tJ_1VOB*8TbjT9Z&B4|gQ(pw`+!9}x>tqAz3Mb#m|op1?n*9CEmj3^4X3qg zA*hObmFdGZY3DHeaY#%$O9(jXa*J6Tkz#+hF6^5cP~336w|RMDKfpo*a~hg`Br$bh zY04frFx0+0aazVg1htxz&j{W6N=59=S)1UqmNasNKG{9d^DI{|yi;-dwJ+KXi8i+1 z#FuyzJAr?zo7D}lOAv>-IH<>QNi&u2M1E6HwOosd5T9h zRzWD!%WS8dzXsQ|uR-|gERfJ7o_l)-vx>#u8JY=ND5Mh9oO7K;6I5BYa#<$zqq7Nm zJ2Qru8beV*J37>gaf&4sRE&2xMvq}!dhBI=G{p4|nK08>cVTA&Uql--L9u@ZDF$u& zXe+^)(eziMJvE4FBr7$v7;oMb1#^d5H-)g>$AfJk?@M z3r)PYj2@2G>$^wV#o80ka=75uM|9%v$#N7^Ax9yzdDeNnCEVudF#CXBd=`S%p1(!k zjIkHQV)teNi+|o${Vgi{UWB!371lQwY*`3fNXj0go|U1%^&?AAz;(lVq87iJtbOt4 zYQD?}TEAsPV4+mJSQKLxL@})L*~7C$Ucz!2)i+Q)*F|9Yk4w5(0ae2>w+-t}8zB#~c*)6+6`4LDp%8ibW01dm!j%}FJ9M~fb4Q~7#%d@39U`9z zdJFd}_J{U~wiqB+d|^>SgZl3G;yX-#bHuz*?H_2Pm^2oGcP$0Sd*zr(Id>ow+~~) zp2@N^9e$#b>GtM<*!!{)%@#zHB;|q zz9=WAuUKm5$$wT!+f)0eqncBEi81yGwYU{$F&=#J{36pn>lJ&gl2DG>s`zn zLhQ#_vZpvCd*t#)j!tf5Z8iv9hQ)mT2QeS1AA0!vsAkp!qVTssX_=7s5nk(B0YTOO zw(xbFDNiG&=>5zL#k84afX+e&NHV-OXlx&=K83!*0zsFm)3WJ!0J`y4vKJ*z)g#O? zPCRb2deD8S2dN^3|B>9)Dw6Pjfzl4vwTiTim4#H14swwK>yiI7y@xsSiK!Lq4%KcU zdFK9U)HZVyt_9?Xv<;oD+!C7gs&3`>H76Gag(9~bux?j7H#|CHfz*ZSPPg9{6Vngu z(zrM0Ho#nch`kdejiAG4m3ud98mV&Q@gMKd^&|fodIz&hh^aUfkF>1eW{jnwl(Z)$ z)c!VF=U5@EeB@elS08C7`WDk$MwFnWk=W&Vb&b}*Y6oGuvszN8apW^oZ*4Z8*!z!z z{i_s}C(S#UR*~ZWGpd=@DK3}5Y9*%7&{=vd+Wpr*q4t}lLWi*MQdbBssrK7bFSSLX zoCmQcQzr*U?`YPK%Gm+?>7`cvY-OD$RX<1gQpzu*)3fyMX8nliB&#?zhKiHqv=o1( zy;7PrHi$zfaN7H8Y2IwTvw4wX-^-#;OCb6reH0fNW0g?o)nK%zA5iqGdaSu>7kddP zL}`ydEJ69R^g8sY$giPhPZHK+GuZxHt?Le0nQAYQgdYP+o4b$d&e5$`zQw+rb*63| zqMSK;H?uy({s*L|w7JKu`uLQ!r&N9H=KAnIPQ~Wh3sNx!o`4JeK;7o*&CCW9`zaQy z8dg9n=jzdB{fT`7>sMt%ze?2~4pSOu)@kmRM-Dj6@q<-_I2N~3^dDS=>KwK^A4SY9 zTHC5e;Zs=$tL$x>ou#)l^A&qdmd1Jw(pW0riqz+mjEeSxPh8$);j9sl$Rk^~zFSmD zvX&P1K-y;8Z%v3jjODc!JfkutDeE$@HzdMt#@@VLI;R&X>0$nicpG9jHy@3 zzO}Ghg_91juB+3&U}-LO@%x#6;ht2$jV*gA+;qJMnQw8+Fd~SrY!2U zKZN{WvnNKef5|#uKa``Puh~mBvEOIuFaL`4_d=d9FHS3EwyKboSQ6~N>h%0I`z%rH z{;U%AW=)ElulF=xa~AviEFAV8^`4K3EN{j15UZ(#+{J=oPwLV3g?d8@+&A6&&OylH ztT8q`QWYaUp+s<@s1unzUY~X^u%Ch@RsoBW{m_7u#Mb|v>Gr{fu=iQ5EIpbAFSMs~ zv1hS>+23tAmh~=^*nL>jEC+vwZlP|;2#7roGH2RQtID;A&Iqbj`kh9&TxcJ z`oeDC1=>kgO;hRRG2OkNr+Rn$jo0m6Y$1-YvfBOObozC@xq07<{V#~EX{DgCCY?yT z$7*XTJ#56`-QH0Yx!B%664OK0V(UDCX1`<~!18R>Ce!J~b`Ij-7>aG$I}mD9Ijn