diff --git a/master/.buildinfo b/master/.buildinfo index f7a1eb13c..a71c46de5 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 252baa0826240a8e45a2296caaa64e18 +config: 39de6f85625e2e60a9ff0e350ff7a695 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index 3488fb472..bbbf135ef 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/index.doctree and b/master/.doctrees/cleanlab/benchmarking/index.doctree differ diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree index 4861682a9..c6444728a 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree and b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree differ diff --git a/master/.doctrees/cleanlab/classification.doctree b/master/.doctrees/cleanlab/classification.doctree index 003e7aa33..44c132afe 100644 Binary files a/master/.doctrees/cleanlab/classification.doctree and b/master/.doctrees/cleanlab/classification.doctree differ diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index 32c30586b..f74d02af6 100644 Binary files a/master/.doctrees/cleanlab/count.doctree and b/master/.doctrees/cleanlab/count.doctree differ diff --git a/master/.doctrees/cleanlab/data_valuation.doctree b/master/.doctrees/cleanlab/data_valuation.doctree index 83679ef78..aeb848edc 100644 Binary files a/master/.doctrees/cleanlab/data_valuation.doctree and b/master/.doctrees/cleanlab/data_valuation.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree index 0e7cc19e9..eca1aff4e 100644 Binary files a/master/.doctrees/cleanlab/datalab/datalab.doctree and b/master/.doctrees/cleanlab/datalab/datalab.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree b/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree index 785bf8dcc..0e75ae48a 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree and b/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index 8faef940c..1f88e69ab 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index e87f4f5e1..532a4779f 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree and b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index 05a712c3f..b28d748bc 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/index.doctree and b/master/.doctrees/cleanlab/datalab/guide/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index 9bc799e2a..98d7a0282 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree and b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/table.doctree b/master/.doctrees/cleanlab/datalab/guide/table.doctree index 39be5ee4d..fa74ffe5f 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/table.doctree and b/master/.doctrees/cleanlab/datalab/guide/table.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index bc0ac4aa4..c65d33c7b 100644 Binary files a/master/.doctrees/cleanlab/datalab/index.doctree and b/master/.doctrees/cleanlab/datalab/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index ba8e1cb64..4bab3b852 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data.doctree and b/master/.doctrees/cleanlab/datalab/internal/data.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index e757b682a..220f02746 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree and b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree index 378415d16..7fdfa3141 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/factory.doctree and b/master/.doctrees/cleanlab/datalab/internal/factory.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index 325c2ed7a..0ea947fd1 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree index e5bc8768c..db71de48f 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index 25d352855..9d14f2ade 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree index 0bda0388f..0cfd87bc1 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index 51c74f5b1..cb72d070e 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index 24c50c240..0a9bfba79 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree index 3865023ec..d7b988646 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree index 1c81f662e..81e3b257e 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index 4af6ce62e..faf20ce0d 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree index d905bd515..172a68eba 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree index da8a71ff4..c337f8e71 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index b37073b89..39eced129 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index 2ed96ed5a..64b13ef23 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index 10d04cb87..d255cf5f3 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index 66dde4bd9..33c8331a7 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index 368a184e4..4a10111c5 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index a84518910..9cd3a44ae 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree index 2e193a475..ee06479e3 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree and b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index fc9fca638..577c8961c 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/report.doctree and b/master/.doctrees/cleanlab/datalab/internal/report.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/task.doctree b/master/.doctrees/cleanlab/datalab/internal/task.doctree index ab7536a07..e4b282803 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/task.doctree and b/master/.doctrees/cleanlab/datalab/internal/task.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index bf233e28f..e753e7718 100644 Binary files a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree and b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree differ diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index 88e4b5064..eb450dbf8 100644 Binary files a/master/.doctrees/cleanlab/dataset.doctree and b/master/.doctrees/cleanlab/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 34d3120ba..9e27b78b5 100644 Binary files a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree and b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index 479581685..8eb6b543a 100644 Binary files a/master/.doctrees/cleanlab/experimental/coteaching.doctree and b/master/.doctrees/cleanlab/experimental/coteaching.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index 210a85f72..442e2e34c 100644 Binary files a/master/.doctrees/cleanlab/experimental/index.doctree and b/master/.doctrees/cleanlab/experimental/index.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree index 87f1828c8..ec158c670 100644 Binary files a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree and b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index 51490b30f..977e0b973 100644 Binary files a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree and b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/span_classification.doctree b/master/.doctrees/cleanlab/experimental/span_classification.doctree index f407e04af..3910ac83f 100644 Binary files a/master/.doctrees/cleanlab/experimental/span_classification.doctree and b/master/.doctrees/cleanlab/experimental/span_classification.doctree differ diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index 98a51e2e0..6035b688f 100644 Binary files a/master/.doctrees/cleanlab/filter.doctree and b/master/.doctrees/cleanlab/filter.doctree differ diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index fcb16c15c..7776fdddb 100644 Binary files a/master/.doctrees/cleanlab/internal/index.doctree and b/master/.doctrees/cleanlab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index a51e53bb5..2eec1c815 100644 Binary files a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree and b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/latent_algebra.doctree b/master/.doctrees/cleanlab/internal/latent_algebra.doctree index c9241f033..8c4dbf0cf 100644 Binary files a/master/.doctrees/cleanlab/internal/latent_algebra.doctree and b/master/.doctrees/cleanlab/internal/latent_algebra.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index 80cf8220c..9054e360b 100644 Binary files a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree and b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree index cf1f8c465..1ac8ee967 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree and b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index 97182d41f..5895c97ab 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree and b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/index.doctree b/master/.doctrees/cleanlab/internal/neighbor/index.doctree index 2e2e80da8..d3f696acc 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/index.doctree and b/master/.doctrees/cleanlab/internal/neighbor/index.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree b/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree index 0f1faf074..7afebb7dd 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree and b/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree index 983a2265b..507b9bbc5 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree and b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/search.doctree b/master/.doctrees/cleanlab/internal/neighbor/search.doctree index f6cde7a5a..112863e87 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/search.doctree and b/master/.doctrees/cleanlab/internal/neighbor/search.doctree differ diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index 3f16f5bfe..5387cfcad 100644 Binary files a/master/.doctrees/cleanlab/internal/outlier.doctree and b/master/.doctrees/cleanlab/internal/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree index 32092e2d9..f7b985143 100644 Binary files a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree and b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index a27a192a3..07a8e54a8 100644 Binary files a/master/.doctrees/cleanlab/internal/util.doctree and b/master/.doctrees/cleanlab/internal/util.doctree differ diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index 9a6331f11..ee4ead556 100644 Binary files a/master/.doctrees/cleanlab/internal/validation.doctree and b/master/.doctrees/cleanlab/internal/validation.doctree differ diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index 1b04c9125..6598d5b3a 100644 Binary files a/master/.doctrees/cleanlab/models/index.doctree and b/master/.doctrees/cleanlab/models/index.doctree differ diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index 3364557ad..c67b1561b 100644 Binary files a/master/.doctrees/cleanlab/models/keras.doctree and b/master/.doctrees/cleanlab/models/keras.doctree differ diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index b69573cbe..faf1f1ac9 100644 Binary files a/master/.doctrees/cleanlab/multiannotator.doctree and b/master/.doctrees/cleanlab/multiannotator.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index bb5d2ca01..407b38af8 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree and b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index 921a081af..80be39ce8 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree and b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree index 16b4a6541..14bd512ed 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/index.doctree and b/master/.doctrees/cleanlab/multilabel_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree index 16c887852..287f39bc4 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree and b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index 287c67fc0..86ce66342 100644 Binary files a/master/.doctrees/cleanlab/object_detection/filter.doctree and b/master/.doctrees/cleanlab/object_detection/filter.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/index.doctree b/master/.doctrees/cleanlab/object_detection/index.doctree index 587d73222..605f76a67 100644 Binary files a/master/.doctrees/cleanlab/object_detection/index.doctree and b/master/.doctrees/cleanlab/object_detection/index.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index 84b5e1ac9..aa93f47f5 100644 Binary files a/master/.doctrees/cleanlab/object_detection/rank.doctree and b/master/.doctrees/cleanlab/object_detection/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index 42ef776f9..4c83b3ee9 100644 Binary files a/master/.doctrees/cleanlab/object_detection/summary.doctree and b/master/.doctrees/cleanlab/object_detection/summary.doctree differ diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index ac7274e26..175ad0eff 100644 Binary files a/master/.doctrees/cleanlab/outlier.doctree and b/master/.doctrees/cleanlab/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index 78eeb6dc0..5591177b8 100644 Binary files a/master/.doctrees/cleanlab/rank.doctree and b/master/.doctrees/cleanlab/rank.doctree differ diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index 6ef248ced..11f242a54 100644 Binary files a/master/.doctrees/cleanlab/regression/index.doctree and b/master/.doctrees/cleanlab/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree index 927e56447..8147071ea 100644 Binary files a/master/.doctrees/cleanlab/regression/learn.doctree and b/master/.doctrees/cleanlab/regression/learn.doctree differ diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index 1ba3e258b..d3d70ad39 100644 Binary files a/master/.doctrees/cleanlab/regression/rank.doctree and b/master/.doctrees/cleanlab/regression/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/filter.doctree b/master/.doctrees/cleanlab/segmentation/filter.doctree index d057b160c..92a6e3f14 100644 Binary files a/master/.doctrees/cleanlab/segmentation/filter.doctree and b/master/.doctrees/cleanlab/segmentation/filter.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/index.doctree b/master/.doctrees/cleanlab/segmentation/index.doctree index 5bceb1bec..094554b00 100644 Binary files a/master/.doctrees/cleanlab/segmentation/index.doctree and b/master/.doctrees/cleanlab/segmentation/index.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index 8ce28c36f..c0b3f4867 100644 Binary files a/master/.doctrees/cleanlab/segmentation/rank.doctree and b/master/.doctrees/cleanlab/segmentation/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index 2f4f4301e..252513c5c 100644 Binary files a/master/.doctrees/cleanlab/segmentation/summary.doctree and b/master/.doctrees/cleanlab/segmentation/summary.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index 0e02cd224..d2565afc1 100644 Binary files a/master/.doctrees/cleanlab/token_classification/filter.doctree and b/master/.doctrees/cleanlab/token_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index b1c6479b7..15633fd62 100644 Binary files a/master/.doctrees/cleanlab/token_classification/index.doctree and b/master/.doctrees/cleanlab/token_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index fbf4b7c01..9a31682dc 100644 Binary files a/master/.doctrees/cleanlab/token_classification/rank.doctree and b/master/.doctrees/cleanlab/token_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index 2842f9974..62faf9f17 100644 Binary files a/master/.doctrees/cleanlab/token_classification/summary.doctree and b/master/.doctrees/cleanlab/token_classification/summary.doctree differ diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle index cc4cf2497..cdc6cafbf 100644 Binary files a/master/.doctrees/environment.pickle and b/master/.doctrees/environment.pickle differ diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree index cade4f5aa..2fa0af589 100644 Binary files a/master/.doctrees/index.doctree and b/master/.doctrees/index.doctree differ diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index 78d97abd0..a278c7b85 100644 Binary files a/master/.doctrees/migrating/migrate_v2.doctree and b/master/.doctrees/migrating/migrate_v2.doctree differ diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb index 73afbe582..25a686165 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:20.938023Z", - "iopub.status.busy": "2024-08-22T00:52:20.937843Z", - "iopub.status.idle": "2024-08-22T00:52:22.308543Z", - "shell.execute_reply": "2024-08-22T00:52:22.307924Z" + "iopub.execute_input": "2024-08-26T15:49:53.786288Z", + "iopub.status.busy": "2024-08-26T15:49:53.786078Z", + "iopub.status.idle": "2024-08-26T15:49:55.058310Z", + "shell.execute_reply": "2024-08-26T15:49:55.057679Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:22.311421Z", - "iopub.status.busy": "2024-08-22T00:52:22.310918Z", - "iopub.status.idle": "2024-08-22T00:52:22.330605Z", - "shell.execute_reply": "2024-08-22T00:52:22.329959Z" + "iopub.execute_input": "2024-08-26T15:49:55.061371Z", + "iopub.status.busy": "2024-08-26T15:49:55.060806Z", + "iopub.status.idle": "2024-08-26T15:49:55.079140Z", + "shell.execute_reply": "2024-08-26T15:49:55.078680Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:22.333283Z", - "iopub.status.busy": "2024-08-22T00:52:22.332976Z", - "iopub.status.idle": "2024-08-22T00:52:22.500337Z", - "shell.execute_reply": "2024-08-22T00:52:22.499745Z" + "iopub.execute_input": "2024-08-26T15:49:55.081404Z", + "iopub.status.busy": "2024-08-26T15:49:55.080983Z", + "iopub.status.idle": "2024-08-26T15:49:55.275955Z", + "shell.execute_reply": "2024-08-26T15:49:55.275375Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:22.532956Z", - "iopub.status.busy": "2024-08-22T00:52:22.532465Z", - "iopub.status.idle": "2024-08-22T00:52:22.536605Z", - "shell.execute_reply": "2024-08-22T00:52:22.536127Z" + "iopub.execute_input": "2024-08-26T15:49:55.313930Z", + "iopub.status.busy": "2024-08-26T15:49:55.313329Z", + "iopub.status.idle": "2024-08-26T15:49:55.317364Z", + "shell.execute_reply": "2024-08-26T15:49:55.316909Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:22.538779Z", - "iopub.status.busy": "2024-08-22T00:52:22.538596Z", - "iopub.status.idle": "2024-08-22T00:52:22.547368Z", - "shell.execute_reply": "2024-08-22T00:52:22.546904Z" + "iopub.execute_input": "2024-08-26T15:49:55.319414Z", + "iopub.status.busy": "2024-08-26T15:49:55.319068Z", + "iopub.status.idle": "2024-08-26T15:49:55.327715Z", + "shell.execute_reply": "2024-08-26T15:49:55.327122Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:22.549903Z", - "iopub.status.busy": "2024-08-22T00:52:22.549509Z", - "iopub.status.idle": "2024-08-22T00:52:22.552464Z", - "shell.execute_reply": "2024-08-22T00:52:22.551877Z" + "iopub.execute_input": "2024-08-26T15:49:55.329976Z", + "iopub.status.busy": "2024-08-26T15:49:55.329562Z", + "iopub.status.idle": "2024-08-26T15:49:55.332413Z", + "shell.execute_reply": "2024-08-26T15:49:55.331825Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:22.554652Z", - "iopub.status.busy": "2024-08-22T00:52:22.554463Z", - "iopub.status.idle": "2024-08-22T00:52:23.093120Z", - "shell.execute_reply": "2024-08-22T00:52:23.092525Z" + "iopub.execute_input": "2024-08-26T15:49:55.334498Z", + "iopub.status.busy": "2024-08-26T15:49:55.334155Z", + "iopub.status.idle": "2024-08-26T15:49:55.859656Z", + "shell.execute_reply": "2024-08-26T15:49:55.859123Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:23.095732Z", - "iopub.status.busy": "2024-08-22T00:52:23.095492Z", - "iopub.status.idle": "2024-08-22T00:52:25.209415Z", - "shell.execute_reply": "2024-08-22T00:52:25.208716Z" + "iopub.execute_input": "2024-08-26T15:49:55.862132Z", + "iopub.status.busy": "2024-08-26T15:49:55.861942Z", + "iopub.status.idle": "2024-08-26T15:49:57.828703Z", + "shell.execute_reply": "2024-08-26T15:49:57.828113Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:25.212702Z", - "iopub.status.busy": "2024-08-22T00:52:25.211774Z", - "iopub.status.idle": "2024-08-22T00:52:25.222979Z", - "shell.execute_reply": "2024-08-22T00:52:25.222423Z" + "iopub.execute_input": "2024-08-26T15:49:57.831725Z", + "iopub.status.busy": "2024-08-26T15:49:57.830860Z", + "iopub.status.idle": "2024-08-26T15:49:57.841628Z", + "shell.execute_reply": "2024-08-26T15:49:57.841073Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:25.225235Z", - "iopub.status.busy": "2024-08-22T00:52:25.225042Z", - "iopub.status.idle": "2024-08-22T00:52:25.229726Z", - "shell.execute_reply": "2024-08-22T00:52:25.229144Z" + "iopub.execute_input": "2024-08-26T15:49:57.843831Z", + "iopub.status.busy": "2024-08-26T15:49:57.843444Z", + "iopub.status.idle": "2024-08-26T15:49:57.847541Z", + "shell.execute_reply": "2024-08-26T15:49:57.846968Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:25.231952Z", - "iopub.status.busy": "2024-08-22T00:52:25.231646Z", - "iopub.status.idle": "2024-08-22T00:52:25.240450Z", - "shell.execute_reply": "2024-08-22T00:52:25.240004Z" + "iopub.execute_input": "2024-08-26T15:49:57.849507Z", + "iopub.status.busy": "2024-08-26T15:49:57.849202Z", + "iopub.status.idle": "2024-08-26T15:49:57.858293Z", + "shell.execute_reply": "2024-08-26T15:49:57.857744Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:25.242541Z", - "iopub.status.busy": "2024-08-22T00:52:25.242358Z", - "iopub.status.idle": "2024-08-22T00:52:25.357509Z", - "shell.execute_reply": "2024-08-22T00:52:25.356980Z" + "iopub.execute_input": "2024-08-26T15:49:57.860454Z", + "iopub.status.busy": "2024-08-26T15:49:57.860152Z", + "iopub.status.idle": "2024-08-26T15:49:57.972126Z", + "shell.execute_reply": "2024-08-26T15:49:57.971546Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:25.359689Z", - "iopub.status.busy": "2024-08-22T00:52:25.359492Z", - "iopub.status.idle": "2024-08-22T00:52:25.362611Z", - "shell.execute_reply": "2024-08-22T00:52:25.362120Z" + "iopub.execute_input": "2024-08-26T15:49:57.974328Z", + "iopub.status.busy": "2024-08-26T15:49:57.973926Z", + "iopub.status.idle": "2024-08-26T15:49:57.976598Z", + "shell.execute_reply": "2024-08-26T15:49:57.976151Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:25.364587Z", - "iopub.status.busy": "2024-08-22T00:52:25.364398Z", - "iopub.status.idle": "2024-08-22T00:52:27.619586Z", - "shell.execute_reply": "2024-08-22T00:52:27.618913Z" + "iopub.execute_input": "2024-08-26T15:49:57.978573Z", + "iopub.status.busy": "2024-08-26T15:49:57.978261Z", + "iopub.status.idle": "2024-08-26T15:50:00.065786Z", + "shell.execute_reply": "2024-08-26T15:50:00.064976Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:27.622637Z", - "iopub.status.busy": "2024-08-22T00:52:27.621998Z", - "iopub.status.idle": "2024-08-22T00:52:27.634956Z", - "shell.execute_reply": "2024-08-22T00:52:27.634452Z" + "iopub.execute_input": "2024-08-26T15:50:00.069072Z", + "iopub.status.busy": "2024-08-26T15:50:00.068250Z", + "iopub.status.idle": "2024-08-26T15:50:00.079734Z", + "shell.execute_reply": "2024-08-26T15:50:00.079177Z" } }, "outputs": [ @@ -786,10 +786,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:27.637282Z", - "iopub.status.busy": "2024-08-22T00:52:27.636940Z", - "iopub.status.idle": "2024-08-22T00:52:27.678076Z", - "shell.execute_reply": "2024-08-22T00:52:27.677554Z" + "iopub.execute_input": "2024-08-26T15:50:00.081968Z", + "iopub.status.busy": "2024-08-26T15:50:00.081512Z", + "iopub.status.idle": "2024-08-26T15:50:00.307993Z", + "shell.execute_reply": "2024-08-26T15:50:00.307364Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb index ec7c3e99e..8c5c26b42 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:30.948399Z", - "iopub.status.busy": "2024-08-22T00:52:30.948020Z", - "iopub.status.idle": "2024-08-22T00:52:34.343938Z", - "shell.execute_reply": "2024-08-22T00:52:34.343259Z" + "iopub.execute_input": "2024-08-26T15:50:03.569360Z", + "iopub.status.busy": "2024-08-26T15:50:03.569180Z", + "iopub.status.idle": "2024-08-26T15:50:06.407526Z", + "shell.execute_reply": "2024-08-26T15:50:06.406949Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:34.346711Z", - "iopub.status.busy": "2024-08-22T00:52:34.346377Z", - "iopub.status.idle": "2024-08-22T00:52:34.350046Z", - "shell.execute_reply": "2024-08-22T00:52:34.349454Z" + "iopub.execute_input": "2024-08-26T15:50:06.410122Z", + "iopub.status.busy": "2024-08-26T15:50:06.409772Z", + "iopub.status.idle": "2024-08-26T15:50:06.413458Z", + "shell.execute_reply": "2024-08-26T15:50:06.412873Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:34.352171Z", - "iopub.status.busy": "2024-08-22T00:52:34.351852Z", - "iopub.status.idle": "2024-08-22T00:52:34.355069Z", - "shell.execute_reply": "2024-08-22T00:52:34.354523Z" + "iopub.execute_input": "2024-08-26T15:50:06.415650Z", + "iopub.status.busy": "2024-08-26T15:50:06.415319Z", + "iopub.status.idle": "2024-08-26T15:50:06.418479Z", + "shell.execute_reply": "2024-08-26T15:50:06.417934Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:34.357305Z", - "iopub.status.busy": "2024-08-22T00:52:34.356988Z", - "iopub.status.idle": "2024-08-22T00:52:34.407734Z", - "shell.execute_reply": "2024-08-22T00:52:34.407155Z" + "iopub.execute_input": "2024-08-26T15:50:06.420642Z", + "iopub.status.busy": "2024-08-26T15:50:06.420319Z", + "iopub.status.idle": "2024-08-26T15:50:06.442102Z", + "shell.execute_reply": "2024-08-26T15:50:06.441562Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:34.410199Z", - "iopub.status.busy": "2024-08-22T00:52:34.409721Z", - "iopub.status.idle": "2024-08-22T00:52:34.413751Z", - "shell.execute_reply": "2024-08-22T00:52:34.413209Z" + "iopub.execute_input": "2024-08-26T15:50:06.444312Z", + "iopub.status.busy": "2024-08-26T15:50:06.443871Z", + "iopub.status.idle": "2024-08-26T15:50:06.447563Z", + "shell.execute_reply": "2024-08-26T15:50:06.447001Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:34.416108Z", - "iopub.status.busy": "2024-08-22T00:52:34.415755Z", - "iopub.status.idle": "2024-08-22T00:52:34.419532Z", - "shell.execute_reply": "2024-08-22T00:52:34.419030Z" + "iopub.execute_input": "2024-08-26T15:50:06.449710Z", + "iopub.status.busy": "2024-08-26T15:50:06.449373Z", + "iopub.status.idle": "2024-08-26T15:50:06.452548Z", + "shell.execute_reply": "2024-08-26T15:50:06.452027Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'apple_pay_or_google_pay', 'card_about_to_expire', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'change_pin', 'getting_spare_card', 'cancel_transfer', 'lost_or_stolen_phone', 'visa_or_mastercard'}\n" + "Classes: {'card_payment_fee_charged', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'getting_spare_card', 'change_pin', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'card_about_to_expire', 'visa_or_mastercard', 'cancel_transfer'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:34.421822Z", - "iopub.status.busy": "2024-08-22T00:52:34.421447Z", - "iopub.status.idle": "2024-08-22T00:52:34.424650Z", - "shell.execute_reply": "2024-08-22T00:52:34.424098Z" + "iopub.execute_input": "2024-08-26T15:50:06.454394Z", + "iopub.status.busy": "2024-08-26T15:50:06.454216Z", + "iopub.status.idle": "2024-08-26T15:50:06.457498Z", + "shell.execute_reply": "2024-08-26T15:50:06.456945Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:34.426905Z", - "iopub.status.busy": "2024-08-22T00:52:34.426468Z", - "iopub.status.idle": "2024-08-22T00:52:34.429909Z", - "shell.execute_reply": "2024-08-22T00:52:34.429435Z" + "iopub.execute_input": "2024-08-26T15:50:06.459596Z", + "iopub.status.busy": "2024-08-26T15:50:06.459255Z", + "iopub.status.idle": "2024-08-26T15:50:06.463265Z", + "shell.execute_reply": "2024-08-26T15:50:06.462673Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:34.432007Z", - "iopub.status.busy": "2024-08-22T00:52:34.431676Z", - "iopub.status.idle": "2024-08-22T00:52:41.010039Z", - "shell.execute_reply": "2024-08-22T00:52:41.009367Z" + "iopub.execute_input": "2024-08-26T15:50:06.465474Z", + "iopub.status.busy": "2024-08-26T15:50:06.465140Z", + "iopub.status.idle": "2024-08-26T15:50:11.593668Z", + "shell.execute_reply": "2024-08-26T15:50:11.593086Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "be22c25d590e4494a513559de6fcd58a", + "model_id": "609bd99534344390a356a6788fee8507", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2c7ba3b688c54c6ebf2f1e09dfef05b9", + "model_id": "72d412ce755f416e9311468fb26a3a46", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2ea1061f8864486794057d9eac9aa38d", + "model_id": "1bd2574eb75a42f3837995119980a91e", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0b8ebf42c8864cf993b3f88fd3f88efb", + "model_id": "a87e77b0e9324a9384b775bc5514a176", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "53195e1dd93a4045b830a4d1db7f3735", + "model_id": "1d1da5af0c1e439590d191a482ebfe2e", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e8996344f5494527ac2bb6f701ae7fb1", + "model_id": "66ba0cd1d985486c984a043d0efabf25", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2052fb421e5944b3b57e72ebde8da262", + "model_id": "828118e3407f496e9047225853abf12c", "version_major": 2, "version_minor": 0 }, @@ -601,10 +601,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:41.012872Z", - "iopub.status.busy": "2024-08-22T00:52:41.012512Z", - "iopub.status.idle": "2024-08-22T00:52:41.015369Z", - "shell.execute_reply": "2024-08-22T00:52:41.014841Z" + "iopub.execute_input": "2024-08-26T15:50:11.596799Z", + "iopub.status.busy": "2024-08-26T15:50:11.596379Z", + "iopub.status.idle": "2024-08-26T15:50:11.599483Z", + "shell.execute_reply": "2024-08-26T15:50:11.598893Z" } }, "outputs": [], @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:41.017391Z", - "iopub.status.busy": "2024-08-22T00:52:41.017113Z", - "iopub.status.idle": "2024-08-22T00:52:41.019910Z", - "shell.execute_reply": "2024-08-22T00:52:41.019360Z" + "iopub.execute_input": "2024-08-26T15:50:11.601637Z", + "iopub.status.busy": "2024-08-26T15:50:11.601225Z", + "iopub.status.idle": "2024-08-26T15:50:11.603915Z", + "shell.execute_reply": "2024-08-26T15:50:11.603463Z" } }, "outputs": [], @@ -644,10 +644,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:41.021970Z", - "iopub.status.busy": "2024-08-22T00:52:41.021694Z", - "iopub.status.idle": "2024-08-22T00:52:43.922048Z", - "shell.execute_reply": "2024-08-22T00:52:43.921191Z" + "iopub.execute_input": "2024-08-26T15:50:11.605986Z", + "iopub.status.busy": "2024-08-26T15:50:11.605617Z", + "iopub.status.idle": "2024-08-26T15:50:14.423933Z", + "shell.execute_reply": "2024-08-26T15:50:14.423128Z" }, "scrolled": true }, @@ -670,10 +670,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:43.925889Z", - "iopub.status.busy": "2024-08-22T00:52:43.924665Z", - "iopub.status.idle": "2024-08-22T00:52:43.933352Z", - "shell.execute_reply": "2024-08-22T00:52:43.932838Z" + "iopub.execute_input": "2024-08-26T15:50:14.427102Z", + "iopub.status.busy": "2024-08-26T15:50:14.426449Z", + "iopub.status.idle": "2024-08-26T15:50:14.434884Z", + "shell.execute_reply": "2024-08-26T15:50:14.434404Z" } }, "outputs": [ @@ -774,10 +774,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:43.935693Z", - "iopub.status.busy": "2024-08-22T00:52:43.935311Z", - "iopub.status.idle": "2024-08-22T00:52:43.939341Z", - "shell.execute_reply": "2024-08-22T00:52:43.938864Z" + "iopub.execute_input": "2024-08-26T15:50:14.437037Z", + "iopub.status.busy": "2024-08-26T15:50:14.436709Z", + "iopub.status.idle": "2024-08-26T15:50:14.440467Z", + "shell.execute_reply": "2024-08-26T15:50:14.440009Z" } }, "outputs": [], @@ -791,10 +791,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:43.941206Z", - "iopub.status.busy": "2024-08-22T00:52:43.941028Z", - "iopub.status.idle": "2024-08-22T00:52:43.944501Z", - "shell.execute_reply": "2024-08-22T00:52:43.944012Z" + "iopub.execute_input": "2024-08-26T15:50:14.442521Z", + "iopub.status.busy": "2024-08-26T15:50:14.442187Z", + "iopub.status.idle": "2024-08-26T15:50:14.445362Z", + "shell.execute_reply": "2024-08-26T15:50:14.444833Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:43.946626Z", - "iopub.status.busy": "2024-08-22T00:52:43.946194Z", - "iopub.status.idle": "2024-08-22T00:52:43.949326Z", - "shell.execute_reply": "2024-08-22T00:52:43.948779Z" + "iopub.execute_input": "2024-08-26T15:50:14.447481Z", + "iopub.status.busy": "2024-08-26T15:50:14.447144Z", + "iopub.status.idle": "2024-08-26T15:50:14.450022Z", + "shell.execute_reply": "2024-08-26T15:50:14.449578Z" } }, "outputs": [], @@ -852,10 +852,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:43.951367Z", - "iopub.status.busy": "2024-08-22T00:52:43.951061Z", - "iopub.status.idle": "2024-08-22T00:52:43.958113Z", - "shell.execute_reply": "2024-08-22T00:52:43.957516Z" + "iopub.execute_input": "2024-08-26T15:50:14.452041Z", + "iopub.status.busy": "2024-08-26T15:50:14.451628Z", + "iopub.status.idle": "2024-08-26T15:50:14.458672Z", + "shell.execute_reply": "2024-08-26T15:50:14.458190Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:43.960267Z", - "iopub.status.busy": "2024-08-22T00:52:43.959868Z", - "iopub.status.idle": "2024-08-22T00:52:44.209473Z", - "shell.execute_reply": "2024-08-22T00:52:44.208884Z" + "iopub.execute_input": "2024-08-26T15:50:14.460712Z", + "iopub.status.busy": "2024-08-26T15:50:14.460403Z", + "iopub.status.idle": "2024-08-26T15:50:14.686735Z", + "shell.execute_reply": "2024-08-26T15:50:14.686142Z" }, "scrolled": true }, @@ -1022,10 +1022,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:44.212361Z", - "iopub.status.busy": "2024-08-22T00:52:44.211920Z", - "iopub.status.idle": "2024-08-22T00:52:44.400026Z", - "shell.execute_reply": "2024-08-22T00:52:44.399459Z" + "iopub.execute_input": "2024-08-26T15:50:14.689386Z", + "iopub.status.busy": "2024-08-26T15:50:14.688990Z", + "iopub.status.idle": "2024-08-26T15:50:14.901649Z", + "shell.execute_reply": "2024-08-26T15:50:14.901083Z" }, "scrolled": true }, @@ -1073,10 +1073,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:44.403682Z", - "iopub.status.busy": "2024-08-22T00:52:44.402638Z", - "iopub.status.idle": "2024-08-22T00:52:44.408022Z", - "shell.execute_reply": "2024-08-22T00:52:44.407442Z" + "iopub.execute_input": "2024-08-26T15:50:14.905278Z", + "iopub.status.busy": "2024-08-26T15:50:14.904296Z", + "iopub.status.idle": "2024-08-26T15:50:14.909408Z", + "shell.execute_reply": "2024-08-26T15:50:14.908880Z" }, "nbsphinx": "hidden" }, @@ -1120,7 +1120,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0538fffa6ae24d1ea1e1c4b0128b72d2": { + "04e6f8947ca14034a8b86e7853b8b767": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "096bce4c998746909d71d249939501d4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1173,103 +1191,23 @@ "width": null } }, - "05f46856efb64b3b958f69caba56dafb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0b8ebf42c8864cf993b3f88fd3f88efb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f4df8ccc4462424dbe309e1fd9c5f833", - "IPY_MODEL_5172347bb0f04b46b732e1a9f8235407", - "IPY_MODEL_5b01384fbfbd49e38cdd8d6207f4932a" - ], - "layout": "IPY_MODEL_b437cf68ae764715ba2f56c825c1c7de", - "tabbable": null, - "tooltip": null - } - }, - "0d2096765b5b4c5187069b34335cb25c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0ea0f43aeff04802b461c7c6b1a6e1e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "154466a4539242a9bdf98e5af3341f10": { + "13cc007397f54c9c8c37e3efe684a7e2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "1ad67ea050a04fcdbdcf7248e3d9aed7": { + "181817c2729a4dccb97af10abf5129d4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1322,30 +1260,49 @@ "width": null } }, - "1e677870f7774aae9101da76014b4efd": { + "19093b42b50b4aeea4d79b8ff3d741d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1bd2574eb75a42f3837995119980a91e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8dfe3b82e90f498682f1f8aaf423bba3", - "placeholder": "​", - "style": "IPY_MODEL_d6ec8d5c7bad45cb98b8c604ab2f46dd", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_59d1c1e50bda4e9da25d3a6f59453df1", + "IPY_MODEL_20ded1f770b247b6ad682dab3b1f5059", + "IPY_MODEL_76b513dbf5f34978b7b6585e3d089794" + ], + "layout": "IPY_MODEL_53558ebf812a42a8aee968d175d9f598", "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 32.8MB/s]" + "tooltip": null } }, - "2052fb421e5944b3b57e72ebde8da262": { + "1d1da5af0c1e439590d191a482ebfe2e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1360,16 +1317,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_dcc4a94705f7483bb702360efc1e41bb", - "IPY_MODEL_ec2c127abc3d41998d2d50741564f41a", - "IPY_MODEL_1e677870f7774aae9101da76014b4efd" + "IPY_MODEL_b1b9db21390e4028ab5768e0946debd1", + "IPY_MODEL_b3f682560e214179a87fc479dcbae99e", + "IPY_MODEL_d36b8a25de144393ad4dc1d2a45edfd2" ], - "layout": "IPY_MODEL_e361d0be583b4b9391f39ee28434efc1", + "layout": "IPY_MODEL_096bce4c998746909d71d249939501d4", "tabbable": null, "tooltip": null } }, - "2336c7906a604c408c3cc9c930888f8e": { + "1d46b41290534da1a7c59a65173af332": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1422,7 +1379,7 @@ "width": null } }, - "28d604493dd34e43a238c1faf1681778": { + "20ded1f770b247b6ad682dab3b1f5059": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1438,65 +1395,82 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2336c7906a604c408c3cc9c930888f8e", - "max": 2211.0, + "layout": "IPY_MODEL_bcc06e43c9bc45058c6f3e613d79d09a", + "max": 665.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_30e3546ae2424037ae1110e2ea7d4db8", + "style": "IPY_MODEL_af382a9199134755b710d6c867dfbf15", "tabbable": null, "tooltip": null, - "value": 2211.0 + "value": 665.0 } }, - "2c7ba3b688c54c6ebf2f1e09dfef05b9": { + "2358c94915814ebbb4935821bc31ade8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7595b701f93847db9cc6ebd5d873e951", - "IPY_MODEL_28d604493dd34e43a238c1faf1681778", - "IPY_MODEL_a2ce6249f2fb446a992fa46c75e2029d" - ], - "layout": "IPY_MODEL_e29e1197d79b4688a408db41d3fc85b8", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5d2fec7b198645dcb93b760d38443c91", + "placeholder": "​", + "style": "IPY_MODEL_8ce3bdbaa1854c179505e5c09afe5dff", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 391/391 [00:00<00:00, 68.7kB/s]" } }, - "2ea1061f8864486794057d9eac9aa38d": { + "2595b7a75e45466f9fc4d4ba48df1f15": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3ba17ee38698460fbac6ae4d1d16662a", - "IPY_MODEL_bcdb38f72c724559ae846514da750560", - "IPY_MODEL_4667a135e91e47a4bb9814590fb24181" - ], - "layout": "IPY_MODEL_f8736ba075384f319f22c8eb6fe4da15", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_723fe7d9fee84e509e391f0086b38797", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3f743687904c4482ad75c0a123b73b1e", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 391.0 + } + }, + "2a816d84d5cc473093ab67001a27c13a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "2f7576ab68bd407c9cbee0b993ca5359": { + "2bf0c73a7f8f4c649a4be7df92654e10": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1549,23 +1523,25 @@ "width": null } }, - "30e3546ae2424037ae1110e2ea7d4db8": { + "35fb15ce4edc4a58b13eb112b5302098": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "366be072e826490fb67195f98c076d53": { + "364432b0a294482c9c6b1ed27f2c2f49": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1583,53 +1559,23 @@ "text_color": null } }, - "3ba17ee38698460fbac6ae4d1d16662a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c38946e0f89c49e89b3dcc1263886d67", - "placeholder": "​", - "style": "IPY_MODEL_a09462dec45e4619bb4664f63391e136", - "tabbable": null, - "tooltip": null, - "value": "config.json: 100%" - } - }, - "4667a135e91e47a4bb9814590fb24181": { + "3f743687904c4482ad75c0a123b73b1e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2f7576ab68bd407c9cbee0b993ca5359", - "placeholder": "​", - "style": "IPY_MODEL_be927e643dbc440aaf6d14b234134bf2", - "tabbable": null, - "tooltip": null, - "value": " 665/665 [00:00<00:00, 121kB/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "4922340dc82742e58821dc9cce63995e": { + "4075b6b696794e6cb67d0b5f7de37f4c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1682,7 +1628,7 @@ "width": null } }, - "4c2e0423abea43c682f4c2715fdf6324": { + "41bb2f83903748a5bd214604318b8671": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1735,7 +1681,7 @@ "width": null } }, - "5172347bb0f04b46b732e1a9f8235407": { + "42238d77794d4138942bf704d74a8ced": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1751,41 +1697,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ec679048bf93466fa552274a1a956f05", + "layout": "IPY_MODEL_8e09f321b74944cc83b3df4395c00632", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_e5eec1fd63634fc694d41936ce59438b", + "style": "IPY_MODEL_b5c1ccb187604ede9dcccd86862a971f", "tabbable": null, "tooltip": null, "value": 54245363.0 } }, - "53195e1dd93a4045b830a4d1db7f3735": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a8e5d1e539524d41a46d1b94d635b6bd", - "IPY_MODEL_eb742edcb1e64103b5a9f8aab81c9d49", - "IPY_MODEL_fe8d525b8f204d3d9c6f4e7f719396bf" - ], - "layout": "IPY_MODEL_4922340dc82742e58821dc9cce63995e", - "tabbable": null, - "tooltip": null - } - }, - "531c90f2f37c49fda579e8b0b02e9664": { + "43e5fbda50ff4a34af172f936f8f7a78": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1838,18 +1760,41 @@ "width": null } }, - "586b2b60147d45048d11139e4457def0": { - "model_module": "@jupyter-widgets/base", + "4596e06ee7084dd096fe08963d984fff": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d3c28141d394432fa0341c17c066928a", + "placeholder": "​", + "style": "IPY_MODEL_19093b42b50b4aeea4d79b8ff3d741d7", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 8.00kB/s]" + } + }, + "45c2ee2e2047435d8298563ac99aa124": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, @@ -1891,7 +1836,7 @@ "width": null } }, - "5b01384fbfbd49e38cdd8d6207f4932a": { + "45c9c8c02ca142278cbdc6742aa87d9b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1906,33 +1851,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b246cc9c5fcd4162b7725194dc03af03", + "layout": "IPY_MODEL_d73435f3e28246c4a87481a27f81d8f7", "placeholder": "​", - "style": "IPY_MODEL_91a1e11775484452a1b16e8bd9bd34fe", + "style": "IPY_MODEL_691e9f1cd0ba445c89b42e5857fb81b4", "tabbable": null, "tooltip": null, - "value": " 54.2M/54.2M [00:02<00:00, 26.4MB/s]" - } - }, - "5bb5d26ff8084dfa8f7bd0b38010eff9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "vocab.txt: 100%" } }, - "6b465dfd724248308c9d3fc433fbd7a1": { + "4745140672f040658bb31f48154c9327": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1950,62 +1877,7 @@ "text_color": null } }, - "6dbbe58685e54d0f9b1a386c7b5fbe57": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6fec6c05639b4c459e3ec36cb9bb0375": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7595b701f93847db9cc6ebd5d873e951": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_77ab8bc1c60847b1b025169649ba3fb8", - "placeholder": "​", - "style": "IPY_MODEL_0d2096765b5b4c5187069b34335cb25c", - "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" - } - }, - "77ab8bc1c60847b1b025169649ba3fb8": { + "4e0e803a6c1b4910adfa432ac654015d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2058,25 +1930,7 @@ "width": null } }, - "890332d78b4c40509fef5e01237fc37c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8dfe3b82e90f498682f1f8aaf423bba3": { + "53558ebf812a42a8aee968d175d9f598": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2129,41 +1983,7 @@ "width": null } }, - "8f5b64c1e5b84e2c97f22ef3dc781ac7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "91a1e11775484452a1b16e8bd9bd34fe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9227dc21b2e54564ac57967fb0c04a13": { + "5387148ba04d496e889d88d663312492": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2216,33 +2036,53 @@ "width": null } }, - "92f97f3884f2405688ed346eed966c1c": { + "59d1c1e50bda4e9da25d3a6f59453df1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4c2e0423abea43c682f4c2715fdf6324", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6fec6c05639b4c459e3ec36cb9bb0375", + "layout": "IPY_MODEL_ce90fe39f77749d5a8c3adc66c07b19a", + "placeholder": "​", + "style": "IPY_MODEL_c1f01941455c4007a0a122423857cca5", "tabbable": null, "tooltip": null, - "value": 48.0 + "value": "config.json: 100%" + } + }, + "5a0b58ec5dee4d76abb1db03047e20d1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fdd30b5bab0342bfa3cebd7fb4a76641", + "placeholder": "​", + "style": "IPY_MODEL_364432b0a294482c9c6b1ed27f2c2f49", + "tabbable": null, + "tooltip": null, + "value": " 232k/232k [00:00<00:00, 33.5MB/s]" } }, - "947b044e41094f00b08185bfe24f49be": { + "5d2fec7b198645dcb93b760d38443c91": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2295,7 +2135,199 @@ "width": null } }, - "96e44a4349e24aafb2e941ea68825556": { + "609bd99534344390a356a6788fee8507": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6bd44905713448c48b13f9072288e7df", + "IPY_MODEL_2595b7a75e45466f9fc4d4ba48df1f15", + "IPY_MODEL_2358c94915814ebbb4935821bc31ade8" + ], + "layout": "IPY_MODEL_41bb2f83903748a5bd214604318b8671", + "tabbable": null, + "tooltip": null + } + }, + "633d7cd8598e4b29a3ad3e13daa87d91": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4e0e803a6c1b4910adfa432ac654015d", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c2543129a62b4e81a81a510df25cf7f9", + "tabbable": null, + "tooltip": null, + "value": 48.0 + } + }, + "63efa3acc7744d418570c07d19f67b8f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "66ba0cd1d985486c984a043d0efabf25": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ac9411cca7b345f9beebadd74debfc94", + "IPY_MODEL_633d7cd8598e4b29a3ad3e13daa87d91", + "IPY_MODEL_4596e06ee7084dd096fe08963d984fff" + ], + "layout": "IPY_MODEL_45c2ee2e2047435d8298563ac99aa124", + "tabbable": null, + "tooltip": null + } + }, + "691e9f1cd0ba445c89b42e5857fb81b4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6bd44905713448c48b13f9072288e7df": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e4df1cc46b24449083ba64e1acf4d44e", + "placeholder": "​", + "style": "IPY_MODEL_f2e97eb561d14453b0cebfb5c6f25fd3", + "tabbable": null, + "tooltip": null, + "value": ".gitattributes: 100%" + } + }, + "6d3fd7a47d114edba48caa94e481cecb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_43e5fbda50ff4a34af172f936f8f7a78", + "placeholder": "​", + "style": "IPY_MODEL_63efa3acc7744d418570c07d19f67b8f", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" + } + }, + "6ec6525b3b194115b0ff0cd6e22d9ce8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "70f31e6770a84a21a434fe09d78ba8d3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "723fe7d9fee84e509e391f0086b38797": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2348,7 +2380,54 @@ "width": null } }, - "9b64a35100cc481b82b62cf122701f3e": { + "72d412ce755f416e9311468fb26a3a46": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9e8cef97db604008bec76e9f8413d2f8", + "IPY_MODEL_e7b36e18e01d41c8a054785b3e17b654", + "IPY_MODEL_e758cdde2331469d8842311b6ef5dbb6" + ], + "layout": "IPY_MODEL_c8efadff14df4664963073b82267a07f", + "tabbable": null, + "tooltip": null + } + }, + "76b513dbf5f34978b7b6585e3d089794": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1d46b41290534da1a7c59a65173af332", + "placeholder": "​", + "style": "IPY_MODEL_6ec6525b3b194115b0ff0cd6e22d9ce8", + "tabbable": null, + "tooltip": null, + "value": " 665/665 [00:00<00:00, 101kB/s]" + } + }, + "80718f0bca364346b9e76ae79ba0cdd4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2401,7 +2480,49 @@ "width": null } }, - "9bca6d36f76b4df6b88b314cc7241895": { + "828118e3407f496e9047225853abf12c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_45c9c8c02ca142278cbdc6742aa87d9b", + "IPY_MODEL_f6b2fc64c1104a6094c50384dd6d3a07", + "IPY_MODEL_5a0b58ec5dee4d76abb1db03047e20d1" + ], + "layout": "IPY_MODEL_2bf0c73a7f8f4c649a4be7df92654e10", + "tabbable": null, + "tooltip": null + } + }, + "8ce3bdbaa1854c179505e5c09afe5dff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8e09f321b74944cc83b3df4395c00632": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2454,48 +2575,7 @@ "width": null } }, - "a09462dec45e4619bb4664f63391e136": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a2ce6249f2fb446a992fa46c75e2029d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_586b2b60147d45048d11139e4457def0", - "placeholder": "​", - "style": "IPY_MODEL_366be072e826490fb67195f98c076d53", - "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 355kB/s]" - } - }, - "a4144348dc55458193b943b8f6cd9072": { + "8e64033a92a84b60983a905481c8ffcb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2510,15 +2590,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9b64a35100cc481b82b62cf122701f3e", + "layout": "IPY_MODEL_f4ef790794594d5db8566bf773f020ce", "placeholder": "​", - "style": "IPY_MODEL_05f46856efb64b3b958f69caba56dafb", + "style": "IPY_MODEL_35fb15ce4edc4a58b13eb112b5302098", "tabbable": null, "tooltip": null, - "value": "tokenizer_config.json: 100%" + "value": " 54.2M/54.2M [00:00<00:00, 269MB/s]" } }, - "a8e5d1e539524d41a46d1b94d635b6bd": { + "9e8cef97db604008bec76e9f8413d2f8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2533,41 +2613,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9227dc21b2e54564ac57967fb0c04a13", + "layout": "IPY_MODEL_4075b6b696794e6cb67d0b5f7de37f4c", "placeholder": "​", - "style": "IPY_MODEL_154466a4539242a9bdf98e5af3341f10", - "tabbable": null, - "tooltip": null, - "value": "tokenizer.json: 100%" - } - }, - "abedae8d4e064104ba0de2913ae95ea5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d9ccb99dd23843feb0dcf97a88bd3d23", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6dbbe58685e54d0f9b1a386c7b5fbe57", + "style": "IPY_MODEL_f24c56f154ef4a9cb75f96e2bbf56e8d", "tabbable": null, "tooltip": null, - "value": 391.0 + "value": "README.md: 100%" } }, - "b0569b8fbde842f1927af2159125e119": { + "a1a6a4cf16a8479c98351da8ba7d247e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2620,23 +2674,54 @@ "width": null } }, - "b1591f828d5d488caef20344e337326e": { + "a87e77b0e9324a9384b775bc5514a176": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6d3fd7a47d114edba48caa94e481cecb", + "IPY_MODEL_42238d77794d4138942bf704d74a8ced", + "IPY_MODEL_8e64033a92a84b60983a905481c8ffcb" + ], + "layout": "IPY_MODEL_a1a6a4cf16a8479c98351da8ba7d247e", + "tabbable": null, + "tooltip": null + } + }, + "ac9411cca7b345f9beebadd74debfc94": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5387148ba04d496e889d88d663312492", + "placeholder": "​", + "style": "IPY_MODEL_70f31e6770a84a21a434fe09d78ba8d3", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" } }, - "b246cc9c5fcd4162b7725194dc03af03": { + "adef0f10f073472498f3394a0ff314b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2689,60 +2774,23 @@ "width": null } }, - "b437cf68ae764715ba2f56c825c1c7de": { - "model_module": "@jupyter-widgets/base", + "af382a9199134755b710d6c867dfbf15": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "b8ffc52f12334824915978c50715f53f": { + "b1b9db21390e4028ab5768e0946debd1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2757,38 +2805,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ee3f610d58884970935cb6b712b044ae", + "layout": "IPY_MODEL_eaf4f1d3615d42a7a3317d8bc474bfb9", "placeholder": "​", - "style": "IPY_MODEL_0ea0f43aeff04802b461c7c6b1a6e1e6", + "style": "IPY_MODEL_4745140672f040658bb31f48154c9327", "tabbable": null, "tooltip": null, - "value": " 391/391 [00:00<00:00, 66.3kB/s]" + "value": "tokenizer.json: 100%" } }, - "bb192d08d75349958e85a367e0712414": { + "b29efd0253184afc9f25ed847cc6de4f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d9c6e9ba96d040b5bb13b65c6cec04a6", - "placeholder": "​", - "style": "IPY_MODEL_5bb5d26ff8084dfa8f7bd0b38010eff9", - "tabbable": null, - "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 9.56kB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "bcdb38f72c724559ae846514da750560": { + "b3f682560e214179a87fc479dcbae99e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2804,17 +2847,33 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1ad67ea050a04fcdbdcf7248e3d9aed7", - "max": 665.0, + "layout": "IPY_MODEL_80718f0bca364346b9e76ae79ba0cdd4", + "max": 466062.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_b1591f828d5d488caef20344e337326e", + "style": "IPY_MODEL_2a816d84d5cc473093ab67001a27c13a", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": 466062.0 + } + }, + "b5c1ccb187604ede9dcccd86862a971f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "bda5e92cfb2c4801a5a22983bbde5642": { + "bcc06e43c9bc45058c6f3e613d79d09a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2858,40 +2917,16 @@ "min_width": null, "object_fit": null, "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "be22c25d590e4494a513559de6fcd58a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bff464ad3cf247aea607cbd0e940f655", - "IPY_MODEL_abedae8d4e064104ba0de2913ae95ea5", - "IPY_MODEL_b8ffc52f12334824915978c50715f53f" - ], - "layout": "IPY_MODEL_bda5e92cfb2c4801a5a22983bbde5642", - "tabbable": null, - "tooltip": null + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "be927e643dbc440aaf6d14b234134bf2": { + "c1f01941455c4007a0a122423857cca5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2909,66 +2944,92 @@ "text_color": null } }, - "bff464ad3cf247aea607cbd0e940f655": { + "c2543129a62b4e81a81a510df25cf7f9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_947b044e41094f00b08185bfe24f49be", - "placeholder": "​", - "style": "IPY_MODEL_890332d78b4c40509fef5e01237fc37c", - "tabbable": null, - "tooltip": null, - "value": ".gitattributes: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "c00e05ce28284d64a491a27fc898362e": { + "c467572ad65a4ecdad411374c0d9af32": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "c23708a4d0134b1eb21272bf0f7928f0": { - "model_module": "@jupyter-widgets/controls", + "c8efadff14df4664963073b82267a07f": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "c38946e0f89c49e89b3dcc1263886d67": { + "cd92b55b3feb4bacbb48b66ccdbbbe8f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3021,7 +3082,7 @@ "width": null } }, - "cda193d89f3b4e659d4f753af6cfff40": { + "ce90fe39f77749d5a8c3adc66c07b19a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3074,25 +3135,30 @@ "width": null } }, - "d6ec8d5c7bad45cb98b8c604ab2f46dd": { + "d36b8a25de144393ad4dc1d2a45edfd2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e2653e982d404b29b3cbde6dcdbd6de7", + "placeholder": "​", + "style": "IPY_MODEL_04e6f8947ca14034a8b86e7853b8b767", + "tabbable": null, + "tooltip": null, + "value": " 466k/466k [00:00<00:00, 2.61MB/s]" } }, - "d9c6e9ba96d040b5bb13b65c6cec04a6": { + "d3c28141d394432fa0341c17c066928a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3145,7 +3211,7 @@ "width": null } }, - "d9ccb99dd23843feb0dcf97a88bd3d23": { + "d73435f3e28246c4a87481a27f81d8f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3198,30 +3264,7 @@ "width": null } }, - "dcc4a94705f7483bb702360efc1e41bb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9bca6d36f76b4df6b88b314cc7241895", - "placeholder": "​", - "style": "IPY_MODEL_c00e05ce28284d64a491a27fc898362e", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "e29e1197d79b4688a408db41d3fc85b8": { + "e2653e982d404b29b3cbde6dcdbd6de7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3274,7 +3317,7 @@ "width": null } }, - "e361d0be583b4b9391f39ee28434efc1": { + "e4df1cc46b24449083ba64e1acf4d44e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3327,73 +3370,30 @@ "width": null } }, - "e5eec1fd63634fc694d41936ce59438b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e8996344f5494527ac2bb6f701ae7fb1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a4144348dc55458193b943b8f6cd9072", - "IPY_MODEL_92f97f3884f2405688ed346eed966c1c", - "IPY_MODEL_bb192d08d75349958e85a367e0712414" - ], - "layout": "IPY_MODEL_531c90f2f37c49fda579e8b0b02e9664", - "tabbable": null, - "tooltip": null - } - }, - "eb742edcb1e64103b5a9f8aab81c9d49": { + "e758cdde2331469d8842311b6ef5dbb6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0538fffa6ae24d1ea1e1c4b0128b72d2", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_efd49407848a4d45a5e20c90fb51479e", + "layout": "IPY_MODEL_181817c2729a4dccb97af10abf5129d4", + "placeholder": "​", + "style": "IPY_MODEL_b29efd0253184afc9f25ed847cc6de4f", "tabbable": null, "tooltip": null, - "value": 466062.0 + "value": " 2.21k/2.21k [00:00<00:00, 397kB/s]" } }, - "ec2c127abc3d41998d2d50741564f41a": { + "e7b36e18e01d41c8a054785b3e17b654": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3409,17 +3409,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_96e44a4349e24aafb2e941ea68825556", - "max": 231508.0, + "layout": "IPY_MODEL_adef0f10f073472498f3394a0ff314b5", + "max": 2211.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_8f5b64c1e5b84e2c97f22ef3dc781ac7", + "style": "IPY_MODEL_13cc007397f54c9c8c37e3efe684a7e2", "tabbable": null, "tooltip": null, - "value": 231508.0 + "value": 2211.0 } }, - "ec679048bf93466fa552274a1a956f05": { + "eaf4f1d3615d42a7a3317d8bc474bfb9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3472,7 +3472,43 @@ "width": null } }, - "ee3f610d58884970935cb6b712b044ae": { + "f24c56f154ef4a9cb75f96e2bbf56e8d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f2e97eb561d14453b0cebfb5c6f25fd3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f4ef790794594d5db8566bf773f020ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3525,46 +3561,33 @@ "width": null } }, - "efd49407848a4d45a5e20c90fb51479e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f4df8ccc4462424dbe309e1fd9c5f833": { + "f6b2fc64c1104a6094c50384dd6d3a07": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b0569b8fbde842f1927af2159125e119", - "placeholder": "​", - "style": "IPY_MODEL_c23708a4d0134b1eb21272bf0f7928f0", + "layout": "IPY_MODEL_cd92b55b3feb4bacbb48b66ccdbbbe8f", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c467572ad65a4ecdad411374c0d9af32", "tabbable": null, "tooltip": null, - "value": "pytorch_model.bin: 100%" + "value": 231508.0 } }, - "f8736ba075384f319f22c8eb6fe4da15": { + "fdd30b5bab0342bfa3cebd7fb4a76641": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3616,29 +3639,6 @@ "visibility": null, "width": null } - }, - "fe8d525b8f204d3d9c6f4e7f719396bf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cda193d89f3b4e659d4f753af6cfff40", - "placeholder": "​", - "style": "IPY_MODEL_6b465dfd724248308c9d3fc433fbd7a1", - "tabbable": null, - "tooltip": null, - "value": " 466k/466k [00:00<00:00, 16.7MB/s]" - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb index 2865c1a35..db407c8a3 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:48.175409Z", - "iopub.status.busy": "2024-08-22T00:52:48.175233Z", - "iopub.status.idle": "2024-08-22T00:52:54.120356Z", - "shell.execute_reply": "2024-08-22T00:52:54.119787Z" + "iopub.execute_input": "2024-08-26T15:50:18.375949Z", + "iopub.status.busy": "2024-08-26T15:50:18.375420Z", + "iopub.status.idle": "2024-08-26T15:50:23.859019Z", + "shell.execute_reply": "2024-08-26T15:50:23.858417Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:54.123160Z", - "iopub.status.busy": "2024-08-22T00:52:54.122659Z", - "iopub.status.idle": "2024-08-22T00:52:54.126558Z", - "shell.execute_reply": "2024-08-22T00:52:54.125993Z" + "iopub.execute_input": "2024-08-26T15:50:23.861683Z", + "iopub.status.busy": "2024-08-26T15:50:23.861156Z", + "iopub.status.idle": "2024-08-26T15:50:23.864463Z", + "shell.execute_reply": "2024-08-26T15:50:23.863948Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:54.128706Z", - "iopub.status.busy": "2024-08-22T00:52:54.128370Z", - "iopub.status.idle": "2024-08-22T00:52:54.133188Z", - "shell.execute_reply": "2024-08-22T00:52:54.132757Z" + "iopub.execute_input": "2024-08-26T15:50:23.866465Z", + "iopub.status.busy": "2024-08-26T15:50:23.866121Z", + "iopub.status.idle": "2024-08-26T15:50:23.870902Z", + "shell.execute_reply": "2024-08-26T15:50:23.870358Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-22T00:52:54.135371Z", - "iopub.status.busy": "2024-08-22T00:52:54.134958Z", - "iopub.status.idle": "2024-08-22T00:52:55.720513Z", - "shell.execute_reply": "2024-08-22T00:52:55.719816Z" + "iopub.execute_input": "2024-08-26T15:50:23.873109Z", + "iopub.status.busy": "2024-08-26T15:50:23.872679Z", + "iopub.status.idle": "2024-08-26T15:50:25.664909Z", + "shell.execute_reply": "2024-08-26T15:50:25.664194Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-22T00:52:55.723221Z", - "iopub.status.busy": "2024-08-22T00:52:55.723006Z", - "iopub.status.idle": "2024-08-22T00:52:55.734401Z", - "shell.execute_reply": "2024-08-22T00:52:55.733918Z" + "iopub.execute_input": "2024-08-26T15:50:25.667739Z", + "iopub.status.busy": "2024-08-26T15:50:25.667316Z", + "iopub.status.idle": "2024-08-26T15:50:25.678565Z", + "shell.execute_reply": "2024-08-26T15:50:25.678115Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:55.736840Z", - "iopub.status.busy": "2024-08-22T00:52:55.736398Z", - "iopub.status.idle": "2024-08-22T00:52:55.743749Z", - "shell.execute_reply": "2024-08-22T00:52:55.743297Z" + "iopub.execute_input": "2024-08-26T15:50:25.680602Z", + "iopub.status.busy": "2024-08-26T15:50:25.680410Z", + "iopub.status.idle": "2024-08-26T15:50:25.687890Z", + "shell.execute_reply": "2024-08-26T15:50:25.687425Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-22T00:52:55.745691Z", - "iopub.status.busy": "2024-08-22T00:52:55.745498Z", - "iopub.status.idle": "2024-08-22T00:52:56.231019Z", - "shell.execute_reply": "2024-08-22T00:52:56.230411Z" + "iopub.execute_input": "2024-08-26T15:50:25.689698Z", + "iopub.status.busy": "2024-08-26T15:50:25.689520Z", + "iopub.status.idle": "2024-08-26T15:50:26.129419Z", + "shell.execute_reply": "2024-08-26T15:50:26.128884Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:56.233294Z", - "iopub.status.busy": "2024-08-22T00:52:56.232929Z", - "iopub.status.idle": "2024-08-22T00:52:57.516759Z", - "shell.execute_reply": "2024-08-22T00:52:57.516192Z" + "iopub.execute_input": "2024-08-26T15:50:26.131626Z", + "iopub.status.busy": "2024-08-26T15:50:26.131431Z", + "iopub.status.idle": "2024-08-26T15:50:27.173661Z", + "shell.execute_reply": "2024-08-26T15:50:27.173138Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-08-22T00:52:57.519436Z", - "iopub.status.busy": "2024-08-22T00:52:57.519223Z", - "iopub.status.idle": "2024-08-22T00:52:57.539054Z", - "shell.execute_reply": "2024-08-22T00:52:57.538518Z" + "iopub.execute_input": "2024-08-26T15:50:27.176421Z", + "iopub.status.busy": "2024-08-26T15:50:27.176064Z", + "iopub.status.idle": "2024-08-26T15:50:27.195243Z", + "shell.execute_reply": "2024-08-26T15:50:27.194686Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:57.541407Z", - "iopub.status.busy": "2024-08-22T00:52:57.541040Z", - "iopub.status.idle": "2024-08-22T00:52:57.544502Z", - "shell.execute_reply": "2024-08-22T00:52:57.544007Z" + "iopub.execute_input": "2024-08-26T15:50:27.197583Z", + "iopub.status.busy": "2024-08-26T15:50:27.197164Z", + "iopub.status.idle": "2024-08-26T15:50:27.200332Z", + "shell.execute_reply": "2024-08-26T15:50:27.199873Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:57.546712Z", - "iopub.status.busy": "2024-08-22T00:52:57.546338Z", - "iopub.status.idle": "2024-08-22T00:53:12.925180Z", - "shell.execute_reply": "2024-08-22T00:53:12.924606Z" + "iopub.execute_input": "2024-08-26T15:50:27.202307Z", + "iopub.status.busy": "2024-08-26T15:50:27.202000Z", + "iopub.status.idle": "2024-08-26T15:50:41.583107Z", + "shell.execute_reply": "2024-08-26T15:50:41.582452Z" }, "id": "2FSQ2GR9R_YA" }, @@ -617,10 +617,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-22T00:53:12.928381Z", - "iopub.status.busy": "2024-08-22T00:53:12.927765Z", - "iopub.status.idle": "2024-08-22T00:53:12.931877Z", - "shell.execute_reply": "2024-08-22T00:53:12.931342Z" + "iopub.execute_input": "2024-08-26T15:50:41.585857Z", + "iopub.status.busy": "2024-08-26T15:50:41.585461Z", + "iopub.status.idle": "2024-08-26T15:50:41.589464Z", + "shell.execute_reply": "2024-08-26T15:50:41.588990Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -680,10 +680,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:12.934268Z", - "iopub.status.busy": "2024-08-22T00:53:12.933845Z", - "iopub.status.idle": "2024-08-22T00:53:13.691946Z", - "shell.execute_reply": "2024-08-22T00:53:13.691290Z" + "iopub.execute_input": "2024-08-26T15:50:41.591711Z", + "iopub.status.busy": "2024-08-26T15:50:41.591300Z", + "iopub.status.idle": "2024-08-26T15:50:42.284996Z", + "shell.execute_reply": "2024-08-26T15:50:42.284408Z" }, "id": "i_drkY9YOcw4" }, @@ -717,10 +717,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-22T00:53:13.695647Z", - "iopub.status.busy": "2024-08-22T00:53:13.694650Z", - "iopub.status.idle": "2024-08-22T00:53:13.701935Z", - "shell.execute_reply": "2024-08-22T00:53:13.701370Z" + "iopub.execute_input": "2024-08-26T15:50:42.287828Z", + "iopub.status.busy": "2024-08-26T15:50:42.287405Z", + "iopub.status.idle": "2024-08-26T15:50:42.292567Z", + "shell.execute_reply": "2024-08-26T15:50:42.292041Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -767,10 +767,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:13.705763Z", - "iopub.status.busy": "2024-08-22T00:53:13.704798Z", - "iopub.status.idle": "2024-08-22T00:53:13.827977Z", - "shell.execute_reply": "2024-08-22T00:53:13.827262Z" + "iopub.execute_input": "2024-08-26T15:50:42.295019Z", + "iopub.status.busy": "2024-08-26T15:50:42.294593Z", + "iopub.status.idle": "2024-08-26T15:50:42.406915Z", + "shell.execute_reply": "2024-08-26T15:50:42.406291Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:13.830540Z", - "iopub.status.busy": "2024-08-22T00:53:13.830120Z", - "iopub.status.idle": "2024-08-22T00:53:13.843289Z", - "shell.execute_reply": "2024-08-22T00:53:13.842778Z" + "iopub.execute_input": "2024-08-26T15:50:42.409511Z", + "iopub.status.busy": "2024-08-26T15:50:42.409028Z", + "iopub.status.idle": "2024-08-26T15:50:42.421338Z", + "shell.execute_reply": "2024-08-26T15:50:42.420887Z" }, "scrolled": true }, @@ -870,10 +870,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:13.845542Z", - "iopub.status.busy": "2024-08-22T00:53:13.845205Z", - "iopub.status.idle": "2024-08-22T00:53:13.853955Z", - "shell.execute_reply": "2024-08-22T00:53:13.853422Z" + "iopub.execute_input": "2024-08-26T15:50:42.423468Z", + "iopub.status.busy": "2024-08-26T15:50:42.423121Z", + "iopub.status.idle": "2024-08-26T15:50:42.430725Z", + "shell.execute_reply": "2024-08-26T15:50:42.430159Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:13.856185Z", - "iopub.status.busy": "2024-08-22T00:53:13.855823Z", - "iopub.status.idle": "2024-08-22T00:53:13.860309Z", - "shell.execute_reply": "2024-08-22T00:53:13.859741Z" + "iopub.execute_input": "2024-08-26T15:50:42.432808Z", + "iopub.status.busy": "2024-08-26T15:50:42.432481Z", + "iopub.status.idle": "2024-08-26T15:50:42.436459Z", + "shell.execute_reply": "2024-08-26T15:50:42.435927Z" } }, "outputs": [ @@ -1018,10 +1018,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-08-22T00:53:13.862519Z", - "iopub.status.busy": "2024-08-22T00:53:13.862107Z", - "iopub.status.idle": "2024-08-22T00:53:13.868191Z", - "shell.execute_reply": "2024-08-22T00:53:13.867613Z" + "iopub.execute_input": "2024-08-26T15:50:42.438685Z", + "iopub.status.busy": "2024-08-26T15:50:42.438333Z", + "iopub.status.idle": "2024-08-26T15:50:42.443991Z", + "shell.execute_reply": "2024-08-26T15:50:42.443346Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1148,10 +1148,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-22T00:53:13.870458Z", - "iopub.status.busy": "2024-08-22T00:53:13.870258Z", - "iopub.status.idle": "2024-08-22T00:53:13.987883Z", - "shell.execute_reply": "2024-08-22T00:53:13.987309Z" + "iopub.execute_input": "2024-08-26T15:50:42.446522Z", + "iopub.status.busy": "2024-08-26T15:50:42.446019Z", + "iopub.status.idle": "2024-08-26T15:50:42.560125Z", + "shell.execute_reply": "2024-08-26T15:50:42.559532Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1205,10 +1205,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-22T00:53:13.990023Z", - "iopub.status.busy": "2024-08-22T00:53:13.989833Z", - "iopub.status.idle": "2024-08-22T00:53:14.104788Z", - "shell.execute_reply": "2024-08-22T00:53:14.104023Z" + "iopub.execute_input": "2024-08-26T15:50:42.562347Z", + "iopub.status.busy": "2024-08-26T15:50:42.561993Z", + "iopub.status.idle": "2024-08-26T15:50:42.666666Z", + "shell.execute_reply": "2024-08-26T15:50:42.666079Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1253,10 +1253,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-22T00:53:14.107055Z", - "iopub.status.busy": "2024-08-22T00:53:14.106848Z", - "iopub.status.idle": "2024-08-22T00:53:14.216811Z", - "shell.execute_reply": "2024-08-22T00:53:14.216231Z" + "iopub.execute_input": "2024-08-26T15:50:42.668699Z", + "iopub.status.busy": "2024-08-26T15:50:42.668513Z", + "iopub.status.idle": "2024-08-26T15:50:42.772175Z", + "shell.execute_reply": "2024-08-26T15:50:42.771562Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1297,10 +1297,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:14.219008Z", - "iopub.status.busy": "2024-08-22T00:53:14.218684Z", - "iopub.status.idle": "2024-08-22T00:53:14.325725Z", - "shell.execute_reply": "2024-08-22T00:53:14.325094Z" + "iopub.execute_input": "2024-08-26T15:50:42.774239Z", + "iopub.status.busy": "2024-08-26T15:50:42.774052Z", + "iopub.status.idle": "2024-08-26T15:50:42.877983Z", + "shell.execute_reply": "2024-08-26T15:50:42.877478Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:14.327943Z", - "iopub.status.busy": "2024-08-22T00:53:14.327615Z", - "iopub.status.idle": "2024-08-22T00:53:14.330823Z", - "shell.execute_reply": "2024-08-22T00:53:14.330354Z" + "iopub.execute_input": "2024-08-26T15:50:42.880086Z", + "iopub.status.busy": "2024-08-26T15:50:42.879904Z", + "iopub.status.idle": "2024-08-26T15:50:42.883328Z", + "shell.execute_reply": "2024-08-26T15:50:42.882869Z" }, "nbsphinx": "hidden" }, @@ -1392,7 +1392,57 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00ccf0195f23415082d1eb5bfff1c0fe": { + "05a4b438a1aa46718c6a77b932a841ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fd724a4cddb843d1bf3bc3d1a6f60a0d", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_dcaf791445af43d68f0078287914810a", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "074d9a20f9624f31bef1345fc1d53ba4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_28aa2246369c45f2ad10eb6574adfa34", + "IPY_MODEL_f327247b2e124784abcaca20d824f2c2", + "IPY_MODEL_a77b34d9e40b4059839e055baa762c60" + ], + "layout": "IPY_MODEL_d42aa306545b4c048e7007f1010dae12", + "tabbable": null, + "tooltip": null + } + }, + "0b2b777475ca40c299521df6edb4d9e1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1445,7 +1495,7 @@ "width": null } }, - "08dddbfed9084d4a82658ab4eb9fe86b": { + "1435eae27d1c443e8d421a650383bec6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1498,41 +1548,7 @@ "width": null } }, - "0d09025b8ad4428484838507532030fa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0d83e1bc31fb426aa0c291d6ae914b48": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "10bc349100924c07a9aa6a8c72c7c95a": { + "1f681aac41c3440fa5417df2592e64e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1547,42 +1563,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f66015bed45e483ea66e81526bc19cf8", - "IPY_MODEL_61189fbcdf784f20bf8c91b4e9bddaa7", - "IPY_MODEL_4a98ae1a07ca486d99bea452dec82f71" + "IPY_MODEL_7a8c9807b5d243ef9048199d164259a7", + "IPY_MODEL_5355547b3991428680ce71762c93fc29", + "IPY_MODEL_cd4a37f84abf46799e7fa3c03402e98c" ], - "layout": "IPY_MODEL_d9d10de055db4c7d9f62d9baf43e6d0a", + "layout": "IPY_MODEL_24d971d5873c40bc8acce10154a128ff", "tabbable": null, "tooltip": null } }, - "1e0410b3f17f4f819bb3f5704aaacc18": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_08dddbfed9084d4a82658ab4eb9fe86b", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_eeac2fec00cc4351822c56fa3ba3576b", - "tabbable": null, - "tooltip": null, - "value": 128619.0 - } - }, - "1ec715683af6446b8f26187a6dabf0ab": { + "24d971d5873c40bc8acce10154a128ff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1635,33 +1625,25 @@ "width": null } }, - "209991c79cfd4d92bba6830c8c7d911a": { + "25f9496e154b4c35b50154e7c1179417": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_aa2a4d7dd9514add81090b3ccc73edd4", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0d09025b8ad4428484838507532030fa", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "25138934e3a545d395d4296c3e2fabcd": { + "28aa2246369c45f2ad10eb6574adfa34": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1676,86 +1658,67 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3cd00835086140698a8864bd298266e0", + "layout": "IPY_MODEL_6c9b9aaa085c4670a15577b8af66c4a3", "placeholder": "​", - "style": "IPY_MODEL_7c7d95acc7d044f2bede0803df07a37d", + "style": "IPY_MODEL_d237e27edd394f0cb779b56daf7e9f53", "tabbable": null, "tooltip": null, - "value": "embedding_model.ckpt: 100%" + "value": "classifier.ckpt: 100%" } }, - "2f1b7511064b4385a3d4f69830e2bb76": { + "2b3ed58cf59a4deb8dbaf2cbee76d300": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_25138934e3a545d395d4296c3e2fabcd", - "IPY_MODEL_eec2f7de4bea43068e6cc064ecfdc854", - "IPY_MODEL_de1a624ab1a94464a2059c75da4f2904" - ], - "layout": "IPY_MODEL_71042e530e224e99a287976f3d4fcfd1", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2fb3d8031ff949e3ab04531d73e1e5ca": { + "2fc8223259fe4237a80e3939046d0ac0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_00ccf0195f23415082d1eb5bfff1c0fe", - "placeholder": "​", - "style": "IPY_MODEL_a26a0a74bdb742ef8c45aade249b0371", - "tabbable": null, - "tooltip": null, - "value": " 129k/129k [00:00<00:00, 7.43MB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3bf4fa2f7dae48d48b5af24e1a66bb4c": { + "368d32a2248046e1a344ef38430f19dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4581701c1eb64b6a88928d2f88e1a3f7", - "IPY_MODEL_1e0410b3f17f4f819bb3f5704aaacc18", - "IPY_MODEL_2fb3d8031ff949e3ab04531d73e1e5ca" - ], - "layout": "IPY_MODEL_59570071e71e4c179609aaf42a499d3d", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "3cd00835086140698a8864bd298266e0": { + "3b95edd1de4741ab901227f2d2eb148c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1808,7 +1771,69 @@ "width": null } }, - "408c1e8d7abb4172b241a84463527a02": { + "3c28bd9bc9d54a309045e236929b999f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_750fe5408c694441b476afcb56cb7b0b", + "placeholder": "​", + "style": "IPY_MODEL_ebda3d78b05a4486a7fffd8a666e661f", + "tabbable": null, + "tooltip": null, + "value": "embedding_model.ckpt: 100%" + } + }, + "40d9603be1704746993364aa51163eb8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "489f5e3cafb04cf0add9f925c8e800a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a9955115289447288de13b0d6c05e5ba", + "placeholder": "​", + "style": "IPY_MODEL_525667ee5a584057853b670d0e74a9b7", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 2.03MB/s]" + } + }, + "4ee261f6d2c04d45982fa5a44bb949fb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1861,7 +1886,7 @@ "width": null } }, - "442e8d33bc9245deabc0f4c13d10bd31": { + "51a4d54bfb654f9caa7c226ee8995e55": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1914,71 +1939,51 @@ "width": null } }, - "4581701c1eb64b6a88928d2f88e1a3f7": { + "525667ee5a584057853b670d0e74a9b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1ec715683af6446b8f26187a6dabf0ab", - "placeholder": "​", - "style": "IPY_MODEL_ab53888f2f044d1cb7960bdc5cfb8661", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4a98ae1a07ca486d99bea452dec82f71": { + "5355547b3991428680ce71762c93fc29": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_442e8d33bc9245deabc0f4c13d10bd31", - "placeholder": "​", - "style": "IPY_MODEL_f99de2df51da4c0b85508b3d85e605db", - "tabbable": null, - "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 470kB/s]" - } - }, - "5569fdc8e27f4774ac7a1489598bf51a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "layout": "IPY_MODEL_51a4d54bfb654f9caa7c226ee8995e55", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_40d9603be1704746993364aa51163eb8", + "tabbable": null, + "tooltip": null, + "value": 2041.0 } }, - "59570071e71e4c179609aaf42a499d3d": { + "56a875190553432ca4420d1c37d224b0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2031,7 +2036,7 @@ "width": null } }, - "61189fbcdf784f20bf8c91b4e9bddaa7": { + "5f20e36061c4462194728c5738285d58": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2047,43 +2052,76 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6c9653be49234318bca0ab25d4b27cc3", - "max": 2041.0, + "layout": "IPY_MODEL_7e99d63a6efb47f2988287ad5bef0840", + "max": 3201.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_f5eef68b38dd4aa99d935cdb015a1831", + "style": "IPY_MODEL_bdb53847f2b34586832fe6fb354d7a43", "tabbable": null, "tooltip": null, - "value": 2041.0 + "value": 3201.0 } }, - "6522873ba4ea46aa896a6c6184a138d2": { + "5f9123a1dc6f4bf594ce8a4b4f185a49": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "65695c75a14e47ff8e3bf72157f16c8a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "67cae2b88eea4691bf411e8b7f6bc406": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7a0dd30a3af04193be0a67f123d7271c", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f98a2775246a41169dfe0e9b44c9962f", + "layout": "IPY_MODEL_cacc260410024c2eac52649d535238dd", + "placeholder": "​", + "style": "IPY_MODEL_2b3ed58cf59a4deb8dbaf2cbee76d300", "tabbable": null, "tooltip": null, - "value": 3201.0 + "value": "label_encoder.txt: 100%" } }, - "67fb37cf6d3b463bab3708887ea56e5f": { + "6c9b9aaa085c4670a15577b8af66c4a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2136,7 +2174,7 @@ "width": null } }, - "6a00eb8d6b2c4f9bbec0f00bb7eef71b": { + "750fe5408c694441b476afcb56cb7b0b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2189,7 +2227,30 @@ "width": null } }, - "6c9653be49234318bca0ab25d4b27cc3": { + "7a8c9807b5d243ef9048199d164259a7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1435eae27d1c443e8d421a650383bec6", + "placeholder": "​", + "style": "IPY_MODEL_65695c75a14e47ff8e3bf72157f16c8a", + "tabbable": null, + "tooltip": null, + "value": "hyperparams.yaml: 100%" + } + }, + "7e99d63a6efb47f2988287ad5bef0840": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2242,7 +2303,91 @@ "width": null } }, - "71042e530e224e99a287976f3d4fcfd1": { + "84d5a344da0b420f9117f92f87b490ae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3c28bd9bc9d54a309045e236929b999f", + "IPY_MODEL_ecad11768e31486e90586871e36c9ef8", + "IPY_MODEL_c90219e36f1e4eea92fe74ca75c1f79b" + ], + "layout": "IPY_MODEL_4ee261f6d2c04d45982fa5a44bb949fb", + "tabbable": null, + "tooltip": null + } + }, + "912b7f93444942fd8376cda94eda9084": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "929531a872824dd386b23d35970c8531": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_67cae2b88eea4691bf411e8b7f6bc406", + "IPY_MODEL_05a4b438a1aa46718c6a77b932a841ba", + "IPY_MODEL_489f5e3cafb04cf0add9f925c8e800a5" + ], + "layout": "IPY_MODEL_56a875190553432ca4420d1c37d224b0", + "tabbable": null, + "tooltip": null + } + }, + "a265f58d489845b6b1340a829a74168d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a392464012b34ae1b5f7e0a97721360b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2295,7 +2440,7 @@ "width": null } }, - "7a0dd30a3af04193be0a67f123d7271c": { + "a5b2e7509b164b5d9e844cab9b9e0f11": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2348,43 +2493,30 @@ "width": null } }, - "7c7d95acc7d044f2bede0803df07a37d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7f99f251e4b348a4a1551a6832faf0d7": { + "a77b34d9e40b4059839e055baa762c60": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a392464012b34ae1b5f7e0a97721360b", + "placeholder": "​", + "style": "IPY_MODEL_2fc8223259fe4237a80e3939046d0ac0", + "tabbable": null, + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 280MB/s]" } }, - "81dc4a5b0c114223b9520534140e044d": { + "a9955115289447288de13b0d6c05e5ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2437,7 +2569,7 @@ "width": null } }, - "8eb07dc3a10846a790bf8cbc7350bccd": { + "bdb53847f2b34586832fe6fb354d7a43": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2453,49 +2585,30 @@ "description_width": "" } }, - "943d2e5a243240369aa847af0ae05b3f": { + "c90219e36f1e4eea92fe74ca75c1f79b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bb7646d8aa7e40af8ba57463c63fd2c2", - "IPY_MODEL_209991c79cfd4d92bba6830c8c7d911a", - "IPY_MODEL_ce077001062f436b84b39c2730fde1f6" - ], - "layout": "IPY_MODEL_a3ed0940c05d4ca7a9441619422e4bab", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0b2b777475ca40c299521df6edb4d9e1", + "placeholder": "​", + "style": "IPY_MODEL_912b7f93444942fd8376cda94eda9084", "tabbable": null, - "tooltip": null - } - }, - "a26a0a74bdb742ef8c45aade249b0371": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null, + "value": " 16.9M/16.9M [00:00<00:00, 242MB/s]" } }, - "a3ed0940c05d4ca7a9441619422e4bab": { + "cacc260410024c2eac52649d535238dd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2548,149 +2661,53 @@ "width": null } }, - "a827cf6720694264886a09b4d96482ef": { - "model_module": "@jupyter-widgets/base", + "cd4a37f84abf46799e7fa3c03402e98c": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "aa2a4d7dd9514add81090b3ccc73edd4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ab53888f2f044d1cb7960bdc5cfb8661": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d93a56d4a52b40a1a432a218701e6d7d", + "placeholder": "​", + "style": "IPY_MODEL_a265f58d489845b6b1340a829a74168d", + "tabbable": null, + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 452kB/s]" } }, - "ac87727bcf91440391625450afeb8ab0": { + "d19574be1727424f9b4155d6890c6379": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f7f0f2aa06bf4ac191490912101855c7", + "placeholder": "​", + "style": "IPY_MODEL_5f9123a1dc6f4bf594ce8a4b4f185a49", + "tabbable": null, + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "b0c3fcf033fd4a5381d994d165135400": { + "d237e27edd394f0cb779b56daf7e9f53": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2708,7 +2725,7 @@ "text_color": null } }, - "bb4bf777c3e3467780abcc4d569a78dd": { + "d42aa306545b4c048e7007f1010dae12": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2761,7 +2778,7 @@ "width": null } }, - "bb50a7d1387043dcb96878a543b7691d": { + "d93a56d4a52b40a1a432a218701e6d7d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2814,53 +2831,23 @@ "width": null } }, - "bb7646d8aa7e40af8ba57463c63fd2c2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_408c1e8d7abb4172b241a84463527a02", - "placeholder": "​", - "style": "IPY_MODEL_5569fdc8e27f4774ac7a1489598bf51a", - "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" - } - }, - "ce077001062f436b84b39c2730fde1f6": { + "dcaf791445af43d68f0078287914810a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_81dc4a5b0c114223b9520534140e044d", - "placeholder": "​", - "style": "IPY_MODEL_7f99f251e4b348a4a1551a6832faf0d7", - "tabbable": null, - "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 75.7MB/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "d44c398209094a7f8613dc3e146ddfa6": { + "e09248c0fe244ae1adb56d9623d7540b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2875,16 +2862,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f9e87998384f4af6a7240a0201247e70", - "IPY_MODEL_6522873ba4ea46aa896a6c6184a138d2", - "IPY_MODEL_e08ed2c74cae4ed0890945595ed1d98e" + "IPY_MODEL_d19574be1727424f9b4155d6890c6379", + "IPY_MODEL_5f20e36061c4462194728c5738285d58", + "IPY_MODEL_e51837b227f044108623992ca3212468" ], - "layout": "IPY_MODEL_bb4bf777c3e3467780abcc4d569a78dd", + "layout": "IPY_MODEL_e1317297dacd4b19add95df4eb325215", "tabbable": null, "tooltip": null } }, - "d9d10de055db4c7d9f62d9baf43e6d0a": { + "e1317297dacd4b19add95df4eb325215": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2937,7 +2924,46 @@ "width": null } }, - "dc4a3bf1e3a14e1a8f9b1ff259237909": { + "e51837b227f044108623992ca3212468": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fe0c29f7fc654606a3968de8caebfa7e", + "placeholder": "​", + "style": "IPY_MODEL_25f9496e154b4c35b50154e7c1179417", + "tabbable": null, + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 801kB/s]" + } + }, + "e9cda110045e43c29d5985c766de7a53": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ebda3d78b05a4486a7fffd8a666e661f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2955,53 +2981,59 @@ "text_color": null } }, - "de1a624ab1a94464a2059c75da4f2904": { + "ecad11768e31486e90586871e36c9ef8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e5155f598ea04e7b9fdd42b5ec0d2713", - "placeholder": "​", - "style": "IPY_MODEL_b0c3fcf033fd4a5381d994d165135400", + "layout": "IPY_MODEL_3b95edd1de4741ab901227f2d2eb148c", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e9cda110045e43c29d5985c766de7a53", "tabbable": null, "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 121MB/s]" + "value": 16887676.0 } }, - "e08ed2c74cae4ed0890945595ed1d98e": { + "f327247b2e124784abcaca20d824f2c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bb50a7d1387043dcb96878a543b7691d", - "placeholder": "​", - "style": "IPY_MODEL_dc4a3bf1e3a14e1a8f9b1ff259237909", + "layout": "IPY_MODEL_a5b2e7509b164b5d9e844cab9b9e0f11", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_368d32a2248046e1a344ef38430f19dd", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 776kB/s]" + "value": 15856877.0 } }, - "e5155f598ea04e7b9fdd42b5ec0d2713": { + "f7f0f2aa06bf4ac191490912101855c7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3054,142 +3086,110 @@ "width": null } }, - "eeac2fec00cc4351822c56fa3ba3576b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "eec2f7de4bea43068e6cc064ecfdc854": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a827cf6720694264886a09b4d96482ef", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8eb07dc3a10846a790bf8cbc7350bccd", - "tabbable": null, - "tooltip": null, - "value": 16887676.0 - } - }, - "f5eef68b38dd4aa99d935cdb015a1831": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f66015bed45e483ea66e81526bc19cf8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6a00eb8d6b2c4f9bbec0f00bb7eef71b", - "placeholder": "​", - "style": "IPY_MODEL_ac87727bcf91440391625450afeb8ab0", - "tabbable": null, - "tooltip": null, - "value": "hyperparams.yaml: 100%" - } - }, - "f98a2775246a41169dfe0e9b44c9962f": { - "model_module": "@jupyter-widgets/controls", + "fd724a4cddb843d1bf3bc3d1a6f60a0d": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f99de2df51da4c0b85508b3d85e605db": { - "model_module": "@jupyter-widgets/controls", + "fe0c29f7fc654606a3968de8caebfa7e": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f9e87998384f4af6a7240a0201247e70": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_67fb37cf6d3b463bab3708887ea56e5f", - "placeholder": "​", - "style": "IPY_MODEL_0d83e1bc31fb426aa0c291d6ae914b48", - "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb index ce060f7b2..273aaa0cb 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:18.116159Z", - "iopub.status.busy": "2024-08-22T00:53:18.115974Z", - "iopub.status.idle": "2024-08-22T00:53:19.450692Z", - "shell.execute_reply": "2024-08-22T00:53:19.450087Z" + "iopub.execute_input": "2024-08-26T15:50:46.765510Z", + "iopub.status.busy": "2024-08-26T15:50:46.765317Z", + "iopub.status.idle": "2024-08-26T15:50:48.029649Z", + "shell.execute_reply": "2024-08-26T15:50:48.029139Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:19.453602Z", - "iopub.status.busy": "2024-08-22T00:53:19.453078Z", - "iopub.status.idle": "2024-08-22T00:53:19.456499Z", - "shell.execute_reply": "2024-08-22T00:53:19.455924Z" + "iopub.execute_input": "2024-08-26T15:50:48.032203Z", + "iopub.status.busy": "2024-08-26T15:50:48.031901Z", + "iopub.status.idle": "2024-08-26T15:50:48.035128Z", + "shell.execute_reply": "2024-08-26T15:50:48.034646Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:19.458860Z", - "iopub.status.busy": "2024-08-22T00:53:19.458533Z", - "iopub.status.idle": "2024-08-22T00:53:19.467566Z", - "shell.execute_reply": "2024-08-22T00:53:19.466934Z" + "iopub.execute_input": "2024-08-26T15:50:48.037151Z", + "iopub.status.busy": "2024-08-26T15:50:48.036973Z", + "iopub.status.idle": "2024-08-26T15:50:48.045810Z", + "shell.execute_reply": "2024-08-26T15:50:48.045353Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:19.469904Z", - "iopub.status.busy": "2024-08-22T00:53:19.469510Z", - "iopub.status.idle": "2024-08-22T00:53:19.475031Z", - "shell.execute_reply": "2024-08-22T00:53:19.474507Z" + "iopub.execute_input": "2024-08-26T15:50:48.047758Z", + "iopub.status.busy": "2024-08-26T15:50:48.047575Z", + "iopub.status.idle": "2024-08-26T15:50:48.052278Z", + "shell.execute_reply": "2024-08-26T15:50:48.051846Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:19.477337Z", - "iopub.status.busy": "2024-08-22T00:53:19.476966Z", - "iopub.status.idle": "2024-08-22T00:53:19.673089Z", - "shell.execute_reply": "2024-08-22T00:53:19.672485Z" + "iopub.execute_input": "2024-08-26T15:50:48.054354Z", + "iopub.status.busy": "2024-08-26T15:50:48.054175Z", + "iopub.status.idle": "2024-08-26T15:50:48.243838Z", + "shell.execute_reply": "2024-08-26T15:50:48.243254Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:19.675738Z", - "iopub.status.busy": "2024-08-22T00:53:19.675408Z", - "iopub.status.idle": "2024-08-22T00:53:20.065168Z", - "shell.execute_reply": "2024-08-22T00:53:20.064567Z" + "iopub.execute_input": "2024-08-26T15:50:48.246370Z", + "iopub.status.busy": "2024-08-26T15:50:48.246155Z", + "iopub.status.idle": "2024-08-26T15:50:48.628139Z", + "shell.execute_reply": "2024-08-26T15:50:48.627575Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:20.067800Z", - "iopub.status.busy": "2024-08-22T00:53:20.067415Z", - "iopub.status.idle": "2024-08-22T00:53:20.092517Z", - "shell.execute_reply": "2024-08-22T00:53:20.092033Z" + "iopub.execute_input": "2024-08-26T15:50:48.630308Z", + "iopub.status.busy": "2024-08-26T15:50:48.630124Z", + "iopub.status.idle": "2024-08-26T15:50:48.653555Z", + "shell.execute_reply": "2024-08-26T15:50:48.653088Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:20.095046Z", - "iopub.status.busy": "2024-08-22T00:53:20.094567Z", - "iopub.status.idle": "2024-08-22T00:53:20.106496Z", - "shell.execute_reply": "2024-08-22T00:53:20.105948Z" + "iopub.execute_input": "2024-08-26T15:50:48.655882Z", + "iopub.status.busy": "2024-08-26T15:50:48.655545Z", + "iopub.status.idle": "2024-08-26T15:50:48.667061Z", + "shell.execute_reply": "2024-08-26T15:50:48.666493Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:20.108941Z", - "iopub.status.busy": "2024-08-22T00:53:20.108583Z", - "iopub.status.idle": "2024-08-22T00:53:22.391822Z", - "shell.execute_reply": "2024-08-22T00:53:22.391140Z" + "iopub.execute_input": "2024-08-26T15:50:48.669119Z", + "iopub.status.busy": "2024-08-26T15:50:48.668937Z", + "iopub.status.idle": "2024-08-26T15:50:50.829319Z", + "shell.execute_reply": "2024-08-26T15:50:50.828752Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:22.394634Z", - "iopub.status.busy": "2024-08-22T00:53:22.394086Z", - "iopub.status.idle": "2024-08-22T00:53:22.417056Z", - "shell.execute_reply": "2024-08-22T00:53:22.416509Z" + "iopub.execute_input": "2024-08-26T15:50:50.832149Z", + "iopub.status.busy": "2024-08-26T15:50:50.831554Z", + "iopub.status.idle": "2024-08-26T15:50:50.853263Z", + "shell.execute_reply": "2024-08-26T15:50:50.852788Z" } }, "outputs": [ @@ -830,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:22.419394Z", - "iopub.status.busy": "2024-08-22T00:53:22.419031Z", - "iopub.status.idle": "2024-08-22T00:53:22.437325Z", - "shell.execute_reply": "2024-08-22T00:53:22.436743Z" + "iopub.execute_input": "2024-08-26T15:50:50.855499Z", + "iopub.status.busy": "2024-08-26T15:50:50.855206Z", + "iopub.status.idle": "2024-08-26T15:50:50.874255Z", + "shell.execute_reply": "2024-08-26T15:50:50.873572Z" } }, "outputs": [ @@ -937,10 +937,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:22.439369Z", - "iopub.status.busy": "2024-08-22T00:53:22.439188Z", - "iopub.status.idle": "2024-08-22T00:53:22.453984Z", - "shell.execute_reply": "2024-08-22T00:53:22.453471Z" + "iopub.execute_input": "2024-08-26T15:50:50.876984Z", + "iopub.status.busy": "2024-08-26T15:50:50.876416Z", + "iopub.status.idle": "2024-08-26T15:50:50.892786Z", + "shell.execute_reply": "2024-08-26T15:50:50.892171Z" } }, "outputs": [ @@ -1075,17 +1075,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:22.456049Z", - "iopub.status.busy": "2024-08-22T00:53:22.455866Z", - "iopub.status.idle": "2024-08-22T00:53:22.476261Z", - "shell.execute_reply": "2024-08-22T00:53:22.475674Z" + "iopub.execute_input": "2024-08-26T15:50:50.895217Z", + "iopub.status.busy": "2024-08-26T15:50:50.894904Z", + "iopub.status.idle": "2024-08-26T15:50:50.915961Z", + "shell.execute_reply": "2024-08-26T15:50:50.915358Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b787b171a2764d849e9929a0d779d26b", + "model_id": "8a0fcac2588a422fba3081ddf39aab10", "version_major": 2, "version_minor": 0 }, @@ -1121,10 +1121,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:22.478551Z", - "iopub.status.busy": "2024-08-22T00:53:22.478185Z", - "iopub.status.idle": "2024-08-22T00:53:22.494752Z", - "shell.execute_reply": "2024-08-22T00:53:22.494221Z" + "iopub.execute_input": "2024-08-26T15:50:50.918422Z", + "iopub.status.busy": "2024-08-26T15:50:50.917938Z", + "iopub.status.idle": "2024-08-26T15:50:50.934851Z", + "shell.execute_reply": "2024-08-26T15:50:50.934287Z" } }, "outputs": [ @@ -1247,10 +1247,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:22.497339Z", - "iopub.status.busy": "2024-08-22T00:53:22.496871Z", - "iopub.status.idle": "2024-08-22T00:53:22.503222Z", - "shell.execute_reply": "2024-08-22T00:53:22.502707Z" + "iopub.execute_input": "2024-08-26T15:50:50.937203Z", + "iopub.status.busy": "2024-08-26T15:50:50.936812Z", + "iopub.status.idle": "2024-08-26T15:50:50.943127Z", + "shell.execute_reply": "2024-08-26T15:50:50.942615Z" } }, "outputs": [], @@ -1307,10 +1307,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:22.505486Z", - "iopub.status.busy": "2024-08-22T00:53:22.505271Z", - "iopub.status.idle": "2024-08-22T00:53:22.525561Z", - "shell.execute_reply": "2024-08-22T00:53:22.525037Z" + "iopub.execute_input": "2024-08-26T15:50:50.945161Z", + "iopub.status.busy": "2024-08-26T15:50:50.944876Z", + "iopub.status.idle": "2024-08-26T15:50:50.964913Z", + "shell.execute_reply": "2024-08-26T15:50:50.964314Z" } }, "outputs": [ @@ -1447,7 +1447,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "07a23d8fce2742c99f46b729c62c7121": { + "0fbc3274882f4e1ab00900b5baf96792": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1465,7 +1465,7 @@ "text_color": null } }, - "1158ec472282495ab7310853453b4ab4": { + "1a9f272b6540497c8255408e9e0c16cd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1518,7 +1518,7 @@ "width": null } }, - "2d006a513529400cb97db202241db833": { + "2090faef703f453ea12b54844ac2487c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1534,7 +1534,7 @@ "description_width": "" } }, - "48baab9b98654408bd29b244faa05f8d": { + "25cb42634454435c857825e30407de4b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1550,40 +1550,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1158ec472282495ab7310853453b4ab4", + "layout": "IPY_MODEL_2749ee847c1b433a9a8a55b6b1b5c92f", "max": 132.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_2d006a513529400cb97db202241db833", + "style": "IPY_MODEL_2090faef703f453ea12b54844ac2487c", "tabbable": null, "tooltip": null, "value": 132.0 } }, - "84967144343547d5810b0414ec56a24b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c25db2c2243f44c48d555059aa8be099", - "placeholder": "​", - "style": "IPY_MODEL_fa12f6fdda1d4147953021b7e0b0a5ca", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" - } - }, - "8db31688e4dd4bb29cedc914f2bf853b": { + "2749ee847c1b433a9a8a55b6b1b5c92f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1636,7 +1613,7 @@ "width": null } }, - "ab72f1f849724a2c8c7a143ff82728dc": { + "5bda697ed8ea4cff9e89cecec1602956": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1651,15 +1628,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f2a0f9c9359a4bdb9c3dcdb445086181", + "layout": "IPY_MODEL_bb7b48339cfb4cd1a33f74ed52abcd62", "placeholder": "​", - "style": "IPY_MODEL_07a23d8fce2742c99f46b729c62c7121", + "style": "IPY_MODEL_0fbc3274882f4e1ab00900b5baf96792", "tabbable": null, "tooltip": null, - "value": " 132/132 [00:00<00:00, 12740.72 examples/s]" + "value": " 132/132 [00:00<00:00, 12755.69 examples/s]" + } + }, + "860f72d263bc4dabaff33056f935bcce": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b787b171a2764d849e9929a0d779d26b": { + "8a0fcac2588a422fba3081ddf39aab10": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1674,16 +1669,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_84967144343547d5810b0414ec56a24b", - "IPY_MODEL_48baab9b98654408bd29b244faa05f8d", - "IPY_MODEL_ab72f1f849724a2c8c7a143ff82728dc" + "IPY_MODEL_e6242c94398a4c298ecb1539783eafa6", + "IPY_MODEL_25cb42634454435c857825e30407de4b", + "IPY_MODEL_5bda697ed8ea4cff9e89cecec1602956" ], - "layout": "IPY_MODEL_8db31688e4dd4bb29cedc914f2bf853b", + "layout": "IPY_MODEL_1a9f272b6540497c8255408e9e0c16cd", "tabbable": null, "tooltip": null } }, - "c25db2c2243f44c48d555059aa8be099": { + "b342e197633741fab78ede822f68b80c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1736,7 +1731,7 @@ "width": null } }, - "f2a0f9c9359a4bdb9c3dcdb445086181": { + "bb7b48339cfb4cd1a33f74ed52abcd62": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1789,22 +1784,27 @@ "width": null } }, - "fa12f6fdda1d4147953021b7e0b0a5ca": { + "e6242c94398a4c298ecb1539783eafa6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b342e197633741fab78ede822f68b80c", + "placeholder": "​", + "style": "IPY_MODEL_860f72d263bc4dabaff33056f935bcce", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb index 0d711b479..62eda8c4b 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:25.530072Z", - "iopub.status.busy": "2024-08-22T00:53:25.529882Z", - "iopub.status.idle": "2024-08-22T00:53:26.808818Z", - "shell.execute_reply": "2024-08-22T00:53:26.808261Z" + "iopub.execute_input": "2024-08-26T15:50:53.944782Z", + "iopub.status.busy": "2024-08-26T15:50:53.944606Z", + "iopub.status.idle": "2024-08-26T15:50:55.174967Z", + "shell.execute_reply": "2024-08-26T15:50:55.174365Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:26.811324Z", - "iopub.status.busy": "2024-08-22T00:53:26.811049Z", - "iopub.status.idle": "2024-08-22T00:53:26.814389Z", - "shell.execute_reply": "2024-08-22T00:53:26.813794Z" + "iopub.execute_input": "2024-08-26T15:50:55.177365Z", + "iopub.status.busy": "2024-08-26T15:50:55.177084Z", + "iopub.status.idle": "2024-08-26T15:50:55.180269Z", + "shell.execute_reply": "2024-08-26T15:50:55.179800Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:26.816720Z", - "iopub.status.busy": "2024-08-22T00:53:26.816367Z", - "iopub.status.idle": "2024-08-22T00:53:26.825362Z", - "shell.execute_reply": "2024-08-22T00:53:26.824931Z" + "iopub.execute_input": "2024-08-26T15:50:55.182571Z", + "iopub.status.busy": "2024-08-26T15:50:55.182224Z", + "iopub.status.idle": "2024-08-26T15:50:55.191419Z", + "shell.execute_reply": "2024-08-26T15:50:55.190958Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:26.827482Z", - "iopub.status.busy": "2024-08-22T00:53:26.827146Z", - "iopub.status.idle": "2024-08-22T00:53:26.831950Z", - "shell.execute_reply": "2024-08-22T00:53:26.831514Z" + "iopub.execute_input": "2024-08-26T15:50:55.193302Z", + "iopub.status.busy": "2024-08-26T15:50:55.193122Z", + "iopub.status.idle": "2024-08-26T15:50:55.197961Z", + "shell.execute_reply": "2024-08-26T15:50:55.197543Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:26.834116Z", - "iopub.status.busy": "2024-08-22T00:53:26.833772Z", - "iopub.status.idle": "2024-08-22T00:53:27.026183Z", - "shell.execute_reply": "2024-08-22T00:53:27.025603Z" + "iopub.execute_input": "2024-08-26T15:50:55.200199Z", + "iopub.status.busy": "2024-08-26T15:50:55.199891Z", + "iopub.status.idle": "2024-08-26T15:50:55.384777Z", + "shell.execute_reply": "2024-08-26T15:50:55.384123Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:27.028804Z", - "iopub.status.busy": "2024-08-22T00:53:27.028390Z", - "iopub.status.idle": "2024-08-22T00:53:27.411981Z", - "shell.execute_reply": "2024-08-22T00:53:27.411338Z" + "iopub.execute_input": "2024-08-26T15:50:55.387364Z", + "iopub.status.busy": "2024-08-26T15:50:55.387029Z", + "iopub.status.idle": "2024-08-26T15:50:55.715156Z", + "shell.execute_reply": "2024-08-26T15:50:55.714550Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:27.414321Z", - "iopub.status.busy": "2024-08-22T00:53:27.414122Z", - "iopub.status.idle": "2024-08-22T00:53:27.416880Z", - "shell.execute_reply": "2024-08-22T00:53:27.416440Z" + "iopub.execute_input": "2024-08-26T15:50:55.717463Z", + "iopub.status.busy": "2024-08-26T15:50:55.717038Z", + "iopub.status.idle": "2024-08-26T15:50:55.719902Z", + "shell.execute_reply": "2024-08-26T15:50:55.719448Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:27.419016Z", - "iopub.status.busy": "2024-08-22T00:53:27.418671Z", - "iopub.status.idle": "2024-08-22T00:53:27.453929Z", - "shell.execute_reply": "2024-08-22T00:53:27.453261Z" + "iopub.execute_input": "2024-08-26T15:50:55.722134Z", + "iopub.status.busy": "2024-08-26T15:50:55.721733Z", + "iopub.status.idle": "2024-08-26T15:50:55.756057Z", + "shell.execute_reply": "2024-08-26T15:50:55.755459Z" } }, "outputs": [], @@ -638,10 +638,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:27.456570Z", - "iopub.status.busy": "2024-08-22T00:53:27.456187Z", - "iopub.status.idle": "2024-08-22T00:53:29.703493Z", - "shell.execute_reply": "2024-08-22T00:53:29.702821Z" + "iopub.execute_input": "2024-08-26T15:50:55.758161Z", + "iopub.status.busy": "2024-08-26T15:50:55.757979Z", + "iopub.status.idle": "2024-08-26T15:50:57.877733Z", + "shell.execute_reply": "2024-08-26T15:50:57.877147Z" } }, "outputs": [ @@ -685,10 +685,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:29.706113Z", - "iopub.status.busy": "2024-08-22T00:53:29.705525Z", - "iopub.status.idle": "2024-08-22T00:53:29.724661Z", - "shell.execute_reply": "2024-08-22T00:53:29.724141Z" + "iopub.execute_input": "2024-08-26T15:50:57.880170Z", + "iopub.status.busy": "2024-08-26T15:50:57.879797Z", + "iopub.status.idle": "2024-08-26T15:50:57.899274Z", + "shell.execute_reply": "2024-08-26T15:50:57.898677Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:29.726967Z", - "iopub.status.busy": "2024-08-22T00:53:29.726591Z", - "iopub.status.idle": "2024-08-22T00:53:29.733617Z", - "shell.execute_reply": "2024-08-22T00:53:29.733059Z" + "iopub.execute_input": "2024-08-26T15:50:57.901387Z", + "iopub.status.busy": "2024-08-26T15:50:57.901205Z", + "iopub.status.idle": "2024-08-26T15:50:57.908053Z", + "shell.execute_reply": "2024-08-26T15:50:57.907487Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:29.735861Z", - "iopub.status.busy": "2024-08-22T00:53:29.735479Z", - "iopub.status.idle": "2024-08-22T00:53:29.741916Z", - "shell.execute_reply": "2024-08-22T00:53:29.741276Z" + "iopub.execute_input": "2024-08-26T15:50:57.910026Z", + "iopub.status.busy": "2024-08-26T15:50:57.909848Z", + "iopub.status.idle": "2024-08-26T15:50:57.915624Z", + "shell.execute_reply": "2024-08-26T15:50:57.915128Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:29.744023Z", - "iopub.status.busy": "2024-08-22T00:53:29.743829Z", - "iopub.status.idle": "2024-08-22T00:53:29.754992Z", - "shell.execute_reply": "2024-08-22T00:53:29.754376Z" + "iopub.execute_input": "2024-08-26T15:50:57.917481Z", + "iopub.status.busy": "2024-08-26T15:50:57.917305Z", + "iopub.status.idle": "2024-08-26T15:50:57.927610Z", + "shell.execute_reply": "2024-08-26T15:50:57.927139Z" } }, "outputs": [ @@ -1200,10 +1200,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:29.757117Z", - "iopub.status.busy": "2024-08-22T00:53:29.756927Z", - "iopub.status.idle": "2024-08-22T00:53:29.766655Z", - "shell.execute_reply": "2024-08-22T00:53:29.766072Z" + "iopub.execute_input": "2024-08-26T15:50:57.929617Z", + "iopub.status.busy": "2024-08-26T15:50:57.929267Z", + "iopub.status.idle": "2024-08-26T15:50:57.937885Z", + "shell.execute_reply": "2024-08-26T15:50:57.937431Z" } }, "outputs": [ @@ -1319,10 +1319,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:29.768734Z", - "iopub.status.busy": "2024-08-22T00:53:29.768550Z", - "iopub.status.idle": "2024-08-22T00:53:29.775648Z", - "shell.execute_reply": "2024-08-22T00:53:29.775198Z" + "iopub.execute_input": "2024-08-26T15:50:57.939923Z", + "iopub.status.busy": "2024-08-26T15:50:57.939645Z", + "iopub.status.idle": "2024-08-26T15:50:57.946549Z", + "shell.execute_reply": "2024-08-26T15:50:57.945987Z" }, "scrolled": true }, @@ -1447,10 +1447,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:29.777590Z", - "iopub.status.busy": "2024-08-22T00:53:29.777398Z", - "iopub.status.idle": "2024-08-22T00:53:29.787022Z", - "shell.execute_reply": "2024-08-22T00:53:29.786573Z" + "iopub.execute_input": "2024-08-26T15:50:57.948699Z", + "iopub.status.busy": "2024-08-26T15:50:57.948267Z", + "iopub.status.idle": "2024-08-26T15:50:57.957635Z", + "shell.execute_reply": "2024-08-26T15:50:57.957073Z" } }, "outputs": [ @@ -1553,10 +1553,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:29.789124Z", - "iopub.status.busy": "2024-08-22T00:53:29.788852Z", - "iopub.status.idle": "2024-08-22T00:53:29.807132Z", - "shell.execute_reply": "2024-08-22T00:53:29.806553Z" + "iopub.execute_input": "2024-08-26T15:50:57.959729Z", + "iopub.status.busy": "2024-08-26T15:50:57.959409Z", + "iopub.status.idle": "2024-08-26T15:50:57.976522Z", + "shell.execute_reply": "2024-08-26T15:50:57.975936Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb index 28a08e131..f0bfcffa1 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:32.855798Z", - "iopub.status.busy": "2024-08-22T00:53:32.855616Z", - "iopub.status.idle": "2024-08-22T00:53:35.992097Z", - "shell.execute_reply": "2024-08-22T00:53:35.991484Z" + "iopub.execute_input": "2024-08-26T15:51:00.744803Z", + "iopub.status.busy": "2024-08-26T15:51:00.744624Z", + "iopub.status.idle": "2024-08-26T15:51:03.845244Z", + "shell.execute_reply": "2024-08-26T15:51:03.844700Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:35.995002Z", - "iopub.status.busy": "2024-08-22T00:53:35.994520Z", - "iopub.status.idle": "2024-08-22T00:53:35.998359Z", - "shell.execute_reply": "2024-08-22T00:53:35.997775Z" + "iopub.execute_input": "2024-08-26T15:51:03.848152Z", + "iopub.status.busy": "2024-08-26T15:51:03.847533Z", + "iopub.status.idle": "2024-08-26T15:51:03.851305Z", + "shell.execute_reply": "2024-08-26T15:51:03.850759Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:36.000606Z", - "iopub.status.busy": "2024-08-22T00:53:36.000274Z", - "iopub.status.idle": "2024-08-22T00:53:38.906808Z", - "shell.execute_reply": "2024-08-22T00:53:38.906229Z" + "iopub.execute_input": "2024-08-26T15:51:03.853335Z", + "iopub.status.busy": "2024-08-26T15:51:03.852994Z", + "iopub.status.idle": "2024-08-26T15:51:08.474960Z", + "shell.execute_reply": "2024-08-26T15:51:08.474414Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e13e6b4502e9481aa9501c922ae3ff68", + "model_id": "0a1880c6c97d4a3aaf7b2288cedea42f", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "53ce035acbfb416aaa3dd28cae66a7f4", + "model_id": "715deece975742d5bc13cc8043611355", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d9e782f571af4e6ab81db57c5078db7c", + "model_id": "bb685ca1a8e74f4abfc418ee4df7cdae", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8fba3dafd4f64444a16631a145e858f3", + "model_id": "8048b30a8d20480286136da950c4ae4f", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5daa16858856475caaf7679f6d32f5ec", + "model_id": "7df5d87a698348adaf910bad51eb5257", "version_major": 2, "version_minor": 0 }, @@ -260,10 +260,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:38.909120Z", - "iopub.status.busy": "2024-08-22T00:53:38.908807Z", - "iopub.status.idle": "2024-08-22T00:53:38.913214Z", - "shell.execute_reply": "2024-08-22T00:53:38.912674Z" + "iopub.execute_input": "2024-08-26T15:51:08.477550Z", + "iopub.status.busy": "2024-08-26T15:51:08.477034Z", + "iopub.status.idle": "2024-08-26T15:51:08.481367Z", + "shell.execute_reply": "2024-08-26T15:51:08.480829Z" } }, "outputs": [ @@ -288,17 +288,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:38.915432Z", - "iopub.status.busy": "2024-08-22T00:53:38.914992Z", - "iopub.status.idle": "2024-08-22T00:53:50.827682Z", - "shell.execute_reply": "2024-08-22T00:53:50.827010Z" + "iopub.execute_input": "2024-08-26T15:51:08.483413Z", + "iopub.status.busy": "2024-08-26T15:51:08.483096Z", + "iopub.status.idle": "2024-08-26T15:51:20.137696Z", + "shell.execute_reply": "2024-08-26T15:51:20.137155Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e7d518a4a4844e9382a190dfbbda4ad0", + "model_id": "aa732b0a4d7a4e5a9c11bdac5ddcd235", "version_major": 2, "version_minor": 0 }, @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:50.830794Z", - "iopub.status.busy": "2024-08-22T00:53:50.830285Z", - "iopub.status.idle": "2024-08-22T00:54:09.208452Z", - "shell.execute_reply": "2024-08-22T00:54:09.207818Z" + "iopub.execute_input": "2024-08-26T15:51:20.140400Z", + "iopub.status.busy": "2024-08-26T15:51:20.140038Z", + "iopub.status.idle": "2024-08-26T15:51:38.738674Z", + "shell.execute_reply": "2024-08-26T15:51:38.738041Z" } }, "outputs": [], @@ -372,10 +372,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:54:09.211311Z", - "iopub.status.busy": "2024-08-22T00:54:09.210908Z", - "iopub.status.idle": "2024-08-22T00:54:09.216696Z", - "shell.execute_reply": "2024-08-22T00:54:09.216236Z" + "iopub.execute_input": "2024-08-26T15:51:38.741444Z", + "iopub.status.busy": "2024-08-26T15:51:38.741090Z", + "iopub.status.idle": "2024-08-26T15:51:38.746146Z", + "shell.execute_reply": "2024-08-26T15:51:38.745664Z" } }, "outputs": [], @@ -413,10 +413,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:54:09.218888Z", - "iopub.status.busy": "2024-08-22T00:54:09.218527Z", - "iopub.status.idle": "2024-08-22T00:54:09.222539Z", - "shell.execute_reply": "2024-08-22T00:54:09.222088Z" + "iopub.execute_input": "2024-08-26T15:51:38.748037Z", + "iopub.status.busy": "2024-08-26T15:51:38.747855Z", + "iopub.status.idle": "2024-08-26T15:51:38.752327Z", + "shell.execute_reply": "2024-08-26T15:51:38.751914Z" }, "nbsphinx": "hidden" }, @@ -553,10 +553,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:54:09.224687Z", - "iopub.status.busy": "2024-08-22T00:54:09.224332Z", - "iopub.status.idle": "2024-08-22T00:54:09.233538Z", - "shell.execute_reply": "2024-08-22T00:54:09.233024Z" + "iopub.execute_input": "2024-08-26T15:51:38.754457Z", + "iopub.status.busy": "2024-08-26T15:51:38.754044Z", + "iopub.status.idle": "2024-08-26T15:51:38.763027Z", + "shell.execute_reply": "2024-08-26T15:51:38.762462Z" }, "nbsphinx": "hidden" }, @@ -681,10 +681,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:54:09.235724Z", - "iopub.status.busy": "2024-08-22T00:54:09.235373Z", - "iopub.status.idle": "2024-08-22T00:54:09.263847Z", - "shell.execute_reply": "2024-08-22T00:54:09.263181Z" + "iopub.execute_input": "2024-08-26T15:51:38.765123Z", + "iopub.status.busy": "2024-08-26T15:51:38.764781Z", + "iopub.status.idle": "2024-08-26T15:51:38.792778Z", + "shell.execute_reply": "2024-08-26T15:51:38.792296Z" } }, "outputs": [], @@ -721,10 +721,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:54:09.266503Z", - "iopub.status.busy": "2024-08-22T00:54:09.266063Z", - "iopub.status.idle": "2024-08-22T00:54:44.481094Z", - "shell.execute_reply": "2024-08-22T00:54:44.480492Z" + "iopub.execute_input": "2024-08-26T15:51:38.795125Z", + "iopub.status.busy": "2024-08-26T15:51:38.794779Z", + "iopub.status.idle": "2024-08-26T15:52:13.480656Z", + "shell.execute_reply": "2024-08-26T15:52:13.480000Z" } }, "outputs": [ @@ -740,21 +740,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.094\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.144\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.936\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.930\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "62b6b2e9b4224a69b6fea1cf6c2e3ba6", + "model_id": "f9912ba2f2c141a4892444b6f34c10b6", "version_major": 2, "version_minor": 0 }, @@ -775,7 +775,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1a6cfa51948f48e0b1348770a125fd2d", + "model_id": "eb3ac7f719da4343b1f45e07f09a75f2", "version_major": 2, "version_minor": 0 }, @@ -798,21 +798,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.178\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.995\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.950\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.984\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6106bace64b54dfa92a1cc7d3b9b9568", + "model_id": "5dd4ac73beaa4c909b6d006c9b6b289f", "version_major": 2, "version_minor": 0 }, @@ -833,7 +833,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7c4f61f3c9544a5697e35537d2e57a80", + "model_id": "ab03cadc8a244250837477471abfd52f", "version_major": 2, "version_minor": 0 }, @@ -856,21 +856,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 5.277\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 5.056\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 5.186\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.832\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cbbfe35662894a6cb48d64ca9547f4cc", + "model_id": "61ca028bd561486caf5fa42305aa6d4d", "version_major": 2, "version_minor": 0 }, @@ -891,7 +891,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bb87ed2f43cc4e28b958678bcf337c47", + "model_id": "fc98e96da8e046238dce1b399f558f99", "version_major": 2, "version_minor": 0 }, @@ -970,10 +970,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:54:44.483779Z", - "iopub.status.busy": "2024-08-22T00:54:44.483352Z", - "iopub.status.idle": "2024-08-22T00:54:44.501245Z", - "shell.execute_reply": "2024-08-22T00:54:44.500729Z" + "iopub.execute_input": "2024-08-26T15:52:13.483198Z", + "iopub.status.busy": "2024-08-26T15:52:13.482845Z", + "iopub.status.idle": "2024-08-26T15:52:13.500620Z", + "shell.execute_reply": "2024-08-26T15:52:13.500140Z" } }, "outputs": [], @@ -998,10 +998,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:54:44.503897Z", - "iopub.status.busy": "2024-08-22T00:54:44.503529Z", - "iopub.status.idle": "2024-08-22T00:54:44.997418Z", - "shell.execute_reply": "2024-08-22T00:54:44.996852Z" + "iopub.execute_input": "2024-08-26T15:52:13.503031Z", + "iopub.status.busy": "2024-08-26T15:52:13.502645Z", + "iopub.status.idle": "2024-08-26T15:52:14.010871Z", + "shell.execute_reply": "2024-08-26T15:52:14.010336Z" } }, "outputs": [], @@ -1021,10 +1021,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:54:44.999923Z", - "iopub.status.busy": "2024-08-22T00:54:44.999660Z", - "iopub.status.idle": "2024-08-22T00:56:37.742508Z", - "shell.execute_reply": "2024-08-22T00:56:37.741879Z" + "iopub.execute_input": "2024-08-26T15:52:14.013522Z", + "iopub.status.busy": "2024-08-26T15:52:14.013146Z", + "iopub.status.idle": "2024-08-26T15:54:07.250429Z", + "shell.execute_reply": "2024-08-26T15:54:07.249850Z" } }, "outputs": [ @@ -1063,7 +1063,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "50288596afe64288b6d3ab7edad7ada2", + "model_id": "a0e6ab9c19e34b8e9bbe62ee43bd8c35", "version_major": 2, "version_minor": 0 }, @@ -1109,10 +1109,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:37.745060Z", - "iopub.status.busy": "2024-08-22T00:56:37.744660Z", - "iopub.status.idle": "2024-08-22T00:56:38.231414Z", - "shell.execute_reply": "2024-08-22T00:56:38.230837Z" + "iopub.execute_input": "2024-08-26T15:54:07.253184Z", + "iopub.status.busy": "2024-08-26T15:54:07.252602Z", + "iopub.status.idle": "2024-08-26T15:54:07.719555Z", + "shell.execute_reply": "2024-08-26T15:54:07.718967Z" } }, "outputs": [ @@ -1258,10 +1258,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:38.234645Z", - "iopub.status.busy": "2024-08-22T00:56:38.234126Z", - "iopub.status.idle": "2024-08-22T00:56:38.297636Z", - "shell.execute_reply": "2024-08-22T00:56:38.297022Z" + "iopub.execute_input": "2024-08-26T15:54:07.722577Z", + "iopub.status.busy": "2024-08-26T15:54:07.722057Z", + "iopub.status.idle": "2024-08-26T15:54:07.785260Z", + "shell.execute_reply": "2024-08-26T15:54:07.784657Z" } }, "outputs": [ @@ -1365,10 +1365,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:38.299949Z", - "iopub.status.busy": "2024-08-22T00:56:38.299629Z", - "iopub.status.idle": "2024-08-22T00:56:38.308740Z", - "shell.execute_reply": "2024-08-22T00:56:38.308275Z" + "iopub.execute_input": "2024-08-26T15:54:07.787526Z", + "iopub.status.busy": "2024-08-26T15:54:07.787195Z", + "iopub.status.idle": "2024-08-26T15:54:07.796216Z", + "shell.execute_reply": "2024-08-26T15:54:07.795642Z" } }, "outputs": [ @@ -1498,10 +1498,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:38.310908Z", - "iopub.status.busy": "2024-08-22T00:56:38.310562Z", - "iopub.status.idle": "2024-08-22T00:56:38.315230Z", - "shell.execute_reply": "2024-08-22T00:56:38.314762Z" + "iopub.execute_input": "2024-08-26T15:54:07.798529Z", + "iopub.status.busy": "2024-08-26T15:54:07.798045Z", + "iopub.status.idle": "2024-08-26T15:54:07.803020Z", + "shell.execute_reply": "2024-08-26T15:54:07.802450Z" }, "nbsphinx": "hidden" }, @@ -1547,10 +1547,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:38.317357Z", - "iopub.status.busy": "2024-08-22T00:56:38.317005Z", - "iopub.status.idle": "2024-08-22T00:56:38.835720Z", - "shell.execute_reply": "2024-08-22T00:56:38.835113Z" + "iopub.execute_input": "2024-08-26T15:54:07.805248Z", + "iopub.status.busy": "2024-08-26T15:54:07.804838Z", + "iopub.status.idle": "2024-08-26T15:54:08.312703Z", + "shell.execute_reply": "2024-08-26T15:54:08.312105Z" } }, "outputs": [ @@ -1585,10 +1585,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:38.838188Z", - "iopub.status.busy": "2024-08-22T00:56:38.837760Z", - "iopub.status.idle": "2024-08-22T00:56:38.846649Z", - "shell.execute_reply": "2024-08-22T00:56:38.846105Z" + "iopub.execute_input": "2024-08-26T15:54:08.314908Z", + "iopub.status.busy": "2024-08-26T15:54:08.314592Z", + "iopub.status.idle": "2024-08-26T15:54:08.323272Z", + "shell.execute_reply": "2024-08-26T15:54:08.322796Z" } }, "outputs": [ @@ -1755,10 +1755,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:38.848726Z", - "iopub.status.busy": "2024-08-22T00:56:38.848445Z", - "iopub.status.idle": "2024-08-22T00:56:38.855558Z", - "shell.execute_reply": "2024-08-22T00:56:38.855074Z" + "iopub.execute_input": "2024-08-26T15:54:08.325488Z", + "iopub.status.busy": "2024-08-26T15:54:08.325205Z", + "iopub.status.idle": "2024-08-26T15:54:08.332689Z", + "shell.execute_reply": "2024-08-26T15:54:08.332246Z" }, "nbsphinx": "hidden" }, @@ -1834,10 +1834,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:38.857985Z", - "iopub.status.busy": "2024-08-22T00:56:38.857792Z", - "iopub.status.idle": "2024-08-22T00:56:39.340547Z", - "shell.execute_reply": "2024-08-22T00:56:39.339938Z" + "iopub.execute_input": "2024-08-26T15:54:08.334682Z", + "iopub.status.busy": "2024-08-26T15:54:08.334394Z", + "iopub.status.idle": "2024-08-26T15:54:08.782788Z", + "shell.execute_reply": "2024-08-26T15:54:08.782140Z" } }, "outputs": [ @@ -1874,10 +1874,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:39.343209Z", - "iopub.status.busy": "2024-08-22T00:56:39.343001Z", - "iopub.status.idle": "2024-08-22T00:56:39.359981Z", - "shell.execute_reply": "2024-08-22T00:56:39.359444Z" + "iopub.execute_input": "2024-08-26T15:54:08.785283Z", + "iopub.status.busy": "2024-08-26T15:54:08.784891Z", + "iopub.status.idle": "2024-08-26T15:54:08.801932Z", + "shell.execute_reply": "2024-08-26T15:54:08.801440Z" } }, "outputs": [ @@ -2034,10 +2034,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:39.362228Z", - "iopub.status.busy": "2024-08-22T00:56:39.362024Z", - "iopub.status.idle": "2024-08-22T00:56:39.368262Z", - "shell.execute_reply": "2024-08-22T00:56:39.367685Z" + "iopub.execute_input": "2024-08-26T15:54:08.804200Z", + "iopub.status.busy": "2024-08-26T15:54:08.803833Z", + "iopub.status.idle": "2024-08-26T15:54:08.809515Z", + "shell.execute_reply": "2024-08-26T15:54:08.809060Z" }, "nbsphinx": "hidden" }, @@ -2082,10 +2082,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:39.370476Z", - "iopub.status.busy": "2024-08-22T00:56:39.370278Z", - "iopub.status.idle": "2024-08-22T00:56:40.173709Z", - "shell.execute_reply": "2024-08-22T00:56:40.172639Z" + "iopub.execute_input": "2024-08-26T15:54:08.811613Z", + "iopub.status.busy": "2024-08-26T15:54:08.811269Z", + "iopub.status.idle": "2024-08-26T15:54:09.613371Z", + "shell.execute_reply": "2024-08-26T15:54:09.612813Z" } }, "outputs": [ @@ -2167,10 +2167,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:40.176407Z", - "iopub.status.busy": "2024-08-22T00:56:40.176194Z", - "iopub.status.idle": "2024-08-22T00:56:40.186903Z", - "shell.execute_reply": "2024-08-22T00:56:40.186332Z" + "iopub.execute_input": "2024-08-26T15:54:09.616020Z", + "iopub.status.busy": "2024-08-26T15:54:09.615813Z", + "iopub.status.idle": "2024-08-26T15:54:09.626482Z", + "shell.execute_reply": "2024-08-26T15:54:09.625935Z" } }, "outputs": [ @@ -2195,47 +2195,47 @@ " \n", " \n", " \n", - " is_dark_issue\n", " dark_score\n", + " is_dark_issue\n", " \n", " \n", " \n", " \n", " 34848\n", - " True\n", " 0.203922\n", + " True\n", " \n", " \n", " 50270\n", - " True\n", " 0.204588\n", + " True\n", " \n", " \n", " 3936\n", - " True\n", " 0.213098\n", + " True\n", " \n", " \n", " 733\n", - " True\n", " 0.217686\n", + " True\n", " \n", " \n", " 8094\n", - " True\n", " 0.230118\n", + " True\n", " \n", " \n", "\n", "" ], "text/plain": [ - " is_dark_issue dark_score\n", - "34848 True 0.203922\n", - "50270 True 0.204588\n", - "3936 True 0.213098\n", - "733 True 0.217686\n", - "8094 True 0.230118" + " dark_score is_dark_issue\n", + "34848 0.203922 True\n", + "50270 0.204588 True\n", + "3936 0.213098 True\n", + "733 0.217686 True\n", + "8094 0.230118 True" ] }, "execution_count": 26, @@ -2298,10 +2298,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:40.189641Z", - "iopub.status.busy": "2024-08-22T00:56:40.189412Z", - "iopub.status.idle": "2024-08-22T00:56:40.196944Z", - "shell.execute_reply": "2024-08-22T00:56:40.196346Z" + "iopub.execute_input": "2024-08-26T15:54:09.629113Z", + "iopub.status.busy": "2024-08-26T15:54:09.628913Z", + "iopub.status.idle": "2024-08-26T15:54:09.635120Z", + "shell.execute_reply": "2024-08-26T15:54:09.634478Z" }, "nbsphinx": "hidden" }, @@ -2338,10 +2338,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:40.199374Z", - "iopub.status.busy": "2024-08-22T00:56:40.199166Z", - "iopub.status.idle": "2024-08-22T00:56:40.405961Z", - "shell.execute_reply": "2024-08-22T00:56:40.405343Z" + "iopub.execute_input": "2024-08-26T15:54:09.637662Z", + "iopub.status.busy": "2024-08-26T15:54:09.637461Z", + "iopub.status.idle": "2024-08-26T15:54:09.843225Z", + "shell.execute_reply": "2024-08-26T15:54:09.842531Z" } }, "outputs": [ @@ -2383,10 +2383,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:40.408249Z", - "iopub.status.busy": "2024-08-22T00:56:40.408050Z", - "iopub.status.idle": "2024-08-22T00:56:40.416495Z", - "shell.execute_reply": "2024-08-22T00:56:40.415996Z" + "iopub.execute_input": "2024-08-26T15:54:09.845518Z", + "iopub.status.busy": "2024-08-26T15:54:09.845321Z", + "iopub.status.idle": "2024-08-26T15:54:09.853898Z", + "shell.execute_reply": "2024-08-26T15:54:09.853405Z" } }, "outputs": [ @@ -2472,10 +2472,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:40.418450Z", - "iopub.status.busy": "2024-08-22T00:56:40.418262Z", - "iopub.status.idle": "2024-08-22T00:56:40.619019Z", - "shell.execute_reply": "2024-08-22T00:56:40.618393Z" + "iopub.execute_input": "2024-08-26T15:54:09.856128Z", + "iopub.status.busy": "2024-08-26T15:54:09.855760Z", + "iopub.status.idle": "2024-08-26T15:54:10.056021Z", + "shell.execute_reply": "2024-08-26T15:54:10.055436Z" } }, "outputs": [ @@ -2515,10 +2515,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:40.621369Z", - "iopub.status.busy": "2024-08-22T00:56:40.621009Z", - "iopub.status.idle": "2024-08-22T00:56:40.625752Z", - "shell.execute_reply": "2024-08-22T00:56:40.625246Z" + "iopub.execute_input": "2024-08-26T15:54:10.058407Z", + "iopub.status.busy": "2024-08-26T15:54:10.057978Z", + "iopub.status.idle": "2024-08-26T15:54:10.062876Z", + "shell.execute_reply": "2024-08-26T15:54:10.062286Z" }, "nbsphinx": "hidden" }, @@ -2555,30 +2555,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00e9758709e04ea2a358d4146aca0a6d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2693c73159b84c4bae8a4f9cfdc68927", - "placeholder": "​", - "style": "IPY_MODEL_23ae355d53484e99971da5e8e78867a7", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 58.32it/s]" - } - }, - "01115385bed341f790edbf983d162bb8": { + "00e20cac09fa43938aab5eb1c857b06b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2631,7 +2608,7 @@ "width": null } }, - "020e8ba3c72a4aa2a4032fa349ce81bc": { + "010dc830be824dceafc6f722bb3b1486": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2684,7 +2661,77 @@ "width": null } }, - "03b3b1fd802d48ac8f3fbf55fc98ceda": { + "04a4622eebaa4c72abf4e42992b7bc3e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_010dc830be824dceafc6f722bb3b1486", + "placeholder": "​", + "style": "IPY_MODEL_63397a47d992477aa92ce4d5947bafe4", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "06c30632deaa41b0b7d2ef2bd39e00dc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c1c1d785f09148e88cc07abc9a79d399", + "placeholder": "​", + "style": "IPY_MODEL_eecae1184b8b4bcd9ec5d73df5c74db8", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "0a1880c6c97d4a3aaf7b2288cedea42f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0e187037d3fd4277ad83ed550c26d42d", + "IPY_MODEL_86d4ac36f45b4dc4aafe3fddfa21728c", + "IPY_MODEL_ee16116dbbae4246a4933981a1e3806b" + ], + "layout": "IPY_MODEL_50191cea4e5948a0a8d8cff6556b9052", + "tabbable": null, + "tooltip": null + } + }, + "0cb7926f64ca4262a1d8e8a49dd0d6d3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2737,25 +2784,7 @@ "width": null } }, - "049ac560879e4135983cfa60adc33353": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "05817d1b3f9648e88ca738c1b05512c1": { + "0dff836f9df24429807dadf54be9a70a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2808,7 +2837,7 @@ "width": null } }, - "0591ba9c56804097888832a673b113bc": { + "0e0ea832bcf44e08af9f72ccaf14856d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2861,25 +2890,30 @@ "width": null } }, - "05f19dffa7524114b09f4ada56cdb822": { + "0e187037d3fd4277ad83ed550c26d42d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d2d22c2514a54fcb9f9f90e9a4e24714", + "placeholder": "​", + "style": "IPY_MODEL_c5b087dedb3b4a81b16234b32f0ad104", + "tabbable": null, + "tooltip": null, + "value": "Downloading readme: 100%" } }, - "0641f4ce89074e6f83310f1b94615ef1": { + "0e674f7d5aaf4ceb80159d02d496e19e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2932,7 +2966,7 @@ "width": null } }, - "0817bc85d9dc47fc9690ef00e6c4a184": { + "112e5f2e2a784cba837314af017d0914": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2950,30 +2984,7 @@ "text_color": null } }, - "08238e8d62864cda8a94dd6ab3195200": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cc17349aff1449518a7bb7ab93a8f867", - "placeholder": "​", - "style": "IPY_MODEL_2947bd6a709f443fa2f2932f8c1844c0", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 288406.83 examples/s]" - } - }, - "0e8fe2f7b83e4e698d95f8a1550f99d3": { + "1160fc45ea02442ebc3edd8f098d88ad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3026,25 +3037,7 @@ "width": null } }, - "10f60a20b0f74f089baa9272f5b59615": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "10fc19046a664d96a7d4decefa10e252": { + "1749f9df3cef4d239a6382150390e397": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3097,114 +3090,7 @@ "width": null } }, - "111b25cdc72e46eeae9bf6aa5db5d9fc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6e81d5d360754135bc7870ab317843cd", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_13f67f80cfcd457cb788d400f8707a16", - "tabbable": null, - "tooltip": null, - "value": 30931277.0 - } - }, - "13b652f61bcf48d3b97f62ede490121f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_502e5b6525bb46358f3bb43064638f0c", - "placeholder": "​", - "style": "IPY_MODEL_8aca1369d98c4de990db469fea6b4d4f", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "13f67f80cfcd457cb788d400f8707a16": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1682f09eb9c84a40a0775de31b82a538": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1a6cfa51948f48e0b1348770a125fd2d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f42827a7d0fd4059b167c5fc2ee82f06", - "IPY_MODEL_219bc612d83d4b0493b6f83285b64db7", - "IPY_MODEL_540a39f28a4a450ba6761e69f983a547" - ], - "layout": "IPY_MODEL_0e8fe2f7b83e4e698d95f8a1550f99d3", - "tabbable": null, - "tooltip": null - } - }, - "1c3f7ea05c994dbbb2a022c8497bccbf": { + "1c9a54ddf74b443e89e4eaf4f51c38c8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3257,7 +3143,7 @@ "width": null } }, - "1ebca0857b9a4ca2809f9c0f0b3c709c": { + "1ce743abad7c4285b5459c8f9a83727f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3310,33 +3196,23 @@ "width": null } }, - "219bc612d83d4b0493b6f83285b64db7": { + "1ebda1f8d81d496d83330d03e329452f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_514e0be725b74768831bbf8ca766e5b4", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8428b1dcd2e4484a9f0d335f69538b45", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "22c8f51624e648e49719420deab60fc2": { + "1f19654c731349b586439bffb6b50667": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3389,25 +3265,7 @@ "width": null } }, - "23ae355d53484e99971da5e8e78867a7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "23be0d5e6edd448f841eb606fcaed06e": { + "20586be37d7340fab39d12a261037368": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3460,30 +3318,7 @@ "width": null } }, - "251f47be1443445ea17391ab2a7ea7ff": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5232296e569544d098932c65d437aafe", - "placeholder": "​", - "style": "IPY_MODEL_0817bc85d9dc47fc9690ef00e6c4a184", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:52<00:00, 1178.51it/s]" - } - }, - "25374cb718ad426c88ab4395732daf56": { + "2154009565de4b2d836aa460d81a343d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3536,60 +3371,23 @@ "width": null } }, - "2545a880e5c549cfb33d8bea5363cc10": { - "model_module": "@jupyter-widgets/base", + "2478e088e18843408c6b0eb7b8546aeb": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "2693c73159b84c4bae8a4f9cfdc68927": { + "24cc3a6c8edd440da9947ad5599bad6e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3642,7 +3440,7 @@ "width": null } }, - "26e3d553339c48a1a649eeddba519df0": { + "28b0e5e799994ca8809bbb96b5c3df2a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3657,38 +3455,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f98f51460d6c4bc1afe59cb9fd710f17", + "layout": "IPY_MODEL_e6e351618590464cad5b6b2888b5855b", "placeholder": "​", - "style": "IPY_MODEL_72e3895c4b574f0cb510898c95ca769f", + "style": "IPY_MODEL_f70935fc022f4ec9952399ffa883f8c2", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": " 40/40 [00:00<00:00, 60.54it/s]" } }, - "27525968c70941db9a462de35fb1909e": { + "2918809b0c4a48c9a96a0722b9044737": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_da04a21c148b4538a81e17bc1ff3f0cf", - "placeholder": "​", - "style": "IPY_MODEL_49eb33f0894e4be0b7d4a9580cbfc3a6", + "layout": "IPY_MODEL_a51da1996471487ea2f6abd6bb0cacba", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_db4f470c9b9843f5b80bdf4dacc8d78e", "tabbable": null, "tooltip": null, - "value": "Generating train split: 100%" + "value": 40.0 } }, - "2947bd6a709f443fa2f2932f8c1844c0": { + "2d444e1e91f34b079a2ca7323b81419e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3706,30 +3507,7 @@ "text_color": null } }, - "29f813d4e55a4a3abf592897a216da07": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_380c8f58069946fe9b9a7004d5f3280c", - "placeholder": "​", - "style": "IPY_MODEL_10f60a20b0f74f089baa9272f5b59615", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.57it/s]" - } - }, - "2d3b90cba0724413be2287eadc24e7e8": { + "2d593f06e2744a139b86109333ac680e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3782,33 +3560,7 @@ "width": null } }, - "2d54d1b388c4448a9123e5291f195a5f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_efca7a22b0c94886887298b734fdd1bf", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_68f0e50731464d638f77048f65a89f2f", - "tabbable": null, - "tooltip": null, - "value": 2.0 - } - }, - "2de96930f01f4605927f2ff0be3ae141": { + "2dbbafaa6de24d2c8097777c0ce0cedd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3824,77 +3576,70 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_020e8ba3c72a4aa2a4032fa349ce81bc", - "max": 40.0, + "layout": "IPY_MODEL_9f6288367f9d417aaffa47df9969c4f0", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_78c18d3b2a2a4ef8b23cdf2133b89c12", + "style": "IPY_MODEL_42bb64a8a45f4caf86579067ce2bed00", "tabbable": null, "tooltip": null, - "value": 40.0 - } - }, - "2fff263060464e9abc5f9bded32f966a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 60000.0 } }, - "3028fe5d40144f7e954d5ffdb04ddb59": { - "model_module": "@jupyter-widgets/controls", + "30f188af82bb4a89acd46b04b749efb4": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "30835e24d67841319885fdd83b7e8a70": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8f234eaa93ac4647a1b7f00564dbc42b", - "IPY_MODEL_2d54d1b388c4448a9123e5291f195a5f", - "IPY_MODEL_784ba071f65c48848697c9c7c5fe4211" - ], - "layout": "IPY_MODEL_c23846e525934292a91fcffe1b834a42", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "30d6cfcc57ba4ce39fa45ed0ecd06904": { + "31f776ccde32438c982b8c5eb8aa8f51": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3947,72 +3692,7 @@ "width": null } }, - "320de978221e44ca8f3a138185eaba16": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2545a880e5c549cfb33d8bea5363cc10", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5e5c502c4689449c9328b621fdd5b1fa", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "3379bdf96857436fb4e394d2843f70ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_30d6cfcc57ba4ce39fa45ed0ecd06904", - "placeholder": "​", - "style": "IPY_MODEL_9f9030d188fc4491a55f7def65cb5e1d", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "33cdb1fedce546f888e2db54a1bdee44": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "35b36e18eaae4b6c8727c669b38f8783": { + "38eb0ac1298f486f95a21f978928b66e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4065,7 +3745,25 @@ "width": null } }, - "380c8f58069946fe9b9a7004d5f3280c": { + "3d101be52ce14aadb4856964662938b1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3d72d8ee572f448b8249c932e48082e8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4118,7 +3816,59 @@ "width": null } }, - "399a2ecec43d4800b8a223877a4195d2": { + "3e6508b5d88f4973b44bf251c0313298": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "418b3e15cee0433aa8bb16c916fbbcf8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "42bb64a8a45f4caf86579067ce2bed00": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "42bf693cc44f43e2abd5c517e5163435": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4171,7 +3921,51 @@ "width": null } }, - "3a60c63ede524775b245c90d0fa7d809": { + "43a93f0156884db8a84e2f918cfd5d71": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "43b90f2f7651473f93cf3eab0e3fd917": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d3355770450248a08bff39fb61a614a8", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9816a805a82c4843aedfe687ac374d00", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "45268ef1afff4ca887ef109a99e1a9a1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4224,33 +4018,25 @@ "width": null } }, - "3a8a3eb836f84ac19a14d09a72ca913a": { + "458816ed52744769b2b84df8905f7715": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c69455a56a3948a88534e12e10feb031", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7a6d1e0ded9446d2b62d28e24de46aeb", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3f545668bfcd4dd28be992718455133e": { + "463fd38839db4af2a6590fc0d2b58f1b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4303,7 +4089,7 @@ "width": null } }, - "462521c2c79048f99a9fbd2775b35cf3": { + "4d5400c178b2452f93c3c4db3be14645": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4318,15 +4104,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a82c8392abab4c4f981fcc2f816235ea", + "layout": "IPY_MODEL_7801173fbaa34c7ba674853135b717e5", "placeholder": "​", - "style": "IPY_MODEL_4cb381c85975498bade0958475c38c3d", + "style": "IPY_MODEL_ee00a95d3bba4f2ab806c55e6e2c96fb", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 60000/60000 [00:00<00:00, 277374.03 examples/s]" + } + }, + "4e7070c9105a4817bb9d9016918c3463": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8d096aa2eff947edb5b63ada7f584e86", + "placeholder": "​", + "style": "IPY_MODEL_9dbbec5ae2704d49a9756704ffa719f3", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:52<00:00, 1196.71it/s]" } }, - "47a1ed198943441688d50b04cfa70a6f": { + "50191cea4e5948a0a8d8cff6556b9052": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4379,51 +4188,30 @@ "width": null } }, - "4924566a99d6497f9ea6af519be1c94e": { + "5106186137a048c680b7b513857f6ecf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2d3b90cba0724413be2287eadc24e7e8", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_de1e0bb22b9a4806ad6d7dfb7b64261b", + "layout": "IPY_MODEL_af741f4b24634691a96060831f6ec867", + "placeholder": "​", + "style": "IPY_MODEL_458816ed52744769b2b84df8905f7715", "tabbable": null, "tooltip": null, - "value": 40.0 - } - }, - "49eb33f0894e4be0b7d4a9580cbfc3a6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "100%" } }, - "4aa32c1a7326406da339c6ef7bd619f8": { + "5484aa5928a246acbd7729d54589be9f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4476,7 +4264,7 @@ "width": null } }, - "4cb381c85975498bade0958475c38c3d": { + "54a8ecc1e2ec4219b4869405eca3a552": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4494,7 +4282,7 @@ "text_color": null } }, - "4d46206939da45258e5b9b727ddf7764": { + "58b19016e5454a8fb31a421f7b83f3b8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4547,84 +4335,98 @@ "width": null } }, - "50288596afe64288b6d3ab7edad7ada2": { + "5a6dba14c90846e1a998f66757bdbbb9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_13b652f61bcf48d3b97f62ede490121f", - "IPY_MODEL_78a1690e9a74425d93a1b15a26a8e397", - "IPY_MODEL_251f47be1443445ea17391ab2a7ea7ff" - ], - "layout": "IPY_MODEL_4d46206939da45258e5b9b727ddf7764", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5484aa5928a246acbd7729d54589be9f", + "placeholder": "​", + "style": "IPY_MODEL_bd36b5a042cb47da963fa6724698d535", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 40/40 [00:00<00:00, 56.78it/s]" } }, - "502e5b6525bb46358f3bb43064638f0c": { - "model_module": "@jupyter-widgets/base", + "5b700a72a8d146b8ab01511afa0019c3": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0e674f7d5aaf4ceb80159d02d496e19e", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2478e088e18843408c6b0eb7b8546aeb", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "5cc9e1f7b9a7467aa2530eb23b8b1def": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5dd4ac73beaa4c909b6d006c9b6b289f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bc10d0329fcb483b9d433b104377cb26", + "IPY_MODEL_d242e7b75b9448e1b0422ace1b943120", + "IPY_MODEL_797702b1a2084c91aa677095d5780e70" + ], + "layout": "IPY_MODEL_58b19016e5454a8fb31a421f7b83f3b8", + "tabbable": null, + "tooltip": null } }, - "514e0be725b74768831bbf8ca766e5b4": { + "5fb6cdc588c2446b996e24faff04c97f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4677,60 +4479,66 @@ "width": null } }, - "5232296e569544d098932c65d437aafe": { - "model_module": "@jupyter-widgets/base", + "6110fa747dd54d5f89ec29500fd72aaf": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "53ce035acbfb416aaa3dd28cae66a7f4": { + "6123d04fa3694205a1454dbace9e784e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6154ce50b4d24586bad16243defb53fb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_797b7cb9a56b45fd8ee145c617f0767a", + "placeholder": "​", + "style": "IPY_MODEL_a34a00b5352e45e9b8ca12eff5edf1a5", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: 100%" + } + }, + "61ca028bd561486caf5fa42305aa6d4d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4745,42 +4553,50 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_26e3d553339c48a1a649eeddba519df0", - "IPY_MODEL_111b25cdc72e46eeae9bf6aa5db5d9fc", - "IPY_MODEL_daad348d674244baa9a4d481f1344b61" + "IPY_MODEL_04a4622eebaa4c72abf4e42992b7bc3e", + "IPY_MODEL_74343f0f79f541caa4643df7b5d0963d", + "IPY_MODEL_adb4a6af384b4827babeb1fa43dfb372" ], - "layout": "IPY_MODEL_65238aea2be34d65b16b999fe4133618", + "layout": "IPY_MODEL_a8153583075f46ab9668618c698af2d5", "tabbable": null, "tooltip": null } }, - "53ff12c442c84c48bb659fb295f42551": { + "62c50c83daaa40ce8b1620c454b036b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_542ad553bb714643914db89a1b4a3d91", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ceaba95332de40c78cb37a43f1861d01", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "63397a47d992477aa92ce4d5947bafe4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "540a39f28a4a450ba6761e69f983a547": { + "6499b7dd8d33405aaa3f09d7b7a7bce4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4795,15 +4611,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c415a91fe6664a288a4978d5c73ad6dc", + "layout": "IPY_MODEL_1749f9df3cef4d239a6382150390e397", "placeholder": "​", - "style": "IPY_MODEL_05f19dffa7524114b09f4ada56cdb822", + "style": "IPY_MODEL_79afd08413b84f31a29d1c321a808aa9", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.32it/s]" + "value": " 2/2 [00:00<00:00, 593.09it/s]" } }, - "542ad553bb714643914db89a1b4a3d91": { + "67ba749bcc1b4d0db5e9bb466f9bc170": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4856,7 +4672,7 @@ "width": null } }, - "555efcb40d354dfbb4345be8c521c98b": { + "69993e265db24fdf9705ddc0ee02731b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4874,7 +4690,7 @@ "text_color": null } }, - "56cbd66b91d142c8a9c3dbebaa44cb41": { + "6a35e6318f964dc4ab7a20d799947b69": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4927,82 +4743,99 @@ "width": null } }, - "570d4cf53c304ba6bad04b719e1b658a": { + "6b02c15b697e4d74a7c99110f6fcf1c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_47a1ed198943441688d50b04cfa70a6f", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f2a6435d3277413b91f339988107690c", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "59b05b1fdfa34bd99284e28a7fb68c15": { - "model_module": "@jupyter-widgets/controls", + "6cef0a862e114efba48548ce18db154a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d2bf99a8ed3f4762a78b7c405a5d305f", - "placeholder": "​", - "style": "IPY_MODEL_555efcb40d354dfbb4345be8c521c98b", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "59b927f0a2184c3da0fd163ddeb371ea": { + "6d5c2be4c432491d81a89baf44b08004": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_610807bc23fd40839498d4da1d1504b4", - "max": 9015.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5f9963baeac741179599192e4b91d50a", + "layout": "IPY_MODEL_e4cfe24ac1a447f7b502021e027a0cdc", + "placeholder": "​", + "style": "IPY_MODEL_54a8ecc1e2ec4219b4869405eca3a552", "tabbable": null, "tooltip": null, - "value": 9015.0 + "value": "100%" } }, - "5bdd5bcb64834917a4b16ea8b05af9c4": { + "6f11c86a70a04282897f55898aaabe83": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5055,33 +4888,25 @@ "width": null } }, - "5c29a86bbea742699cb8e963b9048240": { + "6f18d47cd6304ba08a2605208e81ff33": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8a3d47b5c91d411c94ea140a0654d53e", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6f718e43ec2447cf9ed8ee64f15d5a1f", - "tabbable": null, - "tooltip": null, - "value": 10000.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5daa16858856475caaf7679f6d32f5ec": { + "715deece975742d5bc13cc8043611355": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -5096,72 +4921,65 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_859eccb5f2704b99b784c393d1d610a4", - "IPY_MODEL_5c29a86bbea742699cb8e963b9048240", - "IPY_MODEL_6257cffada7f477ab0749b8ed7b1ad01" + "IPY_MODEL_fa296d48137e455ba1b6e16835562e86", + "IPY_MODEL_94b92ca768bd4a3aa044b748b216dcb1", + "IPY_MODEL_7fe5e48df24848bcbc6fcb0751af666f" ], - "layout": "IPY_MODEL_3a60c63ede524775b245c90d0fa7d809", + "layout": "IPY_MODEL_463fd38839db4af2a6590fc0d2b58f1b", "tabbable": null, "tooltip": null } }, - "5e5c502c4689449c9328b621fdd5b1fa": { + "73a65bf59afc46ab9dff2402b2ef3c24": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "5f9963baeac741179599192e4b91d50a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fc699b02b18c4b3785d9ed69a22992c9", + "placeholder": "​", + "style": "IPY_MODEL_43a93f0156884db8a84e2f918cfd5d71", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "6106bace64b54dfa92a1cc7d3b9b9568": { + "74343f0f79f541caa4643df7b5d0963d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_462521c2c79048f99a9fbd2775b35cf3", - "IPY_MODEL_2de96930f01f4605927f2ff0be3ae141", - "IPY_MODEL_00e9758709e04ea2a358d4146aca0a6d" - ], - "layout": "IPY_MODEL_01115385bed341f790edbf983d162bb8", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0e0ea832bcf44e08af9f72ccaf14856d", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_86b19062b8ed4e9f85f4fec80c21a6c0", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 40.0 } }, - "610807bc23fd40839498d4da1d1504b4": { + "74b2d7314b1e40b2a9703867b135b73b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5214,7 +5032,7 @@ "width": null } }, - "6257cffada7f477ab0749b8ed7b1ad01": { + "75f54b54d89e4b44983d92b27c1c23fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5229,39 +5047,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_25374cb718ad426c88ab4395732daf56", + "layout": "IPY_MODEL_67ba749bcc1b4d0db5e9bb466f9bc170", "placeholder": "​", - "style": "IPY_MODEL_dd0651e98dc640b59c898bdf3d5aa6bd", + "style": "IPY_MODEL_418b3e15cee0433aa8bb16c916fbbcf8", "tabbable": null, "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 252325.39 examples/s]" - } - }, - "62b6b2e9b4224a69b6fea1cf6c2e3ba6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_59b05b1fdfa34bd99284e28a7fb68c15", - "IPY_MODEL_828e4bc97ae548709fa4ae32334b489f", - "IPY_MODEL_aaed4aca4163412d9e8bb5f1bb19aee5" - ], - "layout": "IPY_MODEL_6f9f5026f9f54afca518d9598d22d372", - "tabbable": null, - "tooltip": null + "value": "Computing checksums: 100%" } }, - "65238aea2be34d65b16b999fe4133618": { + "7801173fbaa34c7ba674853135b717e5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5314,23 +5108,7 @@ "width": null } }, - "68f0e50731464d638f77048f65a89f2f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6e81d5d360754135bc7870ab317843cd": { + "789eeb33f7e54e4993cc9be47c0a4654": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5383,23 +5161,30 @@ "width": null } }, - "6f718e43ec2447cf9ed8ee64f15d5a1f": { + "797702b1a2084c91aa677095d5780e70": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6a35e6318f964dc4ab7a20d799947b69", + "placeholder": "​", + "style": "IPY_MODEL_a67c3cc29a524e599f6f027576048e77", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 58.82it/s]" } }, - "6f9f5026f9f54afca518d9598d22d372": { + "797b7cb9a56b45fd8ee145c617f0767a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5452,7 +5237,25 @@ "width": null } }, - "71d81b90004844418c3d4918795e3822": { + "79afd08413b84f31a29d1c321a808aa9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7a9d8dacb06d469da61f18473ae6c811": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5505,43 +5308,54 @@ "width": null } }, - "72e3895c4b574f0cb510898c95ca769f": { + "7df5d87a698348adaf910bad51eb5257": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6154ce50b4d24586bad16243defb53fb", + "IPY_MODEL_bbe5c8e427aa41f9804c969d70ad8c2f", + "IPY_MODEL_e2e1d706cc454dba83b835ddf7f61a70" + ], + "layout": "IPY_MODEL_30f188af82bb4a89acd46b04b749efb4", + "tabbable": null, + "tooltip": null } }, - "74c14a40f9464fe1a127d72439be963e": { + "7ec27b0b226242f7a154b44efdf5281c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_31f776ccde32438c982b8c5eb8aa8f51", + "placeholder": "​", + "style": "IPY_MODEL_6110fa747dd54d5f89ec29500fd72aaf", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "7564b288286b40598468380d2795bc00": { + "7fe5e48df24848bcbc6fcb0751af666f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5556,15 +5370,71 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_05817d1b3f9648e88ca738c1b05512c1", + "layout": "IPY_MODEL_db9aedfbb0164f47a695f5f7312785a6", "placeholder": "​", - "style": "IPY_MODEL_d87cf531ac644ce99c1b0cc15a36f07b", + "style": "IPY_MODEL_3e6508b5d88f4973b44bf251c0313298", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 30.9M/30.9M [00:00<00:00, 43.9MB/s]" + } + }, + "8048b30a8d20480286136da950c4ae4f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b9f9a045bcb549b3ab2405b239007979", + "IPY_MODEL_2dbbafaa6de24d2c8097777c0ce0cedd", + "IPY_MODEL_4d5400c178b2452f93c3c4db3be14645" + ], + "layout": "IPY_MODEL_6cef0a862e114efba48548ce18db154a", + "tabbable": null, + "tooltip": null + } + }, + "8189d1fe2cc04c4799937a77b58593a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "83d6886bd83146389ced65a95fa81e9f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "784ba071f65c48848697c9c7c5fe4211": { + "848dbf466ca84edf8a6c9a3db7b6dca2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5579,33 +5449,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1ebca0857b9a4ca2809f9c0f0b3c709c", + "layout": "IPY_MODEL_e19ec970fdd44afd898de49a0af29399", "placeholder": "​", - "style": "IPY_MODEL_74c14a40f9464fe1a127d72439be963e", + "style": "IPY_MODEL_6f18d47cd6304ba08a2605208e81ff33", "tabbable": null, "tooltip": null, - "value": " 2/2 [00:00<00:00, 588.92it/s]" + "value": " 60000/60000 [00:11<00:00, 4643.60 examples/s]" } }, - "7865b8fdeb014fd69a21f67fcdb3f8f8": { + "86b19062b8ed4e9f85f4fec80c21a6c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "78a1690e9a74425d93a1b15a26a8e397": { + "86d4ac36f45b4dc4aafe3fddfa21728c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5621,49 +5489,58 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_23be0d5e6edd448f841eb606fcaed06e", - "max": 60000.0, + "layout": "IPY_MODEL_1f19654c731349b586439bffb6b50667", + "max": 9015.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_edf30754c1d040688ab5c9a2219cfdfa", + "style": "IPY_MODEL_8189d1fe2cc04c4799937a77b58593a5", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": 9015.0 } }, - "78c18d3b2a2a4ef8b23cdf2133b89c12": { + "87ac3c376bc942a08e4722d392db6cc2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7a6d1e0ded9446d2b62d28e24de46aeb": { + "87f6f6d23d364392a6637137b76bcdf8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2154009565de4b2d836aa460d81a343d", + "placeholder": "​", + "style": "IPY_MODEL_69993e265db24fdf9705ddc0ee02731b", + "tabbable": null, + "tooltip": null, + "value": " 5.18M/5.18M [00:00<00:00, 25.5MB/s]" } }, - "7bcf2c23f9b247b3a945d11a47884728": { + "894dfcbdd03942e1918c15697aa075b5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5678,39 +5555,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0641f4ce89074e6f83310f1b94615ef1", + "layout": "IPY_MODEL_bc0cb764df054f67bffe9a91424eb9ad", "placeholder": "​", - "style": "IPY_MODEL_9960bdce211c4715b0cadc5d52e96f2b", + "style": "IPY_MODEL_3d101be52ce14aadb4856964662938b1", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.05it/s]" + "value": " 40/40 [00:00<00:00, 58.58it/s]" } }, - "7c4f61f3c9544a5697e35537d2e57a80": { + "8c27a013ea9c424986fbeecf77584f51": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b23283c58bd3443b8aeb19651ac35d45", - "IPY_MODEL_3a8a3eb836f84ac19a14d09a72ca913a", - "IPY_MODEL_b170f6707c644350978d9ff07baf9a51" - ], - "layout": "IPY_MODEL_5bdd5bcb64834917a4b16ea8b05af9c4", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "7d2c4f4e4bd245749a0470d6565b67ee": { + "8d096aa2eff947edb5b63ada7f584e86": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5763,7 +5632,108 @@ "width": null } }, - "7d5e16e7b4cd425e81b0b51781a59dc0": { + "8df2eb2ad9b8450794bc2a19cd4e4607": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a4265a3a4bfa4ae7b72143c7882d22da", + "placeholder": "​", + "style": "IPY_MODEL_9d69f92933354985bb292e842e6d91ec", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "94b92ca768bd4a3aa044b748b216dcb1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_00e20cac09fa43938aab5eb1c857b06b", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_83d6886bd83146389ced65a95fa81e9f", + "tabbable": null, + "tooltip": null, + "value": 30931277.0 + } + }, + "9667199d84da4850ab42238ebe7e58c2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9816a805a82c4843aedfe687ac374d00": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9d69f92933354985bb292e842e6d91ec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9dbbec5ae2704d49a9756704ffa719f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5781,7 +5751,7 @@ "text_color": null } }, - "7da35a3b98ee4fd885a955eb93b40f77": { + "9f6288367f9d417aaffa47df9969c4f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5834,25 +5804,31 @@ "width": null } }, - "7ddb122677064d5790732e2974697085": { + "a0e6ab9c19e34b8e9bbe62ee43bd8c35": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_73a65bf59afc46ab9dff2402b2ef3c24", + "IPY_MODEL_dcb5d9d40e7d44a9b855e55c3ed7dfec", + "IPY_MODEL_4e7070c9105a4817bb9d9016918c3463" + ], + "layout": "IPY_MODEL_7a9d8dacb06d469da61f18473ae6c811", + "tabbable": null, + "tooltip": null } }, - "7df4d9d3b1f64363a4b3d94f46cf9ccb": { + "a34a00b5352e45e9b8ca12eff5edf1a5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5870,23 +5846,7 @@ "text_color": null } }, - "808db438cd324f69952c11138fed331e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "828e4bc97ae548709fa4ae32334b489f": { + "a3bccde2847d4c49848c5d7d70ffb860": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5902,79 +5862,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_938bb38e997f4f708482e7b9b7aeaf33", - "max": 40.0, + "layout": "IPY_MODEL_1c9a54ddf74b443e89e4eaf4f51c38c8", + "max": 5175617.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_33cdb1fedce546f888e2db54a1bdee44", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "82dca61ff0be430fb3973a99d7332598": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9a2c0492ab5c4492a8c007667db3be1a", - "placeholder": "​", - "style": "IPY_MODEL_7d5e16e7b4cd425e81b0b51781a59dc0", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 5708.99 examples/s]" - } - }, - "8428b1dcd2e4484a9f0d335f69538b45": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "859eccb5f2704b99b784c393d1d610a4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_10fc19046a664d96a7d4decefa10e252", - "placeholder": "​", - "style": "IPY_MODEL_912590b385b64ad9888c433f9440b602", + "style": "IPY_MODEL_6b02c15b697e4d74a7c99110f6fcf1c5", "tabbable": null, "tooltip": null, - "value": "Generating test split: 100%" + "value": 5175617.0 } }, - "8a39d576126146629689d586871b86a2": { + "a4265a3a4bfa4ae7b72143c7882d22da": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6027,7 +5925,7 @@ "width": null } }, - "8a3d47b5c91d411c94ea140a0654d53e": { + "a51da1996471487ea2f6abd6bb0cacba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6080,7 +5978,7 @@ "width": null } }, - "8aca1369d98c4de990db469fea6b4d4f": { + "a67c3cc29a524e599f6f027576048e77": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6098,72 +5996,60 @@ "text_color": null } }, - "8f234eaa93ac4647a1b7f00564dbc42b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_56cbd66b91d142c8a9c3dbebaa44cb41", - "placeholder": "​", - "style": "IPY_MODEL_1682f09eb9c84a40a0775de31b82a538", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" - } - }, - "8fba3dafd4f64444a16631a145e858f3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_27525968c70941db9a462de35fb1909e", - "IPY_MODEL_53ff12c442c84c48bb659fb295f42551", - "IPY_MODEL_08238e8d62864cda8a94dd6ab3195200" - ], - "layout": "IPY_MODEL_a5ec16209bf24cf8951a12aab19fd8fa", - "tabbable": null, - "tooltip": null - } - }, - "912590b385b64ad9888c433f9440b602": { - "model_module": "@jupyter-widgets/controls", + "a8153583075f46ab9668618c698af2d5": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "9370bda257e3496dbc67d1f7d7b0f6d0": { + "a8d79e5a11af4eee941f00df247ae2ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6216,7 +6102,94 @@ "width": null } }, - "938bb38e997f4f708482e7b9b7aeaf33": { + "aa732b0a4d7a4e5a9c11bdac5ddcd235": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f731b832c2c14263ba08413849b9491d", + "IPY_MODEL_b5c0cbca89fa4834a72585d4fb95679e", + "IPY_MODEL_848dbf466ca84edf8a6c9a3db7b6dca2" + ], + "layout": "IPY_MODEL_0cb7926f64ca4262a1d8e8a49dd0d6d3", + "tabbable": null, + "tooltip": null + } + }, + "ab03cadc8a244250837477471abfd52f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7ec27b0b226242f7a154b44efdf5281c", + "IPY_MODEL_2918809b0c4a48c9a96a0722b9044737", + "IPY_MODEL_c18a50eaa6154b71885754ca3b1e79e1" + ], + "layout": "IPY_MODEL_1160fc45ea02442ebc3edd8f098d88ad", + "tabbable": null, + "tooltip": null + } + }, + "adb4a6af384b4827babeb1fa43dfb372": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_42bf693cc44f43e2abd5c517e5163435", + "placeholder": "​", + "style": "IPY_MODEL_e1dc295bc9aa4b078179cd66d9cd0625", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 60.05it/s]" + } + }, + "ae43f833e78c43e0acade5c471716764": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "af741f4b24634691a96060831f6ec867": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6269,43 +6242,106 @@ "width": null } }, - "97e405a2706943a48d1278946b847d7d": { + "b5c0cbca89fa4834a72585d4fb95679e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6f11c86a70a04282897f55898aaabe83", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ae43f833e78c43e0acade5c471716764", + "tabbable": null, + "tooltip": null, + "value": 60000.0 } }, - "9960bdce211c4715b0cadc5d52e96f2b": { + "b9f9a045bcb549b3ab2405b239007979": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_24cc3a6c8edd440da9947ad5599bad6e", + "placeholder": "​", + "style": "IPY_MODEL_2d444e1e91f34b079a2ca7323b81419e", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: 100%" + } + }, + "bb685ca1a8e74f4abfc418ee4df7cdae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8df2eb2ad9b8450794bc2a19cd4e4607", + "IPY_MODEL_a3bccde2847d4c49848c5d7d70ffb860", + "IPY_MODEL_87f6f6d23d364392a6637137b76bcdf8" + ], + "layout": "IPY_MODEL_789eeb33f7e54e4993cc9be47c0a4654", + "tabbable": null, + "tooltip": null + } + }, + "bbe5c8e427aa41f9804c969d70ad8c2f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1ce743abad7c4285b5459c8f9a83727f", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8c27a013ea9c424986fbeecf77584f51", + "tabbable": null, + "tooltip": null, + "value": 10000.0 } }, - "9a2c0492ab5c4492a8c007667db3be1a": { + "bc0cb764df054f67bffe9a91424eb9ad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6358,7 +6394,30 @@ "width": null } }, - "9f9030d188fc4491a55f7def65cb5e1d": { + "bc10d0329fcb483b9d433b104377cb26": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c28da32949eb444c8b169f95d073f019", + "placeholder": "​", + "style": "IPY_MODEL_5cc9e1f7b9a7467aa2530eb23b8b1def", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "bd36b5a042cb47da963fa6724698d535": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6376,7 +6435,30 @@ "text_color": null } }, - "a5ec16209bf24cf8951a12aab19fd8fa": { + "c18a50eaa6154b71885754ca3b1e79e1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_38eb0ac1298f486f95a21f978928b66e", + "placeholder": "​", + "style": "IPY_MODEL_6123d04fa3694205a1454dbace9e784e", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 59.75it/s]" + } + }, + "c1c1d785f09148e88cc07abc9a79d399": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6429,7 +6511,23 @@ "width": null } }, - "a82c8392abab4c4f981fcc2f816235ea": { + "c1c5ff485c484df9b2328967bbd2b370": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c28da32949eb444c8b169f95d073f019": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6482,30 +6580,7 @@ "width": null } }, - "aaed4aca4163412d9e8bb5f1bb19aee5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9370bda257e3496dbc67d1f7d7b0f6d0", - "placeholder": "​", - "style": "IPY_MODEL_2fff263060464e9abc5f9bded32f966a", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 55.29it/s]" - } - }, - "adf8fb4c64ea4f82a00e8d639f9c6ab3": { + "c2c049fd4723414391215a3a86586ad1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6558,7 +6633,7 @@ "width": null } }, - "b0481c9df22549ab8340743b1c6b4ff9": { + "c5b087dedb3b4a81b16234b32f0ad104": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6576,146 +6651,41 @@ "text_color": null } }, - "b170f6707c644350978d9ff07baf9a51": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_71d81b90004844418c3d4918795e3822", - "placeholder": "​", - "style": "IPY_MODEL_fe24e714c74e467c96262993f3eb13b2", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.26it/s]" - } - }, - "b23283c58bd3443b8aeb19651ac35d45": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1c3f7ea05c994dbbb2a022c8497bccbf", - "placeholder": "​", - "style": "IPY_MODEL_7df4d9d3b1f64363a4b3d94f46cf9ccb", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "ba951b3038cc4359812cff880444a124": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4aa32c1a7326406da339c6ef7bd619f8", - "placeholder": "​", - "style": "IPY_MODEL_ef3afa13c7ba4842a219252d4fbb33fc", - "tabbable": null, - "tooltip": null, - "value": "Downloading readme: 100%" - } - }, - "bb6129e903cb44d5a3b81bd77e74683c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8a39d576126146629689d586871b86a2", - "placeholder": "​", - "style": "IPY_MODEL_b0481c9df22549ab8340743b1c6b4ff9", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" - } - }, - "bb87ed2f43cc4e28b958678bcf337c47": { + "c87364d1f6104253b1d3b9fc6d57747c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7564b288286b40598468380d2795bc00", - "IPY_MODEL_4924566a99d6497f9ea6af519be1c94e", - "IPY_MODEL_7bcf2c23f9b247b3a945d11a47884728" - ], - "layout": "IPY_MODEL_7d2c4f4e4bd245749a0470d6565b67ee", - "tabbable": null, - "tooltip": null + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "bcea5240a8084d299e5de4d7dfcadd3a": { + "cb654bfede0d4df6953f8b10f45ccf30": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0591ba9c56804097888832a673b113bc", - "placeholder": "​", - "style": "IPY_MODEL_97e405a2706943a48d1278946b847d7d", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "c23846e525934292a91fcffe1b834a42": { + "cd61e02259094a979ac8fdee8d778a4a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6768,7 +6738,33 @@ "width": null } }, - "c415a91fe6664a288a4978d5c73ad6dc": { + "d242e7b75b9448e1b0422ace1b943120": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3d72d8ee572f448b8249c932e48082e8", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1ebda1f8d81d496d83330d03e329452f", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "d2d22c2514a54fcb9f9f90e9a4e24714": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6821,7 +6817,7 @@ "width": null } }, - "c69455a56a3948a88534e12e10feb031": { + "d3355770450248a08bff39fb61a614a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6874,7 +6870,7 @@ "width": null } }, - "c7b0eef6687642468aff54f4c38fa807": { + "d4737bea4127496e856295be41444231": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -6890,94 +6886,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3f545668bfcd4dd28be992718455133e", - "max": 5175617.0, + "layout": "IPY_MODEL_e47e28322ab8479c91ddf77409dbfd8b", + "max": 2.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_808db438cd324f69952c11138fed331e", + "style": "IPY_MODEL_cb654bfede0d4df6953f8b10f45ccf30", "tabbable": null, "tooltip": null, - "value": 5175617.0 - } - }, - "cbbfe35662894a6cb48d64ca9547f4cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bcea5240a8084d299e5de4d7dfcadd3a", - "IPY_MODEL_320de978221e44ca8f3a138185eaba16", - "IPY_MODEL_29f813d4e55a4a3abf592897a216da07" - ], - "layout": "IPY_MODEL_f3a8f2af8d48423eada106f524532cce", - "tabbable": null, - "tooltip": null - } - }, - "cc17349aff1449518a7bb7ab93a8f867": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": 2.0 } }, - "ceaba95332de40c78cb37a43f1861d01": { + "db4f470c9b9843f5b80bdf4dacc8d78e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -6993,7 +6912,7 @@ "description_width": "" } }, - "d2bf99a8ed3f4762a78b7c405a5d305f": { + "db9aedfbb0164f47a695f5f7312785a6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7046,49 +6965,33 @@ "width": null } }, - "d87cf531ac644ce99c1b0cc15a36f07b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d9e782f571af4e6ab81db57c5078db7c": { + "dcb5d9d40e7d44a9b855e55c3ed7dfec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3379bdf96857436fb4e394d2843f70ce", - "IPY_MODEL_c7b0eef6687642468aff54f4c38fa807", - "IPY_MODEL_f7578f092eae468db4777188b473c94e" - ], - "layout": "IPY_MODEL_7da35a3b98ee4fd885a955eb93b40f77", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_20586be37d7340fab39d12a261037368", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_62c50c83daaa40ce8b1620c454b036b7", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 60000.0 } }, - "da04a21c148b4538a81e17bc1ff3f0cf": { + "e19ec970fdd44afd898de49a0af29399": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7141,30 +7044,7 @@ "width": null } }, - "daad348d674244baa9a4d481f1344b61": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_399a2ecec43d4800b8a223877a4195d2", - "placeholder": "​", - "style": "IPY_MODEL_7865b8fdeb014fd69a21f67fcdb3f8f8", - "tabbable": null, - "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 33.5MB/s]" - } - }, - "dd0651e98dc640b59c898bdf3d5aa6bd": { + "e1dc295bc9aa4b078179cd66d9cd0625": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7182,105 +7062,30 @@ "text_color": null } }, - "de1e0bb22b9a4806ad6d7dfb7b64261b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e13e6b4502e9481aa9501c922ae3ff68": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ba951b3038cc4359812cff880444a124", - "IPY_MODEL_59b927f0a2184c3da0fd163ddeb371ea", - "IPY_MODEL_fb0d9ce6ffd64cb5a050edc3d522bd18" - ], - "layout": "IPY_MODEL_35b36e18eaae4b6c8727c669b38f8783", - "tabbable": null, - "tooltip": null - } - }, - "e7d518a4a4844e9382a190dfbbda4ad0": { + "e2e1d706cc454dba83b835ddf7f61a70": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bb6129e903cb44d5a3b81bd77e74683c", - "IPY_MODEL_570d4cf53c304ba6bad04b719e1b658a", - "IPY_MODEL_82dca61ff0be430fb3973a99d7332598" - ], - "layout": "IPY_MODEL_f6855b0af2434727b18d5675cbedbea8", - "tabbable": null, - "tooltip": null - } - }, - "edf30754c1d040688ab5c9a2219cfdfa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ef3afa13c7ba4842a219252d4fbb33fc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ebfb29db8ac148e9af56fd7ffae3775b", + "placeholder": "​", + "style": "IPY_MODEL_87ac3c376bc942a08e4722d392db6cc2", + "tabbable": null, + "tooltip": null, + "value": " 10000/10000 [00:00<00:00, 248148.43 examples/s]" } }, - "efca7a22b0c94886887298b734fdd1bf": { + "e47e28322ab8479c91ddf77409dbfd8b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7333,23 +7138,60 @@ "width": null } }, - "f2a6435d3277413b91f339988107690c": { - "model_module": "@jupyter-widgets/controls", + "e4cfe24ac1a447f7b502021e027a0cdc": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f3a8f2af8d48423eada106f524532cce": { + "e6e351618590464cad5b6b2888b5855b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7402,30 +7244,55 @@ "width": null } }, - "f42827a7d0fd4059b167c5fc2ee82f06": { + "e8b71b72c1fe42969576f0679a3429ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_03b3b1fd802d48ac8f3fbf55fc98ceda", - "placeholder": "​", - "style": "IPY_MODEL_049ac560879e4135983cfa60adc33353", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_75f54b54d89e4b44983d92b27c1c23fb", + "IPY_MODEL_d4737bea4127496e856295be41444231", + "IPY_MODEL_6499b7dd8d33405aaa3f09d7b7a7bce4" + ], + "layout": "IPY_MODEL_74b2d7314b1e40b2a9703867b135b73b", "tabbable": null, - "tooltip": null, - "value": "100%" + "tooltip": null + } + }, + "eb3ac7f719da4343b1f45e07f09a75f2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6d5c2be4c432491d81a89baf44b08004", + "IPY_MODEL_43b90f2f7651473f93cf3eab0e3fd917", + "IPY_MODEL_28b0e5e799994ca8809bbb96b5c3df2a" + ], + "layout": "IPY_MODEL_5fb6cdc588c2446b996e24faff04c97f", + "tabbable": null, + "tooltip": null } }, - "f6855b0af2434727b18d5675cbedbea8": { + "ebfb29db8ac148e9af56fd7ffae3775b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7478,7 +7345,157 @@ "width": null } }, - "f7578f092eae468db4777188b473c94e": { + "ee00a95d3bba4f2ab806c55e6e2c96fb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ee16116dbbae4246a4933981a1e3806b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c2c049fd4723414391215a3a86586ad1", + "placeholder": "​", + "style": "IPY_MODEL_c87364d1f6104253b1d3b9fc6d57747c", + "tabbable": null, + "tooltip": null, + "value": " 9.02k/9.02k [00:00<00:00, 1.15MB/s]" + } + }, + "eecae1184b8b4bcd9ec5d73df5c74db8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "eeef9fa40c3042329541b46e63c7150a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0dff836f9df24429807dadf54be9a70a", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c1c5ff485c484df9b2328967bbd2b370", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "f70935fc022f4ec9952399ffa883f8c2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f731b832c2c14263ba08413849b9491d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2d593f06e2744a139b86109333ac680e", + "placeholder": "​", + "style": "IPY_MODEL_112e5f2e2a784cba837314af017d0914", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" + } + }, + "f9912ba2f2c141a4892444b6f34c10b6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5106186137a048c680b7b513857f6ecf", + "IPY_MODEL_eeef9fa40c3042329541b46e63c7150a", + "IPY_MODEL_5a6dba14c90846e1a998f66757bdbbb9" + ], + "layout": "IPY_MODEL_a8d79e5a11af4eee941f00df247ae2ee", + "tabbable": null, + "tooltip": null + } + }, + "fa296d48137e455ba1b6e16835562e86": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7493,15 +7510,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_adf8fb4c64ea4f82a00e8d639f9c6ab3", + "layout": "IPY_MODEL_45268ef1afff4ca887ef109a99e1a9a1", "placeholder": "​", - "style": "IPY_MODEL_7ddb122677064d5790732e2974697085", + "style": "IPY_MODEL_9667199d84da4850ab42238ebe7e58c2", "tabbable": null, "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 17.0MB/s]" + "value": "Downloading data: 100%" } }, - "f98f51460d6c4bc1afe59cb9fd710f17": { + "fc699b02b18c4b3785d9ed69a22992c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7554,45 +7571,28 @@ "width": null } }, - "fb0d9ce6ffd64cb5a050edc3d522bd18": { + "fc98e96da8e046238dce1b399f558f99": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_22c8f51624e648e49719420deab60fc2", - "placeholder": "​", - "style": "IPY_MODEL_3028fe5d40144f7e954d5ffdb04ddb59", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_06c30632deaa41b0b7d2ef2bd39e00dc", + "IPY_MODEL_5b700a72a8d146b8ab01511afa0019c3", + "IPY_MODEL_894dfcbdd03942e1918c15697aa075b5" + ], + "layout": "IPY_MODEL_cd61e02259094a979ac8fdee8d778a4a", "tabbable": null, - "tooltip": null, - "value": " 9.02k/9.02k [00:00<00:00, 1.07MB/s]" - } - }, - "fe24e714c74e467c96262993f3eb13b2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index 865a256b4..dc624f661 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:45.284574Z", - "iopub.status.busy": "2024-08-22T00:56:45.284082Z", - "iopub.status.idle": "2024-08-22T00:56:46.500970Z", - "shell.execute_reply": "2024-08-22T00:56:46.500377Z" + "iopub.execute_input": "2024-08-26T15:54:14.109304Z", + "iopub.status.busy": "2024-08-26T15:54:14.108881Z", + "iopub.status.idle": "2024-08-26T15:54:15.281952Z", + "shell.execute_reply": "2024-08-26T15:54:15.281381Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:46.503831Z", - "iopub.status.busy": "2024-08-22T00:56:46.503253Z", - "iopub.status.idle": "2024-08-22T00:56:46.523596Z", - "shell.execute_reply": "2024-08-22T00:56:46.523026Z" + "iopub.execute_input": "2024-08-26T15:54:15.284532Z", + "iopub.status.busy": "2024-08-26T15:54:15.284089Z", + "iopub.status.idle": "2024-08-26T15:54:15.302497Z", + "shell.execute_reply": "2024-08-26T15:54:15.301896Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:46.526440Z", - "iopub.status.busy": "2024-08-22T00:56:46.525953Z", - "iopub.status.idle": "2024-08-22T00:56:46.566621Z", - "shell.execute_reply": "2024-08-22T00:56:46.565965Z" + "iopub.execute_input": "2024-08-26T15:54:15.304895Z", + "iopub.status.busy": "2024-08-26T15:54:15.304508Z", + "iopub.status.idle": "2024-08-26T15:54:15.325953Z", + "shell.execute_reply": "2024-08-26T15:54:15.325390Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:46.568955Z", - "iopub.status.busy": "2024-08-22T00:56:46.568740Z", - "iopub.status.idle": "2024-08-22T00:56:46.572421Z", - "shell.execute_reply": "2024-08-22T00:56:46.571955Z" + "iopub.execute_input": "2024-08-26T15:54:15.328080Z", + "iopub.status.busy": "2024-08-26T15:54:15.327751Z", + "iopub.status.idle": "2024-08-26T15:54:15.331370Z", + "shell.execute_reply": "2024-08-26T15:54:15.330867Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:46.574450Z", - "iopub.status.busy": "2024-08-22T00:56:46.574266Z", - "iopub.status.idle": "2024-08-22T00:56:46.582629Z", - "shell.execute_reply": "2024-08-22T00:56:46.582139Z" + "iopub.execute_input": "2024-08-26T15:54:15.333595Z", + "iopub.status.busy": "2024-08-26T15:54:15.333139Z", + "iopub.status.idle": "2024-08-26T15:54:15.341092Z", + "shell.execute_reply": "2024-08-26T15:54:15.340517Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:46.584816Z", - "iopub.status.busy": "2024-08-22T00:56:46.584623Z", - "iopub.status.idle": "2024-08-22T00:56:46.587305Z", - "shell.execute_reply": "2024-08-22T00:56:46.586807Z" + "iopub.execute_input": "2024-08-26T15:54:15.343311Z", + "iopub.status.busy": "2024-08-26T15:54:15.343000Z", + "iopub.status.idle": "2024-08-26T15:54:15.346105Z", + "shell.execute_reply": "2024-08-26T15:54:15.345645Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:46.589452Z", - "iopub.status.busy": "2024-08-22T00:56:46.589087Z", - "iopub.status.idle": "2024-08-22T00:56:49.802629Z", - "shell.execute_reply": "2024-08-22T00:56:49.801532Z" + "iopub.execute_input": "2024-08-26T15:54:15.348163Z", + "iopub.status.busy": "2024-08-26T15:54:15.347822Z", + "iopub.status.idle": "2024-08-26T15:54:18.449602Z", + "shell.execute_reply": "2024-08-26T15:54:18.449016Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:49.805892Z", - "iopub.status.busy": "2024-08-22T00:56:49.805655Z", - "iopub.status.idle": "2024-08-22T00:56:49.816493Z", - "shell.execute_reply": "2024-08-22T00:56:49.815729Z" + "iopub.execute_input": "2024-08-26T15:54:18.452379Z", + "iopub.status.busy": "2024-08-26T15:54:18.452168Z", + "iopub.status.idle": "2024-08-26T15:54:18.461665Z", + "shell.execute_reply": "2024-08-26T15:54:18.461066Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:49.820394Z", - "iopub.status.busy": "2024-08-22T00:56:49.820030Z", - "iopub.status.idle": "2024-08-22T00:56:51.910788Z", - "shell.execute_reply": "2024-08-22T00:56:51.910173Z" + "iopub.execute_input": "2024-08-26T15:54:18.463964Z", + "iopub.status.busy": "2024-08-26T15:54:18.463672Z", + "iopub.status.idle": "2024-08-26T15:54:20.596861Z", + "shell.execute_reply": "2024-08-26T15:54:20.596179Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:51.913472Z", - "iopub.status.busy": "2024-08-22T00:56:51.912826Z", - "iopub.status.idle": "2024-08-22T00:56:51.932229Z", - "shell.execute_reply": "2024-08-22T00:56:51.931738Z" + "iopub.execute_input": "2024-08-26T15:54:20.599365Z", + "iopub.status.busy": "2024-08-26T15:54:20.598980Z", + "iopub.status.idle": "2024-08-26T15:54:20.619735Z", + "shell.execute_reply": "2024-08-26T15:54:20.619219Z" }, "scrolled": true }, @@ -609,10 +609,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:51.934298Z", - "iopub.status.busy": "2024-08-22T00:56:51.933955Z", - "iopub.status.idle": "2024-08-22T00:56:51.941775Z", - "shell.execute_reply": "2024-08-22T00:56:51.941207Z" + "iopub.execute_input": "2024-08-26T15:54:20.621986Z", + "iopub.status.busy": "2024-08-26T15:54:20.621626Z", + "iopub.status.idle": "2024-08-26T15:54:20.629738Z", + "shell.execute_reply": "2024-08-26T15:54:20.629246Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:51.943896Z", - "iopub.status.busy": "2024-08-22T00:56:51.943574Z", - "iopub.status.idle": "2024-08-22T00:56:51.952311Z", - "shell.execute_reply": "2024-08-22T00:56:51.951778Z" + "iopub.execute_input": "2024-08-26T15:54:20.631922Z", + "iopub.status.busy": "2024-08-26T15:54:20.631599Z", + "iopub.status.idle": "2024-08-26T15:54:20.640869Z", + "shell.execute_reply": "2024-08-26T15:54:20.640300Z" } }, "outputs": [ @@ -848,10 +848,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:51.954475Z", - "iopub.status.busy": "2024-08-22T00:56:51.954041Z", - "iopub.status.idle": "2024-08-22T00:56:51.962145Z", - "shell.execute_reply": "2024-08-22T00:56:51.961677Z" + "iopub.execute_input": "2024-08-26T15:54:20.642988Z", + "iopub.status.busy": "2024-08-26T15:54:20.642648Z", + "iopub.status.idle": "2024-08-26T15:54:20.650592Z", + "shell.execute_reply": "2024-08-26T15:54:20.650087Z" } }, "outputs": [ @@ -965,10 +965,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:51.964055Z", - "iopub.status.busy": "2024-08-22T00:56:51.963878Z", - "iopub.status.idle": "2024-08-22T00:56:51.972615Z", - "shell.execute_reply": "2024-08-22T00:56:51.972170Z" + "iopub.execute_input": "2024-08-26T15:54:20.652766Z", + "iopub.status.busy": "2024-08-26T15:54:20.652433Z", + "iopub.status.idle": "2024-08-26T15:54:20.661662Z", + "shell.execute_reply": "2024-08-26T15:54:20.661085Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:51.974591Z", - "iopub.status.busy": "2024-08-22T00:56:51.974416Z", - "iopub.status.idle": "2024-08-22T00:56:51.981750Z", - "shell.execute_reply": "2024-08-22T00:56:51.981217Z" + "iopub.execute_input": "2024-08-26T15:54:20.663894Z", + "iopub.status.busy": "2024-08-26T15:54:20.663442Z", + "iopub.status.idle": "2024-08-26T15:54:20.671133Z", + "shell.execute_reply": "2024-08-26T15:54:20.670552Z" } }, "outputs": [ @@ -1197,10 +1197,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:51.983714Z", - "iopub.status.busy": "2024-08-22T00:56:51.983523Z", - "iopub.status.idle": "2024-08-22T00:56:51.991443Z", - "shell.execute_reply": "2024-08-22T00:56:51.990976Z" + "iopub.execute_input": "2024-08-26T15:54:20.673323Z", + "iopub.status.busy": "2024-08-26T15:54:20.672984Z", + "iopub.status.idle": "2024-08-26T15:54:20.680708Z", + "shell.execute_reply": "2024-08-26T15:54:20.680120Z" } }, "outputs": [ @@ -1306,10 +1306,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:51.993841Z", - "iopub.status.busy": "2024-08-22T00:56:51.993389Z", - "iopub.status.idle": "2024-08-22T00:56:52.002287Z", - "shell.execute_reply": "2024-08-22T00:56:52.001822Z" + "iopub.execute_input": "2024-08-26T15:54:20.682929Z", + "iopub.status.busy": "2024-08-26T15:54:20.682566Z", + "iopub.status.idle": "2024-08-26T15:54:20.690842Z", + "shell.execute_reply": "2024-08-26T15:54:20.690326Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index 15ae87ddc..5d4d24b3a 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:55.105047Z", - "iopub.status.busy": "2024-08-22T00:56:55.104867Z", - "iopub.status.idle": "2024-08-22T00:56:58.071575Z", - "shell.execute_reply": "2024-08-22T00:56:58.070930Z" + "iopub.execute_input": "2024-08-26T15:54:23.767329Z", + "iopub.status.busy": "2024-08-26T15:54:23.766904Z", + "iopub.status.idle": "2024-08-26T15:54:26.717164Z", + "shell.execute_reply": "2024-08-26T15:54:26.716517Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:58.074398Z", - "iopub.status.busy": "2024-08-22T00:56:58.073896Z", - "iopub.status.idle": "2024-08-22T00:56:58.077339Z", - "shell.execute_reply": "2024-08-22T00:56:58.076862Z" + "iopub.execute_input": "2024-08-26T15:54:26.720039Z", + "iopub.status.busy": "2024-08-26T15:54:26.719548Z", + "iopub.status.idle": "2024-08-26T15:54:26.722953Z", + "shell.execute_reply": "2024-08-26T15:54:26.722453Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:58.079393Z", - "iopub.status.busy": "2024-08-22T00:56:58.079197Z", - "iopub.status.idle": "2024-08-22T00:56:58.082308Z", - "shell.execute_reply": "2024-08-22T00:56:58.081847Z" + "iopub.execute_input": "2024-08-26T15:54:26.725073Z", + "iopub.status.busy": "2024-08-26T15:54:26.724682Z", + "iopub.status.idle": "2024-08-26T15:54:26.727880Z", + "shell.execute_reply": "2024-08-26T15:54:26.727424Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:58.084358Z", - "iopub.status.busy": "2024-08-22T00:56:58.084075Z", - "iopub.status.idle": "2024-08-22T00:56:58.127872Z", - "shell.execute_reply": "2024-08-22T00:56:58.127315Z" + "iopub.execute_input": "2024-08-26T15:54:26.729884Z", + "iopub.status.busy": "2024-08-26T15:54:26.729547Z", + "iopub.status.idle": "2024-08-26T15:54:26.751412Z", + "shell.execute_reply": "2024-08-26T15:54:26.750890Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:58.130185Z", - "iopub.status.busy": "2024-08-22T00:56:58.129824Z", - "iopub.status.idle": "2024-08-22T00:56:58.133510Z", - "shell.execute_reply": "2024-08-22T00:56:58.132977Z" + "iopub.execute_input": "2024-08-26T15:54:26.753620Z", + "iopub.status.busy": "2024-08-26T15:54:26.753261Z", + "iopub.status.idle": "2024-08-26T15:54:26.756908Z", + "shell.execute_reply": "2024-08-26T15:54:26.756385Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'apple_pay_or_google_pay', 'cancel_transfer', 'change_pin', 'getting_spare_card', 'lost_or_stolen_phone', 'card_about_to_expire', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'visa_or_mastercard', 'beneficiary_not_allowed'}\n" + "Classes: {'card_about_to_expire', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'cancel_transfer', 'getting_spare_card', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'change_pin'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:58.135545Z", - "iopub.status.busy": "2024-08-22T00:56:58.135206Z", - "iopub.status.idle": "2024-08-22T00:56:58.138462Z", - "shell.execute_reply": "2024-08-22T00:56:58.137972Z" + "iopub.execute_input": "2024-08-26T15:54:26.758907Z", + "iopub.status.busy": "2024-08-26T15:54:26.758575Z", + "iopub.status.idle": "2024-08-26T15:54:26.761810Z", + "shell.execute_reply": "2024-08-26T15:54:26.761254Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:58.140590Z", - "iopub.status.busy": "2024-08-22T00:56:58.140150Z", - "iopub.status.idle": "2024-08-22T00:57:01.885153Z", - "shell.execute_reply": "2024-08-22T00:57:01.884564Z" + "iopub.execute_input": "2024-08-26T15:54:26.763957Z", + "iopub.status.busy": "2024-08-26T15:54:26.763625Z", + "iopub.status.idle": "2024-08-26T15:54:31.044703Z", + "shell.execute_reply": "2024-08-26T15:54:31.044116Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:01.887995Z", - "iopub.status.busy": "2024-08-22T00:57:01.887747Z", - "iopub.status.idle": "2024-08-22T00:57:02.799872Z", - "shell.execute_reply": "2024-08-22T00:57:02.799239Z" + "iopub.execute_input": "2024-08-26T15:54:31.047500Z", + "iopub.status.busy": "2024-08-26T15:54:31.047102Z", + "iopub.status.idle": "2024-08-26T15:54:31.975680Z", + "shell.execute_reply": "2024-08-26T15:54:31.975010Z" }, "scrolled": true }, @@ -451,10 +451,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:02.804010Z", - "iopub.status.busy": "2024-08-22T00:57:02.802938Z", - "iopub.status.idle": "2024-08-22T00:57:02.807481Z", - "shell.execute_reply": "2024-08-22T00:57:02.806905Z" + "iopub.execute_input": "2024-08-26T15:54:31.979040Z", + "iopub.status.busy": "2024-08-26T15:54:31.978560Z", + "iopub.status.idle": "2024-08-26T15:54:31.981693Z", + "shell.execute_reply": "2024-08-26T15:54:31.981174Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:02.811462Z", - "iopub.status.busy": "2024-08-22T00:57:02.810471Z", - "iopub.status.idle": "2024-08-22T00:57:04.948461Z", - "shell.execute_reply": "2024-08-22T00:57:04.947730Z" + "iopub.execute_input": "2024-08-26T15:54:31.985036Z", + "iopub.status.busy": "2024-08-26T15:54:31.984064Z", + "iopub.status.idle": "2024-08-26T15:54:34.095091Z", + "shell.execute_reply": "2024-08-26T15:54:34.094037Z" }, "scrolled": true }, @@ -521,10 +521,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:04.951766Z", - "iopub.status.busy": "2024-08-22T00:57:04.951163Z", - "iopub.status.idle": "2024-08-22T00:57:04.976106Z", - "shell.execute_reply": "2024-08-22T00:57:04.975579Z" + "iopub.execute_input": "2024-08-26T15:54:34.099316Z", + "iopub.status.busy": "2024-08-26T15:54:34.098088Z", + "iopub.status.idle": "2024-08-26T15:54:34.124948Z", + "shell.execute_reply": "2024-08-26T15:54:34.124391Z" }, "scrolled": true }, @@ -654,10 +654,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:04.978854Z", - "iopub.status.busy": "2024-08-22T00:57:04.978517Z", - "iopub.status.idle": "2024-08-22T00:57:04.987327Z", - "shell.execute_reply": "2024-08-22T00:57:04.986823Z" + "iopub.execute_input": "2024-08-26T15:54:34.128745Z", + "iopub.status.busy": "2024-08-26T15:54:34.127878Z", + "iopub.status.idle": "2024-08-26T15:54:34.137226Z", + "shell.execute_reply": "2024-08-26T15:54:34.136493Z" }, "scrolled": true }, @@ -767,10 +767,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:04.989402Z", - "iopub.status.busy": "2024-08-22T00:57:04.989118Z", - "iopub.status.idle": "2024-08-22T00:57:04.993679Z", - "shell.execute_reply": "2024-08-22T00:57:04.993169Z" + "iopub.execute_input": "2024-08-26T15:54:34.139822Z", + "iopub.status.busy": "2024-08-26T15:54:34.139392Z", + "iopub.status.idle": "2024-08-26T15:54:34.143990Z", + "shell.execute_reply": "2024-08-26T15:54:34.143494Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:04.995656Z", - "iopub.status.busy": "2024-08-22T00:57:04.995479Z", - "iopub.status.idle": "2024-08-22T00:57:05.002262Z", - "shell.execute_reply": "2024-08-22T00:57:05.001799Z" + "iopub.execute_input": "2024-08-26T15:54:34.146004Z", + "iopub.status.busy": "2024-08-26T15:54:34.145827Z", + "iopub.status.idle": "2024-08-26T15:54:34.152551Z", + "shell.execute_reply": "2024-08-26T15:54:34.152042Z" } }, "outputs": [ @@ -928,10 +928,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:05.004200Z", - "iopub.status.busy": "2024-08-22T00:57:05.004025Z", - "iopub.status.idle": "2024-08-22T00:57:05.010671Z", - "shell.execute_reply": "2024-08-22T00:57:05.010123Z" + "iopub.execute_input": "2024-08-26T15:54:34.154784Z", + "iopub.status.busy": "2024-08-26T15:54:34.154411Z", + "iopub.status.idle": "2024-08-26T15:54:34.162610Z", + "shell.execute_reply": "2024-08-26T15:54:34.162016Z" } }, "outputs": [ @@ -1014,10 +1014,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:05.012717Z", - "iopub.status.busy": "2024-08-22T00:57:05.012335Z", - "iopub.status.idle": "2024-08-22T00:57:05.018797Z", - "shell.execute_reply": "2024-08-22T00:57:05.018358Z" + "iopub.execute_input": "2024-08-26T15:54:34.165047Z", + "iopub.status.busy": "2024-08-26T15:54:34.164702Z", + "iopub.status.idle": "2024-08-26T15:54:34.170937Z", + "shell.execute_reply": "2024-08-26T15:54:34.170346Z" } }, "outputs": [ @@ -1125,10 +1125,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:05.020882Z", - "iopub.status.busy": "2024-08-22T00:57:05.020549Z", - "iopub.status.idle": "2024-08-22T00:57:05.028951Z", - "shell.execute_reply": "2024-08-22T00:57:05.028508Z" + "iopub.execute_input": "2024-08-26T15:54:34.173239Z", + "iopub.status.busy": "2024-08-26T15:54:34.172892Z", + "iopub.status.idle": "2024-08-26T15:54:34.181824Z", + "shell.execute_reply": "2024-08-26T15:54:34.181227Z" } }, "outputs": [ @@ -1239,10 +1239,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:05.030993Z", - "iopub.status.busy": "2024-08-22T00:57:05.030659Z", - "iopub.status.idle": "2024-08-22T00:57:05.036066Z", - "shell.execute_reply": "2024-08-22T00:57:05.035504Z" + "iopub.execute_input": "2024-08-26T15:54:34.184176Z", + "iopub.status.busy": "2024-08-26T15:54:34.183819Z", + "iopub.status.idle": "2024-08-26T15:54:34.189592Z", + "shell.execute_reply": "2024-08-26T15:54:34.189013Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:05.038001Z", - "iopub.status.busy": "2024-08-22T00:57:05.037830Z", - "iopub.status.idle": "2024-08-22T00:57:05.043442Z", - "shell.execute_reply": "2024-08-22T00:57:05.042966Z" + "iopub.execute_input": "2024-08-26T15:54:34.191826Z", + "iopub.status.busy": "2024-08-26T15:54:34.191485Z", + "iopub.status.idle": "2024-08-26T15:54:34.197135Z", + "shell.execute_reply": "2024-08-26T15:54:34.196593Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:05.045468Z", - "iopub.status.busy": "2024-08-22T00:57:05.045166Z", - "iopub.status.idle": "2024-08-22T00:57:05.048897Z", - "shell.execute_reply": "2024-08-22T00:57:05.048347Z" + "iopub.execute_input": "2024-08-26T15:54:34.199323Z", + "iopub.status.busy": "2024-08-26T15:54:34.198999Z", + "iopub.status.idle": "2024-08-26T15:54:34.202390Z", + "shell.execute_reply": "2024-08-26T15:54:34.201850Z" } }, "outputs": [ @@ -1449,10 +1449,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:05.051276Z", - "iopub.status.busy": "2024-08-22T00:57:05.051099Z", - "iopub.status.idle": "2024-08-22T00:57:05.056717Z", - "shell.execute_reply": "2024-08-22T00:57:05.056235Z" + "iopub.execute_input": "2024-08-26T15:54:34.204586Z", + "iopub.status.busy": "2024-08-26T15:54:34.204241Z", + "iopub.status.idle": "2024-08-26T15:54:34.209327Z", + "shell.execute_reply": "2024-08-26T15:54:34.208871Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb index 2e6f36c7e..31cb3f500 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:08.552752Z", - "iopub.status.busy": "2024-08-22T00:57:08.552396Z", - "iopub.status.idle": "2024-08-22T00:57:09.015480Z", - "shell.execute_reply": "2024-08-22T00:57:09.014945Z" + "iopub.execute_input": "2024-08-26T15:54:38.759112Z", + "iopub.status.busy": "2024-08-26T15:54:38.758919Z", + "iopub.status.idle": "2024-08-26T15:54:39.215433Z", + "shell.execute_reply": "2024-08-26T15:54:39.214907Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:09.018312Z", - "iopub.status.busy": "2024-08-22T00:57:09.017879Z", - "iopub.status.idle": "2024-08-22T00:57:09.154597Z", - "shell.execute_reply": "2024-08-22T00:57:09.153983Z" + "iopub.execute_input": "2024-08-26T15:54:39.218396Z", + "iopub.status.busy": "2024-08-26T15:54:39.217877Z", + "iopub.status.idle": "2024-08-26T15:54:39.353724Z", + "shell.execute_reply": "2024-08-26T15:54:39.353143Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:09.157111Z", - "iopub.status.busy": "2024-08-22T00:57:09.156655Z", - "iopub.status.idle": "2024-08-22T00:57:09.181702Z", - "shell.execute_reply": "2024-08-22T00:57:09.181049Z" + "iopub.execute_input": "2024-08-26T15:54:39.356009Z", + "iopub.status.busy": "2024-08-26T15:54:39.355760Z", + "iopub.status.idle": "2024-08-26T15:54:39.380390Z", + "shell.execute_reply": "2024-08-26T15:54:39.379777Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:09.184533Z", - "iopub.status.busy": "2024-08-22T00:57:09.184042Z", - "iopub.status.idle": "2024-08-22T00:57:12.220771Z", - "shell.execute_reply": "2024-08-22T00:57:12.220164Z" + "iopub.execute_input": "2024-08-26T15:54:39.383260Z", + "iopub.status.busy": "2024-08-26T15:54:39.382742Z", + "iopub.status.idle": "2024-08-26T15:54:42.387338Z", + "shell.execute_reply": "2024-08-26T15:54:42.386595Z" } }, "outputs": [ @@ -280,7 +280,7 @@ " \n", " 2\n", " outlier\n", - " 0.356924\n", + " 0.356925\n", " 363\n", " \n", " \n", @@ -315,7 +315,7 @@ " issue_type score num_issues\n", "0 null 1.000000 0\n", "1 label 0.991400 52\n", - "2 outlier 0.356924 363\n", + "2 outlier 0.356925 363\n", "3 near_duplicate 0.619581 108\n", "4 non_iid 0.000000 1\n", "5 class_imbalance 0.500000 0\n", @@ -700,10 +700,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:12.223473Z", - "iopub.status.busy": "2024-08-22T00:57:12.222960Z", - "iopub.status.idle": "2024-08-22T00:57:21.154904Z", - "shell.execute_reply": "2024-08-22T00:57:21.154272Z" + "iopub.execute_input": "2024-08-26T15:54:42.390104Z", + "iopub.status.busy": "2024-08-26T15:54:42.389566Z", + "iopub.status.idle": "2024-08-26T15:54:52.329674Z", + "shell.execute_reply": "2024-08-26T15:54:52.329133Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:21.157242Z", - "iopub.status.busy": "2024-08-22T00:57:21.156891Z", - "iopub.status.idle": "2024-08-22T00:57:21.363080Z", - "shell.execute_reply": "2024-08-22T00:57:21.362373Z" + "iopub.execute_input": "2024-08-26T15:54:52.332096Z", + "iopub.status.busy": "2024-08-26T15:54:52.331674Z", + "iopub.status.idle": "2024-08-26T15:54:52.493633Z", + "shell.execute_reply": "2024-08-26T15:54:52.492929Z" } }, "outputs": [], @@ -838,10 +838,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:21.365791Z", - "iopub.status.busy": "2024-08-22T00:57:21.365550Z", - "iopub.status.idle": "2024-08-22T00:57:22.855359Z", - "shell.execute_reply": "2024-08-22T00:57:22.854735Z" + "iopub.execute_input": "2024-08-26T15:54:52.496177Z", + "iopub.status.busy": "2024-08-26T15:54:52.495969Z", + "iopub.status.idle": "2024-08-26T15:54:53.925137Z", + "shell.execute_reply": "2024-08-26T15:54:53.924517Z" } }, "outputs": [ @@ -1000,10 +1000,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:22.857827Z", - "iopub.status.busy": "2024-08-22T00:57:22.857613Z", - "iopub.status.idle": "2024-08-22T00:57:23.341356Z", - "shell.execute_reply": "2024-08-22T00:57:23.340744Z" + "iopub.execute_input": "2024-08-26T15:54:53.927691Z", + "iopub.status.busy": "2024-08-26T15:54:53.927274Z", + "iopub.status.idle": "2024-08-26T15:54:54.361405Z", + "shell.execute_reply": "2024-08-26T15:54:54.360761Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:23.343684Z", - "iopub.status.busy": "2024-08-22T00:57:23.343318Z", - "iopub.status.idle": "2024-08-22T00:57:23.356820Z", - "shell.execute_reply": "2024-08-22T00:57:23.356358Z" + "iopub.execute_input": "2024-08-26T15:54:54.364105Z", + "iopub.status.busy": "2024-08-26T15:54:54.363404Z", + "iopub.status.idle": "2024-08-26T15:54:54.377500Z", + "shell.execute_reply": "2024-08-26T15:54:54.377021Z" } }, "outputs": [], @@ -1115,10 +1115,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:23.358798Z", - "iopub.status.busy": "2024-08-22T00:57:23.358621Z", - "iopub.status.idle": "2024-08-22T00:57:23.378103Z", - "shell.execute_reply": "2024-08-22T00:57:23.377664Z" + "iopub.execute_input": "2024-08-26T15:54:54.379842Z", + "iopub.status.busy": "2024-08-26T15:54:54.379476Z", + "iopub.status.idle": "2024-08-26T15:54:54.398245Z", + "shell.execute_reply": "2024-08-26T15:54:54.397742Z" } }, "outputs": [], @@ -1146,10 +1146,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:23.380254Z", - "iopub.status.busy": "2024-08-22T00:57:23.379926Z", - "iopub.status.idle": "2024-08-22T00:57:23.608651Z", - "shell.execute_reply": "2024-08-22T00:57:23.608075Z" + "iopub.execute_input": "2024-08-26T15:54:54.400658Z", + "iopub.status.busy": "2024-08-26T15:54:54.400452Z", + "iopub.status.idle": "2024-08-26T15:54:54.629761Z", + "shell.execute_reply": "2024-08-26T15:54:54.629093Z" } }, "outputs": [], @@ -1189,10 +1189,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:23.611458Z", - "iopub.status.busy": "2024-08-22T00:57:23.611251Z", - "iopub.status.idle": "2024-08-22T00:57:23.631205Z", - "shell.execute_reply": "2024-08-22T00:57:23.630723Z" + "iopub.execute_input": "2024-08-26T15:54:54.632497Z", + "iopub.status.busy": "2024-08-26T15:54:54.632295Z", + "iopub.status.idle": "2024-08-26T15:54:54.651943Z", + "shell.execute_reply": "2024-08-26T15:54:54.651403Z" } }, "outputs": [ @@ -1390,10 +1390,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:23.633400Z", - "iopub.status.busy": "2024-08-22T00:57:23.633036Z", - "iopub.status.idle": "2024-08-22T00:57:23.804756Z", - "shell.execute_reply": "2024-08-22T00:57:23.804163Z" + "iopub.execute_input": "2024-08-26T15:54:54.654296Z", + "iopub.status.busy": "2024-08-26T15:54:54.653851Z", + "iopub.status.idle": "2024-08-26T15:54:54.833100Z", + "shell.execute_reply": "2024-08-26T15:54:54.832491Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:23.807322Z", - "iopub.status.busy": "2024-08-22T00:57:23.806951Z", - "iopub.status.idle": "2024-08-22T00:57:23.817201Z", - "shell.execute_reply": "2024-08-22T00:57:23.816718Z" + "iopub.execute_input": "2024-08-26T15:54:54.835717Z", + "iopub.status.busy": "2024-08-26T15:54:54.835357Z", + "iopub.status.idle": "2024-08-26T15:54:54.846192Z", + "shell.execute_reply": "2024-08-26T15:54:54.845635Z" } }, "outputs": [ @@ -1729,10 +1729,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:23.819374Z", - "iopub.status.busy": "2024-08-22T00:57:23.819012Z", - "iopub.status.idle": "2024-08-22T00:57:23.828743Z", - "shell.execute_reply": "2024-08-22T00:57:23.828166Z" + "iopub.execute_input": "2024-08-26T15:54:54.848487Z", + "iopub.status.busy": "2024-08-26T15:54:54.848109Z", + "iopub.status.idle": "2024-08-26T15:54:54.858309Z", + "shell.execute_reply": "2024-08-26T15:54:54.857736Z" } }, "outputs": [ @@ -1919,10 +1919,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:23.830994Z", - "iopub.status.busy": "2024-08-22T00:57:23.830649Z", - "iopub.status.idle": "2024-08-22T00:57:23.857348Z", - "shell.execute_reply": "2024-08-22T00:57:23.856773Z" + "iopub.execute_input": "2024-08-26T15:54:54.860474Z", + "iopub.status.busy": "2024-08-26T15:54:54.860145Z", + "iopub.status.idle": "2024-08-26T15:54:54.891303Z", + "shell.execute_reply": "2024-08-26T15:54:54.890732Z" } }, "outputs": [], @@ -1956,10 +1956,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:23.860407Z", - "iopub.status.busy": "2024-08-22T00:57:23.859964Z", - "iopub.status.idle": "2024-08-22T00:57:23.863259Z", - "shell.execute_reply": "2024-08-22T00:57:23.862696Z" + "iopub.execute_input": "2024-08-26T15:54:54.893833Z", + "iopub.status.busy": "2024-08-26T15:54:54.893622Z", + "iopub.status.idle": "2024-08-26T15:54:54.896886Z", + "shell.execute_reply": "2024-08-26T15:54:54.896321Z" } }, "outputs": [], @@ -1981,10 +1981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:23.865478Z", - "iopub.status.busy": "2024-08-22T00:57:23.865293Z", - "iopub.status.idle": "2024-08-22T00:57:23.885677Z", - "shell.execute_reply": "2024-08-22T00:57:23.885083Z" + "iopub.execute_input": "2024-08-26T15:54:54.899294Z", + "iopub.status.busy": "2024-08-26T15:54:54.899092Z", + "iopub.status.idle": "2024-08-26T15:54:54.921704Z", + "shell.execute_reply": "2024-08-26T15:54:54.921193Z" } }, "outputs": [ @@ -2142,10 +2142,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:23.888629Z", - "iopub.status.busy": "2024-08-22T00:57:23.888280Z", - "iopub.status.idle": "2024-08-22T00:57:23.892641Z", - "shell.execute_reply": "2024-08-22T00:57:23.892169Z" + "iopub.execute_input": "2024-08-26T15:54:54.924185Z", + "iopub.status.busy": "2024-08-26T15:54:54.923777Z", + "iopub.status.idle": "2024-08-26T15:54:54.928341Z", + "shell.execute_reply": "2024-08-26T15:54:54.927835Z" } }, "outputs": [], @@ -2178,10 +2178,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:23.894750Z", - "iopub.status.busy": "2024-08-22T00:57:23.894415Z", - "iopub.status.idle": "2024-08-22T00:57:23.923311Z", - "shell.execute_reply": "2024-08-22T00:57:23.922785Z" + "iopub.execute_input": "2024-08-26T15:54:54.930649Z", + "iopub.status.busy": "2024-08-26T15:54:54.930228Z", + "iopub.status.idle": "2024-08-26T15:54:54.960760Z", + "shell.execute_reply": "2024-08-26T15:54:54.960179Z" } }, "outputs": [ @@ -2327,10 +2327,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:23.925499Z", - "iopub.status.busy": "2024-08-22T00:57:23.925147Z", - "iopub.status.idle": "2024-08-22T00:57:24.309600Z", - "shell.execute_reply": "2024-08-22T00:57:24.309049Z" + "iopub.execute_input": "2024-08-26T15:54:54.962902Z", + "iopub.status.busy": "2024-08-26T15:54:54.962733Z", + "iopub.status.idle": "2024-08-26T15:54:55.346958Z", + "shell.execute_reply": "2024-08-26T15:54:55.346287Z" } }, "outputs": [ @@ -2397,10 +2397,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:24.311934Z", - "iopub.status.busy": "2024-08-22T00:57:24.311593Z", - "iopub.status.idle": "2024-08-22T00:57:24.314942Z", - "shell.execute_reply": "2024-08-22T00:57:24.314390Z" + "iopub.execute_input": "2024-08-26T15:54:55.349542Z", + "iopub.status.busy": "2024-08-26T15:54:55.349079Z", + "iopub.status.idle": "2024-08-26T15:54:55.352764Z", + "shell.execute_reply": "2024-08-26T15:54:55.352277Z" } }, "outputs": [ @@ -2451,10 +2451,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:24.317274Z", - "iopub.status.busy": "2024-08-22T00:57:24.316942Z", - "iopub.status.idle": "2024-08-22T00:57:24.331106Z", - "shell.execute_reply": "2024-08-22T00:57:24.330596Z" + "iopub.execute_input": "2024-08-26T15:54:55.354939Z", + "iopub.status.busy": "2024-08-26T15:54:55.354758Z", + "iopub.status.idle": "2024-08-26T15:54:55.368773Z", + "shell.execute_reply": "2024-08-26T15:54:55.368258Z" } }, "outputs": [ @@ -2733,10 +2733,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:24.333341Z", - "iopub.status.busy": "2024-08-22T00:57:24.332974Z", - "iopub.status.idle": "2024-08-22T00:57:24.347015Z", - "shell.execute_reply": "2024-08-22T00:57:24.346532Z" + "iopub.execute_input": "2024-08-26T15:54:55.370932Z", + "iopub.status.busy": "2024-08-26T15:54:55.370737Z", + "iopub.status.idle": "2024-08-26T15:54:55.384935Z", + "shell.execute_reply": "2024-08-26T15:54:55.384436Z" } }, "outputs": [ @@ -3003,10 +3003,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:24.349201Z", - "iopub.status.busy": "2024-08-22T00:57:24.348850Z", - "iopub.status.idle": "2024-08-22T00:57:24.359903Z", - "shell.execute_reply": "2024-08-22T00:57:24.359406Z" + "iopub.execute_input": "2024-08-26T15:54:55.386984Z", + "iopub.status.busy": "2024-08-26T15:54:55.386797Z", + "iopub.status.idle": "2024-08-26T15:54:55.397034Z", + "shell.execute_reply": "2024-08-26T15:54:55.396567Z" } }, "outputs": [], @@ -3031,10 +3031,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:24.362462Z", - "iopub.status.busy": "2024-08-22T00:57:24.362163Z", - "iopub.status.idle": "2024-08-22T00:57:24.375096Z", - "shell.execute_reply": "2024-08-22T00:57:24.374500Z" + "iopub.execute_input": "2024-08-26T15:54:55.399330Z", + "iopub.status.busy": "2024-08-26T15:54:55.398981Z", + "iopub.status.idle": "2024-08-26T15:54:55.411666Z", + "shell.execute_reply": "2024-08-26T15:54:55.411018Z" } }, "outputs": [ @@ -3206,10 +3206,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:24.377351Z", - "iopub.status.busy": "2024-08-22T00:57:24.377002Z", - "iopub.status.idle": "2024-08-22T00:57:24.381071Z", - "shell.execute_reply": "2024-08-22T00:57:24.380500Z" + "iopub.execute_input": "2024-08-26T15:54:55.413957Z", + "iopub.status.busy": "2024-08-26T15:54:55.413597Z", + "iopub.status.idle": "2024-08-26T15:54:55.417808Z", + "shell.execute_reply": "2024-08-26T15:54:55.417214Z" } }, "outputs": [], @@ -3241,10 +3241,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:24.383319Z", - "iopub.status.busy": "2024-08-22T00:57:24.382875Z", - "iopub.status.idle": "2024-08-22T00:57:24.435195Z", - "shell.execute_reply": "2024-08-22T00:57:24.434603Z" + "iopub.execute_input": "2024-08-26T15:54:55.419969Z", + "iopub.status.busy": "2024-08-26T15:54:55.419603Z", + "iopub.status.idle": "2024-08-26T15:54:55.473799Z", + "shell.execute_reply": "2024-08-26T15:54:55.473155Z" } }, "outputs": [ @@ -3252,230 +3252,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3551,10 +3551,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:24.437908Z", - "iopub.status.busy": "2024-08-22T00:57:24.437346Z", - "iopub.status.idle": "2024-08-22T00:57:24.443555Z", - "shell.execute_reply": "2024-08-22T00:57:24.443082Z" + "iopub.execute_input": "2024-08-26T15:54:55.476497Z", + "iopub.status.busy": "2024-08-26T15:54:55.476108Z", + "iopub.status.idle": "2024-08-26T15:54:55.482513Z", + "shell.execute_reply": "2024-08-26T15:54:55.482004Z" } }, "outputs": [], @@ -3593,10 +3593,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:24.445686Z", - "iopub.status.busy": "2024-08-22T00:57:24.445322Z", - "iopub.status.idle": "2024-08-22T00:57:24.456680Z", - "shell.execute_reply": "2024-08-22T00:57:24.456188Z" + "iopub.execute_input": "2024-08-26T15:54:55.484790Z", + "iopub.status.busy": "2024-08-26T15:54:55.484410Z", + "iopub.status.idle": "2024-08-26T15:54:55.496714Z", + "shell.execute_reply": "2024-08-26T15:54:55.496092Z" } }, "outputs": [ @@ -3632,10 +3632,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:24.458920Z", - "iopub.status.busy": "2024-08-22T00:57:24.458567Z", - "iopub.status.idle": "2024-08-22T00:57:24.681445Z", - "shell.execute_reply": "2024-08-22T00:57:24.680763Z" + "iopub.execute_input": "2024-08-26T15:54:55.499254Z", + "iopub.status.busy": "2024-08-26T15:54:55.498866Z", + "iopub.status.idle": "2024-08-26T15:54:55.724139Z", + "shell.execute_reply": "2024-08-26T15:54:55.723536Z" } }, "outputs": [ @@ -3687,10 +3687,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:24.683976Z", - "iopub.status.busy": "2024-08-22T00:57:24.683547Z", - "iopub.status.idle": "2024-08-22T00:57:24.692160Z", - "shell.execute_reply": "2024-08-22T00:57:24.691539Z" + "iopub.execute_input": "2024-08-26T15:54:55.726595Z", + "iopub.status.busy": "2024-08-26T15:54:55.726210Z", + "iopub.status.idle": "2024-08-26T15:54:55.734094Z", + "shell.execute_reply": "2024-08-26T15:54:55.733584Z" }, "nbsphinx": "hidden" }, @@ -3756,10 +3756,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:24.694700Z", - "iopub.status.busy": "2024-08-22T00:57:24.694312Z", - "iopub.status.idle": "2024-08-22T00:57:25.112377Z", - "shell.execute_reply": "2024-08-22T00:57:25.111678Z" + "iopub.execute_input": "2024-08-26T15:54:55.736292Z", + "iopub.status.busy": "2024-08-26T15:54:55.736100Z", + "iopub.status.idle": "2024-08-26T15:54:56.057866Z", + "shell.execute_reply": "2024-08-26T15:54:56.057124Z" } }, "outputs": [ @@ -3767,25 +3767,18 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-22 00:57:24-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", + "--2024-08-26 15:54:55-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.110.153, 185.199.109.153, ...\r\n", "Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.111.153|:443... connected.\r\n", - "HTTP request sent, awaiting response... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "200 OK\r\n", + "HTTP request sent, awaiting response... 200 OK\r\n", "Length: 986707 (964K) [application/zip]\r\n", "Saving to: ‘CIFAR-10-subset.zip’\r\n", "\r\n", "\r", "CIFAR-10-subset.zip 0%[ ] 0 --.-KB/s \r", - "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.02s \r\n", + "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.006s \r\n", "\r\n", - "2024-08-22 00:57:24 (37.7 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", + "2024-08-26 15:54:55 (154 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", "\r\n" ] } @@ -3801,10 +3794,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:25.115507Z", - "iopub.status.busy": "2024-08-22T00:57:25.115008Z", - "iopub.status.idle": "2024-08-22T00:57:27.138869Z", - "shell.execute_reply": "2024-08-22T00:57:27.138280Z" + "iopub.execute_input": "2024-08-26T15:54:56.060997Z", + "iopub.status.busy": "2024-08-26T15:54:56.060557Z", + "iopub.status.idle": "2024-08-26T15:54:58.138446Z", + "shell.execute_reply": "2024-08-26T15:54:58.137906Z" } }, "outputs": [], @@ -3850,10 +3843,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:27.141857Z", - "iopub.status.busy": "2024-08-22T00:57:27.141260Z", - "iopub.status.idle": "2024-08-22T00:57:27.765103Z", - "shell.execute_reply": "2024-08-22T00:57:27.764413Z" + "iopub.execute_input": "2024-08-26T15:54:58.141238Z", + "iopub.status.busy": "2024-08-26T15:54:58.140850Z", + "iopub.status.idle": "2024-08-26T15:54:58.752163Z", + "shell.execute_reply": "2024-08-26T15:54:58.751466Z" } }, "outputs": [ @@ -3868,7 +3861,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "956932deee7a46fab98d8e5c3d3191d9", + "model_id": "63dbd4115b6c44af98b9c5935a224c07", "version_major": 2, "version_minor": 0 }, @@ -3898,9 +3891,9 @@ "\n", "\n", "\n", - "Here is a summary of spurious correlations between image features (like 'dark_score', 'blurry_score', etc.) and class labels detected in the data.\n", + "Summary of (potentially spurious) correlations between image properties and class labels detected in the data:\n", "\n", - "A lower score implies a higher likelihood of a spurious correlation between that property and the class labels.\n", + "Lower scores below correspond to images properties that are more strongly correlated with the class labels.\n", "\n", "\n", " property score\n", @@ -3989,10 +3982,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:27.768310Z", - "iopub.status.busy": "2024-08-22T00:57:27.767934Z", - "iopub.status.idle": "2024-08-22T00:57:27.781848Z", - "shell.execute_reply": "2024-08-22T00:57:27.781267Z" + "iopub.execute_input": "2024-08-26T15:54:58.755525Z", + "iopub.status.busy": "2024-08-26T15:54:58.754971Z", + "iopub.status.idle": "2024-08-26T15:54:58.770115Z", + "shell.execute_reply": "2024-08-26T15:54:58.769480Z" } }, "outputs": [ @@ -4111,35 +4104,35 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 0\n", - " 0.237196\n", " True\n", + " 0.237196\n", " \n", " \n", " 1\n", - " 0.197229\n", " True\n", + " 0.197229\n", " \n", " \n", " 2\n", - " 0.254188\n", " True\n", + " 0.254188\n", " \n", " \n", " 3\n", - " 0.229170\n", " True\n", + " 0.229170\n", " \n", " \n", " 4\n", - " 0.208907\n", " True\n", + " 0.208907\n", " \n", " \n", " ...\n", @@ -4148,28 +4141,28 @@ " \n", " \n", " 195\n", - " 0.793840\n", " False\n", + " 0.793840\n", " \n", " \n", " 196\n", - " 1.000000\n", " False\n", + " 1.000000\n", " \n", " \n", " 197\n", - " 0.971560\n", " False\n", + " 0.971560\n", " \n", " \n", " 198\n", - " 0.862236\n", " False\n", + " 0.862236\n", " \n", " \n", " 199\n", - " 0.973533\n", " False\n", + " 0.973533\n", " \n", " \n", "\n", @@ -4177,18 +4170,18 @@ "" ], "text/plain": [ - " dark_score is_dark_issue\n", - "0 0.237196 True\n", - "1 0.197229 True\n", - "2 0.254188 True\n", - "3 0.229170 True\n", - "4 0.208907 True\n", - ".. ... ...\n", - "195 0.793840 False\n", - "196 1.000000 False\n", - "197 0.971560 False\n", - "198 0.862236 False\n", - "199 0.973533 False\n", + " is_dark_issue dark_score\n", + "0 True 0.237196\n", + "1 True 0.197229\n", + "2 True 0.254188\n", + "3 True 0.229170\n", + "4 True 0.208907\n", + ".. ... ...\n", + "195 False 0.793840\n", + "196 False 1.000000\n", + "197 False 0.971560\n", + "198 False 0.862236\n", + "199 False 0.973533\n", "\n", "[200 rows x 2 columns]" ] @@ -4238,10 +4231,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:27.784459Z", - "iopub.status.busy": "2024-08-22T00:57:27.784121Z", - "iopub.status.idle": "2024-08-22T00:57:27.939335Z", - "shell.execute_reply": "2024-08-22T00:57:27.938685Z" + "iopub.execute_input": "2024-08-26T15:54:58.772597Z", + "iopub.status.busy": "2024-08-26T15:54:58.772400Z", + "iopub.status.idle": "2024-08-26T15:54:58.895082Z", + "shell.execute_reply": "2024-08-26T15:54:58.894419Z" } }, "outputs": [ @@ -4306,10 +4299,10 @@ "execution_count": 38, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:27.941722Z", - "iopub.status.busy": "2024-08-22T00:57:27.941332Z", - "iopub.status.idle": "2024-08-22T00:57:28.481913Z", - "shell.execute_reply": "2024-08-22T00:57:28.481228Z" + "iopub.execute_input": "2024-08-26T15:54:58.897672Z", + "iopub.status.busy": "2024-08-26T15:54:58.897456Z", + "iopub.status.idle": "2024-08-26T15:54:59.422521Z", + "shell.execute_reply": "2024-08-26T15:54:59.421729Z" }, "nbsphinx": "hidden" }, @@ -4325,7 +4318,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e1883294f8d6467ead1995ceec05c4a3", + "model_id": "b55b762924964f2b825d874228965ad4", "version_major": 2, "version_minor": 0 }, @@ -4454,35 +4447,35 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 0\n", - " 0.797509\n", " False\n", + " 0.797509\n", " \n", " \n", " 1\n", - " 0.663760\n", " False\n", + " 0.663760\n", " \n", " \n", " 2\n", - " 0.849826\n", " False\n", + " 0.849826\n", " \n", " \n", " 3\n", - " 0.773951\n", " False\n", + " 0.773951\n", " \n", " \n", " 4\n", - " 0.699518\n", " False\n", + " 0.699518\n", " \n", " \n", " ...\n", @@ -4491,28 +4484,28 @@ " \n", " \n", " 195\n", - " 0.793840\n", " False\n", + " 0.793840\n", " \n", " \n", " 196\n", - " 1.000000\n", " False\n", + " 1.000000\n", " \n", " \n", " 197\n", - " 0.971560\n", " False\n", + " 0.971560\n", " \n", " \n", " 198\n", - " 0.862236\n", " False\n", + " 0.862236\n", " \n", " \n", " 199\n", - " 0.973533\n", " False\n", + " 0.973533\n", " \n", " \n", "\n", @@ -4520,18 +4513,18 @@ "" ], "text/plain": [ - " dark_score is_dark_issue\n", - "0 0.797509 False\n", - "1 0.663760 False\n", - "2 0.849826 False\n", - "3 0.773951 False\n", - "4 0.699518 False\n", - ".. ... ...\n", - "195 0.793840 False\n", - "196 1.000000 False\n", - "197 0.971560 False\n", - "198 0.862236 False\n", - "199 0.973533 False\n", + " is_dark_issue dark_score\n", + "0 False 0.797509\n", + "1 False 0.663760\n", + "2 False 0.849826\n", + "3 False 0.773951\n", + "4 False 0.699518\n", + ".. ... ...\n", + "195 False 0.793840\n", + "196 False 1.000000\n", + "197 False 0.971560\n", + "198 False 0.862236\n", + "199 False 0.973533\n", "\n", "[200 rows x 2 columns]" ] @@ -4579,10 +4572,10 @@ "execution_count": 39, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:28.484439Z", - "iopub.status.busy": "2024-08-22T00:57:28.484130Z", - "iopub.status.idle": "2024-08-22T00:57:28.636445Z", - "shell.execute_reply": "2024-08-22T00:57:28.635804Z" + "iopub.execute_input": "2024-08-26T15:54:59.425974Z", + "iopub.status.busy": "2024-08-26T15:54:59.425433Z", + "iopub.status.idle": "2024-08-26T15:54:59.582023Z", + "shell.execute_reply": "2024-08-26T15:54:59.581243Z" }, "nbsphinx": "hidden" }, @@ -4634,67 +4627,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "032f1aeeab5943faadafcbc8e85ce7b5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1cb1c86103ea4d50bec64ac4eaf22a12": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1d5e82031ccb48e286211ea9c7858fe8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5fe18b924ca04e90bbb4e0b1977654ff", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_032f1aeeab5943faadafcbc8e85ce7b5", - "tabbable": null, - "tooltip": null, - "value": 200.0 - } - }, - "2390b9239afe4c849f9314439ebffa71": { + "031221d4552242de82a8d6939c285e86": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4747,60 +4680,30 @@ "width": null } }, - "28b78dfff3ae405e97e92600c8ff94b3": { - "model_module": "@jupyter-widgets/base", + "0386df784eda450ba40b983fcae38725": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fefe95cb553540c3994456b477c2fb5f", + "placeholder": "​", + "style": "IPY_MODEL_d42e5e4fe59048ad8dfe2cb418b83969", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "509b6e0ba9a748409997201650434d82": { + "3064a08da676433a85c99d01070354cd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4815,15 +4718,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2390b9239afe4c849f9314439ebffa71", + "layout": "IPY_MODEL_84f86748a7e84b4bbb8e32a900b8a63e", "placeholder": "​", - "style": "IPY_MODEL_cdb6bab18bd84cbfb9e498238c1c7da7", + "style": "IPY_MODEL_54472803299340ed90898ae4a015b484", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 200/200 [00:00<00:00, 691.59it/s]" + } + }, + "41aeb9b2c3df4a2599a18579e42e4dc9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "55f2dec409614b83902c1d83b9f0c4ca": { + "44b903d5acd1475d885219d5ec3f09d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4876,7 +4797,7 @@ "width": null } }, - "5ab9b00cf6984495b785a1da43260bfe": { + "4f38e0a5bc5f4ded9cf3eceb2d703d97": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4929,7 +4850,25 @@ "width": null } }, - "5fe18b924ca04e90bbb4e0b1977654ff": { + "54472803299340ed90898ae4a015b484": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "61c56e7ec1114450b4ef18775fd912ac": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4982,69 +4921,83 @@ "width": null } }, - "649a009746294881abe73b65fc954131": { + "63dbd4115b6c44af98b9c5935a224c07": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a174759956c34ad8a5ffb199db4dd131", - "placeholder": "​", - "style": "IPY_MODEL_1cb1c86103ea4d50bec64ac4eaf22a12", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c198bfac238c45c78af9310d7da235f8", + "IPY_MODEL_81ddd7e821164aaeb9ec368f6e04be05", + "IPY_MODEL_90ab6f703998499dbd5894f3bb139415" + ], + "layout": "IPY_MODEL_bb45198d12cc4ed38bf999a04af95957", "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 663.29it/s]" + "tooltip": null } }, - "686071a6de7d4274ae6b9248a106c352": { + "64d272c54f184fbbbd4f30efdac1f499": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ece1e0931b894627a03fc03dc266e3cb", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b402c802ab0a467bb5f7a66e0531d41a", + "tabbable": null, + "tooltip": null, + "value": 200.0 } }, - "71d397819d40429793cd60c735b2fd07": { + "81ddd7e821164aaeb9ec368f6e04be05": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f4b71d25b3e34c45850e29b36d495607", - "placeholder": "​", - "style": "IPY_MODEL_fd5c99353282432082809931354d911d", + "layout": "IPY_MODEL_44b903d5acd1475d885219d5ec3f09d9", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_89f40cd49e5d4715b11046823db4e398", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 200.0 } }, - "91433088b7304691bc9fff54050c3750": { + "84f86748a7e84b4bbb8e32a900b8a63e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5097,7 +5050,62 @@ "width": null } }, - "956932deee7a46fab98d8e5c3d3191d9": { + "89f40cd49e5d4715b11046823db4e398": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "90ab6f703998499dbd5894f3bb139415": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_61c56e7ec1114450b4ef18775fd912ac", + "placeholder": "​", + "style": "IPY_MODEL_41aeb9b2c3df4a2599a18579e42e4dc9", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 755.19it/s]" + } + }, + "b402c802ab0a467bb5f7a66e0531d41a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b55b762924964f2b825d874228965ad4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -5112,16 +5120,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_509b6e0ba9a748409997201650434d82", - "IPY_MODEL_e2adb0f9efec4f7cbe2b7f27ee6f2c27", - "IPY_MODEL_dc17e63d85a845589bc5e4072307c7cb" + "IPY_MODEL_0386df784eda450ba40b983fcae38725", + "IPY_MODEL_64d272c54f184fbbbd4f30efdac1f499", + "IPY_MODEL_3064a08da676433a85c99d01070354cd" ], - "layout": "IPY_MODEL_91433088b7304691bc9fff54050c3750", + "layout": "IPY_MODEL_4f38e0a5bc5f4ded9cf3eceb2d703d97", "tabbable": null, "tooltip": null } }, - "a174759956c34ad8a5ffb199db4dd131": { + "bb45198d12cc4ed38bf999a04af95957": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5174,43 +5182,7 @@ "width": null } }, - "cdb6bab18bd84cbfb9e498238c1c7da7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "cfb3ec4a495e4a3588e7e8e0ad1b27e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "dc17e63d85a845589bc5e4072307c7cb": { + "c198bfac238c45c78af9310d7da235f8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5225,65 +5197,51 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_55f2dec409614b83902c1d83b9f0c4ca", + "layout": "IPY_MODEL_031221d4552242de82a8d6939c285e86", "placeholder": "​", - "style": "IPY_MODEL_cfb3ec4a495e4a3588e7e8e0ad1b27e6", + "style": "IPY_MODEL_dba0c94b68874339b52fdcf44f5a0a9c", "tabbable": null, "tooltip": null, - "value": " 200/200 [00:00<00:00, 725.62it/s]" + "value": "100%" } }, - "e1883294f8d6467ead1995ceec05c4a3": { + "d42e5e4fe59048ad8dfe2cb418b83969": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_71d397819d40429793cd60c735b2fd07", - "IPY_MODEL_1d5e82031ccb48e286211ea9c7858fe8", - "IPY_MODEL_649a009746294881abe73b65fc954131" - ], - "layout": "IPY_MODEL_28b78dfff3ae405e97e92600c8ff94b3", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e2adb0f9efec4f7cbe2b7f27ee6f2c27": { + "dba0c94b68874339b52fdcf44f5a0a9c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5ab9b00cf6984495b785a1da43260bfe", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_686071a6de7d4274ae6b9248a106c352", - "tabbable": null, - "tooltip": null, - "value": 200.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f4b71d25b3e34c45850e29b36d495607": { + "ece1e0931b894627a03fc03dc266e3cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5336,22 +5294,57 @@ "width": null } }, - "fd5c99353282432082809931354d911d": { - "model_module": "@jupyter-widgets/controls", + "fefe95cb553540c3994456b477c2fb5f": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index 47ca4e472..e035bdf3d 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:33.765979Z", - "iopub.status.busy": "2024-08-22T00:57:33.765802Z", - "iopub.status.idle": "2024-08-22T00:57:34.997805Z", - "shell.execute_reply": "2024-08-22T00:57:34.997188Z" + "iopub.execute_input": "2024-08-26T15:55:04.729366Z", + "iopub.status.busy": "2024-08-26T15:55:04.729194Z", + "iopub.status.idle": "2024-08-26T15:55:05.972664Z", + "shell.execute_reply": "2024-08-26T15:55:05.972009Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:35.000634Z", - "iopub.status.busy": "2024-08-22T00:57:35.000050Z", - "iopub.status.idle": "2024-08-22T00:57:35.003306Z", - "shell.execute_reply": "2024-08-22T00:57:35.002701Z" + "iopub.execute_input": "2024-08-26T15:55:05.975289Z", + "iopub.status.busy": "2024-08-26T15:55:05.974977Z", + "iopub.status.idle": "2024-08-26T15:55:05.977882Z", + "shell.execute_reply": "2024-08-26T15:55:05.977411Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:35.005442Z", - "iopub.status.busy": "2024-08-22T00:57:35.005252Z", - "iopub.status.idle": "2024-08-22T00:57:35.017470Z", - "shell.execute_reply": "2024-08-22T00:57:35.016971Z" + "iopub.execute_input": "2024-08-26T15:55:05.980109Z", + "iopub.status.busy": "2024-08-26T15:55:05.979765Z", + "iopub.status.idle": "2024-08-26T15:55:05.991753Z", + "shell.execute_reply": "2024-08-26T15:55:05.991284Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:35.019686Z", - "iopub.status.busy": "2024-08-22T00:57:35.019361Z", - "iopub.status.idle": "2024-08-22T00:57:40.187982Z", - "shell.execute_reply": "2024-08-22T00:57:40.187372Z" + "iopub.execute_input": "2024-08-26T15:55:05.993825Z", + "iopub.status.busy": "2024-08-26T15:55:05.993487Z", + "iopub.status.idle": "2024-08-26T15:55:11.009786Z", + "shell.execute_reply": "2024-08-26T15:55:11.009261Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index cb4570e93..cd7e6f125 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:42.610884Z", - "iopub.status.busy": "2024-08-22T00:57:42.610706Z", - "iopub.status.idle": "2024-08-22T00:57:43.851649Z", - "shell.execute_reply": "2024-08-22T00:57:43.851063Z" + "iopub.execute_input": "2024-08-26T15:55:13.442030Z", + "iopub.status.busy": "2024-08-26T15:55:13.441851Z", + "iopub.status.idle": "2024-08-26T15:55:14.631486Z", + "shell.execute_reply": "2024-08-26T15:55:14.630850Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:43.854466Z", - "iopub.status.busy": "2024-08-22T00:57:43.854029Z", - "iopub.status.idle": "2024-08-22T00:57:43.857758Z", - "shell.execute_reply": "2024-08-22T00:57:43.857152Z" + "iopub.execute_input": "2024-08-26T15:55:14.634321Z", + "iopub.status.busy": "2024-08-26T15:55:14.633972Z", + "iopub.status.idle": "2024-08-26T15:55:14.637564Z", + "shell.execute_reply": "2024-08-26T15:55:14.637000Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:43.860063Z", - "iopub.status.busy": "2024-08-22T00:57:43.859740Z", - "iopub.status.idle": "2024-08-22T00:57:47.464490Z", - "shell.execute_reply": "2024-08-22T00:57:47.463780Z" + "iopub.execute_input": "2024-08-26T15:55:14.639738Z", + "iopub.status.busy": "2024-08-26T15:55:14.639415Z", + "iopub.status.idle": "2024-08-26T15:55:18.097283Z", + "shell.execute_reply": "2024-08-26T15:55:18.096607Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:47.467817Z", - "iopub.status.busy": "2024-08-22T00:57:47.467109Z", - "iopub.status.idle": "2024-08-22T00:57:47.517612Z", - "shell.execute_reply": "2024-08-22T00:57:47.516921Z" + "iopub.execute_input": "2024-08-26T15:55:18.100613Z", + "iopub.status.busy": "2024-08-26T15:55:18.099778Z", + "iopub.status.idle": "2024-08-26T15:55:18.147131Z", + "shell.execute_reply": "2024-08-26T15:55:18.146332Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:47.520546Z", - "iopub.status.busy": "2024-08-22T00:57:47.519981Z", - "iopub.status.idle": "2024-08-22T00:57:47.569956Z", - "shell.execute_reply": "2024-08-22T00:57:47.569234Z" + "iopub.execute_input": "2024-08-26T15:55:18.149918Z", + "iopub.status.busy": "2024-08-26T15:55:18.149659Z", + "iopub.status.idle": "2024-08-26T15:55:18.194613Z", + "shell.execute_reply": "2024-08-26T15:55:18.193960Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:47.572775Z", - "iopub.status.busy": "2024-08-22T00:57:47.572383Z", - "iopub.status.idle": "2024-08-22T00:57:47.575669Z", - "shell.execute_reply": "2024-08-22T00:57:47.575176Z" + "iopub.execute_input": "2024-08-26T15:55:18.197370Z", + "iopub.status.busy": "2024-08-26T15:55:18.196976Z", + "iopub.status.idle": "2024-08-26T15:55:18.200210Z", + "shell.execute_reply": "2024-08-26T15:55:18.199730Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:47.577765Z", - "iopub.status.busy": "2024-08-22T00:57:47.577404Z", - "iopub.status.idle": "2024-08-22T00:57:47.580676Z", - "shell.execute_reply": "2024-08-22T00:57:47.580224Z" + "iopub.execute_input": "2024-08-26T15:55:18.202169Z", + "iopub.status.busy": "2024-08-26T15:55:18.201853Z", + "iopub.status.idle": "2024-08-26T15:55:18.204443Z", + "shell.execute_reply": "2024-08-26T15:55:18.204003Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:47.583002Z", - "iopub.status.busy": "2024-08-22T00:57:47.582658Z", - "iopub.status.idle": "2024-08-22T00:57:47.614338Z", - "shell.execute_reply": "2024-08-22T00:57:47.613742Z" + "iopub.execute_input": "2024-08-26T15:55:18.206634Z", + "iopub.status.busy": "2024-08-26T15:55:18.206299Z", + "iopub.status.idle": "2024-08-26T15:55:18.234060Z", + "shell.execute_reply": "2024-08-26T15:55:18.233470Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b4dfbae9b66e4317b1bec798bf1a817e", + "model_id": "2a2af44ac76147299114dc626eee43c4", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7fb77c265a494015a87714395ac0d864", + "model_id": "7ca424fc2c6645d28c417390b61079d0", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:47.616712Z", - "iopub.status.busy": "2024-08-22T00:57:47.616290Z", - "iopub.status.idle": "2024-08-22T00:57:47.623320Z", - "shell.execute_reply": "2024-08-22T00:57:47.622778Z" + "iopub.execute_input": "2024-08-26T15:55:18.239779Z", + "iopub.status.busy": "2024-08-26T15:55:18.239275Z", + "iopub.status.idle": "2024-08-26T15:55:18.246226Z", + "shell.execute_reply": "2024-08-26T15:55:18.245812Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:47.625416Z", - "iopub.status.busy": "2024-08-22T00:57:47.625071Z", - "iopub.status.idle": "2024-08-22T00:57:47.628672Z", - "shell.execute_reply": "2024-08-22T00:57:47.628199Z" + "iopub.execute_input": "2024-08-26T15:55:18.248479Z", + "iopub.status.busy": "2024-08-26T15:55:18.248030Z", + "iopub.status.idle": "2024-08-26T15:55:18.251730Z", + "shell.execute_reply": "2024-08-26T15:55:18.251287Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:47.630748Z", - "iopub.status.busy": "2024-08-22T00:57:47.630412Z", - "iopub.status.idle": "2024-08-22T00:57:47.636956Z", - "shell.execute_reply": "2024-08-22T00:57:47.636477Z" + "iopub.execute_input": "2024-08-26T15:55:18.253884Z", + "iopub.status.busy": "2024-08-26T15:55:18.253487Z", + "iopub.status.idle": "2024-08-26T15:55:18.260069Z", + "shell.execute_reply": "2024-08-26T15:55:18.259540Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:47.638951Z", - "iopub.status.busy": "2024-08-22T00:57:47.638629Z", - "iopub.status.idle": "2024-08-22T00:57:47.684622Z", - "shell.execute_reply": "2024-08-22T00:57:47.683762Z" + "iopub.execute_input": "2024-08-26T15:55:18.262054Z", + "iopub.status.busy": "2024-08-26T15:55:18.261730Z", + "iopub.status.idle": "2024-08-26T15:55:18.307972Z", + "shell.execute_reply": "2024-08-26T15:55:18.307332Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:47.687781Z", - "iopub.status.busy": "2024-08-22T00:57:47.687573Z", - "iopub.status.idle": "2024-08-22T00:57:47.742110Z", - "shell.execute_reply": "2024-08-22T00:57:47.741318Z" + "iopub.execute_input": "2024-08-26T15:55:18.310629Z", + "iopub.status.busy": "2024-08-26T15:55:18.310268Z", + "iopub.status.idle": "2024-08-26T15:55:18.357760Z", + "shell.execute_reply": "2024-08-26T15:55:18.357031Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:47.744852Z", - "iopub.status.busy": "2024-08-22T00:57:47.744593Z", - "iopub.status.idle": "2024-08-22T00:57:47.892023Z", - "shell.execute_reply": "2024-08-22T00:57:47.891339Z" + "iopub.execute_input": "2024-08-26T15:55:18.360787Z", + "iopub.status.busy": "2024-08-26T15:55:18.360523Z", + "iopub.status.idle": "2024-08-26T15:55:18.502295Z", + "shell.execute_reply": "2024-08-26T15:55:18.501633Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:47.894938Z", - "iopub.status.busy": "2024-08-22T00:57:47.894160Z", - "iopub.status.idle": "2024-08-22T00:57:50.946494Z", - "shell.execute_reply": "2024-08-22T00:57:50.945815Z" + "iopub.execute_input": "2024-08-26T15:55:18.505049Z", + "iopub.status.busy": "2024-08-26T15:55:18.504411Z", + "iopub.status.idle": "2024-08-26T15:55:21.592362Z", + "shell.execute_reply": "2024-08-26T15:55:21.591759Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:50.948948Z", - "iopub.status.busy": "2024-08-22T00:57:50.948534Z", - "iopub.status.idle": "2024-08-22T00:57:51.006518Z", - "shell.execute_reply": "2024-08-22T00:57:51.005896Z" + "iopub.execute_input": "2024-08-26T15:55:21.594962Z", + "iopub.status.busy": "2024-08-26T15:55:21.594522Z", + "iopub.status.idle": "2024-08-26T15:55:21.655071Z", + "shell.execute_reply": "2024-08-26T15:55:21.654503Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:51.008907Z", - "iopub.status.busy": "2024-08-22T00:57:51.008539Z", - "iopub.status.idle": "2024-08-22T00:57:51.051812Z", - "shell.execute_reply": "2024-08-22T00:57:51.051202Z" + "iopub.execute_input": "2024-08-26T15:55:21.657359Z", + "iopub.status.busy": "2024-08-26T15:55:21.656975Z", + "iopub.status.idle": "2024-08-26T15:55:21.701256Z", + "shell.execute_reply": "2024-08-26T15:55:21.700663Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "e7e1e674", + "id": "bbc89480", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "9fad17a4", + "id": "5d407ba9", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "7fda8245", + "id": "a03d9969", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "f5ca4f3b", + "id": "13c020d7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:51.054293Z", - "iopub.status.busy": "2024-08-22T00:57:51.053908Z", - "iopub.status.idle": "2024-08-22T00:57:51.061964Z", - "shell.execute_reply": "2024-08-22T00:57:51.061389Z" + "iopub.execute_input": "2024-08-26T15:55:21.703794Z", + "iopub.status.busy": "2024-08-26T15:55:21.703579Z", + "iopub.status.idle": "2024-08-26T15:55:21.712036Z", + "shell.execute_reply": "2024-08-26T15:55:21.711478Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "20e041ce", + "id": "72e010be", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "adde0816", + "id": "1114ac9d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:51.064258Z", - "iopub.status.busy": "2024-08-22T00:57:51.063885Z", - "iopub.status.idle": "2024-08-22T00:57:51.084105Z", - "shell.execute_reply": "2024-08-22T00:57:51.083514Z" + "iopub.execute_input": "2024-08-26T15:55:21.714247Z", + "iopub.status.busy": "2024-08-26T15:55:21.714055Z", + "iopub.status.idle": "2024-08-26T15:55:21.734317Z", + "shell.execute_reply": "2024-08-26T15:55:21.733774Z" } }, "outputs": [ @@ -1521,13 +1521,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "ec1e0535", + "id": "3c29551d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:51.086315Z", - "iopub.status.busy": "2024-08-22T00:57:51.086123Z", - "iopub.status.idle": "2024-08-22T00:57:51.089431Z", - "shell.execute_reply": "2024-08-22T00:57:51.088885Z" + "iopub.execute_input": "2024-08-26T15:55:21.736466Z", + "iopub.status.busy": "2024-08-26T15:55:21.736265Z", + "iopub.status.idle": "2024-08-26T15:55:21.739835Z", + "shell.execute_reply": "2024-08-26T15:55:21.739353Z" } }, "outputs": [ @@ -1622,87 +1622,113 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0329cfe9383d4e1b96bd432c82142245": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f33bf2802f1244d5bd2543993e32197c", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a94b1b9e37f442c6a62e6537d60652c2", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "082a8f0b286f4c309abb0840e34a627d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1bde9c97c5b44d2f88d5c748df01129b": { - "model_module": "@jupyter-widgets/controls", + "05a2244cf3ec4de397f55f99105338cb": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "39b0baeebaef438a9f48a77a56e482b8": { - "model_module": "@jupyter-widgets/controls", + "1438b903a790497086e14479b9616dc7": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "39ccc21d964248818f5a939aa70cea5d": { + "1c6eaa0577094c9a9006e09c722e5ff6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1717,87 +1743,83 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a4db6cf1a05a4e0e9780660dcdefd37b", + "layout": "IPY_MODEL_50d2ce3a7ac34f579038361d07764343", "placeholder": "​", - "style": "IPY_MODEL_7329bed1c57045e19389a059380b5e22", + "style": "IPY_MODEL_bbfc6ad0bb8345c58d4b74e639515d30", "tabbable": null, "tooltip": null, "value": "number of examples processed for estimating thresholds: " } }, - "409c8825087648b79a3a616b6b46a241": { + "2a2af44ac76147299114dc626eee43c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7fdecf7730684a2aaa15fad95d76d518", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e1bb5f338e994b52ac0bdd80beac87f5", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1c6eaa0577094c9a9006e09c722e5ff6", + "IPY_MODEL_983216f51406483891526ab9457a17fe", + "IPY_MODEL_bbfb0b9ec3bf49f1aa6f762e6404248b" + ], + "layout": "IPY_MODEL_1438b903a790497086e14479b9616dc7", "tabbable": null, - "tooltip": null, - "value": 50.0 + "tooltip": null } }, - "41b1360bc3e14a66afa6deb0587f9cf9": { + "35b5b5e73d824538b702d11aa4afe705": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4baeaa0a49e3435e849051d246b3f606", - "placeholder": "​", - "style": "IPY_MODEL_1bde9c97c5b44d2f88d5c748df01129b", + "layout": "IPY_MODEL_8a0ce1dd3c544ef18d0d8f90a54ae31c", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fe3712896c7544e98d34ebbe6caa7cab", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: " + "value": 50.0 } }, - "4664f3f6a7e2402298c11fb3ac7703e1": { + "3627282d21d8407dbe2fbdf4a83ce601": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_53f0831c801d4c119f104d04eb2a6a1c", - "placeholder": "​", - "style": "IPY_MODEL_39b0baeebaef438a9f48a77a56e482b8", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 907818.71it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4baeaa0a49e3435e849051d246b3f606": { + "425eed607e0b435d951647eabb8299f6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1850,7 +1872,7 @@ "width": null } }, - "518ae90845fb4d7292cecf51c4bd6cf5": { + "50d2ce3a7ac34f579038361d07764343": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1903,60 +1925,31 @@ "width": null } }, - "53f0831c801d4c119f104d04eb2a6a1c": { - "model_module": "@jupyter-widgets/base", + "7ca424fc2c6645d28c417390b61079d0": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9d7157b027c94034baf26f45124303c3", + "IPY_MODEL_35b5b5e73d824538b702d11aa4afe705", + "IPY_MODEL_9ede3fa639214ec08e51faaf6d0cae4e" + ], + "layout": "IPY_MODEL_f628b90d6c5643aaa470e10d15f810a3", + "tabbable": null, + "tooltip": null } }, - "7329bed1c57045e19389a059380b5e22": { + "88eb40450c3847efb49e8e1740619fab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1974,31 +1967,7 @@ "text_color": null } }, - "7fb77c265a494015a87714395ac0d864": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_41b1360bc3e14a66afa6deb0587f9cf9", - "IPY_MODEL_409c8825087648b79a3a616b6b46a241", - "IPY_MODEL_4664f3f6a7e2402298c11fb3ac7703e1" - ], - "layout": "IPY_MODEL_decde023be714cc58ef54bba7da2c0c6", - "tabbable": null, - "tooltip": null - } - }, - "7fdecf7730684a2aaa15fad95d76d518": { + "8a0ce1dd3c544ef18d0d8f90a54ae31c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2051,7 +2020,7 @@ "width": null } }, - "a4db6cf1a05a4e0e9780660dcdefd37b": { + "8c67a318d7604499be565bddd5519457": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2104,23 +2073,33 @@ "width": null } }, - "a94b1b9e37f442c6a62e6537d60652c2": { + "983216f51406483891526ab9457a17fe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8c67a318d7604499be565bddd5519457", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f221605dbe384754a74ba4a04dd33716", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "b10e3db1eec64ddc960bb60e6776bd3c": { + "9d7157b027c94034baf26f45124303c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2135,39 +2114,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d6d27c19311f4c39940bd48fa5f43ab6", + "layout": "IPY_MODEL_afc69967643547ac9a1e98a88efb89e6", "placeholder": "​", - "style": "IPY_MODEL_082a8f0b286f4c309abb0840e34a627d", + "style": "IPY_MODEL_88eb40450c3847efb49e8e1740619fab", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 847317.02it/s]" + "value": "number of examples processed for checking labels: " } }, - "b4dfbae9b66e4317b1bec798bf1a817e": { + "9ede3fa639214ec08e51faaf6d0cae4e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_39ccc21d964248818f5a939aa70cea5d", - "IPY_MODEL_0329cfe9383d4e1b96bd432c82142245", - "IPY_MODEL_b10e3db1eec64ddc960bb60e6776bd3c" - ], - "layout": "IPY_MODEL_518ae90845fb4d7292cecf51c4bd6cf5", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_05a2244cf3ec4de397f55f99105338cb", + "placeholder": "​", + "style": "IPY_MODEL_3627282d21d8407dbe2fbdf4a83ce601", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1264868.52it/s]" } }, - "d6d27c19311f4c39940bd48fa5f43ab6": { + "afc69967643547ac9a1e98a88efb89e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2220,60 +2198,66 @@ "width": null } }, - "decde023be714cc58ef54bba7da2c0c6": { - "model_module": "@jupyter-widgets/base", + "bbfb0b9ec3bf49f1aa6f762e6404248b": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_425eed607e0b435d951647eabb8299f6", + "placeholder": "​", + "style": "IPY_MODEL_e967ae1bd66a4661884711a6b8868e6e", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 899621.22it/s]" + } + }, + "bbfc6ad0bb8345c58d4b74e639515d30": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e1bb5f338e994b52ac0bdd80beac87f5": { + "e967ae1bd66a4661884711a6b8868e6e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f221605dbe384754a74ba4a04dd33716": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2289,7 +2273,7 @@ "description_width": "" } }, - "f33bf2802f1244d5bd2543993e32197c": { + "f628b90d6c5643aaa470e10d15f810a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2341,6 +2325,22 @@ "visibility": null, "width": null } + }, + "fe3712896c7544e98d34ebbe6caa7cab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb b/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb index 0554dcbde..facf398f8 100644 --- a/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb @@ -60,10 +60,10 @@ "id": "2d638465", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:54.678446Z", - "iopub.status.busy": "2024-08-22T00:57:54.678278Z", - "iopub.status.idle": "2024-08-22T00:57:55.905300Z", - "shell.execute_reply": "2024-08-22T00:57:55.904629Z" + "iopub.execute_input": "2024-08-26T15:55:25.362605Z", + "iopub.status.busy": "2024-08-26T15:55:25.362435Z", + "iopub.status.idle": "2024-08-26T15:55:26.562131Z", + "shell.execute_reply": "2024-08-26T15:55:26.561615Z" }, "nbsphinx": "hidden" }, @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -99,10 +99,10 @@ "id": "b0bbf715-47c6-44ea-b15e-89800e62ee04", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:55.908279Z", - "iopub.status.busy": "2024-08-22T00:57:55.907655Z", - "iopub.status.idle": "2024-08-22T00:57:55.911629Z", - "shell.execute_reply": "2024-08-22T00:57:55.911154Z" + "iopub.execute_input": "2024-08-26T15:55:26.564541Z", + "iopub.status.busy": "2024-08-26T15:55:26.564234Z", + "iopub.status.idle": "2024-08-26T15:55:26.568038Z", + "shell.execute_reply": "2024-08-26T15:55:26.567585Z" } }, "outputs": [], @@ -140,10 +140,10 @@ "id": "c58f8015-d051-411c-9e03-5659cf3ad956", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:55.913869Z", - "iopub.status.busy": "2024-08-22T00:57:55.913501Z", - "iopub.status.idle": "2024-08-22T00:57:56.113561Z", - "shell.execute_reply": "2024-08-22T00:57:56.112914Z" + "iopub.execute_input": "2024-08-26T15:55:26.569923Z", + "iopub.status.busy": "2024-08-26T15:55:26.569743Z", + "iopub.status.idle": "2024-08-26T15:55:27.245464Z", + "shell.execute_reply": "2024-08-26T15:55:27.244976Z" } }, "outputs": [ @@ -273,10 +273,10 @@ "id": "1b5f50e6-d125-4e61-b63e-4004f0c9099a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:56.115925Z", - "iopub.status.busy": "2024-08-22T00:57:56.115720Z", - "iopub.status.idle": "2024-08-22T00:57:56.122212Z", - "shell.execute_reply": "2024-08-22T00:57:56.121691Z" + "iopub.execute_input": "2024-08-26T15:55:27.247644Z", + "iopub.status.busy": "2024-08-26T15:55:27.247303Z", + "iopub.status.idle": "2024-08-26T15:55:27.253437Z", + "shell.execute_reply": "2024-08-26T15:55:27.252957Z" } }, "outputs": [], @@ -312,10 +312,10 @@ "id": "a36c21e9-1c32-4df9-bd87-fffeb8c2175f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:56.124447Z", - "iopub.status.busy": "2024-08-22T00:57:56.124227Z", - "iopub.status.idle": "2024-08-22T00:57:56.132289Z", - "shell.execute_reply": "2024-08-22T00:57:56.131662Z" + "iopub.execute_input": "2024-08-26T15:55:27.255430Z", + "iopub.status.busy": "2024-08-26T15:55:27.255252Z", + "iopub.status.idle": "2024-08-26T15:55:27.262372Z", + "shell.execute_reply": "2024-08-26T15:55:27.261906Z" } }, "outputs": [ @@ -418,10 +418,10 @@ "id": "5f856a3a-8aae-4836-b146-9ab68d8d1c7a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:56.134600Z", - "iopub.status.busy": "2024-08-22T00:57:56.134244Z", - "iopub.status.idle": "2024-08-22T00:57:56.139766Z", - "shell.execute_reply": "2024-08-22T00:57:56.139170Z" + "iopub.execute_input": "2024-08-26T15:55:27.264244Z", + "iopub.status.busy": "2024-08-26T15:55:27.264075Z", + "iopub.status.idle": "2024-08-26T15:55:27.268926Z", + "shell.execute_reply": "2024-08-26T15:55:27.268460Z" } }, "outputs": [], @@ -449,10 +449,10 @@ "id": "46275634-da56-4e58-9061-8108be2b585d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:56.142002Z", - "iopub.status.busy": "2024-08-22T00:57:56.141586Z", - "iopub.status.idle": "2024-08-22T00:57:56.147818Z", - "shell.execute_reply": "2024-08-22T00:57:56.147224Z" + "iopub.execute_input": "2024-08-26T15:55:27.271052Z", + "iopub.status.busy": "2024-08-26T15:55:27.270697Z", + "iopub.status.idle": "2024-08-26T15:55:27.276370Z", + "shell.execute_reply": "2024-08-26T15:55:27.275886Z" } }, "outputs": [], @@ -488,10 +488,10 @@ "id": "769c4c5e-a7ff-4e02-bee5-2b2e676aec14", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:56.150054Z", - "iopub.status.busy": "2024-08-22T00:57:56.149618Z", - "iopub.status.idle": "2024-08-22T00:57:56.154128Z", - "shell.execute_reply": "2024-08-22T00:57:56.153522Z" + "iopub.execute_input": "2024-08-26T15:55:27.278393Z", + "iopub.status.busy": "2024-08-26T15:55:27.278052Z", + "iopub.status.idle": "2024-08-26T15:55:27.281895Z", + "shell.execute_reply": "2024-08-26T15:55:27.281433Z" } }, "outputs": [], @@ -506,10 +506,10 @@ "id": "7ac47c3d-9e87-45b7-9064-bfa45578872e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:56.156366Z", - "iopub.status.busy": "2024-08-22T00:57:56.156014Z", - "iopub.status.idle": "2024-08-22T00:57:56.223718Z", - "shell.execute_reply": "2024-08-22T00:57:56.223102Z" + "iopub.execute_input": "2024-08-26T15:55:27.283963Z", + "iopub.status.busy": "2024-08-26T15:55:27.283628Z", + "iopub.status.idle": "2024-08-26T15:55:27.349424Z", + "shell.execute_reply": "2024-08-26T15:55:27.348889Z" } }, "outputs": [ @@ -609,10 +609,10 @@ "id": "6cef169e-d15b-4d18-9cb7-8ea589557e6b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:56.226253Z", - "iopub.status.busy": "2024-08-22T00:57:56.226033Z", - "iopub.status.idle": "2024-08-22T00:57:56.237138Z", - "shell.execute_reply": "2024-08-22T00:57:56.236554Z" + "iopub.execute_input": "2024-08-26T15:55:27.352059Z", + "iopub.status.busy": "2024-08-26T15:55:27.351755Z", + "iopub.status.idle": "2024-08-26T15:55:27.362726Z", + "shell.execute_reply": "2024-08-26T15:55:27.362212Z" } }, "outputs": [ @@ -724,10 +724,10 @@ "id": "b68e0418-86cf-431f-9107-2dd0a310ca42", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:56.239616Z", - "iopub.status.busy": "2024-08-22T00:57:56.239406Z", - "iopub.status.idle": "2024-08-22T00:57:56.262120Z", - "shell.execute_reply": "2024-08-22T00:57:56.261587Z" + "iopub.execute_input": "2024-08-26T15:55:27.365338Z", + "iopub.status.busy": "2024-08-26T15:55:27.364980Z", + "iopub.status.idle": "2024-08-26T15:55:27.385773Z", + "shell.execute_reply": "2024-08-26T15:55:27.385252Z" } }, "outputs": [ @@ -931,10 +931,10 @@ "id": "0e9bd131-429f-48af-b4fc-ed8b907950b9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:56.264643Z", - "iopub.status.busy": "2024-08-22T00:57:56.264252Z", - "iopub.status.idle": "2024-08-22T00:57:56.268465Z", - "shell.execute_reply": "2024-08-22T00:57:56.267963Z" + "iopub.execute_input": "2024-08-26T15:55:27.388960Z", + "iopub.status.busy": "2024-08-26T15:55:27.388027Z", + "iopub.status.idle": "2024-08-26T15:55:27.394001Z", + "shell.execute_reply": "2024-08-26T15:55:27.393500Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "id": "e72320ec-7792-4347-b2fb-630f2519127c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:56.271777Z", - "iopub.status.busy": "2024-08-22T00:57:56.270822Z", - "iopub.status.idle": "2024-08-22T00:57:56.277404Z", - "shell.execute_reply": "2024-08-22T00:57:56.276872Z" + "iopub.execute_input": "2024-08-26T15:55:27.397538Z", + "iopub.status.busy": "2024-08-26T15:55:27.396613Z", + "iopub.status.idle": "2024-08-26T15:55:27.402791Z", + "shell.execute_reply": "2024-08-26T15:55:27.402265Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "id": "8520ba4a-3ad6-408a-b377-3f47c32d745a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:56.281174Z", - "iopub.status.busy": "2024-08-22T00:57:56.280234Z", - "iopub.status.idle": "2024-08-22T00:57:56.290881Z", - "shell.execute_reply": "2024-08-22T00:57:56.290355Z" + "iopub.execute_input": "2024-08-26T15:55:27.406271Z", + "iopub.status.busy": "2024-08-26T15:55:27.405351Z", + "iopub.status.idle": "2024-08-26T15:55:27.416136Z", + "shell.execute_reply": "2024-08-26T15:55:27.415710Z" } }, "outputs": [ @@ -1205,10 +1205,10 @@ "id": "3c002665-c48b-4f04-91f7-ad112a49efc7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:56.292998Z", - "iopub.status.busy": "2024-08-22T00:57:56.292812Z", - "iopub.status.idle": "2024-08-22T00:57:56.297422Z", - "shell.execute_reply": "2024-08-22T00:57:56.296985Z" + "iopub.execute_input": "2024-08-26T15:55:27.418270Z", + "iopub.status.busy": "2024-08-26T15:55:27.417932Z", + "iopub.status.idle": "2024-08-26T15:55:27.422255Z", + "shell.execute_reply": "2024-08-26T15:55:27.421825Z" } }, "outputs": [], @@ -1234,10 +1234,10 @@ "id": "36319f39-f563-4f63-913f-821373180350", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:56.299496Z", - "iopub.status.busy": "2024-08-22T00:57:56.299158Z", - "iopub.status.idle": "2024-08-22T00:57:56.412263Z", - "shell.execute_reply": "2024-08-22T00:57:56.411665Z" + "iopub.execute_input": "2024-08-26T15:55:27.424266Z", + "iopub.status.busy": "2024-08-26T15:55:27.423929Z", + "iopub.status.idle": "2024-08-26T15:55:27.536867Z", + "shell.execute_reply": "2024-08-26T15:55:27.536318Z" } }, "outputs": [ @@ -1711,10 +1711,10 @@ "id": "044c0eb1-299a-4851-b1bf-268d5bce56c1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:56.414907Z", - "iopub.status.busy": "2024-08-22T00:57:56.414445Z", - "iopub.status.idle": "2024-08-22T00:57:56.422189Z", - "shell.execute_reply": "2024-08-22T00:57:56.421596Z" + "iopub.execute_input": "2024-08-26T15:55:27.539165Z", + "iopub.status.busy": "2024-08-26T15:55:27.538730Z", + "iopub.status.idle": "2024-08-26T15:55:27.545308Z", + "shell.execute_reply": "2024-08-26T15:55:27.544696Z" } }, "outputs": [], @@ -1738,10 +1738,10 @@ "id": "c43df278-abfe-40e5-9d48-2df3efea9379", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:56.425019Z", - "iopub.status.busy": "2024-08-22T00:57:56.424557Z", - "iopub.status.idle": "2024-08-22T00:57:58.587634Z", - "shell.execute_reply": "2024-08-22T00:57:58.586925Z" + "iopub.execute_input": "2024-08-26T15:55:27.547840Z", + "iopub.status.busy": "2024-08-26T15:55:27.547449Z", + "iopub.status.idle": "2024-08-26T15:55:29.681557Z", + "shell.execute_reply": "2024-08-26T15:55:29.680908Z" } }, "outputs": [ @@ -1953,10 +1953,10 @@ "id": "77c7f776-54b3-45b5-9207-715d6d2e90c0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:58.592032Z", - "iopub.status.busy": "2024-08-22T00:57:58.590857Z", - "iopub.status.idle": "2024-08-22T00:57:58.607235Z", - "shell.execute_reply": "2024-08-22T00:57:58.606675Z" + "iopub.execute_input": "2024-08-26T15:55:29.684527Z", + "iopub.status.busy": "2024-08-26T15:55:29.684058Z", + "iopub.status.idle": "2024-08-26T15:55:29.697584Z", + "shell.execute_reply": "2024-08-26T15:55:29.697064Z" } }, "outputs": [ @@ -2073,10 +2073,10 @@ "id": "7e218d04-0729-4f42-b264-51c73601ebe6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:58.611198Z", - "iopub.status.busy": "2024-08-22T00:57:58.610211Z", - "iopub.status.idle": "2024-08-22T00:57:58.614535Z", - "shell.execute_reply": "2024-08-22T00:57:58.613992Z" + "iopub.execute_input": "2024-08-26T15:55:29.700253Z", + "iopub.status.busy": "2024-08-26T15:55:29.699924Z", + "iopub.status.idle": "2024-08-26T15:55:29.702768Z", + "shell.execute_reply": "2024-08-26T15:55:29.702242Z" } }, "outputs": [], @@ -2090,10 +2090,10 @@ "id": "7e2bdb41-321e-4929-aa01-1f60948b9e8b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:58.618346Z", - "iopub.status.busy": "2024-08-22T00:57:58.617356Z", - "iopub.status.idle": "2024-08-22T00:57:58.623518Z", - "shell.execute_reply": "2024-08-22T00:57:58.622973Z" + "iopub.execute_input": "2024-08-26T15:55:29.705381Z", + "iopub.status.busy": "2024-08-26T15:55:29.704977Z", + "iopub.status.idle": "2024-08-26T15:55:29.709647Z", + "shell.execute_reply": "2024-08-26T15:55:29.709138Z" } }, "outputs": [], @@ -2117,10 +2117,10 @@ "id": "5ce2d89f-e832-448d-bfac-9941da15c895", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:58.627443Z", - "iopub.status.busy": "2024-08-22T00:57:58.626472Z", - "iopub.status.idle": "2024-08-22T00:57:58.654546Z", - "shell.execute_reply": "2024-08-22T00:57:58.653997Z" + "iopub.execute_input": "2024-08-26T15:55:29.712190Z", + "iopub.status.busy": "2024-08-26T15:55:29.711867Z", + "iopub.status.idle": "2024-08-26T15:55:29.728908Z", + "shell.execute_reply": "2024-08-26T15:55:29.728350Z" } }, "outputs": [ @@ -2160,10 +2160,10 @@ "id": "9f437756-112e-4531-84fc-6ceadd0c9ef5", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:58.657290Z", - "iopub.status.busy": "2024-08-22T00:57:58.657084Z", - "iopub.status.idle": "2024-08-22T00:57:59.176333Z", - "shell.execute_reply": "2024-08-22T00:57:59.175770Z" + "iopub.execute_input": "2024-08-26T15:55:29.731883Z", + "iopub.status.busy": "2024-08-26T15:55:29.731381Z", + "iopub.status.idle": "2024-08-26T15:55:30.247384Z", + "shell.execute_reply": "2024-08-26T15:55:30.246765Z" } }, "outputs": [], @@ -2194,10 +2194,10 @@ "id": "707625f6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:59.179860Z", - "iopub.status.busy": "2024-08-22T00:57:59.178944Z", - "iopub.status.idle": "2024-08-22T00:57:59.312888Z", - "shell.execute_reply": "2024-08-22T00:57:59.312233Z" + "iopub.execute_input": "2024-08-26T15:55:30.250443Z", + "iopub.status.busy": "2024-08-26T15:55:30.250031Z", + "iopub.status.idle": "2024-08-26T15:55:30.393213Z", + "shell.execute_reply": "2024-08-26T15:55:30.392572Z" } }, "outputs": [ @@ -2408,10 +2408,10 @@ "id": "25afe46c-a521-483c-b168-728c76d970dc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:59.316520Z", - "iopub.status.busy": "2024-08-22T00:57:59.315550Z", - "iopub.status.idle": "2024-08-22T00:57:59.324442Z", - "shell.execute_reply": "2024-08-22T00:57:59.323929Z" + "iopub.execute_input": "2024-08-26T15:55:30.397049Z", + "iopub.status.busy": "2024-08-26T15:55:30.395902Z", + "iopub.status.idle": "2024-08-26T15:55:30.405345Z", + "shell.execute_reply": "2024-08-26T15:55:30.404822Z" } }, "outputs": [ @@ -2441,10 +2441,10 @@ "id": "6efcf06f-cc40-4964-87df-5204d3b1b9d4", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:59.327983Z", - "iopub.status.busy": "2024-08-22T00:57:59.327042Z", - "iopub.status.idle": "2024-08-22T00:57:59.335060Z", - "shell.execute_reply": "2024-08-22T00:57:59.334554Z" + "iopub.execute_input": "2024-08-26T15:55:30.409099Z", + "iopub.status.busy": "2024-08-26T15:55:30.408156Z", + "iopub.status.idle": "2024-08-26T15:55:30.416284Z", + "shell.execute_reply": "2024-08-26T15:55:30.415770Z" } }, "outputs": [ @@ -2477,10 +2477,10 @@ "id": "7bc87d72-bbd5-4ed2-bc38-2218862ddfbd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:59.338559Z", - "iopub.status.busy": "2024-08-22T00:57:59.337614Z", - "iopub.status.idle": "2024-08-22T00:57:59.345005Z", - "shell.execute_reply": "2024-08-22T00:57:59.344499Z" + "iopub.execute_input": "2024-08-26T15:55:30.419835Z", + "iopub.status.busy": "2024-08-26T15:55:30.418896Z", + "iopub.status.idle": "2024-08-26T15:55:30.426289Z", + "shell.execute_reply": "2024-08-26T15:55:30.425777Z" } }, "outputs": [ @@ -2513,10 +2513,10 @@ "id": "9c70be3e-0ba2-4e3e-8c50-359d402ca1fe", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:59.348493Z", - "iopub.status.busy": "2024-08-22T00:57:59.347558Z", - "iopub.status.idle": "2024-08-22T00:57:59.353708Z", - "shell.execute_reply": "2024-08-22T00:57:59.353183Z" + "iopub.execute_input": "2024-08-26T15:55:30.429821Z", + "iopub.status.busy": "2024-08-26T15:55:30.428890Z", + "iopub.status.idle": "2024-08-26T15:55:30.435057Z", + "shell.execute_reply": "2024-08-26T15:55:30.434526Z" } }, "outputs": [ @@ -2542,10 +2542,10 @@ "id": "08080458-0cd7-447d-80e6-384cb8d31eaf", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:59.356657Z", - "iopub.status.busy": "2024-08-22T00:57:59.355918Z", - "iopub.status.idle": "2024-08-22T00:57:59.360707Z", - "shell.execute_reply": "2024-08-22T00:57:59.360290Z" + "iopub.execute_input": "2024-08-26T15:55:30.436950Z", + "iopub.status.busy": "2024-08-26T15:55:30.436774Z", + "iopub.status.idle": "2024-08-26T15:55:30.441301Z", + "shell.execute_reply": "2024-08-26T15:55:30.440839Z" } }, "outputs": [], @@ -2569,10 +2569,10 @@ "id": "009bb215-4d26-47da-a230-d0ccf4122629", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:59.362969Z", - "iopub.status.busy": "2024-08-22T00:57:59.362790Z", - "iopub.status.idle": "2024-08-22T00:57:59.441102Z", - "shell.execute_reply": "2024-08-22T00:57:59.440534Z" + "iopub.execute_input": "2024-08-26T15:55:30.443236Z", + "iopub.status.busy": "2024-08-26T15:55:30.443059Z", + "iopub.status.idle": "2024-08-26T15:55:30.518439Z", + "shell.execute_reply": "2024-08-26T15:55:30.517913Z" } }, "outputs": [ @@ -3052,10 +3052,10 @@ "id": "dcaeda51-9b24-4c04-889d-7e63563594fc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:59.443901Z", - "iopub.status.busy": "2024-08-22T00:57:59.443719Z", - "iopub.status.idle": "2024-08-22T00:57:59.453492Z", - "shell.execute_reply": "2024-08-22T00:57:59.452962Z" + "iopub.execute_input": "2024-08-26T15:55:30.521052Z", + "iopub.status.busy": "2024-08-26T15:55:30.520744Z", + "iopub.status.idle": "2024-08-26T15:55:30.530084Z", + "shell.execute_reply": "2024-08-26T15:55:30.529563Z" } }, "outputs": [ @@ -3111,10 +3111,10 @@ "id": "1d92d78d-e4a8-4322-bf38-f5a5dae3bf17", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:59.456203Z", - "iopub.status.busy": "2024-08-22T00:57:59.455995Z", - "iopub.status.idle": "2024-08-22T00:57:59.458840Z", - "shell.execute_reply": "2024-08-22T00:57:59.458384Z" + "iopub.execute_input": "2024-08-26T15:55:30.532628Z", + "iopub.status.busy": "2024-08-26T15:55:30.532282Z", + "iopub.status.idle": "2024-08-26T15:55:30.535145Z", + "shell.execute_reply": "2024-08-26T15:55:30.534554Z" } }, "outputs": [], @@ -3150,10 +3150,10 @@ "id": "941ab2a6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:59.460943Z", - "iopub.status.busy": "2024-08-22T00:57:59.460603Z", - "iopub.status.idle": "2024-08-22T00:57:59.470023Z", - "shell.execute_reply": "2024-08-22T00:57:59.469608Z" + "iopub.execute_input": "2024-08-26T15:55:30.537206Z", + "iopub.status.busy": "2024-08-26T15:55:30.536802Z", + "iopub.status.idle": "2024-08-26T15:55:30.547035Z", + "shell.execute_reply": "2024-08-26T15:55:30.546403Z" } }, "outputs": [], @@ -3261,10 +3261,10 @@ "id": "50666fb9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:59.472171Z", - "iopub.status.busy": "2024-08-22T00:57:59.471830Z", - "iopub.status.idle": "2024-08-22T00:57:59.478461Z", - "shell.execute_reply": "2024-08-22T00:57:59.477995Z" + "iopub.execute_input": "2024-08-26T15:55:30.549375Z", + "iopub.status.busy": "2024-08-26T15:55:30.549191Z", + "iopub.status.idle": "2024-08-26T15:55:30.556029Z", + "shell.execute_reply": "2024-08-26T15:55:30.555553Z" }, "nbsphinx": "hidden" }, @@ -3346,10 +3346,10 @@ "id": "f5aa2883-d20d-481f-a012-fcc7ff8e3e7e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:59.480424Z", - "iopub.status.busy": "2024-08-22T00:57:59.480084Z", - "iopub.status.idle": "2024-08-22T00:57:59.483390Z", - "shell.execute_reply": "2024-08-22T00:57:59.482929Z" + "iopub.execute_input": "2024-08-26T15:55:30.558185Z", + "iopub.status.busy": "2024-08-26T15:55:30.557856Z", + "iopub.status.idle": "2024-08-26T15:55:30.561412Z", + "shell.execute_reply": "2024-08-26T15:55:30.560822Z" } }, "outputs": [], @@ -3373,10 +3373,10 @@ "id": "ce1c0ada-88b1-4654-b43f-3c0b59002979", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:59.485320Z", - "iopub.status.busy": "2024-08-22T00:57:59.484997Z", - "iopub.status.idle": "2024-08-22T00:58:03.557913Z", - "shell.execute_reply": "2024-08-22T00:58:03.557348Z" + "iopub.execute_input": "2024-08-26T15:55:30.563623Z", + "iopub.status.busy": "2024-08-26T15:55:30.563290Z", + "iopub.status.idle": "2024-08-26T15:55:34.647728Z", + "shell.execute_reply": "2024-08-26T15:55:34.647124Z" } }, "outputs": [ @@ -3419,10 +3419,10 @@ "id": "3f572acf-31c3-4874-9100-451796e35b06", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:03.560980Z", - "iopub.status.busy": "2024-08-22T00:58:03.560607Z", - "iopub.status.idle": "2024-08-22T00:58:03.564040Z", - "shell.execute_reply": "2024-08-22T00:58:03.563593Z" + "iopub.execute_input": "2024-08-26T15:55:34.650677Z", + "iopub.status.busy": "2024-08-26T15:55:34.650453Z", + "iopub.status.idle": "2024-08-26T15:55:34.653991Z", + "shell.execute_reply": "2024-08-26T15:55:34.653587Z" } }, "outputs": [ @@ -3460,10 +3460,10 @@ "id": "6a025a88", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:03.566400Z", - "iopub.status.busy": "2024-08-22T00:58:03.566073Z", - "iopub.status.idle": "2024-08-22T00:58:03.569081Z", - "shell.execute_reply": "2024-08-22T00:58:03.568574Z" + "iopub.execute_input": "2024-08-26T15:55:34.656080Z", + "iopub.status.busy": "2024-08-26T15:55:34.655702Z", + "iopub.status.idle": "2024-08-26T15:55:34.658385Z", + "shell.execute_reply": "2024-08-26T15:55:34.657946Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index 41e31cd9f..ecc184176 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:06.864823Z", - "iopub.status.busy": "2024-08-22T00:58:06.864644Z", - "iopub.status.idle": "2024-08-22T00:58:08.134855Z", - "shell.execute_reply": "2024-08-22T00:58:08.134264Z" + "iopub.execute_input": "2024-08-26T15:55:38.086130Z", + "iopub.status.busy": "2024-08-26T15:55:38.085966Z", + "iopub.status.idle": "2024-08-26T15:55:39.311143Z", + "shell.execute_reply": "2024-08-26T15:55:39.310564Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:08.137324Z", - "iopub.status.busy": "2024-08-22T00:58:08.137016Z", - "iopub.status.idle": "2024-08-22T00:58:08.322007Z", - "shell.execute_reply": "2024-08-22T00:58:08.321321Z" + "iopub.execute_input": "2024-08-26T15:55:39.313573Z", + "iopub.status.busy": "2024-08-26T15:55:39.313197Z", + "iopub.status.idle": "2024-08-26T15:55:39.493648Z", + "shell.execute_reply": "2024-08-26T15:55:39.493028Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:08.324813Z", - "iopub.status.busy": "2024-08-22T00:58:08.324440Z", - "iopub.status.idle": "2024-08-22T00:58:08.337003Z", - "shell.execute_reply": "2024-08-22T00:58:08.336501Z" + "iopub.execute_input": "2024-08-26T15:55:39.496374Z", + "iopub.status.busy": "2024-08-26T15:55:39.496034Z", + "iopub.status.idle": "2024-08-26T15:55:39.508251Z", + "shell.execute_reply": "2024-08-26T15:55:39.507813Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:08.339284Z", - "iopub.status.busy": "2024-08-22T00:58:08.338910Z", - "iopub.status.idle": "2024-08-22T00:58:08.578457Z", - "shell.execute_reply": "2024-08-22T00:58:08.577856Z" + "iopub.execute_input": "2024-08-26T15:55:39.510455Z", + "iopub.status.busy": "2024-08-26T15:55:39.509993Z", + "iopub.status.idle": "2024-08-26T15:55:39.748733Z", + "shell.execute_reply": "2024-08-26T15:55:39.748087Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:08.580622Z", - "iopub.status.busy": "2024-08-22T00:58:08.580432Z", - "iopub.status.idle": "2024-08-22T00:58:08.606920Z", - "shell.execute_reply": "2024-08-22T00:58:08.606446Z" + "iopub.execute_input": "2024-08-26T15:55:39.751243Z", + "iopub.status.busy": "2024-08-26T15:55:39.750850Z", + "iopub.status.idle": "2024-08-26T15:55:39.777570Z", + "shell.execute_reply": "2024-08-26T15:55:39.777078Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:08.609100Z", - "iopub.status.busy": "2024-08-22T00:58:08.608908Z", - "iopub.status.idle": "2024-08-22T00:58:10.874847Z", - "shell.execute_reply": "2024-08-22T00:58:10.874124Z" + "iopub.execute_input": "2024-08-26T15:55:39.779657Z", + "iopub.status.busy": "2024-08-26T15:55:39.779303Z", + "iopub.status.idle": "2024-08-26T15:55:41.935090Z", + "shell.execute_reply": "2024-08-26T15:55:41.934417Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:10.877222Z", - "iopub.status.busy": "2024-08-22T00:58:10.876865Z", - "iopub.status.idle": "2024-08-22T00:58:10.895538Z", - "shell.execute_reply": "2024-08-22T00:58:10.895035Z" + "iopub.execute_input": "2024-08-26T15:55:41.937632Z", + "iopub.status.busy": "2024-08-26T15:55:41.937283Z", + "iopub.status.idle": "2024-08-26T15:55:41.956016Z", + "shell.execute_reply": "2024-08-26T15:55:41.955557Z" }, "scrolled": true }, @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:10.897974Z", - "iopub.status.busy": "2024-08-22T00:58:10.897480Z", - "iopub.status.idle": "2024-08-22T00:58:12.563607Z", - "shell.execute_reply": "2024-08-22T00:58:12.562979Z" + "iopub.execute_input": "2024-08-26T15:55:41.958182Z", + "iopub.status.busy": "2024-08-26T15:55:41.957880Z", + "iopub.status.idle": "2024-08-26T15:55:43.590550Z", + "shell.execute_reply": "2024-08-26T15:55:43.589949Z" }, "id": "AaHC5MRKjruT" }, @@ -729,10 +729,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:12.566533Z", - "iopub.status.busy": "2024-08-22T00:58:12.565854Z", - "iopub.status.idle": "2024-08-22T00:58:12.580093Z", - "shell.execute_reply": "2024-08-22T00:58:12.579597Z" + "iopub.execute_input": "2024-08-26T15:55:43.593513Z", + "iopub.status.busy": "2024-08-26T15:55:43.592646Z", + "iopub.status.idle": "2024-08-26T15:55:43.606730Z", + "shell.execute_reply": "2024-08-26T15:55:43.606174Z" }, "id": "Wy27rvyhjruU" }, @@ -781,10 +781,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:12.582320Z", - "iopub.status.busy": "2024-08-22T00:58:12.582127Z", - "iopub.status.idle": "2024-08-22T00:58:12.675375Z", - "shell.execute_reply": "2024-08-22T00:58:12.674689Z" + "iopub.execute_input": "2024-08-26T15:55:43.609011Z", + "iopub.status.busy": "2024-08-26T15:55:43.608577Z", + "iopub.status.idle": "2024-08-26T15:55:43.695090Z", + "shell.execute_reply": "2024-08-26T15:55:43.694416Z" }, "id": "Db8YHnyVjruU" }, @@ -891,10 +891,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:12.677968Z", - "iopub.status.busy": "2024-08-22T00:58:12.677707Z", - "iopub.status.idle": "2024-08-22T00:58:12.896383Z", - "shell.execute_reply": "2024-08-22T00:58:12.895774Z" + "iopub.execute_input": "2024-08-26T15:55:43.697856Z", + "iopub.status.busy": "2024-08-26T15:55:43.697324Z", + "iopub.status.idle": "2024-08-26T15:55:43.914049Z", + "shell.execute_reply": "2024-08-26T15:55:43.913315Z" }, "id": "iJqAHuS2jruV" }, @@ -931,10 +931,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:12.898668Z", - "iopub.status.busy": "2024-08-22T00:58:12.898264Z", - "iopub.status.idle": "2024-08-22T00:58:12.915781Z", - "shell.execute_reply": "2024-08-22T00:58:12.915283Z" + "iopub.execute_input": "2024-08-26T15:55:43.916733Z", + "iopub.status.busy": "2024-08-26T15:55:43.916502Z", + "iopub.status.idle": "2024-08-26T15:55:43.934524Z", + "shell.execute_reply": "2024-08-26T15:55:43.933947Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1400,10 +1400,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:12.917912Z", - "iopub.status.busy": "2024-08-22T00:58:12.917719Z", - "iopub.status.idle": "2024-08-22T00:58:12.927513Z", - "shell.execute_reply": "2024-08-22T00:58:12.927064Z" + "iopub.execute_input": "2024-08-26T15:55:43.936771Z", + "iopub.status.busy": "2024-08-26T15:55:43.936316Z", + "iopub.status.idle": "2024-08-26T15:55:43.946229Z", + "shell.execute_reply": "2024-08-26T15:55:43.945703Z" }, "id": "0lonvOYvjruV" }, @@ -1550,10 +1550,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:12.929707Z", - "iopub.status.busy": "2024-08-22T00:58:12.929354Z", - "iopub.status.idle": "2024-08-22T00:58:13.030656Z", - "shell.execute_reply": "2024-08-22T00:58:13.029947Z" + "iopub.execute_input": "2024-08-26T15:55:43.948319Z", + "iopub.status.busy": "2024-08-26T15:55:43.947995Z", + "iopub.status.idle": "2024-08-26T15:55:44.045452Z", + "shell.execute_reply": "2024-08-26T15:55:44.044785Z" }, "id": "MfqTCa3kjruV" }, @@ -1634,10 +1634,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:13.033106Z", - "iopub.status.busy": "2024-08-22T00:58:13.032853Z", - "iopub.status.idle": "2024-08-22T00:58:13.185654Z", - "shell.execute_reply": "2024-08-22T00:58:13.184911Z" + "iopub.execute_input": "2024-08-26T15:55:44.048317Z", + "iopub.status.busy": "2024-08-26T15:55:44.047949Z", + "iopub.status.idle": "2024-08-26T15:55:44.199135Z", + "shell.execute_reply": "2024-08-26T15:55:44.198458Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1697,10 +1697,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:13.188271Z", - "iopub.status.busy": "2024-08-22T00:58:13.187870Z", - "iopub.status.idle": "2024-08-22T00:58:13.192059Z", - "shell.execute_reply": "2024-08-22T00:58:13.191441Z" + "iopub.execute_input": "2024-08-26T15:55:44.201720Z", + "iopub.status.busy": "2024-08-26T15:55:44.201228Z", + "iopub.status.idle": "2024-08-26T15:55:44.205095Z", + "shell.execute_reply": "2024-08-26T15:55:44.204563Z" }, "id": "0rXP3ZPWjruW" }, @@ -1738,10 +1738,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:13.194295Z", - "iopub.status.busy": "2024-08-22T00:58:13.194088Z", - "iopub.status.idle": "2024-08-22T00:58:13.198202Z", - "shell.execute_reply": "2024-08-22T00:58:13.197634Z" + "iopub.execute_input": "2024-08-26T15:55:44.207245Z", + "iopub.status.busy": "2024-08-26T15:55:44.206899Z", + "iopub.status.idle": "2024-08-26T15:55:44.210784Z", + "shell.execute_reply": "2024-08-26T15:55:44.210214Z" }, "id": "-iRPe8KXjruW" }, @@ -1796,10 +1796,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:13.200447Z", - "iopub.status.busy": "2024-08-22T00:58:13.200103Z", - "iopub.status.idle": "2024-08-22T00:58:13.238878Z", - "shell.execute_reply": "2024-08-22T00:58:13.238234Z" + "iopub.execute_input": "2024-08-26T15:55:44.212876Z", + "iopub.status.busy": "2024-08-26T15:55:44.212534Z", + "iopub.status.idle": "2024-08-26T15:55:44.250428Z", + "shell.execute_reply": "2024-08-26T15:55:44.249930Z" }, "id": "ZpipUliyjruW" }, @@ -1850,10 +1850,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:13.241334Z", - "iopub.status.busy": "2024-08-22T00:58:13.240893Z", - "iopub.status.idle": "2024-08-22T00:58:13.282105Z", - "shell.execute_reply": "2024-08-22T00:58:13.281550Z" + "iopub.execute_input": "2024-08-26T15:55:44.252634Z", + "iopub.status.busy": "2024-08-26T15:55:44.252293Z", + "iopub.status.idle": "2024-08-26T15:55:44.295407Z", + "shell.execute_reply": "2024-08-26T15:55:44.294796Z" }, "id": "SLq-3q4xjruX" }, @@ -1922,10 +1922,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:13.284280Z", - "iopub.status.busy": "2024-08-22T00:58:13.283947Z", - "iopub.status.idle": "2024-08-22T00:58:13.390130Z", - "shell.execute_reply": "2024-08-22T00:58:13.389447Z" + "iopub.execute_input": "2024-08-26T15:55:44.297833Z", + "iopub.status.busy": "2024-08-26T15:55:44.297324Z", + "iopub.status.idle": "2024-08-26T15:55:44.403721Z", + "shell.execute_reply": "2024-08-26T15:55:44.403058Z" }, "id": "g5LHhhuqFbXK" }, @@ -1957,10 +1957,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:13.392899Z", - "iopub.status.busy": "2024-08-22T00:58:13.392545Z", - "iopub.status.idle": "2024-08-22T00:58:13.501403Z", - "shell.execute_reply": "2024-08-22T00:58:13.500768Z" + "iopub.execute_input": "2024-08-26T15:55:44.406534Z", + "iopub.status.busy": "2024-08-26T15:55:44.406130Z", + "iopub.status.idle": "2024-08-26T15:55:44.519957Z", + "shell.execute_reply": "2024-08-26T15:55:44.519299Z" }, "id": "p7w8F8ezBcet" }, @@ -2017,10 +2017,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:13.504266Z", - "iopub.status.busy": "2024-08-22T00:58:13.503754Z", - "iopub.status.idle": "2024-08-22T00:58:13.719454Z", - "shell.execute_reply": "2024-08-22T00:58:13.718847Z" + "iopub.execute_input": "2024-08-26T15:55:44.522219Z", + "iopub.status.busy": "2024-08-26T15:55:44.521957Z", + "iopub.status.idle": "2024-08-26T15:55:44.735309Z", + "shell.execute_reply": "2024-08-26T15:55:44.734712Z" }, "id": "WETRL74tE_sU" }, @@ -2055,10 +2055,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:13.721673Z", - "iopub.status.busy": "2024-08-22T00:58:13.721442Z", - "iopub.status.idle": "2024-08-22T00:58:13.960645Z", - "shell.execute_reply": "2024-08-22T00:58:13.959981Z" + "iopub.execute_input": "2024-08-26T15:55:44.737523Z", + "iopub.status.busy": "2024-08-26T15:55:44.737321Z", + "iopub.status.idle": "2024-08-26T15:55:44.980688Z", + "shell.execute_reply": "2024-08-26T15:55:44.980009Z" }, "id": "kCfdx2gOLmXS" }, @@ -2220,10 +2220,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:13.963402Z", - "iopub.status.busy": "2024-08-22T00:58:13.962959Z", - "iopub.status.idle": "2024-08-22T00:58:13.969708Z", - "shell.execute_reply": "2024-08-22T00:58:13.969202Z" + "iopub.execute_input": "2024-08-26T15:55:44.983243Z", + "iopub.status.busy": "2024-08-26T15:55:44.982856Z", + "iopub.status.idle": "2024-08-26T15:55:44.989124Z", + "shell.execute_reply": "2024-08-26T15:55:44.988663Z" }, "id": "-uogYRWFYnuu" }, @@ -2277,10 +2277,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:13.972037Z", - "iopub.status.busy": "2024-08-22T00:58:13.971554Z", - "iopub.status.idle": "2024-08-22T00:58:14.199436Z", - "shell.execute_reply": "2024-08-22T00:58:14.198846Z" + "iopub.execute_input": "2024-08-26T15:55:44.991199Z", + "iopub.status.busy": "2024-08-26T15:55:44.990866Z", + "iopub.status.idle": "2024-08-26T15:55:45.206648Z", + "shell.execute_reply": "2024-08-26T15:55:45.206056Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2327,10 +2327,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:14.201665Z", - "iopub.status.busy": "2024-08-22T00:58:14.201450Z", - "iopub.status.idle": "2024-08-22T00:58:15.286934Z", - "shell.execute_reply": "2024-08-22T00:58:15.286311Z" + "iopub.execute_input": "2024-08-26T15:55:45.208912Z", + "iopub.status.busy": "2024-08-26T15:55:45.208710Z", + "iopub.status.idle": "2024-08-26T15:55:46.311061Z", + "shell.execute_reply": "2024-08-26T15:55:46.310458Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index 83da2df0e..b1f7815f0 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:19.098333Z", - "iopub.status.busy": "2024-08-22T00:58:19.098170Z", - "iopub.status.idle": "2024-08-22T00:58:20.321311Z", - "shell.execute_reply": "2024-08-22T00:58:20.320758Z" + "iopub.execute_input": "2024-08-26T15:55:50.101189Z", + "iopub.status.busy": "2024-08-26T15:55:50.100749Z", + "iopub.status.idle": "2024-08-26T15:55:51.329967Z", + "shell.execute_reply": "2024-08-26T15:55:51.329400Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:20.324067Z", - "iopub.status.busy": "2024-08-22T00:58:20.323759Z", - "iopub.status.idle": "2024-08-22T00:58:20.327119Z", - "shell.execute_reply": "2024-08-22T00:58:20.326632Z" + "iopub.execute_input": "2024-08-26T15:55:51.332983Z", + "iopub.status.busy": "2024-08-26T15:55:51.332429Z", + "iopub.status.idle": "2024-08-26T15:55:51.335909Z", + "shell.execute_reply": "2024-08-26T15:55:51.335324Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:20.329446Z", - "iopub.status.busy": "2024-08-22T00:58:20.329040Z", - "iopub.status.idle": "2024-08-22T00:58:20.337257Z", - "shell.execute_reply": "2024-08-22T00:58:20.336695Z" + "iopub.execute_input": "2024-08-26T15:55:51.338118Z", + "iopub.status.busy": "2024-08-26T15:55:51.337791Z", + "iopub.status.idle": "2024-08-26T15:55:51.346087Z", + "shell.execute_reply": "2024-08-26T15:55:51.345575Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:20.339447Z", - "iopub.status.busy": "2024-08-22T00:58:20.339061Z", - "iopub.status.idle": "2024-08-22T00:58:20.386949Z", - "shell.execute_reply": "2024-08-22T00:58:20.386412Z" + "iopub.execute_input": "2024-08-26T15:55:51.348269Z", + "iopub.status.busy": "2024-08-26T15:55:51.347912Z", + "iopub.status.idle": "2024-08-26T15:55:51.397438Z", + "shell.execute_reply": "2024-08-26T15:55:51.396901Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:20.389661Z", - "iopub.status.busy": "2024-08-22T00:58:20.389235Z", - "iopub.status.idle": "2024-08-22T00:58:20.406980Z", - "shell.execute_reply": "2024-08-22T00:58:20.406397Z" + "iopub.execute_input": "2024-08-26T15:55:51.400009Z", + "iopub.status.busy": "2024-08-26T15:55:51.399623Z", + "iopub.status.idle": "2024-08-26T15:55:51.418118Z", + "shell.execute_reply": "2024-08-26T15:55:51.417489Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:20.409238Z", - "iopub.status.busy": "2024-08-22T00:58:20.408898Z", - "iopub.status.idle": "2024-08-22T00:58:20.412994Z", - "shell.execute_reply": "2024-08-22T00:58:20.412450Z" + "iopub.execute_input": "2024-08-26T15:55:51.420616Z", + "iopub.status.busy": "2024-08-26T15:55:51.420228Z", + "iopub.status.idle": "2024-08-26T15:55:51.424652Z", + "shell.execute_reply": "2024-08-26T15:55:51.424134Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:20.415146Z", - "iopub.status.busy": "2024-08-22T00:58:20.414840Z", - "iopub.status.idle": "2024-08-22T00:58:20.429016Z", - "shell.execute_reply": "2024-08-22T00:58:20.428547Z" + "iopub.execute_input": "2024-08-26T15:55:51.427131Z", + "iopub.status.busy": "2024-08-26T15:55:51.426753Z", + "iopub.status.idle": "2024-08-26T15:55:51.441388Z", + "shell.execute_reply": "2024-08-26T15:55:51.440867Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:20.431184Z", - "iopub.status.busy": "2024-08-22T00:58:20.430822Z", - "iopub.status.idle": "2024-08-22T00:58:20.457887Z", - "shell.execute_reply": "2024-08-22T00:58:20.457220Z" + "iopub.execute_input": "2024-08-26T15:55:51.443816Z", + "iopub.status.busy": "2024-08-26T15:55:51.443412Z", + "iopub.status.idle": "2024-08-26T15:55:51.470951Z", + "shell.execute_reply": "2024-08-26T15:55:51.470409Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:20.460560Z", - "iopub.status.busy": "2024-08-22T00:58:20.460080Z", - "iopub.status.idle": "2024-08-22T00:58:22.585072Z", - "shell.execute_reply": "2024-08-22T00:58:22.584490Z" + "iopub.execute_input": "2024-08-26T15:55:51.473560Z", + "iopub.status.busy": "2024-08-26T15:55:51.473170Z", + "iopub.status.idle": "2024-08-26T15:55:53.572478Z", + "shell.execute_reply": "2024-08-26T15:55:53.571934Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:22.587678Z", - "iopub.status.busy": "2024-08-22T00:58:22.587320Z", - "iopub.status.idle": "2024-08-22T00:58:22.594433Z", - "shell.execute_reply": "2024-08-22T00:58:22.593843Z" + "iopub.execute_input": "2024-08-26T15:55:53.575148Z", + "iopub.status.busy": "2024-08-26T15:55:53.574805Z", + "iopub.status.idle": "2024-08-26T15:55:53.581965Z", + "shell.execute_reply": "2024-08-26T15:55:53.581495Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:22.596942Z", - "iopub.status.busy": "2024-08-22T00:58:22.596471Z", - "iopub.status.idle": "2024-08-22T00:58:22.611005Z", - "shell.execute_reply": "2024-08-22T00:58:22.610522Z" + "iopub.execute_input": "2024-08-26T15:55:53.583931Z", + "iopub.status.busy": "2024-08-26T15:55:53.583750Z", + "iopub.status.idle": "2024-08-26T15:55:53.597950Z", + "shell.execute_reply": "2024-08-26T15:55:53.597508Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:22.613184Z", - "iopub.status.busy": "2024-08-22T00:58:22.612802Z", - "iopub.status.idle": "2024-08-22T00:58:22.619542Z", - "shell.execute_reply": "2024-08-22T00:58:22.619041Z" + "iopub.execute_input": "2024-08-26T15:55:53.600192Z", + "iopub.status.busy": "2024-08-26T15:55:53.599844Z", + "iopub.status.idle": "2024-08-26T15:55:53.606325Z", + "shell.execute_reply": "2024-08-26T15:55:53.605753Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:22.621850Z", - "iopub.status.busy": "2024-08-22T00:58:22.621473Z", - "iopub.status.idle": "2024-08-22T00:58:22.624387Z", - "shell.execute_reply": "2024-08-22T00:58:22.623829Z" + "iopub.execute_input": "2024-08-26T15:55:53.608524Z", + "iopub.status.busy": "2024-08-26T15:55:53.608203Z", + "iopub.status.idle": "2024-08-26T15:55:53.611057Z", + "shell.execute_reply": "2024-08-26T15:55:53.610487Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:22.626584Z", - "iopub.status.busy": "2024-08-22T00:58:22.626245Z", - "iopub.status.idle": "2024-08-22T00:58:22.629974Z", - "shell.execute_reply": "2024-08-22T00:58:22.629419Z" + "iopub.execute_input": "2024-08-26T15:55:53.613133Z", + "iopub.status.busy": "2024-08-26T15:55:53.612727Z", + "iopub.status.idle": "2024-08-26T15:55:53.616493Z", + "shell.execute_reply": "2024-08-26T15:55:53.615926Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:22.632185Z", - "iopub.status.busy": "2024-08-22T00:58:22.631863Z", - "iopub.status.idle": "2024-08-22T00:58:22.634811Z", - "shell.execute_reply": "2024-08-22T00:58:22.634255Z" + "iopub.execute_input": "2024-08-26T15:55:53.618748Z", + "iopub.status.busy": "2024-08-26T15:55:53.618292Z", + "iopub.status.idle": "2024-08-26T15:55:53.620917Z", + "shell.execute_reply": "2024-08-26T15:55:53.620475Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:22.637028Z", - "iopub.status.busy": "2024-08-22T00:58:22.636633Z", - "iopub.status.idle": "2024-08-22T00:58:22.641104Z", - "shell.execute_reply": "2024-08-22T00:58:22.640532Z" + "iopub.execute_input": "2024-08-26T15:55:53.622763Z", + "iopub.status.busy": "2024-08-26T15:55:53.622591Z", + "iopub.status.idle": "2024-08-26T15:55:53.626806Z", + "shell.execute_reply": "2024-08-26T15:55:53.626334Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:22.643226Z", - "iopub.status.busy": "2024-08-22T00:58:22.642911Z", - "iopub.status.idle": "2024-08-22T00:58:22.673580Z", - "shell.execute_reply": "2024-08-22T00:58:22.673010Z" + "iopub.execute_input": "2024-08-26T15:55:53.628797Z", + "iopub.status.busy": "2024-08-26T15:55:53.628623Z", + "iopub.status.idle": "2024-08-26T15:55:53.657166Z", + "shell.execute_reply": "2024-08-26T15:55:53.656656Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:22.676200Z", - "iopub.status.busy": "2024-08-22T00:58:22.675840Z", - "iopub.status.idle": "2024-08-22T00:58:22.680948Z", - "shell.execute_reply": "2024-08-22T00:58:22.680353Z" + "iopub.execute_input": "2024-08-26T15:55:53.659591Z", + "iopub.status.busy": "2024-08-26T15:55:53.659398Z", + "iopub.status.idle": "2024-08-26T15:55:53.664302Z", + "shell.execute_reply": "2024-08-26T15:55:53.663840Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index 768581dd1..5c10fb5e6 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:25.720012Z", - "iopub.status.busy": "2024-08-22T00:58:25.719808Z", - "iopub.status.idle": "2024-08-22T00:58:27.062195Z", - "shell.execute_reply": "2024-08-22T00:58:27.061628Z" + "iopub.execute_input": "2024-08-26T15:55:56.766882Z", + "iopub.status.busy": "2024-08-26T15:55:56.766428Z", + "iopub.status.idle": "2024-08-26T15:55:58.038153Z", + "shell.execute_reply": "2024-08-26T15:55:58.037589Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:27.065056Z", - "iopub.status.busy": "2024-08-22T00:58:27.064539Z", - "iopub.status.idle": "2024-08-22T00:58:27.272037Z", - "shell.execute_reply": "2024-08-22T00:58:27.271362Z" + "iopub.execute_input": "2024-08-26T15:55:58.040800Z", + "iopub.status.busy": "2024-08-26T15:55:58.040343Z", + "iopub.status.idle": "2024-08-26T15:55:58.241293Z", + "shell.execute_reply": "2024-08-26T15:55:58.240703Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:27.275127Z", - "iopub.status.busy": "2024-08-22T00:58:27.274611Z", - "iopub.status.idle": "2024-08-22T00:58:27.289310Z", - "shell.execute_reply": "2024-08-22T00:58:27.288695Z" + "iopub.execute_input": "2024-08-26T15:55:58.243890Z", + "iopub.status.busy": "2024-08-26T15:55:58.243560Z", + "iopub.status.idle": "2024-08-26T15:55:58.257402Z", + "shell.execute_reply": "2024-08-26T15:55:58.256901Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:27.291864Z", - "iopub.status.busy": "2024-08-22T00:58:27.291455Z", - "iopub.status.idle": "2024-08-22T00:58:30.018938Z", - "shell.execute_reply": "2024-08-22T00:58:30.018320Z" + "iopub.execute_input": "2024-08-26T15:55:58.259462Z", + "iopub.status.busy": "2024-08-26T15:55:58.259112Z", + "iopub.status.idle": "2024-08-26T15:56:00.987646Z", + "shell.execute_reply": "2024-08-26T15:56:00.987007Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:30.021332Z", - "iopub.status.busy": "2024-08-22T00:58:30.020957Z", - "iopub.status.idle": "2024-08-22T00:58:31.413488Z", - "shell.execute_reply": "2024-08-22T00:58:31.412684Z" + "iopub.execute_input": "2024-08-26T15:56:00.990103Z", + "iopub.status.busy": "2024-08-26T15:56:00.989893Z", + "iopub.status.idle": "2024-08-26T15:56:02.372407Z", + "shell.execute_reply": "2024-08-26T15:56:02.371693Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:31.416363Z", - "iopub.status.busy": "2024-08-22T00:58:31.415941Z", - "iopub.status.idle": "2024-08-22T00:58:31.420598Z", - "shell.execute_reply": "2024-08-22T00:58:31.420074Z" + "iopub.execute_input": "2024-08-26T15:56:02.375314Z", + "iopub.status.busy": "2024-08-26T15:56:02.374897Z", + "iopub.status.idle": "2024-08-26T15:56:02.378930Z", + "shell.execute_reply": "2024-08-26T15:56:02.378306Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:31.422894Z", - "iopub.status.busy": "2024-08-22T00:58:31.422517Z", - "iopub.status.idle": "2024-08-22T00:58:33.768111Z", - "shell.execute_reply": "2024-08-22T00:58:33.767473Z" + "iopub.execute_input": "2024-08-26T15:56:02.381153Z", + "iopub.status.busy": "2024-08-26T15:56:02.380797Z", + "iopub.status.idle": "2024-08-26T15:56:04.546007Z", + "shell.execute_reply": "2024-08-26T15:56:04.545338Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:33.770788Z", - "iopub.status.busy": "2024-08-22T00:58:33.770342Z", - "iopub.status.idle": "2024-08-22T00:58:33.779927Z", - "shell.execute_reply": "2024-08-22T00:58:33.779385Z" + "iopub.execute_input": "2024-08-26T15:56:04.549003Z", + "iopub.status.busy": "2024-08-26T15:56:04.548276Z", + "iopub.status.idle": "2024-08-26T15:56:04.556518Z", + "shell.execute_reply": "2024-08-26T15:56:04.556052Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:33.782259Z", - "iopub.status.busy": "2024-08-22T00:58:33.781875Z", - "iopub.status.idle": "2024-08-22T00:58:36.667844Z", - "shell.execute_reply": "2024-08-22T00:58:36.667209Z" + "iopub.execute_input": "2024-08-26T15:56:04.558584Z", + "iopub.status.busy": "2024-08-26T15:56:04.558246Z", + "iopub.status.idle": "2024-08-26T15:56:07.362260Z", + "shell.execute_reply": "2024-08-26T15:56:07.361630Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:36.670176Z", - "iopub.status.busy": "2024-08-22T00:58:36.669965Z", - "iopub.status.idle": "2024-08-22T00:58:36.674120Z", - "shell.execute_reply": "2024-08-22T00:58:36.673592Z" + "iopub.execute_input": "2024-08-26T15:56:07.364609Z", + "iopub.status.busy": "2024-08-26T15:56:07.364404Z", + "iopub.status.idle": "2024-08-26T15:56:07.368177Z", + "shell.execute_reply": "2024-08-26T15:56:07.367638Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:36.676257Z", - "iopub.status.busy": "2024-08-22T00:58:36.676069Z", - "iopub.status.idle": "2024-08-22T00:58:36.680630Z", - "shell.execute_reply": "2024-08-22T00:58:36.680026Z" + "iopub.execute_input": "2024-08-26T15:56:07.370130Z", + "iopub.status.busy": "2024-08-26T15:56:07.369942Z", + "iopub.status.idle": "2024-08-26T15:56:07.373364Z", + "shell.execute_reply": "2024-08-26T15:56:07.372878Z" } }, "outputs": [], @@ -769,10 +769,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:36.682787Z", - "iopub.status.busy": "2024-08-22T00:58:36.682596Z", - "iopub.status.idle": "2024-08-22T00:58:36.686164Z", - "shell.execute_reply": "2024-08-22T00:58:36.685689Z" + "iopub.execute_input": "2024-08-26T15:56:07.375274Z", + "iopub.status.busy": "2024-08-26T15:56:07.375092Z", + "iopub.status.idle": "2024-08-26T15:56:07.378537Z", + "shell.execute_reply": "2024-08-26T15:56:07.378053Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index 4c398583a..5911b8286 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:39.615178Z", - "iopub.status.busy": "2024-08-22T00:58:39.614997Z", - "iopub.status.idle": "2024-08-22T00:58:40.919384Z", - "shell.execute_reply": "2024-08-22T00:58:40.918737Z" + "iopub.execute_input": "2024-08-26T15:56:10.340207Z", + "iopub.status.busy": "2024-08-26T15:56:10.340030Z", + "iopub.status.idle": "2024-08-26T15:56:11.624749Z", + "shell.execute_reply": "2024-08-26T15:56:11.624166Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:40.922217Z", - "iopub.status.busy": "2024-08-22T00:58:40.921684Z", - "iopub.status.idle": "2024-08-22T00:58:42.214165Z", - "shell.execute_reply": "2024-08-22T00:58:42.213399Z" + "iopub.execute_input": "2024-08-26T15:56:11.627256Z", + "iopub.status.busy": "2024-08-26T15:56:11.626951Z", + "iopub.status.idle": "2024-08-26T15:56:14.401848Z", + "shell.execute_reply": "2024-08-26T15:56:14.401149Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:42.217051Z", - "iopub.status.busy": "2024-08-22T00:58:42.216644Z", - "iopub.status.idle": "2024-08-22T00:58:42.219897Z", - "shell.execute_reply": "2024-08-22T00:58:42.219427Z" + "iopub.execute_input": "2024-08-26T15:56:14.404488Z", + "iopub.status.busy": "2024-08-26T15:56:14.404277Z", + "iopub.status.idle": "2024-08-26T15:56:14.407583Z", + "shell.execute_reply": "2024-08-26T15:56:14.407130Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:42.222092Z", - "iopub.status.busy": "2024-08-22T00:58:42.221747Z", - "iopub.status.idle": "2024-08-22T00:58:42.228361Z", - "shell.execute_reply": "2024-08-22T00:58:42.227937Z" + "iopub.execute_input": "2024-08-26T15:56:14.409784Z", + "iopub.status.busy": "2024-08-26T15:56:14.409456Z", + "iopub.status.idle": "2024-08-26T15:56:14.416283Z", + "shell.execute_reply": "2024-08-26T15:56:14.415707Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:42.230519Z", - "iopub.status.busy": "2024-08-22T00:58:42.230169Z", - "iopub.status.idle": "2024-08-22T00:58:42.751121Z", - "shell.execute_reply": "2024-08-22T00:58:42.750466Z" + "iopub.execute_input": "2024-08-26T15:56:14.418739Z", + "iopub.status.busy": "2024-08-26T15:56:14.418202Z", + "iopub.status.idle": "2024-08-26T15:56:14.927903Z", + "shell.execute_reply": "2024-08-26T15:56:14.927290Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:42.753846Z", - "iopub.status.busy": "2024-08-22T00:58:42.753398Z", - "iopub.status.idle": "2024-08-22T00:58:42.759031Z", - "shell.execute_reply": "2024-08-22T00:58:42.758469Z" + "iopub.execute_input": "2024-08-26T15:56:14.930602Z", + "iopub.status.busy": "2024-08-26T15:56:14.930405Z", + "iopub.status.idle": "2024-08-26T15:56:14.935854Z", + "shell.execute_reply": "2024-08-26T15:56:14.935409Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:42.761158Z", - "iopub.status.busy": "2024-08-22T00:58:42.760871Z", - "iopub.status.idle": "2024-08-22T00:58:42.765155Z", - "shell.execute_reply": "2024-08-22T00:58:42.764646Z" + "iopub.execute_input": "2024-08-26T15:56:14.937858Z", + "iopub.status.busy": "2024-08-26T15:56:14.937674Z", + "iopub.status.idle": "2024-08-26T15:56:14.941832Z", + "shell.execute_reply": "2024-08-26T15:56:14.941270Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:42.767464Z", - "iopub.status.busy": "2024-08-22T00:58:42.767007Z", - "iopub.status.idle": "2024-08-22T00:58:43.666011Z", - "shell.execute_reply": "2024-08-22T00:58:43.665429Z" + "iopub.execute_input": "2024-08-26T15:56:14.944226Z", + "iopub.status.busy": "2024-08-26T15:56:14.943744Z", + "iopub.status.idle": "2024-08-26T15:56:15.859004Z", + "shell.execute_reply": "2024-08-26T15:56:15.858309Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:43.668386Z", - "iopub.status.busy": "2024-08-22T00:58:43.668171Z", - "iopub.status.idle": "2024-08-22T00:58:43.872542Z", - "shell.execute_reply": "2024-08-22T00:58:43.871914Z" + "iopub.execute_input": "2024-08-26T15:56:15.861666Z", + "iopub.status.busy": "2024-08-26T15:56:15.861235Z", + "iopub.status.idle": "2024-08-26T15:56:16.069556Z", + "shell.execute_reply": "2024-08-26T15:56:16.069040Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:43.874979Z", - "iopub.status.busy": "2024-08-22T00:58:43.874758Z", - "iopub.status.idle": "2024-08-22T00:58:43.879524Z", - "shell.execute_reply": "2024-08-22T00:58:43.878935Z" + "iopub.execute_input": "2024-08-26T15:56:16.071703Z", + "iopub.status.busy": "2024-08-26T15:56:16.071511Z", + "iopub.status.idle": "2024-08-26T15:56:16.076159Z", + "shell.execute_reply": "2024-08-26T15:56:16.075690Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:43.881686Z", - "iopub.status.busy": "2024-08-22T00:58:43.881466Z", - "iopub.status.idle": "2024-08-22T00:58:44.364106Z", - "shell.execute_reply": "2024-08-22T00:58:44.363465Z" + "iopub.execute_input": "2024-08-26T15:56:16.078253Z", + "iopub.status.busy": "2024-08-26T15:56:16.077918Z", + "iopub.status.idle": "2024-08-26T15:56:16.556663Z", + "shell.execute_reply": "2024-08-26T15:56:16.556007Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:44.367284Z", - "iopub.status.busy": "2024-08-22T00:58:44.367072Z", - "iopub.status.idle": "2024-08-22T00:58:44.684584Z", - "shell.execute_reply": "2024-08-22T00:58:44.683941Z" + "iopub.execute_input": "2024-08-26T15:56:16.559624Z", + "iopub.status.busy": "2024-08-26T15:56:16.559248Z", + "iopub.status.idle": "2024-08-26T15:56:16.898201Z", + "shell.execute_reply": "2024-08-26T15:56:16.897622Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:44.687762Z", - "iopub.status.busy": "2024-08-22T00:58:44.687347Z", - "iopub.status.idle": "2024-08-22T00:58:45.039421Z", - "shell.execute_reply": "2024-08-22T00:58:45.038748Z" + "iopub.execute_input": "2024-08-26T15:56:16.900962Z", + "iopub.status.busy": "2024-08-26T15:56:16.900766Z", + "iopub.status.idle": "2024-08-26T15:56:17.272375Z", + "shell.execute_reply": "2024-08-26T15:56:17.271736Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:45.043289Z", - "iopub.status.busy": "2024-08-22T00:58:45.042737Z", - "iopub.status.idle": "2024-08-22T00:58:45.495391Z", - "shell.execute_reply": "2024-08-22T00:58:45.494757Z" + "iopub.execute_input": "2024-08-26T15:56:17.275685Z", + "iopub.status.busy": "2024-08-26T15:56:17.275315Z", + "iopub.status.idle": "2024-08-26T15:56:17.708365Z", + "shell.execute_reply": "2024-08-26T15:56:17.707796Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:45.500306Z", - "iopub.status.busy": "2024-08-22T00:58:45.500062Z", - "iopub.status.idle": "2024-08-22T00:58:45.961234Z", - "shell.execute_reply": "2024-08-22T00:58:45.960583Z" + "iopub.execute_input": "2024-08-26T15:56:17.713051Z", + "iopub.status.busy": "2024-08-26T15:56:17.712669Z", + "iopub.status.idle": "2024-08-26T15:56:18.145788Z", + "shell.execute_reply": "2024-08-26T15:56:18.145119Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:45.964456Z", - "iopub.status.busy": "2024-08-22T00:58:45.964229Z", - "iopub.status.idle": "2024-08-22T00:58:46.185620Z", - "shell.execute_reply": "2024-08-22T00:58:46.184904Z" + "iopub.execute_input": "2024-08-26T15:56:18.149293Z", + "iopub.status.busy": "2024-08-26T15:56:18.148772Z", + "iopub.status.idle": "2024-08-26T15:56:18.346020Z", + "shell.execute_reply": "2024-08-26T15:56:18.345257Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:46.187789Z", - "iopub.status.busy": "2024-08-22T00:58:46.187590Z", - "iopub.status.idle": "2024-08-22T00:58:46.389545Z", - "shell.execute_reply": "2024-08-22T00:58:46.388924Z" + "iopub.execute_input": "2024-08-26T15:56:18.348953Z", + "iopub.status.busy": "2024-08-26T15:56:18.348730Z", + "iopub.status.idle": "2024-08-26T15:56:18.534029Z", + "shell.execute_reply": "2024-08-26T15:56:18.533465Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:46.392074Z", - "iopub.status.busy": "2024-08-22T00:58:46.391580Z", - "iopub.status.idle": "2024-08-22T00:58:46.394801Z", - "shell.execute_reply": "2024-08-22T00:58:46.394237Z" + "iopub.execute_input": "2024-08-26T15:56:18.536855Z", + "iopub.status.busy": "2024-08-26T15:56:18.536371Z", + "iopub.status.idle": "2024-08-26T15:56:18.539344Z", + "shell.execute_reply": "2024-08-26T15:56:18.538884Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:46.396837Z", - "iopub.status.busy": "2024-08-22T00:58:46.396509Z", - "iopub.status.idle": "2024-08-22T00:58:47.362989Z", - "shell.execute_reply": "2024-08-22T00:58:47.362399Z" + "iopub.execute_input": "2024-08-26T15:56:18.541453Z", + "iopub.status.busy": "2024-08-26T15:56:18.541012Z", + "iopub.status.idle": "2024-08-26T15:56:19.477586Z", + "shell.execute_reply": "2024-08-26T15:56:19.476978Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:47.365674Z", - "iopub.status.busy": "2024-08-22T00:58:47.365205Z", - "iopub.status.idle": "2024-08-22T00:58:47.492470Z", - "shell.execute_reply": "2024-08-22T00:58:47.491853Z" + "iopub.execute_input": "2024-08-26T15:56:19.480700Z", + "iopub.status.busy": "2024-08-26T15:56:19.480256Z", + "iopub.status.idle": "2024-08-26T15:56:19.636020Z", + "shell.execute_reply": "2024-08-26T15:56:19.635531Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:47.495262Z", - "iopub.status.busy": "2024-08-22T00:58:47.494821Z", - "iopub.status.idle": "2024-08-22T00:58:47.631609Z", - "shell.execute_reply": "2024-08-22T00:58:47.631078Z" + "iopub.execute_input": "2024-08-26T15:56:19.638250Z", + "iopub.status.busy": "2024-08-26T15:56:19.637899Z", + "iopub.status.idle": "2024-08-26T15:56:19.786441Z", + "shell.execute_reply": "2024-08-26T15:56:19.785787Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:47.634419Z", - "iopub.status.busy": "2024-08-22T00:58:47.634007Z", - "iopub.status.idle": "2024-08-22T00:58:48.218805Z", - "shell.execute_reply": "2024-08-22T00:58:48.218275Z" + "iopub.execute_input": "2024-08-26T15:56:19.789092Z", + "iopub.status.busy": "2024-08-26T15:56:19.788762Z", + "iopub.status.idle": "2024-08-26T15:56:20.472378Z", + "shell.execute_reply": "2024-08-26T15:56:20.471795Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:48.221173Z", - "iopub.status.busy": "2024-08-22T00:58:48.220781Z", - "iopub.status.idle": "2024-08-22T00:58:48.224497Z", - "shell.execute_reply": "2024-08-22T00:58:48.223961Z" + "iopub.execute_input": "2024-08-26T15:56:20.474731Z", + "iopub.status.busy": "2024-08-26T15:56:20.474528Z", + "iopub.status.idle": "2024-08-26T15:56:20.478228Z", + "shell.execute_reply": "2024-08-26T15:56:20.477783Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index 2f1ca67b6..62016d498 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:50.781272Z", - "iopub.status.busy": "2024-08-22T00:58:50.781110Z", - "iopub.status.idle": "2024-08-22T00:58:53.814369Z", - "shell.execute_reply": "2024-08-22T00:58:53.813704Z" + "iopub.execute_input": "2024-08-26T15:56:22.809306Z", + "iopub.status.busy": "2024-08-26T15:56:22.809121Z", + "iopub.status.idle": "2024-08-26T15:56:25.923468Z", + "shell.execute_reply": "2024-08-26T15:56:25.922782Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:53.817092Z", - "iopub.status.busy": "2024-08-22T00:58:53.816761Z", - "iopub.status.idle": "2024-08-22T00:58:54.171332Z", - "shell.execute_reply": "2024-08-22T00:58:54.170672Z" + "iopub.execute_input": "2024-08-26T15:56:25.926138Z", + "iopub.status.busy": "2024-08-26T15:56:25.925803Z", + "iopub.status.idle": "2024-08-26T15:56:26.295753Z", + "shell.execute_reply": "2024-08-26T15:56:26.295060Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:54.174018Z", - "iopub.status.busy": "2024-08-22T00:58:54.173676Z", - "iopub.status.idle": "2024-08-22T00:58:54.178314Z", - "shell.execute_reply": "2024-08-22T00:58:54.177737Z" + "iopub.execute_input": "2024-08-26T15:56:26.298531Z", + "iopub.status.busy": "2024-08-26T15:56:26.298163Z", + "iopub.status.idle": "2024-08-26T15:56:26.302951Z", + "shell.execute_reply": "2024-08-26T15:56:26.302336Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:54.180681Z", - "iopub.status.busy": "2024-08-22T00:58:54.180345Z", - "iopub.status.idle": "2024-08-22T00:58:58.992026Z", - "shell.execute_reply": "2024-08-22T00:58:58.991412Z" + "iopub.execute_input": "2024-08-26T15:56:26.305208Z", + "iopub.status.busy": "2024-08-26T15:56:26.304770Z", + "iopub.status.idle": "2024-08-26T15:56:34.247942Z", + "shell.execute_reply": "2024-08-26T15:56:34.247391Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 851968/170498071 [00:00<00:21, 7782313.76it/s]" + " 0%| | 32768/170498071 [00:00<09:51, 288072.79it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 8552448/170498071 [00:00<00:03, 46916048.99it/s]" + " 0%| | 229376/170498071 [00:00<02:31, 1123326.69it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 17465344/170498071 [00:00<00:02, 65684577.73it/s]" + " 1%| | 884736/170498071 [00:00<00:50, 3367551.37it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 26443776/170498071 [00:00<00:01, 74909873.78it/s]" + " 2%|▏ | 3080192/170498071 [00:00<00:18, 8860851.19it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 35651584/170498071 [00:00<00:01, 81011799.24it/s]" + " 4%|▍ | 7471104/170498071 [00:00<00:08, 19515662.29it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 44335104/170498071 [00:00<00:01, 81391062.80it/s]" + " 7%|▋ | 11763712/170498071 [00:00<00:05, 26595950.29it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 53936128/170498071 [00:00<00:01, 85934406.86it/s]" + " 9%|▉ | 16121856/170498071 [00:00<00:05, 30335840.06it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 63012864/170498071 [00:00<00:01, 87443130.10it/s]" + " 12%|█▏ | 20545536/170498071 [00:00<00:04, 32917156.30it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 71958528/170498071 [00:00<00:01, 88036492.80it/s]" + " 15%|█▍ | 25034752/170498071 [00:01<00:04, 34791429.08it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 80805888/170498071 [00:01<00:01, 87576732.52it/s]" + " 17%|█▋ | 29523968/170498071 [00:01<00:03, 37589731.77it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 89915392/170498071 [00:01<00:00, 88553079.89it/s]" + " 20%|█▉ | 33357824/170498071 [00:01<00:03, 36851696.99it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 98795520/170498071 [00:01<00:00, 88465181.87it/s]" + " 22%|██▏ | 37093376/170498071 [00:01<00:03, 36416220.00it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 107905024/170498071 [00:01<00:00, 89088575.01it/s]" + " 24%|██▍ | 41189376/170498071 [00:01<00:03, 37261067.87it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▊ | 116850688/170498071 [00:01<00:00, 88287192.28it/s]" + " 27%|██▋ | 45776896/170498071 [00:01<00:03, 39651326.45it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 125927424/170498071 [00:01<00:00, 89026417.72it/s]" + " 29%|██▉ | 50069504/170498071 [00:01<00:02, 40582417.66it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 134873088/170498071 [00:01<00:00, 89110639.77it/s]" + " 32%|███▏ | 54165504/170498071 [00:01<00:02, 39822791.56it/s]" ] }, { @@ -380,7 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 143818752/170498071 [00:01<00:00, 88181398.03it/s]" + " 34%|███▍ | 58163200/170498071 [00:01<00:02, 39191771.97it/s]" ] }, { @@ -388,7 +388,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 152895488/170498071 [00:01<00:00, 88806090.40it/s]" + " 37%|███▋ | 62717952/170498071 [00:01<00:02, 40349731.02it/s]" ] }, { @@ -396,7 +396,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 161808384/170498071 [00:01<00:00, 88623236.17it/s]" + " 40%|███▉ | 67436544/170498071 [00:02<00:02, 42324557.71it/s]" ] }, { @@ -404,7 +404,183 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:02<00:00, 84125418.78it/s]" + " 42%|████▏ | 71696384/170498071 [00:02<00:02, 41933061.13it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 45%|████▍ | 75923456/170498071 [00:02<00:02, 41259879.63it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 47%|████▋ | 80084992/170498071 [00:02<00:02, 41074211.69it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 50%|████▉ | 84934656/170498071 [00:02<00:01, 42954273.39it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 52%|█████▏ | 89489408/170498071 [00:02<00:01, 43669192.51it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 55%|█████▌ | 93880320/170498071 [00:02<00:01, 43233991.86it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 58%|█████▊ | 98238464/170498071 [00:02<00:01, 42582306.42it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 60%|██████ | 102957056/170498071 [00:02<00:01, 43182345.58it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 63%|██████▎ | 107970560/170498071 [00:03<00:01, 45181673.00it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 66%|██████▌ | 112525312/170498071 [00:03<00:01, 44689709.52it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 69%|██████▊ | 117014528/170498071 [00:03<00:01, 43897496.20it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 71%|███████▏ | 121536512/170498071 [00:03<00:01, 44079438.69it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 74%|███████▍ | 126648320/170498071 [00:03<00:00, 45168506.43it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 77%|███████▋ | 131792896/170498071 [00:03<00:00, 46942882.30it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 80%|████████ | 136511488/170498071 [00:03<00:00, 46011048.74it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 83%|████████▎ | 141131776/170498071 [00:03<00:00, 44969350.49it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 86%|████████▌ | 145784832/170498071 [00:03<00:00, 45345121.03it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 88%|████████▊ | 150667264/170498071 [00:03<00:00, 46353164.37it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 91%|█████████ | 155320320/170498071 [00:04<00:00, 45890625.20it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 94%|█████████▍| 159940608/170498071 [00:04<00:00, 44701148.89it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 96%|█████████▋| 164429824/170498071 [00:04<00:00, 41442057.36it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 168624128/170498071 [00:04<00:00, 39704429.04it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:04<00:00, 38277434.85it/s]" ] }, { @@ -522,10 +698,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:58.994544Z", - "iopub.status.busy": "2024-08-22T00:58:58.994088Z", - "iopub.status.idle": "2024-08-22T00:58:58.999150Z", - "shell.execute_reply": "2024-08-22T00:58:58.998539Z" + "iopub.execute_input": "2024-08-26T15:56:34.250134Z", + "iopub.status.busy": "2024-08-26T15:56:34.249930Z", + "iopub.status.idle": "2024-08-26T15:56:34.255211Z", + "shell.execute_reply": "2024-08-26T15:56:34.254696Z" }, "nbsphinx": "hidden" }, @@ -576,10 +752,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:59.001454Z", - "iopub.status.busy": "2024-08-22T00:58:59.001122Z", - "iopub.status.idle": "2024-08-22T00:58:59.544240Z", - "shell.execute_reply": "2024-08-22T00:58:59.543688Z" + "iopub.execute_input": "2024-08-26T15:56:34.257332Z", + "iopub.status.busy": "2024-08-26T15:56:34.257140Z", + "iopub.status.idle": "2024-08-26T15:56:34.848225Z", + "shell.execute_reply": "2024-08-26T15:56:34.847605Z" } }, "outputs": [ @@ -612,10 +788,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:59.546631Z", - "iopub.status.busy": "2024-08-22T00:58:59.546173Z", - "iopub.status.idle": "2024-08-22T00:59:00.062180Z", - "shell.execute_reply": "2024-08-22T00:59:00.061539Z" + "iopub.execute_input": "2024-08-26T15:56:34.851549Z", + "iopub.status.busy": "2024-08-26T15:56:34.851001Z", + "iopub.status.idle": "2024-08-26T15:56:35.378547Z", + "shell.execute_reply": "2024-08-26T15:56:35.377869Z" } }, "outputs": [ @@ -653,10 +829,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:00.064495Z", - "iopub.status.busy": "2024-08-22T00:59:00.064111Z", - "iopub.status.idle": "2024-08-22T00:59:00.068001Z", - "shell.execute_reply": "2024-08-22T00:59:00.067395Z" + "iopub.execute_input": "2024-08-26T15:56:35.380935Z", + "iopub.status.busy": "2024-08-26T15:56:35.380512Z", + "iopub.status.idle": "2024-08-26T15:56:35.384410Z", + "shell.execute_reply": "2024-08-26T15:56:35.383897Z" } }, "outputs": [], @@ -679,17 +855,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:00.070278Z", - "iopub.status.busy": "2024-08-22T00:59:00.069824Z", - "iopub.status.idle": "2024-08-22T00:59:12.754451Z", - "shell.execute_reply": "2024-08-22T00:59:12.753804Z" + "iopub.execute_input": "2024-08-26T15:56:35.386668Z", + "iopub.status.busy": "2024-08-26T15:56:35.386265Z", + "iopub.status.idle": "2024-08-26T15:56:48.158582Z", + "shell.execute_reply": "2024-08-26T15:56:48.157871Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "07d71ae622f9466db3d264b885cb47b5", + "model_id": "9068c384170544debc26f2cb25b50402", "version_major": 2, "version_minor": 0 }, @@ -748,10 +924,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:12.757043Z", - "iopub.status.busy": "2024-08-22T00:59:12.756623Z", - "iopub.status.idle": "2024-08-22T00:59:14.898274Z", - "shell.execute_reply": "2024-08-22T00:59:14.897643Z" + "iopub.execute_input": "2024-08-26T15:56:48.161816Z", + "iopub.status.busy": "2024-08-26T15:56:48.161244Z", + "iopub.status.idle": "2024-08-26T15:56:50.454621Z", + "shell.execute_reply": "2024-08-26T15:56:50.453973Z" } }, "outputs": [ @@ -795,10 +971,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:14.901261Z", - "iopub.status.busy": "2024-08-22T00:59:14.900772Z", - "iopub.status.idle": "2024-08-22T00:59:15.170967Z", - "shell.execute_reply": "2024-08-22T00:59:15.170340Z" + "iopub.execute_input": "2024-08-26T15:56:50.457480Z", + "iopub.status.busy": "2024-08-26T15:56:50.456964Z", + "iopub.status.idle": "2024-08-26T15:56:50.704657Z", + "shell.execute_reply": "2024-08-26T15:56:50.703892Z" } }, "outputs": [ @@ -834,10 +1010,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:15.173970Z", - "iopub.status.busy": "2024-08-22T00:59:15.173418Z", - "iopub.status.idle": "2024-08-22T00:59:15.857179Z", - "shell.execute_reply": "2024-08-22T00:59:15.856582Z" + "iopub.execute_input": "2024-08-26T15:56:50.707630Z", + "iopub.status.busy": "2024-08-26T15:56:50.707165Z", + "iopub.status.idle": "2024-08-26T15:56:51.375377Z", + "shell.execute_reply": "2024-08-26T15:56:51.374703Z" } }, "outputs": [ @@ -887,10 +1063,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:15.860425Z", - "iopub.status.busy": "2024-08-22T00:59:15.859955Z", - "iopub.status.idle": "2024-08-22T00:59:16.213980Z", - "shell.execute_reply": "2024-08-22T00:59:16.213237Z" + "iopub.execute_input": "2024-08-26T15:56:51.378257Z", + "iopub.status.busy": "2024-08-26T15:56:51.377877Z", + "iopub.status.idle": "2024-08-26T15:56:51.734722Z", + "shell.execute_reply": "2024-08-26T15:56:51.734019Z" } }, "outputs": [ @@ -938,10 +1114,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:16.216341Z", - "iopub.status.busy": "2024-08-22T00:59:16.215975Z", - "iopub.status.idle": "2024-08-22T00:59:16.467315Z", - "shell.execute_reply": "2024-08-22T00:59:16.466615Z" + "iopub.execute_input": "2024-08-26T15:56:51.737103Z", + "iopub.status.busy": "2024-08-26T15:56:51.736880Z", + "iopub.status.idle": "2024-08-26T15:56:51.981261Z", + "shell.execute_reply": "2024-08-26T15:56:51.980528Z" } }, "outputs": [ @@ -997,10 +1173,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:16.470493Z", - "iopub.status.busy": "2024-08-22T00:59:16.469931Z", - "iopub.status.idle": "2024-08-22T00:59:16.552002Z", - "shell.execute_reply": "2024-08-22T00:59:16.551345Z" + "iopub.execute_input": "2024-08-26T15:56:51.984034Z", + "iopub.status.busy": "2024-08-26T15:56:51.983823Z", + "iopub.status.idle": "2024-08-26T15:56:52.067085Z", + "shell.execute_reply": "2024-08-26T15:56:52.066419Z" } }, "outputs": [], @@ -1021,10 +1197,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:16.554754Z", - "iopub.status.busy": "2024-08-22T00:59:16.554529Z", - "iopub.status.idle": "2024-08-22T00:59:27.133688Z", - "shell.execute_reply": "2024-08-22T00:59:27.133036Z" + "iopub.execute_input": "2024-08-26T15:56:52.069665Z", + "iopub.status.busy": "2024-08-26T15:56:52.069478Z", + "iopub.status.idle": "2024-08-26T15:57:03.031171Z", + "shell.execute_reply": "2024-08-26T15:57:03.030491Z" } }, "outputs": [ @@ -1061,10 +1237,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:27.136328Z", - "iopub.status.busy": "2024-08-22T00:59:27.135897Z", - "iopub.status.idle": "2024-08-22T00:59:29.622848Z", - "shell.execute_reply": "2024-08-22T00:59:29.622260Z" + "iopub.execute_input": "2024-08-26T15:57:03.033840Z", + "iopub.status.busy": "2024-08-26T15:57:03.033405Z", + "iopub.status.idle": "2024-08-26T15:57:05.657482Z", + "shell.execute_reply": "2024-08-26T15:57:05.656881Z" } }, "outputs": [ @@ -1095,10 +1271,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:29.625895Z", - "iopub.status.busy": "2024-08-22T00:59:29.625253Z", - "iopub.status.idle": "2024-08-22T00:59:29.836758Z", - "shell.execute_reply": "2024-08-22T00:59:29.836128Z" + "iopub.execute_input": "2024-08-26T15:57:05.660434Z", + "iopub.status.busy": "2024-08-26T15:57:05.659780Z", + "iopub.status.idle": "2024-08-26T15:57:05.862055Z", + "shell.execute_reply": "2024-08-26T15:57:05.861526Z" } }, "outputs": [], @@ -1112,10 +1288,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:29.839446Z", - "iopub.status.busy": "2024-08-22T00:59:29.838993Z", - "iopub.status.idle": "2024-08-22T00:59:29.842349Z", - "shell.execute_reply": "2024-08-22T00:59:29.841790Z" + "iopub.execute_input": "2024-08-26T15:57:05.864637Z", + "iopub.status.busy": "2024-08-26T15:57:05.864393Z", + "iopub.status.idle": "2024-08-26T15:57:05.867857Z", + "shell.execute_reply": "2024-08-26T15:57:05.867382Z" } }, "outputs": [], @@ -1153,10 +1329,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:29.844578Z", - "iopub.status.busy": "2024-08-22T00:59:29.844104Z", - "iopub.status.idle": "2024-08-22T00:59:29.852970Z", - "shell.execute_reply": "2024-08-22T00:59:29.852374Z" + "iopub.execute_input": "2024-08-26T15:57:05.870136Z", + "iopub.status.busy": "2024-08-26T15:57:05.869790Z", + "iopub.status.idle": "2024-08-26T15:57:05.878741Z", + "shell.execute_reply": "2024-08-26T15:57:05.878234Z" }, "nbsphinx": "hidden" }, @@ -1201,139 +1377,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "07d71ae622f9466db3d264b885cb47b5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2f8ef9c84738411cb35a3ceb6a23e210", - "IPY_MODEL_23ff13c2465b4e6e8166b8c23954b61b", - "IPY_MODEL_826468daf8734a6da1c29a1d8b68c44e" - ], - "layout": "IPY_MODEL_af84eaf031bf453887118b421ce0ce58", - "tabbable": null, - "tooltip": null - } - }, - "23ff13c2465b4e6e8166b8c23954b61b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e6d272a6e0f64a0b8a2aab75267364f5", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b9e5015cca734db0ad6cee714647c246", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "2f8ef9c84738411cb35a3ceb6a23e210": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9929c9538baf476680a019f00275f791", - "placeholder": "​", - "style": "IPY_MODEL_3ee48bcc027149b1bcde19cef852d1f1", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" - } - }, - "35fdc370ae8c4bd197fd5d098dec0ec4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3ee48bcc027149b1bcde19cef852d1f1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "826468daf8734a6da1c29a1d8b68c44e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d0c55a3046a1466c9e71716ab74299c6", - "placeholder": "​", - "style": "IPY_MODEL_35fdc370ae8c4bd197fd5d098dec0ec4", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 257MB/s]" - } - }, - "9929c9538baf476680a019f00275f791": { + "01d5c5a706aa4790ae5138084d58b585": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1386,7 +1430,30 @@ "width": null } }, - "af84eaf031bf453887118b421ce0ce58": { + "22107b48eecc4358a6e6dca3680a6730": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_227183a26c464a3c9d11a17da25fa3f8", + "placeholder": "​", + "style": "IPY_MODEL_352d2ee6d0844dbcb8d4a04b1cbfff01", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 261MB/s]" + } + }, + "227183a26c464a3c9d11a17da25fa3f8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1439,7 +1506,25 @@ "width": null } }, - "b9e5015cca734db0ad6cee714647c246": { + "352d2ee6d0844dbcb8d4a04b1cbfff01": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "357a5524d66d4af8a055aa22caf37325": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1455,7 +1540,7 @@ "description_width": "" } }, - "d0c55a3046a1466c9e71716ab74299c6": { + "53e6817aa0fd4e2ba3bf306e9c8be420": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1508,7 +1593,7 @@ "width": null } }, - "e6d272a6e0f64a0b8a2aab75267364f5": { + "6bc1f79c1ece4659b91e860cec343da2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1560,6 +1645,97 @@ "visibility": null, "width": null } + }, + "819d1184552d47729426e656e5e6842e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6bc1f79c1ece4659b91e860cec343da2", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_357a5524d66d4af8a055aa22caf37325", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "9068c384170544debc26f2cb25b50402": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9b95df66ce354f3eac3359c2aac81dc7", + "IPY_MODEL_819d1184552d47729426e656e5e6842e", + "IPY_MODEL_22107b48eecc4358a6e6dca3680a6730" + ], + "layout": "IPY_MODEL_01d5c5a706aa4790ae5138084d58b585", + "tabbable": null, + "tooltip": null + } + }, + "9b95df66ce354f3eac3359c2aac81dc7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_53e6817aa0fd4e2ba3bf306e9c8be420", + "placeholder": "​", + "style": "IPY_MODEL_ef321007c100411a8bdbc60ad35aea85", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } + }, + "ef321007c100411a8bdbc60ad35aea85": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index d4c7a074b..cb48944b8 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:34.139162Z", - "iopub.status.busy": "2024-08-22T00:59:34.138659Z", - "iopub.status.idle": "2024-08-22T00:59:35.449204Z", - "shell.execute_reply": "2024-08-22T00:59:35.448626Z" + "iopub.execute_input": "2024-08-26T15:57:10.353933Z", + "iopub.status.busy": "2024-08-26T15:57:10.353544Z", + "iopub.status.idle": "2024-08-26T15:57:11.706462Z", + "shell.execute_reply": "2024-08-26T15:57:11.705786Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:35.451881Z", - "iopub.status.busy": "2024-08-22T00:59:35.451407Z", - "iopub.status.idle": "2024-08-22T00:59:35.470408Z", - "shell.execute_reply": "2024-08-22T00:59:35.469885Z" + "iopub.execute_input": "2024-08-26T15:57:11.709553Z", + "iopub.status.busy": "2024-08-26T15:57:11.709034Z", + "iopub.status.idle": "2024-08-26T15:57:11.728637Z", + "shell.execute_reply": "2024-08-26T15:57:11.728052Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:35.472970Z", - "iopub.status.busy": "2024-08-22T00:59:35.472479Z", - "iopub.status.idle": "2024-08-22T00:59:35.475751Z", - "shell.execute_reply": "2024-08-22T00:59:35.475276Z" + "iopub.execute_input": "2024-08-26T15:57:11.731676Z", + "iopub.status.busy": "2024-08-26T15:57:11.731232Z", + "iopub.status.idle": "2024-08-26T15:57:11.734952Z", + "shell.execute_reply": "2024-08-26T15:57:11.734419Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:35.478142Z", - "iopub.status.busy": "2024-08-22T00:59:35.477678Z", - "iopub.status.idle": "2024-08-22T00:59:35.552570Z", - "shell.execute_reply": "2024-08-22T00:59:35.552002Z" + "iopub.execute_input": "2024-08-26T15:57:11.737208Z", + "iopub.status.busy": "2024-08-26T15:57:11.736848Z", + "iopub.status.idle": "2024-08-26T15:57:11.873269Z", + "shell.execute_reply": "2024-08-26T15:57:11.872516Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:35.555014Z", - "iopub.status.busy": "2024-08-22T00:59:35.554643Z", - "iopub.status.idle": "2024-08-22T00:59:35.742929Z", - "shell.execute_reply": "2024-08-22T00:59:35.742281Z" + "iopub.execute_input": "2024-08-26T15:57:11.876290Z", + "iopub.status.busy": "2024-08-26T15:57:11.875719Z", + "iopub.status.idle": "2024-08-26T15:57:12.074479Z", + "shell.execute_reply": "2024-08-26T15:57:12.073882Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:35.745701Z", - "iopub.status.busy": "2024-08-22T00:59:35.745302Z", - "iopub.status.idle": "2024-08-22T00:59:35.966176Z", - "shell.execute_reply": "2024-08-22T00:59:35.965556Z" + "iopub.execute_input": "2024-08-26T15:57:12.076924Z", + "iopub.status.busy": "2024-08-26T15:57:12.076625Z", + "iopub.status.idle": "2024-08-26T15:57:12.336980Z", + "shell.execute_reply": "2024-08-26T15:57:12.336363Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:35.968772Z", - "iopub.status.busy": "2024-08-22T00:59:35.968306Z", - "iopub.status.idle": "2024-08-22T00:59:35.973222Z", - "shell.execute_reply": "2024-08-22T00:59:35.972657Z" + "iopub.execute_input": "2024-08-26T15:57:12.339363Z", + "iopub.status.busy": "2024-08-26T15:57:12.338933Z", + "iopub.status.idle": "2024-08-26T15:57:12.343568Z", + "shell.execute_reply": "2024-08-26T15:57:12.343036Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:35.975452Z", - "iopub.status.busy": "2024-08-22T00:59:35.975100Z", - "iopub.status.idle": "2024-08-22T00:59:35.980886Z", - "shell.execute_reply": "2024-08-22T00:59:35.980435Z" + "iopub.execute_input": "2024-08-26T15:57:12.345634Z", + "iopub.status.busy": "2024-08-26T15:57:12.345270Z", + "iopub.status.idle": "2024-08-26T15:57:12.352146Z", + "shell.execute_reply": "2024-08-26T15:57:12.351523Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:35.983120Z", - "iopub.status.busy": "2024-08-22T00:59:35.982765Z", - "iopub.status.idle": "2024-08-22T00:59:35.985620Z", - "shell.execute_reply": "2024-08-22T00:59:35.985125Z" + "iopub.execute_input": "2024-08-26T15:57:12.357092Z", + "iopub.status.busy": "2024-08-26T15:57:12.356872Z", + "iopub.status.idle": "2024-08-26T15:57:12.359965Z", + "shell.execute_reply": "2024-08-26T15:57:12.359374Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:35.987817Z", - "iopub.status.busy": "2024-08-22T00:59:35.987467Z", - "iopub.status.idle": "2024-08-22T00:59:45.324560Z", - "shell.execute_reply": "2024-08-22T00:59:45.323979Z" + "iopub.execute_input": "2024-08-26T15:57:12.362474Z", + "iopub.status.busy": "2024-08-26T15:57:12.362043Z", + "iopub.status.idle": "2024-08-26T15:57:21.815400Z", + "shell.execute_reply": "2024-08-26T15:57:21.814683Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:45.327333Z", - "iopub.status.busy": "2024-08-22T00:59:45.326921Z", - "iopub.status.idle": "2024-08-22T00:59:45.334635Z", - "shell.execute_reply": "2024-08-22T00:59:45.334002Z" + "iopub.execute_input": "2024-08-26T15:57:21.818598Z", + "iopub.status.busy": "2024-08-26T15:57:21.817970Z", + "iopub.status.idle": "2024-08-26T15:57:21.825776Z", + "shell.execute_reply": "2024-08-26T15:57:21.825153Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:45.337068Z", - "iopub.status.busy": "2024-08-22T00:59:45.336678Z", - "iopub.status.idle": "2024-08-22T00:59:45.340905Z", - "shell.execute_reply": "2024-08-22T00:59:45.340290Z" + "iopub.execute_input": "2024-08-26T15:57:21.828092Z", + "iopub.status.busy": "2024-08-26T15:57:21.827857Z", + "iopub.status.idle": "2024-08-26T15:57:21.832040Z", + "shell.execute_reply": "2024-08-26T15:57:21.831555Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:45.343134Z", - "iopub.status.busy": "2024-08-22T00:59:45.342801Z", - "iopub.status.idle": "2024-08-22T00:59:45.346306Z", - "shell.execute_reply": "2024-08-22T00:59:45.345726Z" + "iopub.execute_input": "2024-08-26T15:57:21.834133Z", + "iopub.status.busy": "2024-08-26T15:57:21.833919Z", + "iopub.status.idle": "2024-08-26T15:57:21.837359Z", + "shell.execute_reply": "2024-08-26T15:57:21.836818Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:45.348452Z", - "iopub.status.busy": "2024-08-22T00:59:45.348115Z", - "iopub.status.idle": "2024-08-22T00:59:45.351407Z", - "shell.execute_reply": "2024-08-22T00:59:45.350861Z" + "iopub.execute_input": "2024-08-26T15:57:21.839415Z", + "iopub.status.busy": "2024-08-26T15:57:21.839229Z", + "iopub.status.idle": "2024-08-26T15:57:21.842672Z", + "shell.execute_reply": "2024-08-26T15:57:21.842180Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:45.353535Z", - "iopub.status.busy": "2024-08-22T00:59:45.353206Z", - "iopub.status.idle": "2024-08-22T00:59:45.361916Z", - "shell.execute_reply": "2024-08-22T00:59:45.361301Z" + "iopub.execute_input": "2024-08-26T15:57:21.844741Z", + "iopub.status.busy": "2024-08-26T15:57:21.844401Z", + "iopub.status.idle": "2024-08-26T15:57:21.853740Z", + "shell.execute_reply": "2024-08-26T15:57:21.853255Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:45.364260Z", - "iopub.status.busy": "2024-08-22T00:59:45.363899Z", - "iopub.status.idle": "2024-08-22T00:59:45.366933Z", - "shell.execute_reply": "2024-08-22T00:59:45.366336Z" + "iopub.execute_input": "2024-08-26T15:57:21.855835Z", + "iopub.status.busy": "2024-08-26T15:57:21.855641Z", + "iopub.status.idle": "2024-08-26T15:57:21.858610Z", + "shell.execute_reply": "2024-08-26T15:57:21.858126Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:45.369404Z", - "iopub.status.busy": "2024-08-22T00:59:45.369061Z", - "iopub.status.idle": "2024-08-22T00:59:45.496043Z", - "shell.execute_reply": "2024-08-22T00:59:45.495250Z" + "iopub.execute_input": "2024-08-26T15:57:21.860585Z", + "iopub.status.busy": "2024-08-26T15:57:21.860408Z", + "iopub.status.idle": "2024-08-26T15:57:21.989651Z", + "shell.execute_reply": "2024-08-26T15:57:21.988984Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:45.498956Z", - "iopub.status.busy": "2024-08-22T00:59:45.498574Z", - "iopub.status.idle": "2024-08-22T00:59:45.615984Z", - "shell.execute_reply": "2024-08-22T00:59:45.615382Z" + "iopub.execute_input": "2024-08-26T15:57:21.992169Z", + "iopub.status.busy": "2024-08-26T15:57:21.991956Z", + "iopub.status.idle": "2024-08-26T15:57:22.104866Z", + "shell.execute_reply": "2024-08-26T15:57:22.104231Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:45.618546Z", - "iopub.status.busy": "2024-08-22T00:59:45.618203Z", - "iopub.status.idle": "2024-08-22T00:59:46.130246Z", - "shell.execute_reply": "2024-08-22T00:59:46.129578Z" + "iopub.execute_input": "2024-08-26T15:57:22.107310Z", + "iopub.status.busy": "2024-08-26T15:57:22.107103Z", + "iopub.status.idle": "2024-08-26T15:57:22.629095Z", + "shell.execute_reply": "2024-08-26T15:57:22.628465Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:46.132976Z", - "iopub.status.busy": "2024-08-22T00:59:46.132632Z", - "iopub.status.idle": "2024-08-22T00:59:46.231635Z", - "shell.execute_reply": "2024-08-22T00:59:46.230985Z" + "iopub.execute_input": "2024-08-26T15:57:22.632056Z", + "iopub.status.busy": "2024-08-26T15:57:22.631690Z", + "iopub.status.idle": "2024-08-26T15:57:22.739123Z", + "shell.execute_reply": "2024-08-26T15:57:22.738532Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:46.234129Z", - "iopub.status.busy": "2024-08-22T00:59:46.233735Z", - "iopub.status.idle": "2024-08-22T00:59:46.242199Z", - "shell.execute_reply": "2024-08-22T00:59:46.241723Z" + "iopub.execute_input": "2024-08-26T15:57:22.741307Z", + "iopub.status.busy": "2024-08-26T15:57:22.741112Z", + "iopub.status.idle": "2024-08-26T15:57:22.750617Z", + "shell.execute_reply": "2024-08-26T15:57:22.750103Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:46.244357Z", - "iopub.status.busy": "2024-08-22T00:59:46.244002Z", - "iopub.status.idle": "2024-08-22T00:59:46.246647Z", - "shell.execute_reply": "2024-08-22T00:59:46.246176Z" + "iopub.execute_input": "2024-08-26T15:57:22.752784Z", + "iopub.status.busy": "2024-08-26T15:57:22.752589Z", + "iopub.status.idle": "2024-08-26T15:57:22.755529Z", + "shell.execute_reply": "2024-08-26T15:57:22.755048Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:46.248781Z", - "iopub.status.busy": "2024-08-22T00:59:46.248448Z", - "iopub.status.idle": "2024-08-22T00:59:51.966022Z", - "shell.execute_reply": "2024-08-22T00:59:51.965287Z" + "iopub.execute_input": "2024-08-26T15:57:22.757511Z", + "iopub.status.busy": "2024-08-26T15:57:22.757332Z", + "iopub.status.idle": "2024-08-26T15:57:28.480539Z", + "shell.execute_reply": "2024-08-26T15:57:28.479930Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:51.968659Z", - "iopub.status.busy": "2024-08-22T00:59:51.968197Z", - "iopub.status.idle": "2024-08-22T00:59:51.978287Z", - "shell.execute_reply": "2024-08-22T00:59:51.977739Z" + "iopub.execute_input": "2024-08-26T15:57:28.482886Z", + "iopub.status.busy": "2024-08-26T15:57:28.482488Z", + "iopub.status.idle": "2024-08-26T15:57:28.490974Z", + "shell.execute_reply": "2024-08-26T15:57:28.490509Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:51.980827Z", - "iopub.status.busy": "2024-08-22T00:59:51.980613Z", - "iopub.status.idle": "2024-08-22T00:59:52.046603Z", - "shell.execute_reply": "2024-08-22T00:59:52.046079Z" + "iopub.execute_input": "2024-08-26T15:57:28.493156Z", + "iopub.status.busy": "2024-08-26T15:57:28.492824Z", + "iopub.status.idle": "2024-08-26T15:57:28.557679Z", + "shell.execute_reply": "2024-08-26T15:57:28.557043Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 1bc33d6a4..e74549c5b 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:56.456172Z", - "iopub.status.busy": "2024-08-22T00:59:56.455994Z", - "iopub.status.idle": "2024-08-22T00:59:58.040069Z", - "shell.execute_reply": "2024-08-22T00:59:58.039331Z" + "iopub.execute_input": "2024-08-26T15:57:31.883178Z", + "iopub.status.busy": "2024-08-26T15:57:31.882996Z", + "iopub.status.idle": "2024-08-26T15:57:36.244356Z", + "shell.execute_reply": "2024-08-26T15:57:36.243657Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:58.042789Z", - "iopub.status.busy": "2024-08-22T00:59:58.042399Z", - "iopub.status.idle": "2024-08-22T01:01:04.988074Z", - "shell.execute_reply": "2024-08-22T01:01:04.987297Z" + "iopub.execute_input": "2024-08-26T15:57:36.247073Z", + "iopub.status.busy": "2024-08-26T15:57:36.246855Z", + "iopub.status.idle": "2024-08-26T16:02:06.838118Z", + "shell.execute_reply": "2024-08-26T16:02:06.837430Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:01:04.990756Z", - "iopub.status.busy": "2024-08-22T01:01:04.990563Z", - "iopub.status.idle": "2024-08-22T01:01:06.208301Z", - "shell.execute_reply": "2024-08-22T01:01:06.207751Z" + "iopub.execute_input": "2024-08-26T16:02:06.840804Z", + "iopub.status.busy": "2024-08-26T16:02:06.840410Z", + "iopub.status.idle": "2024-08-26T16:02:08.076017Z", + "shell.execute_reply": "2024-08-26T16:02:08.075446Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:01:06.211115Z", - "iopub.status.busy": "2024-08-22T01:01:06.210479Z", - "iopub.status.idle": "2024-08-22T01:01:06.213895Z", - "shell.execute_reply": "2024-08-22T01:01:06.213404Z" + "iopub.execute_input": "2024-08-26T16:02:08.078632Z", + "iopub.status.busy": "2024-08-26T16:02:08.078238Z", + "iopub.status.idle": "2024-08-26T16:02:08.082099Z", + "shell.execute_reply": "2024-08-26T16:02:08.081663Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:01:06.215999Z", - "iopub.status.busy": "2024-08-22T01:01:06.215679Z", - "iopub.status.idle": "2024-08-22T01:01:06.219570Z", - "shell.execute_reply": "2024-08-22T01:01:06.219035Z" + "iopub.execute_input": "2024-08-26T16:02:08.084359Z", + "iopub.status.busy": "2024-08-26T16:02:08.084021Z", + "iopub.status.idle": "2024-08-26T16:02:08.087900Z", + "shell.execute_reply": "2024-08-26T16:02:08.087448Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:01:06.221667Z", - "iopub.status.busy": "2024-08-22T01:01:06.221349Z", - "iopub.status.idle": "2024-08-22T01:01:06.224971Z", - "shell.execute_reply": "2024-08-22T01:01:06.224444Z" + "iopub.execute_input": "2024-08-26T16:02:08.090083Z", + "iopub.status.busy": "2024-08-26T16:02:08.089689Z", + "iopub.status.idle": "2024-08-26T16:02:08.093849Z", + "shell.execute_reply": "2024-08-26T16:02:08.093395Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:01:06.227001Z", - "iopub.status.busy": "2024-08-22T01:01:06.226594Z", - "iopub.status.idle": "2024-08-22T01:01:06.229513Z", - "shell.execute_reply": "2024-08-22T01:01:06.228993Z" + "iopub.execute_input": "2024-08-26T16:02:08.095840Z", + "iopub.status.busy": "2024-08-26T16:02:08.095561Z", + "iopub.status.idle": "2024-08-26T16:02:08.098400Z", + "shell.execute_reply": "2024-08-26T16:02:08.097941Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:01:06.231457Z", - "iopub.status.busy": "2024-08-22T01:01:06.231159Z", - "iopub.status.idle": "2024-08-22T01:01:44.134593Z", - "shell.execute_reply": "2024-08-22T01:01:44.133826Z" + "iopub.execute_input": "2024-08-26T16:02:08.100404Z", + "iopub.status.busy": "2024-08-26T16:02:08.100066Z", + "iopub.status.idle": "2024-08-26T16:02:45.804800Z", + "shell.execute_reply": "2024-08-26T16:02:45.804164Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0855965c7ba04506aff24147503d81a7", + "model_id": "53f883482ebd4087bd4db93f6838de70", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "56b4bcdb9eb84d5eb940bab6025fc704", + "model_id": "efb3d0029fdf4740a048c4bbcc9f8991", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:01:44.137786Z", - "iopub.status.busy": "2024-08-22T01:01:44.137325Z", - "iopub.status.idle": "2024-08-22T01:01:44.851268Z", - "shell.execute_reply": "2024-08-22T01:01:44.850651Z" + "iopub.execute_input": "2024-08-26T16:02:45.807470Z", + "iopub.status.busy": "2024-08-26T16:02:45.807072Z", + "iopub.status.idle": "2024-08-26T16:02:46.481736Z", + "shell.execute_reply": "2024-08-26T16:02:46.481206Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:01:44.854020Z", - "iopub.status.busy": "2024-08-22T01:01:44.853399Z", - "iopub.status.idle": "2024-08-22T01:01:48.009362Z", - "shell.execute_reply": "2024-08-22T01:01:48.008703Z" + "iopub.execute_input": "2024-08-26T16:02:46.484246Z", + "iopub.status.busy": "2024-08-26T16:02:46.483772Z", + "iopub.status.idle": "2024-08-26T16:02:49.477184Z", + "shell.execute_reply": "2024-08-26T16:02:49.476583Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:01:48.011895Z", - "iopub.status.busy": "2024-08-22T01:01:48.011516Z", - "iopub.status.idle": "2024-08-22T01:02:20.673434Z", - "shell.execute_reply": "2024-08-22T01:02:20.672910Z" + "iopub.execute_input": "2024-08-26T16:02:49.479481Z", + "iopub.status.busy": "2024-08-26T16:02:49.479122Z", + "iopub.status.idle": "2024-08-26T16:03:21.677043Z", + "shell.execute_reply": "2024-08-26T16:03:21.676462Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "21405b7bbe10483886e30b0a46e6b0ef", + "model_id": "3fe032e80e544fd2b19114331afd8c6a", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:02:20.675729Z", - "iopub.status.busy": "2024-08-22T01:02:20.675362Z", - "iopub.status.idle": "2024-08-22T01:02:36.111870Z", - "shell.execute_reply": "2024-08-22T01:02:36.111166Z" + "iopub.execute_input": "2024-08-26T16:03:21.679298Z", + "iopub.status.busy": "2024-08-26T16:03:21.678963Z", + "iopub.status.idle": "2024-08-26T16:03:38.187765Z", + "shell.execute_reply": "2024-08-26T16:03:38.187143Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:02:36.114431Z", - "iopub.status.busy": "2024-08-22T01:02:36.114239Z", - "iopub.status.idle": "2024-08-22T01:02:40.043409Z", - "shell.execute_reply": "2024-08-22T01:02:40.042815Z" + "iopub.execute_input": "2024-08-26T16:03:38.190702Z", + "iopub.status.busy": "2024-08-26T16:03:38.190096Z", + "iopub.status.idle": "2024-08-26T16:03:42.090509Z", + "shell.execute_reply": "2024-08-26T16:03:42.089900Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:02:40.045791Z", - "iopub.status.busy": "2024-08-22T01:02:40.045326Z", - "iopub.status.idle": "2024-08-22T01:02:41.597799Z", - "shell.execute_reply": "2024-08-22T01:02:41.597241Z" + "iopub.execute_input": "2024-08-26T16:03:42.092785Z", + "iopub.status.busy": "2024-08-26T16:03:42.092449Z", + "iopub.status.idle": "2024-08-26T16:03:43.601612Z", + "shell.execute_reply": "2024-08-26T16:03:43.601014Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4e973453736f46e6ae69cb2d2b15c572", + "model_id": "872758bc0ea34c5abe53a40a109b61fc", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:02:41.600425Z", - "iopub.status.busy": "2024-08-22T01:02:41.600026Z", - "iopub.status.idle": "2024-08-22T01:02:41.632490Z", - "shell.execute_reply": "2024-08-22T01:02:41.631952Z" + "iopub.execute_input": "2024-08-26T16:03:43.603725Z", + "iopub.status.busy": "2024-08-26T16:03:43.603502Z", + "iopub.status.idle": "2024-08-26T16:03:43.635426Z", + "shell.execute_reply": "2024-08-26T16:03:43.634736Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:02:41.635191Z", - "iopub.status.busy": "2024-08-22T01:02:41.634812Z", - "iopub.status.idle": "2024-08-22T01:02:47.910359Z", - "shell.execute_reply": "2024-08-22T01:02:47.909855Z" + "iopub.execute_input": "2024-08-26T16:03:43.638045Z", + "iopub.status.busy": "2024-08-26T16:03:43.637828Z", + "iopub.status.idle": "2024-08-26T16:03:49.737531Z", + "shell.execute_reply": "2024-08-26T16:03:49.736900Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:02:47.912772Z", - "iopub.status.busy": "2024-08-22T01:02:47.912399Z", - "iopub.status.idle": "2024-08-22T01:02:47.968210Z", - "shell.execute_reply": "2024-08-22T01:02:47.967700Z" + "iopub.execute_input": "2024-08-26T16:03:49.740016Z", + "iopub.status.busy": "2024-08-26T16:03:49.739614Z", + "iopub.status.idle": "2024-08-26T16:03:49.796126Z", + "shell.execute_reply": "2024-08-26T16:03:49.795559Z" }, "nbsphinx": "hidden" }, @@ -1038,95 +1038,147 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0399385c2e854b4487d4f16a54dae0c4": { + "0d68f2ae99004bf3884c9b86e60c998d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "070f0123681f4549b1dc9825dd633e86": { - "model_module": "@jupyter-widgets/controls", + "163aff5db84c4afe8d35c5382524b1d1": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1d0b5a67eb5140faa3d48ffad4bc7ed5", - "placeholder": "​", - "style": "IPY_MODEL_c1a41949fc354613b6f1f00f25a6772b", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "0855965c7ba04506aff24147503d81a7": { - "model_module": "@jupyter-widgets/controls", + "175f5c6a369f4b35b3031461d3e42f83": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_26b0f75b4906420eac68fd3afaa8df81", - "IPY_MODEL_3ec23f9624ec46248969ad55d729f647", - "IPY_MODEL_fe51d3b7ad1c4677ba9ff457cd560130" - ], - "layout": "IPY_MODEL_e5a4a5e595a14919855b58c82592c035", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "087f052ce8e7471fbab806d8ceefd84f": { + "1d8ab8f793df4884ae905c9ecaeef271": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e33fe96a3fee4226b328600b6f4bc677", - "placeholder": "​", - "style": "IPY_MODEL_73ad689126fb48b69eb1aed080a5da89", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 20.03it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0ab77185c611400c8d76e3e12cab0a9d": { + "1f3d174b832d4a7589ccb00970a2716b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1179,59 +1231,48 @@ "width": null } }, - "0e860b97e18b412499c807b6be531d12": { + "1fb933eec9094fe0a4be2752104b871b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f8834ece40e444119ac73028eea3f85c", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e9ab5ca55b144b46a4953c265cf0dffb", - "tabbable": null, - "tooltip": null, - "value": 4997683.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1681c1270bca4471bed3c7e76a668f55": { + "25e8a49745da4392a2ff93613eb12ed5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6c98d2b38c4440b996fa4aad5fc57683", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cebcdf72fdec4881b3d5387f7c1ef6a6", + "layout": "IPY_MODEL_feb81028cee34dc5bdaf799847ff4275", + "placeholder": "​", + "style": "IPY_MODEL_1fb933eec9094fe0a4be2752104b871b", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": " 30/30 [00:00<00:00, 816.12it/s]" } }, - "195b7a726ef74afd8707cc6930d07bf2": { + "2c8a7bcf40dd46338cd2d79ac2eddffb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1249,7 +1290,33 @@ "text_color": null } }, - "1d0b5a67eb5140faa3d48ffad4bc7ed5": { + "378909055f144216ac3230644ece72bc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_943cd7c991114a2699932a06e6c07fc3", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ebf03078f56a4669b6bd1412a6959c9b", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "3eb40e8325304410a5c584b2734903aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1302,7 +1369,23 @@ "width": null } }, - "21405b7bbe10483886e30b0a46e6b0ef": { + "3f170980bd834e7b844c2b63430b2c7c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3fe032e80e544fd2b19114331afd8c6a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1317,32 +1400,63 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_070f0123681f4549b1dc9825dd633e86", - "IPY_MODEL_0e860b97e18b412499c807b6be531d12", - "IPY_MODEL_cafa470f98864aad873ad3c51b858fd3" + "IPY_MODEL_c1b66a0eb2be45b29331fc2ede002192", + "IPY_MODEL_93585693a2534d489286659fd05750ce", + "IPY_MODEL_ce5bd738dc4041faac10515469d7fc4c" ], - "layout": "IPY_MODEL_abfaf1304e1347f68694990edc45b027", + "layout": "IPY_MODEL_175f5c6a369f4b35b3031461d3e42f83", "tabbable": null, "tooltip": null } }, - "2624cfb658c74af2a24db8c4e20a25b1": { + "44a0516f8bac472cbbf5c4b998d5f144": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5c7e7dde472443469caa64558f68e3ee", + "placeholder": "​", + "style": "IPY_MODEL_2c8a7bcf40dd46338cd2d79ac2eddffb", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 20.06it/s]" + } + }, + "53f883482ebd4087bd4db93f6838de70": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c5df04c7a13c41e1aca5ac56f156f92a", + "IPY_MODEL_9317413021e9447f8c90a80cf8dc144c", + "IPY_MODEL_25e8a49745da4392a2ff93613eb12ed5" + ], + "layout": "IPY_MODEL_a1371138f24348659a70ca591f43b82a", + "tabbable": null, + "tooltip": null } }, - "26b0f75b4906420eac68fd3afaa8df81": { + "559a8d1236864900adf3c0c7e6429ac1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1357,33 +1471,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0ab77185c611400c8d76e3e12cab0a9d", + "layout": "IPY_MODEL_80d45ded94e94b5cafadc0a592a93900", "placeholder": "​", - "style": "IPY_MODEL_538b265f33c748f3993c2009d174b160", + "style": "IPY_MODEL_1d8ab8f793df4884ae905c9ecaeef271", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" + "value": "number of examples processed for checking labels: 100%" } }, - "281de92d1b8845f0a912e9cb15c1d188": { + "5bc57a4814cf4211be4a34a78e6f31de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b89fba7287d54c2980f59fecec56b3ce", + "placeholder": "​", + "style": "IPY_MODEL_e3697667890947bfa6094bacfb3ac5e3", + "tabbable": null, + "tooltip": null, + "value": "images processed using softmin: 100%" } }, - "2e4b9b3769ad45318902bedabaaf481f": { + "5c7e7dde472443469caa64558f68e3ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1436,33 +1555,25 @@ "width": null } }, - "3ec23f9624ec46248969ad55d729f647": { + "61ebdb29105148768f6508c264db1765": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_429b72fbbeec4d47b41af29fa7ec16c7", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2624cfb658c74af2a24db8c4e20a25b1", - "tabbable": null, - "tooltip": null, - "value": 30.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "429b72fbbeec4d47b41af29fa7ec16c7": { + "6a152bc636d148bea9a05ee6c2c18620": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1515,7 +1626,7 @@ "width": null } }, - "4e07a17ee692455393f25ff4fcfdc783": { + "6ffa8c58be20475dae5302a8b0dc463b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1568,91 +1679,7 @@ "width": null } }, - "4e14e8a88f7e47ff972b21aae75cbe00": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4e973453736f46e6ae69cb2d2b15c572": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d21186c013e246818ac45546bc93085b", - "IPY_MODEL_e5068d33f6634998b4319f0029dab919", - "IPY_MODEL_087f052ce8e7471fbab806d8ceefd84f" - ], - "layout": "IPY_MODEL_aa8e14571396415ea198de3f64a7f650", - "tabbable": null, - "tooltip": null - } - }, - "538b265f33c748f3993c2009d174b160": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "56b4bcdb9eb84d5eb940bab6025fc704": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_62ed4871228848e68fa51073115a040c", - "IPY_MODEL_1681c1270bca4471bed3c7e76a668f55", - "IPY_MODEL_ce7c03fd238a47f28ef53334309f67f4" - ], - "layout": "IPY_MODEL_2e4b9b3769ad45318902bedabaaf481f", - "tabbable": null, - "tooltip": null - } - }, - "62ed4871228848e68fa51073115a040c": { + "704ee78ec98a41438df4cccc1297d6ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1667,15 +1694,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_aa01a5da1ab244e99abd2b532b769870", + "layout": "IPY_MODEL_6ffa8c58be20475dae5302a8b0dc463b", "placeholder": "​", - "style": "IPY_MODEL_a1d26c41ff0c4f02961629b8873c0185", + "style": "IPY_MODEL_61ebdb29105148768f6508c264db1765", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: 100%" + "value": " 30/30 [00:25<00:00,  1.17it/s]" } }, - "6c98d2b38c4440b996fa4aad5fc57683": { + "80d45ded94e94b5cafadc0a592a93900": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1728,60 +1755,31 @@ "width": null } }, - "6f6da9a684ce4626807d7bda134a3ce0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "872758bc0ea34c5abe53a40a109b61fc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5bc57a4814cf4211be4a34a78e6f31de", + "IPY_MODEL_378909055f144216ac3230644ece72bc", + "IPY_MODEL_44a0516f8bac472cbbf5c4b998d5f144" + ], + "layout": "IPY_MODEL_3eb40e8325304410a5c584b2734903aa", + "tabbable": null, + "tooltip": null } }, - "73ad689126fb48b69eb1aed080a5da89": { + "8e1d56f7cd6b49478b0b0f2e7083cd1a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1799,7 +1797,59 @@ "text_color": null } }, - "978b8ebe6db048ec95557972869f4fb4": { + "9317413021e9447f8c90a80cf8dc144c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_958a1ac99e6a41c7af4753befc728b7f", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f620ebd5d4134340aaf7b73aa890937c", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "93585693a2534d489286659fd05750ce": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1f3d174b832d4a7589ccb00970a2716b", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0d68f2ae99004bf3884c9b86e60c998d", + "tabbable": null, + "tooltip": null, + "value": 4997683.0 + } + }, + "943cd7c991114a2699932a06e6c07fc3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1852,25 +1902,7 @@ "width": null } }, - "a1d26c41ff0c4f02961629b8873c0185": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a36cc71e31264298b92ba5cf0a1c94bc": { + "958a1ac99e6a41c7af4753befc728b7f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1923,7 +1955,7 @@ "width": null } }, - "aa01a5da1ab244e99abd2b532b769870": { + "a1371138f24348659a70ca591f43b82a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1976,7 +2008,7 @@ "width": null } }, - "aa8e14571396415ea198de3f64a7f650": { + "ae8e5a4d97cc4bd0a6d7ffcb07be1367": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2029,7 +2061,7 @@ "width": null } }, - "abfaf1304e1347f68694990edc45b027": { + "b89fba7287d54c2980f59fecec56b3ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2082,7 +2114,7 @@ "width": null } }, - "c1a41949fc354613b6f1f00f25a6772b": { + "b98a87ea54e74230b4146abe730c41ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2100,7 +2132,30 @@ "text_color": null } }, - "cafa470f98864aad873ad3c51b858fd3": { + "c1b66a0eb2be45b29331fc2ede002192": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_163aff5db84c4afe8d35c5382524b1d1", + "placeholder": "​", + "style": "IPY_MODEL_e014d201e94f4fc29e2e46a3c7153cff", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "c5df04c7a13c41e1aca5ac56f156f92a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2115,15 +2170,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cc2b5a2f685346dfb0243aa2a6387654", + "layout": "IPY_MODEL_cc84e801aebd40a281648c7d7ca0c80a", "placeholder": "​", - "style": "IPY_MODEL_4e14e8a88f7e47ff972b21aae75cbe00", + "style": "IPY_MODEL_b98a87ea54e74230b4146abe730c41ce", "tabbable": null, "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 154302.03it/s]" + "value": "number of examples processed for estimating thresholds: 100%" } }, - "cc2b5a2f685346dfb0243aa2a6387654": { + "cc84e801aebd40a281648c7d7ca0c80a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2176,7 +2231,7 @@ "width": null } }, - "ce7c03fd238a47f28ef53334309f67f4": { + "ce5bd738dc4041faac10515469d7fc4c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2191,133 +2246,117 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_978b8ebe6db048ec95557972869f4fb4", + "layout": "IPY_MODEL_6a152bc636d148bea9a05ee6c2c18620", "placeholder": "​", - "style": "IPY_MODEL_0399385c2e854b4487d4f16a54dae0c4", + "style": "IPY_MODEL_8e1d56f7cd6b49478b0b0f2e7083cd1a", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:25<00:00,  1.18it/s]" + "value": " 4997683/4997683 [00:31<00:00, 157578.50it/s]" } }, - "cebcdf72fdec4881b3d5387f7c1ef6a6": { + "d5469bcbbc0e4eac9fc85b7bd6810661": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ae8e5a4d97cc4bd0a6d7ffcb07be1367", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3f170980bd834e7b844c2b63430b2c7c", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "e014d201e94f4fc29e2e46a3c7153cff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d21186c013e246818ac45546bc93085b": { + "e3697667890947bfa6094bacfb3ac5e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4e07a17ee692455393f25ff4fcfdc783", - "placeholder": "​", - "style": "IPY_MODEL_281de92d1b8845f0a912e9cb15c1d188", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e33fe96a3fee4226b328600b6f4bc677": { - "model_module": "@jupyter-widgets/base", + "ebf03078f56a4669b6bd1412a6959c9b": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "e5068d33f6634998b4319f0029dab919": { + "efb3d0029fdf4740a048c4bbcc9f8991": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a36cc71e31264298b92ba5cf0a1c94bc", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ef5ead5ce04c49e88074f45ac1556b0f", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_559a8d1236864900adf3c0c7e6429ac1", + "IPY_MODEL_d5469bcbbc0e4eac9fc85b7bd6810661", + "IPY_MODEL_704ee78ec98a41438df4cccc1297d6ea" + ], + "layout": "IPY_MODEL_f0fa56d81d734d58b54e2abfcfe95a17", "tabbable": null, - "tooltip": null, - "value": 30.0 + "tooltip": null } }, - "e5a4a5e595a14919855b58c82592c035": { + "f0fa56d81d734d58b54e2abfcfe95a17": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2370,23 +2409,7 @@ "width": null } }, - "e9ab5ca55b144b46a4953c265cf0dffb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ef5ead5ce04c49e88074f45ac1556b0f": { + "f620ebd5d4134340aaf7b73aa890937c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2402,7 +2425,7 @@ "description_width": "" } }, - "f8834ece40e444119ac73028eea3f85c": { + "feb81028cee34dc5bdaf799847ff4275": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2454,29 +2477,6 @@ "visibility": null, "width": null } - }, - "fe51d3b7ad1c4677ba9ff457cd560130": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6f6da9a684ce4626807d7bda134a3ce0", - "placeholder": "​", - "style": "IPY_MODEL_195b7a726ef74afd8707cc6930d07bf2", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 812.42it/s]" - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index 82fc26b65..704630cc8 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:02:50.513660Z", - "iopub.status.busy": "2024-08-22T01:02:50.513467Z", - "iopub.status.idle": "2024-08-22T01:02:51.670259Z", - "shell.execute_reply": "2024-08-22T01:02:51.669598Z" + "iopub.execute_input": "2024-08-26T16:03:52.199830Z", + "iopub.status.busy": "2024-08-26T16:03:52.199328Z", + "iopub.status.idle": "2024-08-26T16:03:54.228374Z", + "shell.execute_reply": "2024-08-26T16:03:54.227662Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-22 01:02:50-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-08-26 16:03:52-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,8 +94,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "185.93.1.250, 2400:52e0:1a00::1069:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|185.93.1.250|:443... connected.\r\n" + "169.150.249.163, 2400:52e0:1a01::1115:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|169.150.249.163|:443... connected.\r\n" ] }, { @@ -122,9 +122,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K 6.04MB/s in 0.2s \r\n", + "conll2003.zip 100%[===================>] 959.94K 6.11MB/s in 0.2s \r\n", "\r\n", - "2024-08-22 01:02:50 (6.04 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-08-26 16:03:52 (6.11 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -136,24 +136,30 @@ "Archive: conll2003.zip\r\n", " inflating: data/metadata \r\n", " inflating: data/test.txt \r\n", - " inflating: data/train.txt " + " inflating: data/train.txt \r\n", + " inflating: data/valid.txt \r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "\r\n", - " inflating: data/valid.txt \r\n" + "--2024-08-26 16:03:52-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.216.209, 52.217.230.177, 52.217.116.41, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.216.209|:443... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "connected.\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-22 01:02:51-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.10.150, 3.5.25.116, 52.216.130.187, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.10.150|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -174,9 +180,33 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.1s \r\n", + "pred_probs.npz 0%[ ] 143.53K 712KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 7%[> ] 1.25M 3.11MB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 49%[========> ] 7.97M 13.2MB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 100%[===================>] 16.26M 21.5MB/s in 0.8s \r\n", "\r\n", - "2024-08-22 01:02:51 (154 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-08-26 16:03:54 (21.5 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -193,10 +223,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:02:51.672871Z", - "iopub.status.busy": "2024-08-22T01:02:51.672671Z", - "iopub.status.idle": "2024-08-22T01:02:53.049411Z", - "shell.execute_reply": "2024-08-22T01:02:53.048866Z" + "iopub.execute_input": "2024-08-26T16:03:54.231159Z", + "iopub.status.busy": "2024-08-26T16:03:54.230797Z", + "iopub.status.idle": "2024-08-26T16:03:55.559490Z", + "shell.execute_reply": "2024-08-26T16:03:55.558978Z" }, "nbsphinx": "hidden" }, @@ -207,7 +237,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -233,10 +263,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:02:53.052187Z", - "iopub.status.busy": "2024-08-22T01:02:53.051687Z", - "iopub.status.idle": "2024-08-22T01:02:53.055133Z", - "shell.execute_reply": "2024-08-22T01:02:53.054671Z" + "iopub.execute_input": "2024-08-26T16:03:55.562075Z", + "iopub.status.busy": "2024-08-26T16:03:55.561623Z", + "iopub.status.idle": "2024-08-26T16:03:55.564854Z", + "shell.execute_reply": "2024-08-26T16:03:55.564374Z" } }, "outputs": [], @@ -286,10 +316,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:02:53.057288Z", - "iopub.status.busy": "2024-08-22T01:02:53.056930Z", - "iopub.status.idle": "2024-08-22T01:02:53.060183Z", - "shell.execute_reply": "2024-08-22T01:02:53.059686Z" + "iopub.execute_input": "2024-08-26T16:03:55.567011Z", + "iopub.status.busy": "2024-08-26T16:03:55.566646Z", + "iopub.status.idle": "2024-08-26T16:03:55.569740Z", + "shell.execute_reply": "2024-08-26T16:03:55.569184Z" }, "nbsphinx": "hidden" }, @@ -307,10 +337,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:02:53.062310Z", - "iopub.status.busy": "2024-08-22T01:02:53.061956Z", - "iopub.status.idle": "2024-08-22T01:03:02.229732Z", - "shell.execute_reply": "2024-08-22T01:03:02.229052Z" + "iopub.execute_input": "2024-08-26T16:03:55.571809Z", + "iopub.status.busy": "2024-08-26T16:03:55.571484Z", + "iopub.status.idle": "2024-08-26T16:04:04.593614Z", + "shell.execute_reply": "2024-08-26T16:04:04.593000Z" } }, "outputs": [], @@ -384,10 +414,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:03:02.232370Z", - "iopub.status.busy": "2024-08-22T01:03:02.232157Z", - "iopub.status.idle": "2024-08-22T01:03:02.237831Z", - "shell.execute_reply": "2024-08-22T01:03:02.237329Z" + "iopub.execute_input": "2024-08-26T16:04:04.596217Z", + "iopub.status.busy": "2024-08-26T16:04:04.596011Z", + "iopub.status.idle": "2024-08-26T16:04:04.601781Z", + "shell.execute_reply": "2024-08-26T16:04:04.601301Z" }, "nbsphinx": "hidden" }, @@ -427,10 +457,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:03:02.239928Z", - "iopub.status.busy": "2024-08-22T01:03:02.239582Z", - "iopub.status.idle": "2024-08-22T01:03:02.610483Z", - "shell.execute_reply": "2024-08-22T01:03:02.609919Z" + "iopub.execute_input": "2024-08-26T16:04:04.603874Z", + "iopub.status.busy": "2024-08-26T16:04:04.603537Z", + "iopub.status.idle": "2024-08-26T16:04:04.965244Z", + "shell.execute_reply": "2024-08-26T16:04:04.964692Z" } }, "outputs": [], @@ -467,10 +497,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:03:02.613081Z", - "iopub.status.busy": "2024-08-22T01:03:02.612659Z", - "iopub.status.idle": "2024-08-22T01:03:02.617270Z", - "shell.execute_reply": "2024-08-22T01:03:02.616794Z" + "iopub.execute_input": "2024-08-26T16:04:04.967937Z", + "iopub.status.busy": "2024-08-26T16:04:04.967492Z", + "iopub.status.idle": "2024-08-26T16:04:04.972633Z", + "shell.execute_reply": "2024-08-26T16:04:04.972006Z" } }, "outputs": [ @@ -542,10 +572,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:03:02.619351Z", - "iopub.status.busy": "2024-08-22T01:03:02.618925Z", - "iopub.status.idle": "2024-08-22T01:03:05.354709Z", - "shell.execute_reply": "2024-08-22T01:03:05.353968Z" + "iopub.execute_input": "2024-08-26T16:04:04.975197Z", + "iopub.status.busy": "2024-08-26T16:04:04.974808Z", + "iopub.status.idle": "2024-08-26T16:04:07.698648Z", + "shell.execute_reply": "2024-08-26T16:04:07.697909Z" } }, "outputs": [], @@ -567,10 +597,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:03:05.357816Z", - "iopub.status.busy": "2024-08-22T01:03:05.357165Z", - "iopub.status.idle": "2024-08-22T01:03:05.361299Z", - "shell.execute_reply": "2024-08-22T01:03:05.360753Z" + "iopub.execute_input": "2024-08-26T16:04:07.701619Z", + "iopub.status.busy": "2024-08-26T16:04:07.701017Z", + "iopub.status.idle": "2024-08-26T16:04:07.704967Z", + "shell.execute_reply": "2024-08-26T16:04:07.704464Z" } }, "outputs": [ @@ -606,10 +636,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:03:05.363204Z", - "iopub.status.busy": "2024-08-22T01:03:05.363031Z", - "iopub.status.idle": "2024-08-22T01:03:05.368784Z", - "shell.execute_reply": "2024-08-22T01:03:05.368317Z" + "iopub.execute_input": "2024-08-26T16:04:07.707094Z", + "iopub.status.busy": "2024-08-26T16:04:07.706758Z", + "iopub.status.idle": "2024-08-26T16:04:07.711843Z", + "shell.execute_reply": "2024-08-26T16:04:07.711300Z" } }, "outputs": [ @@ -787,10 +817,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:03:05.371102Z", - "iopub.status.busy": "2024-08-22T01:03:05.370562Z", - "iopub.status.idle": "2024-08-22T01:03:05.397851Z", - "shell.execute_reply": "2024-08-22T01:03:05.397223Z" + "iopub.execute_input": "2024-08-26T16:04:07.714045Z", + "iopub.status.busy": "2024-08-26T16:04:07.713708Z", + "iopub.status.idle": "2024-08-26T16:04:07.740657Z", + "shell.execute_reply": "2024-08-26T16:04:07.740074Z" } }, "outputs": [ @@ -892,10 +922,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:03:05.400160Z", - "iopub.status.busy": "2024-08-22T01:03:05.399823Z", - "iopub.status.idle": "2024-08-22T01:03:05.405058Z", - "shell.execute_reply": "2024-08-22T01:03:05.404573Z" + "iopub.execute_input": "2024-08-26T16:04:07.743029Z", + "iopub.status.busy": "2024-08-26T16:04:07.742589Z", + "iopub.status.idle": "2024-08-26T16:04:07.747982Z", + "shell.execute_reply": "2024-08-26T16:04:07.747370Z" } }, "outputs": [ @@ -969,10 +999,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:03:05.407127Z", - "iopub.status.busy": "2024-08-22T01:03:05.406781Z", - "iopub.status.idle": "2024-08-22T01:03:06.888531Z", - "shell.execute_reply": "2024-08-22T01:03:06.887961Z" + "iopub.execute_input": "2024-08-26T16:04:07.750138Z", + "iopub.status.busy": "2024-08-26T16:04:07.749956Z", + "iopub.status.idle": "2024-08-26T16:04:09.204508Z", + "shell.execute_reply": "2024-08-26T16:04:09.203868Z" } }, "outputs": [ @@ -1144,10 +1174,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:03:06.890813Z", - "iopub.status.busy": "2024-08-22T01:03:06.890420Z", - "iopub.status.idle": "2024-08-22T01:03:06.894637Z", - "shell.execute_reply": "2024-08-22T01:03:06.894178Z" + "iopub.execute_input": "2024-08-26T16:04:09.206914Z", + "iopub.status.busy": "2024-08-26T16:04:09.206702Z", + "iopub.status.idle": "2024-08-26T16:04:09.211093Z", + "shell.execute_reply": "2024-08-26T16:04:09.210480Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/clean_learning/index.doctree b/master/.doctrees/tutorials/clean_learning/index.doctree index ccbddba78..e733fd4ea 100644 Binary files a/master/.doctrees/tutorials/clean_learning/index.doctree and b/master/.doctrees/tutorials/clean_learning/index.doctree differ diff --git a/master/.doctrees/tutorials/clean_learning/tabular.doctree b/master/.doctrees/tutorials/clean_learning/tabular.doctree index a2048c9b5..8d154bcdb 100644 Binary files a/master/.doctrees/tutorials/clean_learning/tabular.doctree and b/master/.doctrees/tutorials/clean_learning/tabular.doctree differ diff --git a/master/.doctrees/tutorials/clean_learning/text.doctree b/master/.doctrees/tutorials/clean_learning/text.doctree index d8186f6e6..73874f794 100644 Binary files a/master/.doctrees/tutorials/clean_learning/text.doctree and b/master/.doctrees/tutorials/clean_learning/text.doctree differ diff --git a/master/.doctrees/tutorials/datalab/audio.doctree b/master/.doctrees/tutorials/datalab/audio.doctree index 943459dc3..8d81264a0 100644 Binary files a/master/.doctrees/tutorials/datalab/audio.doctree and b/master/.doctrees/tutorials/datalab/audio.doctree differ diff --git a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree index 51ecdc7ad..1168c6e13 100644 Binary files a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree and b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree differ diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index 8490c66e7..1103b987c 100644 Binary files a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree and b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree differ diff --git a/master/.doctrees/tutorials/datalab/image.doctree b/master/.doctrees/tutorials/datalab/image.doctree index a7db050cd..4ce8e6bfa 100644 Binary files a/master/.doctrees/tutorials/datalab/image.doctree and b/master/.doctrees/tutorials/datalab/image.doctree differ diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree index b170fa431..e1ee9a6d4 100644 Binary files a/master/.doctrees/tutorials/datalab/index.doctree and b/master/.doctrees/tutorials/datalab/index.doctree differ diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree index b0f967002..c1307315f 100644 Binary files a/master/.doctrees/tutorials/datalab/tabular.doctree and b/master/.doctrees/tutorials/datalab/tabular.doctree differ diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index 6ee97e3a8..abc0af4d4 100644 Binary files a/master/.doctrees/tutorials/datalab/text.doctree and b/master/.doctrees/tutorials/datalab/text.doctree differ diff --git a/master/.doctrees/tutorials/datalab/workflows.doctree b/master/.doctrees/tutorials/datalab/workflows.doctree index 87163cb68..30b56cbf0 100644 Binary files a/master/.doctrees/tutorials/datalab/workflows.doctree and b/master/.doctrees/tutorials/datalab/workflows.doctree differ diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree index be19db411..1e5b29dd2 100644 Binary files a/master/.doctrees/tutorials/dataset_health.doctree and b/master/.doctrees/tutorials/dataset_health.doctree differ diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree index 4279d2f3f..6b9aedc99 100644 Binary files a/master/.doctrees/tutorials/faq.doctree and b/master/.doctrees/tutorials/faq.doctree differ diff --git a/master/.doctrees/tutorials/improving_ml_performance.doctree b/master/.doctrees/tutorials/improving_ml_performance.doctree index 0817192da..1688ec5b0 100644 Binary files a/master/.doctrees/tutorials/improving_ml_performance.doctree and b/master/.doctrees/tutorials/improving_ml_performance.doctree differ diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index 7803acf61..f4874c0d5 100644 Binary files a/master/.doctrees/tutorials/indepth_overview.doctree and b/master/.doctrees/tutorials/indepth_overview.doctree differ diff --git a/master/.doctrees/tutorials/index.doctree b/master/.doctrees/tutorials/index.doctree index 427e51cb2..8512dbce0 100644 Binary files a/master/.doctrees/tutorials/index.doctree and b/master/.doctrees/tutorials/index.doctree differ diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index bab5cd8d0..8ffabbc80 100644 Binary files a/master/.doctrees/tutorials/multiannotator.doctree and b/master/.doctrees/tutorials/multiannotator.doctree differ diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree index 984c2b19c..d0f00e641 100644 Binary files a/master/.doctrees/tutorials/multilabel_classification.doctree and b/master/.doctrees/tutorials/multilabel_classification.doctree differ diff --git a/master/.doctrees/tutorials/object_detection.doctree b/master/.doctrees/tutorials/object_detection.doctree index c3a1d40f1..7f25fb8d6 100644 Binary files a/master/.doctrees/tutorials/object_detection.doctree and b/master/.doctrees/tutorials/object_detection.doctree differ diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree index fa509a9b6..374dc1783 100644 Binary files a/master/.doctrees/tutorials/outliers.doctree and b/master/.doctrees/tutorials/outliers.doctree differ diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index 4609139d2..7419589a0 100644 Binary files a/master/.doctrees/tutorials/pred_probs_cross_val.doctree and b/master/.doctrees/tutorials/pred_probs_cross_val.doctree differ diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index 700eaab85..b66f8a452 100644 Binary files a/master/.doctrees/tutorials/regression.doctree and b/master/.doctrees/tutorials/regression.doctree differ diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree index 5ae9deab7..2253ad2c3 100644 Binary files a/master/.doctrees/tutorials/segmentation.doctree and b/master/.doctrees/tutorials/segmentation.doctree differ diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index 8866075a3..222b29e2a 100644 Binary files a/master/.doctrees/tutorials/token_classification.doctree and b/master/.doctrees/tutorials/token_classification.doctree differ diff --git a/master/_sources/tutorials/clean_learning/tabular.ipynb b/master/_sources/tutorials/clean_learning/tabular.ipynb index d07eb9915..3ce45e534 100644 --- a/master/_sources/tutorials/clean_learning/tabular.ipynb +++ b/master/_sources/tutorials/clean_learning/tabular.ipynb @@ -120,7 +120,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/clean_learning/text.ipynb b/master/_sources/tutorials/clean_learning/text.ipynb index dba7840dd..31ac70bc5 100644 --- a/master/_sources/tutorials/clean_learning/text.ipynb +++ b/master/_sources/tutorials/clean_learning/text.ipynb @@ -129,7 +129,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/audio.ipynb b/master/_sources/tutorials/datalab/audio.ipynb index 7e2598d1f..9718656c6 100644 --- a/master/_sources/tutorials/datalab/audio.ipynb +++ b/master/_sources/tutorials/datalab/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index 15cea7f66..6026e1b4d 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index e3222bf05..e69cee73c 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index 6d6311a6f..4268ddcce 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -80,7 +80,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index a9372b7ce..5a0359197 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index fd4ea1a7f..1feb459c2 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/improving_ml_performance.ipynb b/master/_sources/tutorials/improving_ml_performance.ipynb index 7540ecc9d..94593ec3d 100644 --- a/master/_sources/tutorials/improving_ml_performance.ipynb +++ b/master/_sources/tutorials/improving_ml_performance.ipynb @@ -67,7 +67,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index c6c4522cd..3dcc3b0b7 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index f5f02d5f1..c081269e9 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index 3ea73214b..9def01431 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index f7030e922..5dc5e8485 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index 712355488..5170e2d93 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index f64c92ca7..331dbcb58 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -110,7 +110,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index 97bbc121a..5da17b46c 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index eae05ffda..67990f0eb 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/searchindex.js b/master/searchindex.js index d4efa75fe..3c74fb4dc 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/improving_ml_performance", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/improving_ml_performance.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "Improving ML Performance via Data Curation with Train vs Test Splits", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 84, 89, 90, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 89, 90, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 89, 90, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 68, 91, 95, 96, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 83, 84, 89, 96, 105], "benchmark": [1, 38, 83, 84, 89, 90, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 98, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 61, 62, 66, 68, 69, 70, 71, 73, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 75, 77], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 61, 70, 79, 81, 83, 86, 87, 90, 93, 94, 95, 96, 97, 99, 101, 102, 104, 106, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 59, 61, 62, 65, 69, 70, 74, 78, 79, 81, 82, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 10, 88, 95, 97, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 62, 89, 90, 95, 96, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 89, 95, 98, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 61, 62, 63, 64, 65, 70, 71, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 95, 98, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 89, 93, 98, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 59, 63, 66, 69, 78, 82, 91, 93, 94, 95, 98, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 59, 61, 66, 69, 70, 71, 83, 91, 97, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 60, 61, 62, 63, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 70, 71, 73, 78, 87, 88, 89, 90, 91, 94, 96, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 61, 63, 66, 69, 71, 73, 74, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 97], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 59, 61, 63, 70, 72, 74, 77, 81, 83, 86, 87, 88, 89, 91, 93, 94, 95, 96, 98, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 63, 64, 65, 66, 68, 69, 70, 71, 73, 79, 81, 82, 90, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 32, 37, 39, 42, 44, 47, 57, 62, 63, 65, 71, 73, 74, 75, 77, 78, 84, 89, 90, 93, 94, 95, 97, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 63, 66, 68, 69, 70, 71, 93, 95, 103, 104], "trace": [1, 89, 90, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 87, 88, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 95, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 89, 90, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 89, 90, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 89, 95, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 61, 69, 70, 71, 75, 93, 94, 95, 98, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 86, 88, 89, 90, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 60, 66, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 68, 73, 87, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 73, 97, 98, 101, 108], "better": [1, 5, 10, 44, 53, 61, 63, 71, 73, 74, 83, 87, 88, 90, 93, 94, 95, 97, 99, 102, 103, 104, 105, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 60, 61, 66, 68, 70, 71, 73, 77, 81, 86, 88, 91, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 61, 71, 73, 86, 88, 89, 90, 91, 93, 95, 97, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 69, 73, 83, 86, 87, 89, 97, 99, 100, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 61, 62, 69, 70, 71, 97, 101, 104], "amount": [1, 3, 91], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 91, 94, 95, 98], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 95, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 83, 86, 87, 89, 90, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 88, 95, 96, 97, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 10, 47, 53, 56, 57, 71, 91, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 32, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 96, 97, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 61, 73, 93, 97, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 98, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 63, 71, 73, 74, 86, 88, 89, 90, 91, 93, 94, 97, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 59, 61, 62, 65, 69, 70, 71, 73, 78, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 71, 75, 78, 95, 97, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 61, 62, 63, 65, 66, 69, 70, 71, 73, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 62, 63, 65, 68, 73, 89, 90, 91, 97, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 96, 97, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 61, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 61, 62, 63, 65, 66, 82, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 61, 63, 65, 68, 69, 70, 71, 73, 74, 79, 81, 82, 83, 88, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 73, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 64, 70, 89, 90, 91, 93, 94, 98, 99], "yield": [1, 38, 42, 98], "between": [1, 5, 9, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 59, 61, 62, 65, 68, 70, 71, 73, 74, 77, 81, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 61, 62, 63, 68, 69, 77, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 60, 61, 68, 69, 71, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 91, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 70, 73, 83, 86, 88, 89, 93, 98, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 61, 62, 66, 68, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 68, 69, 73, 75, 77, 81, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 70, 71, 75, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10, 95], "python": [1, 2, 42, 60, 73, 89, 90, 96, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 63, 94, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 86, 87, 88, 91, 94, 95, 96, 97, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 65, 73, 83, 87, 88, 94, 95, 97, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 60, 61, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 10, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 70, 71, 73, 86, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 60, 69, 73, 74, 87, 88, 89, 90, 93, 95, 97, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 73, 95, 97, 98, 106], "astyp": [1, 98, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 65, 69, 70, 71, 73, 75, 77, 78, 79, 82, 88, 89, 91, 95, 98, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 69, 73, 74, 91, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 84, 95, 96, 97], "choic": [1, 8, 44, 53, 55, 91, 97, 102, 104], "replac": [1, 56, 60, 71, 86, 87, 89, 90, 91, 94, 95, 96, 97, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 71, 88, 89, 90], "05": [1, 10, 27, 31, 56, 69, 73, 79, 81, 93, 96, 97, 98, 99, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 89, 90, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 89, 90, 91, 95, 97, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 73, 86, 88, 89, 90, 93, 95, 96, 98, 99, 101, 102], "max_it": [1, 87, 88, 94, 104], "10000": [1, 41, 96, 97], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 60, 61, 63, 69, 70, 71, 73, 75, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 63, 68, 78, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 73, 83, 87, 88, 91, 93, 94, 95, 97, 98, 107, 108], "impli": [1, 10, 37, 62, 69, 95], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 61, 62, 63, 65, 68, 69, 73, 77, 81, 88, 89, 90, 98, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 61, 62, 63, 66, 86, 87, 93, 94, 99, 102, 103, 106], "maximum": [1, 10, 70, 78, 82, 95, 107], "minimum": [1, 8, 10, 21, 44, 46, 63, 68, 81, 95], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 68, 73, 89, 97, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 89, 91, 95, 97, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 60, 61, 62, 63, 66, 68, 69, 70, 73, 74, 75, 77, 78, 81, 82, 83, 84, 86, 87, 88, 89, 91, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 89, 95], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 60, 61, 62, 64, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 61, 65, 69, 73, 78, 82, 83, 86, 87, 88, 90, 94, 97, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 59, 60, 63, 70, 71, 73, 75, 83, 84, 88, 95, 96, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 60, 61, 62, 63, 65, 68, 69, 70, 71, 73, 77, 78, 79, 81, 87, 90, 91, 94, 95, 96, 97, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 60, 63, 65, 66, 68, 70, 71, 73, 74, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 88, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 60, 61, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 86, 87, 89, 90, 93, 94, 95, 97, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 60, 61, 66, 68, 69, 70, 71, 73, 74, 78, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 59, 60, 61, 63, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 17, 41, 44, 52, 53, 57, 68, 71, 73, 86, 87, 89, 90, 91, 95, 96, 98, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 66, 68, 69, 70, 71, 73, 75, 78, 82, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 60, 61, 70, 73, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 61, 83, 89, 90, 94, 95, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 89, 91, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 89, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 60, 61, 63, 65, 69, 70, 71, 73, 74, 77, 79, 81, 84, 86, 87, 88, 91, 93, 95, 97, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 60, 61, 70, 71, 73, 75, 77, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 98, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 59, 84], "produc": [1, 2, 5, 9, 10, 17, 49, 61, 71, 73, 75, 77, 83, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 60, 61, 62, 73, 90, 94, 95, 97, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 68, 89, 90, 91, 97, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 62, 69, 87, 91, 94, 96, 98, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 60, 65, 68, 73, 74, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 70, 71, 90, 91, 95, 98, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 70, 73, 78, 86, 87, 94, 95, 97, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 29, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 88, 89, 90, 91, 93, 97, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 63, 66, 69, 89, 90, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 61, 66, 68, 69, 70, 89, 90, 96, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 60, 97, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 63, 66, 70, 71, 73, 75, 78, 82, 86, 88, 95, 98, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 59, 60, 61, 62, 63, 70, 71, 73, 75, 77, 78, 79, 81, 82, 88, 95, 98, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 61, 63, 69, 75, 77, 78, 79, 81, 82, 86, 87, 88, 97, 98, 101, 102, 103, 107, 108], "ball": [1, 96], "bin": [1, 3, 63, 89, 90, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 60, 68, 71, 73, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 60, 61, 62, 63, 66, 68, 69, 70, 71, 74, 77, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 61, 62, 68, 71, 81, 91, 97, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 98, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 79, 81, 82, 83, 86, 87, 88, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 60], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 62, 63, 64, 65, 70, 71, 83, 95, 97, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 61, 63, 71, 73, 83, 87, 88, 94, 95, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 60, 72, 73, 74, 83, 84, 86, 87, 98, 106], "wrap": [2, 38, 42, 51, 60, 70, 73, 83, 86, 87, 89, 90, 93, 94, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 60, 69, 70, 73, 78, 86, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 60, 70, 73, 74, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 61, 64, 70, 71, 83, 84, 86, 87, 88, 93, 94, 97, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 73], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 61, 62, 63, 68, 70, 73, 75, 77, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 60, 66, 69, 70, 73, 84, 95, 97, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 71, 73, 75, 83, 89, 90, 93, 96, 97, 98, 101, 104, 108], "four": [2, 10, 96, 99, 108], "clf": [2, 3, 5, 49, 73, 83, 86, 93, 95, 97, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 59, 60, 70, 72, 73, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 73, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 59, 60, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 32, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 87, 96, 97, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 59, 60, 61, 62, 63, 64, 68, 70, 71, 72, 73, 78, 79, 80, 81, 82, 84, 91, 92, 100], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 61, 62, 63, 64, 66, 69, 70, 71, 73, 75, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 70, 73, 83, 86, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 61, 63, 71, 78, 79, 81, 87, 88, 94, 95, 97, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 61, 62, 66, 69, 71, 73, 83, 86, 87, 88, 89, 91, 93, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 62, 71, 73, 78, 81, 82, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 60, 61, 62, 65, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 59, 61, 66, 68, 70, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 32, 44, 46, 49, 52, 53, 54, 63, 66, 69, 71, 73, 74, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 63, 68, 69, 73, 75, 77, 87, 91, 93, 97, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 60, 61, 62, 63, 65, 66, 69, 70, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 61, 73, 83, 86, 87, 88, 89, 93, 94, 95, 97, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 61, 68, 71, 73, 87, 88, 89, 90, 94], "loss": [2, 39, 60, 71, 73, 91, 98], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 73, 83, 91, 95, 97, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 60, 61, 66, 69, 70, 73, 74, 84, 89, 90, 91, 93, 94, 96, 99, 100, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 60, 70, 71, 81, 83, 84, 88, 89, 90, 91, 95, 97], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 59, 60, 61, 62, 63, 65, 70, 71, 73, 74, 75, 77, 78, 84, 86, 87, 88, 91, 93, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 61, 89, 90, 91, 95, 97, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 62, 63, 68, 69, 73, 75, 87, 94, 95, 97, 102, 103, 106, 107], "clonabl": [2, 73], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 61, 66, 69, 70, 71, 73, 74, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 100, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 68, 70, 71, 73, 74, 77, 79, 81, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 73, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 65, 69, 73, 79, 84, 89, 95, 97, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 61, 62, 63, 65, 68, 69, 73, 83, 89, 90, 91, 93, 97, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 63, 64, 66, 69, 70, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 73, 83, 86, 87, 88, 95, 97, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 73, 83, 88, 91, 97, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 60, 70, 73, 87, 88, 89, 90, 94, 97, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 73, 91], "independ": [2, 3, 10, 62, 73, 94, 95, 98, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 60, 73, 74, 77, 81, 83, 86, 87, 95, 97, 105, 106], "neural": [2, 39, 60, 70, 73, 88, 91, 97, 102, 104, 106], "network": [2, 38, 39, 42, 60, 70, 73, 87, 88, 91, 94, 97, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 70, 73, 86, 87, 88, 90, 91, 93, 94, 98, 104, 105], "initi": [2, 3, 10, 14, 19, 38, 42, 52, 61, 73, 86, 94, 97, 98], "insid": [2, 42, 73, 97, 99], "There": [2, 3, 7, 52, 83, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 66, 68, 69, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 61, 73, 87, 88, 89, 94, 96, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 77, 81, 83, 86, 91, 98, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 59, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 63, 73, 84, 98, 103], "everyth": [2, 69, 99], "els": [2, 69, 89, 91, 95, 96, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 83, 89, 95, 96, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 62, 63, 64, 65, 70, 71, 75, 79, 81, 82, 90, 91, 98, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 74, 78, 79, 81, 82, 96, 97, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 62, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 81, 84, 86, 88, 89, 90, 93, 94, 95, 96, 98, 100], "erron": [2, 3, 37, 44, 47, 57, 62, 63, 71, 73, 74, 75, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 61, 65, 68, 73, 74, 79, 81, 82, 83, 86, 87, 93, 94, 95, 97, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 73, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 73, 83, 86, 87, 97, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 60, 61, 63, 69, 70, 71, 73, 78, 79, 83, 87, 88, 89, 90, 94, 95, 96, 97, 99, 101, 103, 104, 106], "x_train": [2, 86, 89, 90, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 73, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 59, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 87, 92, 100, 101, 104, 105, 106], "pred": [2, 44, 57, 86, 87, 98, 105, 106], "x_test": [2, 86, 89, 90, 99, 102, 106], "might": [2, 5, 10, 52, 61, 73, 78, 86, 87, 89, 90, 91, 95, 97, 103], "case": [2, 3, 10, 14, 37, 49, 52, 61, 73, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 60, 62, 63, 65, 71, 73, 83, 86, 89, 90, 93, 96, 98, 99, 103], "adapt": [2, 38, 40, 57, 59, 73, 104], "skorch": [2, 73, 83, 97], "kera": [2, 59, 66, 69, 73, 83, 97, 103], "scikera": [2, 60, 73, 97], "open": [2, 41, 86, 87, 90, 93, 94, 96, 99, 102, 103, 104, 106, 108], "doesn": [2, 10, 73, 83], "t": [2, 3, 4, 7, 10, 18, 28, 29, 38, 39, 41, 42, 43, 44, 49, 55, 56, 65, 70, 71, 73, 79, 81, 82, 83, 89, 90, 91, 94, 95, 96, 98, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 60, 61, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 60, 66, 68, 70, 73, 83, 84, 86, 87, 89, 90, 94, 101, 108], "made": [2, 5, 17, 38, 42, 53, 73, 86, 87, 91, 94, 95, 97, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 73, 89, 90, 96, 97, 99, 102], "inherit": [2, 7, 39, 73], "baseestim": [2, 42, 73], "yourmodel": [2, 73], "def": [2, 7, 15, 38, 42, 60, 73, 87, 88, 89, 90, 91, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 70, 71, 73, 86, 89, 91, 95, 96, 98, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 62, 63, 65, 66, 68, 69, 70, 73, 77, 78, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 60, 62, 63, 66, 69, 70, 73, 74, 77, 79, 81, 86, 87, 89, 91, 93, 94, 95, 97, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 62, 82, 91, 97, 107], "state": [2, 3, 5, 38, 39, 42, 48, 73, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 70, 71], "et": [2, 3, 37, 39, 70, 71], "al": [2, 3, 37, 39, 70, 71], "2021": [2, 3, 37, 70, 71], "weak": [2, 69], "supervis": [2, 10, 89, 90, 97, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 59, 66, 69, 70, 71, 73, 75, 79, 81, 83, 84, 89, 96, 98, 100, 105], "uncertainti": [2, 10, 46, 70, 73, 97, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 61, 68, 69, 73, 83, 89, 90, 91, 95, 97, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 60, 61, 71, 73, 83, 84, 87, 89, 90, 95, 96, 98, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 59, 61, 62, 65, 66, 70, 71, 73, 77, 78, 79, 81, 83, 84, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 59, 60, 73, 94], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 59, 73, 86, 87, 89, 90, 95, 96, 98, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 62, 69, 70, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 86, 87, 97], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 60, 61, 62, 65, 66, 68, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 60, 69, 73, 83, 84, 87, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 70, 71, 75, 77, 78], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 70, 71, 83, 87, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 63, 73, 83, 87, 89, 91, 97, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 61, 63, 66, 69, 71, 74, 88, 90, 94, 97, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 61, 62, 66, 68, 70, 71, 73, 88, 89, 93, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 70, 73, 86, 87, 88, 93, 94, 95, 97, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 63, 70, 71, 81], "tild": 2, "paper": [2, 4, 10, 61, 70, 79, 81, 96, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 73, 87], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 61, 62, 65, 66, 69, 73, 74, 81, 87, 89, 94, 96, 97, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 73, 84, 97, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 63, 79, 97], "clean": [2, 68, 71, 73, 74, 83, 86, 87, 89, 90, 96, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 73, 88, 95, 97, 98, 99, 101, 102, 103], "messi": [2, 73, 99], "ridden": [2, 73], "autom": [2, 9, 10, 73, 83, 86, 87, 90, 93, 94, 96, 97, 98, 99, 102, 104, 106], "robust": [2, 47, 52, 73, 90, 95, 97, 98], "prone": [2, 73], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 60, 63, 64, 66, 69, 70, 71, 73, 74, 82, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 61, 68, 73, 89, 90, 97, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 61, 77, 81, 88, 89, 90, 94, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 65, 68, 69, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 61, 62, 66, 68, 69, 70, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "tutori": [2, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "repo": 2, "wrapper": [2, 60, 86, 87, 88, 106], "around": [2, 68, 89, 90, 98, 103, 104, 108], "fasttext": 2, "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 70, 73, 86, 87, 93, 94, 95, 96, 97, 107, 108], "along": [2, 49, 63, 81, 89, 90, 91, 95, 97, 104], "dimens": [2, 57, 75, 78, 91, 97, 104, 107], "select": [2, 9, 10, 27, 51, 61, 71, 91, 98, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 99, 100, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 63, 66, 69, 71, 73, 74, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 73, 86, 88, 93, 96, 97, 103, 107], "By": [2, 37, 62, 63, 73, 89, 95, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 62, 63, 65, 70, 73, 83, 87, 88, 89, 90, 94, 95, 97, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 73], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 61, 62, 63, 65, 68, 69, 70, 71, 73, 74, 75, 77, 83, 84, 87, 89, 90, 96, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 59, 61, 70, 73, 84, 86, 87, 89, 90, 91, 93, 94, 95, 97, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 68, 70, 73, 78, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 104, 106], "consist": [2, 3, 10, 38, 42, 51, 57, 61, 95, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 60, 63, 68, 71, 73, 74, 77, 81, 83, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 62, 73, 90, 94, 95], "close": [2, 3, 10, 41, 47, 70, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 71, 73, 97], "equival": [2, 3, 38, 42, 47, 70, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 62, 63, 73, 97, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 62, 99], "certain": [2, 3, 5, 10, 38, 42, 60, 69, 73, 89, 90, 95, 96, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 81, 89, 90, 91, 97, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 60, 61, 63, 69, 70, 71, 73, 78, 79, 81, 89], "filter": [2, 3, 10, 41, 43, 56, 62, 64, 65, 67, 69, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 91, 94, 96, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 97, 102, 103, 106, 107, 108], "particularli": [2, 83, 98, 101, 104], "filter_bi": [2, 3, 41, 44, 63, 84, 97], "frac_nois": [2, 44, 63, 79, 97], "min_examples_per_class": [2, 44, 63, 97, 99], "impact": [2, 4, 10, 89, 90, 91, 95], "ml": [2, 4, 5, 9, 10, 16, 73, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 100, 101, 102, 104, 105, 106], "accuraci": [2, 39, 71, 86, 87, 88, 91, 97, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 63, 75, 77, 79, 97, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 61, 63, 69, 75, 77, 79, 87, 88, 89, 95, 97, 98, 101, 105], "caus": [2, 44, 49, 89, 90, 95, 97], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 62, 63, 64, 66, 67, 69, 70, 72, 76, 78, 79, 80, 82, 83, 84, 86, 87, 89, 90, 96, 97, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 61, 63, 64, 65, 66, 67, 68, 71, 72, 74, 76, 77, 79, 80, 81, 84, 97, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 65, 70, 71, 99], "control": [2, 5, 9, 10, 17, 41, 44, 61, 69, 70, 73, 79, 81, 89, 90, 95, 96, 97], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 61, 62, 65, 66, 68, 70, 71, 73, 77, 81, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 73, 95, 97, 101], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 60, 61, 62, 66, 68, 69, 70, 73, 77, 78, 81, 82, 83, 84, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78, 107, 108], "statement": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78], "big": [2, 41, 63, 69, 73, 99], "limit": [2, 5, 17, 41, 52, 63, 83, 95, 103, 107, 108], "memori": [2, 38, 41, 42, 63, 69, 75, 77, 89, 107], "experiment": [2, 38, 39, 41, 42, 43, 63, 84, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 106], "label_issues_batch": [2, 40, 63, 97], "find_label_issues_batch": [2, 40, 41, 63, 97], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 68, 69, 70, 71, 77, 81, 89, 95, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 84, 99], "label_issu": [2, 41, 44, 63, 66, 73, 75, 84, 86, 87, 88, 91, 94, 97, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 73], "clf_final_kwarg": [2, 73], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 61, 62, 63, 65, 66, 68, 69, 71, 73, 74, 77, 81, 83, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101, 102, 103, 104, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 63, 65, 66, 69, 71, 73, 74, 75, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 63, 66, 69, 71, 73, 74, 75, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 99, 102, 104, 106, 107, 108], "final": [2, 10, 73, 86, 93, 95, 98, 103, 105, 106], "remain": [2, 73, 84, 86, 87, 91, 95, 98, 102, 106, 108], "datasetlik": [2, 57, 73], "beyond": [2, 5, 7, 9, 10, 12, 36, 83, 86, 87, 98, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 60, 61, 62, 73, 81, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 60, 61, 62, 73, 78, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 70, 95], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 93, 95], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 95], "torch": [2, 38, 39, 42, 87, 88, 91, 94, 96, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 60, 61, 66, 69, 73, 83, 84, 88, 89, 90, 91, 97, 99, 104], "tensorflow": [2, 57, 60, 83, 88, 97], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 60, 63, 66, 67, 68, 69, 70, 73, 81, 83, 87, 88, 90, 91, 93, 95, 97, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 77, 78, 79, 81, 82, 84, 87, 88, 89, 90, 91, 96, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 71, 78, 82, 86, 87, 88, 91, 93, 94, 95, 97, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 61, 62, 68, 70, 82, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 73, 88, 97, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 60, 61, 62, 63, 66, 69, 70, 71, 73, 75, 77, 78, 81, 82, 86, 89, 90, 91, 93, 95, 96, 98, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 88, 91, 94, 95, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 61, 66, 68, 73, 79, 81, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 60, 61, 75, 77, 91, 97, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 61, 62, 63, 66, 69, 70, 71, 75, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 60, 71, 83, 86, 87, 94, 97, 104], "eg": [2, 5, 10, 57, 66, 69, 89, 90, 97, 98], "repeat": [2, 57, 61, 101, 104], "appli": [2, 10, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 65, 70, 79, 83, 86, 87, 88, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 63, 70, 74], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 59, 61, 62, 63, 65, 66, 69, 70, 71, 73, 75, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 73, 81, 97, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 61, 62, 63, 65, 70, 71, 73, 78, 79, 81, 82, 86, 88, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 60, 61, 68, 77, 81, 87, 96, 98, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 61, 62, 63, 65, 68, 69, 71, 74, 75, 77, 81, 90, 97, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 61, 63, 66, 68, 71, 77, 81, 89, 95, 97, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 61, 68, 70, 71, 74, 77, 81, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 84, 91, 93, 95, 97, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 60, 63, 70, 71, 73, 74, 79, 81, 96, 97, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 68, 70, 81, 84, 90, 92, 95, 97, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 60, 68, 70, 71, 73, 77, 81, 98, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 60, 61, 62, 63, 66, 68, 70, 71, 73, 74, 82, 84, 87, 88, 90, 91, 94, 95, 98, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 68, 90, 96, 97, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 62, 63, 69, 84, 91, 95, 97, 103], "observ": [2, 3, 47, 54, 88, 89, 90, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 61, 62, 63, 66, 68, 71, 77, 79, 81, 82, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 72, 73, 86, 87, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 61, 63, 68, 70, 71, 75, 77, 90, 95, 97, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 61, 63, 66, 71, 73, 75, 77, 78, 83, 87, 88, 90, 91, 94, 97, 103, 106, 107], "label_issues_mask": [2, 44, 71, 73, 84], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 63, 66, 69, 70, 71, 73, 75, 79, 81, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 63, 79, 84, 86, 87, 97, 99], "significantli": [2, 10, 91, 95, 99, 101, 105], "reduc": [2, 41, 44, 57, 88, 97], "time": [2, 10, 38, 41, 42, 57, 61, 82, 84, 89, 91, 97, 98, 103, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 60, 71, 86, 91, 93, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 73, 88, 95, 97, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 69, 91, 95, 98, 99, 101, 105], "caution": [2, 5, 97, 98], "previous": [2, 5, 14, 57, 70, 73, 84, 86, 88, 89, 93, 94, 98, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 73, 86, 89, 91, 93, 95, 97, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 61, 65, 68, 71, 73, 79, 81, 84, 86, 90, 93, 95, 96, 97, 101, 102, 103, 108], "still": [2, 41, 42, 57, 70, 86, 91, 97, 104], "extra": [2, 38, 42, 57, 60, 61, 62, 73, 91, 94, 97, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 62, 65, 66, 73, 75, 79, 90, 103], "overwritten": [2, 73], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 60, 65, 97], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 69, 71, 73, 78, 88, 89, 90, 91, 95, 97, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 63, 71, 89, 93, 98, 102, 103], "earli": [2, 91], "stop": [2, 91], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 70, 86, 89, 91, 93, 95, 98, 102, 106, 108], "f": [2, 7, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 60, 73, 78, 82, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 61, 69, 70, 73, 75, 77, 87, 88, 91, 95, 97, 105, 107], "access": [2, 10, 14, 38, 42, 73, 90, 91, 96, 102], "hyperparamet": [2, 65, 70, 91], "purpos": [2, 52, 89, 90, 95, 97, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 61, 63, 73, 87, 89, 91, 94, 96, 98, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 73], "yourself": [2, 5, 41, 90, 95], "altern": [2, 7, 10, 49, 54, 57, 60, 61, 71, 84, 87, 88, 91, 93, 94, 96, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 60, 61, 63, 70, 71, 73, 77, 78, 81, 82, 83, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 61, 70, 73, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 104, 106], "offer": [2, 5, 9, 10, 87, 88, 89, 90, 94, 97, 98, 99, 102], "after": [2, 3, 5, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 61, 73, 87, 89, 91, 94, 95, 97, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 70, 73, 86, 89, 95], "label_issues_df": [2, 73, 91], "similar": [2, 10, 37, 38, 42, 54, 57, 61, 65, 66, 68, 70, 73, 77, 81, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 60, 62, 63, 65, 68, 69, 70, 73, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 66, 73, 89, 90], "were": [2, 3, 5, 10, 37, 42, 52, 62, 68, 81, 86, 88, 93, 97, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 70, 78, 83, 91, 95, 97, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 61, 62, 71, 90, 97, 99, 105, 108], "num_class": [2, 37, 41, 57, 60, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 78, 89, 95, 97, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 71, 95, 97, 99, 104], "trick": [2, 97], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 61, 69, 70, 71, 83, 89, 90, 91, 93, 94, 95, 98, 103, 104], "account": [2, 37, 61, 65, 70, 71, 87, 94, 97, 99, 101, 102, 104, 106], "word": [2, 3, 56, 81, 82, 97], "remov": [2, 10, 32, 37, 38, 42, 44, 73, 83, 86, 87, 91, 94, 95, 96, 97, 98, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 61, 62, 68, 71, 73, 77, 81, 88, 89, 90, 91, 94, 95, 98, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 60, 71, 73, 75, 83, 84, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 61, 63, 65, 70, 71, 73, 74, 75, 83, 86, 87, 88, 91, 94, 95, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 64, 66, 67, 68, 69, 70, 71, 72, 73, 76, 80, 83, 86, 87, 89, 92, 96, 98, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 71, 73, 98], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 60, 69, 73, 75, 77, 78, 79, 97], "test": [2, 5, 10, 27, 42, 49, 52, 60, 73, 83, 86, 87, 89, 90, 91, 93, 94, 100, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 61, 70, 71, 73, 86, 87, 97, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 71, 83, 87, 89, 90, 93, 94, 97, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 65, 70, 73, 83, 90, 91, 93, 94, 95, 98, 99, 103], "save_spac": [2, 10, 72, 73], "potenti": [2, 10, 37, 44, 56, 63, 66, 69, 71, 73, 75, 77, 82, 84, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 87, 94], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 60, 61, 62, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 60, 62, 63, 65, 81, 89, 98, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 61, 63, 71, 75, 77, 82, 83, 89, 91, 97, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 63, 66, 71, 73, 75, 77, 78, 83, 96, 97, 101, 103, 107, 108], "prefer": [2, 71, 79, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 87, 94, 97, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 73], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 60, 61, 63, 65, 69, 70, 71, 73, 74, 75, 77, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 71, 73], "mostli": [2, 57, 68, 73, 98, 102, 106], "longer": [2, 35, 48, 49, 56, 73, 84, 87, 94, 97, 98, 103], "info": [2, 5, 7, 10, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 73, 81, 90, 95, 96, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 61, 62, 65, 69, 73, 78, 81, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 73, 96, 99], "unless": [2, 38, 42, 52, 73, 97], "our": [2, 3, 10, 60, 61, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 73, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 62, 63, 68, 71, 73, 75, 77, 78, 83, 89, 90, 95, 97, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 61, 62, 63, 66, 69, 71, 73, 74, 75, 77, 78, 84, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 106], "label_qu": [2, 61, 73, 87, 99, 101, 106], "measur": [2, 5, 37, 61, 62, 73, 83, 86, 95, 96, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 61, 62, 63, 65, 66, 68, 71, 73, 74, 77, 79, 81, 83, 84, 88, 89, 91, 97, 98, 100], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 61, 62, 65, 68, 69, 71, 73, 74, 77, 81, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 69, 98, 99, 101], "against": [2, 38, 42, 89, 93, 95, 97, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107], "ad": [2, 38, 42, 90, 101, 106], "precis": [2, 53, 55, 63, 66, 69, 95, 96, 97, 99, 107, 108], "definit": [2, 7, 35, 49, 73, 86, 93], "accessor": [2, 73], "describ": [2, 10, 19, 61, 70, 71, 73, 79, 81, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 73, 96], "clear": [2, 38, 42, 54, 73, 87, 94, 95, 106], "save": [2, 5, 17, 38, 41, 42, 69, 73, 95, 97, 103, 107, 108], "space": [2, 5, 10, 70, 73, 91, 93, 95, 96], "place": [2, 38, 42, 52, 57, 73, 86, 101], "larg": [2, 9, 10, 41, 52, 73, 91, 97, 103, 104, 107, 108], "deploi": [2, 9, 10, 73, 91, 97, 98], "care": [2, 10, 38, 42, 52, 73, 94, 95, 97, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 73, 97, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 98, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 73], "__init_subclass__": [2, 40, 42, 72, 73], "set_": [2, 42, 73], "_request": [2, 42, 73], "pep": [2, 42, 73], "487": [2, 42, 73], "look": [2, 5, 7, 10, 17, 38, 42, 57, 73, 78, 86, 89, 90, 93, 94, 97, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 61, 62, 66, 69, 73, 78, 81, 82, 83, 88, 89, 93, 94, 95, 96, 98, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 73], "infer": [2, 42, 57, 73, 78, 82, 86, 87, 91, 101, 102], "signatur": [2, 38, 42, 73], "accept": [2, 38, 42, 54, 55, 71, 73, 89, 90, 97], "metadata": [2, 10, 42, 73, 91, 108], "through": [2, 5, 7, 42, 73, 87, 88, 90, 94, 95, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 73, 97, 99, 108], "request": [2, 42, 73, 86, 87, 90, 94, 95, 96, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 60, 61, 63, 69, 73, 77, 81, 82, 83, 88, 91, 95, 97, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 66, 69, 70, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 73, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 70, 73, 97, 98, 99, 108], "dev": [2, 42, 73], "0487": [2, 42, 73], "get_metadata_rout": [2, 40, 42, 72, 73], "rout": [2, 42, 73], "pleas": [2, 38, 42, 60, 73, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 73, 84, 88, 89, 90, 91, 92, 93, 94, 95, 98, 99], "mechan": [2, 38, 42, 73], "metadatarequest": [2, 42, 73], "encapsul": [2, 17, 42, 68, 73], "get_param": [2, 40, 42, 59, 60, 72, 73], "subobject": [2, 42, 73], "param": [2, 10, 38, 42, 60, 70, 73, 97], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 60, 61, 62, 69, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 72, 73], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 60, 61, 62, 66, 68, 69, 71, 73, 78, 82, 88, 89, 95, 97, 101, 102, 103, 108], "unchang": [2, 38, 42, 73, 95, 108], "relev": [2, 10, 17, 27, 42, 73, 91, 93, 95], "enable_metadata_rout": [2, 42, 73], "set_config": [2, 42, 73], "meta": [2, 42, 73], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 73, 97], "alia": [2, 38, 42, 73], "metadata_rout": [2, 42, 73], "retain": [2, 42, 57, 73], "chang": [2, 33, 35, 38, 41, 42, 46, 73, 81, 86, 87, 88, 89, 94, 97, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 59, 60, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 68, 73], "pipelin": [2, 42, 73, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 63, 73, 75, 77, 78, 82, 83, 87, 94, 97, 98], "updat": [2, 14, 38, 41, 42, 52, 60, 73, 84, 89, 91, 98], "set_param": [2, 40, 42, 59, 60, 72, 73], "simpl": [2, 38, 42, 44, 61, 71, 73, 86, 87, 89, 90, 91, 93, 94, 98, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 61, 63, 69, 71, 73, 78, 81, 82, 84, 89, 90, 91, 93, 94, 97, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 73, 79, 81, 82, 108], "latter": [2, 38, 42, 73, 104], "compon": [2, 42, 73], "__": [2, 42, 73], "set_score_request": [2, 72, 73], "structur": [3, 70, 93, 95, 97, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 61, 70, 71, 75, 77, 81, 91, 93, 95, 96, 97, 98, 99, 103, 108], "channel": [3, 88, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 62, 87, 90, 96], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 62, 63, 84, 97, 99], "un": 3, "under": [3, 10, 38, 42, 62, 69, 70, 90, 95, 98, 104], "joint": [3, 37, 44, 47, 57, 62, 63, 96], "num_label_issu": [3, 41, 44, 63, 78, 82, 84], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 63, 102], "don": [3, 10, 83, 90, 91, 94, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 63, 99], "off": [3, 44, 57, 68, 91, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 63, 66, 69, 70, 79, 81, 82, 89, 90, 99, 107, 108], "confident_learn": [3, 44, 63, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 61, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 75, 78, 88, 89, 90, 91, 95, 97, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 89, 90, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 86, 87, 88, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 68, 69, 75, 77, 86, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106], "As": [3, 7, 83, 89, 90, 94, 98, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 60, 69, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 102], "approach": [3, 37, 41, 44, 60, 86, 93, 95, 98, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 71, 87, 90, 94, 95, 99, 106], "know": [3, 10, 89, 90, 91, 94, 97, 99, 101, 106], "cut": [3, 68, 83, 86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 69, 83, 95, 97, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 65, 66, 68, 69, 71, 74, 81, 96, 97, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 77, 78, 79, 83, 84, 88, 95, 97, 98, 102, 104, 108], "num_issu": [3, 7, 41, 88, 89, 90, 91, 93, 94, 95, 98, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 60, 61, 87, 96, 97, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 62, 63, 65, 71, 89, 90, 100, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 62, 63, 65, 73, 86, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 106], "fashion": [3, 5, 75, 86], "2x2": 3, "incorrectli": [3, 37, 62, 63, 66, 93, 98, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 63, 71, 83, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 61, 65, 68, 74, 77, 81, 82, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 63, 69, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 61, 62, 69, 78, 103, 104], "done": [3, 10, 60, 73, 89, 97, 99, 102, 104, 105], "overfit": [3, 10, 66, 69, 86, 88, 89, 90, 91, 93, 94, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 61, 62, 68, 69, 70, 71, 81, 86, 88, 89, 95, 97, 99, 102, 103], "baselin": [3, 38, 44, 87, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 63, 69, 73, 81, 97], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 61, 63, 69, 77, 79, 81, 82, 88, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 61, 70, 75, 77, 83, 87, 91, 95, 97, 98, 107], "practic": [3, 86, 87, 90, 91, 98, 99, 104, 106], "complet": [3, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 65, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 69, 79, 96], "again": [3, 60, 86, 97, 104], "simplifi": [3, 15, 97], "understand": [3, 9, 10, 37, 62, 69, 90, 95, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 70, 71, 86, 87, 89, 90, 91, 93, 95, 96, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 60, 86, 87, 90, 91, 93, 94, 95, 96, 99, 101, 102, 104, 106], "speed": [3, 44, 87, 96, 97, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 65, 81, 88, 95, 98, 103], "enumer": [3, 38, 42, 88, 89, 90, 91, 95, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 81, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 71, 75, 78, 88, 95, 97, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 65, 74, 86, 88, 95], "eqn": [3, 47], "margin": [3, 44, 47, 49, 71], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 62, 99, 105], "poorli": [3, 47, 86, 95], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 73, 74, 88, 89, 93, 99, 102, 106], "exact": [3, 10, 47, 52, 86, 89, 90, 91, 93, 95, 98], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 63, 68, 77, 79, 81, 89, 90, 91, 97, 103, 107], "percent": 3, "often": [3, 37, 47, 62, 97, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 69, 86, 87, 88, 89, 91, 93, 94, 97, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 60, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 89, 91, 95, 96, 97, 98, 99, 105, 106], "becaus": [3, 47, 53, 57, 68, 94, 95, 97, 98, 99, 101, 103, 105], "littl": [3, 41, 96, 103, 108], "uniform": [3, 71, 96, 97, 99], "20": [3, 7, 43, 82, 88, 91, 94, 95, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 91, 104], "bound": [3, 24, 26, 38, 42, 56, 65, 66, 68, 69, 103], "reason": [3, 10, 23, 38, 42, 53, 70], "comment": [3, 56, 95, 108], "end": [3, 5, 38, 42, 54, 69], "file": [3, 5, 13, 40, 41, 59, 69, 86, 88, 89, 93, 94, 96, 97, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 84, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 99, 102, 104, 106, 107, 108], "five": [3, 66, 69, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 98, 103], "confident_threshold": [3, 10, 23, 24, 41, 70], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 83, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 69, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 107, 108], "u": [4, 86, 87, 88, 89, 91, 93, 95, 97, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 95, 98, 103], "contribut": [4, 10, 19, 95, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 93, 95], "metric": [4, 5, 10, 19, 20, 22, 27, 29, 32, 45, 51, 52, 54, 55, 57, 60, 69, 70, 86, 87, 88, 91, 93, 94, 95, 98, 99, 106], "10": [4, 10, 19, 20, 24, 27, 29, 32, 38, 39, 52, 69, 70, 71, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 70, 90, 94, 95, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 70, 89, 90, 91, 93, 94, 95, 97, 104], "knn": [4, 10, 14, 19, 27, 29, 32, 51, 52, 53, 54, 55, 70, 93, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 61, 65, 66, 68, 69, 70, 73, 77, 91, 96, 98], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 60, 61, 87, 90, 94, 95, 97, 98, 102, 103, 106], "lowest": [4, 10, 61, 69, 90, 91, 93, 95, 97, 98, 101, 102, 103, 107], "fall": [4, 10, 68, 77, 81, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 62, 63, 66, 73, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 70, 95, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 63, 66, 69, 71, 78, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 70, 83, 87, 88, 89, 90, 93, 94, 95, 98, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 63, 83, 87, 88, 89, 90, 91, 94, 97, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 61, 86, 88, 95, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 62, 88, 89, 90, 91, 93, 94, 98, 99], "num_featur": [4, 5, 17, 38, 42, 60], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 68, 70, 93, 95, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 60, 95, 98], "nearestneighbor": [4, 5, 10, 19, 52, 54, 70, 93, 104], "cosin": [4, 10, 52, 53, 55, 70, 95, 104], "dim": [4, 70, 91, 107], "euclidean": [4, 5, 10, 52, 53, 55, 68, 70, 93], "dimension": [4, 27, 53, 57, 88, 99, 104], "scikit": [4, 42, 53, 54, 57, 70, 83, 86, 87, 88, 89, 90, 93, 94, 95, 97, 106], "fewer": [4, 10, 44, 57, 70, 95, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 59, 70, 84, 88, 89, 90, 91, 93, 94, 98, 99], "exce": [4, 52, 91, 95], "transform": [4, 10, 33, 49, 52, 55, 57, 70, 71, 86, 87, 90, 91, 94, 95, 98, 104, 108], "rel": [4, 10, 37, 52, 61, 62, 70, 89, 90, 91, 93, 94, 98, 99, 104], "adjust": [4, 39, 44, 52, 65, 70, 71, 83, 95, 98, 99], "closer": [4, 10, 68, 95, 103], "highli": [4, 90, 91], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 69, 95, 96, 104], "convers": 4, "neg": [4, 10, 68, 69, 89, 90, 95, 96], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 97], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 73, 75, 77, 91, 94, 96, 97], "55": [4, 56, 95, 96, 103, 106], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 88, 91, 92, 93, 94, 95, 97, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 95, 96], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 61, 69, 78, 79, 86, 87, 88, 89, 93, 94, 95, 98, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 59, 63, 70, 73, 74, 83, 95, 105], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 59, 60, 75, 77, 95], "pip": [5, 7, 9, 12, 36, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 70, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 83, 96], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "image_kei": [5, 10, 91, 95], "interfac": [5, 9, 10, 54, 83, 86, 87, 90, 93, 94, 96, 97, 98, 99, 102, 104, 106], "librari": [5, 10, 42, 54, 66, 69, 70, 83, 87, 89, 94, 95, 96, 97], "goal": [5, 106], "track": [5, 7, 14, 15, 83, 89, 96, 97, 99], "intermedi": [5, 9, 90], "statist": [5, 10, 14, 23, 27, 37, 61, 62, 69, 90, 93, 94, 95, 98, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 61, 68, 77, 81, 84, 87, 88, 91, 94, 95, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 91], "face": [5, 10, 13, 17, 91, 96, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 61, 62, 68, 70, 89, 90, 91, 94, 97, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 61, 62, 74, 78, 81, 82, 87, 93, 94, 95, 97, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 61, 62, 65, 66, 68, 69, 89, 90, 93, 94, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 69, 88, 89, 95, 97, 103], "local": [5, 7, 10, 13, 38, 39, 42, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 70, 79, 81, 82, 83, 85, 89, 90, 92, 96, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 86, 87, 93, 94, 98, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 61, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 87, 89, 90, 94, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 66, 68, 69, 70, 75, 77, 78, 83, 89, 90, 92, 96, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 86, 87, 95, 106], "pil": [5, 91], "cleanvis": [5, 10, 95], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 79, 81, 90, 91, 97, 100, 102, 107], "load_dataset": [5, 13, 91], "glue": 5, "sst2": 5, "properti": [5, 9, 13, 14, 35, 38, 42, 95], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 62, 69, 78, 82, 83, 96, 99, 103, 107, 108], "empti": [5, 13, 47, 61, 90, 95, 97, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 61, 63, 66, 68, 69, 71, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 83, 90, 92, 95, 96, 97, 98, 99, 102, 103, 107], "real": [5, 17, 83, 89, 90, 95, 97, 98, 99, 101, 106, 107], "world": [5, 17, 83, 89, 90, 95, 97, 98, 99, 101, 106, 107], "interact": [5, 17, 94, 97], "thereof": [5, 17], "insight": [5, 17, 69, 101], "best": [5, 9, 10, 17, 48, 61, 71, 86, 87, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 75, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 66, 69, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103], "lexicograph": [5, 48, 57, 88, 89, 90, 91, 93, 94, 98, 99, 102], "squar": [5, 57, 73, 96, 106], "csr": [5, 52, 95], "evenli": 5, "omit": [5, 68, 69, 91, 95, 103], "itself": [5, 33, 38, 42, 52, 95, 103], "three": [5, 10, 37, 61, 62, 73, 78, 86, 88, 89, 90, 93, 96, 99, 101, 105, 106, 107, 108], "indptr": [5, 95], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 83, 102, 108], "th": [5, 10, 43, 48, 56, 57, 61, 63, 66, 68, 69, 70, 79, 81, 82, 94, 102, 103, 108], "ascend": [5, 37, 62, 91, 99], "segment": [5, 75, 77, 78, 100], "reflect": [5, 10, 52, 86, 87, 93, 94, 98, 101, 103, 104, 106], "maintain": [5, 60], "kneighbors_graph": [5, 19, 54, 93], "illustr": [5, 95], "todens": 5, "second": [5, 49, 57, 69, 71, 89, 93, 97, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 83, 89, 95, 98, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 61, 95, 97, 101, 108], "unspecifi": [5, 17, 44, 63], "interest": [5, 17, 23, 78, 82, 86, 87, 94, 95, 98, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 73, 74, 95, 96, 106, 108], "random_st": [5, 86, 88, 89, 90, 91, 95, 98, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 83, 91, 95, 98, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 70, 95], "mode": [5, 12, 19, 38, 41, 42, 93, 104], "4x4": 5, "float64": [5, 27, 38, 42, 81], "compress": [5, 10, 52, 57, 75, 77, 95], "toarrai": [5, 52, 95], "NOT": [5, 41, 94], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 90], "suppos": [5, 10, 66, 86, 87, 104, 106], "who": [5, 68, 86, 93, 95, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 60, 89, 97], "clean_learning_kwarg": [5, 10, 11, 24, 31, 97, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 84], "prune_by_noise_r": [5, 44, 63, 99], "report": [5, 7, 10, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 82, 83, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34, 95, 98], "show_all_issu": [5, 34, 95, 98], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 59, 60, 62, 67, 76, 77, 79, 80, 81, 84, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 69, 78, 82, 86, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 63, 71, 82, 95, 108], "onc": [5, 10, 23, 37, 38, 42, 86, 89, 97, 98, 99, 102, 103], "familiar": [5, 95], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 61, 62, 65, 68, 69, 73, 77, 78, 79, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 65, 68, 70, 71, 77, 81, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 61, 70, 81, 89, 90, 93, 95, 98, 99, 103], "issue_summari": [5, 7, 10, 14, 95], "With": [5, 9, 10, 41, 87, 94, 97, 99, 101, 106, 107, 108], "usag": [5, 41, 60], "usual": [5, 13, 33, 34, 91, 101, 106], "ti": [5, 61], "exhibit": [5, 7, 10, 14, 78, 88, 89, 90, 91, 93, 94, 98, 99, 103], "ie": [5, 73], "likelihood": [5, 10, 41, 43, 44, 63, 68, 70, 71, 75, 79, 95], "wherea": [5, 10, 57, 63, 86, 87, 95, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 71, 83, 89, 90, 95, 98, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 10, 23, 38, 42, 96], "non_iid": [5, 10, 11, 15, 27, 90, 91, 93, 94, 95, 98, 99], "hypothesi": [5, 95], "iid": [5, 7, 9, 27, 83, 93, 98, 99], "never": [5, 88, 98, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 71, 103], "123": [5, 89, 90], "456": [5, 86, 87, 88], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 60, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 65, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 89, 90, 91, 93, 94, 98, 99], "789": 5, "get_issu": [5, 10, 14, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 88, 89, 90, 91, 93, 94, 95, 98, 99], "focu": [5, 10, 14, 94, 95, 98, 107, 108], "full": [5, 10, 14, 41, 60, 69, 91, 98, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 62, 78, 82, 83, 107], "specific_issu": [5, 14], "lie": [5, 10, 70, 71, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99], "get_issue_summari": [5, 10, 14, 90, 95], "get_info": [5, 10, 14, 90, 94, 95, 96], "yet": [5, 18, 28, 60, 96, 98, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 89], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 88, 89, 91], "load": [5, 13, 41, 69, 91, 96, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 61, 83, 89, 94], "overwrit": [5, 89], "separ": [5, 37, 49, 65, 89, 90, 91, 95, 97, 98, 103, 105], "static": 5, "rememb": [5, 94, 97, 98, 99], "part": [5, 10, 38, 42, 44, 66, 68, 69, 88, 89, 95, 96, 98, 107, 108], "ident": [5, 10, 23, 57, 94, 95], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 83, 86, 87, 96, 98, 101, 106], "walk": [7, 98], "alongsid": [7, 38, 42, 89, 97], "pre": [7, 8, 10, 38, 42, 83, 89, 90, 106], "runtim": [7, 38, 41, 42, 73, 75, 77, 88, 91, 97, 98], "issue_manager_factori": [7, 15, 89], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 87, 95, 99, 106], "next": [7, 61, 83, 86, 87, 88, 93, 94, 95, 97, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 89, 90, 95], "mark": [7, 10, 84, 103, 104, 106], "regard": [7, 90, 98, 99], "rand": [7, 49, 52, 89, 90, 95], "is_": [7, 10, 89], "_issu": [7, 10, 89], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "whole": [7, 10, 27, 38, 42, 90, 95], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "popul": [7, 94, 98], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 78, 82, 95, 97, 102], "intermediate_arg": 7, "min": [7, 49, 68, 81, 89, 97, 104], "sin_filt": 7, "sin": 7, "arang": [7, 95], "kernel": [7, 95], "affect": [7, 10, 38, 42, 53, 75, 81, 94, 95, 97], "easili": [7, 10, 47, 84, 86, 87, 88, 90, 93, 94, 98, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 83, 96, 104], "sai": [7, 10, 38, 42, 95, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 68, 71, 87, 93, 94, 95, 97, 99, 101, 104], "try": [7, 9, 10, 41, 44, 60, 61, 75, 77, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 104, 105, 106, 107], "won": [7, 38, 42, 89, 90, 97, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 89], "instanti": [7, 17, 41, 60, 70, 87, 88, 90, 93], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 69, 88, 89, 90, 91, 93, 94, 98, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 60, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 60, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 89, 90, 95, 96, 98, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32, 83, 98], "group": [8, 9, 27, 32, 83, 96, 98, 103, 108], "dbscan": [8, 10, 32], "hdbscan": 8, "etc": [8, 10, 23, 33, 38, 42, 47, 60, 61, 79, 83, 89, 90, 93, 94, 95, 97, 98, 99, 102, 106], "sensit": [8, 10, 55, 95, 98], "ep": [8, 32, 69], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 95], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 32, 95], "cluster_id": [8, 10, 11, 32, 95], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 90, 91, 93, 94, 95, 98, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 73, 95, 97, 98, 105], "nondefault": 9, "Near": [9, 97], "imbal": [9, 22, 65, 70, 71, 90], "spuriou": [9, 91], "correl": [9, 91], "null": [9, 11, 15, 22, 90, 91, 94, 98, 99], "togeth": [9, 10, 47, 87, 89, 90, 91, 93, 94, 98, 99, 106, 108], "built": [9, 49, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "own": [9, 38, 40, 42, 54, 59, 65, 66, 69, 75, 79, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 60, 95, 98, 104], "fulli": [9, 10, 38, 42, 60, 97], "platform": [9, 10, 83, 86, 87, 90, 91, 93, 94, 96, 97, 99, 102, 104, 105, 106], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 60, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 71, 86, 93, 97, 98, 99, 106, 107], "100x": [9, 10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "faster": [9, 10, 41, 70, 73, 75, 77, 83, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 106], "intellig": [9, 10, 98], "quickli": [9, 10, 39, 86, 88, 91, 93, 94, 97, 98, 102, 104, 105, 107, 108], "fix": [9, 10, 61, 86, 87, 90, 93, 94, 95, 96, 98, 99, 102, 104, 105, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 61, 62, 68, 87, 91, 94, 95, 97, 106], "power": [9, 10, 91, 96, 99, 108], "automl": [9, 10, 83, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 105, 106], "system": [9, 10, 88, 91, 107], "foundat": [9, 10, 83, 86, 87, 90, 93, 94, 95, 96, 99, 102, 104, 105, 106], "improv": [9, 10, 61, 86, 87, 90, 91, 96, 97, 99, 100, 106, 107], "click": [9, 10, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 87, 88, 94, 96, 98, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 86, 87, 90, 96, 97, 98, 106], "free": [9, 10, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 102, 104, 105, 106], "page": [10, 90, 97, 98, 99], "variou": [10, 14, 31, 40, 58, 59, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103], "why": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "matter": [10, 37, 62], "didn": [10, 95, 98], "plu": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "class_imbal": [10, 11, 15, 21, 90, 91, 93, 94, 95, 98, 99], "data_valu": [10, 11, 15, 22, 95], "No": [10, 11, 86, 87, 94, 95, 97], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 68, 86, 87, 108], "issue_scor": 10, "atyp": [10, 70, 89, 90, 91, 93, 94, 98, 99, 104], "datapoint": [10, 32, 44, 49, 57, 71, 74, 83, 86, 87, 88, 89, 90, 93, 94, 97, 98, 105, 106], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 88, 95], "expertis": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "interpret": [10, 96, 97, 99, 102, 106], "annot": [10, 37, 48, 61, 62, 63, 65, 66, 68, 69, 78, 81, 82, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 93, 94], "preced": 10, "incorrect": [10, 68, 71, 74, 86, 88, 89, 90, 91, 93, 94, 95, 98, 99, 103, 106], "due": [10, 41, 44, 71, 75, 77, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106], "appear": [10, 37, 48, 62, 63, 66, 74, 90, 91, 93, 94, 95, 98, 106, 107], "now": [10, 41, 84, 86, 87, 88, 90, 95, 97, 98, 101, 103, 104, 106, 108], "token": [10, 43, 56, 77, 78, 79, 80, 81, 82, 97, 99, 100], "hamper": [10, 91, 96], "analyt": [10, 83, 95, 97, 101], "lead": [10, 68, 71, 91, 95, 98, 103], "draw": [10, 89, 90], "conclus": [10, 94], "let": [10, 38, 42, 70, 71, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 106], "head": [10, 86, 87, 88, 90, 91, 93, 94, 95, 96, 98, 99, 101, 106], "97": [10, 86, 96, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 86, 90, 95, 96, 99, 103], "680894": 10, "41": [10, 95, 96, 98, 103, 106], "746043": 10, "794894": 10, "98": [10, 96, 97, 98, 106], "802911": 10, "give": [10, 49, 71, 99, 101, 107], "li": [10, 70], "especi": [10, 86, 87, 91, 95, 97, 106], "veri": [10, 37, 62, 66, 68, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106], "rare": [10, 44, 69, 89, 90, 91, 93, 94, 97, 98, 99], "anomal": [10, 71, 89, 90, 91, 93, 94, 98, 99], "articl": [10, 41, 97], "blog": 10, "unexpect": [10, 38, 42, 94], "consequ": 10, "inspect": [10, 87, 88, 90, 91, 98, 99, 103, 106], "011562": 10, "62": [10, 95, 98, 99, 103, 106], "019657": 10, "22": [10, 88, 89, 91, 95, 96, 98, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 94, 95, 96, 103, 108], "056865": 10, "smaller": [10, 70, 102, 103], "extrem": [10, 89, 90, 91, 93, 94, 95, 97, 98, 99], "record": [10, 38, 42, 88, 93, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 82], "resolut": 10, "video": [10, 96], "audio": [10, 89, 90, 92, 97], "minor": [10, 56], "variat": 10, "translat": [10, 98], "d": [10, 55, 86, 93, 94, 95, 97, 98, 99, 102, 106, 108], "constant": [10, 32, 73], "median": [10, 31, 55], "question": [10, 23, 83, 99], "nearli": [10, 23, 90, 91, 93, 94], "awar": [10, 84, 99], "presenc": [10, 52, 54, 99], "36": [10, 95, 96, 98, 108], "066009": 10, "80": [10, 39, 86, 93, 98, 102, 106], "003906": 10, "093245": 10, "005599": 10, "27": [10, 93, 95, 96, 98, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 95, 96, 98, 99, 102, 106], "signific": [10, 86, 87, 90, 93, 94, 96, 98, 99, 102, 104, 106], "violat": [10, 83, 93, 94, 95, 98, 99], "assumpt": [10, 93, 94, 95, 98, 99], "changepoint": [10, 93, 94, 98, 99], "shift": [10, 52, 54, 93, 94, 98, 99], "drift": [10, 90, 93, 95, 98, 99], "autocorrel": [10, 93, 94, 98, 99], "almost": [10, 93, 94, 98, 99], "adjac": [10, 52, 93, 94, 98, 99], "tend": [10, 37, 47, 93, 94, 98, 99, 107, 108], "sequenti": [10, 38, 42, 60, 91], "pai": [10, 94, 95], "attent": [10, 95], "realli": [10, 87, 94, 98, 101, 107], "mere": 10, "highlight": [10, 78, 82, 89, 90, 93, 95, 107], "necessarili": [10, 61, 69, 94, 98, 99], "wrong": [10, 61, 66, 68, 84, 87, 89, 90, 94, 97, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 81, 86, 93, 94, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 66, 69, 103], "x2": [10, 66, 69, 103], "10th": 10, "100th": 10, "90": [10, 81, 86, 93, 98, 99, 105, 106], "similarli": [10, 38, 42, 89, 91, 93, 97, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 69, 101], "blogpost": 10, "proper": [10, 57, 61, 66, 69, 86, 91, 94, 97, 101, 103], "scenario": [10, 52, 54, 71, 89, 90], "underli": [10, 43, 54, 70, 79, 81, 108], "stem": [10, 70, 104], "evolv": 10, "influenc": 10, "act": [10, 68, 89], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 60, 62, 68, 71, 75, 77, 78, 83, 91, 95, 98], "problem": [10, 33, 41, 49, 78, 83, 89, 90, 91, 94, 95, 97], "deploy": [10, 86, 87, 99, 106], "overlook": [10, 68, 103], "fact": 10, "thu": [10, 37, 42, 62, 86, 88, 93, 94, 98, 99, 105, 108], "diagnos": [10, 90, 97], "24": [10, 88, 95, 96, 98, 99, 101, 103, 106], "681458": 10, "37": [10, 89, 95, 96, 98], "804582": 10, "64": [10, 42, 86, 91, 93, 95, 99, 103], "810646": 10, "815691": 10, "78": [10, 86, 93, 96, 98, 99, 103, 106], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 69, 97], "rarest": [10, 90, 98], "q": [10, 95, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 91, 94, 95, 96, 98, 99, 101, 108], "75": [10, 49, 89, 90, 95, 96, 98, 101, 102, 103, 106, 108], "33": [10, 38, 42, 95, 96, 98, 103], "68": [10, 86, 96, 98, 99, 103], "excess": [10, 91], "dark": [10, 95, 107], "bright": [10, 108], "blurri": [10, 91, 95], "lack": [10, 60, 95, 98], "unusu": [10, 103, 104], "discuss": [10, 97], "earlier": [10, 87, 108], "unintend": [10, 93, 94, 95], "relationship": [10, 37], "irrelev": 10, "exploit": 10, "fail": [10, 13], "unseen": 10, "hold": [10, 13], "aris": 10, "captur": [10, 37, 88, 103, 104, 107], "environment": 10, "preprocess": [10, 86, 87, 90, 93, 95, 104, 106], "systemat": [10, 78, 82, 101], "photograph": 10, "uncorrelated": [10, 95], "spurious": 10, "review": [10, 86, 87, 90, 93, 94, 96, 97, 98, 99, 103, 106, 107, 108], "troublesom": 10, "spurious_correl": [10, 95], "correlations_df": [10, 95], "blurry_scor": [10, 95], "559": [10, 98], "dark_scor": [10, 91, 95], "808": 10, "light_scor": [10, 95], "723": [10, 93, 98], "odd_size_scor": [10, 95], "957": 10, "odd_aspect_ratio_scor": [10, 95], "835": 10, "grayscale_scor": [10, 95], "003": 10, "low_information_scor": [10, 91, 95], "688": [10, 98, 106], "categor": [10, 70, 85, 86, 89, 90, 92, 97, 98, 106], "characterist": [10, 37, 95], "grayscal": [10, 91, 95], "cluster": [10, 19, 32, 98], "slice": [10, 98], "poor": [10, 95, 98], "subpopul": [10, 98], "faq": [10, 83, 90, 91, 93, 94, 100], "get_self_confidence_for_each_label": [10, 49, 71], "r": [10, 41, 73, 89, 90, 95, 106, 107], "tabular": [10, 83, 85, 89, 90, 92, 95, 97, 98, 101], "encod": [10, 50, 69, 75, 78, 86, 87, 93, 94, 97, 98, 106, 107], "71": [10, 95, 96, 98, 99, 103, 106], "70": [10, 81, 93, 95, 98], "69": [10, 98, 99, 106], "subgroup": [10, 95], "wors": [10, 95, 101], "ratio": [10, 95], "miss": [10, 28, 38, 42, 57, 66, 68, 97, 98, 103, 106], "pattern": [10, 95], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 70, 97], "quantif": 10, "39": [10, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 106, 107, 108], "32": [10, 88, 89, 95, 96, 98, 101, 103], "valuabl": [10, 19, 95], "exert": [10, 90], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 83, 96], "health_summary_kwarg": 10, "tandem": [10, 96], "view": [10, 38, 42, 43, 44, 77, 79, 81, 83, 86, 87, 88, 89, 90, 93, 94, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 70, 104], "outsid": [10, 97, 102], "outlierissuemanag": [10, 15, 22, 29], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107], "howev": [10, 38, 42, 52, 57, 86, 87, 88, 91, 93, 94, 95, 98, 101, 105, 107], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 62], "versa": [10, 62], "light": [10, 91, 95, 96, 103, 107], "29": [10, 91, 95, 96, 98, 101, 102, 103, 107, 108], "low_inform": [10, 91, 95], "odd_aspect_ratio": [10, 91, 95], "35": [10, 89, 95, 96, 98, 101, 102, 103], "odd_siz": [10, 91, 95], "doc": [10, 38, 42, 70, 83, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "is_outlier_issu": [11, 89, 90, 91, 93, 94, 95, 98, 99], "outlier_scor": [11, 29, 89, 90, 91, 93, 94, 95, 98, 99, 104], "is_near_duplicate_issu": [11, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_scor": [11, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_set": [11, 20, 22, 89, 90, 91, 93, 94, 97, 98, 99], "is_non_iid_issu": [11, 90, 93, 94, 95, 98, 99], "non_iid_scor": [11, 27, 90, 93, 94, 95, 98, 99], "is_class_imbalance_issu": [11, 90, 95, 98], "class_imbalance_scor": [11, 21, 90, 95, 98], "is_underperforming_group_issu": [11, 90, 95, 98], "underperforming_group_scor": [11, 32, 90, 95, 98], "is_null_issu": [11, 90, 95, 98], "null_scor": [11, 28, 90, 95, 98], "is_data_valuation_issu": [11, 95], "data_valuation_scor": [11, 19, 95], "studio": [12, 83, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 102, 104, 105, 106], "data_issu": [12, 16, 17, 34], "issue_find": [12, 16], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 60, 71, 89, 90, 91, 98, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 91], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": 14, "strategi": [14, 49, 95, 97], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 63, 66, 69, 73, 75, 77, 89, 90, 97, 98], "recomput": [14, 87], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 62, 83], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 70, 89], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 75, 77, 98], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 95, 98, 99, 103, 107, 108], "creation": [17, 42, 95], "execut": [17, 38, 42, 89, 97, 103], "coordin": [17, 66, 68, 69, 103, 108], "At": [17, 69, 97], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 60], "vstack": [19, 57, 91, 96, 97, 99, 101, 102], "25": [19, 27, 38, 49, 55, 90, 91, 95, 96, 98, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 89, 90, 91, 97, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 87, 94, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 86, 88, 89, 91, 95, 96, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 68, 83, 86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 70, 71, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "perform_clust": [22, 32], "get_underperforming_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 61, 95, 97, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 65, 68, 69], "scalartyp": [24, 26], "covari": [24, 26, 73, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 71, 75, 77, 103, 107], "empir": [27, 48, 61], "cumul": 27, "ecdf": 27, "histogram": [27, 93, 95, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 60, 91, 95, 98, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 77, 81, 89, 104, 106], "prompt": 28, "address": [28, 87, 89, 90, 94, 97], "enabl": [28, 42, 54, 98], "scaling_factor": [29, 55], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 69, 87, 108], "50": [32, 42, 95, 97, 98, 99, 101, 103, 104, 106, 108], "keepdim": [32, 97], "signifi": 32, "absenc": 32, "int64": [32, 88, 98, 101], "npt": 32, "int_": 32, "id": [32, 61, 89, 91, 95, 97, 101], "unique_cluster_id": 32, "exclud": [32, 34, 43, 78, 82, 89, 108], "worst": [32, 49, 101], "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35, 98], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 70, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 88, 90, 95, 97], "datset": 34, "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 89, 90], "continu": [35, 60, 86, 87, 91, 94, 97, 101, 103, 106, 108], "binari": [35, 49, 57, 63, 65, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 89], "typeerror": [35, 49], "12": [35, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 61, 62, 71, 89, 90, 91, 96, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 86, 87, 88, 90, 91, 93, 94, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 97, 98, 99], "rank_classes_by_label_qu": [37, 90], "merg": [37, 52, 56, 83, 96, 97, 98, 108], "find_overlapping_class": [37, 97, 99], "problemat": [37, 62, 78, 82, 88, 103, 108], "unnorm": [37, 62, 99], "abov": [37, 38, 41, 42, 54, 57, 61, 68, 69, 71, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 86, 88, 89, 90, 93, 95, 98, 99, 101], "df": [37, 57, 82, 88, 95, 97], "overall_label_qu": [37, 62], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 62, 71], "label_nois": [37, 62], "human": [37, 96, 107, 108], "clearli": [37, 71, 91, 103, 107], "num": [37, 62, 96, 99], "overlap": [37, 83, 95, 96, 97, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 71, 95, 98], "vehicl": [37, 96], "truck": [37, 95, 96, 104, 107], "intuit": [37, 62], "car": [37, 96, 103, 107], "frequent": [37, 61, 95, 97, 98, 106], "l": [37, 38, 42, 66, 68, 69], "class1": 37, "class2": 37, "dog": [37, 57, 62, 64, 78, 96, 97, 104, 105, 108], "cat": [37, 57, 62, 64, 96, 97, 104, 105], "co": [37, 38, 39], "noisy_label": [37, 89, 90, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 62, 69], "overall_label_health_scor": [37, 62, 99], "half": [37, 38, 40, 42, 62, 96, 108], "health_scor": [37, 62], "classes_by_label_qu": [37, 90], "cnn": [38, 40, 42, 91], "cifar": [38, 39, 95, 96, 104], "teach": [38, 39], "bhanml": 38, "blob": [38, 95], "master": [38, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 69, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 91, 101], "overridden": [38, 42], "although": [38, 42, 70, 86, 93, 98], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 62, 69, 77, 81, 97, 98, 101, 102, 103, 105, 108], "hook": [38, 42, 96], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 69], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 91], "init": [38, 42, 99], "no_grad": [38, 42, 91, 104], "init_weight": [38, 42], "linear": [38, 42, 87, 91, 94], "fill_": [38, 42], "net": [38, 42, 88, 91, 96], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 91], "tensor": [38, 39, 42, 88, 91, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 88], "buffer": [38, 40, 42], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 60], "cpu": [38, 40, 42, 44, 88, 91], "move": [38, 42, 49, 84, 96], "cuda": [38, 40, 42, 88, 91], "devic": [38, 42, 88, 91, 98], "gpu": [38, 42, 87, 88, 94], "live": [38, 42], "copi": [38, 42, 73, 86, 88, 89, 90, 93, 95, 97, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 91, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 83, 89, 95, 96, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 73, 74, 95, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 94], "resolv": [38, 42, 95, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 91, 95, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 91], "break": [38, 42, 91, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 91], "16": [38, 42, 49, 52, 60, 77, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 71, 95, 96, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 90, 91, 95, 97, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 88, 89, 90, 96, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 95, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 69, 89, 91, 95, 97, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 88, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 86, 93], "fire": [38, 42, 96], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 89, 90], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 91, 93, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 87, 88, 94], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 60, 84, 97], "design": [38, 42, 52], "ordereddict": [38, 42], "detach": [38, 42, 91], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 62, 68], "complex": [38, 42, 98], "integr": [38, 42, 54, 83, 97], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 87, 94, 96], "desir": [38, 42, 52, 56, 69], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 88], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 91], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 60, 91], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 91, 97], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 71, 95, 97], "250": [39, 89, 90, 99, 103, 108], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 87, 91, 94, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 91, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 59, 95, 108], "wish": [40, 59, 98, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 97], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 76, 77, 78, 79, 80, 81, 82, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 75, 77, 91, 97, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 91], "loader": [40, 42, 91], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 84], "mini": [41, 75, 77, 97], "low_self_confid": [41, 44, 63], "self_confid": [41, 44, 45, 49, 63, 65, 71, 79, 81, 86, 87, 97, 99], "conveni": [41, 54, 86, 87, 88, 94, 98], "script": 41, "labels_fil": [41, 97], "pred_probs_fil": [41, 97], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 61, 107], "read": [41, 46, 90, 97, 99, 104, 108], "zarr": [41, 97], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 97], "hdf5": 41, "further": [41, 43, 62, 63, 65, 68, 69, 77, 78, 88, 95, 97, 98], "yourfil": 41, "npy": [41, 96, 97, 107], "mmap_mod": [41, 107], "tip": [41, 44, 60, 97], "save_arrai": 41, "your_arrai": 41, "disk": [41, 96, 97], "npz": [41, 108], "maxim": [41, 61, 75, 77, 98, 107], "multiprocess": [41, 44, 63, 75, 77, 91, 97], "linux": [41, 75, 77], "physic": [41, 44, 75, 77, 103], "psutil": [41, 44, 75, 77], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 69, 89, 97, 98, 103, 104], "store_result": 41, "becom": [41, 95, 104], "verifi": [41, 54, 97, 98, 101, 104], "long": [41, 61, 70, 98, 101], "enough": [41, 57, 95, 97], "chunk": [41, 105], "ram": [41, 96], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 97], "shortcut": 41, "encount": [41, 44, 75], "1000": [41, 88, 94, 97, 104], "aggreg": [41, 45, 49, 61, 65, 68, 71, 81, 97, 99, 101], "seen": [41, 97, 98, 104, 108], "far": [41, 61, 98], "label_quality_scor": [41, 65, 68, 71, 74, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 63, 65, 71, 79, 81], "low_normalized_margin": [41, 44, 63], "issue_indic": [41, 68, 91], "update_num_issu": 41, "arr": [41, 97], "chunksiz": 41, "convnet": 42, "bespok": [42, 60], "download": [42, 88, 95, 97, 104], "mnist": [42, 83, 88, 96], "handwritten": 42, "digit": [42, 88, 96], "last": [42, 49, 66, 69, 89, 90, 97, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 71, 73, 88, 95, 99, 102, 103, 108], "templat": 42, "flexibli": 42, "among": [42, 61, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 87, 98, 104], "span": [43, 98], "sentenc": [43, 56, 79, 81, 82, 87, 94], "token_classif": [43, 56, 79, 81, 82, 97], "encourag": [44, 63, 71, 74], "multilabel_classif": [44, 62, 63, 65, 71, 97, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 63, 71, 99], "num_to_remove_per_class": [44, 63], "bad": [44, 52, 63, 68, 71, 94, 97], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 63, 65, 71, 79, 81], "label_issues_idx": [44, 71, 98], "entropi": [44, 46, 48, 49, 70, 71], "prune_by_class": [44, 63, 99], "predicted_neq_given": [44, 63, 99], "prune_counts_matrix": 44, "smallest": [44, 71], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 83, 87, 97], "too": [44, 49, 52, 70, 91, 97, 98, 103], "thread": [44, 63], "window": [44, 96], "shorter": [44, 66], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 97], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 84], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 65], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 65], "softmin": [45, 49, 65, 68, 77, 81], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 95], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 60, 61, 83, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 88, 95], "behav": 46, "unnecessari": [46, 97], "slightli": [46, 86, 87], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": [47, 98], "propag": 47, "throughout": [47, 57, 73, 82, 88, 101, 107, 108], "increas": [47, 55, 68, 70, 71, 88, 89, 95, 97, 101, 102, 108], "dot": [47, 81, 97], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 61], "ensembl": [48, 49, 61, 71, 86, 93, 97, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 61], "format_multiannotator_label": [48, 61, 101], "formatted_label": [48, 57], "old": [48, 57, 84, 96], "check_consensus_label_class": 48, "consensus_label": [48, 61, 101], "consensus_method": [48, 61], "consensu": [48, 61, 83, 100, 108], "establish": [48, 60, 87, 106], "compute_soft_cross_entropi": 48, "soft": [48, 96], "find_best_temp_scal": 48, "coarse_search_rang": [48, 73, 97], "fine_search_s": [48, 73, 97], "temperatur": [48, 49, 68, 77, 81], "scale": [48, 55, 86, 95, 96, 97, 104, 107], "factor": [48, 49, 55, 75, 77], "minim": [48, 68, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 96], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 71], "get_confidence_weighted_entropy_for_each_label": [49, 71], "scorer": 49, "alpha": [49, 65, 68, 89, 90, 95, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 63, 93, 94, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 91, 93, 97, 103], "discount": 49, "s_ema": 49, "175": [49, 91, 98, 99, 103], "underflow": 49, "nan": [49, 61, 86, 93, 95, 98, 101, 106], "aggregated_scor": 49, "base_scor": [49, 98], "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 65], "n_sampl": [49, 95], "n_label": 49, "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": [49, 98], "get_label_quality_scores_per_class": [49, 64, 65], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 88], "wider": 49, "splitter": 49, "kfold": [49, 91], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 91, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 63, 69, 75, 78, 86, 93, 96, 97, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 70], "reli": [52, 70, 87, 88, 89, 90, 94, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 97], "manner": [52, 65, 86, 87, 95, 101, 106], "701": 52, "900": [52, 86, 93, 106], "436": [52, 98], "000": [52, 87, 91, 94, 95, 96, 108], "idea": [52, 71, 98, 103], "dens": [52, 60, 95], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 62, 102], "vari": [52, 68, 90], "exact_duplicate_set": 52, "main": [52, 61], "front": [52, 96], "consider": 52, "capabl": [52, 83, 98], "come": [52, 57, 89, 90, 97, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 61, 86, 93, 95, 98], "slower": 53, "decid": [53, 61, 87, 94, 96, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 70], "spatial": [53, 70], "decis": [53, 86, 89, 90, 98], "That": [53, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 66, 69, 70, 88, 89, 90, 91, 93, 94, 97, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "exp": [55, 70, 71, 89], "dt": 55, "right": [55, 66, 69, 87, 94, 102, 103, 104], "strength": [55, 69, 95], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 83, 96], "thumb": 55, "ood_features_scor": [55, 70, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 88, 89, 97, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 83, 97, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 89, 90, 91, 93, 95, 108], "nbitbas": [56, 65], "probs_merg": 56, "0125": [56, 81], "0375": 56, "075": 56, "025": 56, "color": [56, 78, 89, 90, 93, 95, 99, 102, 104, 106, 107], "red": [56, 69, 89, 90, 95, 96, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 71, 86, 93, 97, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 61, 84, 91, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 69, 94, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 89, 90, 95, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 70, 87, 88, 93, 94, 98, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 83, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 88, 91, 96, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 66, 69, 95, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 69, 78, 82, 87, 88, 93, 94, 95, 99, 108], "jupyt": [57, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 61, 88, 90, 96, 97, 98, 99, 101, 102, 103, 105, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 63], "keraswrappermodel": [59, 60, 83], "keraswrappersequenti": [59, 60], "tf": [60, 88], "legaci": 60, "newer": 60, "interim": 60, "advis": [60, 102], "stabil": [60, 70], "until": 60, "accommod": 60, "keraswrapp": 60, "huggingface_keras_imdb": 60, "unit": [60, 108], "model_kwarg": [60, 73], "compile_kwarg": 60, "sparsecategoricalcrossentropi": 60, "layer": [60, 87, 88, 94, 104], "my_keras_model": 60, "from_logit": 60, "declar": 60, "apply_softmax": 60, "analysi": 61, "analyz": [61, 83, 95, 99, 101, 102], "get_label_quality_multiannot": [61, 101], "vote": 61, "crowdsourc": [61, 83, 101], "dawid": [61, 101], "skene": [61, 101], "analog": [61, 96, 101], "chosen": [61, 71, 97, 101], "crowdlab": [61, 101], "unlabel": [61, 91, 101, 104, 107], "get_active_learning_scor": [61, 101], "activelab": [61, 101], "priorit": [61, 68, 103, 107, 108], "showcas": 61, "best_qual": 61, "quality_method": 61, "calibrate_prob": 61, "return_detailed_qu": 61, "return_annotator_stat": 61, "return_weight": 61, "label_quality_score_kwarg": 61, "did": [61, 62, 86, 87, 88, 93, 99, 101, 106], "majority_vot": 61, "broken": [61, 69, 96, 106], "highest": [61, 69, 89, 91, 98, 105], "0th": 61, "consensus_quality_scor": [61, 101], "annotator_agr": [61, 101], "reman": 61, "1st": 61, "2nd": [61, 75], "3rd": 61, "consensus_label_suffix": 61, "consensus_quality_score_suffix": 61, "suffix": 61, "emsembl": 61, "weigh": [61, 96], "agreement": [61, 101], "agre": 61, "prevent": [61, 97], "overconfid": [61, 105], "detailed_label_qu": [61, 101], "annotator_stat": [61, 101], "model_weight": 61, "annotator_weight": 61, "warn": 61, "labels_info": 61, "num_annot": [61, 101], "deriv": [61, 101], "quality_annotator_1": 61, "quality_annotator_2": 61, "quality_annotator_m": 61, "annotator_qu": [61, 101], "num_examples_label": [61, 101], "agreement_with_consensu": [61, 101], "worst_class": [61, 101], "trustworthi": [61, 101, 106], "get_label_quality_multiannotator_ensembl": 61, "weigtht": 61, "budget": 61, "retrain": [61, 87, 106], "active_learning_scor": 61, "active_learning_scores_unlabel": 61, "get_active_learning_scores_ensembl": 61, "henc": [61, 88, 89, 98, 101], "get_majority_vote_label": [61, 101], "event": 61, "lastli": [61, 93], "convert_long_to_wide_dataset": 61, "labels_multiannotator_long": 61, "wide": [61, 86, 87, 88], "labels_multiannotator_wid": 61, "common_multilabel_issu": [62, 64], "exclus": [62, 102], "rank_classes_by_multilabel_qu": [62, 64], "overall_multilabel_health_scor": [62, 64], "multilabel_health_summari": [62, 64], "classes_by_multilabel_qu": 62, "inner": [63, 77, 95], "find_multilabel_issues_per_class": [63, 64], "per_class_label_issu": 63, "label_issues_list": 63, "pred_probs_list": [63, 71, 91, 99], "anim": [64, 104], "rat": 64, "predat": 64, "pet": 64, "reptil": 64, "box": [66, 68, 69, 96, 103], "object_detect": [66, 68, 69, 103], "return_indices_ranked_by_scor": [66, 103], "overlapping_label_check": [66, 68], "suboptim": [66, 68], "locat": [66, 68, 95, 103, 107, 108], "bbox": [66, 69, 103], "image_nam": [66, 69], "y1": [66, 69, 103], "y2": [66, 69, 103], "later": [66, 69, 70, 87, 98, 108], "corner": [66, 69, 103], "xyxi": [66, 69, 103], "io": [66, 69, 88, 95, 96], "keras_cv": [66, 69], "bounding_box": [66, 69, 103], "detectron": [66, 69, 103], "detectron2": [66, 69, 103], "readthedoc": [66, 69], "en": [66, 69], "latest": [66, 69], "visual": [66, 67, 69, 86, 89, 90, 91, 106, 108], "draw_box": [66, 69], "mmdetect": [66, 69, 103], "swap": [66, 68, 78, 82], "penal": [66, 68], "concern": [66, 68, 83, 90], "issues_from_scor": [67, 68, 76, 77, 78, 80, 81, 82, 103, 107, 108], "compute_overlooked_box_scor": [67, 68], "compute_badloc_box_scor": [67, 68], "compute_swap_box_scor": [67, 68], "pool_box_scores_per_imag": [67, 68], "object_counts_per_imag": [67, 69, 103], "bounding_box_size_distribut": [67, 69, 103], "class_label_distribut": [67, 69, 103], "get_sorted_bbox_count_idx": [67, 69], "plot_class_size_distribut": [67, 69], "plot_class_distribut": [67, 69], "get_average_per_class_confusion_matrix": [67, 69], "calculate_per_class_metr": [67, 69], "aggregation_weight": 68, "imperfect": [68, 97, 98], "chose": [68, 101, 103], "imperfectli": [68, 103], "dirti": [68, 71, 74, 106], "subtyp": 68, "badloc": 68, "nonneg": 68, "high_probability_threshold": 68, "auxiliary_input": [68, 69], "iou": [68, 69], "heavili": 68, "auxiliarytypesdict": 68, "pred_label": [68, 87], "pred_label_prob": 68, "pred_bbox": 68, "lab_label": 68, "lab_bbox": 68, "similarity_matrix": 68, "min_possible_similar": 68, "scores_overlook": 68, "low_probability_threshold": 68, "scores_badloc": 68, "accident": [68, 87, 93, 94, 97], "scores_swap": 68, "box_scor": 68, "image_scor": [68, 77, 107], "discov": [69, 90, 95, 108], "abnorm": [69, 91, 103], "auxiliari": [69, 104, 107], "_get_valid_inputs_for_compute_scor": 69, "object_count": 69, "down": 69, "bbox_siz": 69, "class_distribut": 69, "plot": [69, 89, 90, 95, 99, 102, 104, 106, 107], "sorted_idx": [69, 104], "class_to_show": 69, "hidden": [69, 104], "max_class_to_show": 69, "plt": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "matplotlib": [69, 78, 89, 90, 91, 95, 99, 102, 103, 104, 106], "pyplot": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "prediction_threshold": 69, "overlai": [69, 103], "figsiz": [69, 89, 90, 91, 95, 99, 102, 104], "save_path": [69, 103], "blue": [69, 96, 99, 103], "overlaid": 69, "side": [69, 96, 103], "figur": [69, 95, 99, 102, 104, 106], "extens": [69, 99, 101], "png": [69, 103], "pdf": [69, 70], "svg": 69, "num_proc": [69, 91], "intersect": [69, 97], "tp": 69, "fp": 69, "ground": [69, 96, 99, 101, 106], "truth": [69, 99, 101, 106], "bias": [69, 95], "avg_metr": 69, "distionari": 69, "95": [69, 79, 81, 93, 96, 98, 99, 106], "per_class_metr": 69, "Of": 70, "find_top_issu": [70, 71, 104], "behind": [70, 99], "dist_metr": 70, "subtract": [70, 71], "renorm": [70, 71, 97], "least_confid": 70, "sum_": 70, "log": [70, 71, 84], "softmax": [70, 77, 81, 91], "literatur": 70, "gen": 70, "liu": 70, "lochman": 70, "zach": 70, "openaccess": 70, "thecvf": 70, "cvpr2023": 70, "liu_gen_pushing_the_limits_of_softmax": 70, "based_out": 70, "distribution_detection_cvpr_2023_pap": 70, "fit_scor": [70, 104], "ood_predictions_scor": 70, "pretrain": [70, 87, 88, 94, 98, 104], "adjust_confident_threshold": 70, "probabilist": [70, 86, 88, 89, 90, 93, 94, 104, 105], "order_label_issu": [71, 84], "whichev": [71, 105], "argsort": [71, 87, 91, 94, 99, 103, 104, 106], "max_": 71, "get_label_quality_ensemble_scor": [71, 97, 99], "weight_ensemble_members_bi": 71, "custom_weight": 71, "log_loss_search_t_valu": 71, "0001": [71, 96], "scheme": 71, "log_loss_search": 71, "log_loss": [71, 94], "1e0": 71, "1e1": 71, "1e2": 71, "2e2": 71, "quality_scor": [71, 104], "forth": 71, "top_issue_indic": 71, "rank_bi": [71, 84], "weird": [71, 82], "minu": 71, "prob_label": 71, "max_prob_not_label": 71, "AND": [71, 94], "get_epistemic_uncertainti": [72, 73], "get_aleatoric_uncertainti": [72, 73], "corrupt": [73, 106], "linearregress": [73, 97, 106], "y_with_nois": 73, "n_boot": [73, 97], "include_aleatoric_uncertainti": [73, 97], "sole": [73, 86, 89, 98, 101, 104], "bootstrap": [73, 97, 106], "resampl": [73, 88, 97], "epistem": [73, 97, 104, 106], "aleator": [73, 97, 106], "model_final_kwarg": 73, "coars": 73, "thorough": [73, 97], "fine": [73, 87, 88, 94, 104], "grain": 73, "grid": [73, 98], "varianc": [73, 99], "epistemic_uncertainti": 73, "residu": [73, 74, 97], "deviat": [73, 103, 106], "aleatoric_uncertainti": 73, "outr": 74, "contin": 74, "raw": [74, 83, 84, 90, 91, 96, 97, 98, 101, 103, 104, 106], "aka": [74, 88, 99, 103, 106, 108], "00323821": 74, "33692597": 74, "00191686": 74, "semant": [75, 77, 78, 100], "pixel": [75, 77, 78, 91, 104, 107], "h": [75, 77, 78, 107], "height": [75, 77, 78, 107], "w": [75, 77, 78, 107], "width": [75, 77, 78, 107], "labels_one_hot": [75, 78, 107], "stream": [75, 104, 108], "downsampl": [75, 77, 107], "shrink": [75, 77], "divis": [75, 77, 89], "common_label_issu": [76, 78, 80, 82, 107, 108], "filter_by_class": [76, 78, 107], "segmant": [77, 78], "num_pixel_issu": [77, 107], "product": [77, 91, 95, 97, 98], "pixel_scor": [77, 107], "enter": 78, "legend": [78, 89, 90, 95, 102, 103, 106, 107], "colormap": 78, "background": [78, 95], "person": [78, 97, 103, 107, 108], "ambigu": [78, 82, 87, 88, 94, 96, 99, 108], "misunderstood": [78, 82], "issues_df": [78, 91], "class_index": 78, "issues_subset": [78, 82], "filter_by_token": [80, 82, 108], "token_score_method": 81, "sentence_score_method": 81, "sentence_score_kwarg": 81, "compris": [81, 82], "token_scor": [81, 108], "converg": 81, "toward": [81, 95], "_softmin_sentence_scor": 81, "sentence_scor": [81, 108], "token_info": 81, "02": [81, 89, 90, 95, 99, 103, 104, 108], "03": [81, 93, 95, 96, 98, 99, 103, 108], "04": [81, 93, 95, 103, 108], "08": [81, 95, 99, 103, 106, 108], "commonli": [82, 84, 89, 90, 102, 108], "But": [82, 94, 98, 99, 106, 108], "restrict": [82, 97], "reliabl": [83, 86, 88, 95, 97, 98, 101, 107], "thousand": 83, "imagenet": [83, 96], "popular": [83, 101, 103], "centric": [83, 91, 100], "minut": [83, 86, 87, 88, 93, 94, 96, 101, 102, 103, 106, 107, 108], "conda": 83, "feature_embed": [83, 104], "your_dataset": [83, 88, 89, 90, 91, 93, 94, 97], "column_name_of_label": [83, 88, 89, 90, 91, 93, 94], "tool": [83, 96, 99, 101], "catch": [83, 98], "dive": [83, 94, 95, 98], "plagu": [83, 90], "untrain": 83, "\u30c4": 83, "label_issues_info": [83, 90], "sklearn_compatible_model": 83, "framework": [83, 102, 103], "complianc": 83, "tag": [83, 102, 108], "sequenc": 83, "recognit": [83, 88, 97, 108], "train_data": [83, 86, 87, 104, 106], "gotten": 83, "test_data": [83, 86, 87, 99, 102, 104, 106], "deal": [83, 90, 95, 98], "feel": [83, 88, 90, 97], "ask": [83, 97], "slack": [83, 97], "project": [83, 98, 106], "welcom": 83, "commun": [83, 97], "guidelin": [83, 103], "piec": 83, "smart": [83, 86, 87, 90, 91, 93, 94, 96, 97, 99, 102, 104, 106], "edit": [83, 97, 98], "unreli": [83, 86, 88, 93, 94, 95, 98], "link": [83, 88, 96, 103], "older": 84, "outlin": 84, "substitut": [84, 98], "v2": [84, 86, 93], "get_noise_indic": 84, "psx": 84, "sorted_index_method": 84, "order_label_error": 84, "label_errors_bool": 84, "latent_estim": 84, "num_label_error": 84, "learningwithnoisylabel": 84, "neatli": 84, "organ": [84, 86, 93, 95, 96, 108], "reorgan": 84, "baseline_method": 84, "incorpor": [84, 99], "research": [84, 99], "polyplex": 84, "terminologi": 84, "label_error": 84, "quickstart": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "sql": [86, 93], "databas": [86, 93], "excel": [86, 93], "parquet": [86, 93], "student": [86, 93, 98, 106, 108], "grade": [86, 93, 98, 106], "exam": [86, 93, 98, 106], "letter": [86, 93, 108], "hundr": [86, 93], "mistak": [86, 87, 91, 93, 94, 98], "extratreesclassifi": 86, "extratre": 86, "Then": [86, 87, 91, 97], "ranked_label_issu": [86, 87], "branch": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "standardscal": [86, 93, 98, 104], "labelencod": [86, 87, 98], "train_test_split": [86, 87, 89, 90, 104], "accuracy_scor": [86, 87, 88, 94, 98, 99], "grades_data": [86, 93], "read_csv": [86, 87, 93, 94, 95, 98, 106], "demo": [86, 90, 93, 102], "stud_id": [86, 93, 98], "exam_1": [86, 93, 98, 106], "exam_2": [86, 93, 98, 106], "exam_3": [86, 93, 98, 106], "letter_grad": [86, 93], "f48f73": [86, 93], "53": [86, 89, 90, 93, 95, 96, 98, 102, 103], "00": [86, 89, 90, 93, 95, 96, 98, 104], "77": [86, 89, 90, 93, 98, 103], "0bd4e7": [86, 93], "81": [86, 93, 94, 98, 103, 106, 108], "great": [86, 93, 96, 98], "particip": [86, 93, 98], "cb9d7a": [86, 93], "61": [86, 93, 95, 99, 103, 106], "94": [86, 93, 96, 98, 99, 103, 106], "9acca4": [86, 93], "48": [86, 93, 95, 96, 99, 103], "x_raw": [86, 93], "labels_raw": 86, "interg": [86, 87], "categorical_featur": [86, 106], "x_encod": [86, 93], "get_dummi": [86, 93, 106], "drop_first": [86, 93], "numeric_featur": [86, 93], "scaler": [86, 93, 104], "x_process": [86, 93], "fit_transform": [86, 93, 95, 98], "bring": [86, 87, 91, 93, 94, 101, 106], "byod": [86, 87, 91, 93, 94, 101, 106], "tress": 86, "held": [86, 88, 93, 94, 96, 103, 104, 105], "straightforward": [86, 88, 93], "benefit": [86, 88, 105, 107], "num_crossval_fold": [86, 88, 93, 98, 101], "tabl": [86, 93, 96, 101], "212": [86, 98, 99], "iloc": [86, 87, 88, 93, 94, 98, 106], "92": [86, 89, 98, 99, 103], "93": [86, 96, 98, 103, 106, 108], "827": 86, "99": [86, 95, 96, 98, 99], "86": [86, 90, 91, 93, 98, 99, 103, 106], "74": [86, 95, 98, 103, 106], "637": [86, 93], "79": [86, 96, 98, 103], "65": [86, 89, 95, 98, 103], "cheat": [86, 98], "0pt": [86, 98], "120": [86, 89, 90, 98], "233": 86, "83": [86, 98, 99, 103, 106, 108], "76": [86, 98, 99, 102, 103, 106], "suspici": [86, 93], "carefulli": [86, 91, 93, 94, 98], "examin": [86, 89, 90, 93, 95, 98, 103], "labels_train": 86, "labels_test": 86, "test_siz": [86, 87, 89, 90], "acc_og": [86, 87], "783068783068783": 86, "robustli": [86, 87, 106], "14": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [86, 87], "8095238095238095": 86, "blindli": [86, 87, 88, 97, 98, 106], "trust": [86, 87, 88, 97, 98, 99, 101, 105, 106], "effort": [86, 87, 98, 106], "cumbersom": [86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "intent": [87, 94], "servic": [87, 94, 97], "onlin": [87, 94], "bank": [87, 94, 96], "banking77": [87, 94], "oo": [87, 94], "categori": [87, 91, 94, 95, 98], "shortlist": [87, 94, 106], "scope": [87, 94], "logist": [87, 89, 90, 94, 101, 104], "probabilit": [87, 88], "drop": [87, 93, 95, 97, 98, 101, 106], "sentence_transform": [87, 94], "sentencetransform": [87, 94], "payment": [87, 94], "cancel_transf": [87, 94], "transfer": [87, 94], "fund": [87, 94], "cancel": [87, 94], "transact": [87, 94], "my": [87, 94], "revert": [87, 94], "morn": [87, 94], "realis": [87, 94], "yesterdai": [87, 94], "rent": [87, 94], "tomorrow": [87, 94], "raw_text": [87, 94], "raw_label": 87, "raw_train_text": 87, "raw_test_text": 87, "raw_train_label": 87, "raw_test_label": 87, "apple_pay_or_google_pai": [87, 94], "card_about_to_expir": [87, 94], "beneficiary_not_allow": [87, 94], "card_payment_fee_charg": [87, 94], "supported_cards_and_curr": [87, 94], "change_pin": [87, 94], "getting_spare_card": [87, 94], "lost_or_stolen_phon": [87, 94], "visa_or_mastercard": [87, 94], "card": [87, 94, 96], "utter": [87, 94], "encond": 87, "test_label": [87, 98, 99, 102, 104], "suit": [87, 94, 95, 96, 97], "electra": [87, 94], "discrimin": [87, 94], "googl": [87, 94], "train_text": 87, "test_text": 87, "home": [87, 94, 96], "runner": [87, 94], "google_electra": [87, 94], "pool": [87, 94, 97, 104], "leverag": [87, 88, 94, 97, 99, 101], "computation": [87, 88, 94], "intens": [87, 88, 94], "400": [87, 94, 98], "858371": 87, "547274": 87, "826228": 87, "966008": 87, "792449": 87, "identified_issu": [87, 106], "lowest_quality_label": [87, 88, 94, 99, 106], "to_numpi": [87, 94, 95, 98, 106], "44": [87, 95, 96, 102, 103], "646": 87, "390": 87, "628": 87, "121": [87, 99], "702": 87, "863": 87, "135": 87, "337": [87, 98, 103], "735": 87, "print_as_df": 87, "inverse_transform": 87, "charg": [87, 94], "cash": [87, 94], "holidai": [87, 94], "sent": [87, 94, 95, 108], "mine": [87, 94], "expir": [87, 94], "fight": 87, "hors": [87, 96, 104], "duck": [87, 96], "me": [87, 94, 95], "whoever": [87, 94], "consum": [87, 106], "18": [87, 88, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "baseline_model": [87, 106], "87": [87, 90, 91, 98, 103, 106], "acceler": [87, 106], "19": [87, 88, 91, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "89": [87, 89, 93, 98, 103, 106], "spoken": 88, "500": [88, 95, 98, 104, 108], "english": [88, 96], "pronunci": 88, "wav": 88, "huggingfac": [88, 89, 90, 91, 97], "voxceleb": 88, "speech": [88, 108], "your_pred_prob": [88, 89, 90, 93, 94], "tensorflow_io": 88, "huggingface_hub": 88, "reproduc": [88, 93, 95, 98, 99, 101], "command": 88, "wget": [88, 95, 103, 107, 108], "navig": 88, "browser": 88, "jakobovski": 88, "archiv": [88, 108], "v1": 88, "tar": [88, 104], "gz": [88, 104], "mkdir": [88, 108], "spoken_digit": 88, "xf": 88, "6_nicolas_32": 88, "data_path": 88, "listdir": 88, "nondeterminist": 88, "file_nam": 88, "endswith": 88, "file_path": 88, "join": [88, 91, 95, 97, 98], "7_george_26": 88, "0_nicolas_24": 88, "0_nicolas_6": 88, "listen": 88, "display_exampl": 88, "expand": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "pulldown": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "colab": [88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 88, "pathlib": 88, "ipython": [88, 95], "load_wav_16k_mono": 88, "filenam": 88, "khz": 88, "file_cont": 88, "read_fil": 88, "sample_r": 88, "decode_wav": 88, "desired_channel": 88, "squeez": 88, "rate_in": 88, "rate_out": 88, "16000": 88, "wav_file_nam": 88, "audio_r": 88, "wav_file_exampl": 88, "plai": [88, 96, 97], "button": 88, "wav_file_name_exampl": 88, "7_jackson_43": 88, "hear": 88, "extractor": 88, "encoderclassifi": 88, "spkrec": 88, "xvect": 88, "feature_extractor": 88, "from_hparam": 88, "run_opt": 88, "uncom": [88, 95], "ffmpeg": 88, "backend": 88, "wav_audio_file_path": 88, "torchaudio": 88, "extract_audio_embed": 88, "emb": [88, 91], "signal": 88, "encode_batch": 88, "embeddings_list": [88, 91], "embeddings_arrai": 88, "512": [88, 91], "196311": 88, "319459": 88, "478975": 88, "2890875": 88, "8170238": 88, "89265": 88, "898056": 88, "256195": 88, "559641": 88, "559721": 88, "62067": 88, "285245": 88, "21": [88, 89, 95, 96, 98, 99, 103, 106, 108], "709627": 88, "5033693": 88, "913803": 88, "819831": 88, "1831515": 88, "208763": 88, "084257": 88, "3210397": 88, "005453": 88, "216152": 88, "478235": 88, "6821785": 88, "053807": 88, "242471": 88, "091424": 88, "78334856": 88, "03954": 88, "23": [88, 91, 95, 96, 98, 99, 103, 106], "569176": 88, "761097": 88, "1258295": 88, "753237": 88, "3508866": 88, "598274": 88, "23712": 88, "2500": 88, "tol": 88, "decreas": [88, 97], "cv_accuraci": 88, "9708": 88, "issue_type_descript": [88, 89, 90, 91, 93, 94, 98, 99], "lt": [88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 104], "gt": [88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 108], "9976": 88, "986": 88, "002161": 88, "176": [88, 96, 99, 102], "002483": 88, "2318": 88, "004411": 88, "1005": 88, "004857": 88, "1871": 88, "007494": 88, "040587": 88, "999207": 88, "999377": 88, "975220": 88, "999367": 88, "identified_label_issu": [88, 94], "516": [88, 98], "1946": 88, "469": 88, "2132": 88, "worth": [88, 99], "6_yweweler_25": 88, "7_nicolas_43": 88, "6_theo_27": 88, "6_yweweler_36": 88, "6_yweweler_14": 88, "6_yweweler_35": 88, "6_nicolas_8": 88, "sound": 88, "quit": [88, 104], "underneath": 89, "hood": [89, 95, 97], "alert": 89, "introduct": 89, "mayb": [89, 90, 94], "your_feature_matrix": [89, 90], "toi": [89, 90, 91, 95, 96, 99, 101, 105], "inf": [89, 90], "mid": [89, 90], "bins_map": [89, 90], "create_data": [89, 90], "y_bin": [89, 90], "y_i": [89, 90], "y_bin_idx": [89, 90], "y_train": [89, 90, 99, 106], "y_test": [89, 90, 99, 106], "y_train_idx": [89, 90], "y_test_idx": [89, 90], "slide": [89, 90, 96], "frame": [89, 90], "x_out": [89, 90], "tini": [89, 90], "concaten": [89, 90, 105], "y_out": [89, 90], "y_out_bin": [89, 90], "y_out_bin_idx": [89, 90], "exact_duplicate_idx": [89, 90], "x_duplic": [89, 90], "y_duplic": [89, 90], "y_duplicate_idx": [89, 90], "noisy_labels_idx": [89, 90, 102], "scatter": [89, 90, 95, 99, 102, 106], "black": [89, 90, 96, 106], "cyan": [89, 90], "plot_data": [89, 90, 95, 99, 102, 106], "fig": [89, 90, 91, 96, 104, 106], "ax": [89, 90, 91, 95, 104, 106], "subplot": [89, 90, 91, 104], "set_titl": [89, 90, 91, 104], "set_xlabel": [89, 90], "x_1": [89, 90], "fontsiz": [89, 90, 91, 95, 99, 102], "set_ylabel": [89, 90], "x_2": [89, 90], "set_xlim": [89, 90], "set_ylim": [89, 90], "linestyl": [89, 90, 95], "circl": [89, 90, 99, 102], "misclassifi": [89, 90], "zip": [89, 90, 91, 95, 103, 108], "label_err": [89, 90], "180": [89, 90, 95, 103], "marker": [89, 90], "facecolor": [89, 90, 95], "edgecolor": [89, 90, 95], "linewidth": [89, 90, 95, 104], "dup": [89, 90], "first_legend": [89, 90], "align": [89, 90], "title_fontproperti": [89, 90], "semibold": [89, 90], "second_legend": [89, 90], "45": [89, 90, 95, 96, 98, 99, 103], "gca": [89, 90], "add_artist": [89, 90], "tight_layout": [89, 90, 95], "ideal": [89, 90], "remaind": 89, "modal": [89, 90, 97, 98, 101], "132": [89, 90, 98, 99, 103], "9318": 89, "006940": 89, "007830": 89, "40": [89, 90, 94, 95, 96, 98], "014828": 89, "107": [89, 90, 99, 102], "021241": 89, "026407": 89, "notic": [89, 99, 101, 103], "3558": [89, 90], "126": [89, 90, 99, 103], "006636": [89, 90], "130": [89, 90, 108], "012571": [89, 90], "129": [89, 90], "127": [89, 90, 98], "014909": [89, 90], "128": [89, 90, 91], "017443": [89, 90], "6160": [89, 90], "131": [89, 90, 98, 107], "000000e": [89, 90, 98], "000002": [89, 90], "463180e": [89, 90], "07": [89, 90, 91, 93, 95, 99, 103, 106], "51": [89, 90, 93, 95, 96, 99, 103, 108], "161148": [89, 90], "859087e": [89, 90], "30": [89, 90, 91, 95, 96, 97, 98, 102, 107, 108], "3453": 89, "029542": 89, "031182": 89, "057961": 89, "058244": 89, "54": [89, 95, 96, 99, 103], "039122": 89, "044598": 89, "105": [89, 103], "105196": 89, "133654": 89, "43": [89, 95, 96, 98, 99, 103], "168033": 89, "125": 89, "101107": 89, "183382": 89, "109": [89, 95, 96, 98, 103], "209259": 89, "211042": 89, "221316": 89, "average_ood_scor": 89, "34530442089193386": 89, "52": [89, 95, 96, 98, 103, 108], "169820": 89, "087324e": 89, "259024": 89, "583757e": 89, "91": [89, 98, 103], "346458": 89, "341292e": 89, "specfi": 89, "new_lab": 89, "scoring_funct": 89, "div": 89, "rem": 89, "inv_scal": 89, "49": [89, 95, 96, 99, 103], "superstitionissuemanag": 89, "unlucki": 89, "superstit": 89, "to_seri": 89, "issues_mask": 89, "summary_scor": 89, "9242": 89, "is_superstition_issu": 89, "superstition_scor": 89, "26": [89, 91, 95, 96, 98, 99, 101, 103], "047581": 89, "090635": 89, "129591": 89, "164840": 89, "lurk": [90, 91, 98, 99], "thoroughli": 90, "8561": 90, "001908": 90, "003564": 90, "007331": 90, "008963": 90, "009664": 90, "0227": 90, "022727": 90, "conceptu": 90, "856061": 90, "355772": 90, "616034": 90, "821750": 90, "926818": 90, "betweeen": 90, "859131": 90, "417707": 90, "664083": 90, "970324": 90, "816953": 90, "375317": 90, "641516": 90, "890575": 90, "910232": 90, "531021": 90, "460593": 90, "601188": 90, "826147": 90, "752808": 90, "321635": 90, "562539": 90, "948362": 90, "890169": 90, "090243": 90, "472909": 90, "746763": 90, "878267": 90, "examples_w_issu": [90, 97], "013445": 90, "025184": 90, "026376": 90, "inde": [90, 94], "miscellan": [90, 92, 108], "428571": 90, "111111": 90, "571429": 90, "407407": 90, "592593": 90, "337838": 90, "092593": 90, "662162": 90, "333333": [90, 96], "952381": 90, "666667": [90, 95], "portion": 90, "huge": [90, 99], "worri": [90, 94, 98], "critic": [90, 105], "60": [91, 95, 99, 106], "torchvis": [91, 95, 104], "tensordataset": 91, "stratifiedkfold": [91, 102], "tqdm": 91, "autonotebook": 91, "math": [91, 98], "fashion_mnist": 91, "num_row": 91, "60000": 91, "transformed_dataset": 91, "with_format": 91, "255": [91, 96], "cpu_count": 91, "torch_dataset": 91, "quick": [91, 102, 104], "super": 91, "relu": 91, "batchnorm2d": 91, "maxpool2d": 91, "lazylinear": 91, "flatten": 91, "get_test_accuraci": 91, "testload": [91, 104], "energi": 91, "trainload": [91, 104], "n_epoch": 91, "patienc": 91, "criterion": 91, "crossentropyloss": 91, "adamw": 91, "best_test_accuraci": 91, "start_epoch": 91, "running_loss": 91, "best_epoch": 91, "end_epoch": 91, "3f": [91, 106], "acc": [91, 99], "time_taken": 91, "compute_embed": 91, "compute_pred_prob": 91, "train_batch_s": 91, "num_work": 91, "worker": [91, 108], "train_id_list": 91, "test_id_list": 91, "train_id": 91, "test_id": 91, "embeddings_model": 91, "ntrain": 91, "trainset": 91, "testset": 91, "pin_memori": 91, "fold_embed": 91, "fold_pred_prob": 91, "finish": 91, "482": 91, "720": 91, "094": 91, "329": [91, 93, 98, 103], "88": [91, 96, 98, 99, 102, 103, 106], "195": [91, 95, 98], "936": 91, "493": 91, "060": 91, "178": 91, "330": [91, 98, 103], "505": 91, "950": 91, "476": [91, 98], "340": [91, 98], "277": [91, 98, 103], "328": [91, 103], "310": 91, "186": [91, 96, 99], "reorder": 91, "hstack": [91, 97, 99, 101], "vision": 91, "max_preval": [91, 95], "7714": 91, "3772": 91, "3585": 91, "166": 91, "3651": 91, "27080": 91, "873833e": 91, "40378": 91, "915575e": 91, "25316": 91, "390277e": 91, "06": [91, 98, 99, 103, 108], "2090": 91, "751164e": 91, "14999": 91, "881301e": 91, "9569": 91, "11262": 91, "000003": 91, "coat": [91, 96], "shirt": [91, 96], "19228": 91, "000010": 91, "dress": 91, "32657": 91, "000013": 91, "bag": [91, 96, 104, 105], "21282": 91, "000016": [91, 98], "53564": 91, "000018": [91, 98], "pullov": 91, "6321": 91, "30968": 91, "001267": 91, "30659": 91, "000022": [91, 108], "47824": 91, "001454": 91, "3370": 91, "000026": 91, "54565": 91, "001854": 91, "9762": 91, "258": 91, "47139": 91, "000033": 91, "166980": 91, "986195": 91, "997205": 91, "sandal": [91, 96], "948781": 91, "999358": 91, "54078": 91, "17371": 91, "000025": 91, "plot_label_issue_exampl": 91, "ncol": [91, 104], "nrow": [91, 104], "ceil": [91, 98], "axes_list": 91, "label_issue_indic": 91, "gl": 91, "sl": 91, "fontdict": 91, "imshow": [91, 104], "cmap": [91, 95, 106], "grai": 91, "subplots_adjust": 91, "hspace": 91, "outsiz": 91, "outlier_issu": [91, 94], "outlier_issues_df": 91, "depict": [91, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 91, "n_comparison_imag": 91, "sample_from_class": 91, "number_of_sampl": 91, "non_outlier_indic": 91, "isnul": [91, 95], "non_outlier_indices_excluding_curr": 91, "sampled_indic": 91, "label_scores_of_sampl": 91, "top_score_indic": 91, "top_label_indic": 91, "sampled_imag": 91, "get_image_given_label_and_sampl": 91, "image_from_dataset": 91, "corresponding_label": 91, "comparison_imag": 91, "images_to_plot": 91, "idlist": 91, "iterrow": 91, "near_duplicate_issu": [91, 97], "closest": 91, "counterpart": 91, "near_duplicate_issues_df": 91, "plot_near_duplicate_issue_exampl": 91, "seen_id_pair": 91, "get_image_and_given_label_and_predicted_label": 91, "duplicate_imag": 91, "nd_set": 91, "challeng": 91, "dark_issu": 91, "reveal": [91, 103, 107], "dark_issues_df": 91, "is_dark_issu": [91, 95], "34848": 91, "203922": 91, "50270": 91, "204588": 91, "3936": 91, "213098": 91, "733": 91, "217686": 91, "8094": 91, "230118": 91, "plot_image_issue_exampl": 91, "difficult": 91, "disproportion": [91, 95], "lowinfo_issu": 91, "lowinfo_issues_df": 91, "is_low_information_issu": 91, "53050": 91, "067975": 91, "40875": 91, "089929": 91, "9594": 91, "092601": 91, "34825": 91, "107744": 91, "37530": 91, "108516": 91, "lot": 91, "workflow": [92, 97, 98, 100, 106], "histgradientboostingclassifi": 93, "cat_featur": 93, "boost": [93, 97, 101, 106], "xgboost": [93, 97, 98, 106], "think": [93, 94, 97, 102, 107, 108], "nonzero": 93, "358": 93, "941": 93, "294": [93, 103], "46": [93, 95, 96, 98, 99, 103], "7109": 93, "000005": [93, 94], "886": 93, "000059": 93, "709": [93, 98], "000104": 93, "000169": 93, "689": 93, "000181": 93, "3590": 93, "051882e": 93, "683133e": 93, "536582e": 93, "406589e": 93, "324246e": 93, "6165": 93, "582": [93, 98], "185": [93, 95, 96, 103, 108], "187": [93, 96, 98, 108], "898": 93, "0000": [93, 94, 96, 98, 99], "865": 93, "515002": 93, "837": 93, "556480": 93, "622": 93, "593068": 93, "593207": 93, "920": 93, "618041": 93, "4386345844794593e": 93, "issue_result": 93, "000842": 93, "555944": 93, "004374": 93, "sorted_issu": 93, "73": [93, 95, 96, 98, 102, 103, 106], "deserv": 93, "outlier_result": 93, "sorted_outli": 93, "56": [93, 95, 96, 106], "96": [93, 95, 96, 98, 99, 102, 103, 106], "style": [93, 95, 107], "font": 93, "18px": 93, "ff00ff": 93, "bac": 93, "duplicate_result": 93, "lowest_scoring_dupl": 93, "idxmin": [93, 97], "indices_to_displai": 93, "tolist": [93, 97, 98, 102], "perhap": [93, 99, 101], "second_lowest_scoring_dupl": 93, "next_indices_to_displai": 93, "wari": [93, 94, 97], "your_featur": 94, "text_embed": 94, "data_dict": [94, 99, 101], "85": [94, 98, 103], "38": [94, 95, 96, 103], "9710": 94, "981": 94, "974": 94, "000146": 94, "982": [94, 96], "000224": 94, "971": 94, "000507": 94, "980": [94, 96], "000960": 94, "3584": 94, "994": 94, "009642": 94, "999": 94, "013067": 94, "013841": 94, "433": 94, "014722": 94, "989": 94, "018224": 94, "6070": 94, "160": [94, 106], "095724": 94, "148": 94, "006237": 94, "546": [94, 98], "099341": 94, "514": 94, "006485": 94, "481": 94, "123418": 94, "008165": 94, "313": [94, 98, 103], "564102": 94, "572258": 94, "574915": 94, "31": [94, 95, 96, 98, 99, 101, 103], "575507": 94, "575874": 94, "792090": 94, "257611": 94, "698710": 94, "182121": 94, "771619": 94, "data_with_suggested_label": 94, "suggested_label": 94, "withdraw": 94, "monei": 94, "lowest_quality_outli": 94, "OR": 94, "636c65616e6c616220697320617765736f6d6521": 94, "phone": [94, 96], "gone": 94, "samp": 94, "br": 94, "press": [94, 108], "nonsens": 94, "sens": 94, "detriment": 94, "duplicate_issu": 94, "fee": 94, "go": [94, 95, 96, 99], "strongli": [94, 95], "p_valu": 94, "benign": 94, "curat": [94, 100], "bigger": 95, "make_classif": 95, "5000": [95, 104], "n_featur": 95, "n_inform": 95, "n_redund": 95, "n_repeat": 95, "n_class": 95, "n_clusters_per_class": 95, "flip_i": 95, "class_sep": 95, "faiss": 95, "x_faiss": 95, "float32": [95, 103], "normalize_l2": 95, "index_factori": 95, "hnsw32": 95, "flat": [95, 96], "metric_inner_product": 95, "a_min": 95, "a_max": 95, "create_knn_graph": 95, "assert": 95, "indices_1d": 95, "ravel": 95, "distances_1d": 95, "sort_graph_by_row_valu": 95, "warn_when_not_sort": 95, "50000": 95, "524": 95, "991400": 95, "356924": 95, "363": [95, 98], "619581": 95, "108": [95, 103], "500000": 95, "651838": 95, "999827": 95, "031217": 95, "933716": 95, "627345": 95, "998540": 95, "530909": 95, "296974": 95, "646765": 95, "942721": 95, "332824": 95, "803246": 95, "625202": 95, "999816": 95, "474031": 95, "706253": 95, "655108": 95, "997703": 95, "131466": 95, "912389": 95, "639200": 95, "4995": 95, "998646": 95, "504755": 95, "746777": 95, "680033": 95, "4996": 95, "894230": 95, "340986": 95, "816472": 95, "640711": 95, "4997": 95, "999100": 95, "428545": 95, "592421": 95, "658949": 95, "4998": 95, "986792": 95, "273710": 95, "618033": 95, "4999": 95, "986776": 95, "273524": 95, "618084": 95, "instabl": 95, "proxim": 95, "analys": 95, "comfort": 95, "explor": [95, 103, 104], "third": 95, "parti": [95, 108], "newsgroup": 95, "alt": [95, 96], "atheism": [95, 96], "sci": [95, 96], "fetch_20newsgroup": 95, "newsgroups_train": 95, "header": 95, "footer": 95, "quot": 95, "df_text": 95, "target_nam": 95, "enlighten": 95, "omnipot": 95, "19apr199320262420": 95, "kelvin": 95, "jpl": 95, "nasa": 95, "gov": 95, "baa": 95, "nhenri": 95, "he": 95, "nno": 95, "ge": 95, "nlucki": 95, "babi": [95, 96], "tfidfvector": 95, "feature_extract": 95, "x_vector": 95, "data_valuation_issu": 95, "147": [95, 99, 103], "500047": 95, "500093": 95, "499953": 95, "1068": 95, "1069": [95, 108], "1070": 95, "1071": 95, "1072": 95, "1073": 95, "concentr": 95, "seaborn": 95, "sn": 95, "distinguish": [95, 98], "strip": 95, "stripplot": 95, "hue": [95, 106], "dodg": 95, "jitter": 95, "axvlin": [95, 104], "xlabel": 95, "ourselv": 95, "make_blob": 95, "center": [95, 96], "cluster_std": 95, "n_noisy_label": 95, "meaning": [95, 97, 98, 104], "silhouette_scor": 95, "gridsearchcv": 95, "silhouett": 95, "cluster_label": 95, "fit_predict": 95, "param_grid": [95, 98], "grid_search": 95, "best_kmean": 95, "best_estimator_": 95, "underperforming_group_issu": 95, "328308": 95, "tab10": 95, "domain": 95, "knowledg": [95, 99], "dataset_tsv": 95, "ag": [95, 106], "gender": 95, "educ": 95, "experi": 95, "highsalari": 95, "indiana": 95, "phd": 95, "male": 95, "bachelor": 95, "femal": 95, "kansa": 95, "school": [95, 96], "ohio": 95, "57": [95, 96, 98, 99], "california": 95, "59": [95, 96, 103], "34": [95, 96, 99, 101, 103, 108], "63": [95, 98, 99, 103, 106], "47": [95, 96, 103], "stringio": 95, "sep": [95, 108], "easier": [95, 99], "simplic": [95, 102], "ordinalencod": 95, "columns_to_encod": 95, "encoded_df": 95, "salari": 95, "573681": 95, "underpin": 95, "caught": 95, "whenev": 95, "generate_data_depend": 95, "num_sampl": 95, "a1": 95, "a2": 95, "a3": 95, "375": 95, "975": 95, "non_iid_issu": 95, "796474": 95, "842432": 95, "922562": 95, "820759": 95, "873136": 95, "887373": 95, "825101": 95, "855875": 95, "751795": 95, "835796": 95, "ylabel": [95, 104], "coolwarm": 95, "colorbar": [95, 106], "strong": 95, "evid": [95, 98], "inter": 95, "mitig": 95, "risk": [95, 98], "deeper": 95, "tsv": 95, "tab": 95, "pars": 95, "annual_spend": 95, "number_of_transact": 95, "last_purchase_d": 95, "rural": 95, "4099": 95, "2024": [95, 108], "6421": 95, "nat": 95, "suburban": 95, "5436": 95, "4046": 95, "66": [95, 96, 98], "3467": 95, "67": [95, 96, 98, 103, 106], "4757": 95, "4199": 95, "4991": 95, "4655": 95, "82": [95, 96, 98, 99, 103, 106], "5584": 95, "urban": 95, "3102": 95, "6637": 95, "9167": 95, "6790": 95, "5327": 95, "parse_d": 95, "lose": 95, "intact": 95, "encode_categorical_column": 95, "placehold": 95, "dropna": [95, 101], "category_to_numb": 95, "_encod": 95, "gender_encod": 95, "location_encod": 95, "focus": [95, 98, 99, 101, 102, 106], "null_issu": 95, "833333": 95, "sorted_indic": [95, 103], "sorted_df": 95, "nice": 95, "styler": 95, "combined_df": 95, "concat": [95, 98, 106], "highlight_null_valu": 95, "val": [95, 99], "yellow": [95, 96], "highlight_datalab_column": 95, "lightblu": 95, "highlight_is_null_issu": 95, "orang": [95, 96], "styled_df": 95, "nbsp": [95, 97, 98, 99], "160000": 95, "820000": 95, "460000": 95, "470000": 95, "960000": 95, "620000": 95, "550000": 95, "660000": 95, "670000": [95, 96], "370000": 95, "530000": 95, "710000": 95, "020000": 95, "320000": 95, "990000": 95, "rarer": 95, "fairer": 95, "randomli": [95, 98, 99], "class_imbalance_issu": 95, "countplot": 95, "xtick": 95, "rotat": 95, "ytick": 95, "filtered_df": 95, "xy": 95, "va": 95, "textual": 95, "get_ytick": 95, "nbar": 95, "nimbal": 95, "get_legend_handles_label": 95, "title_fonts": 95, "aspect": 95, "anomali": [95, 103], "enhanc": [95, 99, 101, 103], "artifici": 95, "directori": [95, 108], "subdirectori": 95, "nc": [95, 103, 107, 108], "unzip": [95, 103, 108], "199": [95, 98, 103], "111": [95, 101, 106], "153": [95, 98, 103], "110": [95, 103], "connect": [95, 108], "443": [95, 108], "await": [95, 108], "ok": [95, 105, 108], "986707": 95, "964k": 95, "963": 95, "58k": 95, "kb": [95, 108], "mb": [95, 108], "imagefold": 95, "load_image_dataset": 95, "data_dir": 95, "root": [95, 104], "image_dataset": 95, "img": [95, 104, 106], "from_dict": [95, 97], "darkened_imag": 95, "job": 95, "015": 95, "label_uncorrelatedness_scor": 95, "image_issu": 95, "nimag": 95, "237196": 95, "197229": 95, "254188": 95, "229170": 95, "208907": 95, "793840": 95, "196": [95, 98, 99, 103], "197": [95, 99, 103], "971560": 95, "198": [95, 99, 103], "862236": 95, "973533": 95, "stronger": 95, "frog": [95, 96, 104], "darken": 95, "concept": 95, "notabl": 95, "preval": 95, "warrant": 95, "programmat": 95, "plot_scores_label": 95, "issues_copi": 95, "boxplot": 95, "refin": 96, "instruct": [96, 97, 98], "studi": [96, 103], "mnist_test_set": 96, "imagenet_val_set": 96, "tench": 96, "goldfish": 96, "white": [96, 108], "shark": 96, "tiger": 96, "hammerhead": 96, "electr": 96, "rai": 96, "stingrai": 96, "cock": 96, "hen": 96, "ostrich": 96, "brambl": 96, "goldfinch": 96, "hous": 96, "finch": 96, "junco": 96, "indigo": 96, "bunt": 96, "american": [96, 108], "robin": 96, "bulbul": 96, "jai": 96, "magpi": 96, "chickade": 96, "dipper": 96, "kite": 96, "bald": 96, "eagl": 96, "vultur": 96, "grei": 96, "owl": 96, "salamand": 96, "smooth": 96, "newt": 96, "spot": [96, 97, 103], "axolotl": 96, "bullfrog": 96, "tree": 96, "tail": 96, "loggerhead": 96, "sea": 96, "turtl": 96, "leatherback": 96, "mud": 96, "terrapin": 96, "band": 96, "gecko": 96, "green": [96, 108], "iguana": 96, "carolina": 96, "anol": 96, "desert": 96, "grassland": 96, "whiptail": 96, "lizard": 96, "agama": 96, "frill": 96, "neck": 96, "allig": 96, "gila": 96, "monster": 96, "european": 96, "chameleon": 96, "komodo": 96, "dragon": 96, "nile": 96, "crocodil": 96, "triceratop": 96, "worm": 96, "snake": 96, "ring": 96, "eastern": 96, "hog": 96, "nose": 96, "kingsnak": 96, "garter": 96, "water": 96, "vine": 96, "night": 96, "boa": 96, "constrictor": 96, "african": 96, "rock": 96, "indian": 96, "cobra": 96, "mamba": 96, "saharan": 96, "horn": 96, "viper": 96, "diamondback": 96, "rattlesnak": 96, "sidewind": 96, "trilobit": 96, "harvestman": 96, "scorpion": 96, "garden": 96, "spider": 96, "barn": 96, "southern": 96, "widow": 96, "tarantula": 96, "wolf": 96, "tick": 96, "centiped": 96, "grous": 96, "ptarmigan": 96, "ruf": 96, "prairi": 96, "peacock": 96, "quail": 96, "partridg": 96, "parrot": 96, "macaw": 96, "sulphur": 96, "crest": 96, "cockatoo": 96, "lorikeet": 96, "coucal": 96, "bee": 96, "eater": 96, "hornbil": 96, "hummingbird": 96, "jacamar": 96, "toucan": 96, "breast": 96, "mergans": 96, "goos": 96, "swan": 96, "tusker": 96, "echidna": 96, "platypu": 96, "wallabi": 96, "koala": 96, "wombat": 96, "jellyfish": 96, "anemon": 96, "brain": 96, "coral": 96, "flatworm": 96, "nematod": 96, "conch": 96, "snail": 96, "slug": 96, "chiton": 96, "chamber": 96, "nautilu": 96, "dung": 96, "crab": 96, "fiddler": 96, "king": 96, "lobster": 96, "spini": 96, "crayfish": 96, "hermit": 96, "isopod": 96, "stork": 96, "spoonbil": 96, "flamingo": 96, "heron": 96, "egret": 96, "bittern": 96, "crane": 96, "bird": [96, 104], "limpkin": 96, "gallinul": 96, "coot": 96, "bustard": 96, "ruddi": 96, "turnston": 96, "dunlin": 96, "redshank": 96, "dowitch": 96, "oystercatch": 96, "pelican": 96, "penguin": 96, "albatross": 96, "whale": 96, "killer": 96, "dugong": 96, "lion": 96, "chihuahua": 96, "japanes": 96, "chin": 96, "maltes": 96, "pekinges": 96, "shih": 96, "tzu": 96, "charl": 96, "spaniel": 96, "papillon": 96, "terrier": 96, "rhodesian": 96, "ridgeback": 96, "afghan": [96, 108], "hound": 96, "basset": 96, "beagl": 96, "bloodhound": 96, "bluetick": 96, "coonhound": 96, "tan": 96, "walker": 96, "foxhound": 96, "redbon": 96, "borzoi": 96, "irish": 96, "wolfhound": 96, "italian": 96, "greyhound": 96, "whippet": 96, "ibizan": 96, "norwegian": 96, "elkhound": 96, "otterhound": 96, "saluki": 96, "scottish": 96, "deerhound": 96, "weimaran": 96, "staffordshir": 96, "bull": 96, "bedlington": 96, "border": 96, "kerri": 96, "norfolk": 96, "norwich": 96, "yorkshir": 96, "wire": 96, "fox": 96, "lakeland": 96, "sealyham": 96, "airedal": 96, "cairn": 96, "australian": 96, "dandi": 96, "dinmont": 96, "boston": 96, "miniatur": 96, "schnauzer": 96, "giant": 96, "tibetan": 96, "silki": 96, "wheaten": 96, "west": 96, "highland": 96, "lhasa": 96, "apso": 96, "retriev": 96, "curli": 96, "golden": 96, "labrador": 96, "chesapeak": 96, "bai": 96, "german": [96, 108], "shorthair": 96, "pointer": 96, "vizsla": 96, "setter": 96, "gordon": 96, "brittani": 96, "clumber": 96, "springer": 96, "welsh": 96, "cocker": 96, "sussex": 96, "kuvasz": 96, "schipperk": 96, "groenendael": 96, "malinoi": 96, "briard": 96, "kelpi": 96, "komondor": 96, "sheepdog": 96, "shetland": 96, "colli": 96, "bouvier": 96, "de": 96, "flandr": 96, "rottweil": 96, "shepherd": 96, "dobermann": 96, "pinscher": 96, "swiss": [96, 108], "mountain": 96, "bernes": 96, "appenzel": 96, "sennenhund": 96, "entlebuch": 96, "boxer": 96, "bullmastiff": 96, "mastiff": 96, "french": 96, "bulldog": 96, "dane": 96, "st": 96, "bernard": 96, "huski": 96, "alaskan": 96, "malamut": 96, "siberian": 96, "dalmatian": 96, "affenpinsch": 96, "basenji": 96, "pug": 96, "leonberg": 96, "newfoundland": 96, "pyrenean": 96, "samoi": 96, "pomeranian": 96, "chow": 96, "keeshond": 96, "griffon": 96, "bruxelloi": 96, "pembrok": 96, "corgi": 96, "cardigan": 96, "poodl": 96, "mexican": 96, "hairless": 96, "tundra": 96, "coyot": 96, "dingo": 96, "dhole": 96, "wild": 96, "hyena": 96, "kit": 96, "arctic": 96, "tabbi": 96, "persian": 96, "siames": 96, "egyptian": 96, "mau": 96, "cougar": 96, "lynx": 96, "leopard": 96, "snow": 96, "jaguar": 96, "cheetah": 96, "brown": [96, 107], "bear": 96, "polar": 96, "sloth": 96, "mongoos": 96, "meerkat": 96, "beetl": 96, "ladybug": 96, "longhorn": 96, "leaf": 96, "rhinocero": 96, "weevil": 96, "fly": 96, "ant": 96, "grasshopp": 96, "cricket": 96, "stick": 96, "insect": 96, "cockroach": 96, "manti": 96, "cicada": 96, "leafhopp": 96, "lacew": 96, "dragonfli": 96, "damselfli": 96, "admir": 96, "ringlet": 96, "monarch": 96, "butterfli": 96, "gossam": 96, "wing": 96, "starfish": 96, "urchin": 96, "cucumb": 96, "cottontail": 96, "rabbit": 96, "hare": 96, "angora": 96, "hamster": 96, "porcupin": 96, "squirrel": 96, "marmot": 96, "beaver": 96, "guinea": 96, "pig": 96, "sorrel": 96, "zebra": 96, "boar": 96, "warthog": 96, "hippopotamu": 96, "ox": 96, "buffalo": 96, "bison": 96, "bighorn": 96, "sheep": 96, "alpin": 96, "ibex": 96, "hartebeest": 96, "impala": 96, "gazel": 96, "dromedari": 96, "llama": 96, "weasel": 96, "mink": 96, "polecat": 96, "foot": 96, "ferret": 96, "otter": 96, "skunk": 96, "badger": 96, "armadillo": 96, "toed": 96, "orangutan": 96, "gorilla": 96, "chimpanze": 96, "gibbon": 96, "siamang": 96, "guenon": 96, "pata": 96, "monkei": 96, "baboon": 96, "macaqu": 96, "langur": 96, "colobu": 96, "probosci": 96, "marmoset": 96, "capuchin": 96, "howler": 96, "titi": 96, "geoffroi": 96, "lemur": 96, "indri": 96, "asian": 96, "eleph": 96, "bush": 96, "snoek": 96, "eel": 96, "coho": 96, "salmon": 96, "beauti": 96, "clownfish": 96, "sturgeon": 96, "garfish": 96, "lionfish": 96, "pufferfish": 96, "abacu": 96, "abaya": 96, "academ": 96, "gown": 96, "accordion": 96, "acoust": 96, "guitar": 96, "aircraft": 96, "carrier": 96, "airlin": 96, "airship": 96, "altar": 96, "ambul": 96, "amphibi": 96, "clock": [96, 108], "apiari": 96, "apron": 96, "wast": 96, "assault": 96, "rifl": 96, "backpack": 96, "bakeri": 96, "balanc": 96, "beam": 96, "balloon": 96, "ballpoint": 96, "pen": 96, "aid": 96, "banjo": 96, "balust": 96, "barbel": 96, "barber": 96, "chair": [96, 103], "barbershop": 96, "baromet": 96, "barrel": 96, "wheelbarrow": 96, "basebal": 96, "basketbal": 96, "bassinet": 96, "bassoon": 96, "swim": 96, "cap": 96, "bath": 96, "towel": 96, "bathtub": 96, "station": 96, "wagon": 96, "lighthous": 96, "beaker": 96, "militari": 96, "beer": 96, "bottl": 96, "glass": 96, "bell": 96, "cot": 96, "bib": 96, "bicycl": [96, 107], "bikini": 96, "binder": 96, "binocular": 96, "birdhous": 96, "boathous": 96, "bobsleigh": 96, "bolo": 96, "tie": 96, "poke": 96, "bonnet": 96, "bookcas": 96, "bookstor": 96, "bow": 96, "brass": 96, "bra": 96, "breakwat": 96, "breastplat": 96, "broom": 96, "bucket": 96, "buckl": 96, "bulletproof": 96, "vest": 96, "butcher": 96, "shop": 96, "taxicab": 96, "cauldron": 96, "candl": 96, "cannon": 96, "cano": 96, "mirror": [96, 103], "carousel": 96, "carton": 96, "wheel": 96, "teller": 96, "cassett": 96, "player": 96, "castl": 96, "catamaran": 96, "cd": 96, "cello": 96, "mobil": [96, 108], "chain": 96, "fenc": [96, 107], "mail": 96, "chainsaw": 96, "chest": 96, "chiffoni": 96, "chime": 96, "china": 96, "cabinet": 96, "christma": 96, "stock": 96, "church": 96, "movi": 96, "theater": 96, "cleaver": 96, "cliff": 96, "dwell": 96, "cloak": 96, "clog": 96, "cocktail": 96, "shaker": 96, "coffe": 96, "mug": 96, "coffeemak": 96, "coil": 96, "lock": 96, "keyboard": 96, "confectioneri": 96, "ship": [96, 104], "corkscrew": 96, "cornet": 96, "cowboi": 96, "boot": 96, "hat": 96, "cradl": 96, "crash": 96, "helmet": 96, "crate": 96, "infant": 96, "bed": 96, "crock": 96, "pot": 96, "croquet": 96, "crutch": 96, "cuirass": 96, "dam": 96, "desk": 96, "desktop": 96, "rotari": 96, "dial": 96, "telephon": 96, "diaper": 96, "watch": 96, "dine": 96, "dishcloth": 96, "dishwash": 96, "disc": 96, "brake": 96, "dock": 96, "sled": 96, "dome": 96, "doormat": 96, "drill": 96, "rig": 96, "drum": 96, "drumstick": 96, "dumbbel": 96, "dutch": 96, "oven": 96, "fan": 96, "locomot": 96, "entertain": 96, "envelop": 96, "espresso": 96, "powder": 96, "feather": 96, "fireboat": 96, "engin": [96, 107], "screen": 96, "sheet": 96, "flagpol": 96, "flute": 96, "footbal": 96, "forklift": 96, "fountain": 96, "poster": 96, "freight": 96, "fry": 96, "pan": 96, "fur": 96, "garbag": 96, "ga": 96, "pump": 96, "goblet": 96, "kart": 96, "golf": 96, "cart": 96, "gondola": 96, "gong": 96, "grand": 96, "piano": 96, "greenhous": 96, "grill": 96, "groceri": 96, "guillotin": 96, "barrett": 96, "hair": 96, "sprai": 96, "hammer": 96, "dryer": 96, "hand": [96, 99], "handkerchief": 96, "drive": 96, "harmonica": 96, "harp": 96, "harvest": 96, "hatchet": 96, "holster": 96, "honeycomb": 96, "hoop": 96, "skirt": 96, "horizont": 96, "bar": 96, "drawn": 96, "hourglass": 96, "ipod": 96, "cloth": 96, "iron": 96, "jack": 96, "lantern": 96, "jean": 96, "jeep": 96, "jigsaw": 96, "puzzl": 96, "pull": 96, "rickshaw": 96, "joystick": 96, "kimono": 96, "knee": 96, "pad": 96, "knot": 96, "ladl": 96, "lampshad": 96, "laptop": 96, "lawn": 96, "mower": 96, "knife": 96, "lifeboat": 96, "lighter": 96, "limousin": 96, "ocean": 96, "liner": 96, "lipstick": 96, "slip": 96, "shoe": 96, "lotion": 96, "speaker": 96, "loup": 96, "sawmil": 96, "magnet": 96, "compass": 96, "mailbox": 96, "tight": 96, "tank": 96, "manhol": 96, "maraca": 96, "marimba": 96, "maypol": 96, "maze": 96, "cup": [96, 103], "medicin": 96, "megalith": 96, "microphon": 96, "microwav": 96, "milk": 96, "minibu": 96, "miniskirt": 96, "minivan": 96, "missil": 96, "mitten": [96, 97], "mix": 96, "bowl": 96, "modem": 96, "monasteri": 96, "monitor": 96, "mope": 96, "mortar": 96, "mosqu": 96, "mosquito": 96, "scooter": 96, "bike": 96, "tent": 96, "mous": [96, 97], "mousetrap": 96, "van": 96, "muzzl": 96, "nail": 96, "brace": 96, "necklac": 96, "nippl": 96, "obelisk": 96, "obo": 96, "ocarina": 96, "odomet": 96, "oil": 96, "oscilloscop": 96, "overskirt": 96, "bullock": 96, "oxygen": 96, "packet": 96, "paddl": 96, "padlock": 96, "paintbrush": 96, "pajama": 96, "palac": [96, 108], "parachut": 96, "park": 96, "bench": 96, "meter": 96, "passeng": 96, "patio": 96, "payphon": 96, "pedest": 96, "pencil": 96, "perfum": 96, "petri": 96, "dish": 96, "photocopi": 96, "plectrum": 96, "pickelhaub": 96, "picket": 96, "pickup": 96, "pier": 96, "piggi": 96, "pill": 96, "pillow": 96, "ping": 96, "pong": 96, "pinwheel": 96, "pirat": 96, "pitcher": 96, "plane": 96, "planetarium": 96, "plastic": 96, "plate": 96, "rack": 96, "plow": 96, "plunger": 96, "polaroid": 96, "camera": 96, "pole": [96, 107], "polic": 96, "poncho": 96, "billiard": 96, "soda": 96, "potter": 96, "prayer": 96, "rug": 96, "printer": 96, "prison": 96, "projectil": 96, "projector": 96, "hockei": 96, "puck": 96, "punch": 96, "purs": 96, "quill": 96, "quilt": 96, "race": 96, "racket": 96, "radiat": 96, "radio": 96, "telescop": 96, "rain": 96, "recreat": 96, "reel": 96, "reflex": 96, "refriger": 96, "remot": 96, "restaur": 96, "revolv": 96, "rotisseri": 96, "eras": 96, "rugbi": 96, "ruler": 96, "safe": 96, "safeti": 96, "salt": 96, "sarong": 96, "saxophon": 96, "scabbard": 96, "bu": [96, 107], "schooner": 96, "scoreboard": 96, "crt": 96, "screw": 96, "screwdriv": 96, "seat": 96, "belt": 96, "sew": 96, "shield": 96, "shoji": 96, "basket": 96, "shovel": 96, "shower": 96, "curtain": 96, "ski": 96, "sleep": 96, "door": 96, "slot": 96, "snorkel": 96, "snowmobil": 96, "snowplow": 96, "soap": 96, "dispens": 96, "soccer": [96, 108], "sock": [96, 97], "solar": 96, "thermal": 96, "collector": 96, "sombrero": 96, "soup": 96, "heater": 96, "shuttl": 96, "spatula": 96, "motorboat": 96, "web": 96, "spindl": 96, "sport": [96, 108], "spotlight": 96, "stage": 96, "steam": 96, "arch": 96, "bridg": 96, "steel": 96, "stethoscop": 96, "scarf": 96, "stone": 96, "wall": [96, 107], "stopwatch": 96, "stove": 96, "strainer": 96, "tram": 96, "stretcher": 96, "couch": 96, "stupa": 96, "submarin": 96, "sundial": 96, "sunglass": 96, "sunscreen": 96, "suspens": 96, "mop": 96, "sweatshirt": 96, "swimsuit": 96, "swing": 96, "switch": 96, "syring": 96, "lamp": 96, "tape": 96, "teapot": 96, "teddi": 96, "televis": [96, 108], "tenni": 96, "thatch": 96, "roof": 96, "thimbl": 96, "thresh": 96, "throne": 96, "tile": 96, "toaster": 96, "tobacco": 96, "toilet": 96, "totem": 96, "tow": 96, "tractor": 96, "semi": 96, "trailer": 96, "trai": 96, "trench": 96, "tricycl": 96, "trimaran": 96, "tripod": 96, "triumphal": 96, "trolleybu": 96, "trombon": 96, "tub": 96, "turnstil": 96, "typewrit": 96, "umbrella": 96, "unicycl": 96, "upright": 96, "vacuum": 96, "cleaner": [96, 98], "vase": 96, "vault": 96, "velvet": 96, "vend": 96, "vestment": 96, "viaduct": 96, "violin": 96, "volleybal": 96, "waffl": 96, "wallet": 96, "wardrob": 96, "sink": 96, "wash": 96, "jug": 96, "tower": 96, "whiskei": 96, "whistl": 96, "wig": 96, "shade": [96, 107], "windsor": 96, "wine": 96, "wok": 96, "wooden": 96, "spoon": 96, "wool": 96, "rail": 96, "shipwreck": 96, "yawl": 96, "yurt": 96, "websit": 96, "comic": 96, "book": 96, "crossword": 96, "traffic": [96, 103, 107], "sign": [96, 107, 108], "dust": 96, "jacket": [96, 103], "menu": 96, "guacamol": 96, "consomm": 96, "trifl": 96, "ic": 96, "cream": 96, "pop": 96, "baguett": 96, "bagel": 96, "pretzel": 96, "cheeseburg": 96, "mash": 96, "potato": 96, "cabbag": 96, "broccoli": 96, "cauliflow": 96, "zucchini": 96, "spaghetti": 96, "squash": 96, "acorn": 96, "butternut": 96, "artichok": 96, "pepper": [96, 97], "cardoon": 96, "mushroom": 96, "granni": 96, "smith": 96, "strawberri": 96, "lemon": 96, "pineappl": 96, "banana": 96, "jackfruit": 96, "custard": 96, "appl": 96, "pomegran": 96, "hai": 96, "carbonara": 96, "chocol": 96, "syrup": 96, "dough": 96, "meatloaf": 96, "pizza": 96, "pie": 96, "burrito": 96, "eggnog": 96, "alp": 96, "bubbl": 96, "reef": 96, "geyser": 96, "lakeshor": 96, "promontori": 96, "shoal": 96, "seashor": 96, "vallei": 96, "volcano": 96, "bridegroom": 96, "scuba": 96, "diver": 96, "rapese": 96, "daisi": 96, "ladi": 96, "slipper": 96, "corn": 96, "rose": 96, "hip": 96, "chestnut": 96, "fungu": 96, "agar": 96, "gyromitra": 96, "stinkhorn": 96, "earth": 96, "star": 96, "wood": 96, "bolet": 96, "ear": 96, "cifar10_test_set": 96, "airplan": [96, 104], "automobil": [96, 104], "deer": [96, 104], "cifar100_test_set": 96, "aquarium_fish": 96, "boi": 96, "camel": 96, "caterpillar": 96, "cattl": [96, 108], "cloud": 96, "dinosaur": 96, "dolphin": 96, "flatfish": 96, "forest": 96, "girl": 96, "kangaroo": 96, "lawn_mow": 96, "man": 96, "maple_tre": 96, "motorcycl": [96, 107], "oak_tre": 96, "orchid": 96, "palm_tre": 96, "pear": 96, "pickup_truck": 96, "pine_tre": 96, "plain": 96, "poppi": 96, "possum": 96, "raccoon": 96, "road": [96, 107], "rocket": 96, "seal": 96, "shrew": 96, "skyscrap": 96, "streetcar": 96, "sunflow": 96, "sweet_pepp": 96, "trout": 96, "tulip": 96, "willow_tre": 96, "woman": [96, 103], "caltech256": 96, "ak47": 96, "bat": 96, "glove": 96, "birdbath": 96, "blimp": 96, "bonsai": 96, "boom": 96, "breadmak": 96, "buddha": 96, "bulldoz": 96, "cactu": 96, "cake": 96, "tire": 96, "cartman": 96, "cereal": 96, "chandeli": 96, "chess": 96, "board": 96, "chimp": 96, "chopstick": 96, "coffin": 96, "coin": 96, "comet": 96, "cormor": 96, "globe": 96, "diamond": 96, "dice": 96, "doorknob": 96, "drink": 96, "straw": 96, "dumb": 96, "eiffel": 96, "elk": 96, "ewer": 96, "eyeglass": 96, "fern": 96, "fighter": 96, "jet": [96, 106], "extinguish": 96, "hydrant": 96, "firework": 96, "flashlight": 96, "floppi": 96, "fri": 96, "frisbe": 96, "galaxi": 96, "giraff": 96, "goat": 96, "gate": 96, "grape": 96, "pick": [96, 97], "hamburg": 96, "hammock": 96, "harpsichord": 96, "hawksbil": 96, "helicopt": 96, "hibiscu": 96, "homer": 96, "simpson": 96, "horsesho": 96, "air": 96, "skeleton": 96, "ibi": 96, "cone": 96, "iri": 96, "jesu": 96, "christ": 96, "joi": 96, "kayak": 96, "ketch": 96, "ladder": 96, "lath": 96, "licens": 96, "lightbulb": 96, "lightn": 96, "mandolin": 96, "mar": 96, "mattress": 96, "megaphon": 96, "menorah": 96, "microscop": 96, "minaret": 96, "minotaur": 96, "motorbik": 96, "mussel": 96, "neckti": 96, "octopu": 96, "palm": 96, "pilot": 96, "paperclip": 96, "shredder": 96, "pci": 96, "peopl": [96, 103], "pez": 96, "picnic": 96, "pram": 96, "prai": 96, "pyramid": 96, "rainbow": 96, "roulett": 96, "saddl": 96, "saturn": 96, "segwai": 96, "propel": 96, "sextant": 96, "music": 96, "skateboard": 96, "smokestack": 96, "sneaker": 96, "boat": 96, "stain": 96, "steer": 96, "stirrup": 96, "superman": 96, "sushi": 96, "armi": [96, 108], "sword": 96, "tambourin": 96, "teepe": 96, "court": 96, "theodolit": 96, "tomato": 96, "tombston": 96, "tour": 96, "pisa": 96, "treadmil": 96, "fork": 96, "tweezer": 96, "unicorn": 96, "vcr": 96, "waterfal": 96, "watermelon": 96, "weld": 96, "windmil": 96, "xylophon": 96, "yarmulk": 96, "yo": 96, "toad": 96, "twenty_news_test_set": 96, "comp": 96, "graphic": [96, 107], "misc": [96, 108], "sy": 96, "ibm": 96, "pc": 96, "hardwar": 96, "mac": 96, "forsal": 96, "rec": 96, "crypt": 96, "electron": 96, "med": 96, "soc": 96, "religion": 96, "christian": [96, 108], "talk": [96, 108], "polit": 96, "gun": 96, "mideast": 96, "amazon": 96, "neutral": 96, "imdb_test_set": 96, "all_class": 96, "20news_test_set": 96, "_load_classes_predprobs_label": 96, "dataset_nam": 96, "labelerror": 96, "url_bas": 96, "5392f6c71473055060be3044becdde1cbc18284d": 96, "url_label": 96, "original_test_label": 96, "_original_label": 96, "url_prob": 96, "cross_validated_predicted_prob": 96, "_pyx": 96, "num_part": 96, "datatset": 96, "bytesio": 96, "allow_pickl": 96, "pred_probs_part": 96, "url": 96, "_of_": 96, "nload": 96, "imdb": 96, "ve": [96, 97, 98, 99, 101, 103], "capit": 96, "29780": 96, "256": [96, 97, 98, 103], "780": 96, "medic": [96, 108], "doctor": 96, "254": [96, 103], "359223": 96, "640777": 96, "184": [96, 99], "258427": 96, "341176": 96, "263158": 96, "658824": 96, "337349": 96, "246575": 96, "662651": 96, "248": 96, "330000": 96, "355769": 96, "251": [96, 103], "167": [96, 99, 103], "252": [96, 98], "112": [96, 98], "253": [96, 103], "022989": 96, "049505": 96, "190": [96, 99, 103], "002216": 96, "000974": 96, "000873": 96, "000739": 96, "32635": 96, "32636": 96, "32637": 96, "32638": 96, "32639": 96, "32640": 96, "051": 96, "002242": 96, "997758": 96, "002088": 96, "001045": 96, "997912": 96, "002053": 96, "997947": 96, "001980": 96, "000991": 96, "998020": 96, "001946": 96, "002915": 96, "998054": 96, "001938": 96, "002904": 96, "998062": 96, "001020": 96, "998980": 96, "001018": 96, "002035": 96, "998982": 96, "999009": 96, "0003": 96, "0002": 96, "071": 96, "067269": 96, "929": 96, "046": 96, "058243": 96, "954": 96, "035": 96, "032096": 96, "965": 96, "031": 96, "012232": 96, "969": 96, "022": 96, "025896": 96, "978": 96, "020": [96, 99], "013092": 96, "018": 96, "013065": 96, "016": 96, "030542": 96, "984": 96, "013": 96, "020833": 96, "987": 96, "012": 96, "010020": 96, "988": 96, "0073": 96, "0020": 96, "0016": 96, "0015": 96, "0014": 96, "0013": 96, "0012": 96, "0010": 96, "0008": 96, "0007": 96, "0006": 96, "0005": 96, "0004": 96, "244": [96, 103], "452381": 96, "459770": 96, "523364": 96, "460784": 96, "446602": 96, "103774": 96, "030612": 96, "110092": 96, "049020": 96, "0034": 96, "0032": 96, "0026": 96, "0025": 96, "4945": 96, "4946": 96, "4947": 96, "4948": 96, "4949": 96, "4950": 96, "846": 96, "7532": 96, "532": 96, "034483": 96, "009646": 96, "965517": 96, "030457": 96, "020513": 96, "969543": 96, "028061": 96, "035443": 96, "971939": 96, "025316": 96, "005168": 96, "974684": 96, "049751": 96, "979487": 96, "019920": 96, "042802": 96, "980080": 96, "017677": 96, "005115": 96, "982323": 96, "012987": 96, "005236": 96, "987013": 96, "012723": 96, "025126": 96, "987277": 96, "010989": 96, "008264": 96, "989011": 96, "010283": 96, "027778": 96, "989717": 96, "009677": 96, "990323": 96, "007614": 96, "010127": 96, "992386": 96, "005051": 96, "994949": 96, "005025": 96, "994975": 96, "005013": 96, "994987": 96, "001859": 96, "001328": 96, "000929": 96, "000664": 96, "188": [96, 99, 102], "189": [96, 99], "snippet": 97, "nlp": [97, 108], "mind": [97, 99], "alphanumer": 97, "facilit": 97, "seamless": 97, "classlabel": 97, "guidanc": 97, "labels_str": 97, "datalab_str": 97, "labels_int": 97, "remap": 97, "datalab_int": 97, "my_dict": 97, "pet_nam": 97, "rover": 97, "rocki": 97, "speci": 97, "datalab_dataset": 97, "number_of_class": 97, "total_number_of_data_point": 97, "feed": 97, "alphabet": 97, "labels_proper_format": 97, "your_classifi": 97, "issues_datafram": 97, "class_predicted_for_flagged_exampl": 97, "class_predicted_for_all_exampl": 97, "grant": 97, "On": [97, 98, 99, 103], "merged_dataset": 97, "label_column_nam": 97, "datataset": 97, "fair": [97, 99], "game": 97, "speedup": [97, 104], "tempfil": 97, "mkdtemp": 97, "sped": 97, "anywai": 97, "pred_probs_merg": 97, "merge_rare_class": 97, "count_threshold": 97, "class_mapping_orig2new": 97, "heath_summari": 97, "num_examples_per_class": 97, "rare_class": 97, "num_classes_merg": 97, "other_class": 97, "labels_merg": 97, "new_c": 97, "merged_prob": 97, "new_class": 97, "original_class": 97, "num_check": 97, "ones_array_ref": 97, "isclos": 97, "though": [97, 99, 108], "successfulli": 97, "virtuou": [97, 101], "cycl": [97, 101], "jointli": 97, "junk": 97, "clutter": 97, "unknown": 97, "caltech": 97, "combined_boolean_mask": 97, "mask1": 97, "mask2": 97, "gradientboostingclassifi": [97, 99], "true_error": [97, 99, 102], "101": [97, 98, 103], "102": [97, 102, 103], "104": [97, 99, 103], "model_to_find_error": 97, "model_to_return": 97, "cl0": 97, "randomizedsearchcv": 97, "expens": 97, "param_distribut": 97, "learning_r": [97, 98, 99], "max_depth": [97, 98, 99], "magnitud": 97, "coeffici": [97, 106], "optin": 97, "environ": [97, 98, 99], "rerun": [97, 98, 99], "cell": [97, 98, 99], "unabl": [97, 98, 99], "render": [97, 98, 99], "nbviewer": [97, 98, 99], "cleanlearninginot": [97, 99], "fittedcleanlearn": [97, 99], "linearregressionlinearregress": 97, "unexpectedli": 97, "emphas": 97, "crucial": 97, "merge_duplicate_set": 97, "merge_kei": 97, "construct_group_kei": 97, "merged_set": 97, "consolidate_set": 97, "issubset": 97, "frozenset": [97, 98], "sets_list": 97, "mutabl": 97, "new_set": 97, "current_set": 97, "intersecting_set": 97, "lowest_score_strategi": 97, "sub_df": 97, "filter_near_dupl": 97, "strategy_fn": 97, "strategy_kwarg": 97, "duplicate_row": 97, "group_kei": 97, "to_keep_indic": 97, "groupbi": 97, "explod": 97, "to_remov": 97, "isin": [97, 104], "kept": 97, "ids_to_remove_seri": 97, "assist": 97, "streamlin": [97, 98], "ux": 97, "agpl": 97, "compani": 97, "commerci": 97, "alter": [97, 98], "email": 97, "team": 97, "anywher": 97, "profession": 97, "expert": 97, "recogn": 98, "vital": 98, "leakag": 98, "comparion": 98, "leak": 98, "blueprint": 98, "divers": 98, "parameter": 98, "tldr": 98, "answer": [98, 99], "subtl": 98, "faith": 98, "danger": 98, "inevit": [98, 104], "xgbclassifi": 98, "123456": 98, "df_train": 98, "s3": [98, 103, 107, 108], "amazonaw": [98, 103, 107, 108], "clos_train_data": 98, "df_test": 98, "clos_test_data": 98, "noisy_letter_grad": 98, "018bff": 98, "076d92": 98, "c80059": 98, "e38f8a": 98, "d57e1a": 98, "grade_l": 98, "notes_l": 98, "train_featur": 98, "train_features_v2": 98, "train_labels_v2": 98, "test_featur": 98, "preprocessed_train_data": 98, "preprocessed_test_data": 98, "haven": 98, "features_df": 98, "heterogenou": 98, "full_df": 98, "reset_index": [98, 101], "749": 98, "583745": 98, "291382": 98, "5837": 98, "748": 98, "604": 98, "510": 98, "227": [98, 102, 103], "719": 98, "690": 98, "444": 98, "547": 98, "647": 98, "2914": 98, "611": 98, "687869": 98, "610": 98, "687883": 98, "612": 98, "688146": 98, "609": 98, "688189": 98, "613": 98, "688713": 98, "2913818469137725": 98, "came": [98, 108], "full_duplicate_result": 98, "train_idx_cutoff": 98, "nd_set_has_index_over_training_cutoff": 98, "exact_dupl": 98, "627": 98, "678": 98, "615": 98, "292": 98, "620": 98, "420": 98, "704": 98, "431": 98, "459": 98, "672": 98, "564": 98, "696": 98, "605": 98, "exact_duplicates_indic": 98, "indices_of_duplicates_to_drop": 98, "4a3f75": 98, "d030b5": 98, "ddd0ba": 98, "8e6d24": 98, "464aab": 98, "ee3387": 98, "61e807": 98, "71d7b9": 98, "83e31f": 98, "edeb53": 98, "cd52b5": 98, "84": [98, 103, 106], "454e51": 98, "042686": 98, "12a73f": 98, "tree_method": 98, "hist": [98, 104], "enable_categor": 98, "booster": 98, "callback": 98, "colsample_bylevel": 98, "colsample_bynod": 98, "colsample_bytre": 98, "early_stopping_round": 98, "eval_metr": 98, "feature_typ": 98, "gamma": 98, "grow_polici": 98, "importance_typ": 98, "interaction_constraint": 98, "max_bin": 98, "max_cat_threshold": 98, "max_cat_to_onehot": 98, "max_delta_step": 98, "max_leav": 98, "min_child_weight": 98, "monotone_constraint": 98, "multi_strategi": 98, "n_estim": [98, 99], "num_parallel_tre": 98, "x27": [98, 99], "softprob": 98, "xgbclassifierifittedxgbclassifi": 98, "test_pred_prob": [98, 104], "test_lab": 98, "test_features_arrai": 98, "134": 98, "798507": 98, "370259": 98, "625352": 98, "524042": 98, "097015": 98, "7985": 98, "000537": 98, "000903": 98, "001743": 98, "106": 98, "001853": 98, "002121": 98, "3703": 98, "752463e": 98, "784418e": 98, "09": [98, 102, 103, 106], "477741e": 98, "134230e": 98, "153555e": 98, "6254": 98, "143272": 98, "146501": 98, "161431": 98, "5240": 98, "765240": 98, "771221": 98, "801589": 98, "801652": 98, "810735": 98, "5240417899434826": 98, "0970": 98, "na": [98, 101], "test_label_issue_result": 98, "test_label_issues_ord": 98, "2bd759": 98, "34ccdd": 98, "bb3bab": 98, "103": [98, 99, 103], "bf1b14": 98, "4787de": 98, "865cbd": 98, "32d53f": 98, "5b2f76": 98, "28f8b4": 98, "df814d": 98, "f17261": 98, "1db3ff": 98, "ded944": 98, "124": [98, 103], "343dd3": 98, "homework": [98, 106], "8d904d": 98, "e4f0d5": 98, "d6d208": 98, "76c083": 98, "695f96": 98, "745c23": 98, "13b36e": 98, "5ba892": 98, "9f0216": 98, "003628": 98, "004006": 98, "004031": 98, "007930": 98, "013226": 98, "015255": 98, "017692": 98, "019767": 98, "036197": 98, "054746": 98, "055110": 98, "062675": 98, "112695": 98, "121059": 98, "171280": 98, "181689": 98, "208001": 98, "275028": 98, "346032": 98, "396350": 98, "401493": 98, "474349": 98, "mislead": 98, "breviti": 98, "indices_to_drop_from_test_data": 98, "df_test_clean": 98, "acc_origin": 98, "tediou": 98, "train_features_arrai": 98, "train_lab": 98, "318": [98, 106], "601": 98, "740433": 98, "344154": 98, "588290": 98, "437267": 98, "146423": 98, "977223": 98, "7404": 98, "162": 98, "000072": 98, "348": 98, "000161": 98, "232": [98, 103], "000256": 98, "205": [98, 103], "000458": 98, "000738": 98, "3442": 98, "588": 98, "358961e": 98, "336": [98, 103], "490911e": 98, "269": 98, "122475e": 98, "321": [98, 103], "374139e": 98, "311": 98, "358617e": 98, "5883": 98, "600": 98, "592": 98, "593": 98, "594": 98, "595": 98, "596": 98, "597": 98, "598": 98, "599": 98, "221": 98, "222": [98, 99], "315": 98, "332": [98, 103], "791060e": 98, "243": [98, 103], "540": 98, "379106e": 98, "396": 98, "397": 98, "398": 98, "399": 98, "4373": 98, "165": [98, 102], "550374": 98, "627357": 98, "627496": 98, "627502": 98, "627919": 98, "43726734378061227": 98, "1464": 98, "506": 98, "393": 98, "508": 98, "9772": 98, "402": 98, "401": 98, "aggress": 98, "faithfulli": 98, "label_issue_result": 98, "566": 98, "568": 98, "571": 98, "572": 98, "574": 98, "576": 98, "578": 98, "585": 98, "587": 98, "590": 98, "near_duplicates_idx": 98, "117": [98, 99, 106], "122": [98, 99, 103], "146": 98, "155": [98, 99, 103], "156": [98, 99], "173": [98, 103], "224": [98, 103], "272": 98, "279": [98, 103], "288": 98, "300": [98, 101, 108], "342": 98, "352": 98, "365": 98, "366": 98, "384": 98, "388": 98, "394": 98, "404": 98, "474": 98, "480": 98, "494": 98, "515": 98, "536": 98, "537": 98, "539": 98, "542": 98, "outliers_idx": 98, "143": [98, 102, 103], "159": [98, 102, 103], "163": [98, 99], "193": [98, 99], "194": [98, 99], "208": 98, "240": [98, 103], "241": 98, "242": [98, 103], "247": [98, 103], "287": [98, 103], "295": [98, 103], "299": [98, 103], "307": [98, 103], "350": 98, "361": 98, "378": 98, "379": 98, "392": 98, "419": 98, "432": 98, "479": 98, "484": 98, "485": 98, "489": 98, "492": 98, "504": 98, "511": 98, "522": 98, "523": 98, "535": 98, "543": 98, "567": 98, "579": 98, "591": 98, "idx_to_drop": 98, "276": [98, 103], "df_train_cur": 98, "clean_clf": 98, "clean_pr": 98, "acc_clean": 98, "inaccur": 98, "hybrid": 98, "quantit": 98, "hyper": 98, "default_edit_param": 98, "drop_label_issu": 98, "drop_outli": 98, "drop_near_dupl": 98, "candid": [98, 103], "edit_data": 98, "percentag": [98, 99], "num_label_issues_to_drop": 98, "num_outliers_to_drop": 98, "dedupl": 98, "unique_clust": 98, "unique_clusters_list": 98, "near_duplicates_idx_to_drop": 98, "n_drop": 98, "label_issues_idx_to_drop": 98, "outliers_idx_to_drop": 98, "train_features_clean": 98, "train_labels_clean": 98, "itertool": 98, "finer": 98, "param_combin": 98, "best_scor": 98, "best_param": 98, "train_features_preprocess": 98, "train_labels_preprocess": 98, "depth": 99, "survei": [99, 108], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103], "037843": 99, "614915": 99, "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "magic": 99, "liter": 99, "identif": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "offset": 99, "nquestion": 99, "overestim": 99, "experienc": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "170": 99, "214": 99, "164": [99, 102], "191": [99, 103], "206": [99, 103], "115": [99, 103], "201": [99, 103], "174": 99, "150": [99, 101, 103, 108], "169": 99, "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "172": [99, 102], "157": 99, "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "noisier": 101, "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "zfill": 101, "row_na_check": 101, "notna": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "275": 102, "267": 102, "225": 102, "171": 102, "234": 102, "262": [102, 103], "263": [102, 103], "266": [102, 103], "139": 102, "216": [102, 103, 108], "265": 102, "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "231": 103, "293": 103, "235": 103, "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "283": 103, "303": 103, "316": 103, "323": 103, "327": 103, "226": 103, "228": 103, "219": 103, "239": 103, "209": 103, "202": 103, "230": 103, "215": 103, "220": 103, "229": 103, "217": 103, "237": 103, "207": 103, "204": 103, "223": 103, "149": 103, "140": 103, "246": 103, "268": 103, "273": 103, "284": 103, "136": 103, "145": 103, "297": 103, "317": 103, "192": 103, "324": 103, "203": 103, "320": 103, "314": 103, "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": 103, "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "toronto": 104, "edu": 104, "kriz": 104, "170498071": 104, "84125418": 104, "78it": 104, "plot_imag": 104, "visualize_outli": 104, "txt_class": 104, "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "train_outlier_scor": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "unsur": 105, "price": 106, "incom": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "3d": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "367": 106, "305": 106, "560": 106, "657": 106, "view_datapoint": 106, "preds_og": 106, "r2_og": 106, "838": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "2400": 108, "52e0": 108, "1a00": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "04mb": 108, "inflat": 108, "116": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "154": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [59, 0, 0, "-", "models"], [61, 0, 0, "-", "multiannotator"], [64, 0, 0, "-", "multilabel_classification"], [67, 0, 0, "-", "object_detection"], [70, 0, 0, "-", "outlier"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "regression"], [76, 0, 0, "-", "segmentation"], [80, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "metric"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_underperforming_clusters"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[60, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[60, 2, 1, "", "KerasWrapperModel"], [60, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[61, 1, 1, "", "convert_long_to_wide_dataset"], [61, 1, 1, "", "get_active_learning_scores"], [61, 1, 1, "", "get_active_learning_scores_ensemble"], [61, 1, 1, "", "get_label_quality_multiannotator"], [61, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [61, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[62, 0, 0, "-", "dataset"], [63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[62, 1, 1, "", "common_multilabel_issues"], [62, 1, 1, "", "multilabel_health_summary"], [62, 1, 1, "", "overall_multilabel_health_score"], [62, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, 1, 1, "", "find_label_issues"], [63, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[66, 0, 0, "-", "filter"], [68, 0, 0, "-", "rank"], [69, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[66, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[68, 1, 1, "", "compute_badloc_box_scores"], [68, 1, 1, "", "compute_overlooked_box_scores"], [68, 1, 1, "", "compute_swap_box_scores"], [68, 1, 1, "", "get_label_quality_scores"], [68, 1, 1, "", "issues_from_scores"], [68, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[69, 1, 1, "", "bounding_box_size_distribution"], [69, 1, 1, "", "calculate_per_class_metrics"], [69, 1, 1, "", "class_label_distribution"], [69, 1, 1, "", "get_average_per_class_confusion_matrix"], [69, 1, 1, "", "get_sorted_bbox_count_idxs"], [69, 1, 1, "", "object_counts_per_image"], [69, 1, 1, "", "plot_class_distribution"], [69, 1, 1, "", "plot_class_size_distributions"], [69, 1, 1, "", "visualize"]], "cleanlab.outlier": [[70, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[70, 3, 1, "", "fit"], [70, 3, 1, "", "fit_score"], [70, 3, 1, "", "score"]], "cleanlab.rank": [[71, 1, 1, "", "find_top_issues"], [71, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [71, 1, 1, "", "get_label_quality_ensemble_scores"], [71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "get_normalized_margin_for_each_label"], [71, 1, 1, "", "get_self_confidence_for_each_label"], [71, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[73, 0, 0, "-", "learn"], [74, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[73, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[73, 3, 1, "", "__init_subclass__"], [73, 3, 1, "", "find_label_issues"], [73, 3, 1, "", "fit"], [73, 3, 1, "", "get_aleatoric_uncertainty"], [73, 3, 1, "", "get_epistemic_uncertainty"], [73, 3, 1, "", "get_label_issues"], [73, 3, 1, "", "get_metadata_routing"], [73, 3, 1, "", "get_params"], [73, 3, 1, "", "predict"], [73, 3, 1, "", "save_space"], [73, 3, 1, "", "score"], [73, 3, 1, "", "set_fit_request"], [73, 3, 1, "", "set_params"], [73, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[74, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[79, 0, 0, "-", "filter"], [81, 0, 0, "-", "rank"], [82, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[79, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[81, 1, 1, "", "get_label_quality_scores"], [81, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[82, 1, 1, "", "common_label_issues"], [82, 1, 1, "", "display_issues"], [82, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 86, 87, 91, 93, 94, 97, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 88, 89, 90, 91, 92, 93, 94, 95, 97, 99, 102], "creat": [7, 89, 90, 99, 101], "your": [7, 83, 89, 90, 94, 95, 97, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 89], "basic": 7, "check": [7, 83, 95, 98], "intermedi": 7, "advanc": [7, 89], "us": [7, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": [8, 95], "cluster": [8, 95, 97], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 89], "cleanlab": [9, 10, 83, 86, 87, 88, 91, 93, 94, 97, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 83, 91], "mode": [9, 10, 83, 91], "can": [10, 90, 96, 97, 99, 101], "detect": [10, 88, 90, 91, 93, 94, 95, 97, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "input": 10, "label": [10, 24, 26, 31, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 70, 91, 93, 94, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 90, 91, 93, 94], "duplic": [10, 20, 90, 91, 93, 94, 97, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 94, 95], "iid": [10, 94, 95], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 84, 95, 99, 107], "imbal": [10, 21, 95], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 91, 95, 104], "specif": [10, 22, 107], "spuriou": [10, 95], "correl": [10, 95], "between": 10, "properti": 10, "score": [10, 95, 99, 101, 102, 103, 107, 108], "underperform": [10, 95, 97], "group": [10, 95, 97], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 95], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "valuat": [10, 95], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 95], "paramet": [10, 99], "get": [12, 89, 90, 101, 102, 103, 107, 108], "start": [12, 96], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 97, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 72, 73, 74, 97, 106], "prioriti": 31, "order": 31, "find": [31, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 91], "dataset": [37, 62, 83, 87, 88, 90, 91, 94, 95, 96, 97, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 63, 66, 75, 79, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 89], "token_classification_util": 56, "util": 57, "valid": [58, 91, 105], "model": [59, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106], "kera": 60, "multiannot": [61, 101], "multilabel_classif": 64, "rank": [65, 68, 71, 74, 77, 81, 99], "object_detect": 67, "summari": [69, 78, 82], "learn": [73, 90, 97, 99], "segment": [76, 107], "token_classif": [80, 108], "open": [83, 97], "sourc": [83, 97], "document": 83, "quickstart": 83, "1": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "2": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [83, 90, 99], "sort": [83, 95], "3": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [83, 97], "error": [83, 87, 91, 97, 99, 101, 102, 103, 106, 107, 108], "train": [83, 86, 87, 88, 95, 97, 98, 104, 106], "robust": [83, 86, 87, 99, 106], "noisi": [83, 86, 87, 98, 99, 106], "4": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 103, 104, 106], "curat": [83, 98], "fix": [83, 97], "level": [83, 96, 99, 108], "5": [83, 86, 88, 90, 91, 93, 95, 98, 99, 101, 106], "improv": [83, 98, 101], "via": [83, 98, 99, 101], "mani": [83, 99], "other": [83, 101, 103, 106], "techniqu": [83, 98], "contribut": 83, "how": [84, 97, 99, 101, 102, 108], "migrat": 84, "version": 84, "0": 84, "from": [84, 86, 87, 89, 90, 98, 99, 106], "pre": [84, 88, 95, 97, 104], "function": [84, 89], "name": 84, "chang": 84, "modul": [84, 99], "new": 84, "remov": 84, "common": [84, 108], "argument": [84, 89], "variabl": 84, "cleanlearn": [85, 97, 99], "tutori": [85, 92, 96, 98, 100], "structur": 86, "tabular": [86, 93], "requir": [86, 87, 89, 90, 91, 93, 94, 101, 102, 103, 104, 106, 107, 108], "depend": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "load": [86, 87, 88, 89, 90, 93, 94, 95, 106], "process": [86, 93, 104, 106], "select": [86, 93], "comput": [86, 88, 91, 93, 94, 95, 97, 98, 101, 105], "out": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "sampl": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "predict": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 105], "probabl": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 105], "more": [86, 87, 90, 99, 106], "spend": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "too": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "much": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "time": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "qualiti": [86, 87, 90, 93, 94, 96, 99, 101, 102, 103, 104, 105, 106, 107, 108], "text": [87, 94, 95, 108], "format": [87, 94, 97, 102, 103], "defin": [87, 91, 94, 95, 106], "potenti": [87, 101, 106], "an": [88, 91, 97], "audio": 88, "import": [88, 89, 90, 91, 96, 99, 101], "them": [88, 96, 98, 99], "speechbrain": 88, "featur": [88, 91, 104], "fit": 88, "linear": 88, "workflow": [89, 95, 99], "audit": [89, 90], "classifi": [89, 90, 95], "instanti": 89, "object": [89, 103], "increment": 89, "specifi": [89, 97], "nondefault": 89, "save": 89, "ad": 89, "A": 90, "unifi": 90, "kind": [90, 103], "skip": [90, 96, 99, 101], "detail": [90, 96, 99, 101], "about": 90, "addit": 90, "inform": [90, 91], "fetch": [91, 96], "normal": 91, "fashion": 91, "mnist": 91, "prepar": [91, 95], "k": [91, 93, 105], "fold": [91, 105], "cross": [91, 105], "embed": [91, 104], "7": [91, 98, 99], "view": 91, "most": [91, 108], "like": 91, "exampl": [91, 97, 99, 104], "sever": 91, "set": [91, 99], "dark": 91, "top": [91, 107], "low": 91, "numer": 93, "categor": [93, 95], "column": 93, "construct": 93, "nearest": 93, "neighbour": 93, "graph": [93, 95], "drift": [94, 102], "miscellan": 95, "acceler": 95, "knn": 95, "obtain": 95, "identifi": [95, 97, 98, 103], "explan": 95, "vector": 95, "perform": [95, 98], "visual": [95, 99, 103, 104, 107], "synthet": 95, "result": 95, "predefin": 95, "slice": [95, 97], "i": [95, 97, 99, 105], "catch": 95, "valu": 95, "encod": 95, "initi": [95, 101], "6": [95, 98, 99], "run": [95, 97], "analysi": [95, 103], "interpret": 95, "understand": 96, "evalu": [96, 98], "health": [96, 99], "8": [96, 98, 99], "popular": 96, "faq": 97, "what": [97, 99, 105], "do": [97, 99], "infer": 97, "correct": [97, 98], "ha": 97, "flag": 97, "should": 97, "v": [97, 98], "test": [97, 98, 99, 104], "big": 97, "limit": 97, "memori": 97, "why": [97, 98], "isn": 97, "t": 97, "work": [97, 99, 101, 108], "me": 97, "differ": [97, 103], "clean": [97, 98, 99], "final": 97, "hyperparamet": [97, 98], "tune": 97, "onli": 97, "one": [97, 99, 102, 107], "doe": [97, 101, 108], "take": 97, "so": 97, "long": 97, "when": [97, 99], "licens": 97, "under": 97, "answer": 97, "question": 97, "split": 98, "did": 98, "you": [98, 99], "make": 98, "thi": [98, 99], "preprocess": 98, "fundament": 98, "problem": 98, "setup": 98, "origin": 98, "baselin": 98, "manual": 98, "address": 98, "algorithm": 98, "better": [98, 101], "strategi": 98, "optim": 98, "9": 98, "conclus": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "twenti": 99, "lowest": 99, "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "re": 99, "One": 99, "rule": 99, "overal": [99, 107], "accur": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "major": 101, "vote": 101, "statist": 101, "compar": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "without": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Spurious Correlations between image-specific properties and labels": [[10, "spurious-correlations-between-image-specific-properties-and-labels"]], "property": [[10, "property"]], "score": [[10, "score"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [70, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [72, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [62, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [63, "module-cleanlab.multilabel_classification.filter"], [66, "filter"], [75, "filter"], [79, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "models": [[59, "models"]], "keras": [[60, "module-cleanlab.models.keras"]], "multiannotator": [[61, "module-cleanlab.multiannotator"]], "multilabel_classification": [[64, "multilabel-classification"]], "rank": [[65, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.rank"], [77, "module-cleanlab.segmentation.rank"], [81, "module-cleanlab.token_classification.rank"]], "object_detection": [[67, "object-detection"]], "summary": [[69, "summary"], [78, "module-cleanlab.segmentation.summary"], [82, "module-cleanlab.token_classification.summary"]], "regression.learn": [[73, "module-cleanlab.regression.learn"]], "regression.rank": [[74, "module-cleanlab.regression.rank"]], "segmentation": [[76, "segmentation"]], "token_classification": [[80, "token-classification"]], "cleanlab open-source documentation": [[83, "cleanlab-open-source-documentation"]], "Quickstart": [[83, "quickstart"]], "1. Install cleanlab": [[83, "install-cleanlab"]], "2. Check your data for all sorts of issues": [[83, "check-your-data-for-all-sorts-of-issues"]], "3. Handle label errors and train robust models with noisy labels": [[83, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[83, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[83, "improve-your-data-via-many-other-techniques"]], "Contributing": [[83, "contributing"]], "Easy Mode": [[83, "easy-mode"], [91, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[84, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[84, "function-and-class-name-changes"]], "Module name changes": [[84, "module-name-changes"]], "New modules": [[84, "new-modules"]], "Removed modules": [[84, "removed-modules"]], "Common argument and variable name changes": [[84, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[85, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[86, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[86, "1.-Install-required-dependencies"], [87, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[86, "2.-Load-and-process-the-data"], [93, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[86, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [93, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[86, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[86, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Spending too much time on data quality?": [[86, "Spending-too-much-time-on-data-quality?"], [87, "Spending-too-much-time-on-data-quality?"], [90, "Spending-too-much-time-on-data-quality?"], [93, "Spending-too-much-time-on-data-quality?"], [94, "Spending-too-much-time-on-data-quality?"], [96, "Spending-too-much-time-on-data-quality?"], [99, "Spending-too-much-time-on-data-quality?"], [102, "Spending-too-much-time-on-data-quality?"], [104, "Spending-too-much-time-on-data-quality?"], [105, "spending-too-much-time-on-data-quality"], [106, "Spending-too-much-time-on-data-quality?"]], "Text Classification with Noisy Labels": [[87, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[87, "2.-Load-and-format-the-text-dataset"], [94, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[87, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[87, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[88, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[88, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[88, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[88, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[88, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[88, "5.-Use-cleanlab-to-find-label-issues"], [93, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[89, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[89, "Install-and-import-required-dependencies"]], "Create and load the data": [[89, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[89, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[89, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[89, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[89, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[89, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[89, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[90, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[90, "1.-Install-and-import-required-dependencies"], [91, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[90, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[90, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[90, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[90, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[90, "Get-additional-information"]], "Near duplicate issues": [[90, "Near-duplicate-issues"], [91, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[91, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[91, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[91, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[91, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[91, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[91, "7.-Use-cleanlab-to-find-issues"]], "View report": [[91, "View-report"]], "Label issues": [[91, "Label-issues"], [93, "Label-issues"], [94, "Label-issues"]], "View most likely examples with label errors": [[91, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[91, "Outlier-issues"], [93, "Outlier-issues"], [94, "Outlier-issues"]], "View most severe outliers": [[91, "View-most-severe-outliers"]], "View sets of near duplicate images": [[91, "View-sets-of-near-duplicate-images"]], "Dark images": [[91, "Dark-images"]], "View top examples of dark images": [[91, "View-top-examples-of-dark-images"]], "Low information images": [[91, "Low-information-images"]], "Datalab Tutorials": [[92, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[93, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[93, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[93, "Near-duplicate-issues"], [94, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[94, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[94, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[94, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[94, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[95, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[95, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[95, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[95, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[95, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[95, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[95, "Explanation:"]], "Data Valuation": [[95, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[95, "1.-Load-and-Prepare-the-Dataset"], [95, "id2"], [95, "id5"]], "2. Vectorize the Text Data": [[95, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[95, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[95, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[95, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[95, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[95, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [95, "id3"]], "3. (Optional) Cluster the Data": [[95, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[95, "4.-Identify-Underperforming-Groups-with-Datalab"], [95, "id4"]], "5. (Optional) Visualize the Results": [[95, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[95, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[95, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[95, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[95, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[95, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[95, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[95, "1.-Load-the-Dataset"], [95, "id8"]], "2: Encode Categorical Values": [[95, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[95, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[95, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[95, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[95, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[95, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[95, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[95, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[95, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[95, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Run Datalab Analysis": [[95, "2.-Run-Datalab-Analysis"]], "3. Interpret the Results": [[95, "3.-Interpret-the-Results"]], "Understanding Dataset-level Labeling Issues": [[96, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[96, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[96, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[96, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[97, "FAQ"]], "What data can cleanlab detect issues in?": [[97, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[97, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[97, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[97, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[97, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[97, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[97, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[97, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[97, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[97, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[97, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[97, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[97, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[97, "Can't-find-an-answer-to-your-question?"]], "Improving ML Performance via Data Curation with Train vs Test Splits": [[98, "Improving-ML-Performance-via-Data-Curation-with-Train-vs-Test-Splits"]], "Why did you make this tutorial?": [[98, "Why-did-you-make-this-tutorial?"]], "1. Install dependencies": [[98, "1.-Install-dependencies"]], "2. Preprocess the data": [[98, "2.-Preprocess-the-data"]], "3. Check for fundamental problems in the train/test setup": [[98, "3.-Check-for-fundamental-problems-in-the-train/test-setup"]], "4. Train model with original (noisy) training data": [[98, "4.-Train-model-with-original-(noisy)-training-data"]], "Compute out-of-sample predicted probabilities for the test data from this baseline model": [[98, "Compute-out-of-sample-predicted-probabilities-for-the-test-data-from-this-baseline-model"]], "5. Check for issues in test data and manually address them": [[98, "5.-Check-for-issues-in-test-data-and-manually-address-them"]], "Use clean test data to evaluate the performance of model trained on noisy training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-noisy-training-data"]], "6. Check for issues in training data and algorithmically correct them": [[98, "6.-Check-for-issues-in-training-data-and-algorithmically-correct-them"]], "7. Train model on cleaned training data": [[98, "7.-Train-model-on-cleaned-training-data"]], "Use clean test data to evaluate the performance of model trained on cleaned training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-cleaned-training-data"]], "8. Identifying better training data curation strategies via hyperparameter optimization techniques": [[98, "8.-Identifying-better-training-data-curation-strategies-via-hyperparameter-optimization-techniques"]], "9. Conclusion": [[98, "9.-Conclusion"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [59, "module-cleanlab.models"], [60, "module-cleanlab.models.keras"], [61, "module-cleanlab.multiannotator"], [62, "module-cleanlab.multilabel_classification.dataset"], [63, "module-cleanlab.multilabel_classification.filter"], [64, "module-cleanlab.multilabel_classification"], [65, "module-cleanlab.multilabel_classification.rank"], [66, "module-cleanlab.object_detection.filter"], [67, "module-cleanlab.object_detection"], [68, "module-cleanlab.object_detection.rank"], [69, "module-cleanlab.object_detection.summary"], [70, "module-cleanlab.outlier"], [71, "module-cleanlab.rank"], [72, "module-cleanlab.regression"], [73, "module-cleanlab.regression.learn"], [74, "module-cleanlab.regression.rank"], [75, "module-cleanlab.segmentation.filter"], [76, "module-cleanlab.segmentation"], [77, "module-cleanlab.segmentation.rank"], [78, "module-cleanlab.segmentation.summary"], [79, "module-cleanlab.token_classification.filter"], [80, "module-cleanlab.token_classification"], [81, "module-cleanlab.token_classification.rank"], [82, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_underperforming_clusters() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_underperforming_clusters"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[59, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[60, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[61, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[62, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[64, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[65, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[66, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[66, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[67, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[68, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[69, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[70, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[70, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[71, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[72, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[73, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[73, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[73, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[74, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[74, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[75, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[75, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[76, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[77, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[78, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[79, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[79, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[80, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[81, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[82, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/improving_ml_performance", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/improving_ml_performance.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "Improving ML Performance via Data Curation with Train vs Test Splits", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 84, 89, 90, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 89, 90, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 89, 90, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 68, 91, 95, 96, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 83, 84, 89, 96, 105], "benchmark": [1, 38, 83, 84, 89, 90, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 98, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 61, 62, 66, 68, 69, 70, 71, 73, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 75, 77], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 61, 70, 79, 81, 83, 86, 87, 90, 93, 94, 95, 96, 97, 99, 101, 102, 104, 106, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 59, 61, 62, 65, 69, 70, 74, 78, 79, 81, 82, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 10, 88, 95, 97, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 62, 89, 90, 95, 96, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 89, 95, 98, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 61, 62, 63, 64, 65, 70, 71, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 95, 98, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 89, 93, 98, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 59, 63, 66, 69, 78, 82, 91, 93, 94, 95, 98, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 59, 61, 66, 69, 70, 71, 83, 91, 97, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 60, 61, 62, 63, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 70, 71, 73, 78, 87, 88, 89, 90, 91, 94, 96, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 61, 63, 66, 69, 71, 73, 74, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 97], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 59, 61, 63, 70, 72, 74, 77, 81, 83, 86, 87, 88, 89, 91, 93, 94, 95, 96, 98, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 63, 64, 65, 66, 68, 69, 70, 71, 73, 79, 81, 82, 90, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 32, 37, 39, 42, 44, 47, 57, 62, 63, 65, 71, 73, 74, 75, 77, 78, 84, 89, 90, 93, 94, 95, 97, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 63, 66, 68, 69, 70, 71, 93, 95, 103, 104], "trace": [1, 89, 90, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 87, 88, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 95, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 89, 90, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 89, 90, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 89, 95, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 61, 69, 70, 71, 75, 93, 94, 95, 98, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 86, 88, 89, 90, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 60, 66, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 68, 73, 87, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 73, 97, 98, 101, 108], "better": [1, 5, 10, 44, 53, 61, 63, 71, 73, 74, 83, 87, 88, 90, 93, 94, 95, 97, 99, 102, 103, 104, 105, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 60, 61, 66, 68, 70, 71, 73, 77, 81, 86, 88, 91, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 61, 71, 73, 86, 88, 89, 90, 91, 93, 95, 97, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 69, 73, 83, 86, 87, 89, 97, 99, 100, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 61, 62, 69, 70, 71, 97, 101, 104], "amount": [1, 3, 91], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 91, 94, 95, 98], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 95, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 83, 86, 87, 89, 90, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 88, 95, 96, 97, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 10, 47, 53, 56, 57, 71, 91, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 32, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 96, 97, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 61, 73, 93, 97, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 98, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 63, 71, 73, 74, 86, 88, 89, 90, 91, 93, 94, 97, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 59, 61, 62, 65, 69, 70, 71, 73, 78, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 71, 75, 78, 95, 97, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 61, 62, 63, 65, 66, 69, 70, 71, 73, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 62, 63, 65, 68, 73, 89, 90, 91, 97, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 96, 97, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 61, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 61, 62, 63, 65, 66, 82, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 61, 63, 65, 68, 69, 70, 71, 73, 74, 79, 81, 82, 83, 88, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 73, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 64, 70, 89, 90, 91, 93, 94, 98, 99], "yield": [1, 38, 42, 98], "between": [1, 5, 9, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 59, 61, 62, 65, 68, 70, 71, 73, 74, 77, 81, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 61, 62, 63, 68, 69, 77, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 60, 61, 68, 69, 71, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 91, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 70, 73, 83, 86, 88, 89, 93, 98, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 61, 62, 66, 68, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 68, 69, 73, 75, 77, 81, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 70, 71, 75, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10, 95], "python": [1, 2, 42, 60, 73, 89, 90, 96, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 63, 94, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 86, 87, 88, 91, 94, 95, 96, 97, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 65, 73, 83, 87, 88, 94, 95, 97, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 60, 61, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 10, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 70, 71, 73, 86, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 60, 69, 73, 74, 87, 88, 89, 90, 93, 95, 97, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 73, 95, 97, 98, 106], "astyp": [1, 98, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 65, 69, 70, 71, 73, 75, 77, 78, 79, 82, 88, 89, 91, 95, 98, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 69, 73, 74, 91, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 84, 95, 96, 97], "choic": [1, 8, 44, 53, 55, 91, 97, 102, 104], "replac": [1, 56, 60, 71, 86, 87, 89, 90, 91, 94, 95, 96, 97, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 71, 88, 89, 90], "05": [1, 10, 27, 31, 56, 69, 73, 79, 81, 93, 96, 97, 98, 99, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 89, 90, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 89, 90, 91, 95, 97, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 73, 86, 88, 89, 90, 93, 95, 96, 98, 99, 101, 102], "max_it": [1, 87, 88, 94, 104], "10000": [1, 41, 96, 97], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 60, 61, 63, 69, 70, 71, 73, 75, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 63, 68, 78, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 73, 83, 87, 88, 91, 93, 94, 95, 97, 98, 107, 108], "impli": [1, 10, 37, 62, 69], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 61, 62, 63, 65, 68, 69, 73, 77, 81, 88, 89, 90, 98, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 61, 62, 63, 66, 86, 87, 93, 94, 99, 102, 103, 106], "maximum": [1, 10, 70, 78, 82, 95, 107], "minimum": [1, 8, 10, 21, 44, 46, 63, 68, 81, 95], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 68, 73, 89, 97, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 89, 91, 95, 97, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 60, 61, 62, 63, 66, 68, 69, 70, 73, 74, 75, 77, 78, 81, 82, 83, 84, 86, 87, 88, 89, 91, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 89, 95], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 60, 61, 62, 64, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 61, 65, 69, 73, 78, 82, 83, 86, 87, 88, 90, 94, 97, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 59, 60, 63, 70, 71, 73, 75, 83, 84, 88, 95, 96, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 60, 61, 62, 63, 65, 68, 69, 70, 71, 73, 77, 78, 79, 81, 87, 90, 91, 94, 95, 96, 97, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 60, 63, 65, 66, 68, 70, 71, 73, 74, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 88, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 60, 61, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 86, 87, 89, 90, 93, 94, 95, 97, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 60, 61, 66, 68, 69, 70, 71, 73, 74, 78, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 59, 60, 61, 63, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 17, 41, 44, 52, 53, 57, 68, 71, 73, 86, 87, 89, 90, 91, 95, 96, 98, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 66, 68, 69, 70, 71, 73, 75, 78, 82, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 60, 61, 70, 73, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 61, 83, 89, 90, 94, 95, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 89, 91, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 89, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 60, 61, 63, 65, 69, 70, 71, 73, 74, 77, 79, 81, 84, 86, 87, 88, 91, 93, 95, 97, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 60, 61, 70, 71, 73, 75, 77, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 98, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 59, 84], "produc": [1, 2, 5, 9, 10, 17, 49, 61, 71, 73, 75, 77, 83, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 60, 61, 62, 73, 90, 94, 95, 97, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 68, 89, 90, 91, 97, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 62, 69, 87, 91, 94, 96, 98, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 60, 65, 68, 73, 74, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 70, 71, 90, 91, 95, 98, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 70, 73, 78, 86, 87, 94, 95, 97, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 29, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 88, 89, 90, 91, 93, 97, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 63, 66, 69, 89, 90, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 61, 66, 68, 69, 70, 89, 90, 96, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 60, 97, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 63, 66, 70, 71, 73, 75, 78, 82, 86, 88, 95, 98, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 59, 60, 61, 62, 63, 70, 71, 73, 75, 77, 78, 79, 81, 82, 88, 95, 98, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 61, 63, 69, 75, 77, 78, 79, 81, 82, 86, 87, 88, 97, 98, 101, 102, 103, 107, 108], "ball": [1, 96], "bin": [1, 3, 63, 89, 90, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 60, 68, 71, 73, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 60, 61, 62, 63, 66, 68, 69, 70, 71, 74, 77, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 61, 62, 68, 71, 81, 91, 97, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 98, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 79, 81, 82, 83, 86, 87, 88, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 60], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 62, 63, 64, 65, 70, 71, 83, 95, 97, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 61, 63, 71, 73, 83, 87, 88, 94, 95, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 60, 72, 73, 74, 83, 84, 86, 87, 98, 106], "wrap": [2, 38, 42, 51, 60, 70, 73, 83, 86, 87, 89, 90, 93, 94, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 60, 69, 70, 73, 78, 86, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 60, 70, 73, 74, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 61, 64, 70, 71, 83, 84, 86, 87, 88, 93, 94, 97, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 73], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 61, 62, 63, 68, 70, 73, 75, 77, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 60, 66, 69, 70, 73, 84, 95, 97, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 71, 73, 75, 83, 89, 90, 93, 96, 97, 98, 101, 104, 108], "four": [2, 10, 96, 99, 108], "clf": [2, 3, 5, 49, 73, 83, 86, 93, 95, 97, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 59, 60, 70, 72, 73, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 73, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 59, 60, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 32, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 87, 96, 97, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 59, 60, 61, 62, 63, 64, 68, 70, 71, 72, 73, 78, 79, 80, 81, 82, 84, 91, 92, 100], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 61, 62, 63, 64, 66, 69, 70, 71, 73, 75, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 70, 73, 83, 86, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 61, 63, 71, 78, 79, 81, 87, 88, 94, 95, 97, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 61, 62, 66, 69, 71, 73, 83, 86, 87, 88, 89, 91, 93, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 62, 71, 73, 78, 81, 82, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 60, 61, 62, 65, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 59, 61, 66, 68, 70, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 32, 44, 46, 49, 52, 53, 54, 63, 66, 69, 71, 73, 74, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 63, 68, 69, 73, 75, 77, 87, 91, 93, 97, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 60, 61, 62, 63, 65, 66, 69, 70, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 61, 73, 83, 86, 87, 88, 89, 93, 94, 95, 97, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 61, 68, 71, 73, 87, 88, 89, 90, 94], "loss": [2, 39, 60, 71, 73, 91, 98], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 73, 83, 91, 95, 97, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 60, 61, 66, 69, 70, 73, 74, 84, 89, 90, 91, 93, 94, 96, 99, 100, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 60, 70, 71, 81, 83, 84, 88, 89, 90, 91, 95, 97], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 59, 60, 61, 62, 63, 65, 70, 71, 73, 74, 75, 77, 78, 84, 86, 87, 88, 91, 93, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 61, 89, 90, 91, 95, 97, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 62, 63, 68, 69, 73, 75, 87, 94, 95, 97, 102, 103, 106, 107], "clonabl": [2, 73], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 61, 66, 69, 70, 71, 73, 74, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 100, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 68, 70, 71, 73, 74, 77, 79, 81, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 73, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 65, 69, 73, 79, 84, 89, 95, 97, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 61, 62, 63, 65, 68, 69, 73, 83, 89, 90, 91, 93, 97, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 63, 64, 66, 69, 70, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 73, 83, 86, 87, 88, 95, 97, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 73, 83, 88, 91, 97, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 60, 70, 73, 87, 88, 89, 90, 94, 97, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 73, 91], "independ": [2, 3, 10, 62, 73, 94, 95, 98, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 60, 73, 74, 77, 81, 83, 86, 87, 95, 97, 105, 106], "neural": [2, 39, 60, 70, 73, 88, 91, 97, 102, 104, 106], "network": [2, 38, 39, 42, 60, 70, 73, 87, 88, 91, 94, 97, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 70, 73, 86, 87, 88, 90, 91, 93, 94, 98, 104, 105], "initi": [2, 3, 10, 14, 19, 38, 42, 52, 61, 73, 86, 94, 97, 98], "insid": [2, 42, 73, 97, 99], "There": [2, 3, 7, 52, 83, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 66, 68, 69, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 61, 73, 87, 88, 89, 94, 96, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 77, 81, 83, 86, 91, 98, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 59, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 63, 73, 84, 98, 103], "everyth": [2, 69, 99], "els": [2, 69, 89, 91, 95, 96, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 83, 89, 95, 96, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 62, 63, 64, 65, 70, 71, 75, 79, 81, 82, 90, 91, 98, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 74, 78, 79, 81, 82, 96, 97, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 62, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 81, 84, 86, 88, 89, 90, 93, 94, 95, 96, 98, 100], "erron": [2, 3, 37, 44, 47, 57, 62, 63, 71, 73, 74, 75, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 61, 65, 68, 73, 74, 79, 81, 82, 83, 86, 87, 93, 94, 95, 97, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 73, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 73, 83, 86, 87, 97, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 60, 61, 63, 69, 70, 71, 73, 78, 79, 83, 87, 88, 89, 90, 94, 95, 96, 97, 99, 101, 103, 104, 106], "x_train": [2, 86, 89, 90, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 73, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 59, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 87, 92, 100, 101, 104, 105, 106], "pred": [2, 44, 57, 86, 87, 98, 105, 106], "x_test": [2, 86, 89, 90, 99, 102, 106], "might": [2, 5, 10, 52, 61, 73, 78, 86, 87, 89, 90, 91, 95, 97, 103], "case": [2, 3, 10, 14, 37, 49, 52, 61, 73, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 60, 62, 63, 65, 71, 73, 83, 86, 89, 90, 93, 96, 98, 99, 103], "adapt": [2, 38, 40, 57, 59, 73, 104], "skorch": [2, 73, 83, 97], "kera": [2, 59, 66, 69, 73, 83, 97, 103], "scikera": [2, 60, 73, 97], "open": [2, 41, 86, 87, 90, 93, 94, 96, 99, 102, 103, 104, 106, 108], "doesn": [2, 10, 73, 83], "t": [2, 3, 4, 7, 10, 18, 28, 29, 38, 39, 41, 42, 43, 44, 49, 55, 56, 65, 70, 71, 73, 79, 81, 82, 83, 89, 90, 91, 94, 95, 96, 98, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 60, 61, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 60, 66, 68, 70, 73, 83, 84, 86, 87, 89, 90, 94, 101, 108], "made": [2, 5, 17, 38, 42, 53, 73, 86, 87, 91, 94, 95, 97, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 73, 89, 90, 96, 97, 99, 102], "inherit": [2, 7, 39, 73], "baseestim": [2, 42, 73], "yourmodel": [2, 73], "def": [2, 7, 15, 38, 42, 60, 73, 87, 88, 89, 90, 91, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 70, 71, 73, 86, 89, 91, 95, 96, 98, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 62, 63, 65, 66, 68, 69, 70, 73, 77, 78, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 60, 62, 63, 66, 69, 70, 73, 74, 77, 79, 81, 86, 87, 89, 91, 93, 94, 95, 97, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 62, 82, 91, 97, 107], "state": [2, 3, 5, 38, 39, 42, 48, 73, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 70, 71], "et": [2, 3, 37, 39, 70, 71], "al": [2, 3, 37, 39, 70, 71], "2021": [2, 3, 37, 70, 71], "weak": [2, 69], "supervis": [2, 10, 89, 90, 97, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 59, 66, 69, 70, 71, 73, 75, 79, 81, 83, 84, 89, 96, 98, 100, 105], "uncertainti": [2, 10, 46, 70, 73, 97, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 61, 68, 69, 73, 83, 89, 90, 91, 95, 97, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 60, 61, 71, 73, 83, 84, 87, 89, 90, 95, 96, 98, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 59, 61, 62, 65, 66, 70, 71, 73, 77, 78, 79, 81, 83, 84, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 59, 60, 73, 94], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 59, 73, 86, 87, 89, 90, 95, 96, 98, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 62, 69, 70, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 86, 87, 97], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 60, 61, 62, 65, 66, 68, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 60, 69, 73, 83, 84, 87, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 70, 71, 75, 77, 78], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 70, 71, 83, 87, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 63, 73, 83, 87, 89, 91, 97, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 61, 63, 66, 69, 71, 74, 88, 90, 94, 97, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 61, 62, 66, 68, 70, 71, 73, 88, 89, 93, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 70, 73, 86, 87, 88, 93, 94, 95, 97, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 63, 70, 71, 81], "tild": 2, "paper": [2, 4, 10, 61, 70, 79, 81, 96, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 73, 87], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 61, 62, 65, 66, 69, 73, 74, 81, 87, 89, 94, 96, 97, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 73, 84, 97, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 63, 79, 97], "clean": [2, 68, 71, 73, 74, 83, 86, 87, 89, 90, 96, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 73, 88, 95, 97, 98, 99, 101, 102, 103], "messi": [2, 73, 99], "ridden": [2, 73], "autom": [2, 9, 10, 73, 83, 86, 87, 90, 93, 94, 96, 97, 98, 99, 102, 104, 106], "robust": [2, 47, 52, 73, 90, 95, 97, 98], "prone": [2, 73], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 60, 63, 64, 66, 69, 70, 71, 73, 74, 82, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 61, 68, 73, 89, 90, 97, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 61, 77, 81, 88, 89, 90, 94, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 65, 68, 69, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 61, 62, 66, 68, 69, 70, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "tutori": [2, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "repo": 2, "wrapper": [2, 60, 86, 87, 88, 106], "around": [2, 68, 89, 90, 98, 103, 104, 108], "fasttext": 2, "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 70, 73, 86, 87, 93, 94, 95, 96, 97, 107, 108], "along": [2, 49, 63, 81, 89, 90, 91, 95, 97, 104], "dimens": [2, 57, 75, 78, 91, 97, 104, 107], "select": [2, 9, 10, 27, 51, 61, 71, 91, 98, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 99, 100, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 63, 66, 69, 71, 73, 74, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 73, 86, 88, 93, 96, 97, 103, 107], "By": [2, 37, 62, 63, 73, 89, 95, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 62, 63, 65, 70, 73, 83, 87, 88, 89, 90, 94, 95, 97, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 73], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 61, 62, 63, 65, 68, 69, 70, 71, 73, 74, 75, 77, 83, 84, 87, 89, 90, 96, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 59, 61, 70, 73, 84, 86, 87, 89, 90, 91, 93, 94, 95, 97, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 68, 70, 73, 78, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 104, 106], "consist": [2, 3, 10, 38, 42, 51, 57, 61, 95, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 60, 63, 68, 71, 73, 74, 77, 81, 83, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 62, 73, 90, 94, 95], "close": [2, 3, 10, 41, 47, 70, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 71, 73, 97], "equival": [2, 3, 38, 42, 47, 70, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 62, 63, 73, 97, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 62, 99], "certain": [2, 3, 5, 10, 38, 42, 60, 69, 73, 89, 90, 95, 96, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 81, 89, 90, 91, 97, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 60, 61, 63, 69, 70, 71, 73, 78, 79, 81, 89], "filter": [2, 3, 10, 41, 43, 56, 62, 64, 65, 67, 69, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 91, 94, 96, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 97, 102, 103, 106, 107, 108], "particularli": [2, 83, 98, 101, 104], "filter_bi": [2, 3, 41, 44, 63, 84, 97], "frac_nois": [2, 44, 63, 79, 97], "min_examples_per_class": [2, 44, 63, 97, 99], "impact": [2, 4, 10, 89, 90, 91, 95], "ml": [2, 4, 5, 9, 10, 16, 73, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 100, 101, 102, 104, 105, 106], "accuraci": [2, 39, 71, 86, 87, 88, 91, 97, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 63, 75, 77, 79, 97, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 61, 63, 69, 75, 77, 79, 87, 88, 89, 95, 97, 98, 101, 105], "caus": [2, 44, 49, 89, 90, 95, 97], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 62, 63, 64, 66, 67, 69, 70, 72, 76, 78, 79, 80, 82, 83, 84, 86, 87, 89, 90, 96, 97, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 61, 63, 64, 65, 66, 67, 68, 71, 72, 74, 76, 77, 79, 80, 81, 84, 97, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 65, 70, 71, 99], "control": [2, 5, 9, 10, 17, 41, 44, 61, 69, 70, 73, 79, 81, 89, 90, 95, 96, 97], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 61, 62, 65, 66, 68, 70, 71, 73, 77, 81, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 73, 95, 97, 101], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 60, 61, 62, 66, 68, 69, 70, 73, 77, 78, 81, 82, 83, 84, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78, 107, 108], "statement": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78], "big": [2, 41, 63, 69, 73, 99], "limit": [2, 5, 17, 41, 52, 63, 83, 95, 103, 107, 108], "memori": [2, 38, 41, 42, 63, 69, 75, 77, 89, 107], "experiment": [2, 38, 39, 41, 42, 43, 63, 84, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 106], "label_issues_batch": [2, 40, 63, 97], "find_label_issues_batch": [2, 40, 41, 63, 97], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 68, 69, 70, 71, 77, 81, 89, 95, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 84, 99], "label_issu": [2, 41, 44, 63, 66, 73, 75, 84, 86, 87, 88, 91, 94, 97, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 73], "clf_final_kwarg": [2, 73], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 61, 62, 63, 65, 66, 68, 69, 71, 73, 74, 77, 81, 83, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101, 102, 103, 104, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 63, 65, 66, 69, 71, 73, 74, 75, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 63, 66, 69, 71, 73, 74, 75, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 99, 102, 104, 106, 107, 108], "final": [2, 10, 73, 86, 93, 95, 98, 103, 105, 106], "remain": [2, 73, 84, 86, 87, 91, 95, 98, 102, 106, 108], "datasetlik": [2, 57, 73], "beyond": [2, 5, 7, 9, 10, 12, 36, 83, 86, 87, 98, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 60, 61, 62, 73, 81, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 60, 61, 62, 73, 78, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 70, 95], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 93, 95], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 95], "torch": [2, 38, 39, 42, 87, 88, 91, 94, 96, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 60, 61, 66, 69, 73, 83, 84, 88, 89, 90, 91, 97, 99, 104], "tensorflow": [2, 57, 60, 83, 88, 97], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 60, 63, 66, 67, 68, 69, 70, 73, 81, 83, 87, 88, 90, 91, 93, 95, 97, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 77, 78, 79, 81, 82, 84, 87, 88, 89, 90, 91, 96, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 71, 78, 82, 86, 87, 88, 91, 93, 94, 95, 97, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 61, 62, 68, 70, 82, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 73, 88, 97, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 60, 61, 62, 63, 66, 69, 70, 71, 73, 75, 77, 78, 81, 82, 86, 89, 90, 91, 93, 95, 96, 98, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 88, 91, 94, 95, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 61, 66, 68, 73, 79, 81, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 60, 61, 75, 77, 91, 97, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 61, 62, 63, 66, 69, 70, 71, 75, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 60, 71, 83, 86, 87, 94, 97, 104], "eg": [2, 5, 10, 57, 66, 69, 89, 90, 97, 98], "repeat": [2, 57, 61, 101, 104], "appli": [2, 10, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 65, 70, 79, 83, 86, 87, 88, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 63, 70, 74], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 59, 61, 62, 63, 65, 66, 69, 70, 71, 73, 75, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 73, 81, 97, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 61, 62, 63, 65, 70, 71, 73, 78, 79, 81, 82, 86, 88, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 60, 61, 68, 77, 81, 87, 96, 98, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 61, 62, 63, 65, 68, 69, 71, 74, 75, 77, 81, 90, 97, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 61, 63, 66, 68, 71, 77, 81, 89, 95, 97, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 61, 68, 70, 71, 74, 77, 81, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 84, 91, 93, 95, 97, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 60, 63, 70, 71, 73, 74, 79, 81, 96, 97, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 68, 70, 81, 84, 90, 92, 95, 97, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 60, 68, 70, 71, 73, 77, 81, 98, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 60, 61, 62, 63, 66, 68, 70, 71, 73, 74, 82, 84, 87, 88, 90, 91, 94, 95, 98, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 68, 90, 96, 97, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 62, 63, 69, 84, 91, 95, 97, 103], "observ": [2, 3, 47, 54, 88, 89, 90, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 61, 62, 63, 66, 68, 71, 77, 79, 81, 82, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 72, 73, 86, 87, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 61, 63, 68, 70, 71, 75, 77, 90, 95, 97, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 61, 63, 66, 71, 73, 75, 77, 78, 83, 87, 88, 90, 91, 94, 97, 103, 106, 107], "label_issues_mask": [2, 44, 71, 73, 84], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 63, 66, 69, 70, 71, 73, 75, 79, 81, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 63, 79, 84, 86, 87, 97, 99], "significantli": [2, 10, 91, 95, 99, 101, 105], "reduc": [2, 41, 44, 57, 88, 97], "time": [2, 10, 38, 41, 42, 57, 61, 82, 84, 89, 91, 97, 98, 103, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 60, 71, 86, 91, 93, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 73, 88, 95, 97, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 69, 91, 95, 98, 99, 101, 105], "caution": [2, 5, 97, 98], "previous": [2, 5, 14, 57, 70, 73, 84, 86, 88, 89, 93, 94, 98, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 73, 86, 89, 91, 93, 95, 97, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 61, 65, 68, 71, 73, 79, 81, 84, 86, 90, 93, 95, 96, 97, 101, 102, 103, 108], "still": [2, 41, 42, 57, 70, 86, 91, 97, 104], "extra": [2, 38, 42, 57, 60, 61, 62, 73, 91, 94, 97, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 62, 65, 66, 73, 75, 79, 90, 103], "overwritten": [2, 73], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 60, 65, 97], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 69, 71, 73, 78, 88, 89, 90, 91, 95, 97, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 63, 71, 89, 93, 98, 102, 103], "earli": [2, 91], "stop": [2, 91], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 70, 86, 89, 91, 93, 95, 98, 102, 106, 108], "f": [2, 7, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 60, 73, 78, 82, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 61, 69, 70, 73, 75, 77, 87, 88, 91, 95, 97, 105, 107], "access": [2, 10, 14, 38, 42, 73, 90, 91, 96, 102], "hyperparamet": [2, 65, 70, 91], "purpos": [2, 52, 89, 90, 95, 97, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 61, 63, 73, 87, 89, 91, 94, 96, 98, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 73], "yourself": [2, 5, 41, 90, 95], "altern": [2, 7, 10, 49, 54, 57, 60, 61, 71, 84, 87, 88, 91, 93, 94, 96, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 60, 61, 63, 70, 71, 73, 77, 78, 81, 82, 83, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 61, 70, 73, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 104, 106], "offer": [2, 5, 9, 10, 87, 88, 89, 90, 94, 97, 98, 99, 102], "after": [2, 3, 5, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 61, 73, 87, 89, 91, 94, 95, 97, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 70, 73, 86, 89, 95], "label_issues_df": [2, 73, 91], "similar": [2, 10, 37, 38, 42, 54, 57, 61, 65, 66, 68, 70, 73, 77, 81, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 60, 62, 63, 65, 68, 69, 70, 73, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 66, 73, 89, 90], "were": [2, 3, 5, 10, 37, 42, 52, 62, 68, 81, 86, 88, 93, 97, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 70, 78, 83, 91, 95, 97, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 61, 62, 71, 90, 97, 99, 105, 108], "num_class": [2, 37, 41, 57, 60, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 78, 89, 95, 97, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 71, 95, 97, 99, 104], "trick": [2, 97], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 61, 69, 70, 71, 83, 89, 90, 91, 93, 94, 95, 98, 103, 104], "account": [2, 37, 61, 65, 70, 71, 87, 94, 97, 99, 101, 102, 104, 106], "word": [2, 3, 56, 81, 82, 97], "remov": [2, 10, 32, 37, 38, 42, 44, 73, 83, 86, 87, 91, 94, 95, 96, 97, 98, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 61, 62, 68, 71, 73, 77, 81, 88, 89, 90, 91, 94, 95, 98, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 60, 71, 73, 75, 83, 84, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 61, 63, 65, 70, 71, 73, 74, 75, 83, 86, 87, 88, 91, 94, 95, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 64, 66, 67, 68, 69, 70, 71, 72, 73, 76, 80, 83, 86, 87, 89, 92, 96, 98, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 71, 73, 98], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 60, 69, 73, 75, 77, 78, 79, 97], "test": [2, 5, 10, 27, 42, 49, 52, 60, 73, 83, 86, 87, 89, 90, 91, 93, 94, 100, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 61, 70, 71, 73, 86, 87, 97, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 71, 83, 87, 89, 90, 93, 94, 97, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 65, 70, 73, 83, 90, 91, 93, 94, 95, 98, 99, 103], "save_spac": [2, 10, 72, 73], "potenti": [2, 10, 37, 44, 56, 63, 66, 69, 71, 73, 75, 77, 82, 84, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 87, 94], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 60, 61, 62, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 60, 62, 63, 65, 81, 89, 98, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 61, 63, 71, 75, 77, 82, 83, 89, 91, 97, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 63, 66, 71, 73, 75, 77, 78, 83, 96, 97, 101, 103, 107, 108], "prefer": [2, 71, 79, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 87, 94, 97, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 73], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 60, 61, 63, 65, 69, 70, 71, 73, 74, 75, 77, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 71, 73], "mostli": [2, 57, 68, 73, 98, 102, 106], "longer": [2, 35, 48, 49, 56, 73, 84, 87, 94, 97, 98, 103], "info": [2, 5, 7, 10, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 73, 81, 90, 95, 96, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 61, 62, 65, 69, 73, 78, 81, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 73, 96, 99], "unless": [2, 38, 42, 52, 73, 97], "our": [2, 3, 10, 60, 61, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 73, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 62, 63, 68, 71, 73, 75, 77, 78, 83, 89, 90, 95, 97, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 61, 62, 63, 66, 69, 71, 73, 74, 75, 77, 78, 84, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 106], "label_qu": [2, 61, 73, 87, 99, 101, 106], "measur": [2, 5, 37, 61, 62, 73, 83, 86, 95, 96, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 61, 62, 63, 65, 66, 68, 71, 73, 74, 77, 79, 81, 83, 84, 88, 89, 91, 97, 98, 100], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 61, 62, 65, 68, 69, 71, 73, 74, 77, 81, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 69, 98, 99, 101], "against": [2, 38, 42, 89, 93, 95, 97, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107], "ad": [2, 38, 42, 90, 101, 106], "precis": [2, 53, 55, 63, 66, 69, 95, 96, 97, 99, 107, 108], "definit": [2, 7, 35, 49, 73, 86, 93], "accessor": [2, 73], "describ": [2, 10, 19, 61, 70, 71, 73, 79, 81, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 73, 96], "clear": [2, 38, 42, 54, 73, 87, 94, 95, 106], "save": [2, 5, 17, 38, 41, 42, 69, 73, 95, 97, 103, 107, 108], "space": [2, 5, 10, 70, 73, 91, 93, 95, 96], "place": [2, 38, 42, 52, 57, 73, 86, 101], "larg": [2, 9, 10, 41, 52, 73, 91, 97, 103, 104, 107, 108], "deploi": [2, 9, 10, 73, 91, 97, 98], "care": [2, 10, 38, 42, 52, 73, 94, 95, 97, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 73, 97, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 98, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 73], "__init_subclass__": [2, 40, 42, 72, 73], "set_": [2, 42, 73], "_request": [2, 42, 73], "pep": [2, 42, 73], "487": [2, 42, 73], "look": [2, 5, 7, 10, 17, 38, 42, 57, 73, 78, 86, 89, 90, 93, 94, 97, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 61, 62, 66, 69, 73, 78, 81, 82, 83, 88, 89, 93, 94, 95, 96, 98, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 73], "infer": [2, 42, 57, 73, 78, 82, 86, 87, 91, 101, 102], "signatur": [2, 38, 42, 73], "accept": [2, 38, 42, 54, 55, 71, 73, 89, 90, 97], "metadata": [2, 10, 42, 73, 91, 108], "through": [2, 5, 7, 42, 73, 87, 88, 90, 94, 95, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 73, 97, 99, 108], "request": [2, 42, 73, 86, 87, 90, 94, 95, 96, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 60, 61, 63, 69, 73, 77, 81, 82, 83, 88, 91, 95, 97, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 66, 69, 70, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 73, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 70, 73, 97, 98, 99, 108], "dev": [2, 42, 73], "0487": [2, 42, 73], "get_metadata_rout": [2, 40, 42, 72, 73], "rout": [2, 42, 73], "pleas": [2, 38, 42, 60, 73, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 73, 84, 88, 89, 90, 91, 92, 93, 94, 95, 98, 99], "mechan": [2, 38, 42, 73], "metadatarequest": [2, 42, 73], "encapsul": [2, 17, 42, 68, 73], "get_param": [2, 40, 42, 59, 60, 72, 73], "subobject": [2, 42, 73], "param": [2, 10, 38, 42, 60, 70, 73, 97], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 60, 61, 62, 69, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 72, 73], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 60, 61, 62, 66, 68, 69, 71, 73, 78, 82, 88, 89, 95, 97, 101, 102, 103, 108], "unchang": [2, 38, 42, 73, 95, 108], "relev": [2, 10, 17, 27, 42, 73, 91, 93, 95], "enable_metadata_rout": [2, 42, 73], "set_config": [2, 42, 73], "meta": [2, 42, 73], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 73, 97], "alia": [2, 38, 42, 73], "metadata_rout": [2, 42, 73], "retain": [2, 42, 57, 73], "chang": [2, 33, 35, 38, 41, 42, 46, 73, 81, 86, 87, 88, 89, 94, 97, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 59, 60, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 68, 73], "pipelin": [2, 42, 73, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 63, 73, 75, 77, 78, 82, 83, 87, 94, 97, 98], "updat": [2, 14, 38, 41, 42, 52, 60, 73, 84, 89, 91, 98], "set_param": [2, 40, 42, 59, 60, 72, 73], "simpl": [2, 38, 42, 44, 61, 71, 73, 86, 87, 89, 90, 91, 93, 94, 98, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 61, 63, 69, 71, 73, 78, 81, 82, 84, 89, 90, 91, 93, 94, 97, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 73, 79, 81, 82, 108], "latter": [2, 38, 42, 73, 104], "compon": [2, 42, 73], "__": [2, 42, 73], "set_score_request": [2, 72, 73], "structur": [3, 70, 93, 95, 97, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 61, 70, 71, 75, 77, 81, 91, 93, 95, 96, 97, 98, 99, 103, 108], "channel": [3, 88, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 62, 87, 90, 96], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 62, 63, 84, 97, 99], "un": 3, "under": [3, 10, 38, 42, 62, 69, 70, 90, 95, 98, 104], "joint": [3, 37, 44, 47, 57, 62, 63, 96], "num_label_issu": [3, 41, 44, 63, 78, 82, 84], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 63, 102], "don": [3, 10, 83, 90, 91, 94, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 63, 99], "off": [3, 44, 57, 68, 91, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 63, 66, 69, 70, 79, 81, 82, 89, 90, 99, 107, 108], "confident_learn": [3, 44, 63, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 61, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 75, 78, 88, 89, 90, 91, 95, 97, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 89, 90, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 86, 87, 88, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 68, 69, 75, 77, 86, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106], "As": [3, 7, 83, 89, 90, 94, 98, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 60, 69, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 102], "approach": [3, 37, 41, 44, 60, 86, 93, 95, 98, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 71, 87, 90, 94, 95, 99, 106], "know": [3, 10, 89, 90, 91, 94, 97, 99, 101, 106], "cut": [3, 68, 83, 86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 69, 83, 95, 97, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 65, 66, 68, 69, 71, 74, 81, 96, 97, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 77, 78, 79, 83, 84, 88, 95, 97, 98, 102, 104, 108], "num_issu": [3, 7, 41, 88, 89, 90, 91, 93, 94, 95, 98, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 60, 61, 87, 96, 97, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 62, 63, 65, 71, 89, 90, 100, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 62, 63, 65, 73, 86, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 106], "fashion": [3, 5, 75, 86], "2x2": 3, "incorrectli": [3, 37, 62, 63, 66, 93, 98, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 63, 71, 83, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 61, 65, 68, 74, 77, 81, 82, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 63, 69, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 61, 62, 69, 78, 103, 104], "done": [3, 10, 60, 73, 89, 97, 99, 102, 104, 105], "overfit": [3, 10, 66, 69, 86, 88, 89, 90, 91, 93, 94, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 61, 62, 68, 69, 70, 71, 81, 86, 88, 89, 95, 97, 99, 102, 103], "baselin": [3, 38, 44, 87, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 63, 69, 73, 81, 97], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 61, 63, 69, 77, 79, 81, 82, 88, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 61, 70, 75, 77, 83, 87, 91, 95, 97, 98, 107], "practic": [3, 86, 87, 90, 91, 98, 99, 104, 106], "complet": [3, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 65, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 69, 79, 96], "again": [3, 60, 86, 97, 104], "simplifi": [3, 15, 97], "understand": [3, 9, 10, 37, 62, 69, 90, 95, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 70, 71, 86, 87, 89, 90, 91, 93, 95, 96, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 60, 86, 87, 90, 91, 93, 94, 95, 96, 99, 101, 102, 104, 106], "speed": [3, 44, 87, 96, 97, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 65, 81, 88, 95, 98, 103], "enumer": [3, 38, 42, 88, 89, 90, 91, 95, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 81, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 71, 75, 78, 88, 95, 97, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 65, 74, 86, 88, 95], "eqn": [3, 47], "margin": [3, 44, 47, 49, 71], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 62, 99, 105], "poorli": [3, 47, 86, 95], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 73, 74, 88, 89, 93, 99, 102, 106], "exact": [3, 10, 47, 52, 86, 89, 90, 91, 93, 95, 98], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 63, 68, 77, 79, 81, 89, 90, 91, 97, 103, 107], "percent": 3, "often": [3, 37, 47, 62, 97, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 69, 86, 87, 88, 89, 91, 93, 94, 97, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 60, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 89, 91, 95, 96, 97, 98, 99, 105, 106], "becaus": [3, 47, 53, 57, 68, 94, 95, 97, 98, 99, 101, 103, 105], "littl": [3, 41, 96, 103, 108], "uniform": [3, 71, 96, 97, 99], "20": [3, 7, 43, 82, 88, 91, 94, 95, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 91, 104], "bound": [3, 24, 26, 38, 42, 56, 65, 66, 68, 69, 103], "reason": [3, 10, 23, 38, 42, 53, 70], "comment": [3, 56, 95, 108], "end": [3, 5, 38, 42, 54, 69], "file": [3, 5, 13, 40, 41, 59, 69, 86, 88, 89, 93, 94, 96, 97, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 84, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 99, 102, 104, 106, 107, 108], "five": [3, 66, 69, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 98, 103], "confident_threshold": [3, 10, 23, 24, 41, 70], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 83, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 69, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 107, 108], "u": [4, 86, 87, 88, 89, 91, 93, 95, 97, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 95, 98, 103], "contribut": [4, 10, 19, 95, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 93, 95], "metric": [4, 5, 10, 19, 20, 22, 27, 29, 32, 45, 51, 52, 54, 55, 57, 60, 69, 70, 86, 87, 88, 91, 93, 94, 95, 98, 99, 106], "10": [4, 10, 19, 20, 24, 27, 29, 32, 38, 39, 52, 69, 70, 71, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 70, 90, 94, 95, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 70, 89, 90, 91, 93, 94, 95, 97, 104], "knn": [4, 10, 14, 19, 27, 29, 32, 51, 52, 53, 54, 55, 70, 93, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 61, 65, 66, 68, 69, 70, 73, 77, 91, 96, 98], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 60, 61, 87, 90, 94, 95, 97, 98, 102, 103, 106], "lowest": [4, 10, 61, 69, 90, 91, 93, 95, 97, 98, 101, 102, 103, 107], "fall": [4, 10, 68, 77, 81, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 62, 63, 66, 73, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 70, 95, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 63, 66, 69, 71, 78, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 70, 83, 87, 88, 89, 90, 93, 94, 95, 98, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 63, 83, 87, 88, 89, 90, 91, 94, 97, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 61, 86, 88, 95, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 62, 88, 89, 90, 91, 93, 94, 98, 99], "num_featur": [4, 5, 17, 38, 42, 60], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 68, 70, 93, 95, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 60, 95, 98], "nearestneighbor": [4, 5, 10, 19, 52, 54, 70, 93, 104], "cosin": [4, 10, 52, 53, 55, 70, 95, 104], "dim": [4, 70, 91, 107], "euclidean": [4, 5, 10, 52, 53, 55, 68, 70, 93], "dimension": [4, 27, 53, 57, 88, 99, 104], "scikit": [4, 42, 53, 54, 57, 70, 83, 86, 87, 88, 89, 90, 93, 94, 95, 97, 106], "fewer": [4, 10, 44, 57, 70, 95, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 59, 70, 84, 88, 89, 90, 91, 93, 94, 98, 99], "exce": [4, 52, 91, 95], "transform": [4, 10, 33, 49, 52, 55, 57, 70, 71, 86, 87, 90, 91, 94, 95, 98, 104, 108], "rel": [4, 10, 37, 52, 61, 62, 70, 89, 90, 91, 93, 94, 98, 99, 104], "adjust": [4, 39, 44, 52, 65, 70, 71, 83, 95, 98, 99], "closer": [4, 10, 68, 95, 103], "highli": [4, 90, 91], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 69, 95, 96, 104], "convers": 4, "neg": [4, 10, 68, 69, 89, 90, 95, 96], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 97], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 73, 75, 77, 91, 94, 96, 97], "55": [4, 56, 95, 96, 103, 106], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 88, 91, 92, 93, 94, 95, 97, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 95, 96], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 61, 69, 78, 79, 86, 87, 88, 89, 93, 94, 95, 98, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 59, 63, 70, 73, 74, 83, 95, 105], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 59, 60, 75, 77, 95], "pip": [5, 7, 9, 12, 36, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 70, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 83, 96], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "image_kei": [5, 10, 91, 95], "interfac": [5, 9, 10, 54, 83, 86, 87, 90, 93, 94, 96, 97, 98, 99, 102, 104, 106], "librari": [5, 10, 42, 54, 66, 69, 70, 83, 87, 89, 94, 95, 96, 97], "goal": [5, 106], "track": [5, 7, 14, 15, 83, 89, 96, 97, 99], "intermedi": [5, 9, 90], "statist": [5, 10, 14, 23, 27, 37, 61, 62, 69, 90, 93, 94, 95, 98, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 61, 68, 77, 81, 84, 87, 88, 91, 94, 95, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 91], "face": [5, 10, 13, 17, 91, 96, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 61, 62, 68, 70, 89, 90, 91, 94, 97, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 61, 62, 74, 78, 81, 82, 87, 93, 94, 95, 97, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 61, 62, 65, 66, 68, 69, 89, 90, 93, 94, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 69, 88, 89, 95, 97, 103], "local": [5, 7, 10, 13, 38, 39, 42, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 70, 79, 81, 82, 83, 85, 89, 90, 92, 96, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 86, 87, 93, 94, 98, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 61, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 87, 89, 90, 94, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 66, 68, 69, 70, 75, 77, 78, 83, 89, 90, 92, 96, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 86, 87, 95, 106], "pil": [5, 91], "cleanvis": [5, 10, 95], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 79, 81, 90, 91, 97, 100, 102, 107], "load_dataset": [5, 13, 91], "glue": 5, "sst2": 5, "properti": [5, 9, 13, 14, 35, 38, 42, 95], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 62, 69, 78, 82, 83, 96, 99, 103, 107, 108], "empti": [5, 13, 47, 61, 90, 95, 97, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 61, 63, 66, 68, 69, 71, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 83, 90, 92, 95, 96, 97, 98, 99, 102, 103, 107], "real": [5, 17, 83, 89, 90, 95, 97, 98, 99, 101, 106, 107], "world": [5, 17, 83, 89, 90, 95, 97, 98, 99, 101, 106, 107], "interact": [5, 17, 94, 97], "thereof": [5, 17], "insight": [5, 17, 69, 101], "best": [5, 9, 10, 17, 48, 61, 71, 86, 87, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 75, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 66, 69, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103], "lexicograph": [5, 48, 57, 88, 89, 90, 91, 93, 94, 98, 99, 102], "squar": [5, 57, 73, 96, 106], "csr": [5, 52, 95], "evenli": 5, "omit": [5, 68, 69, 91, 95, 103], "itself": [5, 33, 38, 42, 52, 95, 103], "three": [5, 10, 37, 61, 62, 73, 78, 86, 88, 89, 90, 93, 96, 99, 101, 105, 106, 107, 108], "indptr": [5, 95], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 83, 102, 108], "th": [5, 10, 43, 48, 56, 57, 61, 63, 66, 68, 69, 70, 79, 81, 82, 94, 102, 103, 108], "ascend": [5, 37, 62, 91, 99], "segment": [5, 75, 77, 78, 100], "reflect": [5, 10, 52, 86, 87, 93, 94, 98, 101, 103, 104, 106], "maintain": [5, 60], "kneighbors_graph": [5, 19, 54, 93], "illustr": [5, 95], "todens": 5, "second": [5, 49, 57, 69, 71, 89, 93, 97, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 83, 89, 95, 98, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 61, 95, 97, 101, 108], "unspecifi": [5, 17, 44, 63], "interest": [5, 17, 23, 78, 82, 86, 87, 94, 95, 98, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 73, 74, 95, 96, 106, 108], "random_st": [5, 86, 88, 89, 90, 91, 95, 98, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 83, 91, 95, 98, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 70, 95], "mode": [5, 12, 19, 38, 41, 42, 93, 104], "4x4": 5, "float64": [5, 27, 38, 42, 81], "compress": [5, 10, 52, 57, 75, 77, 95], "toarrai": [5, 52, 95], "NOT": [5, 41, 94], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 90], "suppos": [5, 10, 66, 86, 87, 104, 106], "who": [5, 68, 86, 93, 95, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 60, 89, 97], "clean_learning_kwarg": [5, 10, 11, 24, 31, 97, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 84], "prune_by_noise_r": [5, 44, 63, 99], "report": [5, 7, 10, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 82, 83, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34, 95, 98], "show_all_issu": [5, 34, 95, 98], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 59, 60, 62, 67, 76, 77, 79, 80, 81, 84, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 69, 78, 82, 86, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 63, 71, 82, 95, 108], "onc": [5, 10, 23, 37, 38, 42, 86, 89, 97, 98, 99, 102, 103], "familiar": [5, 95], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 61, 62, 65, 68, 69, 73, 77, 78, 79, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 65, 68, 70, 71, 77, 81, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 61, 70, 81, 89, 90, 93, 95, 98, 99, 103], "issue_summari": [5, 7, 10, 14, 95], "With": [5, 9, 10, 41, 87, 94, 97, 99, 101, 106, 107, 108], "usag": [5, 41, 60], "usual": [5, 13, 33, 34, 91, 101, 106], "ti": [5, 61], "exhibit": [5, 7, 10, 14, 78, 88, 89, 90, 91, 93, 94, 98, 99, 103], "ie": [5, 73], "likelihood": [5, 10, 41, 43, 44, 63, 68, 70, 71, 75, 79, 95], "wherea": [5, 10, 57, 63, 86, 87, 95, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 71, 83, 89, 90, 95, 98, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 10, 23, 38, 42, 96], "non_iid": [5, 10, 11, 15, 27, 90, 91, 93, 94, 95, 98, 99], "hypothesi": [5, 95], "iid": [5, 7, 9, 27, 83, 93, 98, 99], "never": [5, 88, 98, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 71, 103], "123": [5, 89, 90], "456": [5, 86, 87, 88], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 60, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 65, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 89, 90, 91, 93, 94, 98, 99], "789": 5, "get_issu": [5, 10, 14, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 88, 89, 90, 91, 93, 94, 95, 98, 99], "focu": [5, 10, 14, 94, 95, 98, 107, 108], "full": [5, 10, 14, 41, 60, 69, 91, 98, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 62, 78, 82, 83, 107], "specific_issu": [5, 14], "lie": [5, 10, 70, 71, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99], "get_issue_summari": [5, 10, 14, 90, 95], "get_info": [5, 10, 14, 90, 94, 95, 96], "yet": [5, 18, 28, 60, 96, 98, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 89], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 88, 89, 91], "load": [5, 13, 41, 69, 91, 96, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 61, 83, 89, 94], "overwrit": [5, 89], "separ": [5, 37, 49, 65, 89, 90, 91, 95, 97, 98, 103, 105], "static": 5, "rememb": [5, 94, 97, 98, 99], "part": [5, 10, 38, 42, 44, 66, 68, 69, 88, 89, 95, 96, 98, 107, 108], "ident": [5, 10, 23, 57, 94, 95], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 83, 86, 87, 96, 98, 101, 106], "walk": [7, 98], "alongsid": [7, 38, 42, 89, 97], "pre": [7, 8, 10, 38, 42, 83, 89, 90, 106], "runtim": [7, 38, 41, 42, 73, 75, 77, 88, 91, 97, 98], "issue_manager_factori": [7, 15, 89], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 87, 95, 99, 106], "next": [7, 61, 83, 86, 87, 88, 93, 94, 95, 97, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 89, 90, 95], "mark": [7, 10, 84, 103, 104, 106], "regard": [7, 90, 98, 99], "rand": [7, 49, 52, 89, 90, 95], "is_": [7, 10, 89], "_issu": [7, 10, 89], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "whole": [7, 10, 27, 38, 42, 90, 95], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "popul": [7, 94, 98], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 78, 82, 95, 97, 102], "intermediate_arg": 7, "min": [7, 49, 68, 81, 89, 97, 104], "sin_filt": 7, "sin": 7, "arang": [7, 95], "kernel": [7, 95], "affect": [7, 10, 38, 42, 53, 75, 81, 94, 95, 97], "easili": [7, 10, 47, 84, 86, 87, 88, 90, 93, 94, 98, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 83, 96, 104], "sai": [7, 10, 38, 42, 95, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 68, 71, 87, 93, 94, 95, 97, 99, 101, 104], "try": [7, 9, 10, 41, 44, 60, 61, 75, 77, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 104, 105, 106, 107], "won": [7, 38, 42, 89, 90, 97, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 89], "instanti": [7, 17, 41, 60, 70, 87, 88, 90, 93], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 69, 88, 89, 90, 91, 93, 94, 98, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 60, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 60, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 89, 90, 95, 96, 98, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32, 83, 98], "group": [8, 9, 27, 32, 83, 96, 98, 103, 108], "dbscan": [8, 10, 32], "hdbscan": 8, "etc": [8, 10, 23, 33, 38, 42, 47, 60, 61, 79, 83, 89, 90, 93, 94, 95, 97, 98, 99, 102, 106], "sensit": [8, 10, 55, 95, 98], "ep": [8, 32, 69], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 95], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 32, 95], "cluster_id": [8, 10, 11, 32, 95], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 90, 91, 93, 94, 95, 98, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 73, 95, 97, 98, 105], "nondefault": 9, "Near": [9, 97], "imbal": [9, 22, 65, 70, 71, 90], "spuriou": [9, 91], "correl": [9, 91], "null": [9, 11, 15, 22, 90, 91, 94, 98, 99], "togeth": [9, 10, 47, 87, 89, 90, 91, 93, 94, 98, 99, 106, 108], "built": [9, 49, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "own": [9, 38, 40, 42, 54, 59, 65, 66, 69, 75, 79, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 60, 95, 98, 104], "fulli": [9, 10, 38, 42, 60, 97], "platform": [9, 10, 83, 86, 87, 90, 91, 93, 94, 96, 97, 99, 102, 104, 105, 106], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 60, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 71, 86, 93, 97, 98, 99, 106, 107], "100x": [9, 10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "faster": [9, 10, 41, 70, 73, 75, 77, 83, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 106], "intellig": [9, 10, 98], "quickli": [9, 10, 39, 86, 88, 91, 93, 94, 97, 98, 102, 104, 105, 107, 108], "fix": [9, 10, 61, 86, 87, 90, 93, 94, 95, 96, 98, 99, 102, 104, 105, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 61, 62, 68, 87, 91, 94, 95, 97, 106], "power": [9, 10, 91, 96, 99, 108], "automl": [9, 10, 83, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 105, 106], "system": [9, 10, 88, 91, 107], "foundat": [9, 10, 83, 86, 87, 90, 93, 94, 95, 96, 99, 102, 104, 105, 106], "improv": [9, 10, 61, 86, 87, 90, 91, 96, 97, 99, 100, 106, 107], "click": [9, 10, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 87, 88, 94, 96, 98, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 86, 87, 90, 96, 97, 98, 106], "free": [9, 10, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 102, 104, 105, 106], "page": [10, 90, 97, 98, 99], "variou": [10, 14, 31, 40, 58, 59, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103], "why": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "matter": [10, 37, 62], "didn": [10, 95, 98], "plu": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "class_imbal": [10, 11, 15, 21, 90, 91, 93, 94, 95, 98, 99], "data_valu": [10, 11, 15, 22, 95], "No": [10, 11, 86, 87, 94, 95, 97], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 68, 86, 87, 108], "issue_scor": 10, "atyp": [10, 70, 89, 90, 91, 93, 94, 98, 99, 104], "datapoint": [10, 32, 44, 49, 57, 71, 74, 83, 86, 87, 88, 89, 90, 93, 94, 97, 98, 105, 106], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 88, 95], "expertis": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "interpret": [10, 96, 97, 99, 102, 106], "annot": [10, 37, 48, 61, 62, 63, 65, 66, 68, 69, 78, 81, 82, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 93, 94], "preced": 10, "incorrect": [10, 68, 71, 74, 86, 88, 89, 90, 91, 93, 94, 95, 98, 99, 103, 106], "due": [10, 41, 44, 71, 75, 77, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106], "appear": [10, 37, 48, 62, 63, 66, 74, 90, 91, 93, 94, 95, 98, 106, 107], "now": [10, 41, 84, 86, 87, 88, 90, 95, 97, 98, 101, 103, 104, 106, 108], "token": [10, 43, 56, 77, 78, 79, 80, 81, 82, 97, 99, 100], "hamper": [10, 91, 96], "analyt": [10, 83, 95, 97, 101], "lead": [10, 68, 71, 91, 95, 98, 103], "draw": [10, 89, 90], "conclus": [10, 94], "let": [10, 38, 42, 70, 71, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 106], "head": [10, 86, 87, 88, 90, 91, 93, 94, 95, 96, 98, 99, 101, 106], "97": [10, 86, 96, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 86, 90, 95, 96, 99, 103], "680894": 10, "41": [10, 95, 96, 98, 103, 106, 108], "746043": 10, "794894": 10, "98": [10, 96, 97, 98, 106], "802911": 10, "give": [10, 49, 71, 99, 101, 107], "li": [10, 70], "especi": [10, 86, 87, 91, 95, 97, 106], "veri": [10, 37, 62, 66, 68, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106], "rare": [10, 44, 69, 89, 90, 91, 93, 94, 97, 98, 99], "anomal": [10, 71, 89, 90, 91, 93, 94, 98, 99], "articl": [10, 41, 97], "blog": 10, "unexpect": [10, 38, 42, 94], "consequ": 10, "inspect": [10, 87, 88, 90, 91, 98, 99, 103, 106], "011562": 10, "62": [10, 95, 98, 99, 103, 106], "019657": 10, "22": [10, 88, 89, 91, 95, 96, 98, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 94, 95, 96, 103, 108], "056865": 10, "smaller": [10, 70, 102, 103], "extrem": [10, 89, 90, 91, 93, 94, 95, 97, 98, 99], "record": [10, 38, 42, 88, 93, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 82], "resolut": 10, "video": [10, 96], "audio": [10, 89, 90, 92, 97], "minor": [10, 56], "variat": 10, "translat": [10, 98], "d": [10, 55, 86, 93, 94, 95, 97, 98, 99, 102, 106, 108], "constant": [10, 32, 73], "median": [10, 31, 55], "question": [10, 23, 83, 99], "nearli": [10, 23, 90, 91, 93, 94], "awar": [10, 84, 99], "presenc": [10, 52, 54, 99], "36": [10, 95, 96, 98, 108], "066009": 10, "80": [10, 39, 86, 93, 98, 102, 106], "003906": 10, "093245": 10, "005599": 10, "27": [10, 93, 95, 96, 98, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 95, 96, 98, 99, 102, 106], "signific": [10, 86, 87, 90, 93, 94, 96, 98, 99, 102, 104, 106], "violat": [10, 83, 93, 94, 95, 98, 99], "assumpt": [10, 93, 94, 95, 98, 99], "changepoint": [10, 93, 94, 98, 99], "shift": [10, 52, 54, 93, 94, 98, 99], "drift": [10, 90, 93, 95, 98, 99], "autocorrel": [10, 93, 94, 98, 99], "almost": [10, 93, 94, 98, 99], "adjac": [10, 52, 93, 94, 98, 99], "tend": [10, 37, 47, 93, 94, 98, 99, 107, 108], "sequenti": [10, 38, 42, 60, 91], "pai": [10, 94, 95], "attent": [10, 95], "realli": [10, 87, 94, 98, 101, 107], "mere": 10, "highlight": [10, 78, 82, 89, 90, 93, 95, 107], "necessarili": [10, 61, 69, 94, 98, 99], "wrong": [10, 61, 66, 68, 84, 87, 89, 90, 94, 97, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 81, 86, 93, 94, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 66, 69, 103], "x2": [10, 66, 69, 103], "10th": 10, "100th": 10, "90": [10, 81, 86, 93, 98, 99, 105, 106], "similarli": [10, 38, 42, 89, 91, 93, 97, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 69, 101], "blogpost": 10, "proper": [10, 57, 61, 66, 69, 86, 91, 94, 97, 101, 103], "scenario": [10, 52, 54, 71, 89, 90], "underli": [10, 43, 54, 70, 79, 81, 108], "stem": [10, 70, 104], "evolv": 10, "influenc": 10, "act": [10, 68, 89], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 60, 62, 68, 71, 75, 77, 78, 83, 91, 95, 98], "problem": [10, 33, 41, 49, 78, 83, 89, 90, 91, 94, 95, 97], "deploy": [10, 86, 87, 99, 106], "overlook": [10, 68, 103], "fact": 10, "thu": [10, 37, 42, 62, 86, 88, 93, 94, 98, 99, 105, 108], "diagnos": [10, 90, 97], "24": [10, 88, 95, 96, 98, 99, 101, 103, 106], "681458": 10, "37": [10, 89, 95, 96, 98], "804582": 10, "64": [10, 42, 86, 91, 93, 95, 99, 103], "810646": 10, "815691": 10, "78": [10, 86, 93, 96, 98, 99, 103, 106], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 69, 97], "rarest": [10, 90, 98], "q": [10, 95, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 91, 94, 95, 96, 98, 99, 101, 108], "75": [10, 49, 89, 90, 95, 96, 98, 101, 102, 103, 106, 108], "33": [10, 38, 42, 95, 96, 98, 103], "68": [10, 86, 96, 98, 99, 103], "excess": [10, 91], "dark": [10, 95, 107], "bright": [10, 108], "blurri": [10, 91, 95], "lack": [10, 60, 95, 98], "unusu": [10, 103, 104], "discuss": [10, 97], "earlier": [10, 87, 108], "unintend": [10, 93, 94, 95], "relationship": [10, 37], "irrelev": 10, "exploit": 10, "fail": [10, 13], "unseen": 10, "hold": [10, 13], "aris": 10, "captur": [10, 37, 88, 103, 104, 107], "environment": 10, "preprocess": [10, 86, 87, 90, 93, 95, 104, 106], "systemat": [10, 78, 82, 101], "photograph": 10, "uncorrelated": [10, 95], "spurious": 10, "review": [10, 86, 87, 90, 93, 94, 96, 97, 98, 99, 103, 106, 107, 108], "troublesom": 10, "spurious_correl": [10, 95], "correlations_df": [10, 95], "blurry_scor": [10, 95], "559": [10, 98], "dark_scor": [10, 91, 95], "808": 10, "light_scor": [10, 95], "723": [10, 93, 98], "odd_size_scor": [10, 95], "957": 10, "odd_aspect_ratio_scor": [10, 95], "835": 10, "grayscale_scor": [10, 95], "003": 10, "low_information_scor": [10, 91, 95], "688": [10, 98, 106], "categor": [10, 70, 85, 86, 89, 90, 92, 97, 98, 106], "characterist": [10, 37, 95], "grayscal": [10, 91, 95], "cluster": [10, 19, 32, 98], "slice": [10, 98], "poor": [10, 95, 98], "subpopul": [10, 98], "faq": [10, 83, 90, 91, 93, 94, 100], "get_self_confidence_for_each_label": [10, 49, 71], "r": [10, 41, 73, 89, 90, 95, 106, 107], "tabular": [10, 83, 85, 89, 90, 92, 95, 97, 98, 101], "encod": [10, 50, 69, 75, 78, 86, 87, 93, 94, 97, 98, 106, 107], "71": [10, 95, 96, 98, 99, 103, 106], "70": [10, 81, 93, 95, 98], "69": [10, 98, 99, 106], "subgroup": [10, 95], "wors": [10, 95, 101], "ratio": [10, 95], "miss": [10, 28, 38, 42, 57, 66, 68, 97, 98, 103, 106], "pattern": [10, 95], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 70, 97], "quantif": 10, "39": [10, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 106, 107, 108], "32": [10, 88, 89, 95, 96, 98, 101, 103], "valuabl": [10, 19, 95], "exert": [10, 90], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 83, 96], "health_summary_kwarg": 10, "tandem": [10, 96], "view": [10, 38, 42, 43, 44, 77, 79, 81, 83, 86, 87, 88, 89, 90, 93, 94, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 70, 104], "outsid": [10, 97, 102], "outlierissuemanag": [10, 15, 22, 29], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107], "howev": [10, 38, 42, 52, 57, 86, 87, 88, 91, 93, 94, 95, 98, 101, 105, 107], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 62], "versa": [10, 62], "light": [10, 91, 95, 96, 103, 107], "29": [10, 91, 95, 96, 98, 101, 102, 103, 107, 108], "low_inform": [10, 91, 95], "odd_aspect_ratio": [10, 91, 95], "35": [10, 89, 95, 96, 98, 101, 102, 103], "odd_siz": [10, 91, 95], "doc": [10, 38, 42, 70, 83, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "is_outlier_issu": [11, 89, 90, 91, 93, 94, 95, 98, 99], "outlier_scor": [11, 29, 89, 90, 91, 93, 94, 95, 98, 99, 104], "is_near_duplicate_issu": [11, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_scor": [11, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_set": [11, 20, 22, 89, 90, 91, 93, 94, 97, 98, 99], "is_non_iid_issu": [11, 90, 93, 94, 95, 98, 99], "non_iid_scor": [11, 27, 90, 93, 94, 95, 98, 99], "is_class_imbalance_issu": [11, 90, 95, 98], "class_imbalance_scor": [11, 21, 90, 95, 98], "is_underperforming_group_issu": [11, 90, 95, 98], "underperforming_group_scor": [11, 32, 90, 95, 98], "is_null_issu": [11, 90, 95, 98], "null_scor": [11, 28, 90, 95, 98], "is_data_valuation_issu": [11, 95], "data_valuation_scor": [11, 19, 95], "studio": [12, 83, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 102, 104, 105, 106], "data_issu": [12, 16, 17, 34], "issue_find": [12, 16], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 60, 71, 89, 90, 91, 98, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 91], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": 14, "strategi": [14, 49, 95, 97], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 63, 66, 69, 73, 75, 77, 89, 90, 97, 98], "recomput": [14, 87], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 62, 83], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 70, 89], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 75, 77, 98], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 95, 98, 99, 103, 107, 108], "creation": [17, 42, 95], "execut": [17, 38, 42, 89, 97, 103], "coordin": [17, 66, 68, 69, 103, 108], "At": [17, 69, 97], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 60], "vstack": [19, 57, 91, 96, 97, 99, 101, 102], "25": [19, 27, 38, 49, 55, 90, 91, 95, 96, 98, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 89, 90, 91, 97, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 87, 94, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 86, 88, 89, 91, 95, 96, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 68, 83, 86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 70, 71, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "perform_clust": [22, 32], "get_underperforming_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 61, 95, 97, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 65, 68, 69], "scalartyp": [24, 26], "covari": [24, 26, 73, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 71, 75, 77, 103, 107], "empir": [27, 48, 61], "cumul": 27, "ecdf": 27, "histogram": [27, 93, 95, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 60, 91, 95, 98, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 77, 81, 89, 104, 106], "prompt": 28, "address": [28, 87, 89, 90, 94, 97], "enabl": [28, 42, 54, 98], "scaling_factor": [29, 55], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 69, 87, 108], "50": [32, 42, 95, 97, 98, 99, 101, 103, 104, 106], "keepdim": [32, 97], "signifi": 32, "absenc": 32, "int64": [32, 88, 98, 101], "npt": 32, "int_": 32, "id": [32, 61, 89, 91, 95, 97, 101], "unique_cluster_id": 32, "exclud": [32, 34, 43, 78, 82, 89, 108], "worst": [32, 49, 101], "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35, 98], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 70, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 88, 90, 95, 97], "datset": 34, "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 89, 90], "continu": [35, 60, 86, 87, 91, 94, 97, 101, 103, 106, 108], "binari": [35, 49, 57, 63, 65, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 89], "typeerror": [35, 49], "12": [35, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 61, 62, 71, 89, 90, 91, 96, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 86, 87, 88, 90, 91, 93, 94, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 97, 98, 99], "rank_classes_by_label_qu": [37, 90], "merg": [37, 52, 56, 83, 96, 97, 98, 108], "find_overlapping_class": [37, 97, 99], "problemat": [37, 62, 78, 82, 88, 103, 108], "unnorm": [37, 62, 99], "abov": [37, 38, 41, 42, 54, 57, 61, 68, 69, 71, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 86, 88, 89, 90, 93, 95, 98, 99, 101], "df": [37, 57, 82, 88, 95, 97], "overall_label_qu": [37, 62], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 62, 71], "label_nois": [37, 62], "human": [37, 96, 107, 108], "clearli": [37, 71, 91, 103, 107], "num": [37, 62, 96, 99], "overlap": [37, 83, 95, 96, 97, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 71, 95, 98], "vehicl": [37, 96], "truck": [37, 95, 96, 104, 107], "intuit": [37, 62], "car": [37, 96, 103, 107], "frequent": [37, 61, 95, 97, 98, 106], "l": [37, 38, 42, 66, 68, 69], "class1": 37, "class2": 37, "dog": [37, 57, 62, 64, 78, 96, 97, 104, 105, 108], "cat": [37, 57, 62, 64, 96, 97, 104, 105], "co": [37, 38, 39], "noisy_label": [37, 89, 90, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 62, 69], "overall_label_health_scor": [37, 62, 99], "half": [37, 38, 40, 42, 62, 96, 108], "health_scor": [37, 62], "classes_by_label_qu": [37, 90], "cnn": [38, 40, 42, 91], "cifar": [38, 39, 95, 96, 104], "teach": [38, 39], "bhanml": 38, "blob": [38, 95], "master": [38, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 69, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 91, 101], "overridden": [38, 42], "although": [38, 42, 70, 86, 93, 98], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 62, 69, 77, 81, 97, 98, 101, 102, 103, 105, 108], "hook": [38, 42, 96], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 69], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 91], "init": [38, 42, 99], "no_grad": [38, 42, 91, 104], "init_weight": [38, 42], "linear": [38, 42, 87, 91, 94], "fill_": [38, 42], "net": [38, 42, 88, 91, 96], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 91], "tensor": [38, 39, 42, 88, 91, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 88], "buffer": [38, 40, 42], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 60], "cpu": [38, 40, 42, 44, 88, 91], "move": [38, 42, 49, 84, 96], "cuda": [38, 40, 42, 88, 91], "devic": [38, 42, 88, 91, 98], "gpu": [38, 42, 87, 88, 94], "live": [38, 42], "copi": [38, 42, 73, 86, 88, 89, 90, 93, 95, 97, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 91, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 83, 89, 95, 96, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 73, 74, 95, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 94], "resolv": [38, 42, 95, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 91, 95, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 91], "break": [38, 42, 91, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 91], "16": [38, 42, 49, 52, 60, 77, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 71, 95, 96, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 90, 91, 95, 97, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 88, 89, 90, 96, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 95, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 69, 89, 91, 95, 97, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 88, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 86, 93], "fire": [38, 42, 96], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 89, 90], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 91, 93, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 87, 88, 94], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 60, 84, 97], "design": [38, 42, 52], "ordereddict": [38, 42], "detach": [38, 42, 91], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 62, 68], "complex": [38, 42, 98], "integr": [38, 42, 54, 83, 97], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 87, 94, 96], "desir": [38, 42, 52, 56, 69], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 88], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 91], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 60, 91], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 91, 97], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 71, 95, 97], "250": [39, 89, 90, 99, 103], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 87, 91, 94, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 91, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 59, 95, 108], "wish": [40, 59, 98, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 97], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 76, 77, 78, 79, 80, 81, 82, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 75, 77, 91, 97, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 91], "loader": [40, 42, 91], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 84], "mini": [41, 75, 77, 97], "low_self_confid": [41, 44, 63], "self_confid": [41, 44, 45, 49, 63, 65, 71, 79, 81, 86, 87, 97, 99], "conveni": [41, 54, 86, 87, 88, 94, 98], "script": 41, "labels_fil": [41, 97], "pred_probs_fil": [41, 97], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 61, 107], "read": [41, 46, 90, 97, 99, 104, 108], "zarr": [41, 97], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 97], "hdf5": 41, "further": [41, 43, 62, 63, 65, 68, 69, 77, 78, 88, 95, 97, 98], "yourfil": 41, "npy": [41, 96, 97, 107], "mmap_mod": [41, 107], "tip": [41, 44, 60, 97], "save_arrai": 41, "your_arrai": 41, "disk": [41, 96, 97], "npz": [41, 108], "maxim": [41, 61, 75, 77, 98, 107], "multiprocess": [41, 44, 63, 75, 77, 91, 97], "linux": [41, 75, 77], "physic": [41, 44, 75, 77, 103], "psutil": [41, 44, 75, 77], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 69, 89, 97, 98, 103, 104], "store_result": 41, "becom": [41, 95, 104], "verifi": [41, 54, 97, 98, 101, 104], "long": [41, 61, 70, 98, 101], "enough": [41, 57, 95, 97], "chunk": [41, 105], "ram": [41, 96], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 97], "shortcut": 41, "encount": [41, 44, 75], "1000": [41, 88, 94, 97, 104], "aggreg": [41, 45, 49, 61, 65, 68, 71, 81, 97, 99, 101], "seen": [41, 97, 98, 104, 108], "far": [41, 61, 98], "label_quality_scor": [41, 65, 68, 71, 74, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 63, 65, 71, 79, 81], "low_normalized_margin": [41, 44, 63], "issue_indic": [41, 68, 91], "update_num_issu": 41, "arr": [41, 97], "chunksiz": 41, "convnet": 42, "bespok": [42, 60], "download": [42, 88, 95, 97, 104], "mnist": [42, 83, 88, 96], "handwritten": 42, "digit": [42, 88, 96], "last": [42, 49, 66, 69, 89, 90, 97, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 71, 73, 88, 95, 99, 102, 103], "templat": 42, "flexibli": 42, "among": [42, 61, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 87, 98, 104], "span": [43, 98], "sentenc": [43, 56, 79, 81, 82, 87, 94], "token_classif": [43, 56, 79, 81, 82, 97], "encourag": [44, 63, 71, 74], "multilabel_classif": [44, 62, 63, 65, 71, 97, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 63, 71, 99], "num_to_remove_per_class": [44, 63], "bad": [44, 52, 63, 68, 71, 94, 97], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 63, 65, 71, 79, 81], "label_issues_idx": [44, 71, 98], "entropi": [44, 46, 48, 49, 70, 71], "prune_by_class": [44, 63, 99], "predicted_neq_given": [44, 63, 99], "prune_counts_matrix": 44, "smallest": [44, 71], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 83, 87, 97], "too": [44, 49, 52, 70, 91, 97, 98, 103], "thread": [44, 63], "window": [44, 96], "shorter": [44, 66], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 97], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 84], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 65], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 65], "softmin": [45, 49, 65, 68, 77, 81], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 95], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 60, 61, 83, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 88, 95], "behav": 46, "unnecessari": [46, 97], "slightli": [46, 86, 87], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": [47, 98], "propag": 47, "throughout": [47, 57, 73, 82, 88, 101, 107, 108], "increas": [47, 55, 68, 70, 71, 88, 89, 95, 97, 101, 102, 108], "dot": [47, 81, 97], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 61], "ensembl": [48, 49, 61, 71, 86, 93, 97, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 61], "format_multiannotator_label": [48, 61, 101], "formatted_label": [48, 57], "old": [48, 57, 84, 96], "check_consensus_label_class": 48, "consensus_label": [48, 61, 101], "consensus_method": [48, 61], "consensu": [48, 61, 83, 100, 108], "establish": [48, 60, 87, 106], "compute_soft_cross_entropi": 48, "soft": [48, 96], "find_best_temp_scal": 48, "coarse_search_rang": [48, 73, 97], "fine_search_s": [48, 73, 97], "temperatur": [48, 49, 68, 77, 81], "scale": [48, 55, 86, 95, 96, 97, 104, 107], "factor": [48, 49, 55, 75, 77], "minim": [48, 68, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 96], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 71], "get_confidence_weighted_entropy_for_each_label": [49, 71], "scorer": 49, "alpha": [49, 65, 68, 89, 90, 95, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 63, 93, 94, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 91, 93, 97, 103], "discount": 49, "s_ema": 49, "175": [49, 91, 98, 99, 103], "underflow": 49, "nan": [49, 61, 86, 93, 95, 98, 101, 106], "aggregated_scor": 49, "base_scor": [49, 98], "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 65], "n_sampl": [49, 95], "n_label": 49, "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": [49, 98], "get_label_quality_scores_per_class": [49, 64, 65], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 88], "wider": 49, "splitter": 49, "kfold": [49, 91], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 91, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 63, 69, 75, 78, 86, 93, 96, 97, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 70], "reli": [52, 70, 87, 88, 89, 90, 94, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 97], "manner": [52, 65, 86, 87, 95, 101, 106], "701": 52, "900": [52, 86, 93, 106], "436": [52, 98], "000": [52, 87, 91, 94, 95, 96, 108], "idea": [52, 71, 98, 103], "dens": [52, 60, 95], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 62, 102], "vari": [52, 68, 90], "exact_duplicate_set": 52, "main": [52, 61], "front": [52, 96], "consider": 52, "capabl": [52, 83, 98], "come": [52, 57, 89, 90, 97, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 61, 86, 93, 95, 98], "slower": 53, "decid": [53, 61, 87, 94, 96, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 70], "spatial": [53, 70], "decis": [53, 86, 89, 90, 98], "That": [53, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 66, 69, 70, 88, 89, 90, 91, 93, 94, 97, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "exp": [55, 70, 71, 89], "dt": 55, "right": [55, 66, 69, 87, 94, 102, 103, 104], "strength": [55, 69, 95], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 83, 96], "thumb": 55, "ood_features_scor": [55, 70, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 88, 89, 97, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 83, 97, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 89, 90, 91, 93, 95, 108], "nbitbas": [56, 65], "probs_merg": 56, "0125": [56, 81], "0375": 56, "075": 56, "025": 56, "color": [56, 78, 89, 90, 93, 95, 99, 102, 104, 106, 107], "red": [56, 69, 89, 90, 95, 96, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 71, 86, 93, 97, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 61, 84, 91, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 69, 94, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 89, 90, 95, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 70, 87, 88, 93, 94, 98, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 83, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 88, 91, 96, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 66, 69, 95, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 69, 78, 82, 87, 88, 93, 94, 95, 99, 108], "jupyt": [57, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 61, 88, 90, 96, 97, 98, 99, 101, 102, 103, 105, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 63], "keraswrappermodel": [59, 60, 83], "keraswrappersequenti": [59, 60], "tf": [60, 88], "legaci": 60, "newer": 60, "interim": 60, "advis": [60, 102], "stabil": [60, 70], "until": 60, "accommod": 60, "keraswrapp": 60, "huggingface_keras_imdb": 60, "unit": [60, 108], "model_kwarg": [60, 73], "compile_kwarg": 60, "sparsecategoricalcrossentropi": 60, "layer": [60, 87, 88, 94, 104], "my_keras_model": 60, "from_logit": 60, "declar": 60, "apply_softmax": 60, "analysi": 61, "analyz": [61, 83, 95, 99, 101, 102], "get_label_quality_multiannot": [61, 101], "vote": 61, "crowdsourc": [61, 83, 101], "dawid": [61, 101], "skene": [61, 101], "analog": [61, 96, 101], "chosen": [61, 71, 97, 101], "crowdlab": [61, 101], "unlabel": [61, 91, 101, 104, 107], "get_active_learning_scor": [61, 101], "activelab": [61, 101], "priorit": [61, 68, 103, 107, 108], "showcas": 61, "best_qual": 61, "quality_method": 61, "calibrate_prob": 61, "return_detailed_qu": 61, "return_annotator_stat": 61, "return_weight": 61, "label_quality_score_kwarg": 61, "did": [61, 62, 86, 87, 88, 93, 99, 101, 106], "majority_vot": 61, "broken": [61, 69, 96, 106], "highest": [61, 69, 89, 91, 98, 105], "0th": 61, "consensus_quality_scor": [61, 101], "annotator_agr": [61, 101], "reman": 61, "1st": 61, "2nd": [61, 75], "3rd": 61, "consensus_label_suffix": 61, "consensus_quality_score_suffix": 61, "suffix": 61, "emsembl": 61, "weigh": [61, 96], "agreement": [61, 101], "agre": 61, "prevent": [61, 97], "overconfid": [61, 105], "detailed_label_qu": [61, 101], "annotator_stat": [61, 101], "model_weight": 61, "annotator_weight": 61, "warn": 61, "labels_info": 61, "num_annot": [61, 101], "deriv": [61, 101], "quality_annotator_1": 61, "quality_annotator_2": 61, "quality_annotator_m": 61, "annotator_qu": [61, 101], "num_examples_label": [61, 101], "agreement_with_consensu": [61, 101], "worst_class": [61, 101], "trustworthi": [61, 101, 106], "get_label_quality_multiannotator_ensembl": 61, "weigtht": 61, "budget": 61, "retrain": [61, 87, 106], "active_learning_scor": 61, "active_learning_scores_unlabel": 61, "get_active_learning_scores_ensembl": 61, "henc": [61, 88, 89, 98, 101], "get_majority_vote_label": [61, 101], "event": 61, "lastli": [61, 93], "convert_long_to_wide_dataset": 61, "labels_multiannotator_long": 61, "wide": [61, 86, 87, 88], "labels_multiannotator_wid": 61, "common_multilabel_issu": [62, 64], "exclus": [62, 102], "rank_classes_by_multilabel_qu": [62, 64], "overall_multilabel_health_scor": [62, 64], "multilabel_health_summari": [62, 64], "classes_by_multilabel_qu": 62, "inner": [63, 77, 95], "find_multilabel_issues_per_class": [63, 64], "per_class_label_issu": 63, "label_issues_list": 63, "pred_probs_list": [63, 71, 91, 99], "anim": [64, 104], "rat": 64, "predat": 64, "pet": 64, "reptil": 64, "box": [66, 68, 69, 96, 103], "object_detect": [66, 68, 69, 103], "return_indices_ranked_by_scor": [66, 103], "overlapping_label_check": [66, 68], "suboptim": [66, 68], "locat": [66, 68, 95, 103, 107, 108], "bbox": [66, 69, 103], "image_nam": [66, 69], "y1": [66, 69, 103], "y2": [66, 69, 103], "later": [66, 69, 70, 87, 98, 108], "corner": [66, 69, 103], "xyxi": [66, 69, 103], "io": [66, 69, 88, 95, 96], "keras_cv": [66, 69], "bounding_box": [66, 69, 103], "detectron": [66, 69, 103], "detectron2": [66, 69, 103], "readthedoc": [66, 69], "en": [66, 69], "latest": [66, 69], "visual": [66, 67, 69, 86, 89, 90, 91, 106, 108], "draw_box": [66, 69], "mmdetect": [66, 69, 103], "swap": [66, 68, 78, 82], "penal": [66, 68], "concern": [66, 68, 83, 90], "issues_from_scor": [67, 68, 76, 77, 78, 80, 81, 82, 103, 107, 108], "compute_overlooked_box_scor": [67, 68], "compute_badloc_box_scor": [67, 68], "compute_swap_box_scor": [67, 68], "pool_box_scores_per_imag": [67, 68], "object_counts_per_imag": [67, 69, 103], "bounding_box_size_distribut": [67, 69, 103], "class_label_distribut": [67, 69, 103], "get_sorted_bbox_count_idx": [67, 69], "plot_class_size_distribut": [67, 69], "plot_class_distribut": [67, 69], "get_average_per_class_confusion_matrix": [67, 69], "calculate_per_class_metr": [67, 69], "aggregation_weight": 68, "imperfect": [68, 97, 98], "chose": [68, 101, 103], "imperfectli": [68, 103], "dirti": [68, 71, 74, 106], "subtyp": 68, "badloc": 68, "nonneg": 68, "high_probability_threshold": 68, "auxiliary_input": [68, 69], "iou": [68, 69], "heavili": 68, "auxiliarytypesdict": 68, "pred_label": [68, 87], "pred_label_prob": 68, "pred_bbox": 68, "lab_label": 68, "lab_bbox": 68, "similarity_matrix": 68, "min_possible_similar": 68, "scores_overlook": 68, "low_probability_threshold": 68, "scores_badloc": 68, "accident": [68, 87, 93, 94, 97], "scores_swap": 68, "box_scor": 68, "image_scor": [68, 77, 107], "discov": [69, 90, 95, 108], "abnorm": [69, 91, 103], "auxiliari": [69, 104, 107], "_get_valid_inputs_for_compute_scor": 69, "object_count": 69, "down": 69, "bbox_siz": 69, "class_distribut": 69, "plot": [69, 89, 90, 95, 99, 102, 104, 106, 107], "sorted_idx": [69, 104], "class_to_show": 69, "hidden": [69, 104], "max_class_to_show": 69, "plt": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "matplotlib": [69, 78, 89, 90, 91, 95, 99, 102, 103, 104, 106], "pyplot": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "prediction_threshold": 69, "overlai": [69, 103], "figsiz": [69, 89, 90, 91, 95, 99, 102, 104], "save_path": [69, 103], "blue": [69, 96, 99, 103], "overlaid": 69, "side": [69, 96, 103], "figur": [69, 95, 99, 102, 104, 106], "extens": [69, 99, 101], "png": [69, 103], "pdf": [69, 70], "svg": 69, "num_proc": [69, 91], "intersect": [69, 97], "tp": 69, "fp": 69, "ground": [69, 96, 99, 101, 106], "truth": [69, 99, 101, 106], "bias": [69, 95], "avg_metr": 69, "distionari": 69, "95": [69, 79, 81, 93, 96, 98, 99, 106], "per_class_metr": 69, "Of": 70, "find_top_issu": [70, 71, 104], "behind": [70, 99], "dist_metr": 70, "subtract": [70, 71], "renorm": [70, 71, 97], "least_confid": 70, "sum_": 70, "log": [70, 71, 84], "softmax": [70, 77, 81, 91], "literatur": 70, "gen": 70, "liu": 70, "lochman": 70, "zach": 70, "openaccess": 70, "thecvf": 70, "cvpr2023": 70, "liu_gen_pushing_the_limits_of_softmax": 70, "based_out": 70, "distribution_detection_cvpr_2023_pap": 70, "fit_scor": [70, 104], "ood_predictions_scor": 70, "pretrain": [70, 87, 88, 94, 98, 104], "adjust_confident_threshold": 70, "probabilist": [70, 86, 88, 89, 90, 93, 94, 104, 105], "order_label_issu": [71, 84], "whichev": [71, 105], "argsort": [71, 87, 91, 94, 99, 103, 104, 106], "max_": 71, "get_label_quality_ensemble_scor": [71, 97, 99], "weight_ensemble_members_bi": 71, "custom_weight": 71, "log_loss_search_t_valu": 71, "0001": [71, 96], "scheme": 71, "log_loss_search": 71, "log_loss": [71, 94], "1e0": 71, "1e1": 71, "1e2": 71, "2e2": 71, "quality_scor": [71, 104], "forth": 71, "top_issue_indic": 71, "rank_bi": [71, 84], "weird": [71, 82], "minu": 71, "prob_label": 71, "max_prob_not_label": 71, "AND": [71, 94], "get_epistemic_uncertainti": [72, 73], "get_aleatoric_uncertainti": [72, 73], "corrupt": [73, 106], "linearregress": [73, 97, 106], "y_with_nois": 73, "n_boot": [73, 97], "include_aleatoric_uncertainti": [73, 97], "sole": [73, 86, 89, 98, 101, 104], "bootstrap": [73, 97, 106], "resampl": [73, 88, 97], "epistem": [73, 97, 104, 106], "aleator": [73, 97, 106], "model_final_kwarg": 73, "coars": 73, "thorough": [73, 97], "fine": [73, 87, 88, 94, 104], "grain": 73, "grid": [73, 98], "varianc": [73, 99], "epistemic_uncertainti": 73, "residu": [73, 74, 97], "deviat": [73, 103, 106], "aleatoric_uncertainti": 73, "outr": 74, "contin": 74, "raw": [74, 83, 84, 90, 91, 96, 97, 98, 101, 103, 104, 106], "aka": [74, 88, 99, 103, 106, 108], "00323821": 74, "33692597": 74, "00191686": 74, "semant": [75, 77, 78, 100], "pixel": [75, 77, 78, 91, 104, 107], "h": [75, 77, 78, 107], "height": [75, 77, 78, 107], "w": [75, 77, 78, 107], "width": [75, 77, 78, 107], "labels_one_hot": [75, 78, 107], "stream": [75, 104, 108], "downsampl": [75, 77, 107], "shrink": [75, 77], "divis": [75, 77, 89], "common_label_issu": [76, 78, 80, 82, 107, 108], "filter_by_class": [76, 78, 107], "segmant": [77, 78], "num_pixel_issu": [77, 107], "product": [77, 91, 95, 97, 98], "pixel_scor": [77, 107], "enter": 78, "legend": [78, 89, 90, 95, 102, 103, 106, 107], "colormap": 78, "background": [78, 95], "person": [78, 97, 103, 107, 108], "ambigu": [78, 82, 87, 88, 94, 96, 99, 108], "misunderstood": [78, 82], "issues_df": [78, 91], "class_index": 78, "issues_subset": [78, 82], "filter_by_token": [80, 82, 108], "token_score_method": 81, "sentence_score_method": 81, "sentence_score_kwarg": 81, "compris": [81, 82], "token_scor": [81, 108], "converg": 81, "toward": [81, 95], "_softmin_sentence_scor": 81, "sentence_scor": [81, 108], "token_info": 81, "02": [81, 89, 90, 95, 99, 103], "03": [81, 93, 95, 96, 98, 99, 103, 108], "04": [81, 93, 95, 103, 104], "08": [81, 95, 99, 103, 106, 108], "commonli": [82, 84, 89, 90, 102, 108], "But": [82, 94, 98, 99, 106, 108], "restrict": [82, 97], "reliabl": [83, 86, 88, 95, 97, 98, 101, 107], "thousand": 83, "imagenet": [83, 96], "popular": [83, 101, 103], "centric": [83, 91, 100], "minut": [83, 86, 87, 88, 93, 94, 96, 101, 102, 103, 106, 107, 108], "conda": 83, "feature_embed": [83, 104], "your_dataset": [83, 88, 89, 90, 91, 93, 94, 97], "column_name_of_label": [83, 88, 89, 90, 91, 93, 94], "tool": [83, 96, 99, 101], "catch": [83, 98], "dive": [83, 94, 95, 98], "plagu": [83, 90], "untrain": 83, "\u30c4": 83, "label_issues_info": [83, 90], "sklearn_compatible_model": 83, "framework": [83, 102, 103], "complianc": 83, "tag": [83, 102, 108], "sequenc": 83, "recognit": [83, 88, 97, 108], "train_data": [83, 86, 87, 104, 106], "gotten": 83, "test_data": [83, 86, 87, 99, 102, 104, 106], "deal": [83, 90, 95, 98], "feel": [83, 88, 90, 97], "ask": [83, 97], "slack": [83, 97], "project": [83, 98, 106], "welcom": 83, "commun": [83, 97], "guidelin": [83, 103], "piec": 83, "smart": [83, 86, 87, 90, 91, 93, 94, 96, 97, 99, 102, 104, 106], "edit": [83, 97, 98], "unreli": [83, 86, 88, 93, 94, 95, 98], "link": [83, 88, 96, 103], "older": 84, "outlin": 84, "substitut": [84, 98], "v2": [84, 86, 93], "get_noise_indic": 84, "psx": 84, "sorted_index_method": 84, "order_label_error": 84, "label_errors_bool": 84, "latent_estim": 84, "num_label_error": 84, "learningwithnoisylabel": 84, "neatli": 84, "organ": [84, 86, 93, 95, 96, 108], "reorgan": 84, "baseline_method": 84, "incorpor": [84, 99], "research": [84, 99], "polyplex": 84, "terminologi": 84, "label_error": 84, "quickstart": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "sql": [86, 93], "databas": [86, 93], "excel": [86, 93], "parquet": [86, 93], "student": [86, 93, 98, 106, 108], "grade": [86, 93, 98, 106], "exam": [86, 93, 98, 106], "letter": [86, 93, 108], "hundr": [86, 93], "mistak": [86, 87, 91, 93, 94, 98], "extratreesclassifi": 86, "extratre": 86, "Then": [86, 87, 91, 97], "ranked_label_issu": [86, 87], "branch": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "standardscal": [86, 93, 98, 104], "labelencod": [86, 87, 98], "train_test_split": [86, 87, 89, 90, 104], "accuracy_scor": [86, 87, 88, 94, 98, 99], "grades_data": [86, 93], "read_csv": [86, 87, 93, 94, 95, 98, 106], "demo": [86, 90, 93, 102], "stud_id": [86, 93, 98], "exam_1": [86, 93, 98, 106], "exam_2": [86, 93, 98, 106], "exam_3": [86, 93, 98, 106], "letter_grad": [86, 93], "f48f73": [86, 93], "53": [86, 89, 90, 93, 95, 96, 98, 102, 103], "00": [86, 89, 90, 93, 95, 96, 98, 104], "77": [86, 89, 90, 93, 98, 103], "0bd4e7": [86, 93], "81": [86, 93, 94, 98, 103, 106, 108], "great": [86, 93, 96, 98], "particip": [86, 93, 98], "cb9d7a": [86, 93], "61": [86, 93, 95, 99, 103, 106], "94": [86, 93, 96, 98, 99, 103, 106], "9acca4": [86, 93], "48": [86, 93, 95, 96, 99, 103], "x_raw": [86, 93], "labels_raw": 86, "interg": [86, 87], "categorical_featur": [86, 106], "x_encod": [86, 93], "get_dummi": [86, 93, 106], "drop_first": [86, 93], "numeric_featur": [86, 93], "scaler": [86, 93, 104], "x_process": [86, 93], "fit_transform": [86, 93, 95, 98], "bring": [86, 87, 91, 93, 94, 101, 106], "byod": [86, 87, 91, 93, 94, 101, 106], "tress": 86, "held": [86, 88, 93, 94, 96, 103, 104, 105], "straightforward": [86, 88, 93], "benefit": [86, 88, 105, 107], "num_crossval_fold": [86, 88, 93, 98, 101], "tabl": [86, 93, 96, 101], "212": [86, 98, 99], "iloc": [86, 87, 88, 93, 94, 98, 106], "92": [86, 89, 98, 99, 103], "93": [86, 96, 98, 103, 106], "827": 86, "99": [86, 95, 96, 98, 99], "86": [86, 90, 91, 93, 98, 99, 103, 106], "74": [86, 95, 98, 103, 106], "637": [86, 93], "79": [86, 96, 98, 103], "65": [86, 89, 95, 98, 103], "cheat": [86, 98], "0pt": [86, 98], "120": [86, 89, 90, 98], "233": 86, "83": [86, 98, 99, 103, 106, 108], "76": [86, 98, 99, 102, 103, 106], "suspici": [86, 93], "carefulli": [86, 91, 93, 94, 98], "examin": [86, 89, 90, 93, 95, 98, 103], "labels_train": 86, "labels_test": 86, "test_siz": [86, 87, 89, 90], "acc_og": [86, 87], "783068783068783": 86, "robustli": [86, 87, 106], "14": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [86, 87], "8095238095238095": 86, "blindli": [86, 87, 88, 97, 98, 106], "trust": [86, 87, 88, 97, 98, 99, 101, 105, 106], "effort": [86, 87, 98, 106], "cumbersom": [86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "intent": [87, 94], "servic": [87, 94, 97], "onlin": [87, 94], "bank": [87, 94, 96], "banking77": [87, 94], "oo": [87, 94], "categori": [87, 91, 94, 95, 98], "shortlist": [87, 94, 106], "scope": [87, 94], "logist": [87, 89, 90, 94, 101, 104], "probabilit": [87, 88], "drop": [87, 93, 95, 97, 98, 101, 106], "sentence_transform": [87, 94], "sentencetransform": [87, 94], "payment": [87, 94], "cancel_transf": [87, 94], "transfer": [87, 94], "fund": [87, 94], "cancel": [87, 94], "transact": [87, 94], "my": [87, 94], "revert": [87, 94], "morn": [87, 94], "realis": [87, 94], "yesterdai": [87, 94], "rent": [87, 94], "tomorrow": [87, 94], "raw_text": [87, 94], "raw_label": 87, "raw_train_text": 87, "raw_test_text": 87, "raw_train_label": 87, "raw_test_label": 87, "card_payment_fee_charg": [87, 94], "beneficiary_not_allow": [87, 94], "supported_cards_and_curr": [87, 94], "getting_spare_card": [87, 94], "change_pin": [87, 94], "lost_or_stolen_phon": [87, 94], "apple_pay_or_google_pai": [87, 94], "card_about_to_expir": [87, 94], "visa_or_mastercard": [87, 94], "card": [87, 94, 96], "utter": [87, 94], "encond": 87, "test_label": [87, 98, 99, 102, 104], "suit": [87, 94, 95, 96, 97], "electra": [87, 94], "discrimin": [87, 94], "googl": [87, 94], "train_text": 87, "test_text": 87, "home": [87, 94, 96], "runner": [87, 94], "google_electra": [87, 94], "pool": [87, 94, 97, 104], "leverag": [87, 88, 94, 97, 99, 101], "computation": [87, 88, 94], "intens": [87, 88, 94], "400": [87, 94, 98], "858371": 87, "547274": 87, "826228": 87, "966008": 87, "792449": 87, "identified_issu": [87, 106], "lowest_quality_label": [87, 88, 94, 99, 106], "to_numpi": [87, 94, 95, 98, 106], "44": [87, 95, 96, 102, 103], "646": 87, "390": 87, "628": 87, "121": [87, 99], "702": 87, "863": 87, "135": 87, "337": [87, 98, 103], "735": 87, "print_as_df": 87, "inverse_transform": 87, "charg": [87, 94], "cash": [87, 94], "holidai": [87, 94], "sent": [87, 94, 95, 108], "mine": [87, 94], "expir": [87, 94], "fight": 87, "hors": [87, 96, 104], "duck": [87, 96], "me": [87, 94, 95], "whoever": [87, 94], "consum": [87, 106], "18": [87, 88, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "baseline_model": [87, 106], "87": [87, 90, 91, 98, 103, 106], "acceler": [87, 106], "19": [87, 88, 91, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "89": [87, 89, 93, 98, 103, 106], "spoken": 88, "500": [88, 95, 98, 104, 108], "english": [88, 96], "pronunci": 88, "wav": 88, "huggingfac": [88, 89, 90, 91, 97], "voxceleb": 88, "speech": [88, 108], "your_pred_prob": [88, 89, 90, 93, 94], "tensorflow_io": 88, "huggingface_hub": 88, "reproduc": [88, 93, 95, 98, 99, 101], "command": 88, "wget": [88, 95, 103, 107, 108], "navig": 88, "browser": 88, "jakobovski": 88, "archiv": [88, 108], "v1": 88, "tar": [88, 104], "gz": [88, 104], "mkdir": [88, 108], "spoken_digit": 88, "xf": 88, "6_nicolas_32": 88, "data_path": 88, "listdir": 88, "nondeterminist": 88, "file_nam": 88, "endswith": 88, "file_path": 88, "join": [88, 91, 95, 97, 98], "7_george_26": 88, "0_nicolas_24": 88, "0_nicolas_6": 88, "listen": 88, "display_exampl": 88, "expand": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "pulldown": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "colab": [88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 88, "pathlib": 88, "ipython": [88, 95], "load_wav_16k_mono": 88, "filenam": 88, "khz": 88, "file_cont": 88, "read_fil": 88, "sample_r": 88, "decode_wav": 88, "desired_channel": 88, "squeez": 88, "rate_in": 88, "rate_out": 88, "16000": 88, "wav_file_nam": 88, "audio_r": 88, "wav_file_exampl": 88, "plai": [88, 96, 97], "button": 88, "wav_file_name_exampl": 88, "7_jackson_43": 88, "hear": 88, "extractor": 88, "encoderclassifi": 88, "spkrec": 88, "xvect": 88, "feature_extractor": 88, "from_hparam": 88, "run_opt": 88, "uncom": [88, 95], "ffmpeg": 88, "backend": 88, "wav_audio_file_path": 88, "torchaudio": 88, "extract_audio_embed": 88, "emb": [88, 91], "signal": 88, "encode_batch": 88, "embeddings_list": [88, 91], "embeddings_arrai": 88, "512": [88, 91], "196311": 88, "319459": 88, "478975": 88, "2890875": 88, "8170238": 88, "89265": 88, "898056": 88, "256195": 88, "559641": 88, "559721": 88, "62067": 88, "285245": 88, "21": [88, 89, 95, 96, 98, 99, 103, 106, 108], "709627": 88, "5033693": 88, "913803": 88, "819831": 88, "1831515": 88, "208763": 88, "084257": 88, "3210397": 88, "005453": 88, "216152": 88, "478235": 88, "6821785": 88, "053807": 88, "242471": 88, "091424": 88, "78334856": 88, "03954": 88, "23": [88, 91, 95, 96, 98, 99, 103, 106], "569176": 88, "761097": 88, "1258295": 88, "753237": 88, "3508866": 88, "598274": 88, "23712": 88, "2500": 88, "tol": 88, "decreas": [88, 97], "cv_accuraci": 88, "9708": 88, "issue_type_descript": [88, 89, 90, 91, 93, 94, 98, 99], "lt": [88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 104], "gt": [88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 108], "9976": 88, "986": 88, "002161": 88, "176": [88, 96, 99, 102], "002483": 88, "2318": 88, "004411": 88, "1005": 88, "004857": 88, "1871": 88, "007494": 88, "040587": 88, "999207": 88, "999377": 88, "975220": 88, "999367": 88, "identified_label_issu": [88, 94], "516": [88, 98], "1946": 88, "469": 88, "2132": 88, "worth": [88, 99], "6_yweweler_25": 88, "7_nicolas_43": 88, "6_theo_27": 88, "6_yweweler_36": 88, "6_yweweler_14": 88, "6_yweweler_35": 88, "6_nicolas_8": 88, "sound": 88, "quit": [88, 104], "underneath": 89, "hood": [89, 95, 97], "alert": 89, "introduct": 89, "mayb": [89, 90, 94], "your_feature_matrix": [89, 90], "toi": [89, 90, 91, 95, 96, 99, 101, 105], "inf": [89, 90], "mid": [89, 90], "bins_map": [89, 90], "create_data": [89, 90], "y_bin": [89, 90], "y_i": [89, 90], "y_bin_idx": [89, 90], "y_train": [89, 90, 99, 106], "y_test": [89, 90, 99, 106], "y_train_idx": [89, 90], "y_test_idx": [89, 90], "slide": [89, 90, 96], "frame": [89, 90], "x_out": [89, 90], "tini": [89, 90], "concaten": [89, 90, 105], "y_out": [89, 90], "y_out_bin": [89, 90], "y_out_bin_idx": [89, 90], "exact_duplicate_idx": [89, 90], "x_duplic": [89, 90], "y_duplic": [89, 90], "y_duplicate_idx": [89, 90], "noisy_labels_idx": [89, 90, 102], "scatter": [89, 90, 95, 99, 102, 106], "black": [89, 90, 96, 106], "cyan": [89, 90], "plot_data": [89, 90, 95, 99, 102, 106], "fig": [89, 90, 91, 96, 104, 106], "ax": [89, 90, 91, 95, 104, 106], "subplot": [89, 90, 91, 104], "set_titl": [89, 90, 91, 104], "set_xlabel": [89, 90], "x_1": [89, 90], "fontsiz": [89, 90, 91, 95, 99, 102], "set_ylabel": [89, 90], "x_2": [89, 90], "set_xlim": [89, 90], "set_ylim": [89, 90], "linestyl": [89, 90, 95], "circl": [89, 90, 99, 102], "misclassifi": [89, 90], "zip": [89, 90, 91, 95, 103, 108], "label_err": [89, 90], "180": [89, 90, 95, 103], "marker": [89, 90], "facecolor": [89, 90, 95], "edgecolor": [89, 90, 95], "linewidth": [89, 90, 95, 104], "dup": [89, 90], "first_legend": [89, 90], "align": [89, 90], "title_fontproperti": [89, 90], "semibold": [89, 90], "second_legend": [89, 90], "45": [89, 90, 95, 96, 98, 99, 103], "gca": [89, 90], "add_artist": [89, 90], "tight_layout": [89, 90, 95], "ideal": [89, 90], "remaind": 89, "modal": [89, 90, 97, 98, 101], "132": [89, 90, 98, 99, 103], "9318": 89, "006940": 89, "007830": 89, "40": [89, 90, 94, 95, 96, 98], "014828": 89, "107": [89, 90, 99, 102], "021241": 89, "026407": 89, "notic": [89, 99, 101, 103], "3558": [89, 90], "126": [89, 90, 99, 103], "006636": [89, 90], "130": [89, 90], "012571": [89, 90], "129": [89, 90], "127": [89, 90, 98], "014909": [89, 90], "128": [89, 90, 91], "017443": [89, 90], "6160": [89, 90], "131": [89, 90, 98, 107], "000000e": [89, 90, 98], "000002": [89, 90], "463180e": [89, 90], "07": [89, 90, 91, 93, 95, 99, 103, 106], "51": [89, 90, 93, 95, 96, 99, 103], "161148": [89, 90], "859087e": [89, 90], "30": [89, 90, 91, 95, 96, 97, 98, 102, 107, 108], "3453": 89, "029542": 89, "031182": 89, "057961": 89, "058244": 89, "54": [89, 95, 96, 99, 103, 108], "039122": 89, "044598": 89, "105": [89, 103], "105196": 89, "133654": 89, "43": [89, 95, 96, 98, 99, 103], "168033": 89, "125": 89, "101107": 89, "183382": 89, "109": [89, 95, 96, 98, 103], "209259": 89, "211042": 89, "221316": 89, "average_ood_scor": 89, "34530442089193386": 89, "52": [89, 95, 96, 98, 103, 108], "169820": 89, "087324e": 89, "259024": 89, "583757e": 89, "91": [89, 98, 103], "346458": 89, "341292e": 89, "specfi": 89, "new_lab": 89, "scoring_funct": 89, "div": 89, "rem": 89, "inv_scal": 89, "49": [89, 95, 96, 99, 103], "superstitionissuemanag": 89, "unlucki": 89, "superstit": 89, "to_seri": 89, "issues_mask": 89, "summary_scor": 89, "9242": 89, "is_superstition_issu": 89, "superstition_scor": 89, "26": [89, 91, 95, 96, 98, 99, 101, 103, 108], "047581": 89, "090635": 89, "129591": 89, "164840": 89, "lurk": [90, 91, 98, 99], "thoroughli": 90, "8561": 90, "001908": 90, "003564": 90, "007331": 90, "008963": 90, "009664": 90, "0227": 90, "022727": 90, "conceptu": 90, "856061": 90, "355772": 90, "616034": 90, "821750": 90, "926818": 90, "betweeen": 90, "859131": 90, "417707": 90, "664083": 90, "970324": 90, "816953": 90, "375317": 90, "641516": 90, "890575": 90, "910232": 90, "531021": 90, "460593": 90, "601188": 90, "826147": 90, "752808": 90, "321635": 90, "562539": 90, "948362": 90, "890169": 90, "090243": 90, "472909": 90, "746763": 90, "878267": 90, "examples_w_issu": [90, 97], "013445": 90, "025184": 90, "026376": 90, "inde": [90, 94], "miscellan": [90, 92, 108], "428571": 90, "111111": 90, "571429": 90, "407407": 90, "592593": 90, "337838": 90, "092593": 90, "662162": 90, "333333": [90, 96], "952381": 90, "666667": [90, 95], "portion": 90, "huge": [90, 99], "worri": [90, 94, 98], "critic": [90, 105], "60": [91, 95, 99, 106], "torchvis": [91, 95, 104], "tensordataset": 91, "stratifiedkfold": [91, 102], "tqdm": 91, "autonotebook": 91, "math": [91, 98], "fashion_mnist": 91, "num_row": 91, "60000": 91, "transformed_dataset": 91, "with_format": 91, "255": [91, 96], "cpu_count": 91, "torch_dataset": 91, "quick": [91, 102, 104], "super": 91, "relu": 91, "batchnorm2d": 91, "maxpool2d": 91, "lazylinear": 91, "flatten": 91, "get_test_accuraci": 91, "testload": [91, 104], "energi": 91, "trainload": [91, 104], "n_epoch": 91, "patienc": 91, "criterion": 91, "crossentropyloss": 91, "adamw": 91, "best_test_accuraci": 91, "start_epoch": 91, "running_loss": 91, "best_epoch": 91, "end_epoch": 91, "3f": [91, 106], "acc": [91, 99], "time_taken": 91, "compute_embed": 91, "compute_pred_prob": 91, "train_batch_s": 91, "num_work": 91, "worker": [91, 108], "train_id_list": 91, "test_id_list": 91, "train_id": 91, "test_id": 91, "embeddings_model": 91, "ntrain": 91, "trainset": 91, "testset": 91, "pin_memori": 91, "fold_embed": 91, "fold_pred_prob": 91, "finish": 91, "482": 91, "720": 91, "144": 91, "329": [91, 93, 98, 103], "88": [91, 96, 98, 99, 102, 103, 106], "195": [91, 95, 98], "930": 91, "493": 91, "060": 91, "995": 91, "330": [91, 98, 103], "505": 91, "984": [91, 96], "476": [91, 98], "340": [91, 98], "056": 91, "328": [91, 103], "310": 91, "832": 91, "reorder": 91, "hstack": [91, 97, 99, 101], "vision": 91, "max_preval": [91, 95], "7714": 91, "3772": 91, "3585": 91, "166": 91, "3651": 91, "27080": 91, "873833e": 91, "40378": 91, "915575e": 91, "25316": 91, "390277e": 91, "06": [91, 98, 99, 103, 108], "2090": 91, "751164e": 91, "14999": 91, "881301e": 91, "9569": 91, "11262": 91, "000003": 91, "coat": [91, 96], "shirt": [91, 96], "19228": 91, "000010": 91, "dress": 91, "32657": 91, "000013": 91, "bag": [91, 96, 104, 105], "21282": 91, "000016": [91, 98], "53564": 91, "000018": [91, 98], "pullov": 91, "6321": 91, "30968": 91, "001267": 91, "30659": 91, "000022": [91, 108], "47824": 91, "001454": 91, "3370": 91, "000026": 91, "54565": 91, "001854": 91, "9762": 91, "258": 91, "47139": 91, "000033": 91, "166980": 91, "986195": 91, "997205": 91, "sandal": [91, 96], "948781": 91, "999358": 91, "54078": 91, "17371": 91, "000025": 91, "plot_label_issue_exampl": 91, "ncol": [91, 104], "nrow": [91, 104], "ceil": [91, 98], "axes_list": 91, "label_issue_indic": 91, "gl": 91, "sl": 91, "fontdict": 91, "imshow": [91, 104], "cmap": [91, 95, 106], "grai": 91, "subplots_adjust": 91, "hspace": 91, "outsiz": 91, "outlier_issu": [91, 94], "outlier_issues_df": 91, "depict": [91, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 91, "n_comparison_imag": 91, "sample_from_class": 91, "number_of_sampl": 91, "non_outlier_indic": 91, "isnul": [91, 95], "non_outlier_indices_excluding_curr": 91, "sampled_indic": 91, "label_scores_of_sampl": 91, "top_score_indic": 91, "top_label_indic": 91, "sampled_imag": 91, "get_image_given_label_and_sampl": 91, "image_from_dataset": 91, "corresponding_label": 91, "comparison_imag": 91, "images_to_plot": 91, "idlist": 91, "iterrow": 91, "near_duplicate_issu": [91, 97], "closest": 91, "counterpart": 91, "near_duplicate_issues_df": 91, "plot_near_duplicate_issue_exampl": 91, "seen_id_pair": 91, "get_image_and_given_label_and_predicted_label": 91, "duplicate_imag": 91, "nd_set": 91, "challeng": 91, "dark_issu": 91, "reveal": [91, 103, 107], "dark_issues_df": 91, "is_dark_issu": [91, 95], "34848": 91, "203922": 91, "50270": 91, "204588": 91, "3936": 91, "213098": 91, "733": 91, "217686": 91, "8094": 91, "230118": 91, "plot_image_issue_exampl": 91, "difficult": 91, "disproportion": [91, 95], "lowinfo_issu": 91, "lowinfo_issues_df": 91, "is_low_information_issu": 91, "53050": 91, "067975": 91, "40875": 91, "089929": 91, "9594": 91, "092601": 91, "34825": 91, "107744": 91, "37530": 91, "108516": 91, "lot": 91, "workflow": [92, 97, 98, 100, 106], "histgradientboostingclassifi": 93, "cat_featur": 93, "boost": [93, 97, 101, 106], "xgboost": [93, 97, 98, 106], "think": [93, 94, 97, 102, 107, 108], "nonzero": 93, "358": 93, "941": 93, "294": [93, 103], "46": [93, 95, 96, 98, 99, 103], "7109": 93, "000005": [93, 94], "886": 93, "000059": 93, "709": [93, 98], "000104": 93, "000169": 93, "689": 93, "000181": 93, "3590": 93, "051882e": 93, "683133e": 93, "536582e": 93, "406589e": 93, "324246e": 93, "6165": 93, "582": [93, 98], "185": [93, 95, 96, 103], "187": [93, 96, 98], "898": 93, "0000": [93, 94, 96, 98, 99], "865": 93, "515002": 93, "837": 93, "556480": 93, "622": 93, "593068": 93, "593207": 93, "920": 93, "618041": 93, "4386345844794593e": 93, "issue_result": 93, "000842": 93, "555944": 93, "004374": 93, "sorted_issu": 93, "73": [93, 95, 96, 98, 102, 103, 106], "deserv": 93, "outlier_result": 93, "sorted_outli": 93, "56": [93, 95, 96, 106], "96": [93, 95, 96, 98, 99, 102, 103, 106], "style": [93, 95, 107], "font": 93, "18px": 93, "ff00ff": 93, "bac": 93, "duplicate_result": 93, "lowest_scoring_dupl": 93, "idxmin": [93, 97], "indices_to_displai": 93, "tolist": [93, 97, 98, 102], "perhap": [93, 99, 101], "second_lowest_scoring_dupl": 93, "next_indices_to_displai": 93, "wari": [93, 94, 97], "your_featur": 94, "text_embed": 94, "data_dict": [94, 99, 101], "85": [94, 98, 103], "38": [94, 95, 96, 103], "9710": 94, "981": 94, "974": 94, "000146": 94, "982": [94, 96], "000224": 94, "971": 94, "000507": 94, "980": [94, 96], "000960": 94, "3584": 94, "994": 94, "009642": 94, "999": 94, "013067": 94, "013841": 94, "433": 94, "014722": 94, "989": 94, "018224": 94, "6070": 94, "160": [94, 106], "095724": 94, "148": 94, "006237": 94, "546": [94, 98], "099341": 94, "514": 94, "006485": 94, "481": 94, "123418": 94, "008165": 94, "313": [94, 98, 103], "564102": 94, "572258": 94, "574915": 94, "31": [94, 95, 96, 98, 99, 101, 103], "575507": 94, "575874": 94, "792090": 94, "257611": 94, "698710": 94, "182121": 94, "771619": 94, "data_with_suggested_label": 94, "suggested_label": 94, "withdraw": 94, "monei": 94, "lowest_quality_outli": 94, "OR": 94, "636c65616e6c616220697320617765736f6d6521": 94, "phone": [94, 96], "gone": 94, "samp": 94, "br": 94, "press": [94, 108], "nonsens": 94, "sens": 94, "detriment": 94, "duplicate_issu": 94, "fee": 94, "go": [94, 95, 96, 99], "strongli": [94, 95], "p_valu": 94, "benign": 94, "curat": [94, 100], "bigger": 95, "make_classif": 95, "5000": [95, 104], "n_featur": 95, "n_inform": 95, "n_redund": 95, "n_repeat": 95, "n_class": 95, "n_clusters_per_class": 95, "flip_i": 95, "class_sep": 95, "faiss": 95, "x_faiss": 95, "float32": [95, 103], "normalize_l2": 95, "index_factori": 95, "hnsw32": 95, "flat": [95, 96], "metric_inner_product": 95, "a_min": 95, "a_max": 95, "create_knn_graph": 95, "assert": 95, "indices_1d": 95, "ravel": 95, "distances_1d": 95, "sort_graph_by_row_valu": 95, "warn_when_not_sort": 95, "50000": 95, "524": 95, "991400": 95, "356925": 95, "363": [95, 98], "619581": 95, "108": [95, 103], "500000": 95, "651838": 95, "999827": 95, "031217": 95, "933716": 95, "627345": 95, "998540": 95, "530909": 95, "296974": 95, "646765": 95, "942721": 95, "332824": 95, "803246": 95, "625202": 95, "999816": 95, "474031": 95, "706253": 95, "655108": 95, "997703": 95, "131466": 95, "912389": 95, "639200": 95, "4995": 95, "998646": 95, "504755": 95, "746777": 95, "680033": 95, "4996": 95, "894230": 95, "340986": 95, "816472": 95, "640711": 95, "4997": 95, "999100": 95, "428545": 95, "592421": 95, "658949": 95, "4998": 95, "986792": 95, "273710": 95, "618033": 95, "4999": 95, "986776": 95, "273524": 95, "618084": 95, "instabl": 95, "proxim": 95, "analys": 95, "comfort": 95, "explor": [95, 103, 104], "third": 95, "parti": [95, 108], "newsgroup": 95, "alt": [95, 96], "atheism": [95, 96], "sci": [95, 96], "fetch_20newsgroup": 95, "newsgroups_train": 95, "header": 95, "footer": 95, "quot": 95, "df_text": 95, "target_nam": 95, "enlighten": 95, "omnipot": 95, "19apr199320262420": 95, "kelvin": 95, "jpl": 95, "nasa": 95, "gov": 95, "baa": 95, "nhenri": 95, "he": 95, "nno": 95, "ge": 95, "nlucki": 95, "babi": [95, 96], "tfidfvector": 95, "feature_extract": 95, "x_vector": 95, "data_valuation_issu": 95, "147": [95, 99, 103], "500047": 95, "500093": 95, "499953": 95, "1068": 95, "1069": 95, "1070": 95, "1071": 95, "1072": 95, "1073": 95, "concentr": 95, "seaborn": 95, "sn": 95, "distinguish": [95, 98], "strip": 95, "stripplot": 95, "hue": [95, 106], "dodg": 95, "jitter": 95, "axvlin": [95, 104], "xlabel": 95, "ourselv": 95, "make_blob": 95, "center": [95, 96], "cluster_std": 95, "n_noisy_label": 95, "meaning": [95, 97, 98, 104], "silhouette_scor": 95, "gridsearchcv": 95, "silhouett": 95, "cluster_label": 95, "fit_predict": 95, "param_grid": [95, 98], "grid_search": 95, "best_kmean": 95, "best_estimator_": 95, "underperforming_group_issu": 95, "328308": 95, "tab10": 95, "domain": 95, "knowledg": [95, 99], "dataset_tsv": 95, "ag": [95, 106], "gender": 95, "educ": 95, "experi": 95, "highsalari": 95, "indiana": 95, "phd": 95, "male": 95, "bachelor": 95, "femal": 95, "kansa": 95, "school": [95, 96], "ohio": 95, "57": [95, 96, 98, 99], "california": 95, "59": [95, 96, 103], "34": [95, 96, 99, 101, 103, 108], "63": [95, 98, 99, 103, 106], "47": [95, 96, 103], "stringio": 95, "sep": [95, 108], "easier": [95, 99], "simplic": [95, 102], "ordinalencod": 95, "columns_to_encod": 95, "encoded_df": 95, "salari": 95, "573681": 95, "underpin": 95, "caught": 95, "whenev": 95, "generate_data_depend": 95, "num_sampl": 95, "a1": 95, "a2": 95, "a3": 95, "375": 95, "975": 95, "non_iid_issu": 95, "796474": 95, "842432": 95, "922562": 95, "820759": 95, "873136": 95, "887373": 95, "825101": 95, "855875": 95, "751795": 95, "835796": 95, "ylabel": [95, 104], "coolwarm": 95, "colorbar": [95, 106], "strong": 95, "evid": [95, 98], "inter": 95, "mitig": 95, "risk": [95, 98], "deeper": 95, "tsv": 95, "tab": 95, "pars": 95, "annual_spend": 95, "number_of_transact": 95, "last_purchase_d": 95, "rural": 95, "4099": 95, "2024": [95, 108], "6421": 95, "nat": 95, "suburban": 95, "5436": 95, "4046": 95, "66": [95, 96, 98], "3467": 95, "67": [95, 96, 98, 103, 106], "4757": 95, "4199": 95, "4991": 95, "4655": 95, "82": [95, 96, 98, 99, 103, 106], "5584": 95, "urban": 95, "3102": 95, "6637": 95, "9167": 95, "6790": 95, "5327": 95, "parse_d": 95, "lose": 95, "intact": 95, "encode_categorical_column": 95, "placehold": 95, "dropna": [95, 101], "category_to_numb": 95, "_encod": 95, "gender_encod": 95, "location_encod": 95, "focus": [95, 98, 99, 101, 102, 106], "null_issu": 95, "833333": 95, "sorted_indic": [95, 103], "sorted_df": 95, "nice": 95, "styler": 95, "combined_df": 95, "concat": [95, 98, 106], "highlight_null_valu": 95, "val": [95, 99], "yellow": [95, 96], "highlight_datalab_column": 95, "lightblu": 95, "highlight_is_null_issu": 95, "orang": [95, 96], "styled_df": 95, "nbsp": [95, 97, 98, 99], "160000": 95, "820000": 95, "460000": 95, "470000": 95, "960000": 95, "620000": 95, "550000": 95, "660000": 95, "670000": [95, 96], "370000": 95, "530000": 95, "710000": 95, "020000": 95, "320000": 95, "990000": 95, "rarer": 95, "fairer": 95, "randomli": [95, 98, 99], "class_imbalance_issu": 95, "countplot": 95, "xtick": 95, "rotat": 95, "ytick": 95, "filtered_df": 95, "xy": 95, "va": 95, "textual": 95, "get_ytick": 95, "nbar": 95, "nimbal": 95, "get_legend_handles_label": 95, "title_fonts": 95, "aspect": 95, "anomali": [95, 103], "enhanc": [95, 99, 101, 103], "artifici": 95, "directori": [95, 108], "subdirectori": 95, "nc": [95, 103, 107, 108], "unzip": [95, 103, 108], "199": [95, 98, 103], "111": [95, 101, 106], "153": [95, 98, 103], "110": [95, 103], "connect": [95, 108], "443": [95, 108], "await": [95, 108], "ok": [95, 105, 108], "986707": 95, "964k": 95, "963": 95, "58k": 95, "kb": 95, "006": 95, "154": 95, "mb": [95, 108], "imagefold": 95, "load_image_dataset": 95, "data_dir": 95, "root": [95, 104], "image_dataset": 95, "img": [95, 104, 106], "from_dict": [95, 97], "darkened_imag": 95, "job": 95, "015": 95, "label_uncorrelatedness_scor": 95, "image_issu": 95, "nimag": 95, "237196": 95, "197229": 95, "254188": 95, "229170": 95, "208907": 95, "793840": 95, "196": [95, 98, 99, 103], "197": [95, 99, 103], "971560": 95, "198": [95, 99, 103], "862236": 95, "973533": 95, "stronger": 95, "frog": [95, 96, 104], "darken": 95, "concept": 95, "notabl": 95, "preval": 95, "warrant": 95, "programmat": 95, "plot_scores_label": 95, "issues_copi": 95, "boxplot": 95, "refin": 96, "instruct": [96, 97, 98], "studi": [96, 103], "mnist_test_set": 96, "imagenet_val_set": 96, "tench": 96, "goldfish": 96, "white": [96, 108], "shark": 96, "tiger": 96, "hammerhead": 96, "electr": 96, "rai": 96, "stingrai": 96, "cock": 96, "hen": 96, "ostrich": 96, "brambl": 96, "goldfinch": 96, "hous": 96, "finch": 96, "junco": 96, "indigo": 96, "bunt": 96, "american": [96, 108], "robin": 96, "bulbul": 96, "jai": 96, "magpi": 96, "chickade": 96, "dipper": 96, "kite": 96, "bald": 96, "eagl": 96, "vultur": 96, "grei": 96, "owl": 96, "salamand": 96, "smooth": 96, "newt": 96, "spot": [96, 97, 103], "axolotl": 96, "bullfrog": 96, "tree": 96, "tail": 96, "loggerhead": 96, "sea": 96, "turtl": 96, "leatherback": 96, "mud": 96, "terrapin": 96, "band": 96, "gecko": 96, "green": [96, 108], "iguana": 96, "carolina": 96, "anol": 96, "desert": 96, "grassland": 96, "whiptail": 96, "lizard": 96, "agama": 96, "frill": 96, "neck": 96, "allig": 96, "gila": 96, "monster": 96, "european": 96, "chameleon": 96, "komodo": 96, "dragon": 96, "nile": 96, "crocodil": 96, "triceratop": 96, "worm": 96, "snake": 96, "ring": 96, "eastern": 96, "hog": 96, "nose": 96, "kingsnak": 96, "garter": 96, "water": 96, "vine": 96, "night": 96, "boa": 96, "constrictor": 96, "african": 96, "rock": 96, "indian": 96, "cobra": 96, "mamba": 96, "saharan": 96, "horn": 96, "viper": 96, "diamondback": 96, "rattlesnak": 96, "sidewind": 96, "trilobit": 96, "harvestman": 96, "scorpion": 96, "garden": 96, "spider": 96, "barn": 96, "southern": 96, "widow": 96, "tarantula": 96, "wolf": 96, "tick": 96, "centiped": 96, "grous": 96, "ptarmigan": 96, "ruf": 96, "prairi": 96, "peacock": 96, "quail": 96, "partridg": 96, "parrot": 96, "macaw": 96, "sulphur": 96, "crest": 96, "cockatoo": 96, "lorikeet": 96, "coucal": 96, "bee": 96, "eater": 96, "hornbil": 96, "hummingbird": 96, "jacamar": 96, "toucan": 96, "breast": 96, "mergans": 96, "goos": 96, "swan": 96, "tusker": 96, "echidna": 96, "platypu": 96, "wallabi": 96, "koala": 96, "wombat": 96, "jellyfish": 96, "anemon": 96, "brain": 96, "coral": 96, "flatworm": 96, "nematod": 96, "conch": 96, "snail": 96, "slug": 96, "chiton": 96, "chamber": 96, "nautilu": 96, "dung": 96, "crab": 96, "fiddler": 96, "king": 96, "lobster": 96, "spini": 96, "crayfish": 96, "hermit": 96, "isopod": 96, "stork": 96, "spoonbil": 96, "flamingo": 96, "heron": 96, "egret": 96, "bittern": 96, "crane": 96, "bird": [96, 104], "limpkin": 96, "gallinul": 96, "coot": 96, "bustard": 96, "ruddi": 96, "turnston": 96, "dunlin": 96, "redshank": 96, "dowitch": 96, "oystercatch": 96, "pelican": 96, "penguin": 96, "albatross": 96, "whale": 96, "killer": 96, "dugong": 96, "lion": 96, "chihuahua": 96, "japanes": 96, "chin": 96, "maltes": 96, "pekinges": 96, "shih": 96, "tzu": 96, "charl": 96, "spaniel": 96, "papillon": 96, "terrier": 96, "rhodesian": 96, "ridgeback": 96, "afghan": [96, 108], "hound": 96, "basset": 96, "beagl": 96, "bloodhound": 96, "bluetick": 96, "coonhound": 96, "tan": 96, "walker": 96, "foxhound": 96, "redbon": 96, "borzoi": 96, "irish": 96, "wolfhound": 96, "italian": 96, "greyhound": 96, "whippet": 96, "ibizan": 96, "norwegian": 96, "elkhound": 96, "otterhound": 96, "saluki": 96, "scottish": 96, "deerhound": 96, "weimaran": 96, "staffordshir": 96, "bull": 96, "bedlington": 96, "border": 96, "kerri": 96, "norfolk": 96, "norwich": 96, "yorkshir": 96, "wire": 96, "fox": 96, "lakeland": 96, "sealyham": 96, "airedal": 96, "cairn": 96, "australian": 96, "dandi": 96, "dinmont": 96, "boston": 96, "miniatur": 96, "schnauzer": 96, "giant": 96, "tibetan": 96, "silki": 96, "wheaten": 96, "west": 96, "highland": 96, "lhasa": 96, "apso": 96, "retriev": 96, "curli": 96, "golden": 96, "labrador": 96, "chesapeak": 96, "bai": 96, "german": [96, 108], "shorthair": 96, "pointer": 96, "vizsla": 96, "setter": 96, "gordon": 96, "brittani": 96, "clumber": 96, "springer": 96, "welsh": 96, "cocker": 96, "sussex": 96, "kuvasz": 96, "schipperk": 96, "groenendael": 96, "malinoi": 96, "briard": 96, "kelpi": 96, "komondor": 96, "sheepdog": 96, "shetland": 96, "colli": 96, "bouvier": 96, "de": 96, "flandr": 96, "rottweil": 96, "shepherd": 96, "dobermann": 96, "pinscher": 96, "swiss": [96, 108], "mountain": 96, "bernes": 96, "appenzel": 96, "sennenhund": 96, "entlebuch": 96, "boxer": 96, "bullmastiff": 96, "mastiff": 96, "french": 96, "bulldog": 96, "dane": 96, "st": 96, "bernard": 96, "huski": 96, "alaskan": 96, "malamut": 96, "siberian": 96, "dalmatian": 96, "affenpinsch": 96, "basenji": 96, "pug": 96, "leonberg": 96, "newfoundland": 96, "pyrenean": 96, "samoi": 96, "pomeranian": 96, "chow": 96, "keeshond": 96, "griffon": 96, "bruxelloi": 96, "pembrok": 96, "corgi": 96, "cardigan": 96, "poodl": 96, "mexican": 96, "hairless": 96, "tundra": 96, "coyot": 96, "dingo": 96, "dhole": 96, "wild": 96, "hyena": 96, "kit": 96, "arctic": 96, "tabbi": 96, "persian": 96, "siames": 96, "egyptian": 96, "mau": 96, "cougar": 96, "lynx": 96, "leopard": 96, "snow": 96, "jaguar": 96, "cheetah": 96, "brown": [96, 107], "bear": 96, "polar": 96, "sloth": 96, "mongoos": 96, "meerkat": 96, "beetl": 96, "ladybug": 96, "longhorn": 96, "leaf": 96, "rhinocero": 96, "weevil": 96, "fly": 96, "ant": 96, "grasshopp": 96, "cricket": 96, "stick": 96, "insect": 96, "cockroach": 96, "manti": 96, "cicada": 96, "leafhopp": 96, "lacew": 96, "dragonfli": 96, "damselfli": 96, "admir": 96, "ringlet": 96, "monarch": 96, "butterfli": 96, "gossam": 96, "wing": 96, "starfish": 96, "urchin": 96, "cucumb": 96, "cottontail": 96, "rabbit": 96, "hare": 96, "angora": 96, "hamster": 96, "porcupin": 96, "squirrel": 96, "marmot": 96, "beaver": 96, "guinea": 96, "pig": 96, "sorrel": 96, "zebra": 96, "boar": 96, "warthog": 96, "hippopotamu": 96, "ox": 96, "buffalo": 96, "bison": 96, "bighorn": 96, "sheep": 96, "alpin": 96, "ibex": 96, "hartebeest": 96, "impala": 96, "gazel": 96, "dromedari": 96, "llama": 96, "weasel": 96, "mink": 96, "polecat": 96, "foot": 96, "ferret": 96, "otter": 96, "skunk": 96, "badger": 96, "armadillo": 96, "toed": 96, "orangutan": 96, "gorilla": 96, "chimpanze": 96, "gibbon": 96, "siamang": 96, "guenon": 96, "pata": 96, "monkei": 96, "baboon": 96, "macaqu": 96, "langur": 96, "colobu": 96, "probosci": 96, "marmoset": 96, "capuchin": 96, "howler": 96, "titi": 96, "geoffroi": 96, "lemur": 96, "indri": 96, "asian": 96, "eleph": 96, "bush": 96, "snoek": 96, "eel": 96, "coho": 96, "salmon": 96, "beauti": 96, "clownfish": 96, "sturgeon": 96, "garfish": 96, "lionfish": 96, "pufferfish": 96, "abacu": 96, "abaya": 96, "academ": 96, "gown": 96, "accordion": 96, "acoust": 96, "guitar": 96, "aircraft": 96, "carrier": 96, "airlin": 96, "airship": 96, "altar": 96, "ambul": 96, "amphibi": 96, "clock": [96, 108], "apiari": 96, "apron": 96, "wast": 96, "assault": 96, "rifl": 96, "backpack": 96, "bakeri": 96, "balanc": 96, "beam": 96, "balloon": 96, "ballpoint": 96, "pen": 96, "aid": 96, "banjo": 96, "balust": 96, "barbel": 96, "barber": 96, "chair": [96, 103], "barbershop": 96, "baromet": 96, "barrel": 96, "wheelbarrow": 96, "basebal": 96, "basketbal": 96, "bassinet": 96, "bassoon": 96, "swim": 96, "cap": 96, "bath": 96, "towel": 96, "bathtub": 96, "station": 96, "wagon": 96, "lighthous": 96, "beaker": 96, "militari": 96, "beer": 96, "bottl": 96, "glass": 96, "bell": 96, "cot": 96, "bib": 96, "bicycl": [96, 107], "bikini": 96, "binder": 96, "binocular": 96, "birdhous": 96, "boathous": 96, "bobsleigh": 96, "bolo": 96, "tie": 96, "poke": 96, "bonnet": 96, "bookcas": 96, "bookstor": 96, "bow": 96, "brass": 96, "bra": 96, "breakwat": 96, "breastplat": 96, "broom": 96, "bucket": 96, "buckl": 96, "bulletproof": 96, "vest": 96, "butcher": 96, "shop": 96, "taxicab": 96, "cauldron": 96, "candl": 96, "cannon": 96, "cano": 96, "mirror": [96, 103], "carousel": 96, "carton": 96, "wheel": 96, "teller": 96, "cassett": 96, "player": 96, "castl": 96, "catamaran": 96, "cd": 96, "cello": 96, "mobil": [96, 108], "chain": 96, "fenc": [96, 107], "mail": 96, "chainsaw": 96, "chest": 96, "chiffoni": 96, "chime": 96, "china": 96, "cabinet": 96, "christma": 96, "stock": 96, "church": 96, "movi": 96, "theater": 96, "cleaver": 96, "cliff": 96, "dwell": 96, "cloak": 96, "clog": 96, "cocktail": 96, "shaker": 96, "coffe": 96, "mug": 96, "coffeemak": 96, "coil": 96, "lock": 96, "keyboard": 96, "confectioneri": 96, "ship": [96, 104], "corkscrew": 96, "cornet": 96, "cowboi": 96, "boot": 96, "hat": 96, "cradl": 96, "crash": 96, "helmet": 96, "crate": 96, "infant": 96, "bed": 96, "crock": 96, "pot": 96, "croquet": 96, "crutch": 96, "cuirass": 96, "dam": 96, "desk": 96, "desktop": 96, "rotari": 96, "dial": 96, "telephon": 96, "diaper": 96, "watch": 96, "dine": 96, "dishcloth": 96, "dishwash": 96, "disc": 96, "brake": 96, "dock": 96, "sled": 96, "dome": 96, "doormat": 96, "drill": 96, "rig": 96, "drum": 96, "drumstick": 96, "dumbbel": 96, "dutch": 96, "oven": 96, "fan": 96, "locomot": 96, "entertain": 96, "envelop": 96, "espresso": 96, "powder": 96, "feather": 96, "fireboat": 96, "engin": [96, 107], "screen": 96, "sheet": 96, "flagpol": 96, "flute": 96, "footbal": 96, "forklift": 96, "fountain": 96, "poster": 96, "freight": 96, "fry": 96, "pan": 96, "fur": 96, "garbag": 96, "ga": 96, "pump": 96, "goblet": 96, "kart": 96, "golf": 96, "cart": 96, "gondola": 96, "gong": 96, "grand": 96, "piano": 96, "greenhous": 96, "grill": 96, "groceri": 96, "guillotin": 96, "barrett": 96, "hair": 96, "sprai": 96, "hammer": 96, "dryer": 96, "hand": [96, 99], "handkerchief": 96, "drive": 96, "harmonica": 96, "harp": 96, "harvest": 96, "hatchet": 96, "holster": 96, "honeycomb": 96, "hoop": 96, "skirt": 96, "horizont": 96, "bar": 96, "drawn": 96, "hourglass": 96, "ipod": 96, "cloth": 96, "iron": 96, "jack": 96, "lantern": 96, "jean": 96, "jeep": 96, "jigsaw": 96, "puzzl": 96, "pull": 96, "rickshaw": 96, "joystick": 96, "kimono": 96, "knee": 96, "pad": 96, "knot": 96, "ladl": 96, "lampshad": 96, "laptop": 96, "lawn": 96, "mower": 96, "knife": 96, "lifeboat": 96, "lighter": 96, "limousin": 96, "ocean": 96, "liner": 96, "lipstick": 96, "slip": 96, "shoe": 96, "lotion": 96, "speaker": 96, "loup": 96, "sawmil": 96, "magnet": 96, "compass": 96, "mailbox": 96, "tight": 96, "tank": 96, "manhol": 96, "maraca": 96, "marimba": 96, "maypol": 96, "maze": 96, "cup": [96, 103], "medicin": 96, "megalith": 96, "microphon": 96, "microwav": 96, "milk": 96, "minibu": 96, "miniskirt": 96, "minivan": 96, "missil": 96, "mitten": [96, 97], "mix": 96, "bowl": 96, "modem": 96, "monasteri": 96, "monitor": 96, "mope": 96, "mortar": 96, "mosqu": 96, "mosquito": 96, "scooter": 96, "bike": 96, "tent": 96, "mous": [96, 97], "mousetrap": 96, "van": 96, "muzzl": 96, "nail": 96, "brace": 96, "necklac": 96, "nippl": 96, "obelisk": 96, "obo": 96, "ocarina": 96, "odomet": 96, "oil": 96, "oscilloscop": 96, "overskirt": 96, "bullock": 96, "oxygen": 96, "packet": 96, "paddl": 96, "padlock": 96, "paintbrush": 96, "pajama": 96, "palac": [96, 108], "parachut": 96, "park": 96, "bench": 96, "meter": 96, "passeng": 96, "patio": 96, "payphon": 96, "pedest": 96, "pencil": 96, "perfum": 96, "petri": 96, "dish": 96, "photocopi": 96, "plectrum": 96, "pickelhaub": 96, "picket": 96, "pickup": 96, "pier": 96, "piggi": 96, "pill": 96, "pillow": 96, "ping": 96, "pong": 96, "pinwheel": 96, "pirat": 96, "pitcher": 96, "plane": 96, "planetarium": 96, "plastic": 96, "plate": 96, "rack": 96, "plow": 96, "plunger": 96, "polaroid": 96, "camera": 96, "pole": [96, 107], "polic": 96, "poncho": 96, "billiard": 96, "soda": 96, "potter": 96, "prayer": 96, "rug": 96, "printer": 96, "prison": 96, "projectil": 96, "projector": 96, "hockei": 96, "puck": 96, "punch": 96, "purs": 96, "quill": 96, "quilt": 96, "race": 96, "racket": 96, "radiat": 96, "radio": 96, "telescop": 96, "rain": 96, "recreat": 96, "reel": 96, "reflex": 96, "refriger": 96, "remot": 96, "restaur": 96, "revolv": 96, "rotisseri": 96, "eras": 96, "rugbi": 96, "ruler": 96, "safe": 96, "safeti": 96, "salt": 96, "sarong": 96, "saxophon": 96, "scabbard": 96, "bu": [96, 107], "schooner": 96, "scoreboard": 96, "crt": 96, "screw": 96, "screwdriv": 96, "seat": 96, "belt": 96, "sew": 96, "shield": 96, "shoji": 96, "basket": 96, "shovel": 96, "shower": 96, "curtain": 96, "ski": 96, "sleep": 96, "door": 96, "slot": 96, "snorkel": 96, "snowmobil": 96, "snowplow": 96, "soap": 96, "dispens": 96, "soccer": [96, 108], "sock": [96, 97], "solar": 96, "thermal": 96, "collector": 96, "sombrero": 96, "soup": 96, "heater": 96, "shuttl": 96, "spatula": 96, "motorboat": 96, "web": 96, "spindl": 96, "sport": [96, 108], "spotlight": 96, "stage": 96, "steam": 96, "arch": 96, "bridg": 96, "steel": 96, "stethoscop": 96, "scarf": 96, "stone": 96, "wall": [96, 107], "stopwatch": 96, "stove": 96, "strainer": 96, "tram": 96, "stretcher": 96, "couch": 96, "stupa": 96, "submarin": 96, "sundial": 96, "sunglass": 96, "sunscreen": 96, "suspens": 96, "mop": 96, "sweatshirt": 96, "swimsuit": 96, "swing": 96, "switch": 96, "syring": 96, "lamp": 96, "tape": 96, "teapot": 96, "teddi": 96, "televis": [96, 108], "tenni": 96, "thatch": 96, "roof": 96, "thimbl": 96, "thresh": 96, "throne": 96, "tile": 96, "toaster": 96, "tobacco": 96, "toilet": 96, "totem": 96, "tow": 96, "tractor": 96, "semi": 96, "trailer": 96, "trai": 96, "trench": 96, "tricycl": 96, "trimaran": 96, "tripod": 96, "triumphal": 96, "trolleybu": 96, "trombon": 96, "tub": 96, "turnstil": 96, "typewrit": 96, "umbrella": 96, "unicycl": 96, "upright": 96, "vacuum": 96, "cleaner": [96, 98], "vase": 96, "vault": 96, "velvet": 96, "vend": 96, "vestment": 96, "viaduct": 96, "violin": 96, "volleybal": 96, "waffl": 96, "wallet": 96, "wardrob": 96, "sink": 96, "wash": 96, "jug": 96, "tower": 96, "whiskei": 96, "whistl": 96, "wig": 96, "shade": [96, 107], "windsor": 96, "wine": 96, "wok": 96, "wooden": 96, "spoon": 96, "wool": 96, "rail": 96, "shipwreck": 96, "yawl": 96, "yurt": 96, "websit": 96, "comic": 96, "book": 96, "crossword": 96, "traffic": [96, 103, 107], "sign": [96, 107, 108], "dust": 96, "jacket": [96, 103], "menu": 96, "guacamol": 96, "consomm": 96, "trifl": 96, "ic": 96, "cream": 96, "pop": 96, "baguett": 96, "bagel": 96, "pretzel": 96, "cheeseburg": 96, "mash": 96, "potato": 96, "cabbag": 96, "broccoli": 96, "cauliflow": 96, "zucchini": 96, "spaghetti": 96, "squash": 96, "acorn": 96, "butternut": 96, "artichok": 96, "pepper": [96, 97], "cardoon": 96, "mushroom": 96, "granni": 96, "smith": 96, "strawberri": 96, "lemon": 96, "pineappl": 96, "banana": 96, "jackfruit": 96, "custard": 96, "appl": 96, "pomegran": 96, "hai": 96, "carbonara": 96, "chocol": 96, "syrup": 96, "dough": 96, "meatloaf": 96, "pizza": 96, "pie": 96, "burrito": 96, "eggnog": 96, "alp": 96, "bubbl": 96, "reef": 96, "geyser": 96, "lakeshor": 96, "promontori": 96, "shoal": 96, "seashor": 96, "vallei": 96, "volcano": 96, "bridegroom": 96, "scuba": 96, "diver": 96, "rapese": 96, "daisi": 96, "ladi": 96, "slipper": 96, "corn": 96, "rose": 96, "hip": 96, "chestnut": 96, "fungu": 96, "agar": 96, "gyromitra": 96, "stinkhorn": 96, "earth": 96, "star": 96, "wood": 96, "bolet": 96, "ear": 96, "cifar10_test_set": 96, "airplan": [96, 104], "automobil": [96, 104], "deer": [96, 104], "cifar100_test_set": 96, "aquarium_fish": 96, "boi": 96, "camel": 96, "caterpillar": 96, "cattl": [96, 108], "cloud": 96, "dinosaur": 96, "dolphin": 96, "flatfish": 96, "forest": 96, "girl": 96, "kangaroo": 96, "lawn_mow": 96, "man": 96, "maple_tre": 96, "motorcycl": [96, 107], "oak_tre": 96, "orchid": 96, "palm_tre": 96, "pear": 96, "pickup_truck": 96, "pine_tre": 96, "plain": 96, "poppi": 96, "possum": 96, "raccoon": 96, "road": [96, 107], "rocket": 96, "seal": 96, "shrew": 96, "skyscrap": 96, "streetcar": 96, "sunflow": 96, "sweet_pepp": 96, "trout": 96, "tulip": 96, "willow_tre": 96, "woman": [96, 103], "caltech256": 96, "ak47": 96, "bat": 96, "glove": 96, "birdbath": 96, "blimp": 96, "bonsai": 96, "boom": 96, "breadmak": 96, "buddha": 96, "bulldoz": 96, "cactu": 96, "cake": 96, "tire": 96, "cartman": 96, "cereal": 96, "chandeli": 96, "chess": 96, "board": 96, "chimp": 96, "chopstick": 96, "coffin": 96, "coin": 96, "comet": 96, "cormor": 96, "globe": 96, "diamond": 96, "dice": 96, "doorknob": 96, "drink": 96, "straw": 96, "dumb": 96, "eiffel": 96, "elk": 96, "ewer": 96, "eyeglass": 96, "fern": 96, "fighter": 96, "jet": [96, 106], "extinguish": 96, "hydrant": 96, "firework": 96, "flashlight": 96, "floppi": 96, "fri": 96, "frisbe": 96, "galaxi": 96, "giraff": 96, "goat": 96, "gate": 96, "grape": 96, "pick": [96, 97], "hamburg": 96, "hammock": 96, "harpsichord": 96, "hawksbil": 96, "helicopt": 96, "hibiscu": 96, "homer": 96, "simpson": 96, "horsesho": 96, "air": 96, "skeleton": 96, "ibi": 96, "cone": 96, "iri": 96, "jesu": 96, "christ": 96, "joi": 96, "kayak": 96, "ketch": 96, "ladder": 96, "lath": 96, "licens": 96, "lightbulb": 96, "lightn": 96, "mandolin": 96, "mar": 96, "mattress": 96, "megaphon": 96, "menorah": 96, "microscop": 96, "minaret": 96, "minotaur": 96, "motorbik": 96, "mussel": 96, "neckti": 96, "octopu": 96, "palm": 96, "pilot": 96, "paperclip": 96, "shredder": 96, "pci": 96, "peopl": [96, 103], "pez": 96, "picnic": 96, "pram": 96, "prai": 96, "pyramid": 96, "rainbow": 96, "roulett": 96, "saddl": 96, "saturn": 96, "segwai": 96, "propel": 96, "sextant": 96, "music": 96, "skateboard": 96, "smokestack": 96, "sneaker": 96, "boat": 96, "stain": 96, "steer": 96, "stirrup": 96, "superman": 96, "sushi": 96, "armi": [96, 108], "sword": 96, "tambourin": 96, "teepe": 96, "court": 96, "theodolit": 96, "tomato": 96, "tombston": 96, "tour": 96, "pisa": 96, "treadmil": 96, "fork": 96, "tweezer": 96, "unicorn": 96, "vcr": 96, "waterfal": 96, "watermelon": 96, "weld": 96, "windmil": 96, "xylophon": 96, "yarmulk": 96, "yo": 96, "toad": 96, "twenty_news_test_set": 96, "comp": 96, "graphic": [96, 107], "misc": [96, 108], "sy": 96, "ibm": 96, "pc": 96, "hardwar": 96, "mac": 96, "forsal": 96, "rec": 96, "crypt": 96, "electron": 96, "med": 96, "soc": 96, "religion": 96, "christian": [96, 108], "talk": [96, 108], "polit": 96, "gun": 96, "mideast": 96, "amazon": 96, "neutral": 96, "imdb_test_set": 96, "all_class": 96, "20news_test_set": 96, "_load_classes_predprobs_label": 96, "dataset_nam": 96, "labelerror": 96, "url_bas": 96, "5392f6c71473055060be3044becdde1cbc18284d": 96, "url_label": 96, "original_test_label": 96, "_original_label": 96, "url_prob": 96, "cross_validated_predicted_prob": 96, "_pyx": 96, "num_part": 96, "datatset": 96, "bytesio": 96, "allow_pickl": 96, "pred_probs_part": 96, "url": 96, "_of_": 96, "nload": 96, "imdb": 96, "ve": [96, 97, 98, 99, 101, 103], "capit": 96, "29780": 96, "256": [96, 97, 98, 103], "780": 96, "medic": [96, 108], "doctor": 96, "254": [96, 103], "359223": 96, "640777": 96, "184": [96, 99], "258427": 96, "341176": 96, "263158": 96, "658824": 96, "337349": 96, "246575": 96, "662651": 96, "248": 96, "330000": 96, "355769": 96, "251": [96, 103], "167": [96, 99, 103], "252": [96, 98], "112": [96, 98], "253": [96, 103], "022989": 96, "049505": 96, "190": [96, 99, 103], "002216": 96, "000974": 96, "000873": 96, "000739": 96, "32635": 96, "32636": 96, "32637": 96, "32638": 96, "32639": 96, "32640": 96, "051": 96, "002242": 96, "997758": 96, "002088": 96, "001045": 96, "997912": 96, "002053": 96, "997947": 96, "001980": 96, "000991": 96, "998020": 96, "001946": 96, "002915": 96, "998054": 96, "001938": 96, "002904": 96, "998062": 96, "001020": 96, "998980": 96, "001018": 96, "002035": 96, "998982": 96, "999009": 96, "0003": 96, "0002": 96, "071": 96, "067269": 96, "929": 96, "046": 96, "058243": 96, "954": 96, "035": 96, "032096": 96, "965": 96, "031": 96, "012232": 96, "969": 96, "022": 96, "025896": 96, "978": 96, "020": [96, 99], "013092": 96, "018": 96, "013065": 96, "016": 96, "030542": 96, "013": 96, "020833": 96, "987": 96, "012": 96, "010020": 96, "988": 96, "0073": 96, "0020": 96, "0016": 96, "0015": 96, "0014": 96, "0013": 96, "0012": 96, "0010": 96, "0008": 96, "0007": 96, "0006": 96, "0005": 96, "0004": 96, "244": [96, 103], "452381": 96, "459770": 96, "523364": 96, "460784": 96, "446602": 96, "103774": 96, "030612": 96, "110092": 96, "049020": 96, "0034": 96, "0032": 96, "0026": 96, "0025": 96, "4945": 96, "4946": 96, "4947": 96, "4948": 96, "4949": 96, "4950": 96, "846": 96, "7532": 96, "532": 96, "034483": 96, "009646": 96, "965517": 96, "030457": 96, "020513": 96, "969543": 96, "028061": 96, "035443": 96, "971939": 96, "025316": 96, "005168": 96, "974684": 96, "049751": 96, "979487": 96, "019920": 96, "042802": 96, "980080": 96, "017677": 96, "005115": 96, "982323": 96, "012987": 96, "005236": 96, "987013": 96, "012723": 96, "025126": 96, "987277": 96, "010989": 96, "008264": 96, "989011": 96, "010283": 96, "027778": 96, "989717": 96, "009677": 96, "990323": 96, "007614": 96, "010127": 96, "992386": 96, "005051": 96, "994949": 96, "005025": 96, "994975": 96, "005013": 96, "994987": 96, "001859": 96, "001328": 96, "000929": 96, "000664": 96, "186": [96, 99], "188": [96, 99, 102], "189": [96, 99], "snippet": 97, "nlp": [97, 108], "mind": [97, 99], "alphanumer": 97, "facilit": 97, "seamless": 97, "classlabel": 97, "guidanc": 97, "labels_str": 97, "datalab_str": 97, "labels_int": 97, "remap": 97, "datalab_int": 97, "my_dict": 97, "pet_nam": 97, "rover": 97, "rocki": 97, "speci": 97, "datalab_dataset": 97, "number_of_class": 97, "total_number_of_data_point": 97, "feed": 97, "alphabet": 97, "labels_proper_format": 97, "your_classifi": 97, "issues_datafram": 97, "class_predicted_for_flagged_exampl": 97, "class_predicted_for_all_exampl": 97, "grant": 97, "On": [97, 98, 99, 103], "merged_dataset": 97, "label_column_nam": 97, "datataset": 97, "fair": [97, 99], "game": 97, "speedup": [97, 104], "tempfil": 97, "mkdtemp": 97, "sped": 97, "anywai": 97, "pred_probs_merg": 97, "merge_rare_class": 97, "count_threshold": 97, "class_mapping_orig2new": 97, "heath_summari": 97, "num_examples_per_class": 97, "rare_class": 97, "num_classes_merg": 97, "other_class": 97, "labels_merg": 97, "new_c": 97, "merged_prob": 97, "new_class": 97, "original_class": 97, "num_check": 97, "ones_array_ref": 97, "isclos": 97, "though": [97, 99, 108], "successfulli": 97, "virtuou": [97, 101], "cycl": [97, 101], "jointli": 97, "junk": 97, "clutter": 97, "unknown": 97, "caltech": 97, "combined_boolean_mask": 97, "mask1": 97, "mask2": 97, "gradientboostingclassifi": [97, 99], "true_error": [97, 99, 102], "101": [97, 98, 103], "102": [97, 102, 103], "104": [97, 99, 103], "model_to_find_error": 97, "model_to_return": 97, "cl0": 97, "randomizedsearchcv": 97, "expens": 97, "param_distribut": 97, "learning_r": [97, 98, 99], "max_depth": [97, 98, 99], "magnitud": 97, "coeffici": [97, 106], "optin": 97, "environ": [97, 98, 99], "rerun": [97, 98, 99], "cell": [97, 98, 99], "unabl": [97, 98, 99], "render": [97, 98, 99], "nbviewer": [97, 98, 99], "cleanlearninginot": [97, 99], "fittedcleanlearn": [97, 99], "linearregressionlinearregress": 97, "unexpectedli": 97, "emphas": 97, "crucial": 97, "merge_duplicate_set": 97, "merge_kei": 97, "construct_group_kei": 97, "merged_set": 97, "consolidate_set": 97, "issubset": 97, "frozenset": [97, 98], "sets_list": 97, "mutabl": 97, "new_set": 97, "current_set": 97, "intersecting_set": 97, "lowest_score_strategi": 97, "sub_df": 97, "filter_near_dupl": 97, "strategy_fn": 97, "strategy_kwarg": 97, "duplicate_row": 97, "group_kei": 97, "to_keep_indic": 97, "groupbi": 97, "explod": 97, "to_remov": 97, "isin": [97, 104], "kept": 97, "ids_to_remove_seri": 97, "assist": 97, "streamlin": [97, 98], "ux": 97, "agpl": 97, "compani": 97, "commerci": 97, "alter": [97, 98], "email": 97, "team": 97, "anywher": 97, "profession": 97, "expert": 97, "recogn": 98, "vital": 98, "leakag": 98, "comparion": 98, "leak": 98, "blueprint": 98, "divers": 98, "parameter": 98, "tldr": 98, "answer": [98, 99], "subtl": 98, "faith": 98, "danger": 98, "inevit": [98, 104], "xgbclassifi": 98, "123456": 98, "df_train": 98, "s3": [98, 103, 107, 108], "amazonaw": [98, 103, 107, 108], "clos_train_data": 98, "df_test": 98, "clos_test_data": 98, "noisy_letter_grad": 98, "018bff": 98, "076d92": 98, "c80059": 98, "e38f8a": 98, "d57e1a": 98, "grade_l": 98, "notes_l": 98, "train_featur": 98, "train_features_v2": 98, "train_labels_v2": 98, "test_featur": 98, "preprocessed_train_data": 98, "preprocessed_test_data": 98, "haven": 98, "features_df": 98, "heterogenou": 98, "full_df": 98, "reset_index": [98, 101], "749": 98, "583745": 98, "291382": 98, "5837": 98, "748": 98, "604": 98, "510": 98, "227": [98, 102, 103], "719": 98, "690": 98, "444": 98, "547": 98, "647": 98, "2914": 98, "611": 98, "687869": 98, "610": 98, "687883": 98, "612": 98, "688146": 98, "609": 98, "688189": 98, "613": 98, "688713": 98, "2913818469137725": 98, "came": [98, 108], "full_duplicate_result": 98, "train_idx_cutoff": 98, "nd_set_has_index_over_training_cutoff": 98, "exact_dupl": 98, "627": 98, "678": 98, "615": 98, "292": 98, "620": 98, "420": 98, "704": 98, "431": 98, "459": 98, "672": 98, "564": 98, "696": 98, "605": 98, "exact_duplicates_indic": 98, "indices_of_duplicates_to_drop": 98, "4a3f75": 98, "d030b5": 98, "ddd0ba": 98, "8e6d24": 98, "464aab": 98, "ee3387": 98, "61e807": 98, "71d7b9": 98, "83e31f": 98, "edeb53": 98, "cd52b5": 98, "84": [98, 103, 106], "454e51": 98, "042686": 98, "12a73f": 98, "tree_method": 98, "hist": [98, 104], "enable_categor": 98, "booster": 98, "callback": 98, "colsample_bylevel": 98, "colsample_bynod": 98, "colsample_bytre": 98, "early_stopping_round": 98, "eval_metr": 98, "feature_typ": 98, "gamma": 98, "grow_polici": 98, "importance_typ": 98, "interaction_constraint": 98, "max_bin": 98, "max_cat_threshold": 98, "max_cat_to_onehot": 98, "max_delta_step": 98, "max_leav": 98, "min_child_weight": 98, "monotone_constraint": 98, "multi_strategi": 98, "n_estim": [98, 99], "num_parallel_tre": 98, "x27": [98, 99], "softprob": 98, "xgbclassifierifittedxgbclassifi": 98, "test_pred_prob": [98, 104], "test_lab": 98, "test_features_arrai": 98, "134": 98, "798507": 98, "370259": 98, "625352": 98, "524042": 98, "097015": 98, "7985": 98, "000537": 98, "000903": 98, "001743": 98, "106": 98, "001853": 98, "002121": 98, "3703": 98, "752463e": 98, "784418e": 98, "09": [98, 102, 103, 106], "477741e": 98, "134230e": 98, "153555e": 98, "6254": 98, "143272": 98, "146501": 98, "161431": 98, "5240": 98, "765240": 98, "771221": 98, "801589": 98, "801652": 98, "810735": 98, "5240417899434826": 98, "0970": 98, "na": [98, 101], "test_label_issue_result": 98, "test_label_issues_ord": 98, "2bd759": 98, "34ccdd": 98, "bb3bab": 98, "103": [98, 99, 103], "bf1b14": 98, "4787de": 98, "865cbd": 98, "32d53f": 98, "5b2f76": 98, "28f8b4": 98, "df814d": 98, "f17261": 98, "1db3ff": 98, "ded944": 98, "124": [98, 103], "343dd3": 98, "homework": [98, 106], "8d904d": 98, "e4f0d5": 98, "d6d208": 98, "76c083": 98, "695f96": 98, "745c23": 98, "13b36e": 98, "5ba892": 98, "9f0216": 98, "003628": 98, "004006": 98, "004031": 98, "007930": 98, "013226": 98, "015255": 98, "017692": 98, "019767": 98, "036197": 98, "054746": 98, "055110": 98, "062675": 98, "112695": 98, "121059": 98, "171280": 98, "181689": 98, "208001": 98, "275028": 98, "346032": 98, "396350": 98, "401493": 98, "474349": 98, "mislead": 98, "breviti": 98, "indices_to_drop_from_test_data": 98, "df_test_clean": 98, "acc_origin": 98, "tediou": 98, "train_features_arrai": 98, "train_lab": 98, "318": [98, 106], "601": 98, "740433": 98, "344154": 98, "588290": 98, "437267": 98, "146423": 98, "977223": 98, "7404": 98, "162": 98, "000072": 98, "348": 98, "000161": 98, "232": [98, 103], "000256": 98, "205": [98, 103], "000458": 98, "000738": 98, "3442": 98, "588": 98, "358961e": 98, "336": [98, 103], "490911e": 98, "269": 98, "122475e": 98, "321": [98, 103], "374139e": 98, "311": 98, "358617e": 98, "5883": 98, "600": 98, "592": 98, "593": 98, "594": 98, "595": 98, "596": 98, "597": 98, "598": 98, "599": 98, "221": 98, "222": [98, 99], "315": 98, "332": [98, 103], "791060e": 98, "243": [98, 103], "540": 98, "379106e": 98, "396": 98, "397": 98, "398": 98, "399": 98, "4373": 98, "165": [98, 102], "550374": 98, "627357": 98, "627496": 98, "627502": 98, "627919": 98, "43726734378061227": 98, "1464": 98, "506": 98, "393": 98, "508": 98, "9772": 98, "402": 98, "401": 98, "aggress": 98, "faithfulli": 98, "label_issue_result": 98, "566": 98, "568": 98, "571": 98, "572": 98, "574": 98, "576": 98, "578": 98, "585": 98, "587": 98, "590": 98, "near_duplicates_idx": 98, "117": [98, 99, 106], "122": [98, 99, 103], "146": 98, "155": [98, 99, 103], "156": [98, 99], "173": [98, 103], "224": [98, 103], "272": 98, "277": [98, 103], "279": [98, 103], "288": 98, "300": [98, 101, 108], "342": 98, "352": 98, "365": 98, "366": 98, "384": 98, "388": 98, "394": 98, "404": 98, "474": 98, "480": 98, "494": 98, "515": 98, "536": 98, "537": 98, "539": 98, "542": 98, "outliers_idx": 98, "143": [98, 102, 103], "159": [98, 102, 103], "163": [98, 99, 108], "193": [98, 99], "194": [98, 99], "208": 98, "240": [98, 103], "241": 98, "242": [98, 103], "247": [98, 103], "287": [98, 103], "295": [98, 103], "299": [98, 103], "307": [98, 103], "350": 98, "361": 98, "378": 98, "379": 98, "392": 98, "419": 98, "432": 98, "479": 98, "484": 98, "485": 98, "489": 98, "492": 98, "504": 98, "511": 98, "522": 98, "523": 98, "535": 98, "543": 98, "567": 98, "579": 98, "591": 98, "idx_to_drop": 98, "276": [98, 103], "df_train_cur": 98, "clean_clf": 98, "clean_pr": 98, "acc_clean": 98, "inaccur": 98, "hybrid": 98, "quantit": 98, "hyper": 98, "default_edit_param": 98, "drop_label_issu": 98, "drop_outli": 98, "drop_near_dupl": 98, "candid": [98, 103], "edit_data": 98, "percentag": [98, 99], "num_label_issues_to_drop": 98, "num_outliers_to_drop": 98, "dedupl": 98, "unique_clust": 98, "unique_clusters_list": 98, "near_duplicates_idx_to_drop": 98, "n_drop": 98, "label_issues_idx_to_drop": 98, "outliers_idx_to_drop": 98, "train_features_clean": 98, "train_labels_clean": 98, "itertool": 98, "finer": 98, "param_combin": 98, "best_scor": 98, "best_param": 98, "train_features_preprocess": 98, "train_labels_preprocess": 98, "depth": 99, "survei": [99, 108], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103, 108], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103], "037843": 99, "614915": 99, "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "magic": 99, "liter": 99, "identif": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "offset": 99, "nquestion": 99, "overestim": 99, "experienc": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "170": 99, "214": 99, "164": [99, 102], "191": [99, 103], "206": [99, 103], "115": [99, 103], "201": [99, 103], "174": 99, "150": [99, 101, 103, 108], "169": [99, 108], "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "172": [99, 102], "157": 99, "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "noisier": 101, "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "zfill": 101, "row_na_check": 101, "notna": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "275": 102, "267": 102, "225": 102, "171": 102, "234": 102, "262": [102, 103], "263": [102, 103], "266": [102, 103], "139": 102, "216": [102, 103, 108], "265": 102, "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "231": 103, "293": 103, "235": 103, "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "283": 103, "303": 103, "316": 103, "323": 103, "327": 103, "226": 103, "228": 103, "219": 103, "239": 103, "209": [103, 108], "202": 103, "230": [103, 108], "215": 103, "220": 103, "229": 103, "217": [103, 108], "237": 103, "207": 103, "204": 103, "223": 103, "149": 103, "140": 103, "246": 103, "268": 103, "273": 103, "284": 103, "136": 103, "145": 103, "297": 103, "317": 103, "192": 103, "324": 103, "203": 103, "320": 103, "314": 103, "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": 103, "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "toronto": 104, "edu": 104, "kriz": 104, "170498071": 104, "38277434": 104, "85it": 104, "plot_imag": 104, "visualize_outli": 104, "txt_class": 104, "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "train_outlier_scor": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "unsur": 105, "price": 106, "incom": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "3d": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "367": 106, "305": 106, "560": 106, "657": 106, "view_datapoint": 106, "preds_og": 106, "r2_og": 106, "838": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "2400": 108, "52e0": 108, "1a01": 108, "1115": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "11mb": 108, "inflat": 108, "177": 108, "116": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "5mb": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [59, 0, 0, "-", "models"], [61, 0, 0, "-", "multiannotator"], [64, 0, 0, "-", "multilabel_classification"], [67, 0, 0, "-", "object_detection"], [70, 0, 0, "-", "outlier"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "regression"], [76, 0, 0, "-", "segmentation"], [80, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "metric"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_underperforming_clusters"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[60, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[60, 2, 1, "", "KerasWrapperModel"], [60, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[61, 1, 1, "", "convert_long_to_wide_dataset"], [61, 1, 1, "", "get_active_learning_scores"], [61, 1, 1, "", "get_active_learning_scores_ensemble"], [61, 1, 1, "", "get_label_quality_multiannotator"], [61, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [61, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[62, 0, 0, "-", "dataset"], [63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[62, 1, 1, "", "common_multilabel_issues"], [62, 1, 1, "", "multilabel_health_summary"], [62, 1, 1, "", "overall_multilabel_health_score"], [62, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, 1, 1, "", "find_label_issues"], [63, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[66, 0, 0, "-", "filter"], [68, 0, 0, "-", "rank"], [69, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[66, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[68, 1, 1, "", "compute_badloc_box_scores"], [68, 1, 1, "", "compute_overlooked_box_scores"], [68, 1, 1, "", "compute_swap_box_scores"], [68, 1, 1, "", "get_label_quality_scores"], [68, 1, 1, "", "issues_from_scores"], [68, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[69, 1, 1, "", "bounding_box_size_distribution"], [69, 1, 1, "", "calculate_per_class_metrics"], [69, 1, 1, "", "class_label_distribution"], [69, 1, 1, "", "get_average_per_class_confusion_matrix"], [69, 1, 1, "", "get_sorted_bbox_count_idxs"], [69, 1, 1, "", "object_counts_per_image"], [69, 1, 1, "", "plot_class_distribution"], [69, 1, 1, "", "plot_class_size_distributions"], [69, 1, 1, "", "visualize"]], "cleanlab.outlier": [[70, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[70, 3, 1, "", "fit"], [70, 3, 1, "", "fit_score"], [70, 3, 1, "", "score"]], "cleanlab.rank": [[71, 1, 1, "", "find_top_issues"], [71, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [71, 1, 1, "", "get_label_quality_ensemble_scores"], [71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "get_normalized_margin_for_each_label"], [71, 1, 1, "", "get_self_confidence_for_each_label"], [71, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[73, 0, 0, "-", "learn"], [74, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[73, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[73, 3, 1, "", "__init_subclass__"], [73, 3, 1, "", "find_label_issues"], [73, 3, 1, "", "fit"], [73, 3, 1, "", "get_aleatoric_uncertainty"], [73, 3, 1, "", "get_epistemic_uncertainty"], [73, 3, 1, "", "get_label_issues"], [73, 3, 1, "", "get_metadata_routing"], [73, 3, 1, "", "get_params"], [73, 3, 1, "", "predict"], [73, 3, 1, "", "save_space"], [73, 3, 1, "", "score"], [73, 3, 1, "", "set_fit_request"], [73, 3, 1, "", "set_params"], [73, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[74, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[79, 0, 0, "-", "filter"], [81, 0, 0, "-", "rank"], [82, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[79, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[81, 1, 1, "", "get_label_quality_scores"], [81, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[82, 1, 1, "", "common_label_issues"], [82, 1, 1, "", "display_issues"], [82, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 86, 87, 91, 93, 94, 97, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 88, 89, 90, 91, 92, 93, 94, 95, 97, 99, 102], "creat": [7, 89, 90, 99, 101], "your": [7, 83, 89, 90, 94, 95, 97, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 89], "basic": 7, "check": [7, 83, 95, 98], "intermedi": 7, "advanc": [7, 89], "us": [7, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": [8, 95], "cluster": [8, 95, 97], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 89], "cleanlab": [9, 10, 83, 86, 87, 88, 91, 93, 94, 97, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 83, 91], "mode": [9, 10, 83, 91], "can": [10, 90, 96, 97, 99, 101], "detect": [10, 88, 90, 91, 93, 94, 95, 97, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "input": 10, "label": [10, 24, 26, 31, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 70, 91, 93, 94, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 90, 91, 93, 94], "duplic": [10, 20, 90, 91, 93, 94, 97, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 94, 95], "iid": [10, 94, 95], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 84, 95, 99, 107], "imbal": [10, 21, 95], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 91, 95, 104], "specif": [10, 22, 107], "spuriou": [10, 95], "correl": [10, 95], "between": 10, "properti": 10, "score": [10, 95, 99, 101, 102, 103, 107, 108], "underperform": [10, 95, 97], "group": [10, 95, 97], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 95], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "valuat": [10, 95], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 95], "paramet": [10, 99], "get": [12, 89, 90, 101, 102, 103, 107, 108], "start": [12, 96], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 97, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 72, 73, 74, 97, 106], "prioriti": 31, "order": 31, "find": [31, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 91], "dataset": [37, 62, 83, 87, 88, 90, 91, 94, 95, 96, 97, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 63, 66, 75, 79, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 89], "token_classification_util": 56, "util": 57, "valid": [58, 91, 105], "model": [59, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106], "kera": 60, "multiannot": [61, 101], "multilabel_classif": 64, "rank": [65, 68, 71, 74, 77, 81, 99], "object_detect": 67, "summari": [69, 78, 82], "learn": [73, 90, 97, 99], "segment": [76, 107], "token_classif": [80, 108], "open": [83, 97], "sourc": [83, 97], "document": 83, "quickstart": 83, "1": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "2": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [83, 90, 99], "sort": [83, 95], "3": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [83, 97], "error": [83, 87, 91, 97, 99, 101, 102, 103, 106, 107, 108], "train": [83, 86, 87, 88, 95, 97, 98, 104, 106], "robust": [83, 86, 87, 99, 106], "noisi": [83, 86, 87, 98, 99, 106], "4": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 103, 104, 106], "curat": [83, 98], "fix": [83, 97], "level": [83, 96, 99, 108], "5": [83, 86, 88, 90, 91, 93, 95, 98, 99, 101, 106], "improv": [83, 98, 101], "via": [83, 98, 99, 101], "mani": [83, 99], "other": [83, 101, 103, 106], "techniqu": [83, 98], "contribut": 83, "how": [84, 97, 99, 101, 102, 108], "migrat": 84, "version": 84, "0": 84, "from": [84, 86, 87, 89, 90, 98, 99, 106], "pre": [84, 88, 95, 97, 104], "function": [84, 89], "name": 84, "chang": 84, "modul": [84, 99], "new": 84, "remov": 84, "common": [84, 108], "argument": [84, 89], "variabl": 84, "cleanlearn": [85, 97, 99], "tutori": [85, 92, 96, 98, 100], "structur": 86, "tabular": [86, 93], "requir": [86, 87, 89, 90, 91, 93, 94, 101, 102, 103, 104, 106, 107, 108], "depend": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "load": [86, 87, 88, 89, 90, 93, 94, 95, 106], "process": [86, 93, 104, 106], "select": [86, 93], "comput": [86, 88, 91, 93, 94, 95, 97, 98, 101, 105], "out": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "sampl": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "predict": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 105], "probabl": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 105], "more": [86, 87, 90, 99, 106], "spend": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "too": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "much": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "time": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "qualiti": [86, 87, 90, 93, 94, 96, 99, 101, 102, 103, 104, 105, 106, 107, 108], "text": [87, 94, 95, 108], "format": [87, 94, 97, 102, 103], "defin": [87, 91, 94, 95, 106], "potenti": [87, 101, 106], "an": [88, 91, 97], "audio": 88, "import": [88, 89, 90, 91, 96, 99, 101], "them": [88, 96, 98, 99], "speechbrain": 88, "featur": [88, 91, 104], "fit": 88, "linear": 88, "workflow": [89, 95, 99], "audit": [89, 90], "classifi": [89, 90, 95], "instanti": 89, "object": [89, 103], "increment": 89, "specifi": [89, 97], "nondefault": 89, "save": 89, "ad": 89, "A": 90, "unifi": 90, "kind": [90, 103], "skip": [90, 96, 99, 101], "detail": [90, 96, 99, 101], "about": 90, "addit": 90, "inform": [90, 91], "fetch": [91, 96], "normal": 91, "fashion": 91, "mnist": 91, "prepar": [91, 95], "k": [91, 93, 105], "fold": [91, 105], "cross": [91, 105], "embed": [91, 104], "7": [91, 98, 99], "view": 91, "most": [91, 108], "like": 91, "exampl": [91, 97, 99, 104], "sever": 91, "set": [91, 99], "dark": 91, "top": [91, 107], "low": 91, "numer": 93, "categor": [93, 95], "column": 93, "construct": 93, "nearest": 93, "neighbour": 93, "graph": [93, 95], "drift": [94, 102], "miscellan": 95, "acceler": 95, "knn": 95, "obtain": 95, "identifi": [95, 97, 98, 103], "explan": 95, "vector": 95, "perform": [95, 98], "visual": [95, 99, 103, 104, 107], "synthet": 95, "result": 95, "predefin": 95, "slice": [95, 97], "i": [95, 97, 99, 105], "catch": 95, "valu": 95, "encod": 95, "initi": [95, 101], "6": [95, 98, 99], "run": [95, 97], "analysi": [95, 103], "interpret": 95, "understand": 96, "evalu": [96, 98], "health": [96, 99], "8": [96, 98, 99], "popular": 96, "faq": 97, "what": [97, 99, 105], "do": [97, 99], "infer": 97, "correct": [97, 98], "ha": 97, "flag": 97, "should": 97, "v": [97, 98], "test": [97, 98, 99, 104], "big": 97, "limit": 97, "memori": 97, "why": [97, 98], "isn": 97, "t": 97, "work": [97, 99, 101, 108], "me": 97, "differ": [97, 103], "clean": [97, 98, 99], "final": 97, "hyperparamet": [97, 98], "tune": 97, "onli": 97, "one": [97, 99, 102, 107], "doe": [97, 101, 108], "take": 97, "so": 97, "long": 97, "when": [97, 99], "licens": 97, "under": 97, "answer": 97, "question": 97, "split": 98, "did": 98, "you": [98, 99], "make": 98, "thi": [98, 99], "preprocess": 98, "fundament": 98, "problem": 98, "setup": 98, "origin": 98, "baselin": 98, "manual": 98, "address": 98, "algorithm": 98, "better": [98, 101], "strategi": 98, "optim": 98, "9": 98, "conclus": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "twenti": 99, "lowest": 99, "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "re": 99, "One": 99, "rule": 99, "overal": [99, 107], "accur": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "major": 101, "vote": 101, "statist": 101, "compar": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "without": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Spurious Correlations between image-specific properties and labels": [[10, "spurious-correlations-between-image-specific-properties-and-labels"]], "property": [[10, "property"]], "score": [[10, "score"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [70, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [72, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [62, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [63, "module-cleanlab.multilabel_classification.filter"], [66, "filter"], [75, "filter"], [79, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "models": [[59, "models"]], "keras": [[60, "module-cleanlab.models.keras"]], "multiannotator": [[61, "module-cleanlab.multiannotator"]], "multilabel_classification": [[64, "multilabel-classification"]], "rank": [[65, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.rank"], [77, "module-cleanlab.segmentation.rank"], [81, "module-cleanlab.token_classification.rank"]], "object_detection": [[67, "object-detection"]], "summary": [[69, "summary"], [78, "module-cleanlab.segmentation.summary"], [82, "module-cleanlab.token_classification.summary"]], "regression.learn": [[73, "module-cleanlab.regression.learn"]], "regression.rank": [[74, "module-cleanlab.regression.rank"]], "segmentation": [[76, "segmentation"]], "token_classification": [[80, "token-classification"]], "cleanlab open-source documentation": [[83, "cleanlab-open-source-documentation"]], "Quickstart": [[83, "quickstart"]], "1. Install cleanlab": [[83, "install-cleanlab"]], "2. Check your data for all sorts of issues": [[83, "check-your-data-for-all-sorts-of-issues"]], "3. Handle label errors and train robust models with noisy labels": [[83, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[83, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[83, "improve-your-data-via-many-other-techniques"]], "Contributing": [[83, "contributing"]], "Easy Mode": [[83, "easy-mode"], [91, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[84, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[84, "function-and-class-name-changes"]], "Module name changes": [[84, "module-name-changes"]], "New modules": [[84, "new-modules"]], "Removed modules": [[84, "removed-modules"]], "Common argument and variable name changes": [[84, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[85, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[86, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[86, "1.-Install-required-dependencies"], [87, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[86, "2.-Load-and-process-the-data"], [93, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[86, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [93, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[86, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[86, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Spending too much time on data quality?": [[86, "Spending-too-much-time-on-data-quality?"], [87, "Spending-too-much-time-on-data-quality?"], [90, "Spending-too-much-time-on-data-quality?"], [93, "Spending-too-much-time-on-data-quality?"], [94, "Spending-too-much-time-on-data-quality?"], [96, "Spending-too-much-time-on-data-quality?"], [99, "Spending-too-much-time-on-data-quality?"], [102, "Spending-too-much-time-on-data-quality?"], [104, "Spending-too-much-time-on-data-quality?"], [105, "spending-too-much-time-on-data-quality"], [106, "Spending-too-much-time-on-data-quality?"]], "Text Classification with Noisy Labels": [[87, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[87, "2.-Load-and-format-the-text-dataset"], [94, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[87, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[87, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[88, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[88, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[88, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[88, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[88, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[88, "5.-Use-cleanlab-to-find-label-issues"], [93, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[89, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[89, "Install-and-import-required-dependencies"]], "Create and load the data": [[89, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[89, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[89, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[89, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[89, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[89, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[89, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[90, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[90, "1.-Install-and-import-required-dependencies"], [91, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[90, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[90, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[90, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[90, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[90, "Get-additional-information"]], "Near duplicate issues": [[90, "Near-duplicate-issues"], [91, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[91, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[91, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[91, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[91, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[91, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[91, "7.-Use-cleanlab-to-find-issues"]], "View report": [[91, "View-report"]], "Label issues": [[91, "Label-issues"], [93, "Label-issues"], [94, "Label-issues"]], "View most likely examples with label errors": [[91, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[91, "Outlier-issues"], [93, "Outlier-issues"], [94, "Outlier-issues"]], "View most severe outliers": [[91, "View-most-severe-outliers"]], "View sets of near duplicate images": [[91, "View-sets-of-near-duplicate-images"]], "Dark images": [[91, "Dark-images"]], "View top examples of dark images": [[91, "View-top-examples-of-dark-images"]], "Low information images": [[91, "Low-information-images"]], "Datalab Tutorials": [[92, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[93, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[93, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[93, "Near-duplicate-issues"], [94, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[94, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[94, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[94, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[94, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[95, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[95, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[95, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[95, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[95, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[95, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[95, "Explanation:"]], "Data Valuation": [[95, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[95, "1.-Load-and-Prepare-the-Dataset"], [95, "id2"], [95, "id5"]], "2. Vectorize the Text Data": [[95, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[95, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[95, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[95, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[95, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[95, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [95, "id3"]], "3. (Optional) Cluster the Data": [[95, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[95, "4.-Identify-Underperforming-Groups-with-Datalab"], [95, "id4"]], "5. (Optional) Visualize the Results": [[95, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[95, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[95, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[95, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[95, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[95, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[95, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[95, "1.-Load-the-Dataset"], [95, "id8"]], "2: Encode Categorical Values": [[95, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[95, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[95, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[95, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[95, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[95, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[95, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[95, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[95, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[95, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Run Datalab Analysis": [[95, "2.-Run-Datalab-Analysis"]], "3. Interpret the Results": [[95, "3.-Interpret-the-Results"]], "Understanding Dataset-level Labeling Issues": [[96, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[96, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[96, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[96, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[97, "FAQ"]], "What data can cleanlab detect issues in?": [[97, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[97, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[97, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[97, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[97, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[97, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[97, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[97, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[97, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[97, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[97, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[97, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[97, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[97, "Can't-find-an-answer-to-your-question?"]], "Improving ML Performance via Data Curation with Train vs Test Splits": [[98, "Improving-ML-Performance-via-Data-Curation-with-Train-vs-Test-Splits"]], "Why did you make this tutorial?": [[98, "Why-did-you-make-this-tutorial?"]], "1. Install dependencies": [[98, "1.-Install-dependencies"]], "2. Preprocess the data": [[98, "2.-Preprocess-the-data"]], "3. Check for fundamental problems in the train/test setup": [[98, "3.-Check-for-fundamental-problems-in-the-train/test-setup"]], "4. Train model with original (noisy) training data": [[98, "4.-Train-model-with-original-(noisy)-training-data"]], "Compute out-of-sample predicted probabilities for the test data from this baseline model": [[98, "Compute-out-of-sample-predicted-probabilities-for-the-test-data-from-this-baseline-model"]], "5. Check for issues in test data and manually address them": [[98, "5.-Check-for-issues-in-test-data-and-manually-address-them"]], "Use clean test data to evaluate the performance of model trained on noisy training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-noisy-training-data"]], "6. Check for issues in training data and algorithmically correct them": [[98, "6.-Check-for-issues-in-training-data-and-algorithmically-correct-them"]], "7. Train model on cleaned training data": [[98, "7.-Train-model-on-cleaned-training-data"]], "Use clean test data to evaluate the performance of model trained on cleaned training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-cleaned-training-data"]], "8. Identifying better training data curation strategies via hyperparameter optimization techniques": [[98, "8.-Identifying-better-training-data-curation-strategies-via-hyperparameter-optimization-techniques"]], "9. Conclusion": [[98, "9.-Conclusion"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [59, "module-cleanlab.models"], [60, "module-cleanlab.models.keras"], [61, "module-cleanlab.multiannotator"], [62, "module-cleanlab.multilabel_classification.dataset"], [63, "module-cleanlab.multilabel_classification.filter"], [64, "module-cleanlab.multilabel_classification"], [65, "module-cleanlab.multilabel_classification.rank"], [66, "module-cleanlab.object_detection.filter"], [67, "module-cleanlab.object_detection"], [68, "module-cleanlab.object_detection.rank"], [69, "module-cleanlab.object_detection.summary"], [70, "module-cleanlab.outlier"], [71, "module-cleanlab.rank"], [72, "module-cleanlab.regression"], [73, "module-cleanlab.regression.learn"], [74, "module-cleanlab.regression.rank"], [75, "module-cleanlab.segmentation.filter"], [76, "module-cleanlab.segmentation"], [77, "module-cleanlab.segmentation.rank"], [78, "module-cleanlab.segmentation.summary"], [79, "module-cleanlab.token_classification.filter"], [80, "module-cleanlab.token_classification"], [81, "module-cleanlab.token_classification.rank"], [82, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_underperforming_clusters() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_underperforming_clusters"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[59, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[60, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[61, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[62, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[64, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[65, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[66, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[66, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[67, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[68, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[69, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[70, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[70, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[71, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[72, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[73, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[73, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[73, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[74, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[74, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[75, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[75, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[76, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[77, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[78, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[79, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[79, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[80, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[81, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[82, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file diff --git a/master/tutorials/clean_learning/tabular.ipynb b/master/tutorials/clean_learning/tabular.ipynb index 73afbe582..25a686165 100644 --- a/master/tutorials/clean_learning/tabular.ipynb +++ b/master/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:20.938023Z", - "iopub.status.busy": "2024-08-22T00:52:20.937843Z", - "iopub.status.idle": "2024-08-22T00:52:22.308543Z", - "shell.execute_reply": "2024-08-22T00:52:22.307924Z" + "iopub.execute_input": "2024-08-26T15:49:53.786288Z", + "iopub.status.busy": "2024-08-26T15:49:53.786078Z", + "iopub.status.idle": "2024-08-26T15:49:55.058310Z", + "shell.execute_reply": "2024-08-26T15:49:55.057679Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:22.311421Z", - "iopub.status.busy": "2024-08-22T00:52:22.310918Z", - "iopub.status.idle": "2024-08-22T00:52:22.330605Z", - "shell.execute_reply": "2024-08-22T00:52:22.329959Z" + "iopub.execute_input": "2024-08-26T15:49:55.061371Z", + "iopub.status.busy": "2024-08-26T15:49:55.060806Z", + "iopub.status.idle": "2024-08-26T15:49:55.079140Z", + "shell.execute_reply": "2024-08-26T15:49:55.078680Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:22.333283Z", - "iopub.status.busy": "2024-08-22T00:52:22.332976Z", - "iopub.status.idle": "2024-08-22T00:52:22.500337Z", - "shell.execute_reply": "2024-08-22T00:52:22.499745Z" + "iopub.execute_input": "2024-08-26T15:49:55.081404Z", + "iopub.status.busy": "2024-08-26T15:49:55.080983Z", + "iopub.status.idle": "2024-08-26T15:49:55.275955Z", + "shell.execute_reply": "2024-08-26T15:49:55.275375Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:22.532956Z", - "iopub.status.busy": "2024-08-22T00:52:22.532465Z", - "iopub.status.idle": "2024-08-22T00:52:22.536605Z", - "shell.execute_reply": "2024-08-22T00:52:22.536127Z" + "iopub.execute_input": "2024-08-26T15:49:55.313930Z", + "iopub.status.busy": "2024-08-26T15:49:55.313329Z", + "iopub.status.idle": "2024-08-26T15:49:55.317364Z", + "shell.execute_reply": "2024-08-26T15:49:55.316909Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:22.538779Z", - "iopub.status.busy": "2024-08-22T00:52:22.538596Z", - "iopub.status.idle": "2024-08-22T00:52:22.547368Z", - "shell.execute_reply": "2024-08-22T00:52:22.546904Z" + "iopub.execute_input": "2024-08-26T15:49:55.319414Z", + "iopub.status.busy": "2024-08-26T15:49:55.319068Z", + "iopub.status.idle": "2024-08-26T15:49:55.327715Z", + "shell.execute_reply": "2024-08-26T15:49:55.327122Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:22.549903Z", - "iopub.status.busy": "2024-08-22T00:52:22.549509Z", - "iopub.status.idle": "2024-08-22T00:52:22.552464Z", - "shell.execute_reply": "2024-08-22T00:52:22.551877Z" + "iopub.execute_input": "2024-08-26T15:49:55.329976Z", + "iopub.status.busy": "2024-08-26T15:49:55.329562Z", + "iopub.status.idle": "2024-08-26T15:49:55.332413Z", + "shell.execute_reply": "2024-08-26T15:49:55.331825Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:22.554652Z", - "iopub.status.busy": "2024-08-22T00:52:22.554463Z", - "iopub.status.idle": "2024-08-22T00:52:23.093120Z", - "shell.execute_reply": "2024-08-22T00:52:23.092525Z" + "iopub.execute_input": "2024-08-26T15:49:55.334498Z", + "iopub.status.busy": "2024-08-26T15:49:55.334155Z", + "iopub.status.idle": "2024-08-26T15:49:55.859656Z", + "shell.execute_reply": "2024-08-26T15:49:55.859123Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:23.095732Z", - "iopub.status.busy": "2024-08-22T00:52:23.095492Z", - "iopub.status.idle": "2024-08-22T00:52:25.209415Z", - "shell.execute_reply": "2024-08-22T00:52:25.208716Z" + "iopub.execute_input": "2024-08-26T15:49:55.862132Z", + "iopub.status.busy": "2024-08-26T15:49:55.861942Z", + "iopub.status.idle": "2024-08-26T15:49:57.828703Z", + "shell.execute_reply": "2024-08-26T15:49:57.828113Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:25.212702Z", - "iopub.status.busy": "2024-08-22T00:52:25.211774Z", - "iopub.status.idle": "2024-08-22T00:52:25.222979Z", - "shell.execute_reply": "2024-08-22T00:52:25.222423Z" + "iopub.execute_input": "2024-08-26T15:49:57.831725Z", + "iopub.status.busy": "2024-08-26T15:49:57.830860Z", + "iopub.status.idle": "2024-08-26T15:49:57.841628Z", + "shell.execute_reply": "2024-08-26T15:49:57.841073Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:25.225235Z", - "iopub.status.busy": "2024-08-22T00:52:25.225042Z", - "iopub.status.idle": "2024-08-22T00:52:25.229726Z", - "shell.execute_reply": "2024-08-22T00:52:25.229144Z" + "iopub.execute_input": "2024-08-26T15:49:57.843831Z", + "iopub.status.busy": "2024-08-26T15:49:57.843444Z", + "iopub.status.idle": "2024-08-26T15:49:57.847541Z", + "shell.execute_reply": "2024-08-26T15:49:57.846968Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:25.231952Z", - "iopub.status.busy": "2024-08-22T00:52:25.231646Z", - "iopub.status.idle": "2024-08-22T00:52:25.240450Z", - "shell.execute_reply": "2024-08-22T00:52:25.240004Z" + "iopub.execute_input": "2024-08-26T15:49:57.849507Z", + "iopub.status.busy": "2024-08-26T15:49:57.849202Z", + "iopub.status.idle": "2024-08-26T15:49:57.858293Z", + "shell.execute_reply": "2024-08-26T15:49:57.857744Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:25.242541Z", - "iopub.status.busy": "2024-08-22T00:52:25.242358Z", - "iopub.status.idle": "2024-08-22T00:52:25.357509Z", - "shell.execute_reply": "2024-08-22T00:52:25.356980Z" + "iopub.execute_input": "2024-08-26T15:49:57.860454Z", + "iopub.status.busy": "2024-08-26T15:49:57.860152Z", + "iopub.status.idle": "2024-08-26T15:49:57.972126Z", + "shell.execute_reply": "2024-08-26T15:49:57.971546Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:25.359689Z", - "iopub.status.busy": "2024-08-22T00:52:25.359492Z", - "iopub.status.idle": "2024-08-22T00:52:25.362611Z", - "shell.execute_reply": "2024-08-22T00:52:25.362120Z" + "iopub.execute_input": "2024-08-26T15:49:57.974328Z", + "iopub.status.busy": "2024-08-26T15:49:57.973926Z", + "iopub.status.idle": "2024-08-26T15:49:57.976598Z", + "shell.execute_reply": "2024-08-26T15:49:57.976151Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:25.364587Z", - "iopub.status.busy": "2024-08-22T00:52:25.364398Z", - "iopub.status.idle": "2024-08-22T00:52:27.619586Z", - "shell.execute_reply": "2024-08-22T00:52:27.618913Z" + "iopub.execute_input": "2024-08-26T15:49:57.978573Z", + "iopub.status.busy": "2024-08-26T15:49:57.978261Z", + "iopub.status.idle": "2024-08-26T15:50:00.065786Z", + "shell.execute_reply": "2024-08-26T15:50:00.064976Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:27.622637Z", - "iopub.status.busy": "2024-08-22T00:52:27.621998Z", - "iopub.status.idle": "2024-08-22T00:52:27.634956Z", - "shell.execute_reply": "2024-08-22T00:52:27.634452Z" + "iopub.execute_input": "2024-08-26T15:50:00.069072Z", + "iopub.status.busy": "2024-08-26T15:50:00.068250Z", + "iopub.status.idle": "2024-08-26T15:50:00.079734Z", + "shell.execute_reply": "2024-08-26T15:50:00.079177Z" } }, "outputs": [ @@ -786,10 +786,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:27.637282Z", - "iopub.status.busy": "2024-08-22T00:52:27.636940Z", - "iopub.status.idle": "2024-08-22T00:52:27.678076Z", - "shell.execute_reply": "2024-08-22T00:52:27.677554Z" + "iopub.execute_input": "2024-08-26T15:50:00.081968Z", + "iopub.status.busy": "2024-08-26T15:50:00.081512Z", + "iopub.status.idle": "2024-08-26T15:50:00.307993Z", + "shell.execute_reply": "2024-08-26T15:50:00.307364Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/clean_learning/text.html b/master/tutorials/clean_learning/text.html index b73f19758..3f03b9159 100644 --- a/master/tutorials/clean_learning/text.html +++ b/master/tutorials/clean_learning/text.html @@ -817,7 +817,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'apple_pay_or_google_pay', 'card_about_to_expire', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'change_pin', 'getting_spare_card', 'cancel_transfer', 'lost_or_stolen_phone', 'visa_or_mastercard'}
+Classes: {'card_payment_fee_charged', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'getting_spare_card', 'change_pin', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'card_about_to_expire', 'visa_or_mastercard', 'cancel_transfer'}
 

Let’s print the first example in the train set.

@@ -880,43 +880,43 @@

2. Load and format the text dataset
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -1219,7 +1219,7 @@

Spending too much time on data quality?Cleanlab Studio – an automated platform to find and fix issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. Try it for free!

The modern AI pipeline automated with Cleanlab Studio

diff --git a/master/tutorials/clean_learning/text.ipynb b/master/tutorials/clean_learning/text.ipynb index ec7c3e99e..8c5c26b42 100644 --- a/master/tutorials/clean_learning/text.ipynb +++ b/master/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:30.948399Z", - "iopub.status.busy": "2024-08-22T00:52:30.948020Z", - "iopub.status.idle": "2024-08-22T00:52:34.343938Z", - "shell.execute_reply": "2024-08-22T00:52:34.343259Z" + "iopub.execute_input": "2024-08-26T15:50:03.569360Z", + "iopub.status.busy": "2024-08-26T15:50:03.569180Z", + "iopub.status.idle": "2024-08-26T15:50:06.407526Z", + "shell.execute_reply": "2024-08-26T15:50:06.406949Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:34.346711Z", - "iopub.status.busy": "2024-08-22T00:52:34.346377Z", - "iopub.status.idle": "2024-08-22T00:52:34.350046Z", - "shell.execute_reply": "2024-08-22T00:52:34.349454Z" + "iopub.execute_input": "2024-08-26T15:50:06.410122Z", + "iopub.status.busy": "2024-08-26T15:50:06.409772Z", + "iopub.status.idle": "2024-08-26T15:50:06.413458Z", + "shell.execute_reply": "2024-08-26T15:50:06.412873Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:34.352171Z", - "iopub.status.busy": "2024-08-22T00:52:34.351852Z", - "iopub.status.idle": "2024-08-22T00:52:34.355069Z", - "shell.execute_reply": "2024-08-22T00:52:34.354523Z" + "iopub.execute_input": "2024-08-26T15:50:06.415650Z", + "iopub.status.busy": "2024-08-26T15:50:06.415319Z", + "iopub.status.idle": "2024-08-26T15:50:06.418479Z", + "shell.execute_reply": "2024-08-26T15:50:06.417934Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:34.357305Z", - "iopub.status.busy": "2024-08-22T00:52:34.356988Z", - "iopub.status.idle": "2024-08-22T00:52:34.407734Z", - "shell.execute_reply": "2024-08-22T00:52:34.407155Z" + "iopub.execute_input": "2024-08-26T15:50:06.420642Z", + "iopub.status.busy": "2024-08-26T15:50:06.420319Z", + "iopub.status.idle": "2024-08-26T15:50:06.442102Z", + "shell.execute_reply": "2024-08-26T15:50:06.441562Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:34.410199Z", - "iopub.status.busy": "2024-08-22T00:52:34.409721Z", - "iopub.status.idle": "2024-08-22T00:52:34.413751Z", - "shell.execute_reply": "2024-08-22T00:52:34.413209Z" + "iopub.execute_input": "2024-08-26T15:50:06.444312Z", + "iopub.status.busy": "2024-08-26T15:50:06.443871Z", + "iopub.status.idle": "2024-08-26T15:50:06.447563Z", + "shell.execute_reply": "2024-08-26T15:50:06.447001Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:34.416108Z", - "iopub.status.busy": "2024-08-22T00:52:34.415755Z", - "iopub.status.idle": "2024-08-22T00:52:34.419532Z", - "shell.execute_reply": "2024-08-22T00:52:34.419030Z" + "iopub.execute_input": "2024-08-26T15:50:06.449710Z", + "iopub.status.busy": "2024-08-26T15:50:06.449373Z", + "iopub.status.idle": "2024-08-26T15:50:06.452548Z", + "shell.execute_reply": "2024-08-26T15:50:06.452027Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'apple_pay_or_google_pay', 'card_about_to_expire', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'change_pin', 'getting_spare_card', 'cancel_transfer', 'lost_or_stolen_phone', 'visa_or_mastercard'}\n" + "Classes: {'card_payment_fee_charged', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'getting_spare_card', 'change_pin', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'card_about_to_expire', 'visa_or_mastercard', 'cancel_transfer'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:34.421822Z", - "iopub.status.busy": "2024-08-22T00:52:34.421447Z", - "iopub.status.idle": "2024-08-22T00:52:34.424650Z", - "shell.execute_reply": "2024-08-22T00:52:34.424098Z" + "iopub.execute_input": "2024-08-26T15:50:06.454394Z", + "iopub.status.busy": "2024-08-26T15:50:06.454216Z", + "iopub.status.idle": "2024-08-26T15:50:06.457498Z", + "shell.execute_reply": "2024-08-26T15:50:06.456945Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:34.426905Z", - "iopub.status.busy": "2024-08-22T00:52:34.426468Z", - "iopub.status.idle": "2024-08-22T00:52:34.429909Z", - "shell.execute_reply": "2024-08-22T00:52:34.429435Z" + "iopub.execute_input": "2024-08-26T15:50:06.459596Z", + "iopub.status.busy": "2024-08-26T15:50:06.459255Z", + "iopub.status.idle": "2024-08-26T15:50:06.463265Z", + "shell.execute_reply": "2024-08-26T15:50:06.462673Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:34.432007Z", - "iopub.status.busy": "2024-08-22T00:52:34.431676Z", - "iopub.status.idle": "2024-08-22T00:52:41.010039Z", - "shell.execute_reply": "2024-08-22T00:52:41.009367Z" + "iopub.execute_input": "2024-08-26T15:50:06.465474Z", + "iopub.status.busy": "2024-08-26T15:50:06.465140Z", + "iopub.status.idle": "2024-08-26T15:50:11.593668Z", + "shell.execute_reply": "2024-08-26T15:50:11.593086Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "be22c25d590e4494a513559de6fcd58a", + "model_id": "609bd99534344390a356a6788fee8507", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2c7ba3b688c54c6ebf2f1e09dfef05b9", + "model_id": "72d412ce755f416e9311468fb26a3a46", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2ea1061f8864486794057d9eac9aa38d", + "model_id": "1bd2574eb75a42f3837995119980a91e", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0b8ebf42c8864cf993b3f88fd3f88efb", + "model_id": "a87e77b0e9324a9384b775bc5514a176", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "53195e1dd93a4045b830a4d1db7f3735", + "model_id": "1d1da5af0c1e439590d191a482ebfe2e", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e8996344f5494527ac2bb6f701ae7fb1", + "model_id": "66ba0cd1d985486c984a043d0efabf25", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2052fb421e5944b3b57e72ebde8da262", + "model_id": "828118e3407f496e9047225853abf12c", "version_major": 2, "version_minor": 0 }, @@ -601,10 +601,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:41.012872Z", - "iopub.status.busy": "2024-08-22T00:52:41.012512Z", - "iopub.status.idle": "2024-08-22T00:52:41.015369Z", - "shell.execute_reply": "2024-08-22T00:52:41.014841Z" + "iopub.execute_input": "2024-08-26T15:50:11.596799Z", + "iopub.status.busy": "2024-08-26T15:50:11.596379Z", + "iopub.status.idle": "2024-08-26T15:50:11.599483Z", + "shell.execute_reply": "2024-08-26T15:50:11.598893Z" } }, "outputs": [], @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:41.017391Z", - "iopub.status.busy": "2024-08-22T00:52:41.017113Z", - "iopub.status.idle": "2024-08-22T00:52:41.019910Z", - "shell.execute_reply": "2024-08-22T00:52:41.019360Z" + "iopub.execute_input": "2024-08-26T15:50:11.601637Z", + "iopub.status.busy": "2024-08-26T15:50:11.601225Z", + "iopub.status.idle": "2024-08-26T15:50:11.603915Z", + "shell.execute_reply": "2024-08-26T15:50:11.603463Z" } }, "outputs": [], @@ -644,10 +644,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:41.021970Z", - "iopub.status.busy": "2024-08-22T00:52:41.021694Z", - "iopub.status.idle": "2024-08-22T00:52:43.922048Z", - "shell.execute_reply": "2024-08-22T00:52:43.921191Z" + "iopub.execute_input": "2024-08-26T15:50:11.605986Z", + "iopub.status.busy": "2024-08-26T15:50:11.605617Z", + "iopub.status.idle": "2024-08-26T15:50:14.423933Z", + "shell.execute_reply": "2024-08-26T15:50:14.423128Z" }, "scrolled": true }, @@ -670,10 +670,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:43.925889Z", - "iopub.status.busy": "2024-08-22T00:52:43.924665Z", - "iopub.status.idle": "2024-08-22T00:52:43.933352Z", - "shell.execute_reply": "2024-08-22T00:52:43.932838Z" + "iopub.execute_input": "2024-08-26T15:50:14.427102Z", + "iopub.status.busy": "2024-08-26T15:50:14.426449Z", + "iopub.status.idle": "2024-08-26T15:50:14.434884Z", + "shell.execute_reply": "2024-08-26T15:50:14.434404Z" } }, "outputs": [ @@ -774,10 +774,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:43.935693Z", - "iopub.status.busy": "2024-08-22T00:52:43.935311Z", - "iopub.status.idle": "2024-08-22T00:52:43.939341Z", - "shell.execute_reply": "2024-08-22T00:52:43.938864Z" + "iopub.execute_input": "2024-08-26T15:50:14.437037Z", + "iopub.status.busy": "2024-08-26T15:50:14.436709Z", + "iopub.status.idle": "2024-08-26T15:50:14.440467Z", + "shell.execute_reply": "2024-08-26T15:50:14.440009Z" } }, "outputs": [], @@ -791,10 +791,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:43.941206Z", - "iopub.status.busy": "2024-08-22T00:52:43.941028Z", - "iopub.status.idle": "2024-08-22T00:52:43.944501Z", - "shell.execute_reply": "2024-08-22T00:52:43.944012Z" + "iopub.execute_input": "2024-08-26T15:50:14.442521Z", + "iopub.status.busy": "2024-08-26T15:50:14.442187Z", + "iopub.status.idle": "2024-08-26T15:50:14.445362Z", + "shell.execute_reply": "2024-08-26T15:50:14.444833Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:43.946626Z", - "iopub.status.busy": "2024-08-22T00:52:43.946194Z", - "iopub.status.idle": "2024-08-22T00:52:43.949326Z", - "shell.execute_reply": "2024-08-22T00:52:43.948779Z" + "iopub.execute_input": "2024-08-26T15:50:14.447481Z", + "iopub.status.busy": "2024-08-26T15:50:14.447144Z", + "iopub.status.idle": "2024-08-26T15:50:14.450022Z", + "shell.execute_reply": "2024-08-26T15:50:14.449578Z" } }, "outputs": [], @@ -852,10 +852,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:43.951367Z", - "iopub.status.busy": "2024-08-22T00:52:43.951061Z", - "iopub.status.idle": "2024-08-22T00:52:43.958113Z", - "shell.execute_reply": "2024-08-22T00:52:43.957516Z" + "iopub.execute_input": "2024-08-26T15:50:14.452041Z", + "iopub.status.busy": "2024-08-26T15:50:14.451628Z", + "iopub.status.idle": "2024-08-26T15:50:14.458672Z", + "shell.execute_reply": "2024-08-26T15:50:14.458190Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:43.960267Z", - "iopub.status.busy": "2024-08-22T00:52:43.959868Z", - "iopub.status.idle": "2024-08-22T00:52:44.209473Z", - "shell.execute_reply": "2024-08-22T00:52:44.208884Z" + "iopub.execute_input": "2024-08-26T15:50:14.460712Z", + "iopub.status.busy": "2024-08-26T15:50:14.460403Z", + "iopub.status.idle": "2024-08-26T15:50:14.686735Z", + "shell.execute_reply": "2024-08-26T15:50:14.686142Z" }, "scrolled": true }, @@ -1022,10 +1022,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:44.212361Z", - "iopub.status.busy": "2024-08-22T00:52:44.211920Z", - "iopub.status.idle": "2024-08-22T00:52:44.400026Z", - "shell.execute_reply": "2024-08-22T00:52:44.399459Z" + "iopub.execute_input": "2024-08-26T15:50:14.689386Z", + "iopub.status.busy": "2024-08-26T15:50:14.688990Z", + "iopub.status.idle": "2024-08-26T15:50:14.901649Z", + "shell.execute_reply": "2024-08-26T15:50:14.901083Z" }, "scrolled": true }, @@ -1073,10 +1073,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:44.403682Z", - "iopub.status.busy": "2024-08-22T00:52:44.402638Z", - "iopub.status.idle": "2024-08-22T00:52:44.408022Z", - "shell.execute_reply": "2024-08-22T00:52:44.407442Z" + "iopub.execute_input": "2024-08-26T15:50:14.905278Z", + "iopub.status.busy": "2024-08-26T15:50:14.904296Z", + "iopub.status.idle": "2024-08-26T15:50:14.909408Z", + "shell.execute_reply": "2024-08-26T15:50:14.908880Z" }, "nbsphinx": "hidden" }, @@ -1120,7 +1120,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0538fffa6ae24d1ea1e1c4b0128b72d2": { + "04e6f8947ca14034a8b86e7853b8b767": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "096bce4c998746909d71d249939501d4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1173,103 +1191,23 @@ "width": null } }, - "05f46856efb64b3b958f69caba56dafb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0b8ebf42c8864cf993b3f88fd3f88efb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f4df8ccc4462424dbe309e1fd9c5f833", - "IPY_MODEL_5172347bb0f04b46b732e1a9f8235407", - "IPY_MODEL_5b01384fbfbd49e38cdd8d6207f4932a" - ], - "layout": "IPY_MODEL_b437cf68ae764715ba2f56c825c1c7de", - "tabbable": null, - "tooltip": null - } - }, - "0d2096765b5b4c5187069b34335cb25c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0ea0f43aeff04802b461c7c6b1a6e1e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "154466a4539242a9bdf98e5af3341f10": { + "13cc007397f54c9c8c37e3efe684a7e2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "1ad67ea050a04fcdbdcf7248e3d9aed7": { + "181817c2729a4dccb97af10abf5129d4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1322,30 +1260,49 @@ "width": null } }, - "1e677870f7774aae9101da76014b4efd": { + "19093b42b50b4aeea4d79b8ff3d741d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1bd2574eb75a42f3837995119980a91e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8dfe3b82e90f498682f1f8aaf423bba3", - "placeholder": "​", - "style": "IPY_MODEL_d6ec8d5c7bad45cb98b8c604ab2f46dd", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_59d1c1e50bda4e9da25d3a6f59453df1", + "IPY_MODEL_20ded1f770b247b6ad682dab3b1f5059", + "IPY_MODEL_76b513dbf5f34978b7b6585e3d089794" + ], + "layout": "IPY_MODEL_53558ebf812a42a8aee968d175d9f598", "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 32.8MB/s]" + "tooltip": null } }, - "2052fb421e5944b3b57e72ebde8da262": { + "1d1da5af0c1e439590d191a482ebfe2e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1360,16 +1317,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_dcc4a94705f7483bb702360efc1e41bb", - "IPY_MODEL_ec2c127abc3d41998d2d50741564f41a", - "IPY_MODEL_1e677870f7774aae9101da76014b4efd" + "IPY_MODEL_b1b9db21390e4028ab5768e0946debd1", + "IPY_MODEL_b3f682560e214179a87fc479dcbae99e", + "IPY_MODEL_d36b8a25de144393ad4dc1d2a45edfd2" ], - "layout": "IPY_MODEL_e361d0be583b4b9391f39ee28434efc1", + "layout": "IPY_MODEL_096bce4c998746909d71d249939501d4", "tabbable": null, "tooltip": null } }, - "2336c7906a604c408c3cc9c930888f8e": { + "1d46b41290534da1a7c59a65173af332": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1422,7 +1379,7 @@ "width": null } }, - "28d604493dd34e43a238c1faf1681778": { + "20ded1f770b247b6ad682dab3b1f5059": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1438,65 +1395,82 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2336c7906a604c408c3cc9c930888f8e", - "max": 2211.0, + "layout": "IPY_MODEL_bcc06e43c9bc45058c6f3e613d79d09a", + "max": 665.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_30e3546ae2424037ae1110e2ea7d4db8", + "style": "IPY_MODEL_af382a9199134755b710d6c867dfbf15", "tabbable": null, "tooltip": null, - "value": 2211.0 + "value": 665.0 } }, - "2c7ba3b688c54c6ebf2f1e09dfef05b9": { + "2358c94915814ebbb4935821bc31ade8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7595b701f93847db9cc6ebd5d873e951", - "IPY_MODEL_28d604493dd34e43a238c1faf1681778", - "IPY_MODEL_a2ce6249f2fb446a992fa46c75e2029d" - ], - "layout": "IPY_MODEL_e29e1197d79b4688a408db41d3fc85b8", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5d2fec7b198645dcb93b760d38443c91", + "placeholder": "​", + "style": "IPY_MODEL_8ce3bdbaa1854c179505e5c09afe5dff", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 391/391 [00:00<00:00, 68.7kB/s]" } }, - "2ea1061f8864486794057d9eac9aa38d": { + "2595b7a75e45466f9fc4d4ba48df1f15": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3ba17ee38698460fbac6ae4d1d16662a", - "IPY_MODEL_bcdb38f72c724559ae846514da750560", - "IPY_MODEL_4667a135e91e47a4bb9814590fb24181" - ], - "layout": "IPY_MODEL_f8736ba075384f319f22c8eb6fe4da15", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_723fe7d9fee84e509e391f0086b38797", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3f743687904c4482ad75c0a123b73b1e", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 391.0 + } + }, + "2a816d84d5cc473093ab67001a27c13a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "2f7576ab68bd407c9cbee0b993ca5359": { + "2bf0c73a7f8f4c649a4be7df92654e10": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1549,23 +1523,25 @@ "width": null } }, - "30e3546ae2424037ae1110e2ea7d4db8": { + "35fb15ce4edc4a58b13eb112b5302098": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "366be072e826490fb67195f98c076d53": { + "364432b0a294482c9c6b1ed27f2c2f49": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1583,53 +1559,23 @@ "text_color": null } }, - "3ba17ee38698460fbac6ae4d1d16662a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c38946e0f89c49e89b3dcc1263886d67", - "placeholder": "​", - "style": "IPY_MODEL_a09462dec45e4619bb4664f63391e136", - "tabbable": null, - "tooltip": null, - "value": "config.json: 100%" - } - }, - "4667a135e91e47a4bb9814590fb24181": { + "3f743687904c4482ad75c0a123b73b1e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2f7576ab68bd407c9cbee0b993ca5359", - "placeholder": "​", - "style": "IPY_MODEL_be927e643dbc440aaf6d14b234134bf2", - "tabbable": null, - "tooltip": null, - "value": " 665/665 [00:00<00:00, 121kB/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "4922340dc82742e58821dc9cce63995e": { + "4075b6b696794e6cb67d0b5f7de37f4c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1682,7 +1628,7 @@ "width": null } }, - "4c2e0423abea43c682f4c2715fdf6324": { + "41bb2f83903748a5bd214604318b8671": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1735,7 +1681,7 @@ "width": null } }, - "5172347bb0f04b46b732e1a9f8235407": { + "42238d77794d4138942bf704d74a8ced": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1751,41 +1697,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ec679048bf93466fa552274a1a956f05", + "layout": "IPY_MODEL_8e09f321b74944cc83b3df4395c00632", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_e5eec1fd63634fc694d41936ce59438b", + "style": "IPY_MODEL_b5c1ccb187604ede9dcccd86862a971f", "tabbable": null, "tooltip": null, "value": 54245363.0 } }, - "53195e1dd93a4045b830a4d1db7f3735": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a8e5d1e539524d41a46d1b94d635b6bd", - "IPY_MODEL_eb742edcb1e64103b5a9f8aab81c9d49", - "IPY_MODEL_fe8d525b8f204d3d9c6f4e7f719396bf" - ], - "layout": "IPY_MODEL_4922340dc82742e58821dc9cce63995e", - "tabbable": null, - "tooltip": null - } - }, - "531c90f2f37c49fda579e8b0b02e9664": { + "43e5fbda50ff4a34af172f936f8f7a78": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1838,18 +1760,41 @@ "width": null } }, - "586b2b60147d45048d11139e4457def0": { - "model_module": "@jupyter-widgets/base", + "4596e06ee7084dd096fe08963d984fff": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d3c28141d394432fa0341c17c066928a", + "placeholder": "​", + "style": "IPY_MODEL_19093b42b50b4aeea4d79b8ff3d741d7", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 8.00kB/s]" + } + }, + "45c2ee2e2047435d8298563ac99aa124": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, @@ -1891,7 +1836,7 @@ "width": null } }, - "5b01384fbfbd49e38cdd8d6207f4932a": { + "45c9c8c02ca142278cbdc6742aa87d9b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1906,33 +1851,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b246cc9c5fcd4162b7725194dc03af03", + "layout": "IPY_MODEL_d73435f3e28246c4a87481a27f81d8f7", "placeholder": "​", - "style": "IPY_MODEL_91a1e11775484452a1b16e8bd9bd34fe", + "style": "IPY_MODEL_691e9f1cd0ba445c89b42e5857fb81b4", "tabbable": null, "tooltip": null, - "value": " 54.2M/54.2M [00:02<00:00, 26.4MB/s]" - } - }, - "5bb5d26ff8084dfa8f7bd0b38010eff9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "vocab.txt: 100%" } }, - "6b465dfd724248308c9d3fc433fbd7a1": { + "4745140672f040658bb31f48154c9327": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1950,62 +1877,7 @@ "text_color": null } }, - "6dbbe58685e54d0f9b1a386c7b5fbe57": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6fec6c05639b4c459e3ec36cb9bb0375": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7595b701f93847db9cc6ebd5d873e951": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_77ab8bc1c60847b1b025169649ba3fb8", - "placeholder": "​", - "style": "IPY_MODEL_0d2096765b5b4c5187069b34335cb25c", - "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" - } - }, - "77ab8bc1c60847b1b025169649ba3fb8": { + "4e0e803a6c1b4910adfa432ac654015d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2058,25 +1930,7 @@ "width": null } }, - "890332d78b4c40509fef5e01237fc37c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8dfe3b82e90f498682f1f8aaf423bba3": { + "53558ebf812a42a8aee968d175d9f598": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2129,41 +1983,7 @@ "width": null } }, - "8f5b64c1e5b84e2c97f22ef3dc781ac7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "91a1e11775484452a1b16e8bd9bd34fe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9227dc21b2e54564ac57967fb0c04a13": { + "5387148ba04d496e889d88d663312492": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2216,33 +2036,53 @@ "width": null } }, - "92f97f3884f2405688ed346eed966c1c": { + "59d1c1e50bda4e9da25d3a6f59453df1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4c2e0423abea43c682f4c2715fdf6324", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6fec6c05639b4c459e3ec36cb9bb0375", + "layout": "IPY_MODEL_ce90fe39f77749d5a8c3adc66c07b19a", + "placeholder": "​", + "style": "IPY_MODEL_c1f01941455c4007a0a122423857cca5", "tabbable": null, "tooltip": null, - "value": 48.0 + "value": "config.json: 100%" + } + }, + "5a0b58ec5dee4d76abb1db03047e20d1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fdd30b5bab0342bfa3cebd7fb4a76641", + "placeholder": "​", + "style": "IPY_MODEL_364432b0a294482c9c6b1ed27f2c2f49", + "tabbable": null, + "tooltip": null, + "value": " 232k/232k [00:00<00:00, 33.5MB/s]" } }, - "947b044e41094f00b08185bfe24f49be": { + "5d2fec7b198645dcb93b760d38443c91": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2295,7 +2135,199 @@ "width": null } }, - "96e44a4349e24aafb2e941ea68825556": { + "609bd99534344390a356a6788fee8507": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6bd44905713448c48b13f9072288e7df", + "IPY_MODEL_2595b7a75e45466f9fc4d4ba48df1f15", + "IPY_MODEL_2358c94915814ebbb4935821bc31ade8" + ], + "layout": "IPY_MODEL_41bb2f83903748a5bd214604318b8671", + "tabbable": null, + "tooltip": null + } + }, + "633d7cd8598e4b29a3ad3e13daa87d91": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4e0e803a6c1b4910adfa432ac654015d", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c2543129a62b4e81a81a510df25cf7f9", + "tabbable": null, + "tooltip": null, + "value": 48.0 + } + }, + "63efa3acc7744d418570c07d19f67b8f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "66ba0cd1d985486c984a043d0efabf25": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ac9411cca7b345f9beebadd74debfc94", + "IPY_MODEL_633d7cd8598e4b29a3ad3e13daa87d91", + "IPY_MODEL_4596e06ee7084dd096fe08963d984fff" + ], + "layout": "IPY_MODEL_45c2ee2e2047435d8298563ac99aa124", + "tabbable": null, + "tooltip": null + } + }, + "691e9f1cd0ba445c89b42e5857fb81b4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6bd44905713448c48b13f9072288e7df": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e4df1cc46b24449083ba64e1acf4d44e", + "placeholder": "​", + "style": "IPY_MODEL_f2e97eb561d14453b0cebfb5c6f25fd3", + "tabbable": null, + "tooltip": null, + "value": ".gitattributes: 100%" + } + }, + "6d3fd7a47d114edba48caa94e481cecb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_43e5fbda50ff4a34af172f936f8f7a78", + "placeholder": "​", + "style": "IPY_MODEL_63efa3acc7744d418570c07d19f67b8f", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" + } + }, + "6ec6525b3b194115b0ff0cd6e22d9ce8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "70f31e6770a84a21a434fe09d78ba8d3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "723fe7d9fee84e509e391f0086b38797": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2348,7 +2380,54 @@ "width": null } }, - "9b64a35100cc481b82b62cf122701f3e": { + "72d412ce755f416e9311468fb26a3a46": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9e8cef97db604008bec76e9f8413d2f8", + "IPY_MODEL_e7b36e18e01d41c8a054785b3e17b654", + "IPY_MODEL_e758cdde2331469d8842311b6ef5dbb6" + ], + "layout": "IPY_MODEL_c8efadff14df4664963073b82267a07f", + "tabbable": null, + "tooltip": null + } + }, + "76b513dbf5f34978b7b6585e3d089794": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1d46b41290534da1a7c59a65173af332", + "placeholder": "​", + "style": "IPY_MODEL_6ec6525b3b194115b0ff0cd6e22d9ce8", + "tabbable": null, + "tooltip": null, + "value": " 665/665 [00:00<00:00, 101kB/s]" + } + }, + "80718f0bca364346b9e76ae79ba0cdd4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2401,7 +2480,49 @@ "width": null } }, - "9bca6d36f76b4df6b88b314cc7241895": { + "828118e3407f496e9047225853abf12c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_45c9c8c02ca142278cbdc6742aa87d9b", + "IPY_MODEL_f6b2fc64c1104a6094c50384dd6d3a07", + "IPY_MODEL_5a0b58ec5dee4d76abb1db03047e20d1" + ], + "layout": "IPY_MODEL_2bf0c73a7f8f4c649a4be7df92654e10", + "tabbable": null, + "tooltip": null + } + }, + "8ce3bdbaa1854c179505e5c09afe5dff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8e09f321b74944cc83b3df4395c00632": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2454,48 +2575,7 @@ "width": null } }, - "a09462dec45e4619bb4664f63391e136": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a2ce6249f2fb446a992fa46c75e2029d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_586b2b60147d45048d11139e4457def0", - "placeholder": "​", - "style": "IPY_MODEL_366be072e826490fb67195f98c076d53", - "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 355kB/s]" - } - }, - "a4144348dc55458193b943b8f6cd9072": { + "8e64033a92a84b60983a905481c8ffcb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2510,15 +2590,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9b64a35100cc481b82b62cf122701f3e", + "layout": "IPY_MODEL_f4ef790794594d5db8566bf773f020ce", "placeholder": "​", - "style": "IPY_MODEL_05f46856efb64b3b958f69caba56dafb", + "style": "IPY_MODEL_35fb15ce4edc4a58b13eb112b5302098", "tabbable": null, "tooltip": null, - "value": "tokenizer_config.json: 100%" + "value": " 54.2M/54.2M [00:00<00:00, 269MB/s]" } }, - "a8e5d1e539524d41a46d1b94d635b6bd": { + "9e8cef97db604008bec76e9f8413d2f8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2533,41 +2613,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9227dc21b2e54564ac57967fb0c04a13", + "layout": "IPY_MODEL_4075b6b696794e6cb67d0b5f7de37f4c", "placeholder": "​", - "style": "IPY_MODEL_154466a4539242a9bdf98e5af3341f10", - "tabbable": null, - "tooltip": null, - "value": "tokenizer.json: 100%" - } - }, - "abedae8d4e064104ba0de2913ae95ea5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d9ccb99dd23843feb0dcf97a88bd3d23", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6dbbe58685e54d0f9b1a386c7b5fbe57", + "style": "IPY_MODEL_f24c56f154ef4a9cb75f96e2bbf56e8d", "tabbable": null, "tooltip": null, - "value": 391.0 + "value": "README.md: 100%" } }, - "b0569b8fbde842f1927af2159125e119": { + "a1a6a4cf16a8479c98351da8ba7d247e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2620,23 +2674,54 @@ "width": null } }, - "b1591f828d5d488caef20344e337326e": { + "a87e77b0e9324a9384b775bc5514a176": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6d3fd7a47d114edba48caa94e481cecb", + "IPY_MODEL_42238d77794d4138942bf704d74a8ced", + "IPY_MODEL_8e64033a92a84b60983a905481c8ffcb" + ], + "layout": "IPY_MODEL_a1a6a4cf16a8479c98351da8ba7d247e", + "tabbable": null, + "tooltip": null + } + }, + "ac9411cca7b345f9beebadd74debfc94": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5387148ba04d496e889d88d663312492", + "placeholder": "​", + "style": "IPY_MODEL_70f31e6770a84a21a434fe09d78ba8d3", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" } }, - "b246cc9c5fcd4162b7725194dc03af03": { + "adef0f10f073472498f3394a0ff314b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2689,60 +2774,23 @@ "width": null } }, - "b437cf68ae764715ba2f56c825c1c7de": { - "model_module": "@jupyter-widgets/base", + "af382a9199134755b710d6c867dfbf15": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "b8ffc52f12334824915978c50715f53f": { + "b1b9db21390e4028ab5768e0946debd1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2757,38 +2805,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ee3f610d58884970935cb6b712b044ae", + "layout": "IPY_MODEL_eaf4f1d3615d42a7a3317d8bc474bfb9", "placeholder": "​", - "style": "IPY_MODEL_0ea0f43aeff04802b461c7c6b1a6e1e6", + "style": "IPY_MODEL_4745140672f040658bb31f48154c9327", "tabbable": null, "tooltip": null, - "value": " 391/391 [00:00<00:00, 66.3kB/s]" + "value": "tokenizer.json: 100%" } }, - "bb192d08d75349958e85a367e0712414": { + "b29efd0253184afc9f25ed847cc6de4f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d9c6e9ba96d040b5bb13b65c6cec04a6", - "placeholder": "​", - "style": "IPY_MODEL_5bb5d26ff8084dfa8f7bd0b38010eff9", - "tabbable": null, - "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 9.56kB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "bcdb38f72c724559ae846514da750560": { + "b3f682560e214179a87fc479dcbae99e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2804,17 +2847,33 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1ad67ea050a04fcdbdcf7248e3d9aed7", - "max": 665.0, + "layout": "IPY_MODEL_80718f0bca364346b9e76ae79ba0cdd4", + "max": 466062.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_b1591f828d5d488caef20344e337326e", + "style": "IPY_MODEL_2a816d84d5cc473093ab67001a27c13a", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": 466062.0 + } + }, + "b5c1ccb187604ede9dcccd86862a971f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "bda5e92cfb2c4801a5a22983bbde5642": { + "bcc06e43c9bc45058c6f3e613d79d09a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2858,40 +2917,16 @@ "min_width": null, "object_fit": null, "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "be22c25d590e4494a513559de6fcd58a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bff464ad3cf247aea607cbd0e940f655", - "IPY_MODEL_abedae8d4e064104ba0de2913ae95ea5", - "IPY_MODEL_b8ffc52f12334824915978c50715f53f" - ], - "layout": "IPY_MODEL_bda5e92cfb2c4801a5a22983bbde5642", - "tabbable": null, - "tooltip": null + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "be927e643dbc440aaf6d14b234134bf2": { + "c1f01941455c4007a0a122423857cca5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2909,66 +2944,92 @@ "text_color": null } }, - "bff464ad3cf247aea607cbd0e940f655": { + "c2543129a62b4e81a81a510df25cf7f9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_947b044e41094f00b08185bfe24f49be", - "placeholder": "​", - "style": "IPY_MODEL_890332d78b4c40509fef5e01237fc37c", - "tabbable": null, - "tooltip": null, - "value": ".gitattributes: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "c00e05ce28284d64a491a27fc898362e": { + "c467572ad65a4ecdad411374c0d9af32": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "c23708a4d0134b1eb21272bf0f7928f0": { - "model_module": "@jupyter-widgets/controls", + "c8efadff14df4664963073b82267a07f": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "c38946e0f89c49e89b3dcc1263886d67": { + "cd92b55b3feb4bacbb48b66ccdbbbe8f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3021,7 +3082,7 @@ "width": null } }, - "cda193d89f3b4e659d4f753af6cfff40": { + "ce90fe39f77749d5a8c3adc66c07b19a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3074,25 +3135,30 @@ "width": null } }, - "d6ec8d5c7bad45cb98b8c604ab2f46dd": { + "d36b8a25de144393ad4dc1d2a45edfd2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e2653e982d404b29b3cbde6dcdbd6de7", + "placeholder": "​", + "style": "IPY_MODEL_04e6f8947ca14034a8b86e7853b8b767", + "tabbable": null, + "tooltip": null, + "value": " 466k/466k [00:00<00:00, 2.61MB/s]" } }, - "d9c6e9ba96d040b5bb13b65c6cec04a6": { + "d3c28141d394432fa0341c17c066928a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3145,7 +3211,7 @@ "width": null } }, - "d9ccb99dd23843feb0dcf97a88bd3d23": { + "d73435f3e28246c4a87481a27f81d8f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3198,30 +3264,7 @@ "width": null } }, - "dcc4a94705f7483bb702360efc1e41bb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9bca6d36f76b4df6b88b314cc7241895", - "placeholder": "​", - "style": "IPY_MODEL_c00e05ce28284d64a491a27fc898362e", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "e29e1197d79b4688a408db41d3fc85b8": { + "e2653e982d404b29b3cbde6dcdbd6de7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3274,7 +3317,7 @@ "width": null } }, - "e361d0be583b4b9391f39ee28434efc1": { + "e4df1cc46b24449083ba64e1acf4d44e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3327,73 +3370,30 @@ "width": null } }, - "e5eec1fd63634fc694d41936ce59438b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e8996344f5494527ac2bb6f701ae7fb1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a4144348dc55458193b943b8f6cd9072", - "IPY_MODEL_92f97f3884f2405688ed346eed966c1c", - "IPY_MODEL_bb192d08d75349958e85a367e0712414" - ], - "layout": "IPY_MODEL_531c90f2f37c49fda579e8b0b02e9664", - "tabbable": null, - "tooltip": null - } - }, - "eb742edcb1e64103b5a9f8aab81c9d49": { + "e758cdde2331469d8842311b6ef5dbb6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0538fffa6ae24d1ea1e1c4b0128b72d2", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_efd49407848a4d45a5e20c90fb51479e", + "layout": "IPY_MODEL_181817c2729a4dccb97af10abf5129d4", + "placeholder": "​", + "style": "IPY_MODEL_b29efd0253184afc9f25ed847cc6de4f", "tabbable": null, "tooltip": null, - "value": 466062.0 + "value": " 2.21k/2.21k [00:00<00:00, 397kB/s]" } }, - "ec2c127abc3d41998d2d50741564f41a": { + "e7b36e18e01d41c8a054785b3e17b654": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3409,17 +3409,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_96e44a4349e24aafb2e941ea68825556", - "max": 231508.0, + "layout": "IPY_MODEL_adef0f10f073472498f3394a0ff314b5", + "max": 2211.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_8f5b64c1e5b84e2c97f22ef3dc781ac7", + "style": "IPY_MODEL_13cc007397f54c9c8c37e3efe684a7e2", "tabbable": null, "tooltip": null, - "value": 231508.0 + "value": 2211.0 } }, - "ec679048bf93466fa552274a1a956f05": { + "eaf4f1d3615d42a7a3317d8bc474bfb9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3472,7 +3472,43 @@ "width": null } }, - "ee3f610d58884970935cb6b712b044ae": { + "f24c56f154ef4a9cb75f96e2bbf56e8d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f2e97eb561d14453b0cebfb5c6f25fd3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f4ef790794594d5db8566bf773f020ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3525,46 +3561,33 @@ "width": null } }, - "efd49407848a4d45a5e20c90fb51479e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f4df8ccc4462424dbe309e1fd9c5f833": { + "f6b2fc64c1104a6094c50384dd6d3a07": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b0569b8fbde842f1927af2159125e119", - "placeholder": "​", - "style": "IPY_MODEL_c23708a4d0134b1eb21272bf0f7928f0", + "layout": "IPY_MODEL_cd92b55b3feb4bacbb48b66ccdbbbe8f", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c467572ad65a4ecdad411374c0d9af32", "tabbable": null, "tooltip": null, - "value": "pytorch_model.bin: 100%" + "value": 231508.0 } }, - "f8736ba075384f319f22c8eb6fe4da15": { + "fdd30b5bab0342bfa3cebd7fb4a76641": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3616,29 +3639,6 @@ "visibility": null, "width": null } - }, - "fe8d525b8f204d3d9c6f4e7f719396bf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cda193d89f3b4e659d4f753af6cfff40", - "placeholder": "​", - "style": "IPY_MODEL_6b465dfd724248308c9d3fc433fbd7a1", - "tabbable": null, - "tooltip": null, - "value": " 466k/466k [00:00<00:00, 16.7MB/s]" - } } }, "version_major": 2, diff --git a/master/tutorials/datalab/audio.html b/master/tutorials/datalab/audio.html index 2b7e4cdbb..8040f453c 100644 --- a/master/tutorials/datalab/audio.html +++ b/master/tutorials/datalab/audio.html @@ -1347,7 +1347,7 @@

5. Use cleanlab to find label issues -{"state": {"6c9653be49234318bca0ab25d4b27cc3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f5eef68b38dd4aa99d935cdb015a1831": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "61189fbcdf784f20bf8c91b4e9bddaa7": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6c9653be49234318bca0ab25d4b27cc3", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f5eef68b38dd4aa99d935cdb015a1831", "tabbable": null, "tooltip": null, "value": 2041.0}}, "6a00eb8d6b2c4f9bbec0f00bb7eef71b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ac87727bcf91440391625450afeb8ab0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f66015bed45e483ea66e81526bc19cf8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6a00eb8d6b2c4f9bbec0f00bb7eef71b", "placeholder": "\u200b", "style": "IPY_MODEL_ac87727bcf91440391625450afeb8ab0", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "442e8d33bc9245deabc0f4c13d10bd31": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f99de2df51da4c0b85508b3d85e605db": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4a98ae1a07ca486d99bea452dec82f71": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_442e8d33bc9245deabc0f4c13d10bd31", "placeholder": "\u200b", "style": "IPY_MODEL_f99de2df51da4c0b85508b3d85e605db", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007470kB/s]"}}, "d9d10de055db4c7d9f62d9baf43e6d0a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "10bc349100924c07a9aa6a8c72c7c95a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f66015bed45e483ea66e81526bc19cf8", "IPY_MODEL_61189fbcdf784f20bf8c91b4e9bddaa7", "IPY_MODEL_4a98ae1a07ca486d99bea452dec82f71"], "layout": "IPY_MODEL_d9d10de055db4c7d9f62d9baf43e6d0a", "tabbable": null, "tooltip": null}}, "a827cf6720694264886a09b4d96482ef": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8eb07dc3a10846a790bf8cbc7350bccd": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "eec2f7de4bea43068e6cc064ecfdc854": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a827cf6720694264886a09b4d96482ef", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8eb07dc3a10846a790bf8cbc7350bccd", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "3cd00835086140698a8864bd298266e0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7c7d95acc7d044f2bede0803df07a37d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "25138934e3a545d395d4296c3e2fabcd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3cd00835086140698a8864bd298266e0", "placeholder": "\u200b", "style": "IPY_MODEL_7c7d95acc7d044f2bede0803df07a37d", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "e5155f598ea04e7b9fdd42b5ec0d2713": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b0c3fcf033fd4a5381d994d165135400": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "de1a624ab1a94464a2059c75da4f2904": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e5155f598ea04e7b9fdd42b5ec0d2713", "placeholder": "\u200b", "style": "IPY_MODEL_b0c3fcf033fd4a5381d994d165135400", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007121MB/s]"}}, "71042e530e224e99a287976f3d4fcfd1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2f1b7511064b4385a3d4f69830e2bb76": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_25138934e3a545d395d4296c3e2fabcd", "IPY_MODEL_eec2f7de4bea43068e6cc064ecfdc854", "IPY_MODEL_de1a624ab1a94464a2059c75da4f2904"], "layout": "IPY_MODEL_71042e530e224e99a287976f3d4fcfd1", "tabbable": null, "tooltip": null}}, "7a0dd30a3af04193be0a67f123d7271c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f98a2775246a41169dfe0e9b44c9962f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6522873ba4ea46aa896a6c6184a138d2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7a0dd30a3af04193be0a67f123d7271c", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f98a2775246a41169dfe0e9b44c9962f", "tabbable": null, "tooltip": null, "value": 3201.0}}, "67fb37cf6d3b463bab3708887ea56e5f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0d83e1bc31fb426aa0c291d6ae914b48": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f9e87998384f4af6a7240a0201247e70": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_67fb37cf6d3b463bab3708887ea56e5f", "placeholder": "\u200b", "style": "IPY_MODEL_0d83e1bc31fb426aa0c291d6ae914b48", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "bb50a7d1387043dcb96878a543b7691d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dc4a3bf1e3a14e1a8f9b1ff259237909": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e08ed2c74cae4ed0890945595ed1d98e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bb50a7d1387043dcb96878a543b7691d", "placeholder": "\u200b", "style": "IPY_MODEL_dc4a3bf1e3a14e1a8f9b1ff259237909", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007776kB/s]"}}, "bb4bf777c3e3467780abcc4d569a78dd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d44c398209094a7f8613dc3e146ddfa6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f9e87998384f4af6a7240a0201247e70", "IPY_MODEL_6522873ba4ea46aa896a6c6184a138d2", "IPY_MODEL_e08ed2c74cae4ed0890945595ed1d98e"], "layout": "IPY_MODEL_bb4bf777c3e3467780abcc4d569a78dd", "tabbable": null, "tooltip": null}}, "aa2a4d7dd9514add81090b3ccc73edd4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0d09025b8ad4428484838507532030fa": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "209991c79cfd4d92bba6830c8c7d911a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_aa2a4d7dd9514add81090b3ccc73edd4", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0d09025b8ad4428484838507532030fa", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "408c1e8d7abb4172b241a84463527a02": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5569fdc8e27f4774ac7a1489598bf51a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bb7646d8aa7e40af8ba57463c63fd2c2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_408c1e8d7abb4172b241a84463527a02", "placeholder": "\u200b", "style": "IPY_MODEL_5569fdc8e27f4774ac7a1489598bf51a", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "81dc4a5b0c114223b9520534140e044d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7f99f251e4b348a4a1551a6832faf0d7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ce077001062f436b84b39c2730fde1f6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_81dc4a5b0c114223b9520534140e044d", "placeholder": "\u200b", "style": "IPY_MODEL_7f99f251e4b348a4a1551a6832faf0d7", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u200775.7MB/s]"}}, "a3ed0940c05d4ca7a9441619422e4bab": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "943d2e5a243240369aa847af0ae05b3f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_bb7646d8aa7e40af8ba57463c63fd2c2", "IPY_MODEL_209991c79cfd4d92bba6830c8c7d911a", "IPY_MODEL_ce077001062f436b84b39c2730fde1f6"], "layout": "IPY_MODEL_a3ed0940c05d4ca7a9441619422e4bab", "tabbable": null, "tooltip": null}}, "08dddbfed9084d4a82658ab4eb9fe86b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "eeac2fec00cc4351822c56fa3ba3576b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1e0410b3f17f4f819bb3f5704aaacc18": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_08dddbfed9084d4a82658ab4eb9fe86b", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_eeac2fec00cc4351822c56fa3ba3576b", "tabbable": null, "tooltip": null, "value": 128619.0}}, "1ec715683af6446b8f26187a6dabf0ab": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ab53888f2f044d1cb7960bdc5cfb8661": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4581701c1eb64b6a88928d2f88e1a3f7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1ec715683af6446b8f26187a6dabf0ab", "placeholder": "\u200b", "style": "IPY_MODEL_ab53888f2f044d1cb7960bdc5cfb8661", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "00ccf0195f23415082d1eb5bfff1c0fe": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a26a0a74bdb742ef8c45aade249b0371": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2fb3d8031ff949e3ab04531d73e1e5ca": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_00ccf0195f23415082d1eb5bfff1c0fe", "placeholder": "\u200b", "style": "IPY_MODEL_a26a0a74bdb742ef8c45aade249b0371", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20077.43MB/s]"}}, "59570071e71e4c179609aaf42a499d3d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3bf4fa2f7dae48d48b5af24e1a66bb4c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4581701c1eb64b6a88928d2f88e1a3f7", "IPY_MODEL_1e0410b3f17f4f819bb3f5704aaacc18", "IPY_MODEL_2fb3d8031ff949e3ab04531d73e1e5ca"], "layout": "IPY_MODEL_59570071e71e4c179609aaf42a499d3d", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"51a4d54bfb654f9caa7c226ee8995e55": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "40d9603be1704746993364aa51163eb8": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5355547b3991428680ce71762c93fc29": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_51a4d54bfb654f9caa7c226ee8995e55", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_40d9603be1704746993364aa51163eb8", "tabbable": null, "tooltip": null, "value": 2041.0}}, "1435eae27d1c443e8d421a650383bec6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "65695c75a14e47ff8e3bf72157f16c8a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7a8c9807b5d243ef9048199d164259a7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1435eae27d1c443e8d421a650383bec6", "placeholder": "\u200b", "style": "IPY_MODEL_65695c75a14e47ff8e3bf72157f16c8a", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "d93a56d4a52b40a1a432a218701e6d7d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a265f58d489845b6b1340a829a74168d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cd4a37f84abf46799e7fa3c03402e98c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d93a56d4a52b40a1a432a218701e6d7d", "placeholder": "\u200b", "style": "IPY_MODEL_a265f58d489845b6b1340a829a74168d", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007452kB/s]"}}, "24d971d5873c40bc8acce10154a128ff": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1f681aac41c3440fa5417df2592e64e6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7a8c9807b5d243ef9048199d164259a7", "IPY_MODEL_5355547b3991428680ce71762c93fc29", "IPY_MODEL_cd4a37f84abf46799e7fa3c03402e98c"], "layout": "IPY_MODEL_24d971d5873c40bc8acce10154a128ff", "tabbable": null, "tooltip": null}}, "3b95edd1de4741ab901227f2d2eb148c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e9cda110045e43c29d5985c766de7a53": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ecad11768e31486e90586871e36c9ef8": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3b95edd1de4741ab901227f2d2eb148c", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e9cda110045e43c29d5985c766de7a53", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "750fe5408c694441b476afcb56cb7b0b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ebda3d78b05a4486a7fffd8a666e661f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3c28bd9bc9d54a309045e236929b999f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_750fe5408c694441b476afcb56cb7b0b", "placeholder": "\u200b", "style": "IPY_MODEL_ebda3d78b05a4486a7fffd8a666e661f", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "0b2b777475ca40c299521df6edb4d9e1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "912b7f93444942fd8376cda94eda9084": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c90219e36f1e4eea92fe74ca75c1f79b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0b2b777475ca40c299521df6edb4d9e1", "placeholder": "\u200b", "style": "IPY_MODEL_912b7f93444942fd8376cda94eda9084", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007242MB/s]"}}, "4ee261f6d2c04d45982fa5a44bb949fb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "84d5a344da0b420f9117f92f87b490ae": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3c28bd9bc9d54a309045e236929b999f", "IPY_MODEL_ecad11768e31486e90586871e36c9ef8", "IPY_MODEL_c90219e36f1e4eea92fe74ca75c1f79b"], "layout": "IPY_MODEL_4ee261f6d2c04d45982fa5a44bb949fb", "tabbable": null, "tooltip": null}}, "7e99d63a6efb47f2988287ad5bef0840": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bdb53847f2b34586832fe6fb354d7a43": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5f20e36061c4462194728c5738285d58": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7e99d63a6efb47f2988287ad5bef0840", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_bdb53847f2b34586832fe6fb354d7a43", "tabbable": null, "tooltip": null, "value": 3201.0}}, "f7f0f2aa06bf4ac191490912101855c7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5f9123a1dc6f4bf594ce8a4b4f185a49": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d19574be1727424f9b4155d6890c6379": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f7f0f2aa06bf4ac191490912101855c7", "placeholder": "\u200b", "style": "IPY_MODEL_5f9123a1dc6f4bf594ce8a4b4f185a49", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "fe0c29f7fc654606a3968de8caebfa7e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "25f9496e154b4c35b50154e7c1179417": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e51837b227f044108623992ca3212468": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fe0c29f7fc654606a3968de8caebfa7e", "placeholder": "\u200b", "style": "IPY_MODEL_25f9496e154b4c35b50154e7c1179417", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007801kB/s]"}}, "e1317297dacd4b19add95df4eb325215": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e09248c0fe244ae1adb56d9623d7540b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d19574be1727424f9b4155d6890c6379", "IPY_MODEL_5f20e36061c4462194728c5738285d58", "IPY_MODEL_e51837b227f044108623992ca3212468"], "layout": "IPY_MODEL_e1317297dacd4b19add95df4eb325215", "tabbable": null, "tooltip": null}}, "a5b2e7509b164b5d9e844cab9b9e0f11": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "368d32a2248046e1a344ef38430f19dd": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f327247b2e124784abcaca20d824f2c2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a5b2e7509b164b5d9e844cab9b9e0f11", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_368d32a2248046e1a344ef38430f19dd", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "6c9b9aaa085c4670a15577b8af66c4a3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d237e27edd394f0cb779b56daf7e9f53": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "28aa2246369c45f2ad10eb6574adfa34": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6c9b9aaa085c4670a15577b8af66c4a3", "placeholder": "\u200b", "style": "IPY_MODEL_d237e27edd394f0cb779b56daf7e9f53", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "a392464012b34ae1b5f7e0a97721360b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2fc8223259fe4237a80e3939046d0ac0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a77b34d9e40b4059839e055baa762c60": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a392464012b34ae1b5f7e0a97721360b", "placeholder": "\u200b", "style": "IPY_MODEL_2fc8223259fe4237a80e3939046d0ac0", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007280MB/s]"}}, "d42aa306545b4c048e7007f1010dae12": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "074d9a20f9624f31bef1345fc1d53ba4": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_28aa2246369c45f2ad10eb6574adfa34", "IPY_MODEL_f327247b2e124784abcaca20d824f2c2", "IPY_MODEL_a77b34d9e40b4059839e055baa762c60"], "layout": "IPY_MODEL_d42aa306545b4c048e7007f1010dae12", "tabbable": null, "tooltip": null}}, "fd724a4cddb843d1bf3bc3d1a6f60a0d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dcaf791445af43d68f0078287914810a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "05a4b438a1aa46718c6a77b932a841ba": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fd724a4cddb843d1bf3bc3d1a6f60a0d", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_dcaf791445af43d68f0078287914810a", "tabbable": null, "tooltip": null, "value": 128619.0}}, "cacc260410024c2eac52649d535238dd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2b3ed58cf59a4deb8dbaf2cbee76d300": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "67cae2b88eea4691bf411e8b7f6bc406": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cacc260410024c2eac52649d535238dd", "placeholder": "\u200b", "style": "IPY_MODEL_2b3ed58cf59a4deb8dbaf2cbee76d300", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "a9955115289447288de13b0d6c05e5ba": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "525667ee5a584057853b670d0e74a9b7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "489f5e3cafb04cf0add9f925c8e800a5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a9955115289447288de13b0d6c05e5ba", "placeholder": "\u200b", "style": "IPY_MODEL_525667ee5a584057853b670d0e74a9b7", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20072.03MB/s]"}}, "56a875190553432ca4420d1c37d224b0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "929531a872824dd386b23d35970c8531": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_67cae2b88eea4691bf411e8b7f6bc406", "IPY_MODEL_05a4b438a1aa46718c6a77b932a841ba", "IPY_MODEL_489f5e3cafb04cf0add9f925c8e800a5"], "layout": "IPY_MODEL_56a875190553432ca4420d1c37d224b0", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/audio.ipynb b/master/tutorials/datalab/audio.ipynb index 2865c1a35..db407c8a3 100644 --- a/master/tutorials/datalab/audio.ipynb +++ b/master/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:48.175409Z", - "iopub.status.busy": "2024-08-22T00:52:48.175233Z", - "iopub.status.idle": "2024-08-22T00:52:54.120356Z", - "shell.execute_reply": "2024-08-22T00:52:54.119787Z" + "iopub.execute_input": "2024-08-26T15:50:18.375949Z", + "iopub.status.busy": "2024-08-26T15:50:18.375420Z", + "iopub.status.idle": "2024-08-26T15:50:23.859019Z", + "shell.execute_reply": "2024-08-26T15:50:23.858417Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:54.123160Z", - "iopub.status.busy": "2024-08-22T00:52:54.122659Z", - "iopub.status.idle": "2024-08-22T00:52:54.126558Z", - "shell.execute_reply": "2024-08-22T00:52:54.125993Z" + "iopub.execute_input": "2024-08-26T15:50:23.861683Z", + "iopub.status.busy": "2024-08-26T15:50:23.861156Z", + "iopub.status.idle": "2024-08-26T15:50:23.864463Z", + "shell.execute_reply": "2024-08-26T15:50:23.863948Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:54.128706Z", - "iopub.status.busy": "2024-08-22T00:52:54.128370Z", - "iopub.status.idle": "2024-08-22T00:52:54.133188Z", - "shell.execute_reply": "2024-08-22T00:52:54.132757Z" + "iopub.execute_input": "2024-08-26T15:50:23.866465Z", + "iopub.status.busy": "2024-08-26T15:50:23.866121Z", + "iopub.status.idle": "2024-08-26T15:50:23.870902Z", + "shell.execute_reply": "2024-08-26T15:50:23.870358Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-22T00:52:54.135371Z", - "iopub.status.busy": "2024-08-22T00:52:54.134958Z", - "iopub.status.idle": "2024-08-22T00:52:55.720513Z", - "shell.execute_reply": "2024-08-22T00:52:55.719816Z" + "iopub.execute_input": "2024-08-26T15:50:23.873109Z", + "iopub.status.busy": "2024-08-26T15:50:23.872679Z", + "iopub.status.idle": "2024-08-26T15:50:25.664909Z", + "shell.execute_reply": "2024-08-26T15:50:25.664194Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-22T00:52:55.723221Z", - "iopub.status.busy": "2024-08-22T00:52:55.723006Z", - "iopub.status.idle": "2024-08-22T00:52:55.734401Z", - "shell.execute_reply": "2024-08-22T00:52:55.733918Z" + "iopub.execute_input": "2024-08-26T15:50:25.667739Z", + "iopub.status.busy": "2024-08-26T15:50:25.667316Z", + "iopub.status.idle": "2024-08-26T15:50:25.678565Z", + "shell.execute_reply": "2024-08-26T15:50:25.678115Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:55.736840Z", - "iopub.status.busy": "2024-08-22T00:52:55.736398Z", - "iopub.status.idle": "2024-08-22T00:52:55.743749Z", - "shell.execute_reply": "2024-08-22T00:52:55.743297Z" + "iopub.execute_input": "2024-08-26T15:50:25.680602Z", + "iopub.status.busy": "2024-08-26T15:50:25.680410Z", + "iopub.status.idle": "2024-08-26T15:50:25.687890Z", + "shell.execute_reply": "2024-08-26T15:50:25.687425Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-22T00:52:55.745691Z", - "iopub.status.busy": "2024-08-22T00:52:55.745498Z", - "iopub.status.idle": "2024-08-22T00:52:56.231019Z", - "shell.execute_reply": "2024-08-22T00:52:56.230411Z" + "iopub.execute_input": "2024-08-26T15:50:25.689698Z", + "iopub.status.busy": "2024-08-26T15:50:25.689520Z", + "iopub.status.idle": "2024-08-26T15:50:26.129419Z", + "shell.execute_reply": "2024-08-26T15:50:26.128884Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:56.233294Z", - "iopub.status.busy": "2024-08-22T00:52:56.232929Z", - "iopub.status.idle": "2024-08-22T00:52:57.516759Z", - "shell.execute_reply": "2024-08-22T00:52:57.516192Z" + "iopub.execute_input": "2024-08-26T15:50:26.131626Z", + "iopub.status.busy": "2024-08-26T15:50:26.131431Z", + "iopub.status.idle": "2024-08-26T15:50:27.173661Z", + "shell.execute_reply": "2024-08-26T15:50:27.173138Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-08-22T00:52:57.519436Z", - "iopub.status.busy": "2024-08-22T00:52:57.519223Z", - "iopub.status.idle": "2024-08-22T00:52:57.539054Z", - "shell.execute_reply": "2024-08-22T00:52:57.538518Z" + "iopub.execute_input": "2024-08-26T15:50:27.176421Z", + "iopub.status.busy": "2024-08-26T15:50:27.176064Z", + "iopub.status.idle": "2024-08-26T15:50:27.195243Z", + "shell.execute_reply": "2024-08-26T15:50:27.194686Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:57.541407Z", - "iopub.status.busy": "2024-08-22T00:52:57.541040Z", - "iopub.status.idle": "2024-08-22T00:52:57.544502Z", - "shell.execute_reply": "2024-08-22T00:52:57.544007Z" + "iopub.execute_input": "2024-08-26T15:50:27.197583Z", + "iopub.status.busy": "2024-08-26T15:50:27.197164Z", + "iopub.status.idle": "2024-08-26T15:50:27.200332Z", + "shell.execute_reply": "2024-08-26T15:50:27.199873Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:52:57.546712Z", - "iopub.status.busy": "2024-08-22T00:52:57.546338Z", - "iopub.status.idle": "2024-08-22T00:53:12.925180Z", - "shell.execute_reply": "2024-08-22T00:53:12.924606Z" + "iopub.execute_input": "2024-08-26T15:50:27.202307Z", + "iopub.status.busy": "2024-08-26T15:50:27.202000Z", + "iopub.status.idle": "2024-08-26T15:50:41.583107Z", + "shell.execute_reply": "2024-08-26T15:50:41.582452Z" }, "id": "2FSQ2GR9R_YA" }, @@ -617,10 +617,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-22T00:53:12.928381Z", - "iopub.status.busy": "2024-08-22T00:53:12.927765Z", - "iopub.status.idle": "2024-08-22T00:53:12.931877Z", - "shell.execute_reply": "2024-08-22T00:53:12.931342Z" + "iopub.execute_input": "2024-08-26T15:50:41.585857Z", + "iopub.status.busy": "2024-08-26T15:50:41.585461Z", + "iopub.status.idle": "2024-08-26T15:50:41.589464Z", + "shell.execute_reply": "2024-08-26T15:50:41.588990Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -680,10 +680,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:12.934268Z", - "iopub.status.busy": "2024-08-22T00:53:12.933845Z", - "iopub.status.idle": "2024-08-22T00:53:13.691946Z", - "shell.execute_reply": "2024-08-22T00:53:13.691290Z" + "iopub.execute_input": "2024-08-26T15:50:41.591711Z", + "iopub.status.busy": "2024-08-26T15:50:41.591300Z", + "iopub.status.idle": "2024-08-26T15:50:42.284996Z", + "shell.execute_reply": "2024-08-26T15:50:42.284408Z" }, "id": "i_drkY9YOcw4" }, @@ -717,10 +717,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-22T00:53:13.695647Z", - "iopub.status.busy": "2024-08-22T00:53:13.694650Z", - "iopub.status.idle": "2024-08-22T00:53:13.701935Z", - "shell.execute_reply": "2024-08-22T00:53:13.701370Z" + "iopub.execute_input": "2024-08-26T15:50:42.287828Z", + "iopub.status.busy": "2024-08-26T15:50:42.287405Z", + "iopub.status.idle": "2024-08-26T15:50:42.292567Z", + "shell.execute_reply": "2024-08-26T15:50:42.292041Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -767,10 +767,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:13.705763Z", - "iopub.status.busy": "2024-08-22T00:53:13.704798Z", - "iopub.status.idle": "2024-08-22T00:53:13.827977Z", - "shell.execute_reply": "2024-08-22T00:53:13.827262Z" + "iopub.execute_input": "2024-08-26T15:50:42.295019Z", + "iopub.status.busy": "2024-08-26T15:50:42.294593Z", + "iopub.status.idle": "2024-08-26T15:50:42.406915Z", + "shell.execute_reply": "2024-08-26T15:50:42.406291Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:13.830540Z", - "iopub.status.busy": "2024-08-22T00:53:13.830120Z", - "iopub.status.idle": "2024-08-22T00:53:13.843289Z", - "shell.execute_reply": "2024-08-22T00:53:13.842778Z" + "iopub.execute_input": "2024-08-26T15:50:42.409511Z", + "iopub.status.busy": "2024-08-26T15:50:42.409028Z", + "iopub.status.idle": "2024-08-26T15:50:42.421338Z", + "shell.execute_reply": "2024-08-26T15:50:42.420887Z" }, "scrolled": true }, @@ -870,10 +870,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:13.845542Z", - "iopub.status.busy": "2024-08-22T00:53:13.845205Z", - "iopub.status.idle": "2024-08-22T00:53:13.853955Z", - "shell.execute_reply": "2024-08-22T00:53:13.853422Z" + "iopub.execute_input": "2024-08-26T15:50:42.423468Z", + "iopub.status.busy": "2024-08-26T15:50:42.423121Z", + "iopub.status.idle": "2024-08-26T15:50:42.430725Z", + "shell.execute_reply": "2024-08-26T15:50:42.430159Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:13.856185Z", - "iopub.status.busy": "2024-08-22T00:53:13.855823Z", - "iopub.status.idle": "2024-08-22T00:53:13.860309Z", - "shell.execute_reply": "2024-08-22T00:53:13.859741Z" + "iopub.execute_input": "2024-08-26T15:50:42.432808Z", + "iopub.status.busy": "2024-08-26T15:50:42.432481Z", + "iopub.status.idle": "2024-08-26T15:50:42.436459Z", + "shell.execute_reply": "2024-08-26T15:50:42.435927Z" } }, "outputs": [ @@ -1018,10 +1018,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-08-22T00:53:13.862519Z", - "iopub.status.busy": "2024-08-22T00:53:13.862107Z", - "iopub.status.idle": "2024-08-22T00:53:13.868191Z", - "shell.execute_reply": "2024-08-22T00:53:13.867613Z" + "iopub.execute_input": "2024-08-26T15:50:42.438685Z", + "iopub.status.busy": "2024-08-26T15:50:42.438333Z", + "iopub.status.idle": "2024-08-26T15:50:42.443991Z", + "shell.execute_reply": "2024-08-26T15:50:42.443346Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1148,10 +1148,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-22T00:53:13.870458Z", - "iopub.status.busy": "2024-08-22T00:53:13.870258Z", - "iopub.status.idle": "2024-08-22T00:53:13.987883Z", - "shell.execute_reply": "2024-08-22T00:53:13.987309Z" + "iopub.execute_input": "2024-08-26T15:50:42.446522Z", + "iopub.status.busy": "2024-08-26T15:50:42.446019Z", + "iopub.status.idle": "2024-08-26T15:50:42.560125Z", + "shell.execute_reply": "2024-08-26T15:50:42.559532Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1205,10 +1205,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-22T00:53:13.990023Z", - "iopub.status.busy": "2024-08-22T00:53:13.989833Z", - "iopub.status.idle": "2024-08-22T00:53:14.104788Z", - "shell.execute_reply": "2024-08-22T00:53:14.104023Z" + "iopub.execute_input": "2024-08-26T15:50:42.562347Z", + "iopub.status.busy": "2024-08-26T15:50:42.561993Z", + "iopub.status.idle": "2024-08-26T15:50:42.666666Z", + "shell.execute_reply": "2024-08-26T15:50:42.666079Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1253,10 +1253,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-22T00:53:14.107055Z", - "iopub.status.busy": "2024-08-22T00:53:14.106848Z", - "iopub.status.idle": "2024-08-22T00:53:14.216811Z", - "shell.execute_reply": "2024-08-22T00:53:14.216231Z" + "iopub.execute_input": "2024-08-26T15:50:42.668699Z", + "iopub.status.busy": "2024-08-26T15:50:42.668513Z", + "iopub.status.idle": "2024-08-26T15:50:42.772175Z", + "shell.execute_reply": "2024-08-26T15:50:42.771562Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1297,10 +1297,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:14.219008Z", - "iopub.status.busy": "2024-08-22T00:53:14.218684Z", - "iopub.status.idle": "2024-08-22T00:53:14.325725Z", - "shell.execute_reply": "2024-08-22T00:53:14.325094Z" + "iopub.execute_input": "2024-08-26T15:50:42.774239Z", + "iopub.status.busy": "2024-08-26T15:50:42.774052Z", + "iopub.status.idle": "2024-08-26T15:50:42.877983Z", + "shell.execute_reply": "2024-08-26T15:50:42.877478Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:14.327943Z", - "iopub.status.busy": "2024-08-22T00:53:14.327615Z", - "iopub.status.idle": "2024-08-22T00:53:14.330823Z", - "shell.execute_reply": "2024-08-22T00:53:14.330354Z" + "iopub.execute_input": "2024-08-26T15:50:42.880086Z", + "iopub.status.busy": "2024-08-26T15:50:42.879904Z", + "iopub.status.idle": "2024-08-26T15:50:42.883328Z", + "shell.execute_reply": "2024-08-26T15:50:42.882869Z" }, "nbsphinx": "hidden" }, @@ -1392,7 +1392,57 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00ccf0195f23415082d1eb5bfff1c0fe": { + "05a4b438a1aa46718c6a77b932a841ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fd724a4cddb843d1bf3bc3d1a6f60a0d", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_dcaf791445af43d68f0078287914810a", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "074d9a20f9624f31bef1345fc1d53ba4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_28aa2246369c45f2ad10eb6574adfa34", + "IPY_MODEL_f327247b2e124784abcaca20d824f2c2", + "IPY_MODEL_a77b34d9e40b4059839e055baa762c60" + ], + "layout": "IPY_MODEL_d42aa306545b4c048e7007f1010dae12", + "tabbable": null, + "tooltip": null + } + }, + "0b2b777475ca40c299521df6edb4d9e1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1445,7 +1495,7 @@ "width": null } }, - "08dddbfed9084d4a82658ab4eb9fe86b": { + "1435eae27d1c443e8d421a650383bec6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1498,41 +1548,7 @@ "width": null } }, - "0d09025b8ad4428484838507532030fa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0d83e1bc31fb426aa0c291d6ae914b48": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "10bc349100924c07a9aa6a8c72c7c95a": { + "1f681aac41c3440fa5417df2592e64e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1547,42 +1563,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f66015bed45e483ea66e81526bc19cf8", - "IPY_MODEL_61189fbcdf784f20bf8c91b4e9bddaa7", - "IPY_MODEL_4a98ae1a07ca486d99bea452dec82f71" + "IPY_MODEL_7a8c9807b5d243ef9048199d164259a7", + "IPY_MODEL_5355547b3991428680ce71762c93fc29", + "IPY_MODEL_cd4a37f84abf46799e7fa3c03402e98c" ], - "layout": "IPY_MODEL_d9d10de055db4c7d9f62d9baf43e6d0a", + "layout": "IPY_MODEL_24d971d5873c40bc8acce10154a128ff", "tabbable": null, "tooltip": null } }, - "1e0410b3f17f4f819bb3f5704aaacc18": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_08dddbfed9084d4a82658ab4eb9fe86b", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_eeac2fec00cc4351822c56fa3ba3576b", - "tabbable": null, - "tooltip": null, - "value": 128619.0 - } - }, - "1ec715683af6446b8f26187a6dabf0ab": { + "24d971d5873c40bc8acce10154a128ff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1635,33 +1625,25 @@ "width": null } }, - "209991c79cfd4d92bba6830c8c7d911a": { + "25f9496e154b4c35b50154e7c1179417": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_aa2a4d7dd9514add81090b3ccc73edd4", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0d09025b8ad4428484838507532030fa", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "25138934e3a545d395d4296c3e2fabcd": { + "28aa2246369c45f2ad10eb6574adfa34": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1676,86 +1658,67 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3cd00835086140698a8864bd298266e0", + "layout": "IPY_MODEL_6c9b9aaa085c4670a15577b8af66c4a3", "placeholder": "​", - "style": "IPY_MODEL_7c7d95acc7d044f2bede0803df07a37d", + "style": "IPY_MODEL_d237e27edd394f0cb779b56daf7e9f53", "tabbable": null, "tooltip": null, - "value": "embedding_model.ckpt: 100%" + "value": "classifier.ckpt: 100%" } }, - "2f1b7511064b4385a3d4f69830e2bb76": { + "2b3ed58cf59a4deb8dbaf2cbee76d300": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_25138934e3a545d395d4296c3e2fabcd", - "IPY_MODEL_eec2f7de4bea43068e6cc064ecfdc854", - "IPY_MODEL_de1a624ab1a94464a2059c75da4f2904" - ], - "layout": "IPY_MODEL_71042e530e224e99a287976f3d4fcfd1", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2fb3d8031ff949e3ab04531d73e1e5ca": { + "2fc8223259fe4237a80e3939046d0ac0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_00ccf0195f23415082d1eb5bfff1c0fe", - "placeholder": "​", - "style": "IPY_MODEL_a26a0a74bdb742ef8c45aade249b0371", - "tabbable": null, - "tooltip": null, - "value": " 129k/129k [00:00<00:00, 7.43MB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3bf4fa2f7dae48d48b5af24e1a66bb4c": { + "368d32a2248046e1a344ef38430f19dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4581701c1eb64b6a88928d2f88e1a3f7", - "IPY_MODEL_1e0410b3f17f4f819bb3f5704aaacc18", - "IPY_MODEL_2fb3d8031ff949e3ab04531d73e1e5ca" - ], - "layout": "IPY_MODEL_59570071e71e4c179609aaf42a499d3d", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "3cd00835086140698a8864bd298266e0": { + "3b95edd1de4741ab901227f2d2eb148c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1808,7 +1771,69 @@ "width": null } }, - "408c1e8d7abb4172b241a84463527a02": { + "3c28bd9bc9d54a309045e236929b999f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_750fe5408c694441b476afcb56cb7b0b", + "placeholder": "​", + "style": "IPY_MODEL_ebda3d78b05a4486a7fffd8a666e661f", + "tabbable": null, + "tooltip": null, + "value": "embedding_model.ckpt: 100%" + } + }, + "40d9603be1704746993364aa51163eb8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "489f5e3cafb04cf0add9f925c8e800a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a9955115289447288de13b0d6c05e5ba", + "placeholder": "​", + "style": "IPY_MODEL_525667ee5a584057853b670d0e74a9b7", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 2.03MB/s]" + } + }, + "4ee261f6d2c04d45982fa5a44bb949fb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1861,7 +1886,7 @@ "width": null } }, - "442e8d33bc9245deabc0f4c13d10bd31": { + "51a4d54bfb654f9caa7c226ee8995e55": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1914,71 +1939,51 @@ "width": null } }, - "4581701c1eb64b6a88928d2f88e1a3f7": { + "525667ee5a584057853b670d0e74a9b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1ec715683af6446b8f26187a6dabf0ab", - "placeholder": "​", - "style": "IPY_MODEL_ab53888f2f044d1cb7960bdc5cfb8661", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4a98ae1a07ca486d99bea452dec82f71": { + "5355547b3991428680ce71762c93fc29": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_442e8d33bc9245deabc0f4c13d10bd31", - "placeholder": "​", - "style": "IPY_MODEL_f99de2df51da4c0b85508b3d85e605db", - "tabbable": null, - "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 470kB/s]" - } - }, - "5569fdc8e27f4774ac7a1489598bf51a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "layout": "IPY_MODEL_51a4d54bfb654f9caa7c226ee8995e55", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_40d9603be1704746993364aa51163eb8", + "tabbable": null, + "tooltip": null, + "value": 2041.0 } }, - "59570071e71e4c179609aaf42a499d3d": { + "56a875190553432ca4420d1c37d224b0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2031,7 +2036,7 @@ "width": null } }, - "61189fbcdf784f20bf8c91b4e9bddaa7": { + "5f20e36061c4462194728c5738285d58": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2047,43 +2052,76 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6c9653be49234318bca0ab25d4b27cc3", - "max": 2041.0, + "layout": "IPY_MODEL_7e99d63a6efb47f2988287ad5bef0840", + "max": 3201.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_f5eef68b38dd4aa99d935cdb015a1831", + "style": "IPY_MODEL_bdb53847f2b34586832fe6fb354d7a43", "tabbable": null, "tooltip": null, - "value": 2041.0 + "value": 3201.0 } }, - "6522873ba4ea46aa896a6c6184a138d2": { + "5f9123a1dc6f4bf594ce8a4b4f185a49": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "65695c75a14e47ff8e3bf72157f16c8a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "67cae2b88eea4691bf411e8b7f6bc406": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7a0dd30a3af04193be0a67f123d7271c", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f98a2775246a41169dfe0e9b44c9962f", + "layout": "IPY_MODEL_cacc260410024c2eac52649d535238dd", + "placeholder": "​", + "style": "IPY_MODEL_2b3ed58cf59a4deb8dbaf2cbee76d300", "tabbable": null, "tooltip": null, - "value": 3201.0 + "value": "label_encoder.txt: 100%" } }, - "67fb37cf6d3b463bab3708887ea56e5f": { + "6c9b9aaa085c4670a15577b8af66c4a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2136,7 +2174,7 @@ "width": null } }, - "6a00eb8d6b2c4f9bbec0f00bb7eef71b": { + "750fe5408c694441b476afcb56cb7b0b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2189,7 +2227,30 @@ "width": null } }, - "6c9653be49234318bca0ab25d4b27cc3": { + "7a8c9807b5d243ef9048199d164259a7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1435eae27d1c443e8d421a650383bec6", + "placeholder": "​", + "style": "IPY_MODEL_65695c75a14e47ff8e3bf72157f16c8a", + "tabbable": null, + "tooltip": null, + "value": "hyperparams.yaml: 100%" + } + }, + "7e99d63a6efb47f2988287ad5bef0840": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2242,7 +2303,91 @@ "width": null } }, - "71042e530e224e99a287976f3d4fcfd1": { + "84d5a344da0b420f9117f92f87b490ae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3c28bd9bc9d54a309045e236929b999f", + "IPY_MODEL_ecad11768e31486e90586871e36c9ef8", + "IPY_MODEL_c90219e36f1e4eea92fe74ca75c1f79b" + ], + "layout": "IPY_MODEL_4ee261f6d2c04d45982fa5a44bb949fb", + "tabbable": null, + "tooltip": null + } + }, + "912b7f93444942fd8376cda94eda9084": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "929531a872824dd386b23d35970c8531": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_67cae2b88eea4691bf411e8b7f6bc406", + "IPY_MODEL_05a4b438a1aa46718c6a77b932a841ba", + "IPY_MODEL_489f5e3cafb04cf0add9f925c8e800a5" + ], + "layout": "IPY_MODEL_56a875190553432ca4420d1c37d224b0", + "tabbable": null, + "tooltip": null + } + }, + "a265f58d489845b6b1340a829a74168d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a392464012b34ae1b5f7e0a97721360b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2295,7 +2440,7 @@ "width": null } }, - "7a0dd30a3af04193be0a67f123d7271c": { + "a5b2e7509b164b5d9e844cab9b9e0f11": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2348,43 +2493,30 @@ "width": null } }, - "7c7d95acc7d044f2bede0803df07a37d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7f99f251e4b348a4a1551a6832faf0d7": { + "a77b34d9e40b4059839e055baa762c60": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a392464012b34ae1b5f7e0a97721360b", + "placeholder": "​", + "style": "IPY_MODEL_2fc8223259fe4237a80e3939046d0ac0", + "tabbable": null, + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 280MB/s]" } }, - "81dc4a5b0c114223b9520534140e044d": { + "a9955115289447288de13b0d6c05e5ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2437,7 +2569,7 @@ "width": null } }, - "8eb07dc3a10846a790bf8cbc7350bccd": { + "bdb53847f2b34586832fe6fb354d7a43": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2453,49 +2585,30 @@ "description_width": "" } }, - "943d2e5a243240369aa847af0ae05b3f": { + "c90219e36f1e4eea92fe74ca75c1f79b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bb7646d8aa7e40af8ba57463c63fd2c2", - "IPY_MODEL_209991c79cfd4d92bba6830c8c7d911a", - "IPY_MODEL_ce077001062f436b84b39c2730fde1f6" - ], - "layout": "IPY_MODEL_a3ed0940c05d4ca7a9441619422e4bab", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0b2b777475ca40c299521df6edb4d9e1", + "placeholder": "​", + "style": "IPY_MODEL_912b7f93444942fd8376cda94eda9084", "tabbable": null, - "tooltip": null - } - }, - "a26a0a74bdb742ef8c45aade249b0371": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null, + "value": " 16.9M/16.9M [00:00<00:00, 242MB/s]" } }, - "a3ed0940c05d4ca7a9441619422e4bab": { + "cacc260410024c2eac52649d535238dd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2548,149 +2661,53 @@ "width": null } }, - "a827cf6720694264886a09b4d96482ef": { - "model_module": "@jupyter-widgets/base", + "cd4a37f84abf46799e7fa3c03402e98c": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "aa2a4d7dd9514add81090b3ccc73edd4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ab53888f2f044d1cb7960bdc5cfb8661": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d93a56d4a52b40a1a432a218701e6d7d", + "placeholder": "​", + "style": "IPY_MODEL_a265f58d489845b6b1340a829a74168d", + "tabbable": null, + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 452kB/s]" } }, - "ac87727bcf91440391625450afeb8ab0": { + "d19574be1727424f9b4155d6890c6379": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f7f0f2aa06bf4ac191490912101855c7", + "placeholder": "​", + "style": "IPY_MODEL_5f9123a1dc6f4bf594ce8a4b4f185a49", + "tabbable": null, + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "b0c3fcf033fd4a5381d994d165135400": { + "d237e27edd394f0cb779b56daf7e9f53": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2708,7 +2725,7 @@ "text_color": null } }, - "bb4bf777c3e3467780abcc4d569a78dd": { + "d42aa306545b4c048e7007f1010dae12": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2761,7 +2778,7 @@ "width": null } }, - "bb50a7d1387043dcb96878a543b7691d": { + "d93a56d4a52b40a1a432a218701e6d7d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2814,53 +2831,23 @@ "width": null } }, - "bb7646d8aa7e40af8ba57463c63fd2c2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_408c1e8d7abb4172b241a84463527a02", - "placeholder": "​", - "style": "IPY_MODEL_5569fdc8e27f4774ac7a1489598bf51a", - "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" - } - }, - "ce077001062f436b84b39c2730fde1f6": { + "dcaf791445af43d68f0078287914810a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_81dc4a5b0c114223b9520534140e044d", - "placeholder": "​", - "style": "IPY_MODEL_7f99f251e4b348a4a1551a6832faf0d7", - "tabbable": null, - "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 75.7MB/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "d44c398209094a7f8613dc3e146ddfa6": { + "e09248c0fe244ae1adb56d9623d7540b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2875,16 +2862,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f9e87998384f4af6a7240a0201247e70", - "IPY_MODEL_6522873ba4ea46aa896a6c6184a138d2", - "IPY_MODEL_e08ed2c74cae4ed0890945595ed1d98e" + "IPY_MODEL_d19574be1727424f9b4155d6890c6379", + "IPY_MODEL_5f20e36061c4462194728c5738285d58", + "IPY_MODEL_e51837b227f044108623992ca3212468" ], - "layout": "IPY_MODEL_bb4bf777c3e3467780abcc4d569a78dd", + "layout": "IPY_MODEL_e1317297dacd4b19add95df4eb325215", "tabbable": null, "tooltip": null } }, - "d9d10de055db4c7d9f62d9baf43e6d0a": { + "e1317297dacd4b19add95df4eb325215": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2937,7 +2924,46 @@ "width": null } }, - "dc4a3bf1e3a14e1a8f9b1ff259237909": { + "e51837b227f044108623992ca3212468": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fe0c29f7fc654606a3968de8caebfa7e", + "placeholder": "​", + "style": "IPY_MODEL_25f9496e154b4c35b50154e7c1179417", + "tabbable": null, + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 801kB/s]" + } + }, + "e9cda110045e43c29d5985c766de7a53": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ebda3d78b05a4486a7fffd8a666e661f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2955,53 +2981,59 @@ "text_color": null } }, - "de1a624ab1a94464a2059c75da4f2904": { + "ecad11768e31486e90586871e36c9ef8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e5155f598ea04e7b9fdd42b5ec0d2713", - "placeholder": "​", - "style": "IPY_MODEL_b0c3fcf033fd4a5381d994d165135400", + "layout": "IPY_MODEL_3b95edd1de4741ab901227f2d2eb148c", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e9cda110045e43c29d5985c766de7a53", "tabbable": null, "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 121MB/s]" + "value": 16887676.0 } }, - "e08ed2c74cae4ed0890945595ed1d98e": { + "f327247b2e124784abcaca20d824f2c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bb50a7d1387043dcb96878a543b7691d", - "placeholder": "​", - "style": "IPY_MODEL_dc4a3bf1e3a14e1a8f9b1ff259237909", + "layout": "IPY_MODEL_a5b2e7509b164b5d9e844cab9b9e0f11", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_368d32a2248046e1a344ef38430f19dd", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 776kB/s]" + "value": 15856877.0 } }, - "e5155f598ea04e7b9fdd42b5ec0d2713": { + "f7f0f2aa06bf4ac191490912101855c7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3054,142 +3086,110 @@ "width": null } }, - "eeac2fec00cc4351822c56fa3ba3576b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "eec2f7de4bea43068e6cc064ecfdc854": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a827cf6720694264886a09b4d96482ef", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8eb07dc3a10846a790bf8cbc7350bccd", - "tabbable": null, - "tooltip": null, - "value": 16887676.0 - } - }, - "f5eef68b38dd4aa99d935cdb015a1831": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f66015bed45e483ea66e81526bc19cf8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6a00eb8d6b2c4f9bbec0f00bb7eef71b", - "placeholder": "​", - "style": "IPY_MODEL_ac87727bcf91440391625450afeb8ab0", - "tabbable": null, - "tooltip": null, - "value": "hyperparams.yaml: 100%" - } - }, - "f98a2775246a41169dfe0e9b44c9962f": { - "model_module": "@jupyter-widgets/controls", + "fd724a4cddb843d1bf3bc3d1a6f60a0d": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f99de2df51da4c0b85508b3d85e605db": { - "model_module": "@jupyter-widgets/controls", + "fe0c29f7fc654606a3968de8caebfa7e": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f9e87998384f4af6a7240a0201247e70": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_67fb37cf6d3b463bab3708887ea56e5f", - "placeholder": "​", - "style": "IPY_MODEL_0d83e1bc31fb426aa0c291d6ae914b48", - "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index a2677b580..c2a1b9467 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1291,7 +1291,7 @@

Functionality 3: Save and load Datalab objects

-
+
@@ -1566,7 +1566,7 @@

Functionality 4: Adding a custom IssueManager -{"state": {"1158ec472282495ab7310853453b4ab4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2d006a513529400cb97db202241db833": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "48baab9b98654408bd29b244faa05f8d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1158ec472282495ab7310853453b4ab4", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2d006a513529400cb97db202241db833", "tabbable": null, "tooltip": null, "value": 132.0}}, "c25db2c2243f44c48d555059aa8be099": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fa12f6fdda1d4147953021b7e0b0a5ca": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "84967144343547d5810b0414ec56a24b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c25db2c2243f44c48d555059aa8be099", "placeholder": "\u200b", "style": "IPY_MODEL_fa12f6fdda1d4147953021b7e0b0a5ca", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "f2a0f9c9359a4bdb9c3dcdb445086181": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "07a23d8fce2742c99f46b729c62c7121": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ab72f1f849724a2c8c7a143ff82728dc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f2a0f9c9359a4bdb9c3dcdb445086181", "placeholder": "\u200b", "style": "IPY_MODEL_07a23d8fce2742c99f46b729c62c7121", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200712740.72\u2007examples/s]"}}, "8db31688e4dd4bb29cedc914f2bf853b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b787b171a2764d849e9929a0d779d26b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_84967144343547d5810b0414ec56a24b", "IPY_MODEL_48baab9b98654408bd29b244faa05f8d", "IPY_MODEL_ab72f1f849724a2c8c7a143ff82728dc"], "layout": "IPY_MODEL_8db31688e4dd4bb29cedc914f2bf853b", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"2749ee847c1b433a9a8a55b6b1b5c92f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2090faef703f453ea12b54844ac2487c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "25cb42634454435c857825e30407de4b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2749ee847c1b433a9a8a55b6b1b5c92f", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2090faef703f453ea12b54844ac2487c", "tabbable": null, "tooltip": null, "value": 132.0}}, "b342e197633741fab78ede822f68b80c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "860f72d263bc4dabaff33056f935bcce": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e6242c94398a4c298ecb1539783eafa6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b342e197633741fab78ede822f68b80c", "placeholder": "\u200b", "style": "IPY_MODEL_860f72d263bc4dabaff33056f935bcce", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "bb7b48339cfb4cd1a33f74ed52abcd62": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0fbc3274882f4e1ab00900b5baf96792": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5bda697ed8ea4cff9e89cecec1602956": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bb7b48339cfb4cd1a33f74ed52abcd62", "placeholder": "\u200b", "style": "IPY_MODEL_0fbc3274882f4e1ab00900b5baf96792", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200712755.69\u2007examples/s]"}}, "1a9f272b6540497c8255408e9e0c16cd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8a0fcac2588a422fba3081ddf39aab10": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e6242c94398a4c298ecb1539783eafa6", "IPY_MODEL_25cb42634454435c857825e30407de4b", "IPY_MODEL_5bda697ed8ea4cff9e89cecec1602956"], "layout": "IPY_MODEL_1a9f272b6540497c8255408e9e0c16cd", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index ce060f7b2..273aaa0cb 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:18.116159Z", - "iopub.status.busy": "2024-08-22T00:53:18.115974Z", - "iopub.status.idle": "2024-08-22T00:53:19.450692Z", - "shell.execute_reply": "2024-08-22T00:53:19.450087Z" + "iopub.execute_input": "2024-08-26T15:50:46.765510Z", + "iopub.status.busy": "2024-08-26T15:50:46.765317Z", + "iopub.status.idle": "2024-08-26T15:50:48.029649Z", + "shell.execute_reply": "2024-08-26T15:50:48.029139Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:19.453602Z", - "iopub.status.busy": "2024-08-22T00:53:19.453078Z", - "iopub.status.idle": "2024-08-22T00:53:19.456499Z", - "shell.execute_reply": "2024-08-22T00:53:19.455924Z" + "iopub.execute_input": "2024-08-26T15:50:48.032203Z", + "iopub.status.busy": "2024-08-26T15:50:48.031901Z", + "iopub.status.idle": "2024-08-26T15:50:48.035128Z", + "shell.execute_reply": "2024-08-26T15:50:48.034646Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:19.458860Z", - "iopub.status.busy": "2024-08-22T00:53:19.458533Z", - "iopub.status.idle": "2024-08-22T00:53:19.467566Z", - "shell.execute_reply": "2024-08-22T00:53:19.466934Z" + "iopub.execute_input": "2024-08-26T15:50:48.037151Z", + "iopub.status.busy": "2024-08-26T15:50:48.036973Z", + "iopub.status.idle": "2024-08-26T15:50:48.045810Z", + "shell.execute_reply": "2024-08-26T15:50:48.045353Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:19.469904Z", - "iopub.status.busy": "2024-08-22T00:53:19.469510Z", - "iopub.status.idle": "2024-08-22T00:53:19.475031Z", - "shell.execute_reply": "2024-08-22T00:53:19.474507Z" + "iopub.execute_input": "2024-08-26T15:50:48.047758Z", + "iopub.status.busy": "2024-08-26T15:50:48.047575Z", + "iopub.status.idle": "2024-08-26T15:50:48.052278Z", + "shell.execute_reply": "2024-08-26T15:50:48.051846Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:19.477337Z", - "iopub.status.busy": "2024-08-22T00:53:19.476966Z", - "iopub.status.idle": "2024-08-22T00:53:19.673089Z", - "shell.execute_reply": "2024-08-22T00:53:19.672485Z" + "iopub.execute_input": "2024-08-26T15:50:48.054354Z", + "iopub.status.busy": "2024-08-26T15:50:48.054175Z", + "iopub.status.idle": "2024-08-26T15:50:48.243838Z", + "shell.execute_reply": "2024-08-26T15:50:48.243254Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:19.675738Z", - "iopub.status.busy": "2024-08-22T00:53:19.675408Z", - "iopub.status.idle": "2024-08-22T00:53:20.065168Z", - "shell.execute_reply": "2024-08-22T00:53:20.064567Z" + "iopub.execute_input": "2024-08-26T15:50:48.246370Z", + "iopub.status.busy": "2024-08-26T15:50:48.246155Z", + "iopub.status.idle": "2024-08-26T15:50:48.628139Z", + "shell.execute_reply": "2024-08-26T15:50:48.627575Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:20.067800Z", - "iopub.status.busy": "2024-08-22T00:53:20.067415Z", - "iopub.status.idle": "2024-08-22T00:53:20.092517Z", - "shell.execute_reply": "2024-08-22T00:53:20.092033Z" + "iopub.execute_input": "2024-08-26T15:50:48.630308Z", + "iopub.status.busy": "2024-08-26T15:50:48.630124Z", + "iopub.status.idle": "2024-08-26T15:50:48.653555Z", + "shell.execute_reply": "2024-08-26T15:50:48.653088Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:20.095046Z", - "iopub.status.busy": "2024-08-22T00:53:20.094567Z", - "iopub.status.idle": "2024-08-22T00:53:20.106496Z", - "shell.execute_reply": "2024-08-22T00:53:20.105948Z" + "iopub.execute_input": "2024-08-26T15:50:48.655882Z", + "iopub.status.busy": "2024-08-26T15:50:48.655545Z", + "iopub.status.idle": "2024-08-26T15:50:48.667061Z", + "shell.execute_reply": "2024-08-26T15:50:48.666493Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:20.108941Z", - "iopub.status.busy": "2024-08-22T00:53:20.108583Z", - "iopub.status.idle": "2024-08-22T00:53:22.391822Z", - "shell.execute_reply": "2024-08-22T00:53:22.391140Z" + "iopub.execute_input": "2024-08-26T15:50:48.669119Z", + "iopub.status.busy": "2024-08-26T15:50:48.668937Z", + "iopub.status.idle": "2024-08-26T15:50:50.829319Z", + "shell.execute_reply": "2024-08-26T15:50:50.828752Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:22.394634Z", - "iopub.status.busy": "2024-08-22T00:53:22.394086Z", - "iopub.status.idle": "2024-08-22T00:53:22.417056Z", - "shell.execute_reply": "2024-08-22T00:53:22.416509Z" + "iopub.execute_input": "2024-08-26T15:50:50.832149Z", + "iopub.status.busy": "2024-08-26T15:50:50.831554Z", + "iopub.status.idle": "2024-08-26T15:50:50.853263Z", + "shell.execute_reply": "2024-08-26T15:50:50.852788Z" } }, "outputs": [ @@ -830,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:22.419394Z", - "iopub.status.busy": "2024-08-22T00:53:22.419031Z", - "iopub.status.idle": "2024-08-22T00:53:22.437325Z", - "shell.execute_reply": "2024-08-22T00:53:22.436743Z" + "iopub.execute_input": "2024-08-26T15:50:50.855499Z", + "iopub.status.busy": "2024-08-26T15:50:50.855206Z", + "iopub.status.idle": "2024-08-26T15:50:50.874255Z", + "shell.execute_reply": "2024-08-26T15:50:50.873572Z" } }, "outputs": [ @@ -937,10 +937,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:22.439369Z", - "iopub.status.busy": "2024-08-22T00:53:22.439188Z", - "iopub.status.idle": "2024-08-22T00:53:22.453984Z", - "shell.execute_reply": "2024-08-22T00:53:22.453471Z" + "iopub.execute_input": "2024-08-26T15:50:50.876984Z", + "iopub.status.busy": "2024-08-26T15:50:50.876416Z", + "iopub.status.idle": "2024-08-26T15:50:50.892786Z", + "shell.execute_reply": "2024-08-26T15:50:50.892171Z" } }, "outputs": [ @@ -1075,17 +1075,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:22.456049Z", - "iopub.status.busy": "2024-08-22T00:53:22.455866Z", - "iopub.status.idle": "2024-08-22T00:53:22.476261Z", - "shell.execute_reply": "2024-08-22T00:53:22.475674Z" + "iopub.execute_input": "2024-08-26T15:50:50.895217Z", + "iopub.status.busy": "2024-08-26T15:50:50.894904Z", + "iopub.status.idle": "2024-08-26T15:50:50.915961Z", + "shell.execute_reply": "2024-08-26T15:50:50.915358Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b787b171a2764d849e9929a0d779d26b", + "model_id": "8a0fcac2588a422fba3081ddf39aab10", "version_major": 2, "version_minor": 0 }, @@ -1121,10 +1121,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:22.478551Z", - "iopub.status.busy": "2024-08-22T00:53:22.478185Z", - "iopub.status.idle": "2024-08-22T00:53:22.494752Z", - "shell.execute_reply": "2024-08-22T00:53:22.494221Z" + "iopub.execute_input": "2024-08-26T15:50:50.918422Z", + "iopub.status.busy": "2024-08-26T15:50:50.917938Z", + "iopub.status.idle": "2024-08-26T15:50:50.934851Z", + "shell.execute_reply": "2024-08-26T15:50:50.934287Z" } }, "outputs": [ @@ -1247,10 +1247,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:22.497339Z", - "iopub.status.busy": "2024-08-22T00:53:22.496871Z", - "iopub.status.idle": "2024-08-22T00:53:22.503222Z", - "shell.execute_reply": "2024-08-22T00:53:22.502707Z" + "iopub.execute_input": "2024-08-26T15:50:50.937203Z", + "iopub.status.busy": "2024-08-26T15:50:50.936812Z", + "iopub.status.idle": "2024-08-26T15:50:50.943127Z", + "shell.execute_reply": "2024-08-26T15:50:50.942615Z" } }, "outputs": [], @@ -1307,10 +1307,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:22.505486Z", - "iopub.status.busy": "2024-08-22T00:53:22.505271Z", - "iopub.status.idle": "2024-08-22T00:53:22.525561Z", - "shell.execute_reply": "2024-08-22T00:53:22.525037Z" + "iopub.execute_input": "2024-08-26T15:50:50.945161Z", + "iopub.status.busy": "2024-08-26T15:50:50.944876Z", + "iopub.status.idle": "2024-08-26T15:50:50.964913Z", + "shell.execute_reply": "2024-08-26T15:50:50.964314Z" } }, "outputs": [ @@ -1447,7 +1447,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "07a23d8fce2742c99f46b729c62c7121": { + "0fbc3274882f4e1ab00900b5baf96792": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1465,7 +1465,7 @@ "text_color": null } }, - "1158ec472282495ab7310853453b4ab4": { + "1a9f272b6540497c8255408e9e0c16cd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1518,7 +1518,7 @@ "width": null } }, - "2d006a513529400cb97db202241db833": { + "2090faef703f453ea12b54844ac2487c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1534,7 +1534,7 @@ "description_width": "" } }, - "48baab9b98654408bd29b244faa05f8d": { + "25cb42634454435c857825e30407de4b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1550,40 +1550,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1158ec472282495ab7310853453b4ab4", + "layout": "IPY_MODEL_2749ee847c1b433a9a8a55b6b1b5c92f", "max": 132.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_2d006a513529400cb97db202241db833", + "style": "IPY_MODEL_2090faef703f453ea12b54844ac2487c", "tabbable": null, "tooltip": null, "value": 132.0 } }, - "84967144343547d5810b0414ec56a24b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c25db2c2243f44c48d555059aa8be099", - "placeholder": "​", - "style": "IPY_MODEL_fa12f6fdda1d4147953021b7e0b0a5ca", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" - } - }, - "8db31688e4dd4bb29cedc914f2bf853b": { + "2749ee847c1b433a9a8a55b6b1b5c92f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1636,7 +1613,7 @@ "width": null } }, - "ab72f1f849724a2c8c7a143ff82728dc": { + "5bda697ed8ea4cff9e89cecec1602956": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1651,15 +1628,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f2a0f9c9359a4bdb9c3dcdb445086181", + "layout": "IPY_MODEL_bb7b48339cfb4cd1a33f74ed52abcd62", "placeholder": "​", - "style": "IPY_MODEL_07a23d8fce2742c99f46b729c62c7121", + "style": "IPY_MODEL_0fbc3274882f4e1ab00900b5baf96792", "tabbable": null, "tooltip": null, - "value": " 132/132 [00:00<00:00, 12740.72 examples/s]" + "value": " 132/132 [00:00<00:00, 12755.69 examples/s]" + } + }, + "860f72d263bc4dabaff33056f935bcce": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b787b171a2764d849e9929a0d779d26b": { + "8a0fcac2588a422fba3081ddf39aab10": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1674,16 +1669,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_84967144343547d5810b0414ec56a24b", - "IPY_MODEL_48baab9b98654408bd29b244faa05f8d", - "IPY_MODEL_ab72f1f849724a2c8c7a143ff82728dc" + "IPY_MODEL_e6242c94398a4c298ecb1539783eafa6", + "IPY_MODEL_25cb42634454435c857825e30407de4b", + "IPY_MODEL_5bda697ed8ea4cff9e89cecec1602956" ], - "layout": "IPY_MODEL_8db31688e4dd4bb29cedc914f2bf853b", + "layout": "IPY_MODEL_1a9f272b6540497c8255408e9e0c16cd", "tabbable": null, "tooltip": null } }, - "c25db2c2243f44c48d555059aa8be099": { + "b342e197633741fab78ede822f68b80c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1736,7 +1731,7 @@ "width": null } }, - "f2a0f9c9359a4bdb9c3dcdb445086181": { + "bb7b48339cfb4cd1a33f74ed52abcd62": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1789,22 +1784,27 @@ "width": null } }, - "fa12f6fdda1d4147953021b7e0b0a5ca": { + "e6242c94398a4c298ecb1539783eafa6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b342e197633741fab78ede822f68b80c", + "placeholder": "​", + "style": "IPY_MODEL_860f72d263bc4dabaff33056f935bcce", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" } } }, diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index 0d711b479..62eda8c4b 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:25.530072Z", - "iopub.status.busy": "2024-08-22T00:53:25.529882Z", - "iopub.status.idle": "2024-08-22T00:53:26.808818Z", - "shell.execute_reply": "2024-08-22T00:53:26.808261Z" + "iopub.execute_input": "2024-08-26T15:50:53.944782Z", + "iopub.status.busy": "2024-08-26T15:50:53.944606Z", + "iopub.status.idle": "2024-08-26T15:50:55.174967Z", + "shell.execute_reply": "2024-08-26T15:50:55.174365Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:26.811324Z", - "iopub.status.busy": "2024-08-22T00:53:26.811049Z", - "iopub.status.idle": "2024-08-22T00:53:26.814389Z", - "shell.execute_reply": "2024-08-22T00:53:26.813794Z" + "iopub.execute_input": "2024-08-26T15:50:55.177365Z", + "iopub.status.busy": "2024-08-26T15:50:55.177084Z", + "iopub.status.idle": "2024-08-26T15:50:55.180269Z", + "shell.execute_reply": "2024-08-26T15:50:55.179800Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:26.816720Z", - "iopub.status.busy": "2024-08-22T00:53:26.816367Z", - "iopub.status.idle": "2024-08-22T00:53:26.825362Z", - "shell.execute_reply": "2024-08-22T00:53:26.824931Z" + "iopub.execute_input": "2024-08-26T15:50:55.182571Z", + "iopub.status.busy": "2024-08-26T15:50:55.182224Z", + "iopub.status.idle": "2024-08-26T15:50:55.191419Z", + "shell.execute_reply": "2024-08-26T15:50:55.190958Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:26.827482Z", - "iopub.status.busy": "2024-08-22T00:53:26.827146Z", - "iopub.status.idle": "2024-08-22T00:53:26.831950Z", - "shell.execute_reply": "2024-08-22T00:53:26.831514Z" + "iopub.execute_input": "2024-08-26T15:50:55.193302Z", + "iopub.status.busy": "2024-08-26T15:50:55.193122Z", + "iopub.status.idle": "2024-08-26T15:50:55.197961Z", + "shell.execute_reply": "2024-08-26T15:50:55.197543Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:26.834116Z", - "iopub.status.busy": "2024-08-22T00:53:26.833772Z", - "iopub.status.idle": "2024-08-22T00:53:27.026183Z", - "shell.execute_reply": "2024-08-22T00:53:27.025603Z" + "iopub.execute_input": "2024-08-26T15:50:55.200199Z", + "iopub.status.busy": "2024-08-26T15:50:55.199891Z", + "iopub.status.idle": "2024-08-26T15:50:55.384777Z", + "shell.execute_reply": "2024-08-26T15:50:55.384123Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:27.028804Z", - "iopub.status.busy": "2024-08-22T00:53:27.028390Z", - "iopub.status.idle": "2024-08-22T00:53:27.411981Z", - "shell.execute_reply": "2024-08-22T00:53:27.411338Z" + "iopub.execute_input": "2024-08-26T15:50:55.387364Z", + "iopub.status.busy": "2024-08-26T15:50:55.387029Z", + "iopub.status.idle": "2024-08-26T15:50:55.715156Z", + "shell.execute_reply": "2024-08-26T15:50:55.714550Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:27.414321Z", - "iopub.status.busy": "2024-08-22T00:53:27.414122Z", - "iopub.status.idle": "2024-08-22T00:53:27.416880Z", - "shell.execute_reply": "2024-08-22T00:53:27.416440Z" + "iopub.execute_input": "2024-08-26T15:50:55.717463Z", + "iopub.status.busy": "2024-08-26T15:50:55.717038Z", + "iopub.status.idle": "2024-08-26T15:50:55.719902Z", + "shell.execute_reply": "2024-08-26T15:50:55.719448Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:27.419016Z", - "iopub.status.busy": "2024-08-22T00:53:27.418671Z", - "iopub.status.idle": "2024-08-22T00:53:27.453929Z", - "shell.execute_reply": "2024-08-22T00:53:27.453261Z" + "iopub.execute_input": "2024-08-26T15:50:55.722134Z", + "iopub.status.busy": "2024-08-26T15:50:55.721733Z", + "iopub.status.idle": "2024-08-26T15:50:55.756057Z", + "shell.execute_reply": "2024-08-26T15:50:55.755459Z" } }, "outputs": [], @@ -638,10 +638,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:27.456570Z", - "iopub.status.busy": "2024-08-22T00:53:27.456187Z", - "iopub.status.idle": "2024-08-22T00:53:29.703493Z", - "shell.execute_reply": "2024-08-22T00:53:29.702821Z" + "iopub.execute_input": "2024-08-26T15:50:55.758161Z", + "iopub.status.busy": "2024-08-26T15:50:55.757979Z", + "iopub.status.idle": "2024-08-26T15:50:57.877733Z", + "shell.execute_reply": "2024-08-26T15:50:57.877147Z" } }, "outputs": [ @@ -685,10 +685,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:29.706113Z", - "iopub.status.busy": "2024-08-22T00:53:29.705525Z", - "iopub.status.idle": "2024-08-22T00:53:29.724661Z", - "shell.execute_reply": "2024-08-22T00:53:29.724141Z" + "iopub.execute_input": "2024-08-26T15:50:57.880170Z", + "iopub.status.busy": "2024-08-26T15:50:57.879797Z", + "iopub.status.idle": "2024-08-26T15:50:57.899274Z", + "shell.execute_reply": "2024-08-26T15:50:57.898677Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:29.726967Z", - "iopub.status.busy": "2024-08-22T00:53:29.726591Z", - "iopub.status.idle": "2024-08-22T00:53:29.733617Z", - "shell.execute_reply": "2024-08-22T00:53:29.733059Z" + "iopub.execute_input": "2024-08-26T15:50:57.901387Z", + "iopub.status.busy": "2024-08-26T15:50:57.901205Z", + "iopub.status.idle": "2024-08-26T15:50:57.908053Z", + "shell.execute_reply": "2024-08-26T15:50:57.907487Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:29.735861Z", - "iopub.status.busy": "2024-08-22T00:53:29.735479Z", - "iopub.status.idle": "2024-08-22T00:53:29.741916Z", - "shell.execute_reply": "2024-08-22T00:53:29.741276Z" + "iopub.execute_input": "2024-08-26T15:50:57.910026Z", + "iopub.status.busy": "2024-08-26T15:50:57.909848Z", + "iopub.status.idle": "2024-08-26T15:50:57.915624Z", + "shell.execute_reply": "2024-08-26T15:50:57.915128Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:29.744023Z", - "iopub.status.busy": "2024-08-22T00:53:29.743829Z", - "iopub.status.idle": "2024-08-22T00:53:29.754992Z", - "shell.execute_reply": "2024-08-22T00:53:29.754376Z" + "iopub.execute_input": "2024-08-26T15:50:57.917481Z", + "iopub.status.busy": "2024-08-26T15:50:57.917305Z", + "iopub.status.idle": "2024-08-26T15:50:57.927610Z", + "shell.execute_reply": "2024-08-26T15:50:57.927139Z" } }, "outputs": [ @@ -1200,10 +1200,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:29.757117Z", - "iopub.status.busy": "2024-08-22T00:53:29.756927Z", - "iopub.status.idle": "2024-08-22T00:53:29.766655Z", - "shell.execute_reply": "2024-08-22T00:53:29.766072Z" + "iopub.execute_input": "2024-08-26T15:50:57.929617Z", + "iopub.status.busy": "2024-08-26T15:50:57.929267Z", + "iopub.status.idle": "2024-08-26T15:50:57.937885Z", + "shell.execute_reply": "2024-08-26T15:50:57.937431Z" } }, "outputs": [ @@ -1319,10 +1319,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:29.768734Z", - "iopub.status.busy": "2024-08-22T00:53:29.768550Z", - "iopub.status.idle": "2024-08-22T00:53:29.775648Z", - "shell.execute_reply": "2024-08-22T00:53:29.775198Z" + "iopub.execute_input": "2024-08-26T15:50:57.939923Z", + "iopub.status.busy": "2024-08-26T15:50:57.939645Z", + "iopub.status.idle": "2024-08-26T15:50:57.946549Z", + "shell.execute_reply": "2024-08-26T15:50:57.945987Z" }, "scrolled": true }, @@ -1447,10 +1447,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:29.777590Z", - "iopub.status.busy": "2024-08-22T00:53:29.777398Z", - "iopub.status.idle": "2024-08-22T00:53:29.787022Z", - "shell.execute_reply": "2024-08-22T00:53:29.786573Z" + "iopub.execute_input": "2024-08-26T15:50:57.948699Z", + "iopub.status.busy": "2024-08-26T15:50:57.948267Z", + "iopub.status.idle": "2024-08-26T15:50:57.957635Z", + "shell.execute_reply": "2024-08-26T15:50:57.957073Z" } }, "outputs": [ @@ -1553,10 +1553,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:29.789124Z", - "iopub.status.busy": "2024-08-22T00:53:29.788852Z", - "iopub.status.idle": "2024-08-22T00:53:29.807132Z", - "shell.execute_reply": "2024-08-22T00:53:29.806553Z" + "iopub.execute_input": "2024-08-26T15:50:57.959729Z", + "iopub.status.busy": "2024-08-26T15:50:57.959409Z", + "iopub.status.idle": "2024-08-26T15:50:57.976522Z", + "shell.execute_reply": "2024-08-26T15:50:57.975936Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/image.html b/master/tutorials/datalab/image.html index 716c23812..083fe9455 100644 --- a/master/tutorials/datalab/image.html +++ b/master/tutorials/datalab/image.html @@ -727,31 +727,31 @@

2. Fetch and normalize the Fashion-MNIST dataset

-
+
-
+
-
+
-
+
-
+

Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

@@ -1064,7 +1064,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1096,7 +1096,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1128,7 +1128,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1920,35 +1920,35 @@

Dark images - is_dark_issue dark_score + is_dark_issue 34848 - True 0.203922 + True 50270 - True 0.204588 + True 3936 - True 0.213098 + True 733 - True 0.217686 + True 8094 - True 0.230118 + True @@ -2098,7 +2098,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/datalab/image.ipynb b/master/tutorials/datalab/image.ipynb index 28a08e131..f0bfcffa1 100644 --- a/master/tutorials/datalab/image.ipynb +++ b/master/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:32.855798Z", - "iopub.status.busy": "2024-08-22T00:53:32.855616Z", - "iopub.status.idle": "2024-08-22T00:53:35.992097Z", - "shell.execute_reply": "2024-08-22T00:53:35.991484Z" + "iopub.execute_input": "2024-08-26T15:51:00.744803Z", + "iopub.status.busy": "2024-08-26T15:51:00.744624Z", + "iopub.status.idle": "2024-08-26T15:51:03.845244Z", + "shell.execute_reply": "2024-08-26T15:51:03.844700Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:35.995002Z", - "iopub.status.busy": "2024-08-22T00:53:35.994520Z", - "iopub.status.idle": "2024-08-22T00:53:35.998359Z", - "shell.execute_reply": "2024-08-22T00:53:35.997775Z" + "iopub.execute_input": "2024-08-26T15:51:03.848152Z", + "iopub.status.busy": "2024-08-26T15:51:03.847533Z", + "iopub.status.idle": "2024-08-26T15:51:03.851305Z", + "shell.execute_reply": "2024-08-26T15:51:03.850759Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:36.000606Z", - "iopub.status.busy": "2024-08-22T00:53:36.000274Z", - "iopub.status.idle": "2024-08-22T00:53:38.906808Z", - "shell.execute_reply": "2024-08-22T00:53:38.906229Z" + "iopub.execute_input": "2024-08-26T15:51:03.853335Z", + "iopub.status.busy": "2024-08-26T15:51:03.852994Z", + "iopub.status.idle": "2024-08-26T15:51:08.474960Z", + "shell.execute_reply": "2024-08-26T15:51:08.474414Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e13e6b4502e9481aa9501c922ae3ff68", + "model_id": "0a1880c6c97d4a3aaf7b2288cedea42f", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "53ce035acbfb416aaa3dd28cae66a7f4", + "model_id": "715deece975742d5bc13cc8043611355", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d9e782f571af4e6ab81db57c5078db7c", + "model_id": "bb685ca1a8e74f4abfc418ee4df7cdae", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8fba3dafd4f64444a16631a145e858f3", + "model_id": "8048b30a8d20480286136da950c4ae4f", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5daa16858856475caaf7679f6d32f5ec", + "model_id": "7df5d87a698348adaf910bad51eb5257", "version_major": 2, "version_minor": 0 }, @@ -260,10 +260,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:38.909120Z", - "iopub.status.busy": "2024-08-22T00:53:38.908807Z", - "iopub.status.idle": "2024-08-22T00:53:38.913214Z", - "shell.execute_reply": "2024-08-22T00:53:38.912674Z" + "iopub.execute_input": "2024-08-26T15:51:08.477550Z", + "iopub.status.busy": "2024-08-26T15:51:08.477034Z", + "iopub.status.idle": "2024-08-26T15:51:08.481367Z", + "shell.execute_reply": "2024-08-26T15:51:08.480829Z" } }, "outputs": [ @@ -288,17 +288,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:38.915432Z", - "iopub.status.busy": "2024-08-22T00:53:38.914992Z", - "iopub.status.idle": "2024-08-22T00:53:50.827682Z", - "shell.execute_reply": "2024-08-22T00:53:50.827010Z" + "iopub.execute_input": "2024-08-26T15:51:08.483413Z", + "iopub.status.busy": "2024-08-26T15:51:08.483096Z", + "iopub.status.idle": "2024-08-26T15:51:20.137696Z", + "shell.execute_reply": "2024-08-26T15:51:20.137155Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e7d518a4a4844e9382a190dfbbda4ad0", + "model_id": "aa732b0a4d7a4e5a9c11bdac5ddcd235", "version_major": 2, "version_minor": 0 }, @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:53:50.830794Z", - "iopub.status.busy": "2024-08-22T00:53:50.830285Z", - "iopub.status.idle": "2024-08-22T00:54:09.208452Z", - "shell.execute_reply": "2024-08-22T00:54:09.207818Z" + "iopub.execute_input": "2024-08-26T15:51:20.140400Z", + "iopub.status.busy": "2024-08-26T15:51:20.140038Z", + "iopub.status.idle": "2024-08-26T15:51:38.738674Z", + "shell.execute_reply": "2024-08-26T15:51:38.738041Z" } }, "outputs": [], @@ -372,10 +372,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:54:09.211311Z", - "iopub.status.busy": "2024-08-22T00:54:09.210908Z", - "iopub.status.idle": "2024-08-22T00:54:09.216696Z", - "shell.execute_reply": "2024-08-22T00:54:09.216236Z" + "iopub.execute_input": "2024-08-26T15:51:38.741444Z", + "iopub.status.busy": "2024-08-26T15:51:38.741090Z", + "iopub.status.idle": "2024-08-26T15:51:38.746146Z", + "shell.execute_reply": "2024-08-26T15:51:38.745664Z" } }, "outputs": [], @@ -413,10 +413,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:54:09.218888Z", - "iopub.status.busy": "2024-08-22T00:54:09.218527Z", - "iopub.status.idle": "2024-08-22T00:54:09.222539Z", - "shell.execute_reply": "2024-08-22T00:54:09.222088Z" + "iopub.execute_input": "2024-08-26T15:51:38.748037Z", + "iopub.status.busy": "2024-08-26T15:51:38.747855Z", + "iopub.status.idle": "2024-08-26T15:51:38.752327Z", + "shell.execute_reply": "2024-08-26T15:51:38.751914Z" }, "nbsphinx": "hidden" }, @@ -553,10 +553,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:54:09.224687Z", - "iopub.status.busy": "2024-08-22T00:54:09.224332Z", - "iopub.status.idle": "2024-08-22T00:54:09.233538Z", - "shell.execute_reply": "2024-08-22T00:54:09.233024Z" + "iopub.execute_input": "2024-08-26T15:51:38.754457Z", + "iopub.status.busy": "2024-08-26T15:51:38.754044Z", + "iopub.status.idle": "2024-08-26T15:51:38.763027Z", + "shell.execute_reply": "2024-08-26T15:51:38.762462Z" }, "nbsphinx": "hidden" }, @@ -681,10 +681,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:54:09.235724Z", - "iopub.status.busy": "2024-08-22T00:54:09.235373Z", - "iopub.status.idle": "2024-08-22T00:54:09.263847Z", - "shell.execute_reply": "2024-08-22T00:54:09.263181Z" + "iopub.execute_input": "2024-08-26T15:51:38.765123Z", + "iopub.status.busy": "2024-08-26T15:51:38.764781Z", + "iopub.status.idle": "2024-08-26T15:51:38.792778Z", + "shell.execute_reply": "2024-08-26T15:51:38.792296Z" } }, "outputs": [], @@ -721,10 +721,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:54:09.266503Z", - "iopub.status.busy": "2024-08-22T00:54:09.266063Z", - "iopub.status.idle": "2024-08-22T00:54:44.481094Z", - "shell.execute_reply": "2024-08-22T00:54:44.480492Z" + "iopub.execute_input": "2024-08-26T15:51:38.795125Z", + "iopub.status.busy": "2024-08-26T15:51:38.794779Z", + "iopub.status.idle": "2024-08-26T15:52:13.480656Z", + "shell.execute_reply": "2024-08-26T15:52:13.480000Z" } }, "outputs": [ @@ -740,21 +740,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.094\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.144\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.936\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.930\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "62b6b2e9b4224a69b6fea1cf6c2e3ba6", + "model_id": "f9912ba2f2c141a4892444b6f34c10b6", "version_major": 2, "version_minor": 0 }, @@ -775,7 +775,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1a6cfa51948f48e0b1348770a125fd2d", + "model_id": "eb3ac7f719da4343b1f45e07f09a75f2", "version_major": 2, "version_minor": 0 }, @@ -798,21 +798,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.178\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.995\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.950\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.984\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6106bace64b54dfa92a1cc7d3b9b9568", + "model_id": "5dd4ac73beaa4c909b6d006c9b6b289f", "version_major": 2, "version_minor": 0 }, @@ -833,7 +833,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7c4f61f3c9544a5697e35537d2e57a80", + "model_id": "ab03cadc8a244250837477471abfd52f", "version_major": 2, "version_minor": 0 }, @@ -856,21 +856,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 5.277\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 5.056\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 5.186\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.832\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cbbfe35662894a6cb48d64ca9547f4cc", + "model_id": "61ca028bd561486caf5fa42305aa6d4d", "version_major": 2, "version_minor": 0 }, @@ -891,7 +891,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bb87ed2f43cc4e28b958678bcf337c47", + "model_id": "fc98e96da8e046238dce1b399f558f99", "version_major": 2, "version_minor": 0 }, @@ -970,10 +970,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:54:44.483779Z", - "iopub.status.busy": "2024-08-22T00:54:44.483352Z", - "iopub.status.idle": "2024-08-22T00:54:44.501245Z", - "shell.execute_reply": "2024-08-22T00:54:44.500729Z" + "iopub.execute_input": "2024-08-26T15:52:13.483198Z", + "iopub.status.busy": "2024-08-26T15:52:13.482845Z", + "iopub.status.idle": "2024-08-26T15:52:13.500620Z", + "shell.execute_reply": "2024-08-26T15:52:13.500140Z" } }, "outputs": [], @@ -998,10 +998,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:54:44.503897Z", - "iopub.status.busy": "2024-08-22T00:54:44.503529Z", - "iopub.status.idle": "2024-08-22T00:54:44.997418Z", - "shell.execute_reply": "2024-08-22T00:54:44.996852Z" + "iopub.execute_input": "2024-08-26T15:52:13.503031Z", + "iopub.status.busy": "2024-08-26T15:52:13.502645Z", + "iopub.status.idle": "2024-08-26T15:52:14.010871Z", + "shell.execute_reply": "2024-08-26T15:52:14.010336Z" } }, "outputs": [], @@ -1021,10 +1021,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:54:44.999923Z", - "iopub.status.busy": "2024-08-22T00:54:44.999660Z", - "iopub.status.idle": "2024-08-22T00:56:37.742508Z", - "shell.execute_reply": "2024-08-22T00:56:37.741879Z" + "iopub.execute_input": "2024-08-26T15:52:14.013522Z", + "iopub.status.busy": "2024-08-26T15:52:14.013146Z", + "iopub.status.idle": "2024-08-26T15:54:07.250429Z", + "shell.execute_reply": "2024-08-26T15:54:07.249850Z" } }, "outputs": [ @@ -1063,7 +1063,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "50288596afe64288b6d3ab7edad7ada2", + "model_id": "a0e6ab9c19e34b8e9bbe62ee43bd8c35", "version_major": 2, "version_minor": 0 }, @@ -1109,10 +1109,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:37.745060Z", - "iopub.status.busy": "2024-08-22T00:56:37.744660Z", - "iopub.status.idle": "2024-08-22T00:56:38.231414Z", - "shell.execute_reply": "2024-08-22T00:56:38.230837Z" + "iopub.execute_input": "2024-08-26T15:54:07.253184Z", + "iopub.status.busy": "2024-08-26T15:54:07.252602Z", + "iopub.status.idle": "2024-08-26T15:54:07.719555Z", + "shell.execute_reply": "2024-08-26T15:54:07.718967Z" } }, "outputs": [ @@ -1258,10 +1258,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:38.234645Z", - "iopub.status.busy": "2024-08-22T00:56:38.234126Z", - "iopub.status.idle": "2024-08-22T00:56:38.297636Z", - "shell.execute_reply": "2024-08-22T00:56:38.297022Z" + "iopub.execute_input": "2024-08-26T15:54:07.722577Z", + "iopub.status.busy": "2024-08-26T15:54:07.722057Z", + "iopub.status.idle": "2024-08-26T15:54:07.785260Z", + "shell.execute_reply": "2024-08-26T15:54:07.784657Z" } }, "outputs": [ @@ -1365,10 +1365,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:38.299949Z", - "iopub.status.busy": "2024-08-22T00:56:38.299629Z", - "iopub.status.idle": "2024-08-22T00:56:38.308740Z", - "shell.execute_reply": "2024-08-22T00:56:38.308275Z" + "iopub.execute_input": "2024-08-26T15:54:07.787526Z", + "iopub.status.busy": "2024-08-26T15:54:07.787195Z", + "iopub.status.idle": "2024-08-26T15:54:07.796216Z", + "shell.execute_reply": "2024-08-26T15:54:07.795642Z" } }, "outputs": [ @@ -1498,10 +1498,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:38.310908Z", - "iopub.status.busy": "2024-08-22T00:56:38.310562Z", - "iopub.status.idle": "2024-08-22T00:56:38.315230Z", - "shell.execute_reply": "2024-08-22T00:56:38.314762Z" + "iopub.execute_input": "2024-08-26T15:54:07.798529Z", + "iopub.status.busy": "2024-08-26T15:54:07.798045Z", + "iopub.status.idle": "2024-08-26T15:54:07.803020Z", + "shell.execute_reply": "2024-08-26T15:54:07.802450Z" }, "nbsphinx": "hidden" }, @@ -1547,10 +1547,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:38.317357Z", - "iopub.status.busy": "2024-08-22T00:56:38.317005Z", - "iopub.status.idle": "2024-08-22T00:56:38.835720Z", - "shell.execute_reply": "2024-08-22T00:56:38.835113Z" + "iopub.execute_input": "2024-08-26T15:54:07.805248Z", + "iopub.status.busy": "2024-08-26T15:54:07.804838Z", + "iopub.status.idle": "2024-08-26T15:54:08.312703Z", + "shell.execute_reply": "2024-08-26T15:54:08.312105Z" } }, "outputs": [ @@ -1585,10 +1585,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:38.838188Z", - "iopub.status.busy": "2024-08-22T00:56:38.837760Z", - "iopub.status.idle": "2024-08-22T00:56:38.846649Z", - "shell.execute_reply": "2024-08-22T00:56:38.846105Z" + "iopub.execute_input": "2024-08-26T15:54:08.314908Z", + "iopub.status.busy": "2024-08-26T15:54:08.314592Z", + "iopub.status.idle": "2024-08-26T15:54:08.323272Z", + "shell.execute_reply": "2024-08-26T15:54:08.322796Z" } }, "outputs": [ @@ -1755,10 +1755,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:38.848726Z", - "iopub.status.busy": "2024-08-22T00:56:38.848445Z", - "iopub.status.idle": "2024-08-22T00:56:38.855558Z", - "shell.execute_reply": "2024-08-22T00:56:38.855074Z" + "iopub.execute_input": "2024-08-26T15:54:08.325488Z", + "iopub.status.busy": "2024-08-26T15:54:08.325205Z", + "iopub.status.idle": "2024-08-26T15:54:08.332689Z", + "shell.execute_reply": "2024-08-26T15:54:08.332246Z" }, "nbsphinx": "hidden" }, @@ -1834,10 +1834,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:38.857985Z", - "iopub.status.busy": "2024-08-22T00:56:38.857792Z", - "iopub.status.idle": "2024-08-22T00:56:39.340547Z", - "shell.execute_reply": "2024-08-22T00:56:39.339938Z" + "iopub.execute_input": "2024-08-26T15:54:08.334682Z", + "iopub.status.busy": "2024-08-26T15:54:08.334394Z", + "iopub.status.idle": "2024-08-26T15:54:08.782788Z", + "shell.execute_reply": "2024-08-26T15:54:08.782140Z" } }, "outputs": [ @@ -1874,10 +1874,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:39.343209Z", - "iopub.status.busy": "2024-08-22T00:56:39.343001Z", - "iopub.status.idle": "2024-08-22T00:56:39.359981Z", - "shell.execute_reply": "2024-08-22T00:56:39.359444Z" + "iopub.execute_input": "2024-08-26T15:54:08.785283Z", + "iopub.status.busy": "2024-08-26T15:54:08.784891Z", + "iopub.status.idle": "2024-08-26T15:54:08.801932Z", + "shell.execute_reply": "2024-08-26T15:54:08.801440Z" } }, "outputs": [ @@ -2034,10 +2034,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:39.362228Z", - "iopub.status.busy": "2024-08-22T00:56:39.362024Z", - "iopub.status.idle": "2024-08-22T00:56:39.368262Z", - "shell.execute_reply": "2024-08-22T00:56:39.367685Z" + "iopub.execute_input": "2024-08-26T15:54:08.804200Z", + "iopub.status.busy": "2024-08-26T15:54:08.803833Z", + "iopub.status.idle": "2024-08-26T15:54:08.809515Z", + "shell.execute_reply": "2024-08-26T15:54:08.809060Z" }, "nbsphinx": "hidden" }, @@ -2082,10 +2082,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:39.370476Z", - "iopub.status.busy": "2024-08-22T00:56:39.370278Z", - "iopub.status.idle": "2024-08-22T00:56:40.173709Z", - "shell.execute_reply": "2024-08-22T00:56:40.172639Z" + "iopub.execute_input": "2024-08-26T15:54:08.811613Z", + "iopub.status.busy": "2024-08-26T15:54:08.811269Z", + "iopub.status.idle": "2024-08-26T15:54:09.613371Z", + "shell.execute_reply": "2024-08-26T15:54:09.612813Z" } }, "outputs": [ @@ -2167,10 +2167,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:40.176407Z", - "iopub.status.busy": "2024-08-22T00:56:40.176194Z", - "iopub.status.idle": "2024-08-22T00:56:40.186903Z", - "shell.execute_reply": "2024-08-22T00:56:40.186332Z" + "iopub.execute_input": "2024-08-26T15:54:09.616020Z", + "iopub.status.busy": "2024-08-26T15:54:09.615813Z", + "iopub.status.idle": "2024-08-26T15:54:09.626482Z", + "shell.execute_reply": "2024-08-26T15:54:09.625935Z" } }, "outputs": [ @@ -2195,47 +2195,47 @@ " \n", " \n", " \n", - " is_dark_issue\n", " dark_score\n", + " is_dark_issue\n", " \n", " \n", " \n", " \n", " 34848\n", - " True\n", " 0.203922\n", + " True\n", " \n", " \n", " 50270\n", - " True\n", " 0.204588\n", + " True\n", " \n", " \n", " 3936\n", - " True\n", " 0.213098\n", + " True\n", " \n", " \n", " 733\n", - " True\n", " 0.217686\n", + " True\n", " \n", " \n", " 8094\n", - " True\n", " 0.230118\n", + " True\n", " \n", " \n", "\n", "

" ], "text/plain": [ - " is_dark_issue dark_score\n", - "34848 True 0.203922\n", - "50270 True 0.204588\n", - "3936 True 0.213098\n", - "733 True 0.217686\n", - "8094 True 0.230118" + " dark_score is_dark_issue\n", + "34848 0.203922 True\n", + "50270 0.204588 True\n", + "3936 0.213098 True\n", + "733 0.217686 True\n", + "8094 0.230118 True" ] }, "execution_count": 26, @@ -2298,10 +2298,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:40.189641Z", - "iopub.status.busy": "2024-08-22T00:56:40.189412Z", - "iopub.status.idle": "2024-08-22T00:56:40.196944Z", - "shell.execute_reply": "2024-08-22T00:56:40.196346Z" + "iopub.execute_input": "2024-08-26T15:54:09.629113Z", + "iopub.status.busy": "2024-08-26T15:54:09.628913Z", + "iopub.status.idle": "2024-08-26T15:54:09.635120Z", + "shell.execute_reply": "2024-08-26T15:54:09.634478Z" }, "nbsphinx": "hidden" }, @@ -2338,10 +2338,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:40.199374Z", - "iopub.status.busy": "2024-08-22T00:56:40.199166Z", - "iopub.status.idle": "2024-08-22T00:56:40.405961Z", - "shell.execute_reply": "2024-08-22T00:56:40.405343Z" + "iopub.execute_input": "2024-08-26T15:54:09.637662Z", + "iopub.status.busy": "2024-08-26T15:54:09.637461Z", + "iopub.status.idle": "2024-08-26T15:54:09.843225Z", + "shell.execute_reply": "2024-08-26T15:54:09.842531Z" } }, "outputs": [ @@ -2383,10 +2383,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:40.408249Z", - "iopub.status.busy": "2024-08-22T00:56:40.408050Z", - "iopub.status.idle": "2024-08-22T00:56:40.416495Z", - "shell.execute_reply": "2024-08-22T00:56:40.415996Z" + "iopub.execute_input": "2024-08-26T15:54:09.845518Z", + "iopub.status.busy": "2024-08-26T15:54:09.845321Z", + "iopub.status.idle": "2024-08-26T15:54:09.853898Z", + "shell.execute_reply": "2024-08-26T15:54:09.853405Z" } }, "outputs": [ @@ -2472,10 +2472,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:40.418450Z", - "iopub.status.busy": "2024-08-22T00:56:40.418262Z", - "iopub.status.idle": "2024-08-22T00:56:40.619019Z", - "shell.execute_reply": "2024-08-22T00:56:40.618393Z" + "iopub.execute_input": "2024-08-26T15:54:09.856128Z", + "iopub.status.busy": "2024-08-26T15:54:09.855760Z", + "iopub.status.idle": "2024-08-26T15:54:10.056021Z", + "shell.execute_reply": "2024-08-26T15:54:10.055436Z" } }, "outputs": [ @@ -2515,10 +2515,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:40.621369Z", - "iopub.status.busy": "2024-08-22T00:56:40.621009Z", - "iopub.status.idle": "2024-08-22T00:56:40.625752Z", - "shell.execute_reply": "2024-08-22T00:56:40.625246Z" + "iopub.execute_input": "2024-08-26T15:54:10.058407Z", + "iopub.status.busy": "2024-08-26T15:54:10.057978Z", + "iopub.status.idle": "2024-08-26T15:54:10.062876Z", + "shell.execute_reply": "2024-08-26T15:54:10.062286Z" }, "nbsphinx": "hidden" }, @@ -2555,30 +2555,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00e9758709e04ea2a358d4146aca0a6d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2693c73159b84c4bae8a4f9cfdc68927", - "placeholder": "​", - "style": "IPY_MODEL_23ae355d53484e99971da5e8e78867a7", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 58.32it/s]" - } - }, - "01115385bed341f790edbf983d162bb8": { + "00e20cac09fa43938aab5eb1c857b06b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2631,7 +2608,7 @@ "width": null } }, - "020e8ba3c72a4aa2a4032fa349ce81bc": { + "010dc830be824dceafc6f722bb3b1486": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2684,7 +2661,77 @@ "width": null } }, - "03b3b1fd802d48ac8f3fbf55fc98ceda": { + "04a4622eebaa4c72abf4e42992b7bc3e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_010dc830be824dceafc6f722bb3b1486", + "placeholder": "​", + "style": "IPY_MODEL_63397a47d992477aa92ce4d5947bafe4", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "06c30632deaa41b0b7d2ef2bd39e00dc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c1c1d785f09148e88cc07abc9a79d399", + "placeholder": "​", + "style": "IPY_MODEL_eecae1184b8b4bcd9ec5d73df5c74db8", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "0a1880c6c97d4a3aaf7b2288cedea42f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0e187037d3fd4277ad83ed550c26d42d", + "IPY_MODEL_86d4ac36f45b4dc4aafe3fddfa21728c", + "IPY_MODEL_ee16116dbbae4246a4933981a1e3806b" + ], + "layout": "IPY_MODEL_50191cea4e5948a0a8d8cff6556b9052", + "tabbable": null, + "tooltip": null + } + }, + "0cb7926f64ca4262a1d8e8a49dd0d6d3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2737,25 +2784,7 @@ "width": null } }, - "049ac560879e4135983cfa60adc33353": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "05817d1b3f9648e88ca738c1b05512c1": { + "0dff836f9df24429807dadf54be9a70a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2808,7 +2837,7 @@ "width": null } }, - "0591ba9c56804097888832a673b113bc": { + "0e0ea832bcf44e08af9f72ccaf14856d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2861,25 +2890,30 @@ "width": null } }, - "05f19dffa7524114b09f4ada56cdb822": { + "0e187037d3fd4277ad83ed550c26d42d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d2d22c2514a54fcb9f9f90e9a4e24714", + "placeholder": "​", + "style": "IPY_MODEL_c5b087dedb3b4a81b16234b32f0ad104", + "tabbable": null, + "tooltip": null, + "value": "Downloading readme: 100%" } }, - "0641f4ce89074e6f83310f1b94615ef1": { + "0e674f7d5aaf4ceb80159d02d496e19e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2932,7 +2966,7 @@ "width": null } }, - "0817bc85d9dc47fc9690ef00e6c4a184": { + "112e5f2e2a784cba837314af017d0914": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2950,30 +2984,7 @@ "text_color": null } }, - "08238e8d62864cda8a94dd6ab3195200": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cc17349aff1449518a7bb7ab93a8f867", - "placeholder": "​", - "style": "IPY_MODEL_2947bd6a709f443fa2f2932f8c1844c0", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 288406.83 examples/s]" - } - }, - "0e8fe2f7b83e4e698d95f8a1550f99d3": { + "1160fc45ea02442ebc3edd8f098d88ad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3026,25 +3037,7 @@ "width": null } }, - "10f60a20b0f74f089baa9272f5b59615": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "10fc19046a664d96a7d4decefa10e252": { + "1749f9df3cef4d239a6382150390e397": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3097,114 +3090,7 @@ "width": null } }, - "111b25cdc72e46eeae9bf6aa5db5d9fc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6e81d5d360754135bc7870ab317843cd", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_13f67f80cfcd457cb788d400f8707a16", - "tabbable": null, - "tooltip": null, - "value": 30931277.0 - } - }, - "13b652f61bcf48d3b97f62ede490121f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_502e5b6525bb46358f3bb43064638f0c", - "placeholder": "​", - "style": "IPY_MODEL_8aca1369d98c4de990db469fea6b4d4f", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "13f67f80cfcd457cb788d400f8707a16": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1682f09eb9c84a40a0775de31b82a538": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1a6cfa51948f48e0b1348770a125fd2d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f42827a7d0fd4059b167c5fc2ee82f06", - "IPY_MODEL_219bc612d83d4b0493b6f83285b64db7", - "IPY_MODEL_540a39f28a4a450ba6761e69f983a547" - ], - "layout": "IPY_MODEL_0e8fe2f7b83e4e698d95f8a1550f99d3", - "tabbable": null, - "tooltip": null - } - }, - "1c3f7ea05c994dbbb2a022c8497bccbf": { + "1c9a54ddf74b443e89e4eaf4f51c38c8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3257,7 +3143,7 @@ "width": null } }, - "1ebca0857b9a4ca2809f9c0f0b3c709c": { + "1ce743abad7c4285b5459c8f9a83727f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3310,33 +3196,23 @@ "width": null } }, - "219bc612d83d4b0493b6f83285b64db7": { + "1ebda1f8d81d496d83330d03e329452f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_514e0be725b74768831bbf8ca766e5b4", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8428b1dcd2e4484a9f0d335f69538b45", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "22c8f51624e648e49719420deab60fc2": { + "1f19654c731349b586439bffb6b50667": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3389,25 +3265,7 @@ "width": null } }, - "23ae355d53484e99971da5e8e78867a7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "23be0d5e6edd448f841eb606fcaed06e": { + "20586be37d7340fab39d12a261037368": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3460,30 +3318,7 @@ "width": null } }, - "251f47be1443445ea17391ab2a7ea7ff": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5232296e569544d098932c65d437aafe", - "placeholder": "​", - "style": "IPY_MODEL_0817bc85d9dc47fc9690ef00e6c4a184", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:52<00:00, 1178.51it/s]" - } - }, - "25374cb718ad426c88ab4395732daf56": { + "2154009565de4b2d836aa460d81a343d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3536,60 +3371,23 @@ "width": null } }, - "2545a880e5c549cfb33d8bea5363cc10": { - "model_module": "@jupyter-widgets/base", + "2478e088e18843408c6b0eb7b8546aeb": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "2693c73159b84c4bae8a4f9cfdc68927": { + "24cc3a6c8edd440da9947ad5599bad6e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3642,7 +3440,7 @@ "width": null } }, - "26e3d553339c48a1a649eeddba519df0": { + "28b0e5e799994ca8809bbb96b5c3df2a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3657,38 +3455,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f98f51460d6c4bc1afe59cb9fd710f17", + "layout": "IPY_MODEL_e6e351618590464cad5b6b2888b5855b", "placeholder": "​", - "style": "IPY_MODEL_72e3895c4b574f0cb510898c95ca769f", + "style": "IPY_MODEL_f70935fc022f4ec9952399ffa883f8c2", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": " 40/40 [00:00<00:00, 60.54it/s]" } }, - "27525968c70941db9a462de35fb1909e": { + "2918809b0c4a48c9a96a0722b9044737": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_da04a21c148b4538a81e17bc1ff3f0cf", - "placeholder": "​", - "style": "IPY_MODEL_49eb33f0894e4be0b7d4a9580cbfc3a6", + "layout": "IPY_MODEL_a51da1996471487ea2f6abd6bb0cacba", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_db4f470c9b9843f5b80bdf4dacc8d78e", "tabbable": null, "tooltip": null, - "value": "Generating train split: 100%" + "value": 40.0 } }, - "2947bd6a709f443fa2f2932f8c1844c0": { + "2d444e1e91f34b079a2ca7323b81419e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3706,30 +3507,7 @@ "text_color": null } }, - "29f813d4e55a4a3abf592897a216da07": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_380c8f58069946fe9b9a7004d5f3280c", - "placeholder": "​", - "style": "IPY_MODEL_10f60a20b0f74f089baa9272f5b59615", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.57it/s]" - } - }, - "2d3b90cba0724413be2287eadc24e7e8": { + "2d593f06e2744a139b86109333ac680e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3782,33 +3560,7 @@ "width": null } }, - "2d54d1b388c4448a9123e5291f195a5f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_efca7a22b0c94886887298b734fdd1bf", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_68f0e50731464d638f77048f65a89f2f", - "tabbable": null, - "tooltip": null, - "value": 2.0 - } - }, - "2de96930f01f4605927f2ff0be3ae141": { + "2dbbafaa6de24d2c8097777c0ce0cedd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3824,77 +3576,70 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_020e8ba3c72a4aa2a4032fa349ce81bc", - "max": 40.0, + "layout": "IPY_MODEL_9f6288367f9d417aaffa47df9969c4f0", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_78c18d3b2a2a4ef8b23cdf2133b89c12", + "style": "IPY_MODEL_42bb64a8a45f4caf86579067ce2bed00", "tabbable": null, "tooltip": null, - "value": 40.0 - } - }, - "2fff263060464e9abc5f9bded32f966a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 60000.0 } }, - "3028fe5d40144f7e954d5ffdb04ddb59": { - "model_module": "@jupyter-widgets/controls", + "30f188af82bb4a89acd46b04b749efb4": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "30835e24d67841319885fdd83b7e8a70": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8f234eaa93ac4647a1b7f00564dbc42b", - "IPY_MODEL_2d54d1b388c4448a9123e5291f195a5f", - "IPY_MODEL_784ba071f65c48848697c9c7c5fe4211" - ], - "layout": "IPY_MODEL_c23846e525934292a91fcffe1b834a42", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "30d6cfcc57ba4ce39fa45ed0ecd06904": { + "31f776ccde32438c982b8c5eb8aa8f51": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3947,72 +3692,7 @@ "width": null } }, - "320de978221e44ca8f3a138185eaba16": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2545a880e5c549cfb33d8bea5363cc10", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5e5c502c4689449c9328b621fdd5b1fa", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "3379bdf96857436fb4e394d2843f70ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_30d6cfcc57ba4ce39fa45ed0ecd06904", - "placeholder": "​", - "style": "IPY_MODEL_9f9030d188fc4491a55f7def65cb5e1d", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "33cdb1fedce546f888e2db54a1bdee44": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "35b36e18eaae4b6c8727c669b38f8783": { + "38eb0ac1298f486f95a21f978928b66e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4065,7 +3745,25 @@ "width": null } }, - "380c8f58069946fe9b9a7004d5f3280c": { + "3d101be52ce14aadb4856964662938b1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3d72d8ee572f448b8249c932e48082e8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4118,7 +3816,59 @@ "width": null } }, - "399a2ecec43d4800b8a223877a4195d2": { + "3e6508b5d88f4973b44bf251c0313298": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "418b3e15cee0433aa8bb16c916fbbcf8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "42bb64a8a45f4caf86579067ce2bed00": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "42bf693cc44f43e2abd5c517e5163435": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4171,7 +3921,51 @@ "width": null } }, - "3a60c63ede524775b245c90d0fa7d809": { + "43a93f0156884db8a84e2f918cfd5d71": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "43b90f2f7651473f93cf3eab0e3fd917": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d3355770450248a08bff39fb61a614a8", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9816a805a82c4843aedfe687ac374d00", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "45268ef1afff4ca887ef109a99e1a9a1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4224,33 +4018,25 @@ "width": null } }, - "3a8a3eb836f84ac19a14d09a72ca913a": { + "458816ed52744769b2b84df8905f7715": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c69455a56a3948a88534e12e10feb031", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7a6d1e0ded9446d2b62d28e24de46aeb", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3f545668bfcd4dd28be992718455133e": { + "463fd38839db4af2a6590fc0d2b58f1b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4303,7 +4089,7 @@ "width": null } }, - "462521c2c79048f99a9fbd2775b35cf3": { + "4d5400c178b2452f93c3c4db3be14645": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4318,15 +4104,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a82c8392abab4c4f981fcc2f816235ea", + "layout": "IPY_MODEL_7801173fbaa34c7ba674853135b717e5", "placeholder": "​", - "style": "IPY_MODEL_4cb381c85975498bade0958475c38c3d", + "style": "IPY_MODEL_ee00a95d3bba4f2ab806c55e6e2c96fb", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 60000/60000 [00:00<00:00, 277374.03 examples/s]" + } + }, + "4e7070c9105a4817bb9d9016918c3463": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8d096aa2eff947edb5b63ada7f584e86", + "placeholder": "​", + "style": "IPY_MODEL_9dbbec5ae2704d49a9756704ffa719f3", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:52<00:00, 1196.71it/s]" } }, - "47a1ed198943441688d50b04cfa70a6f": { + "50191cea4e5948a0a8d8cff6556b9052": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4379,51 +4188,30 @@ "width": null } }, - "4924566a99d6497f9ea6af519be1c94e": { + "5106186137a048c680b7b513857f6ecf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2d3b90cba0724413be2287eadc24e7e8", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_de1e0bb22b9a4806ad6d7dfb7b64261b", + "layout": "IPY_MODEL_af741f4b24634691a96060831f6ec867", + "placeholder": "​", + "style": "IPY_MODEL_458816ed52744769b2b84df8905f7715", "tabbable": null, "tooltip": null, - "value": 40.0 - } - }, - "49eb33f0894e4be0b7d4a9580cbfc3a6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "100%" } }, - "4aa32c1a7326406da339c6ef7bd619f8": { + "5484aa5928a246acbd7729d54589be9f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4476,7 +4264,7 @@ "width": null } }, - "4cb381c85975498bade0958475c38c3d": { + "54a8ecc1e2ec4219b4869405eca3a552": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4494,7 +4282,7 @@ "text_color": null } }, - "4d46206939da45258e5b9b727ddf7764": { + "58b19016e5454a8fb31a421f7b83f3b8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4547,84 +4335,98 @@ "width": null } }, - "50288596afe64288b6d3ab7edad7ada2": { + "5a6dba14c90846e1a998f66757bdbbb9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_13b652f61bcf48d3b97f62ede490121f", - "IPY_MODEL_78a1690e9a74425d93a1b15a26a8e397", - "IPY_MODEL_251f47be1443445ea17391ab2a7ea7ff" - ], - "layout": "IPY_MODEL_4d46206939da45258e5b9b727ddf7764", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5484aa5928a246acbd7729d54589be9f", + "placeholder": "​", + "style": "IPY_MODEL_bd36b5a042cb47da963fa6724698d535", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 40/40 [00:00<00:00, 56.78it/s]" } }, - "502e5b6525bb46358f3bb43064638f0c": { - "model_module": "@jupyter-widgets/base", + "5b700a72a8d146b8ab01511afa0019c3": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0e674f7d5aaf4ceb80159d02d496e19e", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2478e088e18843408c6b0eb7b8546aeb", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "5cc9e1f7b9a7467aa2530eb23b8b1def": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5dd4ac73beaa4c909b6d006c9b6b289f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bc10d0329fcb483b9d433b104377cb26", + "IPY_MODEL_d242e7b75b9448e1b0422ace1b943120", + "IPY_MODEL_797702b1a2084c91aa677095d5780e70" + ], + "layout": "IPY_MODEL_58b19016e5454a8fb31a421f7b83f3b8", + "tabbable": null, + "tooltip": null } }, - "514e0be725b74768831bbf8ca766e5b4": { + "5fb6cdc588c2446b996e24faff04c97f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4677,60 +4479,66 @@ "width": null } }, - "5232296e569544d098932c65d437aafe": { - "model_module": "@jupyter-widgets/base", + "6110fa747dd54d5f89ec29500fd72aaf": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "53ce035acbfb416aaa3dd28cae66a7f4": { + "6123d04fa3694205a1454dbace9e784e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6154ce50b4d24586bad16243defb53fb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_797b7cb9a56b45fd8ee145c617f0767a", + "placeholder": "​", + "style": "IPY_MODEL_a34a00b5352e45e9b8ca12eff5edf1a5", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: 100%" + } + }, + "61ca028bd561486caf5fa42305aa6d4d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4745,42 +4553,50 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_26e3d553339c48a1a649eeddba519df0", - "IPY_MODEL_111b25cdc72e46eeae9bf6aa5db5d9fc", - "IPY_MODEL_daad348d674244baa9a4d481f1344b61" + "IPY_MODEL_04a4622eebaa4c72abf4e42992b7bc3e", + "IPY_MODEL_74343f0f79f541caa4643df7b5d0963d", + "IPY_MODEL_adb4a6af384b4827babeb1fa43dfb372" ], - "layout": "IPY_MODEL_65238aea2be34d65b16b999fe4133618", + "layout": "IPY_MODEL_a8153583075f46ab9668618c698af2d5", "tabbable": null, "tooltip": null } }, - "53ff12c442c84c48bb659fb295f42551": { + "62c50c83daaa40ce8b1620c454b036b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_542ad553bb714643914db89a1b4a3d91", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ceaba95332de40c78cb37a43f1861d01", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "63397a47d992477aa92ce4d5947bafe4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "540a39f28a4a450ba6761e69f983a547": { + "6499b7dd8d33405aaa3f09d7b7a7bce4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4795,15 +4611,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c415a91fe6664a288a4978d5c73ad6dc", + "layout": "IPY_MODEL_1749f9df3cef4d239a6382150390e397", "placeholder": "​", - "style": "IPY_MODEL_05f19dffa7524114b09f4ada56cdb822", + "style": "IPY_MODEL_79afd08413b84f31a29d1c321a808aa9", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.32it/s]" + "value": " 2/2 [00:00<00:00, 593.09it/s]" } }, - "542ad553bb714643914db89a1b4a3d91": { + "67ba749bcc1b4d0db5e9bb466f9bc170": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4856,7 +4672,7 @@ "width": null } }, - "555efcb40d354dfbb4345be8c521c98b": { + "69993e265db24fdf9705ddc0ee02731b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4874,7 +4690,7 @@ "text_color": null } }, - "56cbd66b91d142c8a9c3dbebaa44cb41": { + "6a35e6318f964dc4ab7a20d799947b69": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4927,82 +4743,99 @@ "width": null } }, - "570d4cf53c304ba6bad04b719e1b658a": { + "6b02c15b697e4d74a7c99110f6fcf1c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_47a1ed198943441688d50b04cfa70a6f", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f2a6435d3277413b91f339988107690c", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "59b05b1fdfa34bd99284e28a7fb68c15": { - "model_module": "@jupyter-widgets/controls", + "6cef0a862e114efba48548ce18db154a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d2bf99a8ed3f4762a78b7c405a5d305f", - "placeholder": "​", - "style": "IPY_MODEL_555efcb40d354dfbb4345be8c521c98b", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "59b927f0a2184c3da0fd163ddeb371ea": { + "6d5c2be4c432491d81a89baf44b08004": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_610807bc23fd40839498d4da1d1504b4", - "max": 9015.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5f9963baeac741179599192e4b91d50a", + "layout": "IPY_MODEL_e4cfe24ac1a447f7b502021e027a0cdc", + "placeholder": "​", + "style": "IPY_MODEL_54a8ecc1e2ec4219b4869405eca3a552", "tabbable": null, "tooltip": null, - "value": 9015.0 + "value": "100%" } }, - "5bdd5bcb64834917a4b16ea8b05af9c4": { + "6f11c86a70a04282897f55898aaabe83": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5055,33 +4888,25 @@ "width": null } }, - "5c29a86bbea742699cb8e963b9048240": { + "6f18d47cd6304ba08a2605208e81ff33": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8a3d47b5c91d411c94ea140a0654d53e", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6f718e43ec2447cf9ed8ee64f15d5a1f", - "tabbable": null, - "tooltip": null, - "value": 10000.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5daa16858856475caaf7679f6d32f5ec": { + "715deece975742d5bc13cc8043611355": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -5096,72 +4921,65 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_859eccb5f2704b99b784c393d1d610a4", - "IPY_MODEL_5c29a86bbea742699cb8e963b9048240", - "IPY_MODEL_6257cffada7f477ab0749b8ed7b1ad01" + "IPY_MODEL_fa296d48137e455ba1b6e16835562e86", + "IPY_MODEL_94b92ca768bd4a3aa044b748b216dcb1", + "IPY_MODEL_7fe5e48df24848bcbc6fcb0751af666f" ], - "layout": "IPY_MODEL_3a60c63ede524775b245c90d0fa7d809", + "layout": "IPY_MODEL_463fd38839db4af2a6590fc0d2b58f1b", "tabbable": null, "tooltip": null } }, - "5e5c502c4689449c9328b621fdd5b1fa": { + "73a65bf59afc46ab9dff2402b2ef3c24": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "5f9963baeac741179599192e4b91d50a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fc699b02b18c4b3785d9ed69a22992c9", + "placeholder": "​", + "style": "IPY_MODEL_43a93f0156884db8a84e2f918cfd5d71", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "6106bace64b54dfa92a1cc7d3b9b9568": { + "74343f0f79f541caa4643df7b5d0963d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_462521c2c79048f99a9fbd2775b35cf3", - "IPY_MODEL_2de96930f01f4605927f2ff0be3ae141", - "IPY_MODEL_00e9758709e04ea2a358d4146aca0a6d" - ], - "layout": "IPY_MODEL_01115385bed341f790edbf983d162bb8", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0e0ea832bcf44e08af9f72ccaf14856d", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_86b19062b8ed4e9f85f4fec80c21a6c0", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 40.0 } }, - "610807bc23fd40839498d4da1d1504b4": { + "74b2d7314b1e40b2a9703867b135b73b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5214,7 +5032,7 @@ "width": null } }, - "6257cffada7f477ab0749b8ed7b1ad01": { + "75f54b54d89e4b44983d92b27c1c23fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5229,39 +5047,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_25374cb718ad426c88ab4395732daf56", + "layout": "IPY_MODEL_67ba749bcc1b4d0db5e9bb466f9bc170", "placeholder": "​", - "style": "IPY_MODEL_dd0651e98dc640b59c898bdf3d5aa6bd", + "style": "IPY_MODEL_418b3e15cee0433aa8bb16c916fbbcf8", "tabbable": null, "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 252325.39 examples/s]" - } - }, - "62b6b2e9b4224a69b6fea1cf6c2e3ba6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_59b05b1fdfa34bd99284e28a7fb68c15", - "IPY_MODEL_828e4bc97ae548709fa4ae32334b489f", - "IPY_MODEL_aaed4aca4163412d9e8bb5f1bb19aee5" - ], - "layout": "IPY_MODEL_6f9f5026f9f54afca518d9598d22d372", - "tabbable": null, - "tooltip": null + "value": "Computing checksums: 100%" } }, - "65238aea2be34d65b16b999fe4133618": { + "7801173fbaa34c7ba674853135b717e5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5314,23 +5108,7 @@ "width": null } }, - "68f0e50731464d638f77048f65a89f2f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6e81d5d360754135bc7870ab317843cd": { + "789eeb33f7e54e4993cc9be47c0a4654": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5383,23 +5161,30 @@ "width": null } }, - "6f718e43ec2447cf9ed8ee64f15d5a1f": { + "797702b1a2084c91aa677095d5780e70": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6a35e6318f964dc4ab7a20d799947b69", + "placeholder": "​", + "style": "IPY_MODEL_a67c3cc29a524e599f6f027576048e77", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 58.82it/s]" } }, - "6f9f5026f9f54afca518d9598d22d372": { + "797b7cb9a56b45fd8ee145c617f0767a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5452,7 +5237,25 @@ "width": null } }, - "71d81b90004844418c3d4918795e3822": { + "79afd08413b84f31a29d1c321a808aa9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7a9d8dacb06d469da61f18473ae6c811": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5505,43 +5308,54 @@ "width": null } }, - "72e3895c4b574f0cb510898c95ca769f": { + "7df5d87a698348adaf910bad51eb5257": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6154ce50b4d24586bad16243defb53fb", + "IPY_MODEL_bbe5c8e427aa41f9804c969d70ad8c2f", + "IPY_MODEL_e2e1d706cc454dba83b835ddf7f61a70" + ], + "layout": "IPY_MODEL_30f188af82bb4a89acd46b04b749efb4", + "tabbable": null, + "tooltip": null } }, - "74c14a40f9464fe1a127d72439be963e": { + "7ec27b0b226242f7a154b44efdf5281c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_31f776ccde32438c982b8c5eb8aa8f51", + "placeholder": "​", + "style": "IPY_MODEL_6110fa747dd54d5f89ec29500fd72aaf", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "7564b288286b40598468380d2795bc00": { + "7fe5e48df24848bcbc6fcb0751af666f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5556,15 +5370,71 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_05817d1b3f9648e88ca738c1b05512c1", + "layout": "IPY_MODEL_db9aedfbb0164f47a695f5f7312785a6", "placeholder": "​", - "style": "IPY_MODEL_d87cf531ac644ce99c1b0cc15a36f07b", + "style": "IPY_MODEL_3e6508b5d88f4973b44bf251c0313298", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 30.9M/30.9M [00:00<00:00, 43.9MB/s]" + } + }, + "8048b30a8d20480286136da950c4ae4f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b9f9a045bcb549b3ab2405b239007979", + "IPY_MODEL_2dbbafaa6de24d2c8097777c0ce0cedd", + "IPY_MODEL_4d5400c178b2452f93c3c4db3be14645" + ], + "layout": "IPY_MODEL_6cef0a862e114efba48548ce18db154a", + "tabbable": null, + "tooltip": null + } + }, + "8189d1fe2cc04c4799937a77b58593a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "83d6886bd83146389ced65a95fa81e9f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "784ba071f65c48848697c9c7c5fe4211": { + "848dbf466ca84edf8a6c9a3db7b6dca2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5579,33 +5449,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1ebca0857b9a4ca2809f9c0f0b3c709c", + "layout": "IPY_MODEL_e19ec970fdd44afd898de49a0af29399", "placeholder": "​", - "style": "IPY_MODEL_74c14a40f9464fe1a127d72439be963e", + "style": "IPY_MODEL_6f18d47cd6304ba08a2605208e81ff33", "tabbable": null, "tooltip": null, - "value": " 2/2 [00:00<00:00, 588.92it/s]" + "value": " 60000/60000 [00:11<00:00, 4643.60 examples/s]" } }, - "7865b8fdeb014fd69a21f67fcdb3f8f8": { + "86b19062b8ed4e9f85f4fec80c21a6c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "78a1690e9a74425d93a1b15a26a8e397": { + "86d4ac36f45b4dc4aafe3fddfa21728c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5621,49 +5489,58 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_23be0d5e6edd448f841eb606fcaed06e", - "max": 60000.0, + "layout": "IPY_MODEL_1f19654c731349b586439bffb6b50667", + "max": 9015.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_edf30754c1d040688ab5c9a2219cfdfa", + "style": "IPY_MODEL_8189d1fe2cc04c4799937a77b58593a5", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": 9015.0 } }, - "78c18d3b2a2a4ef8b23cdf2133b89c12": { + "87ac3c376bc942a08e4722d392db6cc2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7a6d1e0ded9446d2b62d28e24de46aeb": { + "87f6f6d23d364392a6637137b76bcdf8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2154009565de4b2d836aa460d81a343d", + "placeholder": "​", + "style": "IPY_MODEL_69993e265db24fdf9705ddc0ee02731b", + "tabbable": null, + "tooltip": null, + "value": " 5.18M/5.18M [00:00<00:00, 25.5MB/s]" } }, - "7bcf2c23f9b247b3a945d11a47884728": { + "894dfcbdd03942e1918c15697aa075b5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5678,39 +5555,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0641f4ce89074e6f83310f1b94615ef1", + "layout": "IPY_MODEL_bc0cb764df054f67bffe9a91424eb9ad", "placeholder": "​", - "style": "IPY_MODEL_9960bdce211c4715b0cadc5d52e96f2b", + "style": "IPY_MODEL_3d101be52ce14aadb4856964662938b1", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.05it/s]" + "value": " 40/40 [00:00<00:00, 58.58it/s]" } }, - "7c4f61f3c9544a5697e35537d2e57a80": { + "8c27a013ea9c424986fbeecf77584f51": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b23283c58bd3443b8aeb19651ac35d45", - "IPY_MODEL_3a8a3eb836f84ac19a14d09a72ca913a", - "IPY_MODEL_b170f6707c644350978d9ff07baf9a51" - ], - "layout": "IPY_MODEL_5bdd5bcb64834917a4b16ea8b05af9c4", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "7d2c4f4e4bd245749a0470d6565b67ee": { + "8d096aa2eff947edb5b63ada7f584e86": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5763,7 +5632,108 @@ "width": null } }, - "7d5e16e7b4cd425e81b0b51781a59dc0": { + "8df2eb2ad9b8450794bc2a19cd4e4607": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a4265a3a4bfa4ae7b72143c7882d22da", + "placeholder": "​", + "style": "IPY_MODEL_9d69f92933354985bb292e842e6d91ec", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "94b92ca768bd4a3aa044b748b216dcb1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_00e20cac09fa43938aab5eb1c857b06b", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_83d6886bd83146389ced65a95fa81e9f", + "tabbable": null, + "tooltip": null, + "value": 30931277.0 + } + }, + "9667199d84da4850ab42238ebe7e58c2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9816a805a82c4843aedfe687ac374d00": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9d69f92933354985bb292e842e6d91ec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9dbbec5ae2704d49a9756704ffa719f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5781,7 +5751,7 @@ "text_color": null } }, - "7da35a3b98ee4fd885a955eb93b40f77": { + "9f6288367f9d417aaffa47df9969c4f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5834,25 +5804,31 @@ "width": null } }, - "7ddb122677064d5790732e2974697085": { + "a0e6ab9c19e34b8e9bbe62ee43bd8c35": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_73a65bf59afc46ab9dff2402b2ef3c24", + "IPY_MODEL_dcb5d9d40e7d44a9b855e55c3ed7dfec", + "IPY_MODEL_4e7070c9105a4817bb9d9016918c3463" + ], + "layout": "IPY_MODEL_7a9d8dacb06d469da61f18473ae6c811", + "tabbable": null, + "tooltip": null } }, - "7df4d9d3b1f64363a4b3d94f46cf9ccb": { + "a34a00b5352e45e9b8ca12eff5edf1a5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5870,23 +5846,7 @@ "text_color": null } }, - "808db438cd324f69952c11138fed331e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "828e4bc97ae548709fa4ae32334b489f": { + "a3bccde2847d4c49848c5d7d70ffb860": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5902,79 +5862,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_938bb38e997f4f708482e7b9b7aeaf33", - "max": 40.0, + "layout": "IPY_MODEL_1c9a54ddf74b443e89e4eaf4f51c38c8", + "max": 5175617.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_33cdb1fedce546f888e2db54a1bdee44", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "82dca61ff0be430fb3973a99d7332598": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9a2c0492ab5c4492a8c007667db3be1a", - "placeholder": "​", - "style": "IPY_MODEL_7d5e16e7b4cd425e81b0b51781a59dc0", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 5708.99 examples/s]" - } - }, - "8428b1dcd2e4484a9f0d335f69538b45": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "859eccb5f2704b99b784c393d1d610a4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_10fc19046a664d96a7d4decefa10e252", - "placeholder": "​", - "style": "IPY_MODEL_912590b385b64ad9888c433f9440b602", + "style": "IPY_MODEL_6b02c15b697e4d74a7c99110f6fcf1c5", "tabbable": null, "tooltip": null, - "value": "Generating test split: 100%" + "value": 5175617.0 } }, - "8a39d576126146629689d586871b86a2": { + "a4265a3a4bfa4ae7b72143c7882d22da": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6027,7 +5925,7 @@ "width": null } }, - "8a3d47b5c91d411c94ea140a0654d53e": { + "a51da1996471487ea2f6abd6bb0cacba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6080,7 +5978,7 @@ "width": null } }, - "8aca1369d98c4de990db469fea6b4d4f": { + "a67c3cc29a524e599f6f027576048e77": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6098,72 +5996,60 @@ "text_color": null } }, - "8f234eaa93ac4647a1b7f00564dbc42b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_56cbd66b91d142c8a9c3dbebaa44cb41", - "placeholder": "​", - "style": "IPY_MODEL_1682f09eb9c84a40a0775de31b82a538", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" - } - }, - "8fba3dafd4f64444a16631a145e858f3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_27525968c70941db9a462de35fb1909e", - "IPY_MODEL_53ff12c442c84c48bb659fb295f42551", - "IPY_MODEL_08238e8d62864cda8a94dd6ab3195200" - ], - "layout": "IPY_MODEL_a5ec16209bf24cf8951a12aab19fd8fa", - "tabbable": null, - "tooltip": null - } - }, - "912590b385b64ad9888c433f9440b602": { - "model_module": "@jupyter-widgets/controls", + "a8153583075f46ab9668618c698af2d5": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "9370bda257e3496dbc67d1f7d7b0f6d0": { + "a8d79e5a11af4eee941f00df247ae2ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6216,7 +6102,94 @@ "width": null } }, - "938bb38e997f4f708482e7b9b7aeaf33": { + "aa732b0a4d7a4e5a9c11bdac5ddcd235": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f731b832c2c14263ba08413849b9491d", + "IPY_MODEL_b5c0cbca89fa4834a72585d4fb95679e", + "IPY_MODEL_848dbf466ca84edf8a6c9a3db7b6dca2" + ], + "layout": "IPY_MODEL_0cb7926f64ca4262a1d8e8a49dd0d6d3", + "tabbable": null, + "tooltip": null + } + }, + "ab03cadc8a244250837477471abfd52f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7ec27b0b226242f7a154b44efdf5281c", + "IPY_MODEL_2918809b0c4a48c9a96a0722b9044737", + "IPY_MODEL_c18a50eaa6154b71885754ca3b1e79e1" + ], + "layout": "IPY_MODEL_1160fc45ea02442ebc3edd8f098d88ad", + "tabbable": null, + "tooltip": null + } + }, + "adb4a6af384b4827babeb1fa43dfb372": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_42bf693cc44f43e2abd5c517e5163435", + "placeholder": "​", + "style": "IPY_MODEL_e1dc295bc9aa4b078179cd66d9cd0625", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 60.05it/s]" + } + }, + "ae43f833e78c43e0acade5c471716764": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "af741f4b24634691a96060831f6ec867": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6269,43 +6242,106 @@ "width": null } }, - "97e405a2706943a48d1278946b847d7d": { + "b5c0cbca89fa4834a72585d4fb95679e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6f11c86a70a04282897f55898aaabe83", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ae43f833e78c43e0acade5c471716764", + "tabbable": null, + "tooltip": null, + "value": 60000.0 } }, - "9960bdce211c4715b0cadc5d52e96f2b": { + "b9f9a045bcb549b3ab2405b239007979": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_24cc3a6c8edd440da9947ad5599bad6e", + "placeholder": "​", + "style": "IPY_MODEL_2d444e1e91f34b079a2ca7323b81419e", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: 100%" + } + }, + "bb685ca1a8e74f4abfc418ee4df7cdae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8df2eb2ad9b8450794bc2a19cd4e4607", + "IPY_MODEL_a3bccde2847d4c49848c5d7d70ffb860", + "IPY_MODEL_87f6f6d23d364392a6637137b76bcdf8" + ], + "layout": "IPY_MODEL_789eeb33f7e54e4993cc9be47c0a4654", + "tabbable": null, + "tooltip": null + } + }, + "bbe5c8e427aa41f9804c969d70ad8c2f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1ce743abad7c4285b5459c8f9a83727f", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8c27a013ea9c424986fbeecf77584f51", + "tabbable": null, + "tooltip": null, + "value": 10000.0 } }, - "9a2c0492ab5c4492a8c007667db3be1a": { + "bc0cb764df054f67bffe9a91424eb9ad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6358,7 +6394,30 @@ "width": null } }, - "9f9030d188fc4491a55f7def65cb5e1d": { + "bc10d0329fcb483b9d433b104377cb26": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c28da32949eb444c8b169f95d073f019", + "placeholder": "​", + "style": "IPY_MODEL_5cc9e1f7b9a7467aa2530eb23b8b1def", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "bd36b5a042cb47da963fa6724698d535": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6376,7 +6435,30 @@ "text_color": null } }, - "a5ec16209bf24cf8951a12aab19fd8fa": { + "c18a50eaa6154b71885754ca3b1e79e1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_38eb0ac1298f486f95a21f978928b66e", + "placeholder": "​", + "style": "IPY_MODEL_6123d04fa3694205a1454dbace9e784e", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 59.75it/s]" + } + }, + "c1c1d785f09148e88cc07abc9a79d399": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6429,7 +6511,23 @@ "width": null } }, - "a82c8392abab4c4f981fcc2f816235ea": { + "c1c5ff485c484df9b2328967bbd2b370": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c28da32949eb444c8b169f95d073f019": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6482,30 +6580,7 @@ "width": null } }, - "aaed4aca4163412d9e8bb5f1bb19aee5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9370bda257e3496dbc67d1f7d7b0f6d0", - "placeholder": "​", - "style": "IPY_MODEL_2fff263060464e9abc5f9bded32f966a", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 55.29it/s]" - } - }, - "adf8fb4c64ea4f82a00e8d639f9c6ab3": { + "c2c049fd4723414391215a3a86586ad1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6558,7 +6633,7 @@ "width": null } }, - "b0481c9df22549ab8340743b1c6b4ff9": { + "c5b087dedb3b4a81b16234b32f0ad104": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6576,146 +6651,41 @@ "text_color": null } }, - "b170f6707c644350978d9ff07baf9a51": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_71d81b90004844418c3d4918795e3822", - "placeholder": "​", - "style": "IPY_MODEL_fe24e714c74e467c96262993f3eb13b2", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.26it/s]" - } - }, - "b23283c58bd3443b8aeb19651ac35d45": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1c3f7ea05c994dbbb2a022c8497bccbf", - "placeholder": "​", - "style": "IPY_MODEL_7df4d9d3b1f64363a4b3d94f46cf9ccb", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "ba951b3038cc4359812cff880444a124": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4aa32c1a7326406da339c6ef7bd619f8", - "placeholder": "​", - "style": "IPY_MODEL_ef3afa13c7ba4842a219252d4fbb33fc", - "tabbable": null, - "tooltip": null, - "value": "Downloading readme: 100%" - } - }, - "bb6129e903cb44d5a3b81bd77e74683c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8a39d576126146629689d586871b86a2", - "placeholder": "​", - "style": "IPY_MODEL_b0481c9df22549ab8340743b1c6b4ff9", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" - } - }, - "bb87ed2f43cc4e28b958678bcf337c47": { + "c87364d1f6104253b1d3b9fc6d57747c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7564b288286b40598468380d2795bc00", - "IPY_MODEL_4924566a99d6497f9ea6af519be1c94e", - "IPY_MODEL_7bcf2c23f9b247b3a945d11a47884728" - ], - "layout": "IPY_MODEL_7d2c4f4e4bd245749a0470d6565b67ee", - "tabbable": null, - "tooltip": null + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "bcea5240a8084d299e5de4d7dfcadd3a": { + "cb654bfede0d4df6953f8b10f45ccf30": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0591ba9c56804097888832a673b113bc", - "placeholder": "​", - "style": "IPY_MODEL_97e405a2706943a48d1278946b847d7d", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "c23846e525934292a91fcffe1b834a42": { + "cd61e02259094a979ac8fdee8d778a4a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6768,7 +6738,33 @@ "width": null } }, - "c415a91fe6664a288a4978d5c73ad6dc": { + "d242e7b75b9448e1b0422ace1b943120": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3d72d8ee572f448b8249c932e48082e8", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1ebda1f8d81d496d83330d03e329452f", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "d2d22c2514a54fcb9f9f90e9a4e24714": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6821,7 +6817,7 @@ "width": null } }, - "c69455a56a3948a88534e12e10feb031": { + "d3355770450248a08bff39fb61a614a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6874,7 +6870,7 @@ "width": null } }, - "c7b0eef6687642468aff54f4c38fa807": { + "d4737bea4127496e856295be41444231": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -6890,94 +6886,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3f545668bfcd4dd28be992718455133e", - "max": 5175617.0, + "layout": "IPY_MODEL_e47e28322ab8479c91ddf77409dbfd8b", + "max": 2.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_808db438cd324f69952c11138fed331e", + "style": "IPY_MODEL_cb654bfede0d4df6953f8b10f45ccf30", "tabbable": null, "tooltip": null, - "value": 5175617.0 - } - }, - "cbbfe35662894a6cb48d64ca9547f4cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bcea5240a8084d299e5de4d7dfcadd3a", - "IPY_MODEL_320de978221e44ca8f3a138185eaba16", - "IPY_MODEL_29f813d4e55a4a3abf592897a216da07" - ], - "layout": "IPY_MODEL_f3a8f2af8d48423eada106f524532cce", - "tabbable": null, - "tooltip": null - } - }, - "cc17349aff1449518a7bb7ab93a8f867": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": 2.0 } }, - "ceaba95332de40c78cb37a43f1861d01": { + "db4f470c9b9843f5b80bdf4dacc8d78e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -6993,7 +6912,7 @@ "description_width": "" } }, - "d2bf99a8ed3f4762a78b7c405a5d305f": { + "db9aedfbb0164f47a695f5f7312785a6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7046,49 +6965,33 @@ "width": null } }, - "d87cf531ac644ce99c1b0cc15a36f07b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d9e782f571af4e6ab81db57c5078db7c": { + "dcb5d9d40e7d44a9b855e55c3ed7dfec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3379bdf96857436fb4e394d2843f70ce", - "IPY_MODEL_c7b0eef6687642468aff54f4c38fa807", - "IPY_MODEL_f7578f092eae468db4777188b473c94e" - ], - "layout": "IPY_MODEL_7da35a3b98ee4fd885a955eb93b40f77", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_20586be37d7340fab39d12a261037368", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_62c50c83daaa40ce8b1620c454b036b7", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 60000.0 } }, - "da04a21c148b4538a81e17bc1ff3f0cf": { + "e19ec970fdd44afd898de49a0af29399": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7141,30 +7044,7 @@ "width": null } }, - "daad348d674244baa9a4d481f1344b61": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_399a2ecec43d4800b8a223877a4195d2", - "placeholder": "​", - "style": "IPY_MODEL_7865b8fdeb014fd69a21f67fcdb3f8f8", - "tabbable": null, - "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 33.5MB/s]" - } - }, - "dd0651e98dc640b59c898bdf3d5aa6bd": { + "e1dc295bc9aa4b078179cd66d9cd0625": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7182,105 +7062,30 @@ "text_color": null } }, - "de1e0bb22b9a4806ad6d7dfb7b64261b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e13e6b4502e9481aa9501c922ae3ff68": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ba951b3038cc4359812cff880444a124", - "IPY_MODEL_59b927f0a2184c3da0fd163ddeb371ea", - "IPY_MODEL_fb0d9ce6ffd64cb5a050edc3d522bd18" - ], - "layout": "IPY_MODEL_35b36e18eaae4b6c8727c669b38f8783", - "tabbable": null, - "tooltip": null - } - }, - "e7d518a4a4844e9382a190dfbbda4ad0": { + "e2e1d706cc454dba83b835ddf7f61a70": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bb6129e903cb44d5a3b81bd77e74683c", - "IPY_MODEL_570d4cf53c304ba6bad04b719e1b658a", - "IPY_MODEL_82dca61ff0be430fb3973a99d7332598" - ], - "layout": "IPY_MODEL_f6855b0af2434727b18d5675cbedbea8", - "tabbable": null, - "tooltip": null - } - }, - "edf30754c1d040688ab5c9a2219cfdfa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ef3afa13c7ba4842a219252d4fbb33fc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ebfb29db8ac148e9af56fd7ffae3775b", + "placeholder": "​", + "style": "IPY_MODEL_87ac3c376bc942a08e4722d392db6cc2", + "tabbable": null, + "tooltip": null, + "value": " 10000/10000 [00:00<00:00, 248148.43 examples/s]" } }, - "efca7a22b0c94886887298b734fdd1bf": { + "e47e28322ab8479c91ddf77409dbfd8b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7333,23 +7138,60 @@ "width": null } }, - "f2a6435d3277413b91f339988107690c": { - "model_module": "@jupyter-widgets/controls", + "e4cfe24ac1a447f7b502021e027a0cdc": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f3a8f2af8d48423eada106f524532cce": { + "e6e351618590464cad5b6b2888b5855b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7402,30 +7244,55 @@ "width": null } }, - "f42827a7d0fd4059b167c5fc2ee82f06": { + "e8b71b72c1fe42969576f0679a3429ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_03b3b1fd802d48ac8f3fbf55fc98ceda", - "placeholder": "​", - "style": "IPY_MODEL_049ac560879e4135983cfa60adc33353", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_75f54b54d89e4b44983d92b27c1c23fb", + "IPY_MODEL_d4737bea4127496e856295be41444231", + "IPY_MODEL_6499b7dd8d33405aaa3f09d7b7a7bce4" + ], + "layout": "IPY_MODEL_74b2d7314b1e40b2a9703867b135b73b", "tabbable": null, - "tooltip": null, - "value": "100%" + "tooltip": null + } + }, + "eb3ac7f719da4343b1f45e07f09a75f2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6d5c2be4c432491d81a89baf44b08004", + "IPY_MODEL_43b90f2f7651473f93cf3eab0e3fd917", + "IPY_MODEL_28b0e5e799994ca8809bbb96b5c3df2a" + ], + "layout": "IPY_MODEL_5fb6cdc588c2446b996e24faff04c97f", + "tabbable": null, + "tooltip": null } }, - "f6855b0af2434727b18d5675cbedbea8": { + "ebfb29db8ac148e9af56fd7ffae3775b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7478,7 +7345,157 @@ "width": null } }, - "f7578f092eae468db4777188b473c94e": { + "ee00a95d3bba4f2ab806c55e6e2c96fb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ee16116dbbae4246a4933981a1e3806b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c2c049fd4723414391215a3a86586ad1", + "placeholder": "​", + "style": "IPY_MODEL_c87364d1f6104253b1d3b9fc6d57747c", + "tabbable": null, + "tooltip": null, + "value": " 9.02k/9.02k [00:00<00:00, 1.15MB/s]" + } + }, + "eecae1184b8b4bcd9ec5d73df5c74db8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "eeef9fa40c3042329541b46e63c7150a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0dff836f9df24429807dadf54be9a70a", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c1c5ff485c484df9b2328967bbd2b370", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "f70935fc022f4ec9952399ffa883f8c2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f731b832c2c14263ba08413849b9491d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2d593f06e2744a139b86109333ac680e", + "placeholder": "​", + "style": "IPY_MODEL_112e5f2e2a784cba837314af017d0914", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" + } + }, + "f9912ba2f2c141a4892444b6f34c10b6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5106186137a048c680b7b513857f6ecf", + "IPY_MODEL_eeef9fa40c3042329541b46e63c7150a", + "IPY_MODEL_5a6dba14c90846e1a998f66757bdbbb9" + ], + "layout": "IPY_MODEL_a8d79e5a11af4eee941f00df247ae2ee", + "tabbable": null, + "tooltip": null + } + }, + "fa296d48137e455ba1b6e16835562e86": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7493,15 +7510,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_adf8fb4c64ea4f82a00e8d639f9c6ab3", + "layout": "IPY_MODEL_45268ef1afff4ca887ef109a99e1a9a1", "placeholder": "​", - "style": "IPY_MODEL_7ddb122677064d5790732e2974697085", + "style": "IPY_MODEL_9667199d84da4850ab42238ebe7e58c2", "tabbable": null, "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 17.0MB/s]" + "value": "Downloading data: 100%" } }, - "f98f51460d6c4bc1afe59cb9fd710f17": { + "fc699b02b18c4b3785d9ed69a22992c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7554,45 +7571,28 @@ "width": null } }, - "fb0d9ce6ffd64cb5a050edc3d522bd18": { + "fc98e96da8e046238dce1b399f558f99": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_22c8f51624e648e49719420deab60fc2", - "placeholder": "​", - "style": "IPY_MODEL_3028fe5d40144f7e954d5ffdb04ddb59", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_06c30632deaa41b0b7d2ef2bd39e00dc", + "IPY_MODEL_5b700a72a8d146b8ab01511afa0019c3", + "IPY_MODEL_894dfcbdd03942e1918c15697aa075b5" + ], + "layout": "IPY_MODEL_cd61e02259094a979ac8fdee8d778a4a", "tabbable": null, - "tooltip": null, - "value": " 9.02k/9.02k [00:00<00:00, 1.07MB/s]" - } - }, - "fe24e714c74e467c96262993f3eb13b2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null } } }, diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index 865a256b4..dc624f661 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:45.284574Z", - "iopub.status.busy": "2024-08-22T00:56:45.284082Z", - "iopub.status.idle": "2024-08-22T00:56:46.500970Z", - "shell.execute_reply": "2024-08-22T00:56:46.500377Z" + "iopub.execute_input": "2024-08-26T15:54:14.109304Z", + "iopub.status.busy": "2024-08-26T15:54:14.108881Z", + "iopub.status.idle": "2024-08-26T15:54:15.281952Z", + "shell.execute_reply": "2024-08-26T15:54:15.281381Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:46.503831Z", - "iopub.status.busy": "2024-08-22T00:56:46.503253Z", - "iopub.status.idle": "2024-08-22T00:56:46.523596Z", - "shell.execute_reply": "2024-08-22T00:56:46.523026Z" + "iopub.execute_input": "2024-08-26T15:54:15.284532Z", + "iopub.status.busy": "2024-08-26T15:54:15.284089Z", + "iopub.status.idle": "2024-08-26T15:54:15.302497Z", + "shell.execute_reply": "2024-08-26T15:54:15.301896Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:46.526440Z", - "iopub.status.busy": "2024-08-22T00:56:46.525953Z", - "iopub.status.idle": "2024-08-22T00:56:46.566621Z", - "shell.execute_reply": "2024-08-22T00:56:46.565965Z" + "iopub.execute_input": "2024-08-26T15:54:15.304895Z", + "iopub.status.busy": "2024-08-26T15:54:15.304508Z", + "iopub.status.idle": "2024-08-26T15:54:15.325953Z", + "shell.execute_reply": "2024-08-26T15:54:15.325390Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:46.568955Z", - "iopub.status.busy": "2024-08-22T00:56:46.568740Z", - "iopub.status.idle": "2024-08-22T00:56:46.572421Z", - "shell.execute_reply": "2024-08-22T00:56:46.571955Z" + "iopub.execute_input": "2024-08-26T15:54:15.328080Z", + "iopub.status.busy": "2024-08-26T15:54:15.327751Z", + "iopub.status.idle": "2024-08-26T15:54:15.331370Z", + "shell.execute_reply": "2024-08-26T15:54:15.330867Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:46.574450Z", - "iopub.status.busy": "2024-08-22T00:56:46.574266Z", - "iopub.status.idle": "2024-08-22T00:56:46.582629Z", - "shell.execute_reply": "2024-08-22T00:56:46.582139Z" + "iopub.execute_input": "2024-08-26T15:54:15.333595Z", + "iopub.status.busy": "2024-08-26T15:54:15.333139Z", + "iopub.status.idle": "2024-08-26T15:54:15.341092Z", + "shell.execute_reply": "2024-08-26T15:54:15.340517Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:46.584816Z", - "iopub.status.busy": "2024-08-22T00:56:46.584623Z", - "iopub.status.idle": "2024-08-22T00:56:46.587305Z", - "shell.execute_reply": "2024-08-22T00:56:46.586807Z" + "iopub.execute_input": "2024-08-26T15:54:15.343311Z", + "iopub.status.busy": "2024-08-26T15:54:15.343000Z", + "iopub.status.idle": "2024-08-26T15:54:15.346105Z", + "shell.execute_reply": "2024-08-26T15:54:15.345645Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:46.589452Z", - "iopub.status.busy": "2024-08-22T00:56:46.589087Z", - "iopub.status.idle": "2024-08-22T00:56:49.802629Z", - "shell.execute_reply": "2024-08-22T00:56:49.801532Z" + "iopub.execute_input": "2024-08-26T15:54:15.348163Z", + "iopub.status.busy": "2024-08-26T15:54:15.347822Z", + "iopub.status.idle": "2024-08-26T15:54:18.449602Z", + "shell.execute_reply": "2024-08-26T15:54:18.449016Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:49.805892Z", - "iopub.status.busy": "2024-08-22T00:56:49.805655Z", - "iopub.status.idle": "2024-08-22T00:56:49.816493Z", - "shell.execute_reply": "2024-08-22T00:56:49.815729Z" + "iopub.execute_input": "2024-08-26T15:54:18.452379Z", + "iopub.status.busy": "2024-08-26T15:54:18.452168Z", + "iopub.status.idle": "2024-08-26T15:54:18.461665Z", + "shell.execute_reply": "2024-08-26T15:54:18.461066Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:49.820394Z", - "iopub.status.busy": "2024-08-22T00:56:49.820030Z", - "iopub.status.idle": "2024-08-22T00:56:51.910788Z", - "shell.execute_reply": "2024-08-22T00:56:51.910173Z" + "iopub.execute_input": "2024-08-26T15:54:18.463964Z", + "iopub.status.busy": "2024-08-26T15:54:18.463672Z", + "iopub.status.idle": "2024-08-26T15:54:20.596861Z", + "shell.execute_reply": "2024-08-26T15:54:20.596179Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:51.913472Z", - "iopub.status.busy": "2024-08-22T00:56:51.912826Z", - "iopub.status.idle": "2024-08-22T00:56:51.932229Z", - "shell.execute_reply": "2024-08-22T00:56:51.931738Z" + "iopub.execute_input": "2024-08-26T15:54:20.599365Z", + "iopub.status.busy": "2024-08-26T15:54:20.598980Z", + "iopub.status.idle": "2024-08-26T15:54:20.619735Z", + "shell.execute_reply": "2024-08-26T15:54:20.619219Z" }, "scrolled": true }, @@ -609,10 +609,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:51.934298Z", - "iopub.status.busy": "2024-08-22T00:56:51.933955Z", - "iopub.status.idle": "2024-08-22T00:56:51.941775Z", - "shell.execute_reply": "2024-08-22T00:56:51.941207Z" + "iopub.execute_input": "2024-08-26T15:54:20.621986Z", + "iopub.status.busy": "2024-08-26T15:54:20.621626Z", + "iopub.status.idle": "2024-08-26T15:54:20.629738Z", + "shell.execute_reply": "2024-08-26T15:54:20.629246Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:51.943896Z", - "iopub.status.busy": "2024-08-22T00:56:51.943574Z", - "iopub.status.idle": "2024-08-22T00:56:51.952311Z", - "shell.execute_reply": "2024-08-22T00:56:51.951778Z" + "iopub.execute_input": "2024-08-26T15:54:20.631922Z", + "iopub.status.busy": "2024-08-26T15:54:20.631599Z", + "iopub.status.idle": "2024-08-26T15:54:20.640869Z", + "shell.execute_reply": "2024-08-26T15:54:20.640300Z" } }, "outputs": [ @@ -848,10 +848,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:51.954475Z", - "iopub.status.busy": "2024-08-22T00:56:51.954041Z", - "iopub.status.idle": "2024-08-22T00:56:51.962145Z", - "shell.execute_reply": "2024-08-22T00:56:51.961677Z" + "iopub.execute_input": "2024-08-26T15:54:20.642988Z", + "iopub.status.busy": "2024-08-26T15:54:20.642648Z", + "iopub.status.idle": "2024-08-26T15:54:20.650592Z", + "shell.execute_reply": "2024-08-26T15:54:20.650087Z" } }, "outputs": [ @@ -965,10 +965,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:51.964055Z", - "iopub.status.busy": "2024-08-22T00:56:51.963878Z", - "iopub.status.idle": "2024-08-22T00:56:51.972615Z", - "shell.execute_reply": "2024-08-22T00:56:51.972170Z" + "iopub.execute_input": "2024-08-26T15:54:20.652766Z", + "iopub.status.busy": "2024-08-26T15:54:20.652433Z", + "iopub.status.idle": "2024-08-26T15:54:20.661662Z", + "shell.execute_reply": "2024-08-26T15:54:20.661085Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:51.974591Z", - "iopub.status.busy": "2024-08-22T00:56:51.974416Z", - "iopub.status.idle": "2024-08-22T00:56:51.981750Z", - "shell.execute_reply": "2024-08-22T00:56:51.981217Z" + "iopub.execute_input": "2024-08-26T15:54:20.663894Z", + "iopub.status.busy": "2024-08-26T15:54:20.663442Z", + "iopub.status.idle": "2024-08-26T15:54:20.671133Z", + "shell.execute_reply": "2024-08-26T15:54:20.670552Z" } }, "outputs": [ @@ -1197,10 +1197,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:51.983714Z", - "iopub.status.busy": "2024-08-22T00:56:51.983523Z", - "iopub.status.idle": "2024-08-22T00:56:51.991443Z", - "shell.execute_reply": "2024-08-22T00:56:51.990976Z" + "iopub.execute_input": "2024-08-26T15:54:20.673323Z", + "iopub.status.busy": "2024-08-26T15:54:20.672984Z", + "iopub.status.idle": "2024-08-26T15:54:20.680708Z", + "shell.execute_reply": "2024-08-26T15:54:20.680120Z" } }, "outputs": [ @@ -1306,10 +1306,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:51.993841Z", - "iopub.status.busy": "2024-08-22T00:56:51.993389Z", - "iopub.status.idle": "2024-08-22T00:56:52.002287Z", - "shell.execute_reply": "2024-08-22T00:56:52.001822Z" + "iopub.execute_input": "2024-08-26T15:54:20.682929Z", + "iopub.status.busy": "2024-08-26T15:54:20.682566Z", + "iopub.status.idle": "2024-08-26T15:54:20.690842Z", + "shell.execute_reply": "2024-08-26T15:54:20.690326Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index 6ae8e99bc..76f186898 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -791,7 +791,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'apple_pay_or_google_pay', 'cancel_transfer', 'change_pin', 'getting_spare_card', 'lost_or_stolen_phone', 'card_about_to_expire', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'visa_or_mastercard', 'beneficiary_not_allowed'}
+Classes: {'card_about_to_expire', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'cancel_transfer', 'getting_spare_card', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'change_pin'}
 

Let’s view the i-th example in the dataset:

diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index 15ae87ddc..5d4d24b3a 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:55.105047Z", - "iopub.status.busy": "2024-08-22T00:56:55.104867Z", - "iopub.status.idle": "2024-08-22T00:56:58.071575Z", - "shell.execute_reply": "2024-08-22T00:56:58.070930Z" + "iopub.execute_input": "2024-08-26T15:54:23.767329Z", + "iopub.status.busy": "2024-08-26T15:54:23.766904Z", + "iopub.status.idle": "2024-08-26T15:54:26.717164Z", + "shell.execute_reply": "2024-08-26T15:54:26.716517Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:58.074398Z", - "iopub.status.busy": "2024-08-22T00:56:58.073896Z", - "iopub.status.idle": "2024-08-22T00:56:58.077339Z", - "shell.execute_reply": "2024-08-22T00:56:58.076862Z" + "iopub.execute_input": "2024-08-26T15:54:26.720039Z", + "iopub.status.busy": "2024-08-26T15:54:26.719548Z", + "iopub.status.idle": "2024-08-26T15:54:26.722953Z", + "shell.execute_reply": "2024-08-26T15:54:26.722453Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:58.079393Z", - "iopub.status.busy": "2024-08-22T00:56:58.079197Z", - "iopub.status.idle": "2024-08-22T00:56:58.082308Z", - "shell.execute_reply": "2024-08-22T00:56:58.081847Z" + "iopub.execute_input": "2024-08-26T15:54:26.725073Z", + "iopub.status.busy": "2024-08-26T15:54:26.724682Z", + "iopub.status.idle": "2024-08-26T15:54:26.727880Z", + "shell.execute_reply": "2024-08-26T15:54:26.727424Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:58.084358Z", - "iopub.status.busy": "2024-08-22T00:56:58.084075Z", - "iopub.status.idle": "2024-08-22T00:56:58.127872Z", - "shell.execute_reply": "2024-08-22T00:56:58.127315Z" + "iopub.execute_input": "2024-08-26T15:54:26.729884Z", + "iopub.status.busy": "2024-08-26T15:54:26.729547Z", + "iopub.status.idle": "2024-08-26T15:54:26.751412Z", + "shell.execute_reply": "2024-08-26T15:54:26.750890Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:58.130185Z", - "iopub.status.busy": "2024-08-22T00:56:58.129824Z", - "iopub.status.idle": "2024-08-22T00:56:58.133510Z", - "shell.execute_reply": "2024-08-22T00:56:58.132977Z" + "iopub.execute_input": "2024-08-26T15:54:26.753620Z", + "iopub.status.busy": "2024-08-26T15:54:26.753261Z", + "iopub.status.idle": "2024-08-26T15:54:26.756908Z", + "shell.execute_reply": "2024-08-26T15:54:26.756385Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'apple_pay_or_google_pay', 'cancel_transfer', 'change_pin', 'getting_spare_card', 'lost_or_stolen_phone', 'card_about_to_expire', 'supported_cards_and_currencies', 'card_payment_fee_charged', 'visa_or_mastercard', 'beneficiary_not_allowed'}\n" + "Classes: {'card_about_to_expire', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'cancel_transfer', 'getting_spare_card', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'change_pin'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:58.135545Z", - "iopub.status.busy": "2024-08-22T00:56:58.135206Z", - "iopub.status.idle": "2024-08-22T00:56:58.138462Z", - "shell.execute_reply": "2024-08-22T00:56:58.137972Z" + "iopub.execute_input": "2024-08-26T15:54:26.758907Z", + "iopub.status.busy": "2024-08-26T15:54:26.758575Z", + "iopub.status.idle": "2024-08-26T15:54:26.761810Z", + "shell.execute_reply": "2024-08-26T15:54:26.761254Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:56:58.140590Z", - "iopub.status.busy": "2024-08-22T00:56:58.140150Z", - "iopub.status.idle": "2024-08-22T00:57:01.885153Z", - "shell.execute_reply": "2024-08-22T00:57:01.884564Z" + "iopub.execute_input": "2024-08-26T15:54:26.763957Z", + "iopub.status.busy": "2024-08-26T15:54:26.763625Z", + "iopub.status.idle": "2024-08-26T15:54:31.044703Z", + "shell.execute_reply": "2024-08-26T15:54:31.044116Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:01.887995Z", - "iopub.status.busy": "2024-08-22T00:57:01.887747Z", - "iopub.status.idle": "2024-08-22T00:57:02.799872Z", - "shell.execute_reply": "2024-08-22T00:57:02.799239Z" + "iopub.execute_input": "2024-08-26T15:54:31.047500Z", + "iopub.status.busy": "2024-08-26T15:54:31.047102Z", + "iopub.status.idle": "2024-08-26T15:54:31.975680Z", + "shell.execute_reply": "2024-08-26T15:54:31.975010Z" }, "scrolled": true }, @@ -451,10 +451,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:02.804010Z", - "iopub.status.busy": "2024-08-22T00:57:02.802938Z", - "iopub.status.idle": "2024-08-22T00:57:02.807481Z", - "shell.execute_reply": "2024-08-22T00:57:02.806905Z" + "iopub.execute_input": "2024-08-26T15:54:31.979040Z", + "iopub.status.busy": "2024-08-26T15:54:31.978560Z", + "iopub.status.idle": "2024-08-26T15:54:31.981693Z", + "shell.execute_reply": "2024-08-26T15:54:31.981174Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:02.811462Z", - "iopub.status.busy": "2024-08-22T00:57:02.810471Z", - "iopub.status.idle": "2024-08-22T00:57:04.948461Z", - "shell.execute_reply": "2024-08-22T00:57:04.947730Z" + "iopub.execute_input": "2024-08-26T15:54:31.985036Z", + "iopub.status.busy": "2024-08-26T15:54:31.984064Z", + "iopub.status.idle": "2024-08-26T15:54:34.095091Z", + "shell.execute_reply": "2024-08-26T15:54:34.094037Z" }, "scrolled": true }, @@ -521,10 +521,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:04.951766Z", - "iopub.status.busy": "2024-08-22T00:57:04.951163Z", - "iopub.status.idle": "2024-08-22T00:57:04.976106Z", - "shell.execute_reply": "2024-08-22T00:57:04.975579Z" + "iopub.execute_input": "2024-08-26T15:54:34.099316Z", + "iopub.status.busy": "2024-08-26T15:54:34.098088Z", + "iopub.status.idle": "2024-08-26T15:54:34.124948Z", + "shell.execute_reply": "2024-08-26T15:54:34.124391Z" }, "scrolled": true }, @@ -654,10 +654,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:04.978854Z", - "iopub.status.busy": "2024-08-22T00:57:04.978517Z", - "iopub.status.idle": "2024-08-22T00:57:04.987327Z", - "shell.execute_reply": "2024-08-22T00:57:04.986823Z" + "iopub.execute_input": "2024-08-26T15:54:34.128745Z", + "iopub.status.busy": "2024-08-26T15:54:34.127878Z", + "iopub.status.idle": "2024-08-26T15:54:34.137226Z", + "shell.execute_reply": "2024-08-26T15:54:34.136493Z" }, "scrolled": true }, @@ -767,10 +767,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:04.989402Z", - "iopub.status.busy": "2024-08-22T00:57:04.989118Z", - "iopub.status.idle": "2024-08-22T00:57:04.993679Z", - "shell.execute_reply": "2024-08-22T00:57:04.993169Z" + "iopub.execute_input": "2024-08-26T15:54:34.139822Z", + "iopub.status.busy": "2024-08-26T15:54:34.139392Z", + "iopub.status.idle": "2024-08-26T15:54:34.143990Z", + "shell.execute_reply": "2024-08-26T15:54:34.143494Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:04.995656Z", - "iopub.status.busy": "2024-08-22T00:57:04.995479Z", - "iopub.status.idle": "2024-08-22T00:57:05.002262Z", - "shell.execute_reply": "2024-08-22T00:57:05.001799Z" + "iopub.execute_input": "2024-08-26T15:54:34.146004Z", + "iopub.status.busy": "2024-08-26T15:54:34.145827Z", + "iopub.status.idle": "2024-08-26T15:54:34.152551Z", + "shell.execute_reply": "2024-08-26T15:54:34.152042Z" } }, "outputs": [ @@ -928,10 +928,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:05.004200Z", - "iopub.status.busy": "2024-08-22T00:57:05.004025Z", - "iopub.status.idle": "2024-08-22T00:57:05.010671Z", - "shell.execute_reply": "2024-08-22T00:57:05.010123Z" + "iopub.execute_input": "2024-08-26T15:54:34.154784Z", + "iopub.status.busy": "2024-08-26T15:54:34.154411Z", + "iopub.status.idle": "2024-08-26T15:54:34.162610Z", + "shell.execute_reply": "2024-08-26T15:54:34.162016Z" } }, "outputs": [ @@ -1014,10 +1014,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:05.012717Z", - "iopub.status.busy": "2024-08-22T00:57:05.012335Z", - "iopub.status.idle": "2024-08-22T00:57:05.018797Z", - "shell.execute_reply": "2024-08-22T00:57:05.018358Z" + "iopub.execute_input": "2024-08-26T15:54:34.165047Z", + "iopub.status.busy": "2024-08-26T15:54:34.164702Z", + "iopub.status.idle": "2024-08-26T15:54:34.170937Z", + "shell.execute_reply": "2024-08-26T15:54:34.170346Z" } }, "outputs": [ @@ -1125,10 +1125,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:05.020882Z", - "iopub.status.busy": "2024-08-22T00:57:05.020549Z", - "iopub.status.idle": "2024-08-22T00:57:05.028951Z", - "shell.execute_reply": "2024-08-22T00:57:05.028508Z" + "iopub.execute_input": "2024-08-26T15:54:34.173239Z", + "iopub.status.busy": "2024-08-26T15:54:34.172892Z", + "iopub.status.idle": "2024-08-26T15:54:34.181824Z", + "shell.execute_reply": "2024-08-26T15:54:34.181227Z" } }, "outputs": [ @@ -1239,10 +1239,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:05.030993Z", - "iopub.status.busy": "2024-08-22T00:57:05.030659Z", - "iopub.status.idle": "2024-08-22T00:57:05.036066Z", - "shell.execute_reply": "2024-08-22T00:57:05.035504Z" + "iopub.execute_input": "2024-08-26T15:54:34.184176Z", + "iopub.status.busy": "2024-08-26T15:54:34.183819Z", + "iopub.status.idle": "2024-08-26T15:54:34.189592Z", + "shell.execute_reply": "2024-08-26T15:54:34.189013Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:05.038001Z", - "iopub.status.busy": "2024-08-22T00:57:05.037830Z", - "iopub.status.idle": "2024-08-22T00:57:05.043442Z", - "shell.execute_reply": "2024-08-22T00:57:05.042966Z" + "iopub.execute_input": "2024-08-26T15:54:34.191826Z", + "iopub.status.busy": "2024-08-26T15:54:34.191485Z", + "iopub.status.idle": "2024-08-26T15:54:34.197135Z", + "shell.execute_reply": "2024-08-26T15:54:34.196593Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:05.045468Z", - "iopub.status.busy": "2024-08-22T00:57:05.045166Z", - "iopub.status.idle": "2024-08-22T00:57:05.048897Z", - "shell.execute_reply": "2024-08-22T00:57:05.048347Z" + "iopub.execute_input": "2024-08-26T15:54:34.199323Z", + "iopub.status.busy": "2024-08-26T15:54:34.198999Z", + "iopub.status.idle": "2024-08-26T15:54:34.202390Z", + "shell.execute_reply": "2024-08-26T15:54:34.201850Z" } }, "outputs": [ @@ -1449,10 +1449,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:05.051276Z", - "iopub.status.busy": "2024-08-22T00:57:05.051099Z", - "iopub.status.idle": "2024-08-22T00:57:05.056717Z", - "shell.execute_reply": "2024-08-22T00:57:05.056235Z" + "iopub.execute_input": "2024-08-26T15:54:34.204586Z", + "iopub.status.busy": "2024-08-26T15:54:34.204241Z", + "iopub.status.idle": "2024-08-26T15:54:34.209327Z", + "shell.execute_reply": "2024-08-26T15:54:34.208871Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/workflows.html b/master/tutorials/datalab/workflows.html index bf53f4426..a48a2ae2a 100644 --- a/master/tutorials/datalab/workflows.html +++ b/master/tutorials/datalab/workflows.html @@ -879,7 +879,7 @@

4. Identify Data Issues Using Datalab - +
- - - - - - - - - + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
@@ -3503,16 +3503,16 @@

1. Load the Dataset
---2024-08-22 00:57:24--  https://s.cleanlab.ai/CIFAR-10-subset.zip
+--2024-08-26 15:54:55--  https://s.cleanlab.ai/CIFAR-10-subset.zip
 Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.110.153, 185.199.109.153, ...
 Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.111.153|:443... connected.
 HTTP request sent, awaiting response... 200 OK
 Length: 986707 (964K) [application/zip]
 Saving to: ‘CIFAR-10-subset.zip’
 
-CIFAR-10-subset.zip 100%[===================>] 963.58K  --.-KB/s    in 0.02s
+CIFAR-10-subset.zip 100%[===================>] 963.58K  --.-KB/s    in 0.006s
 
-2024-08-22 00:57:24 (37.7 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]
+2024-08-26 15:54:55 (154 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]
 
 
@@ -3582,7 +3582,7 @@

2. Run Datalab Analysis
-
+
@@ -3604,9 +3604,9 @@

2. Run Datalab Analysis3. Interpret the Results - dark_score is_dark_issue + dark_score 0 - 0.237196 True + 0.237196 1 - 0.197229 True + 0.197229 2 - 0.254188 True + 0.254188 3 - 0.229170 True + 0.229170 4 - 0.208907 True + 0.208907 ... @@ -3825,28 +3825,28 @@

3. Interpret the ResultsFrog class (Class 0 in the plot) have been darkened, while 100 images from the Truck class (Class 1 in the plot) remain unchanged, as in the CIFAR-10 dataset. This creates a clear spurious correlation between the ‘darkness’ feature and the class labels: Frog images are dark, whereas Truck images are not. We can see that the dark_score values between the two classes are non-overlapping. This characteristic of the dataset is identified by Datalab.

diff --git a/master/tutorials/datalab/workflows.ipynb b/master/tutorials/datalab/workflows.ipynb index 2e6f36c7e..31cb3f500 100644 --- a/master/tutorials/datalab/workflows.ipynb +++ b/master/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:08.552752Z", - "iopub.status.busy": "2024-08-22T00:57:08.552396Z", - "iopub.status.idle": "2024-08-22T00:57:09.015480Z", - "shell.execute_reply": "2024-08-22T00:57:09.014945Z" + "iopub.execute_input": "2024-08-26T15:54:38.759112Z", + "iopub.status.busy": "2024-08-26T15:54:38.758919Z", + "iopub.status.idle": "2024-08-26T15:54:39.215433Z", + "shell.execute_reply": "2024-08-26T15:54:39.214907Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:09.018312Z", - "iopub.status.busy": "2024-08-22T00:57:09.017879Z", - "iopub.status.idle": "2024-08-22T00:57:09.154597Z", - "shell.execute_reply": "2024-08-22T00:57:09.153983Z" + "iopub.execute_input": "2024-08-26T15:54:39.218396Z", + "iopub.status.busy": "2024-08-26T15:54:39.217877Z", + "iopub.status.idle": "2024-08-26T15:54:39.353724Z", + "shell.execute_reply": "2024-08-26T15:54:39.353143Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:09.157111Z", - "iopub.status.busy": "2024-08-22T00:57:09.156655Z", - "iopub.status.idle": "2024-08-22T00:57:09.181702Z", - "shell.execute_reply": "2024-08-22T00:57:09.181049Z" + "iopub.execute_input": "2024-08-26T15:54:39.356009Z", + "iopub.status.busy": "2024-08-26T15:54:39.355760Z", + "iopub.status.idle": "2024-08-26T15:54:39.380390Z", + "shell.execute_reply": "2024-08-26T15:54:39.379777Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:09.184533Z", - "iopub.status.busy": "2024-08-22T00:57:09.184042Z", - "iopub.status.idle": "2024-08-22T00:57:12.220771Z", - "shell.execute_reply": "2024-08-22T00:57:12.220164Z" + "iopub.execute_input": "2024-08-26T15:54:39.383260Z", + "iopub.status.busy": "2024-08-26T15:54:39.382742Z", + "iopub.status.idle": "2024-08-26T15:54:42.387338Z", + "shell.execute_reply": "2024-08-26T15:54:42.386595Z" } }, "outputs": [ @@ -280,7 +280,7 @@ " \n", " 2\n", " outlier\n", - " 0.356924\n", + " 0.356925\n", " 363\n", " \n", " \n", @@ -315,7 +315,7 @@ " issue_type score num_issues\n", "0 null 1.000000 0\n", "1 label 0.991400 52\n", - "2 outlier 0.356924 363\n", + "2 outlier 0.356925 363\n", "3 near_duplicate 0.619581 108\n", "4 non_iid 0.000000 1\n", "5 class_imbalance 0.500000 0\n", @@ -700,10 +700,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:12.223473Z", - "iopub.status.busy": "2024-08-22T00:57:12.222960Z", - "iopub.status.idle": "2024-08-22T00:57:21.154904Z", - "shell.execute_reply": "2024-08-22T00:57:21.154272Z" + "iopub.execute_input": "2024-08-26T15:54:42.390104Z", + "iopub.status.busy": "2024-08-26T15:54:42.389566Z", + "iopub.status.idle": "2024-08-26T15:54:52.329674Z", + "shell.execute_reply": "2024-08-26T15:54:52.329133Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:21.157242Z", - "iopub.status.busy": "2024-08-22T00:57:21.156891Z", - "iopub.status.idle": "2024-08-22T00:57:21.363080Z", - "shell.execute_reply": "2024-08-22T00:57:21.362373Z" + "iopub.execute_input": "2024-08-26T15:54:52.332096Z", + "iopub.status.busy": "2024-08-26T15:54:52.331674Z", + "iopub.status.idle": "2024-08-26T15:54:52.493633Z", + "shell.execute_reply": "2024-08-26T15:54:52.492929Z" } }, "outputs": [], @@ -838,10 +838,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:21.365791Z", - "iopub.status.busy": "2024-08-22T00:57:21.365550Z", - "iopub.status.idle": "2024-08-22T00:57:22.855359Z", - "shell.execute_reply": "2024-08-22T00:57:22.854735Z" + "iopub.execute_input": "2024-08-26T15:54:52.496177Z", + "iopub.status.busy": "2024-08-26T15:54:52.495969Z", + "iopub.status.idle": "2024-08-26T15:54:53.925137Z", + "shell.execute_reply": "2024-08-26T15:54:53.924517Z" } }, "outputs": [ @@ -1000,10 +1000,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:22.857827Z", - "iopub.status.busy": "2024-08-22T00:57:22.857613Z", - "iopub.status.idle": "2024-08-22T00:57:23.341356Z", - "shell.execute_reply": "2024-08-22T00:57:23.340744Z" + "iopub.execute_input": "2024-08-26T15:54:53.927691Z", + "iopub.status.busy": "2024-08-26T15:54:53.927274Z", + "iopub.status.idle": "2024-08-26T15:54:54.361405Z", + "shell.execute_reply": "2024-08-26T15:54:54.360761Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:23.343684Z", - "iopub.status.busy": "2024-08-22T00:57:23.343318Z", - "iopub.status.idle": "2024-08-22T00:57:23.356820Z", - "shell.execute_reply": "2024-08-22T00:57:23.356358Z" + "iopub.execute_input": "2024-08-26T15:54:54.364105Z", + "iopub.status.busy": "2024-08-26T15:54:54.363404Z", + "iopub.status.idle": "2024-08-26T15:54:54.377500Z", + "shell.execute_reply": "2024-08-26T15:54:54.377021Z" } }, "outputs": [], @@ -1115,10 +1115,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:23.358798Z", - "iopub.status.busy": "2024-08-22T00:57:23.358621Z", - "iopub.status.idle": "2024-08-22T00:57:23.378103Z", - "shell.execute_reply": "2024-08-22T00:57:23.377664Z" + "iopub.execute_input": "2024-08-26T15:54:54.379842Z", + "iopub.status.busy": "2024-08-26T15:54:54.379476Z", + "iopub.status.idle": "2024-08-26T15:54:54.398245Z", + "shell.execute_reply": "2024-08-26T15:54:54.397742Z" } }, "outputs": [], @@ -1146,10 +1146,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:23.380254Z", - "iopub.status.busy": "2024-08-22T00:57:23.379926Z", - "iopub.status.idle": "2024-08-22T00:57:23.608651Z", - "shell.execute_reply": "2024-08-22T00:57:23.608075Z" + "iopub.execute_input": "2024-08-26T15:54:54.400658Z", + "iopub.status.busy": "2024-08-26T15:54:54.400452Z", + "iopub.status.idle": "2024-08-26T15:54:54.629761Z", + "shell.execute_reply": "2024-08-26T15:54:54.629093Z" } }, "outputs": [], @@ -1189,10 +1189,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:23.611458Z", - "iopub.status.busy": "2024-08-22T00:57:23.611251Z", - "iopub.status.idle": "2024-08-22T00:57:23.631205Z", - "shell.execute_reply": "2024-08-22T00:57:23.630723Z" + "iopub.execute_input": "2024-08-26T15:54:54.632497Z", + "iopub.status.busy": "2024-08-26T15:54:54.632295Z", + "iopub.status.idle": "2024-08-26T15:54:54.651943Z", + "shell.execute_reply": "2024-08-26T15:54:54.651403Z" } }, "outputs": [ @@ -1390,10 +1390,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:23.633400Z", - "iopub.status.busy": "2024-08-22T00:57:23.633036Z", - "iopub.status.idle": "2024-08-22T00:57:23.804756Z", - "shell.execute_reply": "2024-08-22T00:57:23.804163Z" + "iopub.execute_input": "2024-08-26T15:54:54.654296Z", + "iopub.status.busy": "2024-08-26T15:54:54.653851Z", + "iopub.status.idle": "2024-08-26T15:54:54.833100Z", + "shell.execute_reply": "2024-08-26T15:54:54.832491Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:23.807322Z", - "iopub.status.busy": "2024-08-22T00:57:23.806951Z", - "iopub.status.idle": "2024-08-22T00:57:23.817201Z", - "shell.execute_reply": "2024-08-22T00:57:23.816718Z" + "iopub.execute_input": "2024-08-26T15:54:54.835717Z", + "iopub.status.busy": "2024-08-26T15:54:54.835357Z", + "iopub.status.idle": "2024-08-26T15:54:54.846192Z", + "shell.execute_reply": "2024-08-26T15:54:54.845635Z" } }, "outputs": [ @@ -1729,10 +1729,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:23.819374Z", - "iopub.status.busy": "2024-08-22T00:57:23.819012Z", - "iopub.status.idle": "2024-08-22T00:57:23.828743Z", - "shell.execute_reply": "2024-08-22T00:57:23.828166Z" + "iopub.execute_input": "2024-08-26T15:54:54.848487Z", + "iopub.status.busy": "2024-08-26T15:54:54.848109Z", + "iopub.status.idle": "2024-08-26T15:54:54.858309Z", + "shell.execute_reply": "2024-08-26T15:54:54.857736Z" } }, "outputs": [ @@ -1919,10 +1919,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:23.830994Z", - "iopub.status.busy": "2024-08-22T00:57:23.830649Z", - "iopub.status.idle": "2024-08-22T00:57:23.857348Z", - "shell.execute_reply": "2024-08-22T00:57:23.856773Z" + "iopub.execute_input": "2024-08-26T15:54:54.860474Z", + "iopub.status.busy": "2024-08-26T15:54:54.860145Z", + "iopub.status.idle": "2024-08-26T15:54:54.891303Z", + "shell.execute_reply": "2024-08-26T15:54:54.890732Z" } }, "outputs": [], @@ -1956,10 +1956,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:23.860407Z", - "iopub.status.busy": "2024-08-22T00:57:23.859964Z", - "iopub.status.idle": "2024-08-22T00:57:23.863259Z", - "shell.execute_reply": "2024-08-22T00:57:23.862696Z" + "iopub.execute_input": "2024-08-26T15:54:54.893833Z", + "iopub.status.busy": "2024-08-26T15:54:54.893622Z", + "iopub.status.idle": "2024-08-26T15:54:54.896886Z", + "shell.execute_reply": "2024-08-26T15:54:54.896321Z" } }, "outputs": [], @@ -1981,10 +1981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:23.865478Z", - "iopub.status.busy": "2024-08-22T00:57:23.865293Z", - "iopub.status.idle": "2024-08-22T00:57:23.885677Z", - "shell.execute_reply": "2024-08-22T00:57:23.885083Z" + "iopub.execute_input": "2024-08-26T15:54:54.899294Z", + "iopub.status.busy": "2024-08-26T15:54:54.899092Z", + "iopub.status.idle": "2024-08-26T15:54:54.921704Z", + "shell.execute_reply": "2024-08-26T15:54:54.921193Z" } }, "outputs": [ @@ -2142,10 +2142,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:23.888629Z", - "iopub.status.busy": "2024-08-22T00:57:23.888280Z", - "iopub.status.idle": "2024-08-22T00:57:23.892641Z", - "shell.execute_reply": "2024-08-22T00:57:23.892169Z" + "iopub.execute_input": "2024-08-26T15:54:54.924185Z", + "iopub.status.busy": "2024-08-26T15:54:54.923777Z", + "iopub.status.idle": "2024-08-26T15:54:54.928341Z", + "shell.execute_reply": "2024-08-26T15:54:54.927835Z" } }, "outputs": [], @@ -2178,10 +2178,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:23.894750Z", - "iopub.status.busy": "2024-08-22T00:57:23.894415Z", - "iopub.status.idle": "2024-08-22T00:57:23.923311Z", - "shell.execute_reply": "2024-08-22T00:57:23.922785Z" + "iopub.execute_input": "2024-08-26T15:54:54.930649Z", + "iopub.status.busy": "2024-08-26T15:54:54.930228Z", + "iopub.status.idle": "2024-08-26T15:54:54.960760Z", + "shell.execute_reply": "2024-08-26T15:54:54.960179Z" } }, "outputs": [ @@ -2327,10 +2327,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:23.925499Z", - "iopub.status.busy": "2024-08-22T00:57:23.925147Z", - "iopub.status.idle": "2024-08-22T00:57:24.309600Z", - "shell.execute_reply": "2024-08-22T00:57:24.309049Z" + "iopub.execute_input": "2024-08-26T15:54:54.962902Z", + "iopub.status.busy": "2024-08-26T15:54:54.962733Z", + "iopub.status.idle": "2024-08-26T15:54:55.346958Z", + "shell.execute_reply": "2024-08-26T15:54:55.346287Z" } }, "outputs": [ @@ -2397,10 +2397,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:24.311934Z", - "iopub.status.busy": "2024-08-22T00:57:24.311593Z", - "iopub.status.idle": "2024-08-22T00:57:24.314942Z", - "shell.execute_reply": "2024-08-22T00:57:24.314390Z" + "iopub.execute_input": "2024-08-26T15:54:55.349542Z", + "iopub.status.busy": "2024-08-26T15:54:55.349079Z", + "iopub.status.idle": "2024-08-26T15:54:55.352764Z", + "shell.execute_reply": "2024-08-26T15:54:55.352277Z" } }, "outputs": [ @@ -2451,10 +2451,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:24.317274Z", - "iopub.status.busy": "2024-08-22T00:57:24.316942Z", - "iopub.status.idle": "2024-08-22T00:57:24.331106Z", - "shell.execute_reply": "2024-08-22T00:57:24.330596Z" + "iopub.execute_input": "2024-08-26T15:54:55.354939Z", + "iopub.status.busy": "2024-08-26T15:54:55.354758Z", + "iopub.status.idle": "2024-08-26T15:54:55.368773Z", + "shell.execute_reply": "2024-08-26T15:54:55.368258Z" } }, "outputs": [ @@ -2733,10 +2733,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:24.333341Z", - "iopub.status.busy": "2024-08-22T00:57:24.332974Z", - "iopub.status.idle": "2024-08-22T00:57:24.347015Z", - "shell.execute_reply": "2024-08-22T00:57:24.346532Z" + "iopub.execute_input": "2024-08-26T15:54:55.370932Z", + "iopub.status.busy": "2024-08-26T15:54:55.370737Z", + "iopub.status.idle": "2024-08-26T15:54:55.384935Z", + "shell.execute_reply": "2024-08-26T15:54:55.384436Z" } }, "outputs": [ @@ -3003,10 +3003,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:24.349201Z", - "iopub.status.busy": "2024-08-22T00:57:24.348850Z", - "iopub.status.idle": "2024-08-22T00:57:24.359903Z", - "shell.execute_reply": "2024-08-22T00:57:24.359406Z" + "iopub.execute_input": "2024-08-26T15:54:55.386984Z", + "iopub.status.busy": "2024-08-26T15:54:55.386797Z", + "iopub.status.idle": "2024-08-26T15:54:55.397034Z", + "shell.execute_reply": "2024-08-26T15:54:55.396567Z" } }, "outputs": [], @@ -3031,10 +3031,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:24.362462Z", - "iopub.status.busy": "2024-08-22T00:57:24.362163Z", - "iopub.status.idle": "2024-08-22T00:57:24.375096Z", - "shell.execute_reply": "2024-08-22T00:57:24.374500Z" + "iopub.execute_input": "2024-08-26T15:54:55.399330Z", + "iopub.status.busy": "2024-08-26T15:54:55.398981Z", + "iopub.status.idle": "2024-08-26T15:54:55.411666Z", + "shell.execute_reply": "2024-08-26T15:54:55.411018Z" } }, "outputs": [ @@ -3206,10 +3206,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:24.377351Z", - "iopub.status.busy": "2024-08-22T00:57:24.377002Z", - "iopub.status.idle": "2024-08-22T00:57:24.381071Z", - "shell.execute_reply": "2024-08-22T00:57:24.380500Z" + "iopub.execute_input": "2024-08-26T15:54:55.413957Z", + "iopub.status.busy": "2024-08-26T15:54:55.413597Z", + "iopub.status.idle": "2024-08-26T15:54:55.417808Z", + "shell.execute_reply": "2024-08-26T15:54:55.417214Z" } }, "outputs": [], @@ -3241,10 +3241,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:24.383319Z", - "iopub.status.busy": "2024-08-22T00:57:24.382875Z", - "iopub.status.idle": "2024-08-22T00:57:24.435195Z", - "shell.execute_reply": "2024-08-22T00:57:24.434603Z" + "iopub.execute_input": "2024-08-26T15:54:55.419969Z", + "iopub.status.busy": "2024-08-26T15:54:55.419603Z", + "iopub.status.idle": "2024-08-26T15:54:55.473799Z", + "shell.execute_reply": "2024-08-26T15:54:55.473155Z" } }, "outputs": [ @@ -3252,230 +3252,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3551,10 +3551,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:24.437908Z", - "iopub.status.busy": "2024-08-22T00:57:24.437346Z", - "iopub.status.idle": "2024-08-22T00:57:24.443555Z", - "shell.execute_reply": "2024-08-22T00:57:24.443082Z" + "iopub.execute_input": "2024-08-26T15:54:55.476497Z", + "iopub.status.busy": "2024-08-26T15:54:55.476108Z", + "iopub.status.idle": "2024-08-26T15:54:55.482513Z", + "shell.execute_reply": "2024-08-26T15:54:55.482004Z" } }, "outputs": [], @@ -3593,10 +3593,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:24.445686Z", - "iopub.status.busy": "2024-08-22T00:57:24.445322Z", - "iopub.status.idle": "2024-08-22T00:57:24.456680Z", - "shell.execute_reply": "2024-08-22T00:57:24.456188Z" + "iopub.execute_input": "2024-08-26T15:54:55.484790Z", + "iopub.status.busy": "2024-08-26T15:54:55.484410Z", + "iopub.status.idle": "2024-08-26T15:54:55.496714Z", + "shell.execute_reply": "2024-08-26T15:54:55.496092Z" } }, "outputs": [ @@ -3632,10 +3632,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:24.458920Z", - "iopub.status.busy": "2024-08-22T00:57:24.458567Z", - "iopub.status.idle": "2024-08-22T00:57:24.681445Z", - "shell.execute_reply": "2024-08-22T00:57:24.680763Z" + "iopub.execute_input": "2024-08-26T15:54:55.499254Z", + "iopub.status.busy": "2024-08-26T15:54:55.498866Z", + "iopub.status.idle": "2024-08-26T15:54:55.724139Z", + "shell.execute_reply": "2024-08-26T15:54:55.723536Z" } }, "outputs": [ @@ -3687,10 +3687,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:24.683976Z", - "iopub.status.busy": "2024-08-22T00:57:24.683547Z", - "iopub.status.idle": "2024-08-22T00:57:24.692160Z", - "shell.execute_reply": "2024-08-22T00:57:24.691539Z" + "iopub.execute_input": "2024-08-26T15:54:55.726595Z", + "iopub.status.busy": "2024-08-26T15:54:55.726210Z", + "iopub.status.idle": "2024-08-26T15:54:55.734094Z", + "shell.execute_reply": "2024-08-26T15:54:55.733584Z" }, "nbsphinx": "hidden" }, @@ -3756,10 +3756,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:24.694700Z", - "iopub.status.busy": "2024-08-22T00:57:24.694312Z", - "iopub.status.idle": "2024-08-22T00:57:25.112377Z", - "shell.execute_reply": "2024-08-22T00:57:25.111678Z" + "iopub.execute_input": "2024-08-26T15:54:55.736292Z", + "iopub.status.busy": "2024-08-26T15:54:55.736100Z", + "iopub.status.idle": "2024-08-26T15:54:56.057866Z", + "shell.execute_reply": "2024-08-26T15:54:56.057124Z" } }, "outputs": [ @@ -3767,25 +3767,18 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-22 00:57:24-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", + "--2024-08-26 15:54:55-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.110.153, 185.199.109.153, ...\r\n", "Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.111.153|:443... connected.\r\n", - "HTTP request sent, awaiting response... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "200 OK\r\n", + "HTTP request sent, awaiting response... 200 OK\r\n", "Length: 986707 (964K) [application/zip]\r\n", "Saving to: ‘CIFAR-10-subset.zip’\r\n", "\r\n", "\r", "CIFAR-10-subset.zip 0%[ ] 0 --.-KB/s \r", - "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.02s \r\n", + "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.006s \r\n", "\r\n", - "2024-08-22 00:57:24 (37.7 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", + "2024-08-26 15:54:55 (154 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", "\r\n" ] } @@ -3801,10 +3794,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:25.115507Z", - "iopub.status.busy": "2024-08-22T00:57:25.115008Z", - "iopub.status.idle": "2024-08-22T00:57:27.138869Z", - "shell.execute_reply": "2024-08-22T00:57:27.138280Z" + "iopub.execute_input": "2024-08-26T15:54:56.060997Z", + "iopub.status.busy": "2024-08-26T15:54:56.060557Z", + "iopub.status.idle": "2024-08-26T15:54:58.138446Z", + "shell.execute_reply": "2024-08-26T15:54:58.137906Z" } }, "outputs": [], @@ -3850,10 +3843,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:27.141857Z", - "iopub.status.busy": "2024-08-22T00:57:27.141260Z", - "iopub.status.idle": "2024-08-22T00:57:27.765103Z", - "shell.execute_reply": "2024-08-22T00:57:27.764413Z" + "iopub.execute_input": "2024-08-26T15:54:58.141238Z", + "iopub.status.busy": "2024-08-26T15:54:58.140850Z", + "iopub.status.idle": "2024-08-26T15:54:58.752163Z", + "shell.execute_reply": "2024-08-26T15:54:58.751466Z" } }, "outputs": [ @@ -3868,7 +3861,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "956932deee7a46fab98d8e5c3d3191d9", + "model_id": "63dbd4115b6c44af98b9c5935a224c07", "version_major": 2, "version_minor": 0 }, @@ -3898,9 +3891,9 @@ "\n", "\n", "\n", - "Here is a summary of spurious correlations between image features (like 'dark_score', 'blurry_score', etc.) and class labels detected in the data.\n", + "Summary of (potentially spurious) correlations between image properties and class labels detected in the data:\n", "\n", - "A lower score implies a higher likelihood of a spurious correlation between that property and the class labels.\n", + "Lower scores below correspond to images properties that are more strongly correlated with the class labels.\n", "\n", "\n", " property score\n", @@ -3989,10 +3982,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:27.768310Z", - "iopub.status.busy": "2024-08-22T00:57:27.767934Z", - "iopub.status.idle": "2024-08-22T00:57:27.781848Z", - "shell.execute_reply": "2024-08-22T00:57:27.781267Z" + "iopub.execute_input": "2024-08-26T15:54:58.755525Z", + "iopub.status.busy": "2024-08-26T15:54:58.754971Z", + "iopub.status.idle": "2024-08-26T15:54:58.770115Z", + "shell.execute_reply": "2024-08-26T15:54:58.769480Z" } }, "outputs": [ @@ -4111,35 +4104,35 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 0\n", - " 0.237196\n", " True\n", + " 0.237196\n", " \n", " \n", " 1\n", - " 0.197229\n", " True\n", + " 0.197229\n", " \n", " \n", " 2\n", - " 0.254188\n", " True\n", + " 0.254188\n", " \n", " \n", " 3\n", - " 0.229170\n", " True\n", + " 0.229170\n", " \n", " \n", " 4\n", - " 0.208907\n", " True\n", + " 0.208907\n", " \n", " \n", " ...\n", @@ -4148,28 +4141,28 @@ " \n", " \n", " 195\n", - " 0.793840\n", " False\n", + " 0.793840\n", " \n", " \n", " 196\n", - " 1.000000\n", " False\n", + " 1.000000\n", " \n", " \n", " 197\n", - " 0.971560\n", " False\n", + " 0.971560\n", " \n", " \n", " 198\n", - " 0.862236\n", " False\n", + " 0.862236\n", " \n", " \n", " 199\n", - " 0.973533\n", " False\n", + " 0.973533\n", " \n", " \n", "\n", @@ -4177,18 +4170,18 @@ "

" ], "text/plain": [ - " dark_score is_dark_issue\n", - "0 0.237196 True\n", - "1 0.197229 True\n", - "2 0.254188 True\n", - "3 0.229170 True\n", - "4 0.208907 True\n", - ".. ... ...\n", - "195 0.793840 False\n", - "196 1.000000 False\n", - "197 0.971560 False\n", - "198 0.862236 False\n", - "199 0.973533 False\n", + " is_dark_issue dark_score\n", + "0 True 0.237196\n", + "1 True 0.197229\n", + "2 True 0.254188\n", + "3 True 0.229170\n", + "4 True 0.208907\n", + ".. ... ...\n", + "195 False 0.793840\n", + "196 False 1.000000\n", + "197 False 0.971560\n", + "198 False 0.862236\n", + "199 False 0.973533\n", "\n", "[200 rows x 2 columns]" ] @@ -4238,10 +4231,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:27.784459Z", - "iopub.status.busy": "2024-08-22T00:57:27.784121Z", - "iopub.status.idle": "2024-08-22T00:57:27.939335Z", - "shell.execute_reply": "2024-08-22T00:57:27.938685Z" + "iopub.execute_input": "2024-08-26T15:54:58.772597Z", + "iopub.status.busy": "2024-08-26T15:54:58.772400Z", + "iopub.status.idle": "2024-08-26T15:54:58.895082Z", + "shell.execute_reply": "2024-08-26T15:54:58.894419Z" } }, "outputs": [ @@ -4306,10 +4299,10 @@ "execution_count": 38, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:27.941722Z", - "iopub.status.busy": "2024-08-22T00:57:27.941332Z", - "iopub.status.idle": "2024-08-22T00:57:28.481913Z", - "shell.execute_reply": "2024-08-22T00:57:28.481228Z" + "iopub.execute_input": "2024-08-26T15:54:58.897672Z", + "iopub.status.busy": "2024-08-26T15:54:58.897456Z", + "iopub.status.idle": "2024-08-26T15:54:59.422521Z", + "shell.execute_reply": "2024-08-26T15:54:59.421729Z" }, "nbsphinx": "hidden" }, @@ -4325,7 +4318,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e1883294f8d6467ead1995ceec05c4a3", + "model_id": "b55b762924964f2b825d874228965ad4", "version_major": 2, "version_minor": 0 }, @@ -4454,35 +4447,35 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 0\n", - " 0.797509\n", " False\n", + " 0.797509\n", " \n", " \n", " 1\n", - " 0.663760\n", " False\n", + " 0.663760\n", " \n", " \n", " 2\n", - " 0.849826\n", " False\n", + " 0.849826\n", " \n", " \n", " 3\n", - " 0.773951\n", " False\n", + " 0.773951\n", " \n", " \n", " 4\n", - " 0.699518\n", " False\n", + " 0.699518\n", " \n", " \n", " ...\n", @@ -4491,28 +4484,28 @@ " \n", " \n", " 195\n", - " 0.793840\n", " False\n", + " 0.793840\n", " \n", " \n", " 196\n", - " 1.000000\n", " False\n", + " 1.000000\n", " \n", " \n", " 197\n", - " 0.971560\n", " False\n", + " 0.971560\n", " \n", " \n", " 198\n", - " 0.862236\n", " False\n", + " 0.862236\n", " \n", " \n", " 199\n", - " 0.973533\n", " False\n", + " 0.973533\n", " \n", " \n", "\n", @@ -4520,18 +4513,18 @@ "
" ], "text/plain": [ - " dark_score is_dark_issue\n", - "0 0.797509 False\n", - "1 0.663760 False\n", - "2 0.849826 False\n", - "3 0.773951 False\n", - "4 0.699518 False\n", - ".. ... ...\n", - "195 0.793840 False\n", - "196 1.000000 False\n", - "197 0.971560 False\n", - "198 0.862236 False\n", - "199 0.973533 False\n", + " is_dark_issue dark_score\n", + "0 False 0.797509\n", + "1 False 0.663760\n", + "2 False 0.849826\n", + "3 False 0.773951\n", + "4 False 0.699518\n", + ".. ... ...\n", + "195 False 0.793840\n", + "196 False 1.000000\n", + "197 False 0.971560\n", + "198 False 0.862236\n", + "199 False 0.973533\n", "\n", "[200 rows x 2 columns]" ] @@ -4579,10 +4572,10 @@ "execution_count": 39, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:28.484439Z", - "iopub.status.busy": "2024-08-22T00:57:28.484130Z", - "iopub.status.idle": "2024-08-22T00:57:28.636445Z", - "shell.execute_reply": "2024-08-22T00:57:28.635804Z" + "iopub.execute_input": "2024-08-26T15:54:59.425974Z", + "iopub.status.busy": "2024-08-26T15:54:59.425433Z", + "iopub.status.idle": "2024-08-26T15:54:59.582023Z", + "shell.execute_reply": "2024-08-26T15:54:59.581243Z" }, "nbsphinx": "hidden" }, @@ -4634,67 +4627,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "032f1aeeab5943faadafcbc8e85ce7b5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1cb1c86103ea4d50bec64ac4eaf22a12": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1d5e82031ccb48e286211ea9c7858fe8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5fe18b924ca04e90bbb4e0b1977654ff", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_032f1aeeab5943faadafcbc8e85ce7b5", - "tabbable": null, - "tooltip": null, - "value": 200.0 - } - }, - "2390b9239afe4c849f9314439ebffa71": { + "031221d4552242de82a8d6939c285e86": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4747,60 +4680,30 @@ "width": null } }, - "28b78dfff3ae405e97e92600c8ff94b3": { - "model_module": "@jupyter-widgets/base", + "0386df784eda450ba40b983fcae38725": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fefe95cb553540c3994456b477c2fb5f", + "placeholder": "​", + "style": "IPY_MODEL_d42e5e4fe59048ad8dfe2cb418b83969", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "509b6e0ba9a748409997201650434d82": { + "3064a08da676433a85c99d01070354cd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4815,15 +4718,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2390b9239afe4c849f9314439ebffa71", + "layout": "IPY_MODEL_84f86748a7e84b4bbb8e32a900b8a63e", "placeholder": "​", - "style": "IPY_MODEL_cdb6bab18bd84cbfb9e498238c1c7da7", + "style": "IPY_MODEL_54472803299340ed90898ae4a015b484", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 200/200 [00:00<00:00, 691.59it/s]" + } + }, + "41aeb9b2c3df4a2599a18579e42e4dc9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "55f2dec409614b83902c1d83b9f0c4ca": { + "44b903d5acd1475d885219d5ec3f09d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4876,7 +4797,7 @@ "width": null } }, - "5ab9b00cf6984495b785a1da43260bfe": { + "4f38e0a5bc5f4ded9cf3eceb2d703d97": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4929,7 +4850,25 @@ "width": null } }, - "5fe18b924ca04e90bbb4e0b1977654ff": { + "54472803299340ed90898ae4a015b484": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "61c56e7ec1114450b4ef18775fd912ac": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4982,69 +4921,83 @@ "width": null } }, - "649a009746294881abe73b65fc954131": { + "63dbd4115b6c44af98b9c5935a224c07": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a174759956c34ad8a5ffb199db4dd131", - "placeholder": "​", - "style": "IPY_MODEL_1cb1c86103ea4d50bec64ac4eaf22a12", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c198bfac238c45c78af9310d7da235f8", + "IPY_MODEL_81ddd7e821164aaeb9ec368f6e04be05", + "IPY_MODEL_90ab6f703998499dbd5894f3bb139415" + ], + "layout": "IPY_MODEL_bb45198d12cc4ed38bf999a04af95957", "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 663.29it/s]" + "tooltip": null } }, - "686071a6de7d4274ae6b9248a106c352": { + "64d272c54f184fbbbd4f30efdac1f499": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ece1e0931b894627a03fc03dc266e3cb", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b402c802ab0a467bb5f7a66e0531d41a", + "tabbable": null, + "tooltip": null, + "value": 200.0 } }, - "71d397819d40429793cd60c735b2fd07": { + "81ddd7e821164aaeb9ec368f6e04be05": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f4b71d25b3e34c45850e29b36d495607", - "placeholder": "​", - "style": "IPY_MODEL_fd5c99353282432082809931354d911d", + "layout": "IPY_MODEL_44b903d5acd1475d885219d5ec3f09d9", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_89f40cd49e5d4715b11046823db4e398", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 200.0 } }, - "91433088b7304691bc9fff54050c3750": { + "84f86748a7e84b4bbb8e32a900b8a63e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5097,7 +5050,62 @@ "width": null } }, - "956932deee7a46fab98d8e5c3d3191d9": { + "89f40cd49e5d4715b11046823db4e398": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "90ab6f703998499dbd5894f3bb139415": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_61c56e7ec1114450b4ef18775fd912ac", + "placeholder": "​", + "style": "IPY_MODEL_41aeb9b2c3df4a2599a18579e42e4dc9", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 755.19it/s]" + } + }, + "b402c802ab0a467bb5f7a66e0531d41a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b55b762924964f2b825d874228965ad4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -5112,16 +5120,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_509b6e0ba9a748409997201650434d82", - "IPY_MODEL_e2adb0f9efec4f7cbe2b7f27ee6f2c27", - "IPY_MODEL_dc17e63d85a845589bc5e4072307c7cb" + "IPY_MODEL_0386df784eda450ba40b983fcae38725", + "IPY_MODEL_64d272c54f184fbbbd4f30efdac1f499", + "IPY_MODEL_3064a08da676433a85c99d01070354cd" ], - "layout": "IPY_MODEL_91433088b7304691bc9fff54050c3750", + "layout": "IPY_MODEL_4f38e0a5bc5f4ded9cf3eceb2d703d97", "tabbable": null, "tooltip": null } }, - "a174759956c34ad8a5ffb199db4dd131": { + "bb45198d12cc4ed38bf999a04af95957": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5174,43 +5182,7 @@ "width": null } }, - "cdb6bab18bd84cbfb9e498238c1c7da7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "cfb3ec4a495e4a3588e7e8e0ad1b27e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "dc17e63d85a845589bc5e4072307c7cb": { + "c198bfac238c45c78af9310d7da235f8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5225,65 +5197,51 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_55f2dec409614b83902c1d83b9f0c4ca", + "layout": "IPY_MODEL_031221d4552242de82a8d6939c285e86", "placeholder": "​", - "style": "IPY_MODEL_cfb3ec4a495e4a3588e7e8e0ad1b27e6", + "style": "IPY_MODEL_dba0c94b68874339b52fdcf44f5a0a9c", "tabbable": null, "tooltip": null, - "value": " 200/200 [00:00<00:00, 725.62it/s]" + "value": "100%" } }, - "e1883294f8d6467ead1995ceec05c4a3": { + "d42e5e4fe59048ad8dfe2cb418b83969": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_71d397819d40429793cd60c735b2fd07", - "IPY_MODEL_1d5e82031ccb48e286211ea9c7858fe8", - "IPY_MODEL_649a009746294881abe73b65fc954131" - ], - "layout": "IPY_MODEL_28b78dfff3ae405e97e92600c8ff94b3", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e2adb0f9efec4f7cbe2b7f27ee6f2c27": { + "dba0c94b68874339b52fdcf44f5a0a9c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5ab9b00cf6984495b785a1da43260bfe", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_686071a6de7d4274ae6b9248a106c352", - "tabbable": null, - "tooltip": null, - "value": 200.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f4b71d25b3e34c45850e29b36d495607": { + "ece1e0931b894627a03fc03dc266e3cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5336,22 +5294,57 @@ "width": null } }, - "fd5c99353282432082809931354d911d": { - "model_module": "@jupyter-widgets/controls", + "fefe95cb553540c3994456b477c2fb5f": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index 47ca4e472..e035bdf3d 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:33.765979Z", - "iopub.status.busy": "2024-08-22T00:57:33.765802Z", - "iopub.status.idle": "2024-08-22T00:57:34.997805Z", - "shell.execute_reply": "2024-08-22T00:57:34.997188Z" + "iopub.execute_input": "2024-08-26T15:55:04.729366Z", + "iopub.status.busy": "2024-08-26T15:55:04.729194Z", + "iopub.status.idle": "2024-08-26T15:55:05.972664Z", + "shell.execute_reply": "2024-08-26T15:55:05.972009Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:35.000634Z", - "iopub.status.busy": "2024-08-22T00:57:35.000050Z", - "iopub.status.idle": "2024-08-22T00:57:35.003306Z", - "shell.execute_reply": "2024-08-22T00:57:35.002701Z" + "iopub.execute_input": "2024-08-26T15:55:05.975289Z", + "iopub.status.busy": "2024-08-26T15:55:05.974977Z", + "iopub.status.idle": "2024-08-26T15:55:05.977882Z", + "shell.execute_reply": "2024-08-26T15:55:05.977411Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:35.005442Z", - "iopub.status.busy": "2024-08-22T00:57:35.005252Z", - "iopub.status.idle": "2024-08-22T00:57:35.017470Z", - "shell.execute_reply": "2024-08-22T00:57:35.016971Z" + "iopub.execute_input": "2024-08-26T15:55:05.980109Z", + "iopub.status.busy": "2024-08-26T15:55:05.979765Z", + "iopub.status.idle": "2024-08-26T15:55:05.991753Z", + "shell.execute_reply": "2024-08-26T15:55:05.991284Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:35.019686Z", - "iopub.status.busy": "2024-08-22T00:57:35.019361Z", - "iopub.status.idle": "2024-08-22T00:57:40.187982Z", - "shell.execute_reply": "2024-08-22T00:57:40.187372Z" + "iopub.execute_input": "2024-08-26T15:55:05.993825Z", + "iopub.status.busy": "2024-08-26T15:55:05.993487Z", + "iopub.status.idle": "2024-08-26T15:55:11.009786Z", + "shell.execute_reply": "2024-08-26T15:55:11.009261Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index 8113eac75..b8751c435 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -831,13 +831,13 @@

How can I find label issues in big datasets with limited memory?
-
+
-
+
@@ -1702,7 +1702,7 @@

Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

Professional support and services are also available from our ML experts, learn more by emailing: team@cleanlab.ai

diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index cb4570e93..cd7e6f125 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:42.610884Z", - "iopub.status.busy": "2024-08-22T00:57:42.610706Z", - "iopub.status.idle": "2024-08-22T00:57:43.851649Z", - "shell.execute_reply": "2024-08-22T00:57:43.851063Z" + "iopub.execute_input": "2024-08-26T15:55:13.442030Z", + "iopub.status.busy": "2024-08-26T15:55:13.441851Z", + "iopub.status.idle": "2024-08-26T15:55:14.631486Z", + "shell.execute_reply": "2024-08-26T15:55:14.630850Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:43.854466Z", - "iopub.status.busy": "2024-08-22T00:57:43.854029Z", - "iopub.status.idle": "2024-08-22T00:57:43.857758Z", - "shell.execute_reply": "2024-08-22T00:57:43.857152Z" + "iopub.execute_input": "2024-08-26T15:55:14.634321Z", + "iopub.status.busy": "2024-08-26T15:55:14.633972Z", + "iopub.status.idle": "2024-08-26T15:55:14.637564Z", + "shell.execute_reply": "2024-08-26T15:55:14.637000Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:43.860063Z", - "iopub.status.busy": "2024-08-22T00:57:43.859740Z", - "iopub.status.idle": "2024-08-22T00:57:47.464490Z", - "shell.execute_reply": "2024-08-22T00:57:47.463780Z" + "iopub.execute_input": "2024-08-26T15:55:14.639738Z", + "iopub.status.busy": "2024-08-26T15:55:14.639415Z", + "iopub.status.idle": "2024-08-26T15:55:18.097283Z", + "shell.execute_reply": "2024-08-26T15:55:18.096607Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:47.467817Z", - "iopub.status.busy": "2024-08-22T00:57:47.467109Z", - "iopub.status.idle": "2024-08-22T00:57:47.517612Z", - "shell.execute_reply": "2024-08-22T00:57:47.516921Z" + "iopub.execute_input": "2024-08-26T15:55:18.100613Z", + "iopub.status.busy": "2024-08-26T15:55:18.099778Z", + "iopub.status.idle": "2024-08-26T15:55:18.147131Z", + "shell.execute_reply": "2024-08-26T15:55:18.146332Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:47.520546Z", - "iopub.status.busy": "2024-08-22T00:57:47.519981Z", - "iopub.status.idle": "2024-08-22T00:57:47.569956Z", - "shell.execute_reply": "2024-08-22T00:57:47.569234Z" + "iopub.execute_input": "2024-08-26T15:55:18.149918Z", + "iopub.status.busy": "2024-08-26T15:55:18.149659Z", + "iopub.status.idle": "2024-08-26T15:55:18.194613Z", + "shell.execute_reply": "2024-08-26T15:55:18.193960Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:47.572775Z", - "iopub.status.busy": "2024-08-22T00:57:47.572383Z", - "iopub.status.idle": "2024-08-22T00:57:47.575669Z", - "shell.execute_reply": "2024-08-22T00:57:47.575176Z" + "iopub.execute_input": "2024-08-26T15:55:18.197370Z", + "iopub.status.busy": "2024-08-26T15:55:18.196976Z", + "iopub.status.idle": "2024-08-26T15:55:18.200210Z", + "shell.execute_reply": "2024-08-26T15:55:18.199730Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:47.577765Z", - "iopub.status.busy": "2024-08-22T00:57:47.577404Z", - "iopub.status.idle": "2024-08-22T00:57:47.580676Z", - "shell.execute_reply": "2024-08-22T00:57:47.580224Z" + "iopub.execute_input": "2024-08-26T15:55:18.202169Z", + "iopub.status.busy": "2024-08-26T15:55:18.201853Z", + "iopub.status.idle": "2024-08-26T15:55:18.204443Z", + "shell.execute_reply": "2024-08-26T15:55:18.204003Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:47.583002Z", - "iopub.status.busy": "2024-08-22T00:57:47.582658Z", - "iopub.status.idle": "2024-08-22T00:57:47.614338Z", - "shell.execute_reply": "2024-08-22T00:57:47.613742Z" + "iopub.execute_input": "2024-08-26T15:55:18.206634Z", + "iopub.status.busy": "2024-08-26T15:55:18.206299Z", + "iopub.status.idle": "2024-08-26T15:55:18.234060Z", + "shell.execute_reply": "2024-08-26T15:55:18.233470Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b4dfbae9b66e4317b1bec798bf1a817e", + "model_id": "2a2af44ac76147299114dc626eee43c4", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7fb77c265a494015a87714395ac0d864", + "model_id": "7ca424fc2c6645d28c417390b61079d0", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:47.616712Z", - "iopub.status.busy": "2024-08-22T00:57:47.616290Z", - "iopub.status.idle": "2024-08-22T00:57:47.623320Z", - "shell.execute_reply": "2024-08-22T00:57:47.622778Z" + "iopub.execute_input": "2024-08-26T15:55:18.239779Z", + "iopub.status.busy": "2024-08-26T15:55:18.239275Z", + "iopub.status.idle": "2024-08-26T15:55:18.246226Z", + "shell.execute_reply": "2024-08-26T15:55:18.245812Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:47.625416Z", - "iopub.status.busy": "2024-08-22T00:57:47.625071Z", - "iopub.status.idle": "2024-08-22T00:57:47.628672Z", - "shell.execute_reply": "2024-08-22T00:57:47.628199Z" + "iopub.execute_input": "2024-08-26T15:55:18.248479Z", + "iopub.status.busy": "2024-08-26T15:55:18.248030Z", + "iopub.status.idle": "2024-08-26T15:55:18.251730Z", + "shell.execute_reply": "2024-08-26T15:55:18.251287Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:47.630748Z", - "iopub.status.busy": "2024-08-22T00:57:47.630412Z", - "iopub.status.idle": "2024-08-22T00:57:47.636956Z", - "shell.execute_reply": "2024-08-22T00:57:47.636477Z" + "iopub.execute_input": "2024-08-26T15:55:18.253884Z", + "iopub.status.busy": "2024-08-26T15:55:18.253487Z", + "iopub.status.idle": "2024-08-26T15:55:18.260069Z", + "shell.execute_reply": "2024-08-26T15:55:18.259540Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:47.638951Z", - "iopub.status.busy": "2024-08-22T00:57:47.638629Z", - "iopub.status.idle": "2024-08-22T00:57:47.684622Z", - "shell.execute_reply": "2024-08-22T00:57:47.683762Z" + "iopub.execute_input": "2024-08-26T15:55:18.262054Z", + "iopub.status.busy": "2024-08-26T15:55:18.261730Z", + "iopub.status.idle": "2024-08-26T15:55:18.307972Z", + "shell.execute_reply": "2024-08-26T15:55:18.307332Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:47.687781Z", - "iopub.status.busy": "2024-08-22T00:57:47.687573Z", - "iopub.status.idle": "2024-08-22T00:57:47.742110Z", - "shell.execute_reply": "2024-08-22T00:57:47.741318Z" + "iopub.execute_input": "2024-08-26T15:55:18.310629Z", + "iopub.status.busy": "2024-08-26T15:55:18.310268Z", + "iopub.status.idle": "2024-08-26T15:55:18.357760Z", + "shell.execute_reply": "2024-08-26T15:55:18.357031Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:47.744852Z", - "iopub.status.busy": "2024-08-22T00:57:47.744593Z", - "iopub.status.idle": "2024-08-22T00:57:47.892023Z", - "shell.execute_reply": "2024-08-22T00:57:47.891339Z" + "iopub.execute_input": "2024-08-26T15:55:18.360787Z", + "iopub.status.busy": "2024-08-26T15:55:18.360523Z", + "iopub.status.idle": "2024-08-26T15:55:18.502295Z", + "shell.execute_reply": "2024-08-26T15:55:18.501633Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:47.894938Z", - "iopub.status.busy": "2024-08-22T00:57:47.894160Z", - "iopub.status.idle": "2024-08-22T00:57:50.946494Z", - "shell.execute_reply": "2024-08-22T00:57:50.945815Z" + "iopub.execute_input": "2024-08-26T15:55:18.505049Z", + "iopub.status.busy": "2024-08-26T15:55:18.504411Z", + "iopub.status.idle": "2024-08-26T15:55:21.592362Z", + "shell.execute_reply": "2024-08-26T15:55:21.591759Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:50.948948Z", - "iopub.status.busy": "2024-08-22T00:57:50.948534Z", - "iopub.status.idle": "2024-08-22T00:57:51.006518Z", - "shell.execute_reply": "2024-08-22T00:57:51.005896Z" + "iopub.execute_input": "2024-08-26T15:55:21.594962Z", + "iopub.status.busy": "2024-08-26T15:55:21.594522Z", + "iopub.status.idle": "2024-08-26T15:55:21.655071Z", + "shell.execute_reply": "2024-08-26T15:55:21.654503Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:51.008907Z", - "iopub.status.busy": "2024-08-22T00:57:51.008539Z", - "iopub.status.idle": "2024-08-22T00:57:51.051812Z", - "shell.execute_reply": "2024-08-22T00:57:51.051202Z" + "iopub.execute_input": "2024-08-26T15:55:21.657359Z", + "iopub.status.busy": "2024-08-26T15:55:21.656975Z", + "iopub.status.idle": "2024-08-26T15:55:21.701256Z", + "shell.execute_reply": "2024-08-26T15:55:21.700663Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "e7e1e674", + "id": "bbc89480", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "9fad17a4", + "id": "5d407ba9", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "7fda8245", + "id": "a03d9969", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "f5ca4f3b", + "id": "13c020d7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:51.054293Z", - "iopub.status.busy": "2024-08-22T00:57:51.053908Z", - "iopub.status.idle": "2024-08-22T00:57:51.061964Z", - "shell.execute_reply": "2024-08-22T00:57:51.061389Z" + "iopub.execute_input": "2024-08-26T15:55:21.703794Z", + "iopub.status.busy": "2024-08-26T15:55:21.703579Z", + "iopub.status.idle": "2024-08-26T15:55:21.712036Z", + "shell.execute_reply": "2024-08-26T15:55:21.711478Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "20e041ce", + "id": "72e010be", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "adde0816", + "id": "1114ac9d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:51.064258Z", - "iopub.status.busy": "2024-08-22T00:57:51.063885Z", - "iopub.status.idle": "2024-08-22T00:57:51.084105Z", - "shell.execute_reply": "2024-08-22T00:57:51.083514Z" + "iopub.execute_input": "2024-08-26T15:55:21.714247Z", + "iopub.status.busy": "2024-08-26T15:55:21.714055Z", + "iopub.status.idle": "2024-08-26T15:55:21.734317Z", + "shell.execute_reply": "2024-08-26T15:55:21.733774Z" } }, "outputs": [ @@ -1521,13 +1521,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "ec1e0535", + "id": "3c29551d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:51.086315Z", - "iopub.status.busy": "2024-08-22T00:57:51.086123Z", - "iopub.status.idle": "2024-08-22T00:57:51.089431Z", - "shell.execute_reply": "2024-08-22T00:57:51.088885Z" + "iopub.execute_input": "2024-08-26T15:55:21.736466Z", + "iopub.status.busy": "2024-08-26T15:55:21.736265Z", + "iopub.status.idle": "2024-08-26T15:55:21.739835Z", + "shell.execute_reply": "2024-08-26T15:55:21.739353Z" } }, "outputs": [ @@ -1622,87 +1622,113 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0329cfe9383d4e1b96bd432c82142245": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f33bf2802f1244d5bd2543993e32197c", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a94b1b9e37f442c6a62e6537d60652c2", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "082a8f0b286f4c309abb0840e34a627d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1bde9c97c5b44d2f88d5c748df01129b": { - "model_module": "@jupyter-widgets/controls", + "05a2244cf3ec4de397f55f99105338cb": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "39b0baeebaef438a9f48a77a56e482b8": { - "model_module": "@jupyter-widgets/controls", + "1438b903a790497086e14479b9616dc7": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "39ccc21d964248818f5a939aa70cea5d": { + "1c6eaa0577094c9a9006e09c722e5ff6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1717,87 +1743,83 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a4db6cf1a05a4e0e9780660dcdefd37b", + "layout": "IPY_MODEL_50d2ce3a7ac34f579038361d07764343", "placeholder": "​", - "style": "IPY_MODEL_7329bed1c57045e19389a059380b5e22", + "style": "IPY_MODEL_bbfc6ad0bb8345c58d4b74e639515d30", "tabbable": null, "tooltip": null, "value": "number of examples processed for estimating thresholds: " } }, - "409c8825087648b79a3a616b6b46a241": { + "2a2af44ac76147299114dc626eee43c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7fdecf7730684a2aaa15fad95d76d518", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e1bb5f338e994b52ac0bdd80beac87f5", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1c6eaa0577094c9a9006e09c722e5ff6", + "IPY_MODEL_983216f51406483891526ab9457a17fe", + "IPY_MODEL_bbfb0b9ec3bf49f1aa6f762e6404248b" + ], + "layout": "IPY_MODEL_1438b903a790497086e14479b9616dc7", "tabbable": null, - "tooltip": null, - "value": 50.0 + "tooltip": null } }, - "41b1360bc3e14a66afa6deb0587f9cf9": { + "35b5b5e73d824538b702d11aa4afe705": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4baeaa0a49e3435e849051d246b3f606", - "placeholder": "​", - "style": "IPY_MODEL_1bde9c97c5b44d2f88d5c748df01129b", + "layout": "IPY_MODEL_8a0ce1dd3c544ef18d0d8f90a54ae31c", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fe3712896c7544e98d34ebbe6caa7cab", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: " + "value": 50.0 } }, - "4664f3f6a7e2402298c11fb3ac7703e1": { + "3627282d21d8407dbe2fbdf4a83ce601": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_53f0831c801d4c119f104d04eb2a6a1c", - "placeholder": "​", - "style": "IPY_MODEL_39b0baeebaef438a9f48a77a56e482b8", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 907818.71it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4baeaa0a49e3435e849051d246b3f606": { + "425eed607e0b435d951647eabb8299f6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1850,7 +1872,7 @@ "width": null } }, - "518ae90845fb4d7292cecf51c4bd6cf5": { + "50d2ce3a7ac34f579038361d07764343": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1903,60 +1925,31 @@ "width": null } }, - "53f0831c801d4c119f104d04eb2a6a1c": { - "model_module": "@jupyter-widgets/base", + "7ca424fc2c6645d28c417390b61079d0": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9d7157b027c94034baf26f45124303c3", + "IPY_MODEL_35b5b5e73d824538b702d11aa4afe705", + "IPY_MODEL_9ede3fa639214ec08e51faaf6d0cae4e" + ], + "layout": "IPY_MODEL_f628b90d6c5643aaa470e10d15f810a3", + "tabbable": null, + "tooltip": null } }, - "7329bed1c57045e19389a059380b5e22": { + "88eb40450c3847efb49e8e1740619fab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1974,31 +1967,7 @@ "text_color": null } }, - "7fb77c265a494015a87714395ac0d864": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_41b1360bc3e14a66afa6deb0587f9cf9", - "IPY_MODEL_409c8825087648b79a3a616b6b46a241", - "IPY_MODEL_4664f3f6a7e2402298c11fb3ac7703e1" - ], - "layout": "IPY_MODEL_decde023be714cc58ef54bba7da2c0c6", - "tabbable": null, - "tooltip": null - } - }, - "7fdecf7730684a2aaa15fad95d76d518": { + "8a0ce1dd3c544ef18d0d8f90a54ae31c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2051,7 +2020,7 @@ "width": null } }, - "a4db6cf1a05a4e0e9780660dcdefd37b": { + "8c67a318d7604499be565bddd5519457": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2104,23 +2073,33 @@ "width": null } }, - "a94b1b9e37f442c6a62e6537d60652c2": { + "983216f51406483891526ab9457a17fe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8c67a318d7604499be565bddd5519457", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f221605dbe384754a74ba4a04dd33716", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "b10e3db1eec64ddc960bb60e6776bd3c": { + "9d7157b027c94034baf26f45124303c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2135,39 +2114,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d6d27c19311f4c39940bd48fa5f43ab6", + "layout": "IPY_MODEL_afc69967643547ac9a1e98a88efb89e6", "placeholder": "​", - "style": "IPY_MODEL_082a8f0b286f4c309abb0840e34a627d", + "style": "IPY_MODEL_88eb40450c3847efb49e8e1740619fab", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 847317.02it/s]" + "value": "number of examples processed for checking labels: " } }, - "b4dfbae9b66e4317b1bec798bf1a817e": { + "9ede3fa639214ec08e51faaf6d0cae4e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_39ccc21d964248818f5a939aa70cea5d", - "IPY_MODEL_0329cfe9383d4e1b96bd432c82142245", - "IPY_MODEL_b10e3db1eec64ddc960bb60e6776bd3c" - ], - "layout": "IPY_MODEL_518ae90845fb4d7292cecf51c4bd6cf5", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_05a2244cf3ec4de397f55f99105338cb", + "placeholder": "​", + "style": "IPY_MODEL_3627282d21d8407dbe2fbdf4a83ce601", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1264868.52it/s]" } }, - "d6d27c19311f4c39940bd48fa5f43ab6": { + "afc69967643547ac9a1e98a88efb89e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2220,60 +2198,66 @@ "width": null } }, - "decde023be714cc58ef54bba7da2c0c6": { - "model_module": "@jupyter-widgets/base", + "bbfb0b9ec3bf49f1aa6f762e6404248b": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_425eed607e0b435d951647eabb8299f6", + "placeholder": "​", + "style": "IPY_MODEL_e967ae1bd66a4661884711a6b8868e6e", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 899621.22it/s]" + } + }, + "bbfc6ad0bb8345c58d4b74e639515d30": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e1bb5f338e994b52ac0bdd80beac87f5": { + "e967ae1bd66a4661884711a6b8868e6e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f221605dbe384754a74ba4a04dd33716": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2289,7 +2273,7 @@ "description_width": "" } }, - "f33bf2802f1244d5bd2543993e32197c": { + "f628b90d6c5643aaa470e10d15f810a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2341,6 +2325,22 @@ "visibility": null, "width": null } + }, + "fe3712896c7544e98d34ebbe6caa7cab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } } }, "version_major": 2, diff --git a/master/tutorials/improving_ml_performance.ipynb b/master/tutorials/improving_ml_performance.ipynb index 0554dcbde..facf398f8 100644 --- a/master/tutorials/improving_ml_performance.ipynb +++ b/master/tutorials/improving_ml_performance.ipynb @@ -60,10 +60,10 @@ "id": "2d638465", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:54.678446Z", - "iopub.status.busy": "2024-08-22T00:57:54.678278Z", - "iopub.status.idle": "2024-08-22T00:57:55.905300Z", - "shell.execute_reply": "2024-08-22T00:57:55.904629Z" + "iopub.execute_input": "2024-08-26T15:55:25.362605Z", + "iopub.status.busy": "2024-08-26T15:55:25.362435Z", + "iopub.status.idle": "2024-08-26T15:55:26.562131Z", + "shell.execute_reply": "2024-08-26T15:55:26.561615Z" }, "nbsphinx": "hidden" }, @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -99,10 +99,10 @@ "id": "b0bbf715-47c6-44ea-b15e-89800e62ee04", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:55.908279Z", - "iopub.status.busy": "2024-08-22T00:57:55.907655Z", - "iopub.status.idle": "2024-08-22T00:57:55.911629Z", - "shell.execute_reply": "2024-08-22T00:57:55.911154Z" + "iopub.execute_input": "2024-08-26T15:55:26.564541Z", + "iopub.status.busy": "2024-08-26T15:55:26.564234Z", + "iopub.status.idle": "2024-08-26T15:55:26.568038Z", + "shell.execute_reply": "2024-08-26T15:55:26.567585Z" } }, "outputs": [], @@ -140,10 +140,10 @@ "id": "c58f8015-d051-411c-9e03-5659cf3ad956", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:55.913869Z", - "iopub.status.busy": "2024-08-22T00:57:55.913501Z", - "iopub.status.idle": "2024-08-22T00:57:56.113561Z", - "shell.execute_reply": "2024-08-22T00:57:56.112914Z" + "iopub.execute_input": "2024-08-26T15:55:26.569923Z", + "iopub.status.busy": "2024-08-26T15:55:26.569743Z", + "iopub.status.idle": "2024-08-26T15:55:27.245464Z", + "shell.execute_reply": "2024-08-26T15:55:27.244976Z" } }, "outputs": [ @@ -273,10 +273,10 @@ "id": "1b5f50e6-d125-4e61-b63e-4004f0c9099a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:56.115925Z", - "iopub.status.busy": "2024-08-22T00:57:56.115720Z", - "iopub.status.idle": "2024-08-22T00:57:56.122212Z", - "shell.execute_reply": "2024-08-22T00:57:56.121691Z" + "iopub.execute_input": "2024-08-26T15:55:27.247644Z", + "iopub.status.busy": "2024-08-26T15:55:27.247303Z", + "iopub.status.idle": "2024-08-26T15:55:27.253437Z", + "shell.execute_reply": "2024-08-26T15:55:27.252957Z" } }, "outputs": [], @@ -312,10 +312,10 @@ "id": "a36c21e9-1c32-4df9-bd87-fffeb8c2175f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:56.124447Z", - "iopub.status.busy": "2024-08-22T00:57:56.124227Z", - "iopub.status.idle": "2024-08-22T00:57:56.132289Z", - "shell.execute_reply": "2024-08-22T00:57:56.131662Z" + "iopub.execute_input": "2024-08-26T15:55:27.255430Z", + "iopub.status.busy": "2024-08-26T15:55:27.255252Z", + "iopub.status.idle": "2024-08-26T15:55:27.262372Z", + "shell.execute_reply": "2024-08-26T15:55:27.261906Z" } }, "outputs": [ @@ -418,10 +418,10 @@ "id": "5f856a3a-8aae-4836-b146-9ab68d8d1c7a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:56.134600Z", - "iopub.status.busy": "2024-08-22T00:57:56.134244Z", - "iopub.status.idle": "2024-08-22T00:57:56.139766Z", - "shell.execute_reply": "2024-08-22T00:57:56.139170Z" + "iopub.execute_input": "2024-08-26T15:55:27.264244Z", + "iopub.status.busy": "2024-08-26T15:55:27.264075Z", + "iopub.status.idle": "2024-08-26T15:55:27.268926Z", + "shell.execute_reply": "2024-08-26T15:55:27.268460Z" } }, "outputs": [], @@ -449,10 +449,10 @@ "id": "46275634-da56-4e58-9061-8108be2b585d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:56.142002Z", - "iopub.status.busy": "2024-08-22T00:57:56.141586Z", - "iopub.status.idle": "2024-08-22T00:57:56.147818Z", - "shell.execute_reply": "2024-08-22T00:57:56.147224Z" + "iopub.execute_input": "2024-08-26T15:55:27.271052Z", + "iopub.status.busy": "2024-08-26T15:55:27.270697Z", + "iopub.status.idle": "2024-08-26T15:55:27.276370Z", + "shell.execute_reply": "2024-08-26T15:55:27.275886Z" } }, "outputs": [], @@ -488,10 +488,10 @@ "id": "769c4c5e-a7ff-4e02-bee5-2b2e676aec14", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:56.150054Z", - "iopub.status.busy": "2024-08-22T00:57:56.149618Z", - "iopub.status.idle": "2024-08-22T00:57:56.154128Z", - "shell.execute_reply": "2024-08-22T00:57:56.153522Z" + "iopub.execute_input": "2024-08-26T15:55:27.278393Z", + "iopub.status.busy": "2024-08-26T15:55:27.278052Z", + "iopub.status.idle": "2024-08-26T15:55:27.281895Z", + "shell.execute_reply": "2024-08-26T15:55:27.281433Z" } }, "outputs": [], @@ -506,10 +506,10 @@ "id": "7ac47c3d-9e87-45b7-9064-bfa45578872e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:56.156366Z", - "iopub.status.busy": "2024-08-22T00:57:56.156014Z", - "iopub.status.idle": "2024-08-22T00:57:56.223718Z", - "shell.execute_reply": "2024-08-22T00:57:56.223102Z" + "iopub.execute_input": "2024-08-26T15:55:27.283963Z", + "iopub.status.busy": "2024-08-26T15:55:27.283628Z", + "iopub.status.idle": "2024-08-26T15:55:27.349424Z", + "shell.execute_reply": "2024-08-26T15:55:27.348889Z" } }, "outputs": [ @@ -609,10 +609,10 @@ "id": "6cef169e-d15b-4d18-9cb7-8ea589557e6b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:56.226253Z", - "iopub.status.busy": "2024-08-22T00:57:56.226033Z", - "iopub.status.idle": "2024-08-22T00:57:56.237138Z", - "shell.execute_reply": "2024-08-22T00:57:56.236554Z" + "iopub.execute_input": "2024-08-26T15:55:27.352059Z", + "iopub.status.busy": "2024-08-26T15:55:27.351755Z", + "iopub.status.idle": "2024-08-26T15:55:27.362726Z", + "shell.execute_reply": "2024-08-26T15:55:27.362212Z" } }, "outputs": [ @@ -724,10 +724,10 @@ "id": "b68e0418-86cf-431f-9107-2dd0a310ca42", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:56.239616Z", - "iopub.status.busy": "2024-08-22T00:57:56.239406Z", - "iopub.status.idle": "2024-08-22T00:57:56.262120Z", - "shell.execute_reply": "2024-08-22T00:57:56.261587Z" + "iopub.execute_input": "2024-08-26T15:55:27.365338Z", + "iopub.status.busy": "2024-08-26T15:55:27.364980Z", + "iopub.status.idle": "2024-08-26T15:55:27.385773Z", + "shell.execute_reply": "2024-08-26T15:55:27.385252Z" } }, "outputs": [ @@ -931,10 +931,10 @@ "id": "0e9bd131-429f-48af-b4fc-ed8b907950b9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:56.264643Z", - "iopub.status.busy": "2024-08-22T00:57:56.264252Z", - "iopub.status.idle": "2024-08-22T00:57:56.268465Z", - "shell.execute_reply": "2024-08-22T00:57:56.267963Z" + "iopub.execute_input": "2024-08-26T15:55:27.388960Z", + "iopub.status.busy": "2024-08-26T15:55:27.388027Z", + "iopub.status.idle": "2024-08-26T15:55:27.394001Z", + "shell.execute_reply": "2024-08-26T15:55:27.393500Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "id": "e72320ec-7792-4347-b2fb-630f2519127c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:56.271777Z", - "iopub.status.busy": "2024-08-22T00:57:56.270822Z", - "iopub.status.idle": "2024-08-22T00:57:56.277404Z", - "shell.execute_reply": "2024-08-22T00:57:56.276872Z" + "iopub.execute_input": "2024-08-26T15:55:27.397538Z", + "iopub.status.busy": "2024-08-26T15:55:27.396613Z", + "iopub.status.idle": "2024-08-26T15:55:27.402791Z", + "shell.execute_reply": "2024-08-26T15:55:27.402265Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "id": "8520ba4a-3ad6-408a-b377-3f47c32d745a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:56.281174Z", - "iopub.status.busy": "2024-08-22T00:57:56.280234Z", - "iopub.status.idle": "2024-08-22T00:57:56.290881Z", - "shell.execute_reply": "2024-08-22T00:57:56.290355Z" + "iopub.execute_input": "2024-08-26T15:55:27.406271Z", + "iopub.status.busy": "2024-08-26T15:55:27.405351Z", + "iopub.status.idle": "2024-08-26T15:55:27.416136Z", + "shell.execute_reply": "2024-08-26T15:55:27.415710Z" } }, "outputs": [ @@ -1205,10 +1205,10 @@ "id": "3c002665-c48b-4f04-91f7-ad112a49efc7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:56.292998Z", - "iopub.status.busy": "2024-08-22T00:57:56.292812Z", - "iopub.status.idle": "2024-08-22T00:57:56.297422Z", - "shell.execute_reply": "2024-08-22T00:57:56.296985Z" + "iopub.execute_input": "2024-08-26T15:55:27.418270Z", + "iopub.status.busy": "2024-08-26T15:55:27.417932Z", + "iopub.status.idle": "2024-08-26T15:55:27.422255Z", + "shell.execute_reply": "2024-08-26T15:55:27.421825Z" } }, "outputs": [], @@ -1234,10 +1234,10 @@ "id": "36319f39-f563-4f63-913f-821373180350", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:56.299496Z", - "iopub.status.busy": "2024-08-22T00:57:56.299158Z", - "iopub.status.idle": "2024-08-22T00:57:56.412263Z", - "shell.execute_reply": "2024-08-22T00:57:56.411665Z" + "iopub.execute_input": "2024-08-26T15:55:27.424266Z", + "iopub.status.busy": "2024-08-26T15:55:27.423929Z", + "iopub.status.idle": "2024-08-26T15:55:27.536867Z", + "shell.execute_reply": "2024-08-26T15:55:27.536318Z" } }, "outputs": [ @@ -1711,10 +1711,10 @@ "id": "044c0eb1-299a-4851-b1bf-268d5bce56c1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:56.414907Z", - "iopub.status.busy": "2024-08-22T00:57:56.414445Z", - "iopub.status.idle": "2024-08-22T00:57:56.422189Z", - "shell.execute_reply": "2024-08-22T00:57:56.421596Z" + "iopub.execute_input": "2024-08-26T15:55:27.539165Z", + "iopub.status.busy": "2024-08-26T15:55:27.538730Z", + "iopub.status.idle": "2024-08-26T15:55:27.545308Z", + "shell.execute_reply": "2024-08-26T15:55:27.544696Z" } }, "outputs": [], @@ -1738,10 +1738,10 @@ "id": "c43df278-abfe-40e5-9d48-2df3efea9379", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:56.425019Z", - "iopub.status.busy": "2024-08-22T00:57:56.424557Z", - "iopub.status.idle": "2024-08-22T00:57:58.587634Z", - "shell.execute_reply": "2024-08-22T00:57:58.586925Z" + "iopub.execute_input": "2024-08-26T15:55:27.547840Z", + "iopub.status.busy": "2024-08-26T15:55:27.547449Z", + "iopub.status.idle": "2024-08-26T15:55:29.681557Z", + "shell.execute_reply": "2024-08-26T15:55:29.680908Z" } }, "outputs": [ @@ -1953,10 +1953,10 @@ "id": "77c7f776-54b3-45b5-9207-715d6d2e90c0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:58.592032Z", - "iopub.status.busy": "2024-08-22T00:57:58.590857Z", - "iopub.status.idle": "2024-08-22T00:57:58.607235Z", - "shell.execute_reply": "2024-08-22T00:57:58.606675Z" + "iopub.execute_input": "2024-08-26T15:55:29.684527Z", + "iopub.status.busy": "2024-08-26T15:55:29.684058Z", + "iopub.status.idle": "2024-08-26T15:55:29.697584Z", + "shell.execute_reply": "2024-08-26T15:55:29.697064Z" } }, "outputs": [ @@ -2073,10 +2073,10 @@ "id": "7e218d04-0729-4f42-b264-51c73601ebe6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:58.611198Z", - "iopub.status.busy": "2024-08-22T00:57:58.610211Z", - "iopub.status.idle": "2024-08-22T00:57:58.614535Z", - "shell.execute_reply": "2024-08-22T00:57:58.613992Z" + "iopub.execute_input": "2024-08-26T15:55:29.700253Z", + "iopub.status.busy": "2024-08-26T15:55:29.699924Z", + "iopub.status.idle": "2024-08-26T15:55:29.702768Z", + "shell.execute_reply": "2024-08-26T15:55:29.702242Z" } }, "outputs": [], @@ -2090,10 +2090,10 @@ "id": "7e2bdb41-321e-4929-aa01-1f60948b9e8b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:58.618346Z", - "iopub.status.busy": "2024-08-22T00:57:58.617356Z", - "iopub.status.idle": "2024-08-22T00:57:58.623518Z", - "shell.execute_reply": "2024-08-22T00:57:58.622973Z" + "iopub.execute_input": "2024-08-26T15:55:29.705381Z", + "iopub.status.busy": "2024-08-26T15:55:29.704977Z", + "iopub.status.idle": "2024-08-26T15:55:29.709647Z", + "shell.execute_reply": "2024-08-26T15:55:29.709138Z" } }, "outputs": [], @@ -2117,10 +2117,10 @@ "id": "5ce2d89f-e832-448d-bfac-9941da15c895", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:58.627443Z", - "iopub.status.busy": "2024-08-22T00:57:58.626472Z", - "iopub.status.idle": "2024-08-22T00:57:58.654546Z", - "shell.execute_reply": "2024-08-22T00:57:58.653997Z" + "iopub.execute_input": "2024-08-26T15:55:29.712190Z", + "iopub.status.busy": "2024-08-26T15:55:29.711867Z", + "iopub.status.idle": "2024-08-26T15:55:29.728908Z", + "shell.execute_reply": "2024-08-26T15:55:29.728350Z" } }, "outputs": [ @@ -2160,10 +2160,10 @@ "id": "9f437756-112e-4531-84fc-6ceadd0c9ef5", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:58.657290Z", - "iopub.status.busy": "2024-08-22T00:57:58.657084Z", - "iopub.status.idle": "2024-08-22T00:57:59.176333Z", - "shell.execute_reply": "2024-08-22T00:57:59.175770Z" + "iopub.execute_input": "2024-08-26T15:55:29.731883Z", + "iopub.status.busy": "2024-08-26T15:55:29.731381Z", + "iopub.status.idle": "2024-08-26T15:55:30.247384Z", + "shell.execute_reply": "2024-08-26T15:55:30.246765Z" } }, "outputs": [], @@ -2194,10 +2194,10 @@ "id": "707625f6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:59.179860Z", - "iopub.status.busy": "2024-08-22T00:57:59.178944Z", - "iopub.status.idle": "2024-08-22T00:57:59.312888Z", - "shell.execute_reply": "2024-08-22T00:57:59.312233Z" + "iopub.execute_input": "2024-08-26T15:55:30.250443Z", + "iopub.status.busy": "2024-08-26T15:55:30.250031Z", + "iopub.status.idle": "2024-08-26T15:55:30.393213Z", + "shell.execute_reply": "2024-08-26T15:55:30.392572Z" } }, "outputs": [ @@ -2408,10 +2408,10 @@ "id": "25afe46c-a521-483c-b168-728c76d970dc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:59.316520Z", - "iopub.status.busy": "2024-08-22T00:57:59.315550Z", - "iopub.status.idle": "2024-08-22T00:57:59.324442Z", - "shell.execute_reply": "2024-08-22T00:57:59.323929Z" + "iopub.execute_input": "2024-08-26T15:55:30.397049Z", + "iopub.status.busy": "2024-08-26T15:55:30.395902Z", + "iopub.status.idle": "2024-08-26T15:55:30.405345Z", + "shell.execute_reply": "2024-08-26T15:55:30.404822Z" } }, "outputs": [ @@ -2441,10 +2441,10 @@ "id": "6efcf06f-cc40-4964-87df-5204d3b1b9d4", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:59.327983Z", - "iopub.status.busy": "2024-08-22T00:57:59.327042Z", - "iopub.status.idle": "2024-08-22T00:57:59.335060Z", - "shell.execute_reply": "2024-08-22T00:57:59.334554Z" + "iopub.execute_input": "2024-08-26T15:55:30.409099Z", + "iopub.status.busy": "2024-08-26T15:55:30.408156Z", + "iopub.status.idle": "2024-08-26T15:55:30.416284Z", + "shell.execute_reply": "2024-08-26T15:55:30.415770Z" } }, "outputs": [ @@ -2477,10 +2477,10 @@ "id": "7bc87d72-bbd5-4ed2-bc38-2218862ddfbd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:59.338559Z", - "iopub.status.busy": "2024-08-22T00:57:59.337614Z", - "iopub.status.idle": "2024-08-22T00:57:59.345005Z", - "shell.execute_reply": "2024-08-22T00:57:59.344499Z" + "iopub.execute_input": "2024-08-26T15:55:30.419835Z", + "iopub.status.busy": "2024-08-26T15:55:30.418896Z", + "iopub.status.idle": "2024-08-26T15:55:30.426289Z", + "shell.execute_reply": "2024-08-26T15:55:30.425777Z" } }, "outputs": [ @@ -2513,10 +2513,10 @@ "id": "9c70be3e-0ba2-4e3e-8c50-359d402ca1fe", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:59.348493Z", - "iopub.status.busy": "2024-08-22T00:57:59.347558Z", - "iopub.status.idle": "2024-08-22T00:57:59.353708Z", - "shell.execute_reply": "2024-08-22T00:57:59.353183Z" + "iopub.execute_input": "2024-08-26T15:55:30.429821Z", + "iopub.status.busy": "2024-08-26T15:55:30.428890Z", + "iopub.status.idle": "2024-08-26T15:55:30.435057Z", + "shell.execute_reply": "2024-08-26T15:55:30.434526Z" } }, "outputs": [ @@ -2542,10 +2542,10 @@ "id": "08080458-0cd7-447d-80e6-384cb8d31eaf", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:59.356657Z", - "iopub.status.busy": "2024-08-22T00:57:59.355918Z", - "iopub.status.idle": "2024-08-22T00:57:59.360707Z", - "shell.execute_reply": "2024-08-22T00:57:59.360290Z" + "iopub.execute_input": "2024-08-26T15:55:30.436950Z", + "iopub.status.busy": "2024-08-26T15:55:30.436774Z", + "iopub.status.idle": "2024-08-26T15:55:30.441301Z", + "shell.execute_reply": "2024-08-26T15:55:30.440839Z" } }, "outputs": [], @@ -2569,10 +2569,10 @@ "id": "009bb215-4d26-47da-a230-d0ccf4122629", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:59.362969Z", - "iopub.status.busy": "2024-08-22T00:57:59.362790Z", - "iopub.status.idle": "2024-08-22T00:57:59.441102Z", - "shell.execute_reply": "2024-08-22T00:57:59.440534Z" + "iopub.execute_input": "2024-08-26T15:55:30.443236Z", + "iopub.status.busy": "2024-08-26T15:55:30.443059Z", + "iopub.status.idle": "2024-08-26T15:55:30.518439Z", + "shell.execute_reply": "2024-08-26T15:55:30.517913Z" } }, "outputs": [ @@ -3052,10 +3052,10 @@ "id": "dcaeda51-9b24-4c04-889d-7e63563594fc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:59.443901Z", - "iopub.status.busy": "2024-08-22T00:57:59.443719Z", - "iopub.status.idle": "2024-08-22T00:57:59.453492Z", - "shell.execute_reply": "2024-08-22T00:57:59.452962Z" + "iopub.execute_input": "2024-08-26T15:55:30.521052Z", + "iopub.status.busy": "2024-08-26T15:55:30.520744Z", + "iopub.status.idle": "2024-08-26T15:55:30.530084Z", + "shell.execute_reply": "2024-08-26T15:55:30.529563Z" } }, "outputs": [ @@ -3111,10 +3111,10 @@ "id": "1d92d78d-e4a8-4322-bf38-f5a5dae3bf17", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:59.456203Z", - "iopub.status.busy": "2024-08-22T00:57:59.455995Z", - "iopub.status.idle": "2024-08-22T00:57:59.458840Z", - "shell.execute_reply": "2024-08-22T00:57:59.458384Z" + "iopub.execute_input": "2024-08-26T15:55:30.532628Z", + "iopub.status.busy": "2024-08-26T15:55:30.532282Z", + "iopub.status.idle": "2024-08-26T15:55:30.535145Z", + "shell.execute_reply": "2024-08-26T15:55:30.534554Z" } }, "outputs": [], @@ -3150,10 +3150,10 @@ "id": "941ab2a6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:59.460943Z", - "iopub.status.busy": "2024-08-22T00:57:59.460603Z", - "iopub.status.idle": "2024-08-22T00:57:59.470023Z", - "shell.execute_reply": "2024-08-22T00:57:59.469608Z" + "iopub.execute_input": "2024-08-26T15:55:30.537206Z", + "iopub.status.busy": "2024-08-26T15:55:30.536802Z", + "iopub.status.idle": "2024-08-26T15:55:30.547035Z", + "shell.execute_reply": "2024-08-26T15:55:30.546403Z" } }, "outputs": [], @@ -3261,10 +3261,10 @@ "id": "50666fb9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:59.472171Z", - "iopub.status.busy": "2024-08-22T00:57:59.471830Z", - "iopub.status.idle": "2024-08-22T00:57:59.478461Z", - "shell.execute_reply": "2024-08-22T00:57:59.477995Z" + "iopub.execute_input": "2024-08-26T15:55:30.549375Z", + "iopub.status.busy": "2024-08-26T15:55:30.549191Z", + "iopub.status.idle": "2024-08-26T15:55:30.556029Z", + "shell.execute_reply": "2024-08-26T15:55:30.555553Z" }, "nbsphinx": "hidden" }, @@ -3346,10 +3346,10 @@ "id": "f5aa2883-d20d-481f-a012-fcc7ff8e3e7e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:59.480424Z", - "iopub.status.busy": "2024-08-22T00:57:59.480084Z", - "iopub.status.idle": "2024-08-22T00:57:59.483390Z", - "shell.execute_reply": "2024-08-22T00:57:59.482929Z" + "iopub.execute_input": "2024-08-26T15:55:30.558185Z", + "iopub.status.busy": "2024-08-26T15:55:30.557856Z", + "iopub.status.idle": "2024-08-26T15:55:30.561412Z", + "shell.execute_reply": "2024-08-26T15:55:30.560822Z" } }, "outputs": [], @@ -3373,10 +3373,10 @@ "id": "ce1c0ada-88b1-4654-b43f-3c0b59002979", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:57:59.485320Z", - "iopub.status.busy": "2024-08-22T00:57:59.484997Z", - "iopub.status.idle": "2024-08-22T00:58:03.557913Z", - "shell.execute_reply": "2024-08-22T00:58:03.557348Z" + "iopub.execute_input": "2024-08-26T15:55:30.563623Z", + "iopub.status.busy": "2024-08-26T15:55:30.563290Z", + "iopub.status.idle": "2024-08-26T15:55:34.647728Z", + "shell.execute_reply": "2024-08-26T15:55:34.647124Z" } }, "outputs": [ @@ -3419,10 +3419,10 @@ "id": "3f572acf-31c3-4874-9100-451796e35b06", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:03.560980Z", - "iopub.status.busy": "2024-08-22T00:58:03.560607Z", - "iopub.status.idle": "2024-08-22T00:58:03.564040Z", - "shell.execute_reply": "2024-08-22T00:58:03.563593Z" + "iopub.execute_input": "2024-08-26T15:55:34.650677Z", + "iopub.status.busy": "2024-08-26T15:55:34.650453Z", + "iopub.status.idle": "2024-08-26T15:55:34.653991Z", + "shell.execute_reply": "2024-08-26T15:55:34.653587Z" } }, "outputs": [ @@ -3460,10 +3460,10 @@ "id": "6a025a88", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:03.566400Z", - "iopub.status.busy": "2024-08-22T00:58:03.566073Z", - "iopub.status.idle": "2024-08-22T00:58:03.569081Z", - "shell.execute_reply": "2024-08-22T00:58:03.568574Z" + "iopub.execute_input": "2024-08-26T15:55:34.656080Z", + "iopub.status.busy": "2024-08-26T15:55:34.655702Z", + "iopub.status.idle": "2024-08-26T15:55:34.658385Z", + "shell.execute_reply": "2024-08-26T15:55:34.657946Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index 41e31cd9f..ecc184176 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:06.864823Z", - "iopub.status.busy": "2024-08-22T00:58:06.864644Z", - "iopub.status.idle": "2024-08-22T00:58:08.134855Z", - "shell.execute_reply": "2024-08-22T00:58:08.134264Z" + "iopub.execute_input": "2024-08-26T15:55:38.086130Z", + "iopub.status.busy": "2024-08-26T15:55:38.085966Z", + "iopub.status.idle": "2024-08-26T15:55:39.311143Z", + "shell.execute_reply": "2024-08-26T15:55:39.310564Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:08.137324Z", - "iopub.status.busy": "2024-08-22T00:58:08.137016Z", - "iopub.status.idle": "2024-08-22T00:58:08.322007Z", - "shell.execute_reply": "2024-08-22T00:58:08.321321Z" + "iopub.execute_input": "2024-08-26T15:55:39.313573Z", + "iopub.status.busy": "2024-08-26T15:55:39.313197Z", + "iopub.status.idle": "2024-08-26T15:55:39.493648Z", + "shell.execute_reply": "2024-08-26T15:55:39.493028Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:08.324813Z", - "iopub.status.busy": "2024-08-22T00:58:08.324440Z", - "iopub.status.idle": "2024-08-22T00:58:08.337003Z", - "shell.execute_reply": "2024-08-22T00:58:08.336501Z" + "iopub.execute_input": "2024-08-26T15:55:39.496374Z", + "iopub.status.busy": "2024-08-26T15:55:39.496034Z", + "iopub.status.idle": "2024-08-26T15:55:39.508251Z", + "shell.execute_reply": "2024-08-26T15:55:39.507813Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:08.339284Z", - "iopub.status.busy": "2024-08-22T00:58:08.338910Z", - "iopub.status.idle": "2024-08-22T00:58:08.578457Z", - "shell.execute_reply": "2024-08-22T00:58:08.577856Z" + "iopub.execute_input": "2024-08-26T15:55:39.510455Z", + "iopub.status.busy": "2024-08-26T15:55:39.509993Z", + "iopub.status.idle": "2024-08-26T15:55:39.748733Z", + "shell.execute_reply": "2024-08-26T15:55:39.748087Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:08.580622Z", - "iopub.status.busy": "2024-08-22T00:58:08.580432Z", - "iopub.status.idle": "2024-08-22T00:58:08.606920Z", - "shell.execute_reply": "2024-08-22T00:58:08.606446Z" + "iopub.execute_input": "2024-08-26T15:55:39.751243Z", + "iopub.status.busy": "2024-08-26T15:55:39.750850Z", + "iopub.status.idle": "2024-08-26T15:55:39.777570Z", + "shell.execute_reply": "2024-08-26T15:55:39.777078Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:08.609100Z", - "iopub.status.busy": "2024-08-22T00:58:08.608908Z", - "iopub.status.idle": "2024-08-22T00:58:10.874847Z", - "shell.execute_reply": "2024-08-22T00:58:10.874124Z" + "iopub.execute_input": "2024-08-26T15:55:39.779657Z", + "iopub.status.busy": "2024-08-26T15:55:39.779303Z", + "iopub.status.idle": "2024-08-26T15:55:41.935090Z", + "shell.execute_reply": "2024-08-26T15:55:41.934417Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:10.877222Z", - "iopub.status.busy": "2024-08-22T00:58:10.876865Z", - "iopub.status.idle": "2024-08-22T00:58:10.895538Z", - "shell.execute_reply": "2024-08-22T00:58:10.895035Z" + "iopub.execute_input": "2024-08-26T15:55:41.937632Z", + "iopub.status.busy": "2024-08-26T15:55:41.937283Z", + "iopub.status.idle": "2024-08-26T15:55:41.956016Z", + "shell.execute_reply": "2024-08-26T15:55:41.955557Z" }, "scrolled": true }, @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:10.897974Z", - "iopub.status.busy": "2024-08-22T00:58:10.897480Z", - "iopub.status.idle": "2024-08-22T00:58:12.563607Z", - "shell.execute_reply": "2024-08-22T00:58:12.562979Z" + "iopub.execute_input": "2024-08-26T15:55:41.958182Z", + "iopub.status.busy": "2024-08-26T15:55:41.957880Z", + "iopub.status.idle": "2024-08-26T15:55:43.590550Z", + "shell.execute_reply": "2024-08-26T15:55:43.589949Z" }, "id": "AaHC5MRKjruT" }, @@ -729,10 +729,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:12.566533Z", - "iopub.status.busy": "2024-08-22T00:58:12.565854Z", - "iopub.status.idle": "2024-08-22T00:58:12.580093Z", - "shell.execute_reply": "2024-08-22T00:58:12.579597Z" + "iopub.execute_input": "2024-08-26T15:55:43.593513Z", + "iopub.status.busy": "2024-08-26T15:55:43.592646Z", + "iopub.status.idle": "2024-08-26T15:55:43.606730Z", + "shell.execute_reply": "2024-08-26T15:55:43.606174Z" }, "id": "Wy27rvyhjruU" }, @@ -781,10 +781,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:12.582320Z", - "iopub.status.busy": "2024-08-22T00:58:12.582127Z", - "iopub.status.idle": "2024-08-22T00:58:12.675375Z", - "shell.execute_reply": "2024-08-22T00:58:12.674689Z" + "iopub.execute_input": "2024-08-26T15:55:43.609011Z", + "iopub.status.busy": "2024-08-26T15:55:43.608577Z", + "iopub.status.idle": "2024-08-26T15:55:43.695090Z", + "shell.execute_reply": "2024-08-26T15:55:43.694416Z" }, "id": "Db8YHnyVjruU" }, @@ -891,10 +891,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:12.677968Z", - "iopub.status.busy": "2024-08-22T00:58:12.677707Z", - "iopub.status.idle": "2024-08-22T00:58:12.896383Z", - "shell.execute_reply": "2024-08-22T00:58:12.895774Z" + "iopub.execute_input": "2024-08-26T15:55:43.697856Z", + "iopub.status.busy": "2024-08-26T15:55:43.697324Z", + "iopub.status.idle": "2024-08-26T15:55:43.914049Z", + "shell.execute_reply": "2024-08-26T15:55:43.913315Z" }, "id": "iJqAHuS2jruV" }, @@ -931,10 +931,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:12.898668Z", - "iopub.status.busy": "2024-08-22T00:58:12.898264Z", - "iopub.status.idle": "2024-08-22T00:58:12.915781Z", - "shell.execute_reply": "2024-08-22T00:58:12.915283Z" + "iopub.execute_input": "2024-08-26T15:55:43.916733Z", + "iopub.status.busy": "2024-08-26T15:55:43.916502Z", + "iopub.status.idle": "2024-08-26T15:55:43.934524Z", + "shell.execute_reply": "2024-08-26T15:55:43.933947Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1400,10 +1400,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:12.917912Z", - "iopub.status.busy": "2024-08-22T00:58:12.917719Z", - "iopub.status.idle": "2024-08-22T00:58:12.927513Z", - "shell.execute_reply": "2024-08-22T00:58:12.927064Z" + "iopub.execute_input": "2024-08-26T15:55:43.936771Z", + "iopub.status.busy": "2024-08-26T15:55:43.936316Z", + "iopub.status.idle": "2024-08-26T15:55:43.946229Z", + "shell.execute_reply": "2024-08-26T15:55:43.945703Z" }, "id": "0lonvOYvjruV" }, @@ -1550,10 +1550,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:12.929707Z", - "iopub.status.busy": "2024-08-22T00:58:12.929354Z", - "iopub.status.idle": "2024-08-22T00:58:13.030656Z", - "shell.execute_reply": "2024-08-22T00:58:13.029947Z" + "iopub.execute_input": "2024-08-26T15:55:43.948319Z", + "iopub.status.busy": "2024-08-26T15:55:43.947995Z", + "iopub.status.idle": "2024-08-26T15:55:44.045452Z", + "shell.execute_reply": "2024-08-26T15:55:44.044785Z" }, "id": "MfqTCa3kjruV" }, @@ -1634,10 +1634,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:13.033106Z", - "iopub.status.busy": "2024-08-22T00:58:13.032853Z", - "iopub.status.idle": "2024-08-22T00:58:13.185654Z", - "shell.execute_reply": "2024-08-22T00:58:13.184911Z" + "iopub.execute_input": "2024-08-26T15:55:44.048317Z", + "iopub.status.busy": "2024-08-26T15:55:44.047949Z", + "iopub.status.idle": "2024-08-26T15:55:44.199135Z", + "shell.execute_reply": "2024-08-26T15:55:44.198458Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1697,10 +1697,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:13.188271Z", - "iopub.status.busy": "2024-08-22T00:58:13.187870Z", - "iopub.status.idle": "2024-08-22T00:58:13.192059Z", - "shell.execute_reply": "2024-08-22T00:58:13.191441Z" + "iopub.execute_input": "2024-08-26T15:55:44.201720Z", + "iopub.status.busy": "2024-08-26T15:55:44.201228Z", + "iopub.status.idle": "2024-08-26T15:55:44.205095Z", + "shell.execute_reply": "2024-08-26T15:55:44.204563Z" }, "id": "0rXP3ZPWjruW" }, @@ -1738,10 +1738,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:13.194295Z", - "iopub.status.busy": "2024-08-22T00:58:13.194088Z", - "iopub.status.idle": "2024-08-22T00:58:13.198202Z", - "shell.execute_reply": "2024-08-22T00:58:13.197634Z" + "iopub.execute_input": "2024-08-26T15:55:44.207245Z", + "iopub.status.busy": "2024-08-26T15:55:44.206899Z", + "iopub.status.idle": "2024-08-26T15:55:44.210784Z", + "shell.execute_reply": "2024-08-26T15:55:44.210214Z" }, "id": "-iRPe8KXjruW" }, @@ -1796,10 +1796,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:13.200447Z", - "iopub.status.busy": "2024-08-22T00:58:13.200103Z", - "iopub.status.idle": "2024-08-22T00:58:13.238878Z", - "shell.execute_reply": "2024-08-22T00:58:13.238234Z" + "iopub.execute_input": "2024-08-26T15:55:44.212876Z", + "iopub.status.busy": "2024-08-26T15:55:44.212534Z", + "iopub.status.idle": "2024-08-26T15:55:44.250428Z", + "shell.execute_reply": "2024-08-26T15:55:44.249930Z" }, "id": "ZpipUliyjruW" }, @@ -1850,10 +1850,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:13.241334Z", - "iopub.status.busy": "2024-08-22T00:58:13.240893Z", - "iopub.status.idle": "2024-08-22T00:58:13.282105Z", - "shell.execute_reply": "2024-08-22T00:58:13.281550Z" + "iopub.execute_input": "2024-08-26T15:55:44.252634Z", + "iopub.status.busy": "2024-08-26T15:55:44.252293Z", + "iopub.status.idle": "2024-08-26T15:55:44.295407Z", + "shell.execute_reply": "2024-08-26T15:55:44.294796Z" }, "id": "SLq-3q4xjruX" }, @@ -1922,10 +1922,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:13.284280Z", - "iopub.status.busy": "2024-08-22T00:58:13.283947Z", - "iopub.status.idle": "2024-08-22T00:58:13.390130Z", - "shell.execute_reply": "2024-08-22T00:58:13.389447Z" + "iopub.execute_input": "2024-08-26T15:55:44.297833Z", + "iopub.status.busy": "2024-08-26T15:55:44.297324Z", + "iopub.status.idle": "2024-08-26T15:55:44.403721Z", + "shell.execute_reply": "2024-08-26T15:55:44.403058Z" }, "id": "g5LHhhuqFbXK" }, @@ -1957,10 +1957,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:13.392899Z", - "iopub.status.busy": "2024-08-22T00:58:13.392545Z", - "iopub.status.idle": "2024-08-22T00:58:13.501403Z", - "shell.execute_reply": "2024-08-22T00:58:13.500768Z" + "iopub.execute_input": "2024-08-26T15:55:44.406534Z", + "iopub.status.busy": "2024-08-26T15:55:44.406130Z", + "iopub.status.idle": "2024-08-26T15:55:44.519957Z", + "shell.execute_reply": "2024-08-26T15:55:44.519299Z" }, "id": "p7w8F8ezBcet" }, @@ -2017,10 +2017,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:13.504266Z", - "iopub.status.busy": "2024-08-22T00:58:13.503754Z", - "iopub.status.idle": "2024-08-22T00:58:13.719454Z", - "shell.execute_reply": "2024-08-22T00:58:13.718847Z" + "iopub.execute_input": "2024-08-26T15:55:44.522219Z", + "iopub.status.busy": "2024-08-26T15:55:44.521957Z", + "iopub.status.idle": "2024-08-26T15:55:44.735309Z", + "shell.execute_reply": "2024-08-26T15:55:44.734712Z" }, "id": "WETRL74tE_sU" }, @@ -2055,10 +2055,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:13.721673Z", - "iopub.status.busy": "2024-08-22T00:58:13.721442Z", - "iopub.status.idle": "2024-08-22T00:58:13.960645Z", - "shell.execute_reply": "2024-08-22T00:58:13.959981Z" + "iopub.execute_input": "2024-08-26T15:55:44.737523Z", + "iopub.status.busy": "2024-08-26T15:55:44.737321Z", + "iopub.status.idle": "2024-08-26T15:55:44.980688Z", + "shell.execute_reply": "2024-08-26T15:55:44.980009Z" }, "id": "kCfdx2gOLmXS" }, @@ -2220,10 +2220,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:13.963402Z", - "iopub.status.busy": "2024-08-22T00:58:13.962959Z", - "iopub.status.idle": "2024-08-22T00:58:13.969708Z", - "shell.execute_reply": "2024-08-22T00:58:13.969202Z" + "iopub.execute_input": "2024-08-26T15:55:44.983243Z", + "iopub.status.busy": "2024-08-26T15:55:44.982856Z", + "iopub.status.idle": "2024-08-26T15:55:44.989124Z", + "shell.execute_reply": "2024-08-26T15:55:44.988663Z" }, "id": "-uogYRWFYnuu" }, @@ -2277,10 +2277,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:13.972037Z", - "iopub.status.busy": "2024-08-22T00:58:13.971554Z", - "iopub.status.idle": "2024-08-22T00:58:14.199436Z", - "shell.execute_reply": "2024-08-22T00:58:14.198846Z" + "iopub.execute_input": "2024-08-26T15:55:44.991199Z", + "iopub.status.busy": "2024-08-26T15:55:44.990866Z", + "iopub.status.idle": "2024-08-26T15:55:45.206648Z", + "shell.execute_reply": "2024-08-26T15:55:45.206056Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2327,10 +2327,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:14.201665Z", - "iopub.status.busy": "2024-08-22T00:58:14.201450Z", - "iopub.status.idle": "2024-08-22T00:58:15.286934Z", - "shell.execute_reply": "2024-08-22T00:58:15.286311Z" + "iopub.execute_input": "2024-08-26T15:55:45.208912Z", + "iopub.status.busy": "2024-08-26T15:55:45.208710Z", + "iopub.status.idle": "2024-08-26T15:55:46.311061Z", + "shell.execute_reply": "2024-08-26T15:55:46.310458Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index 83da2df0e..b1f7815f0 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:19.098333Z", - "iopub.status.busy": "2024-08-22T00:58:19.098170Z", - "iopub.status.idle": "2024-08-22T00:58:20.321311Z", - "shell.execute_reply": "2024-08-22T00:58:20.320758Z" + "iopub.execute_input": "2024-08-26T15:55:50.101189Z", + "iopub.status.busy": "2024-08-26T15:55:50.100749Z", + "iopub.status.idle": "2024-08-26T15:55:51.329967Z", + "shell.execute_reply": "2024-08-26T15:55:51.329400Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:20.324067Z", - "iopub.status.busy": "2024-08-22T00:58:20.323759Z", - "iopub.status.idle": "2024-08-22T00:58:20.327119Z", - "shell.execute_reply": "2024-08-22T00:58:20.326632Z" + "iopub.execute_input": "2024-08-26T15:55:51.332983Z", + "iopub.status.busy": "2024-08-26T15:55:51.332429Z", + "iopub.status.idle": "2024-08-26T15:55:51.335909Z", + "shell.execute_reply": "2024-08-26T15:55:51.335324Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:20.329446Z", - "iopub.status.busy": "2024-08-22T00:58:20.329040Z", - "iopub.status.idle": "2024-08-22T00:58:20.337257Z", - "shell.execute_reply": "2024-08-22T00:58:20.336695Z" + "iopub.execute_input": "2024-08-26T15:55:51.338118Z", + "iopub.status.busy": "2024-08-26T15:55:51.337791Z", + "iopub.status.idle": "2024-08-26T15:55:51.346087Z", + "shell.execute_reply": "2024-08-26T15:55:51.345575Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:20.339447Z", - "iopub.status.busy": "2024-08-22T00:58:20.339061Z", - "iopub.status.idle": "2024-08-22T00:58:20.386949Z", - "shell.execute_reply": "2024-08-22T00:58:20.386412Z" + "iopub.execute_input": "2024-08-26T15:55:51.348269Z", + "iopub.status.busy": "2024-08-26T15:55:51.347912Z", + "iopub.status.idle": "2024-08-26T15:55:51.397438Z", + "shell.execute_reply": "2024-08-26T15:55:51.396901Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:20.389661Z", - "iopub.status.busy": "2024-08-22T00:58:20.389235Z", - "iopub.status.idle": "2024-08-22T00:58:20.406980Z", - "shell.execute_reply": "2024-08-22T00:58:20.406397Z" + "iopub.execute_input": "2024-08-26T15:55:51.400009Z", + "iopub.status.busy": "2024-08-26T15:55:51.399623Z", + "iopub.status.idle": "2024-08-26T15:55:51.418118Z", + "shell.execute_reply": "2024-08-26T15:55:51.417489Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:20.409238Z", - "iopub.status.busy": "2024-08-22T00:58:20.408898Z", - "iopub.status.idle": "2024-08-22T00:58:20.412994Z", - "shell.execute_reply": "2024-08-22T00:58:20.412450Z" + "iopub.execute_input": "2024-08-26T15:55:51.420616Z", + "iopub.status.busy": "2024-08-26T15:55:51.420228Z", + "iopub.status.idle": "2024-08-26T15:55:51.424652Z", + "shell.execute_reply": "2024-08-26T15:55:51.424134Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:20.415146Z", - "iopub.status.busy": "2024-08-22T00:58:20.414840Z", - "iopub.status.idle": "2024-08-22T00:58:20.429016Z", - "shell.execute_reply": "2024-08-22T00:58:20.428547Z" + "iopub.execute_input": "2024-08-26T15:55:51.427131Z", + "iopub.status.busy": "2024-08-26T15:55:51.426753Z", + "iopub.status.idle": "2024-08-26T15:55:51.441388Z", + "shell.execute_reply": "2024-08-26T15:55:51.440867Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:20.431184Z", - "iopub.status.busy": "2024-08-22T00:58:20.430822Z", - "iopub.status.idle": "2024-08-22T00:58:20.457887Z", - "shell.execute_reply": "2024-08-22T00:58:20.457220Z" + "iopub.execute_input": "2024-08-26T15:55:51.443816Z", + "iopub.status.busy": "2024-08-26T15:55:51.443412Z", + "iopub.status.idle": "2024-08-26T15:55:51.470951Z", + "shell.execute_reply": "2024-08-26T15:55:51.470409Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:20.460560Z", - "iopub.status.busy": "2024-08-22T00:58:20.460080Z", - "iopub.status.idle": "2024-08-22T00:58:22.585072Z", - "shell.execute_reply": "2024-08-22T00:58:22.584490Z" + "iopub.execute_input": "2024-08-26T15:55:51.473560Z", + "iopub.status.busy": "2024-08-26T15:55:51.473170Z", + "iopub.status.idle": "2024-08-26T15:55:53.572478Z", + "shell.execute_reply": "2024-08-26T15:55:53.571934Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:22.587678Z", - "iopub.status.busy": "2024-08-22T00:58:22.587320Z", - "iopub.status.idle": "2024-08-22T00:58:22.594433Z", - "shell.execute_reply": "2024-08-22T00:58:22.593843Z" + "iopub.execute_input": "2024-08-26T15:55:53.575148Z", + "iopub.status.busy": "2024-08-26T15:55:53.574805Z", + "iopub.status.idle": "2024-08-26T15:55:53.581965Z", + "shell.execute_reply": "2024-08-26T15:55:53.581495Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:22.596942Z", - "iopub.status.busy": "2024-08-22T00:58:22.596471Z", - "iopub.status.idle": "2024-08-22T00:58:22.611005Z", - "shell.execute_reply": "2024-08-22T00:58:22.610522Z" + "iopub.execute_input": "2024-08-26T15:55:53.583931Z", + "iopub.status.busy": "2024-08-26T15:55:53.583750Z", + "iopub.status.idle": "2024-08-26T15:55:53.597950Z", + "shell.execute_reply": "2024-08-26T15:55:53.597508Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:22.613184Z", - "iopub.status.busy": "2024-08-22T00:58:22.612802Z", - "iopub.status.idle": "2024-08-22T00:58:22.619542Z", - "shell.execute_reply": "2024-08-22T00:58:22.619041Z" + "iopub.execute_input": "2024-08-26T15:55:53.600192Z", + "iopub.status.busy": "2024-08-26T15:55:53.599844Z", + "iopub.status.idle": "2024-08-26T15:55:53.606325Z", + "shell.execute_reply": "2024-08-26T15:55:53.605753Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:22.621850Z", - "iopub.status.busy": "2024-08-22T00:58:22.621473Z", - "iopub.status.idle": "2024-08-22T00:58:22.624387Z", - "shell.execute_reply": "2024-08-22T00:58:22.623829Z" + "iopub.execute_input": "2024-08-26T15:55:53.608524Z", + "iopub.status.busy": "2024-08-26T15:55:53.608203Z", + "iopub.status.idle": "2024-08-26T15:55:53.611057Z", + "shell.execute_reply": "2024-08-26T15:55:53.610487Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:22.626584Z", - "iopub.status.busy": "2024-08-22T00:58:22.626245Z", - "iopub.status.idle": "2024-08-22T00:58:22.629974Z", - "shell.execute_reply": "2024-08-22T00:58:22.629419Z" + "iopub.execute_input": "2024-08-26T15:55:53.613133Z", + "iopub.status.busy": "2024-08-26T15:55:53.612727Z", + "iopub.status.idle": "2024-08-26T15:55:53.616493Z", + "shell.execute_reply": "2024-08-26T15:55:53.615926Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:22.632185Z", - "iopub.status.busy": "2024-08-22T00:58:22.631863Z", - "iopub.status.idle": "2024-08-22T00:58:22.634811Z", - "shell.execute_reply": "2024-08-22T00:58:22.634255Z" + "iopub.execute_input": "2024-08-26T15:55:53.618748Z", + "iopub.status.busy": "2024-08-26T15:55:53.618292Z", + "iopub.status.idle": "2024-08-26T15:55:53.620917Z", + "shell.execute_reply": "2024-08-26T15:55:53.620475Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:22.637028Z", - "iopub.status.busy": "2024-08-22T00:58:22.636633Z", - "iopub.status.idle": "2024-08-22T00:58:22.641104Z", - "shell.execute_reply": "2024-08-22T00:58:22.640532Z" + "iopub.execute_input": "2024-08-26T15:55:53.622763Z", + "iopub.status.busy": "2024-08-26T15:55:53.622591Z", + "iopub.status.idle": "2024-08-26T15:55:53.626806Z", + "shell.execute_reply": "2024-08-26T15:55:53.626334Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:22.643226Z", - "iopub.status.busy": "2024-08-22T00:58:22.642911Z", - "iopub.status.idle": "2024-08-22T00:58:22.673580Z", - "shell.execute_reply": "2024-08-22T00:58:22.673010Z" + "iopub.execute_input": "2024-08-26T15:55:53.628797Z", + "iopub.status.busy": "2024-08-26T15:55:53.628623Z", + "iopub.status.idle": "2024-08-26T15:55:53.657166Z", + "shell.execute_reply": "2024-08-26T15:55:53.656656Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:22.676200Z", - "iopub.status.busy": "2024-08-22T00:58:22.675840Z", - "iopub.status.idle": "2024-08-22T00:58:22.680948Z", - "shell.execute_reply": "2024-08-22T00:58:22.680353Z" + "iopub.execute_input": "2024-08-26T15:55:53.659591Z", + "iopub.status.busy": "2024-08-26T15:55:53.659398Z", + "iopub.status.idle": "2024-08-26T15:55:53.664302Z", + "shell.execute_reply": "2024-08-26T15:55:53.663840Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index 768581dd1..5c10fb5e6 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:25.720012Z", - "iopub.status.busy": "2024-08-22T00:58:25.719808Z", - "iopub.status.idle": "2024-08-22T00:58:27.062195Z", - "shell.execute_reply": "2024-08-22T00:58:27.061628Z" + "iopub.execute_input": "2024-08-26T15:55:56.766882Z", + "iopub.status.busy": "2024-08-26T15:55:56.766428Z", + "iopub.status.idle": "2024-08-26T15:55:58.038153Z", + "shell.execute_reply": "2024-08-26T15:55:58.037589Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:27.065056Z", - "iopub.status.busy": "2024-08-22T00:58:27.064539Z", - "iopub.status.idle": "2024-08-22T00:58:27.272037Z", - "shell.execute_reply": "2024-08-22T00:58:27.271362Z" + "iopub.execute_input": "2024-08-26T15:55:58.040800Z", + "iopub.status.busy": "2024-08-26T15:55:58.040343Z", + "iopub.status.idle": "2024-08-26T15:55:58.241293Z", + "shell.execute_reply": "2024-08-26T15:55:58.240703Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:27.275127Z", - "iopub.status.busy": "2024-08-22T00:58:27.274611Z", - "iopub.status.idle": "2024-08-22T00:58:27.289310Z", - "shell.execute_reply": "2024-08-22T00:58:27.288695Z" + "iopub.execute_input": "2024-08-26T15:55:58.243890Z", + "iopub.status.busy": "2024-08-26T15:55:58.243560Z", + "iopub.status.idle": "2024-08-26T15:55:58.257402Z", + "shell.execute_reply": "2024-08-26T15:55:58.256901Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:27.291864Z", - "iopub.status.busy": "2024-08-22T00:58:27.291455Z", - "iopub.status.idle": "2024-08-22T00:58:30.018938Z", - "shell.execute_reply": "2024-08-22T00:58:30.018320Z" + "iopub.execute_input": "2024-08-26T15:55:58.259462Z", + "iopub.status.busy": "2024-08-26T15:55:58.259112Z", + "iopub.status.idle": "2024-08-26T15:56:00.987646Z", + "shell.execute_reply": "2024-08-26T15:56:00.987007Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:30.021332Z", - "iopub.status.busy": "2024-08-22T00:58:30.020957Z", - "iopub.status.idle": "2024-08-22T00:58:31.413488Z", - "shell.execute_reply": "2024-08-22T00:58:31.412684Z" + "iopub.execute_input": "2024-08-26T15:56:00.990103Z", + "iopub.status.busy": "2024-08-26T15:56:00.989893Z", + "iopub.status.idle": "2024-08-26T15:56:02.372407Z", + "shell.execute_reply": "2024-08-26T15:56:02.371693Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:31.416363Z", - "iopub.status.busy": "2024-08-22T00:58:31.415941Z", - "iopub.status.idle": "2024-08-22T00:58:31.420598Z", - "shell.execute_reply": "2024-08-22T00:58:31.420074Z" + "iopub.execute_input": "2024-08-26T15:56:02.375314Z", + "iopub.status.busy": "2024-08-26T15:56:02.374897Z", + "iopub.status.idle": "2024-08-26T15:56:02.378930Z", + "shell.execute_reply": "2024-08-26T15:56:02.378306Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:31.422894Z", - "iopub.status.busy": "2024-08-22T00:58:31.422517Z", - "iopub.status.idle": "2024-08-22T00:58:33.768111Z", - "shell.execute_reply": "2024-08-22T00:58:33.767473Z" + "iopub.execute_input": "2024-08-26T15:56:02.381153Z", + "iopub.status.busy": "2024-08-26T15:56:02.380797Z", + "iopub.status.idle": "2024-08-26T15:56:04.546007Z", + "shell.execute_reply": "2024-08-26T15:56:04.545338Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:33.770788Z", - "iopub.status.busy": "2024-08-22T00:58:33.770342Z", - "iopub.status.idle": "2024-08-22T00:58:33.779927Z", - "shell.execute_reply": "2024-08-22T00:58:33.779385Z" + "iopub.execute_input": "2024-08-26T15:56:04.549003Z", + "iopub.status.busy": "2024-08-26T15:56:04.548276Z", + "iopub.status.idle": "2024-08-26T15:56:04.556518Z", + "shell.execute_reply": "2024-08-26T15:56:04.556052Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:33.782259Z", - "iopub.status.busy": "2024-08-22T00:58:33.781875Z", - "iopub.status.idle": "2024-08-22T00:58:36.667844Z", - "shell.execute_reply": "2024-08-22T00:58:36.667209Z" + "iopub.execute_input": "2024-08-26T15:56:04.558584Z", + "iopub.status.busy": "2024-08-26T15:56:04.558246Z", + "iopub.status.idle": "2024-08-26T15:56:07.362260Z", + "shell.execute_reply": "2024-08-26T15:56:07.361630Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:36.670176Z", - "iopub.status.busy": "2024-08-22T00:58:36.669965Z", - "iopub.status.idle": "2024-08-22T00:58:36.674120Z", - "shell.execute_reply": "2024-08-22T00:58:36.673592Z" + "iopub.execute_input": "2024-08-26T15:56:07.364609Z", + "iopub.status.busy": "2024-08-26T15:56:07.364404Z", + "iopub.status.idle": "2024-08-26T15:56:07.368177Z", + "shell.execute_reply": "2024-08-26T15:56:07.367638Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:36.676257Z", - "iopub.status.busy": "2024-08-22T00:58:36.676069Z", - "iopub.status.idle": "2024-08-22T00:58:36.680630Z", - "shell.execute_reply": "2024-08-22T00:58:36.680026Z" + "iopub.execute_input": "2024-08-26T15:56:07.370130Z", + "iopub.status.busy": "2024-08-26T15:56:07.369942Z", + "iopub.status.idle": "2024-08-26T15:56:07.373364Z", + "shell.execute_reply": "2024-08-26T15:56:07.372878Z" } }, "outputs": [], @@ -769,10 +769,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:36.682787Z", - "iopub.status.busy": "2024-08-22T00:58:36.682596Z", - "iopub.status.idle": "2024-08-22T00:58:36.686164Z", - "shell.execute_reply": "2024-08-22T00:58:36.685689Z" + "iopub.execute_input": "2024-08-26T15:56:07.375274Z", + "iopub.status.busy": "2024-08-26T15:56:07.375092Z", + "iopub.status.idle": "2024-08-26T15:56:07.378537Z", + "shell.execute_reply": "2024-08-26T15:56:07.378053Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index 4c398583a..5911b8286 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:39.615178Z", - "iopub.status.busy": "2024-08-22T00:58:39.614997Z", - "iopub.status.idle": "2024-08-22T00:58:40.919384Z", - "shell.execute_reply": "2024-08-22T00:58:40.918737Z" + "iopub.execute_input": "2024-08-26T15:56:10.340207Z", + "iopub.status.busy": "2024-08-26T15:56:10.340030Z", + "iopub.status.idle": "2024-08-26T15:56:11.624749Z", + "shell.execute_reply": "2024-08-26T15:56:11.624166Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:40.922217Z", - "iopub.status.busy": "2024-08-22T00:58:40.921684Z", - "iopub.status.idle": "2024-08-22T00:58:42.214165Z", - "shell.execute_reply": "2024-08-22T00:58:42.213399Z" + "iopub.execute_input": "2024-08-26T15:56:11.627256Z", + "iopub.status.busy": "2024-08-26T15:56:11.626951Z", + "iopub.status.idle": "2024-08-26T15:56:14.401848Z", + "shell.execute_reply": "2024-08-26T15:56:14.401149Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:42.217051Z", - "iopub.status.busy": "2024-08-22T00:58:42.216644Z", - "iopub.status.idle": "2024-08-22T00:58:42.219897Z", - "shell.execute_reply": "2024-08-22T00:58:42.219427Z" + "iopub.execute_input": "2024-08-26T15:56:14.404488Z", + "iopub.status.busy": "2024-08-26T15:56:14.404277Z", + "iopub.status.idle": "2024-08-26T15:56:14.407583Z", + "shell.execute_reply": "2024-08-26T15:56:14.407130Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:42.222092Z", - "iopub.status.busy": "2024-08-22T00:58:42.221747Z", - "iopub.status.idle": "2024-08-22T00:58:42.228361Z", - "shell.execute_reply": "2024-08-22T00:58:42.227937Z" + "iopub.execute_input": "2024-08-26T15:56:14.409784Z", + "iopub.status.busy": "2024-08-26T15:56:14.409456Z", + "iopub.status.idle": "2024-08-26T15:56:14.416283Z", + "shell.execute_reply": "2024-08-26T15:56:14.415707Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:42.230519Z", - "iopub.status.busy": "2024-08-22T00:58:42.230169Z", - "iopub.status.idle": "2024-08-22T00:58:42.751121Z", - "shell.execute_reply": "2024-08-22T00:58:42.750466Z" + "iopub.execute_input": "2024-08-26T15:56:14.418739Z", + "iopub.status.busy": "2024-08-26T15:56:14.418202Z", + "iopub.status.idle": "2024-08-26T15:56:14.927903Z", + "shell.execute_reply": "2024-08-26T15:56:14.927290Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:42.753846Z", - "iopub.status.busy": "2024-08-22T00:58:42.753398Z", - "iopub.status.idle": "2024-08-22T00:58:42.759031Z", - "shell.execute_reply": "2024-08-22T00:58:42.758469Z" + "iopub.execute_input": "2024-08-26T15:56:14.930602Z", + "iopub.status.busy": "2024-08-26T15:56:14.930405Z", + "iopub.status.idle": "2024-08-26T15:56:14.935854Z", + "shell.execute_reply": "2024-08-26T15:56:14.935409Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:42.761158Z", - "iopub.status.busy": "2024-08-22T00:58:42.760871Z", - "iopub.status.idle": "2024-08-22T00:58:42.765155Z", - "shell.execute_reply": "2024-08-22T00:58:42.764646Z" + "iopub.execute_input": "2024-08-26T15:56:14.937858Z", + "iopub.status.busy": "2024-08-26T15:56:14.937674Z", + "iopub.status.idle": "2024-08-26T15:56:14.941832Z", + "shell.execute_reply": "2024-08-26T15:56:14.941270Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:42.767464Z", - "iopub.status.busy": "2024-08-22T00:58:42.767007Z", - "iopub.status.idle": "2024-08-22T00:58:43.666011Z", - "shell.execute_reply": "2024-08-22T00:58:43.665429Z" + "iopub.execute_input": "2024-08-26T15:56:14.944226Z", + "iopub.status.busy": "2024-08-26T15:56:14.943744Z", + "iopub.status.idle": "2024-08-26T15:56:15.859004Z", + "shell.execute_reply": "2024-08-26T15:56:15.858309Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:43.668386Z", - "iopub.status.busy": "2024-08-22T00:58:43.668171Z", - "iopub.status.idle": "2024-08-22T00:58:43.872542Z", - "shell.execute_reply": "2024-08-22T00:58:43.871914Z" + "iopub.execute_input": "2024-08-26T15:56:15.861666Z", + "iopub.status.busy": "2024-08-26T15:56:15.861235Z", + "iopub.status.idle": "2024-08-26T15:56:16.069556Z", + "shell.execute_reply": "2024-08-26T15:56:16.069040Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:43.874979Z", - "iopub.status.busy": "2024-08-22T00:58:43.874758Z", - "iopub.status.idle": "2024-08-22T00:58:43.879524Z", - "shell.execute_reply": "2024-08-22T00:58:43.878935Z" + "iopub.execute_input": "2024-08-26T15:56:16.071703Z", + "iopub.status.busy": "2024-08-26T15:56:16.071511Z", + "iopub.status.idle": "2024-08-26T15:56:16.076159Z", + "shell.execute_reply": "2024-08-26T15:56:16.075690Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:43.881686Z", - "iopub.status.busy": "2024-08-22T00:58:43.881466Z", - "iopub.status.idle": "2024-08-22T00:58:44.364106Z", - "shell.execute_reply": "2024-08-22T00:58:44.363465Z" + "iopub.execute_input": "2024-08-26T15:56:16.078253Z", + "iopub.status.busy": "2024-08-26T15:56:16.077918Z", + "iopub.status.idle": "2024-08-26T15:56:16.556663Z", + "shell.execute_reply": "2024-08-26T15:56:16.556007Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:44.367284Z", - "iopub.status.busy": "2024-08-22T00:58:44.367072Z", - "iopub.status.idle": "2024-08-22T00:58:44.684584Z", - "shell.execute_reply": "2024-08-22T00:58:44.683941Z" + "iopub.execute_input": "2024-08-26T15:56:16.559624Z", + "iopub.status.busy": "2024-08-26T15:56:16.559248Z", + "iopub.status.idle": "2024-08-26T15:56:16.898201Z", + "shell.execute_reply": "2024-08-26T15:56:16.897622Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:44.687762Z", - "iopub.status.busy": "2024-08-22T00:58:44.687347Z", - "iopub.status.idle": "2024-08-22T00:58:45.039421Z", - "shell.execute_reply": "2024-08-22T00:58:45.038748Z" + "iopub.execute_input": "2024-08-26T15:56:16.900962Z", + "iopub.status.busy": "2024-08-26T15:56:16.900766Z", + "iopub.status.idle": "2024-08-26T15:56:17.272375Z", + "shell.execute_reply": "2024-08-26T15:56:17.271736Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:45.043289Z", - "iopub.status.busy": "2024-08-22T00:58:45.042737Z", - "iopub.status.idle": "2024-08-22T00:58:45.495391Z", - "shell.execute_reply": "2024-08-22T00:58:45.494757Z" + "iopub.execute_input": "2024-08-26T15:56:17.275685Z", + "iopub.status.busy": "2024-08-26T15:56:17.275315Z", + "iopub.status.idle": "2024-08-26T15:56:17.708365Z", + "shell.execute_reply": "2024-08-26T15:56:17.707796Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:45.500306Z", - "iopub.status.busy": "2024-08-22T00:58:45.500062Z", - "iopub.status.idle": "2024-08-22T00:58:45.961234Z", - "shell.execute_reply": "2024-08-22T00:58:45.960583Z" + "iopub.execute_input": "2024-08-26T15:56:17.713051Z", + "iopub.status.busy": "2024-08-26T15:56:17.712669Z", + "iopub.status.idle": "2024-08-26T15:56:18.145788Z", + "shell.execute_reply": "2024-08-26T15:56:18.145119Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:45.964456Z", - "iopub.status.busy": "2024-08-22T00:58:45.964229Z", - "iopub.status.idle": "2024-08-22T00:58:46.185620Z", - "shell.execute_reply": "2024-08-22T00:58:46.184904Z" + "iopub.execute_input": "2024-08-26T15:56:18.149293Z", + "iopub.status.busy": "2024-08-26T15:56:18.148772Z", + "iopub.status.idle": "2024-08-26T15:56:18.346020Z", + "shell.execute_reply": "2024-08-26T15:56:18.345257Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:46.187789Z", - "iopub.status.busy": "2024-08-22T00:58:46.187590Z", - "iopub.status.idle": "2024-08-22T00:58:46.389545Z", - "shell.execute_reply": "2024-08-22T00:58:46.388924Z" + "iopub.execute_input": "2024-08-26T15:56:18.348953Z", + "iopub.status.busy": "2024-08-26T15:56:18.348730Z", + "iopub.status.idle": "2024-08-26T15:56:18.534029Z", + "shell.execute_reply": "2024-08-26T15:56:18.533465Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:46.392074Z", - "iopub.status.busy": "2024-08-22T00:58:46.391580Z", - "iopub.status.idle": "2024-08-22T00:58:46.394801Z", - "shell.execute_reply": "2024-08-22T00:58:46.394237Z" + "iopub.execute_input": "2024-08-26T15:56:18.536855Z", + "iopub.status.busy": "2024-08-26T15:56:18.536371Z", + "iopub.status.idle": "2024-08-26T15:56:18.539344Z", + "shell.execute_reply": "2024-08-26T15:56:18.538884Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:46.396837Z", - "iopub.status.busy": "2024-08-22T00:58:46.396509Z", - "iopub.status.idle": "2024-08-22T00:58:47.362989Z", - "shell.execute_reply": "2024-08-22T00:58:47.362399Z" + "iopub.execute_input": "2024-08-26T15:56:18.541453Z", + "iopub.status.busy": "2024-08-26T15:56:18.541012Z", + "iopub.status.idle": "2024-08-26T15:56:19.477586Z", + "shell.execute_reply": "2024-08-26T15:56:19.476978Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:47.365674Z", - "iopub.status.busy": "2024-08-22T00:58:47.365205Z", - "iopub.status.idle": "2024-08-22T00:58:47.492470Z", - "shell.execute_reply": "2024-08-22T00:58:47.491853Z" + "iopub.execute_input": "2024-08-26T15:56:19.480700Z", + "iopub.status.busy": "2024-08-26T15:56:19.480256Z", + "iopub.status.idle": "2024-08-26T15:56:19.636020Z", + "shell.execute_reply": "2024-08-26T15:56:19.635531Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:47.495262Z", - "iopub.status.busy": "2024-08-22T00:58:47.494821Z", - "iopub.status.idle": "2024-08-22T00:58:47.631609Z", - "shell.execute_reply": "2024-08-22T00:58:47.631078Z" + "iopub.execute_input": "2024-08-26T15:56:19.638250Z", + "iopub.status.busy": "2024-08-26T15:56:19.637899Z", + "iopub.status.idle": "2024-08-26T15:56:19.786441Z", + "shell.execute_reply": "2024-08-26T15:56:19.785787Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:47.634419Z", - "iopub.status.busy": "2024-08-22T00:58:47.634007Z", - "iopub.status.idle": "2024-08-22T00:58:48.218805Z", - "shell.execute_reply": "2024-08-22T00:58:48.218275Z" + "iopub.execute_input": "2024-08-26T15:56:19.789092Z", + "iopub.status.busy": "2024-08-26T15:56:19.788762Z", + "iopub.status.idle": "2024-08-26T15:56:20.472378Z", + "shell.execute_reply": "2024-08-26T15:56:20.471795Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:48.221173Z", - "iopub.status.busy": "2024-08-22T00:58:48.220781Z", - "iopub.status.idle": "2024-08-22T00:58:48.224497Z", - "shell.execute_reply": "2024-08-22T00:58:48.223961Z" + "iopub.execute_input": "2024-08-26T15:56:20.474731Z", + "iopub.status.busy": "2024-08-26T15:56:20.474528Z", + "iopub.status.idle": "2024-08-26T15:56:20.478228Z", + "shell.execute_reply": "2024-08-26T15:56:20.477783Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index 03eb4a25d..a93d29f9f 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -780,7 +780,7 @@

2. Pre-process the Cifar10 dataset
-100%|██████████| 170498071/170498071 [00:02<00:00, 84125418.78it/s]
+100%|██████████| 170498071/170498071 [00:04<00:00, 38277434.85it/s]
 

-
+
@@ -1130,7 +1130,7 @@

Spending too much time on data quality?Cleanlab Studio – an automated platform to find and fix issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. Try it for free!

The modern AI pipeline automated with Cleanlab Studio

diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index 2f1ca67b6..62016d498 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:50.781272Z", - "iopub.status.busy": "2024-08-22T00:58:50.781110Z", - "iopub.status.idle": "2024-08-22T00:58:53.814369Z", - "shell.execute_reply": "2024-08-22T00:58:53.813704Z" + "iopub.execute_input": "2024-08-26T15:56:22.809306Z", + "iopub.status.busy": "2024-08-26T15:56:22.809121Z", + "iopub.status.idle": "2024-08-26T15:56:25.923468Z", + "shell.execute_reply": "2024-08-26T15:56:25.922782Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:53.817092Z", - "iopub.status.busy": "2024-08-22T00:58:53.816761Z", - "iopub.status.idle": "2024-08-22T00:58:54.171332Z", - "shell.execute_reply": "2024-08-22T00:58:54.170672Z" + "iopub.execute_input": "2024-08-26T15:56:25.926138Z", + "iopub.status.busy": "2024-08-26T15:56:25.925803Z", + "iopub.status.idle": "2024-08-26T15:56:26.295753Z", + "shell.execute_reply": "2024-08-26T15:56:26.295060Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:54.174018Z", - "iopub.status.busy": "2024-08-22T00:58:54.173676Z", - "iopub.status.idle": "2024-08-22T00:58:54.178314Z", - "shell.execute_reply": "2024-08-22T00:58:54.177737Z" + "iopub.execute_input": "2024-08-26T15:56:26.298531Z", + "iopub.status.busy": "2024-08-26T15:56:26.298163Z", + "iopub.status.idle": "2024-08-26T15:56:26.302951Z", + "shell.execute_reply": "2024-08-26T15:56:26.302336Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:54.180681Z", - "iopub.status.busy": "2024-08-22T00:58:54.180345Z", - "iopub.status.idle": "2024-08-22T00:58:58.992026Z", - "shell.execute_reply": "2024-08-22T00:58:58.991412Z" + "iopub.execute_input": "2024-08-26T15:56:26.305208Z", + "iopub.status.busy": "2024-08-26T15:56:26.304770Z", + "iopub.status.idle": "2024-08-26T15:56:34.247942Z", + "shell.execute_reply": "2024-08-26T15:56:34.247391Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 851968/170498071 [00:00<00:21, 7782313.76it/s]" + " 0%| | 32768/170498071 [00:00<09:51, 288072.79it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 8552448/170498071 [00:00<00:03, 46916048.99it/s]" + " 0%| | 229376/170498071 [00:00<02:31, 1123326.69it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 17465344/170498071 [00:00<00:02, 65684577.73it/s]" + " 1%| | 884736/170498071 [00:00<00:50, 3367551.37it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 26443776/170498071 [00:00<00:01, 74909873.78it/s]" + " 2%|▏ | 3080192/170498071 [00:00<00:18, 8860851.19it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 35651584/170498071 [00:00<00:01, 81011799.24it/s]" + " 4%|▍ | 7471104/170498071 [00:00<00:08, 19515662.29it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 44335104/170498071 [00:00<00:01, 81391062.80it/s]" + " 7%|▋ | 11763712/170498071 [00:00<00:05, 26595950.29it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 53936128/170498071 [00:00<00:01, 85934406.86it/s]" + " 9%|▉ | 16121856/170498071 [00:00<00:05, 30335840.06it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 63012864/170498071 [00:00<00:01, 87443130.10it/s]" + " 12%|█▏ | 20545536/170498071 [00:00<00:04, 32917156.30it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 71958528/170498071 [00:00<00:01, 88036492.80it/s]" + " 15%|█▍ | 25034752/170498071 [00:01<00:04, 34791429.08it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 80805888/170498071 [00:01<00:01, 87576732.52it/s]" + " 17%|█▋ | 29523968/170498071 [00:01<00:03, 37589731.77it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 89915392/170498071 [00:01<00:00, 88553079.89it/s]" + " 20%|█▉ | 33357824/170498071 [00:01<00:03, 36851696.99it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 98795520/170498071 [00:01<00:00, 88465181.87it/s]" + " 22%|██▏ | 37093376/170498071 [00:01<00:03, 36416220.00it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 107905024/170498071 [00:01<00:00, 89088575.01it/s]" + " 24%|██▍ | 41189376/170498071 [00:01<00:03, 37261067.87it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▊ | 116850688/170498071 [00:01<00:00, 88287192.28it/s]" + " 27%|██▋ | 45776896/170498071 [00:01<00:03, 39651326.45it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 125927424/170498071 [00:01<00:00, 89026417.72it/s]" + " 29%|██▉ | 50069504/170498071 [00:01<00:02, 40582417.66it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 134873088/170498071 [00:01<00:00, 89110639.77it/s]" + " 32%|███▏ | 54165504/170498071 [00:01<00:02, 39822791.56it/s]" ] }, { @@ -380,7 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 143818752/170498071 [00:01<00:00, 88181398.03it/s]" + " 34%|███▍ | 58163200/170498071 [00:01<00:02, 39191771.97it/s]" ] }, { @@ -388,7 +388,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 152895488/170498071 [00:01<00:00, 88806090.40it/s]" + " 37%|███▋ | 62717952/170498071 [00:01<00:02, 40349731.02it/s]" ] }, { @@ -396,7 +396,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 161808384/170498071 [00:01<00:00, 88623236.17it/s]" + " 40%|███▉ | 67436544/170498071 [00:02<00:02, 42324557.71it/s]" ] }, { @@ -404,7 +404,183 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:02<00:00, 84125418.78it/s]" + " 42%|████▏ | 71696384/170498071 [00:02<00:02, 41933061.13it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 45%|████▍ | 75923456/170498071 [00:02<00:02, 41259879.63it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 47%|████▋ | 80084992/170498071 [00:02<00:02, 41074211.69it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 50%|████▉ | 84934656/170498071 [00:02<00:01, 42954273.39it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 52%|█████▏ | 89489408/170498071 [00:02<00:01, 43669192.51it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 55%|█████▌ | 93880320/170498071 [00:02<00:01, 43233991.86it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 58%|█████▊ | 98238464/170498071 [00:02<00:01, 42582306.42it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 60%|██████ | 102957056/170498071 [00:02<00:01, 43182345.58it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 63%|██████▎ | 107970560/170498071 [00:03<00:01, 45181673.00it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 66%|██████▌ | 112525312/170498071 [00:03<00:01, 44689709.52it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 69%|██████▊ | 117014528/170498071 [00:03<00:01, 43897496.20it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 71%|███████▏ | 121536512/170498071 [00:03<00:01, 44079438.69it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 74%|███████▍ | 126648320/170498071 [00:03<00:00, 45168506.43it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 77%|███████▋ | 131792896/170498071 [00:03<00:00, 46942882.30it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 80%|████████ | 136511488/170498071 [00:03<00:00, 46011048.74it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 83%|████████▎ | 141131776/170498071 [00:03<00:00, 44969350.49it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 86%|████████▌ | 145784832/170498071 [00:03<00:00, 45345121.03it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 88%|████████▊ | 150667264/170498071 [00:03<00:00, 46353164.37it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 91%|█████████ | 155320320/170498071 [00:04<00:00, 45890625.20it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 94%|█████████▍| 159940608/170498071 [00:04<00:00, 44701148.89it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 96%|█████████▋| 164429824/170498071 [00:04<00:00, 41442057.36it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 168624128/170498071 [00:04<00:00, 39704429.04it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:04<00:00, 38277434.85it/s]" ] }, { @@ -522,10 +698,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:58.994544Z", - "iopub.status.busy": "2024-08-22T00:58:58.994088Z", - "iopub.status.idle": "2024-08-22T00:58:58.999150Z", - "shell.execute_reply": "2024-08-22T00:58:58.998539Z" + "iopub.execute_input": "2024-08-26T15:56:34.250134Z", + "iopub.status.busy": "2024-08-26T15:56:34.249930Z", + "iopub.status.idle": "2024-08-26T15:56:34.255211Z", + "shell.execute_reply": "2024-08-26T15:56:34.254696Z" }, "nbsphinx": "hidden" }, @@ -576,10 +752,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:59.001454Z", - "iopub.status.busy": "2024-08-22T00:58:59.001122Z", - "iopub.status.idle": "2024-08-22T00:58:59.544240Z", - "shell.execute_reply": "2024-08-22T00:58:59.543688Z" + "iopub.execute_input": "2024-08-26T15:56:34.257332Z", + "iopub.status.busy": "2024-08-26T15:56:34.257140Z", + "iopub.status.idle": "2024-08-26T15:56:34.848225Z", + "shell.execute_reply": "2024-08-26T15:56:34.847605Z" } }, "outputs": [ @@ -612,10 +788,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:58:59.546631Z", - "iopub.status.busy": "2024-08-22T00:58:59.546173Z", - "iopub.status.idle": "2024-08-22T00:59:00.062180Z", - "shell.execute_reply": "2024-08-22T00:59:00.061539Z" + "iopub.execute_input": "2024-08-26T15:56:34.851549Z", + "iopub.status.busy": "2024-08-26T15:56:34.851001Z", + "iopub.status.idle": "2024-08-26T15:56:35.378547Z", + "shell.execute_reply": "2024-08-26T15:56:35.377869Z" } }, "outputs": [ @@ -653,10 +829,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:00.064495Z", - "iopub.status.busy": "2024-08-22T00:59:00.064111Z", - "iopub.status.idle": "2024-08-22T00:59:00.068001Z", - "shell.execute_reply": "2024-08-22T00:59:00.067395Z" + "iopub.execute_input": "2024-08-26T15:56:35.380935Z", + "iopub.status.busy": "2024-08-26T15:56:35.380512Z", + "iopub.status.idle": "2024-08-26T15:56:35.384410Z", + "shell.execute_reply": "2024-08-26T15:56:35.383897Z" } }, "outputs": [], @@ -679,17 +855,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:00.070278Z", - "iopub.status.busy": "2024-08-22T00:59:00.069824Z", - "iopub.status.idle": "2024-08-22T00:59:12.754451Z", - "shell.execute_reply": "2024-08-22T00:59:12.753804Z" + "iopub.execute_input": "2024-08-26T15:56:35.386668Z", + "iopub.status.busy": "2024-08-26T15:56:35.386265Z", + "iopub.status.idle": "2024-08-26T15:56:48.158582Z", + "shell.execute_reply": "2024-08-26T15:56:48.157871Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "07d71ae622f9466db3d264b885cb47b5", + "model_id": "9068c384170544debc26f2cb25b50402", "version_major": 2, "version_minor": 0 }, @@ -748,10 +924,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:12.757043Z", - "iopub.status.busy": "2024-08-22T00:59:12.756623Z", - "iopub.status.idle": "2024-08-22T00:59:14.898274Z", - "shell.execute_reply": "2024-08-22T00:59:14.897643Z" + "iopub.execute_input": "2024-08-26T15:56:48.161816Z", + "iopub.status.busy": "2024-08-26T15:56:48.161244Z", + "iopub.status.idle": "2024-08-26T15:56:50.454621Z", + "shell.execute_reply": "2024-08-26T15:56:50.453973Z" } }, "outputs": [ @@ -795,10 +971,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:14.901261Z", - "iopub.status.busy": "2024-08-22T00:59:14.900772Z", - "iopub.status.idle": "2024-08-22T00:59:15.170967Z", - "shell.execute_reply": "2024-08-22T00:59:15.170340Z" + "iopub.execute_input": "2024-08-26T15:56:50.457480Z", + "iopub.status.busy": "2024-08-26T15:56:50.456964Z", + "iopub.status.idle": "2024-08-26T15:56:50.704657Z", + "shell.execute_reply": "2024-08-26T15:56:50.703892Z" } }, "outputs": [ @@ -834,10 +1010,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:15.173970Z", - "iopub.status.busy": "2024-08-22T00:59:15.173418Z", - "iopub.status.idle": "2024-08-22T00:59:15.857179Z", - "shell.execute_reply": "2024-08-22T00:59:15.856582Z" + "iopub.execute_input": "2024-08-26T15:56:50.707630Z", + "iopub.status.busy": "2024-08-26T15:56:50.707165Z", + "iopub.status.idle": "2024-08-26T15:56:51.375377Z", + "shell.execute_reply": "2024-08-26T15:56:51.374703Z" } }, "outputs": [ @@ -887,10 +1063,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:15.860425Z", - "iopub.status.busy": "2024-08-22T00:59:15.859955Z", - "iopub.status.idle": "2024-08-22T00:59:16.213980Z", - "shell.execute_reply": "2024-08-22T00:59:16.213237Z" + "iopub.execute_input": "2024-08-26T15:56:51.378257Z", + "iopub.status.busy": "2024-08-26T15:56:51.377877Z", + "iopub.status.idle": "2024-08-26T15:56:51.734722Z", + "shell.execute_reply": "2024-08-26T15:56:51.734019Z" } }, "outputs": [ @@ -938,10 +1114,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:16.216341Z", - "iopub.status.busy": "2024-08-22T00:59:16.215975Z", - "iopub.status.idle": "2024-08-22T00:59:16.467315Z", - "shell.execute_reply": "2024-08-22T00:59:16.466615Z" + "iopub.execute_input": "2024-08-26T15:56:51.737103Z", + "iopub.status.busy": "2024-08-26T15:56:51.736880Z", + "iopub.status.idle": "2024-08-26T15:56:51.981261Z", + "shell.execute_reply": "2024-08-26T15:56:51.980528Z" } }, "outputs": [ @@ -997,10 +1173,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:16.470493Z", - "iopub.status.busy": "2024-08-22T00:59:16.469931Z", - "iopub.status.idle": "2024-08-22T00:59:16.552002Z", - "shell.execute_reply": "2024-08-22T00:59:16.551345Z" + "iopub.execute_input": "2024-08-26T15:56:51.984034Z", + "iopub.status.busy": "2024-08-26T15:56:51.983823Z", + "iopub.status.idle": "2024-08-26T15:56:52.067085Z", + "shell.execute_reply": "2024-08-26T15:56:52.066419Z" } }, "outputs": [], @@ -1021,10 +1197,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:16.554754Z", - "iopub.status.busy": "2024-08-22T00:59:16.554529Z", - "iopub.status.idle": "2024-08-22T00:59:27.133688Z", - "shell.execute_reply": "2024-08-22T00:59:27.133036Z" + "iopub.execute_input": "2024-08-26T15:56:52.069665Z", + "iopub.status.busy": "2024-08-26T15:56:52.069478Z", + "iopub.status.idle": "2024-08-26T15:57:03.031171Z", + "shell.execute_reply": "2024-08-26T15:57:03.030491Z" } }, "outputs": [ @@ -1061,10 +1237,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:27.136328Z", - "iopub.status.busy": "2024-08-22T00:59:27.135897Z", - "iopub.status.idle": "2024-08-22T00:59:29.622848Z", - "shell.execute_reply": "2024-08-22T00:59:29.622260Z" + "iopub.execute_input": "2024-08-26T15:57:03.033840Z", + "iopub.status.busy": "2024-08-26T15:57:03.033405Z", + "iopub.status.idle": "2024-08-26T15:57:05.657482Z", + "shell.execute_reply": "2024-08-26T15:57:05.656881Z" } }, "outputs": [ @@ -1095,10 +1271,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:29.625895Z", - "iopub.status.busy": "2024-08-22T00:59:29.625253Z", - "iopub.status.idle": "2024-08-22T00:59:29.836758Z", - "shell.execute_reply": "2024-08-22T00:59:29.836128Z" + "iopub.execute_input": "2024-08-26T15:57:05.660434Z", + "iopub.status.busy": "2024-08-26T15:57:05.659780Z", + "iopub.status.idle": "2024-08-26T15:57:05.862055Z", + "shell.execute_reply": "2024-08-26T15:57:05.861526Z" } }, "outputs": [], @@ -1112,10 +1288,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:29.839446Z", - "iopub.status.busy": "2024-08-22T00:59:29.838993Z", - "iopub.status.idle": "2024-08-22T00:59:29.842349Z", - "shell.execute_reply": "2024-08-22T00:59:29.841790Z" + "iopub.execute_input": "2024-08-26T15:57:05.864637Z", + "iopub.status.busy": "2024-08-26T15:57:05.864393Z", + "iopub.status.idle": "2024-08-26T15:57:05.867857Z", + "shell.execute_reply": "2024-08-26T15:57:05.867382Z" } }, "outputs": [], @@ -1153,10 +1329,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:29.844578Z", - "iopub.status.busy": "2024-08-22T00:59:29.844104Z", - "iopub.status.idle": "2024-08-22T00:59:29.852970Z", - "shell.execute_reply": "2024-08-22T00:59:29.852374Z" + "iopub.execute_input": "2024-08-26T15:57:05.870136Z", + "iopub.status.busy": "2024-08-26T15:57:05.869790Z", + "iopub.status.idle": "2024-08-26T15:57:05.878741Z", + "shell.execute_reply": "2024-08-26T15:57:05.878234Z" }, "nbsphinx": "hidden" }, @@ -1201,139 +1377,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "07d71ae622f9466db3d264b885cb47b5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2f8ef9c84738411cb35a3ceb6a23e210", - "IPY_MODEL_23ff13c2465b4e6e8166b8c23954b61b", - "IPY_MODEL_826468daf8734a6da1c29a1d8b68c44e" - ], - "layout": "IPY_MODEL_af84eaf031bf453887118b421ce0ce58", - "tabbable": null, - "tooltip": null - } - }, - "23ff13c2465b4e6e8166b8c23954b61b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e6d272a6e0f64a0b8a2aab75267364f5", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b9e5015cca734db0ad6cee714647c246", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "2f8ef9c84738411cb35a3ceb6a23e210": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9929c9538baf476680a019f00275f791", - "placeholder": "​", - "style": "IPY_MODEL_3ee48bcc027149b1bcde19cef852d1f1", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" - } - }, - "35fdc370ae8c4bd197fd5d098dec0ec4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3ee48bcc027149b1bcde19cef852d1f1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "826468daf8734a6da1c29a1d8b68c44e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d0c55a3046a1466c9e71716ab74299c6", - "placeholder": "​", - "style": "IPY_MODEL_35fdc370ae8c4bd197fd5d098dec0ec4", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 257MB/s]" - } - }, - "9929c9538baf476680a019f00275f791": { + "01d5c5a706aa4790ae5138084d58b585": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1386,7 +1430,30 @@ "width": null } }, - "af84eaf031bf453887118b421ce0ce58": { + "22107b48eecc4358a6e6dca3680a6730": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_227183a26c464a3c9d11a17da25fa3f8", + "placeholder": "​", + "style": "IPY_MODEL_352d2ee6d0844dbcb8d4a04b1cbfff01", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 261MB/s]" + } + }, + "227183a26c464a3c9d11a17da25fa3f8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1439,7 +1506,25 @@ "width": null } }, - "b9e5015cca734db0ad6cee714647c246": { + "352d2ee6d0844dbcb8d4a04b1cbfff01": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "357a5524d66d4af8a055aa22caf37325": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1455,7 +1540,7 @@ "description_width": "" } }, - "d0c55a3046a1466c9e71716ab74299c6": { + "53e6817aa0fd4e2ba3bf306e9c8be420": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1508,7 +1593,7 @@ "width": null } }, - "e6d272a6e0f64a0b8a2aab75267364f5": { + "6bc1f79c1ece4659b91e860cec343da2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1560,6 +1645,97 @@ "visibility": null, "width": null } + }, + "819d1184552d47729426e656e5e6842e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6bc1f79c1ece4659b91e860cec343da2", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_357a5524d66d4af8a055aa22caf37325", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "9068c384170544debc26f2cb25b50402": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9b95df66ce354f3eac3359c2aac81dc7", + "IPY_MODEL_819d1184552d47729426e656e5e6842e", + "IPY_MODEL_22107b48eecc4358a6e6dca3680a6730" + ], + "layout": "IPY_MODEL_01d5c5a706aa4790ae5138084d58b585", + "tabbable": null, + "tooltip": null + } + }, + "9b95df66ce354f3eac3359c2aac81dc7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_53e6817aa0fd4e2ba3bf306e9c8be420", + "placeholder": "​", + "style": "IPY_MODEL_ef321007c100411a8bdbc60ad35aea85", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } + }, + "ef321007c100411a8bdbc60ad35aea85": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index d4c7a074b..cb48944b8 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:34.139162Z", - "iopub.status.busy": "2024-08-22T00:59:34.138659Z", - "iopub.status.idle": "2024-08-22T00:59:35.449204Z", - "shell.execute_reply": "2024-08-22T00:59:35.448626Z" + "iopub.execute_input": "2024-08-26T15:57:10.353933Z", + "iopub.status.busy": "2024-08-26T15:57:10.353544Z", + "iopub.status.idle": "2024-08-26T15:57:11.706462Z", + "shell.execute_reply": "2024-08-26T15:57:11.705786Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:35.451881Z", - "iopub.status.busy": "2024-08-22T00:59:35.451407Z", - "iopub.status.idle": "2024-08-22T00:59:35.470408Z", - "shell.execute_reply": "2024-08-22T00:59:35.469885Z" + "iopub.execute_input": "2024-08-26T15:57:11.709553Z", + "iopub.status.busy": "2024-08-26T15:57:11.709034Z", + "iopub.status.idle": "2024-08-26T15:57:11.728637Z", + "shell.execute_reply": "2024-08-26T15:57:11.728052Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:35.472970Z", - "iopub.status.busy": "2024-08-22T00:59:35.472479Z", - "iopub.status.idle": "2024-08-22T00:59:35.475751Z", - "shell.execute_reply": "2024-08-22T00:59:35.475276Z" + "iopub.execute_input": "2024-08-26T15:57:11.731676Z", + "iopub.status.busy": "2024-08-26T15:57:11.731232Z", + "iopub.status.idle": "2024-08-26T15:57:11.734952Z", + "shell.execute_reply": "2024-08-26T15:57:11.734419Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:35.478142Z", - "iopub.status.busy": "2024-08-22T00:59:35.477678Z", - "iopub.status.idle": "2024-08-22T00:59:35.552570Z", - "shell.execute_reply": "2024-08-22T00:59:35.552002Z" + "iopub.execute_input": "2024-08-26T15:57:11.737208Z", + "iopub.status.busy": "2024-08-26T15:57:11.736848Z", + "iopub.status.idle": "2024-08-26T15:57:11.873269Z", + "shell.execute_reply": "2024-08-26T15:57:11.872516Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:35.555014Z", - "iopub.status.busy": "2024-08-22T00:59:35.554643Z", - "iopub.status.idle": "2024-08-22T00:59:35.742929Z", - "shell.execute_reply": "2024-08-22T00:59:35.742281Z" + "iopub.execute_input": "2024-08-26T15:57:11.876290Z", + "iopub.status.busy": "2024-08-26T15:57:11.875719Z", + "iopub.status.idle": "2024-08-26T15:57:12.074479Z", + "shell.execute_reply": "2024-08-26T15:57:12.073882Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:35.745701Z", - "iopub.status.busy": "2024-08-22T00:59:35.745302Z", - "iopub.status.idle": "2024-08-22T00:59:35.966176Z", - "shell.execute_reply": "2024-08-22T00:59:35.965556Z" + "iopub.execute_input": "2024-08-26T15:57:12.076924Z", + "iopub.status.busy": "2024-08-26T15:57:12.076625Z", + "iopub.status.idle": "2024-08-26T15:57:12.336980Z", + "shell.execute_reply": "2024-08-26T15:57:12.336363Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:35.968772Z", - "iopub.status.busy": "2024-08-22T00:59:35.968306Z", - "iopub.status.idle": "2024-08-22T00:59:35.973222Z", - "shell.execute_reply": "2024-08-22T00:59:35.972657Z" + "iopub.execute_input": "2024-08-26T15:57:12.339363Z", + "iopub.status.busy": "2024-08-26T15:57:12.338933Z", + "iopub.status.idle": "2024-08-26T15:57:12.343568Z", + "shell.execute_reply": "2024-08-26T15:57:12.343036Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:35.975452Z", - "iopub.status.busy": "2024-08-22T00:59:35.975100Z", - "iopub.status.idle": "2024-08-22T00:59:35.980886Z", - "shell.execute_reply": "2024-08-22T00:59:35.980435Z" + "iopub.execute_input": "2024-08-26T15:57:12.345634Z", + "iopub.status.busy": "2024-08-26T15:57:12.345270Z", + "iopub.status.idle": "2024-08-26T15:57:12.352146Z", + "shell.execute_reply": "2024-08-26T15:57:12.351523Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:35.983120Z", - "iopub.status.busy": "2024-08-22T00:59:35.982765Z", - "iopub.status.idle": "2024-08-22T00:59:35.985620Z", - "shell.execute_reply": "2024-08-22T00:59:35.985125Z" + "iopub.execute_input": "2024-08-26T15:57:12.357092Z", + "iopub.status.busy": "2024-08-26T15:57:12.356872Z", + "iopub.status.idle": "2024-08-26T15:57:12.359965Z", + "shell.execute_reply": "2024-08-26T15:57:12.359374Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:35.987817Z", - "iopub.status.busy": "2024-08-22T00:59:35.987467Z", - "iopub.status.idle": "2024-08-22T00:59:45.324560Z", - "shell.execute_reply": "2024-08-22T00:59:45.323979Z" + "iopub.execute_input": "2024-08-26T15:57:12.362474Z", + "iopub.status.busy": "2024-08-26T15:57:12.362043Z", + "iopub.status.idle": "2024-08-26T15:57:21.815400Z", + "shell.execute_reply": "2024-08-26T15:57:21.814683Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:45.327333Z", - "iopub.status.busy": "2024-08-22T00:59:45.326921Z", - "iopub.status.idle": "2024-08-22T00:59:45.334635Z", - "shell.execute_reply": "2024-08-22T00:59:45.334002Z" + "iopub.execute_input": "2024-08-26T15:57:21.818598Z", + "iopub.status.busy": "2024-08-26T15:57:21.817970Z", + "iopub.status.idle": "2024-08-26T15:57:21.825776Z", + "shell.execute_reply": "2024-08-26T15:57:21.825153Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:45.337068Z", - "iopub.status.busy": "2024-08-22T00:59:45.336678Z", - "iopub.status.idle": "2024-08-22T00:59:45.340905Z", - "shell.execute_reply": "2024-08-22T00:59:45.340290Z" + "iopub.execute_input": "2024-08-26T15:57:21.828092Z", + "iopub.status.busy": "2024-08-26T15:57:21.827857Z", + "iopub.status.idle": "2024-08-26T15:57:21.832040Z", + "shell.execute_reply": "2024-08-26T15:57:21.831555Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:45.343134Z", - "iopub.status.busy": "2024-08-22T00:59:45.342801Z", - "iopub.status.idle": "2024-08-22T00:59:45.346306Z", - "shell.execute_reply": "2024-08-22T00:59:45.345726Z" + "iopub.execute_input": "2024-08-26T15:57:21.834133Z", + "iopub.status.busy": "2024-08-26T15:57:21.833919Z", + "iopub.status.idle": "2024-08-26T15:57:21.837359Z", + "shell.execute_reply": "2024-08-26T15:57:21.836818Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:45.348452Z", - "iopub.status.busy": "2024-08-22T00:59:45.348115Z", - "iopub.status.idle": "2024-08-22T00:59:45.351407Z", - "shell.execute_reply": "2024-08-22T00:59:45.350861Z" + "iopub.execute_input": "2024-08-26T15:57:21.839415Z", + "iopub.status.busy": "2024-08-26T15:57:21.839229Z", + "iopub.status.idle": "2024-08-26T15:57:21.842672Z", + "shell.execute_reply": "2024-08-26T15:57:21.842180Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:45.353535Z", - "iopub.status.busy": "2024-08-22T00:59:45.353206Z", - "iopub.status.idle": "2024-08-22T00:59:45.361916Z", - "shell.execute_reply": "2024-08-22T00:59:45.361301Z" + "iopub.execute_input": "2024-08-26T15:57:21.844741Z", + "iopub.status.busy": "2024-08-26T15:57:21.844401Z", + "iopub.status.idle": "2024-08-26T15:57:21.853740Z", + "shell.execute_reply": "2024-08-26T15:57:21.853255Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:45.364260Z", - "iopub.status.busy": "2024-08-22T00:59:45.363899Z", - "iopub.status.idle": "2024-08-22T00:59:45.366933Z", - "shell.execute_reply": "2024-08-22T00:59:45.366336Z" + "iopub.execute_input": "2024-08-26T15:57:21.855835Z", + "iopub.status.busy": "2024-08-26T15:57:21.855641Z", + "iopub.status.idle": "2024-08-26T15:57:21.858610Z", + "shell.execute_reply": "2024-08-26T15:57:21.858126Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:45.369404Z", - "iopub.status.busy": "2024-08-22T00:59:45.369061Z", - "iopub.status.idle": "2024-08-22T00:59:45.496043Z", - "shell.execute_reply": "2024-08-22T00:59:45.495250Z" + "iopub.execute_input": "2024-08-26T15:57:21.860585Z", + "iopub.status.busy": "2024-08-26T15:57:21.860408Z", + "iopub.status.idle": "2024-08-26T15:57:21.989651Z", + "shell.execute_reply": "2024-08-26T15:57:21.988984Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:45.498956Z", - "iopub.status.busy": "2024-08-22T00:59:45.498574Z", - "iopub.status.idle": "2024-08-22T00:59:45.615984Z", - "shell.execute_reply": "2024-08-22T00:59:45.615382Z" + "iopub.execute_input": "2024-08-26T15:57:21.992169Z", + "iopub.status.busy": "2024-08-26T15:57:21.991956Z", + "iopub.status.idle": "2024-08-26T15:57:22.104866Z", + "shell.execute_reply": "2024-08-26T15:57:22.104231Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:45.618546Z", - "iopub.status.busy": "2024-08-22T00:59:45.618203Z", - "iopub.status.idle": "2024-08-22T00:59:46.130246Z", - "shell.execute_reply": "2024-08-22T00:59:46.129578Z" + "iopub.execute_input": "2024-08-26T15:57:22.107310Z", + "iopub.status.busy": "2024-08-26T15:57:22.107103Z", + "iopub.status.idle": "2024-08-26T15:57:22.629095Z", + "shell.execute_reply": "2024-08-26T15:57:22.628465Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:46.132976Z", - "iopub.status.busy": "2024-08-22T00:59:46.132632Z", - "iopub.status.idle": "2024-08-22T00:59:46.231635Z", - "shell.execute_reply": "2024-08-22T00:59:46.230985Z" + "iopub.execute_input": "2024-08-26T15:57:22.632056Z", + "iopub.status.busy": "2024-08-26T15:57:22.631690Z", + "iopub.status.idle": "2024-08-26T15:57:22.739123Z", + "shell.execute_reply": "2024-08-26T15:57:22.738532Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:46.234129Z", - "iopub.status.busy": "2024-08-22T00:59:46.233735Z", - "iopub.status.idle": "2024-08-22T00:59:46.242199Z", - "shell.execute_reply": "2024-08-22T00:59:46.241723Z" + "iopub.execute_input": "2024-08-26T15:57:22.741307Z", + "iopub.status.busy": "2024-08-26T15:57:22.741112Z", + "iopub.status.idle": "2024-08-26T15:57:22.750617Z", + "shell.execute_reply": "2024-08-26T15:57:22.750103Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:46.244357Z", - "iopub.status.busy": "2024-08-22T00:59:46.244002Z", - "iopub.status.idle": "2024-08-22T00:59:46.246647Z", - "shell.execute_reply": "2024-08-22T00:59:46.246176Z" + "iopub.execute_input": "2024-08-26T15:57:22.752784Z", + "iopub.status.busy": "2024-08-26T15:57:22.752589Z", + "iopub.status.idle": "2024-08-26T15:57:22.755529Z", + "shell.execute_reply": "2024-08-26T15:57:22.755048Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:46.248781Z", - "iopub.status.busy": "2024-08-22T00:59:46.248448Z", - "iopub.status.idle": "2024-08-22T00:59:51.966022Z", - "shell.execute_reply": "2024-08-22T00:59:51.965287Z" + "iopub.execute_input": "2024-08-26T15:57:22.757511Z", + "iopub.status.busy": "2024-08-26T15:57:22.757332Z", + "iopub.status.idle": "2024-08-26T15:57:28.480539Z", + "shell.execute_reply": "2024-08-26T15:57:28.479930Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:51.968659Z", - "iopub.status.busy": "2024-08-22T00:59:51.968197Z", - "iopub.status.idle": "2024-08-22T00:59:51.978287Z", - "shell.execute_reply": "2024-08-22T00:59:51.977739Z" + "iopub.execute_input": "2024-08-26T15:57:28.482886Z", + "iopub.status.busy": "2024-08-26T15:57:28.482488Z", + "iopub.status.idle": "2024-08-26T15:57:28.490974Z", + "shell.execute_reply": "2024-08-26T15:57:28.490509Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:51.980827Z", - "iopub.status.busy": "2024-08-22T00:59:51.980613Z", - "iopub.status.idle": "2024-08-22T00:59:52.046603Z", - "shell.execute_reply": "2024-08-22T00:59:52.046079Z" + "iopub.execute_input": "2024-08-26T15:57:28.493156Z", + "iopub.status.busy": "2024-08-26T15:57:28.492824Z", + "iopub.status.idle": "2024-08-26T15:57:28.557679Z", + "shell.execute_reply": "2024-08-26T15:57:28.557043Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index 20ddbc87e..5e829acd3 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -800,13 +800,13 @@

3. Use cleanlab to find label issues

-
+
-
+

Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

@@ -1196,7 +1196,7 @@

Get label quality scores -{"state": {"429b72fbbeec4d47b41af29fa7ec16c7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2624cfb658c74af2a24db8c4e20a25b1": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3ec23f9624ec46248969ad55d729f647": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_429b72fbbeec4d47b41af29fa7ec16c7", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2624cfb658c74af2a24db8c4e20a25b1", "tabbable": null, "tooltip": null, "value": 30.0}}, "0ab77185c611400c8d76e3e12cab0a9d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "538b265f33c748f3993c2009d174b160": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "26b0f75b4906420eac68fd3afaa8df81": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0ab77185c611400c8d76e3e12cab0a9d", "placeholder": "\u200b", "style": "IPY_MODEL_538b265f33c748f3993c2009d174b160", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "6f6da9a684ce4626807d7bda134a3ce0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "195b7a726ef74afd8707cc6930d07bf2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fe51d3b7ad1c4677ba9ff457cd560130": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6f6da9a684ce4626807d7bda134a3ce0", "placeholder": "\u200b", "style": "IPY_MODEL_195b7a726ef74afd8707cc6930d07bf2", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007812.42it/s]"}}, "e5a4a5e595a14919855b58c82592c035": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0855965c7ba04506aff24147503d81a7": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_26b0f75b4906420eac68fd3afaa8df81", "IPY_MODEL_3ec23f9624ec46248969ad55d729f647", "IPY_MODEL_fe51d3b7ad1c4677ba9ff457cd560130"], "layout": "IPY_MODEL_e5a4a5e595a14919855b58c82592c035", "tabbable": null, "tooltip": null}}, "6c98d2b38c4440b996fa4aad5fc57683": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cebcdf72fdec4881b3d5387f7c1ef6a6": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1681c1270bca4471bed3c7e76a668f55": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6c98d2b38c4440b996fa4aad5fc57683", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_cebcdf72fdec4881b3d5387f7c1ef6a6", "tabbable": null, "tooltip": null, "value": 30.0}}, "aa01a5da1ab244e99abd2b532b769870": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a1d26c41ff0c4f02961629b8873c0185": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "62ed4871228848e68fa51073115a040c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_aa01a5da1ab244e99abd2b532b769870", "placeholder": "\u200b", "style": "IPY_MODEL_a1d26c41ff0c4f02961629b8873c0185", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "978b8ebe6db048ec95557972869f4fb4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0399385c2e854b4487d4f16a54dae0c4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ce7c03fd238a47f28ef53334309f67f4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_978b8ebe6db048ec95557972869f4fb4", "placeholder": "\u200b", "style": "IPY_MODEL_0399385c2e854b4487d4f16a54dae0c4", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:25<00:00,\u2007\u20071.18it/s]"}}, "2e4b9b3769ad45318902bedabaaf481f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "56b4bcdb9eb84d5eb940bab6025fc704": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_62ed4871228848e68fa51073115a040c", "IPY_MODEL_1681c1270bca4471bed3c7e76a668f55", "IPY_MODEL_ce7c03fd238a47f28ef53334309f67f4"], "layout": "IPY_MODEL_2e4b9b3769ad45318902bedabaaf481f", "tabbable": null, "tooltip": null}}, "f8834ece40e444119ac73028eea3f85c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e9ab5ca55b144b46a4953c265cf0dffb": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "0e860b97e18b412499c807b6be531d12": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f8834ece40e444119ac73028eea3f85c", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e9ab5ca55b144b46a4953c265cf0dffb", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "1d0b5a67eb5140faa3d48ffad4bc7ed5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c1a41949fc354613b6f1f00f25a6772b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "070f0123681f4549b1dc9825dd633e86": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1d0b5a67eb5140faa3d48ffad4bc7ed5", "placeholder": "\u200b", "style": "IPY_MODEL_c1a41949fc354613b6f1f00f25a6772b", "tabbable": null, "tooltip": null, "value": "100%"}}, "cc2b5a2f685346dfb0243aa2a6387654": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4e14e8a88f7e47ff972b21aae75cbe00": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cafa470f98864aad873ad3c51b858fd3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cc2b5a2f685346dfb0243aa2a6387654", "placeholder": "\u200b", "style": "IPY_MODEL_4e14e8a88f7e47ff972b21aae75cbe00", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007154302.03it/s]"}}, "abfaf1304e1347f68694990edc45b027": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "21405b7bbe10483886e30b0a46e6b0ef": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_070f0123681f4549b1dc9825dd633e86", "IPY_MODEL_0e860b97e18b412499c807b6be531d12", "IPY_MODEL_cafa470f98864aad873ad3c51b858fd3"], "layout": "IPY_MODEL_abfaf1304e1347f68694990edc45b027", "tabbable": null, "tooltip": null}}, "a36cc71e31264298b92ba5cf0a1c94bc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ef5ead5ce04c49e88074f45ac1556b0f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e5068d33f6634998b4319f0029dab919": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a36cc71e31264298b92ba5cf0a1c94bc", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ef5ead5ce04c49e88074f45ac1556b0f", "tabbable": null, "tooltip": null, "value": 30.0}}, "4e07a17ee692455393f25ff4fcfdc783": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "281de92d1b8845f0a912e9cb15c1d188": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d21186c013e246818ac45546bc93085b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4e07a17ee692455393f25ff4fcfdc783", "placeholder": "\u200b", "style": "IPY_MODEL_281de92d1b8845f0a912e9cb15c1d188", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "e33fe96a3fee4226b328600b6f4bc677": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "73ad689126fb48b69eb1aed080a5da89": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "087f052ce8e7471fbab806d8ceefd84f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e33fe96a3fee4226b328600b6f4bc677", "placeholder": "\u200b", "style": "IPY_MODEL_73ad689126fb48b69eb1aed080a5da89", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200720.03it/s]"}}, "aa8e14571396415ea198de3f64a7f650": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4e973453736f46e6ae69cb2d2b15c572": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d21186c013e246818ac45546bc93085b", "IPY_MODEL_e5068d33f6634998b4319f0029dab919", "IPY_MODEL_087f052ce8e7471fbab806d8ceefd84f"], "layout": "IPY_MODEL_aa8e14571396415ea198de3f64a7f650", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"958a1ac99e6a41c7af4753befc728b7f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f620ebd5d4134340aaf7b73aa890937c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9317413021e9447f8c90a80cf8dc144c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_958a1ac99e6a41c7af4753befc728b7f", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f620ebd5d4134340aaf7b73aa890937c", "tabbable": null, "tooltip": null, "value": 30.0}}, "cc84e801aebd40a281648c7d7ca0c80a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b98a87ea54e74230b4146abe730c41ce": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c5df04c7a13c41e1aca5ac56f156f92a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cc84e801aebd40a281648c7d7ca0c80a", "placeholder": "\u200b", "style": "IPY_MODEL_b98a87ea54e74230b4146abe730c41ce", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "feb81028cee34dc5bdaf799847ff4275": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1fb933eec9094fe0a4be2752104b871b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "25e8a49745da4392a2ff93613eb12ed5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_feb81028cee34dc5bdaf799847ff4275", "placeholder": "\u200b", "style": "IPY_MODEL_1fb933eec9094fe0a4be2752104b871b", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007816.12it/s]"}}, "a1371138f24348659a70ca591f43b82a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "53f883482ebd4087bd4db93f6838de70": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c5df04c7a13c41e1aca5ac56f156f92a", "IPY_MODEL_9317413021e9447f8c90a80cf8dc144c", "IPY_MODEL_25e8a49745da4392a2ff93613eb12ed5"], "layout": "IPY_MODEL_a1371138f24348659a70ca591f43b82a", "tabbable": null, "tooltip": null}}, "ae8e5a4d97cc4bd0a6d7ffcb07be1367": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3f170980bd834e7b844c2b63430b2c7c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d5469bcbbc0e4eac9fc85b7bd6810661": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ae8e5a4d97cc4bd0a6d7ffcb07be1367", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_3f170980bd834e7b844c2b63430b2c7c", "tabbable": null, "tooltip": null, "value": 30.0}}, "80d45ded94e94b5cafadc0a592a93900": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1d8ab8f793df4884ae905c9ecaeef271": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "559a8d1236864900adf3c0c7e6429ac1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_80d45ded94e94b5cafadc0a592a93900", "placeholder": "\u200b", "style": "IPY_MODEL_1d8ab8f793df4884ae905c9ecaeef271", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "6ffa8c58be20475dae5302a8b0dc463b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "61ebdb29105148768f6508c264db1765": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "704ee78ec98a41438df4cccc1297d6ea": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6ffa8c58be20475dae5302a8b0dc463b", "placeholder": "\u200b", "style": "IPY_MODEL_61ebdb29105148768f6508c264db1765", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:25<00:00,\u2007\u20071.17it/s]"}}, "f0fa56d81d734d58b54e2abfcfe95a17": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "efb3d0029fdf4740a048c4bbcc9f8991": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_559a8d1236864900adf3c0c7e6429ac1", "IPY_MODEL_d5469bcbbc0e4eac9fc85b7bd6810661", "IPY_MODEL_704ee78ec98a41438df4cccc1297d6ea"], "layout": "IPY_MODEL_f0fa56d81d734d58b54e2abfcfe95a17", "tabbable": null, "tooltip": null}}, "1f3d174b832d4a7589ccb00970a2716b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0d68f2ae99004bf3884c9b86e60c998d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "93585693a2534d489286659fd05750ce": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1f3d174b832d4a7589ccb00970a2716b", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0d68f2ae99004bf3884c9b86e60c998d", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "163aff5db84c4afe8d35c5382524b1d1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e014d201e94f4fc29e2e46a3c7153cff": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c1b66a0eb2be45b29331fc2ede002192": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_163aff5db84c4afe8d35c5382524b1d1", "placeholder": "\u200b", "style": "IPY_MODEL_e014d201e94f4fc29e2e46a3c7153cff", "tabbable": null, "tooltip": null, "value": "100%"}}, "6a152bc636d148bea9a05ee6c2c18620": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8e1d56f7cd6b49478b0b0f2e7083cd1a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ce5bd738dc4041faac10515469d7fc4c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6a152bc636d148bea9a05ee6c2c18620", "placeholder": "\u200b", "style": "IPY_MODEL_8e1d56f7cd6b49478b0b0f2e7083cd1a", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:31<00:00,\u2007157578.50it/s]"}}, "175f5c6a369f4b35b3031461d3e42f83": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3fe032e80e544fd2b19114331afd8c6a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c1b66a0eb2be45b29331fc2ede002192", "IPY_MODEL_93585693a2534d489286659fd05750ce", "IPY_MODEL_ce5bd738dc4041faac10515469d7fc4c"], "layout": "IPY_MODEL_175f5c6a369f4b35b3031461d3e42f83", "tabbable": null, "tooltip": null}}, "943cd7c991114a2699932a06e6c07fc3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ebf03078f56a4669b6bd1412a6959c9b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "378909055f144216ac3230644ece72bc": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_943cd7c991114a2699932a06e6c07fc3", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ebf03078f56a4669b6bd1412a6959c9b", "tabbable": null, "tooltip": null, "value": 30.0}}, "b89fba7287d54c2980f59fecec56b3ce": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e3697667890947bfa6094bacfb3ac5e3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5bc57a4814cf4211be4a34a78e6f31de": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b89fba7287d54c2980f59fecec56b3ce", "placeholder": "\u200b", "style": "IPY_MODEL_e3697667890947bfa6094bacfb3ac5e3", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "5c7e7dde472443469caa64558f68e3ee": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2c8a7bcf40dd46338cd2d79ac2eddffb": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "44a0516f8bac472cbbf5c4b998d5f144": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5c7e7dde472443469caa64558f68e3ee", "placeholder": "\u200b", "style": "IPY_MODEL_2c8a7bcf40dd46338cd2d79ac2eddffb", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200720.06it/s]"}}, "3eb40e8325304410a5c584b2734903aa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "872758bc0ea34c5abe53a40a109b61fc": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5bc57a4814cf4211be4a34a78e6f31de", "IPY_MODEL_378909055f144216ac3230644ece72bc", "IPY_MODEL_44a0516f8bac472cbbf5c4b998d5f144"], "layout": "IPY_MODEL_3eb40e8325304410a5c584b2734903aa", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index 1bc33d6a4..e74549c5b 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:56.456172Z", - "iopub.status.busy": "2024-08-22T00:59:56.455994Z", - "iopub.status.idle": "2024-08-22T00:59:58.040069Z", - "shell.execute_reply": "2024-08-22T00:59:58.039331Z" + "iopub.execute_input": "2024-08-26T15:57:31.883178Z", + "iopub.status.busy": "2024-08-26T15:57:31.882996Z", + "iopub.status.idle": "2024-08-26T15:57:36.244356Z", + "shell.execute_reply": "2024-08-26T15:57:36.243657Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T00:59:58.042789Z", - "iopub.status.busy": "2024-08-22T00:59:58.042399Z", - "iopub.status.idle": "2024-08-22T01:01:04.988074Z", - "shell.execute_reply": "2024-08-22T01:01:04.987297Z" + "iopub.execute_input": "2024-08-26T15:57:36.247073Z", + "iopub.status.busy": "2024-08-26T15:57:36.246855Z", + "iopub.status.idle": "2024-08-26T16:02:06.838118Z", + "shell.execute_reply": "2024-08-26T16:02:06.837430Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:01:04.990756Z", - "iopub.status.busy": "2024-08-22T01:01:04.990563Z", - "iopub.status.idle": "2024-08-22T01:01:06.208301Z", - "shell.execute_reply": "2024-08-22T01:01:06.207751Z" + "iopub.execute_input": "2024-08-26T16:02:06.840804Z", + "iopub.status.busy": "2024-08-26T16:02:06.840410Z", + "iopub.status.idle": "2024-08-26T16:02:08.076017Z", + "shell.execute_reply": "2024-08-26T16:02:08.075446Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:01:06.211115Z", - "iopub.status.busy": "2024-08-22T01:01:06.210479Z", - "iopub.status.idle": "2024-08-22T01:01:06.213895Z", - "shell.execute_reply": "2024-08-22T01:01:06.213404Z" + "iopub.execute_input": "2024-08-26T16:02:08.078632Z", + "iopub.status.busy": "2024-08-26T16:02:08.078238Z", + "iopub.status.idle": "2024-08-26T16:02:08.082099Z", + "shell.execute_reply": "2024-08-26T16:02:08.081663Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:01:06.215999Z", - "iopub.status.busy": "2024-08-22T01:01:06.215679Z", - "iopub.status.idle": "2024-08-22T01:01:06.219570Z", - "shell.execute_reply": "2024-08-22T01:01:06.219035Z" + "iopub.execute_input": "2024-08-26T16:02:08.084359Z", + "iopub.status.busy": "2024-08-26T16:02:08.084021Z", + "iopub.status.idle": "2024-08-26T16:02:08.087900Z", + "shell.execute_reply": "2024-08-26T16:02:08.087448Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:01:06.221667Z", - "iopub.status.busy": "2024-08-22T01:01:06.221349Z", - "iopub.status.idle": "2024-08-22T01:01:06.224971Z", - "shell.execute_reply": "2024-08-22T01:01:06.224444Z" + "iopub.execute_input": "2024-08-26T16:02:08.090083Z", + "iopub.status.busy": "2024-08-26T16:02:08.089689Z", + "iopub.status.idle": "2024-08-26T16:02:08.093849Z", + "shell.execute_reply": "2024-08-26T16:02:08.093395Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:01:06.227001Z", - "iopub.status.busy": "2024-08-22T01:01:06.226594Z", - "iopub.status.idle": "2024-08-22T01:01:06.229513Z", - "shell.execute_reply": "2024-08-22T01:01:06.228993Z" + "iopub.execute_input": "2024-08-26T16:02:08.095840Z", + "iopub.status.busy": "2024-08-26T16:02:08.095561Z", + "iopub.status.idle": "2024-08-26T16:02:08.098400Z", + "shell.execute_reply": "2024-08-26T16:02:08.097941Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:01:06.231457Z", - "iopub.status.busy": "2024-08-22T01:01:06.231159Z", - "iopub.status.idle": "2024-08-22T01:01:44.134593Z", - "shell.execute_reply": "2024-08-22T01:01:44.133826Z" + "iopub.execute_input": "2024-08-26T16:02:08.100404Z", + "iopub.status.busy": "2024-08-26T16:02:08.100066Z", + "iopub.status.idle": "2024-08-26T16:02:45.804800Z", + "shell.execute_reply": "2024-08-26T16:02:45.804164Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0855965c7ba04506aff24147503d81a7", + "model_id": "53f883482ebd4087bd4db93f6838de70", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "56b4bcdb9eb84d5eb940bab6025fc704", + "model_id": "efb3d0029fdf4740a048c4bbcc9f8991", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:01:44.137786Z", - "iopub.status.busy": "2024-08-22T01:01:44.137325Z", - "iopub.status.idle": "2024-08-22T01:01:44.851268Z", - "shell.execute_reply": "2024-08-22T01:01:44.850651Z" + "iopub.execute_input": "2024-08-26T16:02:45.807470Z", + "iopub.status.busy": "2024-08-26T16:02:45.807072Z", + "iopub.status.idle": "2024-08-26T16:02:46.481736Z", + "shell.execute_reply": "2024-08-26T16:02:46.481206Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:01:44.854020Z", - "iopub.status.busy": "2024-08-22T01:01:44.853399Z", - "iopub.status.idle": "2024-08-22T01:01:48.009362Z", - "shell.execute_reply": "2024-08-22T01:01:48.008703Z" + "iopub.execute_input": "2024-08-26T16:02:46.484246Z", + "iopub.status.busy": "2024-08-26T16:02:46.483772Z", + "iopub.status.idle": "2024-08-26T16:02:49.477184Z", + "shell.execute_reply": "2024-08-26T16:02:49.476583Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:01:48.011895Z", - "iopub.status.busy": "2024-08-22T01:01:48.011516Z", - "iopub.status.idle": "2024-08-22T01:02:20.673434Z", - "shell.execute_reply": "2024-08-22T01:02:20.672910Z" + "iopub.execute_input": "2024-08-26T16:02:49.479481Z", + "iopub.status.busy": "2024-08-26T16:02:49.479122Z", + "iopub.status.idle": "2024-08-26T16:03:21.677043Z", + "shell.execute_reply": "2024-08-26T16:03:21.676462Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "21405b7bbe10483886e30b0a46e6b0ef", + "model_id": "3fe032e80e544fd2b19114331afd8c6a", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:02:20.675729Z", - "iopub.status.busy": "2024-08-22T01:02:20.675362Z", - "iopub.status.idle": "2024-08-22T01:02:36.111870Z", - "shell.execute_reply": "2024-08-22T01:02:36.111166Z" + "iopub.execute_input": "2024-08-26T16:03:21.679298Z", + "iopub.status.busy": "2024-08-26T16:03:21.678963Z", + "iopub.status.idle": "2024-08-26T16:03:38.187765Z", + "shell.execute_reply": "2024-08-26T16:03:38.187143Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:02:36.114431Z", - "iopub.status.busy": "2024-08-22T01:02:36.114239Z", - "iopub.status.idle": "2024-08-22T01:02:40.043409Z", - "shell.execute_reply": "2024-08-22T01:02:40.042815Z" + "iopub.execute_input": "2024-08-26T16:03:38.190702Z", + "iopub.status.busy": "2024-08-26T16:03:38.190096Z", + "iopub.status.idle": "2024-08-26T16:03:42.090509Z", + "shell.execute_reply": "2024-08-26T16:03:42.089900Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:02:40.045791Z", - "iopub.status.busy": "2024-08-22T01:02:40.045326Z", - "iopub.status.idle": "2024-08-22T01:02:41.597799Z", - "shell.execute_reply": "2024-08-22T01:02:41.597241Z" + "iopub.execute_input": "2024-08-26T16:03:42.092785Z", + "iopub.status.busy": "2024-08-26T16:03:42.092449Z", + "iopub.status.idle": "2024-08-26T16:03:43.601612Z", + "shell.execute_reply": "2024-08-26T16:03:43.601014Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4e973453736f46e6ae69cb2d2b15c572", + "model_id": "872758bc0ea34c5abe53a40a109b61fc", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:02:41.600425Z", - "iopub.status.busy": "2024-08-22T01:02:41.600026Z", - "iopub.status.idle": "2024-08-22T01:02:41.632490Z", - "shell.execute_reply": "2024-08-22T01:02:41.631952Z" + "iopub.execute_input": "2024-08-26T16:03:43.603725Z", + "iopub.status.busy": "2024-08-26T16:03:43.603502Z", + "iopub.status.idle": "2024-08-26T16:03:43.635426Z", + "shell.execute_reply": "2024-08-26T16:03:43.634736Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:02:41.635191Z", - "iopub.status.busy": "2024-08-22T01:02:41.634812Z", - "iopub.status.idle": "2024-08-22T01:02:47.910359Z", - "shell.execute_reply": "2024-08-22T01:02:47.909855Z" + "iopub.execute_input": "2024-08-26T16:03:43.638045Z", + "iopub.status.busy": "2024-08-26T16:03:43.637828Z", + "iopub.status.idle": "2024-08-26T16:03:49.737531Z", + "shell.execute_reply": "2024-08-26T16:03:49.736900Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:02:47.912772Z", - "iopub.status.busy": "2024-08-22T01:02:47.912399Z", - "iopub.status.idle": "2024-08-22T01:02:47.968210Z", - "shell.execute_reply": "2024-08-22T01:02:47.967700Z" + "iopub.execute_input": "2024-08-26T16:03:49.740016Z", + "iopub.status.busy": "2024-08-26T16:03:49.739614Z", + "iopub.status.idle": "2024-08-26T16:03:49.796126Z", + "shell.execute_reply": "2024-08-26T16:03:49.795559Z" }, "nbsphinx": "hidden" }, @@ -1038,95 +1038,147 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0399385c2e854b4487d4f16a54dae0c4": { + "0d68f2ae99004bf3884c9b86e60c998d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "070f0123681f4549b1dc9825dd633e86": { - "model_module": "@jupyter-widgets/controls", + "163aff5db84c4afe8d35c5382524b1d1": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1d0b5a67eb5140faa3d48ffad4bc7ed5", - "placeholder": "​", - "style": "IPY_MODEL_c1a41949fc354613b6f1f00f25a6772b", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "0855965c7ba04506aff24147503d81a7": { - "model_module": "@jupyter-widgets/controls", + "175f5c6a369f4b35b3031461d3e42f83": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_26b0f75b4906420eac68fd3afaa8df81", - "IPY_MODEL_3ec23f9624ec46248969ad55d729f647", - "IPY_MODEL_fe51d3b7ad1c4677ba9ff457cd560130" - ], - "layout": "IPY_MODEL_e5a4a5e595a14919855b58c82592c035", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "087f052ce8e7471fbab806d8ceefd84f": { + "1d8ab8f793df4884ae905c9ecaeef271": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e33fe96a3fee4226b328600b6f4bc677", - "placeholder": "​", - "style": "IPY_MODEL_73ad689126fb48b69eb1aed080a5da89", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 20.03it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0ab77185c611400c8d76e3e12cab0a9d": { + "1f3d174b832d4a7589ccb00970a2716b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1179,59 +1231,48 @@ "width": null } }, - "0e860b97e18b412499c807b6be531d12": { + "1fb933eec9094fe0a4be2752104b871b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f8834ece40e444119ac73028eea3f85c", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e9ab5ca55b144b46a4953c265cf0dffb", - "tabbable": null, - "tooltip": null, - "value": 4997683.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1681c1270bca4471bed3c7e76a668f55": { + "25e8a49745da4392a2ff93613eb12ed5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6c98d2b38c4440b996fa4aad5fc57683", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cebcdf72fdec4881b3d5387f7c1ef6a6", + "layout": "IPY_MODEL_feb81028cee34dc5bdaf799847ff4275", + "placeholder": "​", + "style": "IPY_MODEL_1fb933eec9094fe0a4be2752104b871b", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": " 30/30 [00:00<00:00, 816.12it/s]" } }, - "195b7a726ef74afd8707cc6930d07bf2": { + "2c8a7bcf40dd46338cd2d79ac2eddffb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1249,7 +1290,33 @@ "text_color": null } }, - "1d0b5a67eb5140faa3d48ffad4bc7ed5": { + "378909055f144216ac3230644ece72bc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_943cd7c991114a2699932a06e6c07fc3", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ebf03078f56a4669b6bd1412a6959c9b", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "3eb40e8325304410a5c584b2734903aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1302,7 +1369,23 @@ "width": null } }, - "21405b7bbe10483886e30b0a46e6b0ef": { + "3f170980bd834e7b844c2b63430b2c7c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3fe032e80e544fd2b19114331afd8c6a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1317,32 +1400,63 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_070f0123681f4549b1dc9825dd633e86", - "IPY_MODEL_0e860b97e18b412499c807b6be531d12", - "IPY_MODEL_cafa470f98864aad873ad3c51b858fd3" + "IPY_MODEL_c1b66a0eb2be45b29331fc2ede002192", + "IPY_MODEL_93585693a2534d489286659fd05750ce", + "IPY_MODEL_ce5bd738dc4041faac10515469d7fc4c" ], - "layout": "IPY_MODEL_abfaf1304e1347f68694990edc45b027", + "layout": "IPY_MODEL_175f5c6a369f4b35b3031461d3e42f83", "tabbable": null, "tooltip": null } }, - "2624cfb658c74af2a24db8c4e20a25b1": { + "44a0516f8bac472cbbf5c4b998d5f144": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5c7e7dde472443469caa64558f68e3ee", + "placeholder": "​", + "style": "IPY_MODEL_2c8a7bcf40dd46338cd2d79ac2eddffb", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 20.06it/s]" + } + }, + "53f883482ebd4087bd4db93f6838de70": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c5df04c7a13c41e1aca5ac56f156f92a", + "IPY_MODEL_9317413021e9447f8c90a80cf8dc144c", + "IPY_MODEL_25e8a49745da4392a2ff93613eb12ed5" + ], + "layout": "IPY_MODEL_a1371138f24348659a70ca591f43b82a", + "tabbable": null, + "tooltip": null } }, - "26b0f75b4906420eac68fd3afaa8df81": { + "559a8d1236864900adf3c0c7e6429ac1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1357,33 +1471,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0ab77185c611400c8d76e3e12cab0a9d", + "layout": "IPY_MODEL_80d45ded94e94b5cafadc0a592a93900", "placeholder": "​", - "style": "IPY_MODEL_538b265f33c748f3993c2009d174b160", + "style": "IPY_MODEL_1d8ab8f793df4884ae905c9ecaeef271", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" + "value": "number of examples processed for checking labels: 100%" } }, - "281de92d1b8845f0a912e9cb15c1d188": { + "5bc57a4814cf4211be4a34a78e6f31de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b89fba7287d54c2980f59fecec56b3ce", + "placeholder": "​", + "style": "IPY_MODEL_e3697667890947bfa6094bacfb3ac5e3", + "tabbable": null, + "tooltip": null, + "value": "images processed using softmin: 100%" } }, - "2e4b9b3769ad45318902bedabaaf481f": { + "5c7e7dde472443469caa64558f68e3ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1436,33 +1555,25 @@ "width": null } }, - "3ec23f9624ec46248969ad55d729f647": { + "61ebdb29105148768f6508c264db1765": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_429b72fbbeec4d47b41af29fa7ec16c7", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2624cfb658c74af2a24db8c4e20a25b1", - "tabbable": null, - "tooltip": null, - "value": 30.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "429b72fbbeec4d47b41af29fa7ec16c7": { + "6a152bc636d148bea9a05ee6c2c18620": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1515,7 +1626,7 @@ "width": null } }, - "4e07a17ee692455393f25ff4fcfdc783": { + "6ffa8c58be20475dae5302a8b0dc463b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1568,91 +1679,7 @@ "width": null } }, - "4e14e8a88f7e47ff972b21aae75cbe00": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4e973453736f46e6ae69cb2d2b15c572": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d21186c013e246818ac45546bc93085b", - "IPY_MODEL_e5068d33f6634998b4319f0029dab919", - "IPY_MODEL_087f052ce8e7471fbab806d8ceefd84f" - ], - "layout": "IPY_MODEL_aa8e14571396415ea198de3f64a7f650", - "tabbable": null, - "tooltip": null - } - }, - "538b265f33c748f3993c2009d174b160": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "56b4bcdb9eb84d5eb940bab6025fc704": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_62ed4871228848e68fa51073115a040c", - "IPY_MODEL_1681c1270bca4471bed3c7e76a668f55", - "IPY_MODEL_ce7c03fd238a47f28ef53334309f67f4" - ], - "layout": "IPY_MODEL_2e4b9b3769ad45318902bedabaaf481f", - "tabbable": null, - "tooltip": null - } - }, - "62ed4871228848e68fa51073115a040c": { + "704ee78ec98a41438df4cccc1297d6ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1667,15 +1694,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_aa01a5da1ab244e99abd2b532b769870", + "layout": "IPY_MODEL_6ffa8c58be20475dae5302a8b0dc463b", "placeholder": "​", - "style": "IPY_MODEL_a1d26c41ff0c4f02961629b8873c0185", + "style": "IPY_MODEL_61ebdb29105148768f6508c264db1765", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: 100%" + "value": " 30/30 [00:25<00:00,  1.17it/s]" } }, - "6c98d2b38c4440b996fa4aad5fc57683": { + "80d45ded94e94b5cafadc0a592a93900": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1728,60 +1755,31 @@ "width": null } }, - "6f6da9a684ce4626807d7bda134a3ce0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "872758bc0ea34c5abe53a40a109b61fc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5bc57a4814cf4211be4a34a78e6f31de", + "IPY_MODEL_378909055f144216ac3230644ece72bc", + "IPY_MODEL_44a0516f8bac472cbbf5c4b998d5f144" + ], + "layout": "IPY_MODEL_3eb40e8325304410a5c584b2734903aa", + "tabbable": null, + "tooltip": null } }, - "73ad689126fb48b69eb1aed080a5da89": { + "8e1d56f7cd6b49478b0b0f2e7083cd1a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1799,7 +1797,59 @@ "text_color": null } }, - "978b8ebe6db048ec95557972869f4fb4": { + "9317413021e9447f8c90a80cf8dc144c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_958a1ac99e6a41c7af4753befc728b7f", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f620ebd5d4134340aaf7b73aa890937c", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "93585693a2534d489286659fd05750ce": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1f3d174b832d4a7589ccb00970a2716b", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0d68f2ae99004bf3884c9b86e60c998d", + "tabbable": null, + "tooltip": null, + "value": 4997683.0 + } + }, + "943cd7c991114a2699932a06e6c07fc3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1852,25 +1902,7 @@ "width": null } }, - "a1d26c41ff0c4f02961629b8873c0185": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a36cc71e31264298b92ba5cf0a1c94bc": { + "958a1ac99e6a41c7af4753befc728b7f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1923,7 +1955,7 @@ "width": null } }, - "aa01a5da1ab244e99abd2b532b769870": { + "a1371138f24348659a70ca591f43b82a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1976,7 +2008,7 @@ "width": null } }, - "aa8e14571396415ea198de3f64a7f650": { + "ae8e5a4d97cc4bd0a6d7ffcb07be1367": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2029,7 +2061,7 @@ "width": null } }, - "abfaf1304e1347f68694990edc45b027": { + "b89fba7287d54c2980f59fecec56b3ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2082,7 +2114,7 @@ "width": null } }, - "c1a41949fc354613b6f1f00f25a6772b": { + "b98a87ea54e74230b4146abe730c41ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2100,7 +2132,30 @@ "text_color": null } }, - "cafa470f98864aad873ad3c51b858fd3": { + "c1b66a0eb2be45b29331fc2ede002192": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_163aff5db84c4afe8d35c5382524b1d1", + "placeholder": "​", + "style": "IPY_MODEL_e014d201e94f4fc29e2e46a3c7153cff", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "c5df04c7a13c41e1aca5ac56f156f92a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2115,15 +2170,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cc2b5a2f685346dfb0243aa2a6387654", + "layout": "IPY_MODEL_cc84e801aebd40a281648c7d7ca0c80a", "placeholder": "​", - "style": "IPY_MODEL_4e14e8a88f7e47ff972b21aae75cbe00", + "style": "IPY_MODEL_b98a87ea54e74230b4146abe730c41ce", "tabbable": null, "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 154302.03it/s]" + "value": "number of examples processed for estimating thresholds: 100%" } }, - "cc2b5a2f685346dfb0243aa2a6387654": { + "cc84e801aebd40a281648c7d7ca0c80a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2176,7 +2231,7 @@ "width": null } }, - "ce7c03fd238a47f28ef53334309f67f4": { + "ce5bd738dc4041faac10515469d7fc4c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2191,133 +2246,117 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_978b8ebe6db048ec95557972869f4fb4", + "layout": "IPY_MODEL_6a152bc636d148bea9a05ee6c2c18620", "placeholder": "​", - "style": "IPY_MODEL_0399385c2e854b4487d4f16a54dae0c4", + "style": "IPY_MODEL_8e1d56f7cd6b49478b0b0f2e7083cd1a", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:25<00:00,  1.18it/s]" + "value": " 4997683/4997683 [00:31<00:00, 157578.50it/s]" } }, - "cebcdf72fdec4881b3d5387f7c1ef6a6": { + "d5469bcbbc0e4eac9fc85b7bd6810661": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ae8e5a4d97cc4bd0a6d7ffcb07be1367", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3f170980bd834e7b844c2b63430b2c7c", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "e014d201e94f4fc29e2e46a3c7153cff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d21186c013e246818ac45546bc93085b": { + "e3697667890947bfa6094bacfb3ac5e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4e07a17ee692455393f25ff4fcfdc783", - "placeholder": "​", - "style": "IPY_MODEL_281de92d1b8845f0a912e9cb15c1d188", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e33fe96a3fee4226b328600b6f4bc677": { - "model_module": "@jupyter-widgets/base", + "ebf03078f56a4669b6bd1412a6959c9b": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "e5068d33f6634998b4319f0029dab919": { + "efb3d0029fdf4740a048c4bbcc9f8991": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a36cc71e31264298b92ba5cf0a1c94bc", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ef5ead5ce04c49e88074f45ac1556b0f", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_559a8d1236864900adf3c0c7e6429ac1", + "IPY_MODEL_d5469bcbbc0e4eac9fc85b7bd6810661", + "IPY_MODEL_704ee78ec98a41438df4cccc1297d6ea" + ], + "layout": "IPY_MODEL_f0fa56d81d734d58b54e2abfcfe95a17", "tabbable": null, - "tooltip": null, - "value": 30.0 + "tooltip": null } }, - "e5a4a5e595a14919855b58c82592c035": { + "f0fa56d81d734d58b54e2abfcfe95a17": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2370,23 +2409,7 @@ "width": null } }, - "e9ab5ca55b144b46a4953c265cf0dffb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ef5ead5ce04c49e88074f45ac1556b0f": { + "f620ebd5d4134340aaf7b73aa890937c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2402,7 +2425,7 @@ "description_width": "" } }, - "f8834ece40e444119ac73028eea3f85c": { + "feb81028cee34dc5bdaf799847ff4275": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2454,29 +2477,6 @@ "visibility": null, "width": null } - }, - "fe51d3b7ad1c4677ba9ff457cd560130": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6f6da9a684ce4626807d7bda134a3ce0", - "placeholder": "​", - "style": "IPY_MODEL_195b7a726ef74afd8707cc6930d07bf2", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 812.42it/s]" - } } }, "version_major": 2, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index 3c76ee0c1..85be2b523 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -710,16 +710,16 @@

1. Install required dependencies and download data

diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index 82fc26b65..704630cc8 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:02:50.513660Z", - "iopub.status.busy": "2024-08-22T01:02:50.513467Z", - "iopub.status.idle": "2024-08-22T01:02:51.670259Z", - "shell.execute_reply": "2024-08-22T01:02:51.669598Z" + "iopub.execute_input": "2024-08-26T16:03:52.199830Z", + "iopub.status.busy": "2024-08-26T16:03:52.199328Z", + "iopub.status.idle": "2024-08-26T16:03:54.228374Z", + "shell.execute_reply": "2024-08-26T16:03:54.227662Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-22 01:02:50-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-08-26 16:03:52-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,8 +94,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "185.93.1.250, 2400:52e0:1a00::1069:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|185.93.1.250|:443... connected.\r\n" + "169.150.249.163, 2400:52e0:1a01::1115:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|169.150.249.163|:443... connected.\r\n" ] }, { @@ -122,9 +122,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K 6.04MB/s in 0.2s \r\n", + "conll2003.zip 100%[===================>] 959.94K 6.11MB/s in 0.2s \r\n", "\r\n", - "2024-08-22 01:02:50 (6.04 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-08-26 16:03:52 (6.11 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -136,24 +136,30 @@ "Archive: conll2003.zip\r\n", " inflating: data/metadata \r\n", " inflating: data/test.txt \r\n", - " inflating: data/train.txt " + " inflating: data/train.txt \r\n", + " inflating: data/valid.txt \r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "\r\n", - " inflating: data/valid.txt \r\n" + "--2024-08-26 16:03:52-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.216.209, 52.217.230.177, 52.217.116.41, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.216.209|:443... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "connected.\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-22 01:02:51-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.10.150, 3.5.25.116, 52.216.130.187, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.10.150|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -174,9 +180,33 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.1s \r\n", + "pred_probs.npz 0%[ ] 143.53K 712KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 7%[> ] 1.25M 3.11MB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 49%[========> ] 7.97M 13.2MB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "pred_probs.npz 100%[===================>] 16.26M 21.5MB/s in 0.8s \r\n", "\r\n", - "2024-08-22 01:02:51 (154 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-08-26 16:03:54 (21.5 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -193,10 +223,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:02:51.672871Z", - "iopub.status.busy": "2024-08-22T01:02:51.672671Z", - "iopub.status.idle": "2024-08-22T01:02:53.049411Z", - "shell.execute_reply": "2024-08-22T01:02:53.048866Z" + "iopub.execute_input": "2024-08-26T16:03:54.231159Z", + "iopub.status.busy": "2024-08-26T16:03:54.230797Z", + "iopub.status.idle": "2024-08-26T16:03:55.559490Z", + "shell.execute_reply": "2024-08-26T16:03:55.558978Z" }, "nbsphinx": "hidden" }, @@ -207,7 +237,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a1f08833c50191ffb41560e3f18bf70dcb2b576d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -233,10 +263,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:02:53.052187Z", - "iopub.status.busy": "2024-08-22T01:02:53.051687Z", - "iopub.status.idle": "2024-08-22T01:02:53.055133Z", - "shell.execute_reply": "2024-08-22T01:02:53.054671Z" + "iopub.execute_input": "2024-08-26T16:03:55.562075Z", + "iopub.status.busy": "2024-08-26T16:03:55.561623Z", + "iopub.status.idle": "2024-08-26T16:03:55.564854Z", + "shell.execute_reply": "2024-08-26T16:03:55.564374Z" } }, "outputs": [], @@ -286,10 +316,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:02:53.057288Z", - "iopub.status.busy": "2024-08-22T01:02:53.056930Z", - "iopub.status.idle": "2024-08-22T01:02:53.060183Z", - "shell.execute_reply": "2024-08-22T01:02:53.059686Z" + "iopub.execute_input": "2024-08-26T16:03:55.567011Z", + "iopub.status.busy": "2024-08-26T16:03:55.566646Z", + "iopub.status.idle": "2024-08-26T16:03:55.569740Z", + "shell.execute_reply": "2024-08-26T16:03:55.569184Z" }, "nbsphinx": "hidden" }, @@ -307,10 +337,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:02:53.062310Z", - "iopub.status.busy": "2024-08-22T01:02:53.061956Z", - "iopub.status.idle": "2024-08-22T01:03:02.229732Z", - "shell.execute_reply": "2024-08-22T01:03:02.229052Z" + "iopub.execute_input": "2024-08-26T16:03:55.571809Z", + "iopub.status.busy": "2024-08-26T16:03:55.571484Z", + "iopub.status.idle": "2024-08-26T16:04:04.593614Z", + "shell.execute_reply": "2024-08-26T16:04:04.593000Z" } }, "outputs": [], @@ -384,10 +414,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:03:02.232370Z", - "iopub.status.busy": "2024-08-22T01:03:02.232157Z", - "iopub.status.idle": "2024-08-22T01:03:02.237831Z", - "shell.execute_reply": "2024-08-22T01:03:02.237329Z" + "iopub.execute_input": "2024-08-26T16:04:04.596217Z", + "iopub.status.busy": "2024-08-26T16:04:04.596011Z", + "iopub.status.idle": "2024-08-26T16:04:04.601781Z", + "shell.execute_reply": "2024-08-26T16:04:04.601301Z" }, "nbsphinx": "hidden" }, @@ -427,10 +457,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:03:02.239928Z", - "iopub.status.busy": "2024-08-22T01:03:02.239582Z", - "iopub.status.idle": "2024-08-22T01:03:02.610483Z", - "shell.execute_reply": "2024-08-22T01:03:02.609919Z" + "iopub.execute_input": "2024-08-26T16:04:04.603874Z", + "iopub.status.busy": "2024-08-26T16:04:04.603537Z", + "iopub.status.idle": "2024-08-26T16:04:04.965244Z", + "shell.execute_reply": "2024-08-26T16:04:04.964692Z" } }, "outputs": [], @@ -467,10 +497,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:03:02.613081Z", - "iopub.status.busy": "2024-08-22T01:03:02.612659Z", - "iopub.status.idle": "2024-08-22T01:03:02.617270Z", - "shell.execute_reply": "2024-08-22T01:03:02.616794Z" + "iopub.execute_input": "2024-08-26T16:04:04.967937Z", + "iopub.status.busy": "2024-08-26T16:04:04.967492Z", + "iopub.status.idle": "2024-08-26T16:04:04.972633Z", + "shell.execute_reply": "2024-08-26T16:04:04.972006Z" } }, "outputs": [ @@ -542,10 +572,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:03:02.619351Z", - "iopub.status.busy": "2024-08-22T01:03:02.618925Z", - "iopub.status.idle": "2024-08-22T01:03:05.354709Z", - "shell.execute_reply": "2024-08-22T01:03:05.353968Z" + "iopub.execute_input": "2024-08-26T16:04:04.975197Z", + "iopub.status.busy": "2024-08-26T16:04:04.974808Z", + "iopub.status.idle": "2024-08-26T16:04:07.698648Z", + "shell.execute_reply": "2024-08-26T16:04:07.697909Z" } }, "outputs": [], @@ -567,10 +597,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:03:05.357816Z", - "iopub.status.busy": "2024-08-22T01:03:05.357165Z", - "iopub.status.idle": "2024-08-22T01:03:05.361299Z", - "shell.execute_reply": "2024-08-22T01:03:05.360753Z" + "iopub.execute_input": "2024-08-26T16:04:07.701619Z", + "iopub.status.busy": "2024-08-26T16:04:07.701017Z", + "iopub.status.idle": "2024-08-26T16:04:07.704967Z", + "shell.execute_reply": "2024-08-26T16:04:07.704464Z" } }, "outputs": [ @@ -606,10 +636,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:03:05.363204Z", - "iopub.status.busy": "2024-08-22T01:03:05.363031Z", - "iopub.status.idle": "2024-08-22T01:03:05.368784Z", - "shell.execute_reply": "2024-08-22T01:03:05.368317Z" + "iopub.execute_input": "2024-08-26T16:04:07.707094Z", + "iopub.status.busy": "2024-08-26T16:04:07.706758Z", + "iopub.status.idle": "2024-08-26T16:04:07.711843Z", + "shell.execute_reply": "2024-08-26T16:04:07.711300Z" } }, "outputs": [ @@ -787,10 +817,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:03:05.371102Z", - "iopub.status.busy": "2024-08-22T01:03:05.370562Z", - "iopub.status.idle": "2024-08-22T01:03:05.397851Z", - "shell.execute_reply": "2024-08-22T01:03:05.397223Z" + "iopub.execute_input": "2024-08-26T16:04:07.714045Z", + "iopub.status.busy": "2024-08-26T16:04:07.713708Z", + "iopub.status.idle": "2024-08-26T16:04:07.740657Z", + "shell.execute_reply": "2024-08-26T16:04:07.740074Z" } }, "outputs": [ @@ -892,10 +922,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:03:05.400160Z", - "iopub.status.busy": "2024-08-22T01:03:05.399823Z", - "iopub.status.idle": "2024-08-22T01:03:05.405058Z", - "shell.execute_reply": "2024-08-22T01:03:05.404573Z" + "iopub.execute_input": "2024-08-26T16:04:07.743029Z", + "iopub.status.busy": "2024-08-26T16:04:07.742589Z", + "iopub.status.idle": "2024-08-26T16:04:07.747982Z", + "shell.execute_reply": "2024-08-26T16:04:07.747370Z" } }, "outputs": [ @@ -969,10 +999,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:03:05.407127Z", - "iopub.status.busy": "2024-08-22T01:03:05.406781Z", - "iopub.status.idle": "2024-08-22T01:03:06.888531Z", - "shell.execute_reply": "2024-08-22T01:03:06.887961Z" + "iopub.execute_input": "2024-08-26T16:04:07.750138Z", + "iopub.status.busy": "2024-08-26T16:04:07.749956Z", + "iopub.status.idle": "2024-08-26T16:04:09.204508Z", + "shell.execute_reply": "2024-08-26T16:04:09.203868Z" } }, "outputs": [ @@ -1144,10 +1174,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-08-22T01:03:06.890813Z", - "iopub.status.busy": "2024-08-22T01:03:06.890420Z", - "iopub.status.idle": "2024-08-22T01:03:06.894637Z", - "shell.execute_reply": "2024-08-22T01:03:06.894178Z" + "iopub.execute_input": "2024-08-26T16:04:09.206914Z", + "iopub.status.busy": "2024-08-26T16:04:09.206702Z", + "iopub.status.idle": "2024-08-26T16:04:09.211093Z", + "shell.execute_reply": "2024-08-26T16:04:09.210480Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index a70fc4f78..995d849aa 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.6.6", - commit_hash: "a1f08833c50191ffb41560e3f18bf70dcb2b576d", + commit_hash: "894a33971fd8cf99254476de4c8b68d2f685b130", }; \ No newline at end of file