From 53745578bfd61c8b90fe4116c0cf82d58b617654 Mon Sep 17 00:00:00 2001 From: elisno Date: Tue, 2 Jul 2024 12:10:56 +0000 Subject: [PATCH] deploy: cleanlab/cleanlab@46226527e9d4c8f7ccdf91ff5dac4d6ee27e022b --- master/.buildinfo | 2 +- .../cleanlab/benchmarking/index.doctree | Bin 3248 -> 3248 bytes .../benchmarking/noise_generation.doctree | Bin 81345 -> 81345 bytes .../.doctrees/cleanlab/classification.doctree | Bin 290603 -> 290603 bytes master/.doctrees/cleanlab/count.doctree | Bin 283717 -> 283717 bytes .../.doctrees/cleanlab/data_valuation.doctree | Bin 26578 -> 26578 bytes .../cleanlab/datalab/datalab.doctree | Bin 174487 -> 174487 bytes .../guide/_templates/issue_types_tip.doctree | Bin 4354 -> 4354 bytes .../guide/custom_issue_manager.doctree | Bin 31452 -> 31452 bytes .../guide/generating_cluster_ids.doctree | Bin 6318 -> 6318 bytes .../cleanlab/datalab/guide/index.doctree | Bin 12087 -> 12087 bytes .../guide/issue_type_description.doctree | Bin 250944 -> 250944 bytes .../cleanlab/datalab/guide/table.doctree | Bin 63584 -> 63584 bytes .../.doctrees/cleanlab/datalab/index.doctree | Bin 5445 -> 5445 bytes .../cleanlab/datalab/internal/data.doctree | Bin 105136 -> 105136 bytes .../datalab/internal/data_issues.doctree | Bin 77301 -> 77301 bytes .../cleanlab/datalab/internal/factory.doctree | Bin 64553 -> 64553 bytes .../cleanlab/datalab/internal/index.doctree | Bin 4573 -> 4573 bytes .../datalab/internal/issue_finder.doctree | Bin 46989 -> 46989 bytes .../_notices/not_registered.doctree | Bin 3440 -> 3440 bytes .../issue_manager/data_valuation.doctree | Bin 79832 -> 79832 bytes .../internal/issue_manager/duplicate.doctree | Bin 75245 -> 75245 bytes .../internal/issue_manager/imbalance.doctree | Bin 68346 -> 68346 bytes .../internal/issue_manager/index.doctree | Bin 5282 -> 5282 bytes .../issue_manager/issue_manager.doctree | Bin 80662 -> 80662 bytes .../internal/issue_manager/label.doctree | Bin 88614 -> 88614 bytes .../issue_manager/multilabel/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/multilabel/label.doctree | Bin 79258 -> 79258 bytes .../internal/issue_manager/noniid.doctree | Bin 90556 -> 90556 bytes .../internal/issue_manager/null.doctree | Bin 68181 -> 68181 bytes .../internal/issue_manager/outlier.doctree | Bin 78825 -> 78825 bytes .../issue_manager/regression/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/regression/label.doctree | Bin 108542 -> 108542 bytes .../underperforming_group.doctree | Bin 114895 -> 114895 bytes .../datalab/internal/model_outputs.doctree | Bin 78458 -> 78458 bytes .../cleanlab/datalab/internal/report.doctree | Bin 34190 -> 34190 bytes .../cleanlab/datalab/internal/task.doctree | Bin 57819 -> 57819 bytes .../datalab/optional_dependencies.doctree | Bin 3451 -> 3451 bytes master/.doctrees/cleanlab/dataset.doctree | Bin 100920 -> 100920 bytes .../cleanlab/experimental/cifar_cnn.doctree | Bin 407995 -> 407995 bytes .../cleanlab/experimental/coteaching.doctree | Bin 48525 -> 48525 bytes .../cleanlab/experimental/index.doctree | Bin 5365 -> 5365 bytes .../experimental/label_issues_batched.doctree | Bin 158466 -> 158466 bytes .../experimental/mnist_pytorch.doctree | Bin 555175 -> 555175 bytes .../experimental/span_classification.doctree | Bin 34890 -> 34890 bytes master/.doctrees/cleanlab/filter.doctree | Bin 94218 -> 94218 bytes .../.doctrees/cleanlab/internal/index.doctree | Bin 4532 -> 4532 bytes .../internal/label_quality_utils.doctree | Bin 19410 -> 19410 bytes .../cleanlab/internal/latent_algebra.doctree | Bin 85348 -> 85348 bytes .../internal/multiannotator_utils.doctree | Bin 46750 -> 46750 bytes .../internal/multilabel_scorer.doctree | Bin 183513 -> 183513 bytes .../internal/multilabel_utils.doctree | Bin 34042 -> 34042 bytes .../cleanlab/internal/neighbor/index.doctree | Bin 6725 -> 6725 bytes .../internal/neighbor/knn_graph.doctree | Bin 111899 -> 111899 bytes .../cleanlab/internal/neighbor/metric.doctree | Bin 38404 -> 38404 bytes .../cleanlab/internal/neighbor/search.doctree | Bin 32456 -> 32456 bytes .../cleanlab/internal/outlier.doctree | Bin 29778 -> 29778 bytes .../token_classification_utils.doctree | Bin 69171 -> 69171 bytes .../.doctrees/cleanlab/internal/util.doctree | Bin 212686 -> 212686 bytes .../cleanlab/internal/validation.doctree | Bin 41565 -> 41565 bytes .../cleanlab/models/fasttext.doctree | Bin 2465 -> 2465 bytes .../.doctrees/cleanlab/models/index.doctree | Bin 5009 -> 5009 bytes .../.doctrees/cleanlab/models/keras.doctree | Bin 106237 -> 106237 bytes .../.doctrees/cleanlab/multiannotator.doctree | Bin 165197 -> 165197 bytes .../multilabel_classification/dataset.doctree | Bin 67275 -> 67275 bytes .../multilabel_classification/filter.doctree | Bin 86794 -> 86794 bytes .../multilabel_classification/index.doctree | Bin 4916 -> 4916 bytes .../multilabel_classification/rank.doctree | Bin 47085 -> 47085 bytes .../cleanlab/object_detection/filter.doctree | Bin 38032 -> 38032 bytes .../cleanlab/object_detection/index.doctree | Bin 3852 -> 3852 bytes .../cleanlab/object_detection/rank.doctree | Bin 149811 -> 149811 bytes .../cleanlab/object_detection/summary.doctree | Bin 166920 -> 166920 bytes master/.doctrees/cleanlab/outlier.doctree | Bin 98688 -> 98688 bytes master/.doctrees/cleanlab/rank.doctree | Bin 113711 -> 113711 bytes .../cleanlab/regression/index.doctree | Bin 3738 -> 3738 bytes .../cleanlab/regression/learn.doctree | Bin 222189 -> 222189 bytes .../cleanlab/regression/rank.doctree | Bin 19815 -> 19815 bytes .../cleanlab/segmentation/filter.doctree | Bin 28604 -> 28604 bytes .../cleanlab/segmentation/index.doctree | Bin 3788 -> 3788 bytes .../cleanlab/segmentation/rank.doctree | Bin 51266 -> 51266 bytes .../cleanlab/segmentation/summary.doctree | Bin 69021 -> 69021 bytes .../token_classification/filter.doctree | Bin 27210 -> 27210 bytes .../token_classification/index.doctree | Bin 3934 -> 3934 bytes .../token_classification/rank.doctree | Bin 60167 -> 60167 bytes .../token_classification/summary.doctree | Bin 79564 -> 79564 bytes master/.doctrees/environment.pickle | Bin 16374755 -> 16378937 bytes master/.doctrees/index.doctree | Bin 42636 -> 42636 bytes master/.doctrees/migrating/migrate_v2.doctree | Bin 28116 -> 28116 bytes .../tutorials/clean_learning/tabular.ipynb | 130 +- .../tutorials/clean_learning/text.ipynb | 1618 +++---- .../nbsphinx/tutorials/datalab/audio.ipynb | 1252 +++--- .../tutorials/datalab/datalab_advanced.ipynb | 322 +- .../datalab/datalab_quickstart.ipynb | 138 +- .../nbsphinx/tutorials/datalab/image.ipynb | 3964 ++++++++--------- .../nbsphinx/tutorials/datalab/tabular.ipynb | 138 +- .../nbsphinx/tutorials/datalab/text.ipynb | 172 +- .../tutorials/datalab/workflows.ipynb | 1231 ++--- .../nbsphinx/tutorials/dataset_health.ipynb | 34 +- master/.doctrees/nbsphinx/tutorials/faq.ipynb | 586 +-- .../nbsphinx/tutorials/indepth_overview.ipynb | 210 +- .../nbsphinx/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- .../nbsphinx/tutorials/object_detection.ipynb | 186 +- .../nbsphinx/tutorials/outliers.ipynb | 844 ++-- .../nbsphinx/tutorials/regression.ipynb | 202 +- .../nbsphinx/tutorials/segmentation.ipynb | 1232 ++--- .../tutorials/token_classification.ipynb | 151 +- .../tutorials/clean_learning/index.doctree | Bin 3019 -> 3019 bytes .../tutorials/clean_learning/tabular.doctree | Bin 60765 -> 60765 bytes .../tutorials/clean_learning/text.doctree | Bin 230173 -> 230169 bytes .../.doctrees/tutorials/datalab/audio.doctree | Bin 333649 -> 333645 bytes .../datalab/datalab_advanced.doctree | Bin 203507 -> 203507 bytes .../datalab/datalab_quickstart.doctree | Bin 142186 -> 142186 bytes .../.doctrees/tutorials/datalab/image.doctree | Bin 514366 -> 514366 bytes .../.doctrees/tutorials/datalab/index.doctree | Bin 3367 -> 3367 bytes .../tutorials/datalab/tabular.doctree | Bin 120657 -> 120657 bytes .../.doctrees/tutorials/datalab/text.doctree | Bin 149929 -> 149929 bytes .../tutorials/datalab/workflows.doctree | Bin 402441 -> 405645 bytes .../tutorials/dataset_health.doctree | Bin 325916 -> 325916 bytes master/.doctrees/tutorials/faq.doctree | Bin 199353 -> 199353 bytes .../tutorials/indepth_overview.doctree | Bin 220325 -> 220325 bytes master/.doctrees/tutorials/index.doctree | Bin 3139 -> 3139 bytes .../tutorials/multiannotator.doctree | Bin 137334 -> 137334 bytes .../multilabel_classification.doctree | Bin 64488 -> 64488 bytes .../tutorials/object_detection.doctree | Bin 140181 -> 140181 bytes master/.doctrees/tutorials/outliers.doctree | Bin 104189 -> 104189 bytes .../tutorials/pred_probs_cross_val.doctree | Bin 17310 -> 17310 bytes master/.doctrees/tutorials/regression.doctree | Bin 106940 -> 106940 bytes .../.doctrees/tutorials/segmentation.doctree | Bin 1994473 -> 1994473 bytes .../tutorials/token_classification.doctree | Bin 176643 -> 176655 bytes .../tutorials/clean_learning/tabular.ipynb | 2 +- .../tutorials/clean_learning/text.ipynb | 2 +- master/_sources/tutorials/datalab/audio.ipynb | 2 +- .../tutorials/datalab/datalab_advanced.ipynb | 2 +- .../datalab/datalab_quickstart.ipynb | 2 +- .../_sources/tutorials/datalab/tabular.ipynb | 2 +- master/_sources/tutorials/datalab/text.ipynb | 2 +- .../tutorials/datalab/workflows.ipynb | 35 +- .../_sources/tutorials/dataset_health.ipynb | 2 +- .../_sources/tutorials/indepth_overview.ipynb | 2 +- .../_sources/tutorials/multiannotator.ipynb | 2 +- .../tutorials/multilabel_classification.ipynb | 2 +- .../_sources/tutorials/object_detection.ipynb | 2 +- master/_sources/tutorials/outliers.ipynb | 2 +- master/_sources/tutorials/regression.ipynb | 2 +- master/_sources/tutorials/segmentation.ipynb | 2 +- .../tutorials/token_classification.ipynb | 2 +- master/objects.inv | Bin 37648 -> 37577 bytes master/searchindex.js | 2 +- master/tutorials/clean_learning/tabular.ipynb | 130 +- master/tutorials/clean_learning/text.html | 18 +- master/tutorials/clean_learning/text.ipynb | 1618 +++---- master/tutorials/datalab/audio.html | 2 +- master/tutorials/datalab/audio.ipynb | 1252 +++--- .../tutorials/datalab/datalab_advanced.html | 4 +- .../tutorials/datalab/datalab_advanced.ipynb | 322 +- .../datalab/datalab_quickstart.ipynb | 138 +- master/tutorials/datalab/image.html | 46 +- master/tutorials/datalab/image.ipynb | 3964 ++++++++--------- master/tutorials/datalab/tabular.ipynb | 138 +- master/tutorials/datalab/text.html | 2 +- master/tutorials/datalab/text.ipynb | 172 +- master/tutorials/datalab/workflows.html | 482 +- master/tutorials/datalab/workflows.ipynb | 1231 ++--- master/tutorials/dataset_health.ipynb | 34 +- master/tutorials/faq.html | 6 +- master/tutorials/faq.ipynb | 586 +-- master/tutorials/indepth_overview.ipynb | 210 +- master/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- master/tutorials/object_detection.ipynb | 186 +- master/tutorials/outliers.html | 6 +- master/tutorials/outliers.ipynb | 844 ++-- master/tutorials/regression.ipynb | 202 +- master/tutorials/segmentation.html | 10 +- master/tutorials/segmentation.ipynb | 1232 ++--- master/tutorials/token_classification.html | 20 +- master/tutorials/token_classification.ipynb | 151 +- versioning.js | 2 +- 179 files changed, 13408 insertions(+), 12569 deletions(-) diff --git a/master/.buildinfo b/master/.buildinfo index 458c93dd1..2ab302ff0 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 1765f9fb54b06ed20817275083d0b26b +config: 44ecf819919d54495a9d115c9a756342 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index 93d5f99460c48bfa6c14eff88268949651abe628..6faf3f534508b735323b977a4db44c631867ff72 100644 GIT binary patch delta 117 zcmdlWxj}M6IHRGNQAt5&Mp==*rKO>Hib+apYI2gXnNec0Sz@ADs)4z=L9(%#xk-wF YfkASziFuOg<_^XHPBOG{axZ5D06vr=nE(I) delta 117 zcmdlWxj}M6IHO^5RdP~UL4~D$YFe_Pg_((wfoW=DVv1>!S+Z%Wp^1TcnuU3CQc`lN Yc~Xk8Nt%(x<_^XHPBOG{axZ5D0F_lFGXMYp diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree index fdc1c61a59781a7ecdce1df46a1e0b6a22624be2..b69e207af8c7409829cef332dd156b9017af37d9 100644 GIT binary patch delta 1464 zcmX^3o8{ndmJRWYhGs@31(_LTMf#SOhUO_IDXFQ+NycVIiOFV(iDsz==H>>;#%AUw zDFy}x$;l?>Nv4}8FtU=NZL*_z+-4PKKNiw$1ZkbFYs1JtS%9OEEbZ-^EjjOjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= OOjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= OBhz7~7FidG8bt^O zM|iss5{7hPfpwCni*CG%F1siw*AOg)!cibd;zjRCsc!e(AMpKtp6_#>_j%tl9nYSQ zXU{Y)MD0;*G(Pp7Y6T<($kWuM++O z7B(XDed(CC)3~+xkfYkErD9+%&6+!n@HZdK^{vEU?VBG~xaRIv1LnS7y98@z*GG}V zVD@=7#-hkUFtt>mu={AyRF%doF!^&j3&G@A7P||RH>~UtOfI#vk1#p9gH6KZcrL4i z$uIL*1R#?fk|!`!FJw^w`e%F4yIt%HO!nq}7-o0!JCJ!87E#MlcrzR)+ znvd=IdYU`MhAIK^)@|HH_IvE&Fkm1D>>T~f;w`0^xK8g$q|^H&+z&i{%t_lccvj6{ zZO1FHiJ3-jp*0^b0k3JZ3>!(8lgO*Y%t1Fh`1cGj11(`~uT-tcR zDJLbH?gY=EGmrV$3CyNW3|d$=MV5IlIuV-=R}*|V3$0;(o!i8nUpxjHkTht`1jJhh zGGD|UN)EkMl`%C{7a?67w2`S?wx(c3vY?~LX8b=<3C-mzwa8bIE;ZumK1CDZOw~@& zB4r$TB$_rPZO$Ug!b~C-_N&!2;ZY`0+Y7e%sbbEqx{bk+kf{z;0qDPaLmSaRyg4}1b3T5poRiu3Rl=9c zbTc&Hn~Z5Y&4I;-9Mw)O6##Q-)!b?7-@Gu_yApx5Z+_U}n!8s`nEQI|60DtFA4Lv> z)#up=3nK@?(o(L%?xRIhRT8tosVP}tEvMZf^gvsF@Y!W6%vsfie zewoce0GZ^FJb|G`9t#7|Kih-e?P6bGvUd;bhRIC@>^MxW*vqD1a{mF=0e4(J4Zj$c#8`Y*BL#rWO{#u`+&!fHEEj$&#L*W z?RW(aG1JIxwC3f7;5BWP;UMX95_y$aIjHXn|DFP7pv7yvcPA$HiJ5G!iLPayMH>$| zWhP|P9pfo<<}n{Tf!WlFK^x1U&@#V{PQ<3e)fgX6Lu;5{=MHh_7mt7jBn?_q0rA#> z%n?zil1Xn>WlT-fMMxJXZKNuf?Fm?sEa)h*8UIgINOL(#E%H^QOO1HCPtk;)s-{yo zUl~UpiIxpXo3qHWu#$*{{c1H$c$A4|u$h)a4Mhz_xrsS6kZi$0AU(+d&l3tRWN?l0 a^VACttadla^rsKSFSdTtN&e`MIe!DBNH8t{ diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index 1104d7f4dd08d21d253dba8d7475b338a0e6e37d..513f1b833368e7721954a0e58cb2e6663f82d23a 100644 GIT binary patch delta 3571 zcmX@QLh$Gc!3~~_hGs@31(_LTMf#SOhUO_IDXFQ+NycVIiOFV(iDsz==H>>;#%AUw zDFy}x$;l?>Nv4~t74c{!F*1<%ktqPjlEM#iktQ$M42)VYd zv0g!L2;Xt|!c2PPY-V)*Lat+LJ$94p*aN<8WH=U_e$NHYA=lPVVdu%U)iZhvxmsJ} zzmS`f7?T>vjU3KYTXMCYOHU!!ue-8ekrz4kn?(w>cu7ycz$9V6d0pMSAhNXTPxe!n zoE{s+D7yL9#oL_Zo3UB%j+H&>+NTFTX0(`YAjQbO{f0E-EixQ{WP*|!;}K)h-2ebn8myXJ%@`$MV)j5 KwgbCfElL3Jqd#x} delta 3571 zcmX@QLh$Gc!3~~_hRIdQNo55Uminn_$%YnYCPoIPsfmdxrb%YWrm2P|2IgrN=E+G( z$*JZ^DaIygMi!f^74c{!F*1<%ktqPjlEM#iktQ$M42)VYd zv0g!L2;Xt|!c2PPY-V)*Lat+LJ$94p*aN<8WH=U_e$NHYA=lPVVdu%U)iZhvxmsJ} zzmS`f7?T>vjU3KYTXMCYOHU!!ue-8ekrz4kn?(w>cu7ycz$9V6d0pMSAhNXTPxe!n zoE{s+D7yL9#oL_Zo3UB%j+H&>+NTFTX0(`YAjQbO{f0E-EixQ{WP*|!;}K)h-2ebn8myXJ%@`$MV)j5 KwgbCfElL3O)@>C4 diff --git a/master/.doctrees/cleanlab/data_valuation.doctree b/master/.doctrees/cleanlab/data_valuation.doctree index e8a6af59b023745420fbfc224399dad4ae89b462..927ec9acf24e8103a86dcfc64eb0a1c5c76da578 100644 GIT binary patch delta 477 zcmca~p7GLo#tqSohGs@31(_LTMf#SOhUO_IDXFQ+NycVIiOFV(iDsz==H>>;#%AUw zDFy}x$;l?>Nv4x~7;liFt5MKl^HruDOyp^u{ExMPES-Uy*j-u3(>aMaME*|TN3=h;aHr7hPhF~ZZQ0g6Za=;h1qRRBY?`?ZES7tiBbr?$WqlGkcQ>% zPPTrmMS`re040X2wvUyu899RVTSzD@9qvH(Nk{KRLKJFRVYmAppw>tIeW-Oh=0vT% z1Ffj_!jK2G9v>M2tgMjuiyDYECqR$nrKTCb(DsP&ol7`3iHG@$5sx*tU+Gc9P==*)Z6x-g6UD69HPu(`LW z)tdc^qVX43fkVegZWJ|Eyz--{>Ge6FSutHN`|`$%t%H|k<_}w;d&$k3@?DtKtv2OL z*^$o+$m50N+$>s?E&($yt$ws%sJgUjW7TV`9K*G?=fuj#Go*C~R)C8F z{%Vk|Dv-sR_yxI$@M#Y&H)>TbTEb(eY0Va9VC168 z;BKf554ZVg9=q8+nqUv`!46uE9bHfIX$7wg(G(W`Ki=F+H_XLH=W?7*0gq2ja6UeK igJx~TOEp(gz)$YeUSQw2fQOJ>+x#QHlRM{V7ySoek{n3@ delta 4228 zcmbuC-%C?r7{__vHFI0q$$pp@ktOu&#?927A|$1dazm|+3=((FJSUqtM*eCh{XmkC z4Dm1y1jA*Rh!wGyc!RK;q8gdGypq;cH+m!87twq2FYxOh@OeJZ_c_n|?wz^hG?$z& z{lpU<2&;Xu8z;&&J?xRID=XYpnxeEasVis$tEmwjZz5D`a+y`~WaR z3DvO$+nKzL8!gmWut`S383X8Syp1*uW$WJ7zg`OTA zK(bnBU`$7?f$=zMy_%Rst_fi9^$+ThC2BRiZ zzz%($M;V4kX2~UR;-+97{LeR%2EVpdz-~(4Mf{V?B)Ew->|9itD*|V5ZjD?7<$UiilG%ZI z&Haa|gX@$|AdgsaTGk7UY^8Tg@DBFy=n!v*U$Lk_=&9U+5Tz~j>tT!8o8 iq_fh-rDpB8fS*2~5n$iAfP0Z$TmK`!oy*g-js633np9T+ diff --git a/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree b/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree index e97535b296baad6152bcc855e20e3f6a19457cf9..9dbaf7511bdd9216aa9faff421c05ae60e550a07 100644 GIT binary patch delta 62 zcmZotYEs(Z#$sq@R8o+cQC6gHX=!MlVv>@Ynw(^8W|Ww0mY8UkYG7_|kZf#bZjxeP RV33?_VxDBWxtyh&2LM+>5`_Q& delta 62 zcmZotYEs(Z#$uRUm7G*oP+_T`nwD&6VP;}vV49kkm|~h_mTa18XkuWVW?`P3l$4xm Ro|Iy2l4fMFxtyh&2LNoH6H)*G diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index 5c7fb59b026dbff663d6c9fb6a812298b3a387d7..9d91a41468728fdcf9f81f30a09f07e6d5d303d6 100644 GIT binary patch delta 64 zcmccfmGRD3#ti|ChGs@31(_LTMf#SOhUO_IDXFQ+NycVIiOFV(iDsz==H>>;#%AUw TDFy}x$;l?>Nv4|{8KWx!?79^! delta 64 zcmccfmGRD3#ti|ChRIdQNo55Uminn_$%YnYCPoIPsfmdxrb%YWrm2P|2IgrN=E+G( T$*JZ^DaIygMi!eJ8KWx!0wfjr diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index e52cad49f484948afbb5aa68d0f69e04e710b123..7b6c01d613f0830c3e0156e8c64d472b284522e5 100644 GIT binary patch delta 62 zcmZ2yxXy4xHlv}LQAt5&Mp==*rKO>Hib+apYI2gXnNec0Sz@ADs)4z=L9(%#xk-wF RfkASziFuOg<~fW);sAPk643wv delta 62 zcmZ2yxXy4xHlty3RdP~UL4~D$YFe_Pg_((wfoW=DVv1>!S+Z%Wp^1TcnuU3CQc`lN Rc~Xk8Nt%(x<~fW);sB4<6P^G7 diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index d422e090d52c584eb6252a07164dd0f960ea1ed3..4b7ab93a121adf27ddd832c699f6d002a6e8ba5e 100644 GIT binary patch delta 62 zcmdlUw>@q{G^3%JQAt5&Mp==*rKO>Hib+apYI2gXnNec0Sz@ADs)4z=L9(%#xk-wF RfkASziFuOg<{rk?x&V@q{G^1g1RdP~UL4~D$YFe_Pg_((wfoW=DVv1>!S+Z%Wp^1TcnuU3CQc`lN Rc~Xk8Nt%(x<{rk?x&WrI6qx`3 diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index 2b90d0ad8b2cd1f5e54c5615ce05c74280c48554..b41370e950e2417d8873d55b696a5afc38b9db46 100644 GIT binary patch delta 81 zcmX@Gg8#q@{tc;&MrKAO1(_LTMf#SOhUO_IDXFQ+NycVIiOFV(iDsz==H>>;#%AUw jDFy}x$;l?>Nv8UfV+E9(cQLl_VgzBP?YkJ6+b#hBPr4ds delta 81 zcmX@Gg8#q@{tc;&M#)vlNo55Uminn_$%YnYCPoIPsfmdxrb%YWrm2P|2IgrN=E+G( j$*JZ^DaIygMi%;$V+E9(cQLl_VgzBP?YkJ6+b#hBaHib+apYI2gXnNec0Sz@ADs)4z=L9(%#xk-wF YfkASziFuOg<~qjhf@Ek*6TZ&~0Ce9Y-2eap delta 117 zcmX@AbyRDEFQZ{{RdP~UL4~D$YFe_Pg_((wfoW=DVv1>!S+Z%Wp^1TcnuU3CQc`lN Yc~Xk8Nt%(x<~qjhf@Ek*6TZ&~0L!2ycK`qY diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index d118cebaaf35b2cb7c5faea9f6cab748b266daa1..b24fc8317fe911d188583325b82734a5b3085f45 100644 GIT binary patch delta 5702 zcmbtYUuaWj6z5cLT1|SJrj$0!nJTGu>$aq|O{`X0*A^>wHnbSTYTB5l)U8&nHdJk_ zW7DzWZ1vmthTB*ld>Oc{a?tN#jtTQg7-TRR+h7}PFcE9Vq#*kv`);m`KL0M<*WaIW z&hOlNxO3NBbNbmvb&>jGhYt*A#zIX^b;Vv)Za@XbMFua1h-Mc~aTD^j| z6z?v8)hqcqZ$GYH$!mQtgX-)q7t0{yN4V9`7&OC|o<4}xo8eCbomj0I{&4MHRCPAE z4^_Qf(+sqUOKU&C@|@u2@G2KH(}Xy`v4|HUUaU+o z!3SbKZ1y(X-SaBeJqx}7mtM*5$FtbfEn!oH_89zG-z4t6Se#Cp;&$RbT!YQf-?4*d z2hO4?_{Hbp>q99g@Q+6d&;(fOn@68@pf08}E5zfYKY(4-2J#H=#dq+H@kTTen&#q3 z7r${Liw43n5}2}H2hWQ~Q+~0!yW9S0#*r$aRC#EHgxRkn_@sEJ(lN~JfY z#Q|Qvw3QaYglc&UUL?PLk$N3)%x$ND(kbsjV__N5Btezih6mhgrY4z2v;Dt``7R=d zm3ZXeL0Ye_#3+ge?1>$ZI^ILi6gikqRTr7^e28jPvX3@8v6E*ySw~yd*gopSLu;s( zG_^axOO0PCeFy0exG#pyabc9Oo1bLmF9ZmXK6Hf_3fw6iViSY1QQ!dSPoO_or#>%MI0 zx@Mi|CdypvUggSktUvZgm|8h(?~hF!=r2Kt;1Cs5P*BEdMJb3M!}sP6>F?)-`}g@c z=RD`$!(F)HT2Rj}3a6%0$?UPo)=)Z=3P+op8XF?%k&(lZWOFK#4mUNlWTGvpWHOa* zNgjT(DbpAgle7q+%Io*?Pet>Hpn_U=-=s3(Gmc}*!d+Rxm9A^6VR#kyx%Y$Sm3kHL zDBWKKt5@@5-XUDQnm78M1=ZPIDON$ok8_8gF=&=AKY9eKH_Pt_dazovd}ZT7RCPXh z2vxmS*9NqS%j@64@|@tdhIKAzrU`K|TEa`sUaUz_IQx3VY7GO?*13B?%D7qxb$j%JD$U)ZVQ_tbim*b2B&fFrQ+;}DLzZwhih;chPwCg z{P1}+1wZ&ad^3~MfxkOegeJgN-#)%oLtV^f*N6uvzX7|b3=|mNitpju6A?5KissU3 z7r#7}Ljz$O3C!59gU7|6Gk&qYt4lPT8N$orz|11pSDrifbup+sch2D7Ut5I+LcvA; zJCiTWUI%Bvx8LXuVdnY5r?>nVR5-@tAliG+V|~;~8~Cg5|3VY=kfTCetuy%4kEQTS z-SOh^Jn{1|I0xaqXL8N`7qPoyK$y!WNB-Cc28qq(87#tmVz|bzUTURLp8B_X4Kz@P zqpFy&+ok}Qua?k+sUffM6_!;+JsKQ+8z^AqJLwnsoSz1_ECnf}Q-s2oS=0TrLvE_0yBZ;tXG1iq<3!=TG8d*CY9e2|R;o>D z*T7p(@1$igp-SF{msnpuMFScf3%e;GRm%I(SlC7sNl@l@;Q_assYqtgZ2xa!v6o1* z5|8zFkT%QfF={~r_Rx+;p6aJ9B^uMI=_S*;7@|5kGDuM!I|ZiGVcIEA9HJgPw1#X? zQ9+Kg{Sfy5;j&(j#b5Dtl@NXjhr V6=;`@uTanfC33G+|6{*h{T~Jl{{R30 diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index 424432460971baaa99109eef670b10e66d82f357..b06a2b01e0153d99cd46145ec13d074a9b52f4cf 100644 GIT binary patch delta 2705 zcmex*o8{|mmJOkdhGs@31(_LTMf#SOhUO_IDXFQ+NycVIiOFV(iDsz==H>>;#%AUw zDFy}x$;l?>Nv50I7@5e>HrY`zX0s@BKNsmXg0xOHP=X_z|&4K&}naR_>dA=|+ z3t3vzCp*XpZ}ydlCeP;d%?>gb$gp{{qhb;}Sq{$G?4apMUexAnR@3fNAkWsxYTA60 z<9$5H(hUye$-WZ2o8x_tvyyFu#O7ez*4z!NE|ncciQiRnWy#EBz{r!>{ITE!CAMc4|0mP$o63vGw^(Ge zTxAR;NnWdd85yCrnX!2{8QLZ@HaBlBXjdYmL<4Fq*lgTW&rL@1W^B%wyr7MH@`+pO zn`>v7krUcbBQ}T6nnX_Jwee8l=I*7Z$?-Qx>yK3(;-vd~^TtCP$VnO-57liJILRYO zx{Z?s{}oJrf0JkO$y@))*S)#)4wC>`+G{8Cec;(__|}=6fEN4*(XRJt6B&tYv*5qy zoMbo}n6ReH@Gy#QU&g_Bmz)v=Xux)$0c2M9vD58^7)2*X%o5&iBEqHrY`zX0s@BKNsmXg0xOHP=X_z|&4K&}naR_>dA=|+ z3t3vzCp*XpZ}ydlCeP;d%?>gb$gp{{qhb;}Sq{$G?4apMUexAnR@3fNAkWsxYTA60 z<9$5H(hUye$-WZ2o8x_tvyyFu#O7ez*4z!NE|ncciQiRnWy#EBz{r!>{ITE!CAMc4|0mP$o63vGw^(Ge zTxAR;NnWdd85yCrnX!2{8QLZ@HaBlBXjdYmL<4Fq*lgTW&rL@1W^B%wyr7MH@`+pO zn`>v7krUcbBQ}T6nnX_Jwee8l=I*7Z$?-Qx>yK3(;-vd~^TtCP$VnO-57liJILRYO zx{Z?s{}oJrf0JkO$y@))*S)#)4wC>`+G{8Cec;(__|}=6fEN4*(XRJt6B&tYv*5qy zoMbo}n6ReH@Gy#QU&g_Bmz)v=Xux)$0c2M9vD58^7)2*X%o5&iBEq>;#%AUw zDFy}x$;l?>Nv50Y7+aV~*Eac~VZr1D;sTpDv-k*+t-YB{omR5Ko3Be8VkS@fW-D1+ z7P7SVY&KCcBv0$a&FboIWW*0JpeJtD*Stwy98KJON+*z9Tkq;!Cd1av4-L1llNGv^ zo9(T7GRV?exH)&R3mbV_C+9Ba-JG!MlQJ3F1s{}c{&`M`oFoC%I{D{0$<4Pfv+|H` i^Jc*Ze_2V_Hd*jN-{!N=428+i3d!;Oo7erSW&{8}!)fCH delta 1137 zcmZ4agL&l-<_*4#hRIdQNo55Uminn_$%YnYCPoIPsfmdxrb%YWrm2P|2IgrN=E+G( z$*JZ^DaIygMi!gv7+aV~*Eac~VZr1D;sTpDv-k*+t-YB{omR5Ko3Be8VkS@fW-D1+ z7P7SVY&KCcBv0$a&FboIWW*0JpeJtD*Stwy98KJON+*z9Tkq;!Cd1av4-L1llNGv^ zo9(T7GRV?exH)&R3mbV_C+9Ba-JG!MlQJ3F1s{}c{&`M`oFoC%I{D{0$<4Pfv+|H` i^Jc*Ze_2V_Hd*jN-{!N=428+i3d!;Oo7erSW&{B9MR^(k diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index eb71b5ae0ff9e40578881ff3ef86a1666b394d5c..25f831459676f95a49e28d743dec32fed39b2095 100644 GIT binary patch delta 122 zcmcbsd{=pcKck_UQAt5&Mp==*rKO>Hib+apYI2gXnNec0Sz@ADs)4z=L9(%#xk-wF ffkASziFuOg<_5;O%tj<@)1Ul+U21bCYY7hkGz=v) delta 122 zcmcbsd{=pcKciuCRdP~UL4~D$YFe_Pg_((wfoW=DVv1>!S+Z%Wp^1TcnuU3CQc`lN fc~Xk8Nt%(x<_5;O%tj<@)1Ul+U21bCYY7hklFug2 diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree index 0798f67a1abf0e54d75d6aaffd9807fa70bc2ea0..6041f725af56a08ef2ef634b783b05c4d70523bf 100644 GIT binary patch delta 1125 zcmeBu&(!;#X+t=pp_x%hL1so-k-nv+p?Qi)N@{9ylChalVzOCcqFJhexw%2Iv6;C^ zih+Saa`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8~0^{94HX delta 1125 zcmeBu&(!;#X+t=pVRBV+QdvQTrG9E!vY~~UiIIV6YGPuFX_8s8X{w=#fq9yRd2&)x za;kY!im^$Wk;Uc?MoD(kwN2hAUa;ATvz>`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8~14uW2&? diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index 7ea680f1f1fd8de1b3d8847886e0ce7d3cbc4df1..a11216833a4acef7b90997d2292e01f09902f689 100644 GIT binary patch delta 62 zcmew$^+9TbE0dv_QAt5&Mp==*rKO>Hib+apYI2gXnNec0Sz@ADs)4z=L9(%#xk-wF RfkASziFuOg<}#*VTmXm{6Sx2X delta 62 zcmew$^+9TbE0bYzRdP~UL4~D$YFe_Pg_((wfoW=DVv1>!S+Z%Wp^1TcnuU3CQc`lN Rc~Xk8Nt%(x<}#*VTmYSN6omi) diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree index 3db389d8560ca69ae6952ad1e66908233cbfdf05..32d73bfa5c44bb0b2357837776cdf2e4581d7141 100644 GIT binary patch delta 2628 zcmccdp5?}SmJQL2hGs@31(_LTMf#SOhUO_IDXFQ+NycVIiOFV(iDsz==H>>;#%AUw zDFy}x$;l?>Nv4x~81IsyOVOxqvjlSk=EeSN$Vg3-Ax21Swh8Sd$ImeBo5INoZJ_qe_0e^d z*!(K?6&WE8_xHg>JxXl9ll+Jh+gGPAB_q-{H|CtgL%khskx0fV046iwPC{q&sKx!}-B%q-z64{LIb&mX&dk zsnu=+6B&NpT)0b=oC>CJ*Q(8lhtfF7aIB(H!Q_TF(vu%t5ZpZF%mi|Z7pM`NA6(c@ zUfm3Gf!gM{`;9#0d0=zH8zoILv;yOJ`Z^Itw#mvZ!rNQL7+;VX+mjcVv2M3fU`!=5 Mp>5ArXUr7<0BQ9)uK)l5 delta 2628 zcmccdp5?}SmJQL2hRIdQNo55Uminn_$%YnYCPoIPsfmdxrb%YWrm2P|2IgrN=E+G( z$*JZ^DaIygMi!HM81IsyOVOxqvjlSk=EeSN$Vg3-Ax21Swh8Sd$ImeBo5INoZJ_qe_0e^d z*!(K?6&WE8_xHg>JxXl9ll+Jh+gGPAB_q-{H|CtgL%khskx0fV046iwPC{q&sKx!}-B%q-z64{LIb&mX&dk zsnu=+6B&NpT)0b=oC>CJ*Q(8lhtfF7aIB(H!Q_TF(vu%t5ZpZF%mi|Z7pM`NA6(c@ zUfm3Gf!gM{`;9#0d0=zH8zoILv;yOJ`Z^Itw#mvZ!rNQL7+;VX+mjcVv2M3fU`!=5 Mp>5ArXUr7<0P0y?9smFU diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index 70f69ff7cfc9d76db6c56a97bd6c10d6efd1c229..ca099eaff6a536bcf65e15a474b8a51f7ee28dc9 100644 GIT binary patch delta 2632 zcmaERn&s_jmJNZ7wq`~p1(_LTMf#SOhUO_IDXFQ+NycVIiOFV(iDsz==H>>;#%AUw zDFy}x$;l?>Nv8TK`N_rl#rdU0$*Gek+8b{^$T*kLkYrlB_WVQ+7B zUB4u^0EEejzP`gh!hj(*WA1fOL+BK%8kZbz~FW$|O^QV$)J4pNPWoG2s?w`gs z`NKM%$tJNu)2E9ws&2O0c!<0NkUcs6y!2!pf1b_z_e>z8r~#%SxDk{0?_u36esB$W z^>6m(`16Z+$cjyn3)D6rzVk_gEbaZ%<9Qfaw^y+-zU3g#0AMa+-L50R7)EA#nBFVJ V$g$l^oKcFr04UiGY`Z;S1OV5*J0k!9 delta 2632 zcmaERn&s_jmJNZ7w#ik=No55Uminn_$%YnYCPoIPsfmdxrb%YWrm2P|2IgrN=E+G( z$*JZ^DaIygMi%-h`N_rl#rdU0$*Gek+8b{^$T*kLkYrlB_WVQ+7B zUB4u^0EEejzP`gh!hj(*WA1fOL+BK%8kZbz~FW$|O^QV$)J4pNPWoG2s?w`gs z`NKM%$tJNu)2E9ws&2O0c!<0NkUcs6y!2!pf1b_z_e>z8r~#%SxDk{0?_u36esB$W z^>6m(`16Z+$cjyn3)D6rzVk_gEbaZ%<9Qfaw^y+-zU3g#0AMa+-L50R7)EA#nBFVJ V$g$l^oKcFr04UiGY`Z;S1OOK;TlfF~ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index 8d557366dd7374f89acf910387672a4ddebf6bf0..b2d3007a8415f5db27e3a126c605f30faf4eb8e3 100644 GIT binary patch delta 2563 zcmex0mF3q|mJNZ7wq`~p1(_LTMf#SOhUO_IDXFQ+NycVIiOFV(iDsz==H>>;#%AUw zDFy}x$;l?>Nv8TK`N_rl#rdU0$*GeYcNuR!$T*kLkYrHY?fMl{eoO@Zlm~`{cE<9FyNm|0Cao&1+?SDRY4E*O+9CFjcgK+oFf4nov4FiyNPrtY1`X8iSDkz;2 z+fzgCk!kzp2jQiZ*lZbfjZB*-gZ%wDb{@Hr)}UvwIWD<|oy;WDprM@8+3xF64&+#E8|+N}S|+qT6WmoZf6U3bbFFVoA2`dMcYQ z%p)@h+a@nqBe*$wMIU*^M%(5EYc}wb?(fZwy9CJ425fdr+#G!3iU#R6LRu`qpnCC9 lh}?z)D7`0qHY?fMl{eoO@Zlm~`{cE<9FyNm|0Cao&1+?SDRY4E*O+9CFjcgK+oFf4nov4FiyNPrtY1`X8iSDkz;2 z+fzgCk!kzp2jQiZ*lZbfjZB*-gZ%wDb{@Hr)}UvwIWD<|oy;WDprM@8+3xF64&+#E8|+N}S|+qT6WmoZf6U3bbFFVoA2`dMcYQ z%p)@h+a@nqBe*$wMIU*^M%(5EYc}wb?(fZwy9CJ425fdr+#G!3iU#R6LRu`qpnCC9 lh}?z)D7`0qHib+apYI2gXnNec0Sz@ADs)4z=L9(%#xk-wF RfkASziFuOg<}OAFVE}Bw5{Cc) delta 62 zcmZ3axkz(EB%@(+RdP~UL4~D$YFe_Pg_((wfoW=DVv1>!S+Z%Wp^1TcnuU3CQc`lN Rc~Xk8Nt%(x<}OAFVE}?06I1{I diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree index b6f8788fd4d001a80cb08d9cebe0a1ff6e925281..aece9c41be88effaf77422328aa03b26a5e069c7 100644 GIT binary patch delta 2506 zcmbRCjb++5mJN}NhGs@31(_LTMf#SOhUO_IDXFQ+NycVIiOFV(iDsz==H>>;#%AUw zDFy}x$;l?>Nv4~-7+;W~ZL;Hvn#uAk4WwHL)Y&)yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NQpSr?c9 delta 2506 zcmbRCjb++5mJN}NhRIdQNo55Uminn_$%YnYCPoIPsfmdxrb%YWrm2P|2IgrN=E+G( z$*JZ^DaIygMi!g97+;W~ZL;Hvn#uAk4WwHL)Y&)yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NSd$Ty$> diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index a0b665047737dcbbf230b64bfe743cb2a9e15c76..2d723214d97cca727da56ed592c62580ee182cf8 100644 GIT binary patch delta 3034 zcmZ3sg>~5$)(xJFhGs@31(_LTMf#SOhUO_IDXFQ+NycVIiOFV(iDsz==H>>;#%AUw zDFy}x$;l?>Nv4~t7%z~aZL(oY&UA|iM*hj)mh$65c%L(kb#v4xr+eBFp_b+kvg?cZ>i#Prpq7 delta 3034 zcmZ3sg>~5$)(xJFhRIdQNo55Uminn_$%YnYCPoIPsfmdxrb%YWrm2P|2IgrN=E+G( z$*JZ^DaIygMi!f^7%z~aZL(oY&UA|iM*hj)mh$65c%L(kb#v4xr+eBFp_b+kvg?cZ>jENal(F diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree index ee855fc5b8635f7742ad5d77aa3e541913f554fe..dc42b20316534fb28feef6c5461654de475152fa 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr%TFQAt5&Mp==*rKO>Hib+apYI2gXnNec0Sz@ADs)4z=L9(%#xk-wF RfkASziFuOg<`%|>JOGBY6R7|I delta 62 zcmaDV^HgR-Fr#5|RdP~UL4~D$YFe_Pg_((wfoW=DVv1>!S+Z%Wp^1TcnuU3CQc`lN Rc~Xk8Nt%(x<`%|>JOG>z6m|dr diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree index a85095784748cca80a4f75b5fa439fa2c576d1a6..7c6d2b966c972367b23e2afbdeb4be7931e9e59a 100644 GIT binary patch delta 2706 zcmbRBnq}5&mJObahGs@31(_LTMf#SOhUO_IDXFQ+NycVIiOFV(iDsz==H>>;#%AUw zDFy}x$;l?>Nv4~t7(bGsZSukRrs)Ta8TlvcvJ{eTD^UB)$pS{go2yw5vXHG^e6uXK z7%O?&H~$sr;vi4!bfARxdV)IhX z26DYEU?j1bUFRYb*^Zakyi31_OxrgL81XVwVDo>|6=d2BOy&}sJ1yQ*;_oP%4oYl4 zVz-tO+k>4dDG9oDZuOLC=l8xtp5u3HzT&r=ytKY|b8Sc{c_F@c^MSDE#$9ZwdUHqX0<+f-Y?o* zw|y&lQC&2-ZoAHAracRJ$#OhMyY%Gs*SR<6oNDDE--ylYuQO?qrG3`+8b-z+bfARxdV)IhX z26DYEU?j1bUFRYb*^Zakyi31_OxrgL81XVwVDo>|6=d2BOy&}sJ1yQ*;_oP%4oYl4 zVz-tO+k>4dDG9oDZuOLC=l8xtp5u3HzT&r=ytKY|b8Sc{c_F@c^MSDE#$9ZwdUHqX0<+f-Y?o* zw|y&lQC&2-ZoAHAracRJ$#OhMyY%Gs*SR<6oNDDE--ylYuQO?qrG3`+8b-z+>;#%AUw zDFy}x$;l?>Nv4}?7_XC|ZL;9Jyy-XM8TltOvJ{eTD@gm~1zf_LRaoz`kf(j~03aH-A6LxWvSD`dbR;cIN9C65ngRH`- zX|h9`;O2zWo5|Jw;1ciV%U8CN>v)iMkGrqPwcTMk&*qQMn#s#9K)(aE8^7h@Bs1s~ z>e(hw_{zPR`FkOG9>|#P$HJ(w)s(S;ykaI}J5c{xUb37Iwp)7pdLhPq9tsSY4m5y! z`(1g)Z5m{m(lq_QJ0sh6A5X^H>i~vQYzq$Yb delta 3021 zcmdmUn03!#)(zf_hRIdQNo55Uminn_$%YnYCPoIPsfmdxrb%YWrm2P|2IgrN=E+G( z$*JZ^DaIygMi!fE7_XC|ZL;9Jyy-XM8TltOvJ{eTD@gm~1zf_LRaoz`kf(j~03aH-A6LxWvSD`dbR;cIN9C65ngRH`- zX|h9`;O2zWo5|Jw;1ciV%U8CN>v)iMkGrqPwcTMk&*qQMn#s#9K)(aE8^7h@Bs1s~ z>e(hw_{zPR`FkOG9>|#P$HJ(w)s(S;ykaI}J5c{xUb37Iwp)7pdLhPq9tsSY4m5y! z`(1g)Z5m{m(lq_QJ0sh6A5X^H>i~vEH<|+UH diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index e7b3c7287eef8d13057bdb1c7b4e196c771f8f6b..487859ad69fddda19fd7e803b0b08fe20fe050ad 100644 GIT binary patch delta 2688 zcmbuA%PT}-7{(jsj5CulB3YO?g~mp6%;lU$8ALIq*dWPe=FG@tBgUmhE@{d_qw$di zxol7tX1o$BDH|Irqlje9Mp()19M>a73}%qo&$`(+smk; zdJOG3UR#3(o~rkt=zPN+68J1W!Q9RHWN+$3?(i>8?&b(`%75lUT5CPQgBMb9yEhqo zO9!+?YVY;#g=Ea1zIZadCwna5z}R}9k-7%kwL+&S=6rL2RnypQ1>vIV?p4?(OLW=4>C@$*szX8 zt_)On`Gm|ndcR2THv_<%M$vnn5ezN7aO8Q4qciS)E@y6K5XF>YgCv(Z$4p_PW?V9INmCXYjgKtI zWrMOX%AKXB#Gt_Eqhi<=;Ge^z^f3 zZ4Mn})Tv;63L;~4t;zSs#uDtbB2+DWjJUFM^uQO&r?AS5uFWfHP+&%)Z4R|Y#S_%ZyLSL9J$f3`!JaSPS-|+ay^Jbr zM$n$4b+u^V$p#;a&Nbd4flrg;%-dolTXPq3hktSMw#1NA{xcWTYTGd$yqHQm{HfSm zJE1L7daw1&r(*t;lBx8b2%5lwv9&%ubr0+!&z&+fA*`pfp+g<8lnVaf$R_8s*#P2( zrA#V{KO?WbVps69<#*(pQt*xSEDCSVpmqh{-#*BIx<{!n5e9A?ohHu@AA`vN diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index 8f67c3bafbfed1723df6f762b4627c20fc144832..d6244cec5147239492a5312a7b662e402788e583 100644 GIT binary patch delta 2967 zcmaF)oaN>;#%AUw zDFy}x$;l?>Nv50Y7_X6`ZF-|2WBp_nmO|2PoGi#SeX}j=ViwZ1ZWiQv!%Dig$&5;! zo3{%{3X-mMGo#WZGJ*$aW6$IOm0hG;2-V3w`9g@j)mipF)snYcgb<^!mX{76B6Y%zX@GWMlm%R zqFs4&Npv|mAq~@hB=#AZj^CV+IEzf1H*ZKL*H&PVDR0hC*CW$ru=cXd-DLV1teq>j zmD~suC==KmTI9)2Mj{18*aSzm$pr>1o8zkdILI`@-%Mb0QL{8Bnc5q=MK?$EvU8EA zeY5C{Cu9cQ=Jj*+$f;yN!6vXqVDsX|+sO>|%>ru@$Ox{@3%3@N7fI7L-`*!ehK=AN zVS*$7<}D|x$+21SW6NaAE4-UOUaTgkD1>R(yEcoLjO3yCv43;NlMEixwQg4Yn5{{= vHgIt9d$MkKmu4h4RRVJ)>-J{~jIYT|)sy7|*thqoF&-i#Lv05(k29D6LMx-^ delta 2967 zcmaF)oaNpF)snYcgb<^!mX{76B6Y%zX@GWMlm%R zqFs4&Npv|mAq~@hB=#AZj^CV+IEzf1H*ZKL*H&PVDR0hC*CW$ru=cXd-DLV1teq>j zmD~suC==KmTI9)2Mj{18*aSzm$pr>1o8zkdILI`@-%Mb0QL{8Bnc5q=MK?$EvU8EA zeY5C{Cu9cQ=Jj*+$f;yN!6vXqVDsX|+sO>|%>ru@$Ox{@3%3@N7fI7L-`*!ehK=AN zVS*$7<}D|x$+21SW6NaAE4-UOUaTgkD1>R(yEcoLjO3yCv43;NlMEixwQg4Yn5{{= vHgIt9d$MkKmu4h4RRVJ)>-J{~jIYT|)sy7|*thqoF&-i#Lv05(k29D64N%J@ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index da661e78f60d1febd9e490e8ea7d6505f64bffae..187b792900f09f61c28314b08dfc959d64369e9b 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr%TFQAt5&Mp==*rKO>Hib+apYI2gXnNec0Sz@ADs)4z=L9(%#xk-wF RfkASziFuOg<`%|>JOGBY6R7|I delta 62 zcmaDV^HgR-Fr#5|RdP~UL4~D$YFe_Pg_((wfoW=DVv1>!S+Z%Wp^1TcnuU3CQc`lN Rc~Xk8Nt%(x<`%|>JOG>z6m|dr diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index e82ef29d795de828b8ca97b36ce4511d6fe7cd62..7581e44e356b3db829566445612e5dd8ab7eb883 100644 GIT binary patch delta 3483 zcmbuC-%C?r7{_^QXIgU;Tj|6SB#4O0*SXH{qVQ^vQV5+=WF1m@0pe~BhIo{;$zWW0{&-eL$pXYfGr?O_Q zteLZYtV?xXxilV(ggbkBy4-%3KM>Hyx>cu7Q++-)z};@Hb*pZdpL4EhF8A0Wy2{D` zCK#UDQ(=^_3&Q?82j6X+wGX7MA`Yd$EsWexwsxO9t9|uT%w3O<%At@QNiF>1n zT?73)SVYJAc6bg|RZp0(3&>H&sU=i3d%A*pjcc>0s_E=&K$XhDBj}YkUsyoXy&Wz9 z&FY(<6urk9#6ZlhKT$T)A}OT#|79HX>zW5id}E2uso%AkaZu~@XboM^K+J|rVxtM~ z?7ELYLn^L_P~fe0m8gtq!3E^z=pVM=S05B(Vs?6fM5P_CGA5#r~Polgw886;$hF4@Fo)F5jKS5a>q&bVH?ILzD%-qxqO~Qz!0Qf;4!woGlqC; b!W%=)uk&)^CYx-5+#A0}jdJM$8{Ya4`T0V7 delta 3483 zcmbuC-%C?r7{_^QXIgU;Tj|6SB#4O0v$bDc6kZJ!%3&gwgt@b=#ps6%M_Aa<1yX9^ z%h*LVR;v&Swt8?cMCe7)mE>-sn?)n&qMO(V>Y^B(<4xY~yFcLbe4p?4d7k%hs_Xjd zx<1#-tjeU~i(a{Qv^x+~tZt{>COZOSV}6IvsW<{wyX*?OU5d}A1YAD<5qr?)rb$)- zFwW#@-l>b#E~t@<1~d7k?>dZrWtiUzkd@F&p6)Z!jph+VxDv|K%FZbyD-GS-_Gb&! zbe^P+dlG;$IYSq^&YNmSiODYzpGW`a{No+RZ zojqJf2kJyDG=BR>y*UglWWj+_fl~wUBx)HH!g?BhkZA<*a~U&zep*Fw*<&P;jcfze zHC%ctD0X2Qz^U+BAJ_#(s2*pb8u>FtlSm_{{ zzvYZjd>Y=7C^7@h{akFqODq>zc|U}w#Qg*85IVU+xIv_3oL{}%C>}f62|d*N49~Xg z7OThDSL|>%_@v59BI;q!Tks~5m0>oB<6_qt_F)IcC%;UvPO*HEMZpk+THpz`zB8J5 cd(s<6&2R8x{1%&NgWPMsM$KaBAsgEM51mbKQvd(} diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index be32bddd4dc112feec3ae271a0b6e4f20643a403..03c345e772fe331f30be4a797430694913a4e91e 100644 GIT binary patch delta 3812 zcmbuB>q}E{7{~dkyEJvpjnphFT3AAtb9C)!-5TU5dNUz{l2H(3P>}>d??z|SH@)n7dvnkl;?->YeYi;EPufyx}iQUc4CXeX!c$_{?5IC{fDLA|w$BCjt=-w{fV?O{Y z?v6@9ot2K1iimUp4@2TKebsN&LFhEGN*P0+Ne4L{4cZ=5LFNK(eBNNf!Ya@<$<<&Y z-KJgx+`vhQOw$-YhlQ4*OD$n+H~~Y+?}BfhtHyOUOBoNwMI`|N3Et)vuI4SXPy8JQ&PN825wQU|1;EVZc2&` zuaU-hGnMq7)+6>}2|Ia$*Px^q@$Un>fXJlyBEETW1hi9Z*r&z(H`0$MZ>RGkd$iaS zH+sOi)pNH~U6j*e?~Dbs*wdpmTI?Th^IGf`cb99i*N?w}E^BdN%PIS49{MD!_)J?l zO+1}9VwZJvuZ6C@7+;3bQhi4?)utOkoYuV^!un3p&3Eqsl;XK|6F6(-oRwaG+ld}? z0sr%Jiv_YLq?vFP+43#WKUA)WD{W=$m38TQg|A@&U^``%n^x|uWw)@Ir{tGgnOU*% zELpMit_$CSg#t+zy9h3*db#wn@j1inv2c>Ja+?y)7#1I?i-vWO{cq}E{7{~dkXIoR(+(^x`qJ<@N*|E*7$k7EOnMrgdDr!61NJua>XI@}?VHX;) zd7#t9VHAWC$<{-hcWaQN=*@%(N=8ADK}8Y-y&IiP-}KV&`2#-B=Xt)r=l44&8`fsS z+C(Sgg+amF-#xHvhd&_j&SqPa)$aFre0FcMVE6Mjt0Ula2wtz?cX)j}ZGk4Ic%S_M zsF*t<_HiaUUMe8cMLYzF)AUudnS;<7VwDnxJ`;~vIT|ugR6*tfu6y2~$HFSmX3^E4 zCvHoZ7H;4SM5bw+pT|PW(10_9jhvxhyYnSb!x{SGilA2CzKx}zb+~mBwbmUv2v{lR zcAycZI=TU)7;|T6)3FQaoP#IUqSnai8>m%(b`Fhc?)(#=VM+>@%fKzF?feWio0}G+ zBkRO*-asW?=QN1DSi(Y{zUxrZOZfNxy+CAQYzf~wGz!`&I^tJj{u}Palef^N(fw-d ziJKR}xs`LbP+i2T#@-(7QDaY!)u^$5yu+)pSKM2v#$F$P16|hQ!j@C^(E{{IR`A)D za+-X)pu;Zf*a0J5dl6rO(PDjDHPxmYL7XSJbDI&eC&bxM6`Au+=pQOq#O0PU_R6$;z0B9J9$-5qg`1J@u4lKgnWv?f+nGT& z^DJ4h{H_b%g2e(!7rO#3sB*b9lJPLp%d6TLgNnF=a_T7i0KF{=>pI0a12VlkC@J1G zQoF!(vLV18LK*&7%bPc@XT@Y)MIuM1JN`oLhNM*VcLaCC{0AnAf(%wM}i*v*25mZ%m1J6|IT4EBdVDZ)ty~J zsyWSRuiA6yfGIOGRVvRYx7n;^>E^UjtGTq)Y!f9(w5FS-jB-&Ft=0^wY#lcUY5+!e zx9sMGu)Sgbt{8;U@`w`8#ke)$CeyV;-g|n_kM#4KG0DS$Ijz zl~B}gEjt;C`ukWnm-kCiPn3XH2mOtcXVVSILT4I%?5@Lt%v zf!-e7oYiG=*4Tr;e|}X`z;TxJl8&@r>v&0R6OdUBIJ%I$1{{r?d*l_MD4TYYy)lx0 zx#ULM^nxEAqY!BLmn#o_c8UulN1Z$uf&+OFBbS{qs=yrB8#TPDp$vtKo=>2#=vlyh z&Bf^9=)7ugUaXMP;%x^F$P8T6R*k&R#EfRWo*Ps5#?v%2x3aQhCCsl)K6EPmc=MG~*j7`fnqgp`I1XH&;CqWq}eMLB1b z!svW>38ye}d@uBlR2&#N?lID{B*WSA)C^oXKk6R`V6x(2x*AYZN#GrDC39$=7^p(7 zBnaRAB!VPM5~aL+02+`Pyn}HbjPF=AyAT1ksg``xwVO z_Cbzca(KzVD+ZyoF7gb7tRR<0$9t7+;TW7<8Y?z#1-q8t4#QL>)3N+S_Y_oKfFFpt z9*X+i)pen$zmD^SqMoq62z_9y62u5>>pYz_i_WYt>Bz8I#h&DGP@NQ}V$AnK#I@o? zC=0)t@dAU_vmvt(xN7dq9>kX2$Vs~#nAt|&mop2Pl`7~MzsbwMGFeH3MQYmNN#GBK zA~tg+4;GDq>TERIKvgoDRlKuAr38W*a8{A_XgHNkA7{JGg_xHql-zn`92r1{55wMd z^s+W9qt8%P=?MP*`Bg~)=Q+}f8d85f$t#at1TxD3XCIQ+fU}wNYMuj%lIbdPG)K`d zm(*yPPr3gTg+Rl0p;lU?XJy6$`k4x~Z!Y-!Ldz#KT5RlKpug2IiS_n@%Rvy?|# zO3=g6c$MD#I3c;!+YTC#7`XUK1@bM&%qx(}9KfBtH#LF~#F6yaKLd5zQaR%8@Gx z!Vf--B+;Bm$H6A0BpZN0g9w z-z-#tHiCGAzfB=P6(X%eCb$$KfL|PTzvLhXse?uFSW0Z#ria{I;~0qXeb5AWoRXy#y(!!lWATA^-WL L^_Lrk6=A;t5e#+l diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index 9d27c0c8dc69b201ee6ff8e684cdebbb3cd4b80c..668622a3053647a034ab56e40e51a918e40865d3 100644 GIT binary patch delta 1062 zcmeC{X6ox^+ThJ-Xl7JWkeN|dq;F|yXr5w{lA4;FWNc=Xm~57qXqIYVZf=llY-Vnf zVqjp9oNQvAWV*SA@je^r+9q%044wRtV?OCRH*e(pMTR@U78>%@l5XMTj{(t>_X-Mc z_T_!TOrG}5djtu7EXtH#cZnp64AR~Y` ze++m?PJ;LtP_?->xR$&Ss@l9X%#?*JeNnwXeknq-!2nrdibV4h}So}84F zoNAtwVr-ITWU;x1@je^r+9q%044wRtV?OCRH*e(pMTR@U78>%@l5XMTj{(t>_X-Mc z_T_!TOrG}5djtu7EXtH#cZnp64AR~Y` ze++m?PJ;LtP_?->xR$&Ss@l9X%#?*JeY6u*-SCSi9d#r2+~DH z5IvU>jEE!*mOO;Jv6~Tiqj)8RU|Sakf$Yk=0?#Y?2b`~ez~}uuKfdq#?w6hWW#^Y( zM@Us>rpCwSrfEtSW}78itw`nkLM!szowF2-A#c=?>02emd=Aqz4CR zufBkheC+b$QZIdQPXb~iI?A7#-XmfoI>Em$)zt%5JvhiSzRng19j4B}p?#9|;Ex9T zn6=bVdZpibqcj4r9B)DSg^t&+d6D=U(b5H|*a`l6(+wC&W?{IiAGOANVC$dT^QiS- zJc9PRedjT1-Rf&ct*`IH)|UhKkPudrvs6$#{NiDt&VHh}nydl6vSa7~nQk??z$>YB zz(^8397&|e5 z<}THtC;EkFN)G^w@m7={=y>C56p62))s8^L&hm$IA;3r?3sWQ4P-}J+w(ehCM6G|a zDYVzdrQ4|W%lH}8`t&MneLQgm31K@wPZcH1k8UKoyeEp=`3}%4`)=(Z({1O=yf(c7 z7)hYJGt;Q`r_m3fEEoE*rIfjIXAtePad#9b_FzP{dzXE~3zMOlQAt5&Mp==*rKO>Hib+apYI2gXnNec0Sz@ADs)4z=L9(%#xk-wF RfkASziFuOg=B-S}xB#2*6c_*i delta 62 zcmew@^;>E~3zK1TRdP~UL4~D$YFe_Pg_((wfoW=DVv1>!S+Z%Wp^1TcnuU3CQc`lN Rc~Xk8Nt%(x=B-S}xB#(B6y*Q_ diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index 2b54887bdad366f3748b2bd5af0390fd77fde477..76dd51e1cf5710f51c3786b3e469b6f0420ac4c7 100644 GIT binary patch delta 1253 zcmdlng>A>;#%AUw zDFy}x$;l?>Nv4zQ7!Q-KYkGhzqtWIiOb^+})I0eFX9Ia!jVFH)FxdQuYXU2o`Zs?N z2xcNv@8k_)rkn2w7m%xe^9HfqWJD4uxQ)Sfvq;vHYd2WGjLa^I?9Z2TrO19?#pf*K zhW!Tt+09$k1cfQl?{0O_icI~}*K0FMZf-5L7oo@i$1cZu@(c*t&dS9oMTYmc1Cvji rBzcw^Z?`gMJWhtC;50iOs9AV>g*W3#8}h6-0u~hf+c$SGwlV?$v2t}q delta 1253 zcmdlng>Ag*W3#8}h6-0u~hf+c$SGwlV?$KEj1b diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 616800c85ee41f6c84b0467b7f23b0d69ec58096..7cff3119e529848432b4fa56e6b624da9a57923d 100644 GIT binary patch delta 13101 zcmbuG`E$&77{}-N9xIzuuu;HVI z7F7l{Qrq?sw_#EpZOUk(#ue#7T-C-=VWOYi?Tq}I_x=Iz_v?9{&+~ac-|y$Ud!(-A zk-CExX^oheX`MLHnr(@Wwq!b8I(&YNxbIC~3O1->pJWBngBo3t>+!%{ei$8sWQiHc-q129_n^Eb{+ZUqJ+dHSAxjxvH zk5XxG5Gu8Q1yjopz|{8-!aHZ^w{>WRZ*YIKOotD{v#IpxR+M_@#ClZP>hu{@T2Kz3 zbkokRLaDZMm(g`KR=_>n_QDmET5@p%nrnI0bCf#%@)ndTuHHqd9d1lPsUbCkQL4}H zdr@l2E%>C1tlf-KbMD2Uxh6h1hElivJshPL*PTPDPoKcgh=2TBg;G;rz}*zr@D!wS zCDBN*#9Xe@KPWe)8Tq4H&68H5+Ab#Qj%pv7={~Am96(mI&dEVkfpU+wq;%x=NWQdl zSvy*Ra<9KeYtVd+9jOrIhIXb+sCHZ!twt{D9JN~BokpVEc@{c^YJZHRU1*)nR*D0- zT-ck=pv;=SG!z`;Q*YAOu+nsKVj~BBwt!?&?5}!? zTPbRY$njHmf-WpwVu7E*xE>OQby8cQb5TgKFV}~t``d!CI~)w6N4#3=jsbs`pdRvd z%i&sz>g!G!3_?11^5W5Ib#r$D5g+HNCh>$RM6}3N@4I8g(rQe5%puJcf+$wYnr^^y z<`Z0n4#zYjd+%1S0{0QFli%SWq=P>%-K$hG$Xquh-vNK~)Zd^tW?3jlsS*r-Y}u1($DiY7Kq zYa!b2R(-|8)mj=aPt`2wYlE{?EDfKByBm^^h+QW;GCWudWEt0Xw?Yy!B$pva*tBV3 zU~nwE`!;&qI%*Tj2To}}v;pzruNqklc|9@_Ee1=6C+Ne5YjJaHwZ-m~z$m1H4==l~ zHNbBvjv>P)(!0Wkk8?~(hd{1U^bL{~5c{U<6`+>uXXtAOp<=JY zdI4HAA;l&RIH{jQAOCp51-%HK0#fYBGb{Ct=m6jqxAic%@gwf*4}cxd$xroXNX}B1 z$`_yO4e*6lcVB}Kr+XR(qbttRp*8SV1Lp??k(4cO70JHNXD= Dpn0y* delta 13101 zcmbuG`*VzE6vyYhm&7L7Y_9I44PoMz6*fXk64BIXgdju-kz0vNf+mPdr42z#u;Ecd zizj665yV)*MInq|IxapWwT8uqD} z)Vk2%Z_Q2BY{!i?3S^OJ4QuOeeHh>`?v5pITdZ$qEEI>2?P0(%4GY5-)^>wCBpq){ z2v)qBFSQl+Dx&7gWUoxLP8{rM+iDK?h2^6GC8fM)UnHY#Ol*Z8q@Q8qu?a}dlrqD% zBRLakF}rlz zQ0kv^;9RTnl2GdR^CqLYo-W8mrRNtHqtZu96VY7jJ{*ElPcIvfQp=0uQ0kUd&roXk z>H#R#u(l6My}WJ`O8uoY2BjX{7>!a(K7E2xgSTX$)J~t9Q0dRx7opNyJEx(!KG>Cy zQfY4>Dz$wDQ!5U@)cFVDoipOwdbGmVc@SEr!-wJ7RCaVLO1*PpJt}Q;`V1;9sDMwp z8E03aRO`9R=(-vz;T~>(p$4UvUfh7@T2cKRrB1rM1*M8BcTsB4^=T+Iq%Iz%djGx` zr6%2kPr5$0H>1?-dr@evaSx86)NOx{La8P7=TPd?C-5`kAOBXP)Z`a%H^nqQ1*u#` zGzKg&SE%$4%1v@7KUAxE&`MO>%}6~_?IRQ2N3~1*DFUr?Vjxwb+@q~26}dfB7G+#p}Dnz+myU-?7J28}2BNuh{S}pHMV^HoqGaW*;KlY(rXq`9F{*Az<@lzU?c#iHC(Z_{X0`}Htdhib16C-jwo zt40v|JjFGmC>Pj&BIaGnVR?xg0*G0Pkq-rS==;2G5(IUMC!~=Ph}bDMX3?9Vcp_I% zqbOLsVmjmv?)Wjo@4hk-XIV0 zWi9;*RKU@>(jdVIiiPln1t}Nc2DSt%+kmgE&hcN_Pcb!Vp?wx*2ONm> zx&xP>f0VKYSpml`8v2$Jhl<7dsfs2#jF2tV@g1cAZezO*OPf!SY3LXx(jh?9cG3So z4~jCBb7(Xyy{^J1qN5@S3lwjT&Qn&RF*pj#(q=&*I^Y~NjW1DzOEC!P;LZ6~TOpH__HDEAs?3< zt|qBIu9U$|NCyvIGES{+=}I8t<6PA!o-l=oRypc@SFBiCjqiv#q&PzmC2D!|4Oq^6 zf~yd8Of#_8ZuJUqAK^Ut?G8dZ_;Jx*^%^=Bgu`a>5!E0bm#dAz=(KX?^vbK@uDaRcYFvS$cD3fivB8=@@aw@QRg!US>giH6(J5Lh z(Q&uxBOb2SQh0f?W=3Bd9HnAu_&m(jki13oI@yt7!CC;zxVF0#l8_-e4LRJZ%?Jg9 zW7*xe(Bsx#o34D|l=eeA5HJ3!lf{tNBU8{~uylBWK5RG_H|Mst#FY{lgmm!cW%sp4 z_$|dgWY|c0clhvej4A05z}1R=!T>G^w>0WO@LGK5t8ai`4jQ}5*yYQ?Rv0fGO5u^X zD^mAu@&KG|(T|`f4@1u2`yW3H BR|)_C diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index 5506b1927661f365d2ac8a7c27efaa8ce1582474..08d42f0b16304c56ad6b84f7527f6e8f08d0fefc 100644 GIT binary patch delta 1676 zcmeDE&D8swX+toht(j3tL1so-k-nv+p?Qi)N@{9ylChalVzOCcqFJhexw%2Iv6;C^ zih+Saa{>dU- zg=Fato;*QNX|p!>Lss&%Z=N6+%}Acs$sZ)tH%}AZ$V7qmPhwSM+P?XN#A!-wPLpvW z(`K;0gXPvyV*47!UP^3#q8v_%?a$O4DY5;MMlvO~KhU;hAv4KL5ai#y#$Y7}1=?R& zGE0)F-62$Jb7!zInL)SNA=HVBOq2XFqfu7HOutwEdL@1Dm90Obi9djJ3c delta 1676 zcmeDE&D8swX+tohZE{s|QdvQTrG9E!vY~~UiIIV6YGPuFX_8s8X{w=#fq9yRd2&)x za;kY!im^$Wk%fLresZyXaeir0a_Z!RjY^X@F&;G}*%YA8pv}LSI@rk5I{E!>{>dU- zg=Fato;*QNX|p!>Lss&%Z=N6+%}Acs$sZ)tH%}AZ$V7qmPhwSM+P?XN#A!-wPLpvW z(`K;0gXPvyV*47!UP^3#q8v_%?a$O4DY5;MMlvO~KhU;hAv4KL5ai#y#$Y7}1=?R& zGE0)F-62$Jb7!zInL)SNA=HVBOq2XFqfu7HOutwEdL@1Dm90KT0t8UO$Q diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index b0e958f950dabb219fa7f8079dd93ce4c6b7ea79..a81693fa396cb650d6834f1cf8ad58b739947b92 100644 GIT binary patch delta 117 zcmeyW`Big6IHRGNQAt5&Mp==*rKO>Hib+apYI2gXnNec0Sz@ADs)4z=L9(%#xk-wF YfkASziFuOg<_<!S+Z%Wp^1TcnuU3CQc`lN Yc~Xk8Nt%(x<_<<{9 diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree index 23d3296cbd2a4845898ce9c548986b98e5dd0b4b..0c1d9194317bdf3d0bf7fceb387d575482a24170 100644 GIT binary patch delta 3290 zcmbuB%WD%+6o)y}rt}df(NIi%MkLrSq?3m;j8JG%1kpu{ih`gdlWA0x1|L}jq-h|6 zAkjMLRSSv)E!cwED;xyV)<;kfm2QgLE(F1qLZX5T?=*|7=gc4QeZSw_d(XX7Snen+ zcRWi&M2%j|oIaI3->>TtEfr6hrjd-P(S)HU5~`_anqtIMEuK;o#W3Ppau>e?YYCV& zR2}7mEnB*rC$6G3x!6KOt=Uk(>J7_08W?URD}p={1bTxYU)dNZrt{g*94$F*jrB!& zZ}=$@=VN`>JftPFlehA@e%40A`HC9$64Cp6KGRb3eDeXdhm@M)olBy_^+oWD#Y z^@Ue7l20%0rcLn#x8CS9v|x?Dn{?in4^{V50|(yUbsi`#oC3f4;d;tB$|j3&3Fmjh zu#XDA7=Yh|p=%_M>;-v{n9MvyIPRQ9@yW4v=bT;mp|ue5;8Y2+gd3_U_@*!CPMgduMV?s51lxjBVr z5YoiCE8&d_d?GwLcKs3)um`tQp`Gw^WE*l!`3gQZQwKkLRDmQOSptRFCWpfHk?{03 zie!F30AGFsFL5PvC=BDBw0+F6{2%b*<2vl4#y1S*e{i&$)*;KzZID9jRt5aHv`(rK zw;_u{b7+n84)}A2be6Jyf-B*sm{blr4;2q)nk|kt*=JFFaEE(KgTQ-(a@hH44E--KSO0KeRZ z3siW$e%}o2b|mmUfGds!xe9D{Bse__uN?^*bC4!HZ>=rtcn(#oK4@kSLs5gr|@ewhi_g}Z9dN%%Rk3vL*$QmxczYY13ONEAbZSgA_UDq3QsM0(~oybmXfm^OmkI9v>4k!D@@L<>X{9o){gOl^vax6`f{TJ_>;bD3$K;_gSiUZK#PB&-&Mvw6M=jW5 z_Ec#ddRo;usfSgwS2`+d#@L zrI(!&|KNdIosj~mS2_A;+&4ke635jd1Dcp>)qGk zfFE!94N9H5Z5EpAlwZG$Qe$^OgORg`<9DW^)akn(p}GEx&qS%$Dkh@Ty1gq=>X(&q zDD|&Zvr+2V-+ql!Z8fV=>gHO1R2qAz9F_j^XdasD_Tz7$)VdSFsI>G0n0ovqOf5bQ z@0`3d56}v0=aSJfN$26SNv%JEQWrIrq0+aSE}>FWGknvTzSxUW(_5~f>-yD~a1RHx zwW8GB?KNnwx32#erIz0~j8boQb^%l#zKE@LtiN4?V)xyh31Icnw4(bIN@YFpRd?s> z-=oxNy|HMn&-68+)C2t)Ae9a?_7#YwXoaC;B1LNK7RvpLk)a(`b7}xXUT4INNlOCQ z9JI{2CT2jn!6D3qmg=)mwg=UQ4rAe{wj+%7quTNjEE=tI;V9OQa(l=c$uf0?M^K$38)|wehSPs55PRo?Sqhj}llK zz;s@I)R)AN2Pj=T>Ls=hhD0gledjZuZX0UyzmM>t)=K>Nl zRS(KMlg(BFdyjW-VEOz|Aq%9dOPJLYhfu0t#u8Bn5;6P&6+06Mr6aGfr#y4mxQ1;8 z9SW&>EgPb^{|ruI1=a#zH#k==`~9tKA#gkKsu9v0zHkQ%=8wwRHTQ$o4M-TAQ&I5& z&NxzQJ#-=Vr{+DZ&bd^4wHuI@O+G^MI~#Er77u z3@`t;7nqU1)5u!EBuE&n4g$o^#^rx55GxpRoh8E!)YZub1E-~{_l4M(cHd@|$j;MS z@Q*$07LfcCt&yML%*3Z`QBvvchwT0U)N6xL@}fbC)PXhv35Vz57EB6|&Z66xb_Pjp zzV0VZqKFT`h!@hR2q_&A>uuXsEczyFykvpfw#6dd1co8khMzV`dL8(x)z$M?UzGf5 z{tW3cj28~yz=_XKmEK0`uJ0HjHqxdH>1D)WR*95Gi?gIXNTcfFvK*-bIO<42e|Vqk%i5Uj@6rIeGU%DVGyx0eoGSluBjQ($9cENZ43L z19)e<(C?b0w~$WJdrgSF>60&{NvH#DX_e}LoLzgo;i@#n4^6!M-%=ucr3rBmt$ZkD zn?XEJ8!KM{we)_3JbNG@E?ObaBm2+g!N{?ui>;I8W5Yl)zmp;R@b&ZL4$y#v!SMi0 zY@?_Gc>s_%iM&@J)2m*u{4#ko0Oh)P$QyD>7?7^MHJ2WceR+R1RBZiV5C-+gp{CQ1 z#u&V*?zDU#9y@i1*pK9Pbc1u<;n1hDFR}pt&w>jFZ@w%`GEsK3Z2d919wM57WbT!X z-X1wzlnogc(1An@b2U)xEN2+i#u-wd_Q1hN<%NcN)=;>=+RaA$<6LgNYY>Zg`QZ zhbZOfNkAWtQY`TD2yq~lMJVfmDcv=8y*WiWiQ=g~UU?54yXf9bWfHI=kLagxHTv5vm{XR!6fe>IUTLGDU?> zd0pHxN9|q?lDQBE^1P4K1k9ks-ao^S^3SRb$dZZhOX;8Wsuj86ba7*Yx*VDGb@8pg zsqrwm^`eUWa@o1wrF6Ynt%J$4FRAn4oEKbClVEaMtGW{=SG1|kFnRbj75SNltJ+IC zROGvDmw4t4bpxF9Yn^H_aAUa0@7__b!v&jgPep$F;36M>pxy__Bzk)+obJI#>VDv= z1mK- zq*jTL<1#cGziHO40au4pOPP_{e}IWx{C&{EkJ_|we)l;og4nYf_&-&b3kjEj}n zBak;HYlB^17ni)GeE=-R5B*5^O*6V*SrV1?2BtnIokUUBjd7p(B=SW1`*tmQDsGU@ uQ$oFVQSL=80eArXK8(y8nstH)VUP&pLysaj`HWX?G!#J^iN9`tYx*C$k6{@A delta 15985 zcmbuG`&U%g701`PckaC~2#mu+e5UxQ(waCB2C$71#27%6qDTZ06$UV%h>)u37)6&6 z6SXYkEIlcju!t3u*5}mhq*|%b))26mkSK-*u~Lcm9Cy_p|pt z`<%1q%uG#pXiazMk#rVrv)i&)t$20vq})7PcuZ7egvFYhm6c=7j}*?Zbau|uk$Dj@jxDSYP*nw|IsIje0h99DTrYpeC9N2fJ1YGHoE=_EK)R3*ad!Fs z6seXg?@IqO5*&DlQw}JU2QGJ31$P26M^*4zhiRqaoHBeemakhLHgYbOvs-TYQ46+M z1_FHY=-cXF@dgpaG z;76N(gHoq$osH%?_17<<)Y$FNVC3rI_#J5|b;izzXs-X_vry{QilZV$MR2qA*9F@L$Bp=On+p#xLYTfZ5R9gB0Og(l2rk0$7 zcTWE4`)Gx=v&m?gq;v4uq}Crssf!!SQ0ZGu7g4FX8NTVvU+h7t=`EMhb^Yo~xQ9(` zttfR@dkvcF&1?TfspZ!Xq0}3lT>zDbE@o?->u%Xm?A|-G0IWWmR&<|4sjLUS>TZAi zdz3o8Hx|wHslFzZy1zdIq|zbAz5=lnr7(0%qzH}OM7e)4GPI*=P7Y$o>x`H&X^Dx= zMa!ILW(JfS6wJ(MsXhx~yHRb(2o{QJJ4Ug7R9ilpMWJ;r8q3;IZtr-u7<^#bRn84Bi zrt9*fz9fb`KI>Z74U;aEP$>oVbPvAgi!rbmWVo#h~XEg*p)yC9e#y9;hDpR)oc^! zP(;;h*f3?_&)_6hU=8qfgKOn%?{8s?fZK^zjh5!}McY{re^}104m@bxfP}$W6&3I2 zj3c$yLl&r6kNQ0-|pALttQ0tlN; z@bZ6qo*DT&jjR<+f`q}UKtSwjT>j@mv4X+ZSTfu|U7c(wa9X;1Ux^!{% z|JcKB0?9wt8u@X~%zWx*C6(TO!0rt~z1ABgFB+mq9cUwvaCi=G!6cJ(2HnQABT#Dd z9eCm-ig+K4coB^alhP5f-nMNeqHjh`lB{sswpgVbz%b20L$`i>D|BW=u(UP2sZ+od$h&XRT`jjD^wa-|C3s3RfXi0n(D zdzlJLrAx^Drbm2!t8@@emkY5U4c;#ODrn%FlXoAG@;Gs3;%l>{R4S{Meg*_W!p1rd zz`NRoe%B;JEYeMWzpL`+3pboUTRjLDWcJJ|qE7DXyH1YC(ONsE6Cd7fX;(=td zfOwuZLB0%X>HRQy&R{@Xyj-47j-Sgzkz-94M^BNDjsVI0c82W3*UgtZKm!s6$4r-=os#dtW2f#A`;pv^Zg8$U9Q;)FMHb-yS#aUt&6j3LX0kQQ(LYAlLqs!}EWNVP z+areyvLV9?I*^EAo(76t;72VCws&!9K~8KwLJy z+;r05MZ@+P8a)o_JFhLZhVfw@#N|z~pBsA68&U6hE*wTtdyAoAI2Z_7dJLs-MT9tz z5_%1H(V@VdMQy*qc>IFm@T?ZX#fSO~N;mvjKtD#-geVg{J4S>tOPni|PV6=Y^NmB$%Ams_uZv6>VxWOdfevMSiB?uJ)1+ z75Q%4EuM8p92+~h;|)q4P$L~l=k(>?G|-3MHC ze73ADqpn9PGMJJOuLQ0NSD7+*b*sv*^QuA%P1?s`+TWX;3e+y5kBfOqmPBQ}fvL|$CsEY3;|I=s9C;%BeVZ0F4L3;V uDIs1vDer=o06YMGA4cYNEjrwTFi3>)p+^y%c*-j;3W^| z0+HUAG=DKL)! diff --git a/master/.doctrees/cleanlab/experimental/span_classification.doctree b/master/.doctrees/cleanlab/experimental/span_classification.doctree index 379380c6bc867c4c02a54162a1910effcdb7c429..dbceb0a410c8176aeb8ae5b3bbde3c28f53e3968 100644 GIT binary patch delta 976 zcmX>#f$7u)rVXi#hGs@31(_LTMf#SOhUO_IDXFQ+NycVIiOFV(iDsz==H>>;#%AUw zDFy}x$;l?>Nv4~pG4he2ZSsDll+BjRH<(Gc5u|nUsW$$}TiFZA(p|RsEXOof^0ZDq z%OSj3mcO1nFPDL}hY8MRqQLgmB4Ol(8pQV95(boLUn=vGjG)`RU+D&UK~}lhQ8nF= ztl&!BY!|LCK%UmgcHzRC#WHNz$kcwITy`^SzA6WK+BY94FXbakYs%(RZ4Hb75JE5A delta 976 zcmX>#f$7u)rVXi#hRIdQNo55Uminn_$%YnYCPoIPsfmdxrb%YWrm2P|2IgrN=E+G( z$*JZ^DaIygMi!f=G4he2ZSsDll+BjRH<(Gc5u|nUsW$$}TiFZA(p|RsEXOof^0ZDq z%OSj3mcO1nFPDL}hY8MRqQLgmB4Ol(8pQV95(boLUn=vGjG)`RU+D&UK~}lhQ8nF= ztl&!BY!|LCK%UmgcHzRC#WHNz$kcwITy`^SzA6WK+BY94FXbakYs%(RZ4Hb7YO_48 diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index 23bbeeea073e9f84829ecd6243586019fc66f65e..11fc8952db51178f93bd8d959744501eb02abf08 100644 GIT binary patch delta 1139 zcmeBrz}oeIb%Qsfp_x%hL1so-k-nv+p?Qi)N@{9ylChalVzOCcqFJhexw%2Iv6;C^ zih+SaaLXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@3OOIcx delta 1139 zcmeBrz}oeIb%QsfVRBV+QdvQTrG9E!vY~~UiIIV6YGPuFX_8s8X{w=#fq9yRd2&)x za;kY!im^$Wk;UX1#sg&N+Nf@@c`j2o2bo$sxeJ)d((1A~kH3VKJgt+@Nl9$Z7u`!v zC~Z`C0c+nWzJQ55+c%$+>LXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@3Oek&@ diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index 29b06e5defd86f9078e711592f7bdcd750ce5b97..ad1475cf53a95eae6c2a057d6ab44e309c2be504 100644 GIT binary patch delta 117 zcmdm@yhV9~Kck_UQAt5&Mp==*rKO>Hib+apYI2gXnNec0Sz@ADs)4z=L9(%#xk-wF YfkASziFuOg<_5-YW-_$duvYK@08$bn;{X5v delta 117 zcmdm@yhV9~KciuCRdP~UL4~D$YFe_Pg_((wfoW=DVv1>!S+Z%Wp^1TcnuU3CQc`lN Yc~Xk8Nt%(x<_5-YW-_$duvYK@0I1U>eE>;#%AUw zDFy}x$;l?>Nv4~pF*1>%Z8D=o%w|>QWn^ld9OK15Ii0nTboT-+F5Xne}*2y(& j!kbre?%Z8D=o%w|>QWn^ld9OK15Ii0nTboT-+F5Xne}*2y(& j!kbre?>;#%AUw zDFy}x$;l?>Nv4x~7(bJt>mhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi85dk=j8 delta 1690 zcmaDdi}lGY)(z2&hRIdQNo55Uminn_$%YnYCPoIPsfmdxrb%YWrm2P|2IgrN=E+G( z$*JZ^DaIygMi!HM7(bJt>mhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi5j5+&&X diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index d07add36e441c77f2a1038c33fcca71f38911049..c4662a7d57355a42c94f7f48d853691411ba9830 100644 GIT binary patch delta 1932 zcmbRDmTBHwrVZ(ghGs@31(_LTMf#SOhUO_IDXFQ+NycVIiOFV(iDsz==H>>;#%AUw zDFy}x$;l?>Nv4};FtU=NZSqH!#LfE56Uozhk92oVUZ^`|^At8A4zje)*qqOAL5^D& z>dx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$dx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$+j)zDYsv>8?=yZdG*$6pu&oSGql} z7DZ9~ewW9$t-Php-&x+-*45z;u&B3;T_cmuq*Wx@#Pidh5e(G_Ca8^_GqqzlAI!LD z!caDC&*u-ay1?KGe978KF?T*~U&NgqJoLtC&{+m|@PYhy(xKozOlh$3-lF4J*EK%6 z=^$3O#urMPu$ndg*&z{<4TieJKa+|zT zDiqdEayo@5g}M}2j?#R9i~~DFzUvZeQz*uIh{=k#)uMa5h*|HOCAs3jNs@t_Os}#m zONk9patH{dU*1Yv#nvB)4Y)cJupYlo%wpyu`5rhhRupnX@eo;XB;U~$1z^YxHmLtP zBUfVjj+_knb{4~!sLHthrU>T(+lfiv0EB+A#*y29jR z2sy4d!3LZZ)lORfCSW?glln4~=XA++iwQ3+*qA(QoU>xzQJM!-n_#nhX-RJKzDDTJ c*mifBnAK?&V7@BwdyLj%FQFzOe}}8-zge*@{r~^~ delta 5860 zcmb`L-AmI^9L70EXUplH5nc2GRtG#rMVdESR76BXi6|9BSzS~YQP%m*Q0i{a`U5`C^L)SOdtNv%f`%7C z!!;*a>TYqnntaU#nVxF5EkD!j#`Jj0ecee1_87Dz!8Qj9pBrS@Dg10hjnTfZ}K7@5$;kV{CV|6S1&HM_i zW`%!RunKh@UDyq}URb{vB>7b978Fg+K8=>@%!!MFrb6MV1?AX8)NoT#tr>EyVWuJ- zPcBKu>J8y+@j4?LD(%DrNQH8UZspdp!`LoVxVN$mt6Je5o9+R##RColfXVAY;cHxD zC_3i3jf|wze_S3^Mt;zngp8%rAK+VjgGh%p^yiMfNWB_b*c3!vgUu@7%ANk@0LHYi zo;}bdq@i6(KU(Lq1G~_`{zKWQtM5ny>U#0`N?@Dww7~v2;9zn3y}YPn4v4Z;&upG} z#b&^q+3s!w8}0gv(R_FJ+-Vrfe2?^e`G5~wUT+95d+sZL~0rzI)j#}IN{pMVWGCJJq| zbRJ;ZyN0(%=1%Uaa Rz{4Od#$G}dLjDdH(%(ABc|-sJ diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index e7e37b66f6543b105bb19929f0a7b1ce310a7673..3a17929475963e2c315e43fa32f036fe65eec1c2 100644 GIT binary patch delta 1199 zcmey>$@Hs}X+u1tp_x%hL1so-k-nv+p?Qi)N@{9ylChalVzOCcqFJhexw%2Iv6;C^ zih+Saa1hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGoA=WMh9 delta 1199 zcmey>$@Hs}X+u1tVRBV+QdvQTrG9E!vY~~UiIIV6YGPuFX_8s8X{w=#fq9yRd2&)x za;kY!im^$Wk;UW*j6ccHRmc;zS%7&RITix7PA+KXpB%zkNS4J_n+w=3u#&EIb0N=b z^4wd$nTLNq6X`Zio+wqnIa;Wh99uzJ`$YW7wY69LG8tMoPn5buhBmN2h2>1hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGnqt9-Zs diff --git a/master/.doctrees/cleanlab/internal/neighbor/index.doctree b/master/.doctrees/cleanlab/internal/neighbor/index.doctree index 93d06d82b08554d212b7e4bdd627e69aff4c78a0..0e2c27f08dac1f38ef2c100453b6c893d2e3a990 100644 GIT binary patch delta 122 zcmX?Va@1slKck_UQAt5&Mp==*rKO>Hib+apYI2gXnNec0Sz@ADs)4z=L9(%#xk-wF ffkASziFuOg<_5;oJVqpI)1Ry$Aia48-&$?}HX!S+Z%Wp^1TcnuU3CQc`lN fc~Xk8Nt%(x<_5;oJVqpI)1Ry$Aia48-&$?}l;tL| diff --git a/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree b/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree index 9cf249042f08575f505e58407e840be6a9cb44c5..811ad88706406fd0b714306f6486aed3a6e27192 100644 GIT binary patch delta 1928 zcmbRJif#5Qwhe)dwq`~p1(_LTMf#SOhUO_IDXFQ+NycVIiOFV(iDsz==H>>;#%AUw zDFy}x$;l?>Nv8TK`N_rl#rdU0$*Ge+x~gs7!dS~_NU||Ntx=QrFgK8=bMtYQBo^|t zPCm{ey!kk%D|yWXiQvnh3jok}kSuGpNQeu+{S+}B*rOkr#o>%F1W6=w{dQ4kKm#4WKo-XxNh zY>#kn_P6TdBujhl=5iNLGW@^!qpPGY={8Px!8Ao_hi9FZa2{_Q~h xKiNsw2eNnZc0Msi^*Hi0*KB`O!Wc?sh}Ud?QpU()L%Pk-dXIm5(`Lq*i~uU7R-ym^ delta 1928 zcmbRJif#5Qwhe)dw#ik=No55Uminn_$%YnYCPoIPsfmdxrb%YWrm2P|2IgrN=E+G( z$*JZ^DaIygMi%-h`N_rl#rdU0$*Ge+x~gs7!dS~_NU||Ntx=QrFgK8=bMtYQBo^|t zPCm{ey!kk%D|yWXiQvnh3jok}kSuGpNQeu+{S+}B*rOkr#o>%F1W6=w{dQ4kKm#4WKo-XxNh zY>#kn_P6TdBujhl=5iNLGW@^!qpPGY={8Px!8Ao_hi9FZa2{_Q~h xKiNsw2eNnZc0Msi^*Hi0*KB`O!Wc?sh}Ud?QpU()L%Pk-dXIm5(`Lq*i~x%SZm0kN diff --git a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree index d2ed6395908c7687af1b57488369f0bbf1dcd1c9..54cb263b005b5f14153d4c12a7043dcad3632f05 100644 GIT binary patch delta 1023 zcmZo!!_=~dX@fVTp_x%hL1so-k-nv+p?Qi)N@{9ylChalVzOCcqFJhexw%2Iv6;C^ zih+Saaj^z3rV*WqC*KEsC~12 Q?lv_tYzF0`swrKJ0HKOK;{X5v delta 1023 zcmZo!!_=~dX@fVTVRBV+QdvQTrG9E!vY~~UiIIV6YGPuFX_8s8X{w=#fq9yRd2&)x za;kY!im^$Wk;Ud3#${w^n|wheWOCIM{>j^z3rV*WqC*KEsC~12 Q?lv_tYzF0`swrKJ0H!EQfB*mh diff --git a/master/.doctrees/cleanlab/internal/neighbor/search.doctree b/master/.doctrees/cleanlab/internal/neighbor/search.doctree index b2b04c9cea78f2fe3b62ebd6bb4883b080d21332..af8f7b0b5d958e448c070dc9362879552ed9dbc0 100644 GIT binary patch delta 527 zcmX@{m+{13#tq(#hGs@31(_LTMf#SOhUO_IDXFQ+NycVIiOFV(iDsz==H>>;#%AUw zDFy}x$;l?>Nv4}?7&nliZE`I071Ax6Y|B}?`8ta!3+Y-n+j2^?lCBMCW76i=d=>0u kYW*hWCr*~u)%*mT?RlQ>d0Oie~7ytkO delta 527 zcmX@{m+{13#tq(#hRIdQNo55Uminn_$%YnYCPoIPsfmdxrb%YWrm2P|2IgrN=E+G( z$*JZ^DaIygMi!fE7&nliZE`I071Ax6Y|B}?`8ta!3+Y-n+j2^?lCBMCW76i=d=>0u kYW*hWCr*~u)%*mT?RlQ>d08k>QO#lD@ diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index 53b3e68c73d7755061b63a4745fda7792a314279..79e0f4f741bf3f58bcb503196640da1acabc7bc3 100644 GIT binary patch delta 731 zcmccgg7MM|#tpuVhGs@31(_LTMf#SOhUO_IDXFQ+NycVIiOFV(iDsz==H>>;#%AUw zDFy}x$;l?>Nv4zQ81IpxD_+!P^F^jPg=ATrGg=ATrGwq`~p1(_LTMf#SOhUO_IDXFQ+NycVIiOFV(iDsz==H>>;#%AUw zDFy}x$;l?>Nv8TK`N_rl#rdU0$*GeArSvA>W4vofvME5FS)0R{7ci2ib^25uM*hhQ zSPRM0-nID*n;sikTKhKdr*V^+tfWxB*2Ua*aC^Oh|NWZJ&DVA~S|@@(Gx;kh}Pwod-=TyXMiH=)hXUWzD@ NWqa0kU=cr$5dg~y3=#kU delta 1705 zcmdlyhh_5|mJP*>w#ik=No55Uminn_$%YnYCPoIPsfmdxrb%YWrm2P|2IgrN=E+G( z$*JZ^DaIygMi%-h`N_rl#rdU0$*GeArSvA>W4vofvME5FS)0R{7ci2ib^25uM*hhQ zSPRM0-nID*n;sikTKhKdr*V^+tfWxB*2Ua*aC^Oh|NWZJ&DVA~S|@@(Gx;kh}Pwod-=TyXMiH=)hXUWzD@ NWqa0kU=cr$5df=zB7Oh> diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index bed48e4a177a1acca051ad3456fc47ed00e09851..869d1ee95d20c2dddfa0c8b68bc755db0ba14d68 100644 GIT binary patch delta 7878 zcmbuE{ZHFf6vlIJ*A{7omiPB9IBP=C6^gAalh$PpNi#MiBNGQ$S~iMM1|thY$($(J zl7$Su;>})gW*ZCH3!A$vXBdpe$ugHfP=_Ws6)-XWAVT7tB@yDcW$q7n_yeBj^PF?< zIp3Rhe91VzWV}|$a_qS+`~0;Bnm6R<=QwcZJNl)Bh|5v6V(fT`|F11PoUNA$iGl^O}Y!>-{Yl*m ziYut4+l*BtU>@R(n;Gd$68jZ9J7?HHs0LcnWU?>Tt|o?aGwWMb4Amfon%yj32gW#l zo3BwaY$h_i%5t%N;S~Ryh}tP0N0X(@6b;33iO)SOp5FAbbnF}Y$RNtk-o|dIOKfjt zX_VN;hOh~FWU%WH%f@~Za*Fg1SuE+h*##_tlT?GKMCbsV%2=U^E?r?wSpQe_rzIOe zr*r;qrW5l&uow|F&rEdxF6%R5rHGIfsaE> zPeftYN(q^KR?H1FR>Tj2dn;r@s!3`j9Kt}Qukm9z-$3P+ya&}!9E_oWmq&o3p@j57 zA3vG`)}MVSO+44n<0`1V`FuQIulM`) z`n-2HwrCt%G~Os-S?*T1>)>90(Ry#4JF751H#;-W>vVeZT>0)iZ&q$*L0w^i+vRe5 z3tXO@+`8;S#m^=H)wH!(4s#vHq#}^7F)4O!3nZ_X4qb@_k~YcA_^n8nrmamfDRC=S zuTSbze!{3e*}i%+O07$)M5%AA+W}DJv~>uODbrS;EJ`0nr60b~jY>x{TT$uHIhRoB z+5#^seSSkbdZwit1wfS+TNoeDg{WjO#b z)ZL5Q_o38V70|aLIH#v~Ah#$K_?w;EfLdjF)f8Iicy%p6422!5b)wWUR~JfM^6WyX z3%ff|YHC9^K$S-tAE3lXK081R9n5zv)-*DdeL8xQm?)}fKnIQI#H_i z$fp2RTG|IuqNigwKvb_ogRDDRs)gQyK3UfJDoV{d@o*JLz1q`*QGIesbf6v9o?bwy zy}i{a_2jwRD0TjP14>=!yNpsd^}|%hm41}keXR(swc*BJsPtdif=Z19-(mYu4MHui zYL>;rr^2A2tCY1P@98nAQahrRO{1~Vkld!cITb0jGxgZESeDQKHem+onQIKv9?(65 z%N2V-OLrNoj>SC0SqC%H*?9IVc6PRqflv*!q)B66tX@eB+a}h#q8O?{BJFdq7#$en z#9h8hNzE~n;Wd_x?F*au-$d-0#RyK%D$P0t!`+-G@h&g7ahxb{p5i3Omtw^=f$E?6W`K8=Q{#j;1XCs&*Xd-q6)T^C3 z#|+rww*~7-7Ok_)Dt>&-{=sWXrkVh&TtN!mt#rO_CH?40=g*3J_gS=1`=O^l7>@$C zAT@{c=fJxvRBaq3nfV3KK)LQU(Mz$s3|zh;eRvA@qr#M#q0by&Non14ev(vbmrtQZs3z3;0WUUSA!uV4KZYJ)=lf=Qo8=d*_;a2|36*Z4uYc#C01=*Ak!sZlW>I>;#%AUw zDFy}x$;l?>Nv8TK`N_rl#rdU0$*GeKQ)MTwW!z^-vMFGl3BtOYpE0#DlCOR8{ssJ# zzp)gOZ9>RqPPPy>vb9HSX6C)dM1l5tfyrcQ-<%+Ph+M4&V&}=!Iypf&a`Q7uCGz7e za`SrW9!hL~B$q~s_VRqPPPy>vb9HSX6C)dM1l5tfyrcQ-<%+Ph+M4&V&}=!Iypf&a`Q7uCGz7e za`SrW9!hL~B$q~s_VHib+apYI2gXnNec0Sz@ADs)4z=L9(%#xk-wF RfkASziFuOg=6XgY4gg!S+Z%Wp^1TcnuU3CQc`lN Rc~Xk8Nt%(x=6XgY4ghq#6Au6Y diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index 05899cab30ad1bf505199aa2a72f3286c7257dd0..c3583465d627fb39a33f5ff82ee9040d8d841d9c 100644 GIT binary patch delta 117 zcmbQJK2d#xH>07MQAt5&Mp==*rKO>Hib+apYI2gXnNec0Sz@ADs)4z=L9(%#xk-wF YfkASziFuOg<{HMuY-DH);Be#y068!smjD0& delta 117 zcmbQJK2d#xH=|*4RdP~UL4~D$YFe_Pg_((wfoW=DVv1>!S+Z%Wp^1TcnuU3CQc`lN Yc~Xk8Nt%(x<{HMuY-DH);Be#y0FUt`F#rGn diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index 4da14c163d182d0b3404084e4e79f4546b789024..209d866751f54e76520491424a8cc70e551791b1 100644 GIT binary patch delta 4131 zcmbuC-%Ha`7{+D-o?PFYkssnIaa?|!(snBaw$1Kol}bWw==VKbAmHifKA( zLhH}M-OI#9`B{U%3|Fh4eK6>t#lnIq@i1Z{M92OS z7??8=MP75R2m@=sb4HfJG3b${sJeSpmLfe&Whp90CS)ltjdsaWgdc=tDSE~NvJ}@y z8*V7KUuO~Zxxqww=^NaLvE=xve4Lb|ri(}`HIe1drR4ck66eBF(=|u{Hu5xsi!3ku z^{iKq118EsF|CV0KfCg}39-MkYejf4*Sm8XB!Y2uA5A3SB8z>gK`usSTphy2h?h*R z6_OL_uSj^IW)Hv37NF!FdbR>IB(tevOFx!z?f>tgX2*ZG;AU^fgJm|G56RV`rY{Z9 zf%Hh4!Avx<1N`Gbn87^+4;3c0yrL3JxLuetSU18DZWHDV^v3|1OgV#;2`(TBxadI_ zvV1;P4WE$b?(|-B5|C-=;YJ0XNFCm717ry1+8(WkJ}H8G4PcQN!gAW~h759m#4;)8 z?;BwQmm{JDRZvD+sF~hwhPOzFtjF5)W$ro+D_9UwiI&#+LCq)IK!;1z>{8Qm;c^uh zjviWUff72<2U@c6>L#CwfDgN)x1G3f>cNF%4rOW(R9r+Q#cszehHx3ig=O}I=;)FA dP)KUiCb}{TFYwPq$A!_N4rSox;;%iM_ZRgP8OQ(t delta 4131 zcmbuC-%Ha`7{+3(IVQx=s@YBWr9o6c=9!3(VobOwv)q7c9Pk!4cSCb9-8=7m@x zoZwi9jzGG~1_wGy!=P&S zGLrUsSXa?{4NgisAHjaIV2`5Yev)V@V~Y(B3(#^S`{NqgDJYrKqUV^i2G78cAJ4tVIH_u_swvWck^z zr+o$-FtMgfXnhY1u&b|I5c@l~R)hz0zdNTzBA8b8(L@3+ve=heJw0*{ dG^8$Lrpx2-0{=|(To^6rQ3f6^{@QZ|e*sXQO$Y!0 diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index baf8f4b5198c5fefd1558f397763ce019455d48e..59ee569e6e9fc15038ce732b3ea245726c793d9c 100644 GIT binary patch delta 1709 zcmX@x#dWreYeO`np_x%hL1so-k-nv+p?Qi)N@{9ylChalVzOCcqFJhexw%2Iv6;C^ zih+Saan(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y*8R2}J+^ delta 1709 zcmX@x#dWreYeO`nVRBV+QdvQTrG9E!vY~~UiIIV6YGPuFX_8s8X{w=#fq9yRd2&)x za;kY!im^$Wk;UX5#v5ela#VKMe3i*vo;n(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y+kRAF%)c diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index b0ccfba5439eccb7146a5cd867719b3e1876e75c..dc5e97f5e3e18a9d76e7b1a9e49b177f28957b39 100644 GIT binary patch delta 1200 zcmX@z%W}GxWrHuHp_x%hL1so-k-nv+p?Qi)N@{9ylChalVzOCcqFJhexw%2Iv6;C^ zih+SaaWbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgYsnZjb-~ delta 1200 zcmX@z%W}GxWrHuHVRBV+QdvQTrG9E!vY~~UiIIV6YGPuFX_8s8X{w=#fq9yRd2&)x za;kY!im^$Wk;UdZMnN*PO*WKE+pNaCgqd_3L0Ts#vNw>WbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgXcQev|+J diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index 10b2857ad8f90601709d0f0ec53c767943923814..3499f3ef63762c51374578dd007ef0599def39f1 100644 GIT binary patch delta 751 zcmeBL#@e-vb%Qsfp_x%hL1so-k-nv+p?Qi)N@{9ylChalVzOCcqFJhexw%2Iv6;C^ zih+SaaHib+apYI2gXnNec0Sz@ADs)4z=L9(%#xk-wF ufkASziFuN#eoB6Fv3_xWX;E^j{^UXqjm_5?MOckUHwUO!d9wri7j6Lj6)M#L delta 139 zcmdm@wnc42A){S#RdP~UL4~D$YFe_Pg_((wfoW=DVv1>!S+Z%Wp^1TcnuU3CQc`lN uc~Xk8Nt%&`eoB6Fv3_xWX;E^j{^UXqjm_5?MOckUHwUO!d9wri7j6J(ge-3W diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree index 34785960bfda2c4ed7217303610cdb35f3a4f06b..a32fcb1c61e3792a2be5698ebcbd862518fb2a44 100644 GIT binary patch delta 760 zcmaF+p6Ts-rVZ|lhGs@31(_LTMf#SOhUO_IDXFQ+NycVIiOFV(iDsz==H>>;#%AUw zDFy}x$;l?>Nv4}C7&*w%wvp)MWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~vYJuk} delta 760 zcmaF+p6Ts-rVZ|lhRIdQNo55Uminn_$%YnYCPoIPsfmdxrb%YWrm2P|2IgrN=E+G( z$*JZ^DaIygMi!eZ7&*w%wvp)MWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~v_r~zX diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index f08f3167f99d51666a097b44d0d527a85e7ea24c..9c904d1e541fced3423206c5af1464092a744bcd 100644 GIT binary patch delta 474 zcmbQRl4-(9rVZYVhGs@31(_LTMf#SOhUO_IDXFQ+NycVIiOFV(iDsz==H>>;#%AUw zDFy}x$;l?>Nv4x)7&nrk%Yi3o@&=|wyg_K&uD07R8o+cQC6gHX=!MlVv>@Ynw(^8W|Ww0mY8UkYG7_|kZf#bZjxeP XV33?_VxDBWc>-fEIokY~_i+ONG}9vf delta 117 zcmeB?>yg_K&uExjm7G*oP+_T`nwD&6VP;}vV49kkm|~h_mTa18XkuWVW?`P3l$4xm Xo|Iy2l4fMFc>-fEIokY~_i+ONi>;#%AUw zDFy}x$;l?>Nv4x47~hhiYoVau<|j;cOyp^uKGmIxfAR*_Lb9}1Z9c>Hk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^0H34>@c;k- delta 1704 zcmdlyiF5NL&JFI2hRIdQNo55Uminn_$%YnYCPoIPsfmdxrb%YWrm2P|2IgrN=E+G( z$*JZ^DaIygMi!GR7~hhiYoVau<|j;cOyp^uKGmIxfAR*_Lb9}1Z9c>Hk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^0GFa3T>t<8 diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index b84b669d064f27f04027772caafd294599dfc7df..b3de610b3ad0f33a7dfabeaf35d66305974f6c25 100644 GIT binary patch delta 2429 zcmbW&%_~Gv7zXgp^*xA~g}5ePQA}Jj<6dJz7$%8@ag~*3?o5qXNSKYUG7F_4U3Ha( z#mKCbdT~m2QnItPFpXF$9}6qx%3m|vUovQ`9) zn#CKCT&I%!?*fQ!(pA|mvfi|3lYXqX*imB?t$4>;VD$nxy9(Q_Zn!_)1DZO42ZYYs7jG!q8OukBw0`A7ydSkQ~dR%5TknhwVJG-J1rPD#zZD^uZ>M( zSEc?33^uT-3UGoWAFDHbHde|fyV(u)EvVc~$*u$^=$&PvzMU-PYLJEUu@G*C1gx1` z{;X${7o&o|=NIP(`uzX^ delta 2429 zcmbW&%_~Gv7zXgp^*xA~g}5ePQB2H?`M697!z8gVuCmhHJ9knnY#7N`nS~P4RaaS9 zjLb@@7pG(=B|BRS(}<<=v9MCE`~~y;0l(*Y&wDzZ%>&Ekf#qz3In^aqS(sbwXw#yq zQ}Vi94v!WNM?8vG^=MAF!xxo&s-mcxPl>drMMN=*N1C9W_p|ig&CvPGZ#w*qVshKuPx6OOzT7&*)KG zo9@xp)8-YlHDx~rTN9E4l=SA(P@3n>L+Oq522e`-16j~>i_>GzHPEQ1{c#%ZAI^bV zXQ_QCW&vq%{BR7SGEFBF#TeD6ll63d5o*IYZNI)0VpQLLttRW|P7B73QIUx}U}IC* zRmuMW0}X7l0-WF|$m)!sjg|6=E_Q=`3o+u+M+Xl7JWkeN|dq;F|yXr5w{lA4;FWNc=Xm~57qXqIYVZf=llY-Vnf zVqjp9oNQvAWIDNy@h};>KByUOUc$7Bg*>g(SJX1{Pd>n2NS1cj&C5Ah$+OvY@^TKL z%_h9OtYq2jGTA|jb@Of^0e14VZ+4K1ASaGKsDW(e*eoiuii>ocH-At&L7uH{oAot! z_mghpWT=BDr|%3VQ}=?CvYUN&wUHOiE|V9WRN9=m|0a3fhG@TeFqw&L$182Vd?b|; z+s_}1A=CEF3r>o#k?HUWd$~3nUpPQUA_GS`NPE%kc0=-PpC-o0y1kf}(UeT8_WP7%+oXg delta 1486 zcmZo@W@~6>+u+M+m|T^dR8~-7sh^sbY-nL-Vq{>NnwXeknq-!2nrdibV4h}So}84F zoNAtwVr-ITWHGsp@h};>KByUOUc$7Bg*>g(SJX1{Pd>n2NS1cj&C5Ah$+OvY@^TKL z%_h9OtYq2jGTA|jb@Of^0e14VZ+4K1ASaGKsDW(e*eoiuii>ocH-At&L7uH{oAot! z_mghpWT=BDr|%3VQ}=?CvYUN&wUHOiE|V9WRN9=m|0a3fhG@TeFqw&L$182Vd?b|; z+s_}1A=CEF3r>o#k?HUWd$~3nUpPQUA_GS`NPE%kc0=-PpC-o0y1kf}(UeT8_WQP%jRqV diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index 4a594f1147f7dde5e5bb0155cb0d58d9f8c0ec6b..1f3e7029527f5cec251130c7922ed9eccddb6620 100644 GIT binary patch delta 2066 zcmZ4ggKhl}whiu#hGs@31(_LTMf#SOhUO_IDXFQ+NycVIiOFV(iDsz==H>>;#%AUw zDFy}x$;l?>Nv4x47P|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY DUrA;R delta 2066 zcmZ4ggKhl}whiu#hRIdQNo55Uminn_$%YnYCPoIPsfmdxrb%YWrm2P|2IgrN=E+G( z$*JZ^DaIygMi!GR7P|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY D>>7Wp diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index 765ecbec120311c1d4348638833fae4dba4ce369..c86ef9e9d7ab79b915a490d2c51e1b1251eaaf95 100644 GIT binary patch delta 121 zcmbOwJ4<#$Fr%TFQAt5&Mp==*rKO>Hib+apYI2gXnNec0Sz@ADs)4z=L9(%#xk-wF cfkASziFuOg<`%|wGPF&ez$m&oklB+P0L4io!2kdN delta 121 zcmbOwJ4<#$Fr#5|RdP~UL4~D$YFe_Pg_((wfoW=DVv1>!S+Z%Wp^1TcnuU3CQc`lN cc~Xk8Nt%(x<`%|wGPF&ez$m&oklB+P03v}UTL1t6 diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree index ef2d2f862e5f95e8120ad214366c4a33dae541a1..bf0b281a96a0cf6119105b391555e17765a58b3b 100644 GIT binary patch delta 4106 zcmbuC+e=hY6vjFGj80AJI8zaae5fo8tURMOgOpEcpas_GXcy8MXS^kjHeM)tP{bb0 zKKo(tgx*)J96iG;8Ub-1fZ$%irSJ0k;F0beF5BPoGT5GSp*4|5VnM-q- z4;mDgyRfILt+g*wP*URZgo;B=O~J+@cVQst4g}myy2qmji`<^#kgn^&V6mrhrx;Vd z0hr;4mGP>2)o!fXY!exl!+GYd|7m>5?}2cyNNoG1f~emWPXp0OkJAC7l@+a6xxL24 zey1^7VG{@UY3b(O`3XPU&z}~kxx(gMx!t^gJg#I6EfCoz_<&~xgoZ`O@B{-xqlpWJ^knm;3`~?Gq7nI7K`)_a7>k`=E*HI&&$)hP}lBf5!7|)MJej) zpBYD8jk!4LYMJjrUDv%TM_qp`z+<~So{jD1TCw`ql1QiP<)HQ-{AY}DPr1WC51pBCy^1n6y&Z{6<} z^A$_Jk$cJ7%-Vr7Pr?m+x|eCRzMDCLftykwsnBi%Vt<~c?xm{(Y!X=EJPC6N+v)uf ztIq`N|9mgD(#H#IP+x{ZK3QkjaHV+#l35Ib+570FQw<@L_;2D|CT^!s8&yAAKa$_G RoE_#9m*c98FcE5hi#g7yq_c|D(h!0-FkT6^ua_Fjx-F2*t+ zG$~I1X}_!TVjyAT%V}h9($@()o52 zogMLFClwO27lNqk+!&$gy3122+8t>HP+^Py1Tfi1A#wMH1x4#_egIJ6y$w5B?z{#Z zQ+b}ccNp!W@ck30>zPMq0axLCoPkZ#kXWF1fMcpewNGxLd0v^`iMn<^3!|=sFUn9? z&&(L=s>kA}t7)zabzSqS0(Jc{50CANcs911>&3#GDLb?*>V@{TrOh}>4-YDFWFbqg ziB@`)aF%gXuGF(y-ruIAQ+B)318mm+6l}dpVuSG*tN?mx){H(|Xl|){o@( SEN7eX#O1guC;1zXru_z}=p!)z diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index e3303bf52ec56b940f048cc538c0fe4bf9950c78..66b04d10f5cfa6a52c7c079ecdd9ab3b3fb59136 100644 GIT binary patch delta 479 zcmaDpi}Cp^#tpHIhGs@31(_LTMf#SOhUO_IDXFQ+NycVIiOFV(iDsz==H>>;#%AUw zDFy}x$;l?>Nv4zg7;lrI>w&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J7w&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J7>;#%AUw zDFy}x$;l?>Nv4x)7*`sRtV@4#Ah*oq9%h5dk!<{vH!<~)X~gCpW`8C!^+K($C11Pl qjdq#FcIHRGNQAt5&Mp==*rKO>Hib+apYI2gXnNec0Sz@ADs)4z=L9(%#xk-wF ffkASziFuOg<_^YMMkA87=}(@(BDUF=xt<#U7`h~h delta 122 zcmX>jdq#FcIHO^5RdP~UL4~D$YFe_Pg_((wfoW=DVv1>!S+Z%Wp^1TcnuU3CQc`lN fc~Xk8Nt%(x<_^YMMkA87=}(@(BDUF=xt<#UcYP)! diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index 6d2c855763cff94e6ecbd1893a5bd00e5ae968be..0fac2b57d4f286e2766bd10a05696456a02845b8 100644 GIT binary patch delta 707 zcmX>!f%(t`<_+$QhGs@31(_LTMf#SOhUO_IDXFQ+NycVIiOFV(iDsz==H>>;#%AUw zDFy}x$;l?>Nv4x47$1_MOP9@lPt%^Z~iMalaEZTYFh2VWNCGuT;D0a*{1F^7kSz@*LPmCAw#P? LYv|_N$I=-Aj=0&v delta 707 zcmX>!f%(t`<_+$QhRIdQNo55Uminn_$%YnYCPoIPsfmdxrb%YWrm2P|2IgrN=E+G( z$*JZ^DaIygMi!GR7$1_MOP9@lPt%^Z~iMalaEZTYFh2VWNCGuT;D0a*{1F^7kSz@*LPmCAw#P? LYv|_N$I=-A-UZ`c diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index 9bb040a3f730ed286c8327f2fa8ce87ee8bbc0f3..7be7e94f96fad8921b0402ff96c8d2b407b3a1b9 100644 GIT binary patch delta 1026 zcmbO`n`Q27mJPm)hGs@31(_LTMf#SOhUO_IDXFQ+NycVIiOFV(iDsz==H>>;#%AUw zDFy}x$;l?>Nv4zQ7+;aDYx+fQM*qz(m>ikN(;Gc`D{CQnT74$_bMa69ASk@~D4QZH zWoC$P?&R4-MxcSb4|9k3=6if?WCjD+jLjbe=TqngiOt3$6_mIE7@iWF{l%ZMkQ<)$ zQi7Wg$?WE*L_fFgPcL%y+X;$po>mdeONsvKwmNTe_2-KUY;L>c!A^<(=v%Iar0d@f IOp9k20gqQYKL7v# delta 1026 zcmbO`n`Q27mJPm)hRIdQNo55Uminn_$%YnYCPoIPsfmdxrb%YWrm2P|2IgrN=E+G( z$*JZ^DaIygMi!In7+;aDYx+fQM*qz(m>ikN(;Gc`D{CQnT74$_bMa69ASk@~D4QZH zWoC$P?&R4-MxcSb4|9k3=6if?WCjD+jLjbe=TqngiOt3$6_mIE7@iWF{l%ZMkQ<)$ zQi7Wg$?WE*L_fFgPcL%y+X;$po>mdeONsvKwmNTe_2-KUY;L>c!A^<(=v%Iar0d@f IOp9k20Yz{}4*&oF diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index 8efca260579d51a0d1f7972cdd59f620572d0dcd..c15c4f123facaad1ddaccdb6f089ef5ff69689c8 100644 GIT binary patch delta 483 zcmX?gh4IuC#tq(#hGs@31(_LTMf#SOhUO_IDXFQ+NycVIiOFV(iDsz==H>>;#%AUw zDFy}x$;l?>Nv4x)82^)@>n?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5dd&PmdOAB delta 483 zcmX?gh4IuC#tq(#hRIdQNo55Uminn_$%YnYCPoIPsfmdxrb%YWrm2P|2IgrN=E+G( z$*JZ^DaIygMi!H682^)@>n?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5dem0oiP9a diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index 06c65cfa08a77d2bb41950b1d4a3a55dc800dae6..4bec0e213c746ee1590c017ba95a39e37659318e 100644 GIT binary patch delta 122 zcmca7cTa9ZI-{YPQAt5&Mp==*rKO>Hib+apYI2gXnNec0Sz@ADs)4z=L9(%#xk-wF ffkASziFuOg<{6CZ8I4HRrayTfi`?ev%*VL_MRFy{ delta 122 zcmca7cTa9ZI-_B7RdP~UL4~D$YFe_Pg_((wfoW=DVv1>!S+Z%Wp^1TcnuU3CQc`lN fc~Xk8Nt%(x<{6CZ8I4HRrayTfi`?ev%*VL_q%|jF diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index 99c8ff64c67015413f91880a6092a4f892bba03f..70d7b364b6d5e795ca6f926fd29f46c1b95d9b3c 100644 GIT binary patch delta 699 zcmZp_#@v35d4oHnp_x%hL1so-k-nv+p?Qi)N@{9ylChalVzOCcqFJhexw%2Iv6;C^ zih+Saa>;#%AUw zDFy}x$;l?>Nv50Y7@5e?wvlNK6X~{1-pCX`-QSdvXYx5JwS%vfu4Z5LVWXV{<-9Z1I!4C&2NNSDR9MRUeVc5JwS%vfu4Z5LVWXV{<-9Z1I!4C&2NNSDR9MRUeVcRi5aT3V-$CmzeesekH<%h; z$qN=g&vfAAw`LFzT{zO^`-?q4kFPj$N%cYb61t;90oE=R4zCt7)Us4Hj zo?z9YK%*-Sii6Q7OU9!C-AHU3pVvjn^Qm^eOmQ#2xSat!pW`&4FHPWdR*DG?k#e`0 zlTTTs;K#=p`Q#`)uZgwrl}hS4J3o3;WKc&Rua9;C-JW|g)Yk`Iv~L#Rb5knw`%1g{ zj?vNlsel>D9>P~|AIj$yS8_G^MJdrBSy94_hRE&f`$Ctc>C`hVwRg|dj&c1`dw(|_ zjM_THBgrxY@A1yK5t1Xorx%am{oP6+6O`xka^z^NlHf(R8YTJ6xRU&>SR)du%q2U& zrArJ**cclMM%^it^GBoooDG!Oe$U2VD;34xEN$g~^%vtk?Ty$?2I5DMUC|K9r>8l1 z*rh5zwPYNBzI_a@i!L4#K49R0KK;6<_UzAliY0PhaJqUgFW=tp&G99i{Z*{dK)K?`P?~9h@$p!ejyO!i#tGWwX)b;|F8v#2pn00L^onh#C9kY z_^4Pv$SpnFqRY~XBX;UDu=fD0z5aigj~Wiad-&8iD@f5iQ1bISgn>WWH?#8@U7Xks zC_-*NnvZOj5+O!2aT!va|JrXOVM83jcknv|Ytd-+gAD`j`;lLez$Fzzq=V7E4JP7E z-q)=pCnSm1TLGJTR55Kib$-jli z)He2i#k1p) zceV0wQ~h`fK~WaRFX~i`a{>L2nJzv*CWgP!#lZJVGs;s3cJAJXPeyrHuDyw5#pjId zTf8J+u~b6UdXyz!@K;b+{Q5Z4 z!ly=;z!NJM0E_P33!t{bWVk7;McRgoATd6K*Bp-aXwy zxcP+pa^z0Jts>m}R=WtdhH$O(_7QFw;d&euxR-<*tlUq&1BA1i1@1^DVIyh?>{`Ng zoA3*1dW~>(8XY9uAB1Z>MBvU4ZguO^ z$agbknOOVp)E5c6fqXgSvi(o&xAW( z;x^%~5UzPOfqO-`-L3AD@6O8plZl4^QF5QK+sKzmS057Y7UAA^{GD(|1(<;Xx0i5l z#=a)sJtJK9ws(ZvLb%s&{vh0R!j-=9fp9Yj*KGG+gu9Qp%!$fZCj@pD`Lbowe+J@6 zcu2UAf-u6(C0wchXbJa-aBKYn_nL6(YI^eBd%}JAD~fOz2zRHj7~yshuBWjC;XYz6 zQ~5e;k*x0Gs&0F z348ZSN5U;2T=VSCgxf>7t^Y|Q+-$-fs4Z|j;i@(fxJ88PR`wHVSxC6Bs^YvEH;Yal^tHg7E_Vj2zb+Dhm(!ZP%&;9~Gi7x~__(KD_^My-_^Jk~o z__Vy{{JwcHlB{xknK=$nFsp`{-!wjoH_WiAb9&&FB8YT%PIq+FMtW9Q8OMjN((wrc z)gZodLp}ff;2!*#!S(s<31ap(eiBBrktrhz0e1iTYOHj^O`lysjXD zvOJ*CV!fHa(M>)x)+|Sj{@}BRwdT(7i`JX@^br=W9p7kH9scHU`~M!LHZR@y6<=$F zTl^|vl|{+78J>V}KJY)UGZU#s0h^XDH8KIo^(8U|UW>3PM*UEm`x;4E8YJhGw(w0R zRTE*b9%xanLcUE1_k3`h)Do6nxwhF|b~6(lHL`>3G&i(y}) zZ|3nG#&qZM`6(;E#qGGy0`j%9Yx9NKU#sz=hzAnBB68Hu{u0UYJFi=c?V$p>p70Pl z*jL%LxN7|AF%|g*GL8Ig0xW6g9EvGhrcTRo2<#-3zjo0V4;NvG4QDFFKbm27= zOS)l2d49me3Pf52%~xDm8W}2%*d}axP7k!Y65%QlTi&Q!TrDa+4@qA~lGOsCf5pdV zEBL`#8YJ~LqASLFJh>7dF?l9Bc8lsik83No-Z>=>1MqvZiy^mEL9O2|)p)VTovV}fQx>TC`O{<6c$LRTtst{o zj#-MNLXldV&zpl27cct6v@>G({?oqZj{-YVZY~nKG2d>cNs?6pr~AzP)ipAt%p){y zpsnK^4L^IPR*B01+!s$DIDn8IC@;m?K{vx5n$rVU2YB?Z$d>i^RRf&-fN5Xx!)M$1 zinHtS1t5~lEO%F+Ibx0mBrL6^;~UKCge1d-1V)dWQ-MD@y9~c_qK>~l+l05Za=zod z2tIs{2Q|YLMoiE4&ef;COC6u^0!98A}k?yXDrwxRoTU9Sv9&zi&}@G~PYF&Ef^zb~NRo zQCEk6l%E?YG^I&g;(7=7P5-GqNyiGrA`4fvw(&Q%DwMbY!e0k{TezeIx15ALrp}>c zFU3K=`qC0gT;%+{C7#bm&6R`ru^q$sGt=yR-qJEiR$TqyW_{*XB*CIv-U;PfGT(V= zJ$}#fifUW{q3^TG^L^)*;MZ*la9!H;Bn=uF>l1I1(TF8FoH&e0`q! z3CXY!#n)}_5}N+vmAKNvDA=%gjg@Zf#Q!k30a_4I^el@_4YU zjirNg41Xgx9sxh$t8ePU9Vc1&bd!cZyh*FZB^m08Lj3wB2Y9{>WlR6{5&Y9lW)%Op zLc?DcBVXno9~PXc)AGLJ?`}45D-dFJ{?zPvlsFD<4*z_f8D|}Gh*phjHUSwW4^ef= z+>)PjQnI8W_m3!&@oDq)I8D*OxcuDn z2P%9JXe6l1`<(-L$@YLHNwQqtRam=vDqFHUHP141U0#(O~jy#C+VH z0dl}XH9u_kFn-A1ksynEphn{1$_nFhR#uvgLy< zg|T!;rh-#fwyOEn2L^+=-L|SFREV6T2JlISlwEyrFnBI~phg1Z@v+ASfdbn$74JXZ z2c#c|YDA>-_Tw4+PscJq2PJAh7ajO;A_GiD4C-^6A9?b7?ikOV8qW7RJ)Ez9Za7$f z@}h#jex^S^^wbEjR*gD!Ix~oWQ7{BtQzJR={o0?u_Umx|4U?1duN8JFvyYWhsH1 zafX}62nWkbxMu<$C@bf>u)?%aaIH8Z4E#mOU8dv)H3umW-U$yOPA-GsJM-Q3rHg1%xc_JDr@Bg zjxnqUKm^>1%DS>PM?)OSzvfm6K8AafxIHo1D!^KliTs*)vpu$!< z!ZoBMI3bd6Pm5%W^V}oapvh%!JoWJ7tK1W%p!vhQ++?*tj(^4#(xaJgxw5p|z7O1X zdNfNaIYfiFvt06miqj=j@-sbJUL$!O%4WOnAU&bb4-2glTL`xiqR`$fEfP|{Xh~x# z_qjNUmTL2=oTM%#8&;NlqAGN#A^C|0h4CxNHQGQ@S8|9UigE6D00s3W(O`eea2uSP zEcq6xBxLLR){`QG$!tJlK(~(O76xJc<7 z!Q7y%RXXb5ODB$^g*9!`pIHjXpqyGb!6E&Y`s=n^I)%kwsfU$iKmnIgZRY6#-+&s$ zHD$s0fb}0~W@q6zuoSfWL#q!{WuI$Ecpt80oJxoD08@p4189{7YSF8`_{u z1L;U1e&F85(u$N+wvgIsnv`oLZA*{lwv(=*3DGW1I$SP*J?tTENx_=*mVTnS(J5WJ zpOTgONv}{cFhF{bl8!;rB#N6cRN9pyJRc!_NE$Fsg0RS5zm>PH8r)Fx7WScTyPj9u{dJ@;BPY zk+rUSzH~JuqxMUeQCnR(D4okHp5?H#B+DvHg7EfH=_IOK<_YN>RvC7jlxDF^?L>xq z1=3zrhO{%%>8vu$IV%lgw!=3U#C7iXOYFWVeObDKS%$&aqzkDXirvoWprC^i0$bO|@>D^>?>1fA#$YLp}?j=K8;`GN! z26(ZzYzWK#|L+A|9CQtmq3s=!?(3nlGqj*9IYE{~H90m#ww*SZ!OO-fg<7f9T-kGl z&@FZ`Ho%SNsDe^0kwsCZYOIktsmwjs$sSX(`v#eZl5;l6s!{UZ7TFuB^;0N2Mvord zAxopiO4u#a)1w{t%3O5dsRw0MsAN};%G8v6b5f?J-E_aoPE##@zaR_l=^U438!6cJ ztFp6F;HizQ`O8h&dn&`J+p_9vK{w|U*&B)wcqt1mk2hY)2Gb$By_2mC0XYr7F~H(d z`3;I-k;|V`(yElNr)@8V$oJ8sYr^E|RNh#<+)o>%M#zI(%$P{|Ioeilk!P-6GwbpV@2730cYXVzZ$&Fyt_fi}5c90)rRD|He-ks$Asnve(A`d3u@ow@F z)Ksl|$raRdef!B1ilB@Zdl7iF^U|L;Dq? z=#^K=Yf?XqUnlQGMgO=-KAi^OqMh;^w86B!^4}Tl*a+lpe5VI{l7^|F=a77uMbIkm zy1Xgl@=6hF?n?**5s&0vc;J@&ODd@Oo_qpLj|~sx>*>+HPvs}*q}lLK`8T0LDlJzj zM$rVTY*IX>M=N<1J?v~nLqkyTTCNAXlZJ%=q^b_&oU=3n^Q$Wk2|5p{p;*W4NdjGC zUxEhy@|7Yu{VqyWpo=|ZVwhZ4(VF`3T|%e(AiWzh=`Et4RL?67y|c}@2r&1@pJjc$h9rs&XUkD4pb(6*=AiEXEJ5ZhKt6>;Bp zR34^nf9+1&8sN0=lz_@mrI*-7xoRs#wl- z;2U+|@dVX7mi=|#k*d;QRG!8SJWyQ{_N=W!SBFv#81%6AS1KL4&W6d(->T4+8A2|o zuR1IPd$*VjFr%@mBg-|?&qKCsuVT1R1Q0+o;RJNA4yrlmCQKwFu=G%6GK2`iY6qjf zQ(0J+I@0-AFI6tO8jWQbo~|0tD#NtCsvay^LS&dYST%^spdYGYS!)Q4W0)$yP&q)< z`3)UDW3=i=Rug1>uWHBahQVV+6Z|z!HIh|^kO``b=t490=F2InKCCd$vsHbBi~;G> zRk{Bj2G*LP>VPhZV?j2|Qg!_I2slmJfpv3LVQ}qi)kvDv)#j?MQP`M;Dwb1WH{9t@FZ!N24qv#1`|%G7KCy0g&S2~ zUQ$IfOlmlNYJ%$f60~skRn;>=VL1Dy3g3r_vJ$4=R-G2C32PUslIi-mek0uN*((*k>jjg^?^HWA0_jkwJ4Om*wnN>9cKhH}OAW%&@bc=W z=1N2U0ex)Zlq^1qH0MQe7b=7$BoJsSS()@^?%LR0pV(mG+3recCH3cXPkm zM59D`Sbdnr&W)q$hxF*>Q|cAevD43}KT)tHSJa)T=PiZmBy=Yj34$l;gIZQYFOA=mXcRGg)E}vl(dlf%vu*@s?2b4&yZ$xVAa5om1SAoLgMpOD%#8$_ZG9k zsw+a8p&*4*H-_|A7a0={*cI{vwW?}g$O}60gcO8S(+LJ{c_U;8jV}Lv(SGk9g#1D+ zb@EXN+87b5PJR+%qfxu%y>2wZ!v@A5A2I0>uLjRzKIlL}ZM@{=+Yv>7v*ukE>CxIt-hc2V=WA}zOqyBt! zGIS#yY28`TpH(h|4xkCM=UQlGN~#J&(e*QuCF>rBE~aGaGtuD{Ux*G5dl_1R;x>L4 zx}hj(6uTuStgSV;k{5mor7L-9TUaS(_oDQSoskoUPIhF4D!}rnFfSZx42|M|(--Ch zdEax1aG^JB19eSmOjvDdge_&muCc7C$O(f$-01-pd_!VixW7`^R_cw3Uxb~Y9`5#K z*nV~o*RC5D^za`^VZn@j+&WB6Ggi?f%tqBH(>E;W)}a|;LAQEFgcYM+Yw>+pFpo=( z2@B@2QaO`Ibq$H{r-H5Dge;TX@j}5!iMXE-oFdNsQ25i z3X5bgl`xSKbTo%*pnQGUM>>%jHi=H|vg5zvVD80)!elbDLBJH{8}p<^L5>BZz;bk-=&YH0j)b2M{8_RT@yWSGoy4d#4$z zC1!wQmD+i7fh?=hqJj(?2Zn@e%cDC3Fxk+my+n_GVb^A;grocXT6EJqX)rTNi|%tL zWbtTiP1dd3s_MmAuExK`^XTNd3Oh|a$nYXp*#eSOF z5%8xD+AJxuPkblsGKNWlg1KOy&f427t04ved%oAwhieyR3RDEjnl(DqlL&*@P6tG)>0yHPx_TsRX0 zfIPk7Ii{T@L$=(0O3QMRT?~LH1={NjTW25wq@B^W$4)(PPP>rNDk!X7@Z)){i6JvT z3$p5xwi6aadqvA|$>uZ8H&?ZLie!<6*R^%AAP;XcyJqWc?TaGGF!8Ro7nb4OJ?-M6 zc%|F}t-nZKdG<(~fCY(vs%5!eC5BnYXWHhBDc=>Mj0sU9A=-Ro4UIlH{0- z!zVHekP#8y4GVBHGJHN;F7$yeOZZ8~gzN*eY~ky$09BpgEH80D*6#x+xWdme3-G5W zd?glOxj%d@s|8*K!nL^KkVc2IJU>g6@RtZLz!eDePC?q@GH!ru(C{eQ*4O8 z%CQSjsY3WFma{U*0*ye^FQdytP$hgWqc0nQrCrc#loJ%PlJI@C@K!8Wk&qxs@MKc> zRYn<-0P3s*tGjR}Sg%3&be26YmI3583l9UfF1B*u=Me@Kc-TH%3r?=IDnQRJw%#zR zML5f=f$&03p%=v28bE!k@bwI5-QkPQ;VEG#RLI*+y7Ucax&Z)zw1?>f!WV|4!cjLS z{4y>uACC<;n9=8_dExcb&}V&#?gc94U`?g&f)#z5y}HU#=rj3i-5HiW2QfgwD0C&t ztSD=PdmHNZYlDi+YOiB0ERq1mgkh<=cr0!8G+j+x4v+XwcN}X~x0kLrE~~fq(=Eft zQ-qPo&(J5f`Cfy2l%19u+~u7T-ibQ=*S^k2~J#nE=>qV8k} z`rLF|w*gglFzu19A9JpZ(uV7SynaW!AiwOjE>x61@J_d#S$+%*dwkG&Z~{!?^dwPQ zO7%4`57heIIANNH>yI&R!IJ?M z4t*CaY&joMVrxKO9JA3S^hdBeelMv%h(EWN(kJ31mz2?uVXW5c0eALQE6C-XA>i7S zFX+Q7-7D&iApIM?7Oat28-Y(&eJK!CSszQo43O{1Nrvf_^}jPJ{CQ|4^jFmnMU?_v zP+k88{=8UI&~$Mv{Wu(mCBM>FW!CVoWW5_)p7MoJcrqukE>f;dn|~-Lt*0*)RE~U4 zlOnO40j$yfCW1zjn+Y13TIugI)-_3>Mpu29@PO^C_ImXD4>bEr zchXO1o$MjP%ty*@{Z4-z$JB{F`j0qojtg<-N>Aj4}K(9^i&=%oZhAe1{I4EI$%1M|zNurERK z2tz2iGJd!f_O5T39Rj+ZjnTk}mWFOJft=9R@Yutx1*7*jNCdk_7`7KhIdG$Wp$!&} zG^~pRHBYAK;nEp~vQmM(Kg%$kl9T5dN=t;J#}^o4D5+Xxs7c9|KN(Ufd332Ej}zKX zT5f>!Xp>cjMHEcF&QOIOP0lm)rsS!OVz->lhS?OM%2vZk+Q7QqaGWB%*=6WVkAAnu z(3X-H^9|!E+4q2|51X1GR?8NoX!3 zhlKTJE8I~-XZggW~Fd1GprQP&! zb8}-b8HTqq2BR;woj6)X2XVC9sbaS!os8?~Xq~zkgHDz7Fb17kwWny2NxhAo6oNvZ z1{hlf4Gxia&^tRCbz`48}1l0lmbGP$Hw3k zw)v^?eVA}`_XlGWitGE!c*!Un4KqXpr`!|9h&^IRd@!iyYn6HKK%CAm5}%1T%DNzlbfg+wcJq&8U5E4Hb3! zX?R3$ir^a+afKp;PmJ(WvNj*#qVd~rZbTQ__Q8UPpLD`#^Vf@D?Keccp>9dr8iC%t zK_siZO;q!b?Gfmv5ps0j&WL1+>pu{YNqw=YAYvHRt>z7}8+R+>F75XAcEmI~#GLyP zy{I^r#}QMgIPjy`ZOC5{9chEdoasrZFz`c-=^8clC7o#_#hqs`4W~y-m`u0mQHR-t zZfzy(ZL>R@;we}`7ZZ9R3OSn9&4ljKAY?{Q(+Fxw z#X!>?s^*7LruVd)e2giY+P6lIDd_H>dDCvSu#!xkFG@Cap=pp_z~wfG);X}z^pS#{ z-eL-_q%)yuGqp~eU8ZeRvcPUrb(#$Qj+szBM}(|)!gQD-mo-w_p zZSS5l1((TM7fokr+hUhZs4OL5ma8UoLpvcKTr;8PP6%1|wrN@@c-A!40G~cJO`_c< zzAzg-HlqcQVs3K2LurER)S5m9L)JJ|tGoX(>avN=1IS|>2BCIJM zxr8=IEfcwmB9tx{S(y$zxI*M8jUbM?c4Qot;oJI=T`8I0A~G1iHQPikr(kb8M+W0e z-8J%VaOvq4`9Lek`+j&NdajO$K4f%cf0`|S=0tu&ahuJJG}6*yNN(g4>WjhaA`|Ek zhhbzKo#j-=BDYY5PM(Z>MH`&C7^*jEWUPYATpfu|mj=mCdMFA>@lHW>f$XGPb%I)mwxd zQPYfS0zy8kWk$0#A@gdRQB6R|jIYh80wH9{x@J^?5OQEWb8kw%Y9Myol59o=GHKAE zu^FwAgsjobjEWIL+FO}X9Y@HVHfB^H6Y|e?W>hc{a%PGdtuBPrbrNw;cNWE&-PMdr z6w;vXccM5mdWqshq>J6o^%cd*>~BT|GU?V~kQo)ogiIJ}Mg=kf_%QB<1Cghwc;?Q++%qTy}(U()r zs6ZyB;T%p<_Ihp`ql+6Z!^DF z3dis672_-VfEZsV4vFyEpyt8ieW)zu;!v!184kdMins`_SP9Q zT5k!t_?#J4#Dr{h!Hg%)$Nm(%WqmTQqqs>DOVE`M z<(8l;{VGc^_xgueS}Fv2ujnkOEEcQ|;!GALY-6wl6Z1rb1=YqxuNr0xs*S04c33Q^ zEGEZKcr3x}*99!W?B7z{Qkr&rRl*X?{`gX&1fxoegZv(E315367aW`FD# zmSFa0RJ8;ReY?8YZAnc_Fy(*v(h^Mhl&>wpls}g!j`mHG*iBVm9Ic?CC79f!n~0+w zZzhgbsioNMT`Nn_(6Fs&=;kS+p|d-RYF_VbL6tz0{ZWbF`o*YH;80Hs^BsJn4n&2( zDZMP|YVHsCX^>@=1bwa=Vrj@Qne+38Ie~i8a5IQMgYHtFHxHe7?VoA6!<_+(#&$~t zxuYyBcWIC%0?DZdIl~H7VD4zkU50ZpqkptCfS zq%xcaEHXeO!ybm%grgT&exx3-{ABro!2<|k08Ch7kuXIN>P&8Sezwe#PA!nW(lUlo z4g$4kmE{48C$J&}pwe0kx(As=<>B>~2}P0RuRP0dQUU70=AuElw_5fxco-nH+QZ(v zEFYxc!P2HCIC8HA?ca!Yq5CcAY}&O42vG$M2P{lK7lmaK5F7_BZboOd2kBwg)S&tU zOL?F?Y>jiI^c*cP$(|dt*_+Rc9=*%(e)^^aMN3qMs!= za?#?3#`BifESGwbTup!{;+h7%&A`%4BE(JP4KZ$hy2Tnd0xVd0*P=nsH(0tds!OFq zFdrCa9fWY-5(b_OG5ERqHrX-5ub=EL&U13#0^lKRrG7?HNE?Uu*=p_~#%#>Oi z(z)om+{!o?H34`Khz3bx4yT})T6jxkZ6eIr@ar&Z7gjGogjlI4;@H7o4=r6_PlL59 zb5!MZxodpRszvPA+S0mh0*`tYFDv)*(s~OkhG( zFq-bhT5Hp2`Xb)S^2!>5U80QjJ7y){1FIXvowDlSH|4AzR?oplm96cCvJAGaZoPzF zVU22JSf{2H{YnTSYu2)&^W=mKt!+g=^Fzqpb*u|1+52lNI_XZ1CL~(dQ1Z`j#kP4# zV%wDZR&-91v@Oxln(r6L5B;p@@k?^FV1RW#>qHA*47Q@z)DoOJ!>tyxK=$ITDwf+n z$gF~_%<`iPq;KiDXhxdvwb3V=>d&?&&g z^$^QL*BfqG+u~ne>H`z@TKlSnc_1S{I1ju$Vy#2xfyCq1UJNcp19XImC#VIV%%RvxZ=WnI9k4>mD@ zQNU|&tobZAY7u?faW*Z`Rkf9aX%gE)W@&;ja&(2=mIUv~Y!_Mb&D+}66zIC&Rl=lj z+cyefKd{_nLszWvv<}iNwuuZe`5AVY)i#txNf7}cgfKAKZew|AcMt{TtH%}wf z=n5Q}Dq6H+$t8%~*M+43Mg4w&RomHy(%}zwU`Y@-HO2NjV2|K0 zEsG`Sxk0v`@UQ;1Um2nRqRzD#9%KUlxF}$SH%8lXWT1aZS0Z@4sZ4qB_(xk&uFB}a zjUNlc!I5#cmkcWolFbd`|Fl(~amt~94JX*N65!tB(!<`9Z0I&ALcY$nS(wW0zhR>- zV4k73w>2w@?7QB!Mh1SX=ZXZC z*VznUR2#bucGzsID|j93*lJ@sOF$(i<7we>X#0sF!9>Lgj2kpKZ>tRweA2RT?hYHe zcZLLG_--3|ogX0+_uF1^0$KkT+h1ydYd!G`QxWr_6jVuVlY1vVfxoa%a25W5cHs3q1^-u9#)ovElcdNu-3Qsy_zC;pBOj< z95Tl^gy&Z4w6sS^@#<=Vz1rBB%5za?92W@tRzL^Gwzs1nF(y|1rlTF*twcywXZ!9D zfxOV$K0+aoX#?#qnXVxO*ExvBJwcWDb+r9>Q6>UnAoP;-v37KwiwHe%f*sxNO2{uK z*`uh?8B^^MbWNW>(_W!y(VDjjE&m0%_E0!-o;|TBGe;s2vB2%N9veUpiz~sJ9zGRl zxDh=pv%}!h{m)}Do9&6vu+V;n6XM{HT>A^9pzy~Pb_dIzMGOgu#91m4aC>aE=M~L0 z2&^Pne-^zkUcM9MM)+h~IF#(LTc{&q_Sg>yPTP9GKDNj%i3B=}T?wlkwWFK#aE5?x zN9^e5C2{?!J8ADnc74EofM?bGkVz%#f`&UJ& z$7_J&ZLUSYmW6io^QOcKv+oA2u<3z)Ls6oYVk;ioTTvILzpziGd1rWIN6&H)9WK7L zqX!oVIrqJNc~R7d>;daf8#54Ob`}lO@~>SW)d5jX$@AI&u`~^IL;s29DQau^tT$!u*aE4Ccca0AUCxQ~L)TyIE3*pd_@=tKsF6j{Y(v zPQy5MaWD`-KauFMH{QYY`_-aQ1dH5@*0h|X0C@~VRdldCYWsg6F016Y$m%;F zDoTX=x{Bi%7S2%Jv5nP}|3sWt!(qUIxwMvp>BnD*zBzvM`w=4&9gp1zsYf?QCFEZ8 zy9{PzqyP)&x~{|$DhM~a4f=~&hd^3q3Clt?`Vs8*(}HR z_;cJmq5s)j$281$UFv9y+a1Vrw7|S$i_mW2cA?$lpM`dr`y6{&N)@aTym8dARE`Wy zUU4#~z;Tb+fe1+t%bjs(v8-QSKywZHY;?&{3tOGP;+Tq$N8NNpVLs`OqaGR-&UzrU zTmHyV8-M@knIj4x*S~h0VL3%eycC~Z=m4X1E*bb#S1$*j%uXHL!8uKMY9KH293pWV zL2kfdgL=7>>E%)X90#sfI)`I*ONBUV;Lq>EoWF4Bvy9gH16Fs7-pRD|2ZvFBK2;q? zFxlV=g-9KLP!m|m?yQZOVJ;`jn-=~zz6x%4J6+fn7yW_`3!+H(1$e}T^ zL6h>%HQXWLO#(?<8k7bDD>#dCvep2cIfW`%ucGq@h8+=qdZ-=Rt2)y-?hqVZ&1qF~ z1%hn1YCG33%s0V>*9`XN6o$Yzb(}k-TmjsW==@TGK3~;!mSk8Afp=PAG|21XtO(cE zckV|>pl`C1r7#eI00Pp&^^Kh9%_aq~Omk;fEZ^*w&Y75xZ|9s-Bsnp>8)T$7SzZep z6tbnTf!~(u{D_PQwxl^1Gq?n!L1eo^mZ>o)%9pTAALm>g9m2fP8_gTK<4zmY4t6GC zf3zOLly@RNNSurOkvY_v#Bx&gA24p<-tP>D{7C2XP~^)o6P@VoW(9D|6lW6tmwc<*DDXD-1Wf&~hy#HOw`+^04z7SzXms+)TU2tAW8G=Q|HvE@KyDOV;# z`rJ%*jl{oJpasR(xV11P)^(0W*MGvyjCZm8+Ubj-u64qE-?xm*gKadeg6kE7QV3`( z>{ZFtoMnCZNB}jlHJzS?) z1<35_vN8*h*~fJO3(%sU>ny7Ph5;_7*TEADXa~ElU;!Qtah?130zicEh*|mlBV9M~ z*h@#d&j0(d0g=Ds53U6)3&M-}t{uXK-cRFQzu;-%m&t5FIN!Aoj?Z>QGMNE)o;uBS z1Dm1W4A*HEGhmF0z{Pa!4Vhsdbj)%6iUoK!k3|58Fh(#dpSs9}P7-YZWtX^)u`2(3 zsjCgk#t{j=1bWuGenJAk1M6K!IrN#m!Nqj1IRcvv@`hhSzntXo^DtqjD+0qd`&oeX z>~U3Mxuy_=)q&^5{Bm$gQE~#@b5y`SdtAU?c+%C76?^6dG?8Z>C@qI4FS+hxiQyI3 zS!{@`Ypz51v*`_C6!$HGzjxbZWE~BBdf_s{3r}6GSymomi}a7KFp!&9$_D;y>lqJM zzI9#2*-MtwxgTB687G6;00Ym=ET)0ICGHkzQHBTQ?q&!YIzrsDS&D8fF3i-qbMXpK zws*6_-A3REbK78QggXt7amehBU@47=DG+u9*jur<0`9T8k7M6uIo#K=&w9GtBUvnr z3WIczmmQY@rN!MXSxiX~a%x9a0F|ns(ywMI!ImJ-eFEDut-Sj&*1K_K_m3N1q)%NbUO7vN-iyOVJcLV&hs~c@Z z(DcyVT@D|Am+sEQ?K1|tf5x8`hq_Cn5(cJay6dsAZ3`!*N4 zb1>YeMed`aT)wai(XVqaV{nbQ3jqn?o)B1ky<5++xRi9@}wKRygDC*oOUy8 z9zYNky{Gk8cPo}jD2U*O2hY0IML{Tes{C%x;~4N{K{R9W%@!0c|!4@@rQex42e?a6Kj}k+j7_Q zj?p#S;6bV94mQPVh37b1Y;1!mD$gfo0TM$!r?CJwExQ1x!aX~g1?X?^9K-@tF?kOD zdkaA1N;ONRgZj+@sP@l>(_J1^sprF$9uL|85zRq=v9S(T?kkqs@_xN$nT^u9+>Ju z*FD~PY;a*mPb}l?@)=zL&=1Kd;L>lKqj2KvNsE4I?hX{5c?yt=Bpkh5A-W%nKVGLmsaN!{SD2n6s2|{Fyog_p;@?_6Q z#t8UM*aO^}>&>-|MTJ7Qyx_Q=fh_gJgEH7hubfCQ2Cz^M_u-y z@;@JLzU4vXe?BaK&x6YUeE9n#4=Vrjq4$LcmH+uL-OQ?}7Z=dK_095`jhDSbl z(A^FB@Zz6B&gFg*#OTU-bD81M-1PT7Kr@vW?E&)PkPt6Zb`X(Ajl3)D0fc=;YrTLu z(&$~x7}BI_cf&h&uY%)t3R{V?PHz#n5^D=JFv;a*x;?E?HSYjW(8cElPOq2cgg4j4 zyOdml0B9>AhvR(S2U1WlsJI@CF6O=b?-xCQ0N27Q(cW7uIfT>!_)_fNq%Fsil}y=WTS36@Iq z_F$QbFeE^bdhELPAaR~I0%Uu=EDyC2C;oG%0ntulGxg+|Cf;4Fp6u1k%e2KHVG!QZ zyOsLud~5GcRvG%V^&VxZ;fM_84qo&EXA;pLQ@#1DGR*DdW!YIkB*Sp(hAG{>ELYlz z7Nx%PGVLZ%kYz)6U++yJSb=^JQz&2UmqepmuW^jy% z2R)fyria)>1frMXd+$*y(akYMlxWnC-u)~wD@p`Lq1Wld(i6Ogs7Q(|FD#0Yh>FW6 zdz&&&%-JA&npXox{Z_IkEI-4$hh-l^wA0P^YT(`lUN_4(-?3l+kOaD2aaC`%z;skl$UGTbDDk36p{8hAqk?TL%Wuv;H zD>7acqicGCyyi|DNEsj94yHf$HfLN^Kf^=-^w5w3f*0O2YCO$r@6UAEzWm;Mg&sZp zr?(GdQuG7~8$4<73%M_krPxOnBnZ)PU8D~^DNhQD3U*&Ax)BQ37R&vc`sy-AXuCu- zB-#pC!NP~pO<<*lK0l-NvH_Y46cC;J2h0dp+xSB8nf@N|Q9EA(OJRTm@%mrUx@Gtxm8RnzA4}QzH)-zrn9l1Ugo)t!d!JXh znlbvZZwZZ?iZ58>h5(j;$A9e(1)SSrZVk3O_T zCX?ZoPt1Z~JC}g;;$^D7{_5VD-&THGS;ZI8cZQE*MdT~NbHh(hPah~VGF z`jeQ!)64nkWtKJ-MetFT{pek?IC@~SDt`3V6+$|zi9_D6E*{OR=^x2*a*3D>pZbxKA{s{T( zf|zexFZt0{j2wM(qpf+6%ELQrc#rQUuM+~W^? zk_h6QDi&b4^ntDPBS^j-rGVw517EO|Pa*>7-8g`Lw!2%D1!UfiY6tU52EG<-1(l@( zmt{mw__AyO$^~*~<-kEsAg5Icpx3HnyTY%k1<=Yt$gmoLmx6jwS1YiUB3$@N?6&S3 zv0Li5Vz=m|z%$w{xSU>w+LV)L?M$Qf!^kU`9UYO46H9w%p|oAFkN`T z;s6qLSK0>VQE4W02&^lTG_uqH(+26YG;=!zc2H@$bO~%Ok~H_a23Rh};1r;?dC((( z-U3Imdws6}Oa1>DE3Qv~X}k6r;XvQONGeT}0j$YQH9I^ou%FIb^M(Xg70J%VVFC0T ziNs2eM+R0G39Iv{0Mo-Tf|Y6)L#Nqc$&&Ei*uV>6b^s4179qtjV8KUp8li7ifaN`| zG?qjdM|J>RW+bNKrUh8`|DP2la^>&=rn@Tt2TY@x0dxV0$W>x?AdlIFqM{q;1U@h> z9w=f{&|ZSb^-b=7L#~2F0jACG|FBo*B?0uyh(s>`@*<>V1ROB4 zAh3_sHt_j{z$+zi>_)}W`|E)S#=>zVKsXVw;8wsuYn7Mx0>@}oa_T`~6(uJ=3ZUP8 z!EpiGJ_(?AUlG#%EU;RL7I^tZ0KJKh9M!)Q5uUsk5mtN<5r+OLB2@n*BE09K>QNb* zE29Q6Yy*X$(HNubKvTaXDuM?Wi-13CqR{W-5(g}Ec)tE5oDi(!yu0-4q(NSpU zO32G4qn@!w97vf_EE1xtoIaKdoJhQ`!mW$>HKHo9T-(G55Z$^shZ?HtH&JMtOVm== zi$dF6LcVDjRgY1_u7A6IF`-4&c$O=gL`Zb|;zBB!u2&S=&JxMK9~gzUvxFQvA_{G1 z30WsID!2&<9UXgx;GMLJ1IBLMOn` zai|HscY^69^q2%l0^i)dE0Mh4@BJg=H|KCzl)KM;W_EUVXUkmkwxtU4b_ZahlAEx8 ze*ot2Dwp?0dAxt=q~@yUR?U_#|UyxUgJ z;@tv&tPqu7+yn1Pp5jcEK+-y(MLA=t2I5Kla@Nf!@I-|e)vgst3#N+#zha;IE5)Ad zo;rcYB*#83Fp$`fIGPgDg91sr`Dl3pp;mAp=2|Fc&qD*x(o`dWwuA@L;y??PHrl|` z5|!{MYI6%J&vk*7NMVVE$}h2j&m<~W6Dp{c#Yus*S)oKFd|Q35k_pO*ke42a*U`$M zU1lI&M=OWW?7$SlOa-vnGo(@ENh29&TjRhwq(~Ck!LoLNA0<*>cMQZ^XXP-Ub0FS2 zD~E)xGPpx``QK-H1X>YZ0#<_quiDBZv~zvyO7LQMU_7N&5od#Z_seB;Am&0XhfU)G z@%CCdj2SQg-C$ziLFwOBCkO74BsxDe@V@jM%nJOCG_NcQT*gZ6RSTf%0=eOWzmj$G z+oHgJ1YIy}xPEdFGj2^_At{KF5cvJ8_3H!i{#7}6ZVtrzSLIN)EfDWtmBXo>fn$i% zseXS8U>cVOt{??45cqJ~ynls;bU6_3UzNkgp9As!RXMDF7>M_;%AwEWK)iod z4$)5o@%~jgbblR)_pi#~m$!j<|Ee6m{Sb)vugc--C+_v(2OC8TVlysceL_`hU{)nX zHOVm6R#tEm@8hbF8MrG}6Oq6ETjm8_H3ila>tXDi!N({?-}qg(&bibUD~*6ueE&Xl0F*L@IKKbKb8Qe;r>$II2@% z?viqt8>_(Ukmb-nUa^+o@T7h-7BF_HX~lk+)-jW5(iO`HqntT3^J8Tv9#&$P^p0&| zMTTM>Mbg>r6}{LCE2SSxbPj68x@IdV;go~|0Xd3rTXx{Pj`+#S0>v$YV4MuX$jQe) znH2pfwt^_L8Ec^s=S*8RRvfjFX+<_yET_?$4G8!X!5;y#X=BGO_wVEl_FWY*lxPVd z7J_3>MK4*qFtM*kU+F5Wn6Tq?l|cKQMfR<$Uq1CTr48F#?t>R?PI^!n5c_3d}eCLg53wHYzSy z%MDVrML}7ckl)h4*A;eeRgi*O3j%Zf9xpli^;C#G?AF^Acx;BN#b!dkv_O6NNI?pk zC4e1I6*mQq=g$gUr^msCp3TNIuH8!zYNeiDseks#Xvl z9_B{8-H%Lzt0bjP5GjbaaJgPDXsh6|B#>%)a`OZP1?dRmKNDQ|G3J^KH(rZiLU_;+ z;;=B5=}R6|W_WF~I|RiBbse*r#SeUQ%}M^{~?vq;rtRc4Yzn$j5ed zlb~8uBL>9&BnDBpc0mm&b3e}URmUI~=B5tDON9OXy`Z2=kilA>fvxHmgx9e7h^_4v zMA~2c{D$!OU>C6I6NLMV9I>ol5biJXV(EaO->AkSwXi)a)&>lM2P1-x5n7nxgt3bp zpYNL#6i_81V|mat z%8b(t6Ap{E2I1*h&Z!mz;dUc0&NvW++l{<9;aHG)7H9e?2)7&guhmWj;dUc0=9~}0 z?M7ZaaXARL8+mc^jUe1^i_7l^g-|UNik}8`py-SnAKC{$A>R|6-UPj; za$x?pK@P0cTHOPJ-Ulft{s>jy3ov%X&vw0aZ(?NXgys&cg^h9%VX|O}Y3KGSwu5%I zN*7!9YIze6D0WoVr+AdUbvT1lCTnqjN5Hg6j_!J`-@DOJR07=K@#6AX-3 zGQq2Ml9DppwgB=}5p$E3q}b}8C<>zz@3%>9$zG%?DRWZ`9`pCA=>*-=m61fZAa^D% zT-Pk+7C|dGS4o+^|BaUPZMrpi%40-_Bl@`7q{O(3YwA#ua&<-g1s5@*q4I$6KQ>M1 z-C6QK46~Uy!Jwu}JXy>MX17#+TVaCxS}93^7;1i^d>A;fgK~sCTCn3?s9kZQd=5CT zo060ninHM-c5C)jV*JDPQ`TEaIdA_Nt3zMq3!*s*d4dKg@$^4ub7>H@`2|*kAy=w66vpgV&g7qDk`vm8f%3R5pEZEXUS$fw4Fe($caW*N z998BL+L3Y1kG>RAMNX3wdQ#cKS|+vhv~rMW;ehi>Qj})~_kmXzlo;S~rJlO1!~l;M zH(XT~kx6fUq{IxYTm0=|=g-O~#2z(*nPJjk;TVd7V zZ&VW`DqB~nD4AA20~yw+PDqZxWu0n2Q6?x}uX-V2^xmvGK*W#@*J`VZ6riCvtL1Iy zDWJjwrgvGKp^%<)lP}Po8xo> z^G~WMyJ3JD=pY%w!*f()+6dz=s7P6S@ZGbd1U_Qt>)CbHmz0&}F?)ljF#lck`@xd? zD$$M3F`lVc zJm4QTz$n!ev;am_4~}s_v*0t2pZtPz32_|b`Y;2_-!x#I6~P{?)i8_%Vw(p|V_|{8 zq0E$^2!W^dg3E9~hZD-+F_gI~f0;@D!WHlk;P=whfOEeZ6+9a48=AxhQ$BVe%fMmr zu-{eerQnnljOYCB!jt4+7m~Uqb2SaXjoRLKLvW)uGx!W8>OpzC%2AI~!{B5})WZ>Y z)Kjf#FdnnL3nN8*)Hu7Jd3h>XNC!f-$w@H zG26S)Wo$4Wv%L$~rv&3M+q-anPB0$nybFux1>+&tyU@NQ7?0WB1-2v@kJ;XZYAb^A znC)G-v^p4%+1>@)^}%?#;x0Vj6l@?F+1}s@Y}U?TyT9c&{bEP(2LcwL+j>V-?s&HB zU@$*H+YMG64h|uCO$?R*gQZw2tK;&my;rA$NgFz;xw!Z%MR5A9q0X%M{zE6`(s6(@ z>tm~QXZa3J4s6KofXbjh8?3O!ci~OJDCtpm*l;npoh|d6S}ZaIjlLFKu@JJ)i-%R9 z_w``XDTBgS!DCs{tzb(2OJ29-{a|sbboga(K{D{tc; zYp{Dz3IAhT`i9nqKb{7+wnakCUj`rf_k;j3k5L8ythX2J%7foppG;cG)V#lbK!z`@jp=5WGcM%1(NOP$Fyj zCDJX*wq7Bm$l8LymUId6V7cWX;=rk*YDhX767;GO(%%mMzUv!;pP4U(UH&2XnfX%a zQ8xtrUMWP>4^c?ZHCKeZ#CC?9kdR1^ zEkh_*5jl?=twP>N7^mBXoTc)Z+98A#^CE$za(Ww{rYNji$acvo-|t2376Og$EN-Im;{2*vZ$fN%ODaYX<*CkT-Mpm4ZFKihdLJ5_n zUif!~cN`mn@jxj{8c(&xzoXet4CzSr*qAa&qyYMUM#vM&Y>>-lNdY9EM7_5lda%OR-s*^mVi?L`+tNFgX!#OI_n3onJ> z>S`%;x*CFUXep#$56Ps@jWAse;~(X?emBIG*i7QOr_IZdHk3FNQt16>2*#nM+gpUrBKD2H-}Zd#5W1TZhH`%Vw&$1{p%{ji!kgNm7>1TYhrmz_ zLrbAWSSW^}r4XnN<Z$NDa^v*>KBD367{nbFe?pED>Eq}4d910Y7u?TIGEKnG#6DR_mtOtLf;YNjByN+ z>cbBMLQhMYoi!x%OG)G2BSYUxe>;y2Ju0=x`N^TRC}#!H2KXClvHjCS8`7MH3;=g$ zgyPNZQdl}Wbd@(1sm-cTA6DKg*9U^vhCZ@4D^Rg1^Z;3b5+-ch8hS}m;FKMq(EAu9!8*PO-9;etLt5B0HtS8OAAEQjdW|xWnGq;U6ZR-h>Uf8_;VF8Fm7#hVWkE^?mM(x^ zsu9+isNW6jc|e#Si}ML{hpbv*M=1`D6G0eqGx2MgGZkU?@P>h;ka3}5lmtS^;{@b| zhmitkUfD$(b{#LWNF3fphEW1I4)cR9j1)uj$`fP5-U$w~62d5PJcntW6h;c8dF5G# zu&Tm1AvKH;$^*h2r+8>t1zBOS;`Qfp!ziayILwCpu;;{XaRN#T!!QdsH-)bnhMlK+ zjV@n=Q5F-RZIiHxLIv-ehaIE7es9Y#E8+W2w+;J=3NyETn7x4cu5%dWumf+9K3&6> zQ)bRsc>_B;HLR|@+7{3|tRr5LlX~f*fnn!pLUBM93>X|nyXh$?sbJQyFb~mETStab zR-Me^sbJ3NFi&Ey5%R1b8|Ee0oE=|5Hk&7g87Y%UNglxFO5#L3ng7hN%N1&*kF&zw z5<9X`%O7*Y9E4iD7_~PGtmg~DK2?lO`J%8F!ngdow1R9-EeqRUF*b9*343N9a8`$% ztWZmJSQ|Eq5@m6dDcuydl(G&lRW2D5E~j;t*L1e+4y!_m@_AQu|M9jb8+|y;?r#a6 zqmG3QBLkKh!>Yl`3t_v-2+MN9e4$xc*el9H6&I@Y>D!eVe(JR*6g&&_b}~;xhrSIP zK=wEslYjB`!Mia0;;ZD6;pV5XU6f#-vz%!g?gbOJd4zx(*p=Q1C4Hn+F0>Xc!I!}g3HDReL+*$D6 z9cm#vE!B6)0e&+$<@npBjU&?R3Cl3mjZoW&1wT6aEH{Ye=pTokNQ$s~`WMZXq>$vbQ zhz?^gY@QkZj5yUAEa#*fIzL>x^DfErazVIs=Upo9TM{nad6$acEe~Hv^!0=Pc50^Z z+wdbq)8#PX@O*c;bmv{-)ayXFbmv_vmK_V1?z~IIt7j}Gu;QG>1iD@bm+rhv4=lMJ zF5P*TinVWtOLyL-;*ERZ(w%pySm{Z)bmv_v{`xF@0NKASYY}G8Mosqfk@IZt{571k z8zOaEG!%O&VO>w?^+$LQVnb{wu~Lgv+aWgUPF1b8%V%V+*HDu#?TIrosC^%`Bc*>? zC92!N&{}G1it$R7S>-xv%0dLz9V>?yJ?p9;+oB@AP^f<-xFrOd0@s4nPl@7BflwR`BC%M~ zOTDQ=EGqX=ub>P&X5H9m#9f=x)K5)xgd(R%&!;T;^_)C9tlZpB!aN ze^+mVDJ#`@Q)oN$Sfi$#N90l=FF1DAbdd2KGGkZ zc0ix5T?X|FkB!wtcZlrJv19vo5jt(#_PVxhbsg2w(dzaQy6DIbYPGt3`^e~aQH;a& zw$g}0@aW2tq)vD1gL*f?Ud?E}(Be<^b_AO5so6oq0c5q8GPEO!`G0d_te2z40bCq4 zlcbg}siYwY28h{>GR4JuOJJ9)W`^|cOb-p^=mEz#`$~Jxvyw)NK!qBYQGY9l>Ihnm05v8_XmW zxUSL|%q|VoA)4hx&oh`M?S5bnqa!rZxCzcW&1DKw+f2;}z_}NG3)5OtvH-KyD-#B~>ozp>blqJH;dtFwUDM(RtpAESDJ(zkSX%v<^huyXfTToFYf(H<3{j#bI%Q{$=a;YM6>)Q8p1J%f7G{!O-nVI z6=mVa7B1Hi668o!07bF00DFA%Ba; z-Gf#34)bO)ThUa@81@BsdutC^c2JWhHzWJ)u%-u{v>sj@(R3A1U4GQ`sQ?s1C|BtB zlLkKt!7c3QY0Xk$Yy;0}s)^!~3z~aY@&mIkX6Mtwh&8E~Otkp-&f{Id;g!Y9spENfsWZiD|+78yNM|QY3OmftER7h6Da$~NC zFw0z=vv#R4o+qx_CBk@^m-Yo=3H`Ihoc*Y&47ICkLkY9Jf1QHiyN@Kcu1wa>ufcjEg#<{lYOdQ+l3YMcCF65qP5iPInrebqCYDd$Q%28e6n@-vkg7r$85`n#pPQYfNwmxCd zWQDi14cX?pWv;Ari?%A9U8=?FVDnj{Z?u$e>iq-F7gn#-T2lsr|A1+_Mmto}&xLQb zD+vwsA80}Av`PO1Qq?wU`$?pxY}S5L5mJD9pDO`1+@>8;5g@4nePQHw?E?v|{m%bI z18&=;Ev1H)wZMyNzRp!ZhD;(|M#Gl%8WV12DI6&MdZKTAqw{3(SK~<7-RWr3qL``^ADdIMTkc0q; zu!FLrZ+^WyyZvL48@sZ#Mi|Vi8bQj~`wy%pU|%DG^a+#CFh89wieq7?w79X#8NOCUq>{Zw@+_?j z3{*$Z5{5`aD@VAljqsNY`H$#`-^pAyCq}r!_@s#Q6s5>6R6=;FkMNVYR7#JCcD8!V zUO%1U3vCJ`NKS>X2EK~)be!ux+=rcP;_3qK4I`%7TP=`sU1u`=AwOH@I=!QUxiycV z#*_?SV9U-nk2w49hetTqBEs61ZO*Li0r%TP=&a>paQg@~#fc(X3~SZ3qa!=nF@mth z!^Vt>=p-K!wdowu!;Z6I#XTZs{Cm+PtX{C8X9Q3r;gxOrMl6&y!Z!4em`vqxX+VS* znZv}v5#I<7@xvmfQaN-S9znWh!1a(bDq^7EaIQFl5DWvt9HR_Tn&lBq*zQ0-FStJ` zBE1SbIjFWbBrl2hfv{2m2zI85Y~UU{BKF#_KBn59aC=uoT^IRR&tnlQ>e4hE!P=}D zU4t#Pi*#V4-?Z{#FQfDA*^s9ZRanl&7A_^@2HLZNb`f=8;nRrjRb@G9SVcNg1_D&3 z{5rtb1!!dM7j=>N9RS{u7so`d6cQDtM=q}{|7z19vRx&)IH+YLvzLp$9U|9@YBxGY z{wW@K+$YjeRI?fx*}+Lvn-IB1R12FPsc@8k?KD4fh9^~N{`I4LSbWz`HDUVNNIWGg zwJ)o&H`1$QV}uWU+8a5atRN1(YiK7|@IM$i+gm1k@Jb|pC!1?2;#Q;|#U#1*^`9cE zveE{@UU2(fq-PD8_oVxRcf?tI9#BRdsYy`y zKb*4%vrmuOVf9qLjbNJ*wVHs4!&^P34|wFloHL^y5daLEqfF30D{3XBA*9M|fhmfz zxW(&M{~}5pF}hV4WoN@a7Up`eUmHeIf@m%Y0v@K=D^@OKFB?QTFrPMNN;8{B^%9g^ zTStwfDOW}XL`@-TxDal4iu%ij#rMzkX3B0+_*vFC9e%y9d(>j0qzxgtPt=~u91+|` zM&anj6@O@S)R#0VaTeJp$`LLWM@^;7{ZRV?;n~=z=CaPA$%Lr!qWEHR)I3p~J3VTQ zC-MNxBTvUd|#Y8FS?c*%MkvngukzsCY3lSi4PV7-2z z`97+jXvS^Zqh|g4*GszS2ak3{QC11z+|H=S;`PV(P&L^PhnuMDL<8yvBMw9r2@bb^ zh?-7Sf!m>|qeNTk2SbiUwH6#6|3q(wnkS+zl1*XG>8OsJgC}!37e$%3b5n>rA4Li( zdF9O)Eqd_3LeT@zV72ap&k$tt5 zT1WSjQ?xqslsqYlZj(cFx;w(Gy2a{xQ_X5boX#AX%}LY|CbsfedN@f(`a&D`m{|rL zeuSI%(q}1j>#U!q>qNGU&`jM(!C_Cfu7s-2@*G_kGKWw3I{exu*TaTFx*i@B=_Zjm zxPPHrE;t-)q9dHBlkMTJrn(_y4%J)g1_%yITGL04^KEpbq@CO*^V{pb6&xHp>6TLM zA*-{FK8o+|s#_*Fbnij;6svmbPLfBjDt&bO1c$r*bW5mus5?MM+5qKkv2u{^nBXvC zsBSrxL+LObeTHoqsXHq;)GgM1L*>wAOa*N6{y5!z!Qt8j9pOMXY?-KQK<<`nrsy7s z*Dsl_`;MxDr!#bq$Q%aD(ajVbs?4W%iTo1X2my0r0e$d%zED?BUan$wmgtDLf@4-(%up8n>W^38f5rJ`nb7mlddM&DEe*HO%$zJX*=C0 zQg`U?3Yh3!x&c)C&fl&3AdI5vejVYsygY)=I-r{?*hC)G5%vUSm@f`ld`8Yu`dC_g zOh>s!C^#I~H58)kIjNgMRqW$ax(DQL(&sErNaVTI`|~>T3Tntj9ckm9_mxkVbxj0^ zF4yQ$`GV`ZgJeDYb<@%o?QYYfu-Rq0l|q#Cd%B*~CjH{R?y`VMd_<4Ox<9T!JXZcx zhnw$w);;XGZZ=hvjW2ZBl(RKx84Z~_yUdX#eAMynvT~UD*0OZs_Kq3|d`9(!g7>gJi$6i%?%B|6HQ zZ$7Pg=oU>Jm^dXTHZ&~71;%(rpS9&i2JNavla8lxL-9ZKz#V?66+M<>YJGo*Ho=R! z(J>V7AysBrxjG!EAAN#y9+4xI6{L8w&DklVU{P3fHA*X)VX8w;MD#S-aNw~nT1~mY z!NI~)qn%mT)+u4kJu23YT`@*qA$S1^3J~gsz1+?Fa1~$~kV-e<53XG^H|BUlU!M*a#e9Dj2^-8<6!q zbW`+uVYB1Dk3J;$Hr^3khuBk_Grwyo9iYpe=*1l33XWVr|1jZPPf;KDHR>4+$sh?Hp0E^U$!wdMC&LVW3C7v>E;r1 zmMSK+sTwne*zHXWD|^C#8Zkz}?~CfS}fIkg+4M#T6~L^BAiD)4)B%oEWiUMI$M zp?q(PgPEG5iZ+$SBe6@>3!zcNnAfsRu*OYdNHIN91VpVWMyJ7TVp>w{3E6dIOJ_;M zB#k}l8lxm=3=n3RaMmXW#I&nQa6w#8FK5MgFt_!oBf&6@#DqyOfH0eC%67PEeM|zS z+0OkG(}MkRH?;%YJQ%ZB81>|1G^0kaFDXXNeUQt$RA;vMP3k1*dOjwf&^od!Ll_Up zx)Ng^D(r8>+@=f_oYUgBG1XWf=d^Dj@Ryi@PF&S&eR&LJ!%qSP1e_#%XVmX8n8kuS zk^ApsDvP4kpD~y=o&P%cQ_NBEYrb`?Q)T(rF0Qek1i}#a*y^?AUzdl*o)*6rhsR!| zXs?bgwk7*8Etb#22_H=Y1lTB?NLhTWd5(1|G1l9S&`-GjOM9gmU}at`DQ}+{!HXT} zleQjgO|hjyhnHH!9uwNy&?N;Xiysl-*3))utR3YtpG5?CJ}tHhac*m3 z*mCv^5%8q`=CoBXYG&-NS`|?M>|Y;C`beEc9)<|+%yc!@o0XkSW6)(&>kNCC@jh0Zy8_2QV{6I-$@a*&%feo3+Q;3Z zhPn)iR${fZ>CQ02B`%k2lV+I3VC5cn!&z45^O|whg~P4t7dKRlfXnK|T^7bMQ5|Pq z=cpeUH%dJ4eN5a?%0xs~TUtgXHX=E$GV7Bc=fLu7#(TjnL)@R_HI&U}KtRA(!Z!Mv z;=UErrr;)V>nh3eK57@Y*HtcV>l=4Yh+Z-Sb~Fg(Lx+;zqm3oVV|dyC#JCx-{;S5Ngw* zxOJkzyPt_`QW2pr1MKWFJ7{w?PC+;5vLG0MwIDa^5ol$NDX?Nmkihk4g zVVrrW%6c5PPKaaoOPtvQ{Q4|TD}L3zjN2@9^ZTnfZ!uA={d-(Bp{6vu_zOZeN~ie0 zM78M3@h`;Nbe{2jDxw<&^MiCRHtcF#Ke$jceiL<_lwpI1g1T;eh9EXc5iibu!#idC zFG9-l;CQo?KHB&&A!Sp2{0$*xT57zDD7MdtH-|Va^C}``wR9&|);zurJ6$b(AUyvf zzAI(6Wp&*s0yQ}*^bF~q6@y?>9#FWvG9cgctN->HqV-8G>Z z)w1ThCb+X+&S~D@YMroBC6hT6lJJ5Y^iKnMc)a1B2tCfEndM9R7(m<{b( zw}h&4Bkt&#@J3jlP49$qQFQE^P+xez#9;|nVfCTyh|4nqVlcI;S!2XoJha+j8G z&HEhXhZD@pv`3C6>=#x#?|8yocWPhkaVMcN3%AZ153x5BB1PvORhB?GfxsID0Z)k5 z&%BrLh&um;%`X$~kX4A4ouT&IgsnnFW$zN!llx8|U6u#0e8@{Z>a`lO=2%uK|5{uZ`tVDY@;c;#i$S@?@ zQzSLRP!1Jh-68U|RYgu>fgO9*tJs50G$n4NiBk*@3lmRK1_vZk3>_LK?y{CSgf&j2 zoG9logPSBeP_|-tjj5rEfeQc^`LE?c!sQpt!)#x3l2j%BvNh|a8V9)O!Oh^ zVM>?8UV?*D_rwWQJ?MKRl1{bD0`y88EI4HJO(Z0J0fcd<1io0W9jqLZc+e3Y2Twsd zd`#jAVuQA0DrJ%@JQ|nS!-iWobeNdKk#I3;sH_IwIJ~)EBV*C zUnSyk2dR%juf>V0MKNG$;zm)t|8?Sf%Fu%1Hej!U9@T(hs}e^L#gq|Pmm`TaVEvlJ zG$)}tc5QVcZe{gI^nr*iiIvFw^eqyrz@_bpL&^L&!b3=$Xm6&rYoD3gru~UdWNJTm zNUX|+u1bu6@rM#K$^0Z3=zJt`mYE+^KACueGIa6=?cE)RmJanB_^_UP5`y5H^NF@D zW^>+qJCTxslzj$%{6m5ZRJoh@l`!N34-%(~V#_CqpUmd{JTXxi@}Ad;RYbAut>xFS z4~aJ7SL4UTIimQ$I>~JG2W*qp2=g9npEN~0;OT66;92FQ3*v#Zu1V%zG0{EA+$+*O zlZJ_E=c*}~pt+N@8H z>cOl~m9(DVYNhNibJZ$4mZ_`l2LpqXN(d8)x#tE}o4c^Y8Cpdq6btJ`<(;3nvg_HmsXE03w~6c?M_Vkiy-ru(Bw{# zpPY2fnl1Z1!~Z19DDX+cakGJo@nr338DH{urn`7NAU<8@Kp;`m%mF& z71&gi)Y+C(WQxW~D~Xaa1oVaCCQ0cwGS-#mNn?pvfLOM6GK^ijB+9v5u6%X-q?r`! z$I6{q?~4!o*x6oYEiLPsbVf*4+%st*O)?o35cNK#lbdhxej&L^oksbUz zDycaobma(3rYCu_N28K_;IElUQwd#}Axtqh>NUv=lWMW`t|8vgaC?$T7~=L_RO69R z0lSL5m)!5{PA9!_lZ%c&C$)5vi-R5|Sv$+c$#0UXSCWfc|4jPcUOZrv+(H!ZIVA_m z<_JD+$?at`fEk|2I+-q9s+ycCepUG-FBZ>U@k@4bl)>IAlA9AP@gvRD#xiYq@*ZMc zSf);nrOXnrS;xXOZ8GUtHdY?P21O=Q@+pOTJ+xKX9cW8P7%VXIB*_e!Vy-xxaX}$*^RM1o+$9j!NDn9;h=W8JCdxuY1QOdy5C| zPOwmaGs!~z(UfFdmg3JInwI=jRNFr@`6p3aFee#PGVupy&riN2ih~yw^6%n-=PNCI`>sv)6Avt3m;741_?r!u2AH`iIYvBib!)PfKzO<> z`ILC}#~sO(4|l@3eaSjc*^|{en~ZldC6?^l^T|C3Hi=*(;n0QTLfHkefa}SW5SPO= zy^$PLU)I^2PsvAwcj{uNzbU+4BX|8!@#}4G{Q}|jCe_k+mKC+bUmqu|D5t(YQ)q9c zLVtlW{g61ZY8R8MNwXNra^98?`ax`2v>s0by>+bu%fj??Z|vL(7t-y z8ur{2>dmh8*L$&7_Q^i*ae)4=Xoc59=)Fn2$sSUN={;mT=rmGaRd}oEWA!Ss6lX7$ zxk1k<`fZ52GXxW^PdAfqKSO_7kT=eucRA?=3}4{D`V4ThUo&~GUP$m&iGHCdrhcWz zO=77{LI1UWJY|k(HV|9rvr6CCinj#ZT&=GqEZ1pWg?gtgL)fY%S90y4`Fg#x;5~Sg zzECv6wQc%!WZwGgWgcvQ&hSdi|CpUSKj_ZZ?9t!gO#*DMzKJYF$q)3dEWHDg4(gL# zWJS+7qu(vWXnH~KBE%ScReyvmhUu}s9(&rtA9FeP&K(T1ZtHP^#k<7XJ7%jodsm+z znxyt4a+d&n)fd8I;F*4pn6!+0q0bY7-1$}iH6gkLw4*f+vi0<|Hf#}8!yODn-#(k^ zLps^RSVu#k;Jd4`p@Se9=4tpKevPeW2otmCA-;wn@xYdPhLHp*q`+pobjl3jl~ zdBIba!PQotl(~c(NcY|(L_oyDVyZYd(tuxu<6X9k&ajV2@^4EzfJ-_DT&&*9>saS< z43q(o=T|nRKk{JgSd+Fad|4si0CZvMg?M(lU!I{YVZ1okz|e{vwYIMUgYpe3O7B2~ zH-r~&X=CUmuTBkWWca~`olWTM!7`f~NVB^(hC#5Znc*lUphY5sz_X>{fVIrwZfgS} zff69h9*X*`nj4!kbrZDaHvJ4@y-w5Fut8|#Wj6yQA>uz!eIcp`O*j7mv#pn5sL)bU zU&BN~t6Km8rKK%{qrRZcP(!Ee`FdU`K5jjc3smn>S%U>B>*|Wh}L*S1& zhHY}2K$_K^{o z>RUrK_VtqtceZS?Hqd7K6B}mLyG{Umy2h}IW{jVKDN9l)n>e~K^gBa+OolG`u#Ni+ zl(l2TDu#Fa4P`_X6~p8o3=>3K`5!h=mby5H?nexyi?O`&rDFzMHR5{cbKJ0))+oiW z?}UMrdz*8}JZ#c!wxJU97Gk-IX(gSjh_`Wybr@awxNpL*`IT^`%=v~Q3O2ExIlvOsGz4l-?BiUmfb~n-v zIY~-P@iO8kz_}iFdK;-8b4N8JDgQQC!w4VaI6=X^HeC%ZeU0~t)2m{5Q^!~$I4rDh zTu$xbzXTXb`M0?q<^&lryRhtKf{m2#e{z`dAx2XEZC=@5ZQ*c8OX4v5N8=c%5@~!w zZi|i4magd=NAH>)J+guMnCt12h1A~$5suvoKbT_F^GlH;(cNuh>%+5025ikk4 zM#|+Tu8|gbM%cpdHaUO)j|}X#w6?HqI7Fwq~zZQtc=UlTm|)7 z87ZHA=C2>n+DJ;h%_~oDXWSxGP|%UCg0DLnNvXFvhpSzUctDuzVQCNJihu7cp>I#) zJF5JUu*MHxiJYMV=XuL*_x26m>VzOzjfhNO@YY7_A3^(SJHJ~146oEf`TTJ&1 z8Dov4eB0az4u5GpCseR{qH)c?R{`TNA14_}`L=oG8B>in1czZWjO(ZzF3&X5C)6G1 z;Iuk$1mQ=tTjSI0m$sBSP8!3B-T%8-181Im~MDjA@d%+>=8{;;r9yYEt zl9Fz70n*nR@rxC_TYmVC-Y;_38`}z){Tt~c=Fgjq(PFp={N6}8ddYu$gw$NXfhnI3cYmnql7wx>2~DGGfwg zZd=x8jg&jOTp5aUM%=REFzJ_!gxv<&ZO*@J>@C=MUo%oJ=5jV^*Da1C{}y>Dg+)Ib zNlCXkhtYR%IwWi4-901aI53Avd|)Ic-R6}qJTgub9Qr&plGji7{9+^}-R2w?zcBU? z9BRC#MB;Ggwb4kPQ(P>!G(+C+^r&mzJ0s@X=JuWShmmsIl`Et3pBTi-Fzr5(ZtAK^wn>W4AktQ2P!b|mE~&7K+pLj5QkD-1f7@?KbL@wpVtlg)`XyqFSC z?V0TT?&#hy?pn%Gf!pjB*<>3^V9sDwmXbl%TiNO8%Iw3*Y)q#6CUqdReVo#nEE-~Y zLhI)#m=Klgsn+Y11+K(aU>om5_uIZMb-x%MhS{Z3dv-$!%ax6O5^WDE$J9;)UBM4- zspaHeV@aY7-_=O9qV}3K2qP40@Jq#nD_qB(byCIJ1=OscDwdcbO_6#>pxMF*!EpTO~1-mb*wA)n*w}mBP~>&!~VsAdU-rp^CAGq1ma; z2=>6*_D^l{pUJTw6{V^veMiCqOtk%%5N%`2)Ukx*Lx4D9GQ~27q*6j`MCcAphNjwx z(Wggo>R^iPaEW?MPCZ3c2gAx9aA8I&Cf(y^^L}3Hh^hovA~9i74s5_2*n7!z5TP1$ z-;%nZrm*5usb3J9NSbG0F73OibwyLxeOv)6Mx4rU{AsF@V!(XRloDYBCc=J3Q4E&_ z5kz1EH~vU{Pxkgw`fI@S*NK(5g4urWG|E;RmkP0J!*L0|tR$2aWV0ao{HRS()ye18^U-RO|{4~sdE!Q%oJ*Mgn zT}PUWoB})Qi?oLX!{*vYlmWt$0$QeF9&Ap`vvr!1l2EVh*|cUXrvMWvFX zG<9|38KS}JOjuCgMg{cO=xhcb(%s@+Y)WY%0$@9w4LRw1zD-S~4dYd)i& zs<`9KYQIl=PyxK95b#G@f}>2XpG`Vuw>A*rlJKgjT#0V%pLRq_oyje2tYwTI-Nn z>EdJ=toBXEwAP&2`MT+t*P0i11*N|xM5cVq`JC69VP5M{=&Mer0$ml7{+oUTcPV ztrtQ2j_HHRs~!J9bzu_+r2Dfa`Ed(b?E&evn7)U*7xQZzr(m=DrC*eV7}P%IV)|=W*70<@2kY}3zmC;uY1~Zac=#V`m~_yrhMtGgF+nz$r``E< zOpwisZ*Hew6SCjDmyQXt`LE9&relI^UR?Voy zDlY@GVRO>U3oHU2Ym|Z6u=%g{9WpQ*HZQ*EoZ%vh?%gvm8#e#7Qs0UQ_|I(EJBMYA zCeOZjrfJNEt$=5vGv>;-4`9~Z3`~j5i5^&-5kPMVk;Zx&d|Z|Bv+V5H^Y1dq^V!dN zvEQxBFnf@98#9b_b2sP3mOfN86291;5mF&t0w%{^F53Ixz6{KZ&DB_ZJOeL3^P>Oh zj6bNa08D62N*l*V3Mm^lU^eV{;`(w!z%yJFtz7IF_`k1J(T;(o3up8oosb0&U`nsZw0n)!*^2>?@8caWQ& z&99kB*8Aw^>;LM6wCAhKDB?-llb2#%N zW#Vdv@rKy(`!8j#sQmAv0YF?O#eT3}TlVsY1bbHhMW#G00`G$f zE3Me>=b8WCM+|#D&AcG&B7enye%*2v+OAr&bQ`fy*AphS!r3e zEXzN!z4hsqtnbt8mJpMf)qt|FSLm4C0&|aKIfB0_E3~G3)z`5wOI-Dx**(jA5xGXM ztm1#)eVF+Lt`ONfYb3>UNeF-xp9$|1KRj!MQ0kAPvSx^4=doFXMDfM=Ed1;SSM}t{ zSzn5x@ARy}qPTii)+$kKF)wSBaC^U$WL@`=t6g53wM;bD#LZcUMX|-stZAb7{y^4N zQQUhh3o~Q#w+%j%HD45KU&(qWih;K+uh@PkYj+j-G{l#`W!nG{ zdxd5#`?1W1m}g+&p)9ZXX`90b^z0-3`PW~#0K{7>FL1F+ZrOwjTX4=TJBzXng!RV5 zS$_F0O>@ygm7+5H5E?KQJ!5=@`Ne5jS3OV-1meija+>t@fT za`>@c_7$=o8U<#H^>AjZ%w9s}&{&ndmaK>Eq1oo6#$DCfl)E6jEe>e150do|9hp5# z*uzy_HswkV=b(tm{zLXXEFvMBa?p*#e3_WNldR4+`fT%Uf{Q8HtEf#Ho|b)#%wc_I zHs)KD+$QUjlTA2mCwK89x!K=P#!_@}op&_Mo-49NtZkhAf?^pGOi9CRN49a6y*(r} z%N{AlmE$eV9t@hb$!;Z%}lJ@11zB61dp;+Ii5TSPHEI%l)kYjjAmJbN_R@@#K|r;@kRXlsEk>%ONjV;fnHMKnJ&^+ggn9aUymvflXfMyjvhPvHy;wYPu zW&~NuEPYvyh^k-Ib*N;;lBeXy-+zUblKi1D3Pl-!0+1X%t8 zTNJ_lOP@zzvl>6D!e*VdsloKeqFk81b*>ldrEs*Dv$!=%&;6OOYVlu@TRq72V~=uj z32P1i1v6gG=^K%kd%~6#G#lZ;+=_A!{(B|<7x)w?X^>l$F#r3nczwUf-E1v0)i%u~ zWGeZu$TOSePPUPem928;|4(!PXb_l9m@D>EyWAE36Hv*@QlL|Z+;3!L@ad9U<9}yn z0j!|mPWcgsB~$<0mG)dgU^grm2Runv&}ww< zAL7?;6LRZ2$iIF)JvUmmQg}2w7Y8x^?CJ%%&Q5ai;PTv?gnjD&!z93eeQqxgL6X^T zz-~P&BNxB?YH#fUXZPh|YIokK#vlGimcsCbDxSC&CLhejd%Ik=xkqxpBn+hghd`{& z%sZj%(~Y5BAnauB*LG(8-#wSRN651AQZ6Cm&3}E@=v8`$9anO@2qPVOJr~n>a;frf z=I#{5YCq?0CCqjIua|P)iyra^tKDpNQkzT`QfY*e&3>3W=->A`hGRlimj5XC9Hs8N zTs0Iw&RtJA(bX3#GpuaSrmKfKGT%439tX#f%Nw6~;Pux*kTXk9X>jwddANtFXT@=e2N`i#G4`q6BW1RelF2`PcoG@{7bP>iFhA!Usko zbst5(p0cebDT9^$`oIS+N9XT#kTts|IiG5~0<23)eyI>XHY4AxKC7(!F+%vc`T5_< z#Wi^i^F>RvYM$Rs{Qqlh@=p;>R>Rc4J9;p`53l^$$9cVLKvCEHQI)u4Y;u=;Oh)gR z=L4Pt@~;s4=YPBa(^(J6AA~8h-HEN>HrJUrjoS@c;W~mbWc`ht;2QI_aG4`70^DO&V`De_iMV$vg7L z5}f^959Y;c#@EJ_w08>}A$(7Mu$9%H(0p%xfP>Y27;`A!iZGj#$3cnLoQ+jjw7O9T z7QB6=C)=QIgd1(;54_lrBl#T&@)lmsZ^1U#D6og#NAqJSuEvbu$5uVJZp8*&$j9BR zz2x02hIsv<-|_sL*tcd^_h7A0=O3U6)*lX@$!|rN)c|t9FEkF%_wi;6u3&Fkb}ipL z<-D0s$|#74!y)^2{y6lfC>8wtEFX`@^Wyp!`B$+!Nx#l7&mV~$M=I9)Js*$K^Wx=q z`K?8@bo&ClU&4PK>RfO{JW$|LaFH@{nVSx*4$7TolTQKV<0yQRCK)FyYx&5NUD7+Y zmA}Ny&C}ml;L37p6|^R_;+=K{Ma-lqFn@`;cEJQfT*1sRlxy`^w=Xlr7gUua^c_J3 z&Fz``lb;8x8(y%FCKCtrg|F2GRVn`2Ovx7pMiv~mmf4u13kXqzq#D6yeN2Hh#Q{hN zfC~Cq5J^rdplrB(CbA&8z>7*mYAIjnZY+2t*tAb8SW%%yI+9*M$~OF2o~GFa;{}_S zxdl@z#3nAkU?U+A{oKsfl}nkSTDF1t7htbS^UqFXx3def@dSMRO3d+#f_T{1s9=DV zY*WU@1=EOhp-+j}h=-32btYfb?O(R3vR`-D8UOAByv%bA~BWf5)l8jENnzAacnl&3k{kW}Cy z%X4;9!Iutl19gRhKw?jo5dr1F+wz>W&He%$5@r4e3f|bt#fygvvV~OPCks*>S+4TPJVQZtLYa?C?gpHy!SJ$aF!cjb1*{EdT0xHq%pmdNy4ib(_K-#mu#vd2zzIm z4u}?ckY(B=imP%=I5XiAH_0=t7DcxL6W%W5zcy`Q+AeEef`O)7N+iHLN1HZ}Y$0Tnsl<*ehCLo-@?x9275ISdmnN#!w_qGrJH=!z z=%&p!Wml4=T(-z`Q|M{>N>d+K`B&HPO_7u(02G2xbo|);1Ex}|XYzdPS*d9+p>@sk zG1roIkMR7#LDO3T$m=7f4)E0>6RCq^WlEwQtCuDwPqU63GZi_o;``PfEa;5s6oEft zeGNy>nl4kqEnd0%1=A60nS`$juQ2(>Sq>B1J>w)19R z*cIYh(-jkb_|U8H60xUoSXY=^wXnS`A2`$~v>}>n57z6F$(hxE(=Y-a)Gq8qawk$KIJFqbmMzMP~9CRJw5R~Ay1 zqm+G-2U&!Mwtu(`hwH?LekocnUXIY+E|F+0OxE> zTM8+gou9GBZ!K&`Ff%R>pgcbcB3U~N=T%58U+yZjp&08H`=WV}TUv-8ALkmWd$f=+ zj|9{RrMpRbm z1iPyiJ-K$v zG0^yzLPswa=-<_wt^Erf`m(elA6WjeFkd#3600K0b#@6KoUDsTnKC&!tnA7*_!oJw z(rHER>~>?dl8vw}I!n`3S7yc=$3`6}Bpg*;%=c(3Y5b8%sI2m<^JCH_GP$#&pab%cIG(dSXLEKxERll zjXm$gsQ{PDV|TE;J_3#jRe8mF;yaqyrxff~dh9a>Ff7Q8J>ksrxn2>Q$@04m$0zvI zO$Yp9L~M7KCAkFw9kq+|$InN_*0JTMI`2_%qKKR7x=)CO7Y1TGSUN41$t};4d9g)! z%A8o1?{#4)3^&=x{EPc9iap1VXt>>qSOFLH#NF4#I`QjyEL|Uajpdhp7`Vexuxpq< zs&xtr!;g2wZevmBXE3(7)$Z8KEIagO7?{+L#@0djK+_I*>*3ffUqi_q16Cg6N{G{q zJO1f(?1Qi3fB?Y-fm(cUzjLuno@6Y#!ELU@GJTT4f`9C4x(KGK6=4X zG@E9q@Dw$n88+1uUEl{nq$&|Pq3&Xl18ViLz8AXDSY*J8L889=n1*)@ z6XkQWpeO1PCrV{l4RA7%S}@e|3$s?tJi%L7n#cp6Ob`{&Mik3M;CzH@@Ia*qe5G*F zT9v3Ptc_2vdyPh4_N1n&Mg6%<^sL~|~Q7TWWvjjoG&(_)3UMNCdkEF2JU@IZTlVioA8 z2O^eBk|FOz|QIH&SFGdVa-bsTzuokj3%!|OIbOL z`BPNFzySk?iF9l@@wW)GR^R)h=nBgq1=Z)^{Wftr7Q5sM!@~TzJ>N}^yTy&B7N@Bj z_bauy82>nM*TY$-SChCs)KG6VjZ-=DsiO9A_B3y5Xk0DJL;_4qv)bNsM(g{;*`ZyH zLcFkFx42IHaDz?X#4TiK8)QbsfI5USbR8H6Ctx^fyobg$-~{u;J>%o7Xa;do+zJ*4 zbEGm<`ab7G3VwSv!lcOKb41+5pK&<+e36?*{1`WYO z=f}-;#alj!7*(y%ciCI5S8}~_aZxT<)W5htX20H$K&-O;yx@IBZUzZ zwnKYPi+#~tp_t*mIRcb&e)hZ+E^cotSc>dAi4U^LG8$KQ7CSS_G8%X9Cf;cU1m5=$ zf5%Ed`i+?B!*rmA(YR3`aW)|^qn~)emlME%p%!7*jFz;W&`2f6mbZ{ctW@( z;DtHjt;945GJ2aWhRc70#eR5Jk@ycrwh0I@18{Ju_%vu83o69t1rT1W6dxwxg5lx} zmLZ$4MLVtTx!^@(#jYSXPdRa%newxVV&PW-BLKF;yQYh4K-D;RmiQpy8;Qi5N%(lS zxFOND;{x$D65d-PX8DFDR<9CIFgIn*T5&v+S+5eO;MyO=9SD)2ExcmyZx!z%M3-Z+ zoS28zZt*Gde0Gm`Jqd^J6Za(PKOPdFAkW_(;TtCTC-KiLucy!;p9aZ8f*Srz$gwlx zx|Lv9?tTj93-giV-$CdfxCuczhl+~=<10O#xPKIlcB--nWxD@WFk?84b;^Q>> z{S7h8qGZOIr442*TI7rzCzjPiwVv^?i*j2m6u8#d{Oez)e)j+RmwaZ+Av1!NEpWtL z@dsPMLtfD5)`7uj-D5HH-FoiYREY<{tOZdq$;l22c9k7V8j%TqX02+Z;*~Ir| znJl@&i|pgCSpk7Er})imY8ZiUImfG*3H;#}{|g~-#v}fRFDHOO2&TglobYaS#Z4#U|mzAv-zwhiMa5+j@*6n~kOK!e8d#mofyHH&{jG!Wi0zJ`^+!dCHD z7<+*ZyM)AxSzfL8ca6_N##a^Xad4M-6~lmn0YU5xqI1iPHUr|vLqEh@W8yCfAe`c#_~Rr@)yBho^AP*#;}b8jiIHDxJ9fO1%7zVKWWE|(jd^|kf&mQR6jgOy4=q{bk zi(4`yzIPpX-nTS9jL?6zGQO1M;uA+dXiL05uDdmUH!EkvA(Y_wjjm?m-4Df&BJFeN z7*BY?3BG;0o#Wfb;R4@253cgm^Jh`dHsE;R@k9u5rR}!r!T7f|5L&+9s@H+3w*RuwJ|ix^XDMr#c|M zF?!Mm>U-Kb;fckHp7l)V!1BZU{{_bY{*V~r#i0oeh&(UF39%&XBTImV^h4~gNO06b z*ld476PCrJrAiF)Y+^S^su6$mHe-+vPCA-kM_8**C(I>m-(O5PL$rSKmxNO!TzDg4 zA88Hcy@azwiqHoMyGdC4Fd>}eZ(f^ll05(MBH;oFkG)J-LekUUCD@X3xgQhU+}Va> zZjJO1t%wNii6T8D3{&c-d zo+o~-khHZ%cG^%M9I27SunhiYEVRvA;(|l<5^yQak=tjK+~f@cZ%UWIbyzO7C{set zJP`K1vn6DUoJ1GqOCG!M(YYfe6KQJ1Sc#fOS5K5wFiM((-YXha~HeXjgGRH1n{8=`5bv=MTCeNOZ?Dk4RWHo!||=8QLID9D>^YEMeHF zHJ9%I$2@Mip_tPW`aY~bCYb}CVXI2OC+I23`Y-R&pCe;H?$2ONpP|&j?Jh~+qt-t@ zDfYqLewDC%E#PxN1c3H<#0|-2URK=aj-)R5y9Kdv`a@!6Tr})4u`&{^c`6|v+9UsW ztCh?LH%KJ9^Q~kP!*b*^E^aj+CG#2j$mby7XfLrP_|zt>jCP54;VVugst8GZ--N9V zSAlie2)3h*iHQ%t9O2(q56a!(jZ7!X(j&*LJnBR$MxSVpilm8>FGt1#Sz-}`z7Uif zfF`wq-yL_~N%TOj%0z~KgZAqai}*d8-m1h&L_ueDiF+8t0HCuhVnDen+$$w4doNCuGx&TV()UI?S10<`tW9)r zqP3$-YZJYYDm9V1-Wswsu_0j*nkVyg@|!{#xQ>mU-$k8~+Yvjq&S;*56G$%3verUnCvTqSZ-$ z_{P0NTb8z-URT-GP!)SAb^9^L_3uDIFaRcof$>Nciz2E5_7;4$a_Bz z)bsa5mLDk1fJS(2OJut5LJ%;h#s_?s5F&=Ri7a>3I2hGCwn6ce6bt`OTmXKffXJ*t zNenM*=o8dBLDIFau@xg8Vv__u9XYLBwM+V%_BLXnLsIS6v3cZ_G>Nhq>zc&ief-~a zbJs2D?boo8BDkeh7k}@O1fO2w6eRObVmY+=skwIhBz0n$2+Rlr@M8ZYCf5fR1Oy0n zsA#p&2mjPC>Ae+_Nd0~A)u5ykd?&@*nkNx2KVY4>qGb{sg65(j?UJtZod-7xNjl1~ z&a|{lR}|xT&jVLSC6#_n^H7*Q9g~*W@={V{Y8-1&QVh%TfS2@mQa3c%KFJ<0 zT$+@^E~y1(?ee7NHoQgLTb%^=a5%a@ueVslv<*owDf5|IEvZR3X&4o4*KSMdh`mW( zH1EoTNu5~^LJ%o&_v1-S*J8{n8j9eEl@G2tndHFBh7wQlO<8j;30(PeGP+z%BA(Vr z>sWuZGf5l=JFFQd^q3r-igJO?}ZuI+Eq^nwdfu%hJjhweKX|Cs>Y_j5hW| zk)5S1Q_H8NqiPhm({9~GdVyg9>hXiLE6(UDWjY*73L_|NhYsqMaGI@$l;vd)P}2DI z;^Cgs1MX;F-L4*Jj!4S#&IMR`_(q(RX%n3*oRuI2M=KnMzY?Wm*;JZ`TS%oWHhxpM_hTmm))1Ev=+Jf00630v7avawd*C$FxGwNZL<76o_h4oXVMU+D1 zx9r1%c81i6nS*DwbPnaPYc{({KAr<}5Tg!p%zWu=%Hi!o>3CL{7K^3lnK>+8D&0ys z7*;=|!6B77f3%=;82Mc0IgWCw;=82MiqGb^zBS8g62*e&A+l0JAx| z)kwh?HpgN4Ht85vQ#iF<%H*bsYlgAAq$Da*j&{%=S?KlyoZPu;;DC}a5I+c zrh^_zSuR;~Dk*>Tm7EZ88iox|rM)S!UC*S&lvtma?0q-wm9#Oly@dTKT}>P8$y@1U z*1j9?m-Hkvhv^@rVolxdlw~MU|KC;dk$#3>D=4su9U z4&&X}Ip8|7uFM?fddhTE4|RNG%wu^}T^W;)X09!s`pLef9HuptO<}dkg8?%3eleku zYy{=du&Ips&0}yg*$|dZAkafR`I4JI?h-81*dX5~U477-U>RH-T`Bd$H-)mfj4xI3 z*eY74>Vvu)?ZfNmQP(V zMCQ-1yN_RpWO>${ShyrX#^k~lAQEt1lB_qS^0U$+%v`lam?W)57+1YTm>&(YKw9io zs;n`C1PH3{g=)LqvPZ8n2KnK2*|Il|yg=JaWlXn9Er>X(LI#JgIJF-hE_0=7zcX4E zM58_vWC1kVYl`eHjdq+NyF{anXM+O3f};KvJO4;^@^9$SP?=pgXdAEZFe$P{Me%z_udTi0Rx`mgtVYyK$TJ}D0Pv8qi@a%hPlaOs2(?Y%Ae3K@k3qtF`8jweL0JnW2kru&mBbv z%IT)d!LmMi2QEK|aq<)5Ihj*vSWez;Y)_L+x zREVcV@*Z}4YPU*xL)t3oqvVTOgt&Q5-Ww_B%YCYM$-VH}335{%zT35)E8ok~eF-22 zz;U!C-Yk+^Q|2zq<=|3?vz!jA<=|wGiw;;P524XX8|0xhdTNXOB*RHU#L45@WrGV2 z+#ye36#x+g1PFGh&QZA!8hl=Ek2>v=yQ1sEV_Z=NJYsm1+48ztw_kpXWia8$rp4Xz z!M=y(Oa}%&A;8D3PEtBgPskrJ(n-L|v+`jKYQw;!maiYRxMCikyspY!SgewC1U&7! zyoins4e!XAytZ;33UGY!iF@)1{OTARAIjUYkRk(3^>(Q{a(x5M-{83%zTieyxwz^N zxhw0)MF24XZlHF5^1XZ~9k}Lxki+-ENgvs&Rji5ys9HQuhG6NOPXh-uvFZ{lq z0{otEuK|4~#>Sy2$3#^UsTia+SGV%tEo5X%QCShm?QAReQgZ1OP04VE#8 zo6UbnP}E14Hu<*4P2v>|Sky^iFu)9;L!z5pfoTuBs8$@W&#<24nEiTL+7NdrRd`UH zRhOG}Hljjtn{^OC1Qr1-EXGsxcKG9P1voU|n*7>m#ox5`AB|O9q|r0u72pVo%W!3~ zVi2>Uq22~~<8%f6`51pQ(=rOQs8;k~S$1=3s=6-qzz-KG-dgefBWkHxO-+|6T2kin zm5RD7J&>!x-Q!+86kMwC#a`1r`CU9roJ`Fnmic->-;Z*2l;3_v<6?ea(Gw=@A9o58{R;yW?iI zzaLkeW>EsCYl4jjoK;j(qF2u=`m+$_UJz9i?z^IxM+!Ss`Mbgk@4l+oMPKx$+*9;m zv1AJ@23UF+1D}1OXu`sg6L`^kg&zibW9jJO|3=}>syz%~^fxyg{*jFoNSH{}<&9t4 zD03;P3MZu}11St(KhlP*_E0)AD`|r#cuotdr?jOnJstg&C0_*w*SM8-=u{N!Msy2O zo}e5XHc`TNV!5I2_ohm^Ai_JFEAP-ZpABu5ayqmJged=Jp#bw%cXT>JSr1)^Xc>kt zMk?J{CLIe5PK#DLQMF9$tSn^V#P__$GH*Plr_#J@v7ondF-sTu1h&7wauI!d%#Kl- zcP;wHD#1-6r{p2=%8pdCbEHc1`mtE9yufn*0xIT@onbh32A_}ZF)XYh%1W!>1`Wwj zu4b5pKOLnzJ^8*H|FQF;w#D=s)#*&7o&hvuiE;qmkfmh$VVx94P}mL)%~i6T%m;ux z{!rcgJmr2{!78LEQSM+9qYNJ^Rf-vg1q3Y0@R2IzMk^ptJW{!mmB8^)%C0On$`Qch zlrso{ffJQWSqaRYr2K)U`*H+cPf>nH2rQn?PT={s%8|?(2t-P7RJRJvnxka7{K5(G z+gv5n$t|w%rUlAXgh0|_78}5TVb3yBKsg2ad#BO?pIWW#;06RZZ*;T1Q+lD(+m-Yd zT6e5$&uHBW4Cvs0a23wnqby|^l7XTGoIxtR(f0;{7oPj0vYi9viLV`3CNj3U1OsL{ zA=devvNIzw_hjw zeAXb9D~_;J&4U{7Sx41n0fcLvRqJdZl(?&2l5miZYRK1!;E#eEsqB!nsoo0@@K^l_ zYTiQn^m3hzIfGI0SAN2B&wd)eDsu5wGMm>0yv&j zs`Bz+&>%rafbNF;CaYLZGXcO5bab|gesOc?6jiznFYk$ORV?TJ&42;;#S9hP1mkpf z05M}>AQwYnTFw6|83SEy0~utI`~hf7=irylaCh*@_oc zxLK9<QfmLn#BAj5^*RJZIn7;M_By3d;~)*Mp(>cFSQoK*Fq(G?d} z9a)wWq#~5|8(UNSsmkORx}&Q8a+RSof2s=c`nxKoqtjgB)(=#0^_Nq6 z%_DXWuO6#TvMdHT4yI?S1j^xTt!gT(9vpvHtzqUMeWjX5IoSWHVsP?=L6o^H(;%k; zufJ4TwECHUt5}YyaxkYpsF*H1afLMkbsFVx-CE7e!OvE`lw}bO91_uyn`+^z5+^ld zJ0>FEx@vzM=%OyNM(-~L``~qT)Xf>$3`IA5)lOLEtqx%bE<7 zGZb$NP)FMFI5y4HtbKkcmb6gcqVw;-HtK_PRt{{Z-bACf+N=HO5b7GPhNBML1bsh3 z4ad2;=-6oWSeEU3A_l7Jp>{(X{59X=_Px~Cs6c@O)qk+O;e3W@kDdj(*x?_Bs?#|6 zJaIdb8a`b_IM;|R;vI}v_hcIN3Hxd9RrYw2LVcSzF!VsK21h1K)qZ%RM$Ov!cvu9m z4!Dh8okLq^z0uM-BTN?hz0=fzOw%@@A7cYmJjqeFVm4_GVL_hy25-{nO|Dr1dkfV} zpDzwMr553VmFnsIQUZmIH6sR$Q+K38QpyB1!=eHaY&2o3+6^a9RL`f&3-76FmgU7K ztdMEy3vPT@sJBSniS`xk3N@VD<~qo`RqFk8<#GIbHPafyTpP=Z8_Lp6zh7(AN9h`) zW~Z9vdNE*?;Sami>sTy?E1a-b4Zl$ky`ZQ2**SzCR5Q)*9EVAV)N0D%!x1&pMk>)m zx1ZEZSLHYk>yD{cP!5`tYL<5~fLX+_#=wHJ>esYphYMYQlsXPgtq1ms^=U4?r;gT~-Ep?XivW9742wI{>U0*Aa-PotCY#rNu0O!Qu>l{o36`VyVD zdRlADtBSg|8uO~+ik-&1s<3g@m{%3QxoOO+iV6?SB9>JJ*jOA2_PtjJbuY5@#XtLN zz}+3!Vo^;rA6ZrvpCQ`utBOl4H2kW<1IM+o$k(!+MZU-FHN#kz73Rw9QDTyF$OF8|QY>l+fn+(A`4+Y)=dQS-mu^Se6xB6(0s^Tye}m z4b!rMAYedv%G-2JjHVUC{uhFm@=qH<9(b!nQ(+@m%zsLwRIb^;@LmafU-i(s+4ntA z^O)9Z)NYKGCv4-uXT%oo);JxXa;JYTCB0-r-8 z(Z32cf4H#WUS%uR9mU+$HbPZbW9S|j9;4}N&#^&urf3-E3j{)bLJhzPQ#A&b>El0O z(!bR_x8ixF&(bXU8fo$3YR%aH0i{cGG;m>%G#r{XU&G=K;XhToG>>qGZi9lOKi`{h4!YvOj zb)A#8xgQ_B-Ber0m5*A7YT-42%P>c%?Q6$JUv$)tq^YC3X#3joslWELq-OWl{yu`LYG*RH6+buwEC$%_RNYhWYt5~sf2bV@ zQddQL;sejME>v09Uuj=a1>AXK(Ob!1+Kn_rXMxVF`P0_A?`i53M@wpB7hN??{mDZ& zg|?E>TQ{7hzVo%@ozg&egr*uA>v~d>+gs_(>aJ{~GpoC2J6&gLc2gsCZ=3U)pCi}p zVp&~ty+n0f=a0b0tv`OR(QR_%l#Ze_Ixkf9R^x|j({u}&)laaoUzSei!xNo4T4&Mx zSY0C*J{8T-ZKXygpRGgG3T+qZZqU@%%XD36YOggqICaLEp6@yf*z@mo8)#?SuuWG( zHB@*&SH!X?CThVz-P(z_z@m$~316dvws_GMT}#^KF5k4UUVmFxO{t2X>XNAqocLYW zgW5pgJKb7fs!2AAfgcc!r8>g!w6)PsKd zB&yl=f%^H(mNRXw#uqub=K0}_ruwE1yydiNrl*#3zOB9sv)TwYp4UOYixM>oEuwaf z(66Kl`lE|}BGv2kKKd0jweJvpe;QpP)@z(u$D~dv`evwh5gdkHr`AiYd1Gjx*RN-J zFXD^}5Ovh(H{|Qlwc0iMWOP zg5w5X6g0`;u*!Rip5?t(a9D3Z6*KjA$Wb2VjSo%LH)gRjGYrd49+a&_ZVU8uVgCCp z{WNf#?*U&VnlVp*jKL@fAO=7Yi&dN11mF&f^&i1QKOxd>nf`l5B1EzPykoh(@7J+8 zwMt)0*_>XZU-MOL`mNKKe;u0{Kj_a=HU*pX%fE`vgU$MCmbD|a)L8WVxC0#2`C+IH z9=uau*8#bBC-~r^gL(;rd>9bd+Hoz8cOTaefiF2g(A2Y)L->*&6G=he^>vIroMhe21PFQ;B&nneBgl~JbR=6Igm|V$vDQ>u%ZqxqEjnF z9)pMoL`+72(;9bgYk1|vlj*p=XvIB2w?lF?$4(a`z#VF${!nIk%NTj-9_B*S$NLbooSw9vqG zW{uM+2OINI=z`@-41Jw>qFdJ)wp03*n+=odvMH7upaaqVpAG9!m|W8jwQ(wIjjkUv z6foeCX#>Nw5x_KCTs7!$%t=E>ra1x%BPeW#CI`cdO}ldjmZMC9tA@9QN*RbZ@)MdtB1s0<8eHB7vg9(Fny*ZDq{XIcl3nfi4Bs1*E1mdgm)zv%4m4Vp+>l07 zMFRE@rwH+0MhQ*bThC~2l|g<+@CL`_ z?bgs(Kr2GN28(9#?>_XxTEoV8vU-baX*cgb~P@i z(ctbz@KwYi-0xw@yW$(;b*hJ1LyRuX*;?>F#wrga&Nt3RGq+8n_iw@rjE5PJEz9;9 z*IU~nM}1x(t|~O%VVEXo++5ideV9yC={xQZ@==A(DU$l6pF#r|M zD)Yrt#uc?J0lWiUUztej%pXao9^%rLSz8@E7W5Rz$Q%z{AFB*yQN z@eeED^ZQ)m4u8ctQZ->vw$k<9p*?@;vGTNFunowNJ`=Qv46A z6c^|**vc_Q$?~%QxvtQSIYuY!r~bXz1OC&tXsKzi_d*b9w=zZeJ51gx;PBk>r+y`-0<)c zeM)PVHh^*x{#Q+7a>@plg(DzjqaCIcmQM#j*;u67oe87*c|$AwGBssC+&En^)B_#L zOkw%u_cOq{I4C=1Da)$F4C94j;)?AttVU~`(7ZM=KDhPBl!h#0%x8$M_|dqO1D>3u zc=x;%;=B-q#*-JMz}ITHXy-*Ku4E5QGZRY( z0)TRUYPW7-64?umqJ;LQgKV;l#-}@&UNVX?8W)F|mRbRU1`(zutORl+O_Lc2U{Hg^ z8tR_V#k7vK?k8PM?-?u>LEWSA!XBo*M0iCn6Uzm54r5nu(|QKsc>+QGOXN0<(faK|W(iBspB;O_cS{BfZv+X2GtRVMh#{ZZWOJ09=l8q+@Vyk(uq8c5@9+xYy0cAA#k z!t;xLrtt*7^pNQ^%S;BA1*g;_U1fhefWZPRMDuT0f- z%#FOqI<=J1aEBr@rUOU+j$LXWz{PFqrgH7{p4e=67hts17*A>u_h zN%beXE5)iTXmurEX<8WyiJD;zsxU(fST)zIg8R)Cm^# zMK4Kh#n4B{z%vw?G3_|@Ij%?*5%tNp@Ztp5@alVrdG*cS&Z|$llUHBreqMcJ5A*qx zj`HfO|1+yJyRbv-mFaOie-#+61D$q0Q3{e~tPa@PZC$Y8V*!9`vSt8tp;dd!}{%8XYrE$jCw~~MM9-d}PwCguEjT^Mqk57vs+Wq(~k9T%v8fTo- ztJ65+tn(AE-8(<06%*|$PNm71wVQb_tr5C*C)NvRTuz$@H248L;CfmU^3d~c8q3d> z#6~edzayQ>^dM~n8H}GkN_$4+y!L|Uzwu>S7U`^w|Kj!V{C(O<(rNctr8g&X-L*^a z&+@Vil@CF%yt^(qLB0^)57llCYE$i*{#8rX88Pb|Q1_K^L-zQVayY{AtX)gw;+1Y< znDu)MN{>T-d8OZCEjys5+z*%eq`zYsefiq!r?YHsLD>=fx>x3xKFkqSloxxTJx$WL zu}LxkhcruX$0)=E?AtQ^iWSenx=s3GRt}1`=}bRigEA)I>JI5UDF;m`t4=3i9G1?q z0!JK&j}hrVQ4Uw4(^)*#a4^B0(leRcBB^WoRm!1vkMu>XZLz3lI@1TfI01CM(|1q~ z9r~p++)C!vIkG=fTVUYeWzCzTerP(wl{wrfCOv>JeHhFd1K6Ur zTyx_6OVS$!@zIz2)9={v(FaG3e8&?D6zBwtVWev+3|d6PH1AK7Am| z6bH<<1nr5x5gQ8u#rR9(li6EA#>5O%`?m@Ol+CK^aev@#cmxk8oBa1>(x19 z6|>F&CkRjPmNAj4pk1E~v$|3SW|-A=bXdk@Ctd)9EW>Oh5ekb69xF3ysDzu;8Q?CO z6Shoi$q=H?SVU8A8Zz3_+5*xuj?mQC85wYCj4SqYmL<9{CnJ`jOwsz$?7! zYQ|y)k{H0=P-;ncEYzwWW-Mg++A=pH1i#L3!au&ru&KvW`?XHy2L@{V@WO$mdS$M# z;mx#B{Y*IB&ROhz-%Rir&P6x-XTm2gxM*&}%ux<})S-E%c?9^SMJ8;{a~USI%7o2% zE;_hP=IXk9)UIcyxl{c1O=jo%d};SlsDOBGRRndZUk zX?iBOHRUqYWM=x>^U)gxmelWxGF@ou;Ytg_oZ%Ld{YGZOr{6gQ+tHbD*qe*4o07Sl z;r9zXd}ih;N4_!i3p1HMGXoGK@$99Ur`>oe#TzrtBU1m(7TRyNSaiFyCbK=&*SlSr za0Zc+;MM+2_zi@M{&X<21=WGzSmp$hFA&QT5py|Zdu(6EfWe&|hNVq3I0HjDXXS}w{u&oFkXva&)^ zZ&{)rULTkB6GLA@9KzM4ES48vDBBDDpvtO?f?U7xMwz#YY;k>A)^KZ7o1f=_)+n>4 zvB}g61L_rqIh%+xi1RCk%EpE{;l{=+Ut2WMsn7?_A68+Au5o0vrQfmFJ0VinH4}@TonAXOHDIfUl0s{)u**E#tGR zXtej#>@=3IKXQr*o}F!r+sw_rPi1SdGMniW&7Z(#uFn3^ji;W1v;C=Tv-V}Lq@8Wh z@oak!K7;O8i)`<&XJ2C-2TXmd1i%=w!}Lp*ch?Ri0F`{qon!`4ee5zIA#ctxw63D$x|mTF@?sdEQKF zpTl&6Nt@Faozmplq0(_iZ#=(4&O@Ms$AsnBSV1^3Jm(k*6QXi1*+bZ&drqhggqmJC zYLfnApPXJSeL_I1<&Ib=kVA(Y?~YSC7Kp%0FX4AzE4L<)7m!NFRsFj5na08YvcrO5qII~%-gK+ZlpP^xZNPBla80Gbw0 ziOqSzGJJ7`y~H`YKt1SmLJrGbCx>C3m=nmTS}m@T=Hw9qZ4^0^Sv4?7nd44OQ?AL$ z{c;QpLcq^ri|`Iz&L0G3gE5C;X2aPjIYXG$AWF;GPt@R(nZvUG&$UDUtQ==%0uOSy z{)4vU=Pdnl9TL0N;ztEJUd#lh7w5bp8W>ZS!*T|PBXGDpr$5UW4TXDK4%_0zqjKV% zfC+a1#CdAYbH?7)8^ihCYYt#pgXiXCIzqU6Sx$3T2=8pjk+p)b$JLx)NqXR&oME;Q zWW19k}=k_)x)6pFeZp ztx%uiho8IVGJUA`-_S1(a>14ExeeWb?1F&Y!7!%b$4zq!$+I>r_i;T4hYrl0PK3ER zIJbrfJ6ps*w~o)fPo6zxxp#>0f2wjPl6)hzxo1eaI3<@;&Z>;u?PSDP=j0AyITjCe z+acwc+sq|u~?ADnaS^Vc{3Qb9fG=K#5O{YI_CMIUk$OKeAhfD z3*iipyfzGk$Y8Nj(SoDp87gr-bPmHcyGtNX%?=!Zh8G# zx#BuK^O8t&n+EVSJz{v8{o{F>^Q3u~7@D6bf?L786kOrmbJd<~6N)+XF1nl2v(#fdmIM^`%t+zOp*62g?>GhoJf?&w<}FnwFdBgdT5zSJLwv@`^oy z85z(~@y0wa6l|aGho>IQgU^jzM;{O6F|6v4xjHu-bR=&#gJE$9tAH?ruz33EJU9k= z9p|0TdnSNTdoi!d3&J}O^JMlA_IQ!k$qvHuKl56VaMj;=&Ln-aP5w!ee}r8=%XYm* z>Of*J3Y5~dz^l`wMeMIVpv5$N!!we zkfCm3NqN{lG=C})9trbV*7h96gYf)wECVQ4SQQP0fq<}c{#I7)PwA51gqc8m_xz)T zK;Sp*1d4m*-()a7z6n0|$%pS$!IaiNe!qmP_&vFgJm-lplUZ%h{XYv?BjUW&+Xb{A!|s)7t#CtQrW?=PzMy z0)sKXln}UOV%I>swEW}D8d#W-zm^afkj-v{^KME_c0PO->^csboBxo6PV@8KognmInSYEt z-(Qt~nuOcF%ZGQp>v+uC{NG5Z|32RYlQTZO73Mbxx8wZ#BwVsRe>%vs3O(adlsaVFyFgC!E*f;6eOzd{;NG!G%grV zmh_yu-?u1e!Z?|6XedK#>xQ?rDM%%Yv!)#it`HS`2rigGMEy3r;1vnSb}VSd@;XO2 z8TdvG1cujB@YFfBO%E{)&lD4Jf-gS60&nFV5EMeeBJB6+?)x4?@C^4DTs z5$BikirBNfz=L#_)9ZOf%-_H(B7GCDh)!F0MflYeEFyyM*v*%pvA2L*Zfo`zd`B$7 zlGFfyD>H_WZJg?yaW`~Dc=XBClos1JxvO?TTFgZtHSy$UGy_dH$1dm;TuA^ zUq~Tb^xA34@;lX{^upmRMrOvIfmY0fCcitYkjYKI8KwieQD$d{ zx6dxTO}f>BxrMMzdL4IKROn4ct(YZ+Okecukyg|Pb)IPVEnc;%P|9L19K!r*cJ=Y} zb%o`mAJy4VNZ#b|qD_Sv#1P%K6&A28hCHf@#^bJg3)}bn@^J`3;X;)8+};lRSru_p z@EF^ow?uVS_C;^%L0BAEw3yKIYgPm|&aUGt&5Kr(a74=@@Mdxy_i9~qgY>6nA^iXE zg!2ENEad+`G=l$sa2Njn&%5&fpWU7Re^Sq)^Q3%-{`~)+4dDNe2J!z-98z?g{J*)F z|Nq^1{{K@X{QqN;iXM^)qNAqBpJlj#hLKeNXkUUQ#-eQu7K{NPh_t6BvuF)blxu!b z2noBD6fI#OgrP}Rdwx|@CePrT@?16FlqY5veI!kJVnfk4gqcSTugcSyS7q^bUX`78 z79|r^E;~@vj$z=zf@4LqSS*-xz5@HZPrh7gve%4Gw*+r3m9xscas0WWc!ssD8D$Xa zdb5aOQ`cO+T{XV%i>i8<_%neR&IFnm28;g#7l23JFM9EnNdBm5MRyyt-4xdz3!fH6 zGR#*0PRzghT5&Q~Juhk<&E9NR1yBFYcTa=X#mv87RO~KxMW@>o!-W{_1TZs_Ka;)cjQuDBhVXG(EHvx4D5Bj@z2sBN+GtMI;eAs$NF6|)@f|9_!1=_|-| zgts_=P7C&YfKP(dV<(*CndlcVtMLSYVKDf=$ zV#Hwn93qCMd>ZdZieCM_JAOJIel}#rgb6T;suF@W9;F z*UbanJyOiDoreL7>Ek?5t{h)DR$OhxS6_CrnC0Xa2ZK))PqgM>u;^Sd_}L@^;d>W~ z$1yBI5I`y|$9Q<3dCAv`y2@hw|#*YFARu z$M8&>5*r%*&Y>iUX7%!r0;e-;n9mQoRm{fAkfsZE5D%nNzwwPZMK^2;@tOQQ)b9r~KF1f~X_V}~j z`yD!%CEr;Afgg^PEctQ*7*xUJpa9Ah z<88-E=90QaCrcRagyTl1N|>B52_Bbdd9VKRb%Q$MvlmNddjJb=E4%VR$uI_8V!-Ta zCs>Pny(p>g0HOSCi4;V`+y8=&2w|$A^pXI=Z>&o%ljjDGrPoOK){Rd;<6e4!lwVb^ zbh0yq;Y~`x$IM#n(5w`E%dEw?d1()l{x+oaD0w~*RyvE6mqhdV+H~UcUF}?Ykkr4h zcj*+CF(2AxFjDTk?}PUaEOl@#bnKv_SPK48`qfy8%@mu|BLatlwFrV=5XF7nE1@*A(L${VGwBz^K-URh5cmQE(Z zls+rd#Wxi&%?qzb`%D{N-JnwB4ss&KLD?EL)1atXpy424Fc<&8-@D zjVtp(i|2!T)qTeeYV`04xRCC$wcH0)oiNy=ea>YX2By<@-EWSjjVbHMyG}jgQg(>N z_RTON6ya6IumgZNfS|y#KKy%Cp?BF~Yjk6ID-SfJe%XFj!OVbltG8J@;GccVKC-+8 z5pEcu-ZH#VaDw5iMr8|K(6vUbd{BJ5GB30t9A0E&+LwjdaWdkW!ZK{jM`az$-a7J8 zL$9)jK73S_RA!YM*z>7Q$z^cmm1qfHHI~7ZS1vl8^Ke)d2$#pvCo}KGk`)0srO}?F3recuu#h&|3(X>tFQ5ZJYeqrfWW`tqY z^O<@TDUZRIyV@3%6uPvG<+c;YfnacbXy>xB?^(v^&rzDMDgz(hwdlfkWh+<}ODN&s zwPkP;zZO4QU$zMV@q&$I-Yi|*Om86PGktVT*>aY?ZbA8vSHIBhW!gF*F1JitbF>WH zrPt!VXUm?FF#KAX*d4-&Ps)B4Kp6k5>}@j$W4y~dL$l$@zU6LC5YBH>4h{foadxwE zSjN=ijxEZcgYDzi?aMPrI7e8%faPADnRHn7*a}a4x>xzwuMwR?L4ab1KD>mTCzrnE zejp_;dZ(E3EF#i6arw_g^g?C%7SeicwdD>(gz%K|a%TuP=aqA+s3<7+AkWi=m&1?T zwK#Zu`4J-en+fIM^{*BmnpEDIq+87_-{An^?)l{vEI(FrDu9mqP_XcmcRTcSbNN?| zCo>jzutzR6C3@6mYdOnzdC5@6fo#}O9)b35FSo-nHRZQhy5IkSV!5$z2Eo9mG3?x3 zmU^Jud&^l~zRXYvprqWu61Trx@wJliNNGQoZ-Z|%5_aK7%2|AteZ~$~9WD3!-!O|i zR=$8TvpQKmi(%yZj2Wl5VW-M}V;S-O9jP}ycD{TKOSk_F1(jbc5o5!p@|W)D{d$ED z&UjD`XUs@T;E}cEKf}f_i7MWdr}A3BSKpN%gY9#YTJy0S)-qgljGzM6GF&v=y5cD< z7Uo<*KJQENesHPCa^a(uzLwMh{uRx<_|&TQ6=txQU<=sCkP28BaR|G@Dh^QGshujo zF%Fli>0-(2(XC=Xd<&J-cDsLt7Z01HoBKsBz#_K(Z;&+iuY6-+ecTJ8z+2Rg}HG& zCR-40PO%_Nn^tj@7E76JX$IlkifZ^_fT-)26_(VMt16DuCL6iMqVV_{3z+S;iWgMj z_6I9+`QZgmJZh;}`m-gk({T&+BPS}tDF@dJ737=Fq+=025Gv}<8s3&L1`3qnN0${MPpznfYzoM>*zP}b5?MRe=R%@pkK z_LW0emKp!v1-Qv95dGP;a;ac1dhuvN0N&QE(uzT?_;L5j_Ki{7PTM_jYi;EN0UvFm zuRQL=MQgGu@7wW-Zwe|+_IxzAqO#Tos%~_s(i_E$t89l?jI3;7^;wGBn96qM6byON zD9ni|mCtN=nBy}lJ!tB)IhAlzmq)~j%PW^z@mX9~RraG%!*`W&Gd&Y?!%Rbtj!N|cUF#Z6zs)7a(p8Q*WRm)6+rmme&t~xj}JYm+yR+!Rc$4lf!mAI zey`NH3Fh#xW_1NsZ@%2>aW|`~2shOIYK{jU<6d>og^!juta@O>M++KP9kVAb&jy6~!xG(%p;DljV!p;OPQE!JGLrcc!yK876!RCS_R#Y3uA*z#GOOxY{w%AGOMl%_~?_Ys^)%z8N4Er zCRQEzaz&s<((U!ohIv(WkpFRT_)#&bDpfE8Kblk(U@KU{ne2?p-|cbxZ>u`8_){kE zV*ws-m^ZwhJ6gUkrXkvJcaA51y>@sLRzSkn9Zhw8=#0y@4nH&+E#EoM7lrSf*8(-& zHBX4{b{^r6E_WKy6a{u3(Hgz)G@=QT?VJ~YN_Wj`fEst+S{I$$IWG#W+&Qn_|LUJIR1cmOMSKqpAPz!WAeq=rC7Hxx&pxX$)#zu8UvR7I=li3{`{uPm*8Ao)M1Sm=S0AZ+jA$T`p+;8UHbEJC=gE+8@4UMI zbNC(ymo-5fdW_hN&h#AVjTZJC(E!~%Fs~_E`ppP0be24hJ~*#2vOPG@A8q|+L|qiu zYeaoC?3)ptzNiE)=`~_ZWRN~8S{4l-%uqeG&9T6U(7e;9!b?QhxQrk}- z_s_XP0;ku!O3zLZMJ+h&1RUbRp_!4l(c_a-l}+*ZAVFMI&}Q1p!vDFx+5>3ekiLHHJtH zs816es@H46^x@Gu4NvhOb8!?;uNkonC~86sVFu7-bc9eC83K(I84(qwQR~#&=qPOz z75X1@afqUt5vQF3bQ)oV9%K&HMhb-?A<A1h|p-zu+Y&y z_=bA9%qBn`5*4CW8=|7Y{Yyx&POT5o>O*zGdT58J@Cei+{E9c;my9L~0wWBOVbPJn z;d(8&h>1`eG@-$v!O&ppsL&`4WF6jkf;ZmqX8dJA(0{K!RF6JR8#N>_@*nD6@_bt` znm>J%Q($Ctgf=8xuMdp`WSzkf9TslTN9jX@!=u80Io{tNW!eOWg{k3xAfrA^C^Uo$ z)tZoyu<&qQs9IwPjufIZR#Uw3;x-f33Ig>SePnP*c%&vI9QvCU9);SlFkL7pNf;Rw zMr5gv7k?bJQt(f8qcg_QAwmC8wGd^8jtWLo=Z*>t6h?#_!XwqeVWFXsLcLI@)@eX6 zy(TIW^bOy0zj<_|H?A5#OJ>s$at7-{wL~0{S{JR+MTHx5q2Zy?I&C=aaT)Cs1n58v zjn)vZ)kj1NBO}zBaG^mLrH>Yd>%p}T8vbgO53X%oy+-hl6|1ePLjnl9|L;0cR`!(; zbQ(=?Kns_RYSJ#Ey)d<#uRvV@b)(Ex1!O<|Cf||8qkwUF5G8hg2b-XuL zIgf^ZrYAOUhzJGa6$+za7>7Y6T4;!jh6yMd2^Ng^p~HqDQXi(*sD)aXM}-m5y69*a znIa8P6&bvB`2S(=O~9n6uK(|Ju{aC^GVCHuH;4ktQq_Aa3b=0ws0k_>sP3*tluZ^D z69WiDnGj@PW-c(m4AVUHle`MD5RT%u%ik6@zFBqs0YR@L;>G((rkFaQ7Z zyzkq|L)%kz`<}a=d(OGvbI!QYwNH3_E|epp>eA(!w;)kN6?;opghlDkmJb<0YaF|b z6`=>>AvQMyttS&vBc6mghQr}l*a)d&UvJh$w{ey9tKi`;p6tsZux7{dO3z}K`B7W% zw0Pl_nP^?wWz15!o#xiD^7fVXPK&F7a4f{J4%-eUwSXQ9YltD5Uo~{U?$7F_wR77K z2t{L@XCW=F=|LkTkJuD5t4E1>7K@7m^E17ygRO$v5NTM$2{jsw$MvWYMq)~aLmENR zlEU+HWiR_&b0HiR@4T}7q6&Xu%6o6hoFK+NwXC!F{;SJND~yQYXZDhMOyg`z8VFHQ z)ktbF9vJ>?!{8Nj+gJEiq=Kk!#QdCBlCRP@xGYj4@!AY)Dy@?(84l}#SjsRW!Bj91 zjB-k{bCFn5sZ_`xG7t3K$7SyHR1~Dk$-il(<||AW`O!Sr=Df4Kzt=UCIUsAI#?R)nd9 zKN?lTK_kHuL%59Tv?dh|ClfYbFD&s&zTVq9)m$b>Z@qg8ugy@Xb!nF|%bjY-D+T*x zi1JfvhI##Z(ntghT}o0xrWSq@j3f*gYebEtf|jUa9|MVGFs8z0LjfrQ#1e)Pi-+S$ zm4h&(X7!&{)+2Q#67d9^G7;4@7;PjTj|2nJB>#+LB9h8(-LvdtkI#jwCNBJP`6ZkK z1u2TEO)FLLr!SWu?d1UQ2VyZb=8wdKDK#h+EG@=54ET*mGAafpYwUxdBB})wny$rS zfkaT%!_j~di6LXE9JyK~Y6-*5+sx3TNq;J$r?jAv3L}vQbX7OPY9bYmM6#@7P68Lw zDf1+7qly@;i9dQ)4Dza|SaBnc5T1&0*hXVWuTdkwbRfI?!`brvrhpaatP3&70e>u* zNFZhF2|XD|CS&11Dy#}Ex!&GlDuM`n5%D64D5}Nc@gN)~98>8}L=V}WaG{zI1Ceb} zkqT0c%I$TbSoQw$^5MvW<6ERgU2!I$yg*3Pik5!9!-+(cRBp8u=Xb= zetK7KcNLr$qxF7qS&;tLrCo;0kSE!{!~bf zAnJ3B#kDMo7s7HFzK`55C3<$C!L&!vd!ic3Kq`(9!!m1D&p5nbad9L!ObD?6!ecT5 zM-9exT}3Idv>!`7bD^z^=lZRf8j z6Tx6O5T$piWL)QXOd;tz6f~a;@sPPby@m^AbC)Fsukd<9D8vC39XOUsqD2K`u%>7v z8Hgp5fke#j`YGdLZbJ zYp_NwVuZrTk;za>vnIz<)7;2QHO+1Vj(1YxMw8p4_W$Yg&%WNAexE<{Tu=)>M>0!U)W~?G0s7;x8r_W zZuEvjL1dDs>Ss3wQ(+{OXbd)sd}0KUO09)r?KrhCY2xgkx?;SqFzKMZ<9rt`FR9R? zel?2F8)vqH=mWZ+oga!uG#Gx=$R6q~=C=2uizQHf!pV3Fi%kOSB36$`ETpAEAtM=R zb)F&NAgje=?6zPq%E=K?^@Pgss43kDX3O73L-Q4;>Q7l)&5f+N)m}P##R=Y&o>Y;l z2tSN~k&3C&a4M_D}W1<9$5AW1L$(h!35?oS!9K+H%P$dH`1EXXH4 z1HxEQ{HZ9)aXg6L43i1y2qCbWP%56)KG=`3q%b+5eX&e)qbAB%)keh!6IKi!86D}@ z9C9LOb2u4FBJu=7D2G87LqHEEvAXJL6$w)Qp#NieDricyIDw^=F`#pSOKIsfzcq5gllF!H>{`Y z2`!2+5{n~JO4A3b34&83;pYTQg*625zAKs!vm`bYmS7T#TvEy;*pHGCEHSB2SPiEz z3BQc;ZXafaX{+L~sVgQ`6s9c(F09nVmD5&q@nYWO#7c!yeib!F3q@05OmKm)riZ0= zX{py^?_V~Bbr}kzBA9IBem}x58c!+^i-(eMQl!FQ!lBC~Fu})Cp#ZEThAxVz69~nE z7=Kk%Bwe@d1}>ySV(G)!d=%a-#mk-|)aeHB{?RvgT}Nk6|1NsY`v+V!Ubj8;fT zcZ-EETFb-Rwl%ttHcdI9!c>KRPHjX?nYZGE5!%Rr;}}Z?P)iJi3q~0&LW>7s4xyyZ z6@(EC#GCDmh0W*U&@(ITW6WiCQmuE6%hHUtF6}aAdhQr=>6B?_ti5`FM5+0mxUYU^ z&!VZnXzDMT`rEvT%9A^brvAK3hN7vzXzD-GRZP*;Uo`c%b;VFL^%qV3%{RUU4ev!$ zf19@qMN>aujiRZ)XzDMT`XvgjXzF($x74DkKkt^IXzDMT`kmJ=MN_{CD|WeND4P0< zrv5h3^#3n4^@~*(*Og_zShV8Yj^f~lm7}t=maOpo$KF5cX&Xw!^KZP@`PTPWuHfGf z`FCsf{gt;Z^LyUU&V1~)cF%j>6LTw9p65-0Ba0=Y-1KluC4s=;FM#-iQq;o0jV$P_ z2~n?5!5(2R;2Jy?3~~J$PjLa3iYL?nNG}i&w)=pDGXuemBmrD8MFtn{$xw`2q@;8q z;HJ>Nj54>m3;Bpp*R7o31)x=sG`GyEcz)f=&fXArbX>SaxX+5q%WZ&B3Ej^{F?aTA zD$#OZ#Kj~~ZLp$Xo(=B%z?Ay^QBa^s0_w1cY}iyJz-?J5j?)WhX1W2iS-O}=RKDK; z%;9hza3L-BzQm2Q!Ie@W${-k2@yvOZgS^Q=JOWDR7{$)J|bSdxN^vdklO0joE60a13DK}fh~b?O@+DRk4Giy zC!EMyI4JHRgMgT#L6%rB$!g?!7;G(90zmB9LL!_AdD@xC-2%br*9%EyMLGv@D+4A3luJjfrsEa$|m6y5^ z6a#0lBF85xkFE$szSC=RW!$+=0z3=q^fMS+}B@z#<4b8+zJ z{wP0IvsIa8Y$>ql_)CQ1q}7(V^e_PQ6dpwqz^4HrZU)g5Bq{-^5>E;6s1QY zh$|LWay#zV9Jk{-7|$Rer=SJ~1>{1UYJdsh55;)KZRTzH2gLC_(^T+5xUk`|f;R&j z53B{NED{$l_Fis-DqW@~(t4M;ti!w;2A47O%RN-;<|~z`OW@UfPLdMz=I;9GFrM09vK#xNC7MY2PL%4cw(8pZxxA@ z%1TKXV4DF>M?+CRAmMN*7LNcS4P<@Enon4p1qlZNV$_Pt30|P_1*w|c{<#&EoxKTw zlmHw2MiL&!VFZQ@UxsKvO9t>nOg4MH;RXOpNcedg1lk8)M|u_}VD>Sl(}6-svUwzQ zf-LWNCjrobtC~KDA&nOKvv`g?;i)K0RZKd2h2Iw_Ow$lmt1Bma{oql-!O4Rbe zDlQ{t?ygt9c&JZ>OSj5jUUs|~J9$ONiWmSr0~o&nZeLe{W+m}S1AMN@odl#%dWKn^ zr2v%aIM76nBm8vYpu$)HYE&ZRRQ#K4v=^cwu;(Q6j^`zeHyFjW35Qg0sd)c}Lda+G z;PRykQx1!}wpU)_L-s60)pS@HB`(@gd9;@^6@oC&IL@K?8b@Qeq$O49J&G98yuEOB z#)A=Xb5u@a0H$i zhzDRKs&v3h;OWb65*!Kkq*+@m4#X2zbJ!tshEo)n?ih%2RaM!_!AKVGRJNE4Sqn(% zMiq>5M11=ZwwM-h!n-1IP^`3${R3M7z%E6f6n;*UD*iTjcL64h;Cda4CL;lfRW$&& z`k8s$T6DZMm?Y^QWbZFfhlS=P(E9Z97ha5cr4;S=j|oal;>u#6alc4dllM z7$?@S7U!T%;XoC&7=H!ct(0MsK{CT0fbkhIBZ9n&_(H4$gs)>vPq2zG$`zIkiCGT; z+Kxr>;tAk8Mz3NTJMeXJO!naIH7F{D>6)D1SC}l~SJg|E7klF|HW5N=03{f?TGv^U zp(N{&GZYESa{6MUCj0>$<|ARG-yj=H#VwxkMifSxz+p&oLu+Gk^di-AHiLCW#frre z=*Z{^sB)l94W|cy3vHo)x!zylLfPD0&yT7MdQ*4{;Z%}BKg5M3L4R;=NT6>3RQCrW z7B+VP6CrV~VbGx*WT;h9L`Rg|L^K)+3D0j=_O@L`3r~hW&-v43{pIZ@mods={(UZe zQsr(sL45Mr{!qJ`<4eWfo%i=B+BS-|jiPPCVR0+kHrh0%6m1(t+lIsJRJ3grZ5yrZ zDMi~x(YDdPqOg^rXxnJZqEfVN_y)O{0gAQ_HzPyQw$ZjtrD)su|DA0kCe~bBSCXCe z`^sez<&r@WaS0}-6yX$O z__Pz&C&4{NjEIFodp5n&=TazQ1*?pHz3R$;c)2sc#LmSrKKenzCq!lFu0&jqgYN>z zVB6NTuu2(jRuVu&utIaYzzu*5T|#&+E>N294~R?&B0!oDaaT^I2-^VQfe21i$UQCp zHvt*V-r_E_4bfRyeUZOF1TrJh`Tk+ttni|3Daf! zzY{K$cih0GB4HW(ikO_(6vM=mO9r%1O2#qZ5*Z^Lmkny1zzA4GaX`oS9fU{-<1K-F zq7Fl$&xI_OVE=NhqA*pll%NNquJh_MyiXq-JU$o7xT>!v^j~43LF-2Rg`TUAJ1Rg(=aI3f=>J4b-wMLz5IRQH43I~} zTZ~4y8cih#jS=PU+q{TlahP84g%^5u>9;dmJd0iCCohbN%hJq)qZA&jfEks6sFZ!& z`Xoc;;VgcpxUv80^NahfxZjHV%{mJH&+fN~h1hHwvwGrDp08yX_>p2_{l*U2VdtzK z{=Yq&$=30`2Rhe&@Lq>oAD_6If465JpSb3=>7IQiAqfuc)lPUneXnzN^pk6bd$LDA zzUEi|N$M9fw!MiKH7g4}wdVAgFB#;tkE>j6MG3P(G!a540lfpY#&t9CZmgKvuBFV7 z)sz3R=0gIBr+}Yu83jxUh!k<(45E`0l$-;cNXSvu4kYeYYT%=<9g`hYQuT1Dj{szZ zVg;oIz=k_40_%d}AuKIYL4v4+QL9GRQf3<;?NN14sV~5x&e0Vj{vi>Ki6_hH6+(0g z0c0UCid~~ysVp@WhVm=R_>iU=-vO!cp8%xn2xQ+z2>9!mFCSb}ePr_|EvM zhX?rx-l%cw9VCz=!D;{p5Mc>9iEwH5Zz&HlGg5j(M}n>uG)$k%c|&){YiyHZAQUwhvi5R#d!IH8%hKx#GRIt6pw? z+Ct~L6W0zBZw*`P6L0OWI=RjFBeQS5Q*}o>ANS@moF;Mdf@~4Lj`SE$`6C4TVl5Gx z-s-h$DYMtc@2kdi^AQ#hd5AlA8N!lyL^9kRLYhAw0#w0mysUAh*R7CQ;quR`{?e%( z7$P~0J;dsNRSjwvB0M4EI8mJTFS^#|yJ3RSEPL?owLLto3iK6!@~rJ_){r;2OFV1G z9-(NKqWxRfGe`+V#M~1}5n+z;;SI6hkIJ6fVeK95yhyMNE~`sJK#!=z+9V>HpKWS{ zK$yhEGzP@yQYd6;IzR8UmLZ0>g>^q+YeAb6ObVV!{Ai+G5#KC9^iWovOz7ZR${gcA z_FKysNBw>|#y!PpL)Z2Z&mF(Evl1Z|t{mrv!E0GUM|y9Kb@u2J#jx4uog}907|D0{@SJM3m5Vz=2T$MTX7c@Vb-| z`|f}JnC!4oa(tsQi2?yk{RD*z#sNqYQc}j$G+@c`a4cbsuWKoDe9s-b_U*HMGUlsJ z{86H<%fPkLUI#CY7=V4XSXfP2O>`+GRBzQW*$%g@eQ=hTpsX8`J@EP3*=6F9&({vg zUazc6%n()guN$&^=DMo0#mVifhh!hRf8Cqo#r|v84SDd9>Lu-J*6~bl&o?pZXug(| z$gc;E;_JPg<=4ay`1+lrs~b)gw{_<0fbrF5YvPLw`C9pdYF{@mp_e&J!K}y-yLfW| z4pRY45<8uap>|o39uq7~SO|#~04ztte$bWp2!KI?@rOYGgHdb_$j0y*Mp7pDAi6Ul z6G3T41EB=^UPyvLEte20Ae#&AfEXyMfx)`aMukzu9#P%dixMrl9*`Ls2p@o5h`{tD zsR#fQjc|Zi!RWi*eP#Rp5#ZRw?#3+w)tP|V=zLOnl{-3-9ec_Cy&iAM4;ETRc4rHs zjT3||kibQP+!p*13fTZRH=1VrvScB0iI_zBYvQ!0tII{%N410TssSv7n+(b_FeX3Y z@&JMZdL^0~kblDH$~eS8M^Uc{*h;8S(w7iRP%dQPhk&_>nw<(i+}LT7m$5tc{3Hq|PKz?i7Zka7yf*LJkje zZ@EzwcRpM_(d$Cg3XOgKBWx|=&12#LKnNf=NbtfaP6q_#14gHDSlMXiZgOi?fQ~gN zgfj`=QE?*%k{e7Wcvn3Dv&il{i98P#VL*j=Qy_K&{3B4iPVjb8DFl)P64hf_HM!pO zk|<2n3~);*)k5?HfMj!T4Xq$FXqo}?cW@z`O0Mt0H@HF(gVrWh)D z0yL1jbXtpsWb9BsX;hLr!Fw%ZqGhn+WRAv3XB5Y&MH=vMh`=FAruhLP=NDDK6ur#& z`TYyg6)#-9BEXmxqAG(1=#dXZ}bjK7~jB%25@(6C?fi7?n?;JUhPg**5< zb5dA05;&#U5ZJ==63L5MSa><=d7!<*}1em)}O^K7ksuM4>- zSzky|MBHUolRs(s3YZy4`pdBRDH*L3Pc4}o1=*er7=su>%)}>ZdfO;cfcAcakFdOe zMm0sTl4e+rJGo#|b|Muw!g7ZVU{DLtRG+CCBA#qoSthzJ6em=mB;eOY%-xtY-OF?~ zq*h`$=^&Du82is3_p)*pRWMoTVG_WO#vCKow~jd(46@8^6%1K?!b=oa0OiClR@Ed9 zrqZl{-ipZ^H-JFQ&M!0Zu3EBG6eJuGdw*2xccCeHMO3``r|Ka@o_9D(0Xzo#PpDHw z34Eg@CLZTOl8O*8n4sR4^kYSOb+H-9kowJF^THF9w|86?W?pHRQ47nRX67t%>sc<7 z3fX%?1Oq3XnZ^=A6~ zymY|KiHd}0j!0_+F|e837>TVk0)=BSB6M#8o#$t{JYj{&`xD~ce{!A$-DrQYOcfXX ztGbK?2?U>ylTwT9EkRr_bkk{4BgdLXnDs<{Ohl?GVzx`f zeNyaw?XG^n&UXMNS8-29d*i|j?gSiv<#q~2-||93q|P(!TKyfFqE*)GP%vX zsuW*IG=e;UWe6n(X^&$FhlVJQyk=q>Qb*hXQF+P= zGhY!==LyD~z@w4-4F^l2nA)zWnjsH>~G`b}^!vTP)k{_`AtgRCr?YWyHd( zG1l7q1HH7+h{-MH6A#L~Unt|nL>qo{0<63U z2qbJ3jodO!JZuw7BbyEO$$c7vm=pFu%z8XI4YsWG0Z-x_ArlUuFBqXjK(}_H9U8kZ z`LGx{u;ya!k_yolyQH(x3j=Gqdb#qA5J8`8k6c*>32Be^h^Ll}dQUk0=3CA^x%UCpkqz3Cwy@_{6Wra+dPBP{j9x zd%^yN2#VV`tqhoF7+xu)j);*+14$c4NkaZ3;t>!#jO7qv&{AP>48?UXh$lZb8}beX zx#`Ap3I}zBuowz-%5SM(UUX~JY0TkhHbG*~qY={&lAcMsE>2Zu6adpL#aoy#$t)h@ znwI0T08vZ*dNWWnWMnANDjIf}u>YiwA~l9|LBYL}tK)6}DTP?n=%3OpSd}iqxSJBFBSG>BhwD+C!;j@GbJZbO zb7->@VZEeT14HUf#?+pndntR@PjR~C-Kq-6B5S8AC82w*L@)U>QyqD;p{~^Q!GIEWJL*n5W#SW zg#q3L7m#jNV_#l>muEmhqL%Bg3r%s~m-r<%G>9SMpQ5sB1p~)r3StqzlR0j&|B_eK z0OBFDJY>!MY>+K*6C<8{`}N*g-#d3<-zYp4c>-VIHJHjvX5=zTxwEU6w{VxjEh$qf zRP-q9Y=JmI9BmVJSjkOpWMoGGiDA8V>pO~R+NLS7+kK+Mi+efQ z@#I#giC8MoPRLtDxEe4;x<6tYZIaR^3LhcS1o9Pj5!}}k8V>2wgD)Jn`9B$$u*h*$ zslj!SY&i|kI`Id$ob9qzpRC7I)`g;(WzXwEP|yKQJUoYtY{bHd5<`Q%71p`Y)T9(k zstx=hWB8#rJBV^cOYSEkaY#2_L~;D7aXZE+3QP&}xRsO>Ph`#|;;jUvENOsOLhS^e zggKp@3R;$ob!84GfWW4Wb;7l&mETj|)3 zP{0i#_AzNZ15{+Yy<%!69}|xEh`B_F!Izc5JO=4ErS~Y-YBSc5ojIlO+~heak_@QO zg3NQkFFb6?oRgy0rB}iesT?AuPno$A(>C#z0FRL`7AqWyWZ6OlA&CTxW;k35LpB%2 z?D7;tgqqE@ER)a05?6t!2Cr9R>G0z*FZEY=r@X&KT(MM4jA0C>Jx12vav@71ktb>= z0dy}!Rc56aEgk7OZxP^R3>$K;k`kQsl-yOqs5$lQs6?zqnfw(?x4e~4g;CPbCc%Y; zapaBbjyMk$ekLS_%Q8;T7{QQ&d4PqPM`%P*i|Y_UQ(6ZKQnn%!xe+$a^e;S6Q!Z|Q zOALhN(LQcQN#Vq1mm5N(&0NwGi$D)%Ng|E+xzwTl0C8~23ezK) zBdy?Mh4XBSE((Zy(W+V3(Ue7XS7xpO_jGiD}H7UeM46K1Y zv21c{cF0SZ7$zb1k-U4toQl6fMuhH}0${tBAq`2z?SjXW*8Sghle+A*utSA$&n7 z>susk-iX2oThgANkU=$4$c2DADMknwX59(WL_q^aA(0v!1>6J12^2=a2h!9BoU24hpcv|zEhPr9I;OZ-NpSNNlxe`&k=!z47zyA3ACVCuniIx`3X_##+58oS ziCSXfpB}FnIvUXO$Z+@wn~mT-B#I{RTtuc%4RFlT3xK;Z#9VAuHg|WyzgYJZ*4b8g zuDHf(l@;A(edcL$E<@OoKh~vJc8*IT_{j8+d=SZlM0=!c0^tqJn|m@&2s>XX#yBjC zQ5G<1rBq^mN!6Sz<1kIMfOswplZ+vV9WfO4`&szhL}?h633JBfwLEgv=4ci!R1@-G zo9K0;YKCFzwx_lX)9NYNG(DRJ7cGhzfJE1hNwjYzUYKO<@&S(~}t1&@w- zB*MM2u1ao`wIYN8MdLulU_cG5O%8FO)ofD49Aui5ZB%rjXr*R$A!sU;sCX{ zj*JW)X~SVsL?V}=iI^^#dzy=Bg7(1YxrT^hsg`-)ExdPOAeqS^ty}5BvzBLZB*;;r zRhp;cxs0QXAmbAqU)(((d0-9Q1*^!`p+`)4M!TB)?pmb{-b|H*3NR4EhE1y6B zor)x?8t^a9FYNgeLBM@$iY3X9g9I1DYSMuE0zM4Y5AYKA*I*WK!XQ4JG%#_v0JR%; zJjNyD$^9OZO%@^wYUyCjco(8VZ!a|Q^}(7>fPjEqV!ww|VACNQU<50+WFn-KNAI$Y zb%Sc;EhvGO$R>yhfyCTuf(soC^*VhBbk5u?7$cuN9SBG{0W5M2v|nav3S zoN)udiAJP1gnvEC6v;?2sAnN=<{eUHg+vq(Gz+;KOeLBTCn6vctXLd1apGZ~u>P2A z!@3OMkHVBG`mhM}FG$wheq)cX9W*k8Q0dUy$Sr6PZjzkuBvc~nCu~9<;Y4pk>`&;H zAX!lulPCa)^s-~ixJ*!eA#QkMV#(Vpu{xU9^f4@%IvbMvO)_0eqmF@vi`%dm*qvbZy6rXcjvC{b z%rJ>~K#Z;ssU`_KCe?DpNaO`eFts$d!jvNsxz#Sh>!T1=Bwd-k`MWpOcBVdLzylc;ZZ5VEu|Y3rbKp=@Wol-q0ok`+PF$fV7Um;~hzEDEl{ zhKd3*6!#sdlsb!)?O}Q{=`?6;i5ZcX^01j8;h5M|3C+Hv2y0xvVO_v5!9^hk2Ld}0 z0ggDW=m4CCsDeGS=Ji=cA-YD)(nAS3T!^TQkb5~fWrI%32oYboeL(S$SOAPQM3~~7 zjbQL1zATAVt&Hz3NM5U-|>6eJq5%#Y?VhHnMi7_^2;T3!%VNX2jsZu&x? z0|K@o-rQjWBq!qnlMTjwCn9iIM+rj>!b8%p3eRS^qa{dU5kPVzSRgYY?+J;AMsjKx zWI)=sz&1;@&BQTsBVUj@piDoYn*wyXE7-cTIwCflQ#+8uEUY;WGi*|z1PC_BMMV%e z9>*HEHE=iq8lpTwch#R=lY zPnUP_5^EV|4W17GEF6!H?X(g&$MGB? zR=12#>UAS3kVOwJC>!2k(mf~^p@ zpX}irZPF^r?O!SY3yEasez1%K4JjJoi&K&NZ7_u_P0l`o%5$V(>9J#DvcbS96($@K zTle3EQLzxsfVA9c!rWnCRdBEeFwc%g%9c3O7^tK;R`V3B&)Q*DG-DY&lOE$DLA!C{ z)8)OPPVaGU52kDrBo_76ecP= za@nYGbYv{x*kn{Jg#vJ28mb|{fkYq*NDMc@kb#C`8ywx7Y)tky@uo`b`-LYb&)?l; zQRZzkm+_JZnF+V*<#XwkZEz$CgOv8suDRJj)YT;ll}ET>CA5&O$`Cr0>zX9HDu4+i z0MG)4$rEndBv{LmO{}Zx2oV}M{xOGfH;op+U;LM4jDv$loC6Ru&4DFcNLyRXSC};7 ziK&(S^I%Phm(a`7)5%{gngwb@hh3;znv5G!^9ZXyt+sOo zcMe!dK}2!2j2eX&hE0b11%nGU5?9zPk13LO@eDsY4rcL~3M+u)NlaVZx~=vCcP9M; zdKgX@T=%L>Fao@EmVh}XVp$|FPA{&j3lX%g+hH<=2s*B-rJOh-Ix^~1$r3Ut4$*zF z%3xhX-9*NLpMzV$2$IT9Qh}IyU0lw@fkk)`oVpq?W8qoJGZwn6$2>rY%aA!7UJCa~ zG<^DyEhozBFk}yG6cXHr4_Gh)dIvd!i+gUbEVG=2wTea}38I)tEC^nem^~s$Un+4o z@V(N3WtnQ(#H%ux_0h%*beIHQyf9hNOh`QZh>KTVgl(=L+>$_1k&oI-huLpGe zz+|!tLid9sf=%F|07g^iI7)`Conv>!AK;`w#o?xb@Fgfd*m+V!a0XYw){)rMzS&(L zRs$NwYR9!4wsy1$>q7kntu6?RB0`f)Zp7Uy}!6dtys zA7{~zv*^d!;&fZ|<1G4d=6jG9{Wyz$oJBv*q8}&tM#~?r=*M|Pf7qfQXVH(d=*MX} z+7|sdi+-Gkdyp3WIK4$b&Y~Y@(T`IU{WvYx*P_rreYh#A8-?8Z-b!Q2^FUq5e@%!WWJ6moFNV4yla#d?^? znz%|6n4N&pDtRh`__d3cyxem}Y`EU@)9fEdY6UNLdr!JVM&z_$$=81ppsT(K09&=0QcEf!`MET{Lj#Y+SDF!NQj}x=^ z)LrqvtY_TQ>Epy_PuBfJ%z3)5w>a=rT_5rLGj8c48c(NrE1ss)nKN!F7ag9iBf0UJ zx0H$(PQRtUm~_T1r~F&Lxb?B8>-e`R``FW)H&l3wA^_l-0%~v9)9oVvUu$VidzFhof z(w4zWRLk!9&Xy$}v1{zIF4?L}w(L>z zyxc14*WX^2ZTRk%d50DAP1`bvI%KhdV(!MLZon4_9m*a_i(l4cWXc$QbrY+_zH^I2Xwvx%+BF*fGIyn<%CTNRvhgZV74TuAmWublZTuUxo| za^|zec?BbF6f~dZm5a7f&U}_vF4jgl^O;?4ar4sD%(a=<73*PMm72M5@=KZz^Gmih zFIuaKnQ89~?eM8#`rDcst*yDS9_EwJpB*vhsm8PH#dqMnB|XJ+Pc@!q|K08B#&hkj zdw<+`f&I07b>n#Z>%X3Eywv{s*y_e9_SgQmH%_*{-gtZC+4k3|&oo|af9A z?V4PH18W*jwV&?!S?;Un=Z&Y9wlD@U>Ep)UVo6nF2l4Z&#sSVZo-A(~e%?69`EXxT zbMXt-HV&|>pS8B}Wc%w~YjeH*bZz6e?WgCh%e6{>fG}`xp|(&X>S*p_?&Zi{X%=G zx%%Gg8~fRX_C41)#@Pn_E()p7=UP7J`NnhXqTUU;uIU?cLp%0`#xahjPW+grsxQ)q zl8ueW+rNDNg~rochy;W=a};t+XTWNn`O7yqHuiHCzi+KCX} z$C}N#A$nnRZX)h|Dc7i3TN=-C)VJqR>YMwrv&+PsldXHQfz};cpX=C|`doG1S90_E zTzzg{cfHa$zNIH2Yv9aUe%O$k*Kx15nwG79hJ3@Txi-J^YHk;--r9IZOLbwZQSYQ_ z)E8SDz0No0keP2zZp=0JyN%9W5th56x0w2R;}CmXKW)s7*|>C${*rXAlhgL+#;hXa z+z=6KL-^ik9BS8fUnaNg*1X|dQsn56yrZFsR!?clt-FD5<_7J5nsUvk*p_R?RoimS z*t#v(jK6PlHX~{^IJ+&Yw>OTpzs`Bvxrd@wTg>v29l5sXJDd$B+q2|e zW}#o~XdKZp%u#DT%{TpaIyXX8m>YpN&1?4Now+u@wlg=OPrT!t(3mx$YYx!-$~$s= z?cO__&52oUHVgH>GuP&^ceXBMw%IJS{Z40_V^*7a<5({-tGQa^+pQHt)VG zcLvq}Hn-Bp-<_K@^>>YD+GG6o-HqpT&hcuEK){mw`tGJz7u=KEpk068IH6@IHF4cq z3hlbPv7>nZ9_LVMVps0XuzPcD8-H)^blZ7v{+VR{!&ljT2hYGCB2_Kho^i?`z%c@?Xg_>b)F+Q}55U zc*FgzT5KLCu$%{Iami0|EmnV$TejsN zW~pZ%Xzb_cf!~^XUNxTpBOlDQv+}{l^BiRZ*2s?8O*{YgV6L4{eAIY)t5PtZKEf>Z zqusd)yLWev^Z$K!t~c*~+^V7W(K7LqMqjHM&D}IDODF%H&DH3ADA&;MJ=Ch9L93za z!!-1xhjIg^YY9y zUw!;Yu5sNS%{6Z3qmAd;v>tghw|5#2HI8-kF(gm9J|gv4ZoS<8SnG-2SI>LjW3=Gw z$8ufT`&p~;vribaRNdpP+8MIiX})^v@#c2cKGFDtJVnQ$66F-bq7rB+$oXP?8!Aj& z+D2Q-Mk`&zRy7XSG>S@KvldoV0*gvuQ3(`9CD1-fi%Otrw=F7xaZywP?LARc0-L3U zq7oPvMI}($0g6gsD=pJhRu5MKFV6ny&yBO%m8JruDNT^z0jtgVw;dyX@YhDo`S8VI zEBlIle{FoPQ?8`g`(@*z)_-DH>2PbAnEqAcy^a^&zcof%{>)DMTjTvFb?kG7=Udre)7NA)V?fel6;UWM2)YqwPAW=OvBV3udGi3H`F)_bQ$5n=#vW-Yk8(A-?;- z1APj-F2CyGKH|w}`bWc7eRb*8Gv@o|8;J!o=FIjbjahSM&*zqZfid5A^_&}g3+C`_ z0dK|97e4AO-aR?pe(?-R!k5$+=<|&Q^L_C}zFCGof8o3tv!|QC;rDZ9PoKGn<|Joa zKO?zNpXsxHGk4ycxyHN&GpIZFELY}Ki@Y~j~g@RkMv!7wK3nw z6`^6W{KA<@-%LYKc9D%*IGbP3(Bm^n;MA*^_~GbuU$H|O+-2zhXZka)c3_WFh3}^g zrK0Pp>7nPWy8QG-J_e8hl>@EM_D!2+j_TBFjYZR@`Sf|y7tUfi4ENo@(D7QIt$`xbp{irWyBF7=BQj^Ej}hT3SD#o?a;84- z+S$f@ao~BS->|*VxTYNxuBx^OHNT$Ux^+*R%@WhTXjf{EPp5ObTg~1hCI!-(@P*6D zfdpxr(*1?+mksSj|L?BuR$6-c%!Tt*t~Tex7GHo@1>3vS$$ye(OM$DK$!tr9vY15`o75c=IexrW; zA5?k9k*ch=r+BC}$Ab#gEgAxM^ioQy#K7kojum64ckkBa+QZs@x*H*jPG?8gS}&(= zRpPooZ@#E!s}k2N9L!3;TzvhP-e(PMi$e9nYfg|`B|$lB_0i68$M1@?ESu8v?fGh7 zCA5n+jB8$#M}1y?zPPq~eW~XharCL_As4OMWHMoM!_J2rUv12sJKwhues1%3*xiiT z3yj%GBk7CJfbE*Be$K*qEnHZio%Bs#$Pea=Ij5yB6Yp+|cO3s;uXmDoykC76B|wLE z)a#xLW&1hJE~)>nIQFb`g>rFsv9zT72(fC>)-#pyRpQVmTP7>#Gl2u^`zx1q7hC(a z>v2ZSWMjz8ne@-_>Av|3r;n3!RH`Ew8edKU@JMUV9 zDV{C|VV3B&=jdZko-JuOxuM?Nvu{L1b0IQpWb0ip*Xm;Fm39|rT5DFB!Kxm&#Vbay zyR%!5z6c|n&CZiq{HF2sV~5;uwK2~)xwLeI&vywYyFA}#&S8EzsZ~=9NXV037ggt^ zdya`43vMtBc|f%m3l{Mt*-8=^&hnT(-I%|?Jn?)pXIyK{TqLymOs^|Pwna;8E>F<~ z3uc=1XU}mq*Vjy3t~Og7IgGBDG;r5|ZfaXS9c=Zq^_pw5WN*7Y0^2g%8 zHLJS!&i)r({$H$JJa_hm|K%F>b1v+!{KOujY4#A^YYmZ7W1cXon7DCKM{#i2<-N>P zq_lY?Sxg*2Ztl%kdjJV;O!-+BPdTKQ_hiTK|Qm|W; zYaA!Wv}tpa$*DT>m^kr*ba_`)6vqIFE*GV}9qBMEQd~H2*Pz8G{Tn0Hdh7pNzih<{ zUTZl+#K}AAFDs4Pv;7jY4Nq9S?7uh-|G_MX_eU)1DxP>F(5?T6Eeyk!+Pdf3Cf=R3 zwU6gx;X5xKSN@DBb;H)liI4d~v$l}u-2Rs`S;ePs|U#cdd8<0DWk0C{d=u#nW|HyE`OwrqF+0KPO zP4QOwL)+}Bd0JT4&FsmnW7kXVhv&1hX6XZwadG#0Z*+leomjANt`C`N&JCtm%;>a; zgNA8yI1_6G)&tvEF<%NAJ;WPlr-$)z;nDw%dS;(<;nB)ex{BaiI^FI%?bI%*pVchl zdS;1n*Qd`HKb?>stbBj1*tcSxt}J5YL-m&`*RK`hI&K-6{rubMJ{_{}e><&qP-@nS zLtn0%uB=@vCOzA5rt*WeLjQzWqO7O;kI#|yB7NPQtAC5EKO){e_qJ)u9_s5|b-wc0 zTCp^`_FVC|tJ44Sye`(H((_B3?DoB~R^0c))xEN-rlxQ8C?8O}FP$pAv-Ml?>DKHY zl&_fDzcm`A_qV*%r&Il}sp6gb??^KG*K4dM2^Nqo)qApzCJkF>HR*(PR+Bz&%AVE7 zf5OZKr>N@5D#(d&jLhdTO&b{jTedAb^@uMIy;pUNa{4+^l}gVm-D5Xt%sR6-qMJ88 zLQI&R9@Eo5x{Zo=1=bD~{dQz$9`QBGBnCL;l6B^I)Xq+qD9v@Bvom{yYPAomdWgGu zJ+v*VX7*WIq_*_I#5!w0|EHz(4Cp}NJ5;ACqv^^!^=FC~u1R-S7_K&lcAsNttL>q! zvWNE2%ygY{w>?0w*(C0;1}N*Doo?q*p0K)C`gZHLV&|OnQssHOb-!P< zKOOUQ5QjEmhM8OUqdww;CDVp^y2u9@f_i&SRXS9Q0SnS0N1?GEZ_E2Z9jaS+(_oJM zYovLF&7Z=sXsHh3q=o4L*6)uMFqD93xVya6qll_?>Hh7;AM7r)>z3;F-^%ze2)4uYPGc|ujHxRljl}jdy-OH_cV;RD*J(5XP@y( z4+i9#ekg;|eAeGIU#+@A{Qai%*F3%j`|10}4Oe^Yu0LgWokC{U&8mOkX{K;O5AnEv zX&;gOVfr%#a%Rh4zcu}RrE`s``g=;m-Z#<%l;J(ZzIE&3)*pWUxUu>?Ay%dbdxnaA zJJJKhu9KIYr5s;lO~;@bt4W#4^eabs#>o;_E2q_1vvFdLsCuoc!c${1NQ;1J=8HEI zyRwI<+IDNLaxK+J{&;nb*jrowg7|GsdWN#JMs%IBb&B!>UVc$^p?qm>y%PRrnK##A z*mc}%*KwC!$B#FpPZuXo-a15i#;)ioyCO=M`z5cU**(OT9t}9I)ur!}!(a~4&70D5 zmA~6V^rbZ_3wl^f)&BD)dyv#EoFsi~t@YZg)*7JhwdMeMc4tqkPrsyi&J)_m_Xh~I zF@34ydx_ZmRk}y^iN^GKo^M=qw5O{jrCK~ptF`vR$XaXk`_)=|ffmT~$z!(G9)7#! z>+PYNLL=qyUsh|K1@Fv#;Hd1wcc%RwWkIdU*E`ksu&7)osvb`F&i>%;^d6700umfj zowl`p`O|yTUXM~!Yw^^3nqN{_9#XSwtwRc8=5&5(Pp93c2WZo|x81A!!fw+uwPNqz z*6j9?Z#keQ!%>Zd<-tHWK~C2MIeY^lRgZBMp$Yw{s+C^1LYlX#uX3PP92j3UMW~4_ zrKOMA&HD`BT4P4h3_pIty{2 zJac2|lg$mO5d)3Y32SZ#DEsaCyv1(VVqwl_w#T0I29Hu_H}75h$LlGjt?88=vp0Rb zqTFS-?}L`Nra1D^)9IT%%42o||J?G{Y+#MuKq$2}nSZw@^HaM)9}8*hhUW;04Lxd}r2m)Z18lJ(9n?P}L{(fXFjKYw2@6p5NuSHJU47ZQIA} zwnDY7nI2;|uEz#z6uWJZGaV7?YhC(^(l68HO1Opf^%YmXmG0X5$p?oPbyY@jYDzQo zaDM&Z?Y?%a_|dzG-wzN|cV>HPL+2CLcm)hOGd4t$@u>LaTCcE~e zqjr6RwUEZ!Wxuo*(tURA_t3D-KR#Dflw{5oTmGDWR$Ta}bV+vPCz7xJl9y6muCssp zbAH5T6#ppA%n?67nEpUad+ye**~<^66CUNw4Hoa%kyrS_u9?$i&A-e}_;dPrkMhw5 zlZ|xR-CRyKwn9w1{gx5RPdAur&2vvn2RwI*cgr)2N~@dO-+H}0Wl!m#jbhx=x(hrT z^Jg^HGNa}J)>GW^>FO@Z;g1`>Om|UE+i1=0Db!=mE#;c$wnVJg%}Rqx zbfY!FA=)81vv*^gEAV-Ha<8YD+{g2wV^8jHJlT3BbB1C$T0imowDn+uqTIgGG3T$^ ziy@ziqURgGkF;lV7~F(c%|SG8^;=t(V6^Z@XL`!#J~-7}sN2 z5Ajv^%=zAc>Q9Cvsz0m-R5H9LW03&a;KKpGKa%jr16jSac5eHMgb@hDLp+Yff*iMT zVvcD>A{6!OQ9Y?;#~r`C-s4Rql7Sd+195*S=ntgg(Il#3G7*jVRhede>mHeWz=dE` zJaTO2BCo$NMRDDA`_jBc+hhl+%497wH!-+8G zNg$jIB!b~!Jgx@<(S)YOBgu%NX)1S?Cj1Xuf1&%29Ehf4M3?{i>$an+(T-nxRMZWLW15UEvUn zCX+@iMu7fkwtPbEoc3Nl6iS42H5rlV>=Rm8k461V3XfxSA<2w#LVE47zUytQ;**K#l4VHE3kZ_seMw1XFr4s0NrXBN$7?V=T;MC=}F^@nAF(5{I6x?wNgZy7-Z& z!U+4dgq{i~v={+b!htBO*`G*861tI$>DdD#?*7E%bD^3rcbU(Hsv-6*%f!5zKNw0G zsiYQ4M1s)-a&OoQa5x$Y$Ad}MSI`J1u}V;?Z?@rI%eQ&l$eR1hjjCAs#WKy>UZGS1 z^2V6k946w<>{Qm`jNej`ED8Y8=P@CtengBcRLCd%fE2P0ZE76~QwSVT>R;(9o4 zWcQs!t}3q@HezhTl$K1zf@)O7B*wfMDK*9vhgAX7$#IFoWW~5mD>XN&qWtA$QL$!z z=D1P*(8!SH*j|2rSo5di5t@(+2K<3&B+P0^(Yb)%puL{CHT23wVwR)cytxX`&tWmo z3oS)0FIAPxs0Euhm(QhBhA2O!<^=J{XZu4+&1|7vmicb+7%LuQg$~c+G3Gq_i^o{; z7%LuQEiz(ZiR%CSF%}bRF0Lz4M%J|`ot@5a*4@NkH)npTEa*{t@FzWoG^52wTrwB1 z_MC;lJzHQI^GD2>J>onQJbv(ZZ}sb>He(N4fZz7LPJQgr6U9G^tlzp1X-1A$U-Kg_cvejoC+*0b(YMuI z30Tzm3&F!))1gM(x+8Om=X3Gq4z$=a>O|L_nc*Ez-@p&U;+@3rE2J5xU&l!sc@WDz zuyy}Oc4kVIOX|eWc4kH@v+KkcJ2Qj2E}(TQula0|{Jg$SoNx#4eo!aAb4TXn#j@oq z&1S8HwEX_L`FV!p3I7fc}`vN}Z%5TdS@^PK~7Px_rdGgz- zH}WyRPUv@LdMFF)#PxS(Mwi_n-!y%Xj~na66L)6%pSDOod1f&m9d6-c$`U?qlFz!! zKi`rc7s`+C$!EWn-@Y%u&0EgL&2^&hT^Zlv#q!Cb+xS=_za3i1$5QiICEsq5--fN? zW10N6Pkvi2zg@nXj}`LUQu*zN^4nkKw_D}6XK&}@Hu>#l361`G9UmsBa;1Exuq>{r zl;2iY59RYm@@okbam_0E?MwOX$MV~7Cghsc@*4)ALrZ`1Z4tUV^Lr&zCl1}0nXGKB z6WZc6YBqCEW`;-EV?TY&e!6~FX0k_l!+!dj{q&~$GZBySx&8Dr`|0QhGTc6NBPyh< zx63B8-uANH;?Rp-28o9IGiALl>uzI$UtHXb3AQiE!}caYRxrAdUxH^Yr^73dov5lCOfOsyKEib=TgU$mg-8x zxCFZ(j4hkxEKoIK-FU^=Bu@Hi#^3s< zRo`1Pe!!`+>@l?Yg3gvj%t_ybQHk_3nH$AT&t&>4m77HMGnwkLRjmlTzGi%nmTJ0K z)!fDmgV^r9!cnxPJEHu%tB(~Of1df5vUOATs9$8-dCJm`lA@}0rCqH`>)k8OzW;3I z7oM_53RHHqRoQN{D-f})R zXW`{d;)gF}&TRdIyjdu3V;1CfLvJTx$3Q;(V&>|yZ*AsD^P-eP=V-Ujs_<)PYYr^F zy_dLaU*?^%uFhW`@;xxQthe)t+3c>H#d$Afs#=%LYxbZvsK|>daqy`n>y(k3&7;-P zs=;lPzit8LZ+#{6sB+q7vG03#q#WgKx0+VHz}PxKbo<>Jwahs-;=%t5Z&BUynADLd(r8Q%!6gOI_fl6 zzN6#gt!6vP3OP{O^WMz7!ga1WQYVXpGdxF$gPoUl5MvL;Iyinmsg2*8>&aPTOGkv~ zH<<;>{nQHZs_b6bux5s4n(y!0Yyv&Rci+j>D8Jfl-ffrt!dZ;-;$-E4&DJe9#U<>a z_YsIy{p|J`M|#(EAhX`yI)Qm}DVAFUgu3_h&<&25x7_u%*ckeOE&+(Pr3ckk^_{=_I7 z?R>KI>wCv5L2zr$t}%|;UD`&)Y`e3SiHEgeSsO*KyOo9X$$OdpP0F+_`CIPRHhw_e zeZ{@|9v-R8J&eE;ZIm}xnsb<1CPMstb<>t3akcN=-t=18`utI7SG}b~EV=ggrwBFu z$Wdkd)iQ4IqccRqscSm-ay)fVn_AVhuWXm&U7IK8L(T#w^V_vW^k3H$ZvE3d=J&kS z^D5_$B>-9cbzRey$}3yMx2v0`mA&SCop-*yXw~r27VFS_(NWaV2lLQeSJQN`>`#sY z`Df)mtF8~Ny85(T*I~z--GWwqFqi1FqUkSXW%bUXmJ&rtz3984X+~K|t2eDBikI3L zmkBS|jS?qpY`RAoRxe)N*mPOhNzNLymsbxIQ|g*-EAu-a?>kU;rsx~&=@+XuHk~ML z-_+E-9lsO$A3evku0T$WLmGL-YQm6uYhVXED$O6*y3I|mludRN$RF5Ot-3BLT$gWu zUA(t*7+dIM@2qb+$y0WnlZM&hc3YdKlr3^THamRJ)~3_D$kNS7aPF&a`Kp(g(9kqk zoOI^mF0HG|Ta~Z3G5T^pdfRRs%`}g&--x9zFC8JSPB&dz*5GVXo?P*sRsCjX5p%(u zlW96oc8~M1DH9zm+Z`?2-Rkif>5Dw|V&KbLdx@``n#$YwQJ!G?i#C3)eecKpTK_U{ z96o5Hp)I0=b1;P7p?b~{=1yF_qiKQidA)ToekL2z>R|k|-h$jcv$HAI-qTfhO1BLV zV?Vy-g0jvHj~ z)fO>u_?k)9V18=1;A49*$Gq7zzf39FDynv@y4un25A7d!*lOVi&U(LTOc&*tt>Qp% z&6SRFrHVD+&E-0O(R6v4GHk2Zdg9tCjv+s(xtu6JpJ|)8Zu2Nb*=mg?Z86941827; zonLiDo89`Iqg(9uKF%3vS%@X#-d?ZQE7NGcL}gsHH9PLk?fX2+qQiPR$!^*8v_=Bq zk1pAE$fHyq*3&EU$_?1H{aTN*@vxpIo69+RI^XK4=PLQ^+;6^U-s!UKVdXiy55L@M zAxlOaz3o@sl|Rxz(1ebuSZEXe-BxSWyvy$-GU=BV(VuVqCW~gaT}i7&)2GoI#h#7U z4jgp+w#l6pmA_gq8c#cGF^r(R1f7&=+eVZr;~Mi9&A_~JPoBE%)XvJJ#{5NddUH8Z zm1$lyCpKDuB49TehO)fT(W@h_nZG%D<$6Ml*TulquiGvZx7l4^VRwDih1)uGRJI=0 z^{efsZn3*Q_>yhcc2w>^tn0Vr%4I!QZ2Mye<*CDZy}7xFqt|tIuUA;TcCLAosTV%; z#_tyU4pi+@KDRsbS);X*KAOAzT19w&vaMXqePY|7?32c}e;o~P-}{~Iqs5a?FY!56 z*B-l7ozvFpDoIocoGpE~E^h%D(LyOLI`YYa8XJvus_-FoA;XG%Sn$p%=g-O+#x z+gpq4+Z30J>#Jqk$~t>y$g-!1xnD0CcIBhYc z(P@hz#nRtoah+w?B0D7w8P3URVMt=mhK=@twu>SB=^Yn%(iTthJlke}x7*eJj7H`7 zlIM*!`@1WztjU`^ALjS>k(OeUo|O%-x_h_XU1!4!iVD{>!IlPOtZD0)$zHc@+f5N5 zlK0IzeBJ!YrWwds>qg~g@+|9@vBtPh#xcf6TsS|qYiYG`rrRw@W-PYU>%g|`37#dg z8HcT&+d5jS=VpE*SI^Xv?WYdGGlH^*t)36_${wd~-+Y1x7Cx)h>KT7ju1a(D+?26~ zljfMmneOb_5n0nxo0!Y$Ip*^14a(~oao~zA7Z7#DM0on{X=tCFeAV_pE8?`-JGx{q zxoUg6cAi6R_Wwb>^)+4+y` z&c9-J{u{5Q&2zRtten+kt)kLlqPF2UB>U^V&Zq^kdJBl zCX1k9wYd)!0t|AY({lz;bD_`4vKWq{CoKISKE8nDQH~#2OCeRum%Us8lYqnWS>gflz z_c__~L)nZg9dc=3y9LYSPfWSAqnN1FMPMU5;1sOBrCiow&c*a?-(-1}+f_Q37e0_? zle)d~dOuOVVaIs_W_4+H+PEEm?k=wU%eEOUUrWT3M{O_jyx8VMyi#fn*mK)VHYQ+W zE5)j#c9dnG?6Bkg?&7Uux8IrfcQ4bE(Q}~9$%@#QBF*)|>MoK^nQ#Jpq^%j-*zyB& z#(pXLHCcJU9-;f3BXq>o`n=r>7oJyg&5j1#zx3ZQF}`2lJ4!izyR|n@yLQJh9hGtX z)p~C#W!C7Nw%ua#A6~a(aYyCi?fFcue_pwRH}3dD2PM8eU;d0VmlM}LYb}mZo>Q#$ zyern8;yGSEZ$q4SS*8=qtYwO0S*~kqw_D4!+buhMJ(YWCGMvw`PA|8ca;N;w<(?h6 zR`|>%>cKTvHs$v1-(-beY**H5g}&ox&0F?BU$J4w?>Z}A9yZX2>$2J;l-Ta{FTG^X$Ry}%80#4G@7u&*lBJyt@I^-}cJ-|4p*&)?;@r+VzR40>Xjj|3#MT_QR`=|*PWkpb zt!;elfgNv`Dn9;dy^Txk+t2}&m$KTAKHl+oXGPnYzm13Hm3!gK9Z#1k<96n6mU(tMI(5V)<*_Sr;aeYd*x8`mxKn6v)L%fKP4A3>NA3Jq z2c_z;zRt0$Ty6LDCtY?L9hJtz`noc&Tz$`-zv`ge|NpS}-r-Rd-Q)OsZ$bz#p$H@b zLV^U4o?hs^Cp0NaO+o?$kPa%+Yoyl^={C%k>~0oV0VxqdkS-w7gwTsfLNBlQJu`DR z_uQMi!Pnnkzvub0)*<){iw?f11Jp3|)dM4pLwN1jJ z_7>^O{N=XrOY1!@W%;|6$psy>x&iWgCcWd_R6(F`w$NW5V$%D}nAH?L2Uo4T^SaO(F!z+wv(EuZXl2WXT&4%0K7RuBQ%8 zOjMoAr(%K|PN?WqRD`8breZ!n@ieYYU7o%T&g^HkH+7JUnq8w-r1vZ%S2ODyu+a*) zDhv|GnIM|*uDL$tA*LuaZ){ezuo>Ccqniv>NMbjUdJ0M2H485p>r5Z#Lz}FJ;SqdJ z^N~kFhSp(TDP)G5MYx%}J$;{_JPkC^PIXpNwl28gP8~?UP2?qJ{m`h13dh5Fs!)(e zauACv*aa)-G2T2y3PKb1nwr|L6hEjb9S|1SXBOu)JDyEXm*nhxY7bPz{M{_vY3})S zKUsc|Pwf#pxVL^!pCz$_yKIIRwPF)hIIi}2q&CRHPLBO^r&^w!e$dm}>6k0&-+0=1 zG_vLDW?nFR@2dRCtoD-JXwAyjt8dE9Jyd#1FI-QrB`;h@i`;Jok=I%1nMdh$wOD*HYdk~1o3t=%%2wT6iyx;Ckw_M%%o$dDnm&mf#L1jt zu^|Hp{rhQplAL9sd$skOz+w87tlfrfgUwv%pH7QSVrGfGh@!51%kxJ=;${8)VR zpleo9(=dsw$EaMC)mGY(n1+zmIERT+S|!?45T#bJc)uKhs@9>Q%ghyA%lu5sy~sWU z!8P{Evij2O*Hhgf5+{mfrBrBcvhN%g;jUkxmc@Q$A zJ-L4XjW2BqCoeG^-#U_Ir58$@276-dmw_a5BNQ)dYOFX4&*AIZ;3hxm5xf9!<@^$X1_<-&m^zZPdIUd4*}b{MXJz*4G6txN8${G4clD?; zXj8bJsj~sX%zCCU@|O`psSs051BA=nylavYHeGd4v~kZsf~c&vm7!HaO#?_}Jv5W& z_fSLfT!C;Sgk52#r&@XV7T8usuwx=jky==tn+)>cCNyXLRBu;wr0F+_Bw)(i0sGo$ zYP4xS>5Fr?7gdQd4I^W4GWQ}txD#V)V}Q^v*3_QNGD7gGZ(6KH(8-=^AUm&zl^U3e zNn|4?%Eex5qca%3vR(i(@}e7x1~ofZLT68u!-$9`xqB@ca1NG z{$LZ^ZALXQy(iO#T}+kuW*fS`i>as#eLB7i^=F&dg$ls13pL(DWZ;`namYfvK51dv z>ZuKH+tPG_l(r+Um9BmjUkN3sgy4%e;d90Q;F1LbEu@aqjmx+~TARvCq$UCtUC0S- zO#Mh0PEN4cTG484O|9jccKShE({wGCu2`0dV!<+qehf}gMW>hAna0X}?4l&zV|+Cw z(Zeow1UKwp`dc1n7dwJSV=!J8{p_MF0G#g#_P~r6hH;+jUYtpi$QrCUudZL=6kbQx z*r}zHsg4#_X9nnVvXdH^7dJy7PEnP0m!OS~`u6Lg@*%|@2e6{tGxrI5xT69K&)bBV%QCDSzHAVfl zLlpIeo~BiDGlwYZ#u$uiR?{Iam~*^VvDeu8nCQ&5c;ECp8C-yxr~XGZOZEXZXDMn< z$MW+MoT8{XysybBuT#`qjlsB@a~#5>0sP+<;NkwJqhwzJn%({%HA_nX&8{e#UBV)B z%`PaK-AFX8kY74z=Q7$Ok*vbWJYWLC&atKj`4EEXJL6ysWY#12G0N`3 zs!y{=n;KBx@g_el0ajSZ1SO5s;AdGjjyIK)rM>j{MAIOI@P-ir*Sq^i(Dyirr8@Cy zZ5MJLr*OqiX3~t0O|`YKI=LzuvFS3=G+BD6mnhH(l$T=aC#Fn^6m}wy=SAV=q!T8a zVu%;c;YGna{pD~nmlzPHOfj|ABJj%dV2Wursf7`E zpKcnAOkULphAVh`x~Z$=*BP<*rI(MCu0n^-G*u_PP`a3F=9`qeN%;}d9f@TaDg z@(Sn5d8R&uVhUV1%RCr3FLSbqh-kWJfAeA$*<2P60kw=s@{RVmuICROa7)oRpVBmJ zf$3{cA?e-%(`k~0h2isPyHJWsmxeAf4GlETbIaOD30I3uZ+Ma45E*eA21XFR%Tk;r zXz((a(YTEB!8hXxB)BVmTiSH7sV#k)wW_$55TCDTu^jLp=YeR=flkv&%tFTy5cwmm9TlWX`D2MI?_$z!e26y zv2{1zyon#aSqzMdtTlb?BhBZqD_z?=7Q>LdnIE@V^j`pj-9+o}fhX^gd&sNzwP}O2 zm1fytZOgftucy%DZ%iAdV~nq|O-gM8Qx$y=Zx%}`t2UX6NYZ5nt89}}VMl6VX^nK# z94Uu^_9>%6O;Dluq6%ykwVTA&fR*i>l_XG+t(Rf(#l`@ff=sy9Y}zJOpep- z%1c|=?TRkAH!CrDU|4u$Vnk>}XlzoTkQXb4WsZKCkJhz*{1Zi#kQc@!Porwl7&+EkjI13WQEQyr+TPC z8YUEC8`;D&W$Er+XZ+}dOq5nxn#Cl|SBQ%g4%4^rLZq{u zXFg(tO4E`rmQ3bl5;jTb5Hk9M;*R z6MTtu&O6ysW2@L7P;IMlfbP4_bksV)dwD-A%gwinWni_cZB~dj*(%C?ULR4=m1*Z) zCOFN!=S(T&29x)k86$oU*kgKI?zUB|7OUj8>&RKN&a|eTvP^U2q^)AX@mT^Vl1i{D|w&EAv^Qg$v@^(_7@fIM930<+Wr9aHBRNz^Q;QS^|UH_f)spt7)vaUHQ*Gmfi4(aVy!*g zg!i*4SR#@O8HqP^%?_J-kRmvlcR*n;=7YngmRf{_0CO-+Ibv!=Di|TWIs#L^`8n`r zy^aw=$zw2etU=JVjo0!@3yIASkNO-pP4{jOL}^yTivixL@JWY9OpPU-FeBb;3poM9 z(2g#(*H${O*LFjp-n)$o8hfcIfNby2hV|CeLd*@X21>u{~LtkI(04OgrSIhJ0=*d=?hWhaXlo zb|O0QtZAr+O5*zOSyKuuw_%C+XeZ0%+Ii755*DIy7Vm+b!71F)vRw4;B~z>xmV0KG z%iw>vjSzA!n=D!co!>k(@*CD04=`5Kmp1-#UMG4fJ)^o@@;fo}<@X)(0N$%A`km-i z{c+XQyR=;6J2CZD4a4z1)f?Z5J{7?8sS{(Kw4grK^Jk_Bat}q4ZkPj?q_ZN)doN5U zWqE`m$uJDZCF!L|0`UJlcO#mf7*Mt@{qNtVkz^y2!QFl5Vk8BlBZm}3l37y6jrBRBJ*&YLix4a1sR*lf~bargc&MsN#v%h%jX z3#;?i*2=*~ zCv#zIY@;Phm^&LF@M($`MhGD#&7W%#n0Bal-a!$u>NeV}tD|{YL_~E59%5bTrOam~ zl8hk4h_vbPe%`d%}S7ODNEK zeD{NYIdf+(at5>Eh28n+w1(soPUeMuW}B;KMKfHvq`}a!@1(FlSrB_yZY6U#^ewg{ zKg}~y5uC~yOWWzIAai9cypFH?yzyTJ@fA+(YjG9xJ0u(@mnywD zt~LX7PhS)YdIw%P)IQ*vpHRPGb6wI(Psj@Zh4HH9IlN)+0`S5nJO~V6Lzfiz>W{4GPZebwY`ls7klA=3M z4dKQHHaTJDXaj`2m`C0+!nzu64%TAnis(JXeg~j9*%fU2kg%v6SmY?w2_83XN4r#* zQ{Gi5(wrre#+W5<*;?ZiCb}PkaaW|Mm67Hs`fZmv#SKt<=~3mzJLr;Fb6*44R3lhR zeF&)eMf$`D_L~Ogu3A{`8&w;cr;>$62s{F7i0cg5TQOw)9R(VaIeQRxR@KPx#rsLH zN1;^Qy2MJTlaL=Mfo|;QUxq$vY@Y3DLU?f#^WS7YR)%-9_M#M(E`8M$dRoSLt|`sT z0W!IW5JiK#w}rVqxsH>$w_e;KDuo82S%P^Yd1?eZxRtr00dc?Db6S%k--C$mej@iL zM%3+3eQ1;B=00?LYjbe}0*_mpdyoox0y0SVO&jxKEdnb{H1j`NDNJk+vEYwWRO`VP zFS-xu694n?Vop(bvcq0sMzGYJI+D$aqzRKkGxgf=dof6u-QGN?h}4^bDObSs!mzx1 z-tv1fPyif0`D!eK7$|tiTh-mX0p{o`k280Wr++Udb&mBguaed=&iUr;zEJdE{k@oc zec972Ns>)SSu$&NQ`B)w*TT{n@0q7ay9H=Y?$Ra*)S-g%nYz!IK=^PLh{h)`uohzS z0;j09blV-qEvz=Y(Z~GzYX%{MXzn@xx~@ij&9X$EV&~wM;}J?x+0cxBP&thAT=n{! zePmL6CxE*hmHWCsPT}>U_)Z#-XdbDB<#A_oB6O$UF+%8{WWJ+C(7EbC#im#~u`Ym9 zkS?*w<_U7AonrLbk@3_xX1krjF;}IS8xVQ$PBD5-#&FyzyX+KB3Gm!0J#gcrR}Xnp z$C@|DOLx*y_m*^k6L$P;*Vb`nhb)`n7du#@PV2o=)ch92W9Qgjd}#LalE2@npDOfK zZpCoJ&HMzkl@IUKPZO3_;rR5~*E_{D;i8?w1F^_r6#%EGMsxi+)f_2#3c<0{&AW;B zF60`_%Yr17qLP9y9z?2mQR&pQ#IlA!u3IzAPMK6dnPQ>zz-+UXRKdx75W8=Vd6ryZ zm#gDk^9o6ergNmaibb$+;<&)@Pt9#5(iqd$jW0uuaM`VPuHN&_=Oxk&<8qHrS_pmL z-Z(j7lrtXgaQb5*v=bV5T|*nL@anWnG_)NN5!IMtGOqPva}Jq=07Sc$w8T7^%)-gM zeoop&t1UIR(IV)$M=IPuDv-Mi`b)25vI(=`YWG=bZcA)9nRDK>OWbVs?S}YLS}Z<6 z(UqDnlPrwI%Xa!_=5J&`t+~parp3|;9jyrcWr0GA&GAb=Xa02qGwZU}oJ9V_DO~6q zSZED`D)fJLBi~nr2Gsf+%%5r5=!A|{guWt#4lpifv8^06-EQ~D=f<@B7v}k-Iu=Oh z#SIjW8dSbGk5g11b641A?2e=M^mw;9!BR^a8f2+RFK4f6U5v5P#MZ{UMQnZYm3f;t zTwujP`Mq!NV^|(vTkobzuCA&CEh!JL#uA7&-$Pz+vw5+!Krmr1zLHNd6FxyWXSX^mMZgEe@m%GJ=*+rmC$lB5}(BN(MOl(eM}S zRW(a}ErO2ETLygoiH2{}tX5mw)5}pag5_0vL^9)16#p`!DHJ)%eaeuyPj zl6+{hAyC_OJ>r&HSXw^JVwL;_sIEsGr-Jfs$bBHsRx3dm?r69uMK=VeAk%G+uA z3vtbhw3L%bd=~O4-VN!1QdCm##k(QB3yJ;b1w$opuXQ=1EmL7i77^6%X-rWx#pJ}5 z@n>Q!lf6F#R64S7Ksh?PzGV%WgemcMqhABd1o`7EG3oR%&epXXgB3>O0hY~Zj6txf zmSR%yctcAynS6sF#G+j5CYE*b7Yeg4aJG)w5QW(~!7RX-S-wWfEu+R5EJpa_6jfT6 zrJ1Fy^qQefZ`x)5`nt4u3(G>1jb-K|o8M6iB3!Jc<(4M9tI*Iq!D#p`=Nh3Kee2cx8<{FQ^f>Z6^kyIXK4VBA?LGb8!a5|w7{}WK9|p;om4PxQKw>2 zkb<{>SYpuv;uK`Emy0Y}uZfW3M1(A|#Bz$f@gv~6D>sjjB~S{Y+i|I7sK0TZ>&Q~e zS}#%qA&SBHu~Tb@kx-n>+c4O*+)b|WBmI_I2K!+wzB@XIHu}s`o3zGgyzd7XKYnJ3 z(_!R1DpQ3vIW?s!>1BkGwF<%w=7A(j#RwY7qE}nOb$npob`Wjw+m!lb3Pw{TbJbpB znI#!8ia)z{09k@DIHOl**S2OR;13jN_eKv=JOSI<6}jHBSMu8Oqc2@jBA~Q~auCBH zjHi~L>&uOn!X77R_IzQnl0#TZ?g|G`ib{%J_!3;fLtfvnEVJcnKho=8S?ZD-2w(Il zlD>u(<;st&OQPQsK3&lp6BegE8h&HBC6WK^L!QdaF8$Xv`CH2ziToF{(S`q+MpXHE zh$SY=9`Yt83hh%ceg3_r2?@fLYcd!;A2>5}c1N8}Qwykv)EEV+qOxWwJTN99ZV=*sUc;aUXMh5w7O zxC;YCu&79HOJ1`~|o>>orC)vZ{ z>FcP3#Ke@yl$gk{M0k!dF*Y>P1)%WOa%{xFP=R<)nfS<9c*Hz5 zHYPGWEIK+SBqA&U#G}n#EpTfR3h$Z6CPswC!qd?a15+Xsqr$@m#)OAQrVLDk9ovc~ z(c$nycS2NjWNZlA!W|t0?|(;xBqc_LMJI(040pjR^zb12>)2*_eHt408iq8X&B|!{ z=gt*Aw9Yw8rSQ;@(3t4hx)EXML-enIRm>dy3Ff1`51fJ;*j|vSW;$O>Jt#|CP_<``OZDLYrVnjk@QUbiwJ}@CB3B-V-0->Tf?JrkCafU=gWrPS4 z5grv0ksKD26rLOw84ZeuhlYhFQm9aGZY47}Nr9loz!Z=(A|+{HL}XHOVsvCuSa?cQ zbaG5gOjMF<$a5#ccdW0K(Ab_j^kp^*_W;i1ZF^T`9F zlOm%-B158*qkv`#R7N0^937S%4%&o>*zr1s;)!;smIX0n56$Bm7Zn}@@50v&i9$6l zCM-5NIy5u|0!2(ja(GliNK|4<7}UQQsQ$6AlhuD_8J8%cf{%Le8n^Y(%z4t3f=eh` zTZ5uP3-rz?E%a-Q7Y_9;i1s*^RyOc;ik0&IwCc*iXIs(<-q!a2*V_GGYxjSxUH(ql z|Fw4i*V_GGYiDq<@&Bi-T{NBFbv2R8?dKQmq7~JzjK+wt+6Wsj+gqo3SZ|~AI#_#p zx+9cdstSwi%B8B~E$mWNzo`Ab|C#TVk}zs{YMhl$j-~Z$Xbo z+-l*wJaq>glZThsr$pYWUA)fN_2vj_hP@CGXimU7f78;K6~boviQs zyn=08^GDFaF}Lc|Nu90Ha@#DrwX?N;@$)bbKR;pchzWHDj;J$)UOwhunFe;T)|bhT zw09S4BYEGC^z$y({&MSm^ko-os9bkHt=rWaF@;H*212sGesE7wS}GGTjSH3rVzBQ$ zuthU1H5azhrKK_n(o)+3yR=lsG%c0Dq*Yq#KK{2gjMdXp>oS_^4YBRuXDUBR)Si9u z8#6nwFSvJW3Ou3CKKY$QaqNrVn-I^w`1z?$?2GTO?aaRTw!tp!i*MiR%D(stYB%=9 z7u()tUwlrvJNx3Zh&|XBpS$YGzSxAoxYQrv3Ml$~nzNUmiR{Rr|7^^;@z6lVfvh0ZUPeN=~_|w$1=+4*3#6hzT}+RjnB( z^Z6QnRqdDiX~RToQ!N&o8>%>wA+U8f_j}@)wOAakoMfFRAKFhdlB|o!5zK%s$dy(p zDA&#&+%Hyr_ajhM39&1zLbA1+d}Ti!nQZMzt|372h^IsYPkM!PX&i$)D)wgRK+D8$SU*w=3xE zp9w(UN1WY1I63axq$K-;|<$Kq1elzI0=VT$UamYb~qg z{>C`#c(M>didp{O##uWvaoK5sJOrJqmlhk5G*;pB^2f$o4-+e<$=6uYf1*z&SgVnA zoTH=Z?}4Uk(}&hp5;=%bLFZPq(Z|*f^1h#F&P1y}-SDxsFxiJ;c#)j?*!mIq9Vhc5 zSv%3%ML~Uw{a^eO>wNMsAK0BwpyVK1eTiCij5iI$k)27GRv`OBc+ZT7hO|fAvYAae=8tz~5X?|J3>c`4StJ7vBbyqH5#D z?JkP1U?AA?!X91Uet>t}P*DvKrpDOfCW?~m(ei&RpJgRV}uj+G;UD|5TBgD8i)UA=>JCF)3H5_zN{+>a}joMs}J07s4yzXJ0yC(Y1zj{rgJ`6ZoYT1jy2YZm^ar>K}@d0l*y~+kJ0M z^^oT}_&p4Z$a@G;>|D&NU~xXmEfJWw*wuzp5WAe+)^YOqpGB1!!zjB2;Z6=)3tEA2|EMckJIVvb_R!ifV`>P3FVRQYzo-*F1(^Xtzv=!kW@ z7M7nO&C$bp0X_QXf)c@W=TYb-YN+cZb6-iQk&JgOa0)7sipQa>0uG6?Dsu?s@Ukj( zh;PB76Hi#r${~kDQPsg&>jvq4dZJ|pe?hXmbci2@ zq8Ft_Idt*`Yal&7*-~bu*P>kUtEBg$GPFX~47k`0o@_6p7ED9MRY!u@k&DZ@c6cv} zl>|=b7qu0pk{uy!;T~1E-F(;@)!uGj)}# zr-n1(d%}Z3JSoU;aTvh{7l9V1sD_3wzV&htzkrCguDxax$zm3E$64;J z?nPOLXx(gUWi5ivCx-p6^|#3t@QED7C+^|G=00&p@rjG?&WVI~`Vu-rIq*XqK8IDU z#2JYPheQ>=^KU(aPQDJV5l%-96RuHC4mm6i%5A=3h0`G&8GGgUrdpiS6ph;*7Ki07 z7s_Z52s3qC)O%>MtIK3P8i>eu8D#5Ft9G34^S7F~(4&ebT+p8zFW^&aR@9KeE ze7_zpWU*flryv9Qw$9k;sSP;aI^z&YXXbP}0q@NlUNmJM|b>>AceSWrH_cCJ1u%-oPz10rZfCp z@Ojx=iezZYDIT@xt|>(qc0`=wsdq$pXoVx<6c3Q&#aEIsavPnW;^8w$N(1H=@uEWQ zi^J>`PXZm;H=`;%AFj%qqL)`nqPZh80%^#qZ)>?$^~<>81;>#AKA-Qp&u>i!fp&ad zjy}9JyB-ZGHKVD^nw(*gXi(GXey;k-8MS0-B_p6*2B~V=SUF(?1adRK^>^JHlySfd zZVd$3KFIIet6+TJ=@i8vLyw4ZOi~Oo02_oK^)WI?ZG{>$2)jA3;1cdmN3DaM`tcuR z%p?~veZIHt97@5ZJ|bgipmCnNSQ6Mlv^KQK&$FvaFHmVb%~u+aTu>VQ3dyC9iYBe( zQN)S+^M4gPJUSx$*_gBFd3eZsIU!?%)QB#j?$}lTsMuK?`cX!%+~cU&tF4yYhl&xq z9Tj6WxGl1d>&nL&A(A}ksJ_XXq61#_NyZs@!cl!=HOCD`v*v-bbzZi%9=uQrB8jji z)fef!#lmWc77M4S26CHwA>BA{S{c{WDH%;9@)fh7yW;Sn!5>pILWl(?^P$04N9lxV z8LbQuZcod2hwL&!7&blQffhm6#w}CS!~%0q48SQ!1-f|j_P5|V=8Vrhg~kfAGLCqP z&#z`>oFY%Kq` zj)~q`;-?ui>7wG>{V04bmZOddrw+#m+^GYPiS{^vma=BF^~9CMXis_T<^zKiMWQ6k zfJ-#sn25?D3p1#%JpC9Se50tdT`8w2Kp|&+FZq*WA`A~c#>22QfC&aKG_wv=Uq;>S zQ659FQ=xeOs5nr$E_+q5yj2m>yf}Y^k zbr~DIju|fXyxHzsc=QwrTv>#gbcUBQV$|(%`qJJi@GO7rvu=5=g|YVf_$Rb_Yj!I zDUyuF9JnMSPKdy?c4tQH2zki~eP9}>Xuc3Au)s9$ga}L%PKf>?;Pd|BFl<+kL8)(^ z9YL?mx$-_mt{?KrwflsKM{yyxy|SDQzqIkFgt7wvJIKNA{rEE67U(5E0Qt26se%r! zU9>GtmSmd!zO5mD8XX0%cT`y3^*gWV`V&Z5FSC-QsQNut)nhF3RfttTF6M+h6kS9^ z+d~g=iZ*IwyXdK<4QXsUN#cIdJ9E2VXul@5ZloQ~QJdPi-=P*dAFIrSI1r>Siy z8HQkZjYbw~s3w6p<_7q+Yf%Cq=w?9B;c@OpZFq;{`H*A0N7A zlC28sQ2Wr%^6F@MeUdGVHht4sRDSEEh#5eG$Ba^p`fEEf-4*v}{fp?xFaye|ihzUi z2{`bi2pm28*u=D54D$7QmlgIEPw^NgmxuqSEDoWaKmW*w=G1tv ztN|>D3X6En$WyG=!m9SluFaEeA4sGZmW}r+-aSPpO|{J@@8TTRt3cGf6-hb^N&GQ& zRPXrJfX1Z{P`vK`r!dX>V_RK1X}WDUnSxpJp6w?nMJ4Pq&#-lq$a0h^u0e_`vW3v? z?QNB5uUWPZWDN%3{juf7mMx;_vzY7Cyez^~xzfe`GNb88Z{PALl)5popkl%Vr>I2S zdY7PG!Zv&$A37z%)d9v)6H51iq->_{!CafwSH5;ibhNTD91o*MPKhcC@H~tfvlX)% z9`ZUYvu%)zpBA0(VyF3xhHKh#+geGkep(-eLKRa5pBBf@9V>0cWI5)vJ_^NZ;b@`H zZCmKGRkovY+td2+(_Dq+;iodtW@per79Mu6+@fcXQ&h{jwym*UmB_f$kmQcex{%UI zVTB2Zg`RiT+v>_>2FB$*dwyH&Jes-!{Cb-ue8G2`tlX0OUm`+RB3eNAIm zn1(vmmZ4L>vh6B(uR>gXao%*^*R~C0FP5KGbFbZ}eQCz}Yh6meBVrExMn=n9fBYUL zBSGUg*@pTX=edq;vi&KMYY0(4yc(?71rtCKHPK`nB$4Ns0FS6o%(nhS`W49uPk+vr zpDQJyLC^)PRE6VXfMr*xJV3;eT1GY8jj9orPl@6bl?Z(C$TpJI@bCf%9A4kmFJjMwzoUqwv^a9-1m+4GtnXq@L3Z3!I};G*)! zz?a<u46CKZ;~`USs=S`XszT90)QwH~J+BmVKT?P`$m+PhohzJ)2@xbxOwn}y_H z7h;v6#2=92J~A8^)QRRkv6ZLokJy?JmZQd!ylQb9C99ISo*l8pOT_mK!r>FAV~*Jx zl9D)?Pn`Omp+%3|s%jB*F=U5gCCpKb%W#S+0}VW3n*a{i?20XsL@<_GUpwRK@{6sW z3~mMx$}(RZ1{1z^hWnZnN=x0cwe|PFijUqsV~D2AK5y{3xGVdEz$(` zvl8vxb6N<&DsWE=!YQf=;fq)8JBl~`^*i)Jui;|lotA8rq9W7ZFWFv_2PjV;79S{* zVti55I0aEWm~ERNm-tO|A;@nihu7;Ozlpd~>m)3rf2y@MH0$({FqrL+xXhd%NDbV}t8YheDEeG*iY`v^#?ViH&B4-LqBk zl0W%P-;b!22j`Mvn^ivWI6kFW=O*C}35G*3c<~dwvUfNnnem-YaIh0*fZT_;= zCB;#?c+=A7EIt00ttP=3RM*fpRQSth*`4+E=*m~NfpV?0^uMp5O{;@RvW^)VQZ!Z& zYnf|B}$Lr+8v!YG{Jg<|+0?^Q~FH_4J7xA;g_6_p)pg*gU+s=x0%DP4DX8H74ePw)K zvEeUg#X4n(ZF(KLs;K>zeB-RXLJrWuz6k14jP@b+P}($cwIA(5>}};IXZ3Y-kc!0{ z`(wa~b@4$kUPrNhqOr#*suf-Hi`xsq8pt_F!qrQzc8>m0!k$X1;hel`6;uT!tJL6& z7vLD!7GK`0G`&*NzJ@eMpp@_5YL8QR@4xvuaUr}0mJb*B3p0I;5K5M|x6~5n2-8a2 z86e~Vgu=ph^iYXjW(@nZ%$@odVD70 zqw@AxNj`CoZmwXDB`0w{Gd4V@X(a4Kg*WWxV!|GJ%RW&i_cX{_VJ9gFw~??n^uoG< z4tWrk?hUg4A(uW+9hG5LrR;g+hFsQCG^@K}SQOl*D6IX?^I?u__uF>Zds|O~trd2f zf>BG*c*oxWRz|k9XL}E--Ql$*cQ$UpnewL~YU&vt@Tw8;U$b5ulS0Se$U*#EI$fKKl2e_P5CnoXq>^&hs=j%wER;VOba; z95F&D8E&trMPL;dRf#l3IvcW*#j};%;Gj&t()HY$xofi~I`G-k(vkM>$zND8+>lznjFDjAZ7m(xgPH!=kq6S#{XS98&zlXdLG4=^^tqY>5e23v{ zn#!sdTpMHU&wb>U7ep)B41@4ivd#t3N>;rfT1gL#_!@$79x&xCfSonrRQiDC4uiu|A^3#3`yVUC(;hUrOXODj)s8qi_+? z7smv6zb6Q%s3hG+^D9ELUo2}!FP7gJEI&{R@;)vl-ud_gB)+?_uB%0FdzvH{yC_Q2 z_o7NrtTsGSN)zDuK^|k~Vk*-(&o#N9y^-Xvaoaqva-HaJuOI~(_bc2gK~I2B6vQUj ze&+H8G+4FvZ|e%b|otHw3neRlYl@1f)sPtN0aOW$q<~( zdm0H~E+12QErPBe5TukJX3zTpG%gwXd$TXn7s>V(WG*JoXVg+t?8#&iPKM=)mNamX zy@NdWA{{me+Bgjse`D_AAbU9Z3S)6e0fF~eGzd&m)DXU{NIDZ>**x4dL`5~2IMh0D zh&@sM@ghAi#GXR-BS8I_r;0-KhkroSZ>W7VxmW&J|PZ0)E>ire=1rphhGWCINnc|B-ToTc8H-c3O8LmsZQ891P zq~jEo2z>E=&?==#Z@7P1FkFxh{-eZQxlDiG1f%>&%!LPyu*+h5$IWl;O^V9zUe<31 zyQtW*%Vn`0EdH|Sbkx5rwsrtM?^e}gl-<7KaXZ+r3bjw+>}GA)d(vS4va0f2AkEH{ z&dMj;^vj|vxppgrHTf&}rR_@AE-E@;8$lQr(z>c67;YcMUQYLewA+c{NYMcx#0s z%~H&TzgLzmeDteR_Up3jfL~f4{Y0@x1_;f3^sV3QabEHd*?J$Ht%J)sZ$Bi|ju&g? zE21I-Ja2`K1rQ6m#(8cP>`XW+CteZFasMkW*g)+k(c89+>f}Srm^Z`Y01ldAxjzV6 zYjGUG#D#rv3Q}+69ecLF2ip(2Yd=9U^tSgmqZCAG(;xOFa@G}E|DL@c*^6NGZD5w- zCcCeQHt>4{i|Fxir{_nk`UmHYM(l8y6t5IJ{+4$pzv zM-7&4@bZHq%CD~%#WgF}-drYLS3yL#E2=T97*6Kwy{?L}lLkS@ey_s*Z^1sm*b@0h zCT;`bf)F7br>LfcFJ3L+dIJ{1mp-xEJrudC*Him6k3FyZ&+NNjvnn5}47OiBx38ub zD?0e)IlK|*c9rJ7uy-ZhG?sENk_B}}$@wKeR+J{Z;Y_SlAP{UqVqtnimF3a$lLAS}#H^rc7r9G%H;Mpz#ecP!On zG1o&24L-$0{{%}-rR^IAdQkCY3CCGa%cFNnI?j8##Eai02h)(sU2+rmv%BPce6GRO zZmnp=R=3*7YY)(i*VAjtb$_PE$~bDv>krev$~YQGf6&;nj+XMZqjXAHN3`7H7y4aU zM+ctbBFgufL^M!+{T*@gjbG_A_W%ChXqx~>PkGmGbVGon zo*W1M5a5WFn_Q&iO-Fw@`XU|vremT!=Mug1rlYSsx^f^>D&IX*o_+Bfaw@Pdev8Ok?2Dgw zuE@UlDbPyni=V;^WMBNOQV{#%Cj~0AFTUyXZT7`?x>aFc-=CfWe}ma4-(FFbeesp} zYV3;-;HtAPK7IEN`{J{FHP{y)`_*J$e27?!eeo`6ZT7{Rq&n=2H(Yhu7msfB*cbC! ze%T#;HqH4S9KB7gMHf_r%FvAEy2CR}fw!fXXGn$Q#@ECpNO6@MwIsRIHSHxxMT<3N zXd+C|W|OR;v`LGKMd)IuAFNpTZ1bamK@K9rb#)1|oTWYVerb;&M;%{w?iRKkEv2Jo zmv2LV337yx5qTmFxyJ8=iXVnj6u$G{t2cJ|NcJx(Z0yJ(gU64q7aJQIJuqTma&l5) zcvM&dTm_#Hl^hZs9g-9t6&*1UE~idPg1f~dY31JA0w`R-H(pxmihdiMIAR`Suz>wp z#QrQ{f0nU7E7%{({;XnuRUHg8N~KUiboK4mnSCbV-@q*FeAvsQqC z+^K*-vp#;aJlzoNXdN(wp>y-|FK$r|aj;fXdD1mkR_Ll$k{3(Kjp==}W(ET{!=Ev! zn}O$~<*6(sZA|K0;up(GWn9P5TvMq@UO<#~8un&oYQMhf4OfSE98O>P)HQK?Vee4K zzrMZD66$!HoM6nj>?f{?I}33NmT7r z^*7FQU5apgER(X=kz{;jYj!j^Rz;l5SGLMtca@59jFq$)Eb>>p#+dVhEh7Ry<|t;C zYu0yMmFr)pB^o#?`!z(wl|3YV8#tPh7ARfpA!&G>K5O6zB^ZNpDSI?@G$!3K0+$jH z?l*LNrA1&uzM%@KToxBYrB06K{*j0VvRvpga|PF^#*S!79;b*s0Yg&$EYPzijt|IW zlrF@caNU*F)B(p8Fbd!Mg2V_Awi;8Q7`&tUO>@UJdEIq7zlEc=-v-1@G2ZnSj<#eI zN*7XWxK8J`bnGS=LobAK6WyBE3gN2S+R<0?JBYX_+-+?fqsa-BF1R1OPCseu_?Tb} zJ@<0L1p7Gm0OOJnJyhglO7UrYj8C2SaZGI|KfO-t^j_G3Jl6{(J!V{D=zu3)MG>_M zo;-GY2S>78>ISXc(J_RSzJY29U&B`2siL4z;)WP;5Cn?+i5KMHILC7Nog4I3oZ~Z6 z69MvJOlg&7B|)>=KcKnj@M0hOaVLk(tH}*tT5s64dZZbq%*PRPJ3FS5wm6x00h`^R zNnN1yGzhG=AW;H^D2-k(ip$y6(OM>{8a8a7f~r@LAeJJC1sK~ZUx_Og)|5EEN3%%} z$1a)14TYfq#8o~Nn0bTtde4#THxo&rIO_QKA!K}x(%l%Y61^RtNCcyBPepF>wh&w+ zg4EY>mSkdjJTevT=cr4z<76J0GH<}ltD}t{Moj*i6VCax%K z!^JClFUe6)3(vPny=ee?cA(>g7F5^3L>Wj0*9n%TIX_HYCWqYQ^SDTh7z6lGV;7cn z^&A9R$W3pu-dbzAd;G$;5mrM3ESUO$hiWQM2o5vx#V#;5q9?|Brpm^Svp2;eS>>^gmy-PKCLhihd#s1$CqJ`qimBJL zwDMfXTXga6Sz(@vhOd?xn}8mj;P}Qvw~c=Kp~FOK-U3P8{YmB=fz?q;o)&rivIVru zxaorL zAEDMHU@_bXfyY4&g3dKR6JCI=AZ}pjG}*COBC|9^wGQ;T0V)r4sZ$+~WwH#T@<2C# zh9ico#>u=fU3QBG&UDn*BIv|iW5A2m1%E8KT70zaEJp|VdoWnslHMpjZ89LkqaeTC z^>99TvjIHsGV$A8FJM*p?XK5w3U7-p++uslqV>Hen*m{dyX&)jGC+`G$5yeTl;7^! zJv8d7Oq9i;6R1598dE_jvRWQct#<@GV*{-a#}rs2el9Dq|) zBg3_tE#{4dGcZ6$tX>w2xSf}c0zv3)5eQzcbL^1dL=1;#$JL9)>EU@Wh=mK&*kvc7 zbjeMJa(|_<2z-*yqj)(vWh(g0|Dt2^*y^;=myY$c#+QygWCG*q4gsv~Mkc7>$poJK z?Ce*Lanf>RfhBs4_#U@~!U8n<8%KA^iVR@VgL4C{R1C0?8Nhwp3v#VIBVS_%XiT4O zazuENu-Uhch0;YN;W<4^F5#KmVqNz{y5rbe(sKsir;O?w;fi6N+!o8a4{wVVq)V{c z9J02wbcRV9PflUm@>N|vBv%IMAU12E;%etvSzH1)m9DBP*SRCwlA3q&v_mdb{f<~Q zEBmwKU@^HJ{9>zSs(e=!lCAHERkKmQI_mk#@59vyY-Lx4d#Z!0e#z0Tu$&6lEW-6e z2#zTC)B!!dJ+K9po;VuF_3qGV>0efYD;M~JPB4?z?Mi$}*GSz9NZkTL)`eS+bg~Xp z)H!EWMJ8Mo#0mpW$+Moj4U4Nqm-wHLrc-}f9Vzcnto)s!mA8Oiu&srjyz8hgpSmL& z>=SxW?xH)vF!vTROYk){V+jhbp2tg_??e~>w7RMcHw*KA#49~3?wT*b=k7?vydleV@9K-aRUU{q^!D>Z2Rw}3_^!U#JF9SfEkEEccXP>$ zW|z&ZB!eWp+_AP|ArGghCE#lC)NxlLBkm$M$u7Au9`v2|-0>Y5iZgf$NrvN&{OmY zdF5C_4q{e1r~W{pxF5r?Ce{`Ax8p5|oWbcj+>u7OtOv5?F-x2c@&WNKrlEd!KD?q{B=(s6# zV?X~gw2EKmr-20z&U{g@pT*6hx##@r()6mCUyjmC&#s@tnZ=DXx$l+I_*IHdb5d`FsFJu{9Lt(oaZFaF1B z`G8Wm`}Cl^a2=v>)78TD_rRBp?*onVKnC7{gbjOhKPf}+hh%1w`&efl`;LZY&LmH9 zG7EdK%hD2-*+UDji+a~R*(j)BdG5-z%c<2B*x{{`uIdq)X)>wuCkX5IDIRtM|8y0L z&MYpGKus1jutbeYIWj%=UZ%L5%>PXUm}mZLY#(YDI^sa>Qm>H;XgOxt6DuK0s8rmh zd?GrBAw_4DrtAh#sRvC+aL2lCOn`i)-uX`v>!KQD_LfF4@WI7~=^=Tn>-DFIb%4Qp ziN;ps0nd{+G-{N&SXz%{TBGO0`-rRl6vLNejWf-@(hdP1^uzQfs88>!T>kmppJEKN z{?`|bBJM}n-krZmZ?y1+Of{&@j`@>Ms+kc9IOm6$kaBsQTeSK%P zi$d1-z8J{3I%V$lmfyOs@6jgd;H2)EaQQ%O*h;J&$c$Ivc#pQweW7%&QZyhBSNaB4 z+T&2hefKp}nhj-)3)J;V@63e~8G0YQM^gm`-KWWYGY64DnjEMBsFW5c0w;l>?C8n> z1e@oLyb=t1jsGw3`Un2MjNN?Qo_4OdJy>3UUo>TF7|VQazv{kl`-cNEhs)pH7cJQq zJt+74jo=6DN_Rl{w|-BOG8fCY6oIbmxp1Gqa$orTx`CN@%gf$5Vk@>9OTJbtDdh-% zf29=t9dIoev&(?bi~bU_uxEc?r%-eIJGWR2kY*FWkvT>d3(MiYzI8_Cy*K4|;fHq2 z-d(xtvrCR}^{Hzz*Oix(K@aVieZCIvYggvUH|23TdRPBZh2yRspCeqoevT*&5Qpnq zj|uDcOOLJ|uTXo9tDpNNbAwDaW0E}D+jHpY)0wY`U6Z4A_5TzS6Lc03l(~93g3Yt1 zi1#t6i=dP`cqw<-6dx@X4xVEJYa&1!2)EXpLw zR|B%afNXl;>DkOA`9Ha$2K=Q5A%%9GVmP2xdyVc1x z60c^itINgA;No(}Tzyq|Q?YcrT-v2K+>MhfJR>Yu)P$Ol%r@v&XLQ}3;W6@;Qiy?P z@H=X!DpE}{lNss$jeltW;E;o=c~Vu~h=ixuz4arXK6SBvsP_!aYqW=5&!w6h`UgOeQ%&GGb7h%;0Rt+UEgMKjD(%opO6{IdSV;=u> zL@c=G?{vv)9*9`5N)O6o!K?=&{sIa=Z*0t6^a73ZTyf=`vt+Ut+dwzGA<9Lhn7}_# z_6@pm;@bAqUSUSCd|A=>qFxQ&+@5jjI zb=OE-RmCW=v~nw_zpHFjCp_X5_mGDc1Xf!EMk`cz{w4Q)sE;fWZm5Ui`lqOe;%b?o zha#k4J;bCaPEoaX6|3nyDUnYfLXtby>I&0+aWW<#I-EE~B}tFgc2W_rq%O+AE@d0$}fLwY&H8KOndRo0%0bumMs zGEPwiT^Z(_AU}90s_1>jQeQ=3uQs^J4Y}AOQ8|4d>43PWK7!I@UDZFJykR=Zlfrz_ z-B=RW!AK`us2Ik`dnnIgM#^O${>q>F#5y0kp2av}SlqM#0v{L=U_m<2SSApK7voq_ zyN`F96D;?AB#iaG-VVHW_k1L3caMh7;okCi#b#slu-s<-9|@ZQ4zJzDGKhfYA#X%; z=LUHL@MO0}t$ieJjrzKU^KW_EBYh8Ho}&ELM`H0Jx|MT~B>((K-$Picg`-v5IIqj+ z9_j1x=PDTQAvl37yCMpt;9UbOv8cy5CC`Vhx&CVBeC$OEKlWVi-*_rEPi}T4-g(^lbCz)}?&@qQk+z7SenNSt zqAVsSS|FT~UyQxNM=wV~3zYm=_-G>Iqp#3%|Hr~dgL^pl$@1jKqFztb!*U-T^jP>P z;P85FEQ9b-4|%KKcRF4(i<&9!zFpPZ*_zm~ZTKvz6{Y0qbIlds$2r%F>_VC1C2y|* z&iBZEoXl^@uncgvk#{|&j|Vub<;QZhO>j&+3G>qMfnk;G8=!it8GF6v%X$_z{D z+Bgu}Kk@`o6g#I64RSUnuW&Nkp9nVvBn<|^HSoMYdwa0+Q&RE?Xr31q**xSEdSr<6 zLoGbJC1lg+RHsDV#_(MKABH-2$WIhyG+cDbTsBZf+__wJxO1>f8e!7>UXtx2oGGLg zPUaj(j&ydA8$F>rM?ybcgT?jYSFgQ~v3M&72=-CVA)XM186g}S?TptV=yY=5n2!sH z1>G|A+cD0*p29(evCfTT5oXB!aXv~x{#a|A6BcRLqD+0&zNJ_e6X5gi^ot2jt89Hj zyL<>`ZNntEC2M`;+$5Q4VA*XDb5tR)?@nj6ld$g-$37D zew8Hp`;lu^3a3^9_n+T!<8#iv0YvM=Z%R{u}xBlgMLt;g((N4O{Ki#yU&_BH>BD|ec+vP6nJg!@0M{+Hs2C{22@`(I$auPi-kRY&OsW{u3Hl%Cd^*cn$Cs`8!OBnu&Asz! zUDv%?&V#;iRm?QIGnD2?t7|rxKjQ!6v7{YiZw1l;-sg&whIt}4d@7FD;1neC)*{eQdG`~RKg&98T!xl&P#APBTiSFmuQ^K4C2QC-Rq@;Xu_P$ z6=|mp&i3@oSZi@D6~0Nnot}VP?-|Yd(s@@4t5aV&Frg7v-6fy!OzbCBl~c}mXyEzY z%=f-=!mCuHo}pdxDpnOS?W@6pu6IScC*2uKu%-DfdAe?wvoEq}m_XOS@v#t2L1m;A zZGEw`;zP4@GWil)hqa9X8&C?urI$~aDo-;^vnCSqld@nP4U zXQDfOG1IwQmWw>+-D%?U9KrG9<`15Ut~9{&t~8b$!SW%pah@yQOjiVh zJ=hU@q^cQw@!0SI?J~>JTpsmYUkk<v_!|dBx--X_L6$Pk z?h46=2#ZjPO4oHR*Ezu3Zv)O0n|lU5fqA`eQ99q;;{}kk*?>N85sV^wH&a5ly-l`b z4Borh@Pcl8>O7=H;4Rr<49l8A8DN_~cg7jX^Zj$UXLxwo&Ai9Ks|o-ozW^aMlJMa3 z!wcuPBnMOHQDpo7WAD4;qbSq_U?idMF|!V8%1gMilDEG(tgj(>}8+b+e`F)e}8`c7(RP5Pk)|yrtHk@ z{bNfQi!Kk2rRlM_IA!l6o4LhFe|T)29+r3I{*Qn}unB^4?9nk_NsqyDRHzo|jnqiT z9^tcDTbi{Okz+7bE?6=y;ey57r+s~_6ZNoK-tCGJw7d&gJn!l_Ff1jxthI?GKZnt{ z#g3J;UL=6V^R5ofpi{J&PJGUXwbbH{uB>34L>Ar`&37JStn0z%+!xLFwyzaFQMdiR zXuex89B;mh?~CRO@Vp1}!i_gy^Ezcv73(-6zlU|_HZHnP8&|V-kc)5)KhDVm{W>n@ zfer}4LDu?y7=a(>>?YsAz&v=1?km3pSyLrFdG2oVz!-->`J3w2&3aga2Qtk(z=xxi zYg*Sya;OK@nh)01wziOK;tH-GzsNck7jyk;KA>OMw)XRe(B2H;`w;8*dIa8l9*0`% z%THkhZgSwjBTXlgLC+`6^b82Mek_l|^tdG_;u6kb)B|zSOb4qC&gYvUOsNAcO^0yt z(dJ(Cy(E!~+;sO7xMWucW{|v(ndI$iZ4IK`BCS{C!#dvVRj!sY`kJBgk+FGDLjdu& z1Ow^CNprf=Q$v>2CGS5FjqM%AN7vZSJ`jyEJn3y%?l?zR*F4$H3P`okF3^86cM14TwcgV$9 z;|OW~P`okF;AUuWY?h;Z9A|w^BHbSHR|bI^+(I`TUDe5|-XT}_A%ATk`LVJL8EYcm z8sHLS%Q1=8ecn3dm?UVva~=Y;u2Y_kN)V+M$q>#fQJr`R$CoEx#>G7LR)Y3Dc7*B? zc>M1*gWaBL9ixXe#OX%WCRjLn`uNtIYKR0M@a^=KFt0nz2@+)Lf{Gwa)mm&#QiiNFeYBm(PjTkAO~ zn%;fVI-;r;0Zvuh#*f68OO`F!A590JcE!;5$%=65U$DO#UAd{ik47yuRzygx8MWH< zj_R(}QxcK<8Cc--!Jb!Q107PN$tw3--NW_|o2*f3tU6gU1 zt*41R{Sg$o!;I&)=ek;(%5!ls51i?b=(k<1hxG`&2RPHs+FD+V5qJ*(2m`xY`|A-5 z(R1lvM$hgZ)=AQFVVpzF=XREzjIAz$>|h6WCvmw9>k3KwM8NXT$$yApc@&*^Bytqs z@Em1sDe-p5OI^EO)@|gm8axj~@F-JyTVIe!^~c79bVpUU+G7zu6Z=?UUmJ@Tc)CLx zJvL^hdwK-r$EU4>B$E1Ayv)>sLQ;2Z17RK%Re%8t3J~bu1x2fV)(<6l=woA0v>aef zk;mX-9uz|#(+dNv%k&5aA6HUk!v-uVL-cqKGQ`@)B162ySi1eo?+tw{+`D%WOArSi ziv+O`gK^hVumpRdzv6MJt_{PIY3$&McZ(rxYd9sB!8!f5beA5BDcge~)<5Lim@S{O z{rFf+***a=*;YDCx}?@fXAZT_lxsiXt2IVG5vzepG|`k1!>o;bwJ!>l5^JQ(FjW_XLewb-7EBIXBUyywvR(3r%YA6ZE3Lts7bJ1dXVqq$xMX!T6W# zcmkH-?ZZ*}bRTKl_5|Jjj;)%q?|JKXiCCYY;}z!s1lL2gha2vriPkWQoOyy4998-w zxTiF@BO~k~;-c8i0G4b|r625?6T&2dnsgaUFJ|Mo1X)&%qyFqrPBrQ?)!M(5h-)Ga zL2xoD@Bep zL&%$DZEk|leAbE{a*`Rs)Y;ZZJpz{|%?$Rbd}|*)ET5fzns1#U_rnN$n)ynBwJ!l3 z?iW~B>ah%oXNc-bY%sBx2$yIkq|@hGKPtsFS;93NU$nj=FT$d6*UU#H8eL`oJnOqe zrl```THPlbF#)k@0+(nc;fd#_sp!}W--&LOMEgC$n7P|8U*IR3+OL7thZM~?rwk)cwotEt*%Cl zy!-tMX;N{`yfp=DX0B-{7BF?Z`C5qoI;)Q)xAdSjgj(MqAi?QI*Tkh4XnwXtjZ3UF z>!hmE4KG_~d$U~3dh0y-In0P#u0JaAv>e=M4W}fPwi~QIWYIM#SYZN(3=zFhO8_a$KOtmO)DJ(HA z$^#PcuZx%b0hxSJ-du?NMR|Ymf1lyyN7=vH4uDVKXC7a_{ggfNHQ!6@iBByrvnSr# zuCOQG2VG@PJjs0qPu25yL;ai;@|e5Ep1{;pS{*mL0<#E2{M$;v9_#H2ySJdj-{Pomco7{MV6z1& z=??23#FC7V@0_;Qq2mgz3oUI>DUfVM{S&HIpq3GXW%|@{>li0y2@!Sq>Ep- z`pJkIoJH*ANUse_iwxe~Ph=J>N4tZzAX?{y^^Bz-W_ZH-t0fy1+`41UApLwqiqR|Q z?}g|e@9nItoH}K#Cs`&VN}%CR%Pdr&DfiVI)@R6MAKLm&>rNTrc<52Z3(L`Gtlh~* zAL=?|O}A`DJh=GleP~=dWJo4{ZC1&Bquv6FYyt;MgRjQWU*595No+pU`nGkMMM1=R zMcV4nF=wqSEhkVZsF6VwWT7g>EYwRNk8%F(f(~m~IGhT`Icw3dbJkhpst?_I4m9{& z1Eid3jd!f`EnlKi&h&Frrs|EImrG}=oO;(^CiSdUwpqf)L2Tb;7B zN2Oem=4EKRi`Gz2@Qi7;6w6a4;9(zHXUT}Vh|3U7A@#;cBo?9D$11zYC@|VQXMY4* zM})8rRGOw#Rl0r*lXEho4DB^i8Hy01Ha}E+mNnmb+sFLNw7q%U%g%sfznkD zTW*jRPbeIH>4`hX66xYA);X4g$QC>y?$Zho3Y~t{`m*J?Rwsfs_D(@V%NbP4tnbIb z-07<|?KNR}Ybt+ktt2CK5A&u86JYKXY*tNq^>gbLiG0p&)|tM2-5P<^?&g67*W*K{ zj>({`KJ$ikBDr5ijBM{Qv5WIPn_e)S6+_#AvIq`lZ_UX=Fh84` z0z4nudf|4YvTa0|c^y#X2`Wci{ukSAZ(XS!UHRCWEw{$(_{_Bh2*Skr?HlV;g!EIz z>WksHSRKj=u>ig_vAh}RuOF<|Fcd^60^A~ZRxcF!(K^+#l*u4^X3?82(h3l&a`Pwa z5XrJZs}#}0+wLo+R={Dt^IUDv`zCk=d0ktz9_a7L)T`x-=|FK3| zt|JhR==(d20`8+y4e{3R)@clJ;2+ktZf07h^Dn1aoLP&8RNbF(@3&^km$Y&^uD<0(FG=Ey}T+-R-G(9EZm6U}@IW2kH96QKqsu(qkTc@kL- zKiC9zB?jZoX$G9*Wvv{*d2{l@jJ5J0^E%~_k8PTd#f4M`QyKfa^`6SH{!X!$w~dl4 zMF?5zxj#UqEDU@AjP|-75H2Hl4>NA`?G;Gfj6J;gwxYTC}oNGy-AaCwFWpTSJ4W&4d-KGPG=AeYM1qEK79wemdNi3tM!I-J z!g0??;6v{Rjcija8xe8M-#bt#_sB-L`#s9mQAXe%d`^1uVTmXhwM>-HeQEyFdo%fV z0_hzZ7i-Iw&oZvMq<*FXOX{kYPH5Os45C%!}2<5H)=Q z-M*xts^UM{Ho1&t7SmKshTPlJ;JcgCY}uA+sDcN_xaqdmmX)Z~4emR`7Vilj{;ky5 z@`?%g?HRUk9eBZFTRnQ`R%V37Y69+>X&a~m=fXVLHM*naZ3DOu$V@*;8(Ys4K7T}J z8T#Jt(G4w^&5*X;$~2KF^T5am%MS*40tQ-~ZyT)R0V;I1JTQS=S73We2dPP4siNNU ze$3+TNmgZ=^~s13Pt1LvjL5Wv8!(wj_PMr6M)2O2W+sr2SXMK5S7f!0CeS>qVQ6<& z^Q9T{Z6hpC>v3>uW8OHOLTc)made*AMjA1TQybH##Ufj@4pAhiSbKT8iB;w6u`?J> zx1pHRbIA#GS?>n{b-0;fA;2U-v)&t8u!itGg_rDbd{<2br~ zwQZ8rfpN)}+hPWM7~9ICK&l?%BMo8@>Q}q9)cTUD`2dSZ)n{L}&GnJS37P#*Z){st zgWYU^?Y+e|QBpc>u`QFNe1XBg+O1*i(J-{c{j5bK?oJk=dMk^0;`Z7@ja#>=7X50w z?TqCBQ`ckgYD1+w1P*|5Z1Cy<&Ihk&O~703geHN(*#wWiw$t{C| z8Zv_Sh%o2BjIe{dZ2P<|-j99Fw#iaf)>P*UTSO~Bg9~NaZre7=5~x+8wTW7&lp88g z7KZWw=Z1Z2gbF;63Mwr>=!hIAj}1@?`k-xoxavlo^%crQq~;RVu@2#QU~58lEHv1m$Wd z$gY$xc{e>`%O(Xfed&m8sAaAOsJ%$hXuqe@p8d~gE0>PiD!`&r$wc2*iLNW1C|kfr zxz(*IGPDBIqH&VNidnL-=iWSyO1U?!GL2JgKgbB&!6cQwDA{)<4N^vnP(Qb#{Tr%kn+ZUmER=D3rD_)XC&_Ps>f_=(*%TH^aoRlKF2NUPs}YwJr$rk`;Hd|QL# zyK>I{V7majhWv~p;NLYkEs>@ISn+NfkSMOwkR!4k+St+?1p zehk(<8Hl9;ohJrT|IckvCNzeB4n5Bf6B=YuCHmv%wp2Zi!FP>ROCVkNfKxeq%~m8? z3JrAiuVd4rOtAU9ACbeRp)2`B|aGryj6nYQ}@28oB8&+R0C!no-2-iMXMc=GLA zwzuF$J`T!P0B&PYp8Bp<5~=S)IOXR~edg@>l4P)XoiF|6z`?DgR%Maxs>7v97MtSl1Wyvjyf&k?%P`@h&;Cp$e9y|UOw+5N7qo3)izbSzKA3?(85k&1O%O$SQwhD_E>rVY$BujhV#0St76a8$;tI1Kjp9cGxL=)Zf?! zHfnHMY%BpVw(2!S)fQy>H?cvFmbVvp8w+)B{yg+T z!vpM1%aBp48}d%CqTq;dVq*yFUFFJULT|KIkU(>FTQvt?s{=k5LqL%$f@5+fgO%QBY2Ov{mFzCAA#0yWdB&Q zj73C?XVRLWx4mJ{kFwX1EHllpLyPC(cRaCSQ)Ar9s!eG|w0)^%IYQ?tWQkUQoU3$g zYF{W>HffcjS9%mv73MoinBM75x9p9e^>QD;)%A8 z3Xr^XdNXMI*Q$uNf0c1WZND421U0PjUyZjn^C5r0FV^^f!*IOu->4#nZ)rbyjazEK_JQjRog=jI9^R@Aa4sqZs9p#v&xdcKL;$H1P}+21W*BD3AA|r ziKe%z9IHwrJKA?z-enxT=YVFa+K6C@LFMQKLG@jr2&%8K^n5(>1=K)LQ3$F?r9~He zB_ASH6_ND_1M|rGAy9NHfW(JKNCu>om=u`T`O;B+UTVWnfl5*I)*yR#(y*!st*CUn zk3>3FHHKDCRpEA3MQHU6fzzJ6Z+X3^Jy(QQrBGBhp7g0|46Qx}BDPHX_jG0!4lV7~ zWBLF$G(9}RF3ujqfzl(n_P$Koe-%?po`hk{TA}GnRf|LFZJP8E^eFqP8lp+s&DgZ0 zr`F5~kX~Z!Gc3rGC5CTGU;Ag4PZ>q;(KFUd^n@WM$d&H+oFuO6=QmdW2I0Zhd+uP_ zc`W@5HN~+MHo!hYQhw=ge^nxKH4#z1)sVUnQ7s_U_U;#itTHw}mMRKGE#Cp)$< zPfy2G-aI`4mT7wOVq9fKo;{IRZZV?XV`{%iO!1*Y=4g8*$?{9d*auCp`NENTMAD40 z_LJdgjAat7zm*aDFZ+$N_pk&6X~Oe0rb=3Y39d_I;%4LR?_0t&NHKEYlaB_dl#d+3 zg6PTT?MGzX$#ReTOVmRJ4j0+Njj^R{# z**)m+!jTU;ywpjvAYC4z0SoQT=$&Z=HORpr(W3KTf)?F%t{rX~T5YdD_szC1Bku$m zTl6JW`LjWyMZcSGA1RT~f_RHY3I3WJj^0^oZ_4QQq@&l_>#?W)v|zQDe&MTPG*GfO z&0M`XMmocUZAtSx&8a0FWXh*mkZvMjqXKODRr4Tq)e07=t9r0#(BnRYIY;*e(4arr z06j!pF!Bg*&`pEYIS1RX2Uxs8BMv38R9Y{xPmnAF7*X#H+Wip+OthpB+P(xr=!IYr zLX)w;yjz$6H4sAfW%ezEyaYd31g*eeJc6bNi@pHBd0&9IW22Q6J>6D;L655jbq0%Z z1w@V{kxzn+vEr{@hWlZ#7*{~7z>syVJ%L>v{ zw+j-*nANal1`<#db^i<`H>(@NtE;O1HTdQ^oRz06yc9sFFOj>|jRDnD1BQT#W`r~7 zsCD-G;_2o(yPqV{f|C$thTRcQYnWPuT~$5JBMcPyR}pq&FQni&Diy)lylD*-VC(lo zQd+tImK16jLQCq%z?;$h*{dp0KF|O}5T`1A0g5{1v%~gyVp*+K@>Ola+O+#y5{QQAy*C`QXGoUq zC1blkB!RJ6It@bwNF;Yty{$vke4^&ueu$C_tN496uY zS5rs=@X$Qds%fS}CMZ#mCa0lwcBx4V_Sw5jHAUlW^&X54^53wJC4*}k8{&Gkg$%4I z8sfnBArCLVQ7OIxA)G9XZpCqi7F}s~cV3+MNH2l21 z3N3#DEE-eGXwf1KRRQY{q9 z+?da++_*6T!IWDm#{3i+bBEw9ZKHR;u&bX?f`ARDA6y1Ibo_ z9}u-&1cKjX_k!A^HzAVGUxx66vO45_55v2^WWb1AwlAdbeeY$Q;{GrI0BTmZW2wHeDPUK^eegB;k zo720imIW%?@7OQ+SgM7T=)^Xv5Xfg@*og|T69@kePHYDEPO&wu7)D#y!8U;!Htan4 zhy9K(=?=e`7t=5t_hLeb@FKwfmp!bKMU*hf@_fnajs2JEjVq%}AuCk%mSVB_sCtpA z-i5M?qb%92s`n~}QEPBaTG?M2A)YSORO*mt!i+Y)VZi6HU8%kjNoNNr^%-gm86L(1 z9Hseh+*q`o#i_1awS#L~9nJYIYw#up%Hd66_^K$6{?(iIQ4K-+mxcCg!-_-vZ5nV5 zI`e}@Q$u&e`LVc$_aR)4aKDw!{xQGHQOaCz8%xGFQI2`N?`C|*jct8k$S!UhVoy}+ zyzx8oO&GPsD9L1gS$aE0NrbxwBV)mOKl$_9hR9d`bXKeqN@mxfTi7i`mLU3mtkQ~1 zsX^s9C4^iLqfv26!`a_}ri=3C!#VXud5>XR|DwE~U_;BIys!AbvtfR-D9-}RrHk^W z@aO9cUb}DTFK#II>ici@#IHiQ&z|^sl?UvJ@1T6hp7@rdN9>8uk{`oU^*p{#{zNzw z@`V+NJwab5?i*tF{J_?g!^-$($|n^_wQzplP>ZF{{g0pX*`KIXshsq2M{n}}#@ zg%CL%LD0LWtr4_un)0072N$1CgT#~`PTy>&+}0!Tt(+jCSnYCunFe#EN0vde9dIPS ztIzYGNz?wzyU7!E#I4p2)PJm>g?%!WUAHs%51)!58cp>MB2SvzIx1Q60!%6*%oahL zc2YXaD{%2eUt2m^0G@PTcZR4}7UMY`b#|MNGN7|^UXu4>I+}Hk;$mhUKL+UD@)SY~ zx+o!ZMpvbhp1{Q!g^~2&TS~lq783|~cqs#vPwS?%*29ngKnS z?QUen922M+F+ixfi<`Jz&<;csg#|laq4e*eER*E>2ttHK$Uq1Sp9n2xY1Sb}Cz^j# zvCs<{N=NBFt=d!RqQ^9d5h%p?^B;(jnyGY^`Oj2->!{5~oKnaIYq~ zM@FzXE7=G=pHwDDa&OFrJEI>i;c?YFg3jur%+$jg7^_z+W&8uiSDseFC3yyB0}Z(Y zZxqO%HH0ctOQy(ApLhg;F4lSLZ1b!#L0*S>f~ot;TXZGN%IhNNxPB16I#{MGYEkO9 zq;y<(i%RRSz-PW+$3%IH;(_%RF4hMYc|C%LJg3alqZ&-CeiX{78pMvs83R0jkkXCF zKOhK}D?LoCem3fxk|`QYtcsyi{`5A-kT6`L2?S5Ls!}-37^R$%bFeZzN=NBR zSd`|};XBjxut)k7_LOIt!R{QREHJ?8Bf6`Q6pJKo>00Muh3+Px+zOY*DI0vqE)Og8 zG(q44-IeF_8xgw)gXcg5jmgR;`3r0&h?w-C8>mDJU;4uoWxad{ z)luFBvm3nRd$^dTN*@5EaUbRP)ngb!?s*|FW~hJ#BMICFvuXu&tKr?lV5>^CB~4Mg znCOW_d9%Z0G`Zc)u7GZ@=>yx=W-8<4Ms-VRd-J{U@MfEBvy_QaXC`yD+<_4<9(=KD z!P?dp%OnqGE3Mfv;qe=l;qm|s#+MP&>he_*sVyzotAx@I$`!^3k17MuNaO2bAZ_uXdn9_j0J5-E02#|o148X%y_xmYPSE5PRg_0vgfcYz?#5VR(>wvA@Vp&W2pH7d9bwo(TF}80 z->6UqeaFVHp8DdU9uG66#Q`NlBK7Nu#hKy&O0TG1B~!Pa2(;RVlp_*Jt|t~@G`K(m z+*3!CD2a4|Q4d=W*Wf}lIJchBBpkqs-(^*-$6soA23slG)rXJ2R%=T4Se04wlzO1E zI`8JQ+y&TH3vK^Q31bVQZ7y;>EdB)9j!iccQ4B@U*si`N!MOWE8VL6RcxmqQ7EtS2SjFiA@>~Pq!~PAB4~JY*M#vK}WA4834Uqc);lFa< zUhx6Y30IW0-i8XHSD_BiyO5#IT~)5iN1154Tz&|ZXwdM)d%43bWCCf=L+i^b@t-UE ziF^vdi`mQ8iO<1hw>Ok%xd_)4ti75cHK6NnC=K*Td=ca48%lfmDu#D2V#JeE4HVl= zWvZk{GsKZijUz0-7@gu0O(Poer80?>X(&QSYKUrh2tDE<6s=7AO4$qhivW)AFT!v< zhRQV*F$D1ZJ**dQY-k#0Ugx&$1vY{hMY^dXbwYk z`wErd$}tAYH&SY#W!3uu0aP2T{iLeOUrTw0iTFCbYjQ^x#Hf#M)MJbeE)wrnU&y!_q1~j&stB znk}@+MtYbVlx`1pbf-N69r0psC$odpg_VZV%)SM&GFC{;l5hzqrutqvU)Ir|$VVEX zC2_oy`clxATk9j?n*nhVj%-1aoXKLfsF$I6^g(P9VPEiAzvaIl~=O zNJNzAMnj`e4eLfF*x%Q|(Nw8k$B`|O<^aZe(PRw9L#=KUy?FeyP}ms22V!1$u}(DD zyv~BCjZg}p-GMyNq&YAb-RF1NCx8)?t*8UP~Q~CSv{=5 z1$(`@APC2VrhsxP)d6=K6kukY{UTh#*%vgS^IABP^{@u^4m0)vzgnv)X)PUnh`b$B z<&FKF){dv-J-C=N+unq}(8h5@k6>WtGGn&At>YK@G^WSmz)vl&r$z;aKHo9rk< z_hmXV z=sPn;B{^U23(h|hEu4RlG1WPLAJj1Ck9@}Q93k((FXsHS7>+ytShR3H!2gfVzb~Bs zAJzGHvGW@|2i?Tc_h6n{u_=<2`@MWq`5m1cY{SQgx)QdE z2{3E-echC9y`EoQj{xFzpxX`vR17+cu(WVfu8wtdfNd72Qrl*M+#0Itg{e^P);-TV zrW5%dCct0#KM{k%kJ(SUM{iAn*@6z#osfFVRZQS(PjPJ3!*kM+CZJQNf){n9x$iGd zbv%}nFg*8t_%z4sAkXz_j#u?a26u*=sm8MzSya2ygKAMc-cs|OG5%~z<`Qnc`Z!tUaQn!3AWX4^pBs(w% zz6`ZZmE`9a9S42LNmY{L7>-M_Ta^Uhd1my&jW0u)*SRf}hHj4iK1TG7-^7S%+sq}7 z6@;k?SQ9&>3qWLRQ6!SY6I|>SA>X)UXqopRaZJNn|hlVzK%fhGP*T zt)_Q(I6?`4|BnGO83oA4u_8b&#)<%WcfDf=`Pm~t+*j5A5G&^N(nd$HL>_rW$Q;!+ zDjeOq$+3u3iZe#YA`MK7kZ&Q7is$kmk9mZ6F|tx?E1N^Kh(qyU)-$j9x6W(69h~<} zoN!(rMqcN<-cZ9{RBU*~@fsNqKbY^vU@+dg`^AYo1K_3QnNsrKPLcmk9a;cy{E0JE z+}^qobL4sFWmT|OcflUjRtGQpQF!V_6jekkM&KfDQ$+;C(nR#;gWbCwH_FP_8EJQ$ zekFFF94Xd}zDCxq&q6h@)HR&}KPF*@?+X z%~Dcw6NV-a&Cbn9XqK1~mz6a%duS@nzqY8FGT1V2K$*}X@$s+_o{*dy-z*_DB|bGL zCpJDICv|B2kl3NI+4OYvc~zBD!{`zzEVo(i(Coz2oY zQnFG~6SGr>Bo4_+$x2L6wnxqzTP8HVS#nCV?5w2t)a>Mh?5w!doW%IV+$31yPl(SM zO78~IYRa~##rveN#Ka-Zvf_sh1+ye2B!TYD;3dG2X-0X^4^Efba)o0T)P+0giuX7HLKF*z|cwOLkHY-|?zFgt!|4sDlsrK+k;TuN$c zQbN{{+}xqL38_h`DMPd1|D=@E+@U$yS+PpHmg`PRp(S&rr$3q-S1Qx(zc>a&H%pC6 zZx35n>dc(kB)kp_gp?t<*@!C|A($G2sn^5b+xk2HjD3n73TCA;4fByAK zA|3d#qwoJUvj1yj|JTUWCi(xrk->4w-Ww~Bip`AMt4^79kT7_eI@U^Plwah z+b&n7H|{wOdOcpnkHf(mMD;ivJc;9Q4Vux=2aa}R3G8lt;AlYhH=v6jIO>s|upQ!o zBZ-`8O22>L=uEF2fo$V`tiyz&_GNdHZ3bz@ogJ{NFP$!CjOW#%i@wZq4Cm z9^d%Tf<5tVy)D@j-^AC7J@M@&t=SV_W@*EoU`)V{u??apqgvIZvGW3|&}AVo$m(l#AJ zeCf(#eidj~Ij7&+%T76py<44>S07F>1S$3GqvQ5bHRvG6ha>PTHZ6(W6BjI0|1dPL{^$XWU1lL9m zd(T|3b3(9Z%RA4Is~&=#D_JnVWE)vpZo=3}&kxC6llL!#r1vX;t$sHb=~p4rU0>%t z;uCKSp=B>TENe(oR#sAOY;tn!koctJ1Q@%<4uR2cb|Q`F z4;PL3`#EpRF^DkVE*jhfmAIojDjvQxcOamavZ#{txiWGq1fnf_g#eUrcz5;Y3`|O_ zdOaWL+(6{+7@tofQiGf`> z!Y3A*02M?_#R8~TMo+Hc%#&y7II$xj(@}}0wbHYub19KmqDrAJKV!5sUP%gZ`Vx65 zu4j@UQ&bX?VEV!o?}RxI6L~*I<++QK-W{)eQpY)r$h&d9fwaE~X||JAIa|+pRg%wO z)Z*zf60M3EKI>be8anfXbhcA7WmG&p-O#y4zGfhu9&{CzAp4zZ&PSlsPY^i0y3zJ*V5m#TdcE%2TomTjdeDZ ztD52X00VmG?;|xmup%huRNo8>INgtPo-)Dtu9>r?oMMin%!+r8l1z|-6P*ciH*+NV zYNB(Y9>?JK+QM(xm?EScNzNyI{IU^UuzS8wI8ABptV>2E(1FdJ_2eze5NMA4F1n5t?0}a&YFQ*+X@xzvlHmv7S3cDvlFLfDz$X( zl9yvHeDOFcY{60=fTjT_Nmcq0op2Ku@Gad*9i0u!N#D?0na((x znOo07!@sH=g&JKQ6HGp!`?H&KqPIp@(A}9!8pqS`x;s~OFzE~OH1CwjTTw-NV& zGKtV)!l5-y$Xg{!8ndRwOK9Ano-y=Pg;-x7z*Hi-R_Q3QCwe!f|IOJ9Zr~aYnKdEr zDD*Wm*EAILI0+v{`3d&VXht!Q{d0-^^D+D9KC|6D_Rnti&#Ua8ci2B?;h#x)Rzz-L z9wW7glUc|~ECTd_tcc+*^AhLIpE&oNV(vW8a_-!- z2I&1-EFJtm^}UIH9hvobI)f*1JA$rA&9{A_lHZQtt&-o4uyxDUa`e;y=WuyEBFma~ zdhi%j0xbD>mr)&@aAbtn%9{yCYANy0In&C@3lYBP`uGI~Ktk>6tBQEWe3ZLGoQH_K zt~6Bj;5bGV?@>peu?Er1{>y7p|NhHs`RoFD`OONuJt*?da%ZCUN;O22Og%-eBhQX% z!~0I>Z{$=W-8RDcr~HNoO{QR=Mn*mHeS$M-7gUJgHG_(8H%=PqRLG@7+H{mNR=$D& zDZH_bq{~M+v*eq&n7s%s}BrVP~ z_aVaSk?uz&5?0{qgwv8-0~3quR}@L_EL;*TN8sYDznmFT68-ymX9qnz-+-An!8urt z$M8J4GB5f7b+KTqV`H#`nzpMYiAxT=ID;Qs_wb-D5cs=gT!MW0{Um5gLp-E31b(y# z{J|KGkG?*i?1YyU<8e8EUE6l+q$ctUxR|?td=fo5)fr=gaPzl8k@6BVgbgo1$Lq=A z(F@K_F$^?P4IBkaT^bBX59)Wkcnj2zF491Sz zOIPTvMa}`J<;IynLho8lNtosQTB7S;f;S`lpmcsM|0W18(FBjbg5rnnb>8NO?v?5V z&R9u)jMZuPhjXA@J{dI|{u2H%waj(q=t1FlT0Oe*qBTLTVFKUuMdt)PyultFgtS;J ze()Y{+daKUXOB)MkbJa}KHvEPk=ikMJlfD~t{(2!^I$hku><(@mG#V!aEuJu@M#lX z#Ygs~ETd@sOu$QOTT7O}^kF787we{irlAtl5|=M^=6S2Dw9L6)UW4$^>HJN&nEB5K z0LAHi9frXp6NEBY82BDJ#9i|h&L1VoitHR4x+EG|ZITHl-|v8FX^O!UTNvqHK*yh& zpGME$u-276qH+73+42WWbhVonZ*SjE7O#-!tae_Jq@S1&>Zb7TF)V-2_ervN6$v=} zJ)b#yvE{)_oga0s48sAV$>SD#xcHz#=Joui<$PrWvm1wy1;LG4kFLh1V zJ13GBDdIhB3d7e~AQ5WVOY|ihoMR>O6#QZ@VtZjYu6?T%p*_I!x9DED@og67b#4t` zqX7dCX3;x71$D`bs$2z_AAb!yD}`-JgijZKlkcx2ZgnoHNVb6paA*egu!luxY=-x3 z>Y15xG?Q#hCL2=NEAi&R^MS6q#@O*xd3B8uNb^_Z(-~7_UU85ngpUW^gE=*r_6SC` zfYG4KS@eT3h4skCaJ-!DHuezxJV33nr77_ToGZ(aJ1OFTd2!-MFRLC^`B`au)EQHj zNU7p{y#^6n3~^I&&MiX%QpH994Wh9dg6pDQ0Q!T_ntZDI3IySbzU!eVJ4R!w=%Zpq zc@rzqlj$w_nK`ozo;aA2Z{_sNK)Pz+fRR=EJC!!P_7Ez|41ssAU%umPQV#CO@W1FBfjH!vArv3a zCS{u&?ewA<0`DcU2QsHy(MKh%DasWYc4vWoaSQxb)U=5Z{?Yo9p896tvT9w3$VONW97sKFkGT3 z1yB4n!FGP)S^4U!^F>MC&3K^1CvLDpUfA_-jrzXQQyES@ML}xYFH;@zwWF| z$aU4SpJ6y|*|Vx;0iJiU<~s2%Hq5-vt*?t7>0up3EG_8i4p*}+Ei{X8n@eTk)tWO# z`Q%II2#G|t5U!5EU|b--7Bpg$5-PPQRUU7izVnT9m7Ku{mt^n@s=>QsK;C%$zH@#o z55UDdRr2{u4ld@obwCTc?0Z-=^+e#4i^*mPlYVga)FT*D+C@|0Mz9Oc;leE$J3<^7 z!X?P?HGXm~3Nj!4P{&WspXA+GJT`U>dli*vl;DX6^(}tCMkzqwicaeAZRcT0K8fg2 zJ{>uWOSlbBwxE%Bow+8kSIl73e+BdD=yC^fd;e&LkoKFiK#yRs_fM+5vGQUOy3c={ zHznDpC5k4lgawyyC45@azy5H(pofLMo00U;uXEbTA!Z1z?>Tqt5x6FSe?hMtV}@|| z#N`kZgunlC_K@3|A#DHKIbM%oQ2n-<>U<=Ejo}#y|KTUdCHN#(EtmRT_FN`_Zm65x zQfxUK{Lr}-&PsAnegJe92IcKOucb)wfWi}zId?JE_g44VIfZ?us#u_XmC2S~11nkKn2rL#!1GZ=}Bc32e+kV_LS*jzMU+Pa@LTp8)(8U#lu83T7}Vxc45 zRwB!~%1H8UT%*NwnN|jbN(|6_gQ+ikU-NWGkRI9KXgN!--rQbI=$^ z;$j};wOi4362CEz`!7qxqFwt;l33VIzwP7?%5XP%9C3fWs$QUO2KzR*;vv5&o`~WS1(<4$Ogv z+_qL|T6I6bRo0ih0ZiFl1lriMq3WQMt&H=k&Cn502G@55`H=Y5d=93~KGPQ#gGF?A ziMzgu3{dPIihHUjL2Pc5pFM2CZ!$2mNuFkt62eZo9OXJB$-`RfZS66Xd%2hz24u%Y z%mWCZc;C7OovVGZwFvG4#!MI7v!I3z>|U=uH(er|;TH?+4H%A@Lz)j48@ocKS(IC9 z<;i)?yu~kHKqy(XJwmkDigT06JE~}BF-solXH?N@N6dvg?7mb*yNThrXzvNp&M?u^ zN|MT3-H2q@HsaStjO8n~;l}}#ttqZtxcID%I546$twPlub=!#Z0JOR5eYp6njW{u) z!M$mK`>~~~J6wF$#<&jfo(2bTrmh2o16c8a0Fa1BAhxL(rr{FJu}Y)1u7O0J*apXo z`<7cYN4WA|2G)&Y?*&r+m0LKx&Mz}s&N%9#YYEh_==!vy>pmRtfL|=SUc+$Qg{x`7 zNEaONXj5vB=*@?4O7lr^H0qKn&BvGv52%Ym8v12d*I05#73OCQ#)Y{egaPRPHibXx z4kQ8)P0SqZ4KF*4xZ^ML+2*jQ-bRNRge4) zgn6U{GnW4>fB#h+1T25&2osJ|MIY@UdLD?xR>pGryB3roOWPV-M;}%6MWEtQ*k3qn zuq(JM+1%FHI)-U*w-je>rQdK@U7~az?&?6u0l4v$T@I+VrD+@&udr$;r6R#vIHVcz^juk!6!mqU`Jc6wiW^bf1e2$Y}>UGco@dvCM2- zA~TsM2lwF5wYN4UXXdE5;MsK7ko5FnA$s5l!f-H;$te}MR)k9xgm7lsJZYV zmMN|^a$0GW_M1^+h6uy7k@#vyc~qP$x|sy$Ds$V3Mw`u;=~CGss9~vW;xyMM5}5_R zSSp*2;dnR>gBMOL908uE4|CpP1;o4#IP(ttlsK$*YT~{uc#Fj|*sJZtS+%Iyt_9?D zJ7ep6TeZN6cH%H&lk;%%>ByH|f%HNFjH5Q>yEc#y+Zo&9dj_n+0@rBrMLT07{73`S z8et)T6?ar19dChHEzwco5@gs~FS;(umD@v!J6Z9`a4;_64XJW_dU&2IQ4ecqNY~BW zAJE7iq`WZ$)}ZzmW@`U~w)CB7O9wA(izJ8Ji?(!tNuX;>d!dH4rM@q@Zb;-D{9pOZUwop;SXE_=o1^IYa0&9(f$gpX-nxo$uei?2GYl-# z!(Tup8YOt*IW3|Lz1!lI?9dW{;QGR48v^Ozx}TL*(ssJ8N%Cq0FIN3F;*zWdmouae z^!r_|%_g7+OhCKscE#vH`A+LyyIl|DlNg?F&ir+cYd2Zlfo|ICYNE%|Hu`*wu~dQb z_qnq5@P=mAM0E%@n&|w-><84JFikUuHZ{ZN+qfnlaP{(e+`*S_fAjg8bY+W#rgE8% zC_H##f^QLzKIrN!OSp!Kh?+pG%Hm-MzN;wgZzPlI-?e{TeuDp(*Ef;x^-?w-a-EUn z#+WQ;Sid869dR9#>*E>&!#I^;osMD~lLuLI&YeV=p}U z)Y!ZZ1mFz>5>3~wU8w&T_6E`pA>B62k`DtmbLpa$-<+--A{`gf@r6()hUMbDs*1On ziI)~+&Rq;g%nQ%>yb^WgzGUM9u(_3 ziCJalJFXVK1dhJzw_2nxR?TLkx4saIU1F<+bd(je2;Kq|J!X_Zl=nod89VnNt>hKK zxhkI*I5-k4V?VeW8i08RS>Y!bWX{7Fyn_t< z*)>@j$*dGYw_PChP-1>yCeS}no6uWTjs+^SZ@U)59fg>q7zg_=X(k`Q#Y}V`0HlNZ zx2Z<+7qls_N7K6MlSVZ1YG>u;U)d`Y9V2d@izdKy@PAxW^{`y1vcJ31rFn{E#)RNt@F=z?l_ z3JL1MvRt$>^)J`oK2oB9%^beEhXsT3tQOiuWHmtHLvt@o`HK!Ob)k=8*>zAC(VYzF zA_n6lBeqwjm1FkTp_NEs1ig7`Es;&o7TdF1wrbhc07ZfQM(Y(Z~U+8BWbJ1yPdU09RHjFM zy8_>Ky&eoFJ=iVDGGqVGdYWD;OLtH6FbFpF<*I6Ad#Eu8Bx5h2SWiQtr)i;#tzLMS zkb*ShI?8sH@GMXqRxv5`FO!rup@n@U8s2t}pYl#f;inRLDb2W&vfqHm`WglLn(98} z6)*xUYNF6|xPg%c_*8JZuooEyHinfX_(GJyL<2lbGC=*<{iYRV3$UP>-7j)Lc3#zkT=WPT#vw0X7gDqddQ?J^0}MC)Y;ZZJ%T1uRWpPa zn-spPN8nx7r}@?ya(#@zyR26VtbGY6GQDZxNJun|cJ^XH7SQ4M{4zqKDO_ zS!RZCFxe=+!7}ffS>_*f?H|&M6Vn1|oz%kDye%%=NG;qR%-^l5sX)s~a7c}Pr5IK< z)N2{wNnFcN*p&vfDr`!s!_MPYg>`*iY2mwWZ$W7J5Ll#L+BJtBdEV8vOx|QRDc)NU z@=(pv|p509roBR$^#tumtiboknry@R;wMeJI_qT_ds1>Pkf*F2keRO znYzfH_)`9d?1?X{e8irh!=Sfn^vo|0C!Aob#k=hIdQ)Xoo5DjC$hTctGKGV4+5gkQ zxnR2VrSGcH&(aDj`F+KBa?`<+I6|i@Qm4CrLM1;!=dF?-p-b;p_@W%pO`|BbvR6VS zP{-%be|8lg7#`5QaCaFw3_*y~uW^}$8FB+$d^%0(L_f$ZY)Qhp(Mr7v$Lq0J$c2EI zVleFf$}ncl2R+qrNwF|=bnn6ua)yqb`$Z@ssvctNj^S7Xr~c1ASw_iyval_Y2jEKn zLCG9k!dviwZnXc?g(vl}yak^dRg^7HHX`@{QFwzoy@3hFXQPW+%L|PdeoPGaP91nh zTw{7odhV&hdbH)Ug_ZPF_?3Vgj06bC7&gABqaK#)v)>5I#p7Sr(<`s{habvc3ALRUJD2%;<;R_y_}mMu-8g4wN52c{H%lLdX~0#AimeV5w(< zz=w5w*CUP?xJlt^H*(K|WxSxE17!&=7?%`>8#Jbvpel)U@fGVFxoUSPS6d)&FVzB2 zNih!XHl%QaTnAO5lRAxYF$*yt02C*6bQp$4(m_a#`SFuFbV_bv7t+4F{-%zywC&y0 zvdGR|OwgIqUKH3iv~Us`1ea03_lzt9n8YFz&~|$+btlh41zR|IG_3F%nF>E(k;F0y zLG|*z+=66v7qba~W?SOCaFWIp=6R`Fng>F>stWN6BF}}`stWPL$ilD52~~(f1jU7T zO%(#5|2rY_$AAz&szQ8+$a5jS=0Zd(*Txp+5mKgyFoo1ZGZ>fRXH^OS|L>%@H=)qx zH9oga%ul3$O)SijlNe)Ne8!`aVxg3GClxO6kvpO~%F{&;T*A{|#~$L#b2?a_hMqHn z{c2j_B@?>i%wWgQD11r}%jwQBgPl9G@MS$L9|oq)Dttp;gAw>Ju;1*$*9b`NlV3PR zkHtCc!3b_GQwj=O>0t{B3cJgNX0Q$B6n4|Y@=@3JIfc>k`$hyGFdZ%Eo?KIpVQAhj zi1vxyB{pAPm|N&iGZocMX`D$uG$m~&&@C} zoo>H1`#NOjY#(X}X24-1kHl&fJ_ozQW2t$BI` zgO%2rSc!Mj=8fpt?nO)F=H~2@GH9C~MGfU7Ty0>t%?rCQQ+CAz_Fdu-Z}{8u>XNJs zF-UlhvB86c{!qd8102gJsv(hS@QaNSrXVohH4e!TqXYnFD_tcdk|1-T*k_&9Paf{f z5bKWH;Uc_BN*cV$DH=px&)_RTf!YvK5n8)4#QXm(PZpge=QG4BD-G&(J=Bj+6?G!l zGsJ?A26d(wiVs5hT8{!y>f&Oklp)p@vFvDGlcJ-Eo!MpfPSl&oNR>k0Rcpd)=Q#Kq!+vdPcYWCI4EEoy?^Vg zwI~@-G*}*hIchEBnV$6Z0Y&xc!O=w($yZ&eAzH6`Vd%w_7Y7ziB6E9+@XTi%ad^(` zsYrv0YDr`hK(NSMk05wt&g&^6b0%~NB}Zl{&E-eBYS)5wftrE3!&*bS8>W?m)gPrMO+B`>IEVbkt!JLsR905k=i3pSGEJ7egmZ zj)!;qOnPc$(dTk|T%%39`{H7T-~)hS+U<$Kr`;or7=8@UJ?*Y3rrpo>D5|7q$wIKI zrj|ujt92$F-}}q<)ezC*`06UQOUxfz)LN2PAPCAeTaqaz>q~GAZ{*u?30DeW)-A0Z zChK6i6>cmU5h))tB9vi(^v;WI_FrW_vbf^#NdN89BVM9*f81^*JycT8pvVYzEFP%F`nlLco1-0@h3HnR@cY zqW9zjn5bD8G*QC<<1bh@uL%Cm!QVUZ_b&Xs2Y>Iw-+B1E0Dm9A-$nTQ5dJ=bzmMVX z6Zrd7SvT*}(O{nO#<8XZA3koiAdrqqwpOM`H(zqf?_hCx)BX^b zaI3u2i$-j{)I<-c)cxrC5 z*r7SOIk_o`$q5Mwxhb)U|Bt=*4v6ab{y=jthzKi9KtzEB5wW0KS=NdqF^P(3)L5d1 zg#{HG#%^rH-aE${MH6F*EsdzL5YuC#CNbc`?qZ7?qoRo>*1R)w@9xgtz2G;$_uhZ` z7CCqB%;%grbLPyMa%Xk9DJrujSFK7`nRQ^Qy<+~;bJ3qQK8|9NPYGQfw~MH-Bb2rH zv&M&B7NP_CL!c-O{aNE8wn4DxiC+!Utp!18j#)wabIw)}e%823s26vm81rb1axBqrSP!feh> z{u^S2e)Fgh-Dj1nPczC7R;4y&sZ+E%O%DDtb&B4YrOin; zX6GgwQgj-vE=Op?r{F{nYJMcL)&n0FQzBg+=jzkRi-~p zy+^Fqu3kdS+UIEL4gO1yhMXc6J0Z5xqJf)}An=1-vC!k_u285vUfM=DBRKtd=?=cs zqm^e$%I_&D{hq(#(aQ5&*<3;GakiCFPFm%6J*r%7E01+mnY41aY){12ew6&u*(;Dqw-TyIeQQ2LWh{%2S3(kk}I0w_mDXv<-dZtvvD}G_#F<&yd*zFV9 zu^>Wx$)-4AVd~GN6SzNwmaB|>ud^Rvz>F^Zjo!lEN%`4Q{Pom6!pKsmk1H1)S?=~0 zMi$IX=brM+=*S}fs=Tzch)?b#SgN)U@k(EG)}JfQ^zX*-Q=Te&nSZGdcrM1ZL3P_gWojZ!I-Kmkni2{g+EwE@4?t>?7DL z%b+HfP3@&e6o(0o%CJuf{0)9;;k z^olFe0$9_RFO+t6&o2p0&i+gLnRl^t5+Cr25SsYE;!-l5pZMYnvhjBHQfWEg6dy=f z63^tK#uN04U_6-n|7JX+u9OyWJwbiDRQ%QI?ynF7`Wl*CEA0d~f57G(!Z0Nk#FMMw~`pBFUN~G zU6uSrZ6E>M>*9$WWYsGFQB-#lVtHyGq!)Sdr#VG^Mte0F`*AehCiF(i@>QFr2q@Umt z31<;v@C9*+-o9n$_zw6$Tw+@$7j=nE`w1=)b5oZn%T?H}lz%nfuj~*x4F5uz z=n{waVCG1mBShK;+0G&bzdF@ruE0`d@N4=DJ!xfs*9#h4EJLB4 zce~#0Rdxv%)Kh2GEk?4c4u7D()GXf-h1*LcqGl<6d$gM*w5<=wz~g8*GND7~V#57@ zv(>j;ZAEV*x-3@Ug0up5v2_NT%1-$5+yH6oq=_H?J`r2z{k$@59X@1$v~>nb@{Jf* zw$qo78z60+iLQJun|w$s&tE}xksAY0CR*PLkNQ??n{7qd%YCVbjFD|iXEd{d{)TYz z>KSDNIK?Xi+_frxN#t@Rg-&cHBMKM_lMBk0RWo`-y;-(WF!$QAf-E)GQ1aM&qVVE??b`5pzt zaN)3Afj{S$Y26D*#28BH>f|%OuL?3Wc~v4q9KIkj zOj=fUjqijHM1~GbE;_6>e^sz@%uR>&w1_FIJUx z1l=zf`4=$!=rncutIRZYC^8KwdqKe>3*L`San)a_Zm(y>I`%VNas;LP;kgGuvh&bxto|X`lX`oZPO+JNi+f*P6(6xFBuuAAwKflg`tO#FchB$Ig87OqM8jePhEpy0 zSoabVH{!UF!%cMI!_J*$Yk7s8g_WB!ToV0|8vu=H*c7KqVa0pc=^qUgI{kfu&N`lZ z_=0r$JA2CZ@nM66P9HMJm5Vx_C(v^rHVkH_eO{gs?ep@ly6rDJ#HS4s`g}*|^le!R z&^?b_Lspg{$DqLmC>~l|mc;QN;WY-u2M03w{M_?Fql0BT`7f{v z(v*&ZchEQ>>o~X zpXK7(>Ei}7Y9>8~yAM@I%c9-$(;lX}u5PKQCzHSASXpD4{B%>ai8Q|#3L;EY-6WFq z$VQ^}*a`~ky=;oBM;s}^4%Kb2(4k%;JlPJ_8DEeN6@8-Y7@va=WE9O}a?w$=`(QeX za-E^%6b91dvI%*QC=BQFf-L<41z9NyvW#ItWBbL(;>)rt{BBW(9ZUu)!)j56#YBcE z$iFnRMGZ2<$jabse?7fbf;$TZWo2FY9|w~W=PR()!3E)d@2@h#yMP1kbw&g_@?9m_ zH869=3SS`mSKN<8mKPN)FFNczg?k5qdjlwnt?0^!zb0@G@*~`p_|5MGD~@-qUvo7T z<=zs;EVHzsj7b?9S$J@+MkVV`<2(_2FX1;p1X zsz_kM;b+RERu=?TtA6;o4!m^^gNA!=A-jiC zc7HSMun6@s|Em(`mzRC6NXTTog4}>NCIxEYpN=Y^tlGXYYgI<>mB@uH%i;oY1 zMO>62Hz!$}t5IdERJl5>+GtW4lXY1pgI1lBt%J&sR)-hw|9e3hr+fGi{!{YAe>cnWXvW==Nb+#$jpwg*ynv^WHQH#>(a#bo#c5X2@aqVdDXcfNE zt4!t;l{Ocvn`~5>4dxsiPtCblKR6$;uEEEO+3#{OnrySlU^W{~CX+#zV$!FmGzL?y zS*ZR%^96n8BQ_QftgPaE4zRT3i)ZxQlx# zXA@tjj>)N+EA$+_)&P(GE{kiOVr->S4I9^b?4Y=5(^@LybULlsfYFTFtjp1XZV(ZPzr5$h&opIXPK5 z_#@BR#$4>pS;a-iX8q17pTbo~I$HOrnwbW9FH{S?Os&f` zNKVn24QRNk6tzLC%1TzL^ypNKu%gbnFk+Frx#*gCLZ^)j)K6mx1@~sDNf+w_8#iJ1 zN643NC$GVJ7_%{hF4vTmY*y=%4LMnQy;hy2 zH=Ff3751Ov0_y_oTge)AR*E^P6S!y`{(dw|` z{Xfqd=p9w#=^H5VLDetcF?%65Be}*#((Bwi%u_5<gWgQfrcNn99vj<)%=lSv+&W8uXf~T>LR~jVec% zqSj?+rDUnpMvYmEBM3IR5&dEKY;j17F{{vP>T=QjW4F~CR7RZ{ttQu$o125CZ-P$x zbD`p(_7whVnAzgo%Q3pA@DBD~r~*atxqujTwjO`K9eY!@#*Ef!Hl}D)<`i}jZIZ1EJM!KB65A|+XazCTMCmSa+~RVa9_HaW+L$H8*5(GB3gYBLVJrfePl&Mt{C zwzOEd8*71Mp~hs+#=d6Ip#w7FuiEEiXPb;USX!rJMl$77c&nh`AgE(%W^IO|ovRIa z>gZg9XVnQK#Dckjtj5+-o3pZVFqG2jlCxCVXfx2RGRCr3wMu+535HXAW&$;lF|Ux+5Nv^BELq0!{i*ut1G=Zw+G zxh69@51kGp9IQc#iAbbVXKD0Cvo^a}IeAUKceF0qtW)P;c&paosF#&x!YI;cR%ID5 zjy9Ntu}d)5EE9G~ttrcxLhRp=WlBjl8jS|CNu6!X!J$wX9BO82qJx97W~O>EjGW&0 zT!$D9YAHppG32Vz2=!|0bt+vp#=BW5s86+C9NsWo(BtrIFzIv5x@@D?Xwu^flF_I| zHRt4L0At(;AsR*lHfgab^*E~NjCypexTR|_=49pOqJzy6qT#1;CAH8*KZWOk_H$HF zIqO_~=;pgNxV1*rDn-W(aeA~Ej9PQEv^cLYsMRKw#%RU}KSiITRp%OtOO^sQPtA*E zcx~H~&|;cVqF z&vp54%J$!s?Y}9Tu%htal&!jX;(t@N|E6qm^XmVmZ2wK!WTuG!P1*jNvi&z@`)|r7 znJE4@Wn-tg|8mM!f6nTH)obcL!_nW0n6_HDo1%RtJ%7P`<3Cnz-wyW&L*a+oALmqa zS}66;bL*@5F8S!YA>Jj56unE-CkuBM7i%E~u7<(D6<3wKsvF#F zU99K(^n?*tD&qM8nQ;2=b4~dRec}G!=afFf@X+1jB)GlmYHNPlKnWVd} z9UYI4dGyx73523|`%NSiy-;8hq3C)3$%LYxK};bOJrEl51|jK@tf_>;ZC2n`sb_eh zQefn~sj;yC^16`Xa}UlP^W~S*_Q1C8y6w7^bq^%!TQi}?u~8@Wu!mWvMg5|Vi4)&is8jf3UZ?-E4E}7pYgHqwG>}7FX=s`g$m1B z#c4K`UIuqnVHwVUoe6#FT8i8Yk)t0`D4_c_q%2dQKfAIaz|xwlg6{$>I>j9p-?>3u z&xH~o^njb0!VjHXXY#wMKyL^EYoH~GuWbTFkVUPiV{+-!bq-V5nAwFl)qz&8F72Wi;lZ2Ufi{$~G61>NhQSOK z1aZSe6WPJfHo?RCmS+`nSvY!lX?TQXsbUG6Opga*M&U4$TM1&3j3UDYc5jOHp248F zY^hisX_?0<_AxJo6W5m;Vt*)RlPPD+C~$TwA>mwK;Jmv=&h+Pc810DSx@m`;7OSQo z!^UXKP{kEiKxcvd59pRg~S3V@}l7C(MTCWu+nRhAA4&#a^WuxJ#O zEP|N-(I1xAWb#w1x+9anhX!4*C;l6EEr|;6Y{qOw{3myDQ1Q%9?~MwV$sez?bal^9 zzx7O%$(p3MnBB8dtsK?kAl^nMzg+XQ6q@J5nwv-B(nS;ZbOogb%X-BCmbIKKXyxe& zfL=>IG@FL2jMGucWW{T#LyM!@SPFS~^EHbGdgL_m2j!)}7EC#vOgVZAm)=h8<{9bj z)Jr`$rwIsdS!;5lKXkBsqSz&=dV0*eOp2@fBSn6YtZNS_iu9@n`*zKlruc-(DGVH{ zs)9ttaWOj|LE#vsR+4S_S;tr8mj1h%<4{qTbJbqie<2lQ2j>FGn=UAeE{^E+inaN9jafSN} zO2$~Cc`QOswTD;3kpA>dHShj;!Lpf8F$=8q_!obdBt}>3nP=MNzn;^6WgrIm7ZstE8k>NnO)g zk5%G-hK*9HTB*nS`N@DP6O&sR4AA2h%OgK0t7N!6(DFQFbh8Xh)azPlw8&1I+$u%g zQmIaErB2bbQmc%u)M{-@rM4BygQOl#b+h!V>y{e_7t6_{|51`;WujWIg3-M!sW7~| zrS5;)5VX+^FIPZY6n|gOW&R@t^Y3n^Uyt&OYQb&$+*UBHx5eMpkkn@SguO9vgn9J1 zvD1|58m;Hn0Lu^m9~jQN|GUk^_OlF<*bEBM2admNF~GjTmM;I&dKUM$4E#?Ov?HM^ zG9b0qJOzd(Xg_Ts|MAQ?CIl4krWWm|ff9Ys|68v!qD_ZEN<7%o%BbtARQ`|sUjP5M z2RZ^b23r*W(vZ*%8K8NNCE!2Bh{KP|KO0~`o~17LIx(wuu*F=UWXx*6(=E|ZhTd`9 z)y&*Dg@YYE>dy|0^h=HEhS5fw@XF?VSQi4SF1s3Y?+7FF{x-9oS8QcRX8KcVo6Tet zPb&Usq-CHNcT~trNAbgKUi!Of@0x`VQn3vADz-ZQH4Wn@UblQ$-Hdg~Sj&2tI!_4v zF~m%dxj{s5EQ2}24@{$R))hFD8D6jW{c)CCUWzA7R&d?i?vvv}pbJ0bdqeICbeU{f z?OuikU!Vx@UF4H)r#cs91#0e*NSn5!5wqW zP$-#nI25|Iof+U>7C$y?3bwhHc*Q&^0P-61rlpg6emaY>zljsJbu#&f&yva}iG8mL z-GsFW;gfJS#T9lsY@`Z$&N-0A9fD4aEd!aU#9bLUdf{`>^;NC8Z>8Dq%Vej^B+Dy$ z)q#|`maz&8TPv4xF0jc&ySya_2FmQl?^cR8NSYWx&@e#T77lERkQB%5?c*Pd0X5ng*{U?gme4@aC zDd4#N*sTEltdULeXsPs2a&gp4K(D=jAy=4mJeTXrCq(|8@D2IqZ{<>4ch1BI{N_(F zh|NYl)k`QAxgY|wQ%@z&n*N4!xcs}~eakI)Me-s7EqWkf`cI0}jjqPF4f*+T5=W^lVYFuR4#l9GGy0{5EzXlg@jG4!za}Ub+vsHu^QWRg;lR@3<%RO1^EXX7GDF)c24mZlY^=Y zZ|l3Z&eBKm2m6AGHGI7#RZ(Y%M7@~5)&|S-GWqG+O+#sZF9e2wU#2#3FCnQ&f>@DT zHCKe*$?aKv)rCvKkFs?OBUa4^n*=~6Sf5n8!A@s$PArP?x z*WpXpHxfQA#Ht*rnUAFH9n!hAJ@xp1@3efVxW+Pcu7)ulAW2Svbg_j+Wa_zbx1}5Z z%ur!x*JXn#ayZU`iVyNA&`z!Z72L1~R}hs$nGWX~bQ0NQ*Px?Bc*kNmQ@K<*9n$q8jhB z`XSQ`?p`sfu{Y0$4HGmNGK^6))!-9sN-|X68!D^~R?|P|q@tR4W4^U);X4i!B7}DM z7uN=h-~G-w8>+&(B+Yyo-y^ zTVlNV$-{(uAzZmHxN^IuaW7*w=M~u~7oEnjbr7a;Y>G=e#ot`9G~gB6iNc%#$kfAq z6?@%MNJP0Et3oc5bjwTa=D1wman~(fBzfJfp_X_j7%LdrtZ!AE{kvsIEyYC-RQoV! zatF8g?Ccv?^l_I>rb8kYz&#y3sQ$2o$dsZRJGJxJs*{RhDY~;G&jtqhmD5cl2M4;V za>spr`tN71?aX;d$|JT_i&%dv%rwQa9WfhE#QS2;c>2a1pM=tMPFSple8GA zb>-g}4Y={4eSNH4-jNS11KjgUM#S1;^Og@2M&2@}bzJr*{LaeuhZde!tn=WrCQoSa zHS8N#gYRaOX>(wKb5ATI71b0tA}vstWOPhIdxP>3uG4Q^tE=x0AgP(3ShE#*HP%cr z);sj!X6`i&9sYbdRJVxn315!;=4@?nI8Bea!=$)$j1*bPNDqeNOlj`j)qrDR6qm^cIRJX@R-~*`d;g@Xw%?4dLKpuK;%d+KBYW zMp{b&0$G5NXOzH=pBgPwnuh9~q@{V3w~l}LO!oq$1)0zyLTo`+Uv!=y&Zf9D2$L1% zYY5HmQ2TCNsJi-sP3 z3sef$Y=rx5*c6w!AVs_4YeH8vH7@VPD@KpNWXIr3JI47YPx zuVdPqP~KFrK(2tQX?clz0s1?qv5DnLiVboFb|#kV-3w6fKs);$xdN-3m8ZBDC~01v z1htx%w^SUHE3mkEc{7g!{S{~A@{Vs&p5UHW(v{8s*02|~M8p1jgwU1m5}s~d`3}Az z`_0#r${Ta|`=PO)mJd|~jAXJ=<9;wg=*oA95&Ykc`;ZEayX{E9xKr>iG43jLdE*xN zy9>x#{6z{^1UN;kZqJd$D+ZN+(u~U?*~A~CaAm6_-u2aUq|gse&nv&3fU^ynm;M@s zEAKj2URO}reWc6Mc@&HWm8?zwFIJu?+#z;)f4P}gY$ZB$vvSi1Xyv=uWNPJGQD$Q0 zo&{Qbhy^~C7VyH1!f80S5)wN}5)UuC)qxDZN;bvS%t+Cms`Z8f-;gA@{!w|JqLSrJ zM_enD;#nAP2U)T{6wZHK{y=e)$>};A$_z?vMG09*GANnDn366Y@ZBe9$o`|Cw(OFkMm+_h~o5M}>T}KJV%Sta8FPq}3D^j%K!{B_#2cghAvf^#UM?`H7+ocZo z*qG%_6-U@)V!K|LQ7}cf5)xC4tR*auv;1j8N6R*}Lm(xb8TVp6INhkCpt`YgNK{3M z;u&FowbSs?g2N4fGvyVc!>xuRoy1r3Zg`W5Eqve6g2U~N ze~H5_N~pN*&*zVp+G(m-*O8+IBaG2j{N&FUjFuYfNJ+lQ9V>SF@he74qlpcUe54Lt z`8>?vFjI8*m?lOOtn7lRvMDYNB1KL0Yr!(q-71Qzvy7|VDwZg|AzF2qF|~{@nG{dl zABbht`?z~Wb00-1lT$ciMz3hJv&qzbmyU)9y(=2a6zI~Y;uXbhnF7TR`&0yR?j2vTC?dldI<4fI(<-ujUIT*AM?X$9R5RzSQKdiS-sgm2Tca@1yu9kaXFL5C7Dg*Ok;D#ja{Aho0)zK z#odD8S1OwDr}BkQp)QVs!&fR=@+U^awJR0ve7-`}EN%oP>#s)hp<|%y)rvMV2EXX^7y>>w!DYqaml;m`M0M!~F^Jv?u2u072s0l?EIy8i$ z5tf!vbjZ^Yih49Xp{T9-CKD31OFw`jXR?=Et4QRI!N=Ds4s!RP6K9QsmA_R)!qh)1 zQX%JNMPmrOjt=u7dHnVXJ}$qGhr{{RgYdajNfYdrRA9$Cf zefkF$7`TX>=wU@iXb_Fbt;gHLxRXM{XC$G)eQW@49*eaL z#YaR8g?YTSBfQ{+kKJx0MFHn!?F^rjx62=(gfqRY;ZX9RLJL>!qnOiYw+w(kNtTNZ zFw4@16(KOj8}V}d@sXjEj{G;XCpe6^xI= z|3Rzh7`~@%no&0CjBwEUVVy=^ z$HzZDI3EXl{V?}rKP)_ix5hvde{1TRXYpytU+1G?J3c{!5PZxd+G(i3$D(^!G~jw* zFf36Z((s4)xb)Me0Z^+hKB|H+^Ug2(1;7;Y*p+C9G!8thi)H%~TaIaQArYnq;A8q@ zeC+OH4S`4GvGO5yi=m@l3x?%hmwjMtAg0|SJ+DJ;YdD8LL|PZs`|2Z1Xtn4zDHWDARNZ+EMW#sXAU55nY8scLe!h@E*N*+HX;#SO?+6dM*!m6%zRy86D-?s2^ zls!itLx=~fJMN+i-i*e_t_1m0qJ#Jt{O5UejfL&40kCw@%wVXDu=>D{n2z@kQDMR2t?l^BJ9;?+ifd9g2lM@;#eSPB;I$p0gzv>;~q{T~-&c*O*vln?1?H}72>z&8+65^G^f zRqadd`2?C`f_HChY6<(>U-IF#VxBD|PmkP7Mm|+c`IDGbX+vu;pDv~>B|V^PBWo{y zfS7WUbn@Sn2LuK1L&W4f>~-+g=a&Zai zp&AqFG@(?4DkM~ULLDGf7ebW~sxP4q6Ut1eeS{iAs5^w3PN*Y^$DSl5$Xb=P7>-{LY*VjaYFq{s9S{kgHRt4>Y1@fttM1mLaiZGB%!Vn zswtt?5=uv?-)0c96CpPcsym^s6Y5n$-6hmeLft3SctVvD>P)1LoFb^SrBZ=1t^%tQ|5z2cUQdbBSOsIo|iYC_>I9+U2zA4I z29m7_d6FcyBh)rRy+o+pgnETgI|!9csP%-(CsY-orV;8bLML{UpCDeCF&B(J7vWz4iCDdg?Jtov0LY*PhKZN?6P>KmieM+bXgxW}`1VX(- zC@rCG5-OEY9}+5^P(KoC0HIbAY6zjeAk?^52)UP#1%&#NP)iB5pHLeJb(v5*2z8NA z9}((1LVZT4azdR#YW!mFaig=xt|s>!U?gp^r9kJV)?Ds7oNjJ?0jAx#5DdzK_`5-v#-!PL*1!ehBHtIuaZotD;k zz7Hl|JD)}hyg&*EL)G!~idAhMXu&th8p36eH=4pXtWo|hdAo@MCM$xumtaLZYm5^# zu@!>8IT3nxLZN3!V8PP+vJMU&Iv>nUmBXDZi@Rdqg`V(|%9_OQn+PR0+=RWQIVfXsm7d3Q^E=B%fIS(YtL57_7Cv%Kah-`BU|fU+Sy|4sUtr zWKH9JCczk`jkZTHB&FLGU`hQ|1DT0jL$Gvw&yV+-1hJ{s?u->YGl_0?^Dj+=FvR|2)MpFvw|`GQvh%p4NTFZ?(gq zYQ-fVE>Dnlh$t40iU@Q)zbY%tC8C%2f0ojk}AXg#>5a9n0zsSJ0;-aJk}{RDx)j+ zjU42c@{rUJKIv-JaE}DE`wUvud`IJ*?mNB_eAmtDhhA8w@&2d*990kqr@CAHVDX9z zfm|~<&==b|b(eQApD;ym1JqI+Dv2sg`qdvsuDlS;H=ZK(0?H|Z7ho(zy|l6iY#O=0 zE@UMA8VH#M=L0$XZDl8uULup!CzaSkdRRN~Jv?C3Jz=S0Q1&2L`dMv1m@@u+05^+) zohc`KH0=Gus}3CRcrk>Z=D}r(Cl_qdY21DRcDbT5gkw>uWzT%*)c~g;7ybBM9)Rz< z0I5$zCq#TAKN!76N@ZJ6E)DkK(Y?{cjx@0YWbGA3Ibn3fMJnzg;r{}pev0E88Hf45 zDXxJT)9ylMKlFR(Td7{I^|LCuC@30&y*&~R?8sn7=IxHZVk33aBmAhMGVl)5vZ)?4}2q_{55n8Z^=P!@PMSs zyPs)|;m!z z-gG(Gz%8Zx76An z37hgTXqzDij1iXvm^S~B;noEHeGzyc1B~t8hI>yA2}3Oj5>JrgukH0%b=-hXv;QHjn3C`e$EWmQn5IhrI z?dj3y!@=MCVm#k)8u6ZN>=S`0BW%fDBwVIq-WY>DJCzhn4o z^#JHN_;LuGeH|A(+Dw!BX9MNXiPueIJP|^c7V!zmuR#_JP=t3#};u3y8p=~ z(F;xWkajYa))lD@HZKW;!MLP^t4UPiw?v5%Bm_R0VAb&(JVabO%^9iD8sl<$BkXpx z{MT%G+9n&)e+`1n$iM(-+S(ezf8hc5nONgvSUE9Lqp)#h*F)ixcQI!9Tfn}{V$-nb zDGZ-WEt!mT%~3cks7q0`0zx4?=~bT?dA zq#9Vd1HI_}>BwbEpFjoNP)62smbjsdj@nIx2q9sDYE(S zFN=&as$-<*x=E2=l1HYl`la!^>O)YH-G`qcB2SefI~$=e^Ku}(PQX?zbWfo3WOsU>eYt)kL-Tjb}6@Q^4uKy@`Zn9StI## zBA;KRe6}Q1)`OXum!o0k)qvVCbEVCX`$@{e&a!Kd<@LSY9hKQb`#(%vi@I z$s#u=sVT5Oez-s9>K}CE4_IhTSEck1jM6_CJ zRq=;JKE+Z#G>&$7k~$Ex%-Wp$P?p63Sr)MyaD48&+}fJIBC@z7WkCn&eXrVl;dngm zwLIw&9Dz||quS7M8TR+{vdnC<%v?R@@Pc4Rj|rVAm|8HL-&l>QjY>in(>xq4IY7uH zu`+*>>R}5GZhkO#HTu_1BA*V`@oB}il|{$jEMm~<*ocmv4m)euu?U9{nm9omi%h=Q z3G?$>si6m0YeQOdAvnHW=W;Sct;JQ9H8aTyLLRr0GGLYsmd$jIBQ%uGTW4*^e@Jup z1=~8@EMe%dkxdxZL>7>m^@VnC;RLuo6z#C4Fl8}de;=d! zo9+cWZ??wq?Ztv6o2|{bHqwIl!$(5FFWcVd(n)sGjDE?|@&<(578PQGOX>G!{dQ(`=LWzRm z(N1eiu7yxivY46pCd1*%F68h$!vWvYK5)6f8M2_}2J@p>^p_r6TXDl(=!|LLM|o6Q zvQ&c@w6mc$sMNU3Ks0)G$px22$>9Wky9l2Dj$^fVn+u##>y|gAYV9^7q`5e7f8hcN zfld3Z$=qkMAjc?(GsuKDPS$H8LR@Ac6z`+f$A5|wpI;}y{!gu4`HDALo#-L*1Dve+ z!ip0(8$!`TVATiM4z*@U18JV7bRy*)9ozJwwL7+tt7x5%unQ)76m2rg=}1fmaf9WA7eLs(F5suK?qy}J8)d+?G!MoZ)m)D z2x1C@xbL+~A-JSL0oQ+m`Nw$xj*$b*!*EC<*ESJm+#!V7;sLWs4ki`eIE*ItqZI3u zi1jk=bMhxWu)Yzn__SGq;i2}H^u031mF0|pgAI0Mh-f;Unw_eQ6 zc2|C@V>rq-pG`))c2wtFQ&4~7XnddJ*q`Gm2Gbv6NkSSQJ=~=Exy0(-5XP z?v|I|KCBrm`vIXA3ewJFr0sAD4R5v!hpBe~BklA#?k2deOIQNrpGM4&17gPDlrCN~k6IvnuEVqmXE=x2} z=Vz;d517mJJ%1>5f+!)Ilon8o{UGZ3AT2mv+an3)X0^BSmBC+HRhEU1K7`6X@8>=diNj z2b1oyeRUE0&TCTH22$C${!nn68GcV+vNq#auy9MIa9b~?-97GJz|L5?Af(Bk>AU6JuzV3M` zM4AUg(J$EU-OI7(QY8*&Aeucuv4%<^@S8>6)*QZlfNNXQrtEzwJX*k6%HSM-h`LxL z#hLFR3R=Tp?f_G;%VV^@z0!iaodu~aqcJ*cnLgtjh)$+9i4!eywxQ=BTP(9sF`%K{ zIlZB4=uZTu$~c@E(!(?lDO1Me|6bs3^4mv6)EDE^sD*;3#L^*fh{G9kB%JrNdBj-t zg;Ww5ad>5(!RDHuDkek(h-j%SS~D+OB-h@B#t77Ap>VM00Un&T?dST6;A9evuc!tj zOx~Ft_~D6#r3;*b>29-?m67ja$Y3psH(2g_k01J;-c! zLxim>AGXNpr|4?#^Z+!XISm}8=sAxY*X_ZD3nM~dM4+ucjEl7OVAwvtNZ4;@fN;gG z7pw`gHRIn{BvfM(4)1>J3 zz>eik1N~5Bb->9g1Wsq;zGP-oTO=q$ZPD;bv`s5HiM1O{Q8v13O_!V-hoR0|Djl`o zAB~Se;kI}Pj&-Z_Sy8+nUD~4y`)T!UagZM8D4%&4_v{oAw)W7jv7qy%jZx=JDcs%9 zfS5R2Z5Z6Z)|5+u*d(+vJ*yQ*_djY2?m@3^&ZA}uzZ5hO+%G!-_0$Cq& zSJs-Y4eEokk6knN zhiY4qPD`|UhhgB*DrL|BHUuO1EjjStUEsL7cw2=h6KR+=l+bC6iiKtBc(mqLO9Z2D z0l_MpxYZ(bkBcBZ6W;#6i#1tqe0f5tl&Zt_2xQBf~)19`|}S%Q4&N&dl^# zWg3Tb9(S)r)fN6>ghO36kz+Z-(V?zJaQ5Vd5U$M0jM3FuiLQLxpsswE(dOoB;hq6G zXiAmuQdZ?y`~)r_H&Rj97K06b86BV)ul5g9fk&R&is$trzJ|p|{dD153t)_ZEtd&n zC<0N-L4j%Taa{;LcnlS&YEC)>6n|(w&PLbIaSb^cMx9iLh&DBI84c75$J^rhX%v?| z%`s&e6Le7hw%i{X45J$2y4+S#;?2vTWQwgH&~EiG-PRP8{iA##dfje6exrx%>nNft z?07#7yXr|1>KhTt5qyNfmf>iGLq4+C7wn+%a-r4^6X?JzmrJ9PsO3UCF#^(I?EZ_kIKJ0% zC|F}p<3t?Cc54(=zGQ2{r+a{PsUFN9qPyDa^D~!2@E#mwL_|CXr3F<|Lq7=YhQrJh z55$R{h_v^%PDfkVBi3`53oV0x*8}5iPmBY9;SrDY3|kA{B4EJnS5Xpjhy<++{o^Qm z6e#C3YzA9;g$YL$_@6z1&v*jkxy%fh+|$;Quf2jc0xrG>XNp56g?{{iKtGJE56kN` z41t9waX*41dDy`Bi6=7k>f3wS+VMIOSuH`vQ|c~cU)cA3!@8g<#(#V#qJwNjc`)4_ z$MQ^ve`i{s^10K;X5dXCpTQD7$4V|J06S44sR88^2FDvTtPN3p(Ko&-<Lj~e#n0chA? ziQGPya(js14&Z@;G(2fenuJl;QHBR%QXc4fD36KABc-wf42f`^@uHs-<7$4va2$Di zG`JLxOZsPq+Stw1XI44~JgW6BagBn+EvrN*8HG|bAw|SB$K|R^q0r-CWgR&6nynMA zGSF9&^9C`Lhp;HzXr=RhL zCuO0`wGG5?KjhT2-5rxQBDMk@i5`m$Ox7J*etyZdlS@7r#v=i=Avb*~9@N7yS<;$U z@xoN{#m-kyFwC}}_g=*u2E=!i$7O*(J$3Qk&Wplad$=uwO9u5MM?)WdA5R|ABgxuT z(j8Y7rihrQ`DJ%d6m@ZXRLA>9zF26ev~Z% zTa1>U!IpQ7NaztaL`6XN15tHh`Gw%xQ2F{wKYpqQ@MJ1*CtOoBEyghu&sTDr(bFEu zx9PCCDE@ma{?akFOn#>a%yuWt?NyH1Ne2FyELN`@qgMQ=iKZpdv<{%E=XR{6%MTY^ ziy8E6s27Zx@6dAMsSEM^GpnTve(X{(Rn6nnXeDHBvio3P#KLKO+-gC;SUwo`8_-`I zpJ40H$E=nrxzTE;lBvx;o@mozZ=xXGSdf#GY-9MBJj!>bvUTF0UG40~f|r?D1Y4#9)f(Pu_YGBt)wHdJ2P}uD(ta1wjTdPpj#1H)<;9;@r(-Hp{0ski!|L6?c1pc%K&i9@;wECBBM<>Ck0-J*O zS|g0GxHGy8eJpK|@HcG}`Ntk$4?MxBVQ!dZ)A1@1CyBwqHt7xdkD?VWbLX0q_tIHX zQ<5molB6xwX1=W<%m|86K+s%UAU{atGl1cvSb%&2=h>ohAy5Xrcg^U@{6Y~Ew@sZo zK+M<4wyCGExN9mWEInzrc%iK|Uo66X$iR)zVf$BRM>m7iZP7kp(RrJmqb4289vHGf}OPjK-9Ys z=|F=Hfkq1rutPgORN-&~pSZOLq6Z5o~jLArlf+#VZjdHf>}p!=Rc z)USNK5kuA10uUZ;II{y?0j=ftldyeyT!_K@4lcz-K)_K9PMbmSUbm<&0dDU^^-HB| zuo-8f14YpO3}~Zfj!JjjVrzn1ZW6p+9(dHx^vYHyg7U3UAK^&(0udQEsGZ_E)Tv@T z4ju|}7k8!yJoSl(x7m{Uk44ZA7|@`DxZ^|Hs7GyOC{(?TI@m7--6IcLdpj!jB0$O9 z3uz4GsRY!(%xRaK!2T7=K-W-!+m;exE%LZ1Y(qFc^|AuCDC~iJ&|1L;>aG>~Ep0oO z+?WwVj=lC^-fyk6%hp~ibXlhLs4F{rT-g}*Ekr-lUIcH$g6HqH(rgsQ(u`=Z<8%^tWWPh8XU_8t(k4`+!W;;v?KQNZr7<#tRh z#$m1Sz+LKzOC8q01L&|m7ja8i+@xxE7j#%qfC%fRgI0c;f4pSv3H|wl(`Y&qFmFLd; zK)a7|Aze*S(s1&M#WZldkG&~i%oqn%O=DZak|xc3A#ftvbPMvHoj@n9bGotH#kMzb zR!VXDF*s;rBXBxI3Nq6?oEQ-S=`pAb+}vgtZ5ABD2yVWBG>1W=U3Yo6xCGKAYQgEP z_Hc}*CBQfnsutM1CpHQ8U9u^-j|BAh8T7gfu+=KZ#WsO0yJCY2hs4(weAzxJ2b>61 z%c03JTQV*nQzh6La8v?*>+)eN8|PF=fzQM5g0FbbpoS@ zZw?NMuMrrVFOjI9X3FM zB|LZ^Y;|k-P?Fcx?WoVeK1?UgxClb+nrxAyr=V#*&NP3hSHeuz$wg{-_5lSDmrX8} z;L=Nu055SnSsRFx5Vx!G9L+%d1jel(9@P06>w||!iExtA1sjCp=AV3aDG+*{wY`Ji z!wQukg5p~$=yZs^WQ!Kg%j1!aEV4Yn$`%X*OL21ixh#tkmPJMxvam5M@GW(}(>DmK zQCJJhO5KScxY6Y($i7a~N?aLUBZ9AF!H<{V?%b;f zeoX@9dECff<^j3b6Ou~)$^~0<{xcEs7z>FbwJ2|8LgOG;FvNfA0e-L=@a31Vd*2el ze`mq5FSdaFuS7*czP7Q;@$=U_uz#%v`{b{<2-9ej;F23a>?22~pzT(r!tjOaM2P3-lx#za6 zF6@nM5(uq*aYQ*SGWuT1D0MPcrpNTgiOgvDtt_Ljs%4bOKNjI1$igpwwh6A#lOgLb zS>!)Gkm>rk_p!#|G*u52a(7c_hc{|K-4q^sqN1-BL`Q@W=y4IP{kuvEpRIU!Ro=;2euUa5nZYbiip$bG&pvrNj>VK@JO*l5uZ>+eDs#n zKT*h^9@(1XYBH4%PmmMUQZ#Dc%HnvuXfF-h?5Y&)vJ{O@b$tH8Rhx#J1y>reS@6mf z&oMcP!9A0B{1!SZfpH;Wo2A}51oyPl@fHoKxX*HSBmbhv;CYq-21g_LG!LMToWyh_1L`%YSNK7WIKA2E zfxXTX8yhDB0(|XB{3#LpB#TXF9s9S$D`DnpoRK<%SpFLi@Gm{V>BOwFpS>0TNCdy{ z0&fS(QSq&X_0)SFXn%O3IYhIQb9LMqgY1p@St9aG z2KlWa=oC)}+gst$MhPBX%~GwT{`Kq${C*K{4}<3>X?-T3-6e&8S00|Or6q?Uyj6s^ zFz|Hvqz;8DA}G2kGo|KAr96Ii=Rut#x*Hm?Eh3JM9>U_$r_rPlG>L8$sk(_9MdW5T z=T*RbVv!KYap`!;MUx_F3>SwNx8QaZoK3$N2)7#8-{CtHF>`l(O?_|-P3!>gEnv1T zi4W%UMf@$h9d}cV^k9;QDUO9la%88$$tF=kpt!O~@JY*x1fPT`AwY(`!f13Ti;JZG zXF-wE^HRqa9b<3Je=33;WI=EN>SdSPc^?b}ff@=@W5AvN*U{IhN1!z!~C+Lr12K%@JplfU};( zq4R82y@W(Ky(K=BIujl|U{`y>Qpf*WOM6TF)om)?S1c?p^ft$HR|&~qLOk*WQqy zE@HmHV7i*feR$#~$??ITBx1#;z6d)YbqI4=FM<7=CJqt3g#Qs{OO;$Y&VREFRvfvI z$9*Y4O6JHXwmEw>t;Dx&>>B>MDF0PK{=FsmfibRSs0+DsSX zM|%rCO@!>|4jDzzjD?Yj%sdr8RU(MYdZH1=yoCKS`E92!q5>N`A@FDs7=QfAT~=Y> z?rFzc*MDt_yUZJKi4%Wh)g3w40~yzxGGO$xb``%-L|!LFrXf=0rKXWE^ErDQ?v+VE zadTcGF0NHi<-ZZ}zI4YEQ~5e1n;;99(BdnUO-oTPXztL9W(@R8ulDi zp;7FQ)jzTtsP$Bp+Iv+!a!Irtak;i*4+t2@S8(?rlIQcyh3(hM>$HEjq-ciSTHem6Pz zaq{qE$co7KJ?!!PE)o7+DLjpm(30E04_EM3s<&m~i{#;HfOPL=^mC;m{LfN&D*gT^ zO=DqsKU}S+uJnv7k00cD(C!lUS7IaR5r$K0@9jdpwuJWxbFwj9yOalb=1 zA{RSJeQCQhM50IGqeGh27hKgCu_~jOsvuAZeE*NV5zOq+41Zw2xx+DB$V7~mnXeAr z?(|nwPo=NgoAVn)T-*Y3s)*vEiUx7G^G;GF*1wXZrt!SA2(xnI~oa@B>HGTQbljTD1`S7}#t$_ojI>ANkxJ7HG}~u(2thb)WL%DJ4yiqxMMBjQgnujx|3Ds|`pY$=@#Y(q zfSkl4qwZ5-`SNDW<_O<>hcw!6xN;+{M}_oUo>xjAfJ+o(3(faO2;5WfWZic4wKCMHh8X~3TX z+-(*PCxzMkO^@=|#p++h+c?Bo9PQx;rr29>7^mYRBi{AcX)cEAR4Tf5yZnU~ae_C( zTbbv2gzFI`Q4H4^T-rQWr{Zi3!*qh%mBFPuS3xV9>jZCvcQJe7;ypuhxO8@wGy`W< z7^)N8NenKXUd&wEJQ)Vf#LL(4E@n^M*X41kya}uD2V+!qTGWQ+1$G7ASwcCy!*E!( z%#Ob`LvqZ06N75JklB;NW_b>@AG|XQ`@vZO_eTboE_`&IY;Ozi&Bk98!V8%_aZk$Q zQr~}S4*Gt6m*AuSVSv#RIz#1Ldlb2r*%R}=JSGkM{O4oX*IK~jTkaCv0ksR)I_S); zmzyyQcg=Q5dv3xmq31HDK||`77XCkcop)dr#TLfBLr6jbq|g#-=rs^p04XW-9zdi+ zkfL-D5J9SfAWaa-5v2r0Q94otr9Kp;g9s`Ra$7_N1Vj-j^1eMgd+*%c4eyVqZtnc% z%$YN1X3jJWsryQJFBQ%^Dv}puHx>XG!*8Z+X{_rRE=6E4N z`^KTa&)!i&e;k!NEAyDM%u~T}%8Wmb!@oU^6>T2DHCqL>{3+FPOIHihM$xTW7-ijF zQnH4=6mr9-7G-$(8{>Fw27#|P93{!M6{?Tjq_;2TV0-XHQFN2JEfw0Nx24EUKKIS; z@ZD84D%030*y_?&hqY2+x7T3FGtyb3E<172+=5NEV)-8D5G8AbpqKbPM%0E0w)<($4H!j_o>ii%R9)_L==^ zG}bp1Z?q6UwGz2EnYTMT0sA;u&dVwhd(NxV*$p}Mm7RG%S+E!USoT$DqwF?*A=k&* zeB^?MNxk-BB2;XP?qLhlov-0x_4fK@_Hewgjt^$XT2T9_kB%IE8herVzJeENA!#WJ z4QI~Si{PnEe-yV0AqnRDNu^%pe!PS=9YbNkkEc&;K$9v78M;Q5*bP?sExDEjJ9_IMoRHT0l( zy_H*hBUkn)_uvc=~Cbzd^n8%$Ha#v^Pi8L_(=4DVxqzCT&Tb;MNzi5$ z1ogi_>8G>9>1{WTtnrbg4HoYDT)2hLXP2WTLA46ek7u(BiY%GKB{he;=aB<`6HOzh z*9@h{=d#1ZkCq&M$UTSVB5a#pDIwdGN&)vx5wy)*DcG8ATPbf|fa7f-LG@J7;EUOF zL~RSGW-g$6KVqahcpI%Pi0yeQ=gd#pGev(3r%x`NzL&C_iKSAY#VRQAa`qcyfdw=# z7tqlw5a@seeWildWI>`m7SOI-KsBSYuT?kM%v+q1>)EN!_%HyIxyjZX+p&X?hNytZA*C&Kf3E}LmbW8jFg`mHJ zoP3WJMhjCYJ&&1EjmAXa;jbP+oG*PA!et|KgLTHw!3yI@779A`5gtL?7h>eiPq-vJ&TdOvL-iz% ze9m(LI?|qIDEI`PdvKVM3eoZ|losw(Z*ZEn!`FrLXef`vS)KalHY56pZUvmG-5`J&?$jGL-7cW3i$@k1YKBqMJkIj8u%I0iA=G@eL#bsDG&n0F zfcb+BljCDU@;YnK-be#iGuYXSHb?1dcoL;(?%fb)6>>%!KSa2*WX6+(DzqvTxt%K% zpof|}xku5Y52lG9W;Lblg`LduxRI6FZz&U-kU`mRn>TKQ64T(NkkzmaN7 z=|c-TD`Dd_i}tl0whna+a)yb+7UBUbk=qVTxVm@(5MymY9LGYYTAoh#>57mQ=H zRI)dL9@tyFxYOq?_`l&**+=h`K3!X)Dt|z^&Ru($TMnE@?qW}!aS*}0VLIF7qlco! zs=K}SU#uM|6EBuU!QEh5QO2IbaSpzo=3r@TbWL6uSxmnqU>=u3smVFJd<~HG-7eNy zM(mL^GGr6VbrlC9vj2)mq7XzKV59vrE47WvxZ-nf75zK=!w4#@_h@Z=^@J51H6A; z$gx}R7}EHXmz*k#COcKq@N`Td4Oat{q_OMj#L$6qpy8xGXiCc- zuYHhqICi(MJ>r&`=g3puSxkH;$#^Cvkc^wRD$(teb;9Yp3b1gz8WTv)dS((NwK{(5Nv`!(!oa*GGpQ=DyybBX3 z?gM)~j~@Q1>MSo3WFGP6JdAsH@BsFKoRV~_8t~QhADPwzD{Egk30Oh0AHeKWD*nqbyky`1uk)*NiuAWy6baW$GfpwG|p# zbrFwE&bG~CmL(51m0Ag?&@W^jJI#5RYQeduPNZIr?Y4PrvE;$!NT}m1DZDZdmpKpP zxgJ^55p|uh2*22=>9Re(em$ruY7d_-r*X*vZSqz}Tt$W})t+^PYkyK3P$(U4;gn0r zO2x9oEfRrjwujHsr)UIe8Xo1jUH9EEH!BYH?zfD5QKn$&*+sF?%3mVGOVLMO`TPQOLDK8x#)$O z;__{iT5$PxF0|oE&T69IUR}y?TH6`j84Jkf(InYf&k?G9HBavH(yR_>nVXSmGKgxQ40Dx{msGq&hwl*A~>sHS?BUlN|0}I8VQRl~4aSYvC*^rtH=0BW96H z)(7_gbO@-A3449@!FpTN5-o0}6m5kr8j|A#g!bHChgQx6Z2Ph)=`vluC3}4{62^7t z(l%U<298N6o;%Uh$53=i*j6{sS)BT{LH!=_krj(MWRfs>j4LnoZI9yJmBiZ$5fxI2 zB0?L4P{Vd0-t-Zb&gpku)@yqMO~wz7`%ckl%#fk5~0<%bhI{8TG&%kI>S3nk(5aa1<18pxT{r5` z#ThHsOVm0Ag)TRo3UqZgz@tB=vSB~DscbwA@7m27BYu#ma|#L#E1Z@bb{3?#=bRNB zr_H<*79N|)x`7QM3(k3W7T!D8pPR#Z7=EYiKZVUDPIw+AerU$tx5w%=+5@IiQ}U|Q zxR(qU%oYfHNpe)tzN+50A{`zaSf$*f_U#47+XokSdU1Bg1j5C@l_;sVvn)=9n`m7v zG%ob0KB(GxQm{E@9+&p?@&@_nl}G6LUpGT%*h9IRC?925-=&k?I zL=dtJEIh`@roywh$)nKjrVhZ2#x2R&X0qWUiqW>5`Vq@lVMuYsO#j(J$Ms^}=+%MF zLOAumb_DK8$xmfpF+9YQO;GETZ*YO;>FbbqqX09X_IIJW?p@a~o->QDuV5fxqzxz(TmEf(-U9~AJ0 z+fmakR48Dm=2bNyZnFw3d)zIZZif#05OI11EdYX@#wn{Dw7<+P7-E^6+i*8ho-`o zyV}t^+tb-b9?Wuv(Ssh1!sx~{+)_D5W&vOB%YrL3vqPhTw5CUD2%Vjdd}i3?Gu1vH zKKuOZ3};#KxunCN`{-kYD~6m~(JbS7BnH#gwrG|m%3&6U^?a+MaDSVfqKu-%iENn# zoVqUyE&$Wxx*Cf5*^YkEp3XDju-TXi=f`ee?QPb4xHi_PRgS|XyPO5|Qrw>HEa$+j zn9D7doQKN36WIFUQbvkKl9{M5eLgT_E?i(;J6eK;#&%wH9;N|9C3290#A~IU@M@8b zT>UI0_DX5<;gyz2l6Ft7QDDs_WxSi1kJ3k=!jc!j?=Q0B&bM%})ILcZlF0oE5*P2r z(9Bhd#i;2?96o*g>a!s6eOsqz4H-jPk zZRY)H;jsf-y$a*zDs*Qv#um7+Wm|v^uoHv*M$+|7i3laFhM>5=c3Xfol+iv|o&3Nx z&T$x!Gq|e-oQW<2H`E4_I@ps~qes>{<1iFw9Ij*vloR8>7Pwl|gu_L&c7pMM=i)~g zrES%5xPK`S=W|nZ>r75K?O%sk0Pdv?6c#5)?C30P+z<@dogX9F6+H{w#1xpt%#nBk z<%3PmlCF1w9zpx&&mwY(3p}Fi}+P*7bu!h-7GWOT=SJSBH8SSf#Y$@F_ zk1?-&hIwV8gw{1fm67JzoPy*$mlH($HozJZY%_|_B_nOR;oOK}&>)#nx;Y~ZgPLHo zy`A*E?V+r2o*`Y`jA76cNnT_o`-VXoXEChba4j*M4s1b}k9T)81)5Yf*FH0ZMmy8R zt7slR)IRS^jJU$ ztJaag5Z1Ka2)y(-qFd&3+OK8k9*k)168~5_^hVR-H1Z2HjV}7%O^U}Wvd7T3v_ImD z5b@!f1$*F7XG`)dGx^XRXG}(yrg+1n%C#7JYcJ^2ZRxLB>Dux4Prt+ zc*=0qx^gv#vS2?X9W$b70V=TX%`it^?MG_IjaSo78LnE1*B6${aT=4S_XHP}ADmxUcn1*w^XA*UlXno#~~~;^p`g=QG;(4QqTKC@ZU_LxzRW znE$W^=Ag{&&_-f-{|Z3jMl81(qCv+gwEEw zmY1$hZ;cPPDv8KNn9Cn%D)GG>et7;KnkChH4Ixr?6k4zJ*rDLc>V6GmSot z0RKypGeqTJw?H^GJLBvqUa-Ih_+ZA9(_HKoXW>kjOV~Rqj0ewWFXU99C!?B$&`Osp zOuTKuF8sz$s9&RsLwHCH~4l>4Q|+ai&kXh$LKN2*;#Y9HhfOc9q)?KJw?SyQx<_~vH3VYb~I z$!2I%dnmTn&J*KtZNQs|k(h*Cu}Bd%g3^9XE=k#m$sw#_$0&0S!|ik6dfb=gtRpg| z*sIJL@xe!_(X=85DygUc-PFm{*1o2Sn&0}2 zo7En9&mBzrf58I6i#mOt%n={g3i zSPs^-Wzxnj?Q5#|+^>ys+6nxVH=u~?I{4Q>a48z_rlx~^DPfcl(Yyd1zX^JdE!}OQ z^VDm`L&T^Kwrn0wPyTS`hdr!)2pNier@MZxN{kX>=+G@Rg=ho-1K%Z#_)hmviqMGY zyo@(UnUkt=(1mmmNftyCD}t?{LkHZsQQ@w$FrMdP*ccUtd2tLSXQ#x_n*Pm$Df};I zlo)AY53{oUrS3lqrB3=ArCy_Fuu{!HD|N;_6nce)nqj4)Rg7_*)G^0Y3~IiuIBG#0 zu_Abg*|@wbjQanJz|_Aw?4AlUA}$rFU(x2psQ&|OTf1vv-~NuyMeeFh*B@Z)r&Nql z^0K1RF};T`f6QFXOL9`;DE?YXC{23=c-%2_g_k;Jsc@9N7p-}WAZoW`i2UHFs)}XP zUv)hNo##zp)B6M4(SmJf#qu;~L>lyQ=ttD>-X{p5&OD~S0HtPt2xJUF?%3taT!qCH z3wn|jjoEi+>emVAgAP|Av018PgNjAip_N!~p{=vh*jg7q2Wvf*$5ljJlC&RHn&G?) z(CsYj8XYYV?A;%P!Nd=i9L`yDK$Gf4*?C>DBILNJ+wr#+;c-s!__Y&pvqvjV& z@B#(QULvz_YAMQB0P!g7G_;D1%ed|6EcUVIAa-&=SAOx;aVmQV%f9%nR67g3q(o{M zoqrBj1z@M7m5t4ac5EKOo~jP}>lo=OEq;}f=O}c4Q;)2eT8uhJA@Jw6%K|$R?XvKD zlMfc44AY}s5qMoZrK~GeM4#}rdf9=b6>?P-5m@sHbnf|2SlYTD8@>V9)rEn@*#r%n zWWkOt0&EitwviRv^Zr3TURVyy!5CEk zN*%jG#j^L{eq?nl8gGULyUdF9SKo=^uF~*!EbUPh>#x2{S573&XoL2Css!5m5laS# ztQoLJO@6**82ww)l^-X%ID@-t2JBWJr={v^Q{uJ-d((Arx@Ak77~36Yx4K7asJWfVQ0fo7j3^Xcfz zCz>$hi=nY2QcF{2|I|qCac}{WO+Kyd^D)X(NlcUUDL%Tt6p?gth*T5qKeC}uu%~k= zdRKH+6B{Iby^kJE#t5`EEo2(_90bHS$qi32=BzZYKs0+);_AN#u|+w>zG!!^m`Gasy!|6?p8S0T3mvw zu2>-9^HeylpXejzSU|5^L3{$MR~=V9u}6Y-sUTctj143Su39v+N$Uc5y8*+W&n?`o zRxS(pZar5ckt4Zom8;*TBe_NC+1josk!|5#$%Xq_PPSf`M7~H8;qvmVkXTkm@D$&T2N1`(DUDw+}kSGP-;c(Hxab0XTwnL|HVy9 z4!>J-U}gN(+*L`$ozd-})EUJNc(54vLuv&oe*=%E7C&P)hGJ(d#=u^yR4aI`juP2U zMY7wGtoC{K40FEMToAht<{`SaM8I%ZMLzI7Rn# z=}*AwV{#sN0$)p;A!32Rh0hjmMe@3Ei9xOyaZ)0WsYskN zX)cahKu4?~E-u!@i;90G=$;C~;wH9Aec!g2)q3t)@VBja4vUt3(G@2ueXm!3`R~QSxe3bhze}EwFYrFm2g8Wdx@8 zGr!kkC@L(#HlwM;NMt(2f}Lc=vR1M1T}*72#onNDv4aj#I?XOikH+k3y#={0H{=*s z32{jxe^ilN?%Uh#9UpM+l9ZhM8s1d8KYJmBMDtuizsSUWP|U zc-=HU`p-(_Hu+M|b_i-Lb>~NTo3XW3EF4EQ$}Hb5j7GlWjutg7*y`skRnFKk6J4>0 zW;3zBh1mHOc&a`YSWhd=S2u`YGi-qZ^Brgq^DL}6xv@|w*qP6)J!V$^DX^_w7S`uh z);KMy9sioE0^X@$R*u3VthjX)ZVM;d%Hi_0nTFw65gd%x_MzYi^Fkv$!=tmvz3nPf z+>BtkTOmUGyLl3upUy3UNhl82XD%XDf|FEmGjB0$DYqdtvXHROIH;JAln&rqf@j5>Yr#8BGS)T7_)@hfEHFt`U-{47gsYqBDGyC z^>5Km(lhMn%Pe%BVlSP8(d02nKkB3N6uSksncK*D$VcLi9o?m9we;~xu6 z`sR;){gllgBc5C-D+*trl>VOKjwl+q(xsjvD|o@zdvjf#ZtIB?i5GMusH^>2E=A4l z?}^F?cjnjDNzm^O=zwv|0z`svL8tZ`(*jJq_BB;hyWs26%Pw?{6oVu<-2|rODj1u_ zZR${-w)N_uKWnYs(P=~OZ6UMqCY*Oy5lbWgh{Ji&NT`l4QMC1}=KquvF5T?tr~;y;;qMYOMSCz%5ETSR+FZeu2o=!?@I?I&!;PM}Revf^6W=8;HU8rKfT13jC#<)y*|{>1pp`ZqqA_)Vz)iKgY*S!MCkZpv1psw0a_OB7Xq)cQm9 zR@qAUGV*F-p5ex=B^^F=Rl+^1NR8cDKWcq=Pl`O^Dokhp%BfDBKEkN7&5!2pyCri| zMCyN#|Q6o%^HDBf&O0)7(#7 z@z~nQf^K3#TM^RpOHzd?F12$!?QhmOln#D|N$qDAkw1|le+2Q=M?|-O>Z*?IoQ(Zh z#j+Bducg7F8+4A^wi2wfxLa`e;TGnRk}l+k^&;{r4KSu8PIoBjI#M9G{gTcuL6M)s%H~_J zb9F3kEP!F@w{qe|NH((B(#Qrh$nrl`c6W!X9In4bcCxS9*3@`Y@g$?vhHwmKe&2l z<6anVdmY?H0dv4NDIEGe8}fM_+WRHIEzRImdoXW?`spiI4P1}R5>HgX9QEF`&(#r* z*Cgi{dmI~C@Bvpf$HzMELj{Mi6n4xHx>lX;evM=GYs^eMS!q{x?86-I_+H1IQE+Io zRViY8m!gz#7$rtO9H`1;_BiyJovHKxFnWHXGam&q)39^EM7kG9(z^kicGp5JM^XC? zoz3W#bIRi^FN&-(qS+V$cyTvemFdu+ZY5|*mMe<7{_0Zi zA1g=OuNj`$4BB!P0h^vzxLR;L20v`Am-x`UEIdr1b)%Vkx&Vd;i0o#F2*HAG>vR_x&w@09U#<*M!=-cZ$Oc_y5z2fWOP#v9Vfg7qjc+)6q z+ImzBifv?+>?{1H%Iyh~w}7kzNlO+<2xYo4}yUFF0TDbml1NMmwb9dPUg z3C%$PygQ-L2HrwnIF;}ZIo*Iljq<|vb*8jyh;T3eQ;O?%co124cr@v5fXU>~3M?;P zB@3ff5zj?a<1^Y?TNbaik>hWpW{egN?~&)Z;?(4KR7#P1XsV`3QKFVc?|>aRLGz!k z1~#AG*Rhs8GE1-ZVG0|D)D1`3kM0Y?&0i8(AeL)MbYht z-Ad~_hL_ppu*9E(sGFtRKa^u@|2$p(US@el$&y=EnkDaYhoL{UDbFz_ zH>FYV^2y{s(S1FU^hbVrMgznTn%;Fii;mR>dCwln8lU}_s}UwU4&km%$s2;A998LD z9{f8`oY}=3JnWXrn)$b@F=i$FcT=5~*S`8Kk9`EXU)E85_z1249=1xq{e|D^Ui1&P zrHs(>ZB2=*F;sYo2}*k#g0lnafYN&(!O=yEr1KR?fr!FI@0e!JwUuwSBHyg5zTOrp z=tzG(!0`V|1^k5>eCVO8lVhhX825zw3LXgVL?s?$DsW8!d(B{HH*_#rk6nqFz}l(x z>Qm@(Pe3nBu7d7VM--(*yX9SKtO^5MoX)&_Eu2Po=^nDYAWW{H_Cs|v9IkzkqhZL; z6$j0073X+C%e@H&4^eJM9iAtvsH2;ftF)08 znpVzFJB)%qaX#&Q-@@tH82vB`Ul9~>Jt9)haz9YA%pZ%p{@%0AZFzQ}(KNZ+JxUVx z>#D*%u0B-(gw`*eem=UL@O&wHHUw9Ef1&+IRntx>qIM!>d$wvnov3H1y9{oT;EK3r zqWk?U;DxAEljkF;eLm#iHRs^UHHXeLJj@+0iaB++SeQ~uqtUSJj~`%Ag?UK_%>qih z&At(}UD~Kzv()e9cUKcFBr`=}a!0l#=$D%GIxBILREXFteM$ z;Xa&rtyD(dU!tg4?DN=K8Ub@0VF!Q79?tIShe&rfv0CQvfs(_KDEBnYCag+WZja-c zf2Tt31aU&*zEf}*SL5}WpkInm+;=_VsKrkkq8#7Y(f=1n=k^05WV?PxR;hNbp=D{O z|BB(o`zjZdRvAWR%Nb3{Sr5Z4K52zDplWV4oE7Bq*)^|$U;d(JNlB=o5mMo|msWyV zfDuh&a}aMzsMj-+A`*HQp+zz7X!vbM`2dqH&w0?H*BsbH?edv44;D7Zx=T5F>EP!T zFfLULr-WG;d@+50S!8kR^`4>BC=dQ%${@`?1D?T8+tD*l%KxUG%^ONK2HN=OpUfS&2Y?cC@EagMVtdN@sYco8b&^F;nTzZn*q`Lhj6i%DGF5!fw4$N0BRD zfnc0J2zwLJVxnolnV!MqEa#4c^X4C!y54Z@YbtJc!#||pH*~>&(*@6dQ3)JsPiBd3 z*ruz6PB*=DwE`Zu))Fd`c69q}jbj(}Uh5S{eRjI@i-}U&mvupSi~vRyVU${g(uVYk z*9SIZ^uL<~9jSdy6~o*8XGdaB&hU9E<&M$i5T-V56*rn>h+S5wg zJXZMf;FgG@$R383!=c_nNs2nkR7d76sg5PBjTMKh8b;O0Wxq~X=$SQ8d3iisdEyz5 zKF>w^XyQ<0X2IT-X+k`j9iAuAD%PZm2fCR5m{ifXk0+EqsOc^y5+piaMRNo-J%4Xp zh?(z~NLpOWjSCPx=E-zrk3N}J;B0T36CiRw$?dIjvEeG5u5ajqRz0zIRT{JceRB^B z_c<$#+_(IZlsx)VF#CTEqO0=&&7OS^g zkXx)sc4k)+-KB(AB3%-BsQuMadYM_FOCtJ2P*&mIAv87KjU@sL{IVa;mIZ@g%le5e zMPH-Xztiato^}e(iWcQD;?o-1=>3LgkE4MdU=OB2QYo*m$+3IP)7V`}wDjuN>YwWf zzYYRlHW{wXPZ6d{?SrRvp6i2ccYV zhh?}H8Nls1tNMh~$miUZaDd5#?`e-mImU{`lDxo7_7`EvxqgLc{_~jB%rlec!}@`W;* z<}>#8DMqV$V-n&v)3cvK-`U4q+);!aBhl`osrFFAHDkTLKK6>>gLx8`U;AjSJnoaX z^mCWQ;UuOdDYP#qz;n**k9lPiJ7gn!Bo}|v0Cx$;7#%rMLBbg)V)kt#;81%SZ&Chq zpt~%FS}foSh32pQ882YuongmaX3ym)`Q7RL%V3NP--LLVrpu!W96OW4Y16+j+Q`ZM z%hA@sFo7d>IUKUjf%R}|2)qX(UmEnH?1-Oe>bQyoE5%=DU4D zXn1kF^4QLfjvIS(rC%C>5ydn~pQ6xlk~~}sLGhR(FFkqdS}_{%0Qul;l`xz}vMB{_ z9mzGH>!Z;6HpqO|EBSE4>+=RCH0krN<)^cwQK{?f=(yq6j?U(IYYcqGkCOg_LigL_ znn(Q$QOD4}*fTR0jr*Kk7P#~`*DUUjLl!~5=~e3>*Xu^rau!^Ghy~Xolq~+U%K{ew z+hxJ6-Z24Vo7$X3s*(X3eM3ien)OCNCsT#C&%mrn8N^|PI8pSM682F5yhYX+9_FPp zi34Kj!iRWpqNf>(1r;+?8-)~l)m>gJkmPv^*%*Noq$lP27S5QA-f)hYiG>u&WJ* zn{SBBU3ckg145|jRP?epq`<$iz}gt&V|U4nY3@dN<qQQQo7q9}x$VgpYlMgFc&wGhW}o5O4X`oya3lPv5Osg@PP+pKu~pjimw(D}*nKHRAmhj9F(+f6>|vdZ01Spy8# zKBVHNH|@KQo6|^{r`25GE{wZDd>|^5Y|Pc_aT+BuQv13d%f3JZ79y72QD^d|GW?0f zuBqhn(r?-R`C!dZJT@>x$>;2K<6fny=6oh&ccO3O0@qus&(dRMylkz;NX4DHuJ?_R z4N!djePdj_h_C9SDep0g#VEVfJq5Ssa_aBQsd*|e;9Ykaio2h#?*~V~Q-dkG#I89T55O`V8i!1s0f-?`BnJN`5?Z&{e!gg#yFu0WZY?ghk!V+Yh{ ziMup8OAgFSlz|-u^VYigkkF;I?)Iuoe0Xy=xogtV4~_KLK#%=E@41`NmXA19#=5{n zY{-9n;D$GPlpaDwn`T8&&N?GGN8=8xgm(C^r{Bl#j()6XAM=SlsS1UxH>Yn%f3A0{ zOW+?-*-vzhvhky~G%FIzulp8nd3yLq@AOi#`Z1!-MD@FA+-K;SSUEiCfO2AK$;$L- z+VDnZ7+wLw-+B0<*zc7aJ|9{((>+5(+|;|d{IqnV0prcyqd$W7YaJXY4Iv-Z-VtC3 z!F28mh@I!A-w-n0L+S09U&3heL~PY)BFT+x$jR7iXX4eh@Yw3VT8FvKFrbEMH=FuI z#37wSy0gV!Lb~`#=0I$yHm2+=|${9hrHcF z+>#5i$8L9BtllxlB{}KG-I0|3-nE+4eK0QhxoUx3w!%2hH+v68TNoLpf@VVb-bW94wd-_7%hQ0=3fTPn)rDb{;mx~q$3xAZMjel~2ijiaF*46nKv zFh>_E`z^doeeEA|S-%b{OIyaz2vWA;@uND^Zs}3Zjs=X{xu)nSQ%>x0JMWKE43u835;ms?UpAFyUWqGuA7vMX{fNd9kv1cn{clrwTiT2UiG0RrQ>AH-!$7hFQ8txlbe1O@={uAz6*mdFO zZZ~uNs!y2R0nf{=zE+aj^z}sH875YoNgo^ic~RLPVcr9@e>9|-Rmz2He`-P_e(R zu{wIm-3r&q*~o?!I}{ZIAzw`hU|GIHihTX=D$Ba_!m~;{s!>Xg(dz2`g~KJ4$#o+@ zyb6DEWmD+i9$apd<^CAALTW$Z`WE;r=TcVx##(R<@%pC%T6H^KR&vQV(s)b}E2n{3 zjr`ME@3<8Z5^A>sx~@YHNR1|@o!$-q)m@a*Mh!>Q+PBGUvGyag87$DUNkzPN)?I{a zV1^uB$$80B)^S*8A5hpFL_Xbo`V=UB>I#ta3Q}@`g05+##Y#RCuHoA>swA1rv6%jk{ z>fR%(ji-Xx&It8%#uhAYNuSM1SbqxxkBd^q^HN5njUw!I%dZt3+v)xuRfanJGb&V< z^sGhFQ&Q67cU5oFnZCJ$?Miw6(tXo2YKPQ1do zH4pn85B-Hvdo}H=*}5w)kMg97K&d(rhJw{ZKS}GY(D+SkE^+!hWAf9Jd+3FG*m0jT zbJ@`A-*?v#^Cfq#!o@}^smUc6%d9hgbuj z+|CoNok3;`jiQ-nM#s^XHZZ8s4-xRhTkKYiY%%A+2lpR^?~ay-3%oKPmm)v!v}V1e zo!S{q!yZHat9JCuW;*vNbN|DFLlm7uU0~p;+m>-`4LZb>`&tyFnX=@w5hN8>E;8!Dy3)-Q5Wqj>OlaoaKe8wjopfCUsDBy<@$j(*eNcPnQGffC&_OUeBZ+9 z-nuOR(3bn%(V7&k>Ey>*6|nsfP<7n#63!v1dychH79s-I?|j z@st(C{?T1NcBob|T01LgVo^_hZHH>5fR>HzY;hhrxm0*8_ZP)Hbwmrv!|v2T-i#07 z|9g*mxia+|jRP--VqoLgry7WFY>(%7&`+_Rx?-HfW20&yp7)&f9@(|3g2ztPK>SPg zc$WTQ2~RVzTH>)wH4xAJP1uS%brn2zt_I?l2jbc2HR~Mc!Fg{Otv(JoG(m|l$Nr1g zD6;<1#{o4b8`0%UOj10_kN@aXm7gg-&a(q;9MzC2@ReKC588h=p{e)unGnxU`WMV9 zEh^sE$xHr$e<(+;8UZb*%>6(YH{?SzD{|IQ~!#dU@=Z|MjM>U#8Kh=l|1#(k~NMJsz&wHK&gh@ z_q8^5Zs~=y3Q)nOS;fR^i9^I(7pt(!&p2^H z(hyfSXl1H-QnV0ypj`j6q(^k2AI)&)Elf+Qd-99>l7tw#LE^q%lZ$TepBSZI4}my( zAo!LA3{%7v!Y#AnMa6&hDkw*@8gUg=)&q55mZ!6)Unxw^m){9=+JrgE@<~PtT%(m?6Pat>AW! z$!6RuPr*%ZomE9_lDNAcfik^vp8#?1*?2d`>Z-5_<>%Rc_^wC`mvdLG5Jeq z-`8Y3zu%qgSIl?cs`e3%Oz+7#63| zs!`htQ0Mqxa9@meuT1&_K6I8A_)Cb@7c;2b_&|w z3k}sY?0oXTA4Oqp@o=Ux4eWuTT?H)(GkQ46YX5FFozgl}+enE+_RNpdhFPGph>x@q zB~kTkB^=DbLtFr)Nw?MGmf@X2dTNt&=@0$V`C>enth01;v?R=syI#MX{#v~5rLfPy zD(nm?peF28`R|&r$b^N(Q(2mVP=IjSKypkt0ztma4j3DKt4q9XjlA9f@51oUO%fk| zsCS$v>0(E8oHzg}nNb3N;(QMHzJ*iev8J)7hite`F4QRAF|CsEA6EE497|kLb_D6wyaT;=ov{ z=xG6U_k(x{0ui-xieP}XdC^;?72D)M#41_Fo@Ee-c;8Y+@|TfsE;=ZM*(ZfTvM6$H z$FR5e#VHm1w-$-L7TI=7*>?B~$vZD|6OoVgEg}$-6^Qb)0^gMijPI$8 z;5aH5YZZ$G0(j>p5iBIV{XpUQkd75Ec9%pUBw${Gt zSd@#+00m$T+?N_?(@4<(x1+bE1`ahf+~`8aCrGQ&>DaH9z23@$4fa1Ur?5Q;Zxrj^h$z^xrx zHJEgPo3%7u1Y}?|FPudk=P4}0pXhBY^a&kq>+Y$&(}NdLhk3XNIPh?4N*IkfISo&} zpPq&_@fEnMBkvP)yAx0JcK5MVICP~c-0`NKKXBmIVzY{&B#V`wI=o4QJj{Dr3NGD(M z#O7J}Bp^a{)A+>S^o{ba+0x zcP_#AQ$0<^6HEF>xuoy7V@9If3R6*`yguENgjwm*1s-+tR~hX?s!+9{b^2>&pwn-o zq>i5HiNl3HrqtMTB2ybTDe$S}C$~LCG2!%=VAd>*$zI~rO6wegXGD8>%g~4GvpPBs zQrhdD9eG}VCXABic)H-fd%od0rvCRUvpq-E|6V#L@b6pS^c)kfKSSr%cv1w|u0QZk z6pY;o?1!2Tb7$;wQay zU%&Puv{W^8W+ghb1XJ(2{>0H#e1WGfZYR_dEA#Dm{-93gLm^(M%+?QQ^!6tW3QiqMT)a)V1>}HR%zJDf&7xF#ZmtroQ$Sf1!?hu znHc)SWCe?VBtQ8aHsWMfN6cT7P_eB$_(3l(ZnvBq(}E6E!CZA2^?uj0%~5~`ern7m z@FULe56;iAmQpTVZQ!evqzq3xk%WnZW)*)`Ml=*>#*kLYrI9wR&<)~FzMMg#zyH@! zl<*#6dVM&FVg^0+{CP&$T?CrJ!SI}FVwTGIW(DHC)6I<6p2E0NVpea;d=_D)btNNIqSopUpt0s zDFFShf`Zq0n&Scp69{Mhv^p|$#0?s%=DJGM|Hj?Z>>bL=`MX83>cYQm+X%P$_C90b zybL+E1XNi`ylAXc8RBb3ifFohAAz!FoI=r0W9>t#Xqd-WS=+{Iu8=?z_xjtvT;^rx7xt~Vpr`4Fr^ z6rEKVONYNf^LlQlGBe5g!Grg1FJHseco#hR9qx=>o)Op?U{c-{zw)>!qd%KdOAdB% z7TmGR(}O}cd75AhXDZA?U6T8L9di09U(AV-=_|U?3Y3puO3$9QJl;^50Pv)z`!?pTTyQIYx7R1S_3CZgdAe!3j@zfAO zdCB#bM;-1V;u5t8{q1EFX2|FT%_XLqiur4=r?aSR!Bofv6Ze&;is+~UKK#m4Q?#=H zT3Z2kR(n%u?>_u|JOdJF=6efpzUGK0N{r1*4fkUq1^;v%hMR|uqv`AY7;lZTpoiyz z{`~;ZADPj4GV_Mf)QSu1$kJ!3IXpV(X(3iwa(F+N9I75h4(Ba7oJ9`*-Cmd=b2zK! z(CB|~S*I*H9M2_(!AFoo9y|fR(W9uRz%#*N&rEz_cvQ$U&n!d}bYCk&wO&{hOzEq# zgT*t!iq6J=jmm#)$?t(bKQ?w4DjWMg-SF6pm;Oib;$x0_dWe=RNGm$@*l^>iH1JY@ z8&ASdq{VOl)-zfR_9uy^GZ!(`9mq)n+_A>c8y}9823Y&@V^G&zl~Mb+rwyF4mPBD- zJC_}!>1XJ1(Tl;>G-N@W~85T-&eK!WRa2G-@>bRE<_=65Z=_u7HAY_$LbC;dx?tNtm9lMMl%*+&ZKL85 z{}7PSM~i5FMYIQX+U`9(`|o{==WjG{hKlV7~- zX^jx4Nv*ghRI3nG_)S^$>A@9GcTp}>uTN+yiayQq^c7`7&2GD7D7$SP5a%2EPVW6q zB}x()M7C5RFJ@y=IMo74!f%Y;N1KUsc48(nL``_eiM!pgJ>S%64A65IeeqkvjJ4Tk zWTZD%%u@l?9p18Hjs@^K=ZsN)wX9e+NBDw73VmUj;dMV%A>{ESi;pdk52X}qLMa7n zx|Dv?jnL;Ga0segnp$T@c}t2PRphoDEZz;i?P;Xg;5oBUU4DV?|51|#UxT~-%Oc4g zDajvF5-r+@^O2{r9!6s zj)_}y3nV$8ZX!)7`5u9b=Y^8_m{+?;6*| zE>|J0n;6c#V}ZOaC0nRS2CyMnfPC+89ti=Uxi#E8qSYT-n9uV$#%cea>KM(fS$A~5-c#<}IdvD2)#_o=9X~N{ zEUyw~uHcIJP2eo|Ys&YxXPZdDvss!gb8X>Qtdny5u^Fu%@8KrnkLvw#&(m9sH!_?m z10Z6oCBspiA#c>>3GX}pH2U;OylqLdFicm-TVXzpvK{hlcb5t{x&pDc&nL#|DeXoFn!Ql>gh%OaJ}<~GT25@w>%htq49qYmo_`7f-)_-9pY^&uFG6%Rm1|wua*q3 zPr=YGTWVN-y+-hJ8JY>9!zI1y;4Vn}pxtIxyNg#J-Dnei5wE5k8}4n0aFr=#WlKu7 z@YDA`kg=FFm4R5yi#Qr$KbTAU%cZ@oa7e+Qeo7f{N0DPm@AjuRTqSE@ScBE^ z*bIUZW_UrpVM2LPRJ*MASrLkTkAbc-FMbm^kkKr>OgRh_tEKLJ{2VQo}0`B2Cr)JylGG+Kut3Htst+DJw7CFS;g*wvI*cd8nFYR7G!j zG02i-I!nwo$4doeYGqcUh)O8$n`-LOmAv)D8+HQbYwFAPcuS?UtPY*suuy)J zTAx->Z&6SQw;)Bk9IU!g!&_gJj!>*%N<92~i3qb5#Naow!(^R~tm&;GnyCq)&S3hd zrnjbOY)RcPLN|i?5rHis{aJ4-F;JzfO@Jx)w*YYe9S`ixfD^SL#%vXkRtJinWdTgj z1(04B#a*ug;$A>G9@X_W6YDILwN?tcsYE(nIMW!`A6Hpx>tli9TMOoE9fMKCoo0sl z$7ug-VsaZTEhWz8-MaF#${t0c?&s;QcClH z9=H&H&_gtlk=AL`2z>!8jVq6n%bw^(_qSsRpT3x|&`wtM0fu(>7NF?n-kNx+##C8<*aF!WOSkYQ zh+7d0zcY9#TDu5ZHy&54X3n?X84IQlhW!tsGGNx7_6q7(hV(t zpjnLmx)^<;eHCmp2RSyGt1{3O8Y3cXD#|PigB2V1ytj$ipeEn-ytg?b!lvZwe92i8 zD2Z7US~N1W?cgD!Ckz`p8Jl6eMZ(6%4I3TTcGSQZhu}4IZ&C5Hl27f0waXj7j_)>h z;>*LvOdKEIe9X%)4;eXd!mu%;$HxyF9nXp5TMV2qaQqOulj1InLAgn(=K)of>Tg8< zD%p|daSAtl*YaHRJ#$In{H$=*jHkEiOtHqS^zzMe;_tG;2!G4n^hXEk1cl77C-%6F!QULlGlwSv_qj>aT4OsAo=A4#|9L85QEjyfA#o zpb2pk#>5RBHhOT}Fji*ueu(dZ$4fz4tIV^oPkDMc<)c=4^&i~ohZ$5XZGS1inu}^5 ztR?%Szc)n;)JrBlc$eA?zzF*#vs`%wqBtw3eN;gf2MK)H6R+BLNcRqO^fzbP$C4@A z9r~vrT09WWZ#n1GO7C+qplIQE$IN)!p0R7?N4077O*n-;D&yQBZ!=spX)65ZJ_Z{w ztVT0noICK3s{84q>fQzPnbS60C9cg z6W(3`ms^6mOu?uE$*}2WAskH%MNJNRl8x{`dIDvBYqx+2Hx0= zXlRenRu#qjtLe#bbl-zDN^NCbabRJZF#En5&H!4S&JwwYw<3t zL5~oASwvq7xibngFZ2sq$&1Axw9gj=;I$l-Tv1qNVV}ZylzsW%&uYnCVc+-?N7J=2 z-X@O!nPobt$h0p|Z5iXdDVX>f*+f*AISx09obf{2>rea_LzjA)-b zVtKudwWUh25G6}fm@d2uGa6^+jLw}yHz#`sImm~=1yxhL!*GXzNg+$0g1G&fcP5@_ zF{Fs5<5RtF;v}RAvGXa2`041N@T8HiT8>Zmw#D_rCIp_JL_OJ8%k3H7vEmu{LoN0R zWNfnYALoW^gnX zA1uPHeZ#w2v{FGUW_!nA+-ORkY@eLnMa~?ACWfhu$!~g-@#K<;G02{QMmRz&RFhYl z=Y7`kmO1&Gfyvn&pe?gISfw{AUK#B?LfO63zGPN6@wJ3I#~B+K4>L<~3J36$UUCDY z;YEeVpH8|_r&*{hMW{dZS`$$bM2q(N}2rVZA?ikS;*!6 zWFvsXW7zH7X7 zltSNL=4~zBumEOC(WVtsVo;#+a1WXYkoW#+DQ{%mXWyOk?yPsGy{kWEyN4yuv#VGb z)ttMf1C7Z*FTG2Z|4fFrxA@$WJ(OxA{}u8Mz(skcYFqxEcZkTgAg;&~{H&G$T-y?K z{@&2|ocFyEqHv5piu3Kf$rBY5Mgx+zw%2zTM#U&qu=E3OFIJ&x2N_`zv&Ff^!9TMH|PAKo*z#o&Gr1}MLi#5r&XpUBdp1k{SeiGfBG|W zeu(bjeda2Sn`{;I=p(fE9 zGMj2E^{F?vy+~uXK_6SqLZ98{9WORnIG;(OKT(CA>J!?qc}&DciL0?Z2MeNXsQyq} zZ2!s8a%o7J*;z&NTtykuUw^}RMBe!EXWEaQ4_+)SwRz8!q~H}{oQ6UYzXgA?6FFYC z$omt%e2-^kkQ}wy0Fx}4@90CX&u**Xqr|DK9V zt}y0lLjNss>36~H#A3|#xb2bp-uxh(h1JG?W0uR^djb-d2KHnSq%)SV`aSJ8!aBU`apEnw|$9BMN>#Lf^E! zU4gVX?tN8ku|PKZA%>e`$is@Cx2Ia|uLg@BRLDthPn!2jz=ns@_`6YZZLQ&ps2$a4 zTjus)@t2bF(kT?`jwSm)WcJtnI^gVYo%Z&26r-hC-quh!o~J#7I7eZs?F?v3SQB)j zEg>;C21vq&uP77&vhj{qe$L}_-j*2Jn>fijM@^@N3d@|wI_NNe;`h&E_afeV2owUh z=xRbJi8)X>Z^DjvI{gD2@cznsCsqD`P`Z&#!WU(Y@)?M7n(qjD^JB_uy zVBCtSwO?c%O~3w*={|P-{}E6rIJkumJk8QUrS-cS4`24aD5|RIe~Za!h#Nb#pDUu5 z$4{g^u_=tsLMXefn(p^3ZxvLkDc|P)d_{68Uz5_!>8iK07^yPe%l39h-I^FfpTf8? zduKb@GrX;mCb+!MqmE6ax1K^;??&kQbCprg<86eF+r-%P6vm#c#u z=uMe$<3;u!&K7AWM8(i}yiCA20pcz2NOEMfMik3Dz z@Iu<<2l`AB8&)TZhW<2#X=Ra|7NWi-O`X#03>~%T@MC+^>*J^BrYCw@DBV?xYIoDs z#G2iS*DQ%&WwFiExal{&m9(7|MyYYX?oF)eeqc%do}RZ@URvo|z+|Ozv7|t3k&ACZ zL8nw~+-)rB9=Bk>WvTqN@NWF>Bx!~>)#TgnU;y#ECHXa}5xgg%>h=GGeRW(G%lE$z zB8`BBEm&9x*xh0Sc8jPOt0IbB=(TuE3_P}|*nPcI=Gc&uh``mr^w2YN&2}7&8y~pEDXG+W^8&@k1te}b2QylPT2VY=J zR&)5#^8Fv4_Ofbd6g24LQ*S(r{Y6l1U67AO5JH3ppDTA(1DY9YIOiYu2~8Pik@Z?4NALgyXB=T>{>5or97qdgI&dB)!kgKX~k^`;E{ido+mMR_^ z=nNhjVXQd~>2}0J{-YCFKUT8C`A9qdV;>k{KmX5i0iXXSRLg1sJ79=$)i^)84lI@z32}lkf3|^UOK!yxlh&T1 z3B2RkIas_fk;To9!Qyj5zi?Oh-`qjYau2*HoW*UOTkgw#vNXHycK@3@>utiZ1`+&i z!iZl*g#RWY(N&&|^HW*6$xUu&TK+5JQo+c*565xu%NFlf?rKc}wa^5(@Ex zo4Z_-s`<#qqm{^+WzchA&der!rBlPm$5%R48KH5d;|mhwO6O)FxtvuOBVX6Ta%FTN z<1=g_gLIAUN@kCh7^^!z%X8kbvCIw=jDkKDf$PTpDk$QA3(8+iu4J{w$iBLmTm_x^ ziyh1VH#?s(PZ`oZL)V33zZU1&WefV zMgchWYeVhauj7;F@v6_jgRh5p9d4>T65`G(?#mt55<%E;KaoLtvx z)^Ch|Sd>O)na*>``0_}AJBe6olE@TPd zU5Tdft~EH5Thz&0u4DDxC{Xp58(V$(P2i_2KXQTSQ63xkm==Zxiwzr!@R8jk|HGYv zHYVv$25hA547f;Z8E}$zFkmI^V!%z>!axq`Jp;B9F<_D|GGHz3X24r|$UqM1i(Yu0 zfkM((269Vp8OSA_XTT&SGhi((k7O{1w4Z_8QlbuyG2kriWgw^YPRC9#;3C~;z$AUp z3vV!xTRN;`j~Q^4{$ao*B{1M3y=EYfbdZ63(lQ3Dr5FaBCCxe#Fo(2)p}C}V25L&H z8L*X}GhmWFGT6XecZvafX(a%cR!0-xb0`y7#hjQf_xs4yi3Jp*)~jQS2xbC9})FxP&5@>3;oU zK302ipLb-*DimB*b}GUm6v7_Xw}LPhi$FTAVaRiuT~+q9`i55{P6SlLLhE5w*}W3$ zS|Eyc~+C%o3Re#9N$p$0hdsT^%E=F)4?`} zw2xi>#3fW>eZWf8k9W|yVx62mUUE-Tq(HM^{37yLGJTy?n=Pc6~hjf)_Mbu9O7GZ+|8|IP?bIXS1&4xA2hBeQIu^3~XVIddIgN$J;=Axyv z$iH&(N|wi>rN`N@r`a$i8>VH)kaC#NZ(K@xHta<<>{T}GO?;%0@m;pc581H)vSFXI zVQFP^arG>Jq7m7!r`a$ze3+qZI7PE@6lp-&Kw_0FM@I7zm4&gPm4!L?)-jeiqa~MY zm|HgN9R?obW1|rYvteu)MzTsaE~EK?%);2n%);2nWEdN%(R_$zVQj2sVJrUBF*Z=5 zrPbN6bq0*5#AqpU!|!ErzZY%&y=cepMZ145+V^|W0b@}l%OKIxA!C_dbmaG<`EpU zA5m8hG~x90-}U6mPD!O5a+H%EOhInmPT#XiDo?e}A!Sg_`hq55HZK{ORT8y;m+Z_c znOY0;Oe)D)B{Q1vk`fK%8Wvsmu>6yr#)mYJ%bUs^f_f=uE@+R(e@mB@XQwyH@w-X^ z(lHbTNXJXl-iC5j&yyTm6PyEO?8#MtbP6SADFIhZ!KX`8&PK9#Zp&O>lh5^kQiDcv zS+q5@k=)U=mX0)%o8{X9x3Zb9>m8^qe>Vpv#a-mqSngemErB8Gy$(nRY!*WyTLJ?- z)B&5hfEB{j6(U`yEsf<_rms|~i5!5V|C5@?p1Ill1&TMA&O)SQ+R;QVYPVc3+fP>* zVImc43UG{uHI-Z0vFQi&@8|?De8%6lncUINvex)O{hFch2JLDFhQsugVUMYKbGe(H zWd)Kzo13GFuPLLs+z$s&d-==5a47Dgzg*N5LyA8%Xu5_KRI`QbX-bdp-a;;7!cTmT zX(?CC&1Mm({}+=(i1ZOZ00Ipe@t<4DOHHQRG`}^(9Hs58<+7e^rT}FM@^}be8Z%!G z#1dVqb;KIJJWX#}%N0#8sAwD67Y{tzwUH;`4ZMqO;1rhTnHFUB5a}6xW)xScd|TNw z9~R4~Dks@@#4_nJE}_y9>eE(s$9Ij#wuQhr+Spd!hC|_P+Q}93f6^uCi!13VCWjCy zp60cK4`L}56nOd4F#zrSLEZtfyFZ&5pg9*NgAl%kX1ZnpllHa1rAPo`tN-1?$TdWv}>1Vf;Gpgh!*EwXu= zu=13C;*zvaIO zTnAvwbpV!v0FLWmjSkpy9ffSU4#1Y{0RQShUsm$vItusH(@WWU9VlC`1F-cv09&sE zu=P3sTd((CHfGFxD=C8KfHS4Zv%TyYc?RQq%Ch;+gF_;MLr0F$kL7a;Hq_00Yis5^ z+bF)VHS>L~nQv>&d{=AcBihXOv}V34HS^(Y=A+rnm!W3qI+ym9U)g5X%=fb9NWPaf zOKj|#`9{{v_pxRPc?>0N+?x3&)-0Xi|KI1=5Bz$AUokj9!?v$xzIsE_;{U(q*Mt1J zj9+8;m5o$0-?f^h$aIdZ=2tdK&3wyh<~vq1->{nbe$~v^aArOv&3vOFO zovN8{RLy*!YL>2YX>8z``5rZjZ&A&Bhic{<_x>M~0h^7ucNUk~u>4}N8X z%gjfWnU5heA2w#`0xwVESGFlN^F67VFR9FYLu%&xQ8V9;n)zzVEV0d~neRo-h<@zg z%{=1GJk-t7I$q5te=`qjGmmOB59%l$(@{L6qj*F|@qmuv@f^j&+03Ikitjz6Bo@n2 zJd~q&BuDW;j^b-9GYjKJsNTbgSP)0?7>?p0Y~~Rh#RE8s$8XdasTQ7uw843cU4TTPN7?^DF0l0LyQ=ofGHd8W zC%J>Ig^UVxmU|0iVrO}Oov}*%L~0fc2K@Pasvx3TYgC8 zuCW<6yaosF@2SudZwtlmF;7E@i*u zpu|3Mc}kx4z}C)U%Pw;7YY^G9uiQ*X+0s{p#V*qN8kG5l2rulS$Pf`QyXb6)=+#|R zw4WT9$6&@^_PCew555r6SFS(}2D#Z7D^na$X^XeVS*2@L7i$soyXe1ua#?R(5L;?V z1=&rRtdSER0aUMMXZCxP4vHSm-kXyBPJ(7^N0Km$*iL2_*&AasyH!2Us^ zBd*i8L2?~IR)4S<5Z7t$V7Y~;xieUF#C0k@L=2+q6h1_5Yl#Q$p!o~nFwcc1YLqDF zr+xX{tjVKq;ex{B*U4Tou=kY2h`vsHBr)v1Qj#Q$`AUU{3g>>Mu%V)zU+LmdA?+&_ z872nTR~k7?3@(rv5zparH%rsL(zM}ncY&l07kTb01%}D}Ma_{gxvN0jM;P=BA0e!M zOY=vF-g!%pj7W`eIoKlLEv*Tc`v}A|QueV7S+G>i!PSAq+!kiP7ff|d` z*jisIRvk_|T!Z`;%B?85V;M2ao}jY}TX9y&oU7m7B0Ag4t_*9RKE zNJRe!db3Clw+Q$^gQ7(S_&`si4P?C*i-Gll?kpBjh@azJA_n6JI@A zis=79MVHB=s_5~;b~Do6j%clK=ge@j?jpj8ZF8jMs9_0`uKgkV(wk*+MT?FbR5C`S z=^HdHMg-CgN{^BIStcqjWJZ4oDLnwgV={!KJ@qO~)0(BaWv*Us(COs{?n)%0=mrtV zgM`LhD-1Q^E95?wZsSUFNl;RE1nV}8oTpwzD7a;*T!OdON-+)GptURIV9S`|ye06? zo-_d$eGR{9Bv9Q)hpFT$v7|UmlUK>X7NuWc$~One;HZt~2nATqpOmbSXE= zbta6Ojf>uzp|eD5*ltz&&Z=3LjyxupB#-r?OCM8*^&(au)5-P1{Kr&2Rz%lhS`{mz z>oGZRko#I(!o|N@2=Of!QTy4i$5OIoec)*%{GcL{FwG{6v^f>d2TY)EZihq z@R&Ys5`FlXdc+xO6653$ONVkJx~_&1`*G1-kZ-MUK?1ehESi!)M>dOLmq0bPh>?~+ ze{PW{Sxir$YFiCt`?reuIe~n($rAtPM|H@MV3mSqC4b~7MHPm29n1C zm^bkNjhqgbCGQYBg#>cmDJJg(irgvkSpvPv_ZkFT-z(1%H6i;9$m@ObY*90LzdT(a)_=+~1+wT*Lyh|Z z;ndf(@_;-+kQMsNP_z0kd9tV}eo(aZAk{x8R{IBO!9lSCJV=iZiXHVqs(VN*NDtCd zBl7%^7&!;2ZM*^59WPd=2g&)c*hn5E>9E|<(qHVpj&wmqe+_uSQcWoe`s#}hG3eRi zAbA}TlfprodqnPOX~sc%aYT&YgVg4z+}b z^?wbTJ+B2##VoC%#|);QJtlXtj0Mg&{|)%8-e!)4pm#uZbMYJT$Hiu28O=E^wgJoN z#&Nl|WwW-7wRukl*t&epl(O)fkiu?nNk6~hmmJ>91!!m4w8CP65koUih(&Y^T|XhV zLornRqyZUnQtW$U=+Bd4pAkdWr-V^4)c%y%T*c7ZQwAR8l-StDP~`-%pNgT$KrHUy zmOggOiTlG&IW4In(HW@jjurGQLD;l{swE2Fte}aBLjDRmohWWote_u>B0STn*lDp1 zPp6R6Vqcg}8%_%W>GbThFfg5J{w>;(PSgGt7Npaqzl8-jym!Vx*5i!a*b+bNR-&|_ z63%$jl5VEy^C;`U2A zIh~UmSt2=|I-V0KMxMVQ4^CfX}B%O9$GU)ksNe;BEd$`{_j)i?~CgmjGr*d(cwzh^l^&VftRSXZX zUlt4Abh1klqd1)gCy7LYKu9uZDRM>Z8hd2;;+ihj9vC4 z8fN~nj6$yCKx%lh>|!vmd9oqu7A6}y@J6yBJ_=nkL{9H(;&x*?ZM|j?@aCErE33)n zUt!Z~>h-Tk<*RA`zj7OkAK5K(slzT9m~VGZT6|9~zPx>XM|wD*eu2!+UQJ!Di#vF$ zY2|fceBMi-;7k5N9%%BE$ z#chZTT6tIaIfI_uHIP+L5z}7=El3gZl0j)HqNN#B{hkPs44QS%Kz8SzL0X0TV*1Nq z-QjM7=Yrd9DEc1G36D6?RHTy(x_#fkSN?$*PZ>1sfr!lvI`=@dHiO(Bit&^|VGj*t zCmzZHmO$l-U*v{jeEqKxQ|wcq2@V14nLC5}r5f55pDLE@8RV8`@Wl`#l9*=D<@(5A zY@bI40f!$M+T`%qAg$kH5h)pT%vh86iJ_mup2z`~aOTaJTLH~zRmqy#-$YtS7}vs+ zVkc z$TBF8B39NJ6sZ{6cvlf=B!gBGF{f=;v}vqhmJ?fYUrft?BJKIJVKQR)w+x zB=-wL$OXR;(^&>>d10{j{R^?e$e@NVMefR=sFwzt?!PpUm3t*-hYX5%CFUB$#47`t z?Q26Eb$@MW`!*x;>9t5Q8Px8L!TVd@7%cemM(n;bsM}jZRPK8#vd3+@npJa~yxxgU zx=oYc$=xjLqT6g#&tD1Wxgp=`Tc%ZbE^HZHN9oHuv64ATb>53EI7(CB%QYW&FF@W z#4~LR?P)6cQ7Ac0Q$Gr4ou=C#g&R+k_kUvTeVXR~CpWf4&1ojz7SA%JvDXnbu1aBY zof=fs(xB5+?2~Zi3##`?4z}>UV0_n8z&G{2HNE~Rm!P26LB%NSW{_C#yugoAiXr-f zdVdxZ$qPF9S#%zbRAdOVU(gsMawS8kPob9?B7jqDK!48 z7_TYxuMw&AO<0gZbH9nvpF-+415e}c!nPDz^<5;j6#DpG#CZzU{~<;|3Pt@8eUd^? ze~6e(p;|u;O)&p7=y~!pOLR;FCG!SvO3WT5^D$`(*_xEh$0RA#*`#DXF-W0PCMEMB z;zoLCQZgTKZluaqO6D`bjWp9r$$SpFk**k#f;kmmORpcIz??$bGYZS8WIjuKMn`fg zna_=$k%P68`84AhN!Ci{oy%u*&RWTQcKVD8L-r% z%elSihz0oCd_JWJO>5FK7rDAA?m}N>H-o-mZX(j-=#ZPitPD4UzJ_@W$gDgD8_(r2 z^oCnrrLiSKxFtSEVM)K^nGv$|gou!>G(NB5Z?SqSv)U~Il@9p5Hfva&HY2!9=9IjZ z3g#2tvXurIkwf{E%*Wtc>1RGMnzmAh{7M;1lW)@0{33qhX>ESdmGO9)N{Egp-vS0C zvVaJTcsgG|$vmSFPleo-<`&WM6lz5Fy9;yT>5ID1r`BmW~z{jfy4vB4Sj< zQb-Zej#%1VL}-qsA4P<}4p6b8B7Gg8DMdv#JwR$vCG(li0SYLlWIpmZKzoY`0YB(U zF`@Jal`SrKe$ayABEYZE<>G?p5j`)iWS-A>L@i4Qo=3E|gdn>`S4xP+-J)V1ijU<^ z6g#*ly}+?O!`k614tQJg6FZtDP3>(%KWvo(w8%r`^b2&(LyX`Hl+RNnt_w8WQ@Hp7 zo%R&5c7gJjR01p=#U)oTL(}^CHkOWxTp$!Dk-4Nuj7gMQQnWIO>XlN0ECYfanv$Z{ zfUWNaD&eW%R^O5lPW1D?$L^VwJdEAyRNhd-6T>#2s92*368hnJFhY-c?k_fj&?z^tbXFELowlYcqU-|H!+oamkP^s1av z-V*b7sd#x2BdJusycqAPG`+lVO)6b1FDyu<{1rqdOvSHc33sN_!3v_|Q^}#C7+a|{ z*od5~sI;{7Un+CNy-GNaS;dWS>2kXr_;F z;U>D`Bl=(`z4Q^`vy*E0iXpa>X8H=Aopi-l@NA=(zG8@Nqegy8Rf|pR0Ibx89eB+; z5;S+3u;~r0^b`5!4ZZbK+E^IbVOgmu&c{jvqBC7md$C|#NBydZ9Jr1SR1pqdNA^{f zHobMvu@i{W=Qyxk+HR3DMheF{K6c=5JfJiIm-&wEMhqA;EVMbk(llY&QdEgEfP-rd zuBB&iegv?gH$MVM`>SG(){*UWH49lwFM&krH9MH{E;w73C4`?I(`)(RuQNDTmQ|a- zEDX|X#ZjuPT7HsBugyG3W#A24g7Xe~?bmutaWfQTF(2M8s@aKIX&UgX+Lc*~&(o=D zqHW3a0EneI`x&2vV=!5KH&TUE_QI$%5O`K?i~mF|KjU!sqp_ABanKFsry64MK2;X) zxsrGiq1T=$&O~=ZL00wp2BP`{Ev_yMzCnAlki(P&#A3a8NSY;tKR?uU@CSBV@M>UI z?dRh{1v~sJjR&4pTk3(R<&R^w+&9+pr!l(ZW!(BiJgCWH=8swQ>KK|{Ls-9p)@LE< zbOMOQdVa&S=;oXTA)CvKU}0yCrBiqxAWKE$LEK!`ReWT%oq=c7K7T4|`F*MOz_V%> z<7Bvn_cjlu4~wl0)%+fUF8U}FJp{&OF(*|JW__bYHAUN=(rzG@=I|Z*Ds29<_?lrp zvMA;I@bkERkyZN>_Y5qx*q`IRHt?+4vPH4D(k{SwfPtblhdN*YI9PR_)5~!ahFHhXBv2{nQLo zLql(RQ%5OUM%R!z*&3*vko7HXyi9&|g_)ZuFbmm9!-0h8LbfqO&fz_fELC1vLd2w) zRmN77{2`< zI)0gS*PDXsDWNX+p&RdONe=Awt%u%prk>(qQc13-lr%jjyZTBWe7tl}eWiYJHt`Lv zCA|j2oMrQ!`h|w|A3Qu{)X*VegO*AE(dqiiSks?WyMfZyjva&t=_gvyKpBa`pAD2r z0FxRjvjMCcDT@J?HBuG;lx(b&0svoe8qip2fcLzDTPQ{8RAZ%t%XVFmePyn*3AKM^ zRfvB2E9G-8!<%kZnkd~tKEH|58z8-j(jOq8snQc*M^j}GK%QpGK!6F&l)eBd&3Ivx z=86PtcXM8t+g}LS{4)z6%> zgXi#TuKpv&gpI~)1vIIR(jLEfpVUUFYtPmT(A}moxwQrJ4hn7y`}WiHwn{J4E_&Ej zscz3!4WQ{e+)C4;j!F%CRs^f3aI5`I?IGMsL0+pDs!%UDkgt7FkofD0a47{BHcJOIIvErPFz_#&}P=x+txFQS8}O z$qO;nyDGH+ps5@!@2cd(|4>(g{^_a|!T-=%mYljN?)V>yOOk&#&IawpXk0g?ogJ~} zG%8@C4VxYmCZ(HF%ZU}CIeS^a(t?(G3fuD+ma?b@bysSbF4DU0N+TEcQX+`s_2~Aa zknQsdkxdWy>mqsfK&)J(={=P)6x##C;v%K?Q0nNcMX5$lC67*3j0X1P93X9K+D(BY zl=Aedr_u`lFB+kEQukg;b%))$s%w=Us8Md!ouY$LliW)wZO3Y)7wt{tw(mh%D%l%- zx0@#PRz?B5=#B8*P3`(1I(E}e9oPq>&v(;+V5A198wqcu1#{I?M&g!F!@i0?%J+@L zc#iAK%eB53VY?|H1j%4GC4?v=0DSwQXLr+@eo6#@Ykze2ZkpO(2?0pc!Knzy>pehe zqZ?VLrHMR4@)x3u128gnQ;|?EZ$T&`ayOM2sT87|1C=)TKX9Nj8sO7txZ>qNrIXJ8 zZ(9?M)bf<1p@Wo8s7@G!NZU=9$6&O;(rPqzu;PM(j4@EVVX)E&|34nA^wYWVsWRGE zu|Po@FhmK`iz=hY&pvMvx;+HZz#VxXMf(Fm)l5=4fS)AZJjbEjpHqh-NA9Nk;}CH^ zL!mLOzv4`NhAGY{^%#$Mi({qdhABl+Fkn2$9EU5tbkS;O6ZJh>paQKNt_0{sZMwjK z8wCoHT^NSyZVCxgCICcFP)gI!Fk~kl4h;bi3H~~d=<1x|NW8qOD^iDWgg@`^5;Qwp z$<f>4j)dxRM|LqvwlKS~x;(H@y#6DgwaWJ^<)`Zvgas6##TP15ZXO)d0}nrK#R1 zr8xdar|MFfl)t9a@~A_9(#Rf_9HA_6{*RZ4*0eH;%YL_lepJdQg6 zVNjM%j#G-E8nM7eEjph8ba{JSjOcB3yi!Cj61`n&0=F5x?M-7RD22d?F7JUX`+R~@ z)sbxwkyh^cIOL$W(FpE^!wcF{%Zcc|FXTK4<8}N*2>3$lCc?BYlsXZ8$ZN_1RGXxf z)(g=Ala#h5e9&)_Qp=8QEFtwBnI>a`y-vL+BPCy_%af7wuT#w_7;)EW*Ayh^>y&pY zhWK@wF%?7nI=!B%i~$IZBtw?$^Q?oXyYH4 zO0Sc{3}tX`W`vY$E)qMt(1xM7?H4;ssbR-wv}JgS`^F4q7^oZ1L_WDrduJknT_@LB zyl~1aWq2VjBJW~|U>D4|)&uaHP>eO_Y*2lr@Y#yL{a3xU6@2N`Y|M0Dsni@8`juAB zQ6>Wvh{CY`N^_%>aR63k47;y1SqJ}_m1)4n%~hrYWXx5f0p`wA<^dF#uS5bYpU?Sn zFF;gsg@wp}0W5t>TNfw|?AbOPu5Rl~uNI)~Z>h^dq>s0BaiKB;pxq+n4}j!F7(s98 z`64Vh&XZrXQorzdow1iMUoP1V2^$?cDlBB!GU*#dMI&b>)A1!rVfqlQRCZx+vOviI zowg5oE>ZemRh3Lj7AsRg>AD0KC)1iGh+@t+NMCOhrAAAY1}<#N5B5zwWm7U=q;MkK@exKQJBN@YqQWdPNCujJ7y2V6rX zE|jQcR*oXfyZdQ2DLZwV3fDn{3oUw{Nt3(+Nozl)u26OX%wMT&0jRo4i37N^ier(h zm94*GPT40xVDysno z@8X!vZe?9@rb*&&oUjWsYRK?@A;Ut#`opMWbQ+5BMc-n3lpvSAx>48l2xz->|AGos zY_DRE*Y}X+_R`6{iWj}xqjbjqE%z$*P48&mJ_R%DUgT(A-3q{NA9{t?bhBqSd(ceP zm)!O%vrtO=;jVX7?N8YG4nHam-@l`g2jJ~@l=m+s24MSN3IQ}esH^};Imj8t9YTxV zQT})i4#abkHiwmo_$0%*!%9mR++Sdtto`^v8Aa_+Dx=`g6SU+A_9l3F&rd1y zsnJ1HPfk$Gg_&yUaXs84Vi&gJx8$w_Dv^jK)qR?psB|lOU$?NFZlS~QF~dd=u@G{K zg5+=-dFBJnJFRqd`Jhw#>eLHpLx-|;XxcfYBO3LAru>aj@qsFw!Fc>Yx6Ua00iw?G z!s_RgeZZ7+%5H#V=g}Jy!op&N zAKkmIjB{eB^qIXI@_8h=+)~C;LsfCsi}{Nnm&ehxYl<($4l8d>E_aot6rP}1)0H!d zEkuUjMDq@l^(|$g&U14jMBSXojJELXy{RY-Nt}FOuKI*s18%3J81D?O1`7a z0qAy@*FCNOtVrD0FTM$p3>Hy-NS_Ci~OkPJzjeMoBoJ=3EYkkFk&9lwg<{OfEEv-{4u3Gg!0EErDn=Fy$CW+FQUY& z*<|o8e@v^>Fg_ns%}406$CUg?S)yyM9|NxXF?w$Z&9+0r298)JJ*E$jxw1J=;HJk^ zPA_$^nEa}#K_f_P7$b}9lrfqtmUAt%me-U{o?Tj|jmvg` zZ(dXQcPu_#-(btlZWP0+hkn%O4JM7(WcOA{0J!*8IR#*TrY|2Sy)NjV41=ChIraN)CZ24F!3#{$17$ACG0RZat3`O2}m-<0FPT6|Z^ z0l=c^__E9kTeT*o752^R!tPPSFuN)|750tsQ@hZ@pNa!A$3fcjLm3Zhub&vx2Py6+ zZsQz`@le@yjXD!Wo+b{qnA91-Dp;x00CrlbQvk~6RA&S1(?LyZbr!G_*6JSsjdC#| zbUYVlZ*0TCIU6pewJn!&$yW6M2`p`mZ{XClQ|s9;(`~I$g(lmnT~T_&PG!Fu*T7yK z4zSB!Ed+4RUTuia<=8l=wH(3;3s>NW_3VQ0Ib^v)zSG5zsd{?z)QN|@* zEQNdW>;l=gY_%E@iq*;idgBU{(y5c1+Q1=Q7eBg+11&6|wxP6v)$LIC#!c-B&^8aJ z+?PkK3+zQ6v^|}=5l-SilMXcB1Um_pl<%n5itMe z2zpdqEk=#Xs8z_vL$#+P?*1;I`&3*V>dc#2Jpy#N(1xli7PS^aHwqu=Zv(=cCDbth zZ9LR*0DrTfPp5{S>QsP}p4_YoCDkxsD@&^50rHgMW=$!@>zIB*&rPV$F15Z4# z$N|q*SZHgk$E%?Q3FWYG3LabE)k<1TE6S-OLFiB(7OtiV<<$`Y&&oscYHC#hJ+zv3 zRZxooKvqF|TtW54?cT78YGLxOsFo_uo*O~U6m)0iDdFsd(wy-_^1*NwpW7NK2j@hH4@;Ww>k%)ePwkrz?I5s48Q;% zbsoSQA9WGHG+%WAKyE*E1;AE6H5#B+74*SJ+E+#O0)Wzz^red0#gswqtE&F?>^T(- zC|#9et0J&6$hMj~(TP93N>kzcG?k_oMl1yRs|_*EaKgSCoRdL)szYoB-KwsR0%%o3 z9Sv}@23(avm22|C4K+Ds-dgGe6fUU63YXVbN9xj(ZSm+S*_Hy^sJ(6ahmT>h(`v)x z85CGY4F^c5qmBirS(g`XsmoOqsmE2!tH-eA^||PY_0@5@&~JGm6h9B^(^&0IJsPMk z;FlV3{<{s3<}#>7L(Y=eFw>5c9$-1?!C3k`^cyp9VCX3Pc2EZGY=pqfpwf+bJJ&Q; zCjxVC!i|{U1W7i7oSSl4bDE-q;J9W;z!@~J8B#S4(l=Ml0IQp;^8w2FbIOhW=)4Rn z(E_<0N2yzI4JBIgx|J-;)U0OIA6W?>LA^k?h>r&E>U=p+SMU^ROo;q{gF*G$hAYJKT8Y+MTw!5 z)>`dIX&qEoCbR>$qHjmcEg2N6gS3vw5gF8_6ZgW^PQ1>gGgm*OGbX_dGIin3pU?%9 z8IRW@_*4(Z-)(a4j&Fk3?yCAZ;CUts;0sk9Xi;a3Rf^Nh+FUOYDIhYj1_#hs?y@_Y9o~X+g)XqC3~o?0EYEYg8)wSPzM!Zq|z8Xm*E$- z0>&>);qJgPX&W`{sn#=nqscwh>JIF%HbiPLW${q8;F3N0NbRXsF+HWiz0?3ZJX>Ye zFDbkiy5T83>II{CohOy=4Rxn!VsEvX!)cxF6U024jQo<;8&le8s@@0wI*r?j=-<;+ zJQ&I0G_49ohC59^gOTq}Q)pk+697_*(x$#@FVlMfHcCSmZTD) z$Ra5;EL<%?F`;TjmlR!%r>>?qB@R@3BW0wJ&p=2@p?w1(K830d!jMS8O+$oz3e_3R z!C!-6K?+qFf&r33dx!AC@)ANLg*Hm)$`mR#6zMyKW(`G1rqG+Aum{?QAzo4_Z5TX? zpC}s6`7RCT4E|xriYas}j7td|fl-n|Cq`ggrcjG;wKM>XkHDAt(!$l2_8WEcJ69vW zkr+E0DP|;w;zn{9g@Lh=B6M(nlv>KPad`w{Q0qMtCd`y=?uelhHkV!PnWW^XtY`lRA)vbXFj7EW8kr86h8*; zct+L6!pdi~ZLGQ(AYhz2qd1cxzH47CdNFNciAo_^cq54KZD%?&H<^ z_E&XvGpf=0@fi14$z}p_3oDh5wSjjR9Q+iLeF!fct7qOB)*Gs z7qm%t-B4Owpr^Oa@O-L@+hGnpoDgxJ$!n@Q-SnBZPeo?_Oywih3C@gF`Wc2M;X(<6 zF|e}K4UJTNDDrX-Cs2D%gYQ4n#%ZcI0CW$)hZn0)SA8AWAp^nXy8}edPb@Fdbp6+wO)j!6c<*IrY%y-n?BKwMQV-0pLD@))p^#k8yFHXdUWV` z%r>9s%ObUo=_XZ=R{aXz)X56zWH!S`3}6rJC7gGTRs&4&loYM{y2R^5o;pzzdK8WD zN?oRwTE0Zh1w(PhV=>$tPk-tl?-F!cJPluhL=aEcmcR$`E~9 zG7kP)hBawC<&8nEh^NUh@OeC?0u*Md^;662=rV>Fsi;iKRe7CWxg(f~Z(3y#l_9rRWt{gvQdF6$r{$>bw%^p7R%_r7KaycQyIR zd6ilv_W@mCcfHB9zudq|%U5HOyDuiRAXTko6}dS)C~76~ z`dOw&v}nEB*o7T%0mV4onBnBNUiGGFN3gS4zZyM}a8fM+(!f}CZXrf06~@O%`33&6 z9u*RX4dEMl7ppeLPbO8{fT+8r3!I?~?6%ZxM@j0vR&}P}ZP*mLx`(qi-lCKZYD@g2 z-Q11%&8x;6RWJKAoo{Y+8o5y|s8>m*3-ocLTFZr0lPD-LG zTQR33(blb4>?Kk0ZJ4i;XvH=NO(Li52&E(%wH?!B5`El`wNDZa-=P*Zt)r+NYIEG+ zxw1p`&V5IheL^>rLOO-#rF}b8e9vqrCbc`%d?$wU9a_B;bJQJrz7s)qhwAUbkXcXT zcd1@3?642o`HwE3Hnrc4#njbZP_&-XcY%35Zj!4_0cP&ToUooQ?MCugPbK#tL9C}q zdk~WA>ERx%eC|?_y=rayyShaDKw|H`Y70{;l{f^C|GiiBv}dP-pzLvVdbt+^GL`D> zLwu*ws(nZTsq}3hB080N?MHm4(uMt)+*7IQpKwSjZPh`M0|@O@ns$Jbyf}chWGeOi zix(#Rg^4beDjek4qJx~|>p{%X+=fkdb~SkV2wZAfoS%}*O~^&&Sk;+^{i!bB;o;Xu=mVGWgBae^(qjK|FUl1d)ND)BO%JdAjqau~b3%Q|r( zU4c_X=pequ8_jRAal$^PO;qd%rY-h8Px!!7C+$cZPEIIFlaHviL2&2@63-@bKZ-%M zlSUm?>$vRH$tze)r|B0amcadOnBC*n#4@0AK88HHlg1oFdfG{Mk0HXgQIq3pBYSp0 z3Yx0dpn1o6>4)RU^sDIb3C!?=PN)@~SLqb>xNr*U_r%>w;`L+kt4Ka4F}B!2DadH1 ztM5;5PvVwHvLEg+zM-^}SZKY$rzOx&>*)9?wTa6*oxGh+9!%G~Czn_n>tjpB6V-|| zZQ^7XD}0J~L;}Kj9jOWE*>%)25zahCYZBG^UZ-^aZaRN{AAZKFGM*`w8aZZ2|Dh41 zLq;L#pCZ#)wICHdtriDk&C>{_Q#9!;6565DY8(9j`m7p2L4T_?@qgGkwJ!brH~f2w zzWJd&PTo%)m&8b0y6hX zn)DCS;Oq;yeXx>F{R72!E~w@3zv&`I`${Tu2^;SL7cm4^($0(OuwQg^{s&faAx#0m z?*jlnzZJU+5o?r7I;}Lv;4AJ)_$pO+o2lda~a8(*UUF)KQD z(3Kw4{~FTGaXNktD|RlX3XT64y~t&m?bx@QCHW!ZEPi@<8gN~$;KGXF@Ta=No73VO zY8h^^EhqN8O#70slx+D^b)phCV2VP)H`MLAsG;|5De=x9ooK*KO#TX;yr~ZOMM=k7 zSe~q*DYw*_zwq?Ftya^`k7#PYeDu*Obm=zY?g0(Hr#7T@uho2XB}H{~*1t6k8%;Ig z)`WEI2~h4t`|d#U14_Arf&GAr+(-88dlzOrprd!yU3L#xTU(^tQt-YfttdVP{rZ4R z_plJ>8ioLXwL00}SM%b3@OJ|MYjZksUv2pde}@NZ1vqxf1I+v<$?>5&*zu(9IWK0F zo15mo)FafD0@Gkw=VlAbfNH@LwFWt-A}&u->JzmrO-NM-+c7q2)mPlbIr5|-l}p3j z=99GZDSW&-4b4AE)-qzR{3B%ilQid%x)Q+ivAP`K@M8=ouDu?GJW(s+f9Plr0PzEU zkv#V)?f`Jf-2fmo3;^;P(0&=a4KB1El~RzYPf|BUJz)AyPO3V~<-6XlV6+QMiLT`N zYHkq%uA!K#TPzwWez$ z4&)<`*O<>J z#(zT=tbvQ&8NCnwqu$@JYT`AEFru!Sv>w#&yIRWbxK4n#`@XBKIVKfoX{V<;n;&W; zy{J=bJ3ZBf{lG$yr@CPJ=BVYTK$Di6q@QYeov=(>J9>F+Wkovo6Tag^w@OSi&DWOc zk^Tvyv3Ga(turVJnzSH*Ato&p0EW%{Mbd05t%&U!#y(x5;wG&aowWkX z8j7~n>Ql#@nuk5BMWlJvqRBZme>+b6vzw(A)t@7$1?JKm$<}r?i)$-8@8_kJsqSrv;YOj^2BDPuu{Ew*>p8>K( z!?!bw${BY7j0Qx#>!vWru)XI@sNGnZ+b8F@7xE0>x?8rB0eFYkwTk8UvOSv^OKKe9=|~!G|I2J;iX@#7zk^+b5E>w=RW%8 zt_?-uu=3EcqM+8wV%$PI>Kpjfi(Ct7fvE0V2%)f<{?Wm%3R*Q9Tv+Rbq7#L+dh7=+ z(JOXC2H+{lkbx7(vxt_zT!iAz>b^ z*l_k}ra$J3plkWG3XZibOy8I44YI~eFoo+QrHJP5scRS&It+)026zvNh#12X0@o9@ z40?J{KvB&<7bm0rm9)IHyQntamJ?XTP^DtpUK@_QqesQGIeJB-)#OJ{zp(3rcNa_H~f#t zE=qrt)Jo!i1dBKQTax!WV!XZHw<5A5N@-O=g~+Z;k4tG4@jt?w1ui1no0gT<>f-<8 z(%K-MQG|C$8Lc{M5T5nvMj5Rv{zr`aQKhn4L;R0G@6Q;^YApc}y-Xw`wi<2m;=~Bs z4k$vzHqj+#_AN~>#|=k_R-h~8w1S{QoR-4FJpMm|wG{c6N5bL}+vS&FeOsQ7Bm`?U z>QF(;11dypG5VtdA5I8c=2I52_P!!kr(b-NATR*LzF2QdXh5KovjN+u1stXn&5mhwrUxZw*qWKFU9#yqq+rJn~ z)pPiDLan4dLtxYB+IZbmYi`HuTJN@_4H?@jQH5$+fL`RV4_}?O-cgg{t7S?E`jd(` z(Av_F>ROO4^Y8&msIINhIaVCDqmc`DG^4m0S~I==#4+065P|JcQyXr>HNB!njkG@W zwx%{$FZfE+YiSpB^5%&YR9lPJ#obA?BflEE2GW>1T1UO!{tR8MqaD!ePoIIh#k+#( zSzWD#Uexp~=A2Etd}(k!t+CEh@f_`|r&ZGtxZrs`t%go4+T6K5ay~asv^lB1)>>!L z+dM}{^yW6A7Y($gI)`ZUq=uT0PNcWlY-sLvLrW*ovc_61ol4Cx`J#Twx=d-UV!a!T1!L}=WX;a74D%0(6UzA zSiPjyzvR|h`&&m2-J}scwRTjljW)rFGwitu6WRvQqfL9;QbrqXq)zzc7L9DHUDD0` z`wnP2)AZh&7lpOcrt2if?vPs_tqPS3(0b`5t)I}m0PUiV)O!%$Gf=ZL=~%S~Bn4^T zb!28Lg|*idy(N=V?Wp(cef{ZF2W`5p?`sxk~xhIGD1QRBE8+X}g5w#+^^8%|NZ3 zCqpnMy4T@j!hZCa(IZ9;31JUZGRc+=)MnbAWjuHOqY{I(i7pHQPl(RbhBo-^FG1%A zX_a-d%q_6bU}RR#IQWGfogBa4hyEI@nRTKLFKJbnHWW{OwSkVDsN6>cRa3gQ=1E?1 zDf_1%4Un+52A1Ii|P*3YU(Ak z|0AD~Slq-6%aoM-pB)8_K7b!z8J@|ex2hYR9j;aW#oP*E+7P3;`~MG1SB=0DJ-emv zMra*=v2;ziR>Np%pwYNraCwP!`}{hB&7e-yG0 zr!eEKlyPWykOS$Bglsm+d`PbUB<^+Vp=I={`Ygmd(iK zv~7ac@_!iFV4_yhXk<&HePeC8>L(?r-XyKJ3q#<{8+ssjqQ<-a@+5~PT6LXlMlK4R zrq!W_lhK#iZBCl3wbF^6x$53+HASnh6FqXZr)eAR6r~+gu=VA9lkpzzG^FC{Q?*_? zkzE0Ma((->F5Q@_HPnkn7qX|R;fIP)jYy1P&Udc_O^wt#>xgc3ZOS_h26BI?1DJuG z?JhCr1@^V5y)X^;2@Gn7{i1QtbgkGg8edJcp-!#Rk{F*CKkcAPe`vONXfi*G@t zXK6j1cu~U}8y=BSm+ukzd zI9F?9!%IJtX}(s@S+cHfk9*WiW(AxxnybZRS1@s&R{nP}*XL>F3}V9d`^tw~+0*M@ zM=H_g`I@IayLk?)n$)GM^Dz{%-%D?@0E3PfiF@f-c7)mTqQZ?SC|c`8VGFVN<|UbT ztUoT)dg>+npzGzvqxA{5lq%~*LjC`1>%0SdzP|r25hL~<5t7&=_EsZGQEzX1)`%d; zONdBf6>lA=S+!nj@4cxvrB-Qc)K+S%mBU_Q+HdIa1qLFrp9UGR1%cY+9PW43hs&?MV zuG029`{U`{z>Z!>cTOK0k-U(uXn@oj8EB9AF}9sjx;xC zP26l?+l#38fQ}Eh{g={6&bBzVOAe5{k#x8MTiHSPZwA`-;@Bo1THDkvv4l=)P?QSB zETL}vxPli;VoQElL8t$t?9EGK3%LGfw+;L=xZY&?e+G`-H?dfb@ux*rR&vWo$?**M z2g*qtOXp$_Y3>mVwKvAcXsax+9RmQtqJT69K9kfc~j&Vpi?%kX%#1knaI%3+OT* zpss*l76H^3;L5TF8}9I1WY;w@RO*DL^-^ zwTsCnZY(>pA{D0rXly$Z!#0VO+=0PP*1vh%gY`QzfO87=bw!|?0Vtq{iILk1B=;0h zD3O3`p4D4Ok0huB3wWnMhydP9k?QC#pw4T6Pyz0D0D}bddJhmLphpH6J_NwUO^NjY z87eBxy#OKvbju77DPT@kfG7dHzam){BY^i*Brr-q;hX?t7`*0cc_&4lf8&^>F(I!S zoCgPm0lM%jNuH4x$=?d-rSzu=_%0tbrU^Ji{xhh=nF2biEVDJB`FBN;dlV=u$R7vi znL%YKuvOK248Azn&Pl48AEi`n_!0ry)a3%SsjCDiQ(e|tA==gr0<^801!z;ZF|gSX z^4r0t?lb@$w%f!^@?Hk)r^9Mh1p50880_Lz|A2{FK82BfNI-W5jtU4;B^(!^i~L=H zF5{E{UB;gb;9nwRchqv8fJ>45id-@(XvY;3W6vJk%xeNx)dIL7pjaJ%+X7D42e>ET zr+NSn1UzIw^Y5{cf-27w0lzAcC}3Yh6p|vqQ-L%AI}}J4Fd_(9UJ3Z8F~C~@%s>Ao zAn!$`y#k)({6O`Or3%R;V8v(1l2yQW%>l9tSg15|2_Rn++=+PwbZM#PUjZSLh>%KQ z0X0<~9|4I96c_NF6IuKPkW&gSqm+P&N~5fRsqLUqfq@GH;!<0XKvDThsZ2P-!mUlmaaUROteZ)&l4= zJubs3fIM6{S0eTAb6QHL+r~o|$1`E(r zV2FT+^<1!Im=JxyBL(Ow5G_DYfl&hV6c{T&Pl53Q^c0vVKu>{hs`B+8Mu46IlSM^O zfvE!Y6qq4EPl4|R=qWHqfSv;L1?VZTP(T-#8u5#T=qa#FfFAKH1?UmKMt~mi>jmf$ zze#`|@mmGx0l%ZF%gk^+;&+RR9`Snx=n=nPfFAJ&1?UlfSb!e!#{|%b=dpQ0fJ=|~ zKZNKJe_DVZ@n;3-5r08|9`Tn2=n;QafFAMJ8OXVx47uep1S|d>6SKzAwE?C7BVdaH z4+Y#-AXb3R5-&h!NfMy5q%yd~r^5zOYWzPl1XiS*m=!q^R=gBYXB5C|0kai&E8x5W z?*!BvjVu|+!-T3dP61B*C*&>>>h%Hw=1u}AB%tI}fFc6eg$-r#5wK4IUjZ9uK%;~J-T|7j_%m?f zI5e3BQc_f^%?2nffZg0sp0WaHpKS&e7`)+Q$^Kvo1R8)tS;fSxCi9S7O+e)Z3|v+X zA*VpBS^@^y$Wuqage3s=1ngM~&_KZN%K#b*D76xxv4BFW0fH28k>$PCfP5+{`_=+9 z7qE04Knnrm*8{W?pj+=?kjmXLksRPsceFJC-O=8}ERU^7?&uOybPq^p0fXHDT?K62 z2hd%BuA?V|-?`Ev2cXf%094wSV{bXxYo8a})Stn52CIHo^KYOb$S~N%tngn@o+V(? zQGjp(yo)szIZVK+-vJ^Se0ZN0Z2+nmX<{y`$w_1wZHTq!EWlU+W6uGM6TrTIsL}}n z*xwIze>G1f01AFiSv3byGT< z!BOsE_E=2y&NTq7pKoGT1=n4q+d?Wn1o%-viUNxTJbVO=r2=Zk0xTDhDGp$zfU!>i zRtq>B53sfxpZ{R!o&=Efq7s}0uu;I;G=R+lMm+=ADu7)OQDe6Y(5>Ia-~e|AyJ#kj zpA1m}>wAz3YSOr301XDZ|G8?S zmY+($E}(+~w-`L-64;3~m2g)ybe8)9be2c|n+P z)T{xGLIQHv1SldPycU2@b)J8)oc9kW%Y8-Vk2(M)1mq%5Po&{5V6*}y1+XtD(kRUU z-f7t5IDv8uZgT%TX#`Nw05$&tP1K}UW$=tMR3}I1R6-2{(4nj?OxIrQrZ znDrSz0|DQ(0BEQHpMNj31ZgZP@t*?(3Ao!D;8Ow9+W<5dz%Hi9&K3ezcLZo9fZa@y zMr#4QhdIx`HcT#aV|m+hQfX%Z8r#9dtQ_5t+)2RTF95m-@SrWrseo<*cn@;|Jp|Mm z0MOF_mvvE*-iBD?20|rRz{WuUAp*V_4A5Ty?_y5XgbHBKRs;qKV4qe5!UV7nD*~<| zLUikgF`x?t`m~I;{3ex11JE5&CI+8YlpG^~y;%_$C1B2IfH4B5i~;ykz!evHv!XoX zg|r?A;1V!uJiu21icAFfMnKN504538_cg#20n@$#m@0rbJEv-=WBz^E*jcRd54WB- zJSUYO3_$DWnwWKj_D84W`2yHO76DtpTLpd;uyrOh77K99^2GCxr9yZcbSh-IfbQfo zi@-_&>_m&eY60Ot0IU^oZw|nE0dwX8Y!tvQwWy5E1YD}I-z);zDk_NzY!|?Lqf?%p z4EP@}tp~JG41qliPB92pi;dd=bl855@qa~H8OSj@=^te9-{M5`@30}raMZ-Cm}RK( zR{>qu0h|zUO@ZG9us1HMaRG;Rp+-Ur~i#UzJ537B>kAYH)p^8hae47dpJ zT0p@|0B(E1~nLEec<=Ia0%$a#?JpWzC43b?L-mjK;^Ss47pUCO&=&~eFT0J=1X ziCN#=R`V~Hkgx9{LmmNH{{hG+V7dYY1o+;EMj-)74*`k@82AXlN5G#7_!4j_Lu);T zN(oWn&Em;&e*uf00F)GvFCL(@fH4Y`6>wL9@&b6jcq+7_fELLvkU$}ak^!m+C`0?e zQ=V!9cw=}1H3aBRuFYT`_qs*#T*7$@LH6=+NlFr`^Woc|^YY1bSoUkmtMfo}y2{R|qD1+b$zGWskR!6TsWtlg11Iyt6%lSp;0FZC-6aW{XNOC%_y5J=+4z6VSXJzybj$+XE~VaJ&P+ zA_2V1J=MEJK;6zRkYz&Nb_Q4>;6)dJRRRih2UsJZWel}X(YfA0X@G2I3}Q->cry$UVIIW-vrd04Dg458{Yw(!uUrAJemq}MpPb6 z2RJL>_zZya0upBdTok}g`pEXn0^TX`mw-9*pm9xrtH&ac>p~)y0NfNXYZ<_80skxq zxGP}LN`QX^{JRR^fdD;sA2V3YvzzyNB2%BZ48d$pFfr@?dZZ@_Xu267ML@?b08a&! z-U{$cK)M3y0>}$tpoM@5*`d)&z?d8Wtp&J>gB@aMH0VneTbQZww7s=GF0?HKv=q_MUQGhR8LgxE`^b+9X3(!XZduXIm`wFO0 z5}==em8Ag&2=FZnFi=2hIe@_ixU6XvK`cY89)SSi0-jU`7$zWVb%5al^3(wsA;7Bv zK(v4@jQ~aphz$a8jTSPy8OT@xi<<+C`wz4Lm>^(GOMr<2R(%fewSeDR1AHrBw*z3Z z26X;o$CA{o--$}DE&$U6lp zkpKq;v>pX;NI;I!07nFD`5NFD0Pa7cr-B?86}_(h&fqFeOFuy4lmS?1&zP8XcP^68 z3TQ=Nhf(X#3z+dEz(oPP=OJmht}ywT>)?G3iCi-PbzC%>wd-xRQs91fBGZ2>cv z1KbsmeLKKE0@!yaWqH7WJtSGbxo8hLB9EDT_>S<20k9&0V-Gk(=suK?Yygr|P0Xsh zAIWI~w0=5+V_X35%19Ny(!iy@F?=KGb?I#srT;77)~^8X1vq~L@E}Kfs>tAz02u{j z`4b?MfXSBtvIx*tWUIyJp9Hpx_k*N*bFvBpG%UA?S(mOOIj?|O^gNyP^9xvh3!tEY zgLeQ53%GO_ps0Y0_q=fbQ%uMw^bZA8YHo-Ou%?=fR+OC<^=d0 z0P}xOZV-p4xbp!x1@tKd&`y9~5r7T?c*jt(y)%PVe4u!fPy*cyz=7&vV%FK>NOtuU z(##K}w}8$50Ko$8mIMe9pz9dGU@upiLR*hgrGpGWrC}y!lEWFqv3>^^?M_M=A`C%> zNE5TZsfgq#0o5u2#0Y3p6=0Nr(lr3a2sl?4;7b9a4FJY7aKQ}r-AY!tM5Ti=>uUz* zFzj1FW0C=|bBc*sXIdk9ssQ%rN+nJgaIg))OabiBmCwK53;9~rF^9opu2lcm#e4%$ zscmA`Y4uMTKQf?okKP;5o~=~r5(A*W%*3pmy^y>@K$qZ5nE$JoyyOyiUsoz&tpO-u zy@^@RLy^2uz}-Orn*}@^0U#0!Yp1&}CU+irkl z4e0u}!%rZoqB3+ZK$?K5Zh+?k*6s&*A)xBd0Ivk-5%ZS8dLBZ&>o9fvdjl|pJZkg# z7wLJAAUz}b;#9!r7(gZg<9`LnBB1|q0B->`egnuZAmbkZIR$7d@-TS8X1N-if=Yfv zU{^sCvvhJ123I&khSSh5W&reyo0v)VXW(Z25T#$r0O*%7G0WvXhw{n^nR*4Ff`BrA z0aOyOOM%J)TKx@;sshU20H`it<4u5?0-E0fsO=KcFhG~u{QQ&6FjjPDmE8>Vx7H^8F$N5-$Mt_{qSkiWikrZA0qlR607eO2CDMNg(Z10HzGjWT81$qKw+T!# z047W^G3y3x-%ZI=8PMf#2CH~)fEgO->;GB*oBjiXKRCk#m0_L%s9=GKS$=&{-a-Kt z2LUV+usIB1iGYMCfMpC^sH5@(kQJg*aVo$n26Qu#!TLhI?OtmDtXOYi){@!K-zdPx z2G}g%yCncy1q@%wz-4V0a&t9Qb_%$<4q&%{1{(o>5-?ylfLp++{Q&zJ(EVWs>)>o0 zu!9V)G0^Yr4=X_De>CN&q(3@>5`Go1>=eKW0Zq>X{4QYN6@Zfr=pIyUpiW2qi~*?P ztch98ZbSb(0hh|~?*ovFqB1xU;Ie>bDFA;7c=`lg`QV`K?ddpYGXNcy!^EtjEs&f`fY#5;Adw4r>*@fN0*0W3 zLMCRtYmMY049;+dLmdH%836s_CT5cT8LVb~zfRCEWdQWcn3y%k)fwsKgq-UIP=Uc_ zE}>~ZfItIKLKPFUPV`4|H35}|0MrnWEefC(1NG2FJ#(qcz{Lbb)|d1@MkB)~3>L8o zdZUGCLq`eFmW>slEgLUDTQ*UEw(J`L+Oo+4v}IFW zLbPc!7%br)s}r7;C)f83=;@RzE(p+- zUS>cK>fp7T3%M$Q{ERTT&fp+xOm^@=j45y3l2UX%cL7|iq$|45RYI|>D%me~UOe3ljWe{&5%2hBGzt66bmSSTR8EWly`-O2$h z6Yxxdl>+)#gT@*GU8zz!u=J-kWHepsXo9~0jm_)A)tOkXzUh1-q5+!y#jP& z_Y26ST7OW$kxw~`%Q`G%ABc5Kz@_FW^@M=7%J@G7a2Ha&rv>OPIx9eT(FFmzi!Lj` z&p&k^T@@AGN7n`DF1p14Yh}#=sQ0dD=q|c18e0ZJVTI9U z0@NAJ$}WI>va?1m0eUITE8tXnXcQ1ovm-#^dVKzeT~1|}kErZZptt~SxxWBiZz%>i zC|_A9wXA>^>I$lY0cdL_6SLlTSM#rm5Pb@)E}&i?6j@6^V^w5b0eU1f5TFlyBLUj1 zAOWX`pwMOvT(DeU>a`FRZTaT{v>|N-XhYfw(4}@{u$G4gdw-|n(!~I@zMF|zL!&s^ zWql!}+%RP5EudrsKwkk173eP@6ops=1@u-ROhDbyC?j0J^Jstw1$h3Aj{zAWD&$w2 zEsqgURTVN?!18g>_)-jaAByD*K#IjM1}p$6F4Wpb3VXD0Z$dUA|ObWdQAX3@}@Fw2w-R3 z1a1qU8G`GtdqUKtupS7|bAtB7(z8m>i6;W|oJbU)=R}GCJtxux=sA&2fcy{fT-77s zm8j@B@m7GI6YmA+IpIlOn^hTlPGl0G=R{Tkdaz~}kUT~W-&{iUXw54?&xry8^qeRx zK#zDI0eXNJ7odl;zW_a)OV#J~A042_b6HW*L!yEJJ)Q#v=;Y0%K$9!eN4aK!vbI6oWmSrRHw{BMpFAqfN{rZ|ki8r2@SEle2Xu6GWx`E`YBD?As0S ztpM`2&RM1i_~ih=GyzEm0cHw#^9#Ui0iPWuK?$OOI;wq`#8Xl0?6Y!Yb+5! z{?-{R7eLR`~*eoi#1GWj!9k5e??tnc4bO*Qv=nnWn*Vx;T{YY}1MzLo&p@pT30j&C49cYGrOy5oZc=#FnDfcu@te+wbH<3AUm zJHCwo-SO=N=#K9wKzDo>0lMS6Gnm5*j|8EoS&CGYWU z>N1xh=+hM@W=(yKrmPk)=3jty0^F*EjRM$vJQcY`0Qrq)uw4LqjVG{6Ko?IJ$WKDH zt5Wv~(1sompe;MZfWCx~{g$vQrKC`V0M`P5V<+x+p`= z3(%HbVt{(@`=Oe@3_uTFGcoI%Oh~>VfE?Siowo(V|9NA17Jl96XQKqIr(z|`t3{`0X|LD z{A(vfzvAd9fLy?HAzcLMO1lg2X$p;=0(6!>3^2Ud0X&rvVgT&yj~LE>mD?bFph>sL z%R6TX6VOeS5H8?OH)uo%AUE%vWrP57^3EVefF9(d1+ZE8{)Y)>203@8k1OHK+{>OrYpH=Wy1@z%OL;mj&3iy97DB%Bfpn$)m zr+~k0r+~i|r{J7!KYyc5QU3Ir0{(uQ0{)hm0{*6y0{+I60{(K70{$SA0{-BSg54^3 zrvm<-jv#*~M*)A@Mgf1ZMge~#Mge~aM!_}R{^cslUltL)qk>;mz#q2|&H|)#*(snFt#q1fC>?4Dx2j-y(N1w1|_f?!v@Wxsy2Vj zYZ$)iV_wtn4IgnkCD**nZ1I*4vETd&aoN4;i@Xo)n!h71hxbn!t+iKr#FeyX+sn~{ zogd>89;8a2?;*EREm*r+a5ZCs`=ca#2CMJ-kny&ysNgjx?fEdNq&@S;)!zBY;sYA< z;hsICq#Y8wquAVuN3(Kk4w^K3r)ONi-1kReCVfB%lP)r??EUkH(SW(GV^E^6A)&O* zE}k*2Q6?TYv+WCc7 z?YECo?A~5f$e9mWW$zOoMg#0Wyr?t&{FuFCcI+coux9Q5YWek}B-_eF>c4-?RxmsL zF*|p2FFNB7!2y}$O4A0vad|y{vq`S(ee~m`FEht^dtcCOhrKdOTv2=Y8Mn8+J#$=k z4+RQVul?U3pf4@a&q(sI&-?5{hh6*#7pU=HhRYwN*uhz-!~Xi1&181zLsr@2zI`rB zTvdgo29~ ztWozr>mPrVWViCBN^X42#xkStM?WaS-ooszu%q5_6})eL81=WepS^||eCH#aPmFr_ zF_(qlpO3hGK3`mBdwaIHEUptx>7uFUr}UG+(jWX2#L;AyJXk8pKb82W4gY-3KSlZH zFsn3RsU!ak;-9O`4)Tx1(JuURm!tVv8o)nKIoh42ET8gy`vs2Q=btJJL-^+nN1L(q zk|kf3%J5H4{&~kN4@+?@?d6}L9Bs!x$2fY6f9i6y5&vB0=w<%#;%IgLc}~$5RxK8@ z@y}UKZoyI?{@KsbNBnb|fBcvg;-B*LGrQl6ECa#^hK2Li!aJL~UuTbN>5-Ywa5Kuz z4XIj`Hj<9Z?eWMSo-?juW;)enm{Hu$`}gDG8R>*)AIV8$^j|wAXI%Bne8Qu&70HkN zGV|$fhTr@jV*N;Mi9IY=Tq*4PIwQco7r(SrWwie3VvwaBPXJ>I68Wg1s}E_V`if!5RMcJ=(x6vpOBx!TVgrvfx}e!^gf5=PFUknQw z8ahv(MGMc!5*-l{9vwD(UfUR)M@h|E_o;m_Ph8Es8>kNnbL$mekT z+WU%6N^s~`=}D>VD7CkzbCl;4d*!%HeiAQw{Rdph@e(k{n-cF6He{zyDp z=?RQWuJoiV7gIR!35@IzNFSFYQvomMCth~Io|gsfwSiCawB(x(Yi&dNf#jy0kd*Wn zZGohu8l8+(w7Ze~dmCvrZE9p~obopCiTiC}{KVW`?SzK$<;!w)j-!ryWMQu05upQO z`iBOay_b>pz!5)Xp8Z2hZ(rCR-!Q%gn%*ehm%~Pl;>&Y5s8M_w4reuruMvPYjPZ1y z=Z5DFjf$o%qN78Dd8_eZ(KLHLweK~GZ=(9ATt?^kjHFi4zPB`MMK7fGY8>By3tQMY zzB-4e8^@Qaib5ZIIqPR4?fk+0BZiF(9Wf|0*c4Ao3{)Csa!w)@yKn8FVlcT;6J>H_ zllTImOSvZ}(bh?7)1?U7Gf7ETX|p6H1*|brIPH$4SSoFcq$GdZ4@pTmjvHw??SQ11 z4{d#9Ep5?{L*TOQCe-nRhy@iWKw7&ze#12yF<_Th;jZ%igHY+CgtJ%+rvZp zRSBl!FnmOCFuLOI)p!*2@6~u8F0kme_!1Z+jvpOMsFnBnGyBmGQ!ASrevtC9ZkHd2@DM%tE>CHJQ5@l7y?;`1dm;Ti+;Cj@agEPp~R zKlJiE#|pAFH``hzI6NX`K=1$(VeZlV2}SBaX@_GcDP>nm!J(1rD9{wy?buHVId#I| zkf_1>0Oc-_fQeAKKmra_>jDWl5JL(il+TJX&pIyIk))M1JS<9${=)?lDzb6$1rjQJ zf`gFN!r5QQfg!Bsyry)S62~)Q-zlXCBC+0AT#xA>EK~>rCg35?lI=;PN0*>;9 zf(fO$q89}dFbaGNC1CcpFO+~;JGM{)dTo!6-!7C;sS!VvuK(Qp+fIvwxw5@=3$=#xG!t-WaXQQ5~kzqX(T5)`L&xDQ~X6cpCmcwqn5}IOurG4lr}=rIc3!n`E}pIq#nI^r`3t79Azzcrf3 zN_EFgPZ-xxjhSwa3HFNH34V6Ori5&2QCxI80gK_Ex79Jraz`EG3U}18ZF@(xf6SeP z%G@6t?j+RW@b;aAnjGf8n^4J*A1YbPk5P4yJ|+MCkYcQAhdeSw+h2t}EN;(k>sQ=u z-%Y4oEC*UL&=E!y#$WHt2b&CReqcBDVH4iHla?zom}#6a=foL0w{TfCHKL% z35PK9#`!10`tAOSjX6)Ue_{<)`c%hyD!q;!8IV}a9ul8eTy@_@$IsM#sf+!6?dbuD zc{tC~fW(d!V9^;znm&aGlS_T&(|#8D!B^5Xa)56gbr&g_crGXBi>sQ5QD3}TqCPfV z9lfb=|1rMB?NQYd^A+UBX;#oX$_8l~`H;5`xR+H+TneKb^-FBX1%25s5kquYzeLR6 zQ~eS#y;AxmmQjt_?AT3>DQX|B;D^!KQS97!RuLxSl&MQUez4(eIh2wjPDbxv4w}ePpqvh zx#IYjEGc2Nc!RFft5y4i^f3vhu!YZIHR z0-HIyQ-MwFruoYjwtFv1^tN}bO$<@Falf?FHyMKHlI?WlM_zB0S#j7#+OMGHg zjwk8RFF|!)hlIo$6)&?<%f28}Ak7Xn(y@VBim_be8=Mc#+PwMQM-meM##*~LXA;)b z6FHMmdV0>JO5SMqNIJjUea==0z~xBWTuGP_QMr;T`|)F0tIwBIGNjq$4_isOCa~l_ zoGa-N4y>z5656t*NfP3>nt`;*Gh%#_CZOxxM6*Rk{WTiJSYjv``*!;R2(YXCU273{-7%4@@f4 z7;U=d^e{{7W^&!EoIF1y2h2*Uyvazu)LLCD(uuGPp9t&O)oWG>usbYGD#{AsOI33>FHH)n$q%!w zODCx+NSRI>=^S}7R;DYgp z>f~qbRwwcPQZT6`N0fgO&7Fq<7>fSh1$$?pH}0MA}3ie-%q4$G%GHOb&c= zLX5FqQ_VDNj|NuAKR<=`=MI{YC$oF|t|SZNx7ekmvg%5yt)mCEId{j<;SnRELq}Ah z%TW?=rPTM5>Y%SKsX@H%QW7rv|D>?sJZ{uFa__4=13xFfzScZg!GDoMT;=ArF?qsOQc-^+-6z+#U@_LTycxMaA{W*z>8{#5 z`J3Fn7}_Nqe$@ON&Dyr5>#(q4VbS_Z?`)@JTxvh=ld9po57qhjKTMnzqyY?vd8D$5i-A|z~>UM5F5t`W)_ zIx-|YhVGa&z3E8T?faL!bt=D}y~s_cl7^ChP9-%VKb%U+v&~2g$Q378jCEiGw|Pdz z{^9Prqmo-r=kA^8nSvE*t!E0Zq;7hqV6E}an1Yq8LB!aCTDL(3|EXmXP&K#=s-OJFD3%rZ@Gm zH#AHsqVVUAHiT;m&QqA~dcvYZhnkCSM_WfH(y02MhPPaj+d+*|x^u@ZYLtQz{Bxre zEDnD+N(pR;!+OwhmvZO97>c6%DZbU9P#?>G97&X#i&Ob#Yk0_rkfFGJwVO6h@u`Io zox#JInb*23tTix9XLZtzLR-e!84sr$_OSkHW`5r|1xweC#wn$G@~b%OHTnP4oi(-;O6QGSUf`<~Tvc^{m4XxL*RN7A zm)5;X!DEuMuTs<{qjQ_5^CS%+yF*x8oU@v~PVwoAUdx%$S&*M5WWvN%-R&%r(HY1v zPcZj()Zh^6Ho5tu#iMFQXG>1c9XxzQ%&^eleq)0BhlfO|BeL_gI=1Iur&Po}qH}3R z=WnErwProN7gP@Y%4|2%_q((dV^ySAnzX_MeA2Ceeg4_Q{O)dVQU+rYIhrrEqv+itojRxoT&|g^Sf@A4OvS?T=gd@f zS?Fxx;p{^e(Je#!BAv-t>irN8=Wt_WBE1P#9{M)kG}3;0$fwv}^x9QPiS({kNeTCi z)P)`{S_$s3S*eYB@o?JkBo&kLcO5=@l8TEV|M*m_Y8~QJaq1c!pW3uAx^uqcI(283 zsEC2lL)B_*pN~&P->1f>;yT+mA+>^f91`H+EbBo}{1$gAjLxtUQnBF8Oi0DG*O>&> z2hS5yF`E4n74MUnimRJtiK)$Sx^-stbk^g=H0RJ5dJs%cfI`Fdpj}NNkG6+L^eSivHSChdT`D;> zBQ5~Szf1L1%WoM+U21S4J2mogk^boW29D2oD2EM;t`RXTbZ~@ODqA_aF;}bxCF>>h z3rCoqf^p$Prpko9IWd0akQWkODqWNQ9|8V=jrnl z>r1^pPcdM+^?9m}vE#L~BoEdOjk>kKF}~dADXvI!2S3FS3JQK&R?W1!p3YCr(Qs6v zDya|XT~AdbH6cHFip7zGJSDlvGoF%4G-t`ZJ@{!KbX4w$r=?4vTZ%hMkg>VwX=hXz ztxQ8hqeq1G$1Lv<@wAlbOm0v?yXn}+h1CUIYre=(*Fxk7Px;hKZ^x2*Z^Tn8m(t4N za7>vOMUVU+l50Eoz>Bg5bk4*J*2JHB__}*eczR0TWEFFKPW=$HxkoX7Oj<`9$3$I2 zdGd3o9O6X;v*fnsJpBx_e&8~L1Pgb}B}=mm4H-T>j9%4KQTDr^o)*S{ zcI;6Pq5DUKM~n!Lq6fvH!}^kawKQ&NU-Bl$!aDVAL0snpEYNEY3T_C9SD)f@fp?+Bv$^7Ic68y-9?A}lI2cm!RF z=|{|tW{yxw&5l&QN|S`ac#@j~jE-5%uxOKImg59v39voBd8`lHAC9v`^4k}pd*;uj zNA(5AO=1P?ojD#AQY-5n$9wAe;otTwff0DVVj9k|Nfpy@<&mpW8dja^mD2pxN-@#H zIfV!9S8I9}N0#xF#OvX59UiTehGBlUQd$w_uPdb$b8w@b_dT5P+|AjeV)~hj7G;<- z$-|k6*Qk7R~ZM)v4I@uyci{b0;O+KRoSI zh^=o?In7^XJml#-#Tj!Bj2J<$8|ZBVEu^~poqu{d?{i{dJ2l@U+%#^foQA85^Oe&I zxcECFD}ekMDi4UcrWvU(c`j6JA9*ZPQeARYsH6krqfkk|kaI#MT_dlAO4?8E2$l2+ z`5{!&WAZiZ2)PARaLQgIttLl+iX9;jfJ*wDT>n{X+N%pTs8h_kKZOHkbN-a)a{~*O!-H&F%{an$IBJQ%C(@x?+N$R(0 zIR6%#lvZA?mywQWSXw=`Zy{JVcv4y=l{C|_n39Uxsf8XDRYUmTq_i^1>Wz-=)ST2G z`WCR?QwAP&^H_|+E`KMCfk*`0UgPi;+X+Qb$ zQ&NiuM)G@Tq(8}zpGxf;XQWe4yjYy_a!Q)}<&#-!=m=i z4Waq%6~!NAt&J5bvxl=QCE)yO`%-DUx&AZc5>QE3$QPiJ=!*lA+|{Z*zts#q8T~v^ zz4F`QY+{P2M2`QIi@*xx@y~ka?iu}jIW9=vE_$xVUM)vc8hd<$rN&}&$9EK8SujjL zv6=2TrVTpPlFFcK;tW=8^5$pVb1zu@{B@f^G^m`%!9D4wg4srQ)9BXnh{{9OtF5xaW1%7;$(w zM{+m%+OzLG*JI>t+;cw^>zwc5T&p_5dftibP|+_xzm^Xk#2bPTnEo6|8Q>+7)hW>wDk&FOfj z`s3#G0Cj8kxreho8=Dn(ieV8k`sCKh!#R<8j$nH87aTz^p2I_i z<+r3`7mrdP_1!4~D| zJj^Gq(!sXJ!i?LguoGB`=i_Hfa=|q^3GDjP!CHYI#dQ(|)zuK05ZZaQ`Q?*}IR0DE| zV;LC|RCO2*fNz}_Wfi~ZNFm-kXsEg|jHvUXbTPCmQ1`U=$grrGknpgv>c#Q4IxlLL zhQcKe=QHlMe8Exl@G+R5a|B06{5Rq<)qR1d$e+}Gfx$4a?h9NAO|AO^mp2>gzQ930 zQ}>0Bx?@`J>HLkmGDq-$5h0^KzCJkV>AcQq*;QJd&%>oauHdJ zTs|sk75REp(lm1NsHAlIGFC~c^eL<5#~%}0oi`ddfxZM)$q(oQOzThgxAk7s9>qO+ zVEc=5>I^c)ad3*Ayf(5ZPElEQyukT3aK{VvjAVyu{VWRAbzf}{y1AylPVF37Ah&tQ zp`RPssXJca-nY`u7cJBx_LLSe(<)#3a8bF7+(#chDyb)ZxTvH;^hKd{&Ao2ti-1rz z@noTw71Y^ss$&avS%7`?#fVaBS=;V(@iEJd6(%}j_y_BY-L&vaeTll2RmInoTIrB>VuseIDb3G zdN>Qx#}C2TMwP_zNZs`kXSMRXRT#YcB_{Bc-7j%xxNrAMG~^$hUUbjP${qNtacg?c zEZPNQU|}P5ENY~v5=P2b)=1gQ8|i*UBV{8Wkk%cyz2{|fEQz-+zQkE9=cSi?W#Vpd z>E$d;{Zp@BR#MNI?mM1f6kA0clsD1s{pMv?jHQq=uTaKUWnPt6cZO%=S@Rb1n5cX! z#`R*!{YRNs`|GK>UBa=B4%xlm#ujp+lN=lAO9gfG!|AobM~~6y?xK)~voR;kHi8qq@c9B~iIk>_grW ztrYj>)vpfYx+MI@E1XP>@4yGjtYt|ZhID8@Aa&4p37tB3 zNGesLSdqlyo!YhQSiF6S4#hhq6-zAHxm3vx?b~7?SWLW$^KcBZm@yMCQIcI%s+`CUR<&s6;1 z5Agrot9Zk0{P(ho1wCCkTJ81NG~sFe(|Y&q)~-jtgl@e$b{ZtU^u~*lsKVl-Ru*w& zf>qpbAzHj#AOx%w8dyTIGv%aKcBU8XTVBa4WCM4qCsC5=0@{0xtqOWlTz^3iUe2-` z#8<7$h_|9Vrih;1y7X3?L)tfk8YG z6Dod=Hi=UT$AOVs20JC01;7G9C?E<2+~R_67NH!d6ct}itl*0g+qW+!=4Q#UDE&Rf zK~~{{O7Pp$bd&fhE<$V&X9X2knq;VP}OQ#MLb?Du{S6X(a87%1A z%#2iy#hn%w3WJfZ=J8_bZo#0Yd6OfwW zP64_u)LO*U7F7f{I8&~tTfAG?0QM1A76$FYVhW3{0!4r{VP=FJM@2SRU{3Lh3tPFw zjd5nd2;3(-8j&F;m$Q4ZZ?qSa3xEa>(>-EF%NX%y7q56SAy!D*_&z~iNUYpeiyg^) zhBS@@uk;TiLAl527722F{e@a&)IiXHI|qwbyGGzB5v8pyf(zX8l=lEnswalH44is|Vq^V<7)d76G_GJMIKI4+ zMSK}&K#^gK)P3u&cmK2=-8%K{ha>Y$W?KW&Ib+LUS48H2=S_Ad^V7EYLZYXD38Z$r zABp1=WRlFLIFMj8D%~9%I0CV!1qVpI`oMwg z=K$KD(=kEQMx4^lj`d3bXP%~`utJ^!m5Q#nify{sNO;_7XAl3c_!E;0B#Jq)!D6j0 z2JB|DSU=8#2|Y-Dh@u~btT?h|wBSW)*T5TyQmrNs#vR+Gq2Vq~oD>%&?r&A_TT0;| zlopOfO)Hs)IcOaJ72^i4ovUEQE<(e+Uzv;xVBp@_bYX9e?mBCHOF;1!PR!6pREkg7sr0M$y&Y%Tft>9*;@lr8Xvz zm4kGuhoTpaXb2e(C8&u7XnU=(h;7@Kzyk;>V7Y+C3I!P}vcdYY_GnRvio=OrjEpVf zo7Ue6_UZQ?*u_e*1z9R=3{5F1OTZfB+#|x> zIZU}f3HR_`B00B1_Mddr{k`m>gk4Tf&TmqJaF+>pv2A(69V48hKjq#L?su^gIhRei zl9#Fw4iYXWtQz4q5$?w?lsiqh?Xzo=bITByK3=(FHD%9}lkJMvCMRhVb!YwA; zjD^h!cZP5g2Pr2KZjG!XIk$pvck}uY?lIw>ZA~NGRKk6KZ2;jGVlG{IR6dZfx#VQ` zo|L;lxC4&C5#?SI?oLn2tsz|G zMv>I~i*PgR0m7XlTyA>$48ndSY|a17BHVhy74}l@cfyrY%_ip#6AoOY+(W`ucuTow zgp+)lM{52-xIN!3B-~2EHF>j$a5D*a(3rlIu&W4Ls0`&U5pLYVmE_z3!r9BOBHXWp z>-?H>R|&TzY&ALefN&4rQEn~aWa3(K?jqq{hOZ;s6~eWOT}S=2g|JdrE;;!d;rd=) zPq>|gi>k4KaI*=weD5~G?Iql<)0EpxxH^;S-^9b!XTt4%oO}y&d4x-87J3JB*9f<@ z<={K%n0-Q6U%i{;J>hB zlyK`$oF?2X!u`}W?KM94mT)r*S>Gh4BX%8OCw-4t#2q2r$*Kbhcbjl2{ffWE=Z+KZ z^niVT!Xk0?ppv3u zaC7nYAg?ql<+T`>RYMfg-Qv|DCUMWtQ9>+O&{SPWl37%IHQ6OD9byoY2(@*vUVOJg zGc`+#SIJ88%?cf&Ma>Wuf;lP14J|Ir$A5$HY=T5V>wL6YGlEZrjlrnKA#w81=E7al zU5g>H;uf*In6sd&*m{^%yf>^P5%BE_?Kj8|q-wEQq{j?kQHzgorBST}P%+#UDmEBdRsfKjE5x?^QOqrDz|$O4v^z zaz?cf9iuCWozlyRKToa_l$C;KH0-JRW4}kG3E*XIcc?5oD`gj{|Ks>d;-@T)nD=u8 zGEqh0ASsQXW){y4s4LzaYZD9nQb}wxS|bi0pclG|Q)bl`oeM(5M&tCvgbUKYL&p9S zwHicivo))-cynBF@#O4yvDorr!VUt6EJZZ4kN#dv&1@!)nfwE4ww#>vEvqM9n^=_y z*koc!RDKzk3oXSynf1k1lVbucXJo{Ky+dO|gzTw{q8P?IRQHtl{RW>T(=EEDSU_I% zU?tWsn}9QW{LL?DE!CQ+F>6W$31?&`0_qbhik z#Z_W(70`BJQji#(9T$XWTU=a@RL#yVCY&c-VJ@ZPO2w3lr@J5*uSZmJfju^eT-tv2(HB8t=lQI+Dx1!6GJv?K#Th;ZHOr* z=FBXP5T^!u>$us9{7*Cb#<&v1Of;)w#HaIA;`=#fU@c=02}X9t6FO3cj37m4X~nF8 zLBMsmZlpMVMTlrj^N9QB#0BA*9c!E*jvQzQIS-O`V(+;zBG&5GngYlqc(TV83Zn{M zkd@FNNPM%zDx@G!)e*A>X~e7Z)DmW5_q>)!+Amls)SCm1J6_=h8E1yiPgLT?0G3BP zrloj(KphmVHZ*!w6|-{WQ*-R%g_#;LV}lOl4s8-DZd$FQ%!CI@al`5e#Mn^E;1vXh z$XT#e+`L+gOHqfr#TEK{1i@awV{zWnhN%1_Dc`fKL=av=V7nC)Z;gu)*KQ6)14nV;cXGbi@*?8)xrt<4 zez!CM2@xY4CXyy0E1Sf%E2@bYJ9lM6@$HIOg!_=#)V|6oJR=A#P>=RiTHy4gC{f<{ zn^{oRKS+fws|$){m$wjQ2Rdatny%}BO=wgZIs1nOqYSGi-rJ-L#S0$nfVlYh1W@n(%4l)qkO-2doi^LlcmagZCZMzN@!(9{ zFeh@7TG;aclaY98y}c$1b@m&vZLwL2V&jQ4p>QCD(^$ic8Vor`6n69wpF$PLR6o+8 z6vE3JeBu{&!XcazL$(ePCEGH@XFG?2tnQ*poU}Df9K3x5SW`P&C4StICidGgLj1CA z7$_f-9VC9;o(59iO$`zU>>MbL+BQV&xibja7B6`avY5ViB>F!Hl+!*6693vW6zq0C zQi#L%prOCXf*|qp?m=ST-6KJ=4xL8zB8n!pNsLeJ)dgh;UJGI2h9TiPioN&G6vyr# zICX!pIBx#{F=Jm4()#wskOO8R2rqtc&EY_3y|oia+_gmu;vyfZ#FfVe0*3)XuRQ#x zDv99!qf*&bTTrFr1Hqg-TTrDV1HrI}M?sRzVH7CCv)LrZ9v&#Vk7kJOV;LbuinRGB z3aX(2ry@}gs}8;oEmDe|&PrJ=#+?`dPWRf1E_R%JDE{>8An*lCBt10<74!xn4`C1@ zQbQ60O_quyPK^?#i^Az);;XzN;Mb2ARpO1a{lL{{7lXw2dHuxuXNHMGPN#$3W@N(_ z=lX$pX4Er2bN#nrpyj$tLE^=8{lva`!^BhPhM_A`sNkp5uZ2YM_<4`;TC9H|NjORV z&c}b1Y#9U=yi7L-(Mtq)6@;rT7q4Att-$Nglv`q@i{*s{8#6BU6aM{WSk9DvmR2i%czf>O_l-fO zZk+tbVF?B4{INYR$b>&@QIL%fK3|a%xM^pFIh=5?h(vfn@jwx|(3uyeg+gd15MkgU zrErCj>w^Ty$iX22vQn6Emk6!{CAGp*-Y#==!ZA7N5)3g3op@munuW#GjNnJRuz?rm zq(kV->{!n&wEOok5QWHHW~>Wd;UkmjW6eeq_iUMa?r$GeVjLEv9vcN(d%Bu=1sgL2_TEZR~ zjj*g_;R5Xv4s0a+P7@QhZz0@e6@F|htl&@)CUq9B$(UkbU>89z=6tchZtmy-qrYLnKM6e{Wkf{|^U;ev)hfi}xm12UR{_ z)qu8Ni-dujqb1_Mha*c7u%p3!9XvTkB9(9;)PF9i2rG`2n57``Lb4X7Opx4BQ?m6e z$u@zK(Q_mc2_?(SlPqMV&*w|tv(i5n1}X$Ck=!Uq>wY{bna;p+u1JEEv~>Gz$zg^t z<*wu;BYWMKsF@5CA4$gYI2h{!kSS2L_4N(#mq_U>YHm=(EY0}$(gk`^!wMGZ zE}qq-Ursd~XOq@o{<`CoPU7)byQ9h^kS7c(JN-;rHBi1_SP?MRCwrh*q7X!{ij~af-Al18dkz`jzEIhg9hSMwaX=y~;>mn)Cr9Z3CpW z81A4U(k=|)<#6d^R^dsy^b{kHkCg6Z6=si-j%1R>jg^jLG8~y0C~cM{J;Umj$(GLI zadIGH0E!qb&dk=+w#)QoGG}u?A_Nxfk#+^i@6-`+_Drcrtq3YCkWSFZ>h8+H5YieLOO+48p|r_8kXpn)=0bX!rWXdH85!u8>E02ru;_f zdI~cg@(ZKdDt*gz3fm!_%qvW}ozfi)CTI_jG!QuoZR*He*KMD46(ge#NS88OT|F$F z%`2Yis5F*m7ADbi=eTqN(=Gj1=`3Cuwx5z_@(k@nh6j1lo=k>LXQkP^GR!(B4du2& zwTppy?)7DUU&LRLF6WkE;C1PIW`}~er1N;~(D}A>KesQA-IexdGSqv(?~Bn7r3blX zc=TAhjLERznRF(v9j-i=Zshhw!fWY3CIfuSZ-=Mvq$j!U(CkCN4%$!rF1!SCaMFWVi*R!FpU5xA?BTE#L zp-UNLtehGr)3W8tred;Vtiq%cvQ=!=P_wM8Ss1OmsfO&9ijqqk$aYZiVBaRPBdoM$ z8(9$sHnFqpHwKp4RaTSrb|OU<$H<_bGPFM?GF8^Uuj;O`5%1n3wbL)$z8Sapc( zEL+gUj+13EO-@XbZDSRtiLxU z%*DuA8)an~`Czl`52n;}C_BMQk8hWCV#cbtTc%~D?f1$Ytm7$%Wu=*9SC7kr82QI3 zSrBWc`Av3)Y4Q4^%)h6zU6E~IU^lMG&at`&Z^`~-GMv66D;Gp{vpE9L80-OIu9{j79#s63U)8>f|fS%r2Ha{m^y zP^A1ktE)B1r?I-wCLhJK>O=|C2<~>tM>Fp=jFy)RrBW{_CU0t^WN>}?7iJh!Bl&io z3l*rNdSG&y$3dX2XMh>(Ib1mfUT-cJWF$So=4Ns|$QUKHKzAGYVNOkG2QamRybrV6 z>&|k23ZCpLAI^-`yr*2jeAlP1ydt+cy_ZXsVCX2h8vJ>(rk?6_V31r%b%HmB$qo6! zh6sBw(?tGrK$9E41T^WHDGy_sOqe3K^CUfSOk%|Wli-#a@>n??E#J+R$K?ks46a)& zpT|URy*wa#sg?2y%n4)H$~!R8KW~(0v-n%ELw=K0n7UW~n$vvsLGEgq1|&BctOR++ zLVB2ZMBd#*Rm;60Z^SvpeuE7I5l`f9c<{FTdnT>%fqWcGk@b({>sV=@=kj0Kz*+B$ zyjloNr)4Td21~M12E}t$TGFjZvGOe(>Vdp>axK_hYiKZV9g%B5)_GHXFt?oI2-SIT zdBs|8cM|CG`zwaQLq90|L-2y?3Uv2}Ob!!kDw;D#eyFFga@?}R({??OTK0Y@NN%E# zfvtT8P6MSHD>8YlfuSIRDkM<-vwl=agE_#+g!pp!z!`92d&N4QVDuyW0Pl2FgiC~{ zAh)bO0xG*JQiBoGZlf^*X7*Qf;~DY%*o6U@G0+C*4^{x4!2Sn}2i_m1xWhdA`v}EE z7RZBsQpi|%PaLBt&1s4%u17JrrID5~-- z8;J?f1-2?+-c_XzR#>dKGn_YE5KK*Y%A@SgB&}IM`H0!GO0@F5ktR*;ipo?b^shfC z*Rl$k)s!%cYF0OUWT0-t zp8|D1j}Fw`{j)Nc)lHums9Sz=pzeb#e_hG){$ON7Wi?Q-meK_tO;qYZ>0gwMLD(dv z9VDAn21;cdLa&XGvb~iD#jvtXQ>wxV*-CWtjSN|RX9l`TnjPrs_c^R99h^H)xt@vD zW=Wu~V_Bf?k>!4|;JB5_y{vBY^?|zPje)xRHwEgB-lDw5X1cz+l}gSuYO>{^GLa*T zAc}Jb3(Kq%%2_M`%bZcV8QJrKassDNFR|3x5oUcC(laWFAyd z@m%r1Pwl{y6;&U2cG-PKsNz9JZkQ9eU{EaVQCW3Z5Kh3NKd4+XbZk^Z^&LJ=s-wDu zk6jw5`tjT<{nky>)+&x$L;wLark9?3wo%Or7ESOc+K-BmT+;`WJs_DGS zXO2>};EiH_;EpzgTd6L*kahmK#126YTV$ByNKlo+o^r6As+JptsUs?d{T)q;LgG6R5Z zRfF^(w*@NhSTCqN=bS--0RmP|*9R+LOyi&>Xby#^+XQ{kpySchAYz-WzCpw`eftL` zC{X#rp+Sd3(6QSuK`m71cxZBv)XW!l383vJRS15^t=PSz&jy8K_hnxV>W7c2 z`#~*`@nOejK^N4#s%HJEGGS|5;K|QHUBmsV)(8zQ#hEk-z>lfiq7OcXB|jb+Tn-1K z$`(wVmuC+q&fDM$CK_Mz1rv?e7YyEo>-CNcmLXAKTG`+U$P!yB1oy!)(6>f#FiJN# zym9bjY{0IqgU{jkFV{9W4H9A;KJw&Glhlu%JfAKTikO#yL{$X7C9d z82X3QJ`W!SpU3vt{UmrdJ`R5t9E$^M`K#cbJQoenh?M~LehCQ$dD*H0aM{P;se!<$ z8x+!G zLMEH$b3-!l=yPRh$Qc|=YnF!uW6x||8{)#2ySydj8b<(N&peR8Q@cZ!V$}Y7Lpovq zTsal8AKQ7}IqIL-iy@yT zwq6+;$zcOJauM`0>X1+L2dl~-O!deA?7~}U4?B|>v`yne9bl>IWjB~eCkzO4|jeDogEmhdW44!<(_2m z)CdvqAuM8~E$kj1Nj`hRe#%#jLlol$@tD;)CX9r4l_FvJ2=9c_VI;gSlnEo@eY9rS z2`p!J{V=?|-tuD@iS8P$!$@?$Xdgy~qJ>?;NOTYE7Dl4GPWP|^Sk1K5Fb7W*qZFZ<1pL}GTmx>Ns4a)FgTm$@QRuvJWkgso&yLRztb(0Jh84q_&H5#btkc?$3nS~a zDw$zqotBanMrPm2Vi>u`W}6W<4cmFctgwxE80owy%!5@Nw>)eHkBVsOiHGPC-_!!2 z;m*O;!H!r*X^?#}jBAUJt~G*}#dI<-?^${XJXT9dldqtqD^ zN*0V(S76Ns7E#}0xIIg$Ycld^Idv<2{*^*e;sl%Pt0#fQLp;^NjZ0C50c@boPlBjG zR=fKl@Rx?_Adb-k?rW@0Z(T1dW-zedM5>k*PMPw9SK}vl_TJy zHtI|%$klt%=UO_bd9M62JO}LEQGJJJYQq3v&nPu}Rb%qALBSw%&7)jik3_Tqo2sWJDlv?6i6Ur#vX)9PnA5`Ub}~6fl7tu+v#}Yv%HE=hZxS zi2_icFQ^S13H(i#m6z2Wm@JN~>a6_OrP?+1o_yJ5{tY#H(vxKIpSQSuwB?TaRldX+ ze@~4bb|+$}9;&D2$0S7`slEAf&xL#3nLl=nNstHz7n{@xo z8z#Ns>@VsRPJ8s;yd)ew?@iniCk^M!;P$YVES&3&NR)ED;d4bedLN$1&?hLIBXc2w zS-@)n*f%VE8tdMq3Fn;Vdc(Tf@bTO-42lTv%4B#I8P0Qqmsrwa3O~h}rM+RMC44QD zp_V1j_QTpicR9+ZwOn4rHk;R2` zjuX9MTzvRd?#Nh?6yAtgL|u$uhLXj@SMpqvK`yNi8hsyK41&_(vpM}*A1vuCpf6)9 zWU=sL+3;pOw^)!Mwcx2*;nz52s0C1C4OrD#Fu>Y%!?Srd)mR3Q(>Od7SUOvZf?dOP zD)6{VVOD@1oh`j!)Q{mj->Sh&2L?Sa!BQ7$n}x6AxEKy!bqsGC3T(T*2H3ez zIM-ck1koC%riITBCkX^yqr*?I1?uN9;SwV)4WAoct`j9&Ni?_UA`sS7YL1v`X+gIp zI*O8Qt7;DL>}!b2=hxHRRa1>-wAS#hL23bnqXy~&E(J8V(|DP@bvkJh*n)aucg;?w zX7ipJ^e`wMJ>apvn(3@U>R`F?;(E<*@-2kvMV(8VI`|3uTCH=#g=I$R6nb=q60CbD;$5T=Rm zgJv7ICKwi`eA2jBV$2q_{(R~x)yA{ZWkK4tEVVj^Yj<#75~zihK%r_3mw`beyjGC$ zRx=v@VAM*a!1)sz`&wGGPq>36fDKRDw4Ir>l|2DdTou^qVx~i zLiy3!3?}OwX8Hn3^_ocG7A^jvu(USP8c%Y7oFxkPsjZ#N)@s^hE$5Pts7`uUKzn`d z5~k(Zh5;?-HV$YR)l7Sdb4gVTl<%SqrSF%{XssP7qeDr22W>X*3<442K4yPSckNCV zfY*9!pR(NheSo$V=iE>mZW^IQb0S$-6dbMP-Rsqc%YN2ovH`8i6zx5p7i#e3PPk)^ zHcJ3Sit8M(+dOTY6tw+Lrv=LvXnC&n;fJa54GuL#zf%%TvEYIw+H-O+W&L0~n7T@P zm}BDb!xn^xS8Ky%!bx}`SBoCvJqhb<)E*2*N8N6%){2h4%i3bNyxA3P5f^=B>6qGJ`cZZod;r&jk$K*y(g z-H*6_6|?TSRoDRf{A{TPh7{NB&4)H>{97Y7xT=J1vjpS>30m0aJKaP%CBrM|(11uv zFIUw0LWKFW&mU^*a`V+^@^D=UxH@*28TP89n;9(3hpMK!G#NS$Z>js>66S)D2kKS_ zyNBzx<*T2YJ&N9b0gE1ZQwb#Uo4U6OSA5S11_oT1C6)WkWucnK*xIZs!JQmO^I z3Y2QPNY{>1$Cv1G1yXOqG99F44Oi+GP!#!EU1?gDoU7|asnZ+$EwVQ0X41B$x9CpM zv*vBOleFz0J9QmtS@%7B_f9vLQX}5$stEpWE`HEe zr$C9HbdzW|r~lGL(=wHy_d7$XKS9fiDfDM(y~toaGv0(yeJy(Sfm&ZtPFz(gLcg1K zsEpLt!yV%H>p;%|dh}YPMX!XzjC$ttt!DjsT6LaPAMuZ>@Qh7wRT021K7A3|am8po zi=caj^elpW@qVklHas2cs+KnWHa%uV=C5`$6BFsyw-xo<(PJ4gDzz&_tmoiM917sIZ~Qek+Y^ zpl1R7rjftNrY3q8(8HSfJBe%M?_^LLeEYLYLN9#>1+m=MG<`F_RUvXfUn=;^LHf3oYByBh%3pza2woeemr%369PKxI(XoEB zUz*@IyK$1=>d*V8b~FZG4#em&>S)U(7*p6l0h_I$sdiiQ3bM;0Mt67iQV z)w6W{X{FzmA6EPONLlA^QD{BtgL>@kM*VzhnZ?lG$%}3NPMYuZH?i)<#v~rQve$3S z!3X`u+;G^hljNBGHZ|tE)B4UbB3F-d`VCaVgp2w*l$v;1KY*T%xUPRkBg%5qkJs?F zzux-0`aw#9Qu?XB8*RJkx&C7)Dck)?-;kDh{?cF8ld@1<1PilY^$~k0@?1m2aY_v` zM(m?hO>;!gFw){^frwAE>|Auj14^BYjo3k{8HFPbQL0yb#Cl34CPuhvzwL`eoG}oT zD%B${2NNp3VFXLlh{h3~a8g#SV?;-4=$&06VuDE7AE^;6tG4uw*i4a!rA0KR_PagA zug9Wc5xrtRGs zDUB2J(};;0q9^?9Z!-9=i1t*%r-I>G2s!&W%y6CB^0LOTfdbCa8HUla7=z(9EwdR7 z6KN;gtpEJXZ4G$_6{X^TGq5S{+F8SUTJPR@1DlU3T{4`b^$J`u z+@fbq*9?0p_2{}Gnf6=rj$ta*^4W7kCT%hPl_8m0^2sMd8nsL6SHthrE-h4%zY3sD zHd@hq7aX~Q8ug7fvO6_GZ)@aMTCtQbvIA|rx?tpDdbV9s+dxwBs6eBD+v(-;a?!DN2PFk;^E``;L(;V1l|t-eY5Z&&Wq=V)Bo}B70Ni29J#F zN2B~pR%A7b*LZfM9<4R;G%_S7@+s|j;M&NF6#6KPOrYbA>O|yb+VQDVk#FhQvzH<- zQRQ~tid(gJGLO^<~q3mAXr*|_>w`f7-Ns%E!Lcn`NH8NZjJ{-Fs2On=#GVT@7F{iTe2gr2}og zuOsbdTo+?5ZdSTG?Pg3*+Knug);rXPcGJ6`@dk#eH^6uk*H0W`9D?~(!;A^&NY{QZ zMi__U!tNuDGHip?F~)hA4vy7!MZ=FjG*nPh73g)XVG+x5zT}!C}rY$$Nz~!%2 z8Y{}tu}H4*6b2VI7~9|@TGb`v^BXoB?_quhH2QF-sN4asY&CvVqQdigsTWNLsTX%0 zpPyBjIPEuMSq%T%S>qmjoO<4f9v6NOYg{ze z_1A=`W&z% zy`$chf24THpD5mrFSOpUug2XNzl_90Z2P<1L~N^9nMiPU2sU+9pz|j+rfyhRY#WeZ zFezaRov9sexhukyijVO|Q%`>lxZPxusPIXb3Fp8TpNXWvl7go4xbEE;6G;JAVcJV- zyosd1?L-qvfkj13Bn7$`H<1*ue`g{o(6x+-SmSItS}(hTiG+T??@c81ldGCY=pU+1 z@k-XB^*+?5czf%aNUZm1Nbz)D&zry>j2YA2|BJEY^ujG7>RR+ z+Ck8SVdzEovuY)nGY4Hd>z8i2E8GPO#&oR?axzRjpIjtE9FkZIZce?g0<%Y&?s06i zNB(T83%`y+hUIJwP-6wyImX2CxkQM1|3wDso~o+_<_V^i93oVjYU%;oW}5!sxwc9g zznNqjE}=4voMPg6*a5*b5~)1fYrxAtOmevLtSOG$AbyzcVEZ}rDfMHQOirl3V0y=MV-LyI5G3}$r-rkx znYu{);S+f?5I&1;^M(%v1}pEGLeZo4rY@WcGx-qApPa)_L*RO73I#77o5DdYjkyFE z{K#~lFOVn{L{L{b1BnT9t^YkGNHLksaOf+OgfpZV*3Cam1`umQiZy*_`j9Wh5Y&2} z`&BfKH0DrnLt#cYF29;0WGtAbT{7!I)?$+drc2HB*r0SnZsr`6P&lA&AnK+Qe?T!o z)$q2;+>j35uxhBeGp`>YlBr~V#Ib_E9-BJD9y)Uu?zloSs6kewSq8hA%r;(CuzAss z_7%MzPKPQKSMmAL>>E~h*ui10%o|-Wwt#uClEoAl7v&GCdvWHmRmig`XGdsQ{>V`RnZ=GBb+QX^0|w^pET+dAg0tU^pZ^FA*H`_$KrK8{Rq z^U}<7c}HCMYM>c?VUsE_%xp4JvZrWP@!Y;A!wa%9&o|>q+xXdNXqxM`u(xdL%rsYI zYqoiF%sf9#^AA)9yfN22p8-x@VCH$!{=WcEFEm%>p3vhfjVhEF$}oASKYyZ*MhCH^6q z-mv0cbDtpps4!@se^hvL%v^ZmFU0Crwt}K+@E$&zm&OK-WeV zHB4>5oi7A|GjN6mCJns+%Kd0j!mCXzDJ&j;Y{r`}Kf%S#xijP^Sf-U_2$SJ(8=jni zD2QJ3B!IiCr8{(Xww&PzIfxopny8f;6h{z11Px`6=t-sT40+^7W7gz_AA)F#lo}GM{<&`)bJ#< zEaJ%@KY|m~yD@k_%qu%oua=?4XRJg_{VLW7RaEIjXjBCIhGKDT`4H0cNc5@dSV|CI&3 z<3JL3-5U$~5j#Q-d}l!~c@VPvdo*Gb5>)zZng8$e1|mrz&ovFK;pP!m^z=1}zbaDe z(tqDOAa=@;S-IX>CXH_@t=pIkD}${(k9QLoO{n!2r?1AqWoj#W4~y7gr`EcK*ACHo zYdv09z_>{36K01PvvobM3|SWI8%{g0nEkDnzI^@+Vi?2(OdAHYP7=)k(?t4hxsI zo@b+{uDlh!$UrjvY6Yu5=@(V97Ux-}VaZ`?RqjCV0#IWuXm#Ie0C|r~$-(Bu);L(H zhIMZkpKFO7gTWDFAsc-Suu4;F1hYcV7S_(3$>4{*?bE<9t*z*%Oo;`nwYQ=d8VRZD zXhknH67pg%>u?1nJN37|;kg)3?26*-S0?&zBdsU%BRcvF^B8LcTc!0MXGL!?5>daO zV2xs;4w_<(VAJZ{>DJ=hQJA|CO}=?K)(|*ijnkNy^Ye16jb{l?+<+uO@5|wJ5=_}*&E<9j z!ifdz&N&r8z5~U4_(V%Mlx(+}n9&REu^yxj+H%l3CO_tn1R9f72}>WhX4CKiU5{DW z`c8Ao+Lr~dc*a_cw;R~zqO~5g^MOm&s@z6FIA*y0iWU8CE(yp!H>^K!E^u3cj2_n` zVAK0n^pk~TSv&KdU+s;Ltm`>Lk-;jSTAMLXrM|LGVX371!@8NJ(xvy-4UC-q(YlON ziI$sB+oA;FI#}PVS#?lOVq3s54t{&2EpP7q5OBVtsvYk8aI>^g3#$g%&_z8$9u2W&C@9%XXG8C4k&3{V zKDM%q9MRu4h>^-6wiArJGr|TKIpHVU6xs9*MjebFYa0|oVWDWN&CW;6u=Qmmm=l1# zn`0ZrN(U~n)n?7k<=U#T(!!eq&DL!TH2b_O&}{O4TQ0|H#czcgAPZ_$@X>MG961`n z$TM=Y@@x-fyqugdQ_Q6`p_E?dTo?_xRPlVXaA97^7IE`bvidREM{LVY@_dJ z*VevrZ956E3K7~U@3#69l-|G zXCr5%53$$cxdcjdL@M@YDF>* zn7-0ZzuyWpfAo<-ILD42^&+M#u)w~MFOD&&15R9M=lT*Qlga^iF0o%_Zd|e4&T~x> zLv2}UAHb6Rmo@fo9Ai5~FjGTGkinyS>{B=gi4g#ONKFCN2kdA^PP6-jeNhl4-<`9g z537;VGZ*Yi7AlW!*;ACXwBsW*9a6Hv6MKC*B{#jaA5&0r(tG=1R-w~J`$A#*mZCan z{)DFs0(;}LeG}_!vBL2O3%gYz4hP2wjT59h7(Vj48O#^#3a~AuQ9RtBaTMTKxBL?; z1YDo=od&q-wC@7L^$zs108Vb0V{o925K*L^*-=;p7TLDh;Yzn-Gf$8H&7Kn^D`H~c zbFbqM0i3I~O$*;eIY!7p>dzMPm3*F<`-Yvm6}N{LJ93WXA~n0edwl zxZ0_PZQ~s0d9?i}%=ARZ2#&NyATz+r0S@+{VxJ@j8pIMmTeM(damU?!06JjLl8z=k zLmv_;2b|jL)Wc;J97V%`eUl{;zO3y~qFkM7 zZ7j{@6vv)?MN4`QhdF=Jr1y4QWYTo$>o}M%X>@50uCIe*+dz~~e=MF`tr#$<?( zRL4zbi&4`Y`#5Y7fGPnTT(|N90Jd3<-bzUJg%Pc06R#AGzv4FHR8q%(?DB4=)h1U_+b@v0p3gE z{E@B@;03w!2fB)Zg@c{rIQ9ml2bivL=17U8U`Du84_u*63v3tR?8N%HXmrXr^KK?U z;1OVNiGm8a$Lu`GygJ9`Jk4A=%;D_CV{$YFrGnha34@@tptC8DbqPXN<*4GIWNEZM ztxz~%*kuXMUCglki#e|{Gqf+|9Ke(Eq@T83qhi2knWr4QQNg)F!!h*uVG>}|`p#4) z-sQ&5b}E_^wOTtLC@ERFvlHF%Cz%q~)rs!-6Y^X)rOxQ2xI#@*D$i`5T}Dq zU$B3=^Ac0L^-s?FyrBhh=3SS=5#yZend2*FI{i7UniP=i^knCJ?k>>Chwjof@z_AG z`Ocp3@N}n_b@t~B=U8so>n%KJzu7hpeWh`}Gm9aHFLZ7X5%$xodD^wkr5t|zw!_L< zb3Y8mu5)4 z8I&Icp37UrKX^9;)*kol1If|x{eU{z{RMviyAwSyN8F{l=Hyw$An4UF=eqMCr%tP3 zrCZKTOa{eW=k|XeG7!lyfM=0QWUunji58W_1O=ZsdG?0{=HOE&*RF#!zVO2NE0bZ< zYbVdHkiaCrbr$6sq#|9p^w#m9Kb>3A^)Q^imA-PtLsFz`>*jl|4?N+3+rqI?QCKX>f5o!wHccf_Rog zsNF1p_7#(1w!?*%{x}@qHkS)+E(kf=Rtj|aedR!D@DHxPc-|gBcAE@F z)Nw_?tMy!4nB5jNaH03TNpJld1-dBL#KrYRJ<>(R4akHUTijNNHV19xWRe5@+quv^ zpZ6{coZsFR$1@s!!)_}b9)Nz6EnKmI1 zC~YUYdhx_28lk(>O~&mRu7*6D41$0+8Bj6Lg*H?~*I^4>Xn#S-noC`1e?iESD_uP} z*H7KSxBbPE^{&M{`wJo|f=Pf82V7`>L1dbC#D(@3gjD9a(EfsuUoX1Q{(_LlF1yhF zf{ zx^)cTVWJ!TQ2bZ71x_jDzJMOh!6FVSDGIPwx;qF}= zjtSsFSGt?)-Ms(;(MvJPeVj>jYji#(%J|uRfG1`H5`hf#jd>V9&V7W5q{wu`{1}O- zxNM@k5%<76d8#`MWc(i60~VX+-ovxWA=+u?y2Ie!d2T1iGogSWCS)r0m4gk0wJpnU=%=NIyzeF7o7#d**^fsly_9<)y&WXBR7v`--9-O?Vk zPax#N3LdmiAmo`U9<)y&Gn%ohZdgZzTp!*OOF#mCMLs+t&$IEHG$p8%$3W#nv z0B(e9Ej+>a-a-m|(#lhjbHqx6Xl-p3ge7#X|Bu(@!a%*Q9-e1gzulb3+l}5MYFVhf z8FugHX{ZpEz&*V^MmaiOO!NFI7k2&My0rn{P)~jyymoFG<|)WCxa~{z4g<^1InmF0 zee!BSyY0k@3t zoaPB1f{=I&J%UM|9BV$&b5RafdVL1aH4`c7%JEoWKhe_y{bm-H^Tsp}&qvz)y{KUX z@QmbHFZdDAD_dJU8aQI6=R-WN!H~K<_fP!Brq2gMbQ9&Aj9NuJ?b*O73`F5@o7*6$ zu>)>9>siR$)8m4N=N)^$W)Ar7qK9h>@(ls}?%Bbl>2S@%am5;Z!+Leyb2NXpnR3gs zmr2w9u7_t``8R3qd2)E>3xqHpy!_~K)4MAppL!OvxGC|9H*N@E3_SVT^M%tu3}MYX z&p~FOQ6D@T`J#9{MCx(9EaJBfdg%DG2koKBAhY=^w;fSYEyFo9j|aIgu7~2i2zw0cOt=@_i@|ciKeS$SFNTo&^xo?{YgeN0 z%>rHpY-{r_W4I<~0QZi|TOmKV2Kr>z(3pVGIfVk?-Q&EqxWQA4dfDxr79|4U8Ku1F z_71T~n zLbA67_jrN4^7re*cba(7^uBg;U#SXu$S9;ZJbd$7rZ#B z(ogRgUJM3z^TyHj1FYT4TZLoM1(AivDXFS026-FvsQT&`?>va^Hs#33QU(_L$vaRw z{ew>jcm3>@atxRdA*Rx$8tgm4i}sAf6%8hOf8Y*bvc+3B&5Leb;q?|=Im63!Rh&d5 z0%IG!iLCPqn zbFXO7O6JSgRt31u+z$fya|>{h+_!`yR>1;;uLsx#qnseUfv+`)R`~SbWdk42h6O>5 z05_jT#lRnfeCUU&4ua32KAz{f2vEkCCRcYaaAeb1pysLmG*7G$Kqvuhw<@qIiD2O-%`nU7*{{?1Fbf%8m(5p2CZhQMYM*d zy1tn_?_dVh#zJTE*=+!9KnbSd_|XyxGchI@;fN01rZ$gMA!N2>#7D`k}s~80hKn|7 z@bSFZ!$hfEAQZHPv9a*M7~d2hBZ$Fv;?baq4S>pEW#p3Bojw>(t=B|tk> zC#<;5x0-uBle6Dv{M!w+*h4<9Zz~g#oM(MDn4ag`&ubg_@}lpp61j=2Yd+raMR4qy zsFe{?1kAhb)8VDYod>=vcxkcck#9Rb4te4`gO9bJ`S#;u_zT|-6dmxyD_?O1Itm|X z{c9g-{TZKV{gf}Xe%x1D|B(>Y6604@M*YmQH6vD=Y`lSXD+@X+L0FykXmL8QKm^*{o zc#T)l7Zt%jgkbE1GKIpRqd?S2Eb5c!s2kWnCt{<%^2QWsJFP$@M0X-RJU1bchtQ`J z@q1AF%14#tx&Md}AbLb`7Pe2JYEi%9MeWC0QBN^{zg|>JPQ|+X?V-eqKSqt^x!Fi$ zLk}g+M>1{c8Px~v-eBMUQSVU-!j$1r$FS{-rALuv`KOGiqPRR^Y*ac{VO?g_E`01c zB`O~0z?|t(53x#PW<{0c4zFHuu`YTK@p?|wV{VwlW^w)C<7H8=_z~8lU)&}45dRNr zUmYLS(e?j}5(o(qf&@sgWV0LF-6R{&O58Vr;_gm>phbeaLk5ZzTHK+)!QF}m_hLnh z7mBon-??*V7y7*K`$tcnKlt3qW$*WX&zUo4=FFWr^J$%5ZK9Lz1{ipT+OY87zDZ-@ z+x=D$1`d`_hAPP3;n%|6<}s|<o|MjbalZcub~;Ic zAE0Xbw_u--`cd{sA9euk{T3JfmWCNDmWsG zjWKP!*r1Dk9?Y$rzc*~W;dj#(Z%@7DM~bf{DO=^&bp_u$el1Df(SpDx{D#LW`wa8{ zI=;Sf&(9Ne2QMG^9Uuk5U!#)(VM%uw2uC=ek}AFSJ5#C}JoURDEd-Xt;5IPu55HYf zed#{xU4*nMqgeslA`CpnBW75$Hw3TSvGf9$qCvM%2KCrSlWqq;vW z_|5nKj=faha+ZVNowfXr+9RKl{{F;vB+z*9n-btp`ksys^=p{wf&L{@wLJ^=FQF;v zYqX7_{32zVI~K|2K)$mAL&vEmF*h>VidW{69&g zzHje;K_XSy(f_D)jq5Cfm+311eWshg4dEqV)8GG!)P{Iy^88!>SW3kr$XYokgv&7h z#Rv!MNBU#b_z{MWmap~3`eXF?5h{)M$LR4RoSW$XtMogV=Klw2;F<5gi0yM!&4EgD z{3}X`f#1mr`D31cZ-OEi)>>~ldKtOgKaUi>NC_Wmk_X}Hh-2T}+l5#;--PMq~Gkch=y^2b2tBdq(y9|M_>uUAoCHfeC9m@?6*@iBUa-)RuHUO z4%5mhDofS4qP&9JcY&)yX5gk+MnwMpt6U7a%8EJ?e3Pn*sYJN%n46D6PQ)O815d0e zV|J{q_?e7(J6KVkx%vA!K?S8^uhhHpmUu5nfeV#Cf`dlEE98t;R!4ETB9k~Q{*GDR zY@0l!Q|C}uJA$3@!ha}_rUf^jkk zBd2KnY*zH9mpimDWM@gEeidG=;& zzYQQQr@~q(eu52xXK75hrg$ORX~Hc9X(g+S=L36hD@ZZ5BpVX)fqM58i-axMKTvES zG)^njsD}ztP%Qy$eWJjmzuZSWd#WHUr?p7b=edFuR$Jv5@JfM)nsF|sH;OH#QOVJ_ z3Q}Bc<dyfkOak)u^SiyvqcT zVr%3wqS!m2meim;;rsFdn?-|a=N>?8P!gUJUU>xAQ-TUXNC{`X0xZ@uuSx)Ey*$dc z)jNRnh0IFhW%U4D*~^W1i!Yf5S4m>608&(M<#Me~z$U?Efj`ysfQ&{{zFSF>u+L2bJXuNQz%{VV z9H1*Bcks$wyvaLwb)$glR3iq&{wzAt3T*=FQ3imV1oOri`sEij=lZ&LuSZRMP*LjbOA<;5v`18{9CFOE4HU>U`k ze-6M^ojJUOaIr0N1wi;`r+UxVDuSx7`kqlAuV#yv4r;1W_#% zik<|tqv%XBzS(C2%CKR}{klTg*8v}>6j)7rgxP1SMnCc)KtXXwsQDg%@uQy&yH|E_ z8f$8&oKF}gSVP+4Cl8#Uy}h!WJd)#^*xkbR}k~ z<*yISQc?!rT#9AcN>ZrAAC59B@u)A(;b6XU8MS?f)mQEnZo;k+wc*W$zKxZK1WZPA z-7S=)*l743t$`4c`QcWqL_P0trD3q(^){s)F zrR^}~P0E0T%M-e}uIJV<%6T#wSTjzEyDueP(0_vR6lEI`hn+S}`E{E82{Vc9e;N_PcS*FDOlKj0>R#@NLc$M{T ztu@L`L<&=-fXq|QVIKm@-nUHF|-lAmy{TQ@#5Mm%6u~I4G)!$tkuSvj@8ubqZBQY86AzV3ioTfKIKlw9HQ$6-I^pMTf&w^{MEr zWZiuyW+?U@1NCE6xUHBYj*C;plM!F|-}-u6u}z{CHX>P7T$UYZTbRb)H*Orn^tmeP z(oJ+?xTn$l9Mi~js#nk&@Hpy~BW=$400qyWn_DV=a+ZlyMfk zire6)z4&O;}sM&U$tAJ^2b6IWe((vOw$&rNWt0{guowFVes%;X1*T?AuW}j41K3M^3pq*q0 z56)7JX&sC_uOj8a!FNyl>hsjoYpPL%`CwRlPt}9+T?t=5n!VU?|4R_%1(=CbPsVEX zSyd4}{HYpVo@Pd)L0vYmfHFVNMQJtrmOV6a3tUS^c(F@WUd|%wYYvzTgR2Bal|kF! z!;hbR1G5M*9h0?;z)~Jj)=?4Y&RPsoxv}V`0h3sWe_${($0>r~Nu9vk*q_4*Wguxs zAAgPckje#cN8e^?WWZTpi3l8q<_(Ra14*0tzQE#UzN^?sp=?4RF3GzJkM)5rl+hhp z>qJ(h_3H-#X@O@bU)hjTXF1v_TR%`wiFP;wk9I0I4#btPS7AuAKwJrX6*5}~;!4=7 z5Y;}g1JR5+f3*^JVYk3(l#gqiAYTdlZb%@mguM!#Mg-zY*sE}DLLjb$y$a`M1meQW zt1y37Ag)8b3T=x6aV6|kU<(3qCG1tG{6iqFguMzEmj&WV*sEZ_CJ^^VT!m-r1C5ku z2&-)jo3<^`K{`VK4}+F+gErV2_>q7G!*>O~Cn|R|TXZ0hFLLbyKO71SBKS+GMHT>t zNzpboKg$VjUY-u5d~>mWL7Qm^b_3Uvz{d7$a5E1Vwrvl7T{UdNn`Q@@Jd>8YmWdZuuqfqa7=0qIYNe?gl;~ zxO@o^5O5^Hh!{S+S^m^_^-17xdznbr7lDM;TYy+cDZU+_+XW790^i!ouXlbINcb2d ziLwh;y$>`|{3$-Xkl}8}BxYU~+z~q11f{sJMz%&TcF`utlbK)P{_f|lK{o}(8}30A zQx8noqPg7+gCDXN!0-v2IXh@mNR#*^aVi-|2fA!@O zLL-AP13YghWnzLTBWy(61>0hSNFOcv!<`d?@U$(?!C(xcOc-#Om!=?6l+GVso*aZH zpK%WJ(}I4c`HNkUpAkd~&pC&}?4VnMLpyWOF)D|u`9Y*$m~%K?KWK&EFt%aPZYl>& zz0f-#)pqAm}`0F6BR9hV%)#E^4oHzo5f}+WQBfF9Zw-diY=9<@9aP zHNormA*JW#0~?10Q37iA5Al4U{fM9|f>+LHl9~PopySw}_7vyNVWfSO4EIr1l^2Bm zG$rUUWdzBwHY^A#&+rtCu5fQo&;d#y!(ng(WgskC5>%HGb|bb8ZknCQqy!zIHdrl~OGM4*W6O8LY`CUzPFs=vX z#f|a7xE_=jdzylAJt!|OOby0mYP>i$GnkZ&m{&7?j`Wpd*}D0`@f7V@tcB+^?hZdT z4o)J&Nc%Sd6V+6w_$1W-NSM|+II9dF{llw*;P=FsW+X$Ly0E`6__R>+q5;8$q89vy z1m73MY9oTTiW<8+KDaz(v7p3SdRuk2XL4|Tf}gPhz}+dqn4h29#JcIhv%RQbt(FFR zvo}4mydiK!@Iyygn~L?pd&%0A5MlGC;EO_=-)#*ZB2*Z#GZ+{1%jSKc6e=_y4X(yA zjs)iur3M7Rvx7L1wBx}eE75R9z|cFvZJcdp!JVhU4ut-OS?5&P2AhXfS^MX~+X+;r ze+Zt$ro9gKg^w?SuTpqe5GWHR`0PP>YC`)axUM}bx~Oqy9p49k`1g_kV%4Cy1AJ~R z-xUhWZA037us%*&FR0}eQo&B9W2_Rg;@{I@GOV->^kUVJjzq<-WzYOVd|8Zlh#RC= z4>>}X4`Iml!}n!QRfODgkQFjAIE0d62o-VyvO_~iu{nR(MH_-6cWxu^!$VHdD&++1 z*M*Q`bIxIGbjW+bVOm@WC9@ERX_*j0ip}}M(~KdNgmFSr$kl(Z2iTt+a-8C%Wfi1{ zM2pv-%?hEceBm%_b3&dGo5cwz&I|cnRKs`mL(cts6-e##1axW;LYki74+k|4*(Er9 zXc|ITGyt!fg`5;l?{w=B%0v$*GP7-nqkvh}G2}Q^83mm~7E=b^$YCujnHW-Ap3C#= z8PeWSZl&}3hMc9b;eaYA>>onf>S>{*f@y<7+=a1j8WM7)RBUDp3-KVf8X?b`5h0#} zP08p|ve_^;#6%fLO1c58t^`5EcWTJxQmN(Bw2-&NhAh#tq)m9ndO%r zE*>5#r)`#JlQ!=NsYsb5;LW=Gp^&e0H%A-|8AQgqZ3?LjOU{SvAR{cw4Do>`w?kf1 zrnR^{Qwl@yc&DwkszL745U;ZG_;cXfkV3Mn;fSqleO=-H`w%>gRT?qDjn5(5DPIpc z$Eo(Ao-oES6!( zL=oqIX8-+)@J&)^Wk=4Rr6h*pPRO<)-moqsG?iQl9QI*$D4qh%b$q}aiZe~TI4M7L zvnb}(4;@IE)8x!=_O2NKCGA2p%E+1z?G_p%4^v=Jf%R=ky+d(ci@(^pFf^9zEb(n# zY@bfy2>O1ZILXNos}BstNlsq;YfxxY$|R>G3c9aKj34W}X=G>vqOa%=m{I#Fae&pI z@tMtmvqN!algsmBPAJZ7^5X6Vp*XXNMGsiLICKut!}tGcHBR2j(8ENFnREcZARr#5-<_otzSWaqZ1S;*Jt_-^|>l=Rtz+x)(_xC?@BeedySXg6X_tSz=t zi#*&xcIpn5Y(QQWbFHeHvMJCqQREJ{z12>X24)klZUqCYt8FRPD?QB0*HTmFAMn`` za#Yd1w)&Ah)1PkT&N?X6lx+=&H36;$sGkruFad@Js_~Rn&OsBRo<|spaSmfc)omz# zn?Jlnt6n2>uswW}oo!TC%R0xY-PrD>)vK|65$XggtL-{9>FhbqYDBbEGZAqV%>cp_ zQQR{=*NvUYRXZ`|=PI78%WQQISe~q&VaINaZS4g)>1y2k%&Y8brn);#Is65#@G47f zB-UFuK#FaupSf?hUP zQ?g?q)&xjxsV1#z;4*#gs;(xpY1LF?V*{JotG^YMme5JPh+1g~TL%_)R+AnWHqi%mWB70da4u5Y z+Ojn-v4Pbdp{_+03vQ29|3YSh54*BkDvbm5n4tb>Bhwi&NgYg?B-iXv7qUf*(2Y!q z*9?a%v(-Nc4>EPG8Yi8(2N^V9J(pmN7Hmw`xNz?QW%KZHbPe(i#S zHmfHJ(T;7UiZ&18wvoIKARRxUl8(F8%V{c^2iNwfPg5EvzJ3Us*j>{GwjEY?BO>%= z-=D%3I%SADggKs6|4tL4FCa>~Xx)FGR+EoR;3uUm+iM6_^c3|ViY6il|TWU|?;a}cSAEO{*chQDMPH^d!nzShIKVZ7OQP-r@%RgZl!c>+WKEOTepj7qiY+{UK6g4><|^%woRM1?IYW? z3k&a{jbdLgd)jEk5`Oe|IA6|tfoC7ps|dFI4^$s$_Lq8#3^=>CW?5|0P`>JwLO38IrgC12iyGw`lvf}M>aKl$a>h`}-l3>`1Q|hj)W^K)7 zd7M4{6QuDf0>X)G4no467ZeAUvSzIdLSFAFT0}cr5$bJ-#7&Vr$;Kn2kWh{t@BjE33O&B4N1blctrS;%*Gv%1kH&a6y z{2@RgJNb=p5c1$}Zp$z^ks6MdYtl22M>&W^V$_P-x0%S;Xgwn&s-O!wU zwu$jApbwlR82#OXES&`u&*N>SA%&q|Q}Y3vwwejT=gn`gp$rTEiC3YchBQ7DD9$js zyXGXtjYt42w-8l+-B%ONVhc5t;h_};ZuGS{50=(XBL-zH`)f$)cQ|a#4oD71i_xsf z5X}>Ud;5ZdBgU?*`7q4|?s}PGsD)skA`NNO$f0}Gz3m7%YMdk+1o%zR6c8uS`1GtV zB+t;8Y}ng(D{HWtTXF)~nVA~O+>3R(nYH=>-SFvInw54on_<8lbb5GQ^PR?*;QVIp zA5={OjAS_rG=yaw|9IXJ)-Tkgm6nAso4Z&;NFF3n0Tji--exoFuuKF0-nuN(G$`I? z=LAQWYwRQypID`NM`(=}FazXl)VR4LDQQDIi`s;CdYfT0aC5YEheZc8$yk5v!6D6H zI$;AmKdiw6c{j60$23Kyz+s5v3cY{UBs!qvTTg57pzF=h{;WnJT_>N{{BDES;TJWZ z`Sr4<32GZ|T-Q{WH1**ZO;_pf_V+ZH0bnzDKh}g2=25Mh<80Wy*P2PC5h>JOTZXxQ zu#Cfl-e^`KS$6pyrAz$6O@al4Enf%};07fSYW)m6JzvX`-*+E0Xe*Do@ceA1MM z8dbExgmK(IQCMY1?R*&Otv!SWE(_kUx^|Cb&6R3v*Gp`V_-ipm!)EwNrG4$p-nun1 zF?C$iGVF7e8ZIoir)w4F8L6div4;|T)|S0o+{hgo#%TX02*mbJ(dMwOCao{KFxI;P z%dOSLgSn2V;?7$Ati^oh@!IHr-<&uo1SDt=5h}{ci1M)#rRglsA^w!8?PAAO!$MNE zlS#KLgJVj;;jeMpu|f~CCTb}$HE%0tCTaH*^Z@uU?zNY^7~48s zJDXY!&t_=16J9U*n_iGMTiZu)ILYW7?B;6g5_(aILp^5RqV4rtsn`Up)+UsWP33jk-h$0{8?-Y^#paid+P(s- z-DYhkA{Jnsd5CVN&$d!l*XHfoeMAEm74El7+e8R8ZI5;;Q7Fj}gP~-v_ETw0xdOC4 zqTNCXhk0Wth`3!ImYvqlCnHq5sC9?Sm$d2R{=33$9E47pn;!yqZfaLis|FCJmYqBT zNWP~ncHpiKo<7nZksCT3e5S?h7pF!r6~RfRwHn%8g`aw zOM=qRCHXNduNQyX7tVQScPV8j+Fv6q{8$LX&gS@iUu47m?2h>nO zx3Go(ULpyo2dwQL1{5*)!*;#G=Atgxf<9rC;Wx*)SQzF>CNQ>t*pCu{z(HY@MYWtj z`)|WYn<4nanM1?+N(A;7g%QRrfEY(9zFD(4tP$Jc@9PP_jtfhvhy?ijm3~3ke!|=Z zAlw-Q0h_I1C++ZhdV5%y3tnxHhHa`%v#c=IYWc9LY@tIq9_aSEg(rIvnd8U?JPE7F zGA}f9DIVF^k>$1ts|9nPgmtZC5umC~xD%y2Kt0MY1bm^N2B{y?h2t6W7hzIV_-08I zV@mkO@_79{KfHH2ymn|Fz8t*^xV8)5CH?M1`|$G4c)d~(UPb!dtHI%gW%1f!OgKot z^O+nT>4et?v%?p9P*qa1ZiF|B?cAXnOkNSLwp1Idx+~nXcwLw`eBKp4n=C#D-#)N| zE7Uv?KHUqsZn_*^fc^pM+zbz;SQ*!<;d6K;wy$2GC)~Oh?on0L6dU)e;2idMIBAq3 zfdhiOS4W2V)grD+S`MlmF`^7!*DE6~RwHQnAI{aCIi^HxWnshc?byc~ zZM~SXO9Y+(8>7R+0=q`cCrVl$^aT++%X37iFeKtfTUqf3heeE{Nm-vEq7z&wikL_l zx}o+3!qX8EO=X=!qcIVqMe+Igh*_dIb8^IRQS_T0vCu&hq7qy!jyOW-SD5w1ENET? zWug)Rx`eB_D4*nS#ocvaFA?Eyo>`q?S&qk&eA!=oQojk%H#rUxFGc4&T3w!m?PY|98sUFf-Bb| zx(gLFxJg&RxL+bL4GM2m-`t7lO|_^lcO!7uZmZAlR8u5VKKr6nmav1a~VhU9ct6xWujxFT^RR1F)Q|Mv9d%7N$e~2K> zDRU0x{)*@&VV>r-SYUxs@u*>Us(eE1h-3?zcDm zQeO9r%%O*yZiL`qL?%TxLM8f);%HXA;8DV0cz4Y zyr@+Q4uk!4mbQ6Cp(FdKGD_VsvL1Q|S=+_=5Zy$oJ=myqbU!&ktFsKr6C&s~IY6ho zBh0Exw2rbYf}7Rg7@Z|Dn-Q-g3~c2g&7lMx>6|&vA>F9M{4Bg9ews+P&brCE4rI#+ zPSXt$9Cl{tC@U+tC~q=#oyZ(M=jd?PF4x1_Jh~q4=j+CiIk+{@EymGIM;y%@Y(%%t zzZ>fYkU3Oot}7IJSkRK*bDV3XBjp9<6`9jkw^DF$>Y$^{Z_B3LQAh8^cXZY*5*)gA zqu0gK?z)rY-m7APZnxlYx3_Kq)nnE!)RDewawRV5r^Dklc)J)pP`8-MVc#GfeS~cs zqAL*`Y8UB#q;lvqyc9P1>qs3g`QduFI!3qr-*bSCV|De&&2sq!-F@-;1(S8F{{8Fa zuHwlQ-9s{m!Wp`$fd4botkwb@ah|j{v{ zI_Q~hI<=v#d#=l%ERR7w)Mu_vkv`H2{5LT5t##IhC8H} zOblUe5z!9pvMG|1Jz9bSgu3o1Q>vC3xlFJ-mlOHULB4yfe&kvgf+yibor@9+VQ|~X z&BBz7ogyn!jMD<<29LW$`cuA7b780Tid2wI2_JT0kD6hI)1p3+UeL2oWcM<%ik=OM zJdVdWN!5C6aAb-*L0i17teh0-4ojv)77~p$k9FUcSb>@6B)0>XIgwR~n&vQGu=~5n zQ*vhl^A<$j5CV?-KGK%5A{+Ie#}*z*EDu$dN7f)#0!Nq#rj=*|{4*5{S|9md*zCxk zA`c3_4Yx+tBDU0~%=c5dwO!KWw9FL8Sw6KiaTKwo%n_#j}S8D*=Be z_Tpe%EvEk*d7k@)Ep?*y;Td91Z9U+vP1HMERx=ZepX{Tmh}uy&MO_v?vVu!g2~|vJ zRVivXvDup$KI{R7RijLT$!A|Prd(L42T71f+#Pspx4TR2T3CTZ+p z=O`sXV}LM&!~o-DVN{z+1Q*2h^kQ0+JFBoJX$Tl6k(e+E1`uX_HQ5f=uZfDIRNL8~ zqnfcl?xc>L`NH)Tf>}XOdKMR5<+gp&l z2JFqz`-BcJHj6$gbhx%f^bexgs#WxEQ4DDl9Zp%!ZF!|5Gt5bLWs{1NLzww_oC8z! zjec1QC2+h#@ai93A~gKRV5$|i z8P=R5Lj)JLVMFp#7&?cw#_=n|pK^ZTQtDpKhiuHbu5ufc|O{8IE=A_^eNAt$+Nz3xQc6vXWAMX#WQ zXk05BDyPhZy>FvcltsK21Ru7@Hq{ZPe2B)?ReU5^_OEDfxg*&U9&<_9Yce22uthvf7eU%ds^#@IdVK?NTt4l_{n*dHQ6-*H}0h7;M^DbL{Bdn3{0JHua4S zB;SdtCK^w#2QilZD*aK+Y9WrpZ!s1(@cYvkt+=au5wk()=H1H}FELuJ@h+yaP*bu) z?0KOZW!c!j#bc4>W1ow+={#Z!N~0SE^Mw>oHt0%BZ#Z8qc0F~nlwpMjgSvKXsvtH_ z5i2kAc8B-M*x!VdZvta2QhIA+LtJHJZ(@kOCeLLXfjA#mH&SWBGKJi9bfR!%9) zZa0ms#ZFgF=?l*q#CE0(xhy`kEFjhnc^?C;?iuSNk2K-hfLLdGO&~|;IXt$$tUY#N zOe}TSDmmb?46$6{`q)^DkGMV|Hh^BY5~ACVRCmCrY-XvHC&5&PbF*V7h+6JGH+HRX z-hsnRgzh}|;R5Q!o9a{z_tdFfu?tu`dHhPZK{;+Rj?5y&{u>dQ&m%0O{ z?u}hQmIo0k!NEhZk3=KdbtLw#=-Jkvi2Y3zSC_i!Zi^qs-X}MVnpM&UK;iGPmM@%5|A?i0#^=Nkt0MG#7mLT| z%EUg#zN1#k7T35YRLh#}8t2A(I4667t8Ls8l}zSfP~3BJ=!?mLb*xid93c|q-8K9i zALke-6S>_f&SGd+yTnzJD{*W0xYxq^?0Uw%5k;q7adn0FiysvCRv2R9u(&f~@LOkG zTzSewhg4m#VL@CDd4d8Tc7v%);|>TTY_lTHUrbBQT^~1&+?w@|(p+HuuDDH9!(oWv z$&Mb4b7yYZ5pL2PuH|FLn?rFpSIbTF@R7JZ!b)cykDKX6ZHwLR#Fb~Ew&|lG`bJ#1 zXxu|@$59p=@Jd0z6M|#fy|{K zqr|=VTpL(2ApU?8`)gebFZgzN{0U-pwqYt|f-5{68Q;y0+ZD7M8;_sQB@=`06RpL5 zQ{&s%%Xc5ojNdDY+vmjpY$M;D`CU9Nc;Juqm><7P6#W*)uM@>zzmNYw=~qzLdhGMv z`&D7k()htdF=YhS>2Q2iShGAnxhz*4ySgkMKV@}`_lB^I@#VpkE$j5j)ao6-IeugOCw@t7Z`(FEm<-)A{J0?sJKk#t2{@`i( zg!AGDC9VmU)-cvB!O|L1JQ4JS9F=f<%!=uVG=N3Cdi|~Ye8=JGRF(P5E zBlDP8l*YEiB~)TP=O(x?pE8}xupXChd$9#`6UwkFaS6oaWp!A|oCL4s5T8J4Bg2FB z9Uw=aaMjjkCIpxg22(y5NgxbC9NF_72~O;IywRP-1shtxw(JBQ#Q|`@m(5UDxbn6l ztj|yAXm2xWI$;Ts45-^COr=;l z66nZo{(9e+mGrPEXHn;bGm=aN-4iG$R#_ndA%CT`WeY+r=-w~k0wuQQ2x|vRefiLY zd`ei#5f)5N@L-7G4S!Efm`G{52vfujdAWXWLUmLsPo7qPOM+Q4zopx$RwIJ~whl*6 zY-evzCD^**_5IC+?q%`X;bDS@GhPS2P6#N6*B|~$IOr(dx6^l%uIJ0@b!c)>u7bV~ zRy7Ru(5E0FI9y3zU;5kITfav7|D(S88cuk)Kh{=i8B;M>Fvv4EsxggF~{aiSeu~_ zmaO1+eg~j&t-!q-)4Ly;8zyv`{}-x?WtYFC$%VE|K5gdWAkz`g{6ny^Zwy znQLXe3|p^HlkOkeq<5F@U)!v|DZO{wR{bM_--ENe^*RrWkEmXvAB>=E?m0c-C>w@Y zL*U?feI7P<=5x+v6$&-#m!OK9X^cq+M+WH-Zj>F+aMh82=a8BpEO zUsA?PUqgmeS+R8ujikS4DGc{0J+}06R{4UyvefZYX1X?hH1uPOA`Q4&=B;Z*SQKKI zfkw{4bcQ2@Mkb*FqWy|8vC**x$|2+yMmqQuXNZ=7q6~&zL^6_SIyh@ItdoF>k`1#; z1@tP#kSGB~WEl393g}#>VXp)9%%8soIzP5{54+!wL#3I4&PQ(;x{kq1b@u z&dr4I?+kxRPE-B8VK!x)WvLB&C|GJ}h<%Ve&b+bAP+cCTSQ>H42>iaUhXSZ zp&|IQ__IJa2%6J2>H$CdMO_a1V*}1CQp$ zy|yxkyDg1`>_31oBqwOo)YO=%8=)n)>TMJ=Q<{#(wL&8=x)>?h{QiOJ0}>7 z%{`2G&JnMvgkHw6gqpGf0!mAp<3)WztAWN~J2vl@gBROA!05@`rW(EB%wXddiUDv= zh=_-IbZ+km!NZI(vhrcT2&11Ut{ZLaL}?uoI4qiIOq1!t-&2f7D5E}35^-vClI+rV zMpyQX|2bLR8m4=aoN13O=x)2}X2d*;K^^_aLy4^;~ znG}ds1n>74Zxc0B1mpJ`@pyCIC~F=vQs#d+hpvZ>q-~!3;fqI&xPneS-_e8hI!+oo zaG2dEjHG+QjoRz(#AwuF(j!W+RjAE8O=Ftb2Q;jWlfaXAP&>BoQae(nm>HIyvgFU z`&Teg<`Fr}AvY6kwT`63L{Af*>&o@8&C5h}m|H8GNGYQ^|H0m-k%EF-4Z0ed`YAc6> zS`vrp$4tYaVz}usxh~d4TAQX%483W#k2R4}Msq#EFnq`}++OeAR%6Q;XQ@YbG$urS=^S1R(%WT=Sa0d@o zt)Yn!pffH?mqsQ^%4ooc-9O<}?w)QoV@Ro=3;Y_Ib_Z^ZKQHo zyTEjZJOiO$WcnaDr2lB5tfk{sx^9VylqZ@$oU+1%hb-`B`EeD!U1Y5>wH7dY*3o;+ zU)GxW^5zh| z+e|)Uq9lt39FSHM)v)^n-6$%YGGU%*ZdCWFwq&(4_!~Ex_Zh}MASCmK`?z}RY$YY8NZ?GDQtDs%x zyrTy^v)-F9Lo{zC>3^Cin>M*FI{t+*tPIoUGnvhn6^ZodOK+DrUQoE|kVyFu&L#0H zlSoPsJ={I92ylgZ5xOqPdv9_}B*Z&_F!k+aMLzIKq|9p|!ZQ zV_2dqkyKlzu8`=$9#@ZS2ZN#$lPEB~rX<#vQaGou@%qH~g#N$+P=#R*=wYzHm^hfS z%$>tXiJ$=!L9eDP_mmI-5thi7f@_QulSsR^C5=ewp8?Z9yHUoqToyza1Or+p_IKol zyR}myW`34T7@%t+W`5?yy}c5Ty3myV4U{iRj2AdfMkiA8eKKVF4MUs?;5aTZhA>hC zL>NxgQR^?Mo*AZkZU-LI6Mf6biZRVe#O;qW1nY(+^XhOMnFYhEeQjbXm$wlHc< zVl3G(yKO@lp7eR!mc&p>+vnDaF!$uX0b1=$#9V}2!0g?Ll_={ExtT3Ef*v3Z>V`0% z^h9SCayan`&7SH5LLHNh75be@{2;8g=xie9eC9;!Ur3ClwoLY6M`TYJc{TBfz-@Aq zY_jzwFlVs2otR42+wIelcC$jgJ)k%9q_b|vIiQ2L`mMa_fIMNYRPDvdIx`O=`lHQP8jWr=Otg4!1Lv1z7 z5k@H1=$nLjL%5DTY9)!O3#e8%31^u3-DE}5Wuds>prkuw=9s3rAC%Q4)uNJ?6Fu*b zO2S0XoLR;ABw7j{saKn3N>U0>e>}Am_JBAp?71q+5e8-?H6hpoYuzWQ(SIg-ewd%6 zrnDUi3ovQ)-$Jx?&67qDa_9i!h`|&~8<0eauo0mvG#Z#>CwiZ5MM?cBw!;W;=B4m5fQ#$kF>XFH59t1t`w@KNY0kb(PseAzunusCa>V;OS zBNthz>V8N*BdAtdl3bOt6Q5JXoXfHBc3pBEDpj7f88B<}xEeHdb>Yd5!RAbID1if@ z6yC0KolW}1s;PFjB~3{mx1q{itES%HOU|lDV98tYm%Pk;K(8t^VUpnw+fXZF@&Tij<;Ris*5+}r15#>`Qa4-GzyUFJvny+VI>nt8 zJj3IiIxLKt%A5{;rG~#{{@o9zU|we~N}F>jnAe#XU*Af>yw1FM<6a8pb>_vV4^l9% zGcT@qozlBBVt+}rW^(4mz7W;+D|V`=Uj! zj!2zQ8f|=?$+?3*^)OW%fZDK(BO)?W#j;LVnw^SCoH^;mxmE#>ev^txocUeHcB$8e zfUi5Ix`?7%*Hld6%zsd>S7`+NXABGA40Wz|&!=Gv&PoFl}ZkW^(34 z_s&oCqt}GUzB~y&ElvGJ_HOLis#Nm$^-DVE_p4Ja&g1>MR1>v=iv@2}$56)Te8hq2mYc~fj6Eus zMv3!zAIh^fzjsc<^O8BI`L1c7sf_?I({ekx>e=jSX{3bBQcol$Y-X6S*%5xKp5`WO z>4I;XGqpZ2^Kt_G;FngLYENHMH}_DaZB)ssQs<}HQmSwI-L!9DTkEuH6gJYsn7=D- z4BTp)c2h7pH6_hrX-B4|VeV!=Tk?EH+ACpyFK4A;@@8JaZ;R6~c{3J0AaGII8)1s- zrD>SFng76TU79~-R)aGuS{he@?OPC61eu4@E>K3Q78ozsaUxA@7lE;-(=d%Qr?=-~ z+7E=G9w4rgVn6s?YxZJ)oFl9IJWU=Ef!Be!B{powv$X$l0AKefY3F60dB3GuW@l?Z zOT(g@4kBoyuUYU!BTnd@n*Z~77PG?J9snPF<@`LHfDeWP%a1rh0# ztT)`(N`QjcjOcVs?aVozH>5jKES!IeoA%1&z@{aq+q3kV@ojBSH)pNyWHg7UwDfwE ziM%|gjAocLB;5&Wn$v@;$@_Vo^3uhA-l<*Fakp`+=eRD#yGJ_3Few#j6DD~LT^eLj)aYTAQQG7l+9Z!qksvbW+eUvErOiu4Fip!>@FBQdR zv(kr(9_+W`^lR?&W0zK>FA|kCc0>9hQEav?eUd1C*qgpd6n7m>UnPqD&!o>5#Tu8> z-;1LEE$b_`+)3Y2QC|Hp>W}oB4(wJ7+~C{quk?0%%2mi9?9YO;6*AH(pMCJT(NN-%F-)!%*2;_Wdd6Ya zRLUr!SR8*?TQ#FM=itG%R?C<|@RuCsWA%(IvL62O6&&2zu-X|jsT_{g$+%3`!#DmJ zV*Z=iD>EodCb=FOsxnrP^{^#4!?LotvpR#a^@DTRtI0S()F;k?3SkW-!ImI$0nBw{wPHf#YM@NWjk}*W|E61B#JQy@- zmC-^>Y5d$iqcUME3GQ7pnu=T-E4$-j3!ZCZU5|{T6wV0NQ|4Q(R|cMU!pHnC`ee)% zBA7(5^J|Pds#cf34WTL5kMfp zuwrEd)})DpH*-0a(I0H*WV91q_O}Z%-cl-Z@sAn3DFWehBjCuYjF&d-br(l3II$+9 zaXHq%FBYRAqb;S55VA94bNW|j-w$+b2U~Y$kd|p!U~0q6JsEf~p|mI-#_h|PBmzXg z!x{E+JBOH~88rw>v(`l!W{%7#!!}fF;|*9LcO2x=YQQ;5i%_4>AWa*g3=LTB@yrBx zc_m{@1i>F#5CU1x7iAowd4wL6& zJuGvMD2|HA+$f4Ek(nFB{BW5B>9^8w9FFQUnfO6ZqxH9%#LRW#w=dJJxa%{mxQ(){ zzxB?|+$4T`^Be1L=Qp(eHo39&w`H1UUKYdI7i}^RQEJhmqDN4>OJ)q^^P>epRx(Rj zlqtgM=e5g}vtjxPnKhWXl8qbNGiyK-I6OXchfvV8iPk!pFgY`{imdJ9OEXhM9n@NF zmH+k{Nq%m{6V_!~=IApwWUdjqasumbk8ZQ-s$hpzSK3{fw}h^0AIc=90FopHG{{e- zQWJcBl-Wy|;qa$c6@2?V^RqC+iH=zYp@JLESr#*#=aRKpXfC@#mc$^MyJpDa%{wZzVw8IDG{u!4>cy;y<5$zD#^_DxFGFO->!{}Z~^ z{j3`7VP+O(!r^}dHMGo%m9y@KWoMnh^pWc$@M!w{tONgEkL>@zPlV!nS(PZm!2c7l zSA(n#c!Z6_Rogg=lAz@Ogr3?YYdoH}Awer!WX=BXr~y#T>jdiOHd#OXcTgFkCPIgH zSwG6q;N2;!>VM1H5ZjOC)*t8yx4UI^`)@T53#t=qIiPbr$myB&%#PjY65$2rK3Pi~ zx!%EHP!@K5QWZdpVOf8QyIsa))y0&o(%tVTXGO}U3J<4eVRy#wE}N6(Tvjd~Se$i( z^0oSZu?ncUCaZ@#=g1t_Vq2eWlGRjXw=ZSYEPm6)6KgV&z}5Hc^JX|Jxh64@O71muWQ{(^z1+!74WWK~_IP ztHZ9L63cm*b(Zq%`z$pSJ<3``SPpsVT&5W$D0&yvvY!mpR-80uq6Ptq1aRwzc6HfZ;MRM*k@Cmww1|8hwNlZL}LXw zS2p`^iAYKL?De#&l~v;5n!S@Uc0nRZY^+yjZ)jF2dlq5$6x6Dn{ebjU<$achy)<)H#ozXnInG;@Lw9h_j zgIDO7-Ow4Y75ZdrUGQou%DyfAf1UB!%oDFW=Vxz~p6k6Rd!j#HKOM=wi`ENwPG*;r z@SmQ~o?8*GV;*I9bHnTJ@3WJo=c8?M3d`bkUAde#5{|o1&O7OTSw&7B<-3?96m#qP z&>JpA=Ip{Z%Q{-F&!L*0fa{c)vriIGnVQ2D@+vK7x+LJpoSf~_HNJk1n0Rq)=1i1~BBnU!Fy7y~AZMObH}jXuB353Vvz4?o z;D35amc2P=tIZE`4(H4*IZG(bTk`rFzRxQQ`mH%52s)bS-p`X&i>-lqVDIKSLFmq$ zKpUGMpy{q0zcMx(0D~19%7}{hMiMVp^GHrb7ODQG9Shtt#DlF>e^Zw2&3@;}1{}_5 zN02!0Qcg3rp=z!p^gNOiMezX^1YfrFnQaT!?|cq^U)n|fzQho(5A;5sbHmPN1Is;~ zbA~2WA2@I(rv+hT0Z1U;5#P#8Ck( zR?h~Q|2*fB171hJ$(d}6SI>7jo22_k-skj`ey4NH)k^>0**W*3bYJh1`zxWxkTlBc z7;G-dtz*4+?goNZzgXdho)0~~I=PoyVNFx6E6c2&+me8Mr%i4?Gb?f}NB7pq9YYz# zTVN=kPVm`Y%p99rNe+s)2IMw%WM|%Yc4xIib9d8Z;($Kzy*jrNWzb@wUS#D?EESuWoZNMku+PfIw){S3tejzFHFL35CD+V|XSXtP zGnk=U-Ez#SL2fMU{wBB3Mz$$a!`w+kx=_$4*FcDK0GXb%XI>*ad%>}exsk;7F%VXE z&HdeuiveqU<~}VW7gzPqeI$xM4$D0x%LxO9=N=ZtoRPUWrzy2>a2cKZ9Z}cK*xtxo zPgd?&b8l!pF;^`FS~fM8k`RfZP6T4mj$9Y$F(Vg*Xu9Iu-9jGwg}J*#@$6EoXv>yc zMH{>_cL7nJrfh9OuDdKx$@<(;W#kI#47vWqmMS9x%7fd|xw`H4N%N4L85Fu$Tv>80q znBU7J;boNht|;Eqn`;TeUTNmNqDJngo7aot(o8e%yy6l!$~G?(#R|D*+{ef7Hg0C# zBJTROF#jR6dCUlb9*PKNe^7F<~ROW#_1PwJ8J8;FYM?=k? zY(tk^Z?GR_rdoY7#$mM+%(jAV@^o`XIa$g@^UODdo+d9b7r4rIU4Jr%Q-W|5f)8|j z*{^%e`)nS_g@Q00vICV@NxeGi9A%$F!p6@R$vdGldgB%rxuUPmRc{<7JZ;$Ap`h1bky zBmzBdnt!4ac=e0fjS#IePT=f4^I3_&j}Oe7sRR^{%ac*4ORFzf0z%Eg&+6PyiF3`_&1%v?oZ~egh*Ga{^6|W^)^lr?3g#z z1zGTzw}C?*9t(KcjK>0c=3OMVEDr1nGb`n_Me*QWl{`~{cl!?QdUkK!xyP(7qgatXFBzW4=M~xDuX^h9Hap_AZc5%D zd%S+1k#~wRVaO%%eQ5Rp?|ONU9V~W`-pFDH$&K?UdATJ6Ysn;F_VHFT7wFJTHiqLZ z@@A4X9#Z(QI+SgnHytIGXJ*%T&g)HVe=Qk@JJl_3prrQHo_QC@#MT!+tjrG1Xygqy z`sO*8v#|SXSl&f4I|&m8jFj2E9-Y^Z!Y*%S-eA`9O?^)Yn3SiosEy5;YN_5?)AA+} zC;|dIN_O9lPHtaJZ@HF{HC8-k5-`nAEpJw-)G}&&o*l(lH#+9ef~x5%(|M!}`~2aVCDyv=c0P|X7s+Av zUC5hEw1=_aaK);Jsn_zR|9g9Yyz6=hi zG@3!+?UsL8v|U@z{8dyA?JDMz(iQSX7gjm{cfldjJD(EmahM;g5-V zW*^#s=eK1q-qt^cY1RaDe;*h#i`K=W;Fu+>DyS726TzSYfH~A|A2XG5*w!&-F)N2= z5iui}IplSYK^FmHXKLMzy)H7l$FSV@230*{+^8uG?-Rqae++B#S>G5Q%cufnE`rlz zV$RuN6~HoC4AUzl!ZCnKw-{G=R~_?=g56GwdCu@Y3VAs($L$H98|5(>EZ=4@pLP!S z?cnPnF%c|7auWhLVioHNUkr+_=)kTeoK`#uP?Lg_I7^X9C7R-t%gcD}O zu-ttGQRXS;m=x?iFXk-qXt2$a7#pk+g!NA`!s2+G}7Ze1a z{2sG~MV&vuSi%-NVlJ`F!W&^wr+z5L8Nj`b+riBTVmAE>rCJbS!>3{% z{t^d(5F7wfiwEp=Hiqe#7L#sZtIIJ=_ZyfH079?_^I8UVhG(zFM6!4m)m`LSw%?A) zWl#%5nIG5@!;oG4X^c9to4)FNL7@ZAia9zy=o2ZrB*a)_x<-A-oJZ~$QP7{>7 z3L4P_8|nzo6DJF&*Auj7G&~7RXe>ykw63%jTw;)n8+l7$#{j`%%I7b>U?FXxi^B!e zX|R8UiTmKLfeno)*Vb#XVoeyRU<}!4f*t9_OFhM{Q87^8VsHQDexlDleUg6lHRf0H%77KYB z1w9;z(@WTGYM8h8GBr#DmIYt#6TD|>lU!ziGF!ok2LwZ@SdESfx>MI$bXM?`)=>U= z0Xj?%%bk5uFc)o<;oNY88-ngMTfrRx)43rg4ghg*0XzL-ieM zKwvg-Q;*nQl%8YXShTPOlXf2%Tc1kRSrltd6A0sDm#`ezhKqdpN#IlUtdI{M7-D6N z^a# z`2!}#y0NTtS@2h^46Hpp$Q={o_L~8;-)sOJI6HQxEg|=HN$dia%K8D?2@YHldyIO; z)*E7zs0d47EZX6X>n(F@ETr`owkP&It<9+Yv5RQ7H^*ZavCL-S9;xE;AV=8tTN6n#gkS~hUx@u=MwHX~a;zh*xjr{y-x?d%-Pj}=Jp3?r8AHbmk@n0PwLS{U-o(by zmVfwD?73P*!D}3Z&**GHbzNaBtpOJw;U1RL){subP})XV!Q*`)9|aq>6SB-y8dpcT zgIYr$*n;-{!eg)F{!bT-i^eS;__&BO*rV$1pVIGADxPQlS<6ED^@D_!V!uv(DPohFo40OaNOd6V#tHKAo{V~3RJw3yTOy$!eN}H;`KxyvxIIS zv%k;_PAe3?WhDQ-2nQHaB0Pd>0`kg*=a8F#7b=7YxaXX~!gLl-jwP_~EwqPoM+%*g zE(mYQC?oIZV}<-*0tN`!8g8E~L^~Y6z?^BqeH`CVAl%43pG+5eb2VT)M|h2U-d`YO zxtbEHmI=ogtG8yAP{d^F%Y@1BnTqSyzUh1)rzi=j})nT**E;YsfInVrHl z+;i}5VHYm`kNrZlv*`=`?I5X`#KXcPEU&DnLcTlB{k#{XBRG0mxcKKAJur3zwqX8H zv~B6isM31y=@}#d@UPp}1s*#mOtc`uZkL56<|KIPn(!D6uD&T`8K_L@yrBM+dGqXn z?by;f;H9ewO{?4y@_CLg(5fy&FYEvFe`Hge5110wxETz&C;Vy&_Kef@0x!&c{Xz8; zA@iPfyi0K1um^SFn5V+0ERAiwt0*2g)DrswzZXm$76$0^R#+RLYf{}|^h+T+0%O-o z9Xem+jgVz&4+jVl-~bj|LYa$6_ZjzDh!(4J)}m`> zgu^&H5zB-XhPiDoQZjRR>m<5LIoxs)F`Tal5eKH#6PUYGZ4o-L5m&?Bx*~=HL;;4e z_Y(DFR)M9r2)%@34h#H5hZwvH=1{+(sECR?s-!cez;<)!kyPlRXFxfQx&$qDVj^G`_Vno21lZY>er$Rq>h(Oc`G7q2rhmv z+Ch_Me-YKCdYZ+H8^*4uI;hj$?i?3w0rKbSYlD%s;#@(LK;#7nxW~0*Z1_^(hhPDM zwSnGs;wDkG?eva2OgT?)7?(vQ@oFA7kj56bj+@Og(}Zh$x5xeN;CYWYEBLHq+*4|L z&%4C6WBImkLWBtM0kzos1LGX1DCVNLE;J}gh(nt%al>pSkNc=5!Qee{Oq&6W1vdbZ zhma_r_QwHc3q~4g01*t@1jjic(Bg2M8>!ocr{W}(zQe`1JyiXFUX9yDgKKWat)umm zaX$`yHNow9fRLAQX#Nxb-SSl&+I)(GS6|0XrU}aajzhCMICki_ zxUY;AjK^z_fSY-XE+EuJyq2La`94aH+AppJzKwcd3H!Q=nLc9=_7KN{8h0_nf@p~H z?zR9o7q@T$F<#;t21$60#o2IGJ@I=p0<+OaoWu&V(^s5fPGBM$iGTZf7>L;1XL@y< zE*1i3e{m}^h^}ra4x(y#*;dT5@m_@hAp&IDr^RLF*aX2gLE^NYxStG_tJj)1+66Kh#UR)}K) zIJrse0^iETZO}1y4O)1>P_;OkrN=OV0q8Dvgn>FSI!Bso9&mS(_!cnD zFhh)nLO9qxON_o_;NaXm@e>CUoH;~1md1vR6su@(`B-r|qpaEBvs~;3ul*)=CbHI4 ziTxQwg-BF%cLnCVZMHbrk_34RO|l(aWRh*_67hPPRLS&A8-~neG6u)HXyQZ98*aWN-N(O*7 zN5l-1$;SNcK)bs4oj~*{F?~tb9Tm?oMR4(ZTd%8h+um&7}F0ZwP4$e;?I_d z5}vG#ye?+BBj86!fFP~lkelL-NK_bdSKJigL)jzoeja)@dLll?JzqW*J92;j`a)c7 zi=L}KiuW?ir2SB|Q_VN=Y=$=RBM3T1Ptx21Q4(88-nK-~0Ra++#%$HK3|Wx{*wA~H zH}Km$pcVKaku3aqr2jB$#f|~!GuyZaR=^<0Q~=w|TzWiJv`%6T3Z)Y9&%;Arf~1f^ zZ2;x#1ID#L-$ZxZmAC*$g@mE8fIT`%A(=Yru9S?k;LQeSv=WBq0TIv{7BNu1O4uz~ zve68c{UL>^hA>9oG)ZHYei3C>gN=q*J`Bl`gfTcQPKRpn;kBVY^v;v0ERh_zJx?i? zcv$gfLvB?e_q;bkV$MAujgx4s(X;;s%r{5_+oFfX$M|jMYQHt5!*@q0JVFEwT~lx?K{(QP=I2bmyL{4oN(@ z=l&BCbgtNJXntODh=-oXE=X>2qOHCr8PC!^{b1uOc+bfs`I>tYmg%hT!~c29vkmIRN!mN4zU;SeCwi-$R4A^Ip`Icor8DF0@2h~Gt+`$aOxjQ4z6$9R@KNZ)a) zdGXhN#YB?e0E_q%#00JHk7xO=^PLLcCZ1(5^&j>6*e-q?N2S0qe)%sM$UUd{kH4Z7 zDM0(gYQxno@pCyo{oLbM{Su!Y9`PMm9KTVyec=3h@k~c9m=FL$umXk4`5y4Fcl>8g zEZhZL@ryr>8YNubG#-t=p2PI!@f$4Avq78q7pR#)mw@<745LU>tww;|?yk@s~JJIt+|I%snj!#qZ*t`(xst zbAR6?jz`~3pTlAC@#wqha~PBmk4}Pp4nN7_*KyBkMZ6c6?w~gQ6sLmeN%3`9mS276 zo>>s@2IYD2`M+Y65fH(wgU80B55>=6#Q6B$ zR_HluO1ukKr!zsklBN45f*gyF1pTe!t>N5-@yYChm|#{dj&F)sk-EIUJpL>v%I|AP zT~@A(H|Ks2+f07$3(!wr}0e17Mo!TpCr5H&oI)%vwm)N(U1PANA6q ztP~m~NiVUyHeoHyO_81@6o#ZrS?&bDD7!MGi7cP6aOR^q(s_hJNxpOps}@!kNcS;Q za4nUNCKRg6rDItsT&s{WEvdv>m^?(fiBJ#?moj|eAVxiYgtQs6El5U7^9Y3-W2M6x zwXn=~yp);2nu*dv!XWfFcDJCJBDG_t;94b}K`3mW&TfrQW}uFTQG+mgwsbn7@Nuqm zG%HH8`O@t9abN z6;8Y>t+v2J*nW?sEZe8CKFS{dA|rqp4TAb-((Z)T_UFNcCt*EL@4}eoxt3SJJ=?K zGHct7yX+g3}BhrLHtGBWoPwZC;tSs1z7c|+yi{@Pe7YNmrA|h zEq=mG#y2MsGz(AAVs`@zIwkBPE~sZ@!deot?wqiYgnsXmu#|+dx+VNga+LN?sB4LR z>5>5n^%$nd;a`G;TyrcBERIWHI(-&F#KGM7gzkjN5rt8TnJS|c@fxEPjyj_hf9Ml@ zNsc!u2@M&z15|J~aPl`ar}Q?xpC_!&O88()MA=%Bz_dBkgb2gS6H3joW)BQba3tEk zJ3PUUggnM1_>fSy2?_T|sQr|LizL)=I?@H3(~bl;GNlfn&B_ED_+(DPBO4;mqooOl z7##>fgb2}@XuJQ~gj>XpBG)HeByr7P!d4RZ*Or7BTP%0%-h}n`I8^&Yf}UBPj42Nq zRXs`Ygw4+-R9jPVt|nA4wwFji0j+>CVUQKHzL`)#v<~hj+-CvZcUOZ0l09y^Q zZ6W_rLQj?f4hI7f%q)8%hB*0*|yUI2ZQI_?T9VQe9_m-6q0UQSy;~or@RXgEU zxL7W8VG#iNv?%b=`@ReKIyJ)+Mr&mss4>ZsWK7eZKOkDc9VxN|8%(ifu51Gl;8~%p zvlWhutdMz=x=0%)o6jP^t+TT3VE(iR&LDlZ%nDxsxoV8e;7rEC)v^E*8n;dsNJ1w!$xc`>xO!Z=v*xxV^!r^VV&=~w z0EB>?#UYso=zmUT4LWR>If5I5qa8sy`U%m`1WTf->OHdCEY1Uy_0!${f1(usqLGcuNwDj;I=l9UgcT{b!;w<|IS7R%%s0-SV1R!H4~_gxv& zF{-#hAskP5{Jv}q9_GTNN3u37oUn^gf(I_Z>4OX%#qmOhu1({{tFZE|%#qn?aflEh zt|fMV;miERR zH4ercsZPcmA+_XZNjfiAd4CqAtREon0Wy5$_TcxXzHaby9XZ;of(P+E>&t1+6yz=6 z&(aV%Y>2Rz5FgT{k(_Ggug3E2g!ay+M)5M58^vqV(kR}GRz`&!X(Jafi|5l`j*hC< z^W5O(Ao<_4ug{`C4hABaKGf?u z$>fl2PSs?lGGcvE0McUja8KyH8!MNeuuf4bFcuxS_5UW&I*1TEI&r- z{n~K(7gFz!N6Igd(CN|g_vEja$IJUM>ll?;AFiJ)Cm(WQ*Qv(V-mFUAnPmu#6;ydc z>H;6llYcZL4Lxk3Q9+Ft$(s|}vZeCcEbR>!uzLo&CB?r)?g`zh<&S77qE*IHBG$^= zkWxxF$Um@*5pb_?<1eW#d=BL=Xg$Y4V*$R~65yQwEEIVeXvUa)huI%XvM>X`f#iw>}+Ic(VHjJ$&IymC(7n}sKS(K|8of#ZK1 z@3P~Hd^>$%n{Z#=nZ<@pun?UZL)JsUGf(A>SSVs~{boII2iGhVUSJbCfd<%GDx4q+ z#ZU)Q?}OZ(S(O<3(~SfNxa+fANAwx|jg2f4T*4ia;|||hC~_#fayx}913QSo{vdR! zTom@qy8GsaZfEkTqp&8;1-AE66#o(!Kw#+B#4t3~5b38lPAGaeQv5+&;H$<8GWvnr znkw#+_ndXD6*A)CeF79;SV~8oR}@e-x?dMu2x%S&FN7+bSh^k)3``4G*iwy*?WibV z;e<_d{%G_PFtUq+N5STFSIlQ=GvC4X_EyX#FN#^w3OXIpGe+@_xXuA0MSG&u8Bzru zD;CKV=UH|cpfbrCFo@QGb+zH$A=?ZFq$^k!N`GI}mO1Z%6S+dXuyqmLDRe4Bp=0RT z0~RRyz;&4lrZ3)HW`HtVfq^*+maPT|AeSs}o1LrJV~G?bFIN1{CPpdTU!o8)I0ArJ zl){6RiuGoQK+#aeQdR=ThAARgY!efJqZCs(0)59S7P1nUIZm;brP*Qv?S-=VFL3%Q#{k&nh}H5{m)fCf|03c9&6yW8~EQn&LQP zL!fXY|5Rjh#6H|q2w922Q}-43t&NI;0W zly&f&#O74x9fU@VZN)cgY_QT?*@)$34w*<_h`=|XN`PlQs5;n60%0FCPz*eD>;e-@$dZV%<+$~bB;$awA zDpqzeC&80aWwkE}jw?~RxiBb>Lk9@m33!cHvaBvb00Y3G=}LN|<-iHbGz%i{@!ymz zEAEYeKJc$8%H2d#uop06K}0T^!nBzEOEUVvm^n&55f6d|N;{UOgya+9>p@_L<;qkW z-fGe%ZC|HMG$V@RZ&arKd{sgOjLr(drlx>Omen5!ApsU_QQk(MjgiGd!!9K{w`~4h zH&>|Hue@eMVxvzeyV2m13(EE^!w0S)koqTEWxQ8rkO6r04dq5^YngYIEGG+|ey=Qm zYwjtT7BJ(?EgvdNXtmWmX6NwciSh(X=Z`rUo-5-hhchpg6Mx=x0EV%BrCiC(LHb6C zuDA2QOVQ{i0-9HHu+QepNE?aKl{1 z%)!f2wUA}dj5tWZ!CNZ+vSK?GV?9cMXKhtI==G&ee?YG+kbMm__@v5de` zUOMG>y+(D2jyP(zsaUr8BCJyQb-SvX#cFWoxLvB@v=*Q3VdoIMPsP;RV-Dl?t5lT3 z*MlmiX;e-Rk%v`GyVo#>>Z7V9l!N+&isju5!OUYAaX{V~)jL|U&3P5mSm(Sdk)dR+ z{guLdmsI(*_|&T`#S@tI*Hj}}`t^W2DlI&Ii>XV8DDyj`!-pLor~;T6oK(evwog>{ z@XHfbC}Tq+2*9hhYB22n990J$6o5Lo#52kT<4HjXiBTdIv?jLTMP;~2xjQEeP!{OP1Njxowz)bm)z7|7CM!90kT z-mR^t&b2mb@FKRANx0^1Ou{{Bs~*HMzAzSM4J7fF z^}wX)0#;PP2GZJXo0zZ z?WcBx(S6lSLkkW8B7|o~i>`@Qv&@L$i6_(4kPF-_R+n4wzLM{OB{DV3%?@ZbtPW^B zTR9=auvtn?Bx~DZ}1Dq$Q8F~zWg#3=`1LG#D^(+?r zUodIEsb828UTM?R3w}jfIKN6g@_#_-;tch2N@>z;HOm17|0Uy@IqLQQ171N3)aNNL z&&6t%q2GV;(k@XmjRF1(rewKEU;I^SmdT(00?esaYyJoN8nITrhU%;P1~tnN@xOSD z-l*1-#$5x|VJyBC1I}-GzY#pPLtWwpY;6)fV8SK!U}kYKSk_f_J6qyv*56f2Njrz$ zPu1xBckGK^KU2rqk)ZU0`lAI2>b|Ja`~glN=4lFPwp%tDbdw>Dt+vxN^&-JLjWy1W zBxoL}LBoHXUdx0PCS*#x#X&uSCci`Ck7w6U$*qOGACD%h(nWElo?YJrHl zxgD{LWb4Oc6sS2NI6R8axf2HkAZNT?$?O-DJ=Jh&% zs)1KlI->>-+UShxoMWderU{z6=z^$QNOjZMV^~)>x~{GTjos&^i>I1x>#Lj1Y&nxw zsXc*>W3CrWZ>(!E5meAOq19ZJg#lCSYC#3TjLO+Bw5#k zTK>8`T^-8wQmL+lT7Y(l&XLh>6@WKRx0`nktd~f7fvA1H7Qkt|j^P?jfJg0fj_EzY z{FP{3u;&EbCk8$84(Rlte5%e0*vf+3;r@xbhAif0gkhP;LwPHJ(;OWgmA{&%n}qb7 z-^>L}nWa0*CQ}7OfC3idHnQ=7?dI#gp$5qjiCm;x%}9ik%m@CySl9E{*qmIZdr8@x zTB%$4OKf^o>&kwO&6KseGn7sK2HoOcV)JmLu8L*gh-zvicyY`IE!I5gt!X%XjJ2H$1&XiG{WG5^-t+ik(1+sGtTMEXt4T{?hFl1ysk?? zPL50P`JV0(jeYkR`$jHy-wT}=>PNWX^AEZszHI7BgwdY*CC)@dyB7Lf1`z=gF%ck~ zmN2Td{tfDqIa1w2^^cIl97rHtNUKW>YM7(7s^L5q&l9Bf0;iwOwfoaO0>xp8=8UI3Vgcd|2ja zc~|sW7=1$Do~f5WnE}dd1;+cMH=H(S^(W04{ig~}$v z;{kna62GtvfsBYw@RUPhfhF+k+Se6ITob+Rv6OJ6ccRvT1V6V(++$6GCjt_E%}MYp zKd~OE5ZE$2aVd?x)iLojy7w1V6WrG$QArc<`z8({+JguCCpyryccT;aG=Wr@h_2?u z*~H?+3L5(`A+eOk<|z`<&JdhnqB_yhiUe0DC05vxV5gkK7dA9ln&@oyFm?}?j)&krY9(J^Tc4VFYCEv7;L zsHCMlVyF*0CsotfC0&zlP(4f=kmS&mtp@+gSGfRTUea`s)6%CG2+mJBzySJv%zkps z16$yz%dH113zF_Kc9M<3*D<9H!OK;sM@w&J;{=u#Cb@ufBfUgmmcI~B;(LOr)7 z>tR4eQic`p3U?azonK>q;(;A_>1R-Y0V9)GmiO%$k<79P$80&X@<;%z-dYdKZB&V z=+-}ulG&^zmj33y0CQ(2m9v=M4=|xs&kFhQ)I!uce?>{0h@l{Ja<)y?8v{Dl;Ap=A zaPg9)3Pq&64D0wc$vNTWrObc_hO&-WHL-3e)r#>JkAO|uN+N|^hQswN6AOH_ktFW zLF`DL;V>uEFrI+}M483rr1+Vg3`{#|x#FKj7(TPuEapD9vtbuiL3%d>%Nh*~v%R}v z4TA~*&g|FQu$gkW-`Bu0?*{X|5s7knw$7R$peA z>i}vGEb@RSlMOtEsRqbPGvvEs+k&Gi47+$FC?0H>OM})!4d|OH*Z$y)C zuQIHov42z>UfYudhqjmy61EwpQVzU5h9b&g?0&;;maY!j16mRvg2uVd3B?Jp{c%I0 z71k$MaU4Zf&M;p2q#|{E zW?))@-g)VKn}M;0IV6EYe-8lpfBcmO9i< zG1jP4-4rx)fGhW)XNu93^6RA-O)1a=@qBdH8&xIwM;=14mkE*tCSB^ zRo?WuG;VF4Efh5Wl+q6r{7+aEHPhS)6)cz@JXg0yXl(ayS;Pl`W zqYW<|nlgqK(RozL5{AvPoU_8Z@`9C9a%*b|0ih$}oZIel| zs2Y>bKSGnvmv1%cJY}0n=OuegItK?#2!=x@oi{&X(s{sXlg`5~n6ztoDJ6~SeCVI1 z*yx)nXbKEh%Kb+s+^tVcIxl>dl23L1%{SGk^K%VSi>b~PO;c-rMdvnfPP8Y9nGtAm&~w%lCH<8zSt#X|pbVn3_!m{_;5W zPimx3|1!z5=XI)*j3{B?CzHy)eNNp;-OvfMwAxhQw^nK4Eb|A5)Bu16z&CjB$O?m( z8~s{Uxu*Tvpng(FnhkKQDRu&x&)YNy4sK}%hVgLcerd7blUv$t*1Uac%DiByN7~;k z9SJGDZW_z{Aj&(0ycHyPr46!0x?R&K?GT$7V_-m&v^I5?+60d4oR-#G%lz0y{&5*XT>sR|$>;AW1>77k2fSZxg( zM5p<%^oLmPzXfS;IJsYl(zdY5trn;CXC`1sNISt12v?-BEC<3uEKsKHV0mS5$xF*6 zy;$v}v>XTwB<%$E zEI5{C!^KygNjuH`jyabmWf>#tj*ev}La@;V$A-x^S1w`fyHU?;hz`C6d1BSS4EqrO!cj1Vsr%NCp0Zz1qs&sUJ_B)uWA@L1#>1(;)r}gO_IXtJd^o!i@`|0Utx##bhwYyvic#Cr4|*`TJcO7_ z+M4y5bghk1xs_Ma=Q9w52<`(%tIu6RYs91UH7u7kW25(fmu?6D_>gW<$4KkCbH-N& zTEqolxD>aHCCG%JOWh1~oBca@(KF*H_gqvj16=|C4r;tJrXnrC4^1*~>pj{m15N$E zgT*Z}(A57s*r`>m_7h@9-Dd(MLPsrHB z@Pz{oo|o@D&V;V%0tBcEjo6C2$+MOuBh>tjYIZV-H^ zRyPx?G0-~`tI^sw6RR<@X(p#eIG|Z^ z+&T+wdcvks5|G7gDhO}_i&w$ci!wKdtAex8$r6}IU|80eUy!Uhl!Rx!Vy>j!9kQlT zBKn9dmZiJjg_;w zK<~_~^EM=CUX<0A2D=Q-8c8$&uMEvPOqv*T7)Ak`~!x%y~1&l88BNvYGqM__o^D3ToE4nC&5Q&S!?F)rlVD_2c0&si%+v)V0fUppLpntGVrP2ngLo~s<0KR{yJ}gwDR%>*j zYHbi-9~cG@oD@4(P-}l13%ICH_HHZ8732=e9>Gv$2v7qj#AN@);?rbeYU!PsZO_c%VRrUW%HfZ^Y?d=GFo(za*=)Ot zINP3Fl>LTss4C57S%QN(94O1~&En8e=I*97xp4llY>^#ui+JMEeq#0u##YxIqGi75 z+*<6>WHYnT!SpzId{K67M-qIqF1ud~5*&0T`#4R|?rwHxOAwkA4) zuU}+a(V*R{YzfO72NF3F)cTO^0{(t&@PuF9XRq_1GJ_uPv(dYvF53&faLh4hG%O?f zg?PAe*C%IusGj1}Gn4qTYC z*xpFlW=+mjM$>Ks5RwC1jH!E-G+$A@j`pn`! zCdv(>O_U`f6XjLX+=C1z!YK$3JYVxxkrTyUo@f;aI%;#7N5I!l7utiD&nhf|)2UX@ zAhRH;7HqD|oyE|;rtl_vK-saNjVZb@MK-CD?GO@7u_}0AuZDb z6s^y71OC=|UU1^R+zd0UI^cXDmtnjKjO95&zk|6u80-rpEJKVLq=l1D<)U+=aMcex zm-{E$lE_&>&V^hwyNrWx9_9A4Cc!~}<+idS!SU~NJ!uer$^Arw`z-QyQiR{E@}{yl zAEP#WIb)K8(OrdYyLk1gxDD!<<{HVrxEKBln@jIL3?Pd5-1J}36Ye^gS)7E(`%hqu5 zZQJJY8H(pxNG`Mv%tPmxaz+i7@$*>TNifXA;JmXe?iOcOhNH}cL${83OV}J7vcyh# zOji_P4x*^MLzF|iuIwC&y5-$sutZW9-+JU_Q4WK9=T))lVSArE2j;p+>z{{qKw^8S zAI)x)@&a zMH*bcHE#h8YPRK}WAAX5=F!Qf8=$wC$S4o<{hPJ%TDJ_qiGvmG7W29UC#5O z!zJ(QdHtw7#kWiedf&;5r^BU9k4>>dpXRwakRq0S$Xi4bY?kJ?bS9Bi&iUxV8BDB> zYrc#Ihr8zwVA+CfgHOGu_#U^?-03!P>=^R?wwieiO>9 zXLP>N0R3X}sR2T}*!(T%@EC3Yd{&Zgw7_}Ne4_+uJ?*gWI9fTVP{5s@$fV8** z8@RJk0h-X`UT5LB76o-#e8UfjPHq=4xvLkogw?JVt7U~C>kA`9lz z1VP;kJZMnTr=WtNc>rEqK`uZ7xj}S1e|K{t)nh@yeTKmRL}1y}M21NV+$r}Js)BAb z_%*S>iW2rnD{y9+dB(0Ov*UdS5G}H@fLpQ(8ZeF-1i%Pm0B3Uw_7T}vOd9h7r38+IC@h7eSc|K*kGeE9hlbXdEU~Sr$H``kZ84_^=LPJ=(VrotBCP zXxXF?ZK%V+M@`%M+P5N8+PPv=T4j9UW!ee#Q5V`X z+KRa959?wmPAc5O&^9146+dbq*%^g1sj9v63LDViz~aKm49p;^B%p9j&@^)!~If=}Z? z)9_D!UK{9>Kz%UIDy0snb*s<=R7@*%hoZBEB8Jia4^Rx-s(#4t4E}sx=!tFvG?2xo z5G_76FnFr}2dEDm`k?Ty{|TNi*lLJv3;E9qS*~pQksm}tSBL*%Ew%;qTNF*;9siG0 zp6a(OV*dVAzM}|T(a@^M8nm@9rTbSKwJOs6JWFtEK#@176%rYc9focBeXc&Cf zUSaDZ#V_HlcHqvuX;Z|qDdYb_i)Ce|QMgEQBGkozBJ_^8Zb6z0a11G0{tMD!z}i(M zt!<$ywCD+gV=+nClN@x)?_6}-5qvg71MXG>ivUA2z=#l4@5jxsnC)og>O~o!?seh3iY`$ECK5#8(|G>59P*EOP z_?@(`2puZ;;;GmL+&fsbia{`h#dHr8%2x)@A1y*txVZSz6Gh{HzIcFP;K?HNEt-RY zg0n^FCfdZtTt-50sztE{4X&^$j;Bf8J&M;@l3ZuKicwp|GS04FjLuoWLC40X*b7aH z(HT29c0lXm7M>(Hs(Udy3S8aLsV)9QN&uzF#Vj9HO$7i{fE7L-XOW@!H(M->S%4f& zzF86kCQU1@1->M@+X06a#gXt_ZgC^3JDcL-LsZ;bmBrO0ADla;_#o9s{RAsZl0(x&R9%q5HvT}DZWCJUL z_Irz?8AU0AmivoWm>~jd53!bO{k=7c1Tx*zK?4x;E%3`&cYRqQR}7iq~7B zX9}+b?L1uryPB6=;(ph+ExE=$KRS{4)3r*@bNQFmDH(5%p23Yu&`#Dh(56WV+GV%~ z!losix%iI(C1@w=8n`#8WEz)W98S`;>Oj(6=~%LlD}QeHk_jvw0;-q(AoBDB4~P!y zw5erO%Qb09T?VxP6CA)tbWV|%+~K4sFqB{|P0B98T6&sW;>1bwsi;JOS_71pmjrXa zCl4+8i~BuvR7tuWdcOLNNV|V3kv6xgF#_k*~@Yj6B6>fr}G4zZA%yOE}CB7<}r9H?7p{;D)j)hPU!KQ+ZzUyLHAcS1(QaU zwkPN89&{+(&tmCD7y$@zD`i=hhXMS2OM8%4s{;2@^i}BVpnfi3K;69m3#}t*k7UN^llwlx}BkRIOB!Lc$xNDo^Dg>3(=we zX*}Llm^!X>kQEquTG$KB+FsNYw3<@NJP(3f(@E3O{rGx-PMga-!0svNR-NCbmMR%U z<=6rQY6&K7C<}vV`t2%93;O|PP}OXvR%QZ$=xPC#CD?UM=mNSdEZz1?a&cI=fo)q< zx|+pZn`m)29uTOe%SzE5teD@u6{XXDnIH6DRl3z21H!-8l%f-ZIc&IkeW?YDOZb6t zUwpX#@S4)aEDqvFsQ-F@4BT3(apu*K-f-oiQgpmO<{fvY^g0c8zgF747Kxqpv=rUI ziWBIcmp*Djf=c(Y)}*T89M7_^G+T9}GW1f1(++M@hF%MCuurqH8&)LPzHOPD23PRQ z#TW`Q8IQ)!A6$l(4q(+pjV^;!OEzQ6&=HR~_WZcA z)--|Z)UuT}B=-31vUHZO{ofUae8nT)neWFFf@d4ce#x&*nV(<{9BPVnpw;FwmVJ60 zHw?1w_p%VMYipSmjIJrW&D!37fMPkh!pH|AJ`F9AuFmc%JILrKjAW$Pjm7RMlmDt% z1S$28vMpwaT9boi3|~utQAB`5l)}nGWnTXqTCqpV=5VxL9WPt*KhfBrlVyLhx>2L< zyThaB%2u-a1``S>yHG5I`io_+Yat2oYiRnzG7B5t8JP33?20vd4){=3g2abM{w}*} zfu2jhm7zmu&cJ+LIeI-j1Dlwaf8o+KvM)z>7@UF69m*>m&@;o6{BB>bJlGBW&TLzb z^F{fSd@lmZ(V;VEV0BRW87_ZChjR4Vc?QOGB7f&amY=pmzt8qA*IA)wcy#%5mZ|># zG>cF$|6rLrxSHB82!587kN#EtQM{dfOXP5PLb(#jNtF0^M!AktqOy<(?O#lUx=})e zo?TY%!2Ny2@N%r&CZo!+a(UxP`qL9g`pQY=mpJ7}rW0j0o>{)s9{oPLg#4~rR(_3B zcFrcEydE_q-&pTPN zTUTI9dumgGEp(P$1-3M?Lq#YjCV7qo+N!iJ(9kucf|ot3C|jn z_#I72d}?!o)1qa?J}%$0wiR;Lj^5Y;ao^wz-bYj{ePodkrfsUx`I!lD%v*W zZHHc(iVr;WbkkK_vqR6985QrX(DPw_MX@z+`!Y>=g(WJh!Tt(&5Iw4*4O}v`qM6wb zF-{{Y+8ARXN|Vav-!Y-$s|9*)pHk6)`~ByP3O&NdKv1%{ViC##zbvf~b5GHV3N82C zwyI*gIeHeZtq8I)Cf*Gz_M=FWbLO^+5w<7=;xoDddak-(5yR2{`k>+fSKR)m6~A)` zl`kuvaPg_HD%4KAS>yv)ZC>SvpEpw&X;vBH1a{YsaDgLgRidR{I9TRg`Oty{^BYzk zwZ_3^F)b_YNk|in&Sb$UbK6(ekUzr?T`D)3@>s+9PBj2 z2gtV1@&lc?f2MDnILI2F^tesS6fF4XFprBGErNk%&jso7tY=ROAo~P`mSxCLpu(kosWy?pe;D%dT1F zzmT^sP`0af1nWBw*#NHXomCg~*f+}sH0nB}Hdx#h(Rjthz3z%i3+RTp-0w1^A;{i0 zt0@@Nbx4Pw$^nbJ4H*&Y7ZMm09H7;OsnqIlzREu+OcNFw60Ql<>Vq}>;4nQH>@#`P zzo+8aOs)%WmJXR?=NE*|ZV3z4>iFTID!wKpNTm)9;PW-X0YO@|CXDaTA&&O>=R{RD zlRcqq)R3`uej(xhsz6PsO2ZFO@dHD&;W|}l2w$ZQ(uM@80>T3*!GBAI2_BllA)+-V zVZq^Hd<{QH%~z{K5Ok16@2?9E2n-Gn*HgrQO@$GI<_+0l=cfu$g$Ahf!Tup?H9tHs zSd9*{@z)1vLiPNR;NU zbwG$-kCiye_g_+BEedLeoU-!?3h)mI3`DvM@#pjP{%U<#SfIa7gU;It4h+(O&U=Q8 z@%`sCK>*V;+dE`>9B%}iKL4*7NqKmcE_<*NdN^nAW5Tph@%M5oiM z0>U&pbc*nVUA%uQ5U7%?0{*Q$;Bszg064yUs4u!5JVdWX?G7;u;)fybd`)lK-8se|_57GpLg!l)Cpk}WL4-XFx3kwJjLc*#8RBHZa9-{AyY9&+?%n#C| z%=}QDIy^v+tXvnQ4Gj%e`Rl=+eN}a#{}r%|=ljov27<}2s{+0Mu}Co4dyGGrREbWn zxVnC5<2He9{ZqQM%aJuKD{Jl75Ls7{j*qk!5FW_)*Ym?d)FGjKzFMaZ*J=V(z~weF zu&50~r53*b;?bt@#(2Qpx5kX-Rs3`H1o<~a1^14YDEbfV*1ezNUu-hy$JGC#yRe3` z)?mp~P}}ccBnt+&x(sW9e3m*OG+fKqhUtU&!QsK-p@AV9Rj3;ILKSk3sNHlNhN=~{ zCA~I`tELdXK3K~gs}+jU1qC3N&R6N+>0#66;(FB}^9V!+8^90Hsl$*x>O)Y=)dmFX z_!_W2W*BW<|5hwmy=Uk^U;lqD77Ttj)F1TSJJjAc6gdN3U}$(?D6-M8u+XqDO(^;g z^%i<{V4x0W4Y`b@&>+ViqSb1HLPFL2z#!xsf>nBLuqrSR9RsEfgS>5{xpsq`H9rs; zq&7H!AFkG`!c-wTT}UuLG&GcJg1qz7cJloGr9^+=QaQ~3-%13kHB|v1^5{@6YoCv>~WAkmj}gP(&mgb)OoozdvnWLBU#;R)ZMp0|NQ{Ak>5T>yW?!{$Uz_)FA@I ztuCB@Y0NU7k4hIFiaHDA>G+|1e{|wms0Nw3DpaQp)bjb@ukq77YwS@%-+wMR5DVh> zF9ip1jxH4RJ~y;!8`J~;X9Lry^+DBFgg_S)mx zYp?ZRYx!eAU)1l933Z!1*eMK zlT0lO^{^=XVEGkA&a9+`)@6+<4t&7jCdVLaKRq z!8qMvuh)Z=r+HYvLDsWh^Site?tgQ2+OkiiSb~cQD`#Mq(Q0 zyE{qIr){~&3fu2Cx{7iT)vAOl9{z0kphBlFfK1|v`h!8I$HkDb3Exau~p_G^dJC7z?UeM2l*i3IR3bizfGMN^tyYFi5w@&wPd%gpf1n<{Pie!zlto z5%ZsWy!XD-Dj$^XZ=GPwACjk+nuDYm_o6sMJo|Y?5Apcd%TFH_3>3R9+Y7PH<7CL9 zFb0oGpJK=tp^z4Esga03>HPQdd7NC?g;>coQb$*gdCAx?Io4ywL6?2l{C>H;URYAu z$C15L9#ucO>;WI*YX}DK)l`pLb0X+P{DBa274jl7CcE#0vp8a!*A)r|IIO&^I2AcO z6pH#>5wFL`fgT8&M^_M$(Cv-{gKE_4K^hGC5N3~jvOTYVpaPU zSKD)t6t*)qIK_w#D^9a}+yPaU+?)UNuzW&pWWPWp>~g`{HNVO9qrC8{{(v*&Qav!x z0HPBAkIdR>1JH z6Ezur4x+kb>lCMVTQS5QjBu2CoiQJwHa$UZPhLa^AJ+oE7seMsFzS`u{nF!bI!%j( z<>0zpT)8-YU5J5U1O~4Y(bbtOJExNKSB<%&5w|mh#Gt_=LYy3KCd2O!#8j_0mfZ7C z!TFnmXv{pevQzZRW6LKz{a5r6|9q;ld$B7}tWIi@4x?V=@0csf$%SZ0FGB%Wz~}aa zouP;;KvVR?EBlRZ!<&_TlIv!OQrnWOGvtjlKa6s$NN@AfIR?$k-g1avEUE16$kC^W z++1fD28ogy3$n_5L61KYkynf;?2;wr_G;qTwJUlj*R?HWN)bZB;jrHw^g2CW$>yUh zL@8s0fPPM_ve zS&beSk^mddgRrQv3_WlYT{dKsxq__iKr9yJp6^2BatGYrkUQp%1)ScbHeOzDa?lfd zhHh{bvCXrPGX%pOt`&AWn}98V{N?k7JSqZ$Kj3ru{cZ*@s;a)EHh%++M=9bD_}#>` z4RG#qxs}=ny61DVYm&=`RX%I8`<I$J0$z^i)8G+9Ag!0I;*nx$Sn?DvEl3@?s(o9Yc0a8xT3Bg z=T8(#DH3tIB1k)9e{^Ji+d*Eomlh2mYH6Q{2zkzk!44fkM7R*@4POAAkm{9M7!-b*Cl;Wo(IDIH zlZvNpMXX??VpsroNbZ!JszO!;@Ek_79R?Sd=BwH-2vvL4w^J3efxj8%~WnLmp>@JD1;& zJgeWf9InJpTak(^;buYt9>m`m+|q@t%vXNZ<@0Ju1ar=;9Hc$+%yJcFrHSnG*A0Gg z#!prZ9px|fs1{L>t2hicpt@ZiL{aX*9%lfx8EZ&|V^uJmh8`n_a!+0&Qqo}dISL1w z@327Dg&EeGmv(0#GG}Us6=m<2SXWp&Ow9YohIWovC>G|D8T4>;dSGf?F??D?4LOna zxoAX_%l2-Z3#(+_xtDO2VPPT>viu?}15I)v=JfYRSaW;%ehY=G=8gKf z^QitPRrr!s&n*88Jz)-_;@jCPrW7HhXCr#-=#gP!>~qTt#HKkb3hZ2jP@f`Jz$!gn z7Y&StQBa{sMzb2#jD2SJ2BI-F;PPl*E-i?S8fP4P%*o*p@`r-rSV?KWf}Ul z$5^~>)P;mT=K_azBoJ_FC`>q{IonLmpM$co*K!e_v2=wh*4(mUfZfl=LOsN7QA%@& zv>LkBSRm$iI%%xSRLgMn^KcqQP#kzYXrVO@_Lw(@F2@^-_+rWVA1_C~MH~rh&Ip?j z6;IHE8bKZ)D8U(*kT0drs6#W8ov5LiapWKxk&@wcBVEM-%jxBFc~ICQTBG6iAd?1> zwo%1v0Y8FGAUXKcRa~~B+11@r#hlt+&g}CNZoXl%FGo*C>FmSRq{}GE-YH@Ga@Cn) z?5>1Ysr-}Ze$@lL^1AuFZa%M@H|#}u-F#~%fxK=$uba=boaA-$hJGWjn@<@8^1AuF zZa%M@&+Fz}vIgXJ^C#IG^1AuFZa%M@zag)iH*5lV-F#j*-7=36ofkQ9gdifa!xU4FH;r`F&Baj$t=wrl3!AON$kFe2-}u z#yS^^_?<9q6%;Y>p9r>L5H&%k4+IJ5Is-+FRf-S&suz?NxGp~^-Do(1JvE}afD8%D zK_bqKo-f4TjxeU>~l4L?_H^ zJIEaYwt|C*>czq;kw74=rBeYYrC4(5u*!qBB2O&pb%y{m0wDAN771z5XuwATVk~f> zkXW{HRsZC?GdJ$E6=o$UfflMgoQ+^eM_Q=j*~>}?+riZUB=dP)VN9M*ELGS(-GD`$ zK%;4-X>J1}=OZ0**yqFm3KSCaC#b9tX5s)y?T}$NJX&<5!B!XmZU($C0Hza|046uL zn;E7vJ}_BHb_+)B97GLsTTynRqWZx~RbuozidSn_0U-`p4cn1eG=z=QA9mss0rm|D zPt51U3qgWML#!?b5cR@v%ncI317sW@1-I9&xq%%>Sd=po4vOwYqEGVpn;Sr3WuF`^ zL#Ll(HD6_}@&3Z9ZO3-+*VHgjdKd0Vn1!+5v#>P0 zemqf+&wx4Fy#Vvw;N?Lqx$mNMxa9Fr#0Pl}P!fq7|69Bv*5DjM} z;&EaA#vqvlZ~Pa)LfOfRM5y$dqU=;f*{#g#_;BfIMZh9JQ@Nc^e>4UmmXs?3LW~{l zRGnZ6*RD#T6I7risuvd${9Qb_`GnlyEh0e;G`|E4C-DsdV&#vq7WgF;14aatE9eSG zKsq{|nj3IAfTw#m0w2y!H6*$N4YubXD75L|hsVq+J;RQN1U@17Ir%VHM>SwyDpq8- z-wQ}b^97R2o>?WG445nrNcWiEg%=pcVK@E-F3{30Tz_J0LTSymOH2tv49H9kk%U~r zU%;kf_XiCHnAg}_xhRV6w9S!&U_^|2_i?|tW^w7T;-IJ4XR&AFQG`_<1gZuTfNg6* zSOp8h6~VS00)#E$jdoYW=l2FA@*9i0H-JkT{sf@WqAW3-MJ#?VIc6mT0Fq-JX27>{ z3|M++;o+9GQ@Rf2tfGih^Mzb7mXFK{4?GD_EUrxfKfQHnNkCMX^1-Bm!*>Jk1~Cx? zI2cr&xVr@bScf?!lGQ`R4x1fZ5UUR^?*)|=!!NPfq`xa~_N+9+ znmF?wj;kC*<$83UG$QQGkz@)isD%Tx*~)hoYyaL5xtX>XW?g1 z=mnMqOwbMJ$rIDSXL=(NZ^k@&+^UXRPdfIMK7@N2ND=%{fHvSnM_)pCt$9K!3qF zahVw6>;wVE=sr9-C`uPOzc?gHhl^*b#Hn_G&0yr5D#%MWC`(*HRp~|mATFZe0cUWD zBHTbYDPp+DhM5dx96%)a8hOE*`(5~a{E_3z01aoKjEwUq$6E9?N0j6kr6$mDu1?8C zX&hHYI7)GvcyRPlLHICDAY@>OsxO2$RY+*Uu({s(@lM)3P(rMp?8NRoKSSiD}c6GsfFtuMXW?#w}2M-GqQSqeU1 zx*2o0;K(f96@zdI&Cg%IJa{CmPxsl>LOvHb_Gp-M*W&>kh(n1V0SmuIp9lPs4r?!B ziAtC-{otI&Ee0qx?sS~bxGlIN``(n$_Z;-Zl(LPk!mQN9vHnL?alsy>L2$i*#*q7@ zm!*rt9-bEqhnx`=h*->LU~P+{ng_I;JLZyrT>QgAc$5VtiV)DL+f{jZfA3_~hpQx0 zz_-_pTnw5E>=W$38N*=$uv3`nahV5J4w||^n}ej-(_#NG!{OzM1Es^y3A&5DmNSd9 z2_F^QcU>{S+{})|(IOgpd=l~J!eMc3DGp_T&q12G@G3xb1?$Hkv&VcKbrJkcr6*Df zgq3|>Vi`v39BVPd<0Y1T(9(w%XKdD9N%*R{zodYGBcBs4FGUI*eq;>O$vAyKX+cnAg~U_lu(6@OPBCoeEuxVl;(s13(K~Xi?es+p!zpMhW|Mk)#MF9Ywcm=X?xOg~mkqzN676{<`PXj`t z+aCbc&e&6NecOS!b>n;nuoy_B%A9!le_D{UA)<-z-l!aqG!Vs{8TfXGf>9rmvyZ9( z8ixH&mD_+945<1N60RdVRj=3ZfHOE~>;7rSjt@Qq%NF)MPY9a{ z9^}9*0tEj=HRd-Q_px+c-*!;YEtQH=EN1xddU58tQW*dKJB6?8NOPozD>WUGB&gBfdd@j?nU=R8UzJjve z?ISdeTWa4hq7cFq6a|q!ed)L!jvR#P$lOY`Fe^>t+B#col3w6dQ)5M*G( zSTu0+Cng0=L{rPKhp`Y7oKIJV8xxa#b<4;QY5PL<**Qt4nRP{G7{zmpS~wL$Ay>y_ zjLb8H!(Zwb@85c)tC%-v&4m1Z%kMXW0p<6bMeX^2V85N(aeqN_+n6#LI*kX8 zU*r1!avFCOOUw6mS-E@i8va|G+&y{SJ2%>1X{sN1Xutoo{z}J3U6bcLw{C3EK_p77 zJ;X?XX#qIFXh_r_%w9fXd=O+OW*qW4OX-LFmH%A#2@$V@(O4Ag5fD<$yOChP&#@Sg zafUDshN50G;&qNvNostpvm>Os37N;iLR=9Kz*CLzLc~V&V4@@}NdO?Gj6t5Wl-|5Y zdzS6$?1)eSfo}nA0N-%QkhmNcZZLU-EtX-qO{peVDZR#V_Oi!1JDh+UInc3u$+)jU zH?eE5su8Z0@GJx}F++UkETz}@yR&7DJ_4Kp=#=0BVz&`v3z>_+P$1(pte`Qo#+;?} z8gKSdV-bNa3C@MJT}H8S6M@y^pF^wXO#C4&iBjC z%_!qdUi4pOJ#DGCBgCqA%Lmm;z5Z}$|4_unmhBUMJy6_eYRUw9HF z`F4o7|LpRDO3HMVgOs1ks5j71Fg)dRKx)U=FQNI*V+fT-c-8qZZq@B8&1l#S`; z08Z&5J|FnS7}yD5Hdv+s=Mcu#1Gv;{j%LnMdX0Ddt?a8#O28|+{l2W1c*R!UPi+6L ztaBSrP;F^k|M6Yfxhh$a zf%Emmh{4S?`kdTuFv5fG(5G+}QAM*C(kpy#K>1gl+5lM;>e=N!Td;C&`Pt1E@8!*Z z^(8wDE0@dG_+*5bbY^*h{+(T}+MC7u!^_9E_NzIr@iWU=xoMi>%C_YfiR;fOXNxp@ zd3us{yRVHyGSDD$yX_t!O`#Q>}&oAer`Y!VENCzITIIW`Ud@=nl9(zx! zxI`7hPvi0KyDA*rK+S|e72-v~=x}Kc2g0CRrI!QTfiSEF$j*og2f|ka^vjKruxT3C zcJ6H8>|pquwRl~CnCg{0dfvmUZABdQT;L?WikP*)m4WJnBQi!h(f*<_=|9jb={)xc zkfH44!$Lc@;Y#9|Wv5J#2&ee&*oH2o>~K3>su~5$hR1k>_{|)>fRweB2x7YhfTVL0$71r< zoP2fxIS7ifQx)URDOGdPG*IMEpIzBqJXuvS6geV_#DIqaQJYz}NIE`(VXGkNa6XB7 z^sxJL+B$rst^j)r7Ar_}XCF8(j&*QRtaKITY+jy=z~3R>0Lj*HzhT7^oCs9{Ni9ME zhx|!GM}jTPK~hE~RqZ(l8rSAm8!Cp6^17^1-os&bu*Zu_0X_xb#6ds1@^W-aurN&@4U!{};s#eCC!j8n z@*t+js)EM~S{Q=PCT;I+Bt|R9HXw@d5RiK)NCFZg3^vb6o(TdEmL*ex2MdW#Cg6c4Z>;*)11JO61T^k5fJ+E#Qa!ac){ za}8M&z$FuOI*8PW=*aRUEM-&>^N=ZeT}G`3g@+duakpVD1fwN?0zfw)u3P|A)osRd zMu?9Q&65b%1Og2DrA96Y)E6ZXSWG_(wqAnJepzXHMD^txRR>z3Z1nVK5l(SeS8=AD zy}`kWfD8T_g&qtI;W`RC18+@Kd}~e*>AK+~j36FjA)IGOyMRv#2v@Jq=|pHYB7Blh zff$N}{PPmo7_TZ=4k3gi#9fS{I|8jv4AbPHJ_M|Hylu# z&G(r<`-nx;%BdV3Gn7+$gikyHVCFLVVg#@u*Dr~}CS*GoJim-%XdVCvQ#f(NfFu&O z8?P1slwg%IeMFZO|9y1km&81ie0TNQAh}kaI=i z^#PEF2on$DIT+9a#sW0}qloFOP1+9XoP-9!7*TnVCBtk$>2!$SkrCw6k%O`s06qt0 zeU&-|N7^tzzc{-9A9oU;6Qns_9E2A2gd?Pkh;ncl4tjR-ncz5ypA5b$1O?^)$3oj&A6g@Tyt&94?kBmZqL%lI z0YP!*2&Z+kxq<{0g`+?mx{@b9F+CNd5&0fnJBR1W`|!I&R9&SOy>i9UM9c+vL=J#nh9te zP8HV$lm;sI67CHu<_J=?-~&m7ZM-2;W(tB+bMaF-o#CAB2#P9l7vSP26+T+TFNH=U zgnACDMj+iBM5VN)8as>|If3cvK$Jkb$OVK<$9pgq#eamMNF|C;@i-3QP>Fj0{%Y_) zX)q(@58j;`(t~*>6ImDY7JWrWfJ6br8mDFn?8S~X;_>Z8H+GX`n|ZvX)Ib? zw{X04`EV=66*0BH;2<6%0{Dpkj9(I7512J0cs<0p58&@(`t{}@DGt6)MED#OEt`w1 zF(eP;>Vm@*Yfvh%@#@#epM;}V&|^AE;h`&A<@8b#sgh{%WEn$29hM^=-S@;QGAyu@ zXxe$;W1&0csOX!L1aQv^g6=tO=x{+bQo}D6lYZoaN2Hhow75n|g z)+`I8+KiySL-|P}K{U(w!r=9T6F;uTKAiAa3B7bDJn}1MRX(Q@Eo7gS47_WOb(oR3 zB*&07<+IDtDX)li3MP}_kSG!7C$cmI10+#|6(sj;sYC#gvHiJ366*k8Sg%Sbd!i!X z9*B^H2Ws>&J=r4c!p|B-A;w*kI|Hs&NHT8K%h8L8-C|kKPSb0qtIAH($hP>@*_FfX z;TX^Wmzx}V_#Xmn!1<5^N#?T*l5W*$@_1T;`xo~nG=S)+RAhCJ&mZvy$-P3(Nb}6% zHcdJVpBg4=0OlLcU8Iv31|6`X9Cj)1!|W7wfzXkIpgsvcG5JT8!$%Ra!f%3ov1#SWm4mo@DEOvVS zlA;)yZ%8Eq@CA4Z`wk@osyd<|xX62`O8L@=lbeIEOU&LaF1P0*tmjW7w*m>cW0f6& z>Bt1KKDP|sAk)~%;2Qo22ae1WM!rkkr56P-9)?(^IC&9)L9oaK60V2~r81*HI#~m? z!coCi!ky2FngP#pc9`4mlx~;k^3XJLrFoVZFWCs1X;`z~JRAmnetGKcs<@?3PS?7o1R6el1mtw+(&9I65`4{TjUof2|8g!h@ukFd!pBxzIO11nALpP*17hOcv>b1!!R!6nfPH{ zW~Z{-_{ll5OM3I>n3)Xs_w1|Cmyte*ti0IX7B0MZ^-Y5CM$VT(qzpai`n!tWH`m5%&Wc&jlGqFdRW~4H&hw8+-IST&-Hv|jZ+N#T6D3qU&v8JM~F1WU-FKk z2t?CDzF2HSsQ^USpb`E3cw!SU1J8aGfvB#D5Q8WS&2M{1knaLJV**4n+OHfmup2T9BJ_ zTxO?3J_$RM^S_g+?TIKv_z4U|F_PC~U_s%{?Gp{X3~m-9d)x^bO$jLiuEel~xxhu8 z5Z-8S9X(S?!adN@$iPnd4m>_z( znlE{5yc9sV^Sds&pLF-!s7CV4K=E20I*R>G~!NY9*u zqH*8KLD0N!accDztBzLo=s-j?Z?TKORr2gY+(8BaU%;?)-InSWf+>MIWZ3{tG8l#) zR)erOSs-93RUxYQtTW@y*eE$xV@7FgAlXLEl~%(fg9W&gE47tM^llnp6S20i< z==O+phrtVtHG_nSVct-Tes+w{#NR;BW5&QH1yNOj=78ga7ytukgnMzYB3+0?7%(Xw zflaAFuS_Ql_eCmUl?*Oh^(k>hvXXTM#GW1-t|-b*Qjhf_CiUFV$sY8w?SnwboY*!Z zWZlLJhg8Z9(8FQlHW&mqb0V`K$p?{z*)=FRr36N9HFU*z7X*{t&m_@tA(PKFlb}W@ zjM0AJP@-`Q<4Bj$evB|?ODC5$k|H=e)sPrhyhbg`PSm)0t-C$Z8GS|=TRO%oFD3#F z8-~U(V`&7*0ouZA2C9+KS%Rnl{eHH-i<2oNqqjJb>Jek3K0_xX!I@|e2v37HRA!O& zVH%T01dI(RYs}y-IS86@YH|=X6f)hu+R#x1&)DEN2f;Atvs}Gkt_0KaqR5w#(l9mB zGK6gzPANi2msE$L6JT44Wn3OO9U2m~AF>BkCnh z5jI$vKvWOWh>jgBFY8ldmxYq^FGkZwxIm1^02?qEaq$EJz+HqKh8V_B;s*@nhM_O? za*gv7NeK{d0C9@z8Tu)#_4pwnX%Su3hz5v3IR|BPkL94;q}`AktqAd!%#f z)WU$Vr3i@OAdEFz=503Z3K-uIn!peEIE+CZ`nd2&l?c&7Jt0$dh$=&#*z%Czu8omM z@?$cC!-X&{80u^tBL)5`3tiMd`c~uE&qC8!sa4YwU5Ji{&`pR`{DoiyKwAo_a3ShiAn8X2-u+V){7E@XCKE8K#S?{POG zh$zuE`)>fek)0}%xE>CW^vl^uN``SQsac)YO@@+%W=VS@3SGh}qS-#<=H0bsLH_8Wq~u0Yh!GH#Dv;FCdYuWT`2 zP@0s1D!7mu@qX|dwgdeR<4{qxNuNEyg&Y7*uK4VExD3ma`%WZf^m0cCN$Cen<)g+J z5h@7-i{61O%CI0cz{H!tjU1$nXkUcU%tlo#{d&1e$ODZ;slY4zt^j&A(UF3Cu$;?7g27Ht$kUuWjF!XG<k{1SbvYf)JXSi*3j;@q&B+Ri3zIqM8f=RZj_4*76h+K)o|qKRYdIh>Bh5* zFb@$lSV|MPFLPr;y$7ri?J$OAG}=aZYz9GM#!+KM2*?>_j(pB2C_Y3;PBKD`Isnca zT6rvEVEEi&AVlB{a8brE@8Xn$?_;1B>hwxeD-RRPMw#ZZvx>4)76(5ex=71+iK7c|L`(A*#sKYrQPKYWSY7nd& zDz-6%6czxcFHSu0ZCu-2EJ_ovk)2-HxO)|5rDx=<&_zNQ;CLtEJi)Bl(VXn)1Id&@ zJZp%@{N^1xNHBS~3-bdoD`t?C69Xqh8rJOe%04|A zxQ!f(F=G?rq?B#I(x(?|JbTwB-y=p8Ne>biI&&xX2&t*y2*<(BA402yLe~@u*(gzx zSVV~nP84>mmk})L3=tN1t~OX%be%lVOz<{<4ODnOICR`xLU<};OO!4uGQfz5*dTOt zHlj#`Sd$$&h#D$+J8T%`8YV=bh-@m(7@1E)CI#YVsh#Jg3JIy9$ zZya0>jM;>*$GJcPkflcu5W|Q&M4AvPf@`F_)_g=|M>a*@Pb6uu5D0#FloOr?F@m6p zO~!>HP?S+S` zbf^bsrejCIWsp}w$`)v9;Tcv_UJgG=>-K`@XPc#r@FzLeWyTc^2_@UGN$sJ5^Kc?<62b4tK=7lVx^S$Gnr}$zGj# zC(FE(CC;OHC(FE(r7iDddD-M^ZMFkWaQH|uy-IK%28L7F{4FKfR^!)SI+9H%70!VP46c;UgWx#n`X5_7{i7+}&2(@hojv zG=?@*kEN||jJdm?=riu_GlU|aE_`OoUH{u_>}O<4{^Z#$kDg|kV8oOb^+*_PCgy+t3 zj&z)U%?-`psV%&7weZf}!aGk3@4VJ`OXl99wm?{a*R0^&TU;%a)8A#3bGJ}Vf0t3t zBg=KM^jIu;rlz=^-g(idv}RJq*aWQYHk<8l;ax^Ky@?s+^miHM^d>ed$JppEGYabM zZdP#aE&98Ra$ecLjB@(BjB>sf%IWWxWEAwbP*8uDQ7+IzIsIKmxnK+B^mk^tC8?#U z>T5HjE5^%=Dph^qWR}!lW|nMeUesn2v&7sP>d8~X^tUuMYD;rtyv!uu((I_l^f+#Z z+Ytj!ytlf>Wv<6P&(&OIKF)fe=2G)<{{uA>&Bsn_Y9^VF)7R8oV?IuPp=P@Ixch~g zspjLnwKbQRk58;k*SqT%HMf{=*Q~3#q;nG&5M}FY`iOPEtQlf`*?m7RmzLMG6Qj#& z3e7LCFRMAC0SFcak z^2+*}v1Wlsep551sTQ(Xyh<&OmuTTF6*Xs=g{muRF0>Y!vbUzMsCuzxu=VA*PmGss z#e~Y50oGrtKS=$us`$ve8O|pN2mVL9K#@9)MIv1WXy^fZe3pVIVhuR_$n zsiv@rC;^4!RPxK|W*u8MrK>x-spbdPqT}8+inbFIHrEVE(cGMF)Rl+QjaqZaIvt$q za#D5rKiZO>)OA~G#+$Xgvn5?i(bk#^%(vRsbX&%~R`Ub%?H60Ev*;0f1a&{VmA?IG zTg|AZ273fkY5uZvn{_Jr=2+^NKX0>6g2!m7UfYQ6>6Y5wNVjy)_H;|vzG3a8*O=L( zJ7~z%9o9;{#?0!!Y}t{XS?$gA%obFockoZD(u26ID&75KRq2@>U2WZzMkCG1Uuoh+D_hXN)PoSXM5@<#6i7H^$RD zls&3zK-ouMUaE^3-10?*3zH{T3Zz~TJ^=zbgPy;m~PeK2h*+U_E5T2$B(63wdJF}+a+@2a`DOPT|zPN8$#mAlgC+S9vg&NDyzZdc7X^YPdR z>9eZ(ku>4YAF26)r84Yq`(bE5+?`&)OLnJg&^}DJq5Ga@ZBUIi+_ER#hFyEoZTMnO zx`xAlPPd`#=jk@Q_w#0LAeXFcgMBa4GvU#iBD4LoA8kg``k}k=-!%fO|wjYUxAih%cYN{*;3J`HJ6#69(t@<<8;0b$4}C@^Y+y^ z%u?FE=Cv+;m0EB3OU(%L_qBgXH|xA)x>@Uz>1G{H){L{vgUQ%m{j6rRS;J|cr<-)} z@$_QpvOm38KL5N~4IYCZP5vU?hNWMm+c4@tx(&+?q}%Y5;~6#RoBP@0sWxmlk#52j zC(=#$=M!mJVce6=Dlpme?!Pic4Ns=0XzrKkZwsGFw`2ZO>2_T4*XDz{>~{<%wfMw@ zr)x%L+#oD>jr5Hxf4eeno|*D-3wMK-#Q2t^_+~=9DZ`&E!sl;Ssq0Ptc9p+f#YFyg zrN%`5b|rN#B7eKGs6Xj#MQ9 zuTwaGes6#A({F0jPU)BRyT7TiS<5Utcwb+!ZtJqH;=ONcuF3f2baBIf*F4hnwdniz znn2S(lhgiQ^Yanyd%J9>oN|iLR>ob)3x~y{r-~QFj^W8yJn=xAb`vfsnG+F*MtszJ zgd-GPbW1ck$MK_*g(Y+6I4;%}X$zx^9I>djXz_yRLWedd;t0>u7A|y%aqZjovV42? z_y1O?9Vhh`D+2NR#j|VfZ`bXzIgUj)l`M2DjD{CMb)-1__icT}E2BRevP5(I)M!b> zY{}w;+NB;yERA7DeZf%ho~r=Y~tn-%2F)s6!IqL0jaA%yrC}yU4L18k_Y4TBQHFXu)Dx zLnOLj)@`x@>8fuknYVDHW8Pe9UR0vZnsu9lMn&{C&UMT#St$P{_VoX{mpC4b4-sGN z-PWOdr1cJWOm$d1^TxWt!ZA8NNH`}gxyZIb3?3c7V*R{-bY8M%UB^=vhh}!~aLOsG zU;01Q^VT~)!W`89QO^g8hi1&}YV>Da_wAR6yGO^*>NRZz%W`VeaZAapS&qevN@kV( zEGqUKS~qkKuNK{8PIJj@?Z)U0H%D({p0!1b7LOpVpP7qqVYJ!$8tJ%&7up{=%duHG}yEV2I3-@A(=KaQVk`%9X*S)`Yk z@xayX+t3nm?5-PniN~kMudw|)U22K7iNF58KQ--{LFPtuk(2WH#!%N(pY_#Se|~&` zST{a?hcdB;Sk|$}C^7odcvlgdaeFs0dBNIt;(Gbdx}TKwR)&-bZSsz(ioHy9f4pjt zGNp$&Jfly~5#^SpABoO}OM(88>soTcTjnmfIW}wVEe@UCiNTk}`zWE?#1)st&+jUk zRccwq#MpD=eZ|c;#E19M7oomr7Tz@XmN0zV!T*X~6XX3Hn!&V3rniLL5K$PS&Pr#G z6uTa8JMfI=`=r=$jckggZ42e17UQmr_Zkq1E;5+4V{Q!Ax!~qGQO*RpX~nqrdKHeG z=KO!Id*a&;gHBbPOvmfhBg73;<31%&CYGJLW9m?6SrbRS=0ELs_wJ__%IZ&CzMZuJ zkLxn&>K-%uz@=w0_XjVnwqN%3)g`k_W@(%uX^t^Bv@p8hr|^K18|O&grNPb?L?es! zlW?JAM48-5@(szb2DQ88CQfQGc-2ikdxhuDS)`S4(&^07oQd;)9Jen?F+rW>mFUwn zcL8<4s}?U@tj&T!!Zsl)kHhpCeoILN{ww(yZ0yFH78O^_Y(r13uQ<~CrV_o z0HoDVnOr80JrFMz@BBFKSEd;Q-)3@IM{(G0FOi-y7i9l)7z>4 zyLx+1#j=V!>8w6|G|n=qKWv)R6LYI)r#7~2y4d52`^D0g@t)#?8S$Y?S((`Lr!65H zUpMTyM!COCOnG5zakBS~@xJYn9dC>~+bNCww)ue@mHIL<|KS}ME9+S()oTi6+3xc; zkC$~H9vHtfO=GpBA#865?ee%PcCTDLKsj6{27kBiQZakvLmf6elKfWrjG;VQwV?BQ zvz?!mRqiS4oqT9se5FnKcbTaE?eabahMmwG7Ix#4ys#HqmK`pO}(aE_EFq< z=&e!Wi^r2=dZ_1R(hy_zCyNX*dgS#xvKBjAxvAV3rbnCAZ<{8L?@wOPV&w;teaxTF zI+-^8)ANp17|Y67RkxbMeIQLk4);#}7(?D*8S*+~ z$h+JX-=aKcj?*tp8qXNxbltZ#qr{8PCf#D-(s=Lm-JKzLWggUW#Q2Jblf z)#?u7pP15vpyIlj*i;f(biPVsd$VMBPfw(F=sgDhGyz=?_5WW zD^W_U)Mfo>L>zoilI|>fg2x()_@$Oo!Yz zt2JdBUrS!_!}Y@U&-KO0s{7*WZOS6vN-i*ey}<>pU$1ik+YiN*+v7#zQ2S+0S*y+o zOlqeeZ)xzRyNX9$w1B%B2m7dt#j(c|LxgK}yl-l_u2>y+z^CS}j$e{`bzn6Nm!|7N zjQ@f7PNij4Bjx{Q^gM3%{A;u4=D%(KO!vH}=(Y|{_@>$Y*Uav} zy53-gg=O*IwpBhiyZ@=#{kP2SziR0|RqNePk?hq|Jmp%}S3D)+Un!AFImvUCFt}te0OohRl{S`WIHfp>pUGapT;@E%RyFpo6A;#I(PEhWw5QBeI z{i>MU4_AI~R{54$CB@`^YoSVI(sg3pL-7|BMn#|S>dU?62+pfCCS`V|epn{=J{b?%lvQ+Go|F&tG&u6TmHJ7!^y&CBHf3|AaRgMP ze@yOqHtw-0jnpBJ$*t)h^kY(4PBZ$J|44y`emZugxtxxvrquKlhu3a@M0wY2%J2E# z%ggpT$T&^fXD^8uNv{~w$i^5TS)3;t^!Z4f<#&o@MP>KdbClZ9v8=!HHRJNjc(ik) z*|5Lz?+eQ&D934-Txw9%8}=6e>#n|~bHXe~L#KRGw#PP1R6iGYiQ_+8)?YateS?%L zy1f^_Um3H(7^la~56;`5pSH#C$G=b}Z!m`GiRQoAUyk3X%%BoRs?&3+-$eC+_@K(8 z73bK1{X7?+YCB!NDHO*~D;uFWHi)twRkw=EpNn^7(57@qL{ek-D`OgM!qUPDqlL-d zhvJ)T%5JlXub8AB=GRSYdnd1XJ>K3X9Aoe9Dj$2;l!In_-%1zM=lrub;&>{p;75&>=W}heU4XBiQEmH(!Uu(;|!xcj&C10LxGUq zp7BDT;ZA=`wZ}Tiwo}EiPmyh(HX8SY*|&tz~ z-5a{N%_`n_po$Pquqxs?WPSa>}1<0 zy`jpP8x5Xv#zrxC@H)RZ-Z61j2fxVyt1tM-EpGTMUXXqRPaLCMywOkwjN2#<-d^VD zxH?t-`2K`T{3fxaTL-@>+ECsl9{N1)P%hXgj?FKdXxnIPW9YTeDka#<;4gQW&ALr* z*7)R_6Y=RCmCB6teB>(H7ljGUg=NyU&$Lro8`#?%$y1*NSV+GxvYF@JywA+{%|0Z#`JL5&2>3KP~ z>15ImqQM<9-}Dk&J0-f>t`>Vfi%(M~Z!#w+Rg4K5EUr9|KyB4I(XGR|O|zue*GoLu zIpI(yZ8BKygiZQf*+?AwkNBlZ2B&z^oT~db87t^My`}n8y=P0_d|Kkp_DX`9Br|`( z>}fS+hZBbmAFK3Vf1adgK+F55k_&ErMYYwHWeI?s+?ou5t(kHOiMH%&sXZ4zZY z*It_J*FP~)Q9j>fOj_sO#jEhbcIvwx-!w( z9*qUOB=L$#;1BWg70j`%_@H(gbOWThv)CuzWa zA(EMkrT1>^pR9VjwBA+}A_IC*^Tpg@QY@42Q&XcF$l5 zaWgf&KP%xFvdczQPXS&;VrTOAlHAoBW~UPh(1CL)>naOu-(Ri@i^B-r-VY z`Rr7+km$a2g=)`2FckKBg|>8sUtBOIF+^svEmr-O^xvu)3Aq9>%^mdwWnOktJ@ZM3 zgz8Z;75j}jGO{n{kiLur;Ol0HQrnWOlN8LzW{_indYT72^JN`7vV~ti(jn^pB6>S= zbj>4r<5aGa=LO_rTg`HYPWvwTTj`vBRR^-?irz~k|I{iH(n zlM1<{^l7@0ouZi!JO@Rum_IFXuH6|8_}tE@>LOD%9FOhgV{3#%PL<@inr6(1u_R*w z)#da!S;Fu|SHu~RnTee-FAO9`hUnzM=Qq#=eo%{_jJmh z@s!niRbYn<+}J1!ZYLKz+#{csFXqp^^2vP* ze^$z;^Ka$Pee!8NPpjLMMAV9zo#@@n(#^vDWa7NoYWZXB?fiK_f4YOGiA(tNTlw^? ze3~r(tdYO|LO!*-n?KW+@@K7l*F*mE9r@>S`DdMc_Xqh@CZ86p;7|Exaq!86V@ZX4 zbK8CVsgzGAR`F+p{;rfKA)n4#&7Y0(>9Bm-B%iKb!=KIaX_pIPg~{FZ`Sf> zn|!(x9GC23paQ%I|K2WN_GLZI+##RhXUoSb`B=ybnprKMx-x?^Yvj{7=5JP zreealAB#Ueg)-*=jeoxCDsgnVt(}tGEEP`9D(R`;>K;kSPBx2v~^`BT=+Z0)xbQ`Vd<4%PH3 z5boC!iwb62>zqG!)1*E#EpIG!j{AJuK%u^#*jI47rGU_U4-FL^y?YC z;NCUUEsYv_a&e)41PHbG!^D%yHCx5}pRTz?bi1&d!}5^{tZLSiW3$&x>S~>sj^f#m z_FksUJc*>Im4UT4`#QaeQyb(waqN=4#p1k=6VZZutwW=4*5#HrmX+S^lf=wEt^Bs` zlf>@|wpqT@*S)2ilZ=L1Ki9`5dHmDF?`+D0`rw=^j+fXvh~r(BwG(4c1lw7@pVGqj zCzkJs^tRBnw6)>$#3JR_TXhqCmtV*-1{*VWiH;U~j={XG;vCW8c%ni%#y>EqcX=pyxIknp*MtRCKev zNq1t4DENx0Xyv!nUnM5m&KA{wN?d0dzuS!QvwkDW%F8acots(m&K64QTWjdoi3J4{ zEDaJThV30Jj=q?@xZo=5Yuj%go}^6JCdQ54?H4n?ZqwP)j%6p;u5YQin|`m_Vwr7O zesXEKYI-LtzfBCPwf$6=&U^XOP!A6;XSJD-b^}ApIln#{K-0A zmhqpvqjr0aEjGu1m0Vj@TV1d#b9CA?ZtEyMzx{*JV$$ntIu!7)rg?`4U8KXQ?Ddw{ zO~iT954o2`^?)`##pyM*j}`pVQqppIzG8i?bG=_~6EDPTea%0};CinZgJGp^oSr)p zwbv=1ZWI4X)XpgQ%v!hP&OMt>&qGEHA8!)}-`+B=&xe+xP5lu1$vL{N_IN?t?Uw#$ z)OFaX>y+(T>&iIW%my^;g1(05@2vf*V2G8RJ}gDs#j_2yB?U#+UowW}^%jO@M`P`~ z%9!oqt_N$U6^yffeDGg2r;BzE)!tihsrB`VZjBd)xKFU+fqPh$dSFan;{DX|Xe%wOSq##gW?W;IAseEo9>zk&z z5Z(6IE>gPeFb=(rJJP>c4!w3e47lO!1GT}n%FrFgsW&*YtbXcs-C=;r_(p=tTB9mY zyzH!MQhTxIgNKE3#SX*BKXHd)d%y2s?LBRk8>xQ6`kQ*C*~g@=He)CvI}GGf)h}!R z+*Y}Dhp6sacAcf%;HGlb3wQNT_ISDW>bA;#bjnda-BQliR8EIdXi$_;3fdu&9^Zd} zUvZc1SDx4*wDK(zZ8UE1y79@X*J}%VD{nv)VbDVKDwF78%1N}sD-e~?v&T)MkI6Al zo%P42ZN9chzjv9pEq;?se$qs!e7M#GrYTj%F#h?|+Jyy5QB~$Jeqw$* zu*w+5&%Ui4(^WaADsvb+E5>lA%01e??%D!nOjYJEj%X^UgW>zhwoFxMhCYhlHS5rw zRX=XALw{`Qkle^Q7S04=tG{1x&g;FNv2EV~8=aA8yt{^$cT5)Vssrk@_N1OqF8TIYyu)axeLV0h} zr*xL0qmyiZv`ppEDq-8P`O@U?>~$~pQ2t31SWHdKdeUOE3I8p>86*zvU3Yk*Mxh*E{*>xVqv3+f-R}w3zp=r9&)j9^Aa>jaSrN(8YG6EP9@(iY#+j_R58+ zqSeL-kChE_2^}#C;mOXuFAIE==K(~+n(#|+O@YOTkQ5t zW&`&c-F_)tH>*8Pge`UZ?&d|GnpyW+JKNhWc6(c@sM+m3mTuFk{~2$(V?o`1TNk1I zn1MUGWb*)9jlrK@Tv)fQhcdJ#b4fj85+5u-F_%=4d^VR<#~Pyn?P{#!-Ws2J+^j9N zq<&~LL;`4SSBYiby33MftLpCTtjwv&WK)-$im01uu*9jJzPWC3I|HZ6V`)2ONlhll zx+&umPgPyGv$B>xHfQ|zG?mji)=jciQ&>UOHgIBmq9pRG3*jxs%Ah~bMYv(W*ce}#;E>S)Nk#q zJblurZZf}n!Wh+6HTC_wD6gJ0s*g1dePBSr$F%2=CCzn7)y<#zH!))>ueAYg<`Jtz9PyU#Q=&EH}ENEUgvu%XeOy zob`+PKIhuDO3Ky?KtGe{rdngoY=Ed-Gkm6x^PRQdXU%jsYe}t{-YqpmOW`b4az9Han;U0wX@xt*WsBSb6RFft*xb*WjpsP51O6XS(juj-Pp_af~1F(^ZZh)40^3e^dS9^{O4(i%C)r9 zBwAbdeb&-dW-Y0;^f#0Em*z-*^$0x{r@he7HOb?NcFL*snFrYkvx+YD#(>_sZ|5Tg zioHJbAnR@#a8l)VJ-_oeU6ga`brx?q30$diqHNtx!$YPc?u0u{`I?sLgZf3Y{ zK56P-HlB3o@Xji8EvPwafRv*O#Cxt2Pb=0^8UV=cM= zwezVi%J`j`Yw664a<_D9c)qhTb!X;Ux-3;r?D@i6OHOg{$j+&@0rJhI1$}o~d(+w~ zvYFMGyeP-G--J69?xeOgMxXEBnOxSlVSIa~{-o~CHS0~7-JM?45N)qKeo}W=Wt1C# zM#D?(lwY6J-9)NfQ+KP4?%r>7_awQxHBR*1$cFv4e;6J3me$FIGpV@Y*brMUaiU|x zXwhxyvcZ;<_m?K+?zpo{Zggsc&W&u}8g&2GY?xcSls#isl43?bXfW9Ng$>54nRZRX z`aZUwi0XgtEU_?*q-j!~F0@V!eUf+G+|a+TZLVzQ^_Eh9ZeFTrdBbgeY)g#Jtm{*5 z?M%OJ#t|{S!H^B6(HSXZ(hi;VjA{5ji)Ob;&|EaFjr8#?4OPlMv!{VOS&0+ z=X6oFwPB*-Xf!Wkbq(EmDd#n2@|^`Hd1B6QZ7}(cPaKOkm=}A#*PBt;XdU&|*3ivn zZ7Iex+i1khMq>$WeyX8OSLNQuOvdwX^RwkNR$l6zFE#w4t0Hh6ZLY#CGLZqPa(5hQ z__#o+r&G;u@?)CHRWE;JqU_F8g+}N-xv^PKT4OrjH1#Cg(e?C44OO=Hj9&g1t!Mcp zzxueL!KQq3QZFNBtG;T~Pc7$P8oDX~f#x4zLrZO#Wkb(xUi5{}8}6~$`pKdviPE>H ziyC+N6Gm@ojPzwc`Pgc0C!F_X!*5zMHxK-4LtWpNfj$TaAC`_)uHKTI^1!1LZEeuY zi(`K-{iyv_4}!`XA)X%d(Wv%aG3l)yDh7Z2=V3}>o7nSp!w6-rL_r#wu*<)g^6cqnN$&j=?$x>hy0L zws*AMAxCYxD6}IV(vQ!BqUA)h`` z8iy9tS?km-_;Je{OPxCMX=9tlUl;7P6cD=A?18q8*A_f!eXU!~wk&vfyt4N}v7}vN zar3WqOVVojfffE_r7Wb8D;a3tSYj)9%UZKe@RbgYcNV;FeXSEb{_@@eQQxsKth~h_ zNc&Z@Pcx{R5=t|wa--R;Z<G>g_ZO`R3j_iC)lF^K&Qu)$@$8&?#RSevFV!IN;6`l)W7ZCbe(wD73}?j=VJY@B5)c+C2#jxyQv(EnoZJp-dEy2oMfgc4u^A`m(u z(xs&rdKDz}-UL#GfK(BY8j2ceiIkxWq9R+eyV<}}r1uUA0#ZX!K%@wWQr|N(ceCf- z+zrq3`+s>qJRewYW=@|oXZj3#RKYZaI&cn`=PeJ>W|F9tr4KQwd-+TV99aZ*B$RVC zsAO8`L(d}!srwnwJ^M4CvJ^f%y2I|WKvsTR(H8VioXnSreK^L0@Tq0;bBr;IS~P{z zy;V##=qn5Z(N$Q6jj8$xho~1gI&kSx8OOJOXmO;tr47vH`kruXrPx6%vcCy*ZN^s4ovH8H_U7CR2rUA4qP8Qv{ zqrFXSNHZJr?*nbS21{r8`O@;3tLUHv;1rLH@FlvPaEC_AS#4R`-&s|Z(JZ)=DXz!} zE<~}bsuD^tA*8BX`L4)OEWUeqh? z#R*tU_SDWSXh?b$(!?%nVM9(nSLsLDW$DitY+6Ek*<~f{t_6jXZ)TUf&p0@*g~n`U zE%cIiJlXV=PR>KeQ(koR#%$v-h%w7l?G|fAR%6UURl8EdO;(bnYUj{`f_5uZ?Kt>r zw0n(fUze_(Hqw+y&*!1*t^ZQj;L)J#KdP>ewF;=Z{srps9rW|Ym==)Y4q1{#9hyQ1 zU7xDD0{H)EL4-zeMsDX79n{I6n3mFJI9bF!TO)Xwe#&@LGKq4qKgL6B z)S&9B^~?X#PEiv~=Uy{9`$CS+-k)fiOGjYwMBpEWQgTdZcJ-ZP8cXOTlqq)bR?6w% zcA)B3I!r(gwE9goH6nCY9=Jt~aK%R0D$`Am=n9O=TkN_^AjN&tet`y+yN(@RS-rxw zrZgA_$SDrd@7Oj2dWANeEMn^t2TPo3YDjY<9Gz)uL3bJ6v(lb~P5uZ+>6h!yj*QTNV#(A#3t4#HL=v{=! z#K2kp=MEiBNj%7(8q)n@G%p)nL_`DmT#6D_O| zx?{U0O=z4E@es2qSc{-@%@(RV;DV5Sb)4cUHuw^okl$k`$4+~XU22e0g`_%VckMGS zL9XuFbf+9NJ+zzZ__!|GO&xv6H%{5sf33xUwtkjV_SyhToEb2dLU!4W^V|}~%QFK< zoN~?bpi{2o`MFH1$qk^+j|_O)!erGBSDj)drujxwA%*&Xu#p-tR%){;k`>B7 z(2sw$Bn7hMvXcjXTn@Zkxx5UF`N}0oBUYZU3Uco^PRTK+duG1FL`B|A8J#7yih%$5 z&9`tpUTA1^99&xkw{V4phepFyR`Jo%K}iX*a7|TIw7ePhwNT<_)UKcf-&*IVRnz`CBd7hib_N!3|`Qa1$O}`4tU!$%VwhO=Y2xaL-;+bZmS?l3KE_g%TxO z3{H(}OLmZfJBl=V{6==Io#y_KZZqp4V$GA>DX2-+t@kbS+Ztk(6?(^rLm zUXYbKbEYBd^owZ(Ihe~jM^rBRq;;-Gd|sDLK4ZE=e$8cspR}M4&YBpxolEy~IZ#sf z-N2H&F-Rnqgs~d(gcwfogdx|2^QPtsExiHRO0+(u<~61_<`F zi2QIPHgw~Ijj+DI1ar2z*@)J;r4ho$%P{w=LC`gH*Ka{h^`d!sNYnQ12)K`rTq}1$7b@F>hN!2EPwQx=}j_Svh$g~ z!Iu?3p4f?gfzX)Xx9qxUGntu--|s5Fl-KifRr<~Jx#D929@%N_+fhp{9xZN~wvZok z@wln-_%?4IImbE!j2#8k7u|&4;OJml+-rdDvcO(hC0#pjo8E(UGc2j-oS)g?O1x_t z3G2={OLVCI#3|h4{5Xtzm|2;Pykn}&w%s=s&4nAtwtuz0;Gzen#`Kk*2syKXEq-9K zXpwaO^w7wk{)3qCly{ukuz^dnYLMzK*>S4k%5fJtpJxwsmV=W-;*FaHk4*hakftt} zd|WWNuoeJdO-gWf`L7pw84Jslq5l%s&${(D^&k1L%2l$s{Yl@k(yiJ6E_@;R+b#WQoeGfj~2*^Sy zId;wIg*0ScihdsV8ldJZy|aHwSKwRb4TK&;^cW1{tFnTn%ysE6I9WuyV=gwYl)07` zL5w1Alrs0AH!*^!=f}5^qU_ZtQz8kVp7b|I8K6d#Hus?~a-m)>ZEnM{YL+pZv{<5I zytNTo#VuS~S#xhKtj?$3RS&;m3yO^&Ydq>wQ-p|3H?oZZ=FVDJ(Y%P+hdxFKXDgeRY7w|jC`iYsf;HSIgLD+4;_(g< zq+MO!HlI`I1O&kZ`zznt!{~IJEaaU4B>6y3k5H8bS2Kswg+>V5tC<6GAq27_)y*C0 zS|fz4>Oe}*A#hQhPrA}gM({gpm>cDWXYbTBH=~D*5X8P54FjD8JE#^M_gV{ziBn=jBM>hnN!;zvhSyZ0fsF ztTKxVGuNc=p>$R}!rXy0-^8|rnJXD#6bLuhqy3C9!1pRpl%cXX0|;zZRkK)pbyEje z`A8&ZH8H~6lukjIIYRhHnqw&zo9S%OO)Y`OueU+ZD04%FuEuOcW!e^P{)n!_$)W^S zZ<0I2GzdEGJyh;+GfW;OkkdD*goBZ%uEUq;o3JZiOf0pik$ELOilxy7HrOTVC9t(@ zY_<@3RfEen^HgYN9!78DWUinO0E*oY8ibT3%d4``=Fn(7H$sp*GIC?&ZvhxZHzVH` zHoUrtrM57)G>|F7HMJG3Y=p45r8&|7L4>>zBZOJ4%vH4rx>D++TI`Z6rSnKJPa*Jt zTh2A7wK<#6?wAeuNH5wSrwG-$Z)SDgGj}q89c~00-Ol{J0qj&G*zPe9F>}lCl@V;m z_U5j+U<29F_U5VdTO$M!T{XnHwNU%iPqkL(&9Z&+Vy+yg_BVEF_OhdSsJFZ+oy=>z zb)up=n_tljSai{eI)_p`rRJ_WAIMHr-axR^n|GpGbu~X#=tD$L&gBm8Zf--L;bc)w z08o0p217)Sem%^6soxg8*FW6M-t1|vsAVA#`t~%xO9PA$p7k`3H9%O=%iNO&8zFS; zZBEl7@Nz`+>Z8?i#5R$;GI5H>l&sj&tZvL+etK2X8xD;wu*MbUd~;2ocHJU}0rmQs zKPW^-0Vuy_Y`7K{dft7v$Z-I`i-}V&T*amnFL}+A%&W+NK2HI{ zhGF?8 zm~SbxDxxR*k-~xN;A9cos{Y8fk2a4qKd`u~V~T*wbUO6UCUM|pZ=z-ML$QFd}6hM<`GQq_GMyr0Prk5rvy z9;?1w2A?SkysRVC?40?1bA;xr-a+9;t1}12#mZF)YmZsk48fN0z=|WLTR=tbsUVr~ zRIHBlRGgAyShH(Ux;b3&;;JnBEAw_*ZYzM}5w3q}l;R=9iY>fp z$hzXTxx1^(_vw5DAS-r}Z_I<~GMp?b_WZ5v*f-G1X%KYW!&UC{Udz3l>){&nbwamd zKBAq=x7OU2?#0Q1{noAgma$Uo$F=6-S}ZXs@pP^E3O$3dMA5&q&ip+A)SuRwQ?*z+ z$s<+CH~j~aN1M%Agg(d2gyiKi%q?iXZOFle8Z3|G{us+6IiOy(n-^<&=_HR< zCI2UH$@wmF)WW;{B$ubNU76jfx0+*zlIWyxs>j|p`K-!LMm_9_jC&6mjgz+UG$6|*0q|i39lX*qGNIR1eCjqGJX!;%^JHFojOVxNxcAO!@^*5fyyucGf)7 z(m)HV<5R(iPhOQ~Xq06fv2B-?#=?2#sx<4M?0BU)9Bp|<$N?x8-kaX5g@sDv*e)uK z0w-_Zu~c9qu1~GwrDc^{5wI@g~HjI8a*q&-=3h%`F#6g&lfdYo!J4-0}0;9JCT!6;ZAzE8Ei2lhoOv?__t#L6V*9 z{2&2zU6gxV*NzmcB6=4oJy>9$uS&8htt~5GvrVW9%kF5a$CBT*T%`#+kb{YB zLa`{t!-Z{WV;SmioabuP*0KWTYZ0P;i(`_iD<&ZCqMg#tGMUWX!CtkqxafRLLbN3X z+Ji5p?T~X)X*gTgmJC)o%-$h;52*+islj^>u1`8xsuTJnf{^QdcRN{Dl8q{}jW}D! zY>3J%D{p4HhRZFY#t6J31>h8qu<#|~{RmmIqqW zSlYQz(siP{<#0Zlesu*^iI9`ns%>E$0cHh6(U{YT3pV zOE~=!CyO{eZKv!));qPjxE70d-(WI5KU+1;(t$2F!fZR;(oKt`E15rxWEBzKSba8Y z2Gq*kYFX^yJaJiw*S5E+h4IHsOSb~#f?62ow6IVZd)2}Kc+oBL!cokZc*(mx$FhnP z*d>Fy&n_9%E6=l>BLQ&#op!#&U%kk!!Y&@vU9;0H9TXC@OCQiHX~5W^uPob1vt9ZK zULyxeM)0!0jt@RT2GL=_^0MOT=8>fg>mz&6EUhb>vUNo@G6pc8%#JNGa+i@!Kinlw zT)0LrvP@9OY> zvc@Mj*Il&2k|5`y&da|>k}J84+(wJ{WQAoDxu46(opPY0kq@dy2BH2dBd=Ly+36*G zx;|ZPDWcGtyTR!05Xj?ad^ieOKi~qgkkF-3~1O0ghr>P)TG0W z5Qdm6QCb8swi9wq#RwX?E}Jc(S}eh)sRcTd3o(`|m+O?pGE>oFbZNFMg|5ZGf<^f` z3*P0b=e#N_5$f6Hh9?{2`vXHRv z5$LMCz{x_w7e_2j$>Tk&$x(h#J2 zEcWBCOS0hOmiH=0g@?eK(Q%Q9kzo;GaY=E}!O@8!@LxhyFuds=k?2wy&43qxql4o@ zV`HP>UFo2(gs9NyFnG*3G$Jl2C^|YaBski2a>l}yNNpL0))437d5;c@WBeMCY;R8nwQP)Jl{Bs`QI6z8%(XWQXr=DeAPu;393 zgI~uqz5bWM3p=0dS4}?03{S@gfjvW$;=&Tb;$kDClM)gVLPLUM6A~hVfi1_fNgrq3gvLCFzFC77IPe(>4h68qJSWX@R~yhE{7>~g)${B&(aCiz2p8G zpN!JKv3VhkqJ@J(Gd|) zvhXTpaA>%AVjG+@0-Q4m3NspB7l)b_3(uQJCq;z^2gN2PMkFvt*BS0t+>>Hs6QZNx z-S(*P@UXF6 zUO?yXtVcve1;>Yir@|}sk-_mvVXkZjo>>{vBNO5iqT-_B6T*@pQbdPD1Sf{ZM?@vU zEAz3@uJqdrwkZK{&>%Q6EF>Z{Bq9WW5~HJILH@Y#q)5;=Ji-N45ujeflEn^L6ddpx zj!c0d0TrwP8dn{4v$QT z4vC8k0?i;+KwyE07#$QE91@ifpCq54ubhyO7?%(p9SQHvhlhnhOiTo|Bf?^%6M_;G z;ZN7edGLUHK;9ffSn;Vdf-2?B5kk{BxF_i1#zJgIkoE1*@Mw62KBQh`D5_+U5bmOb zf)30Kf2eirH6;|Gtu?Q4NnMS6o#A*L zd%Oqg*lTo>bqt>oc zwKe%=GaER_S{oh>m^H}Sw?IkQp)q>|Yv1-}16D288c7E1U;|>U4akEXY-z0ZgMx3v zG|}wH!E9yFviimNBku58`-0^2Jhcx?j=5Qjjfk^`6zmT}>Djf%vD=HTzXMXV+RJ{4 zvxZIKVx|fSQ$aHRJp}HnA3~2SevIBq%%)h8N*+Fq}+;F>fS{GUMao;u9m|VCz;AkSCT>()Y^SYQ5xnZmV50!ukU>W13>#>j#vA zXo}lvPmi?Tr<)Lfocj{D)$YW}V(vxUR=a60yFS|5OpC=Qdn%@L1U^3!qrPr|Im;#9 zgJZ0-NcLXV^CRm#dJQw+Yi1=p6x5q%FYlF0xEBy8(m`wh+dbCWjr_BhmHF7(i#|nw z@_9@TP4(*ZzyAZ89mZKZD#h6Han^3M_&(t1E+sDJTON|?{pEhFiz!3BhcquykA7ku zL#pp%Eyi2N(VBVCRqwT~`k&Etu}`hDVMaXr{4bLiHl7_TDLlbrejHoyL*wSDdLknCQm&sX`4iMl(Ucy^9=ivpZD%Q~Ju z!pVYI>)B8g=l8M2v#k|;0E;(wBz+cUQ(gxt1Nmpc=G6rghseWuM zRLOVFwJxW1FbfgZYM~SaePo_B+22cE`!wq>Y|cz;VFK}%*JLDBeJK^jl#iKP(yezC z(q%ut&neeq=AK9pYJe}a!W5C56BbxMBE$EKHC{TD>*5afVnfp4{c;1t*@f0?gnYhV ztnbnp7*1?V8@XSu?*hCy-Rp&$STpyM_u*3OVt+5TFTc$CE!~7HEmpkzH=q;us zCM>pj@%PIKJ)jp^y%bd=vbef<%PQ-k(xk!x&&^**(cxa0@W;zZom@ETN>yr=nnokK~?0Tw)SRa}t+9tgQ5qV)l}ZD7?FYfFVB09)8LKw~kSaH|dnSW4vl zO7I@0*fn6xR4$}?$(y&$`Zbw*K(d{6fMv%lXv65+>&MI=v8ycWw8I+B?ya=fpxY43a?m3kd+@Qn3ahr? zI+PaDB=ZNwuk5$RCr%7?AHX-B;jq}@T*LKx8IO&*%N?r5d2Y!nv6Hh(m1I@VSpT3$ zu;y@jyDDpX)*4Mu;bgJSdE}t%nrINX2UPNy%6*L=W-oUOj6Y{(KJ*TzDsD)8gi}`c zTGLTE$PQezZq|ar`fD#*;1I~~?kuaI%`RIPYC&}pxi1aWNW`5o0H=6L#ciTGtoi1{X?Y3O@a5bnmU7iPfxLT22EUdVOO#>#L$VA3 zTSPx&A!PLPlJ~=P>nbwxkc@sG9+F3+F5Q5~K1eE1QJe&j^mW5scgNZ`-JuC|yz+YGBrHzf^%kG_V zH5Cu+lJ^eFqJQ_WEc*UWtV=49IH0X9`V>{`frn+$f8n3eFo0FN39(3=g!2@g`{j2x zWV?urF_p-4&_`Ru-PMD304IvLKk(#543hkJMQrbxu{FTBTd3B*m}l}5+)ceQ7Siq9 zqV9?>dRto#vvs{Q+S4sKC#M+**ocxnWu}tuuv?z(%p2$+3+}eD4O{hoRyFdQ>Hybp z$qEO!a#(hyTlUMC0B}tG$=JPX}epCH0R;SFCfyqn7lB zT1Vs=oWgM#I}4GRBcf-Cs^@jJ?Aihxe<7~*5pnv&KNu+GI(t)#o$Qg(kyhti+;$g7 zZ^S&28V23wyr@#%2(}PMZ{E)eCsR~GC*~4#{1NH4%|>Kg^C8QQ=-t+R?rQN7*Xl7D z!}1Z!5q(H%q8|2H47%_Gp9?<8IOs!u1f9WOJrg}0+PUGlI_jyLg;H;lazxZgWxQ1N zV~wi((2bF*byR|&s_55vDXQ(0Gq%u&n4%a}-bX2@_-;+f80zmO4<4Rx#yUS(A5Pvp zDoft)C_)uJSoo;)!2>B7_4AWjN7;jd=D|fUm~g?jj>;ee;KBvHa1;l_jPu+DKAOdT zf0mJMN2TX=J_>KOXGAMx7*N)RpifkL4LK^dLBnm1?<-`|QGIz%(SWh$b2845IiQC& z`h1=PC8JLgu;bCEGgyW{bcThN4Gd24Sj|-=Eu+8Ux0zcgr!NmZ^S9Ze^o)9R7fP3X z`OQaJz*iZqb7NG7;bcZldddi+EmOr^pzQxe92;vgkPTNX(czS1-9^*jG$i~6A`rZ zWFV3&f_@AfxKobd99|njohs@4$7Bc zLAH!1Y{ipR1zDrVtNdJ(E$|=-xe4~tR!SfBQC3zqaROonX00`SQY1+F{ZkkNpp4VzzrtT--< z1PdXL1L72qy6`3J-HNT=u^jH2+LiG)%|_PMkD=dFT>?{+yNIvu&hSy_J&Y^v5PO1C zL|6abakg%6Mu--cU#YaHPi!q(=mf~*u4!)gdHXWzXyM`f0NfM4FQW!6j}b(#5*U2A zKjS?uf^IAkW28vRcV8#?BYBaX*xZQeUD?R5msce%PRJnGlrwg_jkr1Yg!GyMhcXm} z^gAJAU~dd2Jf_tN=`oE?yw+m^u%SKd;7b%+KURGIym%?rELE&8Fh3CtXP%IK%GSp+ zqDPRmAeS~GCaAXf7T|cFa`g!r5$6DvvHS`*G}d8Ic8Qnm6qj^n=*zAIAG11AF91F1Nb&z>};%XInQq5a)QB{r)H!P~Ec-qgfdTTh?Btr#|t2y3iTFWXgmNY4=U|J=vfG^k=!fm4um?)SEh zBfp=NG2}X@>@EjUS+h^dAkw+7tr#J1{3L_O3k)ZM$SqKC_1ua|HcOAOsb}52a1@;> zFL^}<*wRSQPg0t?Kk21;=O-CDRt&WLQG~PyX|$oEziRIH0FH-_cYl(hBLpbr3LQX9 zgpL}V&1*wP50!NPlQMJ!6^5%IrmB)o(o3p*$^!e^0$8&m)8BEu8g7d&K$gROLE8AS zStYpyq~-DB@L1dS0>t{0K7Jh2!4;om3n)Ogg7(^>%ry@jj~}dgPg{t%3WH4hNrw1O zRh7qSRQ47@oF0|M)TVKnf$>D}epAkv1yik%2`x2r^Nu0r(UKB;%C@9w#-u#(w_^8O{4JcdO zHF}mUU7?W}O{_Er&9M!jO>r_T9yexb|CB6Lx;Z4PP8MJF4fVc}$e%q6c+_JAQjk3u zYOAv7%|g{#mtnk^mX0sL?$_#53Q0yhlEJEUbLxlrroZ`hpsW8p+i-;r$LS*QCjZQ; zrQ2rHWSpbZJD*BD>1P=|F?BGbI|@K(iey*Jp|$;ui=X}ZmF)>#h#84a@mDCtLk_-# zvlJ}Iy1aL>w(E-pwn_>$Ay|1A($^Q^(dWwxZNq3L&J!Il6EZ2XRv}fN@1;Ja*C0eB z0BasyG~8ou6gu4mu;gOsTpFifQfW^%G-XpmRz*VC3!ZLMS7R=5#%}Y8AbS31IhV3@ ziOuTEAJyZqVmamsh82PI8i)^plmL$CzZ>(G%Q41zZX4HTqyB=c2b#6}d=RO6O3tbT zo^oY>YrCP4#;5erC|I>$gHvKwrO#Sh5kfki(g&kxE!ZFHY||Ao;FLZVwa5XJ(<+g` z52jVv<2j)Em9H%!6bmmWR&a{Pgsxbt?V3Vooq{BHl-7lmPAW4@K&}s+u-WPnx5`6rZ|Tcr03ilM2$F_dfEM%!J5K1C$-WQm@j%UHQeflaNE8hqi}d^1z7^${OIvCrd#N(Urn7%W*zV@mLMML^A*n8Sy&d zIB(nM&F|-2uwA1CegO=3<>!9yLw@mPX_?mtuw&gF1u6XH$W}B`bG6G3@82T7ugGM!;1gv?u8rkmko$<9&i_>b4)ZKi}G!Z zRen+Z?H6%BiL3BU82FHNzv%t#l-oakab@4KomI%@U-YhaJ_kfJGtKVU8Y<)vXrx_a zx#kArn#7PbzzQ5qnZy6A#5(s%38Gkd*?`~_WWwS1Z0qP#T&$vp@&u)Lpxw&fFDRch zU31@diQToR{!r(Kapy3Kvkfg2a z@Kf6cLQ;T*Hm;QPm3`*PXJlL{`O;R!hkSKLU)Ys&aN897GD5xqrL=LSmIqG6l?lL+ z$CX4d6`$|M3do|yDaefN3)sI4Fm?mCy7y(wsanu}$y>}R<7+=mf8!>{F^60|!UFl~vc=|pa# z;xv^alSXIR>QCmBVkh6UpQe5DKy0ca_VgeIc3TrH#u)@85W^j809Jg!nqH{pxs8Qw zE^8i6!KF~bK90;gD{J0tE}AC5rk-^Lma_k>kRQ&<3illb5fv^SWaVvl>RDOgyf6}N zx0k$CW$dfSPoN&Z!0-53dDqh~W$kA22N2a(vA(K_Zk`o8JA-V~>aru{?QjR>@{|Vr z>wWSZ%+24U^9(BoX_4#|?CFG_)7Q2Sa-d}2{01=RwGAX1_2BD{MUdl(%2wG}9k8Kj zCO-6)n<|C|*pJa>=a7eYY47N$oMQ_r+mmS{O-9brUo=Wah4NvbeG~1C^7yc@7afFC zc#qu&VB}5j8es7@%xFC@>3xoEtYUAKi*O*TRn^{v&M-m{`{p&odBs7lI99bL)>SHO7H7)s3*O$hP?oxJ244f7tyYS z@haL@Npxgnuj0yP`JFSjU;zF#b5yif;PVi4Ii@bA7XoYBVFCX4bF69t+T#@38l&sNV2X;?{8tgVNt0iB4G;26GN96R!vYHt zCE^@_0H^%?prbV(0})uA6^zC!FFxx}8X@=wHKca5@NQRwFwT_^TT6>YjI_S8JY zcEbV-L$NEnG8)=l3bFpmK4@%jN^O|05Zjzf?9WyHYgMtgx5_Ne?q>A%b;jT?Gm7_~tBCB#a7HNh?{;Rk4k|FuW9ikwphL z5T$rxD}0HtJr}S?rNjp04Yh!G4%@NgZ>_FMnxB`=XA@3W(|k5OFUP;*+Sv~mAbrov zHnbOp6K!bA^Rf*EcrpGp<}Ej@dC9xm)xJuZ!Ll3h$ocu~awO%v90OPFZXcMRtN_Z| zhIE5!xTWV^N?-f+{3PSNzS%sU10uV#!v@)#=O^1h4Q)5|mIsb^Qxzt~c=M902%Fk^ zT6r#u=&xegWq%c?c&z7I^@07FLjOPorJrIcSV(rYF#*}r!6_b+Y*sS#bbK$!qRM{( z<%n(vxgdv&DRGzFr{4u%wtCz39_|fB@V5uT z(>3pnl954TsyyGy0t-g`cO`Kh7TG#{u1E;cBwZAKPoP-p5K6)e?ZdQB^kc z6MHD#jH!sYyYhmZPt$PJ_5I&ggWXW6?t{TB5#$MAS#vWt{yYOm#7kT*vM4-aMI|atf|qQwI--WT$Dkz zXNoTXTt} ze`|l+06{!Kx77$?#CP_pT7;bTqVg();L*)3etIFfcp3S5?h5-w zCB5pB*xIq^^5-SkppEvbWTk4zWqOIp;>$83&hC@q=emBt{)yr`bilq6CcH1}<6@n{ zvIFM=!TBzaXNT-7e8}O;`nVXWg9|urFXThcgCVpbv84x2%#~(ILy%Rn%(!Sm_k|kW zz3uU+rcwjly}Om`%TsnAU2S^|U>|LMvTCmKQ5F<*xX$`}?jZv4O`* z6{PT&r({IcUY^e}hz8+gQMJomVQFXWwX_I1HPyc~LI8?t1L~@I&JHhCwMCiwesxb( zaZEt=t8t2lBs+Wos#f9^S+(LgWld{6@QQ4$YhSWI^C6S3$f`8~!-=Z(!4=tB1H5Rh zy>R2zszd^`;V5@DnC#r_n zb4B{+o||@9UORh5@1LLP;1=JpA134`D5~|(bPt^H&z)Cfn{8DU2YG~lV&!Cuf>V%r z`#iAUpk=Zl#a)wmlkHy$r66eQU-qHi^6EW=A`H)F4-S1DSA?T$O0a&mY@X*nvIi@q zBY^Rf<}nyflwf4GEJ1)5CFn&E(ckitH}nZi1b+gPSDTi_z}}IZz18=2mSc7QwMVlr zc35j_BouA(Ea1q`nUBquCdAaG32_S2ugo)hwwJ2HiaocVq<$F zpUGxdU)TrGa|lM?^zBsL;51l^k12jau!x=*0|dOXXOO$u?D#ADGv9T8pF`-Rx2&x$}BSTy=?~1)*iHf`o2o^8}|roGjRvy($M+ z8U!8t-75Q1SMxN4Zv5glA1($No^T2>WW|Dxqh5-5gRdh+2{0a50|gOGy0gG%_L3~C zkmDO~t75|nJAR@cVjGCXr6E_@k|K_-bO_Gz1n4A`jKu9r9Yg)SXmowR_H0Dg4~`~ zsiLDhy?~R2JDj@8j#hMhWPmXDL7XouSiw<-&8_5!qIZo@0|OjiX;HZ+p_PUL>LpcJ zSUBhJOelrOA#1Iv>^S$D<6FmNvD*S2+e#bX)}`JSm%dlMEe>WR#cgq8U6lpi`n@`7b&wTLbJij253}#8IbdO*Wmj{wB2SO98r2<{ZtFns5PJ{8cu- zrX!m4xWKY%ItCW#0J8?O$FiV7H^)Nmic9RPT8{V0Lg>lVa>OeoS&w(%&wf`~);o?R zWLq}tRNK*>bi2w{)ONIl?Cjc(Zc{2;2ITr&u#@$iKwOdL#ZNB1U8W zC1&iJ@GmjV*OY&WAzm~7B}RhH`Ii_6wBTQ&EpN%cM3dBte~HM|ntyQ*7Pr~4GjAr( zV0Vje>dcxHak%$bv}ISOEBQ(HYw|v$NA(~FNahpi>M-HN6!+#_Y@qjm-%Fn7w!&Xq zI=0c0*AY$85iO2V5Y0~AfTowcdlKt|~s|dWwQBDaV?at(<-Ssh#5*>3p5JVjO|AE2b?rj+nY7QntIZ!=DW= z7hjk??d&K?`(P;1)OWqkR<(Bo`(b=_>)gxsjwW;{#sHZ+5Wrv^9N%g=@@DNVkId>N zaUEIkD~Ea`VGJUKObVUFa;`F+98n6HrK&OqLCTx7R&{m^rweehkbTZ|*N`rbf(q4O z=tLdmCi)Dl(jb6nFLOMVY+k`X-I^n7r2q$)&V{wrWt{UYSObh&mDg`enq-~fa=z~Fo z&F7DH)K_RpoG!+&_r^Hd(+W75dl+5<7U=-WLPeC?@DY8 zD+kp$1rMM2^FPh|-M88JVtNhvOSkUV+|05Ut$s-CE1n~$1Zvn%ck?o z(f=jEVbdKSk;lKu(f(hYu;^(*uS`r|-uq3?${n2Hc%~>t*{E?2_3TuU-w~`B@jv-Z zj`%sw0+=H7qJmhmFwS$A;peQ~Uui1>jNQTw)Lrg-9GnV6{$^YlcUMz%3mc;pBxuZ+ zj%0u1JlEkb9qkm_3n5B>XffMSl@7$ovTgWXzUh`5;mfBTs?t$<1RnsDnTyDgRAB;!TP&wUS=!j8%;_lWTg`c$sMAE-XZ>7LQpcc|> z04eT%{R{C!cfUTx$)Z*H>vz7PERqfS+ov!R!Iqn_h_K@B*P=J|5f;1+#$U;r(h+yR zzF6Y;{4G-Hrar>1&y67Hi)&x&N&1y?dOscBQ164&FyI#sR6+`Q>#nq{B^F`P<#}z{$$r=BBLtYiy1!3P}Ryd`dnZ!-87ms9G+KvEDWM4ruvNY zTyHvIl9bNjq}|n+J1f$(yf;m~cu>lE$5>)gbz6&N7J=>Co6NDnF`evIwc3FpgjN<+ zD}WRW4aSnQ*o}_S-ZZ|o(J_}iRAso2IS3j4yeZGqkKgP#UV#+5B^O;ig&V4>OmE3W z*Fv}CqU&Rzlxxuyh>3-r+nkNthGNlGjI7nD4tc@>>f~5co~O4TnHf%6-jbfs>=r6D zA!*}VausXqua1L7$iQ2270V;(HI-a{kd&{omi^sP-t7q!F&@Myx2F`30e`Fs`uV zv)itzB{Q2V^cl|b*uMB5y2A1SKoQDpa$;B*fKzfyu}EI#I(4+E8rkxPjAt7;ANK%8c@BNZKV(=9 ztCsm4IrWDOt0ys(XzREBA={Pp0M2_b#+>EOc;h_RtQwh#`B(-2%)$hwyLENsJ0l%M z9hq1s^ERP{?tt9x@T9~2!3bB}cwj7vyOc7}Ww+JuNc&XbeBAaCEqmoVvX7S)ocXyz zn%-fK0Sg8f!C=BbHSb6Raq$0}ff(EmT#*$H&wT2|8CkiA%=2^)RkRQH!9fmB-W~8IG|< z9EfR{*;k=I;B;Mao-o4Y#pzv2 zj&$_%Tn=|}i*nqrmg9D{9I*xnmUke8JaQ4oP2$t$na64VKLIeuSNY`W$1O5vP(Pf^ zI#LcMr?@Hs5yL#ij`qR~=U*?2-B=D}jJK9C1ROzl9cMKeqxjP>TxvTGw#_QnL zC1%3${uX!jFdizWqwGGfr@3gG{duNyW2%h|~n z)8bj>k20&0m#Re1Fe~Be|A2P{rnPasJ2vx=a-`fny{mtxTCMaw>FOo#u~FmaH}t<} z;ORh1c=}^xS?1N#SE`iVo(|X6m5|bQyeHi~2AF7LMcaFFto_6M%sIb@1fqJ z`2k4F$J#ZmnJdeY3HS6qKU)Xa;XvlkWymbhUOU#_i1N47X3p7n4%ea%7ro1Z|*c(i5OR!L z&TPbX?4DW~4a3W*797Y{r)Bn0`t$!Pu=_uptyDU>El|uA?whfbe*lEINUSkund26{ zm-aE7f+?=Da94yhxcXIDge0GzOY*e)vK}mWm08gvVShEu|akD-{C2IpMd0pu0 z>)h(A?B=iy*~k}D-$o7EsvKBXN^xg(Uj=R)%+BnO?6B1hA=Km35$w0$Gu2BR7vC4v zK}kcp&(Y}atx8Pt=$_LIXv?us1*eM^e1Hro29E<*#8+T1Z)8@b#c-bJToq)WS9CTu zK>BS>d@CAg06(vivxOF3*BQH%BPS9>^lIM^aQ>jsXiQYstG!}`o1?8^?EZ~8+O4R^ z>b&htpxrQOv3}DTrJzdl>TTyxe=m7ct2htPWP~U8FQ1qcUz*LU>U^7y#(5&XBtKxZ znlng?r8CPDRW;02E?eRhBx9ZG&T(YP0~y~Jah~qL&?VXuqdbt!Pz*qDK3-X&mOSp=^;~WCFkzf<(%8;t}dt!2VDw>2R0x^38D&{o3?N(-+oq8)$H__n8Mr|?wq2K_`mecXB`a~+a2kALB@a% z+Qu_12TD#(l~EXGv^+94x#BQ zWH!zdVeK3%Qq38xMbg#BUaHA4PwA#O1xffr3+FfmHcm!4)hj~tKSa60RmnqHDScZx zT}q$?6*q)d!l0sJ7Jew*m80;A>4m9qSK~a_sCS)kQDIw7+DqvUGtyCnVoO^mA+%>6 zxWkQbc_=PzERHWr*|(u9+c7b%sxk&yX(U!%Sn0!uvO>RX@BAuQZ_SXfNjt1seJ&XMfalSegSQEBQgtiC1zEMO1PuzpUgq#p7#k zjaJKuytA+KoDZ$|$h#YS@2x1kdEJ)-owvM==28ba&*Z(O!u_0#HP$(qw!w0V0MH7h zc$8vG;~)SS=ef$qJ7X0(03qsUMz^XeVgj-@;}pbhSRyn!6CTOd^%G9n-MWh7T#uxS z9!YZUC1k-P+2*8UFyWq)9?4of_K~c`UYLnm>?N<|P^ZJ&RA%8}&PjA1R-0QeU^hzf z2o7Ju(cyL$-cY~wp>voIJ%vE!8|&tg&OY=4P8Qd;b|2+zLry(nD@Hl1=f-l~ALX2+ z&S9g-(Hw-EYRDx~3| zQ|O9Ug^o^g4komlhBSY1HDM}rQTu6<`3)guQk*fQ+hdlP0v&M;mbd_IBt{UuO@Qq^ z%{jyXcA63FxarQ0T3DSX?i=SdMFWdNC0XYg&i7wa*Uz(2yVL5ir!$<%^gGO6c$mi9q$W`=)AZOin(f(C!PTmF#}Z{`~^VelI2=O7rJb=UTG! zvDku)7Cvtq(c^8KKjz>On024!T;Z*f7M$&TP}=y|fqLxf={5D(6-Ck-5ECJ0i>lSH-K#esmUp@G?kh>6uN1t$<3kCrY8RgeWcXn zXz{&6{Bjzp$+!5g=hRZZzd>uUVJ<)a68q~4@Gr3{Sdf2-N6^hzpjPAHfZZD2a*osRK?C8n%AIYCD}%wXiS~)r$@^f*q3O z{6hjR~vzJz90rvQ_xxJA1>QM@ez_(AAa>Z|S_E6Y|*=f`jx6v7= zkk6mUjguamR*^Q<;6htigN@$otnY_S?JM`EuXrLiYkEk8cqx`rhQ-2eZ*gYPP1rKL zQkLF;QcxkXE2oQ>W3MJUCe!^00&O`zj*~@!?0+J+oNEwtMs6X6#$4r=^Qi64`*3|| zE&8+`j+F z9yh>?akCe0VnWL}&s`7V*~vlv&`&<#Y)I(4oRMgMpq_SVwyX-9c*xm15Pt;AN@8n&HA-6 zJ%Lfgao7$2vRL1&!&)AqeY=WbMd$_C+l8_^Xko>^p@hO&9qA*CAZijI_!R+3u{d(z zo?ImB2U_4MGKvUDaWrcd0jzs8tF0DGh*TaUxJ7#Gm$fJtY#`fM6iC!HKydXdmQ_g6 zVu(Sc$Mcknbn2R)|jl2tOHJw9fzmvRf(*Rw6LCFJP;#zf^qAoG8k(( zh+urVR8}2@ev}KXU+Juq1kgk<)}ZN>s%xYaZ{z~7nz>yulm)XT!^p~~vMw*<61aQn zqP1K6RJL}D%4NZ0ajvJbMrUC-QKMHql{FgRMQdlwR!)B!=ecV~jI141t7LT}^eQ%q zF#V;c?5Ap3E&VQ`99#)~N2aN62v#L{!!E0I!E$|HasBr2_PhG4=RlVe7Wp`|CeXvh5Mi2@Db>Vp$1f7E2j1&|N^Rb|;?Q|L@D(v_rPT_2P z07jk@(*TP;`*J-nnf8nYghJKRz-FJE+l6N6VFlq18`hWA0_zm$;Z=bLVOhV@eVD4Q z8SQ0+D!P`&F3z?@WQ`@)p2^B~g;RD{w)7eEVw7jHu9b}fDDwQ7tZV;bFj3cTJd<_p z;xpNLdSND7PcL~58fC2_)#1i_enn@M=W+pYWaF%ziqez?M`o!@44$YtN>#Pda~2%% zZCTfWrdf4~(wW1;UXR4gW+gqa6LVmBAICMZMb=tH86-d#@i(?TkYD6L%7upL=W?L| zBoYlZmR>G2;1rMf+_7UmYd&RGNf!EU*4zLu?RHKZd~#5!dMs`3fh4;4ISK=!{a%Pt za&uY2PR=S-a#7nX7yTXq%28$pP7&@6Fw(s>z@jef&;yh2pR@PcWewL7)_LqQ)oNHu z(R(Y6Q;^)O-*2v_Y~*NDxbizMhB$hiGj{u)aDwdTVnxuEzeCn2g}m`XI^PQnC!Fur zbLo5lFV?w?S;|0foClmmH^|8x*R71a^Fn%IjTdsAt9O^IgQVpPxr*&^l})PB&0dI( zbK{en`?HL0&;^4BO8nS)_0Q&{`wO|S?ZMocgUMpMXYC;gpc`M*_COr+K!_b-je$E~ z?*fs88)7|Ve-Wp6Ea@uKD{CjA=`SG3-5(UEJUXsFQ=2Zq$s)d{zhLwFX4(BPg1V$I ztY20WYQ`A6M<*cNS823h%?oYtX9s#`)h#=7LCS(j3u?+?112XQ4)dsb#+&c>8>_@R zzYoFaCosg5*|GFE7s%~4!Ko`^lo!%#G6rPLQ^+5x*WAQl!fQ^wkX~~HEIV>(8*j`+ z$nqk{t=OzpN-37zBTIcH{;iiXYz4$;jaNv$mwJ!6uc})6<^RXtcZXL|bPv0e5CV4t z38YX{Aap_!(y5`hB!nhPlN4Hz4uTX(K&3-M8$c1Tpnx>J_wFr9QPij?MKOS)pr}{@ z%WIeK%*@{G*}Z!c_4n`hK2LbBv!|akXU@#d%&Qa4n$`iBmp7JLnO*v4Nvgb;-^LE?&PWdO2Aa>QAu9>H;Nj*MEK?X z))e_++{~k9@!xd*H0wG&f+0oJQKiK~hzTBU(VXcKD-`X#KLDyRr$5Ie@Hn04if8^7 zULQJ><%&~aE4JnJB!=T&Klr!sI>7%|ug{nRUjH6>{hPnVRPX7z*8j==caUg&swdqM zQ#}CtPkw1hZ(k1YK*!9t_LVy_>Yjeg*Pr82i^f?ASzvABCugFE;=Pd8?K-Ibzy!EI z!f}g6lAT)2rNuv0v?62g2sezvx^g#+yd&JOdWp5ML>_?KlbIXlU^woE`|b!g06cet z50%A=kUBmfq=6by15(34ZZWEKhXgTeAxNmF26g^NAdd;3=<6TjLhqhokSJ zFRZif*2D5nfB(#lDRL(>gnApSo%9G$L%_FXAKsrOXPF^Hms(@>2wa+RX0U&jT1V(% z`KMDKDzh$@XJQ0CogKIlQXlB>)JAKm9?Ou23RJgY8;U%HTfD7WME8sf52cx#t#)7D zlDAkd$-A&7;4g5z=wEPAgqOTLQ1cy~R07rkB2)s&pNiCw;{{Vp#&zDB=HqDPKcpU|Tjx?h=U0W7YFV%(xBK)bzQEvd#Z z8$?jmX=qhjO?l+AO`;eCHR+-Syi;1|67;0Fzi)DGN zsnW)@bj%okdL-3SgRY$AY^n@?!&*n8xj~C%`d4c0+LeusB};dW3=LUo&uIcQ!~pDh zw~QFkysOqQ<)?D%FC-{iLje7;xIUkYp2j|2x+A zEC`j(vfD7vATiN0@C>JKy=y&XnTbe8OSWdzea3p$vH-Q7t8L36GYQXENRwb6RG+x= zbX|IQ-kLyV<~eIqDQK-m%A=F(ymgsnv(}DuTKk^$92i8}~+k}p(u&%SbgQ%Tc z2bK!IXf3t8k6OVsIpiH-srnju^^(UoIrAP7uWK0WS7ng(po1FGH!fKpBDVJIGsQcXtqU!`p+}tU4_<85`#Qh>2W*weA6aWlmI%MfZYKEcx?){mi9)T6 zl@vkud}!@iPg796kh4COezuBBN_{FR{Tz}TrD3Y3!IrNDg#>J*u=GT14V_56RI)pQ zfKGJYl8YL+y-GVLcd*=pTDhrm;XLOZYorc*kJ~oNQe*=8#;4YYbdaobHPtjwuY^Rh z5IUs2U2LNu%lud_9F5?ciNMvtU)$;oQ+~K^y-CPM_!x3KJA583LlVCwMq{nVRFL+MyMqO6DP!K~VPO%q;qXra_^v|!X4$CRMO?uO_er+s~ zS|dX6FzKk z`#b9;iTr>KcjQcnOlRD*MkD11df`*1d=w^#x}%z}@1}{byf~GF_|t1Y*z@E%{u&4^ zE3ywH7JoV<%F#htcH3(4BW?ZZ?cc1EPcqJ8;MRuOs9jpCN%$-l8%Uo1%i2$}9MM2U{O~UAK&?D}j=*tM)}=8x z@6vC1LvC4W+o}VEVQ-w}BLv9D3Ltq&vK8qd4Fl^#BBYQyd@!d`pV(?B=ZS5$6!eou z)-(F;4uwGfQ)@?~AKwM@lRq6_!xn3XdbEaZr6r_>&ZcTHuqwc|kN|3pnzk(##1&bs zr5-Vdf#(L=TI;|KDi-@t@ssBMHI$mQY{w-_Pehhmu3HTnW3ep@>ZU#L=zi8>d%-eX zYe%}Dmu(vfpiT_3^|K&U%H1;s;dq$Ls$(nAK^kOV<}Ew#@yK5$;kT0J^;$EPl-3YE zejQ`1j?tpWudYF1V%$NA4zWEVN&D!n->j46y%>ylv5hsv#2CQ&#MqoG@9fodh|M(Q z#EuAMeyDAfpXDqvgkf0R?yWBji{Z+c2DbYpx}&D8w&ah-^)C=5)`@6NpiQQuJ`RcS zz#8oNm^XbseE87pVq@D}5)>fJSUbRAMyV#f9c+tNQkvR+kx0t`kvE%TFmA@W@Pw@| z)C`~}N89^_`(Va$W;JGfUVQ2=H$b>CJAlSau=k^KGuvylu%*&Uo`{*}O|%ao1p!q0 zrXq^~EDW^S7Q~z$U1*yGWEvRZ^yyBv`Ie)IwB~*%YUS=f zT9Y2xW$Ud2H?TSG&8DinRJ$wWrK>eXUb@2g>C*e?|F=B0P($@}+DB`skwiItem1C0_z2hyX5lzz(P9=6)yq$hmTIsM{fG{3wc z^zR<1pEMs5xlSEEdyi_{w2G4E?17)|_mizSxII%J7^2BC> z%M)9PDK1NFbr^~#G(y|Zm|DNoZ@5{vWdRWt_0;q}{x#{!gVW+HTlI8#z@Oe>8)`I? z>a6EXz~6ez*3AgsjHWzpYj1IxfWO2Zcu5qt({_*Lv;mw4UC9H14R!D=n`)~J*$dQ5 zk#McU%1Ao>3EN`JbwpC@x8I^x-XpHp5?LFA8~7|X;ZuEip1q9b?Y)@Bw+E5>wMEJd zu5C=2LA6B^@A;%{G-(gt0%b|O4F==MEexKpBo5%!C2=2ljt+R*Hjmt^3UW8*z$fIx zYKz=`;u%{LKLTGRWw{%r-HoahX4j^Wyu*|k`)teo$fH0{pTTz;;2u0^ll;im+Qu}# zPlMxWd6#>H0Qm?c3UGIxFMRHKB6fag|YW!FZ;M3jqYpR6J@>v23qq2VT=?uddNSKCD!FV+X_sTRG#$FZu5YMzMOv~oj&OSCnC$_} zG{k{TMkBS7<4tcwby2eBJzm zleT<9Ews}swuzSQ8YF-Jf{310iEjA^M3tql+5%w-$~U!lRBF#xLyfI^qZI4W%wW_o zn%i$p4duPpYk z%bz};?ReL=n{<)I3_e3MGEoq-)nvN5;*tikczI#_0_1D$DcpJj~+2$Q$P-p_&r7fS@F!NkhHBP;I%$=D2F zFSZ^ZMV=Cx(s7q<)5vRHic0FOey_;l)x)?CZ5PM~UV7FvfVn=h4I^K8saZz@<7yrU zeryOi0M2EDB?!ZZ5Tw{Y(KM9y2(X7L(Vy6sNpk(5%2Y~d-m1$n^vqRTTT5fDnJ*V_ z-QZU{h{1ZY)_t@rz}}FK`^46l9=m3%V?l&ONc}xJ}}Jy z9>l16bY4WqUAHZ!+e3~7>Cg=dG&WIy*HcI%lK_mNvtIwO1MT{iEyq%(7efqi;p??l zgip^{T}|ouh=u-2u)RiV))6_lpK6e+>@h$EkIU`EjrY#}h~IIw(JaFg!mZ z!Fks36<+P`fJvVKSy)DV4BM*2?id8$x?-t+%TxB3iOWl|(W)Ry9gz=*yO+h$Xk!1B zyzQl2o&k23pZzKFp_guxH88H56_~Q5xEs95lHxYNU@OG`P(39*z`k3O1M8Zm!Cp-%k~3 z(i+AyUtWpX@$vGJx+3z&hS*ai=~t-xfgi&9o4{I;;Try-N3%x*PGYf4ek3Z zfx(rb#bbzXa0;)XwIbUpjz$oTmT>JMh51Gcy0VEq#S)2H`A`-fOdB+{5Ay=wYJVoh zl3)VeF48_g2hGRHJ(2bVOHUK<_EFG}uq=jw?tp4$qzkWSeJDq#MBC?+DZwI>Ok@mo zVO$U_Uf{nOV~_JE%YsFAUW(y(2v3D4tfvD!4`IX}nNqyZGk@j@VfZpa^No}|A1u=J zzF-lo7hBtFNaVF(W14a zj|Za!4Px*Fjbs-I8Z}@=yT#jglkgCsL;Vo;GVL_|HNoD4I={2GlG}$ML-UtuZ9*8g zEU3j!#@Qoj?#Pk^3!+^WGv%9(_6lMd$!MzU5QY)^Ym=bhFQKwi?Oi0x1cb?FQ}#4_ zYs)m$%8R-QAxcKNy_O!{5Psj9a|&19&9J{OSsp<&4KjZ33$sHPdo#(h$$+VClghs3 zjR`BEiKU?(=>NLf*IJ%NsC;GO*65{{Fs%{!O}X98zEZNhpgk1B$lgpltS_Qg-q&9U zfkX#OI$q$g;#r$6>tSzeIcw-^P~p9jG=sn~uTdSax#xzfF_eTt;i?Q4HVB62;^vuo8u7`$iy9Kw6H1fO?^ zv#WDcb3w%1)W@^&1E52s))O5fsUGjtG;$V%dS;G&2+bS^o5C6mvM(ot>lwRvJ@pdf zta_r0CuG^-sM7d)#xCx;3S5PwN9NiaFzOe`%zDPo9;MObqtSqRsI!B3WhW~7*GBed z@3SM!RjWl0^xwFP>{fN#Sx7y(cNrZ@g>7yRdl36oLc<2brapd`x>j5aR&^d(U(~dB;+~JAyUXkiltcH~TT5hWePghUFkp<$ zvwuYv)i=h;7!8cYi8P#^8*Cp*y45$0kSKG_z*Oq_qT4gzj;}R^c+1q%${RG>TE1lz%|m3yzYLKBQy@fYg^Caf z2t}^vA>tQ`vPy@k_Bwu~S*VDUC=AT=i3OfOr6BoHY1028pWK)M`6Me;ekb&0)> zWT_G66Z4P>=06zZtTg7{jiI!DvHeM3746%__T`pVh%+Da*$Ia5SgjRjz?VzxUt3bN zXQ;mKidy-YpAtqVEw{g*12>G{FR7{_ZenHSnTPF}l4S%U$!q<3kJ^(hV^J$-G$M@d zdDMPE2X0_=%!CoQA>xem1Yhtpbc#Y6N~8RHE=P_ZjwKJnQEZm{OPCC(To_0m3KPly z^;PyXKe97Sbm|=#u18N-XE@8v`}9Nf=mXIAW?nCD=gZc705F%2?pqHr{zjPS)2G5j zpZ;WnU6ROEu!jEKV1=su6%dj2=$D>`9zA`dy^xL{ysQ&T{)=g}1M({Eln?*U_xa-Xlh^dR;G^vf>j2tR&{Neo3*t!Fc?r__ZGdCsn0r;rgL0;jz4IB#@bNRZAo|kECieNu?pbtQ|eqJU@aem8pxP41UHwSs=qNC`*2RL?$&G7!%lF13ph+fIpa?-ehmV z@JEw~2F6nMZViiQcmcn|x3=y~F z07Tr_28M_uqZ)|x1+Z|sHv8+iD6}AAB9cqg1~-q}SNdA~TX({~ z!txlCOby)1+8}D1)@nk#NZcB}`=mXbSoUe4{0%x7lMLvKhY~c>z z`9^#n-1xBVsNHxCNC_-~=Ln^Iz3}W1)=+*Ofg*?#ESVU}B`^21vq9D?lH8 z*|5t1JMJqe8%|t+zD64w`TKn zN@G!DkwVLVv^OSXM`Mw>D2C&iYdJh&D;kU75;O>NKKnr;;I3R%8r|><*z=UICpp=v2oR+g9naz zW)P|1j#3NLlmEe6agy?lpQT+BpWf=OGDM~l>y)Sg+b%FbnJ>X78h(JXun!}v8}E8H z5oO`zn##>uB(I5Z);J8uoiz}iuwe$^|KoV4)T*yUNtTtqHJkA-HER$Cnmr>ldlE~` z!*G|X*@AFIsX>mZnz=C?*X&tUGl1vCt`9R-6@ni&Rd$mbO~gp^c@t6JE=p3OXhM{- zmPk$c_=#r4TU1Tq+OXfDUQIX*TM1z1-H=AdDCulfjZeh+fA%Kzn)290=#S~qquVPD zXnd5?oR+34tr*W{bVf5Jh%{?z9AKaHU^Wq%?2jgBGyuu}RVJGf3u+H-D%2j_l%C8` z-lZ*C!aa+B4TXVVa#Iv+d?1+6lxHylu>XotaBE<+Rb{lPX{CK5sjH3Bj&5k9q*$poOj686=GqN=N^?t_8g4fTkvtF9M^k%7@%)6#oV(en=>OAX0&- zh0^7b2O(lld71m9W^Q=@0G!oV%tp?>N|@p<%5q5J(ReB7+8EaP9>=MmC zp>McOtMEj3W^5mVE*3r*xG4#8Jj=u6UxEWYvOFQYF&d{lk%xm5f zNnBS{YC7WV1|7wJr1Gv5bOMo4?=|8!Do5?eMkk`^pZ6-MGDf4)k&0M4Dql&GuV5@D z6aj==qm*t2g#L~Z@=Y_?uSYAL^{~tV^)*|C2z6fKmh2JXL_}~Du#*Rh-&kdx6ciGT zgOT6d^zt}}f`+JFXgKvgC6|MHHnYajsbiHmI`;bq>&Tc4kBWMlQ1yjSLG;{3MZIOG zO2Mv;R|ZIOH!Of=!@jy^X2WjL^hUmts7GLSK_Y|+5jy=-5q>F9=1B5n9WUmUnYtFn zeR4EyIZ;`nhc$3lFElFrC)@`WH&&KSf+|+thwGBL)5Ot z8+k99zBXNXM8;^w_)@FAUxe%2f|Wn-Fb>bPR7kK5@f%h<|%#UF1T4su*orW z%LB@6J(j_92`2pbN;vzv78xERu7%R#N&UE$PCkAuly!m9%a0VsutE)83)MtJP4!~M zQgkH06)H$)FIqOLNi_Z6V&#;)P^TJ;&}F(77NHAc_~tJ??5x`rgXPU;uvtr$6?#~M zO$G=-u}Gpw5pgEj-~DKSx-^&JlK?$5tp4q5 zJXQ-I%ExMUsg_&^H?v{U4*+T6d&ML57zVG*7P?^W;$E#|tChNhv}}eVuXN1zIArCy zW~i)}Vq%&q^qqCeTDdzGlO+s9@KGNGtFg^maY@%05S6_uxR-HIOEod$y}OxMI(ep4 z=?bTCn~9~9*%*#5FpPsIZ0Q8x`O=9GJ@^8Hk7t{=DBG$DgPF7>uwEQpuvN*IpT*W- zVG#Z_YSHvi22kZ85@f>)6<=tt*OOK=w zOLO7Vz~<;NUo@)GT=+C*kMc`x65Cw(GzPlcLvE(%GqHRVLZqe)qzj!+O zT3m?aP!+N@7b^=p?Mk1BvA^j1C!zH1C!DjcEG(r+h=4 zJ5$k+ob$5D4?>N1g-vMYf~W2eP3~gCA>`El*7Qi!Q*rdBL+Ne~GwbcAT9Hq^4En2{ z$4#d%{3#2c8rs^7`;@uybH=KdJqThycsb;b%0)ONq2J0HG|R2TledLew!XKlv1F^t zEk3$9J@^u=oi&f;;RUY`jvP`3D4)HoGEmZ%+up3@B?gzH$nLIO{fnAk!b+RVD7%pi}n5W~wd4916->F|V=3;@pGN%&Bh4J}dT&ww%CwD_?2!qDLs zVtjeNg}9$?!-B)eJ1b_z#{yqnO#Vc< zDBseVymF!CS6wrk65MJ*pS-F}H6XAleeIUmnJVm?*Oaz;ScB6x`f^$|w%SHx?C>SP z#FoN)9T;<+_u91--s^E)nMMY}cT(5|F#RwX_g)e_VcrAq>b&R6fTO;EtUb4-aN4Yv zl}`IyUX9stFRf@PyaZtX&P#W`QjS(VnrF8c_t$^+wX(q1EP2*9%4NA6J8I9hikvXi zpqWu|eXG1fL5%`iQ zEQZN6>9*3Ee9%%Eds|r`={Xw0#ioYKYnTw9c;OaJ3HZgk)=T0`upf6SX-*oo5-}6e zN`n*53vDGT%H}^S`(PhWD-kpa7>)-`6L`Xc2H^QD!JM}^E9B$ZL%&1r8Lvt*7IR=5 zdL$vp*7dvmm8*X!jRVMosxS{=P%ccqD$J->B7%J|WcerB{F%o{pTk@D4Nn{ZaD{4EwCk-HDSJgmKpL*x zR|e%qnd)_0(~AXtgb#nxPbQaj7cULRGhTzp*w#Yn>%oo*bpHyt$>XzN$87STm-@k~ ztPcqFl^Y=tjbyc#>JfT4>ZhSHU!mcSPDFmAH3|&A9P)PqM{oHIZsyh78?EWihK}YY2>e~gH4_A7eIrK~ zNsqy+w_h4N667BZ7;5zfe3mtF9MoeOGMVQSTRQD|#e`cl^=VY31GXTxQFB)t^n``A z6sqJ#Iqo4Osg0VoFoeij@PucrHq|DID03M+F6c?6XV*~LEzFTbZ!IioNJh00;k7!} zv5P#=#@MF@s8KMdjhGL=)WQ)Wkrki|+sC8zy}^1oI=q$R5klJ-`_tVT7=NEXvkjW8 zfGE5}VGaI4RE_2;kvH0iBykF^{bP3nL+!Pg&Tr@FNso+!vg-;qDj(1JtIj0L#MiY-GaQ9Pc4Nb9 zN#s@B%#(<_Ej`i2@sb|F;E>h-)*<(I1BZOAI^;{NC-29BF!31AB)V`;r$b!jxNCjuAvwFx4T09rNVlxP`|YY@CY8 zbsROo>ZiXhQ$Fks*SH~$%W?%K%2wUc%=slV)T;7F>tPVCKeZG2<2Iv=^9T99ov5Q% z4tJ~yAVKX#sMcIeWZ<-$3Uc}wHJ|^+#W^h^l=cW zp?x4yvoYUuhc6D5+KaRS@c$)kT;oAXmyUNlB`;vKJu%9&#^5~1P`Ma4a}O?PPyftw z4ACPPBIOG+H}FWglyc zyakw!ua=x*jCDRg*%{d5UTpCp-^W|Hbq0jS;xZlLjyL_g6lf=@>)gL5zjR z|At;AtG5MW6~!)|x92!kkkN5;_*_S!JQkDSbK<~xjuLV&DCqf873!*WOo_5=a%Y}n zy(G`U)ObL;<^z*OxS0p!oH+X60!K?d0>6mw^a4kFc^yXRkz1Zk0AbjJjxj-)gF3hW z=s|~5-i0whkB=Ef$s(YIF~kxAug|R*fyv|tfHdgD_$WPwA$Wt$EKpVOu3F-#sQQIm z_7V8vOjrkc@FB-+`KnGV_G0{ou7&lot8w(oQb(#D7Ub;3FIkGZf)KP2gkO9uqKUW> zc2}{ZCG4K);5&dKRZTHDSnUU24_WS5MC3Xcmv1r&*R_D8a825(M;-ZkP#zWyRzRL= zZ32I4g=3c*A|3*ZSWV*#Eo>-gX% zz58KNWR)IHSMT&pT%JZ=QpIv&c6=eiu8OsFi{qdlxuA-59>a05j;Ue+JWrWbh!tik z7QMLxGUlBQB4hs9LCn=!Jnq;)8pIplE9I!h4^t9%I_gTKO}z1y(r^z1J^F-W4atZ% z&d)}B0OG~Vq#F;$fjv*XSPQW}ja!flV{yP=qnf_%;klvat7=e$`AOGXTf&t-NMt1wJs$0fN9t#gdX1O z2$IN&coC8>V>s^neei^ZB*6bi-*?>yzW+L2`2Ndy;rrM2JNnRfVjV#gehqJJZtejWGylRV7g7 zAy|$23kL+qWF8RJq|psD@8ObAx)kH1FF$5;%$KZ4oTHcr zPb`O2asIG7o|4`{;=F}Hxj1$q4q*H@agM3CZ~di3MqeN{D^y4FBkq)Vz$0q?C;OwB*9%#I%fzyp##49rKg(Cnh9KOwPzq z&ON;42`MUnLS9~SMnOtmL27DpLQ;B0YJO5dN=iy$$Gn8pf()AY_wrEt{SRN1s$)yv ze9JK+sv53TYOytePJ7!C9GRY+mY0#3I5BU+#Ej&O{M7Ubh54ze1*z%j1%*ikN||zL zrhn9ggv5lxi5U~~3nxrWPV1PLmr&4gLej+ayrhhz{QMN9EPl&z&>=rRV`5%Ga>0az zj>(A$1sQp11rrkzQu7K^6FU~BD=X5M2$&6q*N6bjB}^W>Ezh z87ZkLDfx*L(-V^?PR!3JOilpd^E$%sf|OL{8r?j@KWbuPLc)af2`LHbNh!$_lE5kH z6B9BfBqt`PCr+G@OhLE?%I=G+pOvCIrgcoqhqn#+356Y#Gt!veDIE(7(o-|i5;9Wq zl%qo*J_dfMnk~(nvNf?LULCceMZC(f)r&Op67>BW6d`HW0_KUBmj9|a6#Ia*$&%xYu~xJo z1Ba=XOEpMgqS(@WzOJ*TB+X+cO{C*<%EM`HL_!TqA;S_S9Y5W)sq|7f&Fs}Qke0p} z6iDxD=nSI8Ax^m+dsj8Ds3n}dD>}Or{t0Kl@B&XIohYh=I9JG}=JKo)^3X%|oZrxT zc1I*lcnWsz+_IF^wygUH!eoXz<&=LR42Z?o9@@hvSVEjjWT%%{rLRm6fEPdPgUWPz znDe;w1~O9dpUVPjS1(rD3bHm}&Ww4p3npwX`WMnsO9YteQ!kmu#|Kr)RM@~df({4< zN5HQ<=@ybM_sO0AK)Qzi#a?#RUY3rgVHMa>7;Hx)=P#sTN3o$!3#&keRZUo>H~E)g zHKU0$E|7I%I6iiq&U&;_6T0z0NIiPKiL)dpsZvhfwRZ0Ddl3FhIzSqdypHsX*3L~brY5ErnjnFq17ktd zTa_c*I*a7Zm?1x+QHENO;;LToU6k?R^_BYVoHL2M7lBe(-c4Tla%xF0VJ1@(xd(rwd*Ll=KYyS}E z9ls9{tv7}`d&}4mJRhKbr>da0;V|cW^7ojLp<6_o7@qI5{$x1ROXSZaF)ZXxXknpj zpEcsw%mkJ9s9mF-bA9%xI`i*tM0<~M4kVdyyTll0S*A(aFVY<2U$mi~1Xl$VHA;ql zk_vrpPEna?$z&Zc6*|pWXJn*Wg^mh8_t4rDQv70$g-khQr)Efsl9gf=>w$*klgRss4L z*2HjEa=evVy~w%ql*766U!42GO71*+a_-!poV(4#y{H1>dc5;X(leQ!Bv;aC@ffK# z>7LAjJ&~1uQQQb+2cr@LnRQ{X-OC4Cev!eW`OfD9$yivMxab^3*H3l+=Zg%kPIX2G zjbbL^`3ruDiwty4YBrq)5BWs~z8><64DzQrr^_o4MKNSQj9P#juSyuf++pjdgquH9 zj!$&UYU3E(BB^GEVQGVQ<6`HOrJ(`5a+zD7Yk zd;LDA-y`B20>uX8Umt9`*r|~3lIaJFoeAa5GaWhyi-;HE2sSmpR+gg>wSy=n33j?ktf97;r^>I2F;iwNM zn!vLOs`Al#=jRf+lVTiMHC8DmsPLMpsW=p`^Ef{gube1zCP;EvD(W=cXSwf|bdj6l zX67?L0HhbbD9Ja$ICIjKF2@@&;MSiHHaq9&;SKibC4|P(iB0I-KK)XS_UYpduR!H- zosf~KzD=W^!uRIFkH$~(;&Qh)7au2zbElmu{7l)#oeqS<9 z-h{2kCtjtf#T$1rO`KJd7gaUTbnO8Bend@VXnuhH1>C%6l#)Zh%l!Pj4#D8HIYM8| zTr4&nEIas(MBc)#;OFPHD4l19%FfSYVw$@2ohO}h>B&-OBs~$ct1ocKI?{_~- z6|a@sKJB~&H_F3*IMs`z?_gN=>W_SrDqbxE4uALOgC*aI<>Q&{S!bz_+JTOK&bd}j zP6G+m!iJY2QHiKUlOBHY7}!c<&K}H}KFH*40nB za@e`1wghioA9IdDgZvQ@2QQ}a(=YU_bwgKjg#SmUh{u7Ly5!jVL``+c5$N%k=4FhN z$H0|mVw&;-(Np57w%sRqB&M+=F?lrerAJywUn8Nv^b-1d8rv<+Tx`ICTjvCF?Qn6qoBhg1Au`wRP$`QNWN8`dBZ=`0hC3Dw{t3~*1BJE!@R zR_S~jiDs1SwjMY->!6c=jsWi6OLRLslW$d@fq>i!*9=w|Wom%GD-FO$eRF3j_n&dz zC&{DJkzM&X@atJ;x?F&p`Pe-=ovu0O?4(CHcg|TL&ohJFaNhZv9+oAONX(&%CJS|FM3Gh?BhwEn|OraUtQz5=lJLub1H$wE(7I1}N-5-b3) z0RZuuV1`7ck3?anA46&K_uN%%U!&w@J0bWU!CvEvvD)ey?h$9 z5I6JOJG&E2`5o3*y%G2vWvv-P(?6Vp^$3PUcg{?>%9(?VJyTW8(UX5VSNW=q#{cE~ zRz8NsxBVBN$Blt!iSdlUOzS%incXk{e>G+9WInH*;nUJJUTiT@RWd z98!vV%SmPkUj(|I(<8uW9ZQeZa&?#c7!mwH6dJQKsEHn(&6y zyR{Eyyx8~g?A~D4d~!+^#uke!?3YSI%Su3~aUmF6;r<waWF{dImE4# zj!(gHixx^AYlhRrVUB?`dhQFc(j0m&*p)BOWCG|SZdw-+aZfCq9zZ|&V_8>eE$vay zHCbMTL7AUnpT(_uu1EqHyiPD@E=DyU&q88cr4n4;z(jFk`aI_BUBs;Fsb;PkwWNy- ztSNjBB8qR8K{Jlls<$q5LG!Eg{69KH90Rgm^DCgtONZqo1*ROE?=)?rnpiidMkMO zW9(;7iDUqM{p@P70q^V!hsHACXi0fA-L*|31G#@xDHG55=_!ilWnUcgxFR=l16oh47EeGIQ6pl=B~<+ zOxGfbya;-++hC4h5U%m#s>YkUR-2f7jL7t%ULeF(RfsE?0}t8DT}2)Cac>t~3HO^S z$^S4Mm*i7b5`h2DeW$+*ZWDvA%)<2mB)S{l`LFaF;F3;Q@s^y(p$|i`HY5bGfduL|)wu z1%e@1F8$kJi5w1odKUEK2Q(OEU6$L^P59}d5w1VrfJQeFF)w2{?x%h5gdfo8_MamL z4p+`6->H&(jX7}7eJLcNYeu@# zr~JE_sojNzk}yLqS3-9Mmb9L(O@?;ovwD4(^WfZ5IEJP7&!q$t&L`z=xjL z^$Br|4N5WU9WQ42_P0upvwXXfJgQ2%+)L8p?jqH~I@U^m@+8Q?KC`LizY(gqySghO zvs~?KkQafJKC4cu1QFR7)~sqOZ$IFg=uch+(L>#%5xs>PFpvGmh2~@>IFH2&$itOg zVo=sRpLz~txjTtR-B4Cvc%O!l7GPrcolMR6nuMZx4T6Rx_CqVM)DmD!0VA; zy3_4TT}66SLwQlA>W3xa2V0d5#V&^=M`R)=8v5xbGu*0@dfIZ=S5?0`$i5~{Z_czl z?oXp9FMmMJzyh$TRYWRk(RxlTx_#TBq9`8^)$Z_&u;@>ZxMoUnE~3LC z*HwMr&lGQxI(!1ReXiT*s!tDXbcIn@nM?g%^K(VjQUE^>w?`SQ0(0jJJ zQuGLhj`p!xSg^%Tr6F~7l;ikJ*e`yt3Zzc*MrB>{Z~rb$&1Vo&hB(I(<5*WQBSx!$?MDztWUVyCJ20iW0x61 z(r(vcJ%U01PtEkNs^a0=ycCJ*DLUf#{jOQ0S5M=JR!alpBU%%<0jlyuFG#_MGpx-&={9v~j{vwF zIrgwCnb1*BmINuy54(C2d1g=4g$%<-s49q#7xP^;U9>SxT=YmNUAFKMpD!#Myy$vE z-iUegMY#>A1^Fn)>Y5sE{!BSzb^R^L`w${plsk%>c{kbz-c(#WeIdMRhVX;K6(58- zsQaXIoUT9R3mAj%u-xHtJx72~Z?~(xfluXLp06>MN3hl}!NeQ$5j&{0+Nr(j5Nrx6 zz3iGVlU}~v*ue~o@6L)m<{AQ9C1xIT4U`*U3S6RyUNr2utFIh^pRn$Ys;>lZ{TfSx=BL;jpzV#uG#nCLRlv|eJ!k9pk%3;b() zi6MU#hT}v2Jb1!}{Asku0T}Sk29zZDh-0xZ<3pM*Z-O*VRT?|y!Y2nW_7YbvJpPue zfROX5G-ogzm&UD1^CFW*EkJy5$d2rWruFeu^+1r>nC+Okmo%624B(=9OaZcC3 zSmKoG(vnwQi8T0Q#X^hwz&+u=2{+`9EJ={Da$-7+Tad%|Tma)w0h!p`bz*Pygd4x0 zHxC7R-&1pfXnX_rOJrGZ5e`c+EO)?Ec*5o+fWxPaJ~%StN0>jWMQgpWp@{xHWMvET zf-2Kt%!kYLd~fCCW!LOl~7tU%0b!uULx znoSt@F;4$%!nj=Jv!N%OFct`jNgrXwJ6;n13E$geyB|)sb`Mf+-E?)Al%%g*FGwV^ zk1=T8QzwRg``zWc_N?nmN*zP?!f*Z_Pc!QGqDzd}g&KF0X@S_9?-Zv)`X zmgfBX2)BWd+zh`N%wRs1Jgr%vicF)#|LppO$aDH2%NmB^-zy1W7*;~Q@T=={NiM;- zS_!!dH}m{j(nlHnhpV*|gfY~y?8u)``8|eF_*mxt%k=;$=_Bq(*9M|L%|xn7OUoVC zUbyxT)8~>#|GvJX{3>o{lKKH4y>E2)Fj~B#drbox8$*LHlyPf z7ve52KG=a_r4XX$ysdw=`BVmOGY?f%V=4C*VgQGX_y2abnz zGCX0~2;i&BMp5R107brt1(&kVuv0RxuNV_%_Z4HppTX|8$@;#=4%|*vcMZtNKG-p; zp1Z3=cJ(#(-6TC6jSO`kC5QVOdu@E6<7c^~}xZ`S(e*KIKh4-k2>fH}56!zf%(J3Mh$a&>`pvbM)jPd$sd4Gt?#FO_U zFYjqV7O65X@RE66Kc4p$$opOV2nAvEtA%@1a+~{!ZEle4;rgcMfSx|jKW~78JRjpH zIq2C?H{K2B(7<@ClnL$05-=U>3Lp+wc(y@d^9;X3)0NMPst&1F>7H>Pg~G`{_bWvH z7BkSc`2U2PdH(peAN?xBz1@Joz8J|9PC$R;84p6e4c1P21bBxYON-mD9UwO_Lx?W5 z#_AC?k=mLewD0PECJ5`Gjv^10Sr^M)Fa{q*25z*DB%n$2?(R}OA44WAue2yqi(kUl zJ=6Upkw;_Fpssq%b7X(orI&lMJQ6?FRG5aFxsd>2OmBB<0|K)uACQ)sA$05Ge$@nl zk1S~3IlGQ5<*ktb7m#c4(bN#6^+ub3c18fUj+mwBHH_Fe^sn*v0C6Od4lg8(` z2a~n%W+BI&So2NLdTr_q*dpgnrQhecYfn4}Evt$c?y4fdf`5}>-E>vaT9_ZNDq`^H z+JfuMXnbG$=j<2XC;bKc#rFw)$$s%w@*C_IU$pp&{en~k*A^59GR5Gu%vSAW+0_A$ z)$yYPqra-BtQqNUFVW1dM}w66hr37mOMlVZN$xIN?{&BNub<5Yx}h{~_lt7S?@SDy zKjD`+a;9ri2j-vw>X9>F5BZU^pGUbLmRk+bD2gLzv8V-}@sXYp}#8J`e(USK| z?vo2KV^;Mx)hMe6i1KtGQ1sH^dx!ZeL51#2BG1MT`KJ;W;uhA`gBXnGjMQFwvbekf z-L z?}!=fks^0*JuKJf6(cN{gnt1}Cp$|N$aw0JGrjTHp1;BOyZ6hNF;Ror)sKkkF!>f) zek$h10A5rePBEf%#qbK88j2?5*8yyh#vjqtoZG?+i_U8479Y`+ap=(FH>?9moq{?;@PHLZ0L?a#`QQ}uu)8SA zR0tMrY??6W9`WHwwu7aZjYbE_N>^@2fJML!exymsObnr5c%hh}(K8 z7)BZ-4D&Z4&n5X|pqN5ETI`-eNTWf*G7*C``*A7!-~qD?fd4lsc0cU4`3%`zbBj~x z{D&_W%2|vt4%vtSsHIXU$Wb5WhBi_*JnEk6CyzoPlqZvX+`{XiQG>)6)^xBuNzFBb zUAx9zVM6y&GuVdf+{5*-obEO=*mmpP+k&tRYB_mpz55k;KgQtYBq?=2OF;AkrSADA zERJIYkD6D@++FpsJlzl62y^puW(a3Cx(6B%SoJnwlRHlS%nae&CU;{!f}y`ZD7r3o zo!G@Vf3rK7$bVp>T)51|E85F`S;+TXn?D9AovHg?NsnP*w%D85irU-V@b?n@y$pZH z;O{v6oq)fS@b?P*y$XM);O{l~dtIr${f*v7Nb4-xql+^%49i^^a+Gy@pV2t}?9xUw zbYS^&auU{p2V-a4!u3kZ62Yj0}5in>wtbDc}>GmV`SbBO`d7}KP0SoR0&r(k)=~Ok? zc9WTv*plR5!^`_f@`sozKN&RR?((+sXSkV*c*L4#A;6G-wNZz~?e(((A)9=dMNf|` z@2Tg&1FB}Wv7-R&se8)1>tQ+FhGwuQ?=6qj!-C{v<#qf38+o7vgwy&%3I4>__2ZA?tjPbud(Ix$oy<0IgM@PLhg0M1smd}zj!gpWs2`Q^KbD_g8!DcNG-a701* zedN7tz8F+rs~Q!d;Mr`NSXllMxel_!Di8vAxe|bvteYm3_aQ%J^94f$b*d7IuK~T2 zjn)f60=@u*lO10#^dbJ6lgh8jF*zvmcr3QTExez{len!*+v9EkV2d+)QMw=ku(1;M%LY5zC@mFV5KIO={a=5wDOknbo|)B z?()B5_uzC0$?Z8JB)2lUI3zdah-$TBM)`N-g&Yx)hY=Ky$j9ITi%5X}ZxK0THbmq{ zIU*u2<%o!UW={D?@^g+cB5w=*e#j9UI@ZrEKTZM$8^iJ!J=A;i%Da;A!N#yuPs{=> z9+o$AP*{Q(|0XOIX+imUN$xcm#U+2KRN0rZYpF+Lbb$_=0y-!Q7M8kluPYGf|IX&_h=B*jbGpd<%oO`Z|a4v$%nel;1Dk zHb~Qp20v43kp|N&mzJoP8a?J2Zust}mY`&%y@a_hU>)EtQ-+)7?q9&Jl=>ClZZ!s`&A5R9SEZY*yvZ^sC{8U%z6o66hi5qNk`Y6RhV03&!f)Yx2J zq(?9WgXbCmtfAOe`^V<;)AFmBs3D`YS7QOAuIRS49RA*fzqjD;ZTLG4fA7HGyYP1g z{?5YRIruvdfA7KH`|x)G{ytE;ZLN4Af_$9IrymiREV4PfnXnN}J5=$Jd=(4F`}7Um z!fkLhm%e$pqP-rLmxR9?VS^Yw&&uI&n%I3sYx=~YiuQDT*u^?}0^I7Kd|~S^%R@jm z&rF?h^aCnlSk{SWFngkj?G$+Lv6INLm?CHuOLJ@$?d0~jnX48%guZX9$j~G3mms`g z=w?Ll1Il#wwcKa}273!~b&T9r&NX5XV6jc9cu0?6P$kJk6|p4j!-HaRC>xHM&s#Qt z@{b13AEH*JOah!8W(^S~K%uMR5-A;`7NrPE6s7Qh7o|f)31G^Y&s@XIAKiGV!bM&l zB1!=GqOIq{ytAU@Qqz)>lQQ6D*9m#aiRyQGCsYT;zsvi< z5b=Um%ftg!)4ex@zo6ycu1(Pa z2^cE0@*64&o4-%)A4*T0sesLCzm^5js8=f%lc=HMHLNDt2$fWmp`y?kyXH_FJ$!aQ z+`0MM{zi1`sfwRT!cboKpb^`1eS`;V`fK~M=&iFAa6v`gjdkeK*DLNPnM1| z6hmrZK}HIEHzA{7LV7}4dSY5?ddGrf_Dux1=Y@Tdxmqajd_!rd(eX1>IZMIto)0pw z<7#ISkb-MG*PyX_SjSB5DVo}v<6l*^I-xrLuXiiHBOiHrdZCJYNqAaWa<*cKM85O# zZLuDXjyPZO4*AQ=nJY9f?#vIcGeH!t+RFyj%$+$$(~4IZrp}}bFI4Q2lIf7s6-{Vx zR#`kr93}#N@RQ4GQpX1sFOckE#_-;#k{&or>`3{mq9R5jj!hws$n?62Yi*}l4&7h0Eu4rY+M>3Q=cX24W zZ@3sR0Ec%j%t*u-ZmCqWlJy&cb*ajF9b!#C`mUlU-TKMJR+ha+woj>S0iK68W+E0) za7!gydgf-u%knu!t+HxjUje+NYhiU1z|fQFq>&z&mwDfq0-tDcAW{#^%e232&!o$L z88OJY;q><(D*EaX45iHlU%?e-u3P+16$?o02oX{-BQ&M?JEq7HBBV-xuK1929U(%h z6N2I))e;^+NJ)|O_VmrEjm(b6+~QNh5evNriOQ|6}jF!=gIA z{=fH%h_E0apwdB6l(xGp%dQ<0HL+r%u}2nIVi#kKCQ-qb#Ey+)SE5Fvu|_2^u|?CH zsp7)!qQ-PfiiwHscV_19?(Dr6{J!t={{BnyJa~5Q%;%grbLPyMa_9bd?tS?9Z*0`x zc4MQ?C7aqrRqn5Cu2704l)}kAhT04 zX2S9EpU?FbcK$CIjkt%5u1So3VT?kBs&24pA2MqAm`Cxnhlr2S9wPigSoKp@=RSS& z9&^Gi8&n+?G+F}gWw|D=6k@rU2M$zCiVEPLP{ZxTr_k8~$x98_3)o}0BjhDS?PJip zQB_B8Nhtb6wY(Mg4#j%srL&(>wY)7FSDp6G>k(vyT7eDzRsFpS$a;{E^cu033DNUi z(*ml#7BstfRJutKytYcGImjoIt0INR@D7%$mEQTOaPJ3IC2P*8dN-?@E_N8q9H5DCWr*J5#4MXBsoJ^YLqKMuWwYt<5gf=i^s7O!=lF z3zWt#Ul3b=CKzB`9x1LHERX2ZBu&9!Pei|JFdLas20Ai7$2UR!Q@J*7#dA}+52ZT2 zH<(4Z_+nxs=#WrlWK%gqLe<0KCFD;|)OsQ$lLS>em`&w^6RZ9b|G+jP2WmapI?J*x zZCN!*^cf-#b-R1A(fHm@>nMGF6a}LdJtM2AdVH_*)RA z;r*ELRS#7zYEu;!A`ToPuk-*3d%zHOj9723x)mf^hsbN~x=zKF@6bb4&jg86S+zY| zNPXwI@E|0qir$tf_8a1vrV1vK{*Z>R0vjp$6i;_(F|=yAxErM*r*w7>@jRe`!uBET zT=%QPsxCAY-y0&gwe6BHXRz8hdt?`yo}xe6N9;i~#kub7RBWi-{Hk8_5@F{W!Roid zO`aCQd8Kse&Mison=-M58>~qhJXv+dPiO{POjTnz`|2jWE*mzKwaBpNsxljk$wTEW zGD4OwY<|@%exhlpZ1<$^G*>>z86vev$WWq>_TnAX9|@suaJBwTR%>;W>>z>OdaNEV zR~cJYHC@n*AIj;``%qoqayO1U4>|7^4hbu&mfdF{2!mg35$SMeMb$9Pe4Ym#2D~nrGG1>D@0M3}(Ckqw zFaoOjco(3fG39VVt-z2qRWEuM@C^5#s}B}`N8S8p_RX`uZj`GkYQ|K3L56gK?kOPhBCAIjanS!&0Mb!SLZ|rC-p}s zHlYxmhcO{Ka4cxgHw|MWWc-$@AH~6vAOpEvRFJOtfQ*osn~sp`oappG^^x0L4v}y0 zf;fAaG*%9C&pPMAq!vH=!kTd_&0xNSK{aqf(4czNFllhZ!YwNw3gDa2QgwJz9jY1p za#e-+j>Pb7o?-CLsxI(*HS(&K^Qw|~VgCOKuYX>tst|A$VtbVyu0K1wh3GrnUBR~@ z_A1V%Tc*3jGZq)Csl|HpQVTi-X&!2!*x-GxA62W%Qvdlh?*NbtStWjR&qUF zWoi7+r??dh=406FLr1V)-(-a60qymg5v+qY+*@gJ^<^qcz zKV+xR%rBUz^!MdaYe^ARIir+W9xsuSXKBUz`K z&gG(=st_NLPK7r55w;k)uOVDj0=9^&`p7L@Dif|uH#b|{Dao~+<48OEOOjl0uIdf( zlqA=2E*F(+mn7FqM6UaG_BuqqbsopspGUIZ{liH2*jEY%s&TQb|4tl{gvUL4qvQJB zk*p*Bz&O(dK)%{+SmIMW0GsT{FynE?F!gbc;Xo%c4EhI0-0pIQ-5zIw1m>rcM;^L9 zW;qv-*%XOcG0*I;i^%N29b~pZ&g^-K8Rl1K){JNGt{I*(ia(7P&2{bdLY`PD@jS%w zT>0r&jiG12Dl@#g4Ym4-obQJcUo4}}H?9u8(q{QkVp<^Hl33s5SVO0uu(~zhA={8q zZi#_LGeKba9-|q|PQweHM}4Z*{!(>D(~*F=T(E5Xd!nxH8_%mUz-Y8&7U{EfMpIT+cD@<3!&gU;PrZ-ui7hZ03JSH^M*KRx z!H{V&6_^UFTB{B}V{b0VmOct!{MCX*LR@y1p}?XwW?AuTs|IVfHQ#K`w-gx)vI~lI zxQ7eNx8e8Ww~RP{UWluYdAw?bi=i+xTU%IUKr-K`%{N*s#!P)?VUbl^ zDZIJhgb=4KH0bqKqqQhAOOFQ+bS9nISeRL0%GYIQ;(%Ovp+)&|A^tvGvmhsZsqQ`u z0V|&%&`No%2ATU3w*zb;uFURm4FZ|-LQ;7)EL(LxF~ev|*BZw>l`&;x;>?+; z@rjuxli6CBpRX&j8Vnf2c7uQ?fcD?ml$_%N9t2;#=hn<4lD` z`Nk}xIbVm7oHZ-kY{}0m(qSuSo3NkhS?%MB@N`3Frrv-ZQg6sNWSQ{HLt%l%RAj__ z*1}5R!_}LG_-wSvEQ7&WHeYS6P7RdS%|+6OZ*@vcCPsQ zu*?KY>AVcqyL5%de4Qx^k6sj+4TdZu_NXFrR+ipqvJ{wgS*%~9vl#9ZXEJFE&AI}; z$%5U>V9qj`bXJ4bjNQv>EYcU?9i$7fd+G61ht-H^=ok!U18S(CKyR>UEd_eBHaoxa zz$5c8SN&WK5K=l%dq0K{^3`0@z1qVhpFL5@I;}Q|StWLTw8z5yLTkR&kYz?kXfWiP z3ysDiqt##n-Eiz}v`Vq)BeZ%`zQtUGz93VJ&O%#Y%+Al$=j*Il*e~x?wW!=uwQz?J zXR+vt^!U+fogoW-OJ=6IKvz&`&}oaT+1OLFNwtm(arJY??lv5B@%1y+(bh4N{?!4rd`4%aeT%W_kQ6`fKU786k1buLRfgv+rkIU^@I(?DFS~>aND(rLhAD@BRF$*Iq zPhMEKKq$FSgXz7y(f#byJNJFGrgwL``&0^YK7@8?4_Vo`!C*zFXhtt;w3u~8h1w!A z7-i`*EtLmS%P0B7X~~HqJYuBHM=LEr6`2aP=KO*zO9A#(tG@EUudo^0GaF4KKR-)f zfVOWgLc_LLi_Cfx8JA3Y{380^g<(g=&#S^NS3lQ6NbY$4k@)*?&4%SgtF`c9$Mb=4 zxFu3((PbB)PcJkSWfxhD7Mu`TENEZo%C(gT;^$#CteIM~7TXk0$ysom%QR_?+U$Y? zld%AY26NV70Xti)IbVz7=?cx+=vnf!v-0)XSthGKOP6ghWm-Y7ok!QYpd816`gyW( z;65y2dCWpBY#FjGATB=(V+%_b%3{Tq&>PIzmTY6DQJ+;1!%1WTBD&5u+KD?x)=I2#K5Q}3w=s~rNE>^&1lVd9?V)$V8DUo>($u3 z?!%VV;(lBQe6z*`NBf;`(M{ia{8JsY+V)y)>WHa&tu|YiWi)6F=>~p?Gn>&<8`17e zxvJ^g%J0&K`fL&`*x%*-k@7_=4>R@`hfYta-jiqTb0o^u{8)M7H_>-FZMY<*Ft z!D`0n5gk8vN^@pWmJz>Vue*zZ8H*lumTU}A3bJ$sMJ9u;2oHT~(VjE0{}!QQ3*f^0 zbEV#PAJ$qj!1Y5Mo0dYNPBiqTh$p+3fN@~84lXg&IT=eQzNEk>v& z406pl@R;&3_8_K+KB3T>>54Xt7#ZRrN~2L{&>Qr+LhN)H`(xED7<6W3QnwM8ZO~it z3w5~UgxwdTeM_O$Scpx8!=9l~TUd$Bfg$jH80y&|eIJI*X_S@DYeYu0VCZ-Id}yjZ zU7O8~XxgHDOJ+eK>MqNQde@pT__kQ}T0QzmBj|pAolaMV``l;gtWx{*dF*G#`kSZF zyXV};GPT~h@1r=atDnWyTcsjB(Ml4;XD`eK=k)V~|DCY?J7N2G!uIckt*$xZzZ159 zCv5*t*#4ccc_xYfPT2mPu;t@Ba{o@){++P>J7MFN68^tW*qY5>HG9=+;XeZX62r_@ z>_Uo1N717gp4;X6PEl^;v4e^eeQegcUY7N-tqWJZb`PMT?e%7LU1mw|6AgS=x=$2O z9<%#Ir;mbKKbzUN2VRG@ID_0L8Uw{I{SYRO%Z2!xHLV&Hk7^8ed#-OS-h2!y8r$N< zlA&^OX%d%;*Nj(>0B0r~}F zOYoH1g0ZCBg0Z7X`qZ(}cv0QVRmo!)k?l@etHp$(7uzi%6uo6&DWT{A{$+%sr~JzZ zMbGyxClo!Y)o2AF%W(mnTtG@RfiIMw@?1b#8elu=C%#PEVHj)(v-$sTFB`oYW=js- zO1RNITBO)Lqh3kUk%%Msuwvo-G0p0FNbebaHo{h>Im;okdqzLuQji-xV?hAvJ)^6e z*}n4$bnscoJ)?=RE814B`Ho9x_l%as*v5&DQE(^5R-xgGv3o`lSGqbdfLSch9Ox%Z z9*DDL2)-~S&Suc~<$0=4&!#o?00c1rpFDPXh`?p#Ye6m#f%);aw7?jWqXAmO$W>!Q zV0OH%1+0s+1#05Bl5!?Z7?Y^~hRNv!Tc&8pgPRGqY>lxV&|n6t|8GD8TiPBFd*{I; zEp0tDed_@YVW1EHH=xs6*{)~`>j4X8V0rfeBNv*)C|bm;N$GtiBMy{4+@LfMPiiio z-%B%xXY4sOIEymNhP*!;_;a9POcXCrYA4Cbwr9k3d9XFv_JC#sk4cY5HEnBKs@cjX z)8kQ?ksV(0DnSk}ai$f)c&?GEznVjln^xr??QG)(%{yEcb`*O_s%?$t6F!;p$Bc}> zR|y&aW{m%-`|y{kUy|BOQ}n$HK82HC>WDGy=H5HJsPweEr(s(&dH(UrLf)gw*4j2` z0xSqB`6$|dxYkQnDM?#zy3Te^jJ3c3z3pL5OCEu!NsPCE$z*E{8HqN3aqB4Vo|P=M zyzgb&#;WA)sg~Dnuyydx+da!RUNclJuWgcCgtRXujY%0KW_^IJYy%D=Bc zbrziLBQ(}13+3h5^qN0a3hno)9;K3>>e4TtGf#=hn+>abs^rh`txncNs^q`+fK8{8 zpWYgks*?ZX2W`E*^V4@SJF8^DngmH8_V^s?;|#ijY=3@&$>H0L!8%2MQfTMU$j zFVbpwcgAj$-lpK&jUjkt{V#kW-umkon#OLGKFO5wG=~(=vwX=U( z8g9!O(zMxWT3x&@tG!OwUT1=wQMO@$MsvC@OPj9GG^U$PkT=Zsuq^4qGq&DvZoU{zS$a5@ZyVz8$q6XJF>n^xnxtdCOfL~K>l6WVLR6uxE40gd zIq+Xy5MA^Uo*)((4PDR9=i|2ttWy*gfMv+xaB)FH(3zK{LtCpYz|(-#UIu}7oXuZm zAu2|5+iLst|G-|lL+u1x{(omQpNzJRR;c&*o@gke%|GuBjl6nHq2@p4^qa=Gy{%G-2FB zpjV_v^C{%rKp_n7F0ifg&Ps#nbUrJYBVpG5i)^XhSt)8)KC6VyPl+ z5t&_&jPSP>+aC8WLnSGchXrKW~D7nvrnZ^+$y;|vY_=x zX8L?H)7QKr_!LjWL+{nL-r`x@GOBuGI2ZfgP=TTIirlIdFNBaa7+$*a(u?hDKdgLE<8S3G*=+-)0GWVslHXC0gi1bX ztxYG!TIDspr;;B(uM=LGvCj6lAf{Vo)1p{+tlzhRbXyg#T6X0}{GJ0ku`}bv6>wcl z>{WnHgZLCr>mWtH{ul;2SUX-EiL#Ja>4y*SuyD8o| z(fy3VC*)Q3!6+PlYNjr;pzf!Bp<>yMaitYD{2pk9ta)*7yRqxZ7bh}g~L_1M*s zO50@oI0*L)5;AbzuLwSV9oN6l@egDSQlu(;DK)n`1L?!>9(#Am<=xz5G5Xb`wnLhG zJV*Lcqo-(^n$n0ntjjCqzGdqpMm#}XIA?JtH5|`q)ml-YqgnwvT>X3um-&oOaQ)FU z1a;<<(L|-MG#H;?-){EQtE(EkXAF8oAx}580vF2h1-Ka}Z9DwL{3q%jgnFozrOfCc z^rV7Wky?TOVi1}L2}f`cT8^@iL1-z_20sYp?N}R$^Zx;Hucud9KeaUz;m7?iXetXo zwY3t(T~Dw9X@_?y9FSJx6EYwzLP75{Ak|?OmF>THzIo{NeCPQT>Qg>{g83A$ zyfkL~SuO9UU)fCFxUz1)_Q6dUM zXK!B4hFpGAM|~@2-n6w4HE$7hxd&Ks`{^046f#+P3x5657U!LnTG2Q1tm0dvA^Eng zmv>&7Wi*s-^74`tL!0!<&WqLUG&lGso&d)n5J43HT&d@gxydjR;Oro^A9|haEec+Zf*A% zSkk0=LR|&ER4eduu)Kh*CjL@Qc8saNCbIC)r2sF(uWwL45n2s(En!#G zmnr#iDV$QJ*-`{7&y5JHToqP*u7Rcnmz8{@QTn(;0-sEE*kUXsw5ZNdDR8!AR*EK5 zt$=T2wZXdpZ6*43knU;)zKg_W^%BX`tb^4G9E++h^)4XuGtH$|;#I;X{CtW>Nsty( zJyo1FmW?^j5uW@YPRE?-W7$-4QEc@yB8+82&MNP$IOLS#6Efsrb~d%ll zo!_>l*Qvsn@zp0a$9Xl#0><>ZD%-3MeCU7oKz}Ix<6IlDTB>rDcRi$w%D!e*uDsN; zdXFIfA=UX;@4Q%NyHsb)Pls7`zI2$4sN-43Hq~3i*l}!hjT*;B*U8D%M@0c&2TrPH zyC>Yp*+Z(eVH_J_kEc{8G!Pyld1Iif^n?P%<5uMGk+W=xyD#()vJx@!I$vKw4==*$6_#L zfl=8w{B4#O2qYO@etRcW7^-)!{^w|rjG?J|faZX_sEE8qnya(C^HMKBJN0R`0uQyX zHhCAIwb?_Gzg8>IwL^7V^#U50n=vjFK5Ad>563%H2W!4pE8n(bb!+ePvOZo|m)X~4 zVqH2_PZNX2vpya$-rZJgwWzjaU1Vi(=julUvCVkaxm$VXK|>G5C)l|KKUm(i`k}fQ zk-lBmvxzy?TLk<*jJ{gxWBtZ6Ti@EPx>brecDy{2d{(OF6XThk51UxMwXOIZR>M1z zY%E>V<;pj2P4%y>#YN-UNUybC|+zXXTB$UNawks=8Fv zyiPRbW#-{$(9BQr$<)kW$NG_*z?B7@q`(*Q0u3-DJBj91LS_nS((z$0sp;s-r??w@ z6pVhixNCNNxY`o!9JdjZG0or211ZIn| z1X(fOL`|qX@L_dJQEWefnPawhHZ;eU_=Jo#Q4^Tot%Di0$2y*sev0;32)dJKkJ=B< zMG6y`IUfG3`e2MWbAsF)2TC=4b^Wcv$$kQ zI39or$ESE8p;%WlO>8%jSzH@}tgyIN6KRA~c~)PuRS+MT$jq**cV0BRRD43r4)fFD zz7CGm?CN+HXRO(Rrk3zob#HO(L}qdWvul0{5TBnYH@U7-Rp(A*Cimq7HD3mZfK~A} zxe2m-X}LA8_=`Ix%1v&)Cm%JrQX+;P5BV=iBC=4s4 z9(g1ZD)cq!l|f@`28#GqBAPk=lroiKa~2}4(e zK~Re$Gvd_uzg;;a*yY|!uGKuP`I)yAVxaLqa48-MTxB;lf{MrnO<~#fnhSw{^I6F& z7xA$1*P5Xkp%}Bf%#Usz|J`Ip_Xe1q`CYyoedmH(xZW)3jTeL3U>u*K6bx^dzgiOp zhkmbFe4pxXWI3n&QS)-0@1oGxgpQ1oUK7IjiM=MIFNR%z)pYXx5AM?PuL%haA?{{P zQiID_L;9A`-xFZc&6-s4{6yGzv!h;m@838gEEszpd-Z~`cACO;sMCeb&9$l3Lre`=C(xo_-0HE#$NP;t8^5qjLJi4?~a!zt0;8D6|w z(-N#5?6Kn0Qp%K2drNrmc1^T6S4s)jW6G^Aet~fIc8#xCCMACxkIA|79ns=ODaGQ8 zDHCJcHi2Bh?knz+l3UzE9@@J#&BaP7`r^Sct%RuatrfxyjRmo{2Wta>=w{& zxBEfgKB0b)dc>{~9j=VGG2_z3`0TS8%bLQL6UgZ2Vp!gc6d^orN*OijyfE01mRmJl zpg06m9dAZzBx?+1$pa%WIbF235aMXU>aF;DmuL?cQdx$Ya7=hSD<)VfXJ*Mw0x|i{ z12JK^I%)S6da%@YwU|nTfxKHaT_HfkpF~k`f&Bb~h|qR#TnNN%TkgC* zke=dE9*RAtAtsFRvxf=qvxLtRFrn7Z9=f`~j>Ti~*S&Ci_-Y6K+Cp0Elg9Su@R)!< z{|=JC;3M*LX8`^@?vH(O7EO-XwnEFULdU$ z7i>=u*0AR*(lDWaq&*CL{Sf5YrudUIE==>o?9EB@{dBrt6zmN_d4D5WUW&rBk0bj> zKw)FdlGGZ1?l^NH5iU2zr{zTBQBCb}Fx(%1-fn|GH#W7$!UghkJyBO|m_0)H599=6 z4G)nT2L0S5L^7s8mVC?)lb62LCJ5rfk?%kamK{l;#_2AG32j&=Xom@;v7l!lKL425 z$+QT2GMpkmyR{_QdtD5LjzRcyh7NzOS#+^Eyg`1ZkxHbjyBGnTo8Zq+67lDi&Ury_ zef>pWcni~3$6?Z~O&6O&*I>+%8i_wUpSTzemE>m+A|P$54NRC>O)!D#@lXgpFZRKo z6Py>@KxQcZyh%JsZj?O~UMD}F&TwUJ-xPnY(%{dI(Ws<1$#&!NPsspW=6;LjIg@aG5mOR-|gQ_R^F z$6<0O_V9Leg##+oCcSMB>jH(ltCNS4f(T^k#cYyB6}J@TWj}TyZO;&Xb=> z#Cks7dMOEpMdQx|(gD{e*?Wm!NrL@FJjX+=vETKK!3@(I;Lp#FUg{!Vl`_0ZjJ33l zy(1W6F~bakAD3(&jO!h`I5fwtq?NHmbGUl%`zUz4-?tjj5>>T`#s|-}wZ{pGEax@i zDeknj4}&)G_&km@;n8;XPOy#qe1Z76VJUV!v`E08>qzNqDRwg~CqEw|)^=Om6#$!O zed`N;iI{elDE(fl{ZUv#eqJJe>TnwRK(QtMyhrdd((RAKv*f3~G5)-sj=e9CC}$V> z8S@T)xlo&du6G-ga5b@zV~sBN22&DdI!gM(k6L7KnfweSqupkm-3ZUM#-BHcssdYG z&ViUV`12Yu-x|HWC%n}L)smlS4=t(i`OkmGj-g{Np`IqxFNB&)sE-I$MyRcX+DNG1 z2(^n)K&VPWeN3n`ggQv5&k41eP!2+EB-GD@`ioFE3H1)48cr@j@>@cNPDbh`q2dVT zAXF-$-XN5jP-_U)gHV?V^(dik5h{;RZxd<)p^g&jSwd|m)C+_?2}ZX;A7p*|Kj6ROsMY&b)HaP66!lb-67QPPc|;W>JaijQ!w#0LIo1)bwWiF>Nug= z5NZRV41~H$s2oCVB2+&@T_V(QLR}!#XhK~l)Ko(4A=Df~-6hmALVZQ3k`09Xn~<*% z>HwjR5XwfV(}a4LP-hAC1EK7MxkDx6TYgi0iolTaCi zT1}{qg!+|G4-@KrLOn*Pb%ZJ))E|T@Ce%Jc%_P)&gjz^5UL+)t#19FzjZm)=>Hwim z5b8LgUMAE>geoUg6`@WM>M~MO7yCRlsbI<~avMMe7ym~1F zv>}eB;@zoa3o=`Cn-q`0H^#^QJrzRC_Hh`$&otX#6PrB^lXp9FL`=3kVb2l&!~(}J zb_UB%yGgt=6;8cs&!Qo{@G!%6?zKzUJ)V|hKkzgpyvxez?$q{&V;$|S1l)Tu*>%u$ zmrsZ|`e_Jx5`8X$gu-XS#ekLV|H*{6I^oD@eHt!2V(-UEnosd_#8FSfsctx@Kxrsy zO=m=1!=bKLL5+p7A`ByIy4XX+6$ldWfc@av?)Ge)TL@k3-N;vf+M{}l zeH;-?t^In~^Mw{HHFr{NY=EcjF|2NHH^Is01b?d4m$AXI&1l1SMP8)gO=m868lKGD z1pFRA7Z-;U?_OZ7FW|iqh{ZM6kZF*U=A>n@*8L#fa4AYCWkSy6ghYr?C>*msWG*=u(vk`54#xR4mslW{EHMZ2AsxA;ba6SYLO|Rf}}D9 z;0I1lcC*L1t?HAlmja=Q=~6S{9OLknoWsZCFG(Dhb@<5-M(t|Q2=?@|`wO3|^7>Sj z7gf!f{`M5nXF7cTygdi|Y)BvMvs5kD;~Wx;NjnjJ#=!E+e$xei zVZI!Fjw<@8so0A@$+tIw_@Va3aQ(qcO~ltFK8HCzC7o&mU_$}U7cgIxa8QoEPZb^Y zF;l!O!CmCwT&n0QIORw+sz_7|<42$y34Ml|f!O33<{GIT?Ay$`M+}@DJT)3hMxvEz zp!N}af3ABpeuf?|;o8ep`yj~eeW``mMS||gL%V7o1KK{9q6M=Y)u=$Fvc8&UPZP&W zfMa;TYY#G;jfKq?dpw?(m5EuP0Cb7jMqDcamh*rv3C+SvIaZkhi<;>8zZ-jhqG`zXp+C9btXT z%N^XKqh~QIs*{bAPxdyKe50$nHvO-n-kO`2$LExe$LJWm~&swD8Ai;ZFTBpmUNO7N9( z_)ce0FI{Hhx<=VQe$8Q7u{}gMq{`@kI->!zF7}7Llaa^w5)b_TIIsIK826-ID_l?o zb*O_<>32@SK{f0-)}SFEj78s0+w%IWD0B7D?@aJ`;I|<{5L6U7bqMi}72?R{IoCw9c{Ti_Wqk|mYR1bXf>GqD|LCAGfTvfz#l_3;>lC-|v-V7Jy@a=h!wcTWbkGE1$~Cw+KoqfBj=Z8C>Y$_a;RTqP$YoD9!&x$T>l_l9ZvRl zG=c_smpnlfS*#TdF#B0o*DlVN!gE0fInQ9~eo<(|Irj7!B$6^V7>f}vZT^Zm=vW^k z2;GE7NfABNK7fmM2ows~e=%kl@m)MDn2X&Ymptc(_P&e<9ol;_`fMo{iC-GxD!J}R#kR%K1Q+13ojf(j{l_6WxD~9RtOm#)XTn};r5eM&GQ$cnz3KLh-waiiWj^D#JDK{O4lNA=Wl{S%gZn* z^CNk9RW~FFN^lHb`@^!u2#&pyfa4dTy}|G8!?5Q$K=3VtnrPrkd}Jd?@9yvyvg9oA z8&Ya4Fy`wIjuqh;PaB=Sq_+}2*1GxRB{glzBCC8ki&5$q%iC};bfI@{TS zILaI?x3>_ZXFYy}0czYcN2v19(Q#erSuhVBa{Gd3fNdn}F;gSZ5Re4NM=RpOx zZNNZhtHfgq$AeDXsO^^qHE9TW&6)(jzG0|k+<{e5&boSdT-apSiDxAqpKv@dp6(}n zsEYTVIvy?uJPJ)JaGrKY!uyBAqr)zh`NWf#TfqKK(T$+@5U#dL*Q0L*X`8OAY z1p2Y{nRX>?KG3Fw%?Dh@f_tH9=o%tVzv?fxDv__1B$Uv(fGBrq*rTGw!4l*^1!Qn$ z6CVhE8JAxMC?NZBkYt=gUrdJzJjg&iC>=xcUb8n6r1Zt^^dR{0HJn*>ZT^6c4Ts;3 z;D$rGQ@gu_MaqXqUTP)oq@4Igs_pn#ijsv0hY{j-*(1ddJ!L{*#V+gz?W=>c28HZUjH&AQBv>~9;WH5_6+eS1MV8NMMiRhQP!<7}om3@~x-^ zGVXCbw-HMvW3A{@>K}C$fDAp?d>d_ITe7d*$Fp=#iJ7Z_)gM#B8CQP@P|C`aA+6q|Ih$yNi1hkvd#U= z5^|H4t}yGO2bl}AoS5%jd$vz9iL+?khgRa~<^%Bu(MeBq4uiN(vQS>WtR=7Os2o=J(yu&^T#(_CXH*z)^dOkRylhJlh4o?Ntpd(F~O(8ftokbG5i3EZ)7ixlb z?HZ;h?Ak$a@d<7L*!zeC4!cxE&grhEdqZA_BeUhY?NbukPEtX&yLc!JIAu2qRr2Cr z)8d{Gy2IP3s9RjIlW*H~!cBR#Zm??oHk;Rs5k5PO^SszO%$!l^Q0RHao+L)ik*{Aj zrztri0=Sw_$VG$g{f@o4n8O3~`vA|3yz`E|nb=u@(g8C{&TH~_xD&YkU0gaToCC8z zwD%P)bBJ3X0+Zjv{`~JOlE;k65?6GtPKrvzlhqZ#u@8j{5G6`sj1cZ{ri3=4# zFVq3_%`gNy{`>)7@hu7H4GAduBLq640D7$spp1`k3GW992ApTv1 z#~w@dvZO4mEnNK;gT<~;`XLVTok#(Uo#=8nY3ieAakrqo944D2bQ2A8-IhY(-u>L3 zDvW1HW8_FERRS(=$pk9!Ad#-rY%cQvoC#5%CvFXkfzDrH16J@g-Sm|`85i(mnCrbO zdHjhFxox{`B;QCBARlF`TJkl`hl?_8fi+Am4eKY5A*4N&F?TnLpm!RB`F%9$aUAwqb zI5R(SizMMjPQu@uXnN~BK%5x^C*i7j-bT2uS9ohFR{2;${eVM7@%+Jl0XxULs?eup z(4_JxHyxLFs~qvI5r$r}C*t^a!R~6LrQc(hX)^UYU$}A!TmG(x1E+;sGA$hY7Pq5X z5fr-3hvz-Mz+Jb5`OMR8ylhVuW9Q3#Z4^z(5u4BFYyT8RFfyFJ5)O*iR_vv~>8Xm- z6*m81Z-=3&4D1;RtoFqVKJfI9_NL;~3dAWKB2gYz*QGr7fJ>BjfyxaB!Q+&0zLPKJwcqR0C|LnUpQXZ@KtMk8=Yk7rHF=b zcm3v2@w@{18(Aes^on3^T)ZdAc3YAy@*kXM{;dG`QStZkM;qq$A3(UphS-rnq zy%$AF7LrJU!o?=CRO(_8ucAS1H-S|Zx2G|v>?VB8#g<=q0wCJ3QFn2fbo>ik!)~~X z)0QzFR-Ah%!hBNW(xGqGJ$p-WF<=`JwSi%m&6j9Xdw;DOxizWp~ zmI?@Qaznm~h^AV?V*oOw+{TW!;&27h5G7KAzayVaLcFVE_jhE9vlQi@dl4$)4!4C_ z0geQ(It4g};q{QAenufA1TQ5VA&unu+4`7L^qb(g{*B*4KRsR+UhuAW3j zjK4x0F=D2tR47agb+i<;v>exo(r5x~sTdo8-OS5HPipE26CdLt>`fh!xT_#zox6Zd zLf?U%VUGQHuADrlVZ4ZssEcgpfyPKGS1jjIcSkr9aQ{|@TINQb*$h$laH#mmh5GB3 z3*As|s%E^>nJ}i4e$xT&XbL%YFGWc|ON@gLUT7u!Am@1*pSq{{7s$yJIMy6rd#9(N z0&(Z^d2CI8&_z3>{Ro5!ffIddgW+DBBLQNg9ic)a@|@q9@LA|-8gk|!JjT&R%$Cp$ za{dgD#2Kl#ArRFM5E56qwvxvJPB6 zLAslWuTZ({j&2+rOT}%mePzvqCB=Uzv3*a@wm1`2bt}#h3EHWb1EJMYF+?~+nR7$T zDUbH)0`}%~M0X^i!}x>Yf;QTb$u`MobB;QNsFN}rct|2B z#2-8jKz9(1Ymv>JHuxSz#~8;VpvW^<*J|KovZE8Uigo02Es5?s(bbY1(5X{sEdlKu z>F{Wr3nRD`1*=`&JREBOY#t2#6LEJfJ080f&Y~B@J9?v0dlZbH=&3`&G2#o0m^ov_ zn&@TDoK}NdXkcd=+B7=kL@%43wa9JLF0Ceu2NuEXk7~QY@2$K5T?);?7uyI7SMi-( z#kVhVo3KlRiEuB;RdJW{@MOl*mm9-goue82(3(}eeH%w_ktsyt)m;R!yU-*s$%-K3mSYS zwl)OfbuIj1)^XgF%QND}L}!wdcLp66yA?-`y??eNM!gqD51(CkgvAyo_*#2TaI^&ke3#+JVqs zy_Dk5%#93`7U^(eLd5@EF8+l1tbaz7UuxkCCp)4O`;=CJ>z*HZ^g$0=9O;A=y~_Y^ z$pMQyJG$dio=gijNP?t=-(*^_ijiUPcn^n0Oj*JNG8EqLJngcYFy zi{Nq9B8DC`?IIV%6n3~sV?kV4?kAKJ-Y6Ui@vA#sl+IMFWbm>x6=h3_?MT}dRQIX- zBV8|jz0N9em{kIyLIID_MMM0p$OtHY1ik%1PffU}Y)T+XmpO4#&F z)yXLIPi2Ww&0%v|RAWfZi1I79f9o%nDVQu#GNJukKLQKaOj@rIPBZ+I3jC9g;{@xN z0`aI4@z<@`_ClT`1($@WBCbea6R+Tlrt$Nm+QODc!yD1l58_V>#P5}ew4GA(aY_|a z#(Z=n{!5y^xC=J@u>dlxlBO?f92E*33Q)n#%H-`IR;J$m`1)Bx7**)V7JEtHJtc5F zQBRGY;`%|}#9snITNxDyFIv(4JgDH1QwN8aix7O81pbr+UXm*Z$KxR_q8h=lz{CFH zWCi%dI>3Jz?MM-~N#GR{`2I1DLE15Q3*N(%vfnCD1NtiA( z#_(#qBS}1`K>tcYCujs6eGGM2OIUZN8-aJ4IAY63<03ikxzHnFyG4A{F?u6g2mI`xWQOvVvu+;SEO(m#HJ-0mP@pcO=BOU5Jw>Iom^7 zTudT&s^o+!>{~Ke(txOO+JH^jGunX7ve<}27eL61$x;*eptR&r!{Th$z$1Wenz9w| zE@w*tZ$Q?wIBAb$ndtcsdWI06Q=Ydtp5|V)p50sbEA3(*iRIotBs{|xl<=)0HI_Z_ zSfTVTNzPF;oQX3X&Bcj$_v`aGS06`;NON@r3I*3Gr4ATO<0C#Yw<1Hy0;xypTY}T{ zH4@NjIgo2q>WK|WfVcr}8A*@^xWy~n7DqvgXFIaQcO=laWuWD;&O|8P9@7+N&UUn5 zW^zJ~{+0(_SPUW4U17SF(A_X{r_9|d$EyKo`UCFtAn4ZgvS-Pui~Ddoy;7mYN*Ivq z7>m1a6*IgRn3`g!!N0R}yK8I$6gPJIiXE`XBRK8D0#bYuJP=nd@{T)Fa5@y*2Krx& z@PlPm?4o!^kz^tV(z(b&ztUUt2VTU%$hwj>A)Yz(#*JT%$E`*!iw%I{x$W?@na1fa z;5kGWF4qtvNUHP-&rlF%W8i>}iMGStg$}*ALSlgj54~9|t3=Uj--}I$>n&O~gngac zHiEL(kPn_nRN=FrZaxn$!NK8##0QTcdh>}{>Uc`PbBHRKN9xAhvJ0r|{3YarW7!pOz--uDvKMdy**K%;%MfH1U&3OG;y4(0OH`;te3G*Y?&OL!o1L%RCvw-y^e!4 z@A|LobYu!YGq4}zV5nB~YyZThbN=VDTpc)#LoJKW)!yzuYqvv>n>7iqpp@Y-U$Kl|qrya_erU^-vMi@DZ=k_>EI2WZXx^XOW_d1G&E~;=H z>xAnMpYC(C7oKErlQ_7uW|zdX`o@PrqXW3OGhP*aOr7ZcAn72wh|LUr1BXs^oO>~@ zC3HQA`pA6^1E#gA=;i9@=sxBNA2Z+&IAAp8eo%H8XRhz6!kt!!qn+)|BaUq0Z-)6N zhl!)bB;j{exa;b0DBT!15frb1Q5&62#MZ!ux|VQiud4@Bvp{Lb3-KhC@4+!7LD~BB zt>htZIx@sZCA?fY9!_~AGjoQ=OQ-Jp%Hey}0Z%;EnqxQ}DV5-7%HeUuFT~R@GI6J= z<587#cudAKfM)z z)E?gqcgehESAr+j5#LcjzpaF(0fy}}499Oua^K*wsXlU#B#H53xgcef2^c_#~9I6)O0X1iaA<&|$`r=X}@3H}pSrb#1whr+kHu z{SgM-p998_ifT9uN|z#LA2}vYo9e`T=NlBZgkjF$Fg?O*e?(zPbR;|@2Y$L9;HKvt zIy`7WweSiD?CN?WgqP)TTkC-vRE+e%O=M^=f=PB1LFU| z;o~D0K3#{xnvmZDp35gPP`A6G5xZQ%tr1bbp1Ixlc&D_QkO7tpUMfjl?{>ZPWvnLq zLz=P)?!fhId>%lGNK;${!Xp(|9FJirOjBiZ+TO@e^1O6qd(@zqK)BkwwFXl6J2m1g z3Gz8PBwoo809Qsj<3KyPWfbhchRfH}Jsh~%E#AU%0gdFz^=?;87kjI(FDV!$9L886;CDRJQzbF_TF!`$-IURFdtwCK z8;*0(FI3?_Q@~R{`rr)=H5zVUgPw?!0CE`&)w-*f#>4){Vj`h9v!%!P3-?rc+*a_Q zn~k&o!UJM@iAM&{1MhF4dWwhQ-_iZ2Zjg_xZ8xy>W={R|-OcTPJL1Jr666RT^4b)a z>WksBugAHFLlxkUDZ!~uKE8!3w~Hn41w8oXZ3s>+=Im`p3-NgcJ(?P_?-lMiGy8z-B}>kDq!q&!URIu+Lle=`Zu_T z+jJu{hhTi)&t(n>*d6j-OqS;Gfg9y5<-bwUQgj&{e4L45R|&BbhX}N#N*g*e#r6uc zYz~e1X6)zG{X9f0OmczfNoZPImPTDts1I|}bY+#?peZie$XwD7KHs(yU!<^nBshPg z+Z|C`9n#ntEAElR-6e^OWkVp;-#Jj+p^$VN;`5W*UIES&@!Uq37U0A?{CI%ia3_9d zP3w#iKUbi9D%JNR92BH?zi97&G0@po^x4GP17Ay^?Lo!aw9Se0_d)yqK~{-r~udSc`Kq)9&+Eh|?@SE@2Pn zu|E!VP85eIfCkk8H0yG0Bj^|A#1A4!XfN_;sLwocz5;EI5{(Asvm(&aUYCFl^FU{R z$EAj@Lt8b6vS!X!;z0%EJ|!frX;zH0Db%L5!3%M}z8+E-;2Rk$2=PN3~=(` zRDjng!RcDjKatLKAry3>&ThC@J2~7bEwGc;Uww@<{=`-p%;RgwV?MxbOcJEItGszo z=yY76ptv1nxPa1H@CF(goKYQ)dbWvi&NjFtLE*;8;r55s#z5|-q}Fiu(ImERhwtmi z&9u-!lTimXe>IaY7 z_`+vt&RAh50qBNtk&x)@32`9~X5gitCbfZOmr|r%4GfTCo%~kP<}Gg5OPyNgkt_Hz z+J4l)7Yy(-4yXA$ln~BW=^x$=?1~Xif4cwq0A2 zRH>tL0#i1Jj7~i+KzrCc#<8L5AZ*Hyr)p@_fhUgDIOM8xK$kiP8{PvxmjnOIjGe1g z6%Oy6t5e|I4$e&BH4bw>hgrJ7rI)i?T7|J&ANHuS*i{dUjh&onLM>yF*RvP8SGVG8 zyEz}_+>}if`)Z4&%mB&4yPazNBU?M7;x~G(PIQK*@ zMHihfu?X<9^Vke@i@S!gkh#M1n2(R-X7$GYBfx>)=$h_wRY9Ckz$KA(P};W*9>eM5 z48=F0W$M4l)#AoW?m0SD*U7%lc>MYX0TxrXLe4qd^TWd?I9a^XrVX6z=L{8-x5}ff zq^)l0Xd71ccc$RGycA@R1cK8}i};A5X#cHnpgk_cY;`*{D#n!oh=8~F5i#a41iI3> z-XEH`e6b?@wd21pl7+;uiKJAEw(xl`BIMEr+ z8V`qhYhs}Sn68G*wqTfck^vu+1DAy2Ng_1uWGMY9xgm3ZN9Dkk3SerZuM}Vmb%g={ zBnS3LoU2KWTK!pa5L-t4UJm}P0-T1f=d1`G37;2W+cw+I`XNqAQ=rr*IUcm9F3H1!x^6;e9Ll z+vPhHqfj2{90)zY9vj*g4`t#x5CO06BLdIEBE^@`ar}e3EQ^Ej^iFB#ws?Cx*`b)N zkb2g3xA&m)%EjZIZShT6inLck!m8sJAAU>1K7p@dL)5L(6*#y|{WmadG<;O!__qJ*DbWM^Wsv^*#?_fG)a(I5+qiBq^MV5WGFGHU0#0<*Ck87#?XlznGmfKTE2uv z*NM)4fbBsXia1JvJE9KUrPG{k#1#_SG6`*840fO`_O=*5kb@746=)0UK&yPlnJ%7? z(B6{JaF9rW{R7%Yz!qm}6Y817Hx!UZ>VU+Gr-{EvkUvV0w7R*o+O}iIQNL55T~eaa z#i7=-aB-*w-W)vs5>7E@U<{1iAp|B|ArtZeZ6jezB6=abj9>;jZP}e%!6a1*m^h21 z{^;RSoX7Xr!9uYIIAqt9F$>P__1b#qs>-92I*)`o&ZopF5_~ZSubb-}M!xu>BJNlj z6bWmvSJJ86bKBX}4m&;lJpwxenc8*AV4edHdG->I?_gn!Mti9h`SJ^?yexuweTUm= z&{fiYhoW)emK+|dm4vl3VG#q*b)Lo7GU&12+VbeOuxU-SG|{qoD!`rIIEVcC@TlDa zv;_a1OvjDjKq<18(F(N1bzgq<{7LN|EO zp>Gd6UdKmP?#p_n;2}@%lVdtnMi^_UF`_+r!xE=nER+~oI7T#J4_@BRz)p5Ou8KTd z9hojTU08+-PRk|ar5y79G7Q)ksp7q;jz@>9>aET&&^AtK6f}R;Y`kcmy)SuOVt`kR zxLN>kZLlZJ3GG+nmg4KGtPZQQqWx#+D(pW$OUOTP$hd5QJu@gJ9tu|@@?}-zi|WX9 z7CpBd1H0z1d=Um?;c#k|%xI$F+FR|UYY;=pV};Q)A*oWg=Z%J37Jp(524vkCI37oE zfdgIBtbW)vcB#(ED zla}S)C65%qr`3V!UfaG3XA&-aP<{N#0T;jI9Es~*YH-)p;auk3Mr^%{`ID9~dA(#B z#F|Ip@f=K0h!;armBv7$l7N?SI{v7Hm&@Vdx-lM;*xwEfnOq&&R~5OJ44JrV^nf(D z`-(YV&n)zH>A_+5gCN**n7gfue6>j2w2L|L(j#~Y&3c9}bKq+*%bWIR;lo|d?YP}b zE9YT@PbvS^?gv3|^BeA1H{I~~PGYmM+I6D)k}9uS%;(;lrW&icfDV-o7k<0pLNA;# z?uO;R)(!#OL&t5pvS_?Z$h8_LikQXw>k#)SAU$MG`%8oU&MZ;Cn}u!}5)_`rZ3p|G zPc?Z)2QgIv)fRJ;(5>}u_ozT!>fnRuQb$RUBP2+AMy~eAWfM1P9jbtQObJP)+;Pa+ zUR*3eE|4JeZaCYOk4R1PUV{^#SD??_cp_K66_@j7LOti=5`or6}a{~aQDB78#PT|WepVkDr@WK-*QeD17DRlu0KAO zwFp%o%4QO~N*J9a43uc9*j|B=T?a<~NgRSFNEl-!j1%u*t=zi?;u8wA!aC6Qyp2Kc zItdLVG-BOd2Y@}O%^@t{O#^fA<9**T9jv9;u}$Ymxc{OyV2+C9uMew6I;Sonh8DP?%O za*sQ_rFxzDS6VXjS8pN$dApX@o?gU_Sa@>nbLW%7VUo&k8yv*Ud?5So7w7>lOEtbI z$JqF#a~7^d5e#m5zlJ181JC(A?iQh9;WyEIA^mGy%MJzMOPs1V*~|8AsZ4jjcFq(v zd*%JB@m|)yALpIjahs0fjNx&<}PFQ zaczpY^To)0@-}U@PrXgse}_iVR|4wA1GV_xIZy1V0D7f3!TAi%7I#RH+jz*Ie|F9hD-@8Ml#sL+JbMLY`)VH~ zjKr&Bc$|S(QM6ALI3Lx4Q+o|ZQei*S`duCf2Wbnq16c8v0`g`ZknMlNC?Z{gOxe#h zr2p^EX=3tzc|#`cS8vFre_(_&Tml-x1EFlsh=UYBk0^oY0om{WM4%TXp!qz|8-F>U z73U~`N;n|mXwj!pN4t;tB~Q$VK9fEub3X`z#hauT-pO5`|BtWh4y>YR;=U!MlST<4 zB!u1}w9p|5NH3uyHGrTzx*$bR%BP|r0wOGebQ?`TP!Lf-MFFXHgurW&qBKS6@cnjn z@4bC@hyLM_d$+%tot>TCot>S1?asLp?1!z=0yp2Nc8l2wBA`dg9K|>O`68VGJl&#J zf;zeQkK+9=#XEo!aObDk)2NxA#A`lYE1Yi_^jRdkYN^VfgiF&#@^pTA9}zO8;G29I z;f5vow!g3rAh_K9NXbtpQcsLYPvxIHfNLm8{BBtm6ccZyb%yh(ORP)gZ6&?@=^>W3 z9Ta?94PIP+#``9mFSU4|s{#&G*#Wn(2PR+E4Tq}?o1%axYQVurZ zDv7Rm9JI2dF*ZPh72YP@%8(Ha{uj6Ucaq4#^Y)VT5~>A0Qj~E|l3!v5<#IgtgY+1_ z_AU6HHwB1l&Ykt!{9__58e{Ld3-WoPu5#>*!ab$o!Xa4`@zv>wd-*Cof^T_0J&Yeu z!1>*u1K`?V`Ga_?n&U*EImpkmBivP$MSMi9&C5JE*G9IrL7_OmQv{QOgAdM8>YWk~ z&$V}G5Y(dXNLN*U`{B7c5sM#t%<-7`k6&MnJ8q40?Hv~X?xNxi9Il|^w2U27)>V*~ zEaXb##h7cZBu_WPG%4pQCu^CTmtK$;>QO6zAW+zlzL6qjU zBK`RAQhG^#Hr5r&cZL{r4Cj3-Tz>4z(b{9tNB;JZyM6Jfj@qaEy?wbmgH#B-nKYqnoSBBL_~6eB@fdpE#3?|B&+H%vefh#*GXnp z-zOTUmk=UZD5Y+wYfJupT#z)L-|m-2Ks&FLMDuv!4bsq<-uzU8q*k@C#= zo0lj741Frk#}+pV8>-Zn4@n9VIh>NEU9wj!DdBoq2#2$VE-o`tj~qP&Rmsrf1b6lrUFxw?SIN~_q(Cn1l9pA|%jG-#EkWUu4=cM;k!^?|zVkyQs8lB*wUG^`3M}2h0GMVM z4v4o>0_;l!x2t6h^_J*rt}@tFCt#!^QoJSb7Z&5bA|&^U=VOoNC-eHh;VcF+6B(>( z=zp2e#V`r>X*66ae+vwg5D@(^#s33_$qHIvmH&Qoj0{(kO|KvZ=mt_F`Pl3(ct=&wn1^NA4EfC2U&B60BTN>P+MqVa_ zepJyoY^D(qJ7^T<-(*4J-`c`|Z4d9uc9mpz6#Pvyym9Rg4jZ1xFUlW&QM(Xd^#?Aj zykSe@x;+huDU@Gr=_-M9-}@V&N0s9zo1;&XbAeiRdZy8`%@=?~`Wv+|#cd4jFD<^* zodv1l#Ur{E(Rt7cbh=AAT^>zmYtuTo$OU=Sa2Uo!qJ4k_qVl#?2g3u!qXA#=*IDF2 z72Voz?Vy14lel#j>G_QxV|eAcK}k}_FP8?8a?I2`<|%?eO~?W@5o1oXw>{+$vPo4l z4L56d`bP=UxqsWcs^hXBlH<2p{QyCEJzF53q^Uyt0~KOl?DU(W{T*Esk!hQdZkUlM zzuCD?uG)_4X1FW%a5S4JmE)?+%I%UX%+kB$a*$YCunz&o*K%BSS?VtHnlO2nToY={ z(ekBsSLl8hh1N+&`=cv>+FO9y1c2OM!RNkHjzp^@$7r+|e*6pB5IDY{!Bbk-GxEhO z*d>>3o%S2cws{1mFWcte8{ONL)zg*8K2rQ`QTzcQfs4z+mh^I^vrQHr*DD_1+vQ(> zP{TIs?TTmT6xbOZj0Us2n_MOMj;Gzo#chH7*~C{=KUXq~_*9zFP+qH-(beR=c zb|v%J@cLo=&pt3o1;j^sKYL8PQ2p%wF2BwYrv#s&;Om&-k$gVUk#5GTZjVP3p9}q6 zsceYC%QfS{Hbn6c2e=wJ`kO)f*n<+2{|tm-Tkt6#mxgc%lLW|WcKj3)NH0@Ag6HMJ z49qcu&$b7LV&?Gsg8=@y;&`_iKJ#N&1-@^0y-5E1V90i-8F`02GW-DDc;u6=BJ7ev zK5s^*+r)A{1LNoR)hoz`+<6ymT-v2QE zcP7*w$>I@T7Q8tXvs-poi(WvdSW5+-rGpzPSC=)jpf$FlVXz*<#wnoDIuKnU9XAsK z*zj8YI6kUai!gpE!yDzWz&>q-B?;79f^uz;Dw3^K1eWUr{9;%#%2k3bwZJZZ1Z>68 zsQY)j<%w?{(5O0^>~y^_9zDjDzz$eozkCF2)v>TJw-lrQ=(x(lB=W8K^fXVB6*;Vy-g9mc&GR5+t4mlOdi>lEiwAL_j=gH|vG)MM>@i z916D+&pLZ_sz9CRP=Qkt{bvoG%*MPT4Wf9;R2ZZmY=KYM1C#B@oCezwx<{J*0(|Bq zV|qbt8?YTU3uF}J_d_zI8xbeP=}XfL{k}aRszK8iU`6UELg{8gRF4x$8Mta}x~n+O zi`&6h5pT1ZWBa}l0=x4R=o~YsF}@^o z@LZG^>Ijv=?Gr+HCXwK}8WYb1Kl(+$?^f`*0XA6dLGU5`*sBd9d6Nomaig;xjcpbh zq>(SY>?+L8D;hpCjeuUxr~t9|o{eDvSIF8_0SOIFRUo4{=@ponBA-jmiRb%Y4bmLH zsfjz$Ae{HC0_J1nHzol^iMQ59ojeDPnx)X2nbD0#P3C7#<;U^qZL-7o*tswbjcsW( zu+X3y%zh2_ceJ80!b~GzgdaA|h~@oOdn1uekE&^^!cYr5wef=2(Z!v=g|uE7p**dtAtv1BVN-=aE!3zApTCLqdzmk!9+l#b zg~q@FS5q5oK&)99G|5a7UswkbvN1m`fy6s2s16zwnU}4n^P~7)4l~)-4BE;bl$IxF zmtuJ`O@U6)KyigCVyfSAwQx){=ox`|s?P6nGV6YA2#!y=tgDo_O<4GUE zg|}4EKrmpi1dKUlL!?ZlpG;zyZviFSmG-hbgwNgKD$WilhfO+Ustb@YCj&LxZF$JwHwuEi)uqAB9+v6I>rYJmY1P9|8^PXA`Z2#Ke zVf)vFN0pxU1!g<%DNvkq3kEf2J4;SriofA}MpV?0a*sVG1H@O`l38I-=GA@hUj3lR zoG_C)G7?9`I_-C5AT_5Q?}sg*w6=QVOIH$m>`U2T_syV2gCX1WS6GAHu|>Y=N2Yty zcF8R=xT9#x3_dQ}GMf!ImDn=7*H+uPaUFn8w?{T-ky&|cS7XDb4WIcrw8P}Nd>r2? zZyC9H%Fb$<5EO1dN>#%tir3~jvpp5XW*6+*cG$Ij|7%);ryax)|CIP$A2FVk^u~&d zs0U#>q&B;#ahn}-Rbzg9Js3cn9tQZEX7Gjo0p9mJ%x}I` z;9qOt*qVsqY5%$;`iX|;i!S~N;QP(sU)Y1wL4h4dnil7CkGi7S4MpL)M!_)n%^g?F zpnuqdk~robcNK*fz00@gr>S2_e-9cifx~JvV#!~beLKa!lD-{Htdw{BrIW5ixXKBq zy~J7alm`hZK6Aw^>De@r$2LA6A?nQ9STG;gFvZRx6oWPhvnAi;mMxR79qd~blUD-g zB|%L2$B$i7mtC_tgrz%WXM-D&b>Sq=kh!+Ab;v-m@mvX!_i(sxGcc-|v5+?(66~6f!7%Ruu9LEq*nxFjMkOIMrtBHgfOZ3gt zn#B-0?h>I7O%^&?yv=5R1Sn8fj9t*IxT-=INe8CJ2Kt-YFs^XK+s2%l_A=vhA@l9sYO#Rol8gBHm`RLth8CGjj4&XY7Eqn~QzEl!2V}P=^+8e^g$j8f;`iOmSiU+eD~xZw;fZ9G518#ig#*$aXuQ+e zqstdvHCR7I;R&5WK>tr%af$T1!ZWB*}|}#?qMd;)t&^6CC3W5Q`svD{UtNH z;oVbpSv8CaicKuW|+y;5oEG;3IUOIi-E|7t6B^*(+CJH?oaf! zrm^rP4Kc&#THr}use>S|eZN3iM#aHxxkS-eWTs(wUXgM!KP!p1j&~PvEHKlUXQ6>r zdS~9ZqC1k0PjDAzUmfIKp0f%G9t)(g6S#5rvZDCF!svaUo56Qmz^MWgi@4L+HO2O2 zGuv>77N^d=_)0da$g&}Qu^V>DjDFr8ow{}PqAg((i$Odohe(lFi9>RvCnYjmnzH9D zDbXUD&tvt&X-|wL9x@N~MGnbhBKa>R-9^|t3VV%?9k5BOQ`|M#N(=6C zE3UzFId)P(9@8QH>@G;o25I@J$gH~9YDc?+US7Hwo>|Gr;Ur#BOLQcfMFx3xUp70*3OXAgvPdJxhlTs9jn^FyFQk1U}sYJIxA9 ze3Nw|&=Zus>U21C}?l=i`xlb9MCn=Q%^;*VGi0IB#d zZQX@&jHp#8U)IDO%UUZ6Ep-Y~+XaQ`P2I&=mIb_-6`Yos?>2MSU=tMNI2{tZKfTy! z3(yEF5Q+82Om`i&hJdn>y@B%n(h!N1*_iQWxpUZZ3)s>}fJL`(*JHHO8FIbH2s4Ig}`OX&X4pwYBUvjs-yDFQdu&3+T*o-R9_f2YDn(zClHEx354wEGI zy4W-e_!KKR?f#YTgr?h~z&GjONV=qYL3(F*dA8mH`JNThFk+E>RE|4^ol&@_bliX` z%ls<40w3B1!_?0f@E@$;)Vp5lig`iAF=^jJ`Sq@beGd#E&vkQ`#%3;lvRHK--0Es$ z)oE*SeRtF{Lm}7EkOPy(v>&s}@%MYcIHudeSGR``*s+s6VaJ9j8o3$`|6FNxxi(S! zL>?Ma41w6|wW~&-|DfaQ?M93zj?9P{PeVK@V*5ZXH^=xe8#}xL*I~@D1)u#N;IxMN zrw`UppQ}pj_R~n(X0b*_xbWbBA{QP! zWiY{SG~<$A;nVlDx)1_gv}2 zlMS}1Z30id2mj5H$$*K^b?XNpZz)#)IqrAnQBc`uBQSb59%LY4OB%z=rnX7^?U4XU z8H{leC;G+=cDH9*QD{*P-!lqKbR1$7rSpkh#Pj+_Y3x^oy zNJFD49UkK@!UqpE&?ruH<8$s({N1tmq3tlq$ns&qjL?4Qx8q=CK0YCBBs@byq>VI; zfRIbhefZC|J_DcA7V*2qP;Rp4j6y1Z7>^$5IiZ|F3Os@1XipXX;RNXgvVlDH2*^(m zjdHnn>7& zIxPB16~1S(yEMzNfYq^rQMIp5fgfeK1RJJSIjaWOa{ zUJgPOjeM<4yI8)tQ(h#yWI;S{MWm+q=7)AzvCJ$O$~#TY3uP(TI1+ZY1Tv|MD?n)K z8E}rdX2F4%_`SKEi+pcsXX<%~y$$0dd$)_={o8w^Svv*ZS_dbau&-phlKkO|m~phU zfM-1d9Dyq(*(3!y!2&sUc)JuHGaC&y&H_2w3h8e!_Kt#FqeF^=B5b7vX!#?6L_4vQ z3h0;#D1`5ugCXrZ3)(>|8f~__=i)NE2MX=3j%GyJWwTorw12EW z@jz5ZlTZ~W{@m8(D&0RZ4pTZCrPTLSYG%^rn2zM<&XX|Q< z-q{|VqO1zO0ss9=3UrnR3d7MJf%bOXPP50O1~2|52KkQ^-WClHX}NJv)SK>h2(7mR zUH>1TEtf#R=M?A}4HOIc3OuJ>yF`Bb4a`+f*&_dJLKfpShE-#{rY*Qia{NZ~hz&J) zDc7v-T0*!|ae1X#l^^8>Tuu)Jf>iubbWuGPp&WkJH{V`(A9IclKg#~!_D9+OPfT!E%ly$la?>R4=2PAjHbvo1)N$41x)4v> z)S)bQJ?)KW<1Mgbt+1rVUkvhAWbY~1bvi7P5g-+U2x_qbcgL&bH;o-;{yOtFq7RCGZYKlv8A4&D9` z!pFTWx)Balijcjoo|3%LJML;oJx}jNY`Pdf!qX5283A8Aw#2KX$--l^|W&`S_#HkjzBS^RAQ{s$hvzr1(-}1ik zlZ*gb%lB?^Z+FD;aqmF~{6};deixK*l2sIxUAt3QKBdW_n^!J<)hU^O7>}_!`)Ad^ z!}H4_RTu%8!rGerEb>2O6ma5Vc3Mn3wqqUgM74-#e6US3XkemqAUO*G$n(jCF~ zcDz}b=lLYOu;a z{n>AuNMDA23Kz~_3JSrheyD&XTvKzB_`dp`lcc&JVl@~Z!K!xfWTQG<&I#v9yE+%< z{dT&eaXM|`r$~y0+(tW8zvrlSJg2yy8PT2yo|fG?k#BC+xws^TNLKNsDTWD=tUH8i z;1su|LhC(UAawU=`tCJ@bvbD~vgQ(zn7NXpG+dC0HFBAH>X|t^%!P28Fl2 zE9|!kuc~;VCSw{Nc_;@ShI$WDcmvFMl-_3UGv`xz&Ufw_FyAKR-uB4S&>q3W>2-xX z*NjY#`rM;ry-lDm*@MzP#b?K`Px0BWGNmKRDbqv}r3u+ppF4(Up2>;hH71--mZs@r zGut28Q=q}pcLFo%3!qRMkv1j@nEoO({Y(zBf{gD{l>1JiV|dKq=l%n{=)x|=dGZg~ z=PG(i>IJSDI-#jn0w)@)7j>z?&s0RvQLOyk)W4&}TMWif4jOxYky?C4C{7bTG3jh$ zp@rLia(8FlPst%*U^65$p*%ocL}7iv>4Z3fKPt$%y zpBNipOq+s?BB(&3-$OgQRpOmaxkK4%1-ZfuX=p+W&yDU{k2n7fBkr;QxYob8c$>}M zJmv2av>VjxGL65k!of^!;ivo=ley*(is z+!tShu?{~i6K0>5%Oz@Cbn*&(Y}>BIIsXG54TevUlR#7ThbC0f%h9)JhUpCGKiR~l zmthmLPLl?)W;z)R2bh>_=>jLxkZ#GmC|kI<3H zJ@xiJOaoW%>XN{lT!Y*4X;}-+8Vn8K8ct-2zJGpe7b8M)xk6v6qwnj0U0iDN+~>MQ z@~b~}3+Fk1A-w71->uBQfx}>G?nkZL{BMMjy>$WJR}yu>UGTXsSoTjzp7wmVc>eee zcLJY%QMzDHU4#qv)6;%)LT>t@|G3NWJ(rB~a2rJNn*X{p`T9R(sk?uuQle2n-Dnh} zinOHNw4)mWTrRs8N-khG+wdM&g8bNJ&IB`#OX4E=irDU$8=S)k(c=uYDDQC%b#}En zTT$HS(}i_DV_sEvKNc=0zku3fh(+8Xc@d3n zk;6O|M$Rcl%<5UK08VU_zGW~%8#B>EJrPSzbt%P@LU1Z1^mdTMqx0&q0o-%Xyh@(S|ghswxE4$MZ;wOX?9-$-O+(4(z)OB zShQp|=@HL2#&}Ayn-<6$wve6qPqCgPRs}~tUxrXCo|Uaa)eYdfI`>HCqq_76=W|EH zr(N!>x%Q>c$`%*37mYI&x7=Xu%qD}VaNPWMOx{yZ>*mxVd5Hf!D;s9ONp(*>8%7wq z_htyV5odI+@{@%<+u8K9@{A5%6L>BP2=Ki}wcJdxf5aNOnYJksHBTrX0Q=BFVk5rM zSF}z3?qQhBACyc^D475T8@R$`(!%Xpde0PoCD9Ylj#|WVSc&7?vwmfu?b<>~o>ZKk zE}e)*zpul>ZWY1B)IG7%FYtWDaoE1NSGmD9aVUI36GktgX0uG zvxRwVNl!X*so{5h6;zIwF6=>)vS|~daD$kkyJXoqrg$nNX9nT+3dT*~1%<&UmeY3h zOy)gOJ@H7OW&-bG3r-%bRkwSE@u{UeNl2SP6kaq_z-GBYA+aYSfs=ZM^XOP#q+_O; z%nP<;NH(vO_H@IsYND{sOkr{v&ol?plLt#=LQL5zCYEYFDXjk6Q#a1 zsGi>0yQFgGWV^`DiV|u`4IC)28fPPTdfnb}JT|>|QGU5Z?{I!`0R~|D*fh0nDBfnX z43}RyXypC1WA8*oYK)7l2a?;Hh+#)b^%f%5ysD=R_6O~VAPn3@gj#QOHBUwMwt|1l z3~yLas!Jk2zN2?>KEEacDR3E&sI{pgi!3x~B|5K$ryM)v;$3=+SnmIjR(U=k1A-z7 zIDunBVPAlPXlJwz4N-~WwHl(r4`@Twh+3W^EFAhI4#uuLVGL0P-NKscmXNsv-a``1 z&f1<7R>iHXwp&^46Bwi@f8?|}Fp1^d7Bfx2SuE8pEh%7$!G{`y^@>X$JKcCTT=BM| zyvlCNhFN$Uf^T#a`eTNtI-9FldquGZ0A2TThCWeUo*jG1!sIN;B=(T5SN4>mJgd** zW~rMEpbEPb?8iE6K+9Y^pD4|*HH7i}$O5}X)qT2K4pCrRjv{z3Mv=}FwY`N&#quh# zo2v57Ct+{lhNa%uP4%wZ6yt7^hw_}lT|v_=6xE%It7H09FE584A@xhYdJJbEEqt^L;m;h?Urx7VM@LY*M1!EGW@->lgL&p*cCeL=eOKN;eP0YAdoP?((Mn+ zEU?@j_Jzki$?T|tJ*>lu!>xQ(cT9kQjRjvT2>4qI?AI39tk#~9?2babsUu#SEbCu~ z=N0J_#?zbOl;aHx;&qA03VEbTK_f_|t|*l%Fir34?K}y%sP6ml0r5JVxfYrlBDwG&49S+?NQ9}Rx2vnLt5 zI|Tlb20o$~Jjn)lK|X&>zc8LQs4vpp{Q*C~7F#l#9!=&@7f(raJR);WBU9rY?4``> z>ZyiBkeyhtpb%|fCzfxzd1|p(pB&zzdFc*@1hs4FyYj(#i7=^)eA$`aK+XzjV<{5i!P4qUxKGhhZwK)##lJSjGOyt z+=6{PRoN1SyGX;0-GX%NvZYe{m*mG@0($#KP&7ox2iJa{EjrB@O80}g`N}5`O$BN{ zh8rq&<<0Z4yg+}b*ym>0-L|kKjM4+JUc084zN|4F(A`@pzsGAEjR=nqX8OD>IyG6v zT+CTgczjPxflA~{t4@6njfTrndEdhPgH7-)CFYwAdJ$}A2!BCmQ&+1s7>Mm8Vrv~S zccw%P<*`Fx^jlgGv#f|TPjCDr=IN6p;sgzG$xu%#HqHVw+6qI0>^2OHy(3}PXfT`@ zTX3>}VczU13=*zai|A~;G2@0bN~{y8AF9uCCsEQklKh%_7yb7BScKqB7N z5z|I^8nas#oPVr1v}-neBv!puf0rG*5??bEJ(iLLQQM}D@?;>SgWj4Zk!8f&Y)hjK z8V%j14;Alf3*XruK6fm}zLymIEHiw-j$Z3DAeuKF z2l(l>@YC$!`#uA^^pS$c1vbIbpyuDwYd~S%YCMoP*&?sEAd|a!=mc1la|#((b_F9} zEro4RI8-8d+>`-j_!k#pR%S%yMJV;3}n&&bA6`F(GlFQ)Nd z$CgaGEg90sCC_0YJWP@qqLG0n;(m_neIxmpshB_H+T!-N#ib~N`O`e*ao;?N1t(nn z?B_fWInA?0n`4WH-Zu*O%M;M&8W8#&E;#;mKpg+ACzNBiE#yvHNNT*bGhiYvOI(~| z^)m>iYlb6BcwuQR-=ons&VnMBxFBcCi5E0;EtGgk?7+f&-b@&rA{WfoI{t#awcha} zI(BP?*iuJCr*6oyEI`d30kr*PtY0Q5pm93T-VVm#x?r}aG8=7y9PtRqZ(hMPU=2ZL zJ9I=b4d62}2bSQkm&2TD-d$fLTW*0}s=_VNMW-ro$ICG58XWch>We&KywpNZild*xOfHAmdp?r2yZsFLbcDY$@48OMA6YA)w!Bv^;RqEZ&0@wPI^h;mkg;&5YJ>-(~rrrEF0 z@YprjTG)okY;d0S4+%lu=C;l=h^O7kjpUhY(eJQ46(DC72r2K}cg`2$*Usl+-)dC>?c@fwXuPb{W%u%hnze`@$1WE8&u)}#I$$ek`9+YnPyN0#oKHhkGfjF z_h8H#|G~R-g&QsaNjsnhlL@@_`<|kXdbYT=Ex2?Z)cJv@276jDJ5)oaSo+NM7-k0B z;tjOmk%f6}gQpT(tnl8@@W}DjZ=A-WJ$fi!X>E*JYNk9=t~=r-E|S>IKZZfTTY6Ebm`lb?NUlliYd z{5G91+HUt0=V>2#B6*+o-dH~4JMe)&JLLk#}ypjBc^%CU7`d|>Od?xc98;tUl0Z{14l0$J^Fd3iGRuwUSouAw0>o$rw%{7$pE6WjHGa5cX=}ShRu@vz0JYosSeveg_fV< zGv9+g|NN)ynlJ43v|&H|Y3`LLtkenOhtHs%p_gS}D!?6|8hvTy9#0$W710Z!Nm^6f z*RVu0qiKw0rrkH#5c>NyWr&vjszrP@+Y2{k7p#+o&$()zGMWfa0VREFp*=oPV>pHX zBrbazJD`)d#qtW@xMSFO#qwA`%f$p*0!Ju$2i%9`=Udxob&9vy>?tHR32c#e;-7wr ziPUO^x5A7^;btTDdvHK{_TUI!{2->m%WUDf1)f&Ne|?Qf)lmh1*bGl53-E>c)+yVI z@p+|&hLd9&X`Ae-@U?{owPMt_o;vJ~qH)tq15x`JUr&1q^0E8jt0O`S-WiPBzz)Je zbHkRW4ASEq%qThN)L%C(zn})@dES z!#b_I!tJ8tLZ72~+7WDece0?h*U*F_LT7~HIob&3)rQBHZRO^c{|Y0v=!#Un6a9^? z-vxxD&miaF8>M{|%kcbh)ca$_-$#l+0N_YOa|pM?2~P*M#lqhv#oziX!5a7ONl$I& z0Sb~fAu%So>IsYj5vG6d>B-Jmz)o4gXn^tlfF2x+J?fVsf#|Cm8l4YczUh1!p1E;o zMZWnwrm_)N%}o+|RW^ynBn>nre#Su4~Gr^4!m!-Ymm{Q%A!QjR6so6_^9Q z#iZxWzqMm2ba-OwRoM_}w_IwjGnp{-hIkg=7!4s3!_nE46{@z&uJSH@-Mz)J6jJb( zj9b`xQ?a!WDdCOz!!qpWj6370$qp-^ZxxUsF)S%RJYR{=fq7zITOjvqkfNsGk!t!3 z-iw;LUpyO#(jRpWzVisa=8Q2>+_%<<&_pgQSCGvsa7|9^w()H)&vrzKi{E+L;*>~+ zpGdV~k;S{QKe?OJ*3_oFdORl?x4I(qk4U)Oa&9LqYA|~HYXMP;9W8Ng2Eo}VmW?n^ zd<++q3qe&Bi3hcTdvVRv$Yf&VSrk@Pd}Nwez^V$4=qj@Cu4%EZw<@8(Uvtc~rrnY+~luKOL?icyhd&cFM zX9!Ol%T8Sj>}>i^x-cBNpwns(6w~6iGk_$>8D{Dqp2kR;XUFd?Kfh7(U(|RYLLC3B zeia;h+qzPhJe^m<--=C2B3>x-I&}#wOJ{zPSC%!sZeB_>x-M1Z0v~n-bN`+=9U}6^ z;x(yYeH0KX_)TwZg(38Vy&{o$^}b%!*=%XmqmE0#T{CWY8nKfWv}2Dz z`}QACbw>yvbPc*G*4)hTm&PfbWqkWz&*SWY1@W#Gkxbv!n^?uy(hzIth~lss-+RlG z#j5^gu5qQmq%k$uxX>L~fdLv~UmcOsGMu^NY0i3E5PMh=iO0(Kz~fvE@f97>;ISBw zy^oRgB@65<4OZANG(9QMbcjSK(Ej>)4INkk*25fh%dE5*UUTi)P~6}LDYxbyG{{3j zX+qF#_1Ay-)kie*;y$o1e`*|FR2-tX+LeX|CGit%bSa*GA6uNiTiEm}HeI;-L!Yxv zX5Jbs>2GR(i(5SLlOAjoCtj#PY7LTx_ztgk$2MK9 zQPKSK5N|AN^|v$uEkqF=p7y4RaaWz+llX^iaDJ@goO6-5Q_)1NsXaBC6&?unR%YWB z4Orh`8VmkKTuQ(_AF$raU@LV!icP#T#nsdPABBQW(lvOq^#n z8WqAvuN_l1uv^DU-!OOb)ElysYZ^pCpA_%KBvw)AqEna=2bClWTL+FR%fIV~+`64C zxa~Du(I?TLs88-kClGz|>VsvwOZrC<&5)` z1@C87&mV61J2kmr-cCY9LNwo>euY|M+F=51Pi&H)497#xx+XUK@e6P>K8F^-0-kGy5wv_Lu$R zmoSN>TN!UHoWv*e6BhKc-j=x5!6f0s_Hd+6HOF))$S0NaCc#m#upGpE-;7zUytg(k zbTDDww8tbCM^x~ZK`<%7RpDz&Ych=IBW7c-zTMjK#knhG27)zk{@hVfeq@@J;)qRY zZ#FXvU_>SG(?_EBGNUgT0`xwko~g(eRP`nxnv|%UfHBWD0h1T!wJP2^h$JPpUo-aZWadwBg4sEkE9Hy!7(TKd_j=u$2rM|0h9-mAM5{>{$_tIScS58Maa(B9S zJ9=%cbgx>m;3uMUiOR_H%YPTv=p3r;O=XR5N;9^%2)alEDz44W>)rGlFj9`Ry53~g z|E3(7`|y($ysbG(A|r{45;F*0ID*P*Rr8+a4h4u!l;LryD;UynEN z)<;{}A#b!tMkq)QFWSgknzy>ZitCwI1DD|ua04?ig)gNv z_h!MDZiiXh9&wTA)`9wk0v}kt7Q9 zeVry1RZ&Pkwbv9946+9$#f9W9`x7pv$U$zFndw@=p8Nthp z5{>WrM>gtULN2cj8D zil3YCQs;eix;@wf!L}=ToVaed^tKY5CXvkniBQ}pr5*Z7@%_DIiDK=5k-%xmvgc`U zJ=}sr!ZJzZ2*FE<912K;f-@fuhaZdKj+>V;pL%FUCSO*gwo@zfz3Vr|<0>3G_}ljI zG`;>~CiWjo9iAEVecz zBE6~j$iytJuouj}$ZL%TXKAm;hcZwivo=(`YtEO{(xQUS%$`<~zkbdW%8o0RKX0Hy zgOKUi#PXqga=v<+x150fn6J^mPekJzNuy?hxhp2#mlC;`fRMZ*{N%VGVZ`HCOFwLQ zU+PAN_*(Tt6pzP7Cg!V_8EqfHt;(8htaBm3|Bd!C0~E%wcwZ5IZ~@w}uNkAahN1Le(7R_d_?`;BVr-_)L%lb=DGs`Y?jWa|mw_kABm8NdLRaV(&Nl-;XZ|{(T7d z9%4&@DW2CEhxtWDB}`+S-9qL>{6`xOFzcrC;FQ4 zdYiPF@sV}j@{U4FR=_p$a1-Xmk$mQgpe_)`*SzB$iD2%ScfDI3W$9n?dm!(LuKubra@VV@|bf(9I2%>+6N0;$3Fvi}F(8jcA@$pl_9Ilr!BoVny^ zMOY+M8{r5v`g-p`2M-i}Zi6@7fh$;p>xC;=@j?z4dSPL|I!F6*9lHYv5ruri5L9VG z*zq3-mFmu{Mpnj=7l4WT(AxkD4-?EU{{aI_6T&NRK{4b3*nl>I9259wTVRv!n{n<0 z5&cuT4LCQxFdqVc?CT7CBLC3mnic-bB*Yqfu)CFr06t+1Q7(ahzQ@}b)6~+tgQOTwFQk&j z6bNXzP|}GzUnyvMmkW(FEC=)Hv`rE51>wa;SB1pV_e?rZ7)(e1T%w1#|wLA zithJzV>5J&FZX+&a6E6uK-)hOV|bI2C(XOfrj)I*N~94dGeu`8u+fL-?OZ zy|u-&)-+!$PW7663}e&(EO0Yy;Z`08+@}ielMtSA!rPGH8Gze*!rPK<+h08k$ zxQhzz_YmIidvAS)X8`W<_mD1ZtC)ajQg_+H75@=%Nd>901&S5KHI9Sk)#PI%&V{mK z1vSu$KVkM!7!m8ivzoYqa$bVQBsGP0k(z!l^rSgI^@A2^SE^E8FNPChWEeL5h*?r^ z3to?c!P+*lA*(95lKduw9iBg$#2k|thc zvy{+)Ec;=E>v$VZrnY+VV?}&bkg3&FyoJ9w=>)hCI>FF1^f%g={_a{(&e1x!eco}w~F3-%t ztp^VZ=Z9jwb}}E6B2+w{&-v5a+L6HHJwdG$D_&S}KD_MhfoV^mbiXU!ewh21O4s(6 zHk548Rqr5?an(;Y`5G3pz0C!C@EM|0Vg*7Ah{xZ0BSB@Fo~o6da2>mOlg(wHl|-Kj z;|5Wxdfwuw*W;#|D1v|~9zXl=eUjCU#MOXb&kV9Ul>27UUsx1j@`7eDLm zZ+J7|#W2-*7m-H-2JxQH_|OyO2$Q;K=IH7_-jX=1S zutMRocT)T9z6s5U#37(y;~9o;#G)=FTy%uS(!mHw>K!^q{?6A#M-`oq;eIp|DlQGP z3MlI0qAL9O9hi-NIz)}T7(AY^Kp?#oF@`LN0mgu9W{ecz@I9;`=jy19?|akOD;Ct3 z>==uA0MTsJOD}$a`Qrzc((fvs*6KU~(%{LzERH&xvABk>Ec;CZUA)0pmHi?yDU05W zf4!Mb z2A@_LVYXQjQco6MhJkCwyF3iiuf`FgEl2R7S3I%&yMn&8h$p}&*$h7rcmwfg6W*(~ zH{gx9UpcQ2dsX5tX>LpeUp8a^FCutw5Q`u7fxnnqn7&KJw6S3=y^yk7g=lia8-ax> z`%WuOE7ODK(g(zgq7jQj9&sDtvjEn zdX9L$CdAhoGDzU3W8f%`i8ObXs7R^l;2_8%`RD77x&aI^TW7T_7&YKmP@Wx=HACEv zLEjbcOJiLuWjiVQ?IQz{6zr4z!Ts+>@eO5sW!MBu@o_fAg|XOB)>j6rM}P6-MSPVR zw-kTVTHN0UuzvIxuU65Q!ggDV@07(I?fJG)pWIhPE^z!iTeK*30w@{j=?u|SP5A8^ zn%8W1mAs}5p&m4g8P!xdQP=|uox3IhlcuHx3My4i;f@5Kt{)}n1LvdvL%XUNIit2)ln zQod}*%VwPa@r6k~8h3-WjIGzp3Oz&Ao~at^Bo7oOv^pRP0urjmj_4Rd*|0-r!uaM9 z7>2&Ft2&0zID}lAFfKjyJQ#Pf)XX$9Y)f`JA72)42k-`Ca`>e!`~yi5XzQlzm^l_m>Ouv(^}~{HGGvEznV+`WGOu}6Gmh~P2c0lFk@7>2m(2L z?Zj!5;0D1#6VOJIDpx8@oG~MNqL!}?a){Tef!2hy68P`6puDNb=@vW(N-ktGTRC!h zWf3)}%+erQ)d7KK7Kp}$$cAIi8#mFXwrK%N69Y(u8XCeSJ2XF-%ba??l8$K_iErw` z&Q7tAm{`bf;>mfxBEwhB@wQg3Y<*uH_LimG63H4{RLImYtyYy$72K<#eB8iSgYB`P zeEJBKeGQ=tNVDgcai>PUM(muW{Fz6TAKKX0*n#zOW224kG=^W5#hBaZVW2z-6Vk8~ z=BlQ?3^82#;c7PXHDR?Za5Z9rg_+hI!o*PNFZW(^2(yc&T&Ea0R=1Dw3ln-e6)skz zXc68!%h!%guoN9YMbpTREV z)|S3zY_|nurxk?8q9c#PaqQASdbaY_XL*+LzXi%uGeC}Z&G1^~)h(6BBNomMX_peS-yg#cWRp)jTcG2ZZFkW3*C zJDE1m@zrGC>W~L>eD(N=RzBT-wBJsaNaPl117f5}S4ad|+RzZ1K#|W=2=r_~prm0n zhx(%U-SQU@cu>n1jV-J}-HhJ)`A}apf1<@2Tq#)F7mt-}mySV*A@oAd)HPVrxlS$D zR8a<~x(3;=hp#>oC!2sO1_P0xP*;uF`;p^+ES~+YI#9BY?zg zW={Irl6*m5jJ#iJIM@1OezMn$v*(dGy%EzBXsq%5Q5q>3gR67y5v7G1PZ{7#XW{Xh z_7uQ26Dt^RHqQ*-2seTz547FD*%~)3oQJ@plWh-<5 z=zb%%%mRR|e-ecm;L~#JGWeJxU}K+-;(Q7{?sE&u?f?o21(mW9O2KxmhL3)dpQw7F zXlB~rp%W$z9XdL#=kW2v$Ba&EIcUP5@k1x14I4UW!n4l|9iKL6^pj~rMh+T3K5gWn z!9z!m56Td9RpY5u`?3PIdbhF9J~MpGv*W9`81u|CLq`sp0NCn^N_9!4x}s9upi&)F zsuPv!{Cb1@;_OdL)h?Ra2i>j^e{aCT7+Qv4wmojJVP4PyWBA~U@UlfGm{l$!LCQH4 zK_sf70zo)&BYht#Aq3V1(@8h-@@Z|2{9C z)lT5MM*8Y%r7~nG+(Z1_>!C;z8C;+&;2(Q-urnSvv%FS5ZOmZj&><7jCX7iN2HB-e zq( z>;ntPyN>|bG9LCF_r3cYIdcNW%I_@Y4+hFp4}jW;9>C_S=`T8BWbS7qA z{11%2b9_VCW*sAOuFvV%V8(d=KQIQo=9|Gz=ot0q`DWuJq=}Ei|AEnO(Z;5#2mKv{ zG#`uiYi6X&|A91Mfp07;R#a=|iVJ;{SmC1P(I5`rhzW?fjURN|)LgOBP=`TFhw+K4 z7F6RM7x_xC3=3c#E1+!fwVQ@0zWr2A+07J$BeVUBJcItJ~IK))bLd+gk%j?E|Q^?1&Rf-_~ z_57ek$B#uHX+duX%1R5${chb7ib zL@|0H`=^FMhBW68V#<9fZ&2P#q6|DB*vi9I91*_dKHX|1olc#^3m*e}-lx;k(p2T(MVI=q;T) z4;%Bd-kG87ZN2IP-to0YpscCtxLd(7uN%WNz;V;}eSI7U%^V-F1;N!C44Q?EmteNSVE7KJtS>O?Q7@v+Syew1tj)L`3CTT+PAKT5Vg+v1DmA@5+> zIkrOQXk?x8#TWP=7_Yf=OBYogBoXyJ zu(m%Vo2jT+UwIQd^lOmoA-qJ1`z0S!l3yehaYZ_(lGk z8Wqrnbb>VS!Y_Q&CzyvO6qkK5wmAA?#MVZNVr+3u2fy0sYcEnDd>qu65ygeIQQmEm zc=joNa+j|bYpyVx0CREL*1-z1iH=!pw{MEbgAk0FQQSsBvOn{^$c7i!6eMkrZw?Ye zi^7_MAVoA@NCiPo=#Mc^10L1B4vrG4_!;7K&>3Fx3wRcnOHSF+;(YZNzJB5v=z2Z( z`bNVyZ({KcI~FJH^NnH$bQYWK_l<|oz{KKSjm15ZMc^4MYU)de7@8Eg0SSup3k98< z&thRQ_I+F}eHV2ZnFq%x{t;=fw?^_|Ar1w$xtGEllsT)w6idAoM@xMiQ=}f}E+K0%sa5~{j z(+p_AA2#0wO*yYwG+En7t63v&02{1$%$;(!oMWJwy?!Nv+n)lvW(JDLz%CwsG{|C4 zRTM?c{NxhB4d3urI2+&55x)D?m+4qTMKtAE`5zb;PWi^MZ*`21e)COsd~L?qABg^EPL(Bo5;<@zD6kfd#yf z_Rzt%o%W>`5c!jdcK>s}KCHTq5$Ey^g1^^z5QxyysL*H`_z zpN>4jgU!Py%*Z`8WDSY9o9D&W+jJcx+y|fOG&9DO|G=`mX1;Iny)7g_L(rI{Rc*a>%JWJu8!fp?(5}PYsOgh9~dK7?ZBa5IQH2= z9cazpzDAA%W}q+s18CO`47Gpg81?`0RY$HwQ-$&a7)Xgf?q4(+e4qcS4$7{n&IOGj z)jO#)K&W2v_1aP}<-m@HQuS&g%0=kF`Snn}YJBFEpvJ4565M#B%jajZPJtrve8p`n zW!h6Y&1$rv7jnpaJSDjCNcG0)7^HeQpaj|)#)x2yAgf2Z_ojwHx`$&*!R)`DVlxx` z^FCy~Lo3TiJbB{N~t)HSv^Z z66p*_{^P7bYM>ZTW%(U&hN;V~AaURf6DlV~ddDQvN;5wxrHp0;9qB-U{A!5CHX)_a z3qKMWD{y60%9wjlZ~b%MC&o0ZhmQPX!TcIHo@PSstRX`@gbWoD$h^{JUqd-~-+xid z-v4=6etR}gL8s4E8Q&0^Eub|sGCMU`6Dvi)`fLi6OW->q@*5yD+r-j)lBKxMkVp4A z%h!(wACAmVXUBDj?os*mq87JMv4qYeW+o27C8@^>!yJ!iS9OH5(fKVAretE`qGW;+ z$^I_?y1m+FK4Iksv+rQm69`PqVs-yerMLqLZ`8$ z!`6Xmaa;}!Ld?U5iI$Qr+x120|HG&90*ARTro-nnM^$6=D{$>nLciG-_!p5QL*M9g z%|92yD-}fxtq+t=;2#yuZ^+)WlwPNpTU{#H)*Ng2DYE_+!?~{`I!aDrejRqmg7QrO zg{lais8h@=C1=J_ALIomwp~>#FN1}oQ6nKpP9(N<;1pqzd|h)Nm}*ARhGqSQqLT9; zci?~o3TegX9L-5et`YEyxnlsiV5K5{{Z0IcW3eAwJ_`1;zwEdn!7L$E0f(jSrm6#u*T8Y7Ft?1<`O>dHf93_ zc$eg$c7a*O3)wFB1MNan>S`6Ct(E-%KT)XFM z>u5{gYrMBA9nAYk_b+A0f5t}oOYW$G;b*v+^e~O|kkSFg63TI+YJOuj-w)8eT7Fl@ zYi58~?ExrSqw1nx%d2tdBR|Zo>Nq^Q#SF8_9!3s2Vub$54=~PgwlE+401-Rin^BGj zP!K44GCe;Vr-$$ev=Au_nwo6YS*c8E@16~$7(Y`xuQf|5qYUlG#tIki(@H_zxNw3nN^(Apfjler+6(5tKEI9)1j~ zqP(DET>BF%I4oL&8J}!o{Ks!j*WhCsz$UKL3m4pk_o(sNZYSBz-w} z^^CFqQn;+YArpAdW|*zUl{Jr;h478oUIGlkqGd@t;)uK$$wIlid4A&bH6idwIGlfr zN2v2p@rZSPCmzwxb>hLCe~CxDlZ(e=&LiRx=KM%J9L`nZ5#n4S9@U*U#p5yO0r}D= z9!bty;t}IKD;@=%pNfaWxl}wtocYtm^D*aL@rZGLDIdGVqmc7m@hIT@T>ka7c*Hs{ ziig8_N51?_JYt+5$iGgBN1XGJcsQK@h)1mRP4P%@?i7zA&K=?r;yf-Mg`Dq)Ovm#v z=TG9#g3i_AQQ!HFc!W7miig9wNIVKT*NaDI=Oyt7alRoQq0Y79;c#vh59a(?Ji?s6 zi$}Qg2k}UB-WQL8&a2|#aBi2s?UFCQ2zhL}DEPMcvw-u8c!W7uibtB$EB|tfhr@YI zJ~oR-tn-2V?MLw_=)5f+1)ST&!{Pi*{`HM`Fy{sN^0Ih@IsX-pNaqIeDCm3(kLloa zqxjR|{8c>SoL`9ta~_qCGxE3d;!(i)p?HKif04hPmcM->fBRnkwnsc7oXf={)VWVQ z9L|sBU-!hLp!0ziw&v554@knsG#KYk{CmxYboOuzC>*7((c~Cq;oXf-` z)_Frb5}jMb!{Pi^JR+SQ@rZC9mXA&15$fD49tE85$-kC}N4Rr8J@{YQ`OQj;PSF2N zXFGW329ZklfAjyWy=OobNfRzCCbF0#A}D4MFlRAgM$B16MPUq>v!ZL_7(u`?ftW=_ zF|4jRth(!(MO|>sGCgAstE}1Y>7H|%gYUif*Y{^?s=B(my1J^<^vqOI3Y4(PrF6t4 zRKXiKE!7ga@j~+5CS`qcZ^=s!#+I*1ms_e%Ww=8k@BJpZk(aw3kZ$WZa-H6{R6TNU z%uA<_2i9)QU4YAdSSepFu#%r86nC52!1@XKC)+0QS(KB2+^ zY6a1?L<=)6haBEhh}Ml3MzxTlm85Ytxj4o>M|2(0$~7~IcO=oujU3qbBL+L~NTQWo zN3F5k)>x#H*BVvw=fLc8U=BGjryN)whulIx-W^3N`Ep>kIWYSiSfpbP)Hw&{k^?K0 z11pjPYncOUode@e$4$q5Fj{yW$G8(lD-RO{tQ^?K92gH4E`K;ntKkBk-(m5uSx%Ep`r7#Qz3qZOANSfL!)JH#E&$Ab|C=D>IqM)E`+meC>} zvoRi+*%%K@j`2W^77?0_@legiR_!w|9w^bu+8kJ-6(+jGXeDyP|I#-9FKOHVl6L$r zDdm4jssBsbZ%vBiJxH{2(3)nD4*xId*#DAlS&^cZzjI(2Ik10nVE4>eq+zEAIT9b` zz@Fs5)Et{#y$wuzz!4A97&-<-mA{%$uHf(9xo2&c+V6 zwi9W5tc+HU<-kr#tR7E1BT%Yprw1G{3u4n69icDBI=k6$OXhSQS@4!No*_hzDR zenBI$DK%#0#W+A)vMHw)2+D(OO4L$8DHSN?%&L!JCY`!vQ|7i1l%;`cU2|Fg97V3w zLstXUsx}obp?D=vK9qhLcd>C*=fur~Rrq1jK;=3}fyxd1P9jLH<#AJB>wsAM3ZHMP) z6T7S3?97vo&vcCwk5cI#$grKldjQLz{XNv)cIGL`2P)DNRg9zIJ=MYZcGX`!)sb#| zHq2{!^KI^2%3tqr3HgZ2o=>?^=d0Ac7s}mclzWS|^in-+k`DdROD$uAAH6^6tyV9< z#}+7c14BlL5=*XqP;T;}VSUtC8@%}cxv%Pq@A8)Dr&jXd;|DnJpmz@u6J}oSFieD% z`mjW(a+?PBQ>)uBTGS7#q%=C(Po0i$TGi_hQ}NE9mxBI2MA=Wn`h(*)A|!cX3N312 z-wl(eOSpuJ*)$jaq%TMX`s30wnA2ZTW`C5BNCgL|+ijlE;Q?y(Vvh{be9%A%nHWPt zloa|j0H*p*od$ycCSEE~Jt}=N7o=6kl&i2eE(II#c^4m1kTV|!kr3q$of@c?@ZfWA zu7N{0u-(Ol&)fvtkN%wPC4J(Lz)91P2@#ur^x-vY+ePRYb@5`suM8LW7J6*)fQ}gcFxn?yCFTcJ1*Dyb0$7r=kykXK{`JK7q1bxIF9Fu zf14Bkm<-Z|DV$`?6_tS)bwU(At>>BVM^f@2wE*@dejB8^icS^vT`N*W?*xp`?*YCV zfY0xN@%cRfpWXxT={*4NvH%_!fKTs%y)^)z-UH*)djLMY2jC+H0H59iJf@G1Pn~`E zydKy|1Mqo0Fg~vbI4!`$iA!=T<3(R_rvfbxQ9UB>pdXkSx5POtWPEVw*oorp0E2^f z2_~@wHi;E*lvn_p#QN7HmcJ&k`ZbBjH;KSEiMTh3us4aQH;KusN#V<0lUVhd#G=HrE5~qCxWtFTrs7VCb4!kiK&-KEL=@u-D(ocR+E@@ znM7EaL=c$Z?O5rXgom4iYnv3lU^R(Vhe^1zNqDnKICGTnGhZ9BR z@-h7MZm3$v)|^1qL)ESlnHQ=Kkcb|thDoH?Fm-4pD`6GgA@OnrOIZUvWm))3?J%{G zIpYheFkEdWk?`SaONs0suC|j%o-nn!L^_12og}h8OzkL+#O{lt=wp}iCNo=T-#h} zxU9Nu(Ke0GONH+C-+zw?;0EQCrEBqGP3_yrZ6D ztwbk|l~#C1FULw3dPlX!$##B6i^fSazN3fZ)JBD^>T$;bJ2ke>RBo(VjSALs$!i}c z>oIh^TFI=&If@ytmNX-olsaB2m`Pv8OApJW&J(1+X43izYB!nZ(*(7(L|RW&10}L% zqS{^}&nK$gB@!@6ZEe<;4-LxmsnE8_3<{d4;;+P$RC{tMQp!=XYm=-5)t_u7D0Z^i zz*C404xbbOXNM5a`ZRC`Heex%yj96%p= z^UT}^t5!+2F?S8W;m+(#_vv$_Z1MZldA1d@dA1sC7I~i>=BNWD5-~^hG0W#ue&rq} z{8oLp^D!xZ6`h?UgJBgF`9+#$6^;Hy9c-4eic5KU9@&=tVbSv0pHj*f%KAkeW)AZ& zoVVEpB;LMnLl0wAUwSyit&YV}zR=yd>R4;uX;;A;e9eX)C4o13p7b32fMK3G*<7nH z)Oo%-MIu+`tK%fnW`R0hBB!m9Mhn$ZGG)&~b%aDbqO4NlqtwynstWbH-iJzm;$rmG zHy_BVo}sEHHN-6C48@qFlrxlXkvdYQOj#rqJVS36sS{<&sKr)!9xYZ!%aoo=)Ugt| zvP2ziHq#ky(gQD`MCVs9Q#{NxrmwpvJt*cbyU#PUZ>c&=<}SBPdg2*cwoDC|Dc_gL zC^I)Z zNv}}rO6i?eSZnEa&DyMv7>_9AtfoWe03>hL#(XI5h@g? zD&}Srg===m*4#d~x!DRh0yX+K z11sh1=Wy&#Yq{?b50n1j)7CB2PtJNOnJZH&%jr6s% zGxNRXS$W7PBN?TnOAde z0A!qQLvPoseO8|Ea+ZvLZIH3|nF2P-sQgSPH_CYZOf@&DiaFebyz5;cFScuLDzpgU zHoJIbUn#NpW*HivY0+kNTusBtM7}-Ukk7Y=rD}P5%Bu18l(G^jyepDX8 zMemSPnCw-hV3 za=T@WZ>L$it@1qBt@e`wn(vW{X3(HLa{SJqQ+uTEWsp~@)GdQ3RaMLaGRSVPbes&D zzE>S&wjW<5E3cNper=c2$(20b3RHKugh2)c?6VTTZ=a0d3@W!@b~PEae7{x7*Zn!g zH;IS%@oQ*rGQ>x>sa}?%f2*EPs`lprX^#x@`Be=uhn-NZ*IMM=i;EF)%sj3}N+iz-b-qNFpHLS| z#N(v8LLx^_S_x==N?j;Zu394lPOA%K%Cpnz9EprOqt27aw=-5L^M6;T%M{zQ>Qsp= zJZqI=e@>ktQ}{-<1u9-{O=)o$k2#V#!7R2tfB=nLMtw4pJdeC_12=@7+VkR!|?`glPG z>>=v=myGK}boehToeEu)1Cfv)@EY=Wzow>%7>JTCs$OPW9HO*~Ryx+YWTj*DC26Gt zwC9psY8;>sm*g7a0JXTRw)Zxoh3{c2yRl=f^!#E8re$A&8p&6A@{cdMDIyOxL{cZK zh3MgB)zLh-x;95GPwrRL(q=`kQu8Zv9d(tKSR;R5kxSyM=AwJb9 zkGbnO?F`hYE#K->$eADMLv44Bh^}Pm18&jA>(ZLHNWU%%yM@n*$Q_ScH1dYjHi;JB zkjwidx_U!xV75#Wxui(}Nz^M%YMVq`(qyHQ=vA6DU=lUBDK$u<$eUJdf8Ml`R`8Y# zjwBj%%Ze@emKEFETUNT&xh?l;l4#m()n6)l`nL3&Br5Q?+SD8Zd^=Pb))l6!+?{+M zs@}A;XnjYExsoXHZ?%~<>(}mJ)p{7L*GkpROYZ5aoh-&D-Ad`mbSryYwnoZiSm`+^ z!>R_GGpq!>&#p2M&BJqhmA8d@Oa`On*I= zz4&G-_eAbwY^JeKWc4@G*(Y+NZ!_6u%7EBRoibI+(&{=zX3BD6DKS&dBVs9^D$9wb zzN#E8Vrjps_BFS8EO+juM^M{;FXf3J%iJh6$iISY?O0Nn9E4*jgUMN7EH%~S1UHtp zX;vi{(B&u|OS5%3@r$Kry4v16w-F^fJVwbLPb?kO^Gu*d2bD~HpGwmt)2^p-k0Y6E zpGm7HQo~1FJQ%5`;`pZWSajr8oPCGFZf>2}Ff z^Dw)w;2!wt-$N+8KIH z>-MOirH@Fa6CbVGr`RW}$|;{@PmoN9K3Tb#!)L3;>igNs@X4R84FBI}xha}V9llrz zNc^HUvDUBJK$EY0wJV zo`+eUf2^Pvd00KOPAjNdUS@f6w1Oh?GRsEN3c8q=RW=vKPemwyV76?vBm9^jiZBXG zrIPuW<)K|Fjm;-3bDN^`Ns+hdMK;@QYMo!&@HVZ@&n)}nx9M|!*4*4%^5?pWElw6F zlhX2%Z$(y`3eF00HR~l(7o;II0_Oyb6>6(=sTZRiw#>5M&8VOqvpnu#G{TNq_TU*^ zv}2aN0!Ci;vXyYm!(LX5(GzQ=v4gB-8ufEvmd7e-w97$COCx7TX4wNvqcM)mvgwva z%#m51*rbualNGYYNotTrADviFb6}yO*v`coT6yq+-a0aWN^)kFxm_CVahAHKkzE1S z-E2dV?I|8hEAKz&U0D_;O!}=$Ve0SM&9d}Oqn!nqYcIHCA(YnIYeZJAV!p!m<_Zu}XVudUy!YsRRujzOZDQ!R9Eh4MD zpDGuXRoG8cib~(uPw7Ra1MjEW#hB&U?|xcXjLkBuv!9%b%XZ#R5yfRWztOVdtdqF` z5i(eCwTCr#cAywfR)&0Q_by1ysy{Ad>2rP~zY?-yztO@H%<@E7WWL)OnNz#wGduev zexAq(!V~nl1Z!;$41UN#xyTc{<9Lw~7{UD{?>Y)C$t+K_*U{mUtgSgCdXQX74;(~N z3JkGie1bc3A+M-%DXHBnnpsLV;w!pcidi0bzasC_(w?tqR%zLXy`r?ztc$s@SHhns zLHeyJmcn*Sm4ziz`!ceL5-Gln?86c%qYSHWwtXU%bd_CQBK3Bag(XsoE3+)I66w7w zvpmvIq{d}sZ=Oht%QDLWfke7o)~cLBZdL+%yD`hrfkaAllRleBFRW8)ma}4;QjS@k zzbDesaTV_Aq`P$bL~`+9mQgm58}IxcSZir2`Ba22&2E7| zaGhGMm5@@`d03Tq$3uoiB6*g#Qfqj5tMXE;k$=lu=~%mhRcl06V9m|VC^Ydo0!;=V zvovGuaoLPdh*e+#<_O@giztOoA<^LsH7f?KAI=TNi)w}sKcNMltgSWc%-_Mb$#=>aK}XpOwA zBpoG%>QrVO%+gY5VP)1@B5Br0xhhhf6bh>%qbr4uStA9jvH&SyKvfoGt}H)lq!iUq z*-V`ZR%3N({h`O%ll2tJSB+V=k_7L>XW)H@ixJ%Cp93|F_??Sd_8fm2o2?e7wMPcy zOLpcI`m358S-w-1>e2w;X>xTr>G)1ptIKMBr!rnLl)uwRFKN!3wAf4blQ-$P7aL-( z3_mNS?DN2>!krcAv=8&5pbepR_)=G>+}OTJ$Gqhzd6UZ4kYYbk;~K1sS<)xrF8mnd zkNSqBF}t;@W&?hrFEv@~%;LJX7WYY$yQT032$A?*tyWF9JKFsp`?GBao zm4%=R$oKYp?^dP%-DrIWs- zxiwj!S#^GFOsQsquIrcNH@9cxQmJ|t{Z~`=xmnbymaIn>?WiUD+$^%GElbX#zP07B zl|=_@TM2NgBfUF|y4PWrGXPn1xDM-P)(Nu(9JM_RCAy!q=oE8G>a>Gu)|DOB4jNlm zI{ywjQdf2@JLp?oW;yr6PsAz1Zb3$HhDBt>J5nTmR$WhKTuqznNf%sAZ|bpH=5|<3 z)#@|L6XMl0yuOU5)pVe~Y`fKzr-8J_YU1{)lTP&- zN)6I!ZbR95rqkty(wym3p^=8^Q++q>qRem*o4)jL5-g| zS||SFg~XcP= zInv3qDeLTE#DWkqsTqX$wz4(*+kd!2s8C!}*3rC&%ipk5N(F$vrJaRsK0n%PNWq*u zmy*>ETMK*-_t>Xtat{~ZG;PMJn;q#cXIqN%zgBU%jvoLvq-eCUnH=9Vde=;vS)<1O zvYmEQKY!_ByJ@q(47lC&&R^!)O^ut&JbzQa<}%>^rrph1EwfJlaGg5f_^_2ui)Krm z4w7vP*%=^5c@r0F~vqEOG1Cl2Cer;4L?MyfbncNT~6vQw*9ghEE@Ij(p~ycv+4 zdT2aOY8a`RZaldm2-(S_SIFd#^cFf+G6=%JH7u&K~ z#i1cX&=;Pn;1E%EsyJt3q>3Xi!*K2Z z{JjNRqJ|KDB3p38u_ct8_QFB0MAYpo2`cAWTAZ*?7n6v z$E?6|)kuCur=g?Sl|as=gk#4eoApUmsl`V6mR+4x&KmlgHS5?DQmWWGSaaMuRqPxX zW%7gM${*NM$S&pwPDPqE5)0~IfM=&xa>e}1$ooxHC%H^MtK_h1QpeY{x2DD&86631(#ihSil)&h-KPiEbX#W#VXB673->DShZ!Rie;6Nn#d)4W0{qm zDrW0O>Jy=TaZKN{lRc|T?cdObc2fHkI+=}pr+Yxm+KU-rQtA9wLWX!@s5ig)oxC(#v`#VYrS>mrPd1W8 zmw}kI7c-Si%zLuS5EB)njMZF&FPOq)r?TuK_=_>hb-Wgnox1v))K3h(A;7a!#mH+& z{+)(&ke+TCU#(cnV=ORN^e(LjtGPqc=r|Cw^89TYr8!=u$u43%UYjxJgG*!8h<9nS zQ=4Q=jTsu&jy^$zm9_b_Z`r#6U@l5bGAj?6PRUI3WdkyYd{sUvgE{o0F8bY!8v z?@$Wfic=i;OLFglEO9bMJok2^hlWmxTNpQZVce4Z<3mHn4GD`=PEfZ_tUSKpGpQ3B zh)+5C24d&wbthKAjlWqCR$s~I?T`x@oCb%E9uhVxWZa1G(Zk~~Xo7K)?Y~^pe0Fr| z%iUshCXo5raSC!d)0aRt*5+Rt)tOBPc-omQ02mX*VgPb?VM_s`yRZs5MO^K|n&a)e zLS0!S7k)4wlFAw7x1haUS&KYzc zmzLhtwl`}8>b%~pGr-N>tQA11KCBbK@II_HKuRCTx=6+PqMVB~sV^H0kkJ=PU!+?7 z1m~Q7ED+eWeyk+G(|)WAzGc;@KWk*qClV+r#G4}fgLM;K?hlo|(ChxJzs)=9IDpl$ z=hF%BjPRz$Lm7??hA=M}<{e!hztwf& zSJS_^4JFhmT$;Lvv-(b)gleAS9!pEx7RDEbb8_7ZXLa!*O(%uJ=u!>Y*1Z#@>P9s=DBdaTI9>EG5TxIFz2$2J z$`}>^lG`tM)LeM1(5=fapodLmwQ1ov=0baJ;&WI^0v#KRejdR)HE$L>wiMX`+zvWg^@*ftGUB&aPlZcty+8 z)=6kNm}U~2U?=Ju)yalNzqnV9dQWD(kdiu?%><}11wNTTtEQkMNuc)z2%5?U8@V#O z*idTq;w9MS-D;Jb-=(x^!EQ^GHr0l*~!{?BdhiBvRqbviX0 zfg#$woQtFQ&ysui`0*1%@m3l4fKuc-hZO?@+`yFr=Likq3)Mk_-F*Py24(5a999tb z@P(QHa03qD0kr|p;-0hvo`HKbdqsK$&%iy}zC3x&g+B`i@Sw1{h;`uw)#%_{ArP)m zhFUZ!RswYRgBz8cC-j9=l%cls(47j;XaNAHs6>CwW3IS|XH+1E`63yPP=NyGGdIJM z(i;}fXH~!oZ@|vMe2j_0C90Cw0_KeSh6^wpB+zgJz%NSDt_A2OM6*lhc(QLFjAeN!Wi&;nfhtFpTt8a&SIu~e15law4nRIap8x7EK zDF%#8+Om{Q04Ti-(VIzgmLc3T>FqLvdnOH7&L%qZ?8;pJG88T}yDYwC_izO&_%Md$ zrO`3W3BwkoMT?9(qD98yF>E68FNs05GD(XOvIAFOWY44nD})vWV=)?M(v(;h2Jk2r zeN-m3h+`uG_Qauo$)vLJf;cN)5TD1hQKf`3MPi@~zhM58cPM^G#uXU55?mkY{z?{L z|Iw(izYlp6hRTl=L(u0V*{)(U0OqYiFZPi>u40n`#;itIexzpx7`led2BxlIa{z{~ zWzhg1*RsU`^VYFQfV>GJ-;4yffhe#P9Y}zt_o-MSYwB>{D15Mw16@mGgY#iKL%C09 z6VYeir+VwzT!5qN*)IT1lMqz*sZSCd;xMgGVogdPHgb>i5wknH@X-@O$Bhmd8K-Qd ztR!?wtEk#0%mfE-U^QI$UI7|*n!!7e3T26DwzA8*U@! zE3UMA6Kh(4?-ft5bleV*6z&a%h@Hv@n1-4-a+YAt}Q(!N5vTeZPcfk^8 zX!ozI1o@<}2KIat18Qyap|L4!5t6>9unho-yIB%IvpvXthS(mK3=o|v(rWHy8-d;0 z%eDYa-zPA){cIhuqx;z!fSw1~I%ly#GWk7}$A#XWhw|>JtS>b^&+Ney^D8k-zTE#zEEJPjtlTE|NGiqO8Z5_@UN|p9?puI&k_m$T?i<19etR+14 z?8?7bj5B9Y{JbC(7n*&VH|urQo`OFzCkUx^u;GX-S`>|+Mo4s636mIBcEA9RgJ>C!)}y~9yMjUn9NZ+U>OHm`gy8#ZHNdC)EDm7V0~U|>5LiCj8N;B`jA4}e7Aiqb zC%XJQD+HF~4`K16)a?;l?!?Pe#49xU6ncBj%xN1wdRRo9f_G#diy~~Eu;?;^wcHp8 zJkcx%w zcDk>^*|yU-CWtl~%Gpja8Z!Zu(cuf*X}2zjO`o!bz|KDvX+h7}qEce7vmkae6@Gy# zc}GtiiH>?Z{re1KNCr)K&N{mAJx?gI#c0wgH0KSQ0!=cg{R>7;JXM*t1Tv;Ap&A!a z^PpEOh(^AI<7Uv*m*~MVsQ4?E2=MDGD3n2MUqhh`N`H-z%b+oD;Kmtb{}#cSL0jGm ztm!+!dHo%WHcFVg1|`g0L#JM`NV<28*@5@Nzbw{OlrP?J;TP1wHe%w0k>R1^;*=e< z`8@`;3zY8z>+O2MsK!OJ3y%vOjz53$-+{&{J89|%w#wGLeM>)XuzKYCofUOLR2aF^ z&e_2(0lwG^?6`w=6xdWp?F>L;CxLx*(vAW9)mf_o0Db1*8$W{z zXzd+vxQwgh=I21stFYAeFRV2p7Z=S546ZKP6o7aaZ3aN$g4%R|Wd?94q|F1i+yF%j zYjc6EDy+>0C{;w82|z`(1psbE1=vzln-8pdG3^(C-Nl5kYQ=?=JqD;x ziy|p#9G<-uY+JJcC6&=C!?&(dzA{=kSR=}4p#ZlG(8yIA0&KmjHWI+8tTr5ALRoDX zz&~Y0S~E9oFtCkoS{Q(1IW4SI_FEkMRSq8F`1S1wUdWPiS__+7bhVu3?Q+Y|XPRMx zRyrH0)FA4$7izmv2L7l zlLmS~r6fAzp*3~kPbE;@MTYo}w82vgpohci*nweSd95G7k@AAwt%BAFSlFWtqiLrQPC=}S`y8yB8c~^h%#DN)j~krR#jjHstIA!s-bz3 zDANFe)kTIq)rCwKFTpb1OBD3LOK`UH))Zto;4Lt>8fZbh@KQq?W~eXTn79=|oddM8 zbgCwTW<)p51uUUHLfCa5Z7i^szS=~9!@k;N06#x?eG;YkX|n*lY6{L(HMP;eY-=Id zl4y1`@ON6w6Tnkzt7J^0~f8dzWRci3z+^LNDmn`)>^!G;>9gnvFPm|NLQ`5T}T zn`ue|XtPQTy-d{uT#cH* zcCmD*i53Y^uc@{W;AB&DO|jItnHCRlqnWlCV4%OY9N?9|wiIASb8Qtsu@+i1z}6OM zh*)xKsZ|C*$>k}mrPdQaO*q+73$RZ%v}jn93bcaBlWAfrZ5qIvR`3G6oX{Hfz%lsN z5Ry!-0<>`ehXS+-0A6iion%_qMi5=v3eGugwW%O}X)B1M+X>>scG@Tq1KY!@$#lHE zHU^+Z2W=9-mJZrzC$5E3#u?AO$~aSWS8V{z=!mW_nM@r;8J{|e5=VCu!u3uW&^AFB0_7OaS&hwIu*6dkW5iz0fepw6qucejFD>EkzsO@d0CAg4BL;|?-x+`aN~YEWg;@^{6wO#RSQN4-7*U18>%oYsWC|Xn zjdvEdUL1z9aG|k2nky9y)aufh!CGDi*)=9pvk)P6M~F7u$kRtb9$a$fafaMkgN1e9 z3>NwX4-w$X5R4?rRA8t8fkU;4w5JCqvVRU0R%j9`=rcn_#omTu08OTdVWLH}VHgO7 zgO;K00f@7L<2x3i+;=)H#{P_$U331BblzK@kN_j`)((GU${^2%4bHtB^ zo{iAzIBYaZ_+Hb2eoRO8+|LIVr5+=-ns$~)$rMxQUJ2SdQu7rg^b>jL{zx=%Ds>*E zRr-l9Zj{!|<~Hf0v{nxMaWmMRYdKI*BxI*XXpL8fbS{Ck?jco0deN zf4NO|W6&qvrcq-sjNhiTF`5SeM7h#D6O?~ARx3qK$7(+K6yfNxT96BWVvPbkYKeYs zBE^i=s?(2gS`~61r+I>_^*FR8quN)z4z04{9VRZC8=ab_wWX@3x;lX+X(|FWjml0F8E6^;HH`{RM<0+zi>G6p zNTYwJ!}Zf>;0!1Wm1e+2(iDgYZj7jE~O zPR!MsmVRwyoNgGyZggn)@UX!V@H3HKoV?~~z45!y0a19mv2LE`WxwCZFt-*yQ=<)X z;;1sW8jcRktww_uVGu~2-qV4;&C~FmtD;ya?x)T3Vb=XraRJP;pEfQ)rT0_uh1wQ? zV++xU`^i5Fqp2t*9N(LKv!5unh$D{t|7dlQ^>=j+XZbrp}SbzkYk)()5t^$xFRQYNctA z)~8HveE+g(47@gTsaD&bA7p@_!?nm`8MJ*x@yoDccts_aqyK+Jv>c88iV8);vtQBj zXjtkM6^zlm0U%^3KBBoPM)P$@G{jtnAzrQ3>Qm63ekI_uiR7~a-knGbR%l%S(pR7g ziBvsS8}7ujD2dT%nZ#%ciPsv?nDl{p>GiYzg~0MMR_hDUHV!kNMA{LDX>B6?h!etk z#%q0mrN*P_6UlxhW<`mltkilNGTU#2%=R0}e=TG#e=wjZQe6pqGt=A*kvatv|2@ zYlQT>YlK2|)(Ws}ttjO2T5SMW{MTuHONm0nF>Ze0v;B$Kr{QMWk7Rs_v_JwDJWmW; z7O5@znXcrwA=r)XC1^D$cxrHdSoI0*PQd8)gi0qOYM;qXjc>oHps z5=+vn^;%W@Z=z(9R=4ycLwaRHy4|pl@e?M5PQjYs5rrjb4e{^1O-Y(x$u|a@kHMCI zRK(EGk@&GCPJ1V5fi@}BXoKeKl43B`GniVC-$so;sK=p|4QP`Ta^EPxoQ-I&6#8c) zB0q(iZGu5kD8T?010{ie{IE$AFl=-C!bKU1jFRsmACY9)bP z*owBp$?0ucBm3`$8vSZh@HWW)PRF-lSpH5v+mYitt=JBOe5dc*F`4~N1C!yk-|6>c zboU}Z{zJC|q?b0cWV`G_R{1%T4i$Gqxm}TH6+a!k|=VI=9*g(>GN&w(6>EWbC){?$5NxLQFMAi z80OMfH3xFug?NwlVdcPjJXKp%inA)E15ql!aOWErG8#+GgEVNb*4*YiZQKjzJ8uYF zZ3yg58$!d&lgmD>J{a2W)7skLfX_bcZ|DYJQf+#$4-F!yZd81~*3srA4cV{NcX?@W zY&RtJBfo}m^YXSzl18CWoH1+_xoR_2?z+Cqw_4pMNS)NPro&_zvXVIGjT04qh zBg-JQ)+w>Dio zskO05r={mHsQaDLJnYkrq>r_!-zh|7I_)?G-%lsI)93}#NjVK~Pp7|5!}rsv?iq~h z>9pYtOp#8-eiy*>JKR2*|?l;*AKOu>I>D{U@Q)*o7Zhs%a?Rq8m<>x-CBU8_FTmiqmv)doZKpO{3G-R^D%@ujSn3z){PUywx8fBO#v6QR`|o~;tN`B7tP?WXYhA}iKn`f(^Zr{ z@Gq?}os6DVDz~DM=U?b|G@Abx`j*}F@Gq^Q3qP|3OZuDDra6C3D@VHzBd7Z%tr$HV zGp#_;IPr;C^dgjyXnbA^kuuL%_X>>nDP2M@N-`%p#$n1a$WPJ zf>(yw(!~^%u;&^|NPRLKy8TUqFKa=L|A1GSfpcC-$J)2q>TrFpg`Jr8`}>;+DHHhYE1M0 z#-7YEivJtSns_?)H`-?{KFp!@cUfzwy49#|0}4sU#AtK6Rvrvb?`YoiJ{{85lJ`F- zEFc5>rfVr813ki8GW~;nk{cOXfE^d27F^a^%7N!fnVmIfv0l_}spdWv6Z*?n!Bk<#>cTk?CX^``B` zbZ6=qKiic~JkTl&iOR5Za6(TS>$t8YMb6U;QptxHtbe7FPhivC53y7gN{q7I$_uGp zkAf5QDzxa4R?eXO+K^Hop`U#~)gEi6|BFoa7)>l>nryyO4AW}SttaR)zZ!M=Y_v>k zY92qk42^k$(aSeeD{se>6^~2iddp_dYJ`=IHc zGpug~!*V;Jvqb?cqxZf>5zn#VAjCDJVlT96xJSme0LbG;+g@O3 z5E)xj<(Gnv+|yvG*#-5QRQ44nlJ{upD=p0No}o+=u1utdUV@_EEhUTf9C@#SBw zE=_-}wWd8!u@7+WwYCV+@nWtu)lbZ2EEndIQBtnO10hz!OP#FJHAJi{>4&6 z6w{cl{%aA~1*FrjwMsPpJvs>?tsQ-Nk3be8t5EX~2niv#9wmR!>T&u9^aS?^avM`j z7P|6#bUsVlZ}Xg{{in@$d2ZBUBIIzXNjUQ^0~LH1%3a7IUth1YYmA$V`zI$N57-!V&(Os z+&*?z!UueT=Fe&R7j2{=Wo>CYO8qsq6xn^nXe~7CO{rfsZ(DqSJC{;VGgK(?4K))g z%>Ai!*Y9Y2QThk~6x;^@@~cpjA6iMfD_lx(e{&&^-Oyyd`4L=eejwWwy8J^MD#V}ByCQ?Do!*qX+2}2BKg&+9L1%6B?zk_NTTccU zWv}<3l6iE0-1o_&_W>y9pqHXcdGs2%|B^=^4iMv@H=uQSbzj_H&a3w_wDfCiM{lBI z%Tl|1dc&U--<(fx1Lha`^Z@`H93gT@exbyDM<{VKzg{17XIs59zyMpl0|4sQjC5PQ z7Ve>T2mmx50sv+Gsl2`39{13A5&)F-qJj>30o+65Dz@?5aJ7b#OIOwVQ4o-Rl zyNA4_JFV>~*lTq$+Tf&@7bLWZ6J2!DOaH`>+gTrv&}>pz?@QO5^$Ly;jOHs^4>6g< zJBUGr^a4~j0djbfQoOC5(cexep!*x7?(OYp?<1`OJt% z>}W@Oj;^jwwF|@G&CoS=l<+d43VD>)tGI9yR1G&&?L{%= z^$Ik-v|iWdEq(LVThRN`dI0VlmC?fhlKu4ZbiRx}5cjq<^#B^-s&_EU9S;YnmspiF zSG^9B%a+vx0Y;XEx%&{y6cMo4%LBs|Kg$dzKf8!FIX zPrYj1TKLfgb*=+N^Lpxy!QI?b?*y>iQ=bR0s-Esk!#wqhdFyb-Q5E&6puVlA*QPR+ zVAi+PvA*s{D=X=(aKFAjbg-?gHz+PjDjaKm_;cZ(c%$Z;2P+|6>}?XwIQ8sVh}lsA_z^a>s7EzY=F3QOSD>qmPU>jC)< zJ}T?2FSZq$l!&7}-uj;W0;?aElLU#{*QmV52a7_ zEpaCOx_tw5g2JyWkg0)Q68CWK3Usc4UJ>{3@SXs0Za*5|P_K%6czA8vRBTfrUTyd} zer?}KB*59ZLAjsjYtP-A{2Oj6MvXgdvTtDch`ZUB{~td1|D!JtA^*mD;7@LB9M%4R zxbf%4`bcXx?n{3((Q8`y^3a@a>;TWKXAXf4P4)kq19P^9W;Qsq@Xlg}v;SW_cTF?B zi`}2R&+oj`j{I(H_M!6rdPRFqLZ3ehd&mBIM_a++kU+~@pnJROueUcS8xqL9xxUOm z+U%rXo9p9#k~Xk~Ud{GBFCg^~p1r4aP9G}MQg11S z`eKx9LVG)6_%756(I(gi?ZUj%VTTt*w9*3&lKUPz8aXGk9(`@42OFeed+n(D+|0JL zv$fvMkbh+#y$!_tsC9te+o0^mM_D`TZRtgT-rUHRcEpZ$M`e1`;5PaggOvA}9bFIF z*@tSi)tBZMDiorDUG(YHyq(_3;OTeDj{3&#Y(Q7r=`#)4uTIhFuDXIJ&U%nRDfc^# z>W1>WchJWhl=R=}N(X(LA*0V(JLdl=*InB?Z=c&|^9(C6%k$WfI-pB?+ z`F7Il8rh^d)^x&@OJtMgC>)5vU67<{F4$i3tX?G=gW4-p?ROBRmY! zr&t+bzmY8K-?ghAW=J&Zzr{d|swWzVQR^Xiu&w(T*=5!5cGtZOrsn6!rH8)8@S;*r zD7A+^)}Ff*JmX1ys@78vlpYq@Q=e)e%`ec8o)|2I@9n!tF}?H+2J+)FbqdFDAK4p? zFOvVeOxMEEftKo{k1!}buT!w12U12KeUg*l3A~O5=+cvX$LZZ^PhVXz7%$x<_kQ|$ z137z>UiQ<^IEoCPZXrWEDmY57MuQLHhx2&{z#&9Z#@`e*K;LB`*Z-zQ0}(_bWzb`~ zHc-D{AYJbsN($EPYz(aZUD`89|7K{j=01e??S=0;rxvFxA^JswXT^O=8mz1Ng{(sK zYMefpUJlWZ8>zh?AKE)qceb$;$wwdA(XzLx9jWjzeV9QCdTd8AUsGGqnPK`!i;yyt z^iDKqxZc(ff(E!YT%TefFmmTGeUyP1Ms7+r;d*O>Vpw{Hffz=PG7!VQ8~+cc4H<#{ zMkr{QwiDTm#HcPPXK&ik%-B7BY2QdhvLJoBMNXsiJ%-6M{)Sb0(~<$$czHQWA8fD~ z2Chj_qv7u&lVRm%0jx-s&go|1nVyw6gwa+daHbJpF{CC+Sr@ zI0DZf*+BG(_7f&fh!__h!XF1&*fJ(z86uX}uRhq3ca3}9>F{K|q9Z3E=LF=Wu~RU} zJ5SMbtik6P3-Vddso5;-34EQRFEHeUy|AM~<@ODyw^Om~5TcvDr;urSjDZ|}M=rDV z>f||Hk1!~8-&6E#M9Qn_Xep85_U>%=3ti8d#2v) zC*^Ht>3#;2q1o!6lxh>Hw=>cWr8>~#NWGFlF*KWIAcj&44aCr=vw;|@xKi{Sy{bVm z^og^3%x!?b!a>G-j?o&>$`UYDeq8 z9`GaEd000JIhP^l^s+yz(2{w2>->UbPt8o2-n^fuM;JUSbJG3$|LY+IqJX{fEf6qNF_)D1ER7OBn2dToPZDBOU0N9%PAV|^Q9*6m`n?q<7^+b=Yjm)hy40>{VbO{@!SMp-d> zY3owUQQZ}~t98-SZFg~j4gKh!6?%vZM_{H>4b3|SF&z(;qM@;RWjn!^Sl*sqEj(0( zj>hUOjGQMiQy`2!HR7O;U^-OEo;sg9RGSXP=|c>rzrD#LUf*OOHT@`ImEMvHtb`G* zN^ebTR{l>xZ&zXqNiZ1&4fv^y!-TLD=|&kHsQW65YDPhO>`w9;7O!njL2ifJQNn7y zsy!#6p3NH4)zz4s3XW$r5fjx8SEH_L^mh3LsQ_(QqgQn4kYVc z4N}%9^w9OyYE*v*27AGEdoW zB9idJMG%Tf!uP_0P(l)_x(Y%mNvP;92xTO}T&No-yx>|?^vsnj5^8u@C_;-07EHNO zRY<5P3Aq{yLS;#45-12&C82+iAXJxx^<4$QTN1K*2!fB9fcn4dFDQPJWx_x~s3i$6 z4MH7B=rc%g)RTm9A%f6A66}TuLL*6NG*u9qNCN*o=7P9LrJ1B~d%zqmIN>5U5dSh3 z2(2vyVV^b@OsNwklG{nbh~j?^z4&MC_YDUL~_k_8$p>X z^R&t<2=gVOSAIcQCT;2kZr5u_W*xc0%{1l2F1~5SDX-{5%?uzZINvi7SFH zjPN}17J@J#SukZuA(6aB68anb36c<1Sa2js!U=pp1QIt%0=_-M30uts#NRE0@(94t zBFjavEP*V8kYbc;e2j$aIo~K|kCbXwe4iwkRsB^G%&Pt-35KeX%27!%>v}>G%(|YI z1hcAVIbk1H1m7y*wfVzB5C*$o!7Ry_IAJ~KZ(CCEU$qeazp~Ceu*Tzi_-?Er)(8t30J&6VQjj4FRpWgj)hsk#_~CG9Cy}WjsQ# z46VrDhiZ8Wz|O>-iBqdkJCbyayqSQVsRC9vpc2vrRBS{bQ^5JA1abuIX+q$QfF}rG z{=F08!Flq5_XIZUB!m0{_O+lw3JGvw;40u(25ti4TT_;j0{;1gKp6rw|NL4J@eq}6 z3_JxGTu4O$D?gHVyOTyo0ks)e1%M+C zG^C3FaKnM1y8v*)fuNUw3q37%Bwq*_(u-8S6mX6~e*v{WCyjvu;Nw3mBSL_+H-RAn zwljzlQ0WWOhz6j>znT%TqM{~5ya06Q1Jxu7P*Y&605t`^5um2PL;-3FOcwB@iJeOQ zR){*_Qw69gFkOI}0zV2+Q((3LH3jAgP*Y%`05t`Eu8r4!Gy>EVSSl)N3ak*Irod_e zY6`3qpr*hE0cr|t7NDlUHUXd8dBpD!qNc!Z0cylM1gH^zK!6(YhXtq+e@uWH@h1hS z0e`x-T`x6i#Q!cTYQ$dy*$O9mt5-ececLZt*s6358Z2<+R6R0a-AA=A98)uS60|7ICB+v+fosL7RSwxzM zO5NE6nh8LUJz!Z20q8szKq~~fcr4q`CD2v_I+X2o%xE>Ak~;{fwGe^b=qThI5u=lU zp(f?&EMVeN0$l{`UPhpsfHTVp^bioRia;*`<<=1B&A<+p_ghP(kErZhN8n2V%hnU< zCjd7vht>}epjsb};2w4ddJG1Q!5UC^4AC*evXzpD*@aZtO~eo|%t0Vpz}9^PVg#r< zMk3gcm3o5jVW@PJ22|;2jIGAx0`RX=kUS2-A_S|?@cbLE31yh5V@C90DsPg2?~W6g zA^`VDha$ffu=)&vsR%y2Pn)g*RWVb?;Qse_$}me4WA{Y@vjyOO=}^a90kMA)m@fc* z8iB?_0Xwe{SR^3$DuKlUPF*8lUn<1)I+5i9cHbbdQox%#1Xc^UaF@VZ0l1Gk7_uJ0 z3G89?=nP<^2Gsh^I%ZV2KcMujLV}+V*e)QA!43gWo|48c0rj5~*dw5zlYm3O*Dna{ z7jQI*z`;6r{v$(iw{U0?-)~WH~9|9fRKlsMeoFZ~(glU06ew z^BVB|&mTH!EX}6$O9Cq95x6X18H1|=y1XNezXT*RxFG}(hA z%?{+QsNja|0PYKL2WL(I9tuGBPXHbXKzC07o(NEleU1QKJsEw$LpNw7X#j%(?tfBr z)TqSiX#%=4$UtxyOF$prP(rq7s4TAqs4RK^H_N{o&Wpfnox-dk`otU~)MEB?S})_fk-;y|fT?I0eLA0J@q2;2|K+ zi$Hk+)w~H*KyV8Crw@2Nhb-P2P-A^{%%~VZ$$kRr*}?M^WT-4;7lS|ngKLpSRRJ!r zzdU5ACIB~_2M{cveh7h@0!r2=P+LHB0|IsH;`}4aeHs!85tXxz2s99Yd(J~OjRcHk z&_n?GwE~T12(qv{&?7s5mI#~(UceUg09tFn^RKOr>hw<$yul3hV5fS>&`|^G&`vsL zWO8z60cYEjeis3=J|)mi0Pb54CH7!|=ikerM0$w|`oaR0-U1$UBG5;`jLrnU6o9+e zLzaF5*7P7SKtOfaryev03c!u)asCZLau6Gfd)0$Vqz2U3p*m)`eL=}l0)~A_V7LHF z1c4C({>LCzK!d@gF;WA&afL~OCg5?4R1yW?R`y`l7y(}nBQQ%T>?0lQ-{xW)pNsTxpsOw%zV7q$w30LhyLpeHZ@TLt7X*e+n}kEF3ffOVD&J^$Dx zBy|?4>=DrCCjt%uCm8G(5Iu)94hncUm%w2GbLSB_Dxl>80>=T^xv}VE42(Z1Dk%(p z6M#O(K;sO8P1rx^VjjRb1ivE)9aM?{7=>lB$5wK?1l|jH#~>egpW-T(oFNSt0iEqjzJ*-N6(Q)5dqUK5GX2O`b7e60%rV4 zpoD&3)-mIM_jvvV3YqedGE@~%+Z;1lkLz zl189|fSC+B3Q(PFMX(!t-FQn`x@bVX-c85Ip&T5P9t7z5%fMX9&`VU%ha9N%7NCmk zi{KL0amp<}YV^~9>KLG7#-ltcV4#4G1xSC8fJ+SQgN5`iNGd}F++{FK!280aVFL#HXaOQ~Ox?Xfc9MpY!UE#Hv-!Poa#>CR{=wM z5ZEc8aW6ZO-9qwu5!fpr=W_!41eEPV;DCV8z61^li2sVf5dlvI5I82_K^TD(_3-&W z9o)!pBBw;fbqIme0wxS4a8^Ka6oGRBh7KoiK|qTU1TG3de}8bS{uHp*K9a~4Aq^7< zTocf9G=b{^zWRp1O#xlG6K@H~nL-+O1l0eYz&!!Ce<1LH#y@qy(`iKh5tXMi2s{>W zY9@iF0#arXcrKvyYyvL?yl0RsVD5aCtkl3XJUJ01BoIs|4e^wC47Jyy~ zp<8nWyjxA+jQ}-w-yv9wlNtBIf-L#$;3|*^&1M%JGamgy=>-I|*-W62fF4^26cG@( zl|WGe*$mtSjNe5XB?Ne{<3m>($z`-Fb2q7!)qu<@r(-&~0)ly{kNa{#JG?a@eP10j zLibU!pMdiWDr;ajTn~^+peDwT45|vq{|9MQ6ENjEfnWgvHwn}faOH0TwFP+HCQw&^ z-(3Rs5Ftp#&kW8G6qZY|)!GXiY|RJ1#Z zv=>t7J%J7a3j9l;qk!=YIti$pj~**`7BJO9po@U7@)PJLpmzZRJwovMkD5}x5RqP@ zvY$b30e==IjXnZOxf1wNz-tEm1WYVO8UqB3b0aWNfE_(VLKhAal3aqoU;#Ty5*Q+2 zODO`w1pHoxfFU5yoj|mJpmGFa1T3yVAdcoAbpX1U1ViFQ#mk$(C;>oR2BrsFJ^VS6HvxLlUM`X5uCG82!{SR~?Fkis9Py!1Dtp1F^A_1p65m+o>mzBU$ z1>pP_+Lg$1Q7Q2`ft3Q#izXbJ)dJe}C9qb2`6Yq%0=)YX*dSnMe*&8X1P?%9H?{~_ zJ(yIs38)uI;8y|180-|#bqHzf7I2TjUI8P9lEyv(c?=FPz~^u1xD%RpNL0E<5jY~? zB7gHr-34JVD$0)CDqa8^KzkpSTS|D2F}@uYG=KwbiYivs=_Mc_{X z^+pr8BB0Y40@nn%jU{khz?LZlZW5sTk5SWz+!7VFuHHrPf=)|wNaKM9w9x*eW8@MP zy5q5cjwb0p6)^K>0?!3xa*6gNBy+J2+!zuHN!5VrNYgRnH~3Bil3xkfxST+yfFD;7 z$QDp+JAqsQ=vEZUc!S^u)_K|vyXgUWhh#Mp^^Pzfc!eZDR=8kH`w>O`f*MeAVI4CX z@23h}1>hEzpzns@I+l;SRstxgfStd4E-mSe;p=HgcNcK?BmoZrw$lX43kdt2Km`GX z!ATaBQBlD6R|)tCP*(WW$Merqvb zQwg*ZQ1>N)HVkn7w*rrZP-Ht%>5@+1QvvAs6f{Bw?8+qYnSieFNDnlu0$wt(35d)l zjjjTm2w?tq7g7LT7(*dF1-yAj;Bx_X3w;Owg@DU01o{eCRe-=(0w%Z;=r5pjaROlk zX#VdmNhDlU9AyYZ2pCX~K%{_5o&<&pP{+kU09M0Q4eX%`jTxZ<9jI6xGcNj2vVEkG zc9n=E2-xgLAW^`B$^^y;P<4Eb01j(DBdscFOwfQTwdUXyXQHJj{p$t=X zjNH3IBc=(cTZ8mx2fj~LkRpN;8J4(a|A>-BQOtvoy^GJp2z}G>CR>?LI5iW z4Ev6xu|xy1bD54A7dlb$3IPYL1Xc++)S18<0q86i&%f)0s5&+v`0&3jHfunYZq+g4 zJpWV1b_7e&NZivFdTXZ!q`zCojN<($d9MKQCrk5x9}<|S@VNl&dkZBT)PPDjtYb!2 zBqbje@L(u`;{u)xCvZ~0zcB=U6Y$4K0%sWD{O>xN$nT<}thj&xPBOgVE|_&m12XHf zju~6OqXMo9DEtF~zXW7XBXC1NhaU<2O=FYlK!3GR$8AyZo=f1afK~Gd+!wHB0fC1C zj+g`<30Se1z!L%f%LqKvz;0YvNyMp%F=G{hBmwC47A#8<;JSvuO94gJ5=a-2w4OkQ zfO{JVWC^fsB4E!Eg5GhVn%4p*ZYA(m!0GJ--U(RtD}jFnjM_oK0**5I$R+F~kYB*I zT?7g$0N20W_Yf&8DkJt1a1}7kL7Hf09j zp#cq{@(u9(OX;PLQF;ZPZg`y_P*K2ylLUMOM4Tc}NkGVH0{#N>pCu3=Kv_{0!9z65 z-s~KyRM&*;s-a_sO0JCnPLuE&>pbb#(}48r>zGb%gkUS`hqHcD4M@Majv02xB`U9_ zkZFGrXeFS^bpmY!>}1eRK*zsH<5L0EZW9OkUMKg<&1zE>k0fWpxH(O=LHPjMc@ws=k^o0 zgy0GqerPrwuqy~QAyDt_|6%~=e`?ANNq>5bO88sA@^b`k3uyBvfx7~R{6*kC0=UoR z4d$Ug|IvV|c&uYayL+Vn6o8#Gyn9UKxu^_FA@D*#yEFpH0$ybjNEKk@5J(f?`G&wN z1Rs8akfi~b1@|907`=&R^vPazRE{k`CfpV8-aY_WR(k8T#kT?fTNxS z3JA#bCQwKNyYaXRks_KHV}l4374Tg!0XG4+YZ53SplvMzr39?6O`wc`qjdPh-dH6Z=wI%dqZ_oDQc zLN4_q&T+)vc@MJyk@%oR_`|hIjM4fId*-T)p zfKRp%_(s6~Z3HF?*u9;=WC0Iln5zg6qAADhQ};f9jY{zKUQE>Tf(tMPAo{^l$1Iy6nbg+!o+_g1|ii;JO<%><@*Y zziuFp1+3yaU~{F9D}8}rJz7ztu`6at5wNEjfiwj0_%EOFy%i5)Vl^W}N>TM>6QJi$ zs-o9O@-Wwvdt^$U2GqLuI);wBv04lGKW6>(>jVl27=DL9VF7o!#G(RJ753stXuJ*W zPvfnWsHj5R5m0l%-8a@-4#A&j=c_ELrh*1!XGI+|x;~_2Ujd#^2>1&aY=2H9P)O(t z0zm>^a2>${RHd~9sA}p8P}S5IFqms;BtX^Dv=Od9bfAv)rq;JW6?l@H&lp~qKr0QX zZEbYSSer|Bwioc*8v>yM7QZFXNx;cG0yY7){w++;f4T|jWT8rX3V55JKyLvNY*t?Z z%FccQlx1N8lx2eiD9a)N*txOFv|*wGrs1I;E5-6oMq|!OdP|`xp(V z2gm6ccq@lwxc(Y1q*`&xU>5)`%h8G{0)k2r_)fqYuHy#*?LA3jh5&F_j%Caepv;b#?MG)zNjceOaaP}#R8Ne%LFJxRtivttU+)Qy91n>qao`B4EVGN-T!UWggR)m zjv4KID8n`Z(NziT5b#A1f!zW!88`$))Fq7r0(wKGV8vktVEz5NA(3OEvZ*P7lLA&V zI4z)Q3)1*q0JuWOQZEQljlCqG1h@W*fMabji{1E3$UY**O#xTiQ>nKFbYbJ~3BWFd zdLIfY`@?R2RKqfX_cwAEk(j>Z3FPs*5rZ&{|o4Fx8ta8mfz4i^i5Aq>(2Y zs*C;=Ks^HE-vxYe^9bQCF$xM$JyJw~>XBjy;B6AQVaEL~hN#|#w(fai4tz5@7+X7~#Lm+PnzC_pWxK?2ToBaL7I^?MMg)fmtJ zWEVJL$3p6g%03451t`lK2~hPmML-8-vO#6E5YU0Ipjv4_ZEd4t#=m`d{MpnP-gWOaDF%y+82SHELWF${X|7s9wtB;GDv_jBvODX zbr=G8e@Bkru}g<*K&>C4W5$RCw8C!02?>fJyAlLcjwLW!z#<0Y1VmCH#&`k!8Q29h z9!q6R5s)>Cz;_IA{!K_E@`I?<8be@)fI3{rECDOVlg1nY`Nt8MFJK%4Q@~3Giv_Is z2C~5XTPDQhQdbIan?j|o5dhxiu}{|vIL2V3fX^q9#ufnuxs2@so_tRlI|lLU1O%A^U<%OnSB?-h1>OiyQ{bHdH3jm47i%@mc*N%y zpr$|}0cr}k3Q)(}4S<~sQB$C#sHiDWMu3_E9s<-9@D!k?Kt%y+Z2AgNQ@~$9!6`g^ z1BIw55F|iNfnWh@fY%bB#&cZ(YV_6@phj;a0c!L%ZG!7RjQ}-#TZoDpzO4kP;oDXK z4qrH&p9)Z;x1#_xdaVM~=NlpQt2eA zY!Psi!FB=Q(HsleDF9u$1K1-#b;mvdssj!RP#tiD0ImP31CEP|>VQ)MR0o_9pgQ23 z0M!A12v8mHrvTLfR|Q}P;QOEJLR1I*EkJd^9RaEX?h8;I@DBnSLKPlSk37+U#sh3z z`0)sPp#aSPHosGb6j9lEodRxS^#=@2aqS=!ZiZ_3IPA( zpkX&$z*R9@j!xboPeB3bf*e2*0hbvR6EN@}(kLOI#~lKt1$1IiRsec?heFFU!0|tq ziI=F9en2Wd0{U<@egeSbI2IBh0KB~;s4Ac|ABO4z)N!dPfchQAe;pyJ<3j|fj&CSH zb$k;6s^gmrP#yn?0M+qr1aQY2?FrEMR~;WJDyri<2~Ztx6QDZ2n*i1EJq4(a?=3)e zd|v_B?>PSZ2~iy%CO~!kAOWi5BL%3AA0|L`{BQ*D{U!Q(r$ZB?0ZoWF6@&4w(i4!J z!3^N&9gpQ`4JgA{9fK{_DES)!6O#x`6aXIHv4F_}KFK8Tt$_Wn2uy8?=O3!H5vxoW zmBS2v6tI-dnl0cdgLwj!;R^*Q%YGK1EL$qTu1s4YM47f)fU<0z0A<+*0m`z?0+eOj z5d4E(3Lez4M|NmHUAhZmc1{O(>X^P)ryJn!9l?G9;O!m3Apx%W2pkmvzTQ#egaGjL zj^H-|!x@|v@SDX>D(8hLLoW(YmR&}04x0jQ-m%nc2;f^;a`KMghGbEe-4dWIyDLCh z_Mjq+{?Jmy%NjC_B>yfLC`cF;hSe0Gxk0 zLcpgxs=N{4>p|e1fa$D}51d1@S?O$6egVqPLI|jTz^^+N>WW|?c3331+Xmo zS_G;K2;n+v3Q(2S5umCG5x~_L4F#xLnlQlgkE*7*sHkc_L2wk?2ENzPvNjq}+uG@v z0Uq5kxr2ZbtpAZechsqe3K%3{T3eofkwQ*$9m52uN{0(jg~SL@Sw>2; zRn2?>sv1*(s%Ehi0^ZQE-enq4V^`>yp(fvI0az*MuTucmpI9OrLI5^0`1`ht_0RCkH^JQ@`p92R6yE(YT!7uPX3aI)QM^{3y;6-gq zKKui`mhoi{=5er*gBKjkrgQpx^>&sEp(e!e`%4J$`#uP+ae!amL2L&H_*ERlPIG`Cs6h-r34F%Eg9c%BYsbY5oe!GZ zK1!Nr-|vd~;mf!GYVtMH^3Nx{>0{iil+(?1%g5}KVywFPW4sbo;q$okP6-K z5%p+P??2;qs-$%DSZQZvvt?;0#PJdHsQ-cb?hliynA=J_U0rv4$ZEUp`7m19tWd^T z7Pdg7(z}&`(&2+XGEuRE{!X$HKIV(s9aj@FP0+ zglie-Son^S3c{VWu2AFhJ@AA z$L-8VDdvQ-FcwaJ$ZEM>{4iSCbfU_M51GH|>j7>4?PJz_^Io$5kB@Qd!;DXTjE`Xn zr$1&(AF=B3k8#a%p!&P8HszcRE$2)K0?j4m;80!oFe%XdshOh?j>W4AZ!t@kcY2xc z%0X|DT*dYJhe;L8KINf;%O5j)<9*bcD<5HxkPoK7wU3g_m;syvKC`4lMRip$OL;oW z(&jO^K+ypwW+@a+$=uldL88#GC8eT?JY zF@~=*sa`6?*KA$^4%__?nV%V30lMqKhpf8m(+{J5WkU2o`R5~UhHbw|z547!?Bh{C z=>JQSQFr&FBy*7$bU1uF`k%c%^DbVaHb41@nk`@4bcLIZL|ncKw}DHb@%Ymj zf5zcYZfp1%fzn-+vhb${Mw{VJOZ=&aKSS}S9R7IYPc{5`ipqmga-wt|e=g(C1NL>Q);8+jz1mn$H1Rkm~a+E_6mMx z51LtcaP*LynlYX%Kg8Dz^ z%1X|X0oKdt2p0J@PY##)8 z!j=q`N;`c`SoMqgtK#rH4oY|)hX7kBx^3K@Ref}s*j`Y;bzLjWtZ5cc++EvUm4vst zI?3Eo&RJDV#{Q6$k>#D`%u6x*Ts>4iyfDzIy!1#$yjajl<_<5Xx7qr|&BC9ljChwZ zVSeJwQZa)P;)X@Vj13zTHF#*`sD$}A3$aCf>x@0iw@%m<{6!LdGLz>R9pJq8Y0b@*q<$d#VCHvHpl`X+}lz+zj3#Xc_hl&uoI@(j$3Rwkd%m)jfJg@c+;ao zrL^SfuBCRcYZ0fm@>5cx5mG!~zEShdk`D@cIleHQd4FQ^IXhJCvqzwf8P8>E#~`NY-jVE{wH(Ua@)E5wmbQ!nsKAXcvDFu zTEOFQvix;^TbTl8>r=V4u!MUpUepRr#x7ac0)9wxz?MfWU5CAnSPJQ>r3!ttxBYA3%mMf?^w zHO*BUi_|PYrKEOAs)t(sUAgX#U6cGVKD=vE)smF!hk~|)1tC{pnECKz5l?eqyQE_9 zz?#yI6tvxfG&;szVIw5oG3h(l0g0tp*!qa28?fgQOa5!M6b+jkF-wQtjac%7ZH-uR zJEf%+u#pinFWA8dB}dzCN%bp+pbb`EYg@3c6z)+SmM|i^(V5= zX!kc{UE}y=cv9?mY@p}!B=6=_z${dmSrRu|haJ^xhlM4KiVq7@`R7>YLShM>sJCv1 z0%D&h`C>soJx{8H;jb#Z{5+{5##5mJ4BebbG(zh+`6%0*Nq)#9$E^=}?`Dm**M@Ooj@8x0}@=;oJZ1`YIGrPY?s)6N9e32CN72XjW zZ`0t1r0?Ep$?5|8`Vjl2fR+xx{zlA>717c^u3GxMn3lE`M`>?TQmZCdQJa8d8fa4j z;EYB++SB?u%+WS^p6=%TfMlA7Zvv7ldQ;+R>o(mc=M=;R(4_K!~Pg5lQaGQdKX&hVTKQ= zSROUL7?E6^7n#Zy+b7rqK5zk$>~8+KvSKl6=k^iFG~92FNUlL;*di>pA=nkaF0JTc z4va}IZq{{FEKbU8Vv-wTv14QS5Uq(xZakE_f04zu88Xp|lQU}-gMGQd(f*i3+>^CFqBpMa6;XcL=UwIE8!II?q7(cfpnbzm@ zCCP!o)D5p}6|^z+cSB};bYx6{Edy9O1A7G+_Z+R3CXc6nJ)D|Mi*1?;177m6?f){F zmIV7t9s_G%aTjWtC%Av->bq)cvM<)4G(-wWvn;>^^w#T zHUKadIX0#xkEF%O+bxA^?&_8j!bfl&O|nMjsyJUSb6LF7bjf8{{lM<@e zOYvg;q1LH@t1|W*?^gmlcU--cwiq6+m(qY&kwezsVRYUh`*xr+t=gf{T6Qgd-*-+$PpuP-l?2;~W1V?zRoBQyNz~fNgF4 z9&(X19h}sYlxW1{KwHgvm!9~T-6{uoI~uo1`I5SDUVKUmEcYv zDx9*%dLB~T&4&dldte!R5>jeZ$H#_7fTxS{El7>3JvBhD^u!K!bg>`(Fqhz(zp;UeODhPN8ZYmMP<3*7IcuCm~GsvmN(z+NrBBm z_oUEe%bh(bR%}f5y(zUZ?7KIGPGr;frqr+W25V^95lSPecrPU-8gp8?KnI6k2=Ot0 zZCTC3QNocjr5zu6cWYBP^4-Gjdzjnbq!h(M557rh&WV$(t06JGRy7av-!H2bXY1Bl zuRycgo0IcW%9?H8>Z5+m`Vep>^Wp0tcQfsmCnbu|AbMoYG>^YY@idp$OQCC}2X9mA z@dPVovDLr{=1)cWBt*oM z=bI0I4e>S~EcEtpbgz^;r7rhkdut4JSNHz~mo;A=3U(`QP=Cc)PXP}!k9SM;@PTWq zu%Yqcal^vK#KsTTr{2>zS!Z@26|-lz)cSm|&Rg$6SM2Crqnz38R4^~@d%LB!#6HRD zmP%)~I^9$2d*BmsW72FelcYD`Puuw0F{XR!-)d5|vRa{nAhYzgn$@VqQ%9#Zz+w)M zPNkDo@iD1YJ|S~&+AMGY=oGOT+*h-s>nGrZnx$HswB!x`pqT}LBWNSb5jQ6FJ1R71 zGuu{gOKL0boB7raP=9^X|M-)JOg34M0|_zx+t+E}N)?~9KA&pdA6};(8CZL3Y9}=C z>#eCBD2FY`Vzc7V=svGbfcbK3YAH;%Y)ftZ$$V`7)!)Ggk_w*J(k1Zo%*^wWmg-$r zQlgP@gpTIqDRqM#8@Hu;m%$Rx980AOpXbL?Kf!plZ^ky_V|?;?zz;B1*4BwrV)2l!iNwgB8Hvy>;&d+?jgtPOZS zW@&>+o4^4wvlQ@i%u+A#XG~I}@#Y>jX{KL9bfn|?iPWhyBSt<-t%^`?(46t z5mQZn?~wA;*Eb%e($!Pmqf|OY2Ru%#;;|d8Uk`4L*&}im_%k+kJNiFPeOl6oj#oWv z6F7p!dxa+quRSC_b_8De(>3(K%+$(lNu{4P8dS=VN>oBveB{vh$b^KbSbcvHW1aY6 z`iR8nQBl!&^+@HM%1reyhOcmp)`jwe(_}|lX6m{DJT?5Re zX{&9qjfPP&v&68-@aR#)!V(fkj0le($LCbrIEyV8Q%i@zJ$zV9;)t-wvEd`&u1Bvw zZ!NYmaA!cn|2p^}W@p8pfb(IND)?#X5qKLWmS{{bogX^g5z*`Ax{?j4;l9>NP>Wl; zE?wX{I4UM;l)lEb*0Y8}N-<0s5*t4zJf816S`L2c=Z7z*jOsO^T#^dcQBtCDwFcH; zK0MMgz_D`h%L0|T7phtNKrdYWrKK13!ujuC((z9D{-rXA|B{O>iEiw|28EA`7#0>W zEHYxaI`*k9w)gtb{sInC+52i!@QljR6L5*j()ZvCm8E>QwA2y2pE8>WZcka7eP2s~ z|9~%UW1eHEN7~57XzH!bX>^_AX-lJPjlQSnR^vP?BEUFpO(P=>1q{J=oyHq*tg2kHfI$X27SS`&SsiZ_B9~2Fvx6PH#H5~`Lradl+J+LY)jV^!=houG5&7rlgbr2X` zmZm0J9TpcKJ1A^a?C?lEb|Z1crMdYQUemH)!$GE&*2DWv26r_HrI5zK)C6eUK!(guIaQq1{O`Ho5wyy(_7Z3#pHsEtzdqz$qlRs zi-`*hkB<-6OG)wkHV;fINb{Q(tg}Va>7YI@nob9`a4`<67E2GVK?N?$Z#xZ{s0qKU z0CVSJ*H?jenk@aa6D7wt#nKnkoniTa^vY$aDLt**c-zdPwKmHi!DwYm2wNJc#3_u@s5`E z!~11s*WuwbODXVrnWbcSvCh)x@TT2(>NvVQy=6b_!1r(XDEYkQu*KVST6IRhO{dl9 zm$&J3R=oH&o$lvL=cUsVlB#*>bfFNMmtLLDsy1(nt&-U#FWsvsUHQ^1HJ9b3(;{_D zg^%*mTeA8W7F)!^cj=zy#cz8QK})RfxN{QUrPDRu?sw^Q36l9Pot`)}eVVuHy|(py4(-FQ5sa(wESjY(cv!_!fgCOQ!mTQ^y6}AgOD*#kRML$C zT54QWOB2BDAnSE3r6sS+;AoKHxN=%*2CfB-tBy|priaj6pIG7*jmf1YUeSy@R^nAT zp7R~8U*On`jforQJ9V+F#KCpJ9JR>)zi)xdurJNkiW~t~a33wo(R4Rectm(yTvW_Zbv?1r zx&!o!jfjjN3M&q*<2)HgoaV+(JN?S{GwS5R7I^HZtSdDHY{IW%jJMzvkfnUlTJnn3 z(sS_t$En6>lpJZNUv*5N!{02!yCSuQpPm$ph>nU2!%H2$!ZSxU%kV_S8O<{265~L# z44TBZn`O|Y)4OIFL7mAk7mLjU4Ex~iL0n?kka}u`^yDXzGfPFp#tccsOWH7a!w?^( zSI|0io~5T1Q~SH~Gn1*!xsHv^Gpfmj&^)Z8jOll+KR+t4EwtE{0W(|g_=-=_WYFW{A6jrln_6V>WPovOi-4hQ`mY?| zPM3<=EiwYQ(2*|i(gzETNQe&`oiHk#FPO}REi-6*e$_IA=FQhFxzMF5JkpXYz1=c{ zpU>Eyy4X^%l9g@4Jb774bFsPT)7=^Hu*eSm{K2&%OC_djX&^XLWVR2SD6-TTyeG1B z5ZorRbQt_4vUC$1C9I z8SqdZ_SFE#gzTcQ0eB>2$vmm038%Ew8JrJtstn~>df(&?KQ6Rhs4Yj5VGeUVu{>}Oq3^aH+bUM7e>9-R$ zi7{X*?pVlE@xj83s(g3)#QJ8cnO=DiKdNYEX4K#lrW;I2v$dJw4KMu$x$;wi@)ny9 zPM2!@4YJhphL$Y1v@{>w407sw@Gq!xfMY?H_JjXG zmO4DvQl%$a`U89ia_T^*md?E>fa26Hi!vNt7G>TYjEhaJcbSdY+E|ON4Nj4fl_Gtp z@jt!GRL{JOWWJ`ne;@l#=n`3dATWE$TqqVXnUJ&Ze@D2_UwN%>vHPuLbfxQTF%_@ zZDu)6eg1EzTB=$VwuKdjRDW~(&za@S+nJfgtZFSBRM<8TlIUu2&r4`Ney(U_fs;d) zJY5SZX*;+zWLB`Omac&#L*xCP=~x$4S40qPOjDC;>gdq+r?GW&h2 zEE;$T;z2Y-ILT+ zVV~Dobe}3rK_egrhn_FWzn8*4`kET()I({WY?tw*)=LyU~4L z?C8k&Xg1Y+c`)1Gi`w*=#nugVijYoJY$7(r3_g_Y#p(aE*yeD0WMV|v;3&S>7;uPf zo_HvmrqQND*)6D#4`tJRp7&u+Z*f@JemI-@eBR;gMyPlGa5jyx+{3J2^GG&53H zHZ6)%k7U!0!8XNj9LcW37d5U0Y(wB%0UC=dhte2oS;FF&wBfNN`F7A+1o$q-wY}K(V%9{iCKdTT# z-B(j}pX=zTgv9XZsIT>V@SYaFL9SvxET5xZh&2u6$LL>$=Fr33IiWc;0uF`d&$ zXbxQuybsN(%rAadxY*X>6@*(@Ty*Rxcqu(JGG;Ixp-(#Ic=46M?=H4ms8cL#aD4cf zutBk7WdPiDvE@J#b=F>RLdo7L8-VvomR5t?NtULAze$#|!OtX1>F}8?OT9K~X(D`q z%Ixued~%rWxYaSI;TY`8(#LY>7&be`t?7R(CxA~}X|^ixcsj?^TzM>q9}^to4tT6W zuj4s1972!h(EZ`$<2fC8>3Ic9k8XiCe6Y!0D)+&Mr!0L1-&3+w4!*WDHaYT+=lDmW zIhBHPsdGC8@#iw*f^unEnL)X9Il4b6mxfwWP%aJGO4V{(@ZE5Ti|q?tXMgzIk)2SM zhffAsngZS@S?UjNCs}gK($cr!Xp&h7c$hSPc5JJbd+lew(3oxA4a*mPBUBV-8QhEQ zwY9aF6PmxEYs@nza%mX6IKdWIIGIZeKjpfo&8X9_%?dIpT^7IF|TRqd=vAUj*|w~~`R#|JqU#J;}n&PG?V zCh|?-BXGQE+;G_c_u7XB&hlNaY27}u>vaHq6=lt_Rn~Pa0WXT|ZgBv3Pc-&AEW2MH zZOqfb$GXV8AM?5bXIf%wj*E)EIUF?ZzdJzFlKi@C;1#sE_!20EB=>bnN;LkOhZZL$ I4yyhC0JPTcfdBvi diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree index a3a0e88627eca6d68239352f63d32cad8507bbb4..dc4a39baca514695c7760832d1a329f92e973481 100644 GIT binary patch delta 64 zcmeA<%hYq0X+sO6p_x%hL1so-k-nv+p?Qi)N@{9ylChalVzOCcqFJhexw%2Iv6;C^ Uih+Saa\n", " 2\n", " outlier\n", - " 0.356958\n", - " 362\n", + " 0.356924\n", + " 363\n", " \n", " \n", " 3\n", " near_duplicate\n", - " 0.619565\n", + " 0.619581\n", " 108\n", " \n", " \n", @@ -315,8 +315,8 @@ " issue_type score num_issues\n", "0 null 1.000000 0\n", "1 label 0.991400 52\n", - "2 outlier 0.356958 362\n", - "3 near_duplicate 0.619565 108\n", + "2 outlier 0.356924 363\n", + "3 near_duplicate 0.619581 108\n", "4 non_iid 0.000000 1\n", "5 class_imbalance 0.500000 0\n", "6 underperforming_group 0.651929 0" @@ -700,10 +700,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:10.841884Z", - "iopub.status.busy": "2024-07-01T15:06:10.841353Z", - "iopub.status.idle": "2024-07-01T15:06:18.620342Z", - "shell.execute_reply": "2024-07-01T15:06:18.619784Z" + "iopub.execute_input": "2024-07-02T12:04:51.683932Z", + "iopub.status.busy": "2024-07-02T12:04:51.683392Z", + "iopub.status.idle": "2024-07-02T12:04:59.515985Z", + "shell.execute_reply": "2024-07-02T12:04:59.515371Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:18.622535Z", - "iopub.status.busy": "2024-07-01T15:06:18.622344Z", - "iopub.status.idle": "2024-07-01T15:06:18.765943Z", - "shell.execute_reply": "2024-07-01T15:06:18.765367Z" + "iopub.execute_input": "2024-07-02T12:04:59.518078Z", + "iopub.status.busy": "2024-07-02T12:04:59.517894Z", + "iopub.status.idle": "2024-07-02T12:04:59.659289Z", + "shell.execute_reply": "2024-07-02T12:04:59.658739Z" } }, "outputs": [], @@ -838,10 +838,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:18.768372Z", - "iopub.status.busy": "2024-07-01T15:06:18.768184Z", - "iopub.status.idle": "2024-07-01T15:06:20.089155Z", - "shell.execute_reply": "2024-07-01T15:06:20.088659Z" + "iopub.execute_input": "2024-07-02T12:04:59.661683Z", + "iopub.status.busy": "2024-07-02T12:04:59.661350Z", + "iopub.status.idle": "2024-07-02T12:05:00.957856Z", + "shell.execute_reply": "2024-07-02T12:05:00.957311Z" } }, "outputs": [ @@ -1000,10 +1000,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:20.091428Z", - "iopub.status.busy": "2024-07-01T15:06:20.091067Z", - "iopub.status.idle": "2024-07-01T15:06:20.540474Z", - "shell.execute_reply": "2024-07-01T15:06:20.539777Z" + "iopub.execute_input": "2024-07-02T12:05:00.960128Z", + "iopub.status.busy": "2024-07-02T12:05:00.959785Z", + "iopub.status.idle": "2024-07-02T12:05:01.381421Z", + "shell.execute_reply": "2024-07-02T12:05:01.380807Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:20.543076Z", - "iopub.status.busy": "2024-07-01T15:06:20.542728Z", - "iopub.status.idle": "2024-07-01T15:06:20.551688Z", - "shell.execute_reply": "2024-07-01T15:06:20.551243Z" + "iopub.execute_input": "2024-07-02T12:05:01.383745Z", + "iopub.status.busy": "2024-07-02T12:05:01.383267Z", + "iopub.status.idle": "2024-07-02T12:05:01.392315Z", + "shell.execute_reply": "2024-07-02T12:05:01.391863Z" } }, "outputs": [], @@ -1115,10 +1115,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:20.553781Z", - "iopub.status.busy": "2024-07-01T15:06:20.553342Z", - "iopub.status.idle": "2024-07-01T15:06:20.571023Z", - "shell.execute_reply": "2024-07-01T15:06:20.570476Z" + "iopub.execute_input": "2024-07-02T12:05:01.394282Z", + "iopub.status.busy": "2024-07-02T12:05:01.393956Z", + "iopub.status.idle": "2024-07-02T12:05:01.411562Z", + "shell.execute_reply": "2024-07-02T12:05:01.411139Z" } }, "outputs": [], @@ -1146,10 +1146,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:20.573201Z", - "iopub.status.busy": "2024-07-01T15:06:20.572911Z", - "iopub.status.idle": "2024-07-01T15:06:20.803461Z", - "shell.execute_reply": "2024-07-01T15:06:20.802856Z" + "iopub.execute_input": "2024-07-02T12:05:01.413543Z", + "iopub.status.busy": "2024-07-02T12:05:01.413221Z", + "iopub.status.idle": "2024-07-02T12:05:01.630162Z", + "shell.execute_reply": "2024-07-02T12:05:01.629562Z" } }, "outputs": [], @@ -1189,10 +1189,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:20.806333Z", - "iopub.status.busy": "2024-07-01T15:06:20.805945Z", - "iopub.status.idle": "2024-07-01T15:06:20.825160Z", - "shell.execute_reply": "2024-07-01T15:06:20.824612Z" + "iopub.execute_input": "2024-07-02T12:05:01.632639Z", + "iopub.status.busy": "2024-07-02T12:05:01.632236Z", + "iopub.status.idle": "2024-07-02T12:05:01.650528Z", + "shell.execute_reply": "2024-07-02T12:05:01.649988Z" } }, "outputs": [ @@ -1390,10 +1390,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:20.827381Z", - "iopub.status.busy": "2024-07-01T15:06:20.826963Z", - "iopub.status.idle": "2024-07-01T15:06:20.993329Z", - "shell.execute_reply": "2024-07-01T15:06:20.992779Z" + "iopub.execute_input": "2024-07-02T12:05:01.652709Z", + "iopub.status.busy": "2024-07-02T12:05:01.652303Z", + "iopub.status.idle": "2024-07-02T12:05:01.816760Z", + "shell.execute_reply": "2024-07-02T12:05:01.816173Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:20.995655Z", - "iopub.status.busy": "2024-07-01T15:06:20.995315Z", - "iopub.status.idle": "2024-07-01T15:06:21.005096Z", - "shell.execute_reply": "2024-07-01T15:06:21.004627Z" + "iopub.execute_input": "2024-07-02T12:05:01.818813Z", + "iopub.status.busy": "2024-07-02T12:05:01.818633Z", + "iopub.status.idle": "2024-07-02T12:05:01.828263Z", + "shell.execute_reply": "2024-07-02T12:05:01.827827Z" } }, "outputs": [ @@ -1729,10 +1729,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:21.007134Z", - "iopub.status.busy": "2024-07-01T15:06:21.006797Z", - "iopub.status.idle": "2024-07-01T15:06:21.015972Z", - "shell.execute_reply": "2024-07-01T15:06:21.015502Z" + "iopub.execute_input": "2024-07-02T12:05:01.830285Z", + "iopub.status.busy": "2024-07-02T12:05:01.830099Z", + "iopub.status.idle": "2024-07-02T12:05:01.839416Z", + "shell.execute_reply": "2024-07-02T12:05:01.838852Z" } }, "outputs": [ @@ -1919,10 +1919,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:21.017811Z", - "iopub.status.busy": "2024-07-01T15:06:21.017637Z", - "iopub.status.idle": "2024-07-01T15:06:21.046279Z", - "shell.execute_reply": "2024-07-01T15:06:21.045826Z" + "iopub.execute_input": "2024-07-02T12:05:01.841444Z", + "iopub.status.busy": "2024-07-02T12:05:01.841118Z", + "iopub.status.idle": "2024-07-02T12:05:01.878960Z", + "shell.execute_reply": "2024-07-02T12:05:01.878541Z" } }, "outputs": [], @@ -1956,10 +1956,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:21.048363Z", - "iopub.status.busy": "2024-07-01T15:06:21.048043Z", - "iopub.status.idle": "2024-07-01T15:06:21.050539Z", - "shell.execute_reply": "2024-07-01T15:06:21.050117Z" + "iopub.execute_input": "2024-07-02T12:05:01.881007Z", + "iopub.status.busy": "2024-07-02T12:05:01.880679Z", + "iopub.status.idle": "2024-07-02T12:05:01.883255Z", + "shell.execute_reply": "2024-07-02T12:05:01.882829Z" } }, "outputs": [], @@ -1981,10 +1981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:21.052583Z", - "iopub.status.busy": "2024-07-01T15:06:21.052269Z", - "iopub.status.idle": "2024-07-01T15:06:21.070692Z", - "shell.execute_reply": "2024-07-01T15:06:21.070162Z" + "iopub.execute_input": "2024-07-02T12:05:01.885223Z", + "iopub.status.busy": "2024-07-02T12:05:01.884900Z", + "iopub.status.idle": "2024-07-02T12:05:01.903469Z", + "shell.execute_reply": "2024-07-02T12:05:01.903010Z" } }, "outputs": [ @@ -2142,10 +2142,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:21.072780Z", - "iopub.status.busy": "2024-07-01T15:06:21.072455Z", - "iopub.status.idle": "2024-07-01T15:06:21.076730Z", - "shell.execute_reply": "2024-07-01T15:06:21.076273Z" + "iopub.execute_input": "2024-07-02T12:05:01.905390Z", + "iopub.status.busy": "2024-07-02T12:05:01.905216Z", + "iopub.status.idle": "2024-07-02T12:05:01.909303Z", + "shell.execute_reply": "2024-07-02T12:05:01.908869Z" } }, "outputs": [], @@ -2178,10 +2178,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:21.078798Z", - "iopub.status.busy": "2024-07-01T15:06:21.078478Z", - "iopub.status.idle": "2024-07-01T15:06:21.105961Z", - "shell.execute_reply": "2024-07-01T15:06:21.105424Z" + "iopub.execute_input": "2024-07-02T12:05:01.911113Z", + "iopub.status.busy": "2024-07-02T12:05:01.910943Z", + "iopub.status.idle": "2024-07-02T12:05:01.938117Z", + "shell.execute_reply": "2024-07-02T12:05:01.937659Z" } }, "outputs": [ @@ -2327,10 +2327,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:21.108003Z", - "iopub.status.busy": "2024-07-01T15:06:21.107678Z", - "iopub.status.idle": "2024-07-01T15:06:21.447286Z", - "shell.execute_reply": "2024-07-01T15:06:21.446728Z" + "iopub.execute_input": "2024-07-02T12:05:01.940161Z", + "iopub.status.busy": "2024-07-02T12:05:01.939837Z", + "iopub.status.idle": "2024-07-02T12:05:02.252666Z", + "shell.execute_reply": "2024-07-02T12:05:02.252098Z" } }, "outputs": [ @@ -2397,10 +2397,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:21.449527Z", - "iopub.status.busy": "2024-07-01T15:06:21.449200Z", - "iopub.status.idle": "2024-07-01T15:06:21.452276Z", - "shell.execute_reply": "2024-07-01T15:06:21.451757Z" + "iopub.execute_input": "2024-07-02T12:05:02.254862Z", + "iopub.status.busy": "2024-07-02T12:05:02.254429Z", + "iopub.status.idle": "2024-07-02T12:05:02.257607Z", + "shell.execute_reply": "2024-07-02T12:05:02.257069Z" } }, "outputs": [ @@ -2451,10 +2451,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:21.454363Z", - "iopub.status.busy": "2024-07-01T15:06:21.454023Z", - "iopub.status.idle": "2024-07-01T15:06:21.466646Z", - "shell.execute_reply": "2024-07-01T15:06:21.466203Z" + "iopub.execute_input": "2024-07-02T12:05:02.259719Z", + "iopub.status.busy": "2024-07-02T12:05:02.259383Z", + "iopub.status.idle": "2024-07-02T12:05:02.272004Z", + "shell.execute_reply": "2024-07-02T12:05:02.271534Z" } }, "outputs": [ @@ -2733,10 +2733,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:21.468583Z", - "iopub.status.busy": "2024-07-01T15:06:21.468405Z", - "iopub.status.idle": "2024-07-01T15:06:21.481924Z", - "shell.execute_reply": "2024-07-01T15:06:21.481439Z" + "iopub.execute_input": "2024-07-02T12:05:02.273862Z", + "iopub.status.busy": "2024-07-02T12:05:02.273687Z", + "iopub.status.idle": "2024-07-02T12:05:02.287267Z", + "shell.execute_reply": "2024-07-02T12:05:02.286829Z" } }, "outputs": [ @@ -3003,10 +3003,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:21.484047Z", - "iopub.status.busy": "2024-07-01T15:06:21.483628Z", - "iopub.status.idle": "2024-07-01T15:06:21.493274Z", - "shell.execute_reply": "2024-07-01T15:06:21.492857Z" + "iopub.execute_input": "2024-07-02T12:05:02.289083Z", + "iopub.status.busy": "2024-07-02T12:05:02.288916Z", + "iopub.status.idle": "2024-07-02T12:05:02.298453Z", + "shell.execute_reply": "2024-07-02T12:05:02.298027Z" } }, "outputs": [], @@ -3031,10 +3031,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:21.495372Z", - "iopub.status.busy": "2024-07-01T15:06:21.495048Z", - "iopub.status.idle": "2024-07-01T15:06:21.504141Z", - "shell.execute_reply": "2024-07-01T15:06:21.503595Z" + "iopub.execute_input": "2024-07-02T12:05:02.300283Z", + "iopub.status.busy": "2024-07-02T12:05:02.300116Z", + "iopub.status.idle": "2024-07-02T12:05:02.309664Z", + "shell.execute_reply": "2024-07-02T12:05:02.309126Z" } }, "outputs": [ @@ -3206,10 +3206,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:21.506165Z", - "iopub.status.busy": "2024-07-01T15:06:21.505846Z", - "iopub.status.idle": "2024-07-01T15:06:21.509379Z", - "shell.execute_reply": "2024-07-01T15:06:21.508840Z" + "iopub.execute_input": "2024-07-02T12:05:02.311452Z", + "iopub.status.busy": "2024-07-02T12:05:02.311286Z", + "iopub.status.idle": "2024-07-02T12:05:02.314989Z", + "shell.execute_reply": "2024-07-02T12:05:02.314531Z" } }, "outputs": [], @@ -3241,10 +3241,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:21.511428Z", - "iopub.status.busy": "2024-07-01T15:06:21.511040Z", - "iopub.status.idle": "2024-07-01T15:06:21.560989Z", - "shell.execute_reply": "2024-07-01T15:06:21.560473Z" + "iopub.execute_input": "2024-07-02T12:05:02.316924Z", + "iopub.status.busy": "2024-07-02T12:05:02.316631Z", + "iopub.status.idle": "2024-07-02T12:05:02.366687Z", + "shell.execute_reply": "2024-07-02T12:05:02.366234Z" } }, "outputs": [ @@ -3252,230 +3252,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3551,10 +3551,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:21.563215Z", - "iopub.status.busy": "2024-07-01T15:06:21.562809Z", - "iopub.status.idle": "2024-07-01T15:06:21.568340Z", - "shell.execute_reply": "2024-07-01T15:06:21.567916Z" + "iopub.execute_input": "2024-07-02T12:05:02.368916Z", + "iopub.status.busy": "2024-07-02T12:05:02.368532Z", + "iopub.status.idle": "2024-07-02T12:05:02.374010Z", + "shell.execute_reply": "2024-07-02T12:05:02.373493Z" } }, "outputs": [], @@ -3593,10 +3593,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:21.570390Z", - "iopub.status.busy": "2024-07-01T15:06:21.570048Z", - "iopub.status.idle": "2024-07-01T15:06:21.580186Z", - "shell.execute_reply": "2024-07-01T15:06:21.579714Z" + "iopub.execute_input": "2024-07-02T12:05:02.375995Z", + "iopub.status.busy": "2024-07-02T12:05:02.375691Z", + "iopub.status.idle": "2024-07-02T12:05:02.386423Z", + "shell.execute_reply": "2024-07-02T12:05:02.385887Z" } }, "outputs": [ @@ -3632,10 +3632,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:21.582185Z", - "iopub.status.busy": "2024-07-01T15:06:21.581851Z", - "iopub.status.idle": "2024-07-01T15:06:21.792455Z", - "shell.execute_reply": "2024-07-01T15:06:21.791912Z" + "iopub.execute_input": "2024-07-02T12:05:02.388574Z", + "iopub.status.busy": "2024-07-02T12:05:02.388272Z", + "iopub.status.idle": "2024-07-02T12:05:02.563243Z", + "shell.execute_reply": "2024-07-02T12:05:02.562691Z" } }, "outputs": [ @@ -3687,10 +3687,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:21.794636Z", - "iopub.status.busy": "2024-07-01T15:06:21.794453Z", - "iopub.status.idle": "2024-07-01T15:06:21.802233Z", - "shell.execute_reply": "2024-07-01T15:06:21.801679Z" + "iopub.execute_input": "2024-07-02T12:05:02.565412Z", + "iopub.status.busy": "2024-07-02T12:05:02.565240Z", + "iopub.status.idle": "2024-07-02T12:05:02.572732Z", + "shell.execute_reply": "2024-07-02T12:05:02.572280Z" }, "nbsphinx": "hidden" }, @@ -3720,22 +3720,39 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Find Spurious Correlation between Vision Dataset features and class labels\n", + "## Identify Spurious Correlations in Image Datasets\n", "\n", - "In this section, we demonstrate how to identify spurious correlations in a vision dataset using the `cleanlab` library. Spurious correlations are unintended associations in the data that do not reflect the true underlying relationships, potentially leading to misleading model predictions and poor generalization.\n", + "This section demonstrates how to detect spurious correlations in image datasets by measuring how strongly individual image properties correlate with class labels.\n", + "These correlations could lead to unreliable model predictions and poor generalization.\n", "\n", - "We will utilize the `Datalab` class from cleanlab with the `image_key` attribute to pinpoint vision-specific issues such as `dark_score`, `blurry_score`, `odd_aspect_ratio_score`, and more in the dataset. By analyzing these correlations, we can understand their impact on model performance and take steps to enhance the robustness and reliability of our machine learning models." + "\n", + "By providing an `image_key` argument, we can analyze image-specific attributes such as:\n", + "\n", + "- Darkness\n", + "- Blurriness\n", + "- Aspect ratio anomalies\n", + "- More image-specific features from [CleanVision](https://cleanvision.readthedocs.io/en/latest/tutorials/tutorial.html#What-is-CleanVision?)\n", + "\n", + "This analysis helps us identify unintended biases in our datasets and guides steps to enhance the robustness and reliability of our machine learning models.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### 1. Load the dataset\n", + "### 1. Load the Dataset\n", + "\n", + "We'll use a subset of the CIFAR-10 dataset for this demonstration, selecting 100 images from two random classes. To illustrate spurious correlations:\n", "\n", - "We will demonstrate this workflow using the CIFAR-10 dataset by selecting 100 images from two random classes. To illustrate the impact of spurious correlations between image features and class labels, we will showcase how altering all images of a class, such as darkening them, significantly reduces the `dark_score`. This demonstrates the strong correlation detection of darkness within the dataset.\n", + "- We'll artificially introduce a bias by altering all images of one class (e.g., darkening them).\n", + "- The correlation scores range from 0 to 1, where:\n", + " - Scores close to 0 indicate a strong correlation between an image property and class labels, suggesting a likely spurious correlation.\n", + " - Scores close to 1 suggest little to no correlation between the property and class labels.\n", + "- By introducing this bias, we expect to see:\n", + " - A decrease in the `dark_score` for the darkened class, indicating an increased correlation between darkness and that class label.\n", + " - Similar effects can be observed with `blurry_score` or `odd_aspect_ratio_score` by introducing corresponding characteristics to one class.\n", "\n", - "Similarly, we can observe significant reductions in `blurry_score` and `odd_aspect_ratio_score` when one of the classes contains images with corresponding characteristics such as blurriness or an unusual aspect ratio between width and height." + "This setup allows us to demonstrate how Datalab detects strong correlations between image features and class labels." ] }, { @@ -3743,10 +3760,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:21.804166Z", - "iopub.status.busy": "2024-07-01T15:06:21.803993Z", - "iopub.status.idle": "2024-07-01T15:06:27.357122Z", - "shell.execute_reply": "2024-07-01T15:06:27.356570Z" + "iopub.execute_input": "2024-07-02T12:05:02.574589Z", + "iopub.status.busy": "2024-07-02T12:05:02.574422Z", + "iopub.status.idle": "2024-07-02T12:05:08.693945Z", + "shell.execute_reply": "2024-07-02T12:05:08.693406Z" } }, "outputs": [ @@ -3770,7 +3787,39 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 917504/170498071 [00:00<00:20, 8269545.10it/s]" + " 1%| | 917504/170498071 [00:00<00:20, 8347158.96it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 6%|▌ | 9601024/170498071 [00:00<00:03, 52614403.72it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 11%|█ | 18481152/170498071 [00:00<00:02, 68746962.66it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 15%|█▍ | 25493504/170498071 [00:00<00:02, 68028252.66it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 19%|█▉ | 32571392/170498071 [00:00<00:02, 68946396.69it/s]" ] }, { @@ -3778,7 +3827,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 10387456/170498071 [00:00<00:02, 56842742.05it/s]" + " 23%|██▎ | 39845888/170498071 [00:00<00:01, 70065798.28it/s]" ] }, { @@ -3786,7 +3835,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 21495808/170498071 [00:00<00:01, 80950295.23it/s]" + " 28%|██▊ | 46891008/170498071 [00:00<00:01, 68706053.96it/s]" ] }, { @@ -3794,7 +3843,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 32440320/170498071 [00:00<00:01, 91992107.79it/s]" + " 32%|███▏ | 54394880/170498071 [00:00<00:01, 70657768.03it/s]" ] }, { @@ -3802,7 +3851,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 43483136/170498071 [00:00<00:01, 98507606.82it/s]" + " 36%|███▌ | 61505536/170498071 [00:00<00:01, 69454102.48it/s]" ] }, { @@ -3810,7 +3859,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 54427648/170498071 [00:00<00:01, 102169111.94it/s]" + " 41%|████ | 69074944/170498071 [00:01<00:01, 71043124.94it/s]" ] }, { @@ -3818,7 +3867,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 64716800/170498071 [00:00<00:01, 102261059.68it/s]" + " 45%|████▍ | 76218368/170498071 [00:01<00:01, 69909000.72it/s]" ] }, { @@ -3826,7 +3875,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 75759616/170498071 [00:00<00:00, 104794429.63it/s]" + " 49%|████▉ | 83230720/170498071 [00:01<00:01, 69743647.72it/s]" ] }, { @@ -3834,7 +3883,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 86573056/170498071 [00:00<00:00, 105786259.21it/s]" + " 55%|█████▍ | 92930048/170498071 [00:01<00:00, 77765718.10it/s]" ] }, { @@ -3842,7 +3891,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 97779712/170498071 [00:01<00:00, 107658431.70it/s]" + " 59%|█████▉ | 100794368/170498071 [00:01<00:00, 77921748.40it/s]" ] }, { @@ -3850,7 +3899,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▎ | 108560384/170498071 [00:01<00:00, 107631887.95it/s]" + " 64%|██████▎ | 108625920/170498071 [00:01<00:00, 74716954.24it/s]" ] }, { @@ -3858,7 +3907,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 119635968/170498071 [00:01<00:00, 108510039.53it/s]" + " 68%|██████▊ | 116162560/170498071 [00:01<00:00, 72297265.09it/s]" ] }, { @@ -3866,7 +3915,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 130514944/170498071 [00:01<00:00, 108504773.07it/s]" + " 72%|███████▏ | 123437056/170498071 [00:01<00:00, 71923065.09it/s]" ] }, { @@ -3874,7 +3923,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 141557760/170498071 [00:01<00:00, 109047203.13it/s]" + " 77%|███████▋ | 130678784/170498071 [00:01<00:00, 70005310.34it/s]" ] }, { @@ -3882,7 +3931,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 152567808/170498071 [00:01<00:00, 109231770.68it/s]" + " 81%|████████ | 138280960/170498071 [00:01<00:00, 71572260.33it/s]" ] }, { @@ -3890,7 +3939,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 163512320/170498071 [00:01<00:00, 109164928.11it/s]" + " 85%|████████▌ | 145489920/170498071 [00:02<00:00, 69364483.36it/s]" ] }, { @@ -3898,7 +3947,31 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:01<00:00, 101603839.38it/s]" + " 90%|████████▉ | 152961024/170498071 [00:02<00:00, 70793844.72it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 94%|█████████▍| 160071680/170498071 [00:02<00:00, 69055168.81it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 167608320/170498071 [00:02<00:00, 70630354.07it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:02<00:00, 69520911.78it/s]" ] }, { @@ -3964,7 +4037,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### 2. Creating `Dataset` object to be passed to the `Datalab` object to find vision-related issues" + "### 2. Creating `Dataset` object to be passed to the `Datalab` object to find image-related issues" ] }, { @@ -3972,10 +4045,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:27.360097Z", - "iopub.status.busy": "2024-07-01T15:06:27.359363Z", - "iopub.status.idle": "2024-07-01T15:06:27.426972Z", - "shell.execute_reply": "2024-07-01T15:06:27.426512Z" + "iopub.execute_input": "2024-07-02T12:05:08.696598Z", + "iopub.status.busy": "2024-07-02T12:05:08.696059Z", + "iopub.status.idle": "2024-07-02T12:05:08.763426Z", + "shell.execute_reply": "2024-07-02T12:05:08.762929Z" } }, "outputs": [], @@ -3997,10 +4070,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:27.429234Z", - "iopub.status.busy": "2024-07-01T15:06:27.429051Z", - "iopub.status.idle": "2024-07-01T15:06:27.469917Z", - "shell.execute_reply": "2024-07-01T15:06:27.469464Z" + "iopub.execute_input": "2024-07-02T12:05:08.765613Z", + "iopub.status.busy": "2024-07-02T12:05:08.765285Z", + "iopub.status.idle": "2024-07-02T12:05:08.805806Z", + "shell.execute_reply": "2024-07-02T12:05:08.805281Z" } }, "outputs": [], @@ -4034,10 +4107,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:27.472017Z", - "iopub.status.busy": "2024-07-01T15:06:27.471718Z", - "iopub.status.idle": "2024-07-01T15:06:28.881795Z", - "shell.execute_reply": "2024-07-01T15:06:28.881232Z" + "iopub.execute_input": "2024-07-02T12:05:08.807933Z", + "iopub.status.busy": "2024-07-02T12:05:08.807600Z", + "iopub.status.idle": "2024-07-02T12:05:10.199005Z", + "shell.execute_reply": "2024-07-02T12:05:10.198447Z" } }, "outputs": [ @@ -4111,10 +4184,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:28.884131Z", - "iopub.status.busy": "2024-07-01T15:06:28.883805Z", - "iopub.status.idle": "2024-07-01T15:06:29.648363Z", - "shell.execute_reply": "2024-07-01T15:06:29.647874Z" + "iopub.execute_input": "2024-07-02T12:05:10.201199Z", + "iopub.status.busy": "2024-07-02T12:05:10.200858Z", + "iopub.status.idle": "2024-07-02T12:05:10.987916Z", + "shell.execute_reply": "2024-07-02T12:05:10.987295Z" } }, "outputs": [ @@ -4129,7 +4202,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1fa7dd59335f4faa818bcf4e966c7c70", + "model_id": "ab730d681373436cbffc495350a9abe1", "version_major": 2, "version_minor": 0 }, @@ -4153,7 +4226,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bc30a28b7d6044ff9e4159420fbd7a37", + "model_id": "e44decacc70f4d08b59475e297136aab", "version_major": 2, "version_minor": 0 }, @@ -4176,7 +4249,7 @@ { "data": { "text/markdown": [ - "### Vision-specific property scores in the original dataset" + "### Image-specific property scores in the original dataset" ], "text/plain": [ "" @@ -4267,7 +4340,7 @@ { "data": { "text/markdown": [ - "### Vision-specific property scores in the transformed dataset" + "### Image-specific property scores in the transformed dataset" ], "text/plain": [ "" @@ -4372,9 +4445,9 @@ "transformed_property_scores = get_property_scores(transformed_dataset)\n", "\n", "# Displaying the scores dataframe\n", - "display(Markdown(\"### Vision-specific property scores in the original dataset\"))\n", + "display(Markdown(\"### Image-specific property scores in the original dataset\"))\n", "display(standard_property_scores)\n", - "display(Markdown(\"### Vision-specific property scores in the transformed dataset\"))\n", + "display(Markdown(\"### Image-specific property scores in the transformed dataset\"))\n", "display(transformed_property_scores)\n", "\n", "# Smaller 'dark_score' value for modified dataframe shows strong correlation with the class labels in the transformed dataset\n", @@ -4403,7 +4476,30 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0e8630e122434af98c6e33cb01b60aa5": { + "06e95a0f1df9408095248eef0924c604": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5fccbfa0a7a94b55a6825fc52ecdeee3", + "placeholder": "​", + "style": "IPY_MODEL_9d67c6a8b80b4718975da970d5ba6be1", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 725.51it/s]" + } + }, + "1245fefd15c748ca9a6c437e90990634": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4456,7 +4552,7 @@ "width": null } }, - "11db28fa3e49460cb17bc5b1cbe02474": { + "22612fb7095f4323876a32fa6832ebee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4509,31 +4605,23 @@ "width": null } }, - "1fa7dd59335f4faa818bcf4e966c7c70": { + "2ce33b586399430db7231ec582a8ad1c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b80a9a6f3cc8460ba1eacd1eebdd1695", - "IPY_MODEL_bd44e36d29ce400580eb9c39706e9764", - "IPY_MODEL_6681d426ed2e406a80e7d1e331ba04a8" - ], - "layout": "IPY_MODEL_11db28fa3e49460cb17bc5b1cbe02474", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "277e9c9f4f2942e8ba4a67175d4da165": { + "302d670260304f5d973a1863227c2b38": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4586,7 +4674,69 @@ "width": null } }, - "2b75c32350ca4a21bcc6c23534605260": { + "34fad403248e49fb9d7ed5541db4875e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "37657cc47549425e81123fbc00061dcd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_57d53163a3e24cfb8adf32a3c2859334", + "placeholder": "​", + "style": "IPY_MODEL_d6c64d036d3c464bba338c11b7d7e118", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "3f75258f70194866856b4da554e4dbeb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1245fefd15c748ca9a6c437e90990634", + "placeholder": "​", + "style": "IPY_MODEL_4c9fcf59ee52451aad0a525849ecf86b", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "440b53038a3d4c4c964a83e8b710361f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4639,7 +4789,7 @@ "width": null } }, - "5c30ade94053466c8c64d7b0abffbc55": { + "4c9fcf59ee52451aad0a525849ecf86b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4657,7 +4807,7 @@ "text_color": null } }, - "5daa3a2aa6bb4c9f84ea2674afd64ead": { + "57d53163a3e24cfb8adf32a3c2859334": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4710,138 +4860,7 @@ "width": null } }, - "5fe8b6850a5246f4896ff6995970d3c4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_277e9c9f4f2942e8ba4a67175d4da165", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a1e2e6018ec643d38a6a7f43c30c3d0b", - "tabbable": null, - "tooltip": null, - "value": 200.0 - } - }, - "6681d426ed2e406a80e7d1e331ba04a8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_981dd7e875cd448284efead3ec98c9ab", - "placeholder": "​", - "style": "IPY_MODEL_5c30ade94053466c8c64d7b0abffbc55", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 784.17it/s]" - } - }, - "6cc234a88c8e4669af66844757fac7f7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2b75c32350ca4a21bcc6c23534605260", - "placeholder": "​", - "style": "IPY_MODEL_7055ef739a1f4669a5783ae634c9e715", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "7055ef739a1f4669a5783ae634c9e715": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7d1e93d6b2384e198a1aab9f26b5c1fa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7df90a685b4747759b5a5df590246cc1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0e8630e122434af98c6e33cb01b60aa5", - "placeholder": "​", - "style": "IPY_MODEL_f812040db2d642d08a03d0f598afe058", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 847.08it/s]" - } - }, - "981dd7e875cd448284efead3ec98c9ab": { + "5fccbfa0a7a94b55a6825fc52ecdeee3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4894,23 +4913,7 @@ "width": null } }, - "a1e2e6018ec643d38a6a7f43c30c3d0b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b80a9a6f3cc8460ba1eacd1eebdd1695": { + "6bdd7248294f4094a2da7c7af2e67e50": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4925,15 +4928,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ef85a24fdc2e4cf783b12b95dc654a54", + "layout": "IPY_MODEL_d6941ea7ad6a41efb80f48dde9923682", "placeholder": "​", - "style": "IPY_MODEL_7d1e93d6b2384e198a1aab9f26b5c1fa", + "style": "IPY_MODEL_a55c5a0d7aca4c16a982994a5595ca08", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 200/200 [00:00<00:00, 811.85it/s]" } }, - "ba235d6a06cb4c11a73df384a365fbe8": { + "797a5104afa24ca5b172ddc308a704ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4986,7 +4989,43 @@ "width": null } }, - "bc30a28b7d6044ff9e4159420fbd7a37": { + "9d67c6a8b80b4718975da970d5ba6be1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a55c5a0d7aca4c16a982994a5595ca08": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ab730d681373436cbffc495350a9abe1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -5001,16 +5040,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6cc234a88c8e4669af66844757fac7f7", - "IPY_MODEL_5fe8b6850a5246f4896ff6995970d3c4", - "IPY_MODEL_7df90a685b4747759b5a5df590246cc1" + "IPY_MODEL_37657cc47549425e81123fbc00061dcd", + "IPY_MODEL_ccd3930d3b25423fb8d520dc87205752", + "IPY_MODEL_6bdd7248294f4094a2da7c7af2e67e50" ], - "layout": "IPY_MODEL_ba235d6a06cb4c11a73df384a365fbe8", + "layout": "IPY_MODEL_440b53038a3d4c4c964a83e8b710361f", "tabbable": null, "tooltip": null } }, - "bd44e36d29ce400580eb9c39706e9764": { + "ccd3930d3b25423fb8d520dc87205752": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5026,17 +5065,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5daa3a2aa6bb4c9f84ea2674afd64ead", + "layout": "IPY_MODEL_302d670260304f5d973a1863227c2b38", "max": 200.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_fc145740c00f4075a0ddec1338af6a17", + "style": "IPY_MODEL_2ce33b586399430db7231ec582a8ad1c", "tabbable": null, "tooltip": null, "value": 200.0 } }, - "ef85a24fdc2e4cf783b12b95dc654a54": { + "d6941ea7ad6a41efb80f48dde9923682": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5089,7 +5128,7 @@ "width": null } }, - "f812040db2d642d08a03d0f598afe058": { + "d6c64d036d3c464bba338c11b7d7e118": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5107,20 +5146,54 @@ "text_color": null } }, - "fc145740c00f4075a0ddec1338af6a17": { + "e44decacc70f4d08b59475e297136aab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3f75258f70194866856b4da554e4dbeb", + "IPY_MODEL_e621caf6c19d4d638ba32cd7caed9a15", + "IPY_MODEL_06e95a0f1df9408095248eef0924c604" + ], + "layout": "IPY_MODEL_22612fb7095f4323876a32fa6832ebee", + "tabbable": null, + "tooltip": null + } + }, + "e621caf6c19d4d638ba32cd7caed9a15": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_797a5104afa24ca5b172ddc308a704ec", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_34fad403248e49fb9d7ed5541db4875e", + "tabbable": null, + "tooltip": null, + "value": 200.0 } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index 2c0bb8a06..05afc2f2e 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:34.327040Z", - "iopub.status.busy": "2024-07-01T15:06:34.326556Z", - "iopub.status.idle": "2024-07-01T15:06:35.430619Z", - "shell.execute_reply": "2024-07-01T15:06:35.430106Z" + "iopub.execute_input": "2024-07-02T12:05:14.883207Z", + "iopub.status.busy": "2024-07-02T12:05:14.882732Z", + "iopub.status.idle": "2024-07-02T12:05:15.976658Z", + "shell.execute_reply": "2024-07-02T12:05:15.976156Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7a801c5ee1e11be3732a7ea01725de8aca8d147d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@46226527e9d4c8f7ccdf91ff5dac4d6ee27e022b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:35.433295Z", - "iopub.status.busy": "2024-07-01T15:06:35.432846Z", - "iopub.status.idle": "2024-07-01T15:06:35.435562Z", - "shell.execute_reply": "2024-07-01T15:06:35.435139Z" + "iopub.execute_input": "2024-07-02T12:05:15.979210Z", + "iopub.status.busy": "2024-07-02T12:05:15.978822Z", + "iopub.status.idle": "2024-07-02T12:05:15.981689Z", + "shell.execute_reply": "2024-07-02T12:05:15.981162Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:35.437647Z", - "iopub.status.busy": "2024-07-01T15:06:35.437334Z", - "iopub.status.idle": "2024-07-01T15:06:35.448830Z", - "shell.execute_reply": "2024-07-01T15:06:35.448366Z" + "iopub.execute_input": "2024-07-02T12:05:15.983805Z", + "iopub.status.busy": "2024-07-02T12:05:15.983602Z", + "iopub.status.idle": "2024-07-02T12:05:15.994757Z", + "shell.execute_reply": "2024-07-02T12:05:15.994295Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:35.450965Z", - "iopub.status.busy": "2024-07-01T15:06:35.450626Z", - "iopub.status.idle": "2024-07-01T15:06:39.722894Z", - "shell.execute_reply": "2024-07-01T15:06:39.722312Z" + "iopub.execute_input": "2024-07-02T12:05:15.996851Z", + "iopub.status.busy": "2024-07-02T12:05:15.996526Z", + "iopub.status.idle": "2024-07-02T12:05:19.883673Z", + "shell.execute_reply": "2024-07-02T12:05:19.883072Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index 86b92fc2a..964629f99 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:41.824444Z", - "iopub.status.busy": "2024-07-01T15:06:41.824251Z", - "iopub.status.idle": "2024-07-01T15:06:42.924912Z", - "shell.execute_reply": "2024-07-01T15:06:42.924299Z" + "iopub.execute_input": "2024-07-02T12:05:21.944164Z", + "iopub.status.busy": "2024-07-02T12:05:21.943684Z", + "iopub.status.idle": "2024-07-02T12:05:23.029911Z", + "shell.execute_reply": "2024-07-02T12:05:23.029367Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:42.927716Z", - "iopub.status.busy": "2024-07-01T15:06:42.927441Z", - "iopub.status.idle": "2024-07-01T15:06:42.930770Z", - "shell.execute_reply": "2024-07-01T15:06:42.930234Z" + "iopub.execute_input": "2024-07-02T12:05:23.032775Z", + "iopub.status.busy": "2024-07-02T12:05:23.032157Z", + "iopub.status.idle": "2024-07-02T12:05:23.035645Z", + "shell.execute_reply": "2024-07-02T12:05:23.035092Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:42.932829Z", - "iopub.status.busy": "2024-07-01T15:06:42.932448Z", - "iopub.status.idle": "2024-07-01T15:06:46.102573Z", - "shell.execute_reply": "2024-07-01T15:06:46.101934Z" + "iopub.execute_input": "2024-07-02T12:05:23.037598Z", + "iopub.status.busy": "2024-07-02T12:05:23.037330Z", + "iopub.status.idle": "2024-07-02T12:05:26.140141Z", + "shell.execute_reply": "2024-07-02T12:05:26.139387Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:46.105551Z", - "iopub.status.busy": "2024-07-01T15:06:46.104970Z", - "iopub.status.idle": "2024-07-01T15:06:46.139232Z", - "shell.execute_reply": "2024-07-01T15:06:46.138546Z" + "iopub.execute_input": "2024-07-02T12:05:26.143157Z", + "iopub.status.busy": "2024-07-02T12:05:26.142519Z", + "iopub.status.idle": "2024-07-02T12:05:26.174588Z", + "shell.execute_reply": "2024-07-02T12:05:26.174022Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:46.141703Z", - "iopub.status.busy": "2024-07-01T15:06:46.141464Z", - "iopub.status.idle": "2024-07-01T15:06:46.166417Z", - "shell.execute_reply": "2024-07-01T15:06:46.165807Z" + "iopub.execute_input": "2024-07-02T12:05:26.177140Z", + "iopub.status.busy": "2024-07-02T12:05:26.176847Z", + "iopub.status.idle": "2024-07-02T12:05:26.205277Z", + "shell.execute_reply": "2024-07-02T12:05:26.204606Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:46.168919Z", - "iopub.status.busy": "2024-07-01T15:06:46.168681Z", - "iopub.status.idle": "2024-07-01T15:06:46.171591Z", - "shell.execute_reply": "2024-07-01T15:06:46.171158Z" + "iopub.execute_input": "2024-07-02T12:05:26.208173Z", + "iopub.status.busy": "2024-07-02T12:05:26.207802Z", + "iopub.status.idle": "2024-07-02T12:05:26.210662Z", + "shell.execute_reply": "2024-07-02T12:05:26.210230Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:46.173661Z", - "iopub.status.busy": "2024-07-01T15:06:46.173228Z", - "iopub.status.idle": "2024-07-01T15:06:46.175926Z", - "shell.execute_reply": "2024-07-01T15:06:46.175394Z" + "iopub.execute_input": "2024-07-02T12:05:26.212655Z", + "iopub.status.busy": "2024-07-02T12:05:26.212352Z", + "iopub.status.idle": "2024-07-02T12:05:26.214801Z", + "shell.execute_reply": "2024-07-02T12:05:26.214383Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:46.178276Z", - "iopub.status.busy": "2024-07-01T15:06:46.177828Z", - "iopub.status.idle": "2024-07-01T15:06:46.201962Z", - "shell.execute_reply": "2024-07-01T15:06:46.201387Z" + "iopub.execute_input": "2024-07-02T12:05:26.216825Z", + "iopub.status.busy": "2024-07-02T12:05:26.216567Z", + "iopub.status.idle": "2024-07-02T12:05:26.239503Z", + "shell.execute_reply": "2024-07-02T12:05:26.238989Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4fd339b3d01f445392d6c990fdab5a89", + "model_id": "b3fbed235b41419c8dcc7c6dc31f69a4", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0e05780aa0694da2b04037e49f9ac6f9", + "model_id": "55f5d02e58414e189c4d35720f6593e4", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:46.208658Z", - "iopub.status.busy": "2024-07-01T15:06:46.208178Z", - "iopub.status.idle": "2024-07-01T15:06:46.214827Z", - "shell.execute_reply": "2024-07-01T15:06:46.214300Z" + "iopub.execute_input": "2024-07-02T12:05:26.245285Z", + "iopub.status.busy": "2024-07-02T12:05:26.244763Z", + "iopub.status.idle": "2024-07-02T12:05:26.251470Z", + "shell.execute_reply": "2024-07-02T12:05:26.251055Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:46.216919Z", - "iopub.status.busy": "2024-07-01T15:06:46.216531Z", - "iopub.status.idle": "2024-07-01T15:06:46.220056Z", - "shell.execute_reply": "2024-07-01T15:06:46.219618Z" + "iopub.execute_input": "2024-07-02T12:05:26.253486Z", + "iopub.status.busy": "2024-07-02T12:05:26.253192Z", + "iopub.status.idle": "2024-07-02T12:05:26.256606Z", + "shell.execute_reply": "2024-07-02T12:05:26.256082Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:46.221958Z", - "iopub.status.busy": "2024-07-01T15:06:46.221652Z", - "iopub.status.idle": "2024-07-01T15:06:46.228007Z", - "shell.execute_reply": "2024-07-01T15:06:46.227489Z" + "iopub.execute_input": "2024-07-02T12:05:26.258538Z", + "iopub.status.busy": "2024-07-02T12:05:26.258279Z", + "iopub.status.idle": "2024-07-02T12:05:26.264446Z", + "shell.execute_reply": "2024-07-02T12:05:26.264008Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:46.229956Z", - "iopub.status.busy": "2024-07-01T15:06:46.229562Z", - "iopub.status.idle": "2024-07-01T15:06:46.262926Z", - "shell.execute_reply": "2024-07-01T15:06:46.262323Z" + "iopub.execute_input": "2024-07-02T12:05:26.266379Z", + "iopub.status.busy": "2024-07-02T12:05:26.266007Z", + "iopub.status.idle": "2024-07-02T12:05:26.301431Z", + "shell.execute_reply": "2024-07-02T12:05:26.300735Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:46.265438Z", - "iopub.status.busy": "2024-07-01T15:06:46.265079Z", - "iopub.status.idle": "2024-07-01T15:06:46.292805Z", - "shell.execute_reply": "2024-07-01T15:06:46.292125Z" + "iopub.execute_input": "2024-07-02T12:05:26.304129Z", + "iopub.status.busy": "2024-07-02T12:05:26.303754Z", + "iopub.status.idle": "2024-07-02T12:05:26.336384Z", + "shell.execute_reply": "2024-07-02T12:05:26.335710Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:46.295480Z", - "iopub.status.busy": "2024-07-01T15:06:46.295249Z", - "iopub.status.idle": "2024-07-01T15:06:46.413036Z", - "shell.execute_reply": "2024-07-01T15:06:46.412421Z" + "iopub.execute_input": "2024-07-02T12:05:26.339079Z", + "iopub.status.busy": "2024-07-02T12:05:26.338735Z", + "iopub.status.idle": "2024-07-02T12:05:26.455537Z", + "shell.execute_reply": "2024-07-02T12:05:26.454922Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:46.415958Z", - "iopub.status.busy": "2024-07-01T15:06:46.415232Z", - "iopub.status.idle": "2024-07-01T15:06:49.386585Z", - "shell.execute_reply": "2024-07-01T15:06:49.386024Z" + "iopub.execute_input": "2024-07-02T12:05:26.458378Z", + "iopub.status.busy": "2024-07-02T12:05:26.457687Z", + "iopub.status.idle": "2024-07-02T12:05:29.464168Z", + "shell.execute_reply": "2024-07-02T12:05:29.463628Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:49.389098Z", - "iopub.status.busy": "2024-07-01T15:06:49.388711Z", - "iopub.status.idle": "2024-07-01T15:06:49.445289Z", - "shell.execute_reply": "2024-07-01T15:06:49.444750Z" + "iopub.execute_input": "2024-07-02T12:05:29.466470Z", + "iopub.status.busy": "2024-07-02T12:05:29.466106Z", + "iopub.status.idle": "2024-07-02T12:05:29.522164Z", + "shell.execute_reply": "2024-07-02T12:05:29.521722Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:49.447480Z", - "iopub.status.busy": "2024-07-01T15:06:49.447130Z", - "iopub.status.idle": "2024-07-01T15:06:49.487292Z", - "shell.execute_reply": "2024-07-01T15:06:49.486835Z" + "iopub.execute_input": "2024-07-02T12:05:29.524149Z", + "iopub.status.busy": "2024-07-02T12:05:29.523825Z", + "iopub.status.idle": "2024-07-02T12:05:29.563088Z", + "shell.execute_reply": "2024-07-02T12:05:29.562637Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "6cb95977", + "id": "c8a16553", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "7616eae0", + "id": "fae60230", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "c8e20eef", + "id": "9569bf2b", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "5c7c2dee", + "id": "570b1222", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:49.489589Z", - "iopub.status.busy": "2024-07-01T15:06:49.489256Z", - "iopub.status.idle": "2024-07-01T15:06:49.496732Z", - "shell.execute_reply": "2024-07-01T15:06:49.496311Z" + "iopub.execute_input": "2024-07-02T12:05:29.565181Z", + "iopub.status.busy": "2024-07-02T12:05:29.564854Z", + "iopub.status.idle": "2024-07-02T12:05:29.572447Z", + "shell.execute_reply": "2024-07-02T12:05:29.571983Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "02fbab1c", + "id": "a87b6fe0", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "80ce97c2", + "id": "26953078", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:49.498789Z", - "iopub.status.busy": "2024-07-01T15:06:49.498386Z", - "iopub.status.idle": "2024-07-01T15:06:49.516684Z", - "shell.execute_reply": "2024-07-01T15:06:49.516122Z" + "iopub.execute_input": "2024-07-02T12:05:29.574436Z", + "iopub.status.busy": "2024-07-02T12:05:29.574108Z", + "iopub.status.idle": "2024-07-02T12:05:29.592051Z", + "shell.execute_reply": "2024-07-02T12:05:29.591598Z" } }, "outputs": [ @@ -1521,13 +1521,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "f382c568", + "id": "948c6a32", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:49.518671Z", - "iopub.status.busy": "2024-07-01T15:06:49.518371Z", - "iopub.status.idle": "2024-07-01T15:06:49.521416Z", - "shell.execute_reply": "2024-07-01T15:06:49.520910Z" + "iopub.execute_input": "2024-07-02T12:05:29.594121Z", + "iopub.status.busy": "2024-07-02T12:05:29.593804Z", + "iopub.status.idle": "2024-07-02T12:05:29.596796Z", + "shell.execute_reply": "2024-07-02T12:05:29.596261Z" } }, "outputs": [ @@ -1622,7 +1622,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0111e2bffb134a42896020ea74d7e0c2": { + "1e8b9b429c6a4df5b632d8335fdb02e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "31b4169790de40918177589ab5b35e53": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1675,33 +1693,7 @@ "width": null } }, - "08c89a132fac493d9d7986ef465e2458": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_852d38b7e7464bfb919e2fb9d8164e6e", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_091b3aa8f4304d839459836b00997219", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "091b3aa8f4304d839459836b00997219": { + "3e0c64c5666d42f5a0006507f8bef3cf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1717,84 +1709,23 @@ "description_width": "" } }, - "0e05780aa0694da2b04037e49f9ac6f9": { + "42ef207d69534acdbaf463021cfc93cf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ac61742632624d8e99ae7cb5f710a566", - "IPY_MODEL_faad99f698554ee5a74327e7ca036115", - "IPY_MODEL_ddebd597ac7544839e8b864a9d0ee839" - ], - "layout": "IPY_MODEL_70ea901211b24a5e83c22f533f32e36f", - "tabbable": null, - "tooltip": null - } - }, - "1447fe2269d345b3ab6d777d2314a43f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "1def5cc260bc404184c09a073ccd4bd2": { + "47199e38a1de47d2b40f863611c9c287": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1847,7 +1778,7 @@ "width": null } }, - "40e84f876df34c24a0156c5fdf89b318": { + "507bd342f43644e28c3e257c443121b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1865,7 +1796,7 @@ "text_color": null } }, - "460a43df0d3b417d8996679fabe135e8": { + "546f976ecd3443c7ae6b00cfbd3063d7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1918,7 +1849,7 @@ "width": null } }, - "4fd339b3d01f445392d6c990fdab5a89": { + "55f5d02e58414e189c4d35720f6593e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1933,16 +1864,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_be7586025bf846d68f14028779700b35", - "IPY_MODEL_08c89a132fac493d9d7986ef465e2458", - "IPY_MODEL_664279e521a34f979477f41a406cb5c1" + "IPY_MODEL_f01dfba04fcd45ceb75c23f67e8886c7", + "IPY_MODEL_617a9f7f01f040228329a5ec756d97f6", + "IPY_MODEL_ed7c570506e6416fb02ab5e72e3ceb03" ], - "layout": "IPY_MODEL_1447fe2269d345b3ab6d777d2314a43f", + "layout": "IPY_MODEL_829e711fb4284e36a06bf2a1d8c1d975", "tabbable": null, "tooltip": null } }, - "60b07213fb4d4ba79fddd321add6003b": { + "60269b97e2604128baf4ce6cdc816ee4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1995,7 +1926,82 @@ "width": null } }, - "651b9c830e68446881c37217e971cf46": { + "6135cc292d2a4431bf055b0d0936e234": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_60269b97e2604128baf4ce6cdc816ee4", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3e0c64c5666d42f5a0006507f8bef3cf", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "617a9f7f01f040228329a5ec756d97f6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ba0bb27ac92840eeb82c447bf3772478", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_42ef207d69534acdbaf463021cfc93cf", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "73aeda6759084147870440cb627c1d38": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b60d3a9c115940b998532778042a9156", + "placeholder": "​", + "style": "IPY_MODEL_1e8b9b429c6a4df5b632d8335fdb02e7", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1101879.42it/s]" + } + }, + "829e711fb4284e36a06bf2a1d8c1d975": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2048,7 +2054,25 @@ "width": null } }, - "664279e521a34f979477f41a406cb5c1": { + "894752d3c3ad46abbf5f852be62b9157": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "94d1e49e872241989a3aaf081a4914f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2063,33 +2087,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_60b07213fb4d4ba79fddd321add6003b", + "layout": "IPY_MODEL_546f976ecd3443c7ae6b00cfbd3063d7", "placeholder": "​", - "style": "IPY_MODEL_40e84f876df34c24a0156c5fdf89b318", + "style": "IPY_MODEL_894752d3c3ad46abbf5f852be62b9157", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1061876.00it/s]" + "value": "number of examples processed for estimating thresholds: " } }, - "6887dcd8b8cd4f4d89261e3c68e959a9": { + "b3fbed235b41419c8dcc7c6dc31f69a4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_94d1e49e872241989a3aaf081a4914f3", + "IPY_MODEL_6135cc292d2a4431bf055b0d0936e234", + "IPY_MODEL_73aeda6759084147870440cb627c1d38" + ], + "layout": "IPY_MODEL_47199e38a1de47d2b40f863611c9c287", + "tabbable": null, + "tooltip": null } }, - "6957d92bb0cf4c47bfffb9903128dcf5": { + "b60c569797aa438d8c67c0007154831b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2107,7 +2137,7 @@ "text_color": null } }, - "70ea901211b24a5e83c22f533f32e36f": { + "b60d3a9c115940b998532778042a9156": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2160,23 +2190,60 @@ "width": null } }, - "762d2f4c294343aaac239f8510aee6d2": { - "model_module": "@jupyter-widgets/controls", + "ba0bb27ac92840eeb82c447bf3772478": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "852d38b7e7464bfb919e2fb9d8164e6e": { + "d554d48cbc1b4a5caca9da8c04018917": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2229,30 +2296,7 @@ "width": null } }, - "ac61742632624d8e99ae7cb5f710a566": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_651b9c830e68446881c37217e971cf46", - "placeholder": "​", - "style": "IPY_MODEL_6887dcd8b8cd4f4d89261e3c68e959a9", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "be7586025bf846d68f14028779700b35": { + "ed7c570506e6416fb02ab5e72e3ceb03": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2267,33 +2311,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0111e2bffb134a42896020ea74d7e0c2", + "layout": "IPY_MODEL_31b4169790de40918177589ab5b35e53", "placeholder": "​", - "style": "IPY_MODEL_dc2d26ad64ec4759a2171fea5ff47da6", + "style": "IPY_MODEL_b60c569797aa438d8c67c0007154831b", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "dc2d26ad64ec4759a2171fea5ff47da6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 10000/? [00:00<00:00, 1638080.06it/s]" } }, - "ddebd597ac7544839e8b864a9d0ee839": { + "f01dfba04fcd45ceb75c23f67e8886c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2308,38 +2334,12 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1def5cc260bc404184c09a073ccd4bd2", + "layout": "IPY_MODEL_d554d48cbc1b4a5caca9da8c04018917", "placeholder": "​", - "style": "IPY_MODEL_6957d92bb0cf4c47bfffb9903128dcf5", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1591222.73it/s]" - } - }, - "faad99f698554ee5a74327e7ca036115": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_460a43df0d3b417d8996679fabe135e8", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_762d2f4c294343aaac239f8510aee6d2", + "style": "IPY_MODEL_507bd342f43644e28c3e257c443121b3", "tabbable": null, "tooltip": null, - "value": 50.0 + "value": "number of examples processed for checking labels: " } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index 4c0344124..31db58268 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:52.670679Z", - "iopub.status.busy": "2024-07-01T15:06:52.670319Z", - "iopub.status.idle": "2024-07-01T15:06:53.828911Z", - "shell.execute_reply": "2024-07-01T15:06:53.828417Z" + "iopub.execute_input": "2024-07-02T12:05:32.646814Z", + "iopub.status.busy": "2024-07-02T12:05:32.646634Z", + "iopub.status.idle": "2024-07-02T12:05:33.799016Z", + "shell.execute_reply": "2024-07-02T12:05:33.798421Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7a801c5ee1e11be3732a7ea01725de8aca8d147d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@46226527e9d4c8f7ccdf91ff5dac4d6ee27e022b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:53.831480Z", - "iopub.status.busy": "2024-07-01T15:06:53.831210Z", - "iopub.status.idle": "2024-07-01T15:06:54.013309Z", - "shell.execute_reply": "2024-07-01T15:06:54.012774Z" + "iopub.execute_input": "2024-07-02T12:05:33.801518Z", + "iopub.status.busy": "2024-07-02T12:05:33.801117Z", + "iopub.status.idle": "2024-07-02T12:05:33.979293Z", + "shell.execute_reply": "2024-07-02T12:05:33.978808Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:54.015638Z", - "iopub.status.busy": "2024-07-01T15:06:54.015446Z", - "iopub.status.idle": "2024-07-01T15:06:54.026660Z", - "shell.execute_reply": "2024-07-01T15:06:54.026227Z" + "iopub.execute_input": "2024-07-02T12:05:33.981747Z", + "iopub.status.busy": "2024-07-02T12:05:33.981411Z", + "iopub.status.idle": "2024-07-02T12:05:33.992581Z", + "shell.execute_reply": "2024-07-02T12:05:33.992150Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:54.028614Z", - "iopub.status.busy": "2024-07-01T15:06:54.028276Z", - "iopub.status.idle": "2024-07-01T15:06:54.258453Z", - "shell.execute_reply": "2024-07-01T15:06:54.257871Z" + "iopub.execute_input": "2024-07-02T12:05:33.994624Z", + "iopub.status.busy": "2024-07-02T12:05:33.994295Z", + "iopub.status.idle": "2024-07-02T12:05:34.203292Z", + "shell.execute_reply": "2024-07-02T12:05:34.202749Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:54.260736Z", - "iopub.status.busy": "2024-07-01T15:06:54.260424Z", - "iopub.status.idle": "2024-07-01T15:06:54.286726Z", - "shell.execute_reply": "2024-07-01T15:06:54.286174Z" + "iopub.execute_input": "2024-07-02T12:05:34.205578Z", + "iopub.status.busy": "2024-07-02T12:05:34.205242Z", + "iopub.status.idle": "2024-07-02T12:05:34.231392Z", + "shell.execute_reply": "2024-07-02T12:05:34.230966Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:54.288988Z", - "iopub.status.busy": "2024-07-01T15:06:54.288686Z", - "iopub.status.idle": "2024-07-01T15:06:56.272596Z", - "shell.execute_reply": "2024-07-01T15:06:56.271981Z" + "iopub.execute_input": "2024-07-02T12:05:34.233560Z", + "iopub.status.busy": "2024-07-02T12:05:34.233135Z", + "iopub.status.idle": "2024-07-02T12:05:36.181908Z", + "shell.execute_reply": "2024-07-02T12:05:36.181255Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:56.275147Z", - "iopub.status.busy": "2024-07-01T15:06:56.274650Z", - "iopub.status.idle": "2024-07-01T15:06:56.292694Z", - "shell.execute_reply": "2024-07-01T15:06:56.292260Z" + "iopub.execute_input": "2024-07-02T12:05:36.184389Z", + "iopub.status.busy": "2024-07-02T12:05:36.183843Z", + "iopub.status.idle": "2024-07-02T12:05:36.201856Z", + "shell.execute_reply": "2024-07-02T12:05:36.201294Z" }, "scrolled": true }, @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:56.294630Z", - "iopub.status.busy": "2024-07-01T15:06:56.294450Z", - "iopub.status.idle": "2024-07-01T15:06:57.712997Z", - "shell.execute_reply": "2024-07-01T15:06:57.712387Z" + "iopub.execute_input": "2024-07-02T12:05:36.204241Z", + "iopub.status.busy": "2024-07-02T12:05:36.203963Z", + "iopub.status.idle": "2024-07-02T12:05:37.598285Z", + "shell.execute_reply": "2024-07-02T12:05:37.597675Z" }, "id": "AaHC5MRKjruT" }, @@ -729,10 +729,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:57.715656Z", - "iopub.status.busy": "2024-07-01T15:06:57.715048Z", - "iopub.status.idle": "2024-07-01T15:06:57.728518Z", - "shell.execute_reply": "2024-07-01T15:06:57.728061Z" + "iopub.execute_input": "2024-07-02T12:05:37.600758Z", + "iopub.status.busy": "2024-07-02T12:05:37.600219Z", + "iopub.status.idle": "2024-07-02T12:05:37.613480Z", + "shell.execute_reply": "2024-07-02T12:05:37.612921Z" }, "id": "Wy27rvyhjruU" }, @@ -781,10 +781,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:57.730397Z", - "iopub.status.busy": "2024-07-01T15:06:57.730225Z", - "iopub.status.idle": "2024-07-01T15:06:57.801036Z", - "shell.execute_reply": "2024-07-01T15:06:57.800476Z" + "iopub.execute_input": "2024-07-02T12:05:37.615558Z", + "iopub.status.busy": "2024-07-02T12:05:37.615275Z", + "iopub.status.idle": "2024-07-02T12:05:37.682573Z", + "shell.execute_reply": "2024-07-02T12:05:37.681981Z" }, "id": "Db8YHnyVjruU" }, @@ -891,10 +891,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:57.803338Z", - "iopub.status.busy": "2024-07-01T15:06:57.802990Z", - "iopub.status.idle": "2024-07-01T15:06:58.016553Z", - "shell.execute_reply": "2024-07-01T15:06:58.016010Z" + "iopub.execute_input": "2024-07-02T12:05:37.685019Z", + "iopub.status.busy": "2024-07-02T12:05:37.684694Z", + "iopub.status.idle": "2024-07-02T12:05:37.893897Z", + "shell.execute_reply": "2024-07-02T12:05:37.893417Z" }, "id": "iJqAHuS2jruV" }, @@ -931,10 +931,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:58.018803Z", - "iopub.status.busy": "2024-07-01T15:06:58.018381Z", - "iopub.status.idle": "2024-07-01T15:06:58.034965Z", - "shell.execute_reply": "2024-07-01T15:06:58.034432Z" + "iopub.execute_input": "2024-07-02T12:05:37.896031Z", + "iopub.status.busy": "2024-07-02T12:05:37.895697Z", + "iopub.status.idle": "2024-07-02T12:05:37.912159Z", + "shell.execute_reply": "2024-07-02T12:05:37.911619Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1400,10 +1400,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:58.037248Z", - "iopub.status.busy": "2024-07-01T15:06:58.036814Z", - "iopub.status.idle": "2024-07-01T15:06:58.046245Z", - "shell.execute_reply": "2024-07-01T15:06:58.045792Z" + "iopub.execute_input": "2024-07-02T12:05:37.914291Z", + "iopub.status.busy": "2024-07-02T12:05:37.913990Z", + "iopub.status.idle": "2024-07-02T12:05:37.923838Z", + "shell.execute_reply": "2024-07-02T12:05:37.923277Z" }, "id": "0lonvOYvjruV" }, @@ -1550,10 +1550,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:58.048367Z", - "iopub.status.busy": "2024-07-01T15:06:58.048051Z", - "iopub.status.idle": "2024-07-01T15:06:58.130967Z", - "shell.execute_reply": "2024-07-01T15:06:58.130377Z" + "iopub.execute_input": "2024-07-02T12:05:37.925873Z", + "iopub.status.busy": "2024-07-02T12:05:37.925449Z", + "iopub.status.idle": "2024-07-02T12:05:38.005405Z", + "shell.execute_reply": "2024-07-02T12:05:38.004805Z" }, "id": "MfqTCa3kjruV" }, @@ -1634,10 +1634,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:58.133536Z", - "iopub.status.busy": "2024-07-01T15:06:58.133071Z", - "iopub.status.idle": "2024-07-01T15:06:58.249759Z", - "shell.execute_reply": "2024-07-01T15:06:58.249159Z" + "iopub.execute_input": "2024-07-02T12:05:38.007885Z", + "iopub.status.busy": "2024-07-02T12:05:38.007370Z", + "iopub.status.idle": "2024-07-02T12:05:38.126166Z", + "shell.execute_reply": "2024-07-02T12:05:38.125636Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1697,10 +1697,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:58.252274Z", - "iopub.status.busy": "2024-07-01T15:06:58.251852Z", - "iopub.status.idle": "2024-07-01T15:06:58.255729Z", - "shell.execute_reply": "2024-07-01T15:06:58.255184Z" + "iopub.execute_input": "2024-07-02T12:05:38.128463Z", + "iopub.status.busy": "2024-07-02T12:05:38.128096Z", + "iopub.status.idle": "2024-07-02T12:05:38.132029Z", + "shell.execute_reply": "2024-07-02T12:05:38.131380Z" }, "id": "0rXP3ZPWjruW" }, @@ -1738,10 +1738,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:58.257572Z", - "iopub.status.busy": "2024-07-01T15:06:58.257399Z", - "iopub.status.idle": "2024-07-01T15:06:58.261023Z", - "shell.execute_reply": "2024-07-01T15:06:58.260496Z" + "iopub.execute_input": "2024-07-02T12:05:38.134113Z", + "iopub.status.busy": "2024-07-02T12:05:38.133792Z", + "iopub.status.idle": "2024-07-02T12:05:38.137656Z", + "shell.execute_reply": "2024-07-02T12:05:38.137186Z" }, "id": "-iRPe8KXjruW" }, @@ -1796,10 +1796,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:58.263055Z", - "iopub.status.busy": "2024-07-01T15:06:58.262734Z", - "iopub.status.idle": "2024-07-01T15:06:58.298627Z", - "shell.execute_reply": "2024-07-01T15:06:58.298174Z" + "iopub.execute_input": "2024-07-02T12:05:38.139628Z", + "iopub.status.busy": "2024-07-02T12:05:38.139306Z", + "iopub.status.idle": "2024-07-02T12:05:38.175873Z", + "shell.execute_reply": "2024-07-02T12:05:38.175335Z" }, "id": "ZpipUliyjruW" }, @@ -1850,10 +1850,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:58.300556Z", - "iopub.status.busy": "2024-07-01T15:06:58.300384Z", - "iopub.status.idle": "2024-07-01T15:06:58.341152Z", - "shell.execute_reply": "2024-07-01T15:06:58.340674Z" + "iopub.execute_input": "2024-07-02T12:05:38.177802Z", + "iopub.status.busy": "2024-07-02T12:05:38.177621Z", + "iopub.status.idle": "2024-07-02T12:05:38.222062Z", + "shell.execute_reply": "2024-07-02T12:05:38.221459Z" }, "id": "SLq-3q4xjruX" }, @@ -1922,10 +1922,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:58.343232Z", - "iopub.status.busy": "2024-07-01T15:06:58.343056Z", - "iopub.status.idle": "2024-07-01T15:06:58.437535Z", - "shell.execute_reply": "2024-07-01T15:06:58.436855Z" + "iopub.execute_input": "2024-07-02T12:05:38.225715Z", + "iopub.status.busy": "2024-07-02T12:05:38.225497Z", + "iopub.status.idle": "2024-07-02T12:05:38.315625Z", + "shell.execute_reply": "2024-07-02T12:05:38.315082Z" }, "id": "g5LHhhuqFbXK" }, @@ -1957,10 +1957,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:58.440127Z", - "iopub.status.busy": "2024-07-01T15:06:58.439842Z", - "iopub.status.idle": "2024-07-01T15:06:58.527589Z", - "shell.execute_reply": "2024-07-01T15:06:58.526960Z" + "iopub.execute_input": "2024-07-02T12:05:38.318154Z", + "iopub.status.busy": "2024-07-02T12:05:38.317969Z", + "iopub.status.idle": "2024-07-02T12:05:38.405501Z", + "shell.execute_reply": "2024-07-02T12:05:38.404891Z" }, "id": "p7w8F8ezBcet" }, @@ -2017,10 +2017,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:58.529972Z", - "iopub.status.busy": "2024-07-01T15:06:58.529737Z", - "iopub.status.idle": "2024-07-01T15:06:58.741167Z", - "shell.execute_reply": "2024-07-01T15:06:58.740717Z" + "iopub.execute_input": "2024-07-02T12:05:38.407826Z", + "iopub.status.busy": "2024-07-02T12:05:38.407489Z", + "iopub.status.idle": "2024-07-02T12:05:38.614829Z", + "shell.execute_reply": "2024-07-02T12:05:38.614370Z" }, "id": "WETRL74tE_sU" }, @@ -2055,10 +2055,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:58.743495Z", - "iopub.status.busy": "2024-07-01T15:06:58.743153Z", - "iopub.status.idle": "2024-07-01T15:06:58.920954Z", - "shell.execute_reply": "2024-07-01T15:06:58.920411Z" + "iopub.execute_input": "2024-07-02T12:05:38.617073Z", + "iopub.status.busy": "2024-07-02T12:05:38.616735Z", + "iopub.status.idle": "2024-07-02T12:05:38.796547Z", + "shell.execute_reply": "2024-07-02T12:05:38.796035Z" }, "id": "kCfdx2gOLmXS" }, @@ -2220,10 +2220,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:58.923453Z", - "iopub.status.busy": "2024-07-01T15:06:58.923009Z", - "iopub.status.idle": "2024-07-01T15:06:58.928872Z", - "shell.execute_reply": "2024-07-01T15:06:58.928426Z" + "iopub.execute_input": "2024-07-02T12:05:38.798843Z", + "iopub.status.busy": "2024-07-02T12:05:38.798472Z", + "iopub.status.idle": "2024-07-02T12:05:38.804480Z", + "shell.execute_reply": "2024-07-02T12:05:38.804052Z" }, "id": "-uogYRWFYnuu" }, @@ -2277,10 +2277,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:58.930892Z", - "iopub.status.busy": "2024-07-01T15:06:58.930502Z", - "iopub.status.idle": "2024-07-01T15:06:59.148406Z", - "shell.execute_reply": "2024-07-01T15:06:59.147826Z" + "iopub.execute_input": "2024-07-02T12:05:38.806348Z", + "iopub.status.busy": "2024-07-02T12:05:38.806175Z", + "iopub.status.idle": "2024-07-02T12:05:39.020330Z", + "shell.execute_reply": "2024-07-02T12:05:39.019866Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2327,10 +2327,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:59.150754Z", - "iopub.status.busy": "2024-07-01T15:06:59.150391Z", - "iopub.status.idle": "2024-07-01T15:07:00.213417Z", - "shell.execute_reply": "2024-07-01T15:07:00.212813Z" + "iopub.execute_input": "2024-07-02T12:05:39.022452Z", + "iopub.status.busy": "2024-07-02T12:05:39.022256Z", + "iopub.status.idle": "2024-07-02T12:05:40.077777Z", + "shell.execute_reply": "2024-07-02T12:05:40.077247Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index b426f5b7a..dfb026440 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:03.695403Z", - "iopub.status.busy": "2024-07-01T15:07:03.695236Z", - "iopub.status.idle": "2024-07-01T15:07:04.786480Z", - "shell.execute_reply": "2024-07-01T15:07:04.785971Z" + "iopub.execute_input": "2024-07-02T12:05:43.484936Z", + "iopub.status.busy": "2024-07-02T12:05:43.484760Z", + "iopub.status.idle": "2024-07-02T12:05:44.574684Z", + "shell.execute_reply": "2024-07-02T12:05:44.574061Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7a801c5ee1e11be3732a7ea01725de8aca8d147d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@46226527e9d4c8f7ccdf91ff5dac4d6ee27e022b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:04.789244Z", - "iopub.status.busy": "2024-07-01T15:07:04.788665Z", - "iopub.status.idle": "2024-07-01T15:07:04.791892Z", - "shell.execute_reply": "2024-07-01T15:07:04.791444Z" + "iopub.execute_input": "2024-07-02T12:05:44.577417Z", + "iopub.status.busy": "2024-07-02T12:05:44.576983Z", + "iopub.status.idle": "2024-07-02T12:05:44.579868Z", + "shell.execute_reply": "2024-07-02T12:05:44.579405Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:04.793920Z", - "iopub.status.busy": "2024-07-01T15:07:04.793593Z", - "iopub.status.idle": "2024-07-01T15:07:04.801265Z", - "shell.execute_reply": "2024-07-01T15:07:04.800810Z" + "iopub.execute_input": "2024-07-02T12:05:44.581906Z", + "iopub.status.busy": "2024-07-02T12:05:44.581588Z", + "iopub.status.idle": "2024-07-02T12:05:44.588930Z", + "shell.execute_reply": "2024-07-02T12:05:44.588511Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:04.803286Z", - "iopub.status.busy": "2024-07-01T15:07:04.802900Z", - "iopub.status.idle": "2024-07-01T15:07:04.850047Z", - "shell.execute_reply": "2024-07-01T15:07:04.849570Z" + "iopub.execute_input": "2024-07-02T12:05:44.591022Z", + "iopub.status.busy": "2024-07-02T12:05:44.590587Z", + "iopub.status.idle": "2024-07-02T12:05:44.643404Z", + "shell.execute_reply": "2024-07-02T12:05:44.642882Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:04.852247Z", - "iopub.status.busy": "2024-07-01T15:07:04.852061Z", - "iopub.status.idle": "2024-07-01T15:07:04.869485Z", - "shell.execute_reply": "2024-07-01T15:07:04.869018Z" + "iopub.execute_input": "2024-07-02T12:05:44.645347Z", + "iopub.status.busy": "2024-07-02T12:05:44.645170Z", + "iopub.status.idle": "2024-07-02T12:05:44.661922Z", + "shell.execute_reply": "2024-07-02T12:05:44.661404Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:04.871391Z", - "iopub.status.busy": "2024-07-01T15:07:04.871213Z", - "iopub.status.idle": "2024-07-01T15:07:04.875222Z", - "shell.execute_reply": "2024-07-01T15:07:04.874787Z" + "iopub.execute_input": "2024-07-02T12:05:44.663786Z", + "iopub.status.busy": "2024-07-02T12:05:44.663593Z", + "iopub.status.idle": "2024-07-02T12:05:44.667360Z", + "shell.execute_reply": "2024-07-02T12:05:44.666837Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:04.877103Z", - "iopub.status.busy": "2024-07-01T15:07:04.876935Z", - "iopub.status.idle": "2024-07-01T15:07:04.890567Z", - "shell.execute_reply": "2024-07-01T15:07:04.890109Z" + "iopub.execute_input": "2024-07-02T12:05:44.669486Z", + "iopub.status.busy": "2024-07-02T12:05:44.669101Z", + "iopub.status.idle": "2024-07-02T12:05:44.685613Z", + "shell.execute_reply": "2024-07-02T12:05:44.685195Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:04.892340Z", - "iopub.status.busy": "2024-07-01T15:07:04.892165Z", - "iopub.status.idle": "2024-07-01T15:07:04.917921Z", - "shell.execute_reply": "2024-07-01T15:07:04.917510Z" + "iopub.execute_input": "2024-07-02T12:05:44.687438Z", + "iopub.status.busy": "2024-07-02T12:05:44.687261Z", + "iopub.status.idle": "2024-07-02T12:05:44.713068Z", + "shell.execute_reply": "2024-07-02T12:05:44.712511Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:04.919909Z", - "iopub.status.busy": "2024-07-01T15:07:04.919740Z", - "iopub.status.idle": "2024-07-01T15:07:06.770405Z", - "shell.execute_reply": "2024-07-01T15:07:06.769771Z" + "iopub.execute_input": "2024-07-02T12:05:44.714998Z", + "iopub.status.busy": "2024-07-02T12:05:44.714828Z", + "iopub.status.idle": "2024-07-02T12:05:46.561058Z", + "shell.execute_reply": "2024-07-02T12:05:46.560413Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:06.773094Z", - "iopub.status.busy": "2024-07-01T15:07:06.772569Z", - "iopub.status.idle": "2024-07-01T15:07:06.779189Z", - "shell.execute_reply": "2024-07-01T15:07:06.778660Z" + "iopub.execute_input": "2024-07-02T12:05:46.563695Z", + "iopub.status.busy": "2024-07-02T12:05:46.563390Z", + "iopub.status.idle": "2024-07-02T12:05:46.570695Z", + "shell.execute_reply": "2024-07-02T12:05:46.570276Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:06.781060Z", - "iopub.status.busy": "2024-07-01T15:07:06.780797Z", - "iopub.status.idle": "2024-07-01T15:07:06.793132Z", - "shell.execute_reply": "2024-07-01T15:07:06.792613Z" + "iopub.execute_input": "2024-07-02T12:05:46.572666Z", + "iopub.status.busy": "2024-07-02T12:05:46.572452Z", + "iopub.status.idle": "2024-07-02T12:05:46.585257Z", + "shell.execute_reply": "2024-07-02T12:05:46.584820Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:06.795311Z", - "iopub.status.busy": "2024-07-01T15:07:06.794896Z", - "iopub.status.idle": "2024-07-01T15:07:06.801219Z", - "shell.execute_reply": "2024-07-01T15:07:06.800801Z" + "iopub.execute_input": "2024-07-02T12:05:46.587355Z", + "iopub.status.busy": "2024-07-02T12:05:46.586953Z", + "iopub.status.idle": "2024-07-02T12:05:46.593328Z", + "shell.execute_reply": "2024-07-02T12:05:46.592850Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:06.803175Z", - "iopub.status.busy": "2024-07-01T15:07:06.802994Z", - "iopub.status.idle": "2024-07-01T15:07:06.805670Z", - "shell.execute_reply": "2024-07-01T15:07:06.805234Z" + "iopub.execute_input": "2024-07-02T12:05:46.595350Z", + "iopub.status.busy": "2024-07-02T12:05:46.595021Z", + "iopub.status.idle": "2024-07-02T12:05:46.597564Z", + "shell.execute_reply": "2024-07-02T12:05:46.597149Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:06.807492Z", - "iopub.status.busy": "2024-07-01T15:07:06.807328Z", - "iopub.status.idle": "2024-07-01T15:07:06.810895Z", - "shell.execute_reply": "2024-07-01T15:07:06.810453Z" + "iopub.execute_input": "2024-07-02T12:05:46.599508Z", + "iopub.status.busy": "2024-07-02T12:05:46.599184Z", + "iopub.status.idle": "2024-07-02T12:05:46.602546Z", + "shell.execute_reply": "2024-07-02T12:05:46.602058Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:06.812899Z", - "iopub.status.busy": "2024-07-01T15:07:06.812510Z", - "iopub.status.idle": "2024-07-01T15:07:06.815130Z", - "shell.execute_reply": "2024-07-01T15:07:06.814702Z" + "iopub.execute_input": "2024-07-02T12:05:46.604583Z", + "iopub.status.busy": "2024-07-02T12:05:46.604261Z", + "iopub.status.idle": "2024-07-02T12:05:46.606854Z", + "shell.execute_reply": "2024-07-02T12:05:46.606416Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:06.817057Z", - "iopub.status.busy": "2024-07-01T15:07:06.816734Z", - "iopub.status.idle": "2024-07-01T15:07:06.820893Z", - "shell.execute_reply": "2024-07-01T15:07:06.820448Z" + "iopub.execute_input": "2024-07-02T12:05:46.608809Z", + "iopub.status.busy": "2024-07-02T12:05:46.608533Z", + "iopub.status.idle": "2024-07-02T12:05:46.612540Z", + "shell.execute_reply": "2024-07-02T12:05:46.612106Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:06.822875Z", - "iopub.status.busy": "2024-07-01T15:07:06.822704Z", - "iopub.status.idle": "2024-07-01T15:07:06.851357Z", - "shell.execute_reply": "2024-07-01T15:07:06.850916Z" + "iopub.execute_input": "2024-07-02T12:05:46.614617Z", + "iopub.status.busy": "2024-07-02T12:05:46.614295Z", + "iopub.status.idle": "2024-07-02T12:05:46.642333Z", + "shell.execute_reply": "2024-07-02T12:05:46.641923Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:06.853186Z", - "iopub.status.busy": "2024-07-01T15:07:06.853017Z", - "iopub.status.idle": "2024-07-01T15:07:06.857526Z", - "shell.execute_reply": "2024-07-01T15:07:06.857095Z" + "iopub.execute_input": "2024-07-02T12:05:46.644398Z", + "iopub.status.busy": "2024-07-02T12:05:46.644076Z", + "iopub.status.idle": "2024-07-02T12:05:46.648349Z", + "shell.execute_reply": "2024-07-02T12:05:46.647909Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index f9fccade5..02d580b54 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:09.805934Z", - "iopub.status.busy": "2024-07-01T15:07:09.805760Z", - "iopub.status.idle": "2024-07-01T15:07:10.951874Z", - "shell.execute_reply": "2024-07-01T15:07:10.951332Z" + "iopub.execute_input": "2024-07-02T12:05:49.390201Z", + "iopub.status.busy": "2024-07-02T12:05:49.390029Z", + "iopub.status.idle": "2024-07-02T12:05:50.506272Z", + "shell.execute_reply": "2024-07-02T12:05:50.505689Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7a801c5ee1e11be3732a7ea01725de8aca8d147d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@46226527e9d4c8f7ccdf91ff5dac4d6ee27e022b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:10.954229Z", - "iopub.status.busy": "2024-07-01T15:07:10.953974Z", - "iopub.status.idle": "2024-07-01T15:07:11.145898Z", - "shell.execute_reply": "2024-07-01T15:07:11.145328Z" + "iopub.execute_input": "2024-07-02T12:05:50.508865Z", + "iopub.status.busy": "2024-07-02T12:05:50.508468Z", + "iopub.status.idle": "2024-07-02T12:05:50.696756Z", + "shell.execute_reply": "2024-07-02T12:05:50.696292Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:11.148952Z", - "iopub.status.busy": "2024-07-01T15:07:11.148446Z", - "iopub.status.idle": "2024-07-01T15:07:11.162195Z", - "shell.execute_reply": "2024-07-01T15:07:11.161701Z" + "iopub.execute_input": "2024-07-02T12:05:50.698941Z", + "iopub.status.busy": "2024-07-02T12:05:50.698699Z", + "iopub.status.idle": "2024-07-02T12:05:50.711704Z", + "shell.execute_reply": "2024-07-02T12:05:50.711226Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:11.164347Z", - "iopub.status.busy": "2024-07-01T15:07:11.163932Z", - "iopub.status.idle": "2024-07-01T15:07:13.785011Z", - "shell.execute_reply": "2024-07-01T15:07:13.784429Z" + "iopub.execute_input": "2024-07-02T12:05:50.713503Z", + "iopub.status.busy": "2024-07-02T12:05:50.713332Z", + "iopub.status.idle": "2024-07-02T12:05:53.318405Z", + "shell.execute_reply": "2024-07-02T12:05:53.317873Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:13.787263Z", - "iopub.status.busy": "2024-07-01T15:07:13.787077Z", - "iopub.status.idle": "2024-07-01T15:07:15.129078Z", - "shell.execute_reply": "2024-07-01T15:07:15.128523Z" + "iopub.execute_input": "2024-07-02T12:05:53.320633Z", + "iopub.status.busy": "2024-07-02T12:05:53.320318Z", + "iopub.status.idle": "2024-07-02T12:05:54.676476Z", + "shell.execute_reply": "2024-07-02T12:05:54.675931Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:15.131446Z", - "iopub.status.busy": "2024-07-01T15:07:15.131256Z", - "iopub.status.idle": "2024-07-01T15:07:15.135063Z", - "shell.execute_reply": "2024-07-01T15:07:15.134547Z" + "iopub.execute_input": "2024-07-02T12:05:54.678848Z", + "iopub.status.busy": "2024-07-02T12:05:54.678408Z", + "iopub.status.idle": "2024-07-02T12:05:54.682336Z", + "shell.execute_reply": "2024-07-02T12:05:54.681800Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:15.137004Z", - "iopub.status.busy": "2024-07-01T15:07:15.136825Z", - "iopub.status.idle": "2024-07-01T15:07:17.134343Z", - "shell.execute_reply": "2024-07-01T15:07:17.133735Z" + "iopub.execute_input": "2024-07-02T12:05:54.684325Z", + "iopub.status.busy": "2024-07-02T12:05:54.683937Z", + "iopub.status.idle": "2024-07-02T12:05:56.558099Z", + "shell.execute_reply": "2024-07-02T12:05:56.557479Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:17.136852Z", - "iopub.status.busy": "2024-07-01T15:07:17.136398Z", - "iopub.status.idle": "2024-07-01T15:07:17.144283Z", - "shell.execute_reply": "2024-07-01T15:07:17.143851Z" + "iopub.execute_input": "2024-07-02T12:05:56.560538Z", + "iopub.status.busy": "2024-07-02T12:05:56.560208Z", + "iopub.status.idle": "2024-07-02T12:05:56.567803Z", + "shell.execute_reply": "2024-07-02T12:05:56.567265Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:17.146377Z", - "iopub.status.busy": "2024-07-01T15:07:17.146026Z", - "iopub.status.idle": "2024-07-01T15:07:19.687541Z", - "shell.execute_reply": "2024-07-01T15:07:19.686980Z" + "iopub.execute_input": "2024-07-02T12:05:56.569739Z", + "iopub.status.busy": "2024-07-02T12:05:56.569446Z", + "iopub.status.idle": "2024-07-02T12:05:59.160999Z", + "shell.execute_reply": "2024-07-02T12:05:59.160450Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:19.689886Z", - "iopub.status.busy": "2024-07-01T15:07:19.689435Z", - "iopub.status.idle": "2024-07-01T15:07:19.692913Z", - "shell.execute_reply": "2024-07-01T15:07:19.692502Z" + "iopub.execute_input": "2024-07-02T12:05:59.163107Z", + "iopub.status.busy": "2024-07-02T12:05:59.162773Z", + "iopub.status.idle": "2024-07-02T12:05:59.166191Z", + "shell.execute_reply": "2024-07-02T12:05:59.165684Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:19.694737Z", - "iopub.status.busy": "2024-07-01T15:07:19.694568Z", - "iopub.status.idle": "2024-07-01T15:07:19.698060Z", - "shell.execute_reply": "2024-07-01T15:07:19.697520Z" + "iopub.execute_input": "2024-07-02T12:05:59.168252Z", + "iopub.status.busy": "2024-07-02T12:05:59.167849Z", + "iopub.status.idle": "2024-07-02T12:05:59.171322Z", + "shell.execute_reply": "2024-07-02T12:05:59.170794Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:19.700087Z", - "iopub.status.busy": "2024-07-01T15:07:19.699691Z", - "iopub.status.idle": "2024-07-01T15:07:19.702785Z", - "shell.execute_reply": "2024-07-01T15:07:19.702302Z" + "iopub.execute_input": "2024-07-02T12:05:59.173235Z", + "iopub.status.busy": "2024-07-02T12:05:59.172937Z", + "iopub.status.idle": "2024-07-02T12:05:59.176035Z", + "shell.execute_reply": "2024-07-02T12:05:59.175500Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index 013f8cdd9..7ce8a7f2b 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:22.044165Z", - "iopub.status.busy": "2024-07-01T15:07:22.043990Z", - "iopub.status.idle": "2024-07-01T15:07:23.190619Z", - "shell.execute_reply": "2024-07-01T15:07:23.190110Z" + "iopub.execute_input": "2024-07-02T12:06:01.378322Z", + "iopub.status.busy": "2024-07-02T12:06:01.377923Z", + "iopub.status.idle": "2024-07-02T12:06:02.503419Z", + "shell.execute_reply": "2024-07-02T12:06:02.502819Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7a801c5ee1e11be3732a7ea01725de8aca8d147d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@46226527e9d4c8f7ccdf91ff5dac4d6ee27e022b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:23.192992Z", - "iopub.status.busy": "2024-07-01T15:07:23.192742Z", - "iopub.status.idle": "2024-07-01T15:07:24.642885Z", - "shell.execute_reply": "2024-07-01T15:07:24.642213Z" + "iopub.execute_input": "2024-07-02T12:06:02.505878Z", + "iopub.status.busy": "2024-07-02T12:06:02.505606Z", + "iopub.status.idle": "2024-07-02T12:06:03.484637Z", + "shell.execute_reply": "2024-07-02T12:06:03.483911Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:24.645453Z", - "iopub.status.busy": "2024-07-01T15:07:24.645208Z", - "iopub.status.idle": "2024-07-01T15:07:24.648320Z", - "shell.execute_reply": "2024-07-01T15:07:24.647888Z" + "iopub.execute_input": "2024-07-02T12:06:03.487478Z", + "iopub.status.busy": "2024-07-02T12:06:03.486983Z", + "iopub.status.idle": "2024-07-02T12:06:03.490372Z", + "shell.execute_reply": "2024-07-02T12:06:03.489937Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:24.650220Z", - "iopub.status.busy": "2024-07-01T15:07:24.650036Z", - "iopub.status.idle": "2024-07-01T15:07:24.656028Z", - "shell.execute_reply": "2024-07-01T15:07:24.655606Z" + "iopub.execute_input": "2024-07-02T12:06:03.492668Z", + "iopub.status.busy": "2024-07-02T12:06:03.492302Z", + "iopub.status.idle": "2024-07-02T12:06:03.499701Z", + "shell.execute_reply": "2024-07-02T12:06:03.499223Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:24.657894Z", - "iopub.status.busy": "2024-07-01T15:07:24.657721Z", - "iopub.status.idle": "2024-07-01T15:07:25.141231Z", - "shell.execute_reply": "2024-07-01T15:07:25.140651Z" + "iopub.execute_input": "2024-07-02T12:06:03.501657Z", + "iopub.status.busy": "2024-07-02T12:06:03.501478Z", + "iopub.status.idle": "2024-07-02T12:06:03.984496Z", + "shell.execute_reply": "2024-07-02T12:06:03.983911Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:25.144290Z", - "iopub.status.busy": "2024-07-01T15:07:25.143822Z", - "iopub.status.idle": "2024-07-01T15:07:25.149165Z", - "shell.execute_reply": "2024-07-01T15:07:25.148739Z" + "iopub.execute_input": "2024-07-02T12:06:03.987155Z", + "iopub.status.busy": "2024-07-02T12:06:03.986711Z", + "iopub.status.idle": "2024-07-02T12:06:03.992050Z", + "shell.execute_reply": "2024-07-02T12:06:03.991587Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:25.151192Z", - "iopub.status.busy": "2024-07-01T15:07:25.150870Z", - "iopub.status.idle": "2024-07-01T15:07:25.154548Z", - "shell.execute_reply": "2024-07-01T15:07:25.154108Z" + "iopub.execute_input": "2024-07-02T12:06:03.993958Z", + "iopub.status.busy": "2024-07-02T12:06:03.993639Z", + "iopub.status.idle": "2024-07-02T12:06:03.997330Z", + "shell.execute_reply": "2024-07-02T12:06:03.996906Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:25.156514Z", - "iopub.status.busy": "2024-07-01T15:07:25.156335Z", - "iopub.status.idle": "2024-07-01T15:07:26.038062Z", - "shell.execute_reply": "2024-07-01T15:07:26.037425Z" + "iopub.execute_input": "2024-07-02T12:06:03.999294Z", + "iopub.status.busy": "2024-07-02T12:06:03.998989Z", + "iopub.status.idle": "2024-07-02T12:06:04.886721Z", + "shell.execute_reply": "2024-07-02T12:06:04.886183Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:26.040299Z", - "iopub.status.busy": "2024-07-01T15:07:26.040059Z", - "iopub.status.idle": "2024-07-01T15:07:26.281733Z", - "shell.execute_reply": "2024-07-01T15:07:26.281238Z" + "iopub.execute_input": "2024-07-02T12:06:04.889094Z", + "iopub.status.busy": "2024-07-02T12:06:04.888730Z", + "iopub.status.idle": "2024-07-02T12:06:05.104977Z", + "shell.execute_reply": "2024-07-02T12:06:05.104560Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:26.284005Z", - "iopub.status.busy": "2024-07-01T15:07:26.283674Z", - "iopub.status.idle": "2024-07-01T15:07:26.287739Z", - "shell.execute_reply": "2024-07-01T15:07:26.287303Z" + "iopub.execute_input": "2024-07-02T12:06:05.107009Z", + "iopub.status.busy": "2024-07-02T12:06:05.106744Z", + "iopub.status.idle": "2024-07-02T12:06:05.111011Z", + "shell.execute_reply": "2024-07-02T12:06:05.110475Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:26.289717Z", - "iopub.status.busy": "2024-07-01T15:07:26.289415Z", - "iopub.status.idle": "2024-07-01T15:07:26.747330Z", - "shell.execute_reply": "2024-07-01T15:07:26.746844Z" + "iopub.execute_input": "2024-07-02T12:06:05.112841Z", + "iopub.status.busy": "2024-07-02T12:06:05.112667Z", + "iopub.status.idle": "2024-07-02T12:06:05.549544Z", + "shell.execute_reply": "2024-07-02T12:06:05.548895Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:26.749504Z", - "iopub.status.busy": "2024-07-01T15:07:26.749157Z", - "iopub.status.idle": "2024-07-01T15:07:27.049969Z", - "shell.execute_reply": "2024-07-01T15:07:27.049390Z" + "iopub.execute_input": "2024-07-02T12:06:05.552420Z", + "iopub.status.busy": "2024-07-02T12:06:05.552234Z", + "iopub.status.idle": "2024-07-02T12:06:05.880895Z", + "shell.execute_reply": "2024-07-02T12:06:05.880300Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:27.052016Z", - "iopub.status.busy": "2024-07-01T15:07:27.051834Z", - "iopub.status.idle": "2024-07-01T15:07:27.386953Z", - "shell.execute_reply": "2024-07-01T15:07:27.386354Z" + "iopub.execute_input": "2024-07-02T12:06:05.883106Z", + "iopub.status.busy": "2024-07-02T12:06:05.882705Z", + "iopub.status.idle": "2024-07-02T12:06:06.240971Z", + "shell.execute_reply": "2024-07-02T12:06:06.240404Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:27.390094Z", - "iopub.status.busy": "2024-07-01T15:07:27.389720Z", - "iopub.status.idle": "2024-07-01T15:07:27.826810Z", - "shell.execute_reply": "2024-07-01T15:07:27.826201Z" + "iopub.execute_input": "2024-07-02T12:06:06.243379Z", + "iopub.status.busy": "2024-07-02T12:06:06.243189Z", + "iopub.status.idle": "2024-07-02T12:06:06.680772Z", + "shell.execute_reply": "2024-07-02T12:06:06.680290Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:27.830888Z", - "iopub.status.busy": "2024-07-01T15:07:27.830547Z", - "iopub.status.idle": "2024-07-01T15:07:28.275927Z", - "shell.execute_reply": "2024-07-01T15:07:28.275306Z" + "iopub.execute_input": "2024-07-02T12:06:06.682984Z", + "iopub.status.busy": "2024-07-02T12:06:06.682675Z", + "iopub.status.idle": "2024-07-02T12:06:07.129389Z", + "shell.execute_reply": "2024-07-02T12:06:07.128744Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:28.278580Z", - "iopub.status.busy": "2024-07-01T15:07:28.278386Z", - "iopub.status.idle": "2024-07-01T15:07:28.478171Z", - "shell.execute_reply": "2024-07-01T15:07:28.477537Z" + "iopub.execute_input": "2024-07-02T12:06:07.132269Z", + "iopub.status.busy": "2024-07-02T12:06:07.132092Z", + "iopub.status.idle": "2024-07-02T12:06:07.345651Z", + "shell.execute_reply": "2024-07-02T12:06:07.345066Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:28.481029Z", - "iopub.status.busy": "2024-07-01T15:07:28.480514Z", - "iopub.status.idle": "2024-07-01T15:07:28.679630Z", - "shell.execute_reply": "2024-07-01T15:07:28.679032Z" + "iopub.execute_input": "2024-07-02T12:06:07.347943Z", + "iopub.status.busy": "2024-07-02T12:06:07.347569Z", + "iopub.status.idle": "2024-07-02T12:06:07.545897Z", + "shell.execute_reply": "2024-07-02T12:06:07.545303Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:28.681815Z", - "iopub.status.busy": "2024-07-01T15:07:28.681633Z", - "iopub.status.idle": "2024-07-01T15:07:28.684760Z", - "shell.execute_reply": "2024-07-01T15:07:28.684215Z" + "iopub.execute_input": "2024-07-02T12:06:07.548054Z", + "iopub.status.busy": "2024-07-02T12:06:07.547721Z", + "iopub.status.idle": "2024-07-02T12:06:07.550610Z", + "shell.execute_reply": "2024-07-02T12:06:07.550172Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:28.686736Z", - "iopub.status.busy": "2024-07-01T15:07:28.686404Z", - "iopub.status.idle": "2024-07-01T15:07:29.599883Z", - "shell.execute_reply": "2024-07-01T15:07:29.599378Z" + "iopub.execute_input": "2024-07-02T12:06:07.552606Z", + "iopub.status.busy": "2024-07-02T12:06:07.552209Z", + "iopub.status.idle": "2024-07-02T12:06:08.545283Z", + "shell.execute_reply": "2024-07-02T12:06:08.544691Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:29.602491Z", - "iopub.status.busy": "2024-07-01T15:07:29.602156Z", - "iopub.status.idle": "2024-07-01T15:07:29.724845Z", - "shell.execute_reply": "2024-07-01T15:07:29.724400Z" + "iopub.execute_input": "2024-07-02T12:06:08.550100Z", + "iopub.status.busy": "2024-07-02T12:06:08.549675Z", + "iopub.status.idle": "2024-07-02T12:06:08.692703Z", + "shell.execute_reply": "2024-07-02T12:06:08.692222Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:29.727049Z", - "iopub.status.busy": "2024-07-01T15:07:29.726723Z", - "iopub.status.idle": "2024-07-01T15:07:29.857120Z", - "shell.execute_reply": "2024-07-01T15:07:29.856610Z" + "iopub.execute_input": "2024-07-02T12:06:08.694865Z", + "iopub.status.busy": "2024-07-02T12:06:08.694525Z", + "iopub.status.idle": "2024-07-02T12:06:08.829794Z", + "shell.execute_reply": "2024-07-02T12:06:08.829310Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:29.859645Z", - "iopub.status.busy": "2024-07-01T15:07:29.859295Z", - "iopub.status.idle": "2024-07-01T15:07:30.599850Z", - "shell.execute_reply": "2024-07-01T15:07:30.599307Z" + "iopub.execute_input": "2024-07-02T12:06:08.832030Z", + "iopub.status.busy": "2024-07-02T12:06:08.831714Z", + "iopub.status.idle": "2024-07-02T12:06:09.569943Z", + "shell.execute_reply": "2024-07-02T12:06:09.569367Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:30.602022Z", - "iopub.status.busy": "2024-07-01T15:07:30.601697Z", - "iopub.status.idle": "2024-07-01T15:07:30.605345Z", - "shell.execute_reply": "2024-07-01T15:07:30.604899Z" + "iopub.execute_input": "2024-07-02T12:06:09.572191Z", + "iopub.status.busy": "2024-07-02T12:06:09.571856Z", + "iopub.status.idle": "2024-07-02T12:06:09.575442Z", + "shell.execute_reply": "2024-07-02T12:06:09.575034Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index de1ca9206..12c6da264 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:32.630513Z", - "iopub.status.busy": "2024-07-01T15:07:32.630022Z", - "iopub.status.idle": "2024-07-01T15:07:35.339624Z", - "shell.execute_reply": "2024-07-01T15:07:35.338990Z" + "iopub.execute_input": "2024-07-02T12:06:11.678697Z", + "iopub.status.busy": "2024-07-02T12:06:11.678521Z", + "iopub.status.idle": "2024-07-02T12:06:14.408240Z", + "shell.execute_reply": "2024-07-02T12:06:14.407674Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7a801c5ee1e11be3732a7ea01725de8aca8d147d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@46226527e9d4c8f7ccdf91ff5dac4d6ee27e022b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:35.342314Z", - "iopub.status.busy": "2024-07-01T15:07:35.341942Z", - "iopub.status.idle": "2024-07-01T15:07:35.677074Z", - "shell.execute_reply": "2024-07-01T15:07:35.676543Z" + "iopub.execute_input": "2024-07-02T12:06:14.410934Z", + "iopub.status.busy": "2024-07-02T12:06:14.410443Z", + "iopub.status.idle": "2024-07-02T12:06:14.735244Z", + "shell.execute_reply": "2024-07-02T12:06:14.734679Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:35.679709Z", - "iopub.status.busy": "2024-07-01T15:07:35.679377Z", - "iopub.status.idle": "2024-07-01T15:07:35.683566Z", - "shell.execute_reply": "2024-07-01T15:07:35.683132Z" + "iopub.execute_input": "2024-07-02T12:06:14.737835Z", + "iopub.status.busy": "2024-07-02T12:06:14.737360Z", + "iopub.status.idle": "2024-07-02T12:06:14.741543Z", + "shell.execute_reply": "2024-07-02T12:06:14.741013Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:35.685686Z", - "iopub.status.busy": "2024-07-01T15:07:35.685365Z", - "iopub.status.idle": "2024-07-01T15:07:42.517988Z", - "shell.execute_reply": "2024-07-01T15:07:42.517428Z" + "iopub.execute_input": "2024-07-02T12:06:14.743746Z", + "iopub.status.busy": "2024-07-02T12:06:14.743385Z", + "iopub.status.idle": "2024-07-02T12:06:25.921071Z", + "shell.execute_reply": "2024-07-02T12:06:25.920486Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 786432/170498071 [00:00<00:21, 7820176.68it/s]" + " 0%| | 458752/170498071 [00:00<00:37, 4550205.38it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 4980736/170498071 [00:00<00:05, 27792797.45it/s]" + " 2%|▏ | 2686976/170498071 [00:00<00:11, 14867624.00it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▋ | 10944512/170498071 [00:00<00:03, 42298222.53it/s]" + " 3%|▎ | 4915200/170498071 [00:00<00:09, 18176569.25it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 16449536/170498071 [00:00<00:03, 47151386.97it/s]" + " 4%|▍ | 7110656/170498071 [00:00<00:08, 19525356.25it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 21168128/170498071 [00:00<00:03, 41939697.62it/s]" + " 5%|▌ | 9273344/170498071 [00:00<00:08, 20138060.31it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 25460736/170498071 [00:00<00:04, 36250418.01it/s]" + " 7%|▋ | 11468800/170498071 [00:00<00:07, 20583296.62it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 29261824/170498071 [00:00<00:04, 31518178.43it/s]" + " 8%|▊ | 13565952/170498071 [00:00<00:07, 20618122.34it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 32604160/170498071 [00:00<00:04, 29639430.93it/s]" + " 9%|▉ | 15695872/170498071 [00:00<00:07, 20684064.34it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 35684352/170498071 [00:01<00:04, 28240309.80it/s]" + " 10%|█ | 17793024/170498071 [00:00<00:07, 20210099.70it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 38600704/170498071 [00:01<00:04, 27686377.59it/s]" + " 12%|█▏ | 19857408/170498071 [00:01<00:07, 20157298.26it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 41451520/170498071 [00:01<00:04, 27880418.29it/s]" + " 13%|█▎ | 21889024/170498071 [00:01<00:07, 19580366.36it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 44302336/170498071 [00:01<00:04, 27339381.04it/s]" + " 14%|█▍ | 23887872/170498071 [00:01<00:07, 19689752.59it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 47153152/170498071 [00:01<00:04, 27588406.47it/s]" + " 15%|█▌ | 26148864/170498071 [00:01<00:07, 20522936.05it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 49938432/170498071 [00:01<00:04, 27519027.46it/s]" + " 17%|█▋ | 28901376/170498071 [00:01<00:06, 22488420.49it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 52723712/170498071 [00:01<00:04, 26308629.52it/s]" + " 18%|█▊ | 31260672/170498071 [00:01<00:06, 22666713.87it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 55377920/170498071 [00:01<00:04, 25864377.41it/s]" + " 20%|█▉ | 33783808/170498071 [00:01<00:05, 23420171.66it/s]" ] }, { @@ -380,7 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 58884096/170498071 [00:01<00:03, 28360977.09it/s]" + " 21%|██ | 36143104/170498071 [00:01<00:05, 23367837.44it/s]" ] }, { @@ -388,7 +388,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 62717952/170498071 [00:02<00:03, 31182568.80it/s]" + " 23%|██▎ | 38567936/170498071 [00:01<00:05, 23628433.32it/s]" ] }, { @@ -396,7 +396,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 66846720/170498071 [00:02<00:03, 34093308.02it/s]" + " 24%|██▍ | 40992768/170498071 [00:01<00:05, 23729287.62it/s]" ] }, { @@ -404,7 +404,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 71303168/170498071 [00:02<00:02, 37046963.01it/s]" + " 25%|██▌ | 43384832/170498071 [00:02<00:05, 23481823.27it/s]" ] }, { @@ -412,7 +412,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 76513280/170498071 [00:02<00:02, 41418183.98it/s]" + " 27%|██▋ | 45809664/170498071 [00:02<00:05, 23565140.27it/s]" ] }, { @@ -420,7 +420,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 80871424/170498071 [00:02<00:02, 42002402.02it/s]" + " 28%|██▊ | 48168960/170498071 [00:02<00:05, 22124551.71it/s]" ] }, { @@ -428,7 +428,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 85721088/170498071 [00:02<00:01, 43883828.77it/s]" + " 30%|██▉ | 50429952/170498071 [00:02<00:05, 21597165.25it/s]" ] }, { @@ -436,7 +436,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 90144768/170498071 [00:02<00:01, 43748354.63it/s]" + " 31%|███ | 52625408/170498071 [00:02<00:05, 21122055.47it/s]" ] }, { @@ -444,7 +444,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 94633984/170498071 [00:02<00:01, 43921848.70it/s]" + " 32%|███▏ | 54755328/170498071 [00:02<00:05, 20674704.10it/s]" ] }, { @@ -452,7 +452,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 99057664/170498071 [00:02<00:01, 43385313.39it/s]" + " 33%|███▎ | 56852480/170498071 [00:02<00:05, 20193072.76it/s]" ] }, { @@ -460,7 +460,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 104136704/170498071 [00:02<00:01, 45560088.81it/s]" + " 35%|███▍ | 59015168/170498071 [00:02<00:05, 20474965.70it/s]" ] }, { @@ -468,7 +468,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 108724224/170498071 [00:03<00:01, 43798020.18it/s]" + " 36%|███▌ | 61440000/170498071 [00:02<00:05, 21428625.80it/s]" ] }, { @@ -476,7 +476,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 113573888/170498071 [00:03<00:01, 45129830.46it/s]" + " 37%|███▋ | 63602688/170498071 [00:03<00:05, 20984454.80it/s]" ] }, { @@ -484,7 +484,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 118554624/170498071 [00:03<00:01, 46326838.71it/s]" + " 39%|███▊ | 65732608/170498071 [00:03<00:05, 20040214.69it/s]" ] }, { @@ -492,7 +492,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 123207680/170498071 [00:03<00:01, 46221454.72it/s]" + " 40%|███▉ | 67764224/170498071 [00:03<00:05, 19617119.66it/s]" ] }, { @@ -500,7 +500,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 127860736/170498071 [00:03<00:00, 45331471.71it/s]" + " 41%|████ | 69763072/170498071 [00:03<00:05, 19368566.16it/s]" ] }, { @@ -508,7 +508,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 132775936/170498071 [00:03<00:00, 46431225.49it/s]" + " 42%|████▏ | 71729152/170498071 [00:03<00:05, 18942200.76it/s]" ] }, { @@ -516,7 +516,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 137756672/170498071 [00:03<00:00, 47136533.89it/s]" + " 43%|████▎ | 73760768/170498071 [00:03<00:05, 19136506.47it/s]" ] }, { @@ -524,7 +524,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 142966784/170498071 [00:03<00:00, 48566305.03it/s]" + " 44%|████▍ | 75694080/170498071 [00:03<00:05, 18546539.77it/s]" ] }, { @@ -532,7 +532,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 147849216/170498071 [00:03<00:00, 47837503.41it/s]" + " 46%|████▌ | 77856768/170498071 [00:03<00:04, 19310897.00it/s]" ] }, { @@ -540,7 +540,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 153649152/170498071 [00:03<00:00, 50699005.24it/s]" + " 47%|████▋ | 79855616/170498071 [00:03<00:04, 19370411.60it/s]" ] }, { @@ -548,7 +548,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 160006144/170498071 [00:04<00:00, 54457105.34it/s]" + " 48%|████▊ | 81821696/170498071 [00:03<00:04, 18841681.57it/s]" ] }, { @@ -556,7 +556,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 166297600/170498071 [00:04<00:00, 56798743.02it/s]" + " 49%|████▉ | 83722240/170498071 [00:04<00:04, 18578900.08it/s]" ] }, { @@ -564,7 +564,343 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:04<00:00, 39742139.91it/s]" + " 50%|█████ | 85590016/170498071 [00:04<00:04, 18310455.55it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 51%|█████▏ | 87425024/170498071 [00:04<00:04, 17994534.24it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 52%|█████▏ | 89227264/170498071 [00:04<00:04, 17969991.24it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 53%|█████▎ | 91029504/170498071 [00:04<00:04, 17885343.83it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 54%|█████▍ | 92864512/170498071 [00:04<00:04, 17966202.49it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 56%|█████▌ | 95223808/170498071 [00:04<00:03, 19459620.88it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 57%|█████▋ | 97583104/170498071 [00:04<00:03, 20637975.50it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 59%|█████▊ | 99909632/170498071 [00:04<00:03, 21306263.38it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 60%|█████▉ | 102072320/170498071 [00:05<00:03, 21151929.09it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 61%|██████▏ | 104464384/170498071 [00:05<00:03, 21792656.59it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 63%|██████▎ | 106659840/170498071 [00:05<00:02, 21386725.65it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 64%|██████▍ | 108920832/170498071 [00:05<00:02, 21710014.23it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 65%|██████▌ | 111116288/170498071 [00:05<00:02, 21241167.89it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 67%|██████▋ | 113541120/170498071 [00:05<00:02, 22049083.16it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 68%|██████▊ | 115769344/170498071 [00:05<00:02, 21067777.78it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 69%|██████▉ | 118030336/170498071 [00:05<00:02, 21474442.53it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 70%|███████ | 120193024/170498071 [00:05<00:02, 19823274.12it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 72%|███████▏ | 122224640/170498071 [00:06<00:02, 19471183.62it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 73%|███████▎ | 124190720/170498071 [00:06<00:02, 17873496.55it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 74%|███████▍ | 126025728/170498071 [00:06<00:02, 16817889.13it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 75%|███████▍ | 127762432/170498071 [00:06<00:02, 16186952.66it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 76%|███████▌ | 129400832/170498071 [00:06<00:02, 15789183.38it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 77%|███████▋ | 131006464/170498071 [00:06<00:02, 15482944.36it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 78%|███████▊ | 132579328/170498071 [00:06<00:02, 15098811.97it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 79%|███████▊ | 134119424/170498071 [00:06<00:02, 14977124.11it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 80%|███████▉ | 135626752/170498071 [00:06<00:02, 14929116.66it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 80%|████████ | 137134080/170498071 [00:07<00:02, 14648969.73it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 81%|████████▏ | 138608640/170498071 [00:07<00:02, 14671163.55it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 82%|████████▏ | 140083200/170498071 [00:07<00:02, 14686569.65it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 83%|████████▎ | 141885440/170498071 [00:07<00:01, 15554076.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 84%|████████▍ | 143589376/170498071 [00:07<00:01, 15854513.49it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 85%|████████▌ | 145391616/170498071 [00:07<00:01, 16350344.79it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 86%|████████▋ | 147128320/170498071 [00:07<00:01, 16559020.07it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 87%|████████▋ | 149061632/170498071 [00:07<00:01, 17232449.65it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 88%|████████▊ | 150863872/170498071 [00:07<00:01, 17447581.45it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 90%|████████▉ | 152633344/170498071 [00:07<00:01, 17476767.38it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 91%|█████████ | 155058176/170498071 [00:08<00:00, 19434356.44it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 93%|█████████▎| 157712384/170498071 [00:08<00:00, 21544683.73it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 94%|█████████▍| 160661504/170498071 [00:08<00:00, 23832060.44it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 96%|█████████▌| 163545088/170498071 [00:08<00:00, 25225731.12it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 166854656/170498071 [00:08<00:00, 27373989.44it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|█████████▉| 169672704/170498071 [00:08<00:00, 27582174.15it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:08<00:00, 19884004.38it/s]" ] }, { @@ -682,10 +1018,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:42.520241Z", - "iopub.status.busy": "2024-07-01T15:07:42.519920Z", - "iopub.status.idle": "2024-07-01T15:07:42.524659Z", - "shell.execute_reply": "2024-07-01T15:07:42.524205Z" + "iopub.execute_input": "2024-07-02T12:06:25.923304Z", + "iopub.status.busy": "2024-07-02T12:06:25.922962Z", + "iopub.status.idle": "2024-07-02T12:06:25.927532Z", + "shell.execute_reply": "2024-07-02T12:06:25.927116Z" }, "nbsphinx": "hidden" }, @@ -736,10 +1072,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:42.526805Z", - "iopub.status.busy": "2024-07-01T15:07:42.526366Z", - "iopub.status.idle": "2024-07-01T15:07:43.068980Z", - "shell.execute_reply": "2024-07-01T15:07:43.068376Z" + "iopub.execute_input": "2024-07-02T12:06:25.929617Z", + "iopub.status.busy": "2024-07-02T12:06:25.929294Z", + "iopub.status.idle": "2024-07-02T12:06:26.466020Z", + "shell.execute_reply": "2024-07-02T12:06:26.465500Z" } }, "outputs": [ @@ -772,10 +1108,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:43.071278Z", - "iopub.status.busy": "2024-07-01T15:07:43.070855Z", - "iopub.status.idle": "2024-07-01T15:07:43.585255Z", - "shell.execute_reply": "2024-07-01T15:07:43.584665Z" + "iopub.execute_input": "2024-07-02T12:06:26.468274Z", + "iopub.status.busy": "2024-07-02T12:06:26.467846Z", + "iopub.status.idle": "2024-07-02T12:06:26.973804Z", + "shell.execute_reply": "2024-07-02T12:06:26.973190Z" } }, "outputs": [ @@ -813,10 +1149,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:43.587754Z", - "iopub.status.busy": "2024-07-01T15:07:43.587325Z", - "iopub.status.idle": "2024-07-01T15:07:43.591527Z", - "shell.execute_reply": "2024-07-01T15:07:43.591015Z" + "iopub.execute_input": "2024-07-02T12:06:26.976024Z", + "iopub.status.busy": "2024-07-02T12:06:26.975702Z", + "iopub.status.idle": "2024-07-02T12:06:26.979191Z", + "shell.execute_reply": "2024-07-02T12:06:26.978654Z" } }, "outputs": [], @@ -839,17 +1175,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:43.593739Z", - "iopub.status.busy": "2024-07-01T15:07:43.593377Z", - "iopub.status.idle": "2024-07-01T15:07:56.035606Z", - "shell.execute_reply": "2024-07-01T15:07:56.035038Z" + "iopub.execute_input": "2024-07-02T12:06:26.981120Z", + "iopub.status.busy": "2024-07-02T12:06:26.980808Z", + "iopub.status.idle": "2024-07-02T12:06:39.219368Z", + "shell.execute_reply": "2024-07-02T12:06:39.218785Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6e0af51d1d7c41f6b28e94e107a2e2dd", + "model_id": "e62048d58b1a436fa16544b9ecbd1a17", "version_major": 2, "version_minor": 0 }, @@ -908,10 +1244,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:56.037942Z", - "iopub.status.busy": "2024-07-01T15:07:56.037579Z", - "iopub.status.idle": "2024-07-01T15:07:58.157290Z", - "shell.execute_reply": "2024-07-01T15:07:58.156719Z" + "iopub.execute_input": "2024-07-02T12:06:39.221701Z", + "iopub.status.busy": "2024-07-02T12:06:39.221327Z", + "iopub.status.idle": "2024-07-02T12:06:41.264255Z", + "shell.execute_reply": "2024-07-02T12:06:41.263645Z" } }, "outputs": [ @@ -955,10 +1291,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:58.160021Z", - "iopub.status.busy": "2024-07-01T15:07:58.159723Z", - "iopub.status.idle": "2024-07-01T15:07:58.413397Z", - "shell.execute_reply": "2024-07-01T15:07:58.412322Z" + "iopub.execute_input": "2024-07-02T12:06:41.266829Z", + "iopub.status.busy": "2024-07-02T12:06:41.266301Z", + "iopub.status.idle": "2024-07-02T12:06:41.492927Z", + "shell.execute_reply": "2024-07-02T12:06:41.492268Z" } }, "outputs": [ @@ -994,10 +1330,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:58.415968Z", - "iopub.status.busy": "2024-07-01T15:07:58.415746Z", - "iopub.status.idle": "2024-07-01T15:07:59.087448Z", - "shell.execute_reply": "2024-07-01T15:07:59.086838Z" + "iopub.execute_input": "2024-07-02T12:06:41.495155Z", + "iopub.status.busy": "2024-07-02T12:06:41.494971Z", + "iopub.status.idle": "2024-07-02T12:06:42.143408Z", + "shell.execute_reply": "2024-07-02T12:06:42.142827Z" } }, "outputs": [ @@ -1047,10 +1383,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:59.090441Z", - "iopub.status.busy": "2024-07-01T15:07:59.090110Z", - "iopub.status.idle": "2024-07-01T15:07:59.428255Z", - "shell.execute_reply": "2024-07-01T15:07:59.427685Z" + "iopub.execute_input": "2024-07-02T12:06:42.145875Z", + "iopub.status.busy": "2024-07-02T12:06:42.145693Z", + "iopub.status.idle": "2024-07-02T12:06:42.443716Z", + "shell.execute_reply": "2024-07-02T12:06:42.443121Z" } }, "outputs": [ @@ -1098,10 +1434,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:59.430501Z", - "iopub.status.busy": "2024-07-01T15:07:59.430156Z", - "iopub.status.idle": "2024-07-01T15:07:59.674251Z", - "shell.execute_reply": "2024-07-01T15:07:59.673618Z" + "iopub.execute_input": "2024-07-02T12:06:42.445959Z", + "iopub.status.busy": "2024-07-02T12:06:42.445765Z", + "iopub.status.idle": "2024-07-02T12:06:42.675040Z", + "shell.execute_reply": "2024-07-02T12:06:42.674459Z" } }, "outputs": [ @@ -1157,10 +1493,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:59.676994Z", - "iopub.status.busy": "2024-07-01T15:07:59.676767Z", - "iopub.status.idle": "2024-07-01T15:07:59.764794Z", - "shell.execute_reply": "2024-07-01T15:07:59.764299Z" + "iopub.execute_input": "2024-07-02T12:06:42.677732Z", + "iopub.status.busy": "2024-07-02T12:06:42.677210Z", + "iopub.status.idle": "2024-07-02T12:06:42.745827Z", + "shell.execute_reply": "2024-07-02T12:06:42.745362Z" } }, "outputs": [], @@ -1181,10 +1517,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:07:59.767244Z", - "iopub.status.busy": "2024-07-01T15:07:59.766860Z", - "iopub.status.idle": "2024-07-01T15:08:10.069096Z", - "shell.execute_reply": "2024-07-01T15:08:10.068139Z" + "iopub.execute_input": "2024-07-02T12:06:42.748346Z", + "iopub.status.busy": "2024-07-02T12:06:42.748025Z", + "iopub.status.idle": "2024-07-02T12:06:52.686113Z", + "shell.execute_reply": "2024-07-02T12:06:52.685493Z" } }, "outputs": [ @@ -1221,10 +1557,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:08:10.071585Z", - "iopub.status.busy": "2024-07-01T15:08:10.071346Z", - "iopub.status.idle": "2024-07-01T15:08:12.388556Z", - "shell.execute_reply": "2024-07-01T15:08:12.388050Z" + "iopub.execute_input": "2024-07-02T12:06:52.688740Z", + "iopub.status.busy": "2024-07-02T12:06:52.688263Z", + "iopub.status.idle": "2024-07-02T12:06:54.757637Z", + "shell.execute_reply": "2024-07-02T12:06:54.757095Z" } }, "outputs": [ @@ -1255,10 +1591,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:08:12.391205Z", - "iopub.status.busy": "2024-07-01T15:08:12.390795Z", - "iopub.status.idle": "2024-07-01T15:08:12.593036Z", - "shell.execute_reply": "2024-07-01T15:08:12.592540Z" + "iopub.execute_input": "2024-07-02T12:06:54.760248Z", + "iopub.status.busy": "2024-07-02T12:06:54.759634Z", + "iopub.status.idle": "2024-07-02T12:06:54.964477Z", + "shell.execute_reply": "2024-07-02T12:06:54.963957Z" } }, "outputs": [], @@ -1272,10 +1608,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:08:12.595509Z", - "iopub.status.busy": "2024-07-01T15:08:12.595162Z", - "iopub.status.idle": "2024-07-01T15:08:12.598275Z", - "shell.execute_reply": "2024-07-01T15:08:12.597815Z" + "iopub.execute_input": "2024-07-02T12:06:54.966866Z", + "iopub.status.busy": "2024-07-02T12:06:54.966507Z", + "iopub.status.idle": "2024-07-02T12:06:54.969693Z", + "shell.execute_reply": "2024-07-02T12:06:54.969165Z" } }, "outputs": [], @@ -1297,10 +1633,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:08:12.600173Z", - "iopub.status.busy": "2024-07-01T15:08:12.599856Z", - "iopub.status.idle": "2024-07-01T15:08:12.608170Z", - "shell.execute_reply": "2024-07-01T15:08:12.607771Z" + "iopub.execute_input": "2024-07-02T12:06:54.971890Z", + "iopub.status.busy": "2024-07-02T12:06:54.971573Z", + "iopub.status.idle": "2024-07-02T12:06:54.979664Z", + "shell.execute_reply": "2024-07-02T12:06:54.979125Z" }, "nbsphinx": "hidden" }, @@ -1345,7 +1681,60 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "2727be2db0d2497f9fb52dc8697095a2": { + "038d1dec855f4a5d8a895b8c5ca8a543": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "189964aceefe49698fa8fa689efdba0f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1360,55 +1749,74 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c995655b1f814ffb9d408cda2ffbc566", + "layout": "IPY_MODEL_7f36baa4eaa845949d5ad61b24217bd2", "placeholder": "​", - "style": "IPY_MODEL_f100e8e508354e3a998f09e41481fe4a", + "style": "IPY_MODEL_50adf2f382654575992aa00abedb3fda", "tabbable": null, "tooltip": null, - "value": " 102M/102M [00:00<00:00, 311MB/s]" + "value": " 102M/102M [00:00<00:00, 291MB/s]" } }, - "56a99359b74d41799a5e62b4bf03f499": { + "32782ba639b74ba19d535e6b9e43df2f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6e0af51d1d7c41f6b28e94e107a2e2dd": { + "50adf2f382654575992aa00abedb3fda": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "55c2a3ff8e46463392cbdc7feacce684": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bbb9fac4ce02410c9a7cf006ad612d8a", - "IPY_MODEL_beaa49c5ac66403896b3c555d2a06c91", - "IPY_MODEL_2727be2db0d2497f9fb52dc8697095a2" - ], - "layout": "IPY_MODEL_b4c1215d79fe4c049a90606906d2692c", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_038d1dec855f4a5d8a895b8c5ca8a543", + "placeholder": "​", + "style": "IPY_MODEL_32782ba639b74ba19d535e6b9e43df2f", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "model.safetensors: 100%" } }, - "847a911faef949b68edb66c688cd3c4b": { + "7f36baa4eaa845949d5ad61b24217bd2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1461,7 +1869,23 @@ "width": null } }, - "b4c1215d79fe4c049a90606906d2692c": { + "9c339ec47e3249839dd034d9f3c0f0bd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d0f48ceb51424194a566927347c5e11d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1514,30 +1938,7 @@ "width": null } }, - "bbb9fac4ce02410c9a7cf006ad612d8a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_847a911faef949b68edb66c688cd3c4b", - "placeholder": "​", - "style": "IPY_MODEL_e010df9fbdef472aa0c2e3f8a393bb55", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" - } - }, - "beaa49c5ac66403896b3c555d2a06c91": { + "e2efb59d0f4740bb8af23c2fd00116b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1553,70 +1954,41 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ce770c3a1d5d42a98a4d28d04bc1c7d7", + "layout": "IPY_MODEL_f2d6b576288e4f7fbed42581aafbf977", "max": 102469840.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_56a99359b74d41799a5e62b4bf03f499", + "style": "IPY_MODEL_9c339ec47e3249839dd034d9f3c0f0bd", "tabbable": null, "tooltip": null, "value": 102469840.0 } }, - "c995655b1f814ffb9d408cda2ffbc566": { - "model_module": "@jupyter-widgets/base", + "e62048d58b1a436fa16544b9ecbd1a17": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_55c2a3ff8e46463392cbdc7feacce684", + "IPY_MODEL_e2efb59d0f4740bb8af23c2fd00116b3", + "IPY_MODEL_189964aceefe49698fa8fa689efdba0f" + ], + "layout": "IPY_MODEL_d0f48ceb51424194a566927347c5e11d", + "tabbable": null, + "tooltip": null } }, - "ce770c3a1d5d42a98a4d28d04bc1c7d7": { + "f2d6b576288e4f7fbed42581aafbf977": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1668,42 +2040,6 @@ "visibility": null, "width": null } - }, - "e010df9fbdef472aa0c2e3f8a393bb55": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f100e8e508354e3a998f09e41481fe4a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index 46926446f..75e02e92c 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:08:16.815662Z", - "iopub.status.busy": "2024-07-01T15:08:16.815212Z", - "iopub.status.idle": "2024-07-01T15:08:18.061264Z", - "shell.execute_reply": "2024-07-01T15:08:18.060688Z" + "iopub.execute_input": "2024-07-02T12:06:59.101052Z", + "iopub.status.busy": "2024-07-02T12:06:59.100876Z", + "iopub.status.idle": "2024-07-02T12:07:00.258136Z", + "shell.execute_reply": "2024-07-02T12:07:00.257587Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7a801c5ee1e11be3732a7ea01725de8aca8d147d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@46226527e9d4c8f7ccdf91ff5dac4d6ee27e022b\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:08:18.064012Z", - "iopub.status.busy": "2024-07-01T15:08:18.063557Z", - "iopub.status.idle": "2024-07-01T15:08:18.081205Z", - "shell.execute_reply": "2024-07-01T15:08:18.080744Z" + "iopub.execute_input": "2024-07-02T12:07:00.260745Z", + "iopub.status.busy": "2024-07-02T12:07:00.260339Z", + "iopub.status.idle": "2024-07-02T12:07:00.277570Z", + "shell.execute_reply": "2024-07-02T12:07:00.277011Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:08:18.083492Z", - "iopub.status.busy": "2024-07-01T15:08:18.083103Z", - "iopub.status.idle": "2024-07-01T15:08:18.086376Z", - "shell.execute_reply": "2024-07-01T15:08:18.085828Z" + "iopub.execute_input": "2024-07-02T12:07:00.280398Z", + "iopub.status.busy": "2024-07-02T12:07:00.279700Z", + "iopub.status.idle": "2024-07-02T12:07:00.283630Z", + "shell.execute_reply": "2024-07-02T12:07:00.282919Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:08:18.088481Z", - "iopub.status.busy": "2024-07-01T15:08:18.088156Z", - "iopub.status.idle": "2024-07-01T15:08:18.174903Z", - "shell.execute_reply": "2024-07-01T15:08:18.174413Z" + "iopub.execute_input": "2024-07-02T12:07:00.286415Z", + "iopub.status.busy": "2024-07-02T12:07:00.285840Z", + "iopub.status.idle": "2024-07-02T12:07:00.351880Z", + "shell.execute_reply": "2024-07-02T12:07:00.350456Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:08:18.177216Z", - "iopub.status.busy": "2024-07-01T15:08:18.176851Z", - "iopub.status.idle": "2024-07-01T15:08:18.363421Z", - "shell.execute_reply": "2024-07-01T15:08:18.362759Z" + "iopub.execute_input": "2024-07-02T12:07:00.354191Z", + "iopub.status.busy": "2024-07-02T12:07:00.353874Z", + "iopub.status.idle": "2024-07-02T12:07:00.543757Z", + "shell.execute_reply": "2024-07-02T12:07:00.543276Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:08:18.366181Z", - "iopub.status.busy": "2024-07-01T15:08:18.365737Z", - "iopub.status.idle": "2024-07-01T15:08:18.613007Z", - "shell.execute_reply": "2024-07-01T15:08:18.612399Z" + "iopub.execute_input": "2024-07-02T12:07:00.545894Z", + "iopub.status.busy": "2024-07-02T12:07:00.545559Z", + "iopub.status.idle": "2024-07-02T12:07:00.784978Z", + "shell.execute_reply": "2024-07-02T12:07:00.784416Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:08:18.615413Z", - "iopub.status.busy": "2024-07-01T15:08:18.615032Z", - "iopub.status.idle": "2024-07-01T15:08:18.619703Z", - "shell.execute_reply": "2024-07-01T15:08:18.619083Z" + "iopub.execute_input": "2024-07-02T12:07:00.787127Z", + "iopub.status.busy": "2024-07-02T12:07:00.786946Z", + "iopub.status.idle": "2024-07-02T12:07:00.791220Z", + "shell.execute_reply": "2024-07-02T12:07:00.790792Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:08:18.621922Z", - "iopub.status.busy": "2024-07-01T15:08:18.621693Z", - "iopub.status.idle": "2024-07-01T15:08:18.629203Z", - "shell.execute_reply": "2024-07-01T15:08:18.628679Z" + "iopub.execute_input": "2024-07-02T12:07:00.793213Z", + "iopub.status.busy": "2024-07-02T12:07:00.792887Z", + "iopub.status.idle": "2024-07-02T12:07:00.798368Z", + "shell.execute_reply": "2024-07-02T12:07:00.797958Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:08:18.631920Z", - "iopub.status.busy": "2024-07-01T15:08:18.631513Z", - "iopub.status.idle": "2024-07-01T15:08:18.634527Z", - "shell.execute_reply": "2024-07-01T15:08:18.633964Z" + "iopub.execute_input": "2024-07-02T12:07:00.800409Z", + "iopub.status.busy": "2024-07-02T12:07:00.800087Z", + "iopub.status.idle": "2024-07-02T12:07:00.802550Z", + "shell.execute_reply": "2024-07-02T12:07:00.802117Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:08:18.636916Z", - "iopub.status.busy": "2024-07-01T15:08:18.636464Z", - "iopub.status.idle": "2024-07-01T15:08:27.681165Z", - "shell.execute_reply": "2024-07-01T15:08:27.680590Z" + "iopub.execute_input": "2024-07-02T12:07:00.804548Z", + "iopub.status.busy": "2024-07-02T12:07:00.804231Z", + "iopub.status.idle": "2024-07-02T12:07:09.170648Z", + "shell.execute_reply": "2024-07-02T12:07:09.170087Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:08:27.683915Z", - "iopub.status.busy": "2024-07-01T15:08:27.683447Z", - "iopub.status.idle": "2024-07-01T15:08:27.691061Z", - "shell.execute_reply": "2024-07-01T15:08:27.690544Z" + "iopub.execute_input": "2024-07-02T12:07:09.173635Z", + "iopub.status.busy": "2024-07-02T12:07:09.172986Z", + "iopub.status.idle": "2024-07-02T12:07:09.180628Z", + "shell.execute_reply": "2024-07-02T12:07:09.180165Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:08:27.693260Z", - "iopub.status.busy": "2024-07-01T15:08:27.692915Z", - "iopub.status.idle": "2024-07-01T15:08:27.696508Z", - "shell.execute_reply": "2024-07-01T15:08:27.696074Z" + "iopub.execute_input": "2024-07-02T12:07:09.182718Z", + "iopub.status.busy": "2024-07-02T12:07:09.182401Z", + "iopub.status.idle": "2024-07-02T12:07:09.186064Z", + "shell.execute_reply": "2024-07-02T12:07:09.185614Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:08:27.698591Z", - "iopub.status.busy": "2024-07-01T15:08:27.698265Z", - "iopub.status.idle": "2024-07-01T15:08:27.701394Z", - "shell.execute_reply": "2024-07-01T15:08:27.700844Z" + "iopub.execute_input": "2024-07-02T12:07:09.188065Z", + "iopub.status.busy": "2024-07-02T12:07:09.187765Z", + "iopub.status.idle": "2024-07-02T12:07:09.191124Z", + "shell.execute_reply": "2024-07-02T12:07:09.190682Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:08:27.703468Z", - "iopub.status.busy": "2024-07-01T15:08:27.703137Z", - "iopub.status.idle": "2024-07-01T15:08:27.706217Z", - "shell.execute_reply": "2024-07-01T15:08:27.705750Z" + "iopub.execute_input": "2024-07-02T12:07:09.193018Z", + "iopub.status.busy": "2024-07-02T12:07:09.192715Z", + "iopub.status.idle": "2024-07-02T12:07:09.195753Z", + "shell.execute_reply": "2024-07-02T12:07:09.195211Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:08:27.708232Z", - "iopub.status.busy": "2024-07-01T15:08:27.707899Z", - "iopub.status.idle": "2024-07-01T15:08:27.715999Z", - "shell.execute_reply": "2024-07-01T15:08:27.715525Z" + "iopub.execute_input": "2024-07-02T12:07:09.197818Z", + "iopub.status.busy": "2024-07-02T12:07:09.197511Z", + "iopub.status.idle": "2024-07-02T12:07:09.205619Z", + "shell.execute_reply": "2024-07-02T12:07:09.205180Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:08:27.718018Z", - "iopub.status.busy": "2024-07-01T15:08:27.717680Z", - "iopub.status.idle": "2024-07-01T15:08:27.720242Z", - "shell.execute_reply": "2024-07-01T15:08:27.719798Z" + "iopub.execute_input": "2024-07-02T12:07:09.207503Z", + "iopub.status.busy": "2024-07-02T12:07:09.207209Z", + "iopub.status.idle": "2024-07-02T12:07:09.209820Z", + "shell.execute_reply": "2024-07-02T12:07:09.209307Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:08:27.722277Z", - "iopub.status.busy": "2024-07-01T15:08:27.721939Z", - "iopub.status.idle": "2024-07-01T15:08:27.850295Z", - "shell.execute_reply": "2024-07-01T15:08:27.849694Z" + "iopub.execute_input": "2024-07-02T12:07:09.211933Z", + "iopub.status.busy": "2024-07-02T12:07:09.211620Z", + "iopub.status.idle": "2024-07-02T12:07:09.330539Z", + "shell.execute_reply": "2024-07-02T12:07:09.329946Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:08:27.852484Z", - "iopub.status.busy": "2024-07-01T15:08:27.852300Z", - "iopub.status.idle": "2024-07-01T15:08:27.955847Z", - "shell.execute_reply": "2024-07-01T15:08:27.955257Z" + "iopub.execute_input": "2024-07-02T12:07:09.332913Z", + "iopub.status.busy": "2024-07-02T12:07:09.332537Z", + "iopub.status.idle": "2024-07-02T12:07:09.439546Z", + "shell.execute_reply": "2024-07-02T12:07:09.438879Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:08:27.958252Z", - "iopub.status.busy": "2024-07-01T15:08:27.957880Z", - "iopub.status.idle": "2024-07-01T15:08:28.451750Z", - "shell.execute_reply": "2024-07-01T15:08:28.451203Z" + "iopub.execute_input": "2024-07-02T12:07:09.441953Z", + "iopub.status.busy": "2024-07-02T12:07:09.441731Z", + "iopub.status.idle": "2024-07-02T12:07:09.926340Z", + "shell.execute_reply": "2024-07-02T12:07:09.925811Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:08:28.454335Z", - "iopub.status.busy": "2024-07-01T15:08:28.454151Z", - "iopub.status.idle": "2024-07-01T15:08:28.527356Z", - "shell.execute_reply": "2024-07-01T15:08:28.526736Z" + "iopub.execute_input": "2024-07-02T12:07:09.928918Z", + "iopub.status.busy": "2024-07-02T12:07:09.928531Z", + "iopub.status.idle": "2024-07-02T12:07:10.007223Z", + "shell.execute_reply": "2024-07-02T12:07:10.006669Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:08:28.529697Z", - "iopub.status.busy": "2024-07-01T15:08:28.529341Z", - "iopub.status.idle": "2024-07-01T15:08:28.538428Z", - "shell.execute_reply": "2024-07-01T15:08:28.537958Z" + "iopub.execute_input": "2024-07-02T12:07:10.009492Z", + "iopub.status.busy": "2024-07-02T12:07:10.009118Z", + "iopub.status.idle": "2024-07-02T12:07:10.017415Z", + "shell.execute_reply": "2024-07-02T12:07:10.016968Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:08:28.540454Z", - "iopub.status.busy": "2024-07-01T15:08:28.540269Z", - "iopub.status.idle": "2024-07-01T15:08:28.542883Z", - "shell.execute_reply": "2024-07-01T15:08:28.542447Z" + "iopub.execute_input": "2024-07-02T12:07:10.019396Z", + "iopub.status.busy": "2024-07-02T12:07:10.019069Z", + "iopub.status.idle": "2024-07-02T12:07:10.021767Z", + "shell.execute_reply": "2024-07-02T12:07:10.021319Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:08:28.544877Z", - "iopub.status.busy": "2024-07-01T15:08:28.544701Z", - "iopub.status.idle": "2024-07-01T15:08:33.972038Z", - "shell.execute_reply": "2024-07-01T15:08:33.971430Z" + "iopub.execute_input": "2024-07-02T12:07:10.023754Z", + "iopub.status.busy": "2024-07-02T12:07:10.023447Z", + "iopub.status.idle": "2024-07-02T12:07:15.333825Z", + "shell.execute_reply": "2024-07-02T12:07:15.333229Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:08:33.974153Z", - "iopub.status.busy": "2024-07-01T15:08:33.973956Z", - "iopub.status.idle": "2024-07-01T15:08:33.982773Z", - "shell.execute_reply": "2024-07-01T15:08:33.982320Z" + "iopub.execute_input": "2024-07-02T12:07:15.336220Z", + "iopub.status.busy": "2024-07-02T12:07:15.335826Z", + "iopub.status.idle": "2024-07-02T12:07:15.344270Z", + "shell.execute_reply": "2024-07-02T12:07:15.343811Z" } }, "outputs": [ @@ -1376,10 +1376,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:08:33.984722Z", - "iopub.status.busy": "2024-07-01T15:08:33.984546Z", - "iopub.status.idle": "2024-07-01T15:08:34.049986Z", - "shell.execute_reply": "2024-07-01T15:08:34.049478Z" + "iopub.execute_input": "2024-07-02T12:07:15.346339Z", + "iopub.status.busy": "2024-07-02T12:07:15.346012Z", + "iopub.status.idle": "2024-07-02T12:07:15.414442Z", + "shell.execute_reply": "2024-07-02T12:07:15.413948Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 3b1c6435d..fdafb004b 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:08:37.513049Z", - "iopub.status.busy": "2024-07-01T15:08:37.512824Z", - "iopub.status.idle": "2024-07-01T15:08:39.014630Z", - "shell.execute_reply": "2024-07-01T15:08:39.013915Z" + "iopub.execute_input": "2024-07-02T12:07:18.593560Z", + "iopub.status.busy": "2024-07-02T12:07:18.593400Z", + "iopub.status.idle": "2024-07-02T12:07:20.263944Z", + "shell.execute_reply": "2024-07-02T12:07:20.263270Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:08:39.017371Z", - "iopub.status.busy": "2024-07-01T15:08:39.017127Z", - "iopub.status.idle": "2024-07-01T15:09:39.584116Z", - "shell.execute_reply": "2024-07-01T15:09:39.583459Z" + "iopub.execute_input": "2024-07-02T12:07:20.266581Z", + "iopub.status.busy": "2024-07-02T12:07:20.266205Z", + "iopub.status.idle": "2024-07-02T12:08:06.109041Z", + "shell.execute_reply": "2024-07-02T12:08:06.108401Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:09:39.586690Z", - "iopub.status.busy": "2024-07-01T15:09:39.586340Z", - "iopub.status.idle": "2024-07-01T15:09:40.720146Z", - "shell.execute_reply": "2024-07-01T15:09:40.719576Z" + "iopub.execute_input": "2024-07-02T12:08:06.111457Z", + "iopub.status.busy": "2024-07-02T12:08:06.111270Z", + "iopub.status.idle": "2024-07-02T12:08:07.194905Z", + "shell.execute_reply": "2024-07-02T12:08:07.194300Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7a801c5ee1e11be3732a7ea01725de8aca8d147d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@46226527e9d4c8f7ccdf91ff5dac4d6ee27e022b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:09:40.722658Z", - "iopub.status.busy": "2024-07-01T15:09:40.722386Z", - "iopub.status.idle": "2024-07-01T15:09:40.725657Z", - "shell.execute_reply": "2024-07-01T15:09:40.725218Z" + "iopub.execute_input": "2024-07-02T12:08:07.197493Z", + "iopub.status.busy": "2024-07-02T12:08:07.197237Z", + "iopub.status.idle": "2024-07-02T12:08:07.200309Z", + "shell.execute_reply": "2024-07-02T12:08:07.199874Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:09:40.727650Z", - "iopub.status.busy": "2024-07-01T15:09:40.727470Z", - "iopub.status.idle": "2024-07-01T15:09:40.731254Z", - "shell.execute_reply": "2024-07-01T15:09:40.730747Z" + "iopub.execute_input": "2024-07-02T12:08:07.202276Z", + "iopub.status.busy": "2024-07-02T12:08:07.202097Z", + "iopub.status.idle": "2024-07-02T12:08:07.205874Z", + "shell.execute_reply": "2024-07-02T12:08:07.205417Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:09:40.733340Z", - "iopub.status.busy": "2024-07-01T15:09:40.733016Z", - "iopub.status.idle": "2024-07-01T15:09:40.736638Z", - "shell.execute_reply": "2024-07-01T15:09:40.736162Z" + "iopub.execute_input": "2024-07-02T12:08:07.207818Z", + "iopub.status.busy": "2024-07-02T12:08:07.207520Z", + "iopub.status.idle": "2024-07-02T12:08:07.211075Z", + "shell.execute_reply": "2024-07-02T12:08:07.210551Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:09:40.738709Z", - "iopub.status.busy": "2024-07-01T15:09:40.738283Z", - "iopub.status.idle": "2024-07-01T15:09:40.741139Z", - "shell.execute_reply": "2024-07-01T15:09:40.740716Z" + "iopub.execute_input": "2024-07-02T12:08:07.213131Z", + "iopub.status.busy": "2024-07-02T12:08:07.212769Z", + "iopub.status.idle": "2024-07-02T12:08:07.215484Z", + "shell.execute_reply": "2024-07-02T12:08:07.215039Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:09:40.743089Z", - "iopub.status.busy": "2024-07-01T15:09:40.742768Z", - "iopub.status.idle": "2024-07-01T15:10:14.851046Z", - "shell.execute_reply": "2024-07-01T15:10:14.850360Z" + "iopub.execute_input": "2024-07-02T12:08:07.217418Z", + "iopub.status.busy": "2024-07-02T12:08:07.217121Z", + "iopub.status.idle": "2024-07-02T12:08:41.707148Z", + "shell.execute_reply": "2024-07-02T12:08:41.706563Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e93b88c996c44feeb3673439eaaea41d", + "model_id": "9e20fdede857444e8054f80d2f1060d4", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cae016dc953549ce807817682c42dc87", + "model_id": "301ab18342ea43859b3e69cf6784234e", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:10:14.853695Z", - "iopub.status.busy": "2024-07-01T15:10:14.853439Z", - "iopub.status.idle": "2024-07-01T15:10:15.523116Z", - "shell.execute_reply": "2024-07-01T15:10:15.522614Z" + "iopub.execute_input": "2024-07-02T12:08:41.710056Z", + "iopub.status.busy": "2024-07-02T12:08:41.709655Z", + "iopub.status.idle": "2024-07-02T12:08:42.388632Z", + "shell.execute_reply": "2024-07-02T12:08:42.388139Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:10:15.525482Z", - "iopub.status.busy": "2024-07-01T15:10:15.525022Z", - "iopub.status.idle": "2024-07-01T15:10:18.415066Z", - "shell.execute_reply": "2024-07-01T15:10:18.414464Z" + "iopub.execute_input": "2024-07-02T12:08:42.390931Z", + "iopub.status.busy": "2024-07-02T12:08:42.390474Z", + "iopub.status.idle": "2024-07-02T12:08:45.214722Z", + "shell.execute_reply": "2024-07-02T12:08:45.214183Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:10:18.417219Z", - "iopub.status.busy": "2024-07-01T15:10:18.417035Z", - "iopub.status.idle": "2024-07-01T15:10:50.808150Z", - "shell.execute_reply": "2024-07-01T15:10:50.807678Z" + "iopub.execute_input": "2024-07-02T12:08:45.217043Z", + "iopub.status.busy": "2024-07-02T12:08:45.216683Z", + "iopub.status.idle": "2024-07-02T12:09:17.125267Z", + "shell.execute_reply": "2024-07-02T12:09:17.124709Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "731093637bac464aa707d2bcbb8b8fa8", + "model_id": "bd3e5cdb83b549b9ac1d29639e5d5848", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:10:50.810430Z", - "iopub.status.busy": "2024-07-01T15:10:50.810008Z", - "iopub.status.idle": "2024-07-01T15:11:05.045003Z", - "shell.execute_reply": "2024-07-01T15:11:05.044449Z" + "iopub.execute_input": "2024-07-02T12:09:17.127732Z", + "iopub.status.busy": "2024-07-02T12:09:17.127284Z", + "iopub.status.idle": "2024-07-02T12:09:31.678319Z", + "shell.execute_reply": "2024-07-02T12:09:31.677670Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:11:05.047402Z", - "iopub.status.busy": "2024-07-01T15:11:05.047124Z", - "iopub.status.idle": "2024-07-01T15:11:08.765062Z", - "shell.execute_reply": "2024-07-01T15:11:08.764520Z" + "iopub.execute_input": "2024-07-02T12:09:31.680982Z", + "iopub.status.busy": "2024-07-02T12:09:31.680776Z", + "iopub.status.idle": "2024-07-02T12:09:35.425388Z", + "shell.execute_reply": "2024-07-02T12:09:35.424766Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:11:08.767118Z", - "iopub.status.busy": "2024-07-01T15:11:08.766928Z", - "iopub.status.idle": "2024-07-01T15:11:10.139794Z", - "shell.execute_reply": "2024-07-01T15:11:10.139251Z" + "iopub.execute_input": "2024-07-02T12:09:35.427710Z", + "iopub.status.busy": "2024-07-02T12:09:35.427361Z", + "iopub.status.idle": "2024-07-02T12:09:36.906817Z", + "shell.execute_reply": "2024-07-02T12:09:36.906253Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "94d7b260381b4b7da5eca25e123790e6", + "model_id": "f7bb7e722917409d87abfe3e6a57fae6", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:11:10.142331Z", - "iopub.status.busy": "2024-07-01T15:11:10.141916Z", - "iopub.status.idle": "2024-07-01T15:11:10.170330Z", - "shell.execute_reply": "2024-07-01T15:11:10.169827Z" + "iopub.execute_input": "2024-07-02T12:09:36.909119Z", + "iopub.status.busy": "2024-07-02T12:09:36.908767Z", + "iopub.status.idle": "2024-07-02T12:09:36.938376Z", + "shell.execute_reply": "2024-07-02T12:09:36.937849Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:11:10.172647Z", - "iopub.status.busy": "2024-07-01T15:11:10.172452Z", - "iopub.status.idle": "2024-07-01T15:11:16.278293Z", - "shell.execute_reply": "2024-07-01T15:11:16.277810Z" + "iopub.execute_input": "2024-07-02T12:09:36.940953Z", + "iopub.status.busy": "2024-07-02T12:09:36.940583Z", + "iopub.status.idle": "2024-07-02T12:09:42.990503Z", + "shell.execute_reply": "2024-07-02T12:09:42.989906Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:11:16.280555Z", - "iopub.status.busy": "2024-07-01T15:11:16.280188Z", - "iopub.status.idle": "2024-07-01T15:11:16.335969Z", - "shell.execute_reply": "2024-07-01T15:11:16.335497Z" + "iopub.execute_input": "2024-07-02T12:09:42.992659Z", + "iopub.status.busy": "2024-07-02T12:09:42.992472Z", + "iopub.status.idle": "2024-07-02T12:09:43.049918Z", + "shell.execute_reply": "2024-07-02T12:09:43.049421Z" }, "nbsphinx": "hidden" }, @@ -1038,23 +1038,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0ce80ae00bf44c64b8d09bc5ac656e27": { + "004250ad803f48e690d7de9d8df2a5d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0d422e6ef3524fe18196d3c8b173b4b6": { + "09ba332d59f94952875cd79ebffa12b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1069,15 +1071,121 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_58f2dea7d21a44d288433745eff48fb5", + "layout": "IPY_MODEL_292d8527f19545118904c48eb804b159", "placeholder": "​", - "style": "IPY_MODEL_a6f5a4d370df4f5ab60b6aa6323dfe0c", + "style": "IPY_MODEL_ebe541c7a5ed4c939a5f7b993c9dee23", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" + "value": " 30/30 [00:01<00:00, 20.84it/s]" + } + }, + "14f7f9d4ea3e4f77a067725d5a561423": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1c5deedf3c2d452d9820d81060a3a997": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "0fba3cd87f5e4a30858fae2027c96f2f": { + "292d8527f19545118904c48eb804b159": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1130,7 +1238,7 @@ "width": null } }, - "120e14c159a940bebfa008af4846e1af": { + "2b3a352a3891401497f4005cb5fc04d1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1145,41 +1253,85 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d7d60f679eea43e79193e07ed20fc5aa", + "layout": "IPY_MODEL_1c5deedf3c2d452d9820d81060a3a997", "placeholder": "​", - "style": "IPY_MODEL_2d90c5dd6d1848b38f0aa931986b4799", + "style": "IPY_MODEL_c90d5255c6884dd0acaca4ca4a0be555", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:00<00:00, 768.06it/s]" + "value": "100%" } }, - "1a7a00c51cf841f9960806391ff7b8c0": { + "2cda7dd9aaa748a58027afd119786f13": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4bb2732aa35d440a84e89690b8a0f610", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a88b229f72f34e9a8c5e66a993f56a21", + "layout": "IPY_MODEL_3bc90b1caf7040428b193fe64f002cf0", + "placeholder": "​", + "style": "IPY_MODEL_004250ad803f48e690d7de9d8df2a5d4", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": "number of examples processed for estimating thresholds: 100%" + } + }, + "2d192adc8c47477a9a6eecca9e36e444": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5c44620b24814621897a324f8628f9b0", + "placeholder": "​", + "style": "IPY_MODEL_8c0884f36e9a43fcb603fc1d8a5ac45d", + "tabbable": null, + "tooltip": null, + "value": " 4997683/4997683 [00:31<00:00, 155900.40it/s]" + } + }, + "301ab18342ea43859b3e69cf6784234e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_689cb1d684d746f081730b6005754954", + "IPY_MODEL_87cc943b387f45588eebeaa6c9ffd2b2", + "IPY_MODEL_621b8d69d18c4672a45b4f9791a34f0e" + ], + "layout": "IPY_MODEL_39fca7453c7a49f9b90660089493b14b", + "tabbable": null, + "tooltip": null } }, - "1d6b185c42f944568fbf955268ac9154": { + "39fca7453c7a49f9b90660089493b14b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1232,48 +1384,76 @@ "width": null } }, - "2535e62f9cf1494fb6cc24a0ac2907b2": { - "model_module": "@jupyter-widgets/controls", + "3bc90b1caf7040428b193fe64f002cf0": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1d6b185c42f944568fbf955268ac9154", - "placeholder": "​", - "style": "IPY_MODEL_880d91c28adf4495881e409632e6f2c0", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "2d90c5dd6d1848b38f0aa931986b4799": { + "40f6e020e4814cb8b0192d390bc249e5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "3889edbb1fe4425ebf7afefb82fe5802": { + "443d77bb1d4e408f9a9d727916a4a908": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1326,7 +1506,7 @@ "width": null } }, - "470506ccc55441d4a3335d76966e3c9a": { + "46d41e19a14142bbad7d9d0b73fd7a54": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1344,7 +1524,7 @@ "text_color": null } }, - "4bb2732aa35d440a84e89690b8a0f610": { + "50d3a7dfb3964711a029df0085e31f7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1397,7 +1577,7 @@ "width": null } }, - "58f2dea7d21a44d288433745eff48fb5": { + "5148cb9775f14bd194e8f971e6975671": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1450,43 +1630,76 @@ "width": null } }, - "5ab028ba9f524306aa0c67b32b1e5513": { + "58e7f42a53f94f1bbd0867761587546d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "620edc866142421db8ff2794fa79153f": { - "model_module": "@jupyter-widgets/controls", + "5c44620b24814621897a324f8628f9b0": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "645ee85b81c0443e9b9b94ea8c6e87fd": { + "621b8d69d18c4672a45b4f9791a34f0e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1501,65 +1714,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7e82ec8863a94f5d8e6065f6c467c1ba", + "layout": "IPY_MODEL_8d802ab243544f9d9299452347a70569", "placeholder": "​", - "style": "IPY_MODEL_470506ccc55441d4a3335d76966e3c9a", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" - } - }, - "722e544a67304c41a49646191b43f64e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8dfb6569b11b4e579ab5f1679787b922", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f781332402924b45849cdca8f6978ed3", + "style": "IPY_MODEL_9c2434fab6d1467eb5531b5dd54033e7", "tabbable": null, "tooltip": null, - "value": 30.0 - } - }, - "731093637bac464aa707d2bcbb8b8fa8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9b08851d974b4b75b2758e2517483e68", - "IPY_MODEL_a7e45bb52c5c49fd91aef928ec848223", - "IPY_MODEL_8df97aa7051e4cac814f7092dcecc401" - ], - "layout": "IPY_MODEL_998f6677b81d4e86955affe5f63bdf7b", - "tabbable": null, - "tooltip": null + "value": " 30/30 [00:22<00:00,  1.35it/s]" } }, - "742abd1e12e941f0ade6da7a2b14d0d0": { + "689cb1d684d746f081730b6005754954": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1574,41 +1737,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f6a973b86f594108bb655affcc8de322", + "layout": "IPY_MODEL_14f7f9d4ea3e4f77a067725d5a561423", "placeholder": "​", - "style": "IPY_MODEL_620edc866142421db8ff2794fa79153f", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 22.07it/s]" - } - }, - "754ca065e07f4e7eb99baf4c7cf19ce4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b8a70293c3224c66a3f27168557b9ba8", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ec84cd07627b443a8c8ce0e1f099c72c", + "style": "IPY_MODEL_df3ac9cfe3ae41ceb9de218f2d91ba0b", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": "number of examples processed for checking labels: 100%" } }, - "7e82ec8863a94f5d8e6065f6c467c1ba": { + "6ec1d65e68c649a287aa126587fe0f81": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1661,25 +1798,7 @@ "width": null } }, - "880d91c28adf4495881e409632e6f2c0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "88577bae8f0943e6a91fd0f7eb9523ad": { + "6fad649441314d58a415b41b259d3ca9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1732,30 +1851,77 @@ "width": null } }, - "8df97aa7051e4cac814f7092dcecc401": { + "7fe63f20c00f4319a0964ba731ec434b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b53c3a56cde9432497a763625dc6e49a", - "placeholder": "​", - "style": "IPY_MODEL_a513f46efc83419b8f4e22c3b2c064d2", + "layout": "IPY_MODEL_acd636f3fd2248ec95449072f24f9e7c", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_58e7f42a53f94f1bbd0867761587546d", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "87cc943b387f45588eebeaa6c9ffd2b2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b345e277b7bf4c62b4c637851b6c0214", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_aa5c0233f9e24cfb94a975b0bdddc4f5", "tabbable": null, "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 156404.46it/s]" + "value": 30.0 + } + }, + "8c0884f36e9a43fcb603fc1d8a5ac45d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "8dfb6569b11b4e579ab5f1679787b922": { + "8d802ab243544f9d9299452347a70569": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1808,7 +1974,25 @@ "width": null } }, - "94d7b260381b4b7da5eca25e123790e6": { + "9c2434fab6d1467eb5531b5dd54033e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9e20fdede857444e8054f80d2f1060d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1823,16 +2007,32 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_645ee85b81c0443e9b9b94ea8c6e87fd", - "IPY_MODEL_1a7a00c51cf841f9960806391ff7b8c0", - "IPY_MODEL_742abd1e12e941f0ade6da7a2b14d0d0" + "IPY_MODEL_2cda7dd9aaa748a58027afd119786f13", + "IPY_MODEL_7fe63f20c00f4319a0964ba731ec434b", + "IPY_MODEL_cec723cee8f249199133eca7dc012de4" ], - "layout": "IPY_MODEL_0fba3cd87f5e4a30858fae2027c96f2f", + "layout": "IPY_MODEL_443d77bb1d4e408f9a9d727916a4a908", "tabbable": null, "tooltip": null } }, - "998f6677b81d4e86955affe5f63bdf7b": { + "aa5c0233f9e24cfb94a975b0bdddc4f5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "acd636f3fd2248ec95449072f24f9e7c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1885,30 +2085,7 @@ "width": null } }, - "9b08851d974b4b75b2758e2517483e68": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b8bda17c986d4f7fa6a7b2aaf2a0be0a", - "placeholder": "​", - "style": "IPY_MODEL_e3090d513b8a48f380607cc86cd1895f", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "a4188823d8964bafbc43b207d512faeb": { + "b345e277b7bf4c62b4c637851b6c0214": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1961,115 +2138,14 @@ "width": null } }, - "a513f46efc83419b8f4e22c3b2c064d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a6f5a4d370df4f5ab60b6aa6323dfe0c": { - "model_module": "@jupyter-widgets/controls", + "b3df8f2c00a04d5b832de9fc959e9aae": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a7e45bb52c5c49fd91aef928ec848223": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_88577bae8f0943e6a91fd0f7eb9523ad", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0ce80ae00bf44c64b8d09bc5ac656e27", - "tabbable": null, - "tooltip": null, - "value": 4997683.0 - } - }, - "a88b229f72f34e9a8c5e66a993f56a21": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "aa1f2aad145f4f339c1cd410fe718472": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f5afe4dbdebe45929344b9d66f6e48a8", - "placeholder": "​", - "style": "IPY_MODEL_5ab028ba9f524306aa0c67b32b1e5513", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:21<00:00,  1.33it/s]" - } - }, - "b53c3a56cde9432497a763625dc6e49a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -2115,113 +2191,30 @@ "width": null } }, - "b8a70293c3224c66a3f27168557b9ba8": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b8bda17c986d4f7fa6a7b2aaf2a0be0a": { - "model_module": "@jupyter-widgets/base", + "ba6883ab9881467ba869997da1c9ea0e": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6fad649441314d58a415b41b259d3ca9", + "placeholder": "​", + "style": "IPY_MODEL_46d41e19a14142bbad7d9d0b73fd7a54", + "tabbable": null, + "tooltip": null, + "value": "images processed using softmin: 100%" } }, - "cae016dc953549ce807817682c42dc87": { + "bd3e5cdb83b549b9ac1d29639e5d5848": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2236,69 +2229,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_2535e62f9cf1494fb6cc24a0ac2907b2", - "IPY_MODEL_722e544a67304c41a49646191b43f64e", - "IPY_MODEL_aa1f2aad145f4f339c1cd410fe718472" + "IPY_MODEL_2b3a352a3891401497f4005cb5fc04d1", + "IPY_MODEL_d0ee84f27abf457094d435faffe772aa", + "IPY_MODEL_2d192adc8c47477a9a6eecca9e36e444" ], - "layout": "IPY_MODEL_a4188823d8964bafbc43b207d512faeb", + "layout": "IPY_MODEL_d13c21dbbe954346b0c709b6d940db68", "tabbable": null, "tooltip": null } }, - "d7d60f679eea43e79193e07ed20fc5aa": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "e3090d513b8a48f380607cc86cd1895f": { + "c90d5255c6884dd0acaca4ca4a0be555": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2316,47 +2256,56 @@ "text_color": null } }, - "e93b88c996c44feeb3673439eaaea41d": { + "cec723cee8f249199133eca7dc012de4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0d422e6ef3524fe18196d3c8b173b4b6", - "IPY_MODEL_754ca065e07f4e7eb99baf4c7cf19ce4", - "IPY_MODEL_120e14c159a940bebfa008af4846e1af" - ], - "layout": "IPY_MODEL_3889edbb1fe4425ebf7afefb82fe5802", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5148cb9775f14bd194e8f971e6975671", + "placeholder": "​", + "style": "IPY_MODEL_e1313619907446f882ce04af77ca7ac9", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 30/30 [00:00<00:00, 789.00it/s]" } }, - "ec84cd07627b443a8c8ce0e1f099c72c": { + "d0ee84f27abf457094d435faffe772aa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6ec1d65e68c649a287aa126587fe0f81", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_40f6e020e4814cb8b0192d390bc249e5", + "tabbable": null, + "tooltip": null, + "value": 4997683.0 } }, - "f5afe4dbdebe45929344b9d66f6e48a8": { + "d13c21dbbe954346b0c709b6d940db68": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2409,60 +2358,87 @@ "width": null } }, - "f6a973b86f594108bb655affcc8de322": { - "model_module": "@jupyter-widgets/base", + "dbe2204bfeee42de9c8c9d92d9dc0eb7": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b3df8f2c00a04d5b832de9fc959e9aae", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f6b0d85730d34497bc3daf8d027415bc", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "df3ac9cfe3ae41ceb9de218f2d91ba0b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f781332402924b45849cdca8f6978ed3": { + "e1313619907446f882ce04af77ca7ac9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ebe541c7a5ed4c939a5f7b993c9dee23": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f6b0d85730d34497bc3daf8d027415bc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2477,6 +2453,30 @@ "bar_color": null, "description_width": "" } + }, + "f7bb7e722917409d87abfe3e6a57fae6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ba6883ab9881467ba869997da1c9ea0e", + "IPY_MODEL_dbe2204bfeee42de9c8c9d92d9dc0eb7", + "IPY_MODEL_09ba332d59f94952875cd79ebffa12b3" + ], + "layout": "IPY_MODEL_50d3a7dfb3964711a029df0085e31f7b", + "tabbable": null, + "tooltip": null + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index 8650ebc00..2f967cbe9 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:11:18.503218Z", - "iopub.status.busy": "2024-07-01T15:11:18.502735Z", - "iopub.status.idle": "2024-07-01T15:11:19.975527Z", - "shell.execute_reply": "2024-07-01T15:11:19.974839Z" + "iopub.execute_input": "2024-07-02T12:09:45.418874Z", + "iopub.status.busy": "2024-07-02T12:09:45.418417Z", + "iopub.status.idle": "2024-07-02T12:09:46.521891Z", + "shell.execute_reply": "2024-07-02T12:09:46.521319Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-07-01 15:11:18-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-07-02 12:09:45-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,15 +94,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.236.98, 2400:52e0:1a00::871:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.236.98|:443... " + "185.93.1.249, 2400:52e0:1a00::871:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.249|:443... connected.\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -123,9 +122,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K 5.71MB/s in 0.2s \r\n", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-07-01 15:11:19 (5.71 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-07-02 12:09:45 (6.77 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -145,9 +144,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-07-01 15:11:19-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.28.244, 3.5.24.72, 52.217.13.252, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.28.244|:443... connected.\r\n", + "--2024-07-02 12:09:46-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.236.81, 16.182.109.113, 3.5.9.115, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.236.81|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -168,17 +167,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 35%[======> ] 5.78M 28.9MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 100%[===================>] 16.26M 52.3MB/s in 0.3s \r\n", + "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.1s \r\n", "\r\n", - "2024-07-01 15:11:19 (52.3 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-07-02 12:09:46 (150 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -195,10 +186,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:11:19.978352Z", - "iopub.status.busy": "2024-07-01T15:11:19.977882Z", - "iopub.status.idle": "2024-07-01T15:11:21.215995Z", - "shell.execute_reply": "2024-07-01T15:11:21.215505Z" + "iopub.execute_input": "2024-07-02T12:09:46.524639Z", + "iopub.status.busy": "2024-07-02T12:09:46.524272Z", + "iopub.status.idle": "2024-07-02T12:09:47.827762Z", + "shell.execute_reply": "2024-07-02T12:09:47.827179Z" }, "nbsphinx": "hidden" }, @@ -209,7 +200,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7a801c5ee1e11be3732a7ea01725de8aca8d147d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@46226527e9d4c8f7ccdf91ff5dac4d6ee27e022b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -235,10 +226,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:11:21.218513Z", - "iopub.status.busy": "2024-07-01T15:11:21.218132Z", - "iopub.status.idle": "2024-07-01T15:11:21.221470Z", - "shell.execute_reply": "2024-07-01T15:11:21.221045Z" + "iopub.execute_input": "2024-07-02T12:09:47.830413Z", + "iopub.status.busy": "2024-07-02T12:09:47.829987Z", + "iopub.status.idle": "2024-07-02T12:09:47.833472Z", + "shell.execute_reply": "2024-07-02T12:09:47.833017Z" } }, "outputs": [], @@ -288,10 +279,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:11:21.223694Z", - "iopub.status.busy": "2024-07-01T15:11:21.223257Z", - "iopub.status.idle": "2024-07-01T15:11:21.226332Z", - "shell.execute_reply": "2024-07-01T15:11:21.225848Z" + "iopub.execute_input": "2024-07-02T12:09:47.835687Z", + "iopub.status.busy": "2024-07-02T12:09:47.835327Z", + "iopub.status.idle": "2024-07-02T12:09:47.838382Z", + "shell.execute_reply": "2024-07-02T12:09:47.837903Z" }, "nbsphinx": "hidden" }, @@ -309,10 +300,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:11:21.228084Z", - "iopub.status.busy": "2024-07-01T15:11:21.227917Z", - "iopub.status.idle": "2024-07-01T15:11:30.310755Z", - "shell.execute_reply": "2024-07-01T15:11:30.310211Z" + "iopub.execute_input": "2024-07-02T12:09:47.840488Z", + "iopub.status.busy": "2024-07-02T12:09:47.840076Z", + "iopub.status.idle": "2024-07-02T12:09:56.981305Z", + "shell.execute_reply": "2024-07-02T12:09:56.980685Z" } }, "outputs": [], @@ -386,10 +377,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:11:30.313310Z", - "iopub.status.busy": "2024-07-01T15:11:30.313004Z", - "iopub.status.idle": "2024-07-01T15:11:30.318459Z", - "shell.execute_reply": "2024-07-01T15:11:30.318009Z" + "iopub.execute_input": "2024-07-02T12:09:56.983968Z", + "iopub.status.busy": "2024-07-02T12:09:56.983751Z", + "iopub.status.idle": "2024-07-02T12:09:56.989422Z", + "shell.execute_reply": "2024-07-02T12:09:56.988975Z" }, "nbsphinx": "hidden" }, @@ -429,10 +420,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:11:30.320517Z", - "iopub.status.busy": "2024-07-01T15:11:30.320198Z", - "iopub.status.idle": "2024-07-01T15:11:30.659248Z", - "shell.execute_reply": "2024-07-01T15:11:30.658770Z" + "iopub.execute_input": "2024-07-02T12:09:56.991449Z", + "iopub.status.busy": "2024-07-02T12:09:56.991142Z", + "iopub.status.idle": "2024-07-02T12:09:57.333959Z", + "shell.execute_reply": "2024-07-02T12:09:57.333418Z" } }, "outputs": [], @@ -469,10 +460,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:11:30.661698Z", - "iopub.status.busy": "2024-07-01T15:11:30.661301Z", - "iopub.status.idle": "2024-07-01T15:11:30.665925Z", - "shell.execute_reply": "2024-07-01T15:11:30.665448Z" + "iopub.execute_input": "2024-07-02T12:09:57.336408Z", + "iopub.status.busy": "2024-07-02T12:09:57.336047Z", + "iopub.status.idle": "2024-07-02T12:09:57.340566Z", + "shell.execute_reply": "2024-07-02T12:09:57.340088Z" } }, "outputs": [ @@ -544,10 +535,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:11:30.667958Z", - "iopub.status.busy": "2024-07-01T15:11:30.667632Z", - "iopub.status.idle": "2024-07-01T15:11:33.481219Z", - "shell.execute_reply": "2024-07-01T15:11:33.480521Z" + "iopub.execute_input": "2024-07-02T12:09:57.342536Z", + "iopub.status.busy": "2024-07-02T12:09:57.342207Z", + "iopub.status.idle": "2024-07-02T12:09:59.889796Z", + "shell.execute_reply": "2024-07-02T12:09:59.889167Z" } }, "outputs": [], @@ -569,10 +560,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:11:33.484626Z", - "iopub.status.busy": "2024-07-01T15:11:33.483787Z", - "iopub.status.idle": "2024-07-01T15:11:33.488254Z", - "shell.execute_reply": "2024-07-01T15:11:33.487491Z" + "iopub.execute_input": "2024-07-02T12:09:59.892826Z", + "iopub.status.busy": "2024-07-02T12:09:59.892074Z", + "iopub.status.idle": "2024-07-02T12:09:59.896257Z", + "shell.execute_reply": "2024-07-02T12:09:59.895794Z" } }, "outputs": [ @@ -608,10 +599,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:11:33.490509Z", - "iopub.status.busy": "2024-07-01T15:11:33.490170Z", - "iopub.status.idle": "2024-07-01T15:11:33.496148Z", - "shell.execute_reply": "2024-07-01T15:11:33.495591Z" + "iopub.execute_input": "2024-07-02T12:09:59.898108Z", + "iopub.status.busy": "2024-07-02T12:09:59.897930Z", + "iopub.status.idle": "2024-07-02T12:09:59.903451Z", + "shell.execute_reply": "2024-07-02T12:09:59.902896Z" } }, "outputs": [ @@ -789,10 +780,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:11:33.498276Z", - "iopub.status.busy": "2024-07-01T15:11:33.497940Z", - "iopub.status.idle": "2024-07-01T15:11:33.525403Z", - "shell.execute_reply": "2024-07-01T15:11:33.524817Z" + "iopub.execute_input": "2024-07-02T12:09:59.905627Z", + "iopub.status.busy": "2024-07-02T12:09:59.905242Z", + "iopub.status.idle": "2024-07-02T12:09:59.932087Z", + "shell.execute_reply": "2024-07-02T12:09:59.931495Z" } }, "outputs": [ @@ -894,10 +885,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:11:33.527747Z", - "iopub.status.busy": "2024-07-01T15:11:33.527322Z", - "iopub.status.idle": "2024-07-01T15:11:33.532159Z", - "shell.execute_reply": "2024-07-01T15:11:33.531610Z" + "iopub.execute_input": "2024-07-02T12:09:59.934435Z", + "iopub.status.busy": "2024-07-02T12:09:59.934079Z", + "iopub.status.idle": "2024-07-02T12:09:59.939450Z", + "shell.execute_reply": "2024-07-02T12:09:59.938896Z" } }, "outputs": [ @@ -971,10 +962,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:11:33.534578Z", - "iopub.status.busy": "2024-07-01T15:11:33.534006Z", - "iopub.status.idle": "2024-07-01T15:11:34.915561Z", - "shell.execute_reply": "2024-07-01T15:11:34.914971Z" + "iopub.execute_input": "2024-07-02T12:09:59.941692Z", + "iopub.status.busy": "2024-07-02T12:09:59.941362Z", + "iopub.status.idle": "2024-07-02T12:10:01.337767Z", + "shell.execute_reply": "2024-07-02T12:10:01.337179Z" } }, "outputs": [ @@ -1146,10 +1137,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:11:34.917877Z", - "iopub.status.busy": "2024-07-01T15:11:34.917550Z", - "iopub.status.idle": "2024-07-01T15:11:34.921657Z", - "shell.execute_reply": "2024-07-01T15:11:34.921191Z" + "iopub.execute_input": "2024-07-02T12:10:01.339986Z", + "iopub.status.busy": "2024-07-02T12:10:01.339664Z", + "iopub.status.idle": "2024-07-02T12:10:01.343749Z", + "shell.execute_reply": "2024-07-02T12:10:01.343244Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/clean_learning/index.doctree b/master/.doctrees/tutorials/clean_learning/index.doctree index bcc71851e3b5a1787b65bcceff90d82e2fc56ae0..56f3b4982de97e84ccef583f6d5f701af07b67c0 100644 GIT binary patch delta 62 zcmX>tep-A(E~BBDQAt5&Mp==*rKO>Hib+apYI2gXnNec0Sz@ADs)4z=L9(%#xk-wF RfkASziFuOg=6Q^|TmXE)66pW{ delta 62 zcmX>tep-A(E~8;`RdP~UL4~D$YFe_Pg_((wfoW=DVv1>!S+Z%Wp^1TcnuU3CQc`lN Rc~Xk8Nt%(x=6Q^|TmX_A6Se>V diff --git a/master/.doctrees/tutorials/clean_learning/tabular.doctree b/master/.doctrees/tutorials/clean_learning/tabular.doctree index 49658f8e3e90dffd74a4717e35bade3aaecf60b3..23aebfda45202106996b07828a5a4612cd4fb161 100644 GIT binary patch delta 64 zcmcb6i}~&?<_%{!4b6;73Nkawiu5fl4b4+bQc_cslZ?%b5|hmm6U|Z$%*_pwjm^wW UQVa|Xl9Nr$lT0`Nka{vGU delta 64 zcmcb6i}~&?<_%{!4U?;qlgbJzEcH{;2>2Wxc)omiM09cYW{ieb@9B?_1jY^S&j$ z5AOfWf4ugwul%z4>!xbatQ9M}E1Ju`SS{*(^1fO6&a`LG*6nw0+`N0I+m$wM4sKU$ zSA;EY`$0~yMIyd>IateRfSGGCq-MZUt-mz=*Hn)3E+I23`M>pUk_8n6HrB9vs)&nQ5?d4H#{sJG_S6(>G&{LDq&-~@9vXFMS%Om<#z%2}{cX{J<+?bphS z$f<=V&iwGzi@MD49IzW6r4lk&$D-sZMkSavJc_~Rii_IMJ@q0!mn=zwP-8v*R3uvB zgb*?7oK&RF4n9|0)P8Q$&*#tS;!8xxoDKC%_^dsS%v+X{=SkY=2cIh~IzdidGN+q7 z%{=4itP(;~+=y1jco$u;CYWKO#YOGTF8|H)Ii2W*O30H1Ed-@DM4pACoWzX1@nN2& zMeWxv{o~ais*XRqrn>ZS^FrYs`s@ByKU{TH*4%0$Q$Tf5E_+58!5uln zjF-v}zS{r#qN!h1)y7#J?yvyKCN4x~!g)%$l#w}~2@bpOZkc+%!hI%9sMMZHU@PE95jc+wCndDu zzVBYDpR3A&Pm`K-c_C(-32DCeRMqJSC9~9yaK^MqBD(02R`N#Uyi;zD{j^#zyqk6< zi7d2vAm?a(G%`mfnTbdG>wa9% z?XP>XI#P8D@o6(is1Q3eSAVD8uu82KcipsR_oik0_pj_OOV&|AC1>7q5w)^9dhN6! zQ9DLR zX=StLt?CLCq_Ih{_GXtiYdiJ(JKAU_xF$X@5tOh1UG_w1OA~cu8tS@|Yo!Q{AZ-iO zDTl(OwPvVM!R09W0O--G=17kzgS(|rIFDjoOD?S;SzDcR5T(vDy7s^O)DXU8%3Z;7|AHvCYcsfLdMK2RoaZ6 zsbtP@Zt%hE1WJo%%BR32lA%J2X8m`o8PBx1f%chp3b7kPYudd1v+ByOH7MOG1RjVN zfe;HC#eoN|MTnZ{X$jfX;w~$O$1H?JO-G5bB5Ml{vZ;@)zECaAI`QP42p~|QY_t|N zN@v7r>-gc{PA%+rO#S_;9C`h1HSLU#Nm{(AX3nW<#VTxO8tCvk9QP7X$Dz9zO!5(x zQYmFslB9WLVLdD-MNaRpzo9--9VlEBnTeyq6Ad$0k3X}R&!eu8l{}BS*O_()>1JH6Gf>dh>vOQf2O(+jpaU_&duNh@ zT#8Ck=<6s4M>^uUV(?df2c9d%9pdiGzpv&kO*%1LUUZg%=VF3{G9*Q6@fV3TZ$42i z9FRko5y%ANl4YQ;w$fsIsJjq|5dY9$Lze4Ar5v|8B`vbx!hkXXV~CfWvt+Ules8&O zY*fXEoKOncra_u*uUAW;3MJc7jc=ILdkiOt$G*D6?ZV8xl-^U?Cv>RU9*}}GYxjw zE;LqP#tax;-sc%yRW>cZh&V7p>k=h$v`hq;&n zPp;Kh0#^-NA#_M6v#6$7Ow%!hhbSyT(UrW_2R5W+z4DQOB~hYY{vK#-pfNkpmOcQZ z!BC3Qt36Q3O~mgMgU)?Oh}WxbAvA4nnO)!3Erhj0)V)5t{y+z$z__)^RMm|tITKmdE>n@R zf?DN{xTHwPN^897m+I%M&iJUg84$zxr~{2m4u5-US%<)I`Q#zdvjq;?5n9582Aga8Tdf{Q#xt9Vw#^j{9Gs)Ra0d4%eS5UJF9FHmWeCCEiP znffpPp-o_X#4s!yrHDg}on2I4(L8jvn!gfK@zx8X(zS({YDfpFgh!4pTCIJgG<$<8 z7wes~It4@67Keq8zENM&Uqz?(R|iVhGZQ?8H_2wMCWVtbPjTZDv*`lGbzsz4fWr=& zdw~Mu70Z%n*aEPervsCQVhZa6Qh-fp^*=C~@D4OglA-Vp*=v%9y0QyiL*es~cxWqF z4v`r(O0DqD5!eSYpv)1&6=J*Q7c1)ZT~!D?#M)ig)t7d()S1G`g9a4LDf$+k>DIzX zrj27mb{)C|4X5MU7FX+RJa+-|SgRCWcA5^-J_k4stCRyYlrljG#SJpd(L3;GhA}vA z=EldCqX#=a?f`OYI}*N`6If*n!7h`qs82>mZe!%ZvJ3UEizk7<&(1Q?vkEw5)U}u? zVg0F5{D<~r)KUxSovTvo3L(J{?Sbg0`%`~v#)qsZE zjsVmGDuc(KVVbG54i+UhXPy{&(_&*~L~5mbnTeg!yPUb26b|e>(h6De^GJLDQXrwF zCin!rO)4x6Rzl~af@;s?z`>5>7y4A(WGxuT0CwKe)}Nt?!z~C=jF8q*Qb4B|!hk@L z!3xn>)LLkk#GzFOk7VTF#)oFj+aI60waW@&hd6unmU?c78b%D1ut$4Kz#=#Xz)Pbk ziau1}kkeq*0^E>_KBK1-V9U`I(N@wdWr}A5@eb5RHv>QT1Dea$mre%0)pj51f z;A|TvurW|oIxrAoRy4&Cu|>3A@Gc{|c(D~MXgfuX22PfWC|L6u#5O)IX?}D!h%FQX z4*|Df8;A{!QSeumnGtv%Dos{s-f=~pYOUxrCk}IzHCnx%F$iP0qs*oJ^=~+H%Jjzz7`~@o+(kA)~*8j>rgb=ov?be=l4AmLP^% z<~T6vVDl^l<BXfPQXOoj&CQgeFLaW4!kCPRbC&|oq&m<$ajLxXcut;x_} XGBlVB4c`5q`u{(N27L?-j?eoy24yOD delta 13646 zcmeHNU5s5-751DN0_86$v_rvm&b2@brF8cH55#DVnn0w`APH)lvVSQ;X`w&}DNLn= zM2#A}k`pAQ5MxNxV6nl=i=|Cef)8S?4?ajBs7X!Gw26e5qJHPz+jgelJ&EDPS!$ZM8uNZ@ar^FYf+o_QFLE+_Bwl*tGTD4V$*O?f0d7 zgS$6&ADOM{e{3u+>i%K&((clo%ewE)Ufx~5bLqm>ot0s;yZiREVbiud?q0d!;qDVh zmUh3n^UELEehdFrb?Rjk9s*Yk@(wL0%-U>&!2}Ua$Sj;jAX>#}Ifk)dHk;9Ak zUAgzznH`RpFft}#wG%;c=QR}~NXnxRMv(q?t&5uNj=lWmnH^<`V?nzhs1r;@o19j{ zMIIG%)Y5@5eJgKKMD z)EIW*pDsJA;*?Ova9N57k%`a7Fp>g*D;W>Ge`~32QM225fBnSAi=VwTQ=Io?@qGQs zCyVQkTKv>JSbwVoAMs%f$ITxb;*~u}G=NQ8>o45YBqm+*V52Q4SG{A)mzt>Q-ep!ga@h=kqY<^ z)>>%{wH%&%>b%IkuN^4&7ahEs4pQ)p4TMhK(u~MYJZdc+$)<<5{6*0jd1?}@KJ-XQ zI&Ejxco9`Uy|=jRYPN>l`I(vR8<#))@aoQT1RhTUw?-`!BnzXw(n9zYZ4A`ahu%67 zdu?g0xA2{EcQM=YG-Nprz3!$jZMxyc&wlO;o7!S?{_3_XTfT91z5RGG)oJlc*3Ydi zudFQfRNE+`$y`V)t!64X?U4{2GGy=Ax+XRWAeN(PUPp;6W5d}R>o`SH7p_Om#Gayp zX#s)35Vcg$i~+}L((z4qOL)aM*5&Z#tVL}J=9 zjqo%^8xu5sK^fUImKyLZ>TNq*Y?z!zhF390uCy17BW*~RqjZcxXGGIaG`*c?O#B$w zLG~650U0F~)@Ns&N=ZqfwQdl3?0B)L#?r}p=Ty0%che7xXYiqshLAz1hS5fZCR9oN z@7Ib;kaQy>NO>+Qypnc!D-F9Wh&4n)`j^_rT*YN{F~E~dnGhTlM-ncB5)%j*vv2Ou zGncFeryv^&EeNERM#caMrpO|4N$rl8O9oEe_OB97jkaNkzn1f95(D+rbknJ{p_p7RPQ@46<;rATi%X-092zQm(5?@ za(k|U;4P1rfZ%Ay;sAn8?%|PG8c7sh3B!D_3E4f$$hbO1eHHOsBF}?xRS?Qr@GtX; z>TFfgI@iaZMnKMEzE`Fh@dW8rG&lr3did!~Hk?tD6d3?xz_~w;o z>WBUe-cu%VmIO4Q=E4~P-2injl}<@IPlvpROv{6m0^-mK1h+-7Yp0ovkd2^oWQ}>e z=S&nyYRE|@@zLbH;nolvvx8vZJ*)@swVd7Oy-v%~YyiV8?-Wa?i89bQB57-hV7NTQ zry&7u;Hh%`+^yx}0Sa@lpb}&}M<}#qw$w$J95}^LuTovi%yXyXkZifoc=CX|@x*d` zS~3APLSoXop}@XBBaYX8$bh5I?!S$yAAGmC^lEF?@Hr5KAQS}mmykmQg?kxd#d~KM zjZycG9xt{{RxPr5kYK+3Qt^#qw&jsd15_Fvq^I#^+l`%Mz|l?#+J|4qC@AgN8gjXCzf|?1W!wn6&eM?qDGU@ zCJMEPmPnW}51y#v&H;V6XU0(0f!P_vWq=@&1gaR+3mrEkK$>}qoOs9*hiu|OJsgjt zwaHY<++RAM+Tm8483PcuSRos?RQIK;AJCbytOX(8T2%8PWy7{neo zTzZ~)Hbl}MI0wa6%dvJ4zAeWNrRgSGRu!NF;6U~%!Vk9gY-gjzP=i`w) zWP^d!1H}caDH5yBz>y4`erPkMGKny>rBH7Y4PEN2$tY%WmL3_7qfV?&)`=~aqYuO6td}&htm4kRTH}2vu@(D8NEi(IjR)R z1te)hITH}XsOkkV=no>mD6$JMp#PFtWF4K~z|Dhc$IolF{K8Py59sorh-i@&1_I`Vj%>X+{V>$RTWN8YVlz`1guwmDG7b;&{WPQ zYeHZ&>zCJqe1a-ffY2jaA5x(E?jRSk%xGB2998Z?L%&j>k7a`+5x_(r%L+6?8tRcO z;hq53IgOb?w`uh8!){Z{(Xmma8_*LqbJ$NYfetmKJ{tT2(%3@%V*ufdhH5gZhfJ|` zveVY>ANE6AUMkGT(dh6Lr>$7cv6yq7if1i(xXB2Y>FXI`-$Qi+S zMlqgI;0rY48AWG2qnI-q8P6!jGm7zyVmzZ5&nS2p&nU(-iqS)Y@r IiWkoQ56b?X$p8QV diff --git a/master/.doctrees/tutorials/datalab/audio.doctree b/master/.doctrees/tutorials/datalab/audio.doctree index fd49abec46ed53db5fc1ccfb3b48ff2cf23ec117..9d2401ea672f5b2817c4bb596964f0a250c06c7e 100644 GIT binary patch delta 8909 zcmeHMO^BXX754MJV;QR?A(K)H=6f@WS(upnbMBwuqGE+YYg$yW)DZ43DWa)=-IXpB zia#h~#f)GR~si-elY@3A}+e)(#bfMIhVnox0xNCjhdB03&QpsJq`7+E9^4;Ow zbI8(q@+7w29`QeAoJ@Um<-V2*4my)6~G9(j%Dco9~l(CdK=P8km z`m0wrAHTY}!1vq7tDD`$V~cM5-Uqs)k1zf@Tsq6{URI&3&(1ilJ&8iWDCeTq#t2iC z9KZYf?mX*>2Wxd8?OY`-tBX}s1L%kM?3#F~EDH4%$N~R!F)fLZClN|3n%|6eTCC8+S zz?T*jN(qL`tfh1!sa(S#e#mYgUwxswxL8_Mv)8d?{5#?PPO0dkl|Cm~su(W+huuE> z=%sFRyic(w7R?(Bhpu(JZ(KkP0jCD`o9@^$tLTkaL=oT87SD~%5*N?jHBs;oJo%)Z!hK7u*4Zpvo=zSaF8#JUH2(92?gxvda)n9&aB4<=%Xk4Z4ZnA zay%5`j!qIH4cZ-44O**D_bDWOxtH~-un=(Q!Tg{;I? zqM~I`scfzolDyL8f#VB6~i@(&GBiLK^u{(sZOWy$|LMKK(_Ewi?trr2EQSD zpmxxrK-*Ms!{wjdz{W=OnT@UB!~GZ7rcwa>LJ!XRzXtB@tGI9UoVN=o3xUhEFfWa}F@P~ZO?I$z@gY9`yQ3wG-=>Ea9;S;^2rw6qv9M8heORq!4V zy=4W_UPU$OMw0l19L@j;MIcLywi05Q`F1pezABdl2Vuw;f%hsn=A{;Rl=0HR3CNA8 zc_vva;@tAy*ks3hNxlM(QdD8dngl&G5Qjj3=+v@SngNwW*9Imze&SXRrp4g2t{xtQ zhdGD7>Iel5E<{gcWpGKzEGDr`1XW$}tQmC9q7`$>!VE_av*Rb7?^%eb4DN9z3?Y9Vv~>DIID zGOm%C*wfvr&mzL3rs6UMUOWmRy^uys41?==y<2%1m`QjNry_a)tRqD<0ib}poO$AW z2g!Rooa9zzAb{+o$K>FDLv@vlEP~c)PlxLpmoUTMx7jE9#s%`sx^KOg9ay3lBPzr- za!a*9$P0kUGrSBe%wEV%N0reXpv9(Y}KIpN^JQ}s$^xb{*Vw_4`n zDB|^m9U(c-E&4{-742FfXWD)31nZZ|1D1)D(J)*^Mo@-0j6E1bKA16VY(Nh!x)|V@ zF=;?!xQA}0914CXp>51H{KcyqKZWZMXm`OvG*Q81a)3>d0y6;zyUC7#Jkn@HjWh2W zQO%Tw9WH40{*ywfJzdU5D-x~;PC+U%d?S2Q#W*y@&1qlPPTsq0m6M)|NlpTTO7Y;} zIh+__pPyVj)~JozPof4aZ)kFj2NS!LYb53NP>x3m7IKZ*rI5=oPPsq_vvvV*;^(6F z8Y+XFRrcuem?E4s_!32CSCj@Y=YbA-cZ>T zGP|@Lc=iTkT$mV3L6aBWQRS-Efb6{BGR^+08F$8KBdl9>w~w>!K6+3JW>;azhA$5R z_|zGoM6ZQ=DXSsJ=p>a$#TpoA0?&AWN5)|^KuknCS~(|z77Z_q25#}_6^%Y&4#&)a ziBVQmeU(Tn?wm*??22dyHa66jlbsfwEqptQRQ%dug*?pxn3`S}#!ETwAub p8S4egTh=z~1tyrOAtwjfs8q&3Y8Bm%SK}0DL z90aK#)#{-G1qV_@2nyl>iyDU_4mv36K&eh@2|{L$jDF|do7eXo-2D&S_qcCz_r2d) zd#&&L)>`k6H&4HO^YqVtwIkD4Q~dJPuY~XDXa3@u*|G7vADHjnn7uySywp9~Yo~n(x;k63j)}b2!7_znq{v3+ z@!@OT(_LRvt=S3dNLpPzFmrIxs~~Jj`0ViWKg{nR_iuF1&U(QCA9vDNl{K+rHYH`n zF|%S;dE~qE+p{L}@bu;G@iy?^Uz&etk-hdVXJ0ZEt(ZJHsbol$oC?YhXa3Zk9{+o1 z{@Lz5lqF{wq%>ZOBw`k-D3z&FsBwJx_w!q`g|5X=47t`IwXZdDDc<6a1yPJV;_H4h z>l>gnoVqg?ecA|^!@xN8{cGKsMYY;{Z;eVqXyFyhD99=&3SO#=e4)G2Eu4=Q2~Soy zr$Z1y=bA#yPWq~I9L{{Fd)N5tt@(?yg+($;(1N`&x?1ByCPJPOjdhjQVKiXH6oy=E zMs-sZb~yR9?%a9p<>x=V|D}t2&ph*Bzn5!?CIy#-bhuWELRBjyX&aP@n#WT=o}#M6 zcwgs`tR_QDS{qrZh@65gb^PLM-4ABh8+oBU06zN3&s=)!@sB+6@k^~bJbJouS+sZY z!QuW_=I>lIA{t(OX?}LN^Y8hwg|ptVOqHdwnvDuI71R{7WnHu#pL=C~rRxnNWT7)z zp|tcODqF$FK;DtkIUS}}6)u8$iDdEGB@;{zB4@1s>`D;GI~d);4iaDOZFcn2b-7M@Y%9XHCo%yBd&w$*$r0^W9mL7%o!^V0zMpO(YpT zkuz?}h#&BDYmHbSX<92&or)SY>WP(7&{q}k)FqEkNbr9_(R-v=Ixi!%)^IE`1TRd8 zf{R(vs|kA&?CMhkaSG$&e$eObV{cHa;#xr~=@}vb>E-~bKuxF|Y={Ku9w%yL>x_@l zQ3j{HWypre))thRvgsbRT3I9sd18PC+H%By}B;U8Ad}!>hcDuqC)LJ0Pur;AVkU~h97Az8Gu}V2i>szy3%P2!gy&=ey@S$=R zUU=gRp*V-<-i_k8`qS>ukp0cb{Jk&0w$x^1KSi=X9G`V>?MdaLS%M@8#<7ouOtMBt zL)ySR*W`kVMiZPP>GUA9ez}zKdCBhf;nqe*A z6~h|1OXU~C-JR}SFDqwyd5grD?b;zEv0S{R@Kw=`K z1?+lZk_qV&XKy{@UNqbpn&Sgnog{P2S($YZEzD&Qiw5NI@TKnT@O9I@V>o%MJNH57 z{2>d|3QtBtTC^2fGDR)X7eGKvW{&zmIG*elQlcp+)ySNXBqWc$3$dD_qEnToqYwP@ z__1%!uD5b@ltFQGdD^3=TUU3_%KAoR%PL*-tssvgYg2+WS|N7<<(jm#(MaTNeCQgq zrWXPfE&{TSW+ajD*ryG4|O*0G{iaHE;yRR4s+MUz?F@YIFwfi>eA z*kO2mulrORd*x^E?M^IovcxbRnTtVf1&9Yb{B@Hl86LrQ1jEs)WKuz=4c8DQMj0GB zuNa^-wwjd<^e9}ECmQGq7cY)uQWaI=U6Gk`mFq%nVA>ViT9|7;`%Bj^lEe%EQ7bVg zt=39*uv{t}l_(*3385jvEvyZ#s#xKO1?~tA_Q&Ox(nRk)TAf+Cgar=GZmEEL;x*ZDJNtr)l^MxRFQ+9WSPfdkkxVt{B$B zTruoFpXl~_FGwd)LQeCDFxf{Lp?pRvphsiYQ8=LqA}0%)DxD;9VercV=8)M!0G91y zPwW9a1)u;J6u@7&HbIbiR1J62_~qbw8Y4Zzba>M;hfgN-}dQ}5aHs>UdR5Oc^mqmYUu=Tz#7f^O^TqoBk)i*Cay|NNYSf+j=Mn3>rFP+&i!Dos&0;NpBdEM z1Ov8MlZ!DLmo*n2Wt3JqilxWNYe6RET~9Yhjz{YaC@+u*vngDd$meoACDL+8*qmKs zM|K?5C?P39UMC5qU8yuA*leN;K8GNoEral;>LwVv@qfP@o7n+_=H&)ExlfiToVL`g zY_N%1CE}DL@I+-KwIdVAW;=u-I{KezOwPj4s*@90Xxz3H`$Z!EbN7HFO++s{Ov>e&!IH!!lB-? G13v*Pyj7|I delta 1971 zcmeHGIcrrx6z0wg1fM~J22+T7304}+Ea%M9C;=@5HI|A?m^m{8b`~OPp`eY+54hO) z8)6Y|Wn*b!o;HH7N(k7bk(3s3UJ^tbuZ>;$Z{~dK=JLem^2E|$pP)w+?%#dj=29kM zHAs%h`-njkCIQ@JYbXRtCPW2U+Gkb2t@_oqFLe|;rkG?1G64_L%E&p-&N`GTfoLAC zR!=)o?a{Sr;aklkS+E+x071ycD2pOD(R5YPDE46BX`^{G2I+HPQe6>97=@%ov}`0k}2!xm9p5p-C$GAxm9*( zR}Gbag3!_^99hMkz~~a?6a``i+EvrZU|UW2`|;Gw4;gRXtg}<&!g4sHbhEO~rfchp z*~EzhYRFiqN-0Vd#L;pd^Dlj)yt?{d?4N1}6TKJJldh;{X6u=YSFbN#UO0c@(qdO{ y|3r5gH*;&YnH=v;pXk&!WG9>c27BJUgS|D5ny|OVy)~xrpVw&GI|q9&_x}W5X+I|b diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index 8f2157fbdc2d6cd8b7a91ecf305d9bc1041e9f35..5ee4aa04abe1fea490a7075ac01f8a09d30a9cae 100644 GIT binary patch delta 72 zcmaELjpNldjty5h4b6;73Nkawiu5fl4b4+bQc_cslZ?%b5|hmm6U|Z$%*_pwjm^wW cQVa|Xl9Nr$lT4dgx!PH|7`L->F{LU30I%m35&!@I delta 72 zcmaELjpNldjty5h4U?;qlgbJzEcH{F{LU30L!Wt-v9sr diff --git a/master/.doctrees/tutorials/datalab/image.doctree b/master/.doctrees/tutorials/datalab/image.doctree index f288175e090cff79dad781b6e32b4a886925e6d6..f82d8d8ce92248037156cc1f33d191177ab83073 100644 GIT binary patch delta 31535 zcmeI5|F3OlUFWlV_SxqaE^{rkrGVXgQ>5Q+IeosY=gXp);S%^k1u0;x2u7auJnK=$ z8KHujkd(ILmq{RjmaADN3bs)k;y4p7H*pI_dap1u2@}6G27_M`TQxBgElQ*K119=< z_S)yN&uP1sf51*iNzYzqf7bKm^ZC3#@Av0(`uWc+KL44;r$2YKwCeruefJOl#E;!s z*V3gbwQX#)RUz6CY%81-QCn9fAw-OoYs|&Jz53T*wM`grSJH!qYquY$EQz^% z=;B>(o1a=%$qU(N(YRVx%B5NgohxaCiCG5SmbY4rJaqA;?_8W(iX^jaq>53q$!x#l z6|=2EZmn!W|59TQUHnEWFIAfqviBmyRJl3@mxI;0Of9cZ5S|;JDD)2qh$j0Z;O5<7+lx%Z< ztHvI>s6O@|-*J@}-J}0ua_#vadHNMsv6_dTe);*|dn!Krk56?Ueg5R?^B@1}Uu}JU z!}Cr&c!+5o?ZsgRBSuWlVzn%UFTG_TByc2 z?Pb$%-Pl8`tM?}HV9(XM3%5*O)IIcq$qn5H&rF`TXPnsV;ceaZXC|*6erCO)e|PMe zS8Tqb>}A{Cb$asJ=lrtGplP~GExu@=6bD#M^e?_|w-8%WJqfgIvzj)i^bpN~kuDQlF~smH&5y_4T_;)iEfpSq*$oK{(>9IKXKT$x(cBm$XgcF}s}yj?GM?4i|6l&$lG zWLd{XSz<+#n&8MZI>nYS+Sod-ziaHF)l;vT+~=0o>o(NR)gsu+2-i4C2z0G&8d+PB z%XckC9y%{ScKv@l_v4e*xgWpk;on`xx+U$%7@EdalH5~~{#4N3VuXmhx^Q9dN2iO( z(c_|qL}@E;RimTxuBies)VgN%7Crmr$$|y8ZSp!*S>uP!lgYG+u5FEOblb`IO|M-& z^1|7l@aVAF?!zD2e={#PXw`I=&rC&k`-k_Rx6D42fD-CjH5Ip%#B4(30FAZICcC=k zYt#2kZ*xK@B4w9?z``f=$`y??`2<^EJnn1d#6ta$RV$=oWi zs!D)XL)2)R(0~Q%S|?##s8`?eh3R7x;N+lD+271GY*22w*=K)q|HX?onI>u5`r3zz zpj<~28{aCgiHB`iJ^HCV+zfc%3LT8hvE@CaH$byWr3jc*gtf>27&m+3;|HIb+!(!Y zk|oXNsvQ{v=pGBKz0xR z!hu{2o8DYl(%j7e0MfJ2bz3LR{gn8L)NC%x1Y^0?BX{h-cX}hoMipdiIg(V@p$V2Z z%OR9!`z*Z9*Gprm)w7pMh*U`qgu*V{M)>5tuBBZ){P^DQ6xcCnwNKX7pjESpBJ2G2 z`oG-2^$sPr{LUGrWK*XE_NcNkO-xQ_PgpYqzff}W(Ls&W4iLBd({`2Ug)gi=gFXa$G(7)ZTkZ z+&LzYSB}*2QU$LaU`!Dyd?KLqiEhzA(6pospTKBd@vTiZzE0lNM#gpGykWKcPkX;M zS&mq3j)2&p*>9%1n-`+sUgZH>5*CKq1AIu5Y9T|aI;xd?82qttIXMf&CD1fggz@3p zx|sN32rUWw$&c=niz$joBUB9@){Al=u$B<{2Q-SNKf?G38`+p_x>(dg9Aq$;Aj?^$a%~Ii{1Ka`V65Mg~=J^aN2@Jsgf; z+EV3pPu#P2l;dE&TsF9xw0s@VoB~soh?-gxb?CV3M{YJ|y8DG|XK!8N)dQw&?hCkA zUpITf!p7hNIjyBct}4O3Nqr!A z;4}Nb0rqVmcD07#W!*NBR7`|tD?qh|=3Gtc>E|blVXLBh%a>+yK4KJrEKBWn^P=Ee zTYCzA_$V)3qdJ1B$7G_mYSFf)5>;bjgh;7%q+lbli+U*Uu%x-y=(T94=;jDrRwj5DQRV=g# zlB`xMM=c3y-aY!o{iC=(O#gQG{`3B^+~!A)>$n?@T-4_H(uG*y4myR8mhtp#b*{;j2oS_|XcA3E?Q{ z(097&4g~Ul5v<;%7EP{i#t`i@ezN9BimLh;ndD=(_rL1v42scPT zSPFugI7)IOw!_-%7Q<#u_wYUYu6y8L_ij0)^xfi0*iIx4pc7wEDG0+%#FuSjY7%d4 zkJz~p@#C2pZuqE9K*QndncL&eHnwj^8E!eYw!VxL6k>3Ax)Dag*nt6q1D_)y39^^n z;FiQmaXTf^2)GIAf(fZ>fo4Qik;8_bv=t0mQbnV&l{FUTlESZ!ZA-eV>K>Z+jy7V} zcir1(Z(NR;UGtM}*-C;pOpZ~!8B7O7ObfYK>QP8_NBmw>lZ9R-npkKYG6FS=gK2LF zue_V>E*anAJWVq(Q6AIvu=yfdJ}- zsc3*YH;^hV8{I%Ts5bz+{3LjQBavjL$kk_d)L0d3z#rgrnIcxBYXkaxEwJ{(k?{#h}jM6 z|H#kG)It!4sJVoODWzn_AtY~$SRM*+tX3DkUJipIi_K+=BdR>SFQ2A1Lq}Hd>2QW6 z(e=wP{CZ8w(v*4h7u4_|oFXJrV++UJF9UvY&}{eQ@1b3k(r&=&W);g1?7yu0@<(Pb z+9#ME%I>L;%x;)#VT~sx0}6CyB&D-WZ4K)UeAB?U(F^Q zce9ag^To~Ha5%euF}yOfqRC1o*EB2ivtLG}$qLzo3J+F-5ab&wh#)EB1x+lt=xXwT+22wR4BM66CqFT} zdpTm#t+C=+3ArXV^uH$%NCgD0$fCeTnD7{UpoK*VUcL9YCBPW?Rdj(!B@{A9(XlK~ zi3g;T)#~#3k`1^NB?IV&WPqyJz^sU@C7aN?e56W^SUhsJ5sQ5~z}c?pzVlPF<-A4U z5hNjRc|lqRDx@~=$pQp=7gi7cbwTl9N=^*eD=4!`d;kj)tE8|5-cmfv4^EF1HVsXg zQEDPWRu!`;B{gc&b~D5xl}W38-1MUF=~4a8o%$t?ADp7?V+{ZS3fclhGtt-d$yC^iA)Xy%OXQBIM7{fUWZ*urjhKz=#5QWSFU?A3TWWgH@C{EnQ!p(I zYD}Qu7N#&63nTLA9i+B70<|jKTuq&c2YT=cEehEMQ9@2%b@eHMelW5s6artv#Uzni zsK`j~3~>Z51_|MaejKyCNpHip*`6=Wz84`zkxd~gQ3`2VsNg@Tb)gnz0E_#L5JMUU z4rhyKfp-Ozc~J)ky#bOBxcePniB_l-ZAz3{+rRSwO@pP#y}3gAyc1Gj zxYO%M)gC^m69nY&6|GMcb0fPauQ=Pts$6llvo|`#dlC;(9!h|cTax1pBqA^|9L3N? zRYsE*Sqp-{bRVDzXYL;zZdILtHfxH%rHzXkkM<(8Z#o`4`-k!ayF^^iRfpRiagQy( zIbarU<+rDAnh%@p&c!|1JvKYIdO=*ax9I!4-|FhK&KC~~v7 z%MqCe{u)LVCc!pxb?<9tk4+Yy1XeVx3V);Eqio=QibfY^gfOw;>qgA>eBENiV)wwA zgS*N@I%$VAt+|6FS_li8KP7@5QEe0Q7BqlC$&(2l|%sNR(f%1ze`yeXf+f>cO|~O1E#KqpAGm1!e^z>-bCF(ZlRLZbpB9A ztg{+o5VenJ1JFQ{{90HDI6aDS@FQ5EhopU48!_&RuYEWA+@RT>=D##MIJKk#ppHuP zAP~I`t^;u@B#jE(Q$ofOqXmJ`(t_<rK5G zh;H~T(GnfCKl9bjYzNX%8Asi@E zM@(;|v*J?=4VM8$ED6vIB?vlG9GMh#8Mew5dcHIZ&LuIOp9bgxoW+2BK_|&kub>1% zmZc-=8(xjtvfRT2SftB^+Z?&`X!3%FOi)vy8Tv|Q#B`6amcynE?Uc9{b*;d2Y1|N? z0$Q-ZzC;O>K0}KD_4bAXDPars63;^E1mxO4c}2aGtx=-g2E3I1Ktso=pt?W^H&hz5 zr$R;+_R4NoWMj71?nM*MkZG|+IF>Yar#ZB8D~&-s(KFB#9$Qp&@R88yaicd!^IlR^ ztMD60oZmXsk=;$+dhp^aEg|<$?jJm;6Wqq|4VCJ+caCgcsmhi&bzi@AdhL98Vcp~3 zGrhTI9A!2HY8n8+^l)RS)P!?bahVl;sc}qk!eh(5r(Tn4NdPEat_E0UYrK2cB7pw5*@KZ;#~A$If!#eGS;Qhpolk*a<`p4l)@AsU_lBp;M+g%NFZ7sLdIXO&GgvNaY9a-(h5SX6abaUiYaMCXDMb9gK$=*LnC&~s28}Z3 zvTm3@f{d>`YquP&p&=fa2$xh!2?rJ+@p@JYD$3II@vB$iM`jiZ5<13%(EBrZP{(~} zidqriktMl12x$c1*1K(I8?)V~IFy7T+sB;E(y0#_ z4vgihLMOJR)C5iilwYy#bia1fP*yseh%k!oFro+QDV!*(U)DquS~|bU*e$`-U^0>= zS~rb{+*k6V#0Ry2?rD#p7cGZFwz*G*t*b`t!q&-d?RNCANc6M-cq{`sr7^XpW2r%N z%tS)F=>;cG(6Iu9T)#H~v1o>Y)f?qGm~XCw;S3961Hh5h;foo-;1Kaslq}gY)_?}G z$=9WSX2|xs|8e0)OtX~lyVLr^T5mZWUtF*PePPnz;PgUhPX`%ud#0sc>3PS|$(q%} zKYaj>966ZdUN&+sPk7nLX07vD-)B6sqMmMCT6#Bt|CHQF926v>w5swWrlq1pHrx!* z7?h`w@GK3Pq3O6FjPetdw$j11fh~Qfu`{#)X{2iiF`DqmaGL+;Dl;V^t?tm}j+l@! zX>MANT*csG?7D0_>nQ6QJ;c9j^tUfWTM!-I`vmUeFeuslHLYsS_F} zIAp+mnYtiG#(Fb1GiGt!Mz$#T;<*iO>(vE5zRDl^?LsX=Er2B&_!`JIicnAwft~&p zSdqMvA1zwi$RJsV27fG{aR-Oa=mdEVUpt zvaE76@&H1>e&}XfG|0j`7exc-Nc%0Uy#-V;aumr}2)@m+q=u|RM_r7OiCf|=?MZ1#8bBMjSiJ-I((cAd}eT+7zWpaauoG^tD|6 z;sKqTN)xcDe$X2#h*5X}7}1)`joz30>4csXr+=PeT|=`|WWX~};W1s6X@W)DXzZ1e zjmfrQ%OwM-5xYmD38&ZjY*DmL=6S*Mw70-=(6!dmqKL9gB95EfylHx*X+SfYhk^n7 zQwF7ZKN=8d@uZnBtuCG4yEM6xYLD_0`HIe7*dfNX5d>TC3#)f4dbCOp^03iOQZ7vj z1NJ)k#e;V-C2=UW;bXxJHbG4>s03pTsm}y0+z36{RMr;4dOZ?3GH1C0Ig!am4(3FO zHgX$JlxPSS0~=*j0gV6jr?cysFdtq~_vrsSct`iS2lu~!HxIg-2i?ts_T$RCdC+H_ zLfy@S?&d*v^PszV(BXm9-8|^#&mD}+OYY`Dck`gTdC)R~x|;`mmQmVL!j-Y>-8|@S z9`wrJ@)?TVu%HxIg-2i?ts zKGzuP(TLjc80u~wbT<#Wn+M&^gPxp4-OYn;57O@DLFq`?&4V8OrRK%RMB{EA^w`Mq zZXT5W_-7eI-OYpU=0TrhUiSohxSIzZ7)IUAgYM=*%YS&K{3V0kJm_v7^u#FYZXR@N zVrF=3ayJjUn+M&^gO)MW-8|^CPt)$^L3i_@yLr$usJoj7-TV={-8|@(A=KSG=x!c# e^H<+@^PszV(Eg7!?B+rLUGtzT=0QLHf`0=)t}c-P delta 31625 zcmeI5ZLDQidEa$>?>%G3gC-{9u>tv>gK-ST_Vs#yF;ul95-BMJC#15-i|AVWrEj$M zh$KysjP0hR5>(hQsdl9V3Q|Z&LMxk*IDx3xPDm=XN)yyZN~5asv>z&znqaHY4>U@D z>+Ex9&b@)XzE|giNAlc#?{oHA&&&V+f1c;gmp-@n(&rY>eDMa^yuZmm`{>Wb`?|i7 z!5JlNmr`r9YiuWt@O|)2&Q0fYt4*)M-gcrj*|t$w7qSbk4}EK0 zf9d%j{3q3iElZ0@eb>dPL+DIyW3iWl>P(|d%-wMD)w7>pRvxmKAA9f(*Dtfw zS;;zFTMAb+pp8{($lZJ{?Z@3)O?4(zkYb?#@P** zKK`};vHid;m;TM4pB=yX@Y0|D`KKqob~wEF!0d*Pz5FZN&uk3eK78%&*=sMo?v?vb zfAR9uul&2~7TLv=Y>)qXV@#K$Q>~W0($V_Rx)KBbbTR#mz5JSQ9-UpfCMn}{?^SP2 zFLX+o(`&u5#tCJ|^Q%3yx?ykDoVhO8OHY3N{P6UvX15L>I5+#QJrm{T6z>`?oSWT0 z^~Cx-|JT+NZ`gc$Imd2z%h}lj-{FhnK@Q(~)$CWco;dLl#`B!~40o?Se{S~6*WsGR zS*Kj5l{0;^p*N;&o2Hea!L`&nW@-SKnH2xO-l&z0+M6#nm&t{+<~Q@>jkvy5{hqH_hf5Aw%O{pH=O&)idvuH?ViN?Y8?w62S~&91jz`Ns88i1pFc z9$L*sIl4$H=yf(Jr4Bc0W0O@^vPDb+FCCAr@{nD<^w!y9ei5=FQE6|zkfuo@G$MD( zaT86jZc{NT57~cq&(F+O_x#Ltzxq21*JK~5XqwMw8q4$iMW z`Re(f%!t%UtIhD?4;{R7F>O^1uYYzfhPys|aO2WNEtHg<>_Rep{LoOY49S4PDy{8S z&px~N5BC?8c8Z2_O8LNNb%8?Oiq0h2hE9dm%kMpSZnp5DQGue*U0I_e87W&QLrV&F zZQlo^6`I+wcE z;4(pp)U+W2Se)~6c-il5US?6TJ6!pLeYtcMv*XKr_ut;14}bZidvCngD*yMt@4ol_ z)a{QwcF*$mrXh%o)slBH8dqwC2!g!dIYF{t$&c>yW)*-nUcmD4gAdIfuiRCCJ4S!- zp?AOM9q)YG_rLu;6%X|%pROF8zWt}}8UAK_=E9=#R>e=hcX;}J^Mgg~+XRx5Q8@5k z_Q~tManUzP#wK(tZlgq7F3>X&(pDN^X%N!sn2l&;O8WCJmSAfEpkDJ}#8EmKbL@lb ztTUP~=x%uSL)_~+*lI?HoB#E}L(6HKCJ!&1+rRJ4AsBlk)>ql}KqsJ2R!wKDk{Yx=-}Lf zkKVP=3?qUhb%f|M89;aoy>d<5q|RtvD`JKK4c;b$xavAtusEjH`=pos&E|->N7n^i5Am(Soen zQ$Pwwv{b{D{J{Q~X3L7%H0F(IgM<9?89%)3zaPBm9pqURxfHUIg`7($0x({tMz>PBKz_(gAjOa9t1m@aODZxoPPZsM3WXu)BCw>^ zZ$rt7-L^nUQMG#&OWwJF3rpA;ihxT^_2mr%88dVV z$Vkz0l<{?iw!MmIVtorM2VqDszLmwnqZLk@QX`HNM#bzpVJs?E#|pg$kxzVa@2-1P z*s5wKL6xG+R8r86jIkpp7X;}*6jqHHgW zeUN^5@!`FjH-$|}?I1lGvCtx+06rzSJonC9n^QAlppm;(?3>|Vo}d5da@w@TWzIo* z?!S5dss%Gn{_+pWR1+Y(Q zKqA;<1on%RyYjh&%Yod-Cb&LsOwd+W&sj{w=pnzSZz@p5Hn0 zwZ@V{A_#+oW8gl?geG?#?$?{vnoSNR92=Wj1k6C8Ai*QDg$yx5Z?Lvqz3>YM|EkCe zBwnNj+v6fM6%ep3Ke3Ud+2s2ZAvSGR4X^X_cP=Vshv!R#eZkLfJPf4m>{V(}j9_g! zmb8HgE^+XdlJ>U!NB0+f*P*o}TXDkRgUZ5|`7V!Pjpw5E5xQ(BtX7Fh36k7gCLL{L&--)#WNCu*#N z-XYu}Zb^W>alWI9dWGFWDnG8?j6dJLQ-koYW+0lo`GFCCGhT+}ww=XMZ*RqH&f>o1((-}9U z=(^V~J72)q-I0lZ_ouH)jxtd9orG^{bP&;ieUU@asiBPq z61;l(e?rd=JrSOGU8hT`Ad%A|X{=Cm@Hm?RW%wF9Lj;+=qf>ON;+3bs<@DL*bX5dd zR9>xI@J4qOO%Di^Nfp8$WJX^`{-)&?WXQ4Iz!NWMpn**ihrz8i6gfyOSqc#^SU+47 zLJmaUpA!(V%0{?MXkdaZ-}*B9nz4_yqz zf*^)kNTLz+V&FF*+C;}jujEsE7x!Uj;mkFpEwB zLFhtP5GYZQP*1^b5ZDgkb@26Hg^<&7P0!$|&5};7-7i$uuYNUj5I+OlkhPk&$u(6n<5UQj`@4cegcz>oUm3l={1){5;g0?3MOJ$fsVchm4gpP4TYi`a>n zfqaX=gofXCJu-3MA&}FaD$R@1VG|Kap(Q(jF&fpCEJE7hN?aBOsCmcy*3}c|&-~hK z0ct@uvb+rqNaN_Qkw+~RhKRHZW_Rs{2$U(?&GllK2w}EwXT;q0Dp2&P9UcMnaEofo`t3&98JD1T2bW#YaZK2!X(PpG;3z`QEkfD}{ zM8-fy&43tmWNwXn~odORxvx0wio}?{N6L3S%M?w*O9gWD1jN6aNy+O z??uJwne8yp60lRhNg zViP=$vabMdWQmeb9{uO@-<&O`&5nu)Qo^L!k-ReUvjRA%n4rh)?iry3cidvNoGav#!0PO7;w7Vwolrc->hXmL_iy&`0T5+Xo zL3ab?r)bPKkGL3RWXimiV>$EFwl@OLTJitx&+fneKEPyjTP%)*D~-1F4Lk^h4kw=v zpl%#IGo(0Nd^^Xxft1s;f~6F1O51ba*ngaU_SC(d8VRX6>dC@ZIYm>L-0j1!EzX=@ z)ZXvPtB>QZvwed0AP*%_RwM#_8Oz0W6Tz3qxH|-+(Z_+{^?(h=6qx5?){F{BKiGzi zT4G^@KAOlxZUB72^t1>#tAYmN9oyaPiq$dn7SmSOVu=`@pP#v&zBdV@bkIun1Y4$t z`RM`~=~1A^9T#azGbArDv*0MwOdUGNQqfqHVc2ZjV;SMFrJk3n0e7c4RT6a9HsmEb z8Qc7)VtXS=GUYgByC0rBcjo>>Nix%I-&x=}Ljg=*cO@$_Bn33kE0Fx7`%6y~kcPA) zwX|ifm)8)`BXBZmx7zNg6Yz8U~FHk@k(b^*X(7Kqm$RK9v6CyTG znk?z#-S;8&Z^syd4Iis?F%gPG?or4Pwfat!=|WiYW?Eu;$acG;Rqo^z5vzFPDNUtv zSng^?tGv~gND@3+0s~sEFN$FZWx5>D2l!xUBr@T8EytjwWDuoQYzQFvb5yA5j7-uR zVD!Qt$CsmwrE=ZSg(8_jh4Fh70;IoVsIpNbr)|SEetZ8N%Zl0U0E2N_MmQtwUINU; z(#d8@LIEOKS6DNwO~O2sh<7Tcj!8#~fj}J~+Q}{WCv0e#Jpp_iX`61_B3IHH;D`1S zcFP+{5>Y1i(3f9VkTv#N)a;kxrkdp|zc7-~v%??$@WG7>wg`e(0ja)-l(gI}E>etkP%KLLP#78<}Q7`td~wMzIX4b+WTMZ0hj%Ho$5Dw(K0;a6^keYLANI85%L@ zSqLk4%o(68%L@}`$Eiq$MW?L#t88sPP~L98*Bn{BRoz@eZDU;BAsfI{XlKx{q&p}{ zU$h`TxrS1eIqebnj!?34Pp1S&kie9io`RBp=c26RtF;LS}@kC*WwCj#F2Kt1WvCwJ;LY z2tOlgDZv^Us%w~jFw~n3k~GtHk*El_s$EFV21;6RV{AOv26bU18=Z?GZ!mfy=z`pq z^AvI(EuF?%=JJsAaKf@wLkwo3)sN8Xp^HoxFOo$WL}XDJWLIXJ3o0Wc(KF~-6gnX) zOn-nhTzS_SxtKO>)+KELYf8vcr46CUaE@UnX0I#_4!V|-39YO11-EfUGzpWX^4c=e zMb5-&9fLo#H;43hP#eZjqxDINjPx1kUo+MT?4VC*xN;zh(IYy(O4_E(W1lyn74e-7 zvoo@u)GCp7q>r@PiZlpiV1l!OV6y!~QR9E%9&Fu^0<_x9YE{-4wjd-Uk*Fh;i#nx_ z)O_?Lh^!o)KQ43>hsjsls3Rm9CRN)4J_PyEMRY!f9}%KyZ=;{Dht&=_iZbqwB-Tpw zByP)zj!{EkCIxRK?dyriL%MOy8R~{HC*~e9n_Vbn)Iur*lLAB9-#->dDwf-^#7$d< zv#;kyz>qf_0tngBNC=aSVF;|q_8^!BEwyNGTjlx?O-wV)Y3Wulg9ddgQ!pCArwmau z2Xn{#HLDjte&#c?!yYQd45S4PgD@%brOML{qJzY%ZAToyb;`ULdC#zrY%!{i&%2or0L-+KSqamt(7RI`UPCT zfL$@nnk>_vtiw>7fV>Pc7Hs@S&(68b&@o$1%Y$;ufG^mB!IP}fPK!5pC+b_Fa%lcR zz*70?DHD7Qg;FyixW{g~UbLy$-$YxSwmlZOCF>Rlbsf{*pj?VCvBFGTMl=WWGN`}d zIS8eMU_@S|?M4ha1q(vh2PdQTjc|)_`|J#|jXK042jqeNjRL4JO|F?tpcK+X+>(AO zmIrx`+Ey`4E7TVh`TG03Jkr}R5_Ke$_zHzZ!#EPMD7r3f6&fv6*|m3!msHtEyQYzB z3f%Nfof;>pcypxCpt=QBbTa`6UI5<{KL z=;aND|Q8LYahR#v8 zX!X$WSgVs?|MVOPT`^mVG+=VlXaSRd>)xo3)OM_~`&xGFnT%UcxG+1SElU>sHEZRo z=e~Myalg8&c{<7}x06o-!-`*?B6*cFD_Z2>-Z#I%I`+hi(Y#-G0DkX3unFHib+apYI2gXnNec0Sz@ADs)4z=L9(%#xk-wF RfkASziFuOg=1GiGxdCeR68HcB delta 62 zcmZ23wOndLBBNn)RdP~UL4~D$YFe_Pg_((wfoW=DVv1>!S+Z%Wp^1TcnuU3CQc`lN Rc~Xk8Nt%(x=1GiGxdDJs6U6`k diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree index 40134de46eb4885628d6398b614274d90e856c91..12c4a09fb32544c3b7787345fe5455e50cf400ea 100644 GIT binary patch delta 68 zcmcb(j{V{~_6_?u4b6;73Nkawiu5fl4b4+bQc_cslZ?%b5|hmm6U|Z$%*_pwjm^wW YQVa|Xl9Nr$lT4f6b8dgn$(VE&06wo5TL1t6 delta 68 zcmcb(j{V{~_6_?u4U?;qlgbJzEcH{6auKg(q95=uB<};t9!;lkXI$1eI zcJhf7H{uj}q@B|#%PdZeiO(;JiO)?eE=es)PAp1M*HKVUPc13Q%uA1nFD^(dN{xvJ ziBHOqnY=PxZu0$fb-ujh)SQ_3lA^@C;M&(=|GhQnRy@srW=$pN;9j+ z)K0&s#w0V@DkF+cc8N_dsAS}vygRdbGESuleM$W$kN#Cm$Th3hcWst02#uug#Z8m delta 448 zcmZ2EnRDf2&J8;_4U?;qlgbJzEcH{$&4A&ljG9mB+4?2 z6Jz4@i(=w)6N^hyi;@$IQq*-6)Ti6;U{suZAVY>Jrgr*8H71$KRvA&$GE8iGK_w&S zE= diff --git a/master/.doctrees/tutorials/datalab/workflows.doctree b/master/.doctrees/tutorials/datalab/workflows.doctree index e67183aaa81c61480d72b9ade150927403743e1f..d136503118c0fdf23a4f905f8d8671da47dabf67 100644 GIT binary patch delta 20668 zcmeHP3w#viwPz;Z?2;gmkPrfdWC-M)?9S|aF$4nP5fDfKc?l-7JG0qcmTcJF7-@lk zUMpZwG10F+0jq7j_z1@9TC0Lu>l4J+t+qc4_I0iDvaPL;R`2;{W@jG+L#^KX``sIU zKPKOvIo~<|bIy0p_n6t;`9j|A_wxFlNuO>rMcRGdD?&!6ledc&QIgy)v&|&9ZGvEv zIJ=#5n{9TB$Z?$8ZLzzoMlt9P8^ghlkX!26m{!z3IfH4yPxqrj%)OsBvS;bCKWm@# z_^GF<^!~{5yD37m;J)=~`u?UBGvtrc`;V-gEw>7A`z4IN$GZ9yVJqmLxh8|jF{0Lug7*%jPjX^Tnxno}aXG)h~ zbvRwkp<$LFDt5~9=42W_0L?T2%{&0jG62n*Nb3rA@&hQAX-SO1PSXHAGi!HO7V>&5w{B4J^(F+PllMnC(}~+WQa+8;2W8k z!YJcTVhnc5v=lxou`h*Brls)N2H=xvT`7$A0T^Xk3ZG*DKAD!n=Ny1frm1{gv7yP! zV>87Rg_t6emj_NNr%X)c94Ib)QeXmVX7J~R2Esp3X!wC*qYzWor$z_2T#n`_gRiH_ zm4lzU9M!60k!nWs)#l=6v`}r{)r=OY&9lvDx!P=KL6@n``&!USwHd5LbJb>}fR?Jw ztSZ#0Hg{KP3~eqnU8VNLn`^5z>Rs{X320`-s|BuGhH`P20WtV(H=2}qr>|4FQ{T5f?2>5bJz`b4aLR{8j48{4MmFs&4`<9!5>Lr za-$QJtZ75Vs*=+VG%G;~zk(=nB9nT1Qc%;kHmDi3FR1zAv!I5eZyK5&7j?@jkaYZF z(DvhYEefx+Yceu7CI-Z+1O)hF0olJ%OR9A>8i+e;Gyx}SG!Vx^Xl~q68$RdjY7?DeQ=HOXiz-ysy|r49Hb*oBMrVb6kfevk)w#-DcRbjPP zXu;Ti1)3FyXjk-dv%o#?U!etKb6ql%oWwHIrcP9?3O&$?rX@;}Q&(onxKeYp;YtnK zjw>~2(`TdE@vaUfh4#(X^tWu%Y#UXtjoZ_kG?(nH*Ie>Zz2*{bPNGj8_#jW*KO1bT z_%5=lu#e8sU_A6)%|pUmG*e}$*{rEKHCI!9Bu?ErPg8zuo~C^C{6ytWMfu?^pgeu6 zru>2VTHU^JE1EMxD;7LQoG=czZ-Wkh--=ij%;YXqpTq^pqjGh3Y5rmtpnA2#mtAOy z+I(^Ws!^L?EI@ThV!$;qW!p4#`xa{GPA!aEzFqUj)=N-bJZ?NbE1^8RZ#zKVe3b?! zbCCw-%vBng2Nr2yPA^K9(#OZ7oV;4Ya^qqR%e#v;EKmNM7N)=wP0hk_GDpd}&rH#;9dlmcO<` zQ+&fRP4Tg1nuPmzYKn*N(i9(Ft|{KPOHgq$+gEFf53bfE?7jgl z#SLpvNy-8`VX3WcIEFSC%El{oc{sq*c%W76K#SO03GezCRpSLcs5I$T)_>83cw8^)O6b407n$N8qrdD$ zb>?)gL6q7eKF=o1zJSI~4YR&Bwqb+NDzWuKLuJ{YhV+A6Ma|s#10|ADt+2R!FDMW@quu6Fcgvkpoi`BMZBy#AcVtg zKyXQcuz_9fmBNz70>B7=M?lPG1Ck&TP#ta1+b6gJ5i!kY2=}q&NdCT!fIaD^E zF)Pp!f`L1LrvA951TOs2tH`OypHJi;{7U(k=GKu2L|8~DUl3vw+#m#C^eagkx9X+1 zuJiSX+xSX?jSU3D3tx$$>-t5(&^hD5BMFg?5R3*-D7b-bnGJc>w!#-CHK4{DiL{5O z8I5j2yh0`#LXdY6uS6cH8+<{d)Mg~P8;%$w9g$$jCj`P;%ixV{2uxY&6(ZHXaP{o2 zxab+REzQjtDaLp2{&w;C2LqUbPfLrU!EwbC#s6CfVNc)aab4@bO=k{-6%uhoJbokF z5`oV0!v%3_s;Is-)xi9Q=&X&!Al^lHem^EBHP*l9m4pD*HF`PwVr(Ak}so26=Q0AnuWRqFMb^@rIzCT zucInF$&hBC%ZhQ`?KD?ZTpX`S-ik%5#w1yL^Gc}{FD|6UmCbILTeq~D=VE5Co?wWL zkhwcPXG8W@;p^W(({WRVE+QD#PHa;^r+>%+s$W=FKaP&mLX%Ns(II;qrgR3>y}k znO5ad!-m1SC2`flhGCTh1281C!3s^Tv>aKyz)^FjR|-kfGBT=JcA3KD4g_J%19v%j z-Q*@qBY{=cQbg!{dAURiv`dO~N)nmslb2PSfFdTXq^e-DZ*7G#Ew3HefN#AN*rcrF z3wb&e8$Sji^$ynv4J zXu8yBt|QUBytt?0i{h^CYc9~^-;~4Ia62rHgHWW%q8DGDq0@JrGrBwCqx*jV-^g=E z#3(~Tl6R_pYbJgRCuTuA;7l3%-D^@E`VEhxgkjXR`diZ#8*g8!VZpzY76~4{UiEMb z@$jw$4V>@k1l2a=N}4|8gWXv1`>_s5Y={hpA4ku1eK}$$(6G z@?Jo?QeJpMJqb%{p{awZ!VL>KC^N8aBnjNoLW*v4m{cIxOej-|q*h{>K;`;e6{|<; z2E^Cq?vkazeRUI;Se1xGvYwWUQ3O_ji4{qyI=&6QfDmFOj|bMqkQGqKToM~}g{9CH zpjF-wwzRm&(tMK!4yL=7mY^s$3*mOW`W=)tn(RCi9Dq;#0u^?F!CJW=pbS<16Hbc_ zh<~Qf$b=9-tcKV{Lj0gwe6IfHqVP3>FiYNHpHqCEQ;QGT4URb%V1iB07vqh$(E0el ztEhrLT8t0&QC!#aa!r7~?h7A6Ujw{~Jzm|3URWUFKQOdWFA^_5n~+G056iHUX6f!5 zmVMp9ha2BP69yb}s|FZz2_@_LZ$V{4l1h1?lGqhrkg9}mo-LMl_s(O8r$14mIq_^P znuvv*JC}LMJ7^A_Q6h(ayvBU-K-oAU8D>0kXCY3op_akacai>*JC7R?d$NGsCO&cYfr*eP!i07`tNEXfB|HZSDok9!s_Y$yu zCDG6y(QbBv z6Das#Ei*e6OH{@}qf$)mNwd;asf>ea#fMI#`YKaNAaXIsP2=F@4V%+y;+#BhuseJa zV|ZOgjj=r>)y4|8(qqE;d*Flf>1=vZsbbq90(e3xzVBgFgT=FGMvkfGTt#@Mg(<>o z`r&x#D|sf$FUr$~QrSiM&nd#?6SEPq%|iD|p5ux)<721c6{O>5(B#sAG|HyMY)b7> zeEuFvnt@HVrE)~{uP7LL_N>XnEB=Hg)8k6<#v`-|ANUixi1=A3WwLKMh4RlAnb(xa z1l7m{l*r)me?hx5Z#L$@S_J-W=>?TLRGa z_~uX0Vn#kG#ee(+arB8&sB|p8_*2AE?_=sSD0nAI@eQ9sC;8S)>NA;o@rhFPbaN`K zNc`mR4l0KSj_aFQ3VX&?@&Qx!h8fI?aCf|S@%BjoehF__;?*)vnf ze@#ep{&Pt4$z@8K7nCV!KCujE{VuII`sdHlE{dL3rlh$YxJa5$DU;KjCR|@2EA=kU z8qUlqOi@B-Cpl{kKJW#an`{gm)XByO-ih$=U=p}=4Ic9)ys)S^@bWJaN1Y{y7lru2 zFVS8)P)4SWo4pKAM*u0T0f2P#5vBzGBsjrWmgI!t*|HO|QplsSaa|T1svf48eEN3P z0pC|0a5I=j>fF^d^D{(0qB`K9>VP{{2M{je03Y5{%FM}3QBZ zA2uuu2WN+?HED53nD5=!a}@h?ZeRZb?o?u;LUck#cXrCJRY~j zX*F9p!3mGwc)WckbCrECuA(h9#;`l&Ymd~bB@hgHssamPx>o-LLHyGSoGDUyH-#tA zk5!OkGz)ci0_wfsm&=%W`bP;bn6T{$dOLku#rmP*G(5u0Tt(|E6`ws%IAKxro|*ZW z&Z|^hc0?r>SeXrUS*0@Hy{Qo88HK7;JoaIN?)NKj)-HO!{;;aMWf$#Cb>BN`9GffU zI8tlzp9<>F3RMObQb5sb zE8|n|dBXU)8pc-?9Q2EoN*E;zd-Q8?S1YKZj`>VIMekK%l@bAWR7H<9Fi%o+pNh+@@X)j0Uqu=v@7y${jh$_E*c94@%-_c2q0lrB_8W(0F-9i4py!3i9vO2|;qkgERqe zX=R4fNtDB_%m{j-K?zcxK?xFY$U(ArnG(vW1!*E)si(8j{9_GTfW{b<0D;QE0(4Xf z&@zKE%`_UKjeh3Z;dH>DB=3I`3w^TanY2fh+h|ah)r;USDZa;4H^@P`Qx$cafdmCZ zQ0C+O&CH9@{3{rqq8~LV37kI`1os=F`#YIeY5IAClELK)6+=jxNUxWoZ+w@@r|4f8 zlw`Im_vOI!8I-`>rlP?HB`CRs2Zjg%yks& zc8g{w@R(gDtHosYxEvzvEk(D(ZsM$Vt4ZN)yoPz3Vh7Rg!1J$V77wny@eJcEwAw|h znYWn*vt+WkL9HNq%qGF?HaVDVN)DbU=D6Ye@HSp_*DwrI-*aguhKm%-pDas*=lGAB2+Z?7S zxW5e*3RbJzDsZA*a0?bUZxfsj6T}P1PODqs6x&YxlDVHMbcv$fWP#fjkA(vklPK8T zcEMwkY<9`Y$uUZ_Z7>9iZG!=b*=FUzmj;Jb-j6FLS}dH)YUa!i!7N(b7Pr%85gca8 z;j;4(EZ(D-IQUvi9*8YE-7czYkobv3;Ms=8)y<2R)X%x3d9Y!d%xxRQfko@8@R)0v zTy`+KFpS-)#d4JGPP<^`Ig8*CU;qnN7jHL-qT9?l1UqMu+^P%A7LOoWI5UJ#vN%01 zCk$NCYPIm9%i@3qiyS*O7bTmCcMBeyn|HzwJlM<*815#wXm<;e=oEOX!mH%sVCt1z z98|lUi@eEV^++C(x4P{Xha1+xHn+uWmz+mp=u=;nL!}PiO3F$0HS2XFWt&i zawe<6$|oeE$zT;_p4n>=>F5hbF|K32|sbgvII5gm})3JTxKxf142PIplfF z&3zN(CsN8IsS!qHN4!AYUM@@5^;{B3ekh`STcUcI`mR>>?D)Ga;c8!7bp!dVBU_bH-?QmhN*js?0cSST`4Y zV-@eo)s3Af>yTws$6i$J^?TsyME6R3JXbe6Pr0W)eTqG>@t-Ke7mw2|qhBw_H;&VB zdX|VT@!<98x)Qy=uo^zu@X>L)0&+w&Uhg*;fZ|jra2}D5+wyc-fDCWX(;4U=8S%k9 zUD2oqK*~=4izCVPAtQc|+>07<)_C2tE&_h1jBF=pC+*kaFn_0?Xx=Gn+$n3>+2I`z zFaG-X0^K{`zmNQR-oGFI_`UGJ(0?~+og%Ftkk$t@T<#&QmNdBBOIj~6aQPu=)$0Lv zejq4__@(i>!Wlm%#3RGuavy13nhuwLCoKjZi}(+aR?bCmxu3NB&?3(W`Ck7CLVVDO z%O>b*F6tvUH;;zPK_hOTpv$j)m{9J_hReHS;bP8#OFyA~Kt4W_3zw5~v_@^y)4Ch6?-2S(gfO=sg# z1v(w|AugP(%g20y?p1mO{A$SfGy}@@59bvArG>gYn&EJuP&YCE15f}bIc4C-gl9b8 zPlwkARVjxGbx+bInv^N3l%uRJZ!*I{v~o8o=>mBk5ADp`ENsNLqq@o delta 18441 zcmeHO3wRXOy=P8lb|E}NLc%kd0D13jX7;@Zfe=7IUNL~dXp`BQS+eW08+JEFR0yCJ zW1$6;dVCax+Vxt+i^ktzPT%{?E+p+07bB?RW3j``s^o zpR*_b^FROp@Bch!9_%?ix#x+={f~^ACtoW2FYdU+SE~kO(d%~F1(zyGip%eoU8?95 zJOQsq_WNbk<5wKcfZbcGMCEvGJlYwP)!xlHGmn<$a?2P;@4oYjvG8Wj*xqxS{+j;N zj30cM8Fe(V_WO)Rbm0Dra?D2?*UyK)kM29KoBZT$$Ro3P8;Wu9pK?asy8L`@lFK`{ zHlftz^4foMVd!w%@ezS>_AXUsBe&~lMA^>ZXYWSlqYI>m&_A@GgB|Dc>Js4!0(;+X zFD0_Z2V0r1n7SqOHj_VaRjvb8_clH|sdsB+BrNY8A1pn3GTil#@b#Vy@59^Ifln4j zM}CD)kat6G!RDV1j)=_Sx1T||R~(G(Iv8W%f0R5J%X$9W43msAY+zQmT@b}UYb@F& zw93)2VBu%2Z5>Dx2cg*qp*aSjIR~M+GHKn>E^!dW8f^e$w97sSpGM2#a}2_#(X#lQ zgl}|)#rTpI*2ZbZ&e&K=r6zzeuJ$u za*=6emm0%Wt?W6*@a9%_r7?W3m0fELm$k7i#_&Jd*z=5Gw1!<`4A)5PxyCTh!gd+M zJr>Fk@w4*`YJYloft6BkP7hDPFgM*TaD5Y7h`VhphhLW28JRQvUHVK(CQ)>z*f%I_ zv7z*Ggcz`|wiZ1E^+JKnq+P-qjo+u0IBW`8@oI1SZ~ zchu{vD~$R2AO-b~gMzX+DX0!71=SW}&rU%N(Pi(3Xqt!@(Pgi>s0$vth`OM|ooNef zuOudGJYY+En4N0Ke&5Z`&oJvq510i!DTjT>Ls4wrL{ZG}QWR}oc7EDqCw^ZgN_?Q? z{0LiSD0$b*F3eCOt|v--tlgNN5vBSrh*F~tM5!-6j#3o;bJ%%lQP(wtq}R>@ZU5du zqwq`zl`&y+WUJUP2vhyM#i!`VtCl zUIW{ZUh36L=s*M2-?oL?Hf|Bk+jqB6m)x?5y5#*u)Fr~=OrLu35s|pR0c@+jjCC2X zpIuC0+;JK8khFwdU@*+RoT_(_`q^@ zt}*<4Ia@zK47etxY&%7F;2etXopaKb@1XwJwt}rs$4$iVsqAEYU9g z=baSHp_LTOyDJAu=@(N{-oAoj*}IBj`OPYd<$)_{n8K^6nsctAwa=`f)Kgbc#>+t*XY53i>Z_V1>O z|Gt|lK5`yayl)Tn?}BE!Z2GqcC^mZJyUlEs;j`%*sN#+dRPm7wRKlL`u;=1s=d+*}+(qa1?ha!Z2Oh1Xxp zF3$M#2iLO4N7GrM4oip8417Z`yLJFI?+>U17xl5-8B1^JW9{ibldtr#^^OV4mjojU z-_+3=3r0KRd;{L`Dx1GxeJ~!3M)*ZiLW-*iKA=j8&X^kKCE%6AQasLwCBGVu_qCfZ z>}${4J*bq5e^3g(@(H#DHJ^ol5?MK}C%uf&tw4Yk1^Q@)XN;OZ>$;B*lQ# z84pG_@`-kpZ)=mosuTf0ZEbuw=#NRUEw;2pax@lG!%_n50sJwQ?~DW^2{odq3J-=v z<)ASajA-JB0vJdMUWxLNXo8Qaf$&mQPH3}Yd`A={CxTKq zyoCo)iiR=DZwkhZzwnW#Sj#BlwMuZCg2ib}!Qdv3Oqtw!O~DNO`={8v-qp)TSC7dw zH|743DG&5r)wiQ>E66SkZN~eaV6D9eCbQka*&{}D`a$2*|6Be!qkC$I>%WG7mf$~g zs2tCDnw>Jc`ATNQi1SpwD;N&*orz#Lc&Tbcog}9gbbRDwPC+-YB-)Ls;3jFK+Io?? z1u{ZPBw|5-X9AW*`HoUoo1_tA47m>#_S8Fmp~_9AlOO)s+J(K!>bG=(X~6KpwS83h;Ha;D`Q zJut%spAl0;>0>aiy{0{7R4{Z_FL21VMXn>dWoy0KO>ZqS#3{Pn{waR^j@!cej!ITn$b89f{*u(X2!@( z6M>M*!p!8`{b5sZQ!p&Swn;l()E`%47ent#$61fEzE?v7&2GD--{CJ#vePYH?J5K` zqLQGJjL;4xkR5U~l8}P1(;IoF#X0wPY)N;jwQG$$s3k!(1_GhscE&rUFtmNr%Xuh? zV3hZ(i7pjXbOjaIRY)_2Uc9kAVbiu;vUfYbo%+D; z+36@;hWB+d4JZgUjYmEdD8qT%nX=^jZ?bi{=&CYYe~4Lzb^_Opj0Hu?@WBeENaH$- z%g28%$(fEmp54ndF3Q%jdm`SPmlJ00z@@)sOTK%ID?+z}j$@1)&;Ee@5Is?bcQEWZ z=3avIv9e_3Lv{~?epQAaev6rJzCowrhL6}kp+A=4(jHW2KA;nO_nmKN9?`_&{#iLZ zk(+lGR|`P!sV~@uY$QL_k)SE%nAw-(LWSiT45l3~|Abv+70bhkvjky|0B;UNL39fa zufu0^c!P=B_=UN1Ydd0UUFwXdFPV0RCHTlvl#lG?x^agH;@Wa-U(3wJ7ko>Ktwtde8v&bDc;s17QtQ9U_8{ zBiC1D#mf`%*zGw}@tqZ19`0ts#Bzqs z`wJ||I5C`@h{ZjOC!73+QMNNia?_E!LN8kfXeDJURN%Zfa>|mYMsn9MXmy2Nwkv>( zl&!ZyFI%AkJXC;>-+)TdU&=|oBR8p1kKDvc9p=Kx+%sk*R_c+n0T+qf)JiRK%tU;U2d{plA&Qu6Y&MT(fD*w zp*PVi8=4Fq2MitiGj-fm209+i(s8$;bF3AMv?dpS7(vi4OjcCz}2}`nyVQzK3&AkL2y1I3BlZxeAC9gfK2PP zhZ(rOnwyHZB{(xKv2rW2sZ)~yJ2#iXr)-@0pIEt=L9?o~kTN_$F}ruKZxk9+rPm`t zM7PnmDz$Ai%b;%>eqULo$98#@ws|EFxHy49fhv8U*^>{gQm#tQ_Hd6esH;lfMEeY? z=;O*5w5v*Q;@{J$TCZ%YBK^A#fmE$$zg4LRKMTb7^YQk*Io;@914OclBv=jJYeS>( zb1S$GUJOVcMREBY4p+b#kR-3@^~(XL>T|ngkL(d}>q>6t&|J(aZW4N-3QKX=?te^x zo~XhT;1fl3yh_Vd1gbTpcf#*A$cEeQM^nr{Ae?~x{q5WilvAyHYDBeu+W6yqZYMJx zKkw#NnC~KtQ>yVp3%Cy$E1~80_RlZG9lN+9^L@tTr}f+>W}Y^A-T9ow{D@B199CGZ zIgA;BC!7WK_?d=csrhgUKojT7&eX?^2qp|%n{`~tCl_&h8D@_T>{%kk}HZT?VwxI<&6{zR-Rt)#Zo%mc z1bnJfbot;r{D5EaNDhx4$|1Q(D4CBnsCdnN$YOe*VEr#VzK(OCzg6pf=cJDH*VP%p z{1f3z1+%(F4`xM8I+&=TM$3BBr-X9>esBTzAzE9b<-7?MXtYo2xd>8f^o$>+(P}g= z&8yKf9t3K6G#h@eK}*daq_jc=CuF7nI4s7wP3R^A%k?^zWZ^n)5rgj3!I&ozB}ZzK zhu3otFz7KIj(LVbJ=)Cq81#|>s9dLNfDRjgKx$?QW@E7G7&wdO4+h~AE!+~bXRsbN z0k6D(8~IgpyD#8IGo|=o6Ia#CFC1B1Y=OR7xvIT-Ri|G{@BAsr+h?2XdFh?rV;o`z zG|dTk!-d>LG|i%y>ST*vs&Kr?v?#kSdgvz|OYi#|-N`3| z+(Lxzx9EMehj9MXl57og&mnZ&qW973bSnP#F0K*3(!o8I+}FWPXV7mfdVc*tpVz{9 zw?)sd0|pM*^_sY4=A9`BgQQo#7FwnNpWX=V=-7?3P#(0V7H+Y5PF8rQjWZtgXHS$N z!K!VO#a8Q};Y=-naF*iNW}6B!Vmc=)rqgh^lgneEL^pC%u8mJ+;DiRq@O$|=GYPaa z1@(SCsBmvZjZrmYw9P^b?71V+4yzVH)1$;I+X!ntb6JKGSfU->{h*9C`3F-jgeK4Y zBrX3AD+wfqKrY3v?c$zH{$(d8GU#cm-XwA-fsQBeH^N*uuG+~JCC6L^X94u8RgZ0v zHf>EpY&{6QZPg=Mrc+5ona6ZsC;E{E-C+Q`T?4k%%o0A5S%ZYtj#qz+Yvx^wBsnCz zB)R>5r|b)OovLJadz?~0al=qaN`K`dED!(K$?5Vq1z8XR@Q<8alAtK6EIJ%sDd3hw z4{p2(Lh#&2Tw!wCUapfV@heWJ>ToM|pR76s!Q~ZHzfX4fJc3*GdEB@@$rU7z{hfQ6 z84?06?&DSsjbQVSprG#S<8n*XfY&A2odHF*t4=xK@jCpX-S2ZLvfJg9TuIO!WqFSx zsy>I}_S+p`wCM9nq9pl!0lVAplHtHWOe(_t_jBVgn3Tk;Z{&W<`@MqXliUG^EPI`9 z!7qubB!eK;uPCD1=Ssq&2N-?`1WsJ~BTg6^0hlD`0syNv2p+G~CVI4o7&EtSweT}V zQSsZo0m-2{ec)NyFM0s3UzGi-V0U_qpbdGD1OFG`@dc(a_~ZRtDek|E8$D{h7 zAmQH-!s$l!`X#62_J|&r;#4Hj?J^1z640)?1<|WQoE-|(qg(O>oDRqW*`Wx267B(o z=?Z`>x7Q^|F1ynmaC&|2K)~(uxu7%^hn!iMLqX6Bb4UcVFnPNl^4DQ^xC9xjv5S6L zcFXW5B&y)Dy9L80kKl5t0guBci2+DqpX7oPmQ=R`8kFi02Tx%c1VO5LWv{BO2|!Go zPLInIkYrE5W2Ep<2#mrU3IHukUQoSmhoFjfyA#w0pc>s!H?m(4{cb^mW@GeEuV@#X z0;D*!Rl6d1B>|!na6#7zsL&m=t5Rz=9wp!tB#4#Y>2Z2IE}!2exfECg1>u%u(XeSK z2%1eLfiok(9Y5k)1gFO)=#Sy_qV!7;9R)rzaLceeh@#|iC;@1flEdu^_*JiA-H@m4 zudYh4vX zY-l-o%cXyb^3JR5s0#hD0{w6$B|>|tp7H%6u7^)+lIx00?;*6=mOOi^>32D3u`OvU zHhsc2&$Epfv0IZ2--+qpM_MyJ*`j!LWme-WnKR%GT?X%L;4SIKS*C_5#;U9rTcHms z@FTNKP3RAmxM;RXFuMqd@&K+cG?kAHIpK-f?$m=Yc%b4K(*O@$cBdYrq#m)9ff3kL zX0oCCZP;CAnmO(f5YrQSaxA$%YQq6C_lyl+S7w^iP3-K^u=Rj?GX4X+@aPE<)jgWZ zo)A&f)7d@+-p+;Y1bX|@&|T!`@zCAy6KaRIVxc4%y+cO#kkMNREr_qXGbb^d> zc(^=IMz@jC&&kL!6D}{1Q41NpNJh_-(Mx1>>nynZf{dEsQ!Zknw@>??CiF`}ByUVZ zFO$)>DhO2QS7bBti{Gm; zO@p@)V=ShrjIpA@VtN40r7L{KigT@W#iZO9Mv=FHBWg#Cz>%9!Axdd`$ZFb;&ZBGB z8fy>RGS((@>Dt2G7mGAn2nMwj4Pke77gH%30zyK-SQrDM zgz!|bGF}%j1bn10LHrNWXekI{6KvBM-1pv{zE|j0cCR1in{Q{n@7udKj@-R*a(gSXGL2%M7sXT*B^9??wFgu9U7ghE*mJ$w^qgapp?-Gn943-S+wdFnVU~vd3bC3 z@YcqcKaOmGLkd!W4O#FhR?@H&n?WCrRhB3=BA0J2@WK@iqIHpux^$t>DNWnUpHtzQ}#z5H?3dIXRTc8gS zW30y8NWoIYS<7S7Pd^^^Hu~_V9t>ve0Z$s0-O05pL)uDgGRC0RxvU)O_ z&3<%x|EJ;V#^v6|b{h6eufBfv^eZpC`10A_sjgP{-f-v4iOKEz!!u)-TwC(-XXo#b zqDcuPY5-5Bl;lCFxkyD3Xlt5rn~U(x%`GSujARZDDQceSmC=CJs$o@wTWlqUD%IF( z$N+eR5M5DmoP*R!yPc!cg#^13%q2)Y@VNxDbCk(zQky6`jT%FaUfT@Kvh2!Mn|m~6 zHZvh)q5@vAfRn}^E!c$9g#;UgT-%IPHIvhl#3^89Dc*b5dCLO{cH!p|>;eBR!RIFz z_lE7UIT%?E5==W)6Rfu)u315H30-k>6FBh6rrBnatyW?r^w}$mHm?-x$hSuOq)HZb zVw~Z^t#@roZS9Ic!N$<6_(~UkPO1m|j~tQF8*fe;UXr7SP{i8WjKotxj)qf(CQjen zA;{#jU)sGaqM#Qt%WCW`Z&hENqvh4=-W%?#@z~aXQ**PIIX?OQyWyjL8Xbsnorvp1 rT#Dj#BL2&-Vx5THNLsR#UNEf_aq-h$C*uA$?*C3inI8Icxc$Umhq6bn delta 3892 zcmeHJzl)t!5anG`B#>y4_@i>aU9>V}=iWPa?i~bev=CgPrDzEEC)fp)5XBHQ7OMeK zV)%@(m0=r+7y>?0m(_;|z2oSAdx+*?-;-@0=6 zhs{Gee~{DJGv|1U(>Bls44PAONPip6Ha5Uj7rjbo-ZPt^^AYfoIf ze|>uY`sABmhTu%GA^GZ&Ftx;*tC61)G-0JWzHvbvoerO-k`G|yuneyuJ|mLTN7QCrhuMz)2E=Rma~xoXgj@vb^H{p%<7`=sB(!}rx%zxeWo z3Ik}Zt4XaTZ84$=Okki!kHuHWW&zGp$)*^JMQ~>Hj-%0Dw;Ek*=t~^G{6kv&eqDVx z8B+BwNG6wBKq?fP?A!$J*#ji&w$nZ}{o*sVIqA3X(w2guQ=CSDvpQb7sM0`?K*noZ z!h$J!Zlx4!bS#AcY?@;_^Obu0z%x(-3Kgj|i`ifV?S!GNv>*)B+f#pfyn9bQHvM^B zU7ZXhO!i!zBoo%MXY{_IjtG>K%X$%4w~ZMt{O=CJ9M|nF^}N*3(&-6+civll_teVy z^T&r3jp$o7hFE0egl&n6_r4gbWu3MyU|s6yYCH7U^v-YU)5(S2{#K;)tFOO#dhO)P zue^4;!`-kqx;Mj>Q^&^}chr+h9c<&Up`LqoHU%UQu%$t<3AHbQnMn2?Q`Oehxp?N9 z^duy1vTH_*BF>nNU2NyeE*rWskSgws+C^@nWR+~_Ab8}onDK!)jvIA}=$noBfYQ1k!vX_0A>|NPK_I8bW-zCR= nm;Cn&VBaO>A>MPUxtr{}q`b!WU2^w%_dmO&pC0^M-8k|Ovyoqp diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index 6428a59c98abde47d0148b330f28e17afa1e8dff..5d501d388aadcea907fabb1eb566d75a25a73e2d 100644 GIT binary patch delta 76 zcmZ3wlXvM(-VFyh4b6;73Nkawiu5fl4b4+bQc_cslZ?%b5|hmm6U|Z$%*_pwjm^wW fQVa|Xl9Nr$lT4dGa<+fuWCUWS?H@Urw*&zI^|%@d delta 76 zcmZ3wlXvM(-VFyh4U?;qlgbJzEcH{saadwQAfus~QAt5&Mp==*rKO>Hib+apYI2gXnNec0Sz@ADs)4z=L9(%#xk-wF RfkASziFuOg<|f92TmWsaadwQAfsV&RdP~UL4~D$YFe_Pg_((wfoW=DVv1>!S+Z%Wp^1TcnuU3CQc`lN Rc~Xk8Nt%(x<|f92TmXqb6a)YO diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index e03ae1aaad0cccc9dfacc6749278086def75139f..b63288b8ecf35e0b032e8c4d01925ca268960427 100644 GIT binary patch delta 72 zcmeyif#cf-jtzS_4b6;73Nkawiu5fl4b4+bQc_cslZ?%b5|hmm6U|Z$%*_pwjm^wW cQVa|Xl9Nr$lT4f6a<;$aWZeFilc|#r0JC=(i~s-t delta 72 zcmeyif#cf-jtzS_4U?;qlgbJzEcH{Ng~L!Md8~e+H|?j$C)p46}2e56oG`8$eFJaM5QEXVN%c{Y7yPV zi_xZ{U4kHVX%RuYXyY%4g#L!nT(3fr@vhnlvpZ)v&&PRYwpM$#R(sagdYR&j3p2Ow z-X6A==>Q={?}Xy$6{3n%YwCs45GbYIgLZO#v-idIL33ty@f@Wil-3JojR8ubAx!Hz zPW-cW!2K97qkmtTS!{iKTeMF2+5WxCt(X48-i4Vkwr64eOL#L{M8zqXAdO=PLM3EM z0yvuq28K+xp1yim*|gqxJ+e|H9+Z<>abqGRom>pSrD2H4C98FLYK|OjZ#2o|!NPhW z@(j>XaIi+$5U7A)lkhZA7rMQ5Po9t>@|c{ofhN#EoimuY@H}O;8BBV#+u)?Li1Jai=KFK;Z9zV@^GWQi+^0upu4Y6WkmJ^x*yQJKb!v;(8>16 I2ju&)Up9ekBme*a delta 2154 zcmeH|OG}nP6vvqeL5c`6-4s5(M4LqCa^`Z(Rn(&Jr3fU%L}t#+gdiy-k%4r97F|}o ziwC1kMY{w+=%qyj?V^pJAQJi-MvtbUXgsTSZia#LAI|@G=A4|ZW!8qXmYmo{aw*IK~r6OgkRTgvdFmEB)?R6{8wY!h zM^qYvg$TkTdYz065HeR85dTQ~h&^LPs45Le+LJNBl|vI0X|1F5+z^TlZTT&+?hlE5 zVZAjr%GJz93SDR5^Ef+QPB+=1^6^b}v~XZO3Xy%v2pEh@F&IO}If{xP{AC+ESR^iZ z%$P$=8Laf4lT0c*uTX`c^}4pFEH1Mn?U`$Ap&|?cvnQa$B?wOFEoIJ)k4DJoe7idE ziPd}fHO+W^_ARphf)KUQI*9B9RR@zW?P~cGl+Vy&98Oa&69JQC5P_-U5plY*kK^-oi%(1imN{Ht9f!pJa`T4%0 z5rBjgI$Erp5(o6i4L8*ir9nyCID2d6pB>?ylncWsR-^`)z$6U{3ZE)GxB zwee1MUG*B{edWps>n>{9s>;0IAI@~ diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index 580a61d626f69f5751fede52134629a8f0184ad2..fb404519c4092d7df3a607ca362bb8cfc71c0d0b 100644 GIT binary patch delta 64 zcmbQ&&N#1~af213p_x%hL1so-k-nv+p?Qi)N@{9ylChalVzOCcqFJhexw%2Iv6;C^ Tih+SaasqQfOn_ixz21vOj4+Y}Baa zB2?`~v0kM}UazEA3MyD{JVg)^ycc^TxycV0K}bPw#pisCoFh6L?+=-Em?3-i+H0-n zSyDf~oa{1CL-~HCU_rhk*rKG5g49SFG3Rz1@8Oxc7QeqqR>j&F! z9BhwZAAo%jwgvkT?8C5oV8>vyGarH73%d_?KkTEhkHJ0;`vmL(*n_Yg*m2ki*h$zY zVGqF`hMk%oZ0~;IOT90WYA(4rZJD_^(p(*7Sp^x&JUn}2_lNCM*Pq`#KK-rMq8|us0x$M&W2bEUKq5kp_s+%nx|$r{%)`P+vz@}Y?P_0 zW+~Z~JRSYC``M_swHQ?; zC8Eko_(0xp3|5JfSaBS1+k?~od)@6()AKNSa{P4D@$laBotvnbJVlX0wZz2IMd20R z!j(v-I$Zx#w=?a}cQ0;D2>-1qWJjtZVB;yKm?k7R&zd=KbTxhrNs4XL~K! zrRc5IRdCG01K-tKfk#_ytXS5j2qlye9%W-T)j638F;Zbuup#;3`j5Jk(|2AN|6(*r zC0VIb!9|iien%)(a4aVhGM7d4cg^^hqo(&oOikzWn9g15KE3b!S)xl<_P_n|nQPbf z`ZLTbTi{t_E=-6l_-v*1!UPVUrtjbGUfr5B7`}M%pHGc{JbLZOatUJwjn>Ou>u>!%xe<1;Vs^}|2j>W=q~sNAf`k32F@Kvb-YL<(%IoQ#b4P}XS?O(Kc% zZjE2v>O;`@Nr8Apa;niIIaWuCIp@SxFQ_+hHYLw0DhHx!?OZ9bpjRhf!R_cK0aL_wB>w((5CN0)?Mr!x`GT*vO*U` zSYCS18eQK8OWOElG(O=3*APt>Y;1{ID-m_hnhA8WE744h6wzhlvv3J#Wndj~HBcUK z1r6_y&~6stw7f6EX*xe7+=;J9`PkR5JWljEqP>^CBZ=(dQ=CW*}%R+ zrpO@O&a+n$jb{<{_-M%+?v79w@bJyiYe!d5^E$N}z?JK#8~H3C;_&ykx)XgXsyPoI zo%7HX$gDf6vFa{ zQPcARw@t@0+XmNC=xyH~rHwkC-XOjV|M zjBGWbS>RJ-NOnjJOp5cpr z{O}XvKRGG1_C#lSRT{HE8AXn;L!A|(I`{l+upXqM907#s%(=+2Cikj6$O*E!Ze za9BUx$mohRHlkXW##|u}m?Hy_rZGTcIzgZE+M~!}(KhD;U0;!%jPYMlR+wFFOe%-! zGKMu4I;Q1lnq!fY7}IhoJi81Kn05H5MU8F!h*Lpdb{`$G`xn3e=PD@(_ps59DNt`f9M~CDJeW;Nb zJ~Wix23;~IuYAzhO1xJ{dMQ$^aIy!ogF=Bd#D~2`|HaN^eTlWA4@b4^GcC`HP@0Yp z`FL{p>x<(D_UWwS6*1I65ys&f6*dgQC|DT5gig9I{Tl0`&fNa_~@Vg^j2 z5yqfdNZd`3Tvw8vpn_T1A_OAtg>1sOn1#zH2oZEEe%-gYVd^ z=R4;fUVr)U`pa+q?xalLPw}P8-}48hCdrnRFeQX+qD`hq60WjKF{a{T)>IY0dU*23 zhbJenkH9_(+kt%y_Ho!vuoJMwnNPrOhTQ_Y74}KkZLr&6pMu>1yAyT_b{cjDb{2LQ z?9;HjVfV}rPwqbSrM`F_nUnW65!F(nwoa4wcxwqH^YHi^yFY55y87hq>G{7N-F^2& zpF$DR=H!hw8D0X~Z^VH(T-|kQUcCL?%Hz}`^ zR*I6fL09FZWn*0QG4T8km#5#}nU%zpvT#2|HJH&?qc6?pN4mzoN{lt zs$2pxECW$i%%rs=Q)(ry(JW$ley6k51j^cpTnT@p714%ZwbHp3u?%JY<{ziOn)D)* zQpJ|4jRLwPOK-DI9HrApznx!wZTj}4>34YNn^Vz;_sv;+bo$lYOW##ucc=j$$3BEjc4a?eXaY&q?ZaM zqa=+FoF4R&Zt6B`B1e5O6yuUPkYUh8T?rT8aJMT?znP0!ByE1vDRkJ<#f8?>R zKXdV`Uw-(}XO72dq0Q5+{OvuxKm6nM>Dk%w@u>w|@4a`K3eGiJV||n$bTQ6{XsSfj z9fN=%){RumDjJd2ia=LIkqo0fjd`lk&J_72!JL;)R9P$F=`Te8x_k*=1? z06N^cVBxh%-*|>v(D2gi_y_1E3p<%@lx)y0t0yuR%&XoQWjQ1-hs&2bP=8rlW|6&2 ziUXKP-Z0BT!h?y$R+YpWbUTH1Tr93c10hdHT1tw72uXS2hW979^?lp@5+Fa;zo8Mm zP2WrOf{oAi=n=qaj=97_#-mvhMW3y$wh-TFk?15saSXnqS!jWlB9e7ct0;>xa#5bU zMjp;WkX1oVB^k6Jt$mUylN7Z$kl2kyAERkGAERmbURGww#WP<~^8RnV@SqT%7h?Y# zFDfD2_$$wAy+%=pCo`iZGC+gY9TVxOpk79*8cJMspOy|TO1Pru#fQ2dOkO#*j8Sd! zt%cyt(~Ybuu(Kcj`TF#9-wJNY&-+GxvT;!Fg0||>g>CS%W>FW4W|R(jl?SmH6fil6 z2qY(DjI;0&Z90M6MY;LpXVafgX2AhLF&dS?4_|@)P^wqF&^K0UN#P?#HXIMXxxag& zZ}}b0eYX1oL_X#qU4kZLs;&kbFhzs_5JCmSk(3lIyg-35QUwU6W?_X(iEV*VDPSjqA2n% zIIFEPIf0UX84rXWkyHp^fkAbhG zL_!`#)9^czF&yuA+5MMfylMEN@9utBeVCBaSQ2!e)+N(>^mz*?vdmQ2qN9ciwX9ah zT-^~L+q2{iK8|wPs^fuPLJa-?G~gTnxnj7*hDR%{UhnAe~0;>8^9w84CuvUdiPWixh?E!ULm;Uc|>s2@lqUr{X}M9S7>XaBEU1Y79DMWYHAVKrr@kLxZM}G`{H(A{ErQPa|8Up?u&Emi@(45-yNIU{r~^~ diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index ad65bcbbd829555db6b2b4a2f9fa83250fcc6834..db7874a9dc5ab908d8c7c96a564f38321b155791 100644 GIT binary patch delta 1631 zcmZpE!qxwTi=}~eD#J#WBbbu~ z*gd_0nMr^0%m8jgynqrw=;SxDf!Rjg5c+ delta 1652 zcmeBw!qxnQi=}~eD&IzyBb9_OW~parYM^IiY^G;vFlqsB8JQYQ{ty|#g-|%TF@CSDT6&3ftOC%*dPZix3Ly2yD2_44=@_8O z$!}fUM*{^G|DYHG1&XfMYR1mV1p!uwcmgGjc(gQtnJU(XgaT7VCB-RXIdQ3BjbAKs zYFHa`O^?Lr-w^6QIe$0%i1F<@NjYE%K&8C@FGi8#n5HD}pCmQ5-@2G9PRU@8osuCK rF~Y-P^SXrC`I8^yb573v&%>7)n~*SNsxLDm0|>P0F>cjkdbkk)yoQuX diff --git a/master/_sources/tutorials/clean_learning/tabular.ipynb b/master/_sources/tutorials/clean_learning/tabular.ipynb index 6bd0ac215..9699fd59f 100644 --- a/master/_sources/tutorials/clean_learning/tabular.ipynb +++ b/master/_sources/tutorials/clean_learning/tabular.ipynb @@ -120,7 +120,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7a801c5ee1e11be3732a7ea01725de8aca8d147d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@46226527e9d4c8f7ccdf91ff5dac4d6ee27e022b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/clean_learning/text.ipynb b/master/_sources/tutorials/clean_learning/text.ipynb index d6b47ffef..af77ff1a5 100644 --- a/master/_sources/tutorials/clean_learning/text.ipynb +++ b/master/_sources/tutorials/clean_learning/text.ipynb @@ -129,7 +129,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7a801c5ee1e11be3732a7ea01725de8aca8d147d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@46226527e9d4c8f7ccdf91ff5dac4d6ee27e022b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/audio.ipynb b/master/_sources/tutorials/datalab/audio.ipynb index d52a1f814..b012c3b83 100644 --- a/master/_sources/tutorials/datalab/audio.ipynb +++ b/master/_sources/tutorials/datalab/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7a801c5ee1e11be3732a7ea01725de8aca8d147d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@46226527e9d4c8f7ccdf91ff5dac4d6ee27e022b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index 744175c39..40b596a7c 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7a801c5ee1e11be3732a7ea01725de8aca8d147d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@46226527e9d4c8f7ccdf91ff5dac4d6ee27e022b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index 4b8205657..6d03ae333 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7a801c5ee1e11be3732a7ea01725de8aca8d147d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@46226527e9d4c8f7ccdf91ff5dac4d6ee27e022b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index 2ba045367..ac39104cf 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -80,7 +80,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7a801c5ee1e11be3732a7ea01725de8aca8d147d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@46226527e9d4c8f7ccdf91ff5dac4d6ee27e022b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index 51da2d9a6..3e5552460 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7a801c5ee1e11be3732a7ea01725de8aca8d147d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@46226527e9d4c8f7ccdf91ff5dac4d6ee27e022b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/workflows.ipynb b/master/_sources/tutorials/datalab/workflows.ipynb index 6bd4ee5cf..0a17e353b 100644 --- a/master/_sources/tutorials/datalab/workflows.ipynb +++ b/master/_sources/tutorials/datalab/workflows.ipynb @@ -1331,22 +1331,39 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Find Spurious Correlation between Vision Dataset features and class labels\n", + "## Identify Spurious Correlations in Image Datasets\n", "\n", - "In this section, we demonstrate how to identify spurious correlations in a vision dataset using the `cleanlab` library. Spurious correlations are unintended associations in the data that do not reflect the true underlying relationships, potentially leading to misleading model predictions and poor generalization.\n", + "This section demonstrates how to detect spurious correlations in image datasets by measuring how strongly individual image properties correlate with class labels.\n", + "These correlations could lead to unreliable model predictions and poor generalization.\n", "\n", - "We will utilize the `Datalab` class from cleanlab with the `image_key` attribute to pinpoint vision-specific issues such as `dark_score`, `blurry_score`, `odd_aspect_ratio_score`, and more in the dataset. By analyzing these correlations, we can understand their impact on model performance and take steps to enhance the robustness and reliability of our machine learning models." + "\n", + "By providing an `image_key` argument, we can analyze image-specific attributes such as:\n", + "\n", + "- Darkness\n", + "- Blurriness\n", + "- Aspect ratio anomalies\n", + "- More image-specific features from [CleanVision](https://cleanvision.readthedocs.io/en/latest/tutorials/tutorial.html#What-is-CleanVision?)\n", + "\n", + "This analysis helps us identify unintended biases in our datasets and guides steps to enhance the robustness and reliability of our machine learning models.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### 1. Load the dataset\n", + "### 1. Load the Dataset\n", + "\n", + "We'll use a subset of the CIFAR-10 dataset for this demonstration, selecting 100 images from two random classes. To illustrate spurious correlations:\n", "\n", - "We will demonstrate this workflow using the CIFAR-10 dataset by selecting 100 images from two random classes. To illustrate the impact of spurious correlations between image features and class labels, we will showcase how altering all images of a class, such as darkening them, significantly reduces the `dark_score`. This demonstrates the strong correlation detection of darkness within the dataset.\n", + "- We'll artificially introduce a bias by altering all images of one class (e.g., darkening them).\n", + "- The correlation scores range from 0 to 1, where:\n", + " - Scores close to 0 indicate a strong correlation between an image property and class labels, suggesting a likely spurious correlation.\n", + " - Scores close to 1 suggest little to no correlation between the property and class labels.\n", + "- By introducing this bias, we expect to see:\n", + " - A decrease in the `dark_score` for the darkened class, indicating an increased correlation between darkness and that class label.\n", + " - Similar effects can be observed with `blurry_score` or `odd_aspect_ratio_score` by introducing corresponding characteristics to one class.\n", "\n", - "Similarly, we can observe significant reductions in `blurry_score` and `odd_aspect_ratio_score` when one of the classes contains images with corresponding characteristics such as blurriness or an unusual aspect ratio between width and height." + "This setup allows us to demonstrate how Datalab detects strong correlations between image features and class labels." ] }, { @@ -1402,7 +1419,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### 2. Creating `Dataset` object to be passed to the `Datalab` object to find vision-related issues" + "### 2. Creating `Dataset` object to be passed to the `Datalab` object to find image-related issues" ] }, { @@ -1523,9 +1540,9 @@ "transformed_property_scores = get_property_scores(transformed_dataset)\n", "\n", "# Displaying the scores dataframe\n", - "display(Markdown(\"### Vision-specific property scores in the original dataset\"))\n", + "display(Markdown(\"### Image-specific property scores in the original dataset\"))\n", "display(standard_property_scores)\n", - "display(Markdown(\"### Vision-specific property scores in the transformed dataset\"))\n", + "display(Markdown(\"### Image-specific property scores in the transformed dataset\"))\n", "display(transformed_property_scores)\n", "\n", "# Smaller 'dark_score' value for modified dataframe shows strong correlation with the class labels in the transformed dataset\n", diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index ce8be3372..7af5e7f6e 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7a801c5ee1e11be3732a7ea01725de8aca8d147d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@46226527e9d4c8f7ccdf91ff5dac4d6ee27e022b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index 7d89efb39..e036f973f 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7a801c5ee1e11be3732a7ea01725de8aca8d147d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@46226527e9d4c8f7ccdf91ff5dac4d6ee27e022b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index ddf90b86b..56543bad0 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7a801c5ee1e11be3732a7ea01725de8aca8d147d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@46226527e9d4c8f7ccdf91ff5dac4d6ee27e022b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index 542b9cfd4..348a544a8 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7a801c5ee1e11be3732a7ea01725de8aca8d147d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@46226527e9d4c8f7ccdf91ff5dac4d6ee27e022b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index 79a87033f..2d80f1068 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7a801c5ee1e11be3732a7ea01725de8aca8d147d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@46226527e9d4c8f7ccdf91ff5dac4d6ee27e022b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index 4f7e0427a..b6dbc6271 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7a801c5ee1e11be3732a7ea01725de8aca8d147d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@46226527e9d4c8f7ccdf91ff5dac4d6ee27e022b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index c0d2c1d07..fe223cf83 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -110,7 +110,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7a801c5ee1e11be3732a7ea01725de8aca8d147d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@46226527e9d4c8f7ccdf91ff5dac4d6ee27e022b\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index e65d991e6..f5ced067f 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7a801c5ee1e11be3732a7ea01725de8aca8d147d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@46226527e9d4c8f7ccdf91ff5dac4d6ee27e022b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index 2777086e9..f02e0094c 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7a801c5ee1e11be3732a7ea01725de8aca8d147d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@46226527e9d4c8f7ccdf91ff5dac4d6ee27e022b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/objects.inv b/master/objects.inv index 0a47f7ce7c9e2779eaeb81a2940724df2a13627a..a324b74dd982674c5a72abde611e32fd5dff7400 100644 GIT binary patch literal 37577 zcmZU)Q;;Z46D>NnZQHhO+qP}&vF+Jo?Xhj!wrzXveCLn*aN@jFcXd`|cSUA)R@PcY zOrY#wVQJ?f~%`Z%4ocMNFXJWN&3^?7~H0Y-4I@XJcse`%LYB zaxQ}3dld^)0w+^jLrXgoQzrs@GXfV2OJ@QzOB+*y->b2`t%H-Pv$LrQfvdBnojHM* zjinJCl*jsE*Ot>JM?IYvzkFYlk6g5O!9To-^D{W{O6I);la>P0v5ESQmrHE63aDbE zC{Z=!BAcltuQ1=Ho9QLb_y>v$NjM|`$#~GjSJRY(%G~C1s0@9xefk6dqzRNEO)Ppj zGzx9IX2-jDlb62hvn4itRZ6IDEE>;H_`5Jbji$Q$bQAPhzSVwjk3u?T8XCWdeW5J zkW?KppgH|!M@G<`Ilut(o8I?maZd~1=7f!Z*{QZdLIdJ zmbfRuY?G+iLHo0KbTP-X5Kr3q<dItLYdXO(j^<-kybv05p#zZGvXB3l}RQHBMZz-Z$DzzlDHu4L6oCdPF!i>99 zIIS)AB%7zZZb2gqB_)?3<+lN{vrLeU4G~Y9$*h&RkJs57!JqM>_a;UuHRr^r8)GXP z?ShXMrhSF;IXbdib)!%`LB|hLtaCuuk3`QhscDdGJdwm9P&KpVrU)yO&rOulO7$t~ zL+M#Km8GMnX_2lYZCuGPp;4ahW^fK=^$_&0>M8Dl1ZLAn*T;Nd%_+$5pgw1v3S7DR zsjmNB?I(&ae+v4_jl)8x((NAw(I1UsJ^rcm^jS%RIOytcH}JEr3}V$z(M_^64yCd- zI4)xXob*m<()g~p!~)ZSe*inW@ZUFJfYkKhABKG66!ml1MogpQEG2WYuSjk44}#QS z)|^s@w$7L_Y06m7Y;9L@M&%4C8PQPg%X3~5C|6Yip948J$tb1NT9&p%%am@u<1GiK zw>ros7d%b0!ZsJl*(aFaWuhCSqSxHl+*>MO;uBaBX6v3kX>zeOb*1kIG}{?%2s&s} zG(@%z+D~p(B#kP?%|w=Zcyy)i5N>Dfg*I(}FB#;c(FlLLXIYI6@9ZQ(Q2o`4fyflD!%4dWzXURN$dQ1YupNW%-{=XhFzenE*ru%c&WYU7>ernzt@!M41Xg!vwGe5 z+=k)|>v;w24l-Ks_7e|P|Hda-uf#UAv2D&f+C1Q!!Itpm>j?Wdn@{AMdQEPM2MLR- z{7E7*KDDz-Uz8mnEt#)w(T3~~->4I-`<4Xf8;qc4;MqO%OAr@6P5G}6rZ&XkzM>mh z7W9QK_Pt7SFZ)DI*}Lze`rJ+42{Znx4^#yFT%Bj-HugCiGDmx%HMyN_5N9^W4axN7 z5wj+8TPaH(O=c^v> zfVd(gTOYKQ0u62|J&^imIUfmEnyHa>ct@JJkcT}DB23ZDc@^;L37`ITFV+W1D`wXjisGkAzLv^mO3>s=CP$aUU^G~_xjKy8^Cw4?)L zZfRr}AXNonJX^;vo(cS79$6@uZ!L$OJ}Gvf+=&%ZQw7ih7JNg%cd&19PmkLYhOjpV zM(z~RQIuQx9Lq^v1wIw~KKkIT~xQ;kub-8GJ(~W+e;pV)y-U;J~R3J5qI4Sw}KCUYF8XgjQhjlI~ouh~2=1geS0xzKb z7*0&-xr!DU8aaxm($4q!Z~bGIl5Kh2B#rJ?W~nQI9n1}b&9SqS`|GU|&QVrZJh&nT z)-C4@foB|kFsW|%PA}Sf;NUi;TC2;tdSGt0;>+q-2TuW&dY z15~wgO8sC2J?0y{5X*`uT8d7d61rc3n8!U~g6G=HhuE z-(03GdL6iGKHu8B&+$z9`ABFNa|2LzZ9Ke{x7BJDc8%f7clDE=_}O~eck?9|rC3*o z14kPb9dY>IkhPB~i|FNfWERFXk5shwTM`V9em6Ws@uHqeAClFGlF|Z}$?8YdRI0g* z7qb>DWprEIuP)O3WmWa0wV@tQR5FeLt`Iss)Rk;D93Xzt3nr-4J?)lJn>;$N-2xRa zqTRg@i+6lvC3c#0;jQ+n3!~bdQ zfo&sUW!ip96G!f#Sc9A)znQ@LW2NcR?GGv5#=0qghE+dj!>3w7Z(G2nL#}Er0 zv~2(+oH@U=%Dp-8ZrYMZuS!I z2~=qx@R}Jv%xa{%%P}U+5z)p;CeUtKP2Fws6L$7_NW17RqMf9;IjB9RvHdw-TXYE% zwSZ72hSfHKaP^9C^*{X4TXeqnBYt&q53N3T>~RoFUQ@{7?|^wt(G|Ej^rMOM)>&G1 zi7u*nlZ9+=ZfUPJ3KP0V37$=nUyk}mOZ}ymYD;eDSNl$Fm}@j{fWdfgle?m@kHs`b z8Uv``45zhw3BGzhu~8{}0`>0|L?D&UYpaLyu)PLNffIeNLDYF?5a z9|t+FH~^9@8g=8b1fPfS;Y)!dmZ-5bRYW%p>_K<@HB8wVmCI9E*Wi|L(O%>{T7whd z81aR&IsB7>C!Pj&0k0y=X?m=i)dCHIYJKQ%Fn}x z&Yvf%XIHheNMY|GVZeSn9EW)@AgGlxNPR4&#xHIolF=ot{~1D(<4D}cg}%B!0-FJ9 zl9OsE$J!`d4-0IIGZ-`&DjThEx`is1KFWk8y~Kw$a+@@K(KEO7!=FP|@c~}u-{tYL zb$9`aGCUPWATyWCDVXM0Sui%w5paavZt^qXroca3HJ3ldJ}z^xna_e^}TD^w9D%Q>8gv+(twVfZeO4Ly34;yc7RJI8`DaK4`@2M1~P zA8V9pOCGxdMaM?Bi?VSGoJ)XB9Tdqa+!^v{PZgHfF_^y$B**4+2`TXCv81MnL4CQm&Ev6sib&aH7K0rmzG(96GU*|R$6q0W*x zEFGjMXUJ}gjry?t49PL5Ab^%`j2X*&9fAtIfk|{V3;hniP7+VfxJQn4rOinnG6nA_ zSyREpL9MJ$q?X_-@~S-lWWIm5VP=RUXSJ-~b=lBUC8NyQrO9U)FdWf-Fp`Fkt09^% ziSl7jzcJMcAUs5h6&XI`)k3)|axyX`?cxHd)f6_nrx?SFu!0mrhV?|zfL0WVvcRGs z0;XcPhwmCNDc}qkm$DtgIv|K_1Ig!X+^3lsGa{r@!#K0oUs9!nPz@0StR5QJijbo)f7e%Am(xItYAK_-Hxw(OM!H3@> z&Jz85=y4P3kBi>e6h6cXRUdemFkgzd!zDdVjh_t`EhoelDD(t@AUTded3RRxzY3Y@OEYHfpAY-u`gJrcz|Y*4@&EkJ9K@5 z;7zz%BEHvv(}=4j&M@rCk3ETU1^uXgGYg%oglAJeSqqAJdki!iE>^cXlP$?_P2@M6 zP1DUmtYL~+u*l+{AB8)N>Jqo=j^$)p%H(Qtt$$02=h4_Wt49_g&pUxqS9u;|$EYN1 z9&kUXGE8166LRF;X^Ig@0P7fAHs-@He}F>1YKXbvGXh*$H~pDdGDvpTX_R2&FOXM|pK0!N2PlYi@lnwEdBCn^1i zqz_K_&$o_Xd1?{=`oDX89LH$&pfN7>@@;-grRL?@@p%nv=9|_FO<^ZjQ7%!9V<4zX z@3$oM^AR#ef-9q6GMg2gB?AK#?&DEbv;7T1)|hX|v*yj4MCL(BKUG!`$$yzOD#}5) z6I{)ZOn>&n* zI!&nl*t`w;IM#NMa#wBi+Y2XeBx5RGn)YjR8%UcpkVZ+#b!Li5IHIfGX>;kvbfZLV zAx+VkSB`=lhN71^V_uF(r(mwCKa7KFJIab*CudDTzhL>{ag9{UWzDX2nLwqv7(nO% z3Pty$lem$I0{hu9e0=U*N$Y%#i_F<{A8i%b_^fMYi0NQ42g7BUp>}IWEc_F?3O!#w z(HX6*50FmER(}%R;;1P0q^N(&Y~6}>5boI&P=WtL?Bz6GY-el#FhK<+C9I!_8O|FtP!);S;HEu8`e-%>rg@7mDB7?g91Py>vXX~`v#|lmqe*rH% zpmwK(O;+Py61d9XfsX|wD<3)kfWJSj!I^qz5Pp$4&@-mB1CAVm<%k;EtNG25rlvVVij8bapF>iPM{myZi88PRvCNFqVOI2SVwbW7L?t)^6_L@YXVm z31{!NKj(P6iXBzESR+wJ8?P^&0F@)1hn$aBtI+6}WY@89Xt|I4p%5cGTKL0RJ|VtH zi2F_25arFFBR8T{P=%Bs3PM+&?)*lJ^8M0-nBM5yaSUHAhoF%W;742I%x)KM7?$UJ z*C;vfvbwC8FugDDA|R4n;s^S2rh#C2)^2%>j9kSFym$YILZN-IJK!Y}>HWftfv8mq zj&3D(=vi5NUnb(7|MDIy>zW00c*$dm;)G$@MS07NWaTA0I~Us{*3A20(%#b}%i4pe z0>ce|u*~2S2ye^8zdCn5z?EzyT+P1jj@lV`46Yq{Ql-bnLXEi{N^~=3w*qC_-F7yL zWz|rk)$#*U1C*ok@PLy?p1RWTkx~9zLKJ}Y#4MelD&}5#S{;w8Fs!NVca3dRDW;}# za~D=nd*TVChIG*Dm5l{mWSPiHsO^0(> z$f<-==t8@`l4Gq`sgQqY0q-dI;=p3(&^GtY*EDM(oij_ZPr|Py^>=5C^V4YxICM*)td~5u&&+v zb|6eyP{16oED|S9F|xFbY_`$b+^J63nTm;AzbY>kdpHXWqmCo4*@0@yh+@Y*STC8v z;(+M-r}zOIu3Zu%Hs+33gG`57n7W@5MiWdu8^otjN;=RYkdWJpm>zh2qOz`<81uSo zF@dtK2Z(4FwLFo$Fr2$B<-;8vUwGcu5_vDG;!;O9>-MPv!4V%PN%Y<+4D7<`d99Uj zi1eV_DMnX%DcBnivEDelU{WJNo)<`~PM6Wdqk;h>9QUWUegf&2d!q?R+wNY*jA_E< zx^rPKt4(@n^w|S;r0bl4Zr_Uk`-HyL-CE9jRL|#;YP`t=P~GNYlf-4et9X6=pCyg# zeKD4Adz2cyJv|2h@b4H1gl-R1y{5|y2SW3o66*1aT`Pfj-a2_fn@-^glP?hHOq!Y3 zsTTseYiff)T?zkps!nT#el$`W#dfLeZm8?wq4k9$(xs3}o3QG}W z^buqr#3UGm2Epjj6qStaUY#UfE+Xxxk&UH8m==gN2L9yXL8c)SJ`?8-*yeY<8C^IO zj?Yv+vV{E{CJ2PK%QqY%>R}D)eHS?bMwSIYbO!}6_pZd#6+NG%0V^2Pr;JBnpqBzL zC~u6bM;%l#Q33eWm{n*ReGFP9Be(=1Z(KI<{nD|>NZIizAwc}0IOH}C*Uy76bgCgF zTKyp)tYIhWtRG;c(nn(0#s*|0ehgp*nHh^r{H*#)tj?lha(`qW?0|jig_dc z{~O2@jlduj3Fze%t*^ZYB(&Vv;5a8zC1+i=I;$yux9o{%V_2tq2(9!MJmr*RLSX@w zZs|VWcu}b?{09|CZM3%E9fsOQD6*%yUx~H@aHP8|o2Lvqe7!r_T6(hSriD~9K4`c% zD%~!lCO&_e-c&0ob87%5iH0Pd&_IY*dGhzAr0W%tbXt3r)}YIJ0n%I711P*mxQ4F< z4NN~aOSLoUh*qOoKefP;;2OW7|2LNr8v~LqbJv>z@Cb?LNENa7;}|fzoaTW?V)^zc zS29WK$l$;hOJKPOz>bX%^m2T>2Qzc;L%k9=7yui{2Eqw>l|eHMhOMY}uj2y2Ko|;p zxwfa7sjbm%h!hWrx1 z#P;0_$Mn%`_-&)&Hnq`b90&^{902%}jYNR(Emz7y(4P#L5INsc*ay#m=ySasZ4-|A zdFSV;hbt4YBIbfj>nbb>z0bMb`Wtp~_x5^Ixps5V0TLgzc5fnD;ARkPW{v+6p|1t7 zi|Nz0mKuraPv57CN+-`Z8wV%n+wg3pNLf7e6O|7zQAmMACFz`6h!C05s3=s11R-j~ zbc+bd_I)?(KZzbG6@S!D$I{pTCiWn^GFaN@+#LT3woY+%9nFc4V*nJOSzS$Y`gNP3 z$M3)qjV#$OmUs&bqc@rCa~tXjLw45A+OGkY`w!N967rGlJXTU3cou2GG zF;aqn_flCv7{Vl)q(c9ZG}I=vZ$HAr=aPsIy?{?hChG^X0x*Xvg3ko`^I5wAuZZ@~ z_7S>y(T*Rqk<4l;c75#5;o13ME1X`aPTFl#nIwdMs7g}2H4Z?a1S=%@BZTq2e}3Lj4H7YUO_l7Y*~}pFpQkD6<)64kdh?FAUa3D4S{i~lK3*(n zAcx$d0QPF~{7CR!g2|Yoz1fZm2*Dw-5%jnX8tcXUaqxeyj&P(=Xx_9r*bmeQ z0~dpK04f4Rlr%)(N9f5t)D3IT9Hu~90LC*fCPJNHc8p_UQf;Ws&%F0`S%mwtcU8!h zOyO9g9{(QzIIP4x5*6Hd0^;;!W5lsr8}ebLZ7k|Dx}Q_5e{szV1uB^^8%>6b(2IzF zGwfZSgf?ka2euTt8fMG26o0F8v29B%-bDCph<$qc#^!4^GcWX_k1!Hu<~mUrW|3g> zt(_(-&n}K7uW~u37)4!3_yJ_IXK)j&muWaYwmeM(d>C%IJw65lO(_$Abhv^-! z&+bs7G9I{_SQr(nnm~Xt-=^Tsk9DTCW34 z#XWx}yu*v&tfcPs;2g%+cvR^MsbisrZ|z#8Hl<$CC>-M9h9Pg|cn!uvr-CvK)v+vZ zP$j)9((v^Kk1nNHjb-|`Y@QqOO6MP*KQWbhq!$);-Sukt-`JQB^FCjSRZ)f_Z1t9& z%Co-&sw-B1=5G5#hPTAk1Rvd-Ujz9~i)OqOKS?!H=`COiyM2a{A?1zAoRw(HNa*Ed z3}~+a@SBXN64}ONi%X4=})clHyGr7k!WovwN&DK z9@S|bSEC+|?;YOna+^qyjJ&0@sIKo6sY^)Dt|OW+>A=xO-4^UqBCX9zr1iviZtXzSG)c?=@PzR$b8bFTFqPp=$D8lBt3mWV^JB1YmE>$ zb^Te?Jo958Z)%dcVSh)o-`9=IIla&yzdff>g^snJWw&Sv58XtL7OSHAXRVOkJBtWaK6!^g-@ zviZxcT4GqPGarHVn4{o}JK4sEd;Lx_%`)hxGJwUU+0rf>Jt9w;PDxz5L}6VK{cv5l z?5g8}?XN4=(7|ye(%i{vOWVcr$J$oW>{^GImkrk_o1;kk5Qt(VS!Vx&B zt@o5#ke;Mv4fjIwmkJUlMQSZlFHcu5SuW&+26bYMO5kRu9VM4Zg^HE1-6q4dH9o_L zwX@MEZFG%PWBc%}NhjoJ1A(cq zNg#B^T`At)NcO3^VmjjJn&4cnw6VIt&s(@vw5mih%b=uX=Fw-V*S>1nD<}}|97s7S z6YER5nwNcY-@aWZ(k_Q`wpO{Z<`KB+)>-K?bYx;%U!0U~V~JN`u6*InAVrxAt=#^Vk)qjT|vfEC)CYEk@Y%?O=U6CNqsl^aPkM9ni;wRzyM zqE;%IZ4c7V{31O_B{IgFe=sXkas74)L4TWggxF^9;Z_)v-AH4)x<1cn`SiM7&WR%f zxqfhAA?YWj-~veYggBcgu#^O&JVp03q<_J9co%PF8TXGq$B$t-JN9&5zYWuTnIF|; zdwFL8m*xPpJP+Y&Q8Ui|F#V#Ql5mvtLtRgeV0sxN9@p>#u$~jud$e!nHYQT5f6r>- z=p9gl@dzIBRmL^&7R~kfUASNZOfYDG8|y@Dop>$1rH+VB248cS+rjdUwx4{iVdZoK z%Qp;LR_=+5?i_dwZD-OyjJbZM=W#q9Sim#MIV`^DAS;tc26)_khQ1=Lc~^(UoC?ho zp(90IBGKT5Fel4rCM*T!DRqk&z4BRgw;(Lh3eOm>xb!`Vp2IA5>q=6Elo32CHHRbnzXZ_GF{IC(b4qeU#J5P3^do* zlTfoEs$PJsn79h{X>V_@E%QzIJ3(j=?X+_`LnbGbH2%^S*C?9oh zhrwB8O}V0`w4nv|99!OMD%wSHFh1o@6Vu^s4CmZ^)WgA8u8m(iah2MWYqcrEeVL8r z9{#IPyu@|Eq+`=+WW9Bd?L{0{6y)P`{o~&-VcYhwIW8(>n&U9@leTmfz}$wNEznmH zg#4#{LDr1u6vmDG*3O@n+bmCT+(4%_T~tG{2uK93f1; zh_xL3aCb?KJXWgRK0VWA-ujiBnm_PQrHZZID)Y>ok5kBvO5m5s-KM!~6(km{aOF-+ zB7;UpJ8*viF{ckI&}i|-wz+-7Q*$bb;eft`{_%z%Wx3_|d;a)1=?41={uIXW4JF&z zP$xSU2Ml*fFq;n3OT?zRmlWNz(hK8`Tzki$xfc_{6qo?Q|J&}ecn!VpDf)bh^q##X z(G#o=L3&eb0%aTG1eQXJp-zUG)=$~;7DH)9%uy@KUC?UI8D;B;nFdLw2br^z4%7^c zr#Drc4!Mw@5V~MeuJq0xF7`)YB^7gqplr$rPkRp-15#UK#6CB(g+Jqo^yceSz<0F% zXL7~;_?o@M_jgYmXy)8TAv-lo;)o<&xbTut+xgbI4EU9WtvgyCA8gnuRotJha1i3Afizb7WYJ4SqbCh3U$g7ZY#BzUX@w= z^-BKQ;ygf>)4gdc&=xrh^fr#0Rj&->mzLlbX=8nV*hGuEJ3jv>GXtqgQ~%*9We8(^ zAYpR9M!DZ*m#{$C`8zl1_sn_CW1yB2sfZPn2ZspdO(#*PbC+oo?(t-V)MZ!ljLTl0#So|2w<)GexQmaXcskB?dSTnk7>*

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'getting_spare_card', 'cancel_transfer', 'visa_or_mastercard', 'lost_or_stolen_phone', 'card_about_to_expire', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'change_pin'}
+Classes: {'card_about_to_expire', 'lost_or_stolen_phone', 'getting_spare_card', 'change_pin', 'cancel_transfer', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'visa_or_mastercard', 'apple_pay_or_google_pay'}
 

Let’s print the first example in the train set.

@@ -880,43 +880,43 @@

2. Load and format the text dataset
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -1213,7 +1213,7 @@

4. Train a more robust model from noisy labels -{"state": {"fe702e6a2dbf409c9c44ca8eb27dffcc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "20de08960d534ff89e4d9748aae1b593": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "33222d3a75f94b0badb9b80898204763": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fe702e6a2dbf409c9c44ca8eb27dffcc", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_20de08960d534ff89e4d9748aae1b593", "tabbable": null, "tooltip": null, "value": 391.0}}, "f893ddf9db054e05b5719e8272e508e6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8c1d39b74d17432a831b7e63d65fc7c0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2d114fd4a23f44a9b28eb2eefa18ce30": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f893ddf9db054e05b5719e8272e508e6", "placeholder": "\u200b", "style": "IPY_MODEL_8c1d39b74d17432a831b7e63d65fc7c0", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "1c6fb4c64d13487194c96f1bdc086e42": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f03c166056b94c999588193b57b1ab4f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "48a7c543fbdc47eb91f1afe3d775a0f8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1c6fb4c64d13487194c96f1bdc086e42", "placeholder": "\u200b", "style": "IPY_MODEL_f03c166056b94c999588193b57b1ab4f", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200762.0kB/s]"}}, "02e3e418c19240f486b6744bed9dc1a5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "62351de8abb94a038c8769c2df5c458f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2d114fd4a23f44a9b28eb2eefa18ce30", "IPY_MODEL_33222d3a75f94b0badb9b80898204763", "IPY_MODEL_48a7c543fbdc47eb91f1afe3d775a0f8"], "layout": "IPY_MODEL_02e3e418c19240f486b6744bed9dc1a5", "tabbable": null, "tooltip": null}}, "91b179d4d8f345959726ca7ba76ac7a9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "04d9fd81f1a64f5d864276ca3169c4ae": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "48ac4d127e6141eb8fa1f6bf4d15e4c2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_91b179d4d8f345959726ca7ba76ac7a9", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_04d9fd81f1a64f5d864276ca3169c4ae", "tabbable": null, "tooltip": null, "value": 2211.0}}, "7ffce27927fb488788c78c75defb22e0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c2a16ddd367b4238aa5afd5a22f28d8c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f599421afd5149bfa8a6ee654777c7c1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7ffce27927fb488788c78c75defb22e0", "placeholder": "\u200b", "style": "IPY_MODEL_c2a16ddd367b4238aa5afd5a22f28d8c", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "31d200dead6d4d7a9d475999bb9cd002": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "35dadc5a2f124430a20eb48108c03ab1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ae97d0f75f4740cbb7ce3ea7ed2d44aa": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_31d200dead6d4d7a9d475999bb9cd002", "placeholder": "\u200b", "style": "IPY_MODEL_35dadc5a2f124430a20eb48108c03ab1", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007407kB/s]"}}, "0cbf3b1097fc425e989d58c0735c519d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "340785de497a4c63ab7144c513dbc840": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f599421afd5149bfa8a6ee654777c7c1", "IPY_MODEL_48ac4d127e6141eb8fa1f6bf4d15e4c2", "IPY_MODEL_ae97d0f75f4740cbb7ce3ea7ed2d44aa"], "layout": "IPY_MODEL_0cbf3b1097fc425e989d58c0735c519d", "tabbable": null, "tooltip": null}}, "3e413d091d0d4b6482bc9ed11d5d236c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0b359b2ad56c46998822be17f96e77fb": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e20b0fbd46bf4b59bc4da8f83218e600": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3e413d091d0d4b6482bc9ed11d5d236c", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0b359b2ad56c46998822be17f96e77fb", "tabbable": null, "tooltip": null, "value": 665.0}}, "68e32e4abb734a84a60e14567ee5ab16": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7443c554c2da4d4790de7a725d038932": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a8d4e5776925443ebb839809dfaca832": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_68e32e4abb734a84a60e14567ee5ab16", "placeholder": "\u200b", "style": "IPY_MODEL_7443c554c2da4d4790de7a725d038932", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "06823c4e7990422188c080cab19edf7b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fc9418d15a01426f91adaea86b81b6eb": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "aa7b347bc9c145b09318d5248c15af77": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_06823c4e7990422188c080cab19edf7b", "placeholder": "\u200b", "style": "IPY_MODEL_fc9418d15a01426f91adaea86b81b6eb", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u200798.3kB/s]"}}, "5b140acae5da41218fdb0bba821dd741": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "690a2c7ac41a426d9ea764ad3d62a191": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a8d4e5776925443ebb839809dfaca832", "IPY_MODEL_e20b0fbd46bf4b59bc4da8f83218e600", "IPY_MODEL_aa7b347bc9c145b09318d5248c15af77"], "layout": "IPY_MODEL_5b140acae5da41218fdb0bba821dd741", "tabbable": null, "tooltip": null}}, "8658abefb5a143a0ae1d78b86bb5e6a7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fa52b986ca5d4e199fbbe62d54662389": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9a7533d991e54982b696f43606dbe2b5": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8658abefb5a143a0ae1d78b86bb5e6a7", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_fa52b986ca5d4e199fbbe62d54662389", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "438118108888448cb339b8dc2230aa72": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "edc251780b214e988fe3e98369e79de3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b7d8f867996c41a0b6bc2bffd9f7965d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_438118108888448cb339b8dc2230aa72", "placeholder": "\u200b", "style": "IPY_MODEL_edc251780b214e988fe3e98369e79de3", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "9d38a50f62054962a5ac76122754b6df": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3aafc982b22a428aa27c5cd1250efa05": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1f3ed30be4ca4e5b97f396f778f155f5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9d38a50f62054962a5ac76122754b6df", "placeholder": "\u200b", "style": "IPY_MODEL_3aafc982b22a428aa27c5cd1250efa05", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:01<00:00,\u200728.1MB/s]"}}, "e5831f2ec42f4838ab828634c0bd28fd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "91c85984c43b4bb6ac43cf0e512599f1": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b7d8f867996c41a0b6bc2bffd9f7965d", "IPY_MODEL_9a7533d991e54982b696f43606dbe2b5", "IPY_MODEL_1f3ed30be4ca4e5b97f396f778f155f5"], "layout": "IPY_MODEL_e5831f2ec42f4838ab828634c0bd28fd", "tabbable": null, "tooltip": null}}, "09f87f9e986947dda9b2e8c0bc235a7b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7430ccc73950450389eb7ded2db99afc": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "bdbdcb9609f647b6ac21adad814ab8dd": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_09f87f9e986947dda9b2e8c0bc235a7b", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7430ccc73950450389eb7ded2db99afc", "tabbable": null, "tooltip": null, "value": 466062.0}}, "673865438c8e4b0296bbe6ca3c060cb9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ab8d06a6112542ae917846ddae4c46ac": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b729c768ffe84c23ab3835b3f3f8051b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_673865438c8e4b0296bbe6ca3c060cb9", "placeholder": "\u200b", "style": "IPY_MODEL_ab8d06a6112542ae917846ddae4c46ac", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "ca4b9735d66b414697862773b6ae1163": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b49778737bd8479f946ac4060638f1d9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "704c7b4ef65041a89cd5d3fc1f81e95f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ca4b9735d66b414697862773b6ae1163", "placeholder": "\u200b", "style": "IPY_MODEL_b49778737bd8479f946ac4060638f1d9", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u200715.0MB/s]"}}, "57162eef07c144edbbf29b08ca208753": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a6a71af506bb4925baad0f1c7f46552e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b729c768ffe84c23ab3835b3f3f8051b", "IPY_MODEL_bdbdcb9609f647b6ac21adad814ab8dd", "IPY_MODEL_704c7b4ef65041a89cd5d3fc1f81e95f"], "layout": "IPY_MODEL_57162eef07c144edbbf29b08ca208753", "tabbable": null, "tooltip": null}}, "13325f0cbdac42e292d5ec55dd02d83e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f650bcae88e3498c9713ed7fad85c313": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8e023743450746ba98fb9cff5b8ab3ca": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_13325f0cbdac42e292d5ec55dd02d83e", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f650bcae88e3498c9713ed7fad85c313", "tabbable": null, "tooltip": null, "value": 48.0}}, "c9974b364cf9469292e4c0a172a720dd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9facb5b56860415d974458a4f8a98e99": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "73bb6421a1694f5abed56acfff8df5c8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c9974b364cf9469292e4c0a172a720dd", "placeholder": "\u200b", "style": "IPY_MODEL_9facb5b56860415d974458a4f8a98e99", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "c7cd56b89e03457e8bfa240f778aeac4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5e5e6673b88a48b6a1e0b40d0eb77931": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3123835078454cf9b22abb8a471265a0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c7cd56b89e03457e8bfa240f778aeac4", "placeholder": "\u200b", "style": "IPY_MODEL_5e5e6673b88a48b6a1e0b40d0eb77931", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20077.41kB/s]"}}, "69cbdc81324248878408dbfed717680f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fce6374730574858a51fc6bb15b16ff0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_73bb6421a1694f5abed56acfff8df5c8", "IPY_MODEL_8e023743450746ba98fb9cff5b8ab3ca", "IPY_MODEL_3123835078454cf9b22abb8a471265a0"], "layout": "IPY_MODEL_69cbdc81324248878408dbfed717680f", "tabbable": null, "tooltip": null}}, "fbfcfc4949a741f88d46ad1b0042769e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "14034de7bb7744e19694d7e8a08ca368": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9ac47759986e4465a5e745617e40364c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fbfcfc4949a741f88d46ad1b0042769e", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_14034de7bb7744e19694d7e8a08ca368", "tabbable": null, "tooltip": null, "value": 231508.0}}, "98055291c2ee452694ecc19e51ecaead": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "58ef1824a5c949b8a654f8a0277b7b97": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "079f3f1e033f4bbca8478c880a927afc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_98055291c2ee452694ecc19e51ecaead", "placeholder": "\u200b", "style": "IPY_MODEL_58ef1824a5c949b8a654f8a0277b7b97", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "72404aea60be4c0aaa808f8f70065420": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b8348d0d4075416fa30cf5f27f5fd6fd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7f9ca0d6a1fb49489d44ed52e9e5b6aa": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_72404aea60be4c0aaa808f8f70065420", "placeholder": "\u200b", "style": "IPY_MODEL_b8348d0d4075416fa30cf5f27f5fd6fd", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u200732.8MB/s]"}}, "624e82a0b0ec439696797f4a87dcb861": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e3101229ea6044f0bf8820ecad5523c3": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_079f3f1e033f4bbca8478c880a927afc", "IPY_MODEL_9ac47759986e4465a5e745617e40364c", "IPY_MODEL_7f9ca0d6a1fb49489d44ed52e9e5b6aa"], "layout": "IPY_MODEL_624e82a0b0ec439696797f4a87dcb861", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"5d425fc517de40599859741dfdf6bb2e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7a181aaf8967410dae1ce2d0e0d9856a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6f739705eccc46afb2020460a828b56b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5d425fc517de40599859741dfdf6bb2e", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7a181aaf8967410dae1ce2d0e0d9856a", "tabbable": null, "tooltip": null, "value": 391.0}}, "796c15ee275d4dff935fe8e20583896d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "33adffdfde344f24ab11355d2abf0744": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ebe70157b15a43cebe4c33d29744783b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_796c15ee275d4dff935fe8e20583896d", "placeholder": "\u200b", "style": "IPY_MODEL_33adffdfde344f24ab11355d2abf0744", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "465f57a032274e4dadbee2eb87856ef1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "465f0d2ce3444dfd9bd85fd2529dc52c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d015bcf5ce69476ab54fd8e945eaa689": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_465f57a032274e4dadbee2eb87856ef1", "placeholder": "\u200b", "style": "IPY_MODEL_465f0d2ce3444dfd9bd85fd2529dc52c", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200766.4kB/s]"}}, "e9a141532bb34d7697db7a780d7a2002": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e89a8a43528e42c38eca656e48b7da7e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ebe70157b15a43cebe4c33d29744783b", "IPY_MODEL_6f739705eccc46afb2020460a828b56b", "IPY_MODEL_d015bcf5ce69476ab54fd8e945eaa689"], "layout": "IPY_MODEL_e9a141532bb34d7697db7a780d7a2002", "tabbable": null, "tooltip": null}}, "078724370bc24c649597fb04791e1a0e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5376601de0794106a7b8777224bcafd4": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b83ba78e112b427d90a55129eecf514c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_078724370bc24c649597fb04791e1a0e", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5376601de0794106a7b8777224bcafd4", "tabbable": null, "tooltip": null, "value": 2211.0}}, "1d21e4a5af7c4ae0aadfd84ea1555716": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "038607d420fe468e857b145df291678c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "52a83385affa4985b26bec259ee14740": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1d21e4a5af7c4ae0aadfd84ea1555716", "placeholder": "\u200b", "style": "IPY_MODEL_038607d420fe468e857b145df291678c", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "982a96cc3c0b4c00938e722c374cd707": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9e5f0df62415449eb138994f79e6d9e0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f7e3eba4cb63469d997967f982f4a1df": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_982a96cc3c0b4c00938e722c374cd707", "placeholder": "\u200b", "style": "IPY_MODEL_9e5f0df62415449eb138994f79e6d9e0", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007389kB/s]"}}, "8e1a3b5aa6b14adc8ebdc1566696e505": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ca42a9ff17da48fab63132c9d67266dd": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_52a83385affa4985b26bec259ee14740", "IPY_MODEL_b83ba78e112b427d90a55129eecf514c", "IPY_MODEL_f7e3eba4cb63469d997967f982f4a1df"], "layout": "IPY_MODEL_8e1a3b5aa6b14adc8ebdc1566696e505", "tabbable": null, "tooltip": null}}, "b03695b8bbe44d13a5612d5120ea2a28": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "25890da51b1a4e519cdfb13a8c6a9b74": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "036fc6d42c084bba8e6ff1d651c36d55": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b03695b8bbe44d13a5612d5120ea2a28", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_25890da51b1a4e519cdfb13a8c6a9b74", "tabbable": null, "tooltip": null, "value": 665.0}}, "e7e2566da91d4dde83d80ed19a91e263": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "20b3e8ae925a497db651bb3e420ccedd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d66a39fee74f43488e2d84a8afff525a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e7e2566da91d4dde83d80ed19a91e263", "placeholder": "\u200b", "style": "IPY_MODEL_20b3e8ae925a497db651bb3e420ccedd", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "285337fc5df34cbfa6c9ed52458ebf3d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "80145043305a4ffabe28cb2a16f379de": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1372d9e4b7724cdead58971eebb0f969": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_285337fc5df34cbfa6c9ed52458ebf3d", "placeholder": "\u200b", "style": "IPY_MODEL_80145043305a4ffabe28cb2a16f379de", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007118kB/s]"}}, "330425c288064ecea245f9a589f86dce": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "283fc6563d5645c9a2d53edd642983d4": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d66a39fee74f43488e2d84a8afff525a", "IPY_MODEL_036fc6d42c084bba8e6ff1d651c36d55", "IPY_MODEL_1372d9e4b7724cdead58971eebb0f969"], "layout": "IPY_MODEL_330425c288064ecea245f9a589f86dce", "tabbable": null, "tooltip": null}}, "2adec3ea4ab147fca4247ce82a707f41": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "03cd490c005341539cee9b6bd0c64509": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "eccbc90dc8114497bb7438d438edc7f2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2adec3ea4ab147fca4247ce82a707f41", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_03cd490c005341539cee9b6bd0c64509", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "3c023990927b4f04a4351901432e7d8f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9814c1a1993c40a683e790580ecf178a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d6ea8d2f7af14ef69353a0ae60cf677e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3c023990927b4f04a4351901432e7d8f", "placeholder": "\u200b", "style": "IPY_MODEL_9814c1a1993c40a683e790580ecf178a", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "0298beb970f94688915a8e32a774126c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "eb0935dc83294cc7a1acad3dd963f608": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "060119cb42d74e19bb4e92690f697a5e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0298beb970f94688915a8e32a774126c", "placeholder": "\u200b", "style": "IPY_MODEL_eb0935dc83294cc7a1acad3dd963f608", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:00<00:00,\u2007200MB/s]"}}, "a6d4217338164b029ad977bd11fb8d9e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e90e40189b0e460d90a444df7fe6d1a9": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d6ea8d2f7af14ef69353a0ae60cf677e", "IPY_MODEL_eccbc90dc8114497bb7438d438edc7f2", "IPY_MODEL_060119cb42d74e19bb4e92690f697a5e"], "layout": "IPY_MODEL_a6d4217338164b029ad977bd11fb8d9e", "tabbable": null, "tooltip": null}}, "da42c63dc73b49f8b62f507344120b1a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "60b3d9bfd8e147ef947e8e81fd9fb70e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c08801bd218a4933bad779d4baa0b544": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_da42c63dc73b49f8b62f507344120b1a", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_60b3d9bfd8e147ef947e8e81fd9fb70e", "tabbable": null, "tooltip": null, "value": 466062.0}}, "757f11a9bf36405e89b2715bc5278a25": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e7529ab3626947b3ac4bc76edafa711a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "365ffce5f68c44638088fdbae83f6f7b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_757f11a9bf36405e89b2715bc5278a25", "placeholder": "\u200b", "style": "IPY_MODEL_e7529ab3626947b3ac4bc76edafa711a", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "581a302d09fd45e49c7f87d39dd3c921": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0607d3fa923e46caa07bbdf1220db2b6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0f51dc70dda342b1b6b17e56b63d5f14": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_581a302d09fd45e49c7f87d39dd3c921", "placeholder": "\u200b", "style": "IPY_MODEL_0607d3fa923e46caa07bbdf1220db2b6", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u200715.8MB/s]"}}, "e14305181a4f4a1aba92bf0159aa7bf3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "018045ff81b24bf7b8b7b92eeb3e59db": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_365ffce5f68c44638088fdbae83f6f7b", "IPY_MODEL_c08801bd218a4933bad779d4baa0b544", "IPY_MODEL_0f51dc70dda342b1b6b17e56b63d5f14"], "layout": "IPY_MODEL_e14305181a4f4a1aba92bf0159aa7bf3", "tabbable": null, "tooltip": null}}, "0bade9b66cc6401491c957e37747b252": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "290e38f7423c457a9127d9cd3394ab4e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "654d58802fd94f6ead893ddbb0e3d131": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0bade9b66cc6401491c957e37747b252", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_290e38f7423c457a9127d9cd3394ab4e", "tabbable": null, "tooltip": null, "value": 48.0}}, "1820812db0184a3ba2bd25871cc78e2f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "57bc4c06dbfc46c89ae707951f55ed3a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d25c524b9c4444829470ac057e0fae42": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1820812db0184a3ba2bd25871cc78e2f", "placeholder": "\u200b", "style": "IPY_MODEL_57bc4c06dbfc46c89ae707951f55ed3a", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "fad0806770b14f9086fd1b3b755413fb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "814ed56db234446a92fe939efe5a477b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "66ee22f8cf5b4a78ab33aee929a5fbd0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fad0806770b14f9086fd1b3b755413fb", "placeholder": "\u200b", "style": "IPY_MODEL_814ed56db234446a92fe939efe5a477b", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20078.21kB/s]"}}, "98b6d5dd0c4546948933a4d8faa4bbc9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "eb1f3f2a9964471a8a7688badac98c84": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d25c524b9c4444829470ac057e0fae42", "IPY_MODEL_654d58802fd94f6ead893ddbb0e3d131", "IPY_MODEL_66ee22f8cf5b4a78ab33aee929a5fbd0"], "layout": "IPY_MODEL_98b6d5dd0c4546948933a4d8faa4bbc9", "tabbable": null, "tooltip": null}}, "de5b529ba5b7466f857e19bdfdcddd30": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c187a19bc3e941088eef67c273bf61ed": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "dbc2947dd29d4e92a20d79a1f5606f98": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_de5b529ba5b7466f857e19bdfdcddd30", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c187a19bc3e941088eef67c273bf61ed", "tabbable": null, "tooltip": null, "value": 231508.0}}, "5ec8a2f5f2034c158f6d2c361a60ea25": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "853f7130b22d49bfaf39b5d7bf7af4ce": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c9ff9f5312794e5381359492c09edaaf": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5ec8a2f5f2034c158f6d2c361a60ea25", "placeholder": "\u200b", "style": "IPY_MODEL_853f7130b22d49bfaf39b5d7bf7af4ce", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "4ed3c0ca07f04a87b53a6c5d68d36cf6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5efd9793a22541dd9dd8f09fcfbec967": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cc4d2d6857724ea0a2f3ec85a6f395ea": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4ed3c0ca07f04a87b53a6c5d68d36cf6", "placeholder": "\u200b", "style": "IPY_MODEL_5efd9793a22541dd9dd8f09fcfbec967", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u200731.3MB/s]"}}, "f3decebc5af44971b456d5da642e43b2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "edb46e1892c744119cd3f4a130dfb3e3": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c9ff9f5312794e5381359492c09edaaf", "IPY_MODEL_dbc2947dd29d4e92a20d79a1f5606f98", "IPY_MODEL_cc4d2d6857724ea0a2f3ec85a6f395ea"], "layout": "IPY_MODEL_f3decebc5af44971b456d5da642e43b2", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/clean_learning/text.ipynb b/master/tutorials/clean_learning/text.ipynb index e5a2ac8fa..d42308ae9 100644 --- a/master/tutorials/clean_learning/text.ipynb +++ b/master/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:01:48.389395Z", - "iopub.status.busy": "2024-07-01T15:01:48.389202Z", - "iopub.status.idle": "2024-07-01T15:01:51.596566Z", - "shell.execute_reply": "2024-07-01T15:01:51.595964Z" + "iopub.execute_input": "2024-07-02T12:00:34.059784Z", + "iopub.status.busy": "2024-07-02T12:00:34.059279Z", + "iopub.status.idle": "2024-07-02T12:00:36.809187Z", + "shell.execute_reply": "2024-07-02T12:00:36.808623Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7a801c5ee1e11be3732a7ea01725de8aca8d147d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@46226527e9d4c8f7ccdf91ff5dac4d6ee27e022b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:01:51.599757Z", - "iopub.status.busy": "2024-07-01T15:01:51.599136Z", - "iopub.status.idle": "2024-07-01T15:01:51.603065Z", - "shell.execute_reply": "2024-07-01T15:01:51.602415Z" + "iopub.execute_input": "2024-07-02T12:00:36.811854Z", + "iopub.status.busy": "2024-07-02T12:00:36.811437Z", + "iopub.status.idle": "2024-07-02T12:00:36.814737Z", + "shell.execute_reply": "2024-07-02T12:00:36.814309Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:01:51.605582Z", - "iopub.status.busy": "2024-07-01T15:01:51.605171Z", - "iopub.status.idle": "2024-07-01T15:01:51.608781Z", - "shell.execute_reply": "2024-07-01T15:01:51.608196Z" + "iopub.execute_input": "2024-07-02T12:00:36.816857Z", + "iopub.status.busy": "2024-07-02T12:00:36.816534Z", + "iopub.status.idle": "2024-07-02T12:00:36.819520Z", + "shell.execute_reply": "2024-07-02T12:00:36.819089Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:01:51.611405Z", - "iopub.status.busy": "2024-07-01T15:01:51.610984Z", - "iopub.status.idle": "2024-07-01T15:01:51.666636Z", - "shell.execute_reply": "2024-07-01T15:01:51.666058Z" + "iopub.execute_input": "2024-07-02T12:00:36.821601Z", + "iopub.status.busy": "2024-07-02T12:00:36.821264Z", + "iopub.status.idle": "2024-07-02T12:00:36.862716Z", + "shell.execute_reply": "2024-07-02T12:00:36.862142Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:01:51.668846Z", - "iopub.status.busy": "2024-07-01T15:01:51.668483Z", - "iopub.status.idle": "2024-07-01T15:01:51.672233Z", - "shell.execute_reply": "2024-07-01T15:01:51.671774Z" + "iopub.execute_input": "2024-07-02T12:00:36.864907Z", + "iopub.status.busy": "2024-07-02T12:00:36.864568Z", + "iopub.status.idle": "2024-07-02T12:00:36.868079Z", + "shell.execute_reply": "2024-07-02T12:00:36.867616Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:01:51.674498Z", - "iopub.status.busy": "2024-07-01T15:01:51.674053Z", - "iopub.status.idle": "2024-07-01T15:01:51.677796Z", - "shell.execute_reply": "2024-07-01T15:01:51.677326Z" + "iopub.execute_input": "2024-07-02T12:00:36.870408Z", + "iopub.status.busy": "2024-07-02T12:00:36.870073Z", + "iopub.status.idle": "2024-07-02T12:00:36.873573Z", + "shell.execute_reply": "2024-07-02T12:00:36.873016Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'getting_spare_card', 'cancel_transfer', 'visa_or_mastercard', 'lost_or_stolen_phone', 'card_about_to_expire', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'change_pin'}\n" + "Classes: {'card_about_to_expire', 'lost_or_stolen_phone', 'getting_spare_card', 'change_pin', 'cancel_transfer', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'visa_or_mastercard', 'apple_pay_or_google_pay'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:01:51.679875Z", - "iopub.status.busy": "2024-07-01T15:01:51.679530Z", - "iopub.status.idle": "2024-07-01T15:01:51.682840Z", - "shell.execute_reply": "2024-07-01T15:01:51.682369Z" + "iopub.execute_input": "2024-07-02T12:00:36.875763Z", + "iopub.status.busy": "2024-07-02T12:00:36.875423Z", + "iopub.status.idle": "2024-07-02T12:00:36.878670Z", + "shell.execute_reply": "2024-07-02T12:00:36.878216Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:01:51.684949Z", - "iopub.status.busy": "2024-07-01T15:01:51.684614Z", - "iopub.status.idle": "2024-07-01T15:01:51.687925Z", - "shell.execute_reply": "2024-07-01T15:01:51.687477Z" + "iopub.execute_input": "2024-07-02T12:00:36.880795Z", + "iopub.status.busy": "2024-07-02T12:00:36.880374Z", + "iopub.status.idle": "2024-07-02T12:00:36.883787Z", + "shell.execute_reply": "2024-07-02T12:00:36.883314Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:01:51.690015Z", - "iopub.status.busy": "2024-07-01T15:01:51.689695Z", - "iopub.status.idle": "2024-07-01T15:01:58.269951Z", - "shell.execute_reply": "2024-07-01T15:01:58.269375Z" + "iopub.execute_input": "2024-07-02T12:00:36.885847Z", + "iopub.status.busy": "2024-07-02T12:00:36.885533Z", + "iopub.status.idle": "2024-07-02T12:00:41.284528Z", + "shell.execute_reply": "2024-07-02T12:00:41.283984Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "62351de8abb94a038c8769c2df5c458f", + "model_id": "e89a8a43528e42c38eca656e48b7da7e", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "340785de497a4c63ab7144c513dbc840", + "model_id": "ca42a9ff17da48fab63132c9d67266dd", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "690a2c7ac41a426d9ea764ad3d62a191", + "model_id": "283fc6563d5645c9a2d53edd642983d4", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "91c85984c43b4bb6ac43cf0e512599f1", + "model_id": "e90e40189b0e460d90a444df7fe6d1a9", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a6a71af506bb4925baad0f1c7f46552e", + "model_id": "018045ff81b24bf7b8b7b92eeb3e59db", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fce6374730574858a51fc6bb15b16ff0", + "model_id": "eb1f3f2a9964471a8a7688badac98c84", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e3101229ea6044f0bf8820ecad5523c3", + "model_id": "edb46e1892c744119cd3f4a130dfb3e3", "version_major": 2, "version_minor": 0 }, @@ -601,10 +601,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:01:58.272720Z", - "iopub.status.busy": "2024-07-01T15:01:58.272512Z", - "iopub.status.idle": "2024-07-01T15:01:58.275361Z", - "shell.execute_reply": "2024-07-01T15:01:58.274859Z" + "iopub.execute_input": "2024-07-02T12:00:41.287341Z", + "iopub.status.busy": "2024-07-02T12:00:41.286878Z", + "iopub.status.idle": "2024-07-02T12:00:41.289761Z", + "shell.execute_reply": "2024-07-02T12:00:41.289214Z" } }, "outputs": [], @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:01:58.277576Z", - "iopub.status.busy": "2024-07-01T15:01:58.277231Z", - "iopub.status.idle": "2024-07-01T15:01:58.279889Z", - "shell.execute_reply": "2024-07-01T15:01:58.279457Z" + "iopub.execute_input": "2024-07-02T12:00:41.291735Z", + "iopub.status.busy": "2024-07-02T12:00:41.291455Z", + "iopub.status.idle": "2024-07-02T12:00:41.294547Z", + "shell.execute_reply": "2024-07-02T12:00:41.294136Z" } }, "outputs": [], @@ -644,10 +644,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:01:58.281927Z", - "iopub.status.busy": "2024-07-01T15:01:58.281583Z", - "iopub.status.idle": "2024-07-01T15:02:01.122494Z", - "shell.execute_reply": "2024-07-01T15:02:01.121708Z" + "iopub.execute_input": "2024-07-02T12:00:41.296484Z", + "iopub.status.busy": "2024-07-02T12:00:41.296165Z", + "iopub.status.idle": "2024-07-02T12:00:44.031023Z", + "shell.execute_reply": "2024-07-02T12:00:44.030422Z" }, "scrolled": true }, @@ -670,10 +670,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:01.125497Z", - "iopub.status.busy": "2024-07-01T15:02:01.124853Z", - "iopub.status.idle": "2024-07-01T15:02:01.132982Z", - "shell.execute_reply": "2024-07-01T15:02:01.132483Z" + "iopub.execute_input": "2024-07-02T12:00:44.034106Z", + "iopub.status.busy": "2024-07-02T12:00:44.033286Z", + "iopub.status.idle": "2024-07-02T12:00:44.041018Z", + "shell.execute_reply": "2024-07-02T12:00:44.040563Z" } }, "outputs": [ @@ -774,10 +774,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:01.135273Z", - "iopub.status.busy": "2024-07-01T15:02:01.134876Z", - "iopub.status.idle": "2024-07-01T15:02:01.138920Z", - "shell.execute_reply": "2024-07-01T15:02:01.138424Z" + "iopub.execute_input": "2024-07-02T12:00:44.043124Z", + "iopub.status.busy": "2024-07-02T12:00:44.042704Z", + "iopub.status.idle": "2024-07-02T12:00:44.046699Z", + "shell.execute_reply": "2024-07-02T12:00:44.046142Z" } }, "outputs": [], @@ -791,10 +791,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:01.140950Z", - "iopub.status.busy": "2024-07-01T15:02:01.140631Z", - "iopub.status.idle": "2024-07-01T15:02:01.143747Z", - "shell.execute_reply": "2024-07-01T15:02:01.143216Z" + "iopub.execute_input": "2024-07-02T12:00:44.048913Z", + "iopub.status.busy": "2024-07-02T12:00:44.048523Z", + "iopub.status.idle": "2024-07-02T12:00:44.051593Z", + "shell.execute_reply": "2024-07-02T12:00:44.051082Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:01.145826Z", - "iopub.status.busy": "2024-07-01T15:02:01.145406Z", - "iopub.status.idle": "2024-07-01T15:02:01.148540Z", - "shell.execute_reply": "2024-07-01T15:02:01.148071Z" + "iopub.execute_input": "2024-07-02T12:00:44.053726Z", + "iopub.status.busy": "2024-07-02T12:00:44.053345Z", + "iopub.status.idle": "2024-07-02T12:00:44.056186Z", + "shell.execute_reply": "2024-07-02T12:00:44.055762Z" } }, "outputs": [], @@ -852,10 +852,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:01.150516Z", - "iopub.status.busy": "2024-07-01T15:02:01.150212Z", - "iopub.status.idle": "2024-07-01T15:02:01.157258Z", - "shell.execute_reply": "2024-07-01T15:02:01.156695Z" + "iopub.execute_input": "2024-07-02T12:00:44.058086Z", + "iopub.status.busy": "2024-07-02T12:00:44.057784Z", + "iopub.status.idle": "2024-07-02T12:00:44.064436Z", + "shell.execute_reply": "2024-07-02T12:00:44.063922Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:01.159339Z", - "iopub.status.busy": "2024-07-01T15:02:01.159040Z", - "iopub.status.idle": "2024-07-01T15:02:01.408184Z", - "shell.execute_reply": "2024-07-01T15:02:01.407652Z" + "iopub.execute_input": "2024-07-02T12:00:44.066501Z", + "iopub.status.busy": "2024-07-02T12:00:44.066197Z", + "iopub.status.idle": "2024-07-02T12:00:44.289398Z", + "shell.execute_reply": "2024-07-02T12:00:44.288882Z" }, "scrolled": true }, @@ -1022,10 +1022,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:01.410863Z", - "iopub.status.busy": "2024-07-01T15:02:01.410467Z", - "iopub.status.idle": "2024-07-01T15:02:01.588794Z", - "shell.execute_reply": "2024-07-01T15:02:01.588210Z" + "iopub.execute_input": "2024-07-02T12:00:44.292040Z", + "iopub.status.busy": "2024-07-02T12:00:44.291643Z", + "iopub.status.idle": "2024-07-02T12:00:44.466523Z", + "shell.execute_reply": "2024-07-02T12:00:44.466004Z" }, "scrolled": true }, @@ -1058,10 +1058,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:01.592672Z", - "iopub.status.busy": "2024-07-01T15:02:01.591557Z", - "iopub.status.idle": "2024-07-01T15:02:01.597151Z", - "shell.execute_reply": "2024-07-01T15:02:01.596544Z" + "iopub.execute_input": "2024-07-02T12:00:44.469939Z", + "iopub.status.busy": "2024-07-02T12:00:44.468998Z", + "iopub.status.idle": "2024-07-02T12:00:44.473947Z", + "shell.execute_reply": "2024-07-02T12:00:44.473442Z" }, "nbsphinx": "hidden" }, @@ -1105,7 +1105,31 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "02e3e418c19240f486b6744bed9dc1a5": { + "018045ff81b24bf7b8b7b92eeb3e59db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_365ffce5f68c44638088fdbae83f6f7b", + "IPY_MODEL_c08801bd218a4933bad779d4baa0b544", + "IPY_MODEL_0f51dc70dda342b1b6b17e56b63d5f14" + ], + "layout": "IPY_MODEL_e14305181a4f4a1aba92bf0159aa7bf3", + "tabbable": null, + "tooltip": null + } + }, + "0298beb970f94688915a8e32a774126c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1158,7 +1182,51 @@ "width": null } }, - "04d9fd81f1a64f5d864276ca3169c4ae": { + "036fc6d42c084bba8e6ff1d651c36d55": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b03695b8bbe44d13a5612d5120ea2a28", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_25890da51b1a4e519cdfb13a8c6a9b74", + "tabbable": null, + "tooltip": null, + "value": 665.0 + } + }, + "038607d420fe468e857b145df291678c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "03cd490c005341539cee9b6bd0c64509": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1174,7 +1242,48 @@ "description_width": "" } }, - "06823c4e7990422188c080cab19edf7b": { + "060119cb42d74e19bb4e92690f697a5e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0298beb970f94688915a8e32a774126c", + "placeholder": "​", + "style": "IPY_MODEL_eb0935dc83294cc7a1acad3dd963f608", + "tabbable": null, + "tooltip": null, + "value": " 54.2M/54.2M [00:00<00:00, 200MB/s]" + } + }, + "0607d3fa923e46caa07bbdf1220db2b6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "078724370bc24c649597fb04791e1a0e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1227,30 +1336,7 @@ "width": null } }, - "079f3f1e033f4bbca8478c880a927afc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_98055291c2ee452694ecc19e51ecaead", - "placeholder": "​", - "style": "IPY_MODEL_58ef1824a5c949b8a654f8a0277b7b97", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "09f87f9e986947dda9b2e8c0bc235a7b": { + "0bade9b66cc6401491c957e37747b252": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1303,23 +1389,53 @@ "width": null } }, - "0b359b2ad56c46998822be17f96e77fb": { + "0f51dc70dda342b1b6b17e56b63d5f14": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_581a302d09fd45e49c7f87d39dd3c921", + "placeholder": "​", + "style": "IPY_MODEL_0607d3fa923e46caa07bbdf1220db2b6", + "tabbable": null, + "tooltip": null, + "value": " 466k/466k [00:00<00:00, 15.8MB/s]" } }, - "0cbf3b1097fc425e989d58c0735c519d": { + "1372d9e4b7724cdead58971eebb0f969": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_285337fc5df34cbfa6c9ed52458ebf3d", + "placeholder": "​", + "style": "IPY_MODEL_80145043305a4ffabe28cb2a16f379de", + "tabbable": null, + "tooltip": null, + "value": " 665/665 [00:00<00:00, 118kB/s]" + } + }, + "1820812db0184a3ba2bd25871cc78e2f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1372,7 +1488,7 @@ "width": null } }, - "13325f0cbdac42e292d5ec55dd02d83e": { + "1d21e4a5af7c4ae0aadfd84ea1555716": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1425,7 +1541,25 @@ "width": null } }, - "14034de7bb7744e19694d7e8a08ca368": { + "20b3e8ae925a497db651bb3e420ccedd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "25890da51b1a4e519cdfb13a8c6a9b74": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1441,7 +1575,31 @@ "description_width": "" } }, - "1c6fb4c64d13487194c96f1bdc086e42": { + "283fc6563d5645c9a2d53edd642983d4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d66a39fee74f43488e2d84a8afff525a", + "IPY_MODEL_036fc6d42c084bba8e6ff1d651c36d55", + "IPY_MODEL_1372d9e4b7724cdead58971eebb0f969" + ], + "layout": "IPY_MODEL_330425c288064ecea245f9a589f86dce", + "tabbable": null, + "tooltip": null + } + }, + "285337fc5df34cbfa6c9ed52458ebf3d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1494,30 +1652,7 @@ "width": null } }, - "1f3ed30be4ca4e5b97f396f778f155f5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9d38a50f62054962a5ac76122754b6df", - "placeholder": "​", - "style": "IPY_MODEL_3aafc982b22a428aa27c5cd1250efa05", - "tabbable": null, - "tooltip": null, - "value": " 54.2M/54.2M [00:01<00:00, 28.1MB/s]" - } - }, - "20de08960d534ff89e4d9748aae1b593": { + "290e38f7423c457a9127d9cd3394ab4e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1533,53 +1668,60 @@ "description_width": "" } }, - "2d114fd4a23f44a9b28eb2eefa18ce30": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f893ddf9db054e05b5719e8272e508e6", - "placeholder": "​", - "style": "IPY_MODEL_8c1d39b74d17432a831b7e63d65fc7c0", - "tabbable": null, - "tooltip": null, - "value": ".gitattributes: 100%" - } - }, - "3123835078454cf9b22abb8a471265a0": { - "model_module": "@jupyter-widgets/controls", + "2adec3ea4ab147fca4247ce82a707f41": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c7cd56b89e03457e8bfa240f778aeac4", - "placeholder": "​", - "style": "IPY_MODEL_5e5e6673b88a48b6a1e0b40d0eb77931", - "tabbable": null, - "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 7.41kB/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "31d200dead6d4d7a9d475999bb9cd002": { + "330425c288064ecea245f9a589f86dce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1632,75 +1774,101 @@ "width": null } }, - "33222d3a75f94b0badb9b80898204763": { + "33adffdfde344f24ab11355d2abf0744": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fe702e6a2dbf409c9c44ca8eb27dffcc", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_20de08960d534ff89e4d9748aae1b593", - "tabbable": null, - "tooltip": null, - "value": 391.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "340785de497a4c63ab7144c513dbc840": { + "365ffce5f68c44638088fdbae83f6f7b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f599421afd5149bfa8a6ee654777c7c1", - "IPY_MODEL_48ac4d127e6141eb8fa1f6bf4d15e4c2", - "IPY_MODEL_ae97d0f75f4740cbb7ce3ea7ed2d44aa" - ], - "layout": "IPY_MODEL_0cbf3b1097fc425e989d58c0735c519d", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_757f11a9bf36405e89b2715bc5278a25", + "placeholder": "​", + "style": "IPY_MODEL_e7529ab3626947b3ac4bc76edafa711a", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "tokenizer.json: 100%" } }, - "35dadc5a2f124430a20eb48108c03ab1": { - "model_module": "@jupyter-widgets/controls", + "3c023990927b4f04a4351901432e7d8f": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "3aafc982b22a428aa27c5cd1250efa05": { + "465f0d2ce3444dfd9bd85fd2529dc52c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1718,7 +1886,7 @@ "text_color": null } }, - "3e413d091d0d4b6482bc9ed11d5d236c": { + "465f57a032274e4dadbee2eb87856ef1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1771,7 +1939,7 @@ "width": null } }, - "438118108888448cb339b8dc2230aa72": { + "4ed3c0ca07f04a87b53a6c5d68d36cf6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1824,7 +1992,7 @@ "width": null } }, - "48a7c543fbdc47eb91f1afe3d775a0f8": { + "52a83385affa4985b26bec259ee14740": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1839,94 +2007,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1c6fb4c64d13487194c96f1bdc086e42", + "layout": "IPY_MODEL_1d21e4a5af7c4ae0aadfd84ea1555716", "placeholder": "​", - "style": "IPY_MODEL_f03c166056b94c999588193b57b1ab4f", + "style": "IPY_MODEL_038607d420fe468e857b145df291678c", "tabbable": null, "tooltip": null, - "value": " 391/391 [00:00<00:00, 62.0kB/s]" + "value": "README.md: 100%" } }, - "48ac4d127e6141eb8fa1f6bf4d15e4c2": { + "5376601de0794106a7b8777224bcafd4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_91b179d4d8f345959726ca7ba76ac7a9", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_04d9fd81f1a64f5d864276ca3169c4ae", - "tabbable": null, - "tooltip": null, - "value": 2211.0 - } - }, - "57162eef07c144edbbf29b08ca208753": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "58ef1824a5c949b8a654f8a0277b7b97": { + "57bc4c06dbfc46c89ae707951f55ed3a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1944,7 +2049,7 @@ "text_color": null } }, - "5b140acae5da41218fdb0bba821dd741": { + "581a302d09fd45e49c7f87d39dd3c921": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1997,49 +2102,7 @@ "width": null } }, - "5e5e6673b88a48b6a1e0b40d0eb77931": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "62351de8abb94a038c8769c2df5c458f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2d114fd4a23f44a9b28eb2eefa18ce30", - "IPY_MODEL_33222d3a75f94b0badb9b80898204763", - "IPY_MODEL_48a7c543fbdc47eb91f1afe3d775a0f8" - ], - "layout": "IPY_MODEL_02e3e418c19240f486b6744bed9dc1a5", - "tabbable": null, - "tooltip": null - } - }, - "624e82a0b0ec439696797f4a87dcb861": { + "5d425fc517de40599859741dfdf6bb2e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2092,7 +2155,7 @@ "width": null } }, - "673865438c8e4b0296bbe6ca3c060cb9": { + "5ec8a2f5f2034c158f6d2c361a60ea25": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2145,7 +2208,116 @@ "width": null } }, - "68e32e4abb734a84a60e14567ee5ab16": { + "5efd9793a22541dd9dd8f09fcfbec967": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "60b3d9bfd8e147ef947e8e81fd9fb70e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "654d58802fd94f6ead893ddbb0e3d131": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0bade9b66cc6401491c957e37747b252", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_290e38f7423c457a9127d9cd3394ab4e", + "tabbable": null, + "tooltip": null, + "value": 48.0 + } + }, + "66ee22f8cf5b4a78ab33aee929a5fbd0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fad0806770b14f9086fd1b3b755413fb", + "placeholder": "​", + "style": "IPY_MODEL_814ed56db234446a92fe939efe5a477b", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 8.21kB/s]" + } + }, + "6f739705eccc46afb2020460a828b56b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5d425fc517de40599859741dfdf6bb2e", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7a181aaf8967410dae1ce2d0e0d9856a", + "tabbable": null, + "tooltip": null, + "value": 391.0 + } + }, + "757f11a9bf36405e89b2715bc5278a25": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2198,31 +2370,7 @@ "width": null } }, - "690a2c7ac41a426d9ea764ad3d62a191": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a8d4e5776925443ebb839809dfaca832", - "IPY_MODEL_e20b0fbd46bf4b59bc4da8f83218e600", - "IPY_MODEL_aa7b347bc9c145b09318d5248c15af77" - ], - "layout": "IPY_MODEL_5b140acae5da41218fdb0bba821dd741", - "tabbable": null, - "tooltip": null - } - }, - "69cbdc81324248878408dbfed717680f": { + "796c15ee275d4dff935fe8e20583896d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2275,30 +2423,77 @@ "width": null } }, - "704c7b4ef65041a89cd5d3fc1f81e95f": { + "7a181aaf8967410dae1ce2d0e0d9856a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "80145043305a4ffabe28cb2a16f379de": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "814ed56db234446a92fe939efe5a477b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ca4b9735d66b414697862773b6ae1163", - "placeholder": "​", - "style": "IPY_MODEL_b49778737bd8479f946ac4060638f1d9", - "tabbable": null, - "tooltip": null, - "value": " 466k/466k [00:00<00:00, 15.0MB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "853f7130b22d49bfaf39b5d7bf7af4ce": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "72404aea60be4c0aaa808f8f70065420": { + "8e1a3b5aa6b14adc8ebdc1566696e505": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2351,46 +2546,7 @@ "width": null } }, - "73bb6421a1694f5abed56acfff8df5c8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c9974b364cf9469292e4c0a172a720dd", - "placeholder": "​", - "style": "IPY_MODEL_9facb5b56860415d974458a4f8a98e99", - "tabbable": null, - "tooltip": null, - "value": "tokenizer_config.json: 100%" - } - }, - "7430ccc73950450389eb7ded2db99afc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7443c554c2da4d4790de7a725d038932": { + "9814c1a1993c40a683e790580ecf178a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2408,30 +2564,7 @@ "text_color": null } }, - "7f9ca0d6a1fb49489d44ed52e9e5b6aa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_72404aea60be4c0aaa808f8f70065420", - "placeholder": "​", - "style": "IPY_MODEL_b8348d0d4075416fa30cf5f27f5fd6fd", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 32.8MB/s]" - } - }, - "7ffce27927fb488788c78c75defb22e0": { + "982a96cc3c0b4c00938e722c374cd707": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2484,7 +2617,7 @@ "width": null } }, - "8658abefb5a143a0ae1d78b86bb5e6a7": { + "98b6d5dd0c4546948933a4d8faa4bbc9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2537,7 +2670,7 @@ "width": null } }, - "8c1d39b74d17432a831b7e63d65fc7c0": { + "9e5f0df62415449eb138994f79e6d9e0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2555,33 +2688,7 @@ "text_color": null } }, - "8e023743450746ba98fb9cff5b8ab3ca": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_13325f0cbdac42e292d5ec55dd02d83e", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f650bcae88e3498c9713ed7fad85c313", - "tabbable": null, - "tooltip": null, - "value": 48.0 - } - }, - "91b179d4d8f345959726ca7ba76ac7a9": { + "a6d4217338164b029ad977bd11fb8d9e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2634,31 +2741,7 @@ "width": null } }, - "91c85984c43b4bb6ac43cf0e512599f1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b7d8f867996c41a0b6bc2bffd9f7965d", - "IPY_MODEL_9a7533d991e54982b696f43606dbe2b5", - "IPY_MODEL_1f3ed30be4ca4e5b97f396f778f155f5" - ], - "layout": "IPY_MODEL_e5831f2ec42f4838ab828634c0bd28fd", - "tabbable": null, - "tooltip": null - } - }, - "98055291c2ee452694ecc19e51ecaead": { + "b03695b8bbe44d13a5612d5120ea2a28": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2711,7 +2794,7 @@ "width": null } }, - "9a7533d991e54982b696f43606dbe2b5": { + "b83ba78e112b427d90a55129eecf514c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2727,17 +2810,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8658abefb5a143a0ae1d78b86bb5e6a7", - "max": 54245363.0, + "layout": "IPY_MODEL_078724370bc24c649597fb04791e1a0e", + "max": 2211.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_fa52b986ca5d4e199fbbe62d54662389", + "style": "IPY_MODEL_5376601de0794106a7b8777224bcafd4", "tabbable": null, "tooltip": null, - "value": 54245363.0 + "value": 2211.0 } }, - "9ac47759986e4465a5e745617e40364c": { + "c08801bd218a4933bad779d4baa0b544": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2753,88 +2836,56 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fbfcfc4949a741f88d46ad1b0042769e", - "max": 231508.0, + "layout": "IPY_MODEL_da42c63dc73b49f8b62f507344120b1a", + "max": 466062.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_14034de7bb7744e19694d7e8a08ca368", + "style": "IPY_MODEL_60b3d9bfd8e147ef947e8e81fd9fb70e", "tabbable": null, "tooltip": null, - "value": 231508.0 + "value": 466062.0 } }, - "9d38a50f62054962a5ac76122754b6df": { - "model_module": "@jupyter-widgets/base", + "c187a19bc3e941088eef67c273bf61ed": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "9facb5b56860415d974458a4f8a98e99": { + "c9ff9f5312794e5381359492c09edaaf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5ec8a2f5f2034c158f6d2c361a60ea25", + "placeholder": "​", + "style": "IPY_MODEL_853f7130b22d49bfaf39b5d7bf7af4ce", + "tabbable": null, + "tooltip": null, + "value": "vocab.txt: 100%" } }, - "a6a71af506bb4925baad0f1c7f46552e": { + "ca42a9ff17da48fab63132c9d67266dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2849,16 +2900,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_b729c768ffe84c23ab3835b3f3f8051b", - "IPY_MODEL_bdbdcb9609f647b6ac21adad814ab8dd", - "IPY_MODEL_704c7b4ef65041a89cd5d3fc1f81e95f" + "IPY_MODEL_52a83385affa4985b26bec259ee14740", + "IPY_MODEL_b83ba78e112b427d90a55129eecf514c", + "IPY_MODEL_f7e3eba4cb63469d997967f982f4a1df" ], - "layout": "IPY_MODEL_57162eef07c144edbbf29b08ca208753", + "layout": "IPY_MODEL_8e1a3b5aa6b14adc8ebdc1566696e505", "tabbable": null, "tooltip": null } }, - "a8d4e5776925443ebb839809dfaca832": { + "cc4d2d6857724ea0a2f3ec85a6f395ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2873,15 +2924,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_68e32e4abb734a84a60e14567ee5ab16", + "layout": "IPY_MODEL_4ed3c0ca07f04a87b53a6c5d68d36cf6", "placeholder": "​", - "style": "IPY_MODEL_7443c554c2da4d4790de7a725d038932", + "style": "IPY_MODEL_5efd9793a22541dd9dd8f09fcfbec967", "tabbable": null, "tooltip": null, - "value": "config.json: 100%" + "value": " 232k/232k [00:00<00:00, 31.3MB/s]" } }, - "aa7b347bc9c145b09318d5248c15af77": { + "d015bcf5ce69476ab54fd8e945eaa689": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2896,33 +2947,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_06823c4e7990422188c080cab19edf7b", + "layout": "IPY_MODEL_465f57a032274e4dadbee2eb87856ef1", "placeholder": "​", - "style": "IPY_MODEL_fc9418d15a01426f91adaea86b81b6eb", + "style": "IPY_MODEL_465f0d2ce3444dfd9bd85fd2529dc52c", "tabbable": null, "tooltip": null, - "value": " 665/665 [00:00<00:00, 98.3kB/s]" - } - }, - "ab8d06a6112542ae917846ddae4c46ac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 391/391 [00:00<00:00, 66.4kB/s]" } }, - "ae97d0f75f4740cbb7ce3ea7ed2d44aa": { + "d25c524b9c4444829470ac057e0fae42": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2935,35 +2968,17 @@ "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_31d200dead6d4d7a9d475999bb9cd002", - "placeholder": "​", - "style": "IPY_MODEL_35dadc5a2f124430a20eb48108c03ab1", - "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 407kB/s]" - } - }, - "b49778737bd8479f946ac4060638f1d9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1820812db0184a3ba2bd25871cc78e2f", + "placeholder": "​", + "style": "IPY_MODEL_57bc4c06dbfc46c89ae707951f55ed3a", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" } }, - "b729c768ffe84c23ab3835b3f3f8051b": { + "d66a39fee74f43488e2d84a8afff525a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2978,15 +2993,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_673865438c8e4b0296bbe6ca3c060cb9", + "layout": "IPY_MODEL_e7e2566da91d4dde83d80ed19a91e263", "placeholder": "​", - "style": "IPY_MODEL_ab8d06a6112542ae917846ddae4c46ac", + "style": "IPY_MODEL_20b3e8ae925a497db651bb3e420ccedd", "tabbable": null, "tooltip": null, - "value": "tokenizer.json: 100%" + "value": "config.json: 100%" } }, - "b7d8f867996c41a0b6bc2bffd9f7965d": { + "d6ea8d2f7af14ef69353a0ae60cf677e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3001,33 +3016,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_438118108888448cb339b8dc2230aa72", + "layout": "IPY_MODEL_3c023990927b4f04a4351901432e7d8f", "placeholder": "​", - "style": "IPY_MODEL_edc251780b214e988fe3e98369e79de3", + "style": "IPY_MODEL_9814c1a1993c40a683e790580ecf178a", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin: 100%" } }, - "b8348d0d4075416fa30cf5f27f5fd6fd": { - "model_module": "@jupyter-widgets/controls", + "da42c63dc73b49f8b62f507344120b1a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "bdbdcb9609f647b6ac21adad814ab8dd": { + "dbc2947dd29d4e92a20d79a1f5606f98": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3043,35 +3093,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_09f87f9e986947dda9b2e8c0bc235a7b", - "max": 466062.0, + "layout": "IPY_MODEL_de5b529ba5b7466f857e19bdfdcddd30", + "max": 231508.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_7430ccc73950450389eb7ded2db99afc", + "style": "IPY_MODEL_c187a19bc3e941088eef67c273bf61ed", "tabbable": null, "tooltip": null, - "value": 466062.0 - } - }, - "c2a16ddd367b4238aa5afd5a22f28d8c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 231508.0 } }, - "c7cd56b89e03457e8bfa240f778aeac4": { + "de5b529ba5b7466f857e19bdfdcddd30": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3124,7 +3156,7 @@ "width": null } }, - "c9974b364cf9469292e4c0a172a720dd": { + "e14305181a4f4a1aba92bf0159aa7bf3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3177,7 +3209,25 @@ "width": null } }, - "ca4b9735d66b414697862773b6ae1163": { + "e7529ab3626947b3ac4bc76edafa711a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e7e2566da91d4dde83d80ed19a91e263": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3230,33 +3280,31 @@ "width": null } }, - "e20b0fbd46bf4b59bc4da8f83218e600": { + "e89a8a43528e42c38eca656e48b7da7e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3e413d091d0d4b6482bc9ed11d5d236c", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0b359b2ad56c46998822be17f96e77fb", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ebe70157b15a43cebe4c33d29744783b", + "IPY_MODEL_6f739705eccc46afb2020460a828b56b", + "IPY_MODEL_d015bcf5ce69476ab54fd8e945eaa689" + ], + "layout": "IPY_MODEL_e9a141532bb34d7697db7a780d7a2002", "tabbable": null, - "tooltip": null, - "value": 665.0 + "tooltip": null } }, - "e3101229ea6044f0bf8820ecad5523c3": { + "e90e40189b0e460d90a444df7fe6d1a9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3271,16 +3319,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_079f3f1e033f4bbca8478c880a927afc", - "IPY_MODEL_9ac47759986e4465a5e745617e40364c", - "IPY_MODEL_7f9ca0d6a1fb49489d44ed52e9e5b6aa" + "IPY_MODEL_d6ea8d2f7af14ef69353a0ae60cf677e", + "IPY_MODEL_eccbc90dc8114497bb7438d438edc7f2", + "IPY_MODEL_060119cb42d74e19bb4e92690f697a5e" ], - "layout": "IPY_MODEL_624e82a0b0ec439696797f4a87dcb861", + "layout": "IPY_MODEL_a6d4217338164b029ad977bd11fb8d9e", "tabbable": null, "tooltip": null } }, - "e5831f2ec42f4838ab828634c0bd28fd": { + "e9a141532bb34d7697db7a780d7a2002": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3333,7 +3381,7 @@ "width": null } }, - "edc251780b214e988fe3e98369e79de3": { + "eb0935dc83294cc7a1acad3dd963f608": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3351,25 +3399,31 @@ "text_color": null } }, - "f03c166056b94c999588193b57b1ab4f": { + "eb1f3f2a9964471a8a7688badac98c84": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d25c524b9c4444829470ac057e0fae42", + "IPY_MODEL_654d58802fd94f6ead893ddbb0e3d131", + "IPY_MODEL_66ee22f8cf5b4a78ab33aee929a5fbd0" + ], + "layout": "IPY_MODEL_98b6d5dd0c4546948933a4d8faa4bbc9", + "tabbable": null, + "tooltip": null } }, - "f599421afd5149bfa8a6ee654777c7c1": { + "ebe70157b15a43cebe4c33d29744783b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3384,100 +3438,65 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7ffce27927fb488788c78c75defb22e0", + "layout": "IPY_MODEL_796c15ee275d4dff935fe8e20583896d", "placeholder": "​", - "style": "IPY_MODEL_c2a16ddd367b4238aa5afd5a22f28d8c", + "style": "IPY_MODEL_33adffdfde344f24ab11355d2abf0744", "tabbable": null, "tooltip": null, - "value": "README.md: 100%" + "value": ".gitattributes: 100%" } }, - "f650bcae88e3498c9713ed7fad85c313": { + "eccbc90dc8114497bb7438d438edc7f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "f893ddf9db054e05b5719e8272e508e6": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2adec3ea4ab147fca4247ce82a707f41", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_03cd490c005341539cee9b6bd0c64509", + "tabbable": null, + "tooltip": null, + "value": 54245363.0 } }, - "fa52b986ca5d4e199fbbe62d54662389": { + "edb46e1892c744119cd3f4a130dfb3e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c9ff9f5312794e5381359492c09edaaf", + "IPY_MODEL_dbc2947dd29d4e92a20d79a1f5606f98", + "IPY_MODEL_cc4d2d6857724ea0a2f3ec85a6f395ea" + ], + "layout": "IPY_MODEL_f3decebc5af44971b456d5da642e43b2", + "tabbable": null, + "tooltip": null } }, - "fbfcfc4949a741f88d46ad1b0042769e": { + "f3decebc5af44971b456d5da642e43b2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3530,49 +3549,30 @@ "width": null } }, - "fc9418d15a01426f91adaea86b81b6eb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "fce6374730574858a51fc6bb15b16ff0": { + "f7e3eba4cb63469d997967f982f4a1df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_73bb6421a1694f5abed56acfff8df5c8", - "IPY_MODEL_8e023743450746ba98fb9cff5b8ab3ca", - "IPY_MODEL_3123835078454cf9b22abb8a471265a0" - ], - "layout": "IPY_MODEL_69cbdc81324248878408dbfed717680f", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_982a96cc3c0b4c00938e722c374cd707", + "placeholder": "​", + "style": "IPY_MODEL_9e5f0df62415449eb138994f79e6d9e0", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 389kB/s]" } }, - "fe702e6a2dbf409c9c44ca8eb27dffcc": { + "fad0806770b14f9086fd1b3b755413fb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/datalab/audio.html b/master/tutorials/datalab/audio.html index 5ce92a112..5756d470b 100644 --- a/master/tutorials/datalab/audio.html +++ b/master/tutorials/datalab/audio.html @@ -1347,7 +1347,7 @@

5. Use cleanlab to find label issues -{"state": {"4748994f76ed4bc388496a39e510d54d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fcffd70673164f8aadd97b82906cc76e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "0a99e571562d43a7aa5ecd2abda2aa2d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4748994f76ed4bc388496a39e510d54d", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_fcffd70673164f8aadd97b82906cc76e", "tabbable": null, "tooltip": null, "value": 2041.0}}, "d8487dd8ed3e42a38371219c3c729283": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c3d1ad19115840c0bd02e22d3f39fbd9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4fe53b9dff9148ffbaee866c5033bba3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d8487dd8ed3e42a38371219c3c729283", "placeholder": "\u200b", "style": "IPY_MODEL_c3d1ad19115840c0bd02e22d3f39fbd9", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "f64888652c004082a1b036270e2702e0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "78b6d5bc6077499094dfc9bd718f4db7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6884e940a8554f6589d336edaee67f33": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f64888652c004082a1b036270e2702e0", "placeholder": "\u200b", "style": "IPY_MODEL_78b6d5bc6077499094dfc9bd718f4db7", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007481kB/s]"}}, "dfeb5c97c0174fe3b02f601346925b4a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cf3a1744d9c64353a34451f3e0dc96ef": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4fe53b9dff9148ffbaee866c5033bba3", "IPY_MODEL_0a99e571562d43a7aa5ecd2abda2aa2d", "IPY_MODEL_6884e940a8554f6589d336edaee67f33"], "layout": "IPY_MODEL_dfeb5c97c0174fe3b02f601346925b4a", "tabbable": null, "tooltip": null}}, "7687a1cfa1264a529fcedffaa6a4e467": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5a64304d36024180b26f4f79387324dc": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f07baddc31e847c595d90dd42ca379fb": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7687a1cfa1264a529fcedffaa6a4e467", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5a64304d36024180b26f4f79387324dc", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "8458463007ef42c0a82ddb9da20103ba": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1a72151665fc4b27b30d0d9a8c74e578": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7f01730dbf1446ca92cdfd900a358c1a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8458463007ef42c0a82ddb9da20103ba", "placeholder": "\u200b", "style": "IPY_MODEL_1a72151665fc4b27b30d0d9a8c74e578", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "f34dc10446834ea5b31b833757faa688": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ca1c4425f72b4b4a83a222e1429dbfed": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3b887681781b4f25abe1998059b0ae53": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f34dc10446834ea5b31b833757faa688", "placeholder": "\u200b", "style": "IPY_MODEL_ca1c4425f72b4b4a83a222e1429dbfed", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u200794.6MB/s]"}}, "fc74c0118a094bc3a970ec592d969b3d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2d6758bb73d44586a7740d66e26f26cf": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7f01730dbf1446ca92cdfd900a358c1a", "IPY_MODEL_f07baddc31e847c595d90dd42ca379fb", "IPY_MODEL_3b887681781b4f25abe1998059b0ae53"], "layout": "IPY_MODEL_fc74c0118a094bc3a970ec592d969b3d", "tabbable": null, "tooltip": null}}, "d0a6b2ff14e14058a38164d872d62aca": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "208e173931a84902991001290bbcd8e8": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b6a2cd8ff5374f089fad080858e3fd96": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d0a6b2ff14e14058a38164d872d62aca", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_208e173931a84902991001290bbcd8e8", "tabbable": null, "tooltip": null, "value": 3201.0}}, "32de4a18c7f147a8be35c654b53457aa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b5cb5977357e4fab995dcae8e2643177": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b2e03ad67f4e4dd08bf9d4b1f4fb712d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_32de4a18c7f147a8be35c654b53457aa", "placeholder": "\u200b", "style": "IPY_MODEL_b5cb5977357e4fab995dcae8e2643177", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "169802f2389c4c4e8717f6593ecaccaf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "692bb6d688714e569e4dfa9584bc0ad0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "17cad868ac7f43f3a8289ad5c1dbdd25": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_169802f2389c4c4e8717f6593ecaccaf", "placeholder": "\u200b", "style": "IPY_MODEL_692bb6d688714e569e4dfa9584bc0ad0", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007778kB/s]"}}, "4284b301638341a3b41f91a5b5daab48": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "11d84ef51dce4f7aaa879bf5e2b72f38": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b2e03ad67f4e4dd08bf9d4b1f4fb712d", "IPY_MODEL_b6a2cd8ff5374f089fad080858e3fd96", "IPY_MODEL_17cad868ac7f43f3a8289ad5c1dbdd25"], "layout": "IPY_MODEL_4284b301638341a3b41f91a5b5daab48", "tabbable": null, "tooltip": null}}, "e6590d45e9154268897f1c416b514bc9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "00fc7e046c8f4c308d5d222a635bb52c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e0eec76f9c4b41dab7f14303a673e770": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e6590d45e9154268897f1c416b514bc9", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_00fc7e046c8f4c308d5d222a635bb52c", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "4c63aa921de543f9a38a79a37dbf15a6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ab62c5cec180440ebb1975bcb91646f5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9583f3f76f304e7abc2f1a387e1d3df1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4c63aa921de543f9a38a79a37dbf15a6", "placeholder": "\u200b", "style": "IPY_MODEL_ab62c5cec180440ebb1975bcb91646f5", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "c1fc1902ebdc421e8d0afcb0d1027f63": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ea4a743f2c1443eab20e9c8135c3321d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f2bf833e4ea64394b10f33d310c0ee23": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c1fc1902ebdc421e8d0afcb0d1027f63", "placeholder": "\u200b", "style": "IPY_MODEL_ea4a743f2c1443eab20e9c8135c3321d", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u200793.5MB/s]"}}, "2d9a8d5f92fe4b3aaec557c0461f8829": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "299a08f2fa054f7bbe1daaa618adeb92": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_9583f3f76f304e7abc2f1a387e1d3df1", "IPY_MODEL_e0eec76f9c4b41dab7f14303a673e770", "IPY_MODEL_f2bf833e4ea64394b10f33d310c0ee23"], "layout": "IPY_MODEL_2d9a8d5f92fe4b3aaec557c0461f8829", "tabbable": null, "tooltip": null}}, "59b0ce30e35142928e041a6b8d2dc230": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dff35f7ef39b489d8db92f12e36f0799": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cf3af27e08194934863770ad9095424f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_59b0ce30e35142928e041a6b8d2dc230", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_dff35f7ef39b489d8db92f12e36f0799", "tabbable": null, "tooltip": null, "value": 128619.0}}, "868c56c897d2493bb075baa99c580d21": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6cd92f1c94e145be925eb36473830cbb": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "67737bdcaa0b4c8aad9b8db3c9fbeb51": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_868c56c897d2493bb075baa99c580d21", "placeholder": "\u200b", "style": "IPY_MODEL_6cd92f1c94e145be925eb36473830cbb", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "8034cbf813a3405d8b1b6885128dbb55": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "70432221e66e4c1b925252a9aabda6f1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "391af44b9e68466688f4ac70187a5ea4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8034cbf813a3405d8b1b6885128dbb55", "placeholder": "\u200b", "style": "IPY_MODEL_70432221e66e4c1b925252a9aabda6f1", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u200710.6MB/s]"}}, "aef29a94b0394011a06ba738f227041b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "999d991d513f43d38a94a4e22e5eae99": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_67737bdcaa0b4c8aad9b8db3c9fbeb51", "IPY_MODEL_cf3af27e08194934863770ad9095424f", "IPY_MODEL_391af44b9e68466688f4ac70187a5ea4"], "layout": "IPY_MODEL_aef29a94b0394011a06ba738f227041b", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"f1379d86855941e4a6388b556616e327": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "40a775a4588f452f8bf5d7fbc03bc9ba": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "280097d7d8744e47bd5924ed20469bd6": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f1379d86855941e4a6388b556616e327", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_40a775a4588f452f8bf5d7fbc03bc9ba", "tabbable": null, "tooltip": null, "value": 2041.0}}, "513013579fcb4448832ca2cf5f6e0fc2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "edbc3e1e1e514aeea602d52281c3dfa3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "73fd95beddfa4d59833b8b729dc2ef1b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_513013579fcb4448832ca2cf5f6e0fc2", "placeholder": "\u200b", "style": "IPY_MODEL_edbc3e1e1e514aeea602d52281c3dfa3", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "d3b969344b34427e9067d2e51d96dd59": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9ad076b10aa949c583d59ebf787d18d9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "38e4ea17dfd74406801cb8ef4fa01bfb": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d3b969344b34427e9067d2e51d96dd59", "placeholder": "\u200b", "style": "IPY_MODEL_9ad076b10aa949c583d59ebf787d18d9", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007501kB/s]"}}, "96e34a60ae404938aef646ab844636ca": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fbe4b54842f84d388c29da52e5a714cb": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_73fd95beddfa4d59833b8b729dc2ef1b", "IPY_MODEL_280097d7d8744e47bd5924ed20469bd6", "IPY_MODEL_38e4ea17dfd74406801cb8ef4fa01bfb"], "layout": "IPY_MODEL_96e34a60ae404938aef646ab844636ca", "tabbable": null, "tooltip": null}}, "a93eeb28cf894cdba2553c527a3bb1a7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6b1e51bd7dfd4e7e9b96650627dd4347": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b4c75c905856457c980a958861d26460": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a93eeb28cf894cdba2553c527a3bb1a7", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6b1e51bd7dfd4e7e9b96650627dd4347", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "5740512f403c4e52a3ce092bc9b6022f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9fbff358e60544609b6d2a561cf6f85c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3e0efe779a52444991f5fa51e7b53a87": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5740512f403c4e52a3ce092bc9b6022f", "placeholder": "\u200b", "style": "IPY_MODEL_9fbff358e60544609b6d2a561cf6f85c", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "1df8c0f2d29d45779e226e08c41aefd8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7a9eaff0d94f402eb6726bbbe282d200": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4d17c45bac644d16890f974d9bf14252": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1df8c0f2d29d45779e226e08c41aefd8", "placeholder": "\u200b", "style": "IPY_MODEL_7a9eaff0d94f402eb6726bbbe282d200", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007121MB/s]"}}, "af604b66416942c3beafdb0f24f5fb27": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cb4111006dc844c69976ab2a2fd47bf5": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3e0efe779a52444991f5fa51e7b53a87", "IPY_MODEL_b4c75c905856457c980a958861d26460", "IPY_MODEL_4d17c45bac644d16890f974d9bf14252"], "layout": "IPY_MODEL_af604b66416942c3beafdb0f24f5fb27", "tabbable": null, "tooltip": null}}, "5fc9fb12e7584385b6dbcc71ea004933": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cbf0488c8e70416aabb7cb8cffe59c43": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cf0f8cce4150428582199659b7ecc31f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5fc9fb12e7584385b6dbcc71ea004933", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_cbf0488c8e70416aabb7cb8cffe59c43", "tabbable": null, "tooltip": null, "value": 3201.0}}, "c5e86d52ed71402dbadb1a831d3a99dd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3b3e7e9c2d3a481a8b66e18c87d96abe": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d5743decd00649e19fbee18925104825": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c5e86d52ed71402dbadb1a831d3a99dd", "placeholder": "\u200b", "style": "IPY_MODEL_3b3e7e9c2d3a481a8b66e18c87d96abe", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "249f3be21f17476cb286f35a4beae4ea": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "28c2d54c60d54e18885566cb5f99ba0a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f5b3c5a8ab94472a8c12d10627c4a3b2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_249f3be21f17476cb286f35a4beae4ea", "placeholder": "\u200b", "style": "IPY_MODEL_28c2d54c60d54e18885566cb5f99ba0a", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007820kB/s]"}}, "b7930e24a3604c3783c6342017146161": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fc94797f46734484ae1adb8c6aac5095": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d5743decd00649e19fbee18925104825", "IPY_MODEL_cf0f8cce4150428582199659b7ecc31f", "IPY_MODEL_f5b3c5a8ab94472a8c12d10627c4a3b2"], "layout": "IPY_MODEL_b7930e24a3604c3783c6342017146161", "tabbable": null, "tooltip": null}}, "f9d1becbce8d4a0e92d1291261488c36": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7fb74483ba564e44bf8528608dd0c00d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2073d888478c4148aa6af8f01d1a55c0": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f9d1becbce8d4a0e92d1291261488c36", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7fb74483ba564e44bf8528608dd0c00d", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "1e578c121b074fe689ec2d0de3438add": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "65678011a834483f81123fce6a847a0f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1879dcf933dc47ef80752de84b1be173": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1e578c121b074fe689ec2d0de3438add", "placeholder": "\u200b", "style": "IPY_MODEL_65678011a834483f81123fce6a847a0f", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "39378c4365b84e2ba8a40f5da8c49a6b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7e28797dcb31400985bcdae5b8c5fb36": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b182da74164e4c6da9b9218000f3b471": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_39378c4365b84e2ba8a40f5da8c49a6b", "placeholder": "\u200b", "style": "IPY_MODEL_7e28797dcb31400985bcdae5b8c5fb36", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007133MB/s]"}}, "7b71cae594754cd4b51bdf0cc3937dc8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7ac998d738294e6c82fb7330a80ef819": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1879dcf933dc47ef80752de84b1be173", "IPY_MODEL_2073d888478c4148aa6af8f01d1a55c0", "IPY_MODEL_b182da74164e4c6da9b9218000f3b471"], "layout": "IPY_MODEL_7b71cae594754cd4b51bdf0cc3937dc8", "tabbable": null, "tooltip": null}}, "0b4a72514d5e48d9a5de944d58a5949b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "54ae4e63d9c84d078262621e2d8e350f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4209fa1ed28448c4a745350a1042e490": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0b4a72514d5e48d9a5de944d58a5949b", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_54ae4e63d9c84d078262621e2d8e350f", "tabbable": null, "tooltip": null, "value": 128619.0}}, "6fe26799ef5342b7ae1161bc8ef4ec8a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ba779947520844b1b4e9e788604b7ed8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "68b7a074f4a5491984f03ffaed29102c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6fe26799ef5342b7ae1161bc8ef4ec8a", "placeholder": "\u200b", "style": "IPY_MODEL_ba779947520844b1b4e9e788604b7ed8", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "b95daff336854c7aa1ca5dbdf574af6e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "65c231ce763c440980afbfa1c4eaab86": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "743444b6670b4fa99cc0396e4b32f5e4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b95daff336854c7aa1ca5dbdf574af6e", "placeholder": "\u200b", "style": "IPY_MODEL_65c231ce763c440980afbfa1c4eaab86", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u200710.6MB/s]"}}, "f70f441fdd5147c685302ccf8dbb2370": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9946d2c65d6146e5a82c395bc8875caf": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_68b7a074f4a5491984f03ffaed29102c", "IPY_MODEL_4209fa1ed28448c4a745350a1042e490", "IPY_MODEL_743444b6670b4fa99cc0396e4b32f5e4"], "layout": "IPY_MODEL_f70f441fdd5147c685302ccf8dbb2370", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/audio.ipynb b/master/tutorials/datalab/audio.ipynb index 2f2d2a40d..9db139a3f 100644 --- a/master/tutorials/datalab/audio.ipynb +++ b/master/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:05.352362Z", - "iopub.status.busy": "2024-07-01T15:02:05.351840Z", - "iopub.status.idle": "2024-07-01T15:02:11.364535Z", - "shell.execute_reply": "2024-07-01T15:02:11.364016Z" + "iopub.execute_input": "2024-07-02T12:00:48.153712Z", + "iopub.status.busy": "2024-07-02T12:00:48.153535Z", + "iopub.status.idle": "2024-07-02T12:00:53.266339Z", + "shell.execute_reply": "2024-07-02T12:00:53.265786Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7a801c5ee1e11be3732a7ea01725de8aca8d147d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@46226527e9d4c8f7ccdf91ff5dac4d6ee27e022b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:11.367286Z", - "iopub.status.busy": "2024-07-01T15:02:11.366756Z", - "iopub.status.idle": "2024-07-01T15:02:11.369937Z", - "shell.execute_reply": "2024-07-01T15:02:11.369499Z" + "iopub.execute_input": "2024-07-02T12:00:53.268847Z", + "iopub.status.busy": "2024-07-02T12:00:53.268512Z", + "iopub.status.idle": "2024-07-02T12:00:53.271688Z", + "shell.execute_reply": "2024-07-02T12:00:53.271237Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:11.372033Z", - "iopub.status.busy": "2024-07-01T15:02:11.371712Z", - "iopub.status.idle": "2024-07-01T15:02:11.376772Z", - "shell.execute_reply": "2024-07-01T15:02:11.376263Z" + "iopub.execute_input": "2024-07-02T12:00:53.273790Z", + "iopub.status.busy": "2024-07-02T12:00:53.273468Z", + "iopub.status.idle": "2024-07-02T12:00:53.277843Z", + "shell.execute_reply": "2024-07-02T12:00:53.277413Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-01T15:02:11.378959Z", - "iopub.status.busy": "2024-07-01T15:02:11.378766Z", - "iopub.status.idle": "2024-07-01T15:02:12.901153Z", - "shell.execute_reply": "2024-07-01T15:02:12.900530Z" + "iopub.execute_input": "2024-07-02T12:00:53.279840Z", + "iopub.status.busy": "2024-07-02T12:00:53.279499Z", + "iopub.status.idle": "2024-07-02T12:00:54.884749Z", + "shell.execute_reply": "2024-07-02T12:00:54.884125Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-01T15:02:12.904092Z", - "iopub.status.busy": "2024-07-01T15:02:12.903651Z", - "iopub.status.idle": "2024-07-01T15:02:12.914311Z", - "shell.execute_reply": "2024-07-01T15:02:12.913807Z" + "iopub.execute_input": "2024-07-02T12:00:54.887464Z", + "iopub.status.busy": "2024-07-02T12:00:54.887081Z", + "iopub.status.idle": "2024-07-02T12:00:54.897463Z", + "shell.execute_reply": "2024-07-02T12:00:54.897041Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:12.916523Z", - "iopub.status.busy": "2024-07-01T15:02:12.916188Z", - "iopub.status.idle": "2024-07-01T15:02:12.921874Z", - "shell.execute_reply": "2024-07-01T15:02:12.921422Z" + "iopub.execute_input": "2024-07-02T12:00:54.899593Z", + "iopub.status.busy": "2024-07-02T12:00:54.899256Z", + "iopub.status.idle": "2024-07-02T12:00:54.904661Z", + "shell.execute_reply": "2024-07-02T12:00:54.904214Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-01T15:02:12.923867Z", - "iopub.status.busy": "2024-07-01T15:02:12.923684Z", - "iopub.status.idle": "2024-07-01T15:02:13.374643Z", - "shell.execute_reply": "2024-07-01T15:02:13.374029Z" + "iopub.execute_input": "2024-07-02T12:00:54.906699Z", + "iopub.status.busy": "2024-07-02T12:00:54.906445Z", + "iopub.status.idle": "2024-07-02T12:00:55.370547Z", + "shell.execute_reply": "2024-07-02T12:00:55.370054Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:13.376868Z", - "iopub.status.busy": "2024-07-01T15:02:13.376659Z", - "iopub.status.idle": "2024-07-01T15:02:14.191014Z", - "shell.execute_reply": "2024-07-01T15:02:14.190519Z" + "iopub.execute_input": "2024-07-02T12:00:55.372729Z", + "iopub.status.busy": "2024-07-02T12:00:55.372455Z", + "iopub.status.idle": "2024-07-02T12:00:56.373788Z", + "shell.execute_reply": "2024-07-02T12:00:56.373190Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-07-01T15:02:14.193499Z", - "iopub.status.busy": "2024-07-01T15:02:14.193141Z", - "iopub.status.idle": "2024-07-01T15:02:14.211506Z", - "shell.execute_reply": "2024-07-01T15:02:14.210918Z" + "iopub.execute_input": "2024-07-02T12:00:56.376073Z", + "iopub.status.busy": "2024-07-02T12:00:56.375890Z", + "iopub.status.idle": "2024-07-02T12:00:56.393884Z", + "shell.execute_reply": "2024-07-02T12:00:56.393321Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:14.213644Z", - "iopub.status.busy": "2024-07-01T15:02:14.213459Z", - "iopub.status.idle": "2024-07-01T15:02:14.216713Z", - "shell.execute_reply": "2024-07-01T15:02:14.216187Z" + "iopub.execute_input": "2024-07-02T12:00:56.396057Z", + "iopub.status.busy": "2024-07-02T12:00:56.395720Z", + "iopub.status.idle": "2024-07-02T12:00:56.398930Z", + "shell.execute_reply": "2024-07-02T12:00:56.398478Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:14.218727Z", - "iopub.status.busy": "2024-07-01T15:02:14.218427Z", - "iopub.status.idle": "2024-07-01T15:02:28.819416Z", - "shell.execute_reply": "2024-07-01T15:02:28.818802Z" + "iopub.execute_input": "2024-07-02T12:00:56.400749Z", + "iopub.status.busy": "2024-07-02T12:00:56.400581Z", + "iopub.status.idle": "2024-07-02T12:01:10.956584Z", + "shell.execute_reply": "2024-07-02T12:01:10.955969Z" }, "id": "2FSQ2GR9R_YA" }, @@ -617,10 +617,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-01T15:02:28.822324Z", - "iopub.status.busy": "2024-07-01T15:02:28.821907Z", - "iopub.status.idle": "2024-07-01T15:02:28.825931Z", - "shell.execute_reply": "2024-07-01T15:02:28.825366Z" + "iopub.execute_input": "2024-07-02T12:01:10.959440Z", + "iopub.status.busy": "2024-07-02T12:01:10.959028Z", + "iopub.status.idle": "2024-07-02T12:01:10.962902Z", + "shell.execute_reply": "2024-07-02T12:01:10.962374Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -680,10 +680,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:28.827995Z", - "iopub.status.busy": "2024-07-01T15:02:28.827681Z", - "iopub.status.idle": "2024-07-01T15:02:29.521211Z", - "shell.execute_reply": "2024-07-01T15:02:29.520635Z" + "iopub.execute_input": "2024-07-02T12:01:10.964878Z", + "iopub.status.busy": "2024-07-02T12:01:10.964705Z", + "iopub.status.idle": "2024-07-02T12:01:11.664747Z", + "shell.execute_reply": "2024-07-02T12:01:11.664181Z" }, "id": "i_drkY9YOcw4" }, @@ -717,10 +717,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-01T15:02:29.524947Z", - "iopub.status.busy": "2024-07-01T15:02:29.524000Z", - "iopub.status.idle": "2024-07-01T15:02:29.530833Z", - "shell.execute_reply": "2024-07-01T15:02:29.530342Z" + "iopub.execute_input": "2024-07-02T12:01:11.667592Z", + "iopub.status.busy": "2024-07-02T12:01:11.667207Z", + "iopub.status.idle": "2024-07-02T12:01:11.671960Z", + "shell.execute_reply": "2024-07-02T12:01:11.671464Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -767,10 +767,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:29.534459Z", - "iopub.status.busy": "2024-07-01T15:02:29.533509Z", - "iopub.status.idle": "2024-07-01T15:02:29.635169Z", - "shell.execute_reply": "2024-07-01T15:02:29.634583Z" + "iopub.execute_input": "2024-07-02T12:01:11.674352Z", + "iopub.status.busy": "2024-07-02T12:01:11.673986Z", + "iopub.status.idle": "2024-07-02T12:01:11.769978Z", + "shell.execute_reply": "2024-07-02T12:01:11.769317Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:29.637589Z", - "iopub.status.busy": "2024-07-01T15:02:29.637281Z", - "iopub.status.idle": "2024-07-01T15:02:29.650412Z", - "shell.execute_reply": "2024-07-01T15:02:29.649911Z" + "iopub.execute_input": "2024-07-02T12:01:11.772290Z", + "iopub.status.busy": "2024-07-02T12:01:11.771936Z", + "iopub.status.idle": "2024-07-02T12:01:11.785262Z", + "shell.execute_reply": "2024-07-02T12:01:11.784787Z" }, "scrolled": true }, @@ -870,10 +870,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:29.652492Z", - "iopub.status.busy": "2024-07-01T15:02:29.652304Z", - "iopub.status.idle": "2024-07-01T15:02:29.660528Z", - "shell.execute_reply": "2024-07-01T15:02:29.660066Z" + "iopub.execute_input": "2024-07-02T12:01:11.787484Z", + "iopub.status.busy": "2024-07-02T12:01:11.787145Z", + "iopub.status.idle": "2024-07-02T12:01:11.795270Z", + "shell.execute_reply": "2024-07-02T12:01:11.794713Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:29.662724Z", - "iopub.status.busy": "2024-07-01T15:02:29.662297Z", - "iopub.status.idle": "2024-07-01T15:02:29.666626Z", - "shell.execute_reply": "2024-07-01T15:02:29.666160Z" + "iopub.execute_input": "2024-07-02T12:01:11.797390Z", + "iopub.status.busy": "2024-07-02T12:01:11.797080Z", + "iopub.status.idle": "2024-07-02T12:01:11.801551Z", + "shell.execute_reply": "2024-07-02T12:01:11.800973Z" } }, "outputs": [ @@ -1018,10 +1018,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-07-01T15:02:29.668442Z", - "iopub.status.busy": "2024-07-01T15:02:29.668268Z", - "iopub.status.idle": "2024-07-01T15:02:29.673924Z", - "shell.execute_reply": "2024-07-01T15:02:29.673445Z" + "iopub.execute_input": "2024-07-02T12:01:11.803467Z", + "iopub.status.busy": "2024-07-02T12:01:11.803275Z", + "iopub.status.idle": "2024-07-02T12:01:11.809289Z", + "shell.execute_reply": "2024-07-02T12:01:11.808826Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1148,10 +1148,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-01T15:02:29.675826Z", - "iopub.status.busy": "2024-07-01T15:02:29.675650Z", - "iopub.status.idle": "2024-07-01T15:02:29.788802Z", - "shell.execute_reply": "2024-07-01T15:02:29.788252Z" + "iopub.execute_input": "2024-07-02T12:01:11.811355Z", + "iopub.status.busy": "2024-07-02T12:01:11.811010Z", + "iopub.status.idle": "2024-07-02T12:01:11.924674Z", + "shell.execute_reply": "2024-07-02T12:01:11.924087Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1205,10 +1205,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-01T15:02:29.791024Z", - "iopub.status.busy": "2024-07-01T15:02:29.790694Z", - "iopub.status.idle": "2024-07-01T15:02:29.899192Z", - "shell.execute_reply": "2024-07-01T15:02:29.898612Z" + "iopub.execute_input": "2024-07-02T12:01:11.927078Z", + "iopub.status.busy": "2024-07-02T12:01:11.926676Z", + "iopub.status.idle": "2024-07-02T12:01:12.029810Z", + "shell.execute_reply": "2024-07-02T12:01:12.029255Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1253,10 +1253,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-01T15:02:29.901288Z", - "iopub.status.busy": "2024-07-01T15:02:29.901099Z", - "iopub.status.idle": "2024-07-01T15:02:30.006069Z", - "shell.execute_reply": "2024-07-01T15:02:30.005505Z" + "iopub.execute_input": "2024-07-02T12:01:12.031968Z", + "iopub.status.busy": "2024-07-02T12:01:12.031613Z", + "iopub.status.idle": "2024-07-02T12:01:12.132022Z", + "shell.execute_reply": "2024-07-02T12:01:12.131402Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1297,10 +1297,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:30.008275Z", - "iopub.status.busy": "2024-07-01T15:02:30.007928Z", - "iopub.status.idle": "2024-07-01T15:02:30.113221Z", - "shell.execute_reply": "2024-07-01T15:02:30.112655Z" + "iopub.execute_input": "2024-07-02T12:01:12.134167Z", + "iopub.status.busy": "2024-07-02T12:01:12.133985Z", + "iopub.status.idle": "2024-07-02T12:01:12.235981Z", + "shell.execute_reply": "2024-07-02T12:01:12.235470Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:30.115374Z", - "iopub.status.busy": "2024-07-01T15:02:30.115188Z", - "iopub.status.idle": "2024-07-01T15:02:30.118487Z", - "shell.execute_reply": "2024-07-01T15:02:30.117941Z" + "iopub.execute_input": "2024-07-02T12:01:12.237957Z", + "iopub.status.busy": "2024-07-02T12:01:12.237775Z", + "iopub.status.idle": "2024-07-02T12:01:12.241026Z", + "shell.execute_reply": "2024-07-02T12:01:12.240474Z" }, "nbsphinx": "hidden" }, @@ -1392,73 +1392,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00fc7e046c8f4c308d5d222a635bb52c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0a99e571562d43a7aa5ecd2abda2aa2d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4748994f76ed4bc388496a39e510d54d", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fcffd70673164f8aadd97b82906cc76e", - "tabbable": null, - "tooltip": null, - "value": 2041.0 - } - }, - "11d84ef51dce4f7aaa879bf5e2b72f38": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b2e03ad67f4e4dd08bf9d4b1f4fb712d", - "IPY_MODEL_b6a2cd8ff5374f089fad080858e3fd96", - "IPY_MODEL_17cad868ac7f43f3a8289ad5c1dbdd25" - ], - "layout": "IPY_MODEL_4284b301638341a3b41f91a5b5daab48", - "tabbable": null, - "tooltip": null - } - }, - "169802f2389c4c4e8717f6593ecaccaf": { + "0b4a72514d5e48d9a5de944d58a5949b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1511,7 +1445,7 @@ "width": null } }, - "17cad868ac7f43f3a8289ad5c1dbdd25": { + "1879dcf933dc47ef80752de84b1be173": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1526,97 +1460,147 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_169802f2389c4c4e8717f6593ecaccaf", + "layout": "IPY_MODEL_1e578c121b074fe689ec2d0de3438add", "placeholder": "​", - "style": "IPY_MODEL_692bb6d688714e569e4dfa9584bc0ad0", + "style": "IPY_MODEL_65678011a834483f81123fce6a847a0f", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 778kB/s]" + "value": "classifier.ckpt: 100%" } }, - "1a72151665fc4b27b30d0d9a8c74e578": { - "model_module": "@jupyter-widgets/controls", + "1df8c0f2d29d45779e226e08c41aefd8": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "208e173931a84902991001290bbcd8e8": { - "model_module": "@jupyter-widgets/controls", + "1e578c121b074fe689ec2d0de3438add": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "299a08f2fa054f7bbe1daaa618adeb92": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9583f3f76f304e7abc2f1a387e1d3df1", - "IPY_MODEL_e0eec76f9c4b41dab7f14303a673e770", - "IPY_MODEL_f2bf833e4ea64394b10f33d310c0ee23" - ], - "layout": "IPY_MODEL_2d9a8d5f92fe4b3aaec557c0461f8829", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "2d6758bb73d44586a7740d66e26f26cf": { + "2073d888478c4148aa6af8f01d1a55c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7f01730dbf1446ca92cdfd900a358c1a", - "IPY_MODEL_f07baddc31e847c595d90dd42ca379fb", - "IPY_MODEL_3b887681781b4f25abe1998059b0ae53" - ], - "layout": "IPY_MODEL_fc74c0118a094bc3a970ec592d969b3d", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f9d1becbce8d4a0e92d1291261488c36", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7fb74483ba564e44bf8528608dd0c00d", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 15856877.0 } }, - "2d9a8d5f92fe4b3aaec557c0461f8829": { + "249f3be21f17476cb286f35a4beae4ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1669,7 +1653,74 @@ "width": null } }, - "32de4a18c7f147a8be35c654b53457aa": { + "280097d7d8744e47bd5924ed20469bd6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f1379d86855941e4a6388b556616e327", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_40a775a4588f452f8bf5d7fbc03bc9ba", + "tabbable": null, + "tooltip": null, + "value": 2041.0 + } + }, + "28c2d54c60d54e18885566cb5f99ba0a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "38e4ea17dfd74406801cb8ef4fa01bfb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d3b969344b34427e9067d2e51d96dd59", + "placeholder": "​", + "style": "IPY_MODEL_9ad076b10aa949c583d59ebf787d18d9", + "tabbable": null, + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 501kB/s]" + } + }, + "39378c4365b84e2ba8a40f5da8c49a6b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1722,7 +1773,25 @@ "width": null } }, - "391af44b9e68466688f4ac70187a5ea4": { + "3b3e7e9c2d3a481a8b66e18c87d96abe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3e0efe779a52444991f5fa51e7b53a87": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1737,15 +1806,57 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8034cbf813a3405d8b1b6885128dbb55", + "layout": "IPY_MODEL_5740512f403c4e52a3ce092bc9b6022f", "placeholder": "​", - "style": "IPY_MODEL_70432221e66e4c1b925252a9aabda6f1", + "style": "IPY_MODEL_9fbff358e60544609b6d2a561cf6f85c", "tabbable": null, "tooltip": null, - "value": " 129k/129k [00:00<00:00, 10.6MB/s]" + "value": "embedding_model.ckpt: 100%" + } + }, + "40a775a4588f452f8bf5d7fbc03bc9ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "3b887681781b4f25abe1998059b0ae53": { + "4209fa1ed28448c4a745350a1042e490": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0b4a72514d5e48d9a5de944d58a5949b", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_54ae4e63d9c84d078262621e2d8e350f", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "4d17c45bac644d16890f974d9bf14252": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1760,15 +1871,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f34dc10446834ea5b31b833757faa688", + "layout": "IPY_MODEL_1df8c0f2d29d45779e226e08c41aefd8", "placeholder": "​", - "style": "IPY_MODEL_ca1c4425f72b4b4a83a222e1429dbfed", + "style": "IPY_MODEL_7a9eaff0d94f402eb6726bbbe282d200", "tabbable": null, "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 94.6MB/s]" + "value": " 16.9M/16.9M [00:00<00:00, 121MB/s]" } }, - "4284b301638341a3b41f91a5b5daab48": { + "513013579fcb4448832ca2cf5f6e0fc2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1821,7 +1932,23 @@ "width": null } }, - "4748994f76ed4bc388496a39e510d54d": { + "54ae4e63d9c84d078262621e2d8e350f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5740512f403c4e52a3ce092bc9b6022f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1874,7 +2001,7 @@ "width": null } }, - "4c63aa921de543f9a38a79a37dbf15a6": { + "5fc9fb12e7584385b6dbcc71ea004933": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1927,7 +2054,43 @@ "width": null } }, - "4fe53b9dff9148ffbaee866c5033bba3": { + "65678011a834483f81123fce6a847a0f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "65c231ce763c440980afbfa1c4eaab86": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "68b7a074f4a5491984f03ffaed29102c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1942,15 +2105,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d8487dd8ed3e42a38371219c3c729283", + "layout": "IPY_MODEL_6fe26799ef5342b7ae1161bc8ef4ec8a", "placeholder": "​", - "style": "IPY_MODEL_c3d1ad19115840c0bd02e22d3f39fbd9", + "style": "IPY_MODEL_ba779947520844b1b4e9e788604b7ed8", "tabbable": null, "tooltip": null, - "value": "hyperparams.yaml: 100%" + "value": "label_encoder.txt: 100%" + } + }, + "6b1e51bd7dfd4e7e9b96650627dd4347": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "59b0ce30e35142928e041a6b8d2dc230": { + "6fe26799ef5342b7ae1161bc8ef4ec8a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2003,23 +2182,7 @@ "width": null } }, - "5a64304d36024180b26f4f79387324dc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "67737bdcaa0b4c8aad9b8db3c9fbeb51": { + "73fd95beddfa4d59833b8b729dc2ef1b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2034,15 +2197,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_868c56c897d2493bb075baa99c580d21", + "layout": "IPY_MODEL_513013579fcb4448832ca2cf5f6e0fc2", "placeholder": "​", - "style": "IPY_MODEL_6cd92f1c94e145be925eb36473830cbb", + "style": "IPY_MODEL_edbc3e1e1e514aeea602d52281c3dfa3", "tabbable": null, "tooltip": null, - "value": "label_encoder.txt: 100%" + "value": "hyperparams.yaml: 100%" } }, - "6884e940a8554f6589d336edaee67f33": { + "743444b6670b4fa99cc0396e4b32f5e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2057,33 +2220,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f64888652c004082a1b036270e2702e0", + "layout": "IPY_MODEL_b95daff336854c7aa1ca5dbdf574af6e", "placeholder": "​", - "style": "IPY_MODEL_78b6d5bc6077499094dfc9bd718f4db7", + "style": "IPY_MODEL_65c231ce763c440980afbfa1c4eaab86", "tabbable": null, "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 481kB/s]" - } - }, - "692bb6d688714e569e4dfa9584bc0ad0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 129k/129k [00:00<00:00, 10.6MB/s]" } }, - "6cd92f1c94e145be925eb36473830cbb": { + "7a9eaff0d94f402eb6726bbbe282d200": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2101,25 +2246,31 @@ "text_color": null } }, - "70432221e66e4c1b925252a9aabda6f1": { + "7ac998d738294e6c82fb7330a80ef819": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1879dcf933dc47ef80752de84b1be173", + "IPY_MODEL_2073d888478c4148aa6af8f01d1a55c0", + "IPY_MODEL_b182da74164e4c6da9b9218000f3b471" + ], + "layout": "IPY_MODEL_7b71cae594754cd4b51bdf0cc3937dc8", + "tabbable": null, + "tooltip": null } }, - "7687a1cfa1264a529fcedffaa6a4e467": { + "7b71cae594754cd4b51bdf0cc3937dc8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2172,7 +2323,7 @@ "width": null } }, - "78b6d5bc6077499094dfc9bd718f4db7": { + "7e28797dcb31400985bcdae5b8c5fb36": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2190,136 +2341,23 @@ "text_color": null } }, - "7f01730dbf1446ca92cdfd900a358c1a": { + "7fb74483ba564e44bf8528608dd0c00d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8458463007ef42c0a82ddb9da20103ba", - "placeholder": "​", - "style": "IPY_MODEL_1a72151665fc4b27b30d0d9a8c74e578", - "tabbable": null, - "tooltip": null, - "value": "embedding_model.ckpt: 100%" - } - }, - "8034cbf813a3405d8b1b6885128dbb55": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "8458463007ef42c0a82ddb9da20103ba": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "868c56c897d2493bb075baa99c580d21": { + "96e34a60ae404938aef646ab844636ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2372,54 +2410,49 @@ "width": null } }, - "9583f3f76f304e7abc2f1a387e1d3df1": { + "9946d2c65d6146e5a82c395bc8875caf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4c63aa921de543f9a38a79a37dbf15a6", - "placeholder": "​", - "style": "IPY_MODEL_ab62c5cec180440ebb1975bcb91646f5", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_68b7a074f4a5491984f03ffaed29102c", + "IPY_MODEL_4209fa1ed28448c4a745350a1042e490", + "IPY_MODEL_743444b6670b4fa99cc0396e4b32f5e4" + ], + "layout": "IPY_MODEL_f70f441fdd5147c685302ccf8dbb2370", "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" + "tooltip": null } }, - "999d991d513f43d38a94a4e22e5eae99": { + "9ad076b10aa949c583d59ebf787d18d9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_67737bdcaa0b4c8aad9b8db3c9fbeb51", - "IPY_MODEL_cf3af27e08194934863770ad9095424f", - "IPY_MODEL_391af44b9e68466688f4ac70187a5ea4" - ], - "layout": "IPY_MODEL_aef29a94b0394011a06ba738f227041b", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "ab62c5cec180440ebb1975bcb91646f5": { + "9fbff358e60544609b6d2a561cf6f85c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2437,7 +2470,7 @@ "text_color": null } }, - "aef29a94b0394011a06ba738f227041b": { + "a93eeb28cf894cdba2553c527a3bb1a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2490,74 +2523,7 @@ "width": null } }, - "b2e03ad67f4e4dd08bf9d4b1f4fb712d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_32de4a18c7f147a8be35c654b53457aa", - "placeholder": "​", - "style": "IPY_MODEL_b5cb5977357e4fab995dcae8e2643177", - "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" - } - }, - "b5cb5977357e4fab995dcae8e2643177": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b6a2cd8ff5374f089fad080858e3fd96": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d0a6b2ff14e14058a38164d872d62aca", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_208e173931a84902991001290bbcd8e8", - "tabbable": null, - "tooltip": null, - "value": 3201.0 - } - }, - "c1fc1902ebdc421e8d0afcb0d1027f63": { + "af604b66416942c3beafdb0f24f5fb27": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2610,67 +2576,30 @@ "width": null } }, - "c3d1ad19115840c0bd02e22d3f39fbd9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ca1c4425f72b4b4a83a222e1429dbfed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "cf3a1744d9c64353a34451f3e0dc96ef": { + "b182da74164e4c6da9b9218000f3b471": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4fe53b9dff9148ffbaee866c5033bba3", - "IPY_MODEL_0a99e571562d43a7aa5ecd2abda2aa2d", - "IPY_MODEL_6884e940a8554f6589d336edaee67f33" - ], - "layout": "IPY_MODEL_dfeb5c97c0174fe3b02f601346925b4a", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_39378c4365b84e2ba8a40f5da8c49a6b", + "placeholder": "​", + "style": "IPY_MODEL_7e28797dcb31400985bcdae5b8c5fb36", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 133MB/s]" } }, - "cf3af27e08194934863770ad9095424f": { + "b4c75c905856457c980a958861d26460": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2686,17 +2615,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_59b0ce30e35142928e041a6b8d2dc230", - "max": 128619.0, + "layout": "IPY_MODEL_a93eeb28cf894cdba2553c527a3bb1a7", + "max": 16887676.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_dff35f7ef39b489d8db92f12e36f0799", + "style": "IPY_MODEL_6b1e51bd7dfd4e7e9b96650627dd4347", "tabbable": null, "tooltip": null, - "value": 128619.0 + "value": 16887676.0 } }, - "d0a6b2ff14e14058a38164d872d62aca": { + "b7930e24a3604c3783c6342017146161": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2749,7 +2678,7 @@ "width": null } }, - "d8487dd8ed3e42a38371219c3c729283": { + "b95daff336854c7aa1ca5dbdf574af6e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2802,7 +2731,25 @@ "width": null } }, - "dfeb5c97c0174fe3b02f601346925b4a": { + "ba779947520844b1b4e9e788604b7ed8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c5e86d52ed71402dbadb1a831d3a99dd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2855,7 +2802,31 @@ "width": null } }, - "dff35f7ef39b489d8db92f12e36f0799": { + "cb4111006dc844c69976ab2a2fd47bf5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3e0efe779a52444991f5fa51e7b53a87", + "IPY_MODEL_b4c75c905856457c980a958861d26460", + "IPY_MODEL_4d17c45bac644d16890f974d9bf14252" + ], + "layout": "IPY_MODEL_af604b66416942c3beafdb0f24f5fb27", + "tabbable": null, + "tooltip": null + } + }, + "cbf0488c8e70416aabb7cb8cffe59c43": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2871,7 +2842,7 @@ "description_width": "" } }, - "e0eec76f9c4b41dab7f14303a673e770": { + "cf0f8cce4150428582199659b7ecc31f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2887,17 +2858,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e6590d45e9154268897f1c416b514bc9", - "max": 15856877.0, + "layout": "IPY_MODEL_5fc9fb12e7584385b6dbcc71ea004933", + "max": 3201.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_00fc7e046c8f4c308d5d222a635bb52c", + "style": "IPY_MODEL_cbf0488c8e70416aabb7cb8cffe59c43", "tabbable": null, "tooltip": null, - "value": 15856877.0 + "value": 3201.0 } }, - "e6590d45e9154268897f1c416b514bc9": { + "d3b969344b34427e9067d2e51d96dd59": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2950,74 +2921,48 @@ "width": null } }, - "ea4a743f2c1443eab20e9c8135c3321d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f07baddc31e847c595d90dd42ca379fb": { + "d5743decd00649e19fbee18925104825": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7687a1cfa1264a529fcedffaa6a4e467", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5a64304d36024180b26f4f79387324dc", + "layout": "IPY_MODEL_c5e86d52ed71402dbadb1a831d3a99dd", + "placeholder": "​", + "style": "IPY_MODEL_3b3e7e9c2d3a481a8b66e18c87d96abe", "tabbable": null, "tooltip": null, - "value": 16887676.0 + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "f2bf833e4ea64394b10f33d310c0ee23": { + "edbc3e1e1e514aeea602d52281c3dfa3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c1fc1902ebdc421e8d0afcb0d1027f63", - "placeholder": "​", - "style": "IPY_MODEL_ea4a743f2c1443eab20e9c8135c3321d", - "tabbable": null, - "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 93.5MB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f34dc10446834ea5b31b833757faa688": { + "f1379d86855941e4a6388b556616e327": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3070,7 +3015,30 @@ "width": null } }, - "f64888652c004082a1b036270e2702e0": { + "f5b3c5a8ab94472a8c12d10627c4a3b2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_249f3be21f17476cb286f35a4beae4ea", + "placeholder": "​", + "style": "IPY_MODEL_28c2d54c60d54e18885566cb5f99ba0a", + "tabbable": null, + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 820kB/s]" + } + }, + "f70f441fdd5147c685302ccf8dbb2370": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3123,7 +3091,7 @@ "width": null } }, - "fc74c0118a094bc3a970ec592d969b3d": { + "f9d1becbce8d4a0e92d1291261488c36": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3176,20 +3144,52 @@ "width": null } }, - "fcffd70673164f8aadd97b82906cc76e": { + "fbe4b54842f84d388c29da52e5a714cb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_73fd95beddfa4d59833b8b729dc2ef1b", + "IPY_MODEL_280097d7d8744e47bd5924ed20469bd6", + "IPY_MODEL_38e4ea17dfd74406801cb8ef4fa01bfb" + ], + "layout": "IPY_MODEL_96e34a60ae404938aef646ab844636ca", + "tabbable": null, + "tooltip": null + } + }, + "fc94797f46734484ae1adb8c6aac5095": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d5743decd00649e19fbee18925104825", + "IPY_MODEL_cf0f8cce4150428582199659b7ecc31f", + "IPY_MODEL_f5b3c5a8ab94472a8c12d10627c4a3b2" + ], + "layout": "IPY_MODEL_b7930e24a3604c3783c6342017146161", + "tabbable": null, + "tooltip": null } } }, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index c68bc59f2..508844a95 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1291,7 +1291,7 @@

Functionality 3: Save and load Datalab objects

-
+
@@ -1566,7 +1566,7 @@

Functionality 4: Adding a custom IssueManager -{"state": {"0dc84865474c4bf7a312e538bc8f4a74": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bd9368c5e9b842ca818c69f779cd5276": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "39e0d0ff92854bb5b45f8340a9c5c5eb": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0dc84865474c4bf7a312e538bc8f4a74", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_bd9368c5e9b842ca818c69f779cd5276", "tabbable": null, "tooltip": null, "value": 132.0}}, "746118eed9d445c9a37e681cbacd9674": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d57ca1f4799d45229ae2f7c720c262f5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "979503323663435eae635a194817476f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_746118eed9d445c9a37e681cbacd9674", "placeholder": "\u200b", "style": "IPY_MODEL_d57ca1f4799d45229ae2f7c720c262f5", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "af633ab6f6924af0b3f4ac3691d76422": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bcb7b5d047f845978925e2ef6da3385e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cac3b162735445c0915d9ecfed155f4c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_af633ab6f6924af0b3f4ac3691d76422", "placeholder": "\u200b", "style": "IPY_MODEL_bcb7b5d047f845978925e2ef6da3385e", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200711804.36\u2007examples/s]"}}, "890c2c0c04564f5da3221229c05800df": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d16dede2bb2e40b282d000f989523e41": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_979503323663435eae635a194817476f", "IPY_MODEL_39e0d0ff92854bb5b45f8340a9c5c5eb", "IPY_MODEL_cac3b162735445c0915d9ecfed155f4c"], "layout": "IPY_MODEL_890c2c0c04564f5da3221229c05800df", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"92d343740ab348028d512cbabde596de": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "160374201c2049b98c39d1da42e6f09d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4d30844fcfff423583118cba2ebebe1b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_92d343740ab348028d512cbabde596de", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_160374201c2049b98c39d1da42e6f09d", "tabbable": null, "tooltip": null, "value": 132.0}}, "23609831ef654449b59fb8c4f8a2bb30": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ada4493def764ffa859a5d6ba4d315fb": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2c61a80b080b4e158a20edb5c4a1ac84": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_23609831ef654449b59fb8c4f8a2bb30", "placeholder": "\u200b", "style": "IPY_MODEL_ada4493def764ffa859a5d6ba4d315fb", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "8addd7af612b43d395a8dfcfeb6287ef": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bd9b705b24884f74a14e8bfdd7ee8634": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "430e528b6e30444ea44c9f7dacbfcc30": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8addd7af612b43d395a8dfcfeb6287ef", "placeholder": "\u200b", "style": "IPY_MODEL_bd9b705b24884f74a14e8bfdd7ee8634", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200713162.98\u2007examples/s]"}}, "5e818fd01e87406a87c87fc7bc810095": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "59b4478dd8e7455d94d80c6cac5956e7": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2c61a80b080b4e158a20edb5c4a1ac84", "IPY_MODEL_4d30844fcfff423583118cba2ebebe1b", "IPY_MODEL_430e528b6e30444ea44c9f7dacbfcc30"], "layout": "IPY_MODEL_5e818fd01e87406a87c87fc7bc810095", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index 1e7141136..58bbdaa8a 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:34.100510Z", - "iopub.status.busy": "2024-07-01T15:02:34.100309Z", - "iopub.status.idle": "2024-07-01T15:02:35.344393Z", - "shell.execute_reply": "2024-07-01T15:02:35.343853Z" + "iopub.execute_input": "2024-07-02T12:01:15.541042Z", + "iopub.status.busy": "2024-07-02T12:01:15.540869Z", + "iopub.status.idle": "2024-07-02T12:01:16.706079Z", + "shell.execute_reply": "2024-07-02T12:01:16.705546Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7a801c5ee1e11be3732a7ea01725de8aca8d147d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@46226527e9d4c8f7ccdf91ff5dac4d6ee27e022b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:35.347246Z", - "iopub.status.busy": "2024-07-01T15:02:35.346746Z", - "iopub.status.idle": "2024-07-01T15:02:35.349837Z", - "shell.execute_reply": "2024-07-01T15:02:35.349391Z" + "iopub.execute_input": "2024-07-02T12:01:16.708528Z", + "iopub.status.busy": "2024-07-02T12:01:16.708127Z", + "iopub.status.idle": "2024-07-02T12:01:16.711112Z", + "shell.execute_reply": "2024-07-02T12:01:16.710676Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:35.352173Z", - "iopub.status.busy": "2024-07-01T15:02:35.351845Z", - "iopub.status.idle": "2024-07-01T15:02:35.361048Z", - "shell.execute_reply": "2024-07-01T15:02:35.360394Z" + "iopub.execute_input": "2024-07-02T12:01:16.713182Z", + "iopub.status.busy": "2024-07-02T12:01:16.712867Z", + "iopub.status.idle": "2024-07-02T12:01:16.721179Z", + "shell.execute_reply": "2024-07-02T12:01:16.720739Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:35.363704Z", - "iopub.status.busy": "2024-07-01T15:02:35.363238Z", - "iopub.status.idle": "2024-07-01T15:02:35.368807Z", - "shell.execute_reply": "2024-07-01T15:02:35.368166Z" + "iopub.execute_input": "2024-07-02T12:01:16.723125Z", + "iopub.status.busy": "2024-07-02T12:01:16.722823Z", + "iopub.status.idle": "2024-07-02T12:01:16.727946Z", + "shell.execute_reply": "2024-07-02T12:01:16.727497Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:35.371407Z", - "iopub.status.busy": "2024-07-01T15:02:35.370950Z", - "iopub.status.idle": "2024-07-01T15:02:35.579618Z", - "shell.execute_reply": "2024-07-01T15:02:35.578902Z" + "iopub.execute_input": "2024-07-02T12:01:16.730061Z", + "iopub.status.busy": "2024-07-02T12:01:16.729738Z", + "iopub.status.idle": "2024-07-02T12:01:16.910261Z", + "shell.execute_reply": "2024-07-02T12:01:16.909774Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:35.582660Z", - "iopub.status.busy": "2024-07-01T15:02:35.582270Z", - "iopub.status.idle": "2024-07-01T15:02:35.982874Z", - "shell.execute_reply": "2024-07-01T15:02:35.982240Z" + "iopub.execute_input": "2024-07-02T12:01:16.912657Z", + "iopub.status.busy": "2024-07-02T12:01:16.912383Z", + "iopub.status.idle": "2024-07-02T12:01:17.280864Z", + "shell.execute_reply": "2024-07-02T12:01:17.280305Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:35.985209Z", - "iopub.status.busy": "2024-07-01T15:02:35.984882Z", - "iopub.status.idle": "2024-07-01T15:02:36.009092Z", - "shell.execute_reply": "2024-07-01T15:02:36.008586Z" + "iopub.execute_input": "2024-07-02T12:01:17.283183Z", + "iopub.status.busy": "2024-07-02T12:01:17.282742Z", + "iopub.status.idle": "2024-07-02T12:01:17.305912Z", + "shell.execute_reply": "2024-07-02T12:01:17.305342Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:36.011743Z", - "iopub.status.busy": "2024-07-01T15:02:36.011310Z", - "iopub.status.idle": "2024-07-01T15:02:36.023407Z", - "shell.execute_reply": "2024-07-01T15:02:36.022817Z" + "iopub.execute_input": "2024-07-02T12:01:17.308190Z", + "iopub.status.busy": "2024-07-02T12:01:17.307876Z", + "iopub.status.idle": "2024-07-02T12:01:17.318887Z", + "shell.execute_reply": "2024-07-02T12:01:17.318342Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:36.025951Z", - "iopub.status.busy": "2024-07-01T15:02:36.025605Z", - "iopub.status.idle": "2024-07-01T15:02:38.178872Z", - "shell.execute_reply": "2024-07-01T15:02:38.178173Z" + "iopub.execute_input": "2024-07-02T12:01:17.321139Z", + "iopub.status.busy": "2024-07-02T12:01:17.320805Z", + "iopub.status.idle": "2024-07-02T12:01:19.303196Z", + "shell.execute_reply": "2024-07-02T12:01:19.302567Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:38.181613Z", - "iopub.status.busy": "2024-07-01T15:02:38.181161Z", - "iopub.status.idle": "2024-07-01T15:02:38.204407Z", - "shell.execute_reply": "2024-07-01T15:02:38.203790Z" + "iopub.execute_input": "2024-07-02T12:01:19.305724Z", + "iopub.status.busy": "2024-07-02T12:01:19.305235Z", + "iopub.status.idle": "2024-07-02T12:01:19.326596Z", + "shell.execute_reply": "2024-07-02T12:01:19.326111Z" } }, "outputs": [ @@ -830,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:38.207031Z", - "iopub.status.busy": "2024-07-01T15:02:38.206574Z", - "iopub.status.idle": "2024-07-01T15:02:38.225655Z", - "shell.execute_reply": "2024-07-01T15:02:38.225020Z" + "iopub.execute_input": "2024-07-02T12:01:19.328751Z", + "iopub.status.busy": "2024-07-02T12:01:19.328411Z", + "iopub.status.idle": "2024-07-02T12:01:19.346909Z", + "shell.execute_reply": "2024-07-02T12:01:19.346408Z" } }, "outputs": [ @@ -937,10 +937,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:38.228105Z", - "iopub.status.busy": "2024-07-01T15:02:38.227775Z", - "iopub.status.idle": "2024-07-01T15:02:38.243503Z", - "shell.execute_reply": "2024-07-01T15:02:38.242861Z" + "iopub.execute_input": "2024-07-02T12:01:19.349172Z", + "iopub.status.busy": "2024-07-02T12:01:19.348833Z", + "iopub.status.idle": "2024-07-02T12:01:19.364109Z", + "shell.execute_reply": "2024-07-02T12:01:19.363523Z" } }, "outputs": [ @@ -1075,17 +1075,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:38.245863Z", - "iopub.status.busy": "2024-07-01T15:02:38.245474Z", - "iopub.status.idle": "2024-07-01T15:02:38.267061Z", - "shell.execute_reply": "2024-07-01T15:02:38.266454Z" + "iopub.execute_input": "2024-07-02T12:01:19.366447Z", + "iopub.status.busy": "2024-07-02T12:01:19.366041Z", + "iopub.status.idle": "2024-07-02T12:01:19.385525Z", + "shell.execute_reply": "2024-07-02T12:01:19.384972Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d16dede2bb2e40b282d000f989523e41", + "model_id": "59b4478dd8e7455d94d80c6cac5956e7", "version_major": 2, "version_minor": 0 }, @@ -1121,10 +1121,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:38.269410Z", - "iopub.status.busy": "2024-07-01T15:02:38.269038Z", - "iopub.status.idle": "2024-07-01T15:02:38.286735Z", - "shell.execute_reply": "2024-07-01T15:02:38.286110Z" + "iopub.execute_input": "2024-07-02T12:01:19.387568Z", + "iopub.status.busy": "2024-07-02T12:01:19.387355Z", + "iopub.status.idle": "2024-07-02T12:01:19.403995Z", + "shell.execute_reply": "2024-07-02T12:01:19.403416Z" } }, "outputs": [ @@ -1247,10 +1247,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:38.289163Z", - "iopub.status.busy": "2024-07-01T15:02:38.288765Z", - "iopub.status.idle": "2024-07-01T15:02:38.295067Z", - "shell.execute_reply": "2024-07-01T15:02:38.294503Z" + "iopub.execute_input": "2024-07-02T12:01:19.406166Z", + "iopub.status.busy": "2024-07-02T12:01:19.405840Z", + "iopub.status.idle": "2024-07-02T12:01:19.411828Z", + "shell.execute_reply": "2024-07-02T12:01:19.411266Z" } }, "outputs": [], @@ -1307,10 +1307,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:38.297383Z", - "iopub.status.busy": "2024-07-01T15:02:38.296989Z", - "iopub.status.idle": "2024-07-01T15:02:38.317743Z", - "shell.execute_reply": "2024-07-01T15:02:38.317117Z" + "iopub.execute_input": "2024-07-02T12:01:19.414062Z", + "iopub.status.busy": "2024-07-02T12:01:19.413631Z", + "iopub.status.idle": "2024-07-02T12:01:19.432239Z", + "shell.execute_reply": "2024-07-02T12:01:19.431665Z" } }, "outputs": [ @@ -1447,7 +1447,23 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0dc84865474c4bf7a312e538bc8f4a74": { + "160374201c2049b98c39d1da42e6f09d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "23609831ef654449b59fb8c4f8a2bb30": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1500,7 +1516,53 @@ "width": null } }, - "39e0d0ff92854bb5b45f8340a9c5c5eb": { + "2c61a80b080b4e158a20edb5c4a1ac84": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_23609831ef654449b59fb8c4f8a2bb30", + "placeholder": "​", + "style": "IPY_MODEL_ada4493def764ffa859a5d6ba4d315fb", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "430e528b6e30444ea44c9f7dacbfcc30": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8addd7af612b43d395a8dfcfeb6287ef", + "placeholder": "​", + "style": "IPY_MODEL_bd9b705b24884f74a14e8bfdd7ee8634", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 13162.98 examples/s]" + } + }, + "4d30844fcfff423583118cba2ebebe1b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1516,17 +1578,41 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0dc84865474c4bf7a312e538bc8f4a74", + "layout": "IPY_MODEL_92d343740ab348028d512cbabde596de", "max": 132.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_bd9368c5e9b842ca818c69f779cd5276", + "style": "IPY_MODEL_160374201c2049b98c39d1da42e6f09d", "tabbable": null, "tooltip": null, "value": 132.0 } }, - "746118eed9d445c9a37e681cbacd9674": { + "59b4478dd8e7455d94d80c6cac5956e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2c61a80b080b4e158a20edb5c4a1ac84", + "IPY_MODEL_4d30844fcfff423583118cba2ebebe1b", + "IPY_MODEL_430e528b6e30444ea44c9f7dacbfcc30" + ], + "layout": "IPY_MODEL_5e818fd01e87406a87c87fc7bc810095", + "tabbable": null, + "tooltip": null + } + }, + "5e818fd01e87406a87c87fc7bc810095": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1579,7 +1665,7 @@ "width": null } }, - "890c2c0c04564f5da3221229c05800df": { + "8addd7af612b43d395a8dfcfeb6287ef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1632,30 +1718,7 @@ "width": null } }, - "979503323663435eae635a194817476f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_746118eed9d445c9a37e681cbacd9674", - "placeholder": "​", - "style": "IPY_MODEL_d57ca1f4799d45229ae2f7c720c262f5", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" - } - }, - "af633ab6f6924af0b3f4ac3691d76422": { + "92d343740ab348028d512cbabde596de": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1708,7 +1771,7 @@ "width": null } }, - "bcb7b5d047f845978925e2ef6da3385e": { + "ada4493def764ffa859a5d6ba4d315fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1726,70 +1789,7 @@ "text_color": null } }, - "bd9368c5e9b842ca818c69f779cd5276": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "cac3b162735445c0915d9ecfed155f4c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_af633ab6f6924af0b3f4ac3691d76422", - "placeholder": "​", - "style": "IPY_MODEL_bcb7b5d047f845978925e2ef6da3385e", - "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 11804.36 examples/s]" - } - }, - "d16dede2bb2e40b282d000f989523e41": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_979503323663435eae635a194817476f", - "IPY_MODEL_39e0d0ff92854bb5b45f8340a9c5c5eb", - "IPY_MODEL_cac3b162735445c0915d9ecfed155f4c" - ], - "layout": "IPY_MODEL_890c2c0c04564f5da3221229c05800df", - "tabbable": null, - "tooltip": null - } - }, - "d57ca1f4799d45229ae2f7c720c262f5": { + "bd9b705b24884f74a14e8bfdd7ee8634": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index e8c4bda9d..61c4891f1 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:41.409044Z", - "iopub.status.busy": "2024-07-01T15:02:41.408875Z", - "iopub.status.idle": "2024-07-01T15:02:42.611044Z", - "shell.execute_reply": "2024-07-01T15:02:42.610498Z" + "iopub.execute_input": "2024-07-02T12:01:22.152510Z", + "iopub.status.busy": "2024-07-02T12:01:22.152333Z", + "iopub.status.idle": "2024-07-02T12:01:23.345486Z", + "shell.execute_reply": "2024-07-02T12:01:23.344925Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7a801c5ee1e11be3732a7ea01725de8aca8d147d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@46226527e9d4c8f7ccdf91ff5dac4d6ee27e022b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:42.613616Z", - "iopub.status.busy": "2024-07-01T15:02:42.613300Z", - "iopub.status.idle": "2024-07-01T15:02:42.616526Z", - "shell.execute_reply": "2024-07-01T15:02:42.616068Z" + "iopub.execute_input": "2024-07-02T12:01:23.348223Z", + "iopub.status.busy": "2024-07-02T12:01:23.347674Z", + "iopub.status.idle": "2024-07-02T12:01:23.350818Z", + "shell.execute_reply": "2024-07-02T12:01:23.350357Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:42.618748Z", - "iopub.status.busy": "2024-07-01T15:02:42.618428Z", - "iopub.status.idle": "2024-07-01T15:02:42.627446Z", - "shell.execute_reply": "2024-07-01T15:02:42.626999Z" + "iopub.execute_input": "2024-07-02T12:01:23.352826Z", + "iopub.status.busy": "2024-07-02T12:01:23.352642Z", + "iopub.status.idle": "2024-07-02T12:01:23.361928Z", + "shell.execute_reply": "2024-07-02T12:01:23.361407Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:42.629537Z", - "iopub.status.busy": "2024-07-01T15:02:42.629203Z", - "iopub.status.idle": "2024-07-01T15:02:42.633941Z", - "shell.execute_reply": "2024-07-01T15:02:42.633516Z" + "iopub.execute_input": "2024-07-02T12:01:23.363999Z", + "iopub.status.busy": "2024-07-02T12:01:23.363568Z", + "iopub.status.idle": "2024-07-02T12:01:23.368394Z", + "shell.execute_reply": "2024-07-02T12:01:23.367822Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:42.636177Z", - "iopub.status.busy": "2024-07-01T15:02:42.635851Z", - "iopub.status.idle": "2024-07-01T15:02:42.823356Z", - "shell.execute_reply": "2024-07-01T15:02:42.822807Z" + "iopub.execute_input": "2024-07-02T12:01:23.370691Z", + "iopub.status.busy": "2024-07-02T12:01:23.370280Z", + "iopub.status.idle": "2024-07-02T12:01:23.560449Z", + "shell.execute_reply": "2024-07-02T12:01:23.559925Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:42.826055Z", - "iopub.status.busy": "2024-07-01T15:02:42.825690Z", - "iopub.status.idle": "2024-07-01T15:02:43.206067Z", - "shell.execute_reply": "2024-07-01T15:02:43.205474Z" + "iopub.execute_input": "2024-07-02T12:01:23.563109Z", + "iopub.status.busy": "2024-07-02T12:01:23.562666Z", + "iopub.status.idle": "2024-07-02T12:01:23.933479Z", + "shell.execute_reply": "2024-07-02T12:01:23.932844Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:43.208532Z", - "iopub.status.busy": "2024-07-01T15:02:43.208145Z", - "iopub.status.idle": "2024-07-01T15:02:43.211102Z", - "shell.execute_reply": "2024-07-01T15:02:43.210626Z" + "iopub.execute_input": "2024-07-02T12:01:23.935860Z", + "iopub.status.busy": "2024-07-02T12:01:23.935411Z", + "iopub.status.idle": "2024-07-02T12:01:23.938217Z", + "shell.execute_reply": "2024-07-02T12:01:23.937776Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:43.213282Z", - "iopub.status.busy": "2024-07-01T15:02:43.212936Z", - "iopub.status.idle": "2024-07-01T15:02:43.248404Z", - "shell.execute_reply": "2024-07-01T15:02:43.247768Z" + "iopub.execute_input": "2024-07-02T12:01:23.940195Z", + "iopub.status.busy": "2024-07-02T12:01:23.940017Z", + "iopub.status.idle": "2024-07-02T12:01:23.974114Z", + "shell.execute_reply": "2024-07-02T12:01:23.973647Z" } }, "outputs": [], @@ -638,10 +638,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:43.251350Z", - "iopub.status.busy": "2024-07-01T15:02:43.250964Z", - "iopub.status.idle": "2024-07-01T15:02:45.296650Z", - "shell.execute_reply": "2024-07-01T15:02:45.296009Z" + "iopub.execute_input": "2024-07-02T12:01:23.976287Z", + "iopub.status.busy": "2024-07-02T12:01:23.976112Z", + "iopub.status.idle": "2024-07-02T12:01:26.051828Z", + "shell.execute_reply": "2024-07-02T12:01:26.051244Z" } }, "outputs": [ @@ -685,10 +685,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:45.298975Z", - "iopub.status.busy": "2024-07-01T15:02:45.298607Z", - "iopub.status.idle": "2024-07-01T15:02:45.317301Z", - "shell.execute_reply": "2024-07-01T15:02:45.316762Z" + "iopub.execute_input": "2024-07-02T12:01:26.054329Z", + "iopub.status.busy": "2024-07-02T12:01:26.053806Z", + "iopub.status.idle": "2024-07-02T12:01:26.073654Z", + "shell.execute_reply": "2024-07-02T12:01:26.073152Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:45.319610Z", - "iopub.status.busy": "2024-07-01T15:02:45.319291Z", - "iopub.status.idle": "2024-07-01T15:02:45.325606Z", - "shell.execute_reply": "2024-07-01T15:02:45.325097Z" + "iopub.execute_input": "2024-07-02T12:01:26.075978Z", + "iopub.status.busy": "2024-07-02T12:01:26.075603Z", + "iopub.status.idle": "2024-07-02T12:01:26.082158Z", + "shell.execute_reply": "2024-07-02T12:01:26.081661Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:45.327815Z", - "iopub.status.busy": "2024-07-01T15:02:45.327438Z", - "iopub.status.idle": "2024-07-01T15:02:45.333038Z", - "shell.execute_reply": "2024-07-01T15:02:45.332566Z" + "iopub.execute_input": "2024-07-02T12:01:26.084369Z", + "iopub.status.busy": "2024-07-02T12:01:26.084032Z", + "iopub.status.idle": "2024-07-02T12:01:26.090027Z", + "shell.execute_reply": "2024-07-02T12:01:26.089524Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:45.335093Z", - "iopub.status.busy": "2024-07-01T15:02:45.334787Z", - "iopub.status.idle": "2024-07-01T15:02:45.345460Z", - "shell.execute_reply": "2024-07-01T15:02:45.344912Z" + "iopub.execute_input": "2024-07-02T12:01:26.092307Z", + "iopub.status.busy": "2024-07-02T12:01:26.091888Z", + "iopub.status.idle": "2024-07-02T12:01:26.102686Z", + "shell.execute_reply": "2024-07-02T12:01:26.102114Z" } }, "outputs": [ @@ -1200,10 +1200,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:45.347438Z", - "iopub.status.busy": "2024-07-01T15:02:45.347138Z", - "iopub.status.idle": "2024-07-01T15:02:45.356126Z", - "shell.execute_reply": "2024-07-01T15:02:45.355581Z" + "iopub.execute_input": "2024-07-02T12:01:26.104843Z", + "iopub.status.busy": "2024-07-02T12:01:26.104499Z", + "iopub.status.idle": "2024-07-02T12:01:26.113923Z", + "shell.execute_reply": "2024-07-02T12:01:26.113353Z" } }, "outputs": [ @@ -1319,10 +1319,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:45.358103Z", - "iopub.status.busy": "2024-07-01T15:02:45.357792Z", - "iopub.status.idle": "2024-07-01T15:02:45.364571Z", - "shell.execute_reply": "2024-07-01T15:02:45.364114Z" + "iopub.execute_input": "2024-07-02T12:01:26.116196Z", + "iopub.status.busy": "2024-07-02T12:01:26.115857Z", + "iopub.status.idle": "2024-07-02T12:01:26.122959Z", + "shell.execute_reply": "2024-07-02T12:01:26.122462Z" }, "scrolled": true }, @@ -1447,10 +1447,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:45.366559Z", - "iopub.status.busy": "2024-07-01T15:02:45.366255Z", - "iopub.status.idle": "2024-07-01T15:02:45.375353Z", - "shell.execute_reply": "2024-07-01T15:02:45.374817Z" + "iopub.execute_input": "2024-07-02T12:01:26.125128Z", + "iopub.status.busy": "2024-07-02T12:01:26.124796Z", + "iopub.status.idle": "2024-07-02T12:01:26.134864Z", + "shell.execute_reply": "2024-07-02T12:01:26.134300Z" } }, "outputs": [ @@ -1553,10 +1553,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:45.377315Z", - "iopub.status.busy": "2024-07-01T15:02:45.377010Z", - "iopub.status.idle": "2024-07-01T15:02:45.392963Z", - "shell.execute_reply": "2024-07-01T15:02:45.392390Z" + "iopub.execute_input": "2024-07-02T12:01:26.137332Z", + "iopub.status.busy": "2024-07-02T12:01:26.136913Z", + "iopub.status.idle": "2024-07-02T12:01:26.152852Z", + "shell.execute_reply": "2024-07-02T12:01:26.152376Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/image.html b/master/tutorials/datalab/image.html index a1388c4c1..7f856f6ea 100644 --- a/master/tutorials/datalab/image.html +++ b/master/tutorials/datalab/image.html @@ -727,49 +727,49 @@

2. Fetch and normalize the Fashion-MNIST dataset

-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+

Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

@@ -1082,7 +1082,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1114,7 +1114,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1146,7 +1146,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -2115,7 +2115,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/datalab/image.ipynb b/master/tutorials/datalab/image.ipynb index 03d847503..3baceeb0b 100644 --- a/master/tutorials/datalab/image.ipynb +++ b/master/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:48.074971Z", - "iopub.status.busy": "2024-07-01T15:02:48.074723Z", - "iopub.status.idle": "2024-07-01T15:02:51.342353Z", - "shell.execute_reply": "2024-07-01T15:02:51.341605Z" + "iopub.execute_input": "2024-07-02T12:01:28.896200Z", + "iopub.status.busy": "2024-07-02T12:01:28.896023Z", + "iopub.status.idle": "2024-07-02T12:01:31.827318Z", + "shell.execute_reply": "2024-07-02T12:01:31.826688Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:51.345614Z", - "iopub.status.busy": "2024-07-01T15:02:51.345060Z", - "iopub.status.idle": "2024-07-01T15:02:51.349168Z", - "shell.execute_reply": "2024-07-01T15:02:51.348682Z" + "iopub.execute_input": "2024-07-02T12:01:31.829957Z", + "iopub.status.busy": "2024-07-02T12:01:31.829648Z", + "iopub.status.idle": "2024-07-02T12:01:31.833462Z", + "shell.execute_reply": "2024-07-02T12:01:31.833002Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:02:51.351438Z", - "iopub.status.busy": "2024-07-01T15:02:51.351054Z", - "iopub.status.idle": "2024-07-01T15:03:02.526470Z", - "shell.execute_reply": "2024-07-01T15:03:02.525870Z" + "iopub.execute_input": "2024-07-02T12:01:31.835341Z", + "iopub.status.busy": "2024-07-02T12:01:31.835170Z", + "iopub.status.idle": "2024-07-02T12:01:42.989836Z", + "shell.execute_reply": "2024-07-02T12:01:42.989362Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bd4e5e775e0d4b5d90568b686f8fd56f", + "model_id": "d4c59b0bfa86424a8c95a71f890f5454", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a9efee99388e4bd987cba82e4c249be5", + "model_id": "2ffbe85316974d029eab626642378580", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b13b21c3b7544706aacfbba4f3504a8b", + "model_id": "1a9f98ff0f0446e7b89c4fe4fffc3418", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dcfb76cdced842fd810c0329fa0f1c7f", + "model_id": "39838b65ab134d2a9a445437586fec98", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0febc72cf36d4d939a7991cbb880240e", + "model_id": "4d801b30b791427d9103f41505cf1a3e", "version_major": 2, "version_minor": 0 }, @@ -232,7 +232,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6296fc9f1a3947edb989ab3a35afbefe", + "model_id": "0d1f1b12cc3545b0b78b6f64afe61ba8", "version_major": 2, "version_minor": 0 }, @@ -246,7 +246,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bc98754b340343f594559442ba450aa4", + "model_id": "495daf880acd479da7fa63fedf1e1368", "version_major": 2, "version_minor": 0 }, @@ -260,7 +260,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d60f32b2907d4a288385a30c717ef39d", + "model_id": "96b3b9a948504544be06e5692d10926d", "version_major": 2, "version_minor": 0 }, @@ -302,10 +302,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:03:02.528967Z", - "iopub.status.busy": "2024-07-01T15:03:02.528621Z", - "iopub.status.idle": "2024-07-01T15:03:02.532647Z", - "shell.execute_reply": "2024-07-01T15:03:02.532080Z" + "iopub.execute_input": "2024-07-02T12:01:42.992144Z", + "iopub.status.busy": "2024-07-02T12:01:42.991695Z", + "iopub.status.idle": "2024-07-02T12:01:42.995507Z", + "shell.execute_reply": "2024-07-02T12:01:42.995062Z" } }, "outputs": [ @@ -330,17 +330,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:03:02.534910Z", - "iopub.status.busy": "2024-07-01T15:03:02.534585Z", - "iopub.status.idle": "2024-07-01T15:03:13.866603Z", - "shell.execute_reply": "2024-07-01T15:03:13.865937Z" + "iopub.execute_input": "2024-07-02T12:01:42.997511Z", + "iopub.status.busy": "2024-07-02T12:01:42.997189Z", + "iopub.status.idle": "2024-07-02T12:01:54.313084Z", + "shell.execute_reply": "2024-07-02T12:01:54.312563Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "70b6c17f51c948158afefdd56830a23f", + "model_id": "5191d0744a454151b8fae157e5a21ef4", "version_major": 2, "version_minor": 0 }, @@ -378,10 +378,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:03:13.869049Z", - "iopub.status.busy": "2024-07-01T15:03:13.868821Z", - "iopub.status.idle": "2024-07-01T15:03:31.582919Z", - "shell.execute_reply": "2024-07-01T15:03:31.582298Z" + "iopub.execute_input": "2024-07-02T12:01:54.315561Z", + "iopub.status.busy": "2024-07-02T12:01:54.315315Z", + "iopub.status.idle": "2024-07-02T12:02:13.013990Z", + "shell.execute_reply": "2024-07-02T12:02:13.013360Z" } }, "outputs": [], @@ -414,10 +414,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:03:31.585953Z", - "iopub.status.busy": "2024-07-01T15:03:31.585389Z", - "iopub.status.idle": "2024-07-01T15:03:31.591279Z", - "shell.execute_reply": "2024-07-01T15:03:31.590830Z" + "iopub.execute_input": "2024-07-02T12:02:13.016850Z", + "iopub.status.busy": "2024-07-02T12:02:13.016410Z", + "iopub.status.idle": "2024-07-02T12:02:13.021208Z", + "shell.execute_reply": "2024-07-02T12:02:13.020777Z" } }, "outputs": [], @@ -455,10 +455,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:03:31.593306Z", - "iopub.status.busy": "2024-07-01T15:03:31.592981Z", - "iopub.status.idle": "2024-07-01T15:03:31.596855Z", - "shell.execute_reply": "2024-07-01T15:03:31.596450Z" + "iopub.execute_input": "2024-07-02T12:02:13.023194Z", + "iopub.status.busy": "2024-07-02T12:02:13.022869Z", + "iopub.status.idle": "2024-07-02T12:02:13.027182Z", + "shell.execute_reply": "2024-07-02T12:02:13.026649Z" }, "nbsphinx": "hidden" }, @@ -595,10 +595,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:03:31.598838Z", - "iopub.status.busy": "2024-07-01T15:03:31.598577Z", - "iopub.status.idle": "2024-07-01T15:03:31.607398Z", - "shell.execute_reply": "2024-07-01T15:03:31.606925Z" + "iopub.execute_input": "2024-07-02T12:02:13.029208Z", + "iopub.status.busy": "2024-07-02T12:02:13.028904Z", + "iopub.status.idle": "2024-07-02T12:02:13.037801Z", + "shell.execute_reply": "2024-07-02T12:02:13.037284Z" }, "nbsphinx": "hidden" }, @@ -723,10 +723,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:03:31.609325Z", - "iopub.status.busy": "2024-07-01T15:03:31.609007Z", - "iopub.status.idle": "2024-07-01T15:03:31.635278Z", - "shell.execute_reply": "2024-07-01T15:03:31.634840Z" + "iopub.execute_input": "2024-07-02T12:02:13.039783Z", + "iopub.status.busy": "2024-07-02T12:02:13.039463Z", + "iopub.status.idle": "2024-07-02T12:02:13.066102Z", + "shell.execute_reply": "2024-07-02T12:02:13.065500Z" } }, "outputs": [], @@ -763,10 +763,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:03:31.637322Z", - "iopub.status.busy": "2024-07-01T15:03:31.636996Z", - "iopub.status.idle": "2024-07-01T15:04:03.652341Z", - "shell.execute_reply": "2024-07-01T15:04:03.651742Z" + "iopub.execute_input": "2024-07-02T12:02:13.068543Z", + "iopub.status.busy": "2024-07-02T12:02:13.068350Z", + "iopub.status.idle": "2024-07-02T12:02:45.178356Z", + "shell.execute_reply": "2024-07-02T12:02:45.177789Z" } }, "outputs": [ @@ -782,21 +782,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.749\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.801\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.439\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.468\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b69aa5fb137444eb962d31f239578d65", + "model_id": "ec86bd0afa46422aa85bf2778e427f2a", "version_major": 2, "version_minor": 0 }, @@ -817,7 +817,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6ca247bf72f54f03aabdd5d72546025f", + "model_id": "a0b406e9eaf143599fd4e302b57381b4", "version_major": 2, "version_minor": 0 }, @@ -840,21 +840,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.851\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.793\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.491\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.570\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d6465626e3264fa58f44ddccd18cfef2", + "model_id": "bfd46491d1764708be24b2103e5e6cb5", "version_major": 2, "version_minor": 0 }, @@ -875,7 +875,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3fa46dee97a14f9594eb60312b03e045", + "model_id": "1696a28972cf4c1c95e3e3bf755c8d21", "version_major": 2, "version_minor": 0 }, @@ -898,21 +898,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.739\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.822\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.490\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.476\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "76cd9d157bf74d6e93db6f5727c6f900", + "model_id": "32f22fc4e23745929d001d9647682786", "version_major": 2, "version_minor": 0 }, @@ -933,7 +933,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9717f3b4aaae491d9cb2e07d49a003a5", + "model_id": "846e19cb26a94bdba7b363dce398b69c", "version_major": 2, "version_minor": 0 }, @@ -1012,10 +1012,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:04:03.654962Z", - "iopub.status.busy": "2024-07-01T15:04:03.654720Z", - "iopub.status.idle": "2024-07-01T15:04:03.668632Z", - "shell.execute_reply": "2024-07-01T15:04:03.668209Z" + "iopub.execute_input": "2024-07-02T12:02:45.181036Z", + "iopub.status.busy": "2024-07-02T12:02:45.180584Z", + "iopub.status.idle": "2024-07-02T12:02:45.194402Z", + "shell.execute_reply": "2024-07-02T12:02:45.193957Z" } }, "outputs": [], @@ -1040,10 +1040,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:04:03.670732Z", - "iopub.status.busy": "2024-07-01T15:04:03.670344Z", - "iopub.status.idle": "2024-07-01T15:04:04.150524Z", - "shell.execute_reply": "2024-07-01T15:04:04.149791Z" + "iopub.execute_input": "2024-07-02T12:02:45.196378Z", + "iopub.status.busy": "2024-07-02T12:02:45.196060Z", + "iopub.status.idle": "2024-07-02T12:02:45.659461Z", + "shell.execute_reply": "2024-07-02T12:02:45.658926Z" } }, "outputs": [], @@ -1063,10 +1063,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:04:04.153028Z", - "iopub.status.busy": "2024-07-01T15:04:04.152825Z", - "iopub.status.idle": "2024-07-01T15:05:40.110641Z", - "shell.execute_reply": "2024-07-01T15:05:40.110011Z" + "iopub.execute_input": "2024-07-02T12:02:45.661921Z", + "iopub.status.busy": "2024-07-02T12:02:45.661522Z", + "iopub.status.idle": "2024-07-02T12:04:21.084670Z", + "shell.execute_reply": "2024-07-02T12:04:21.084011Z" } }, "outputs": [ @@ -1105,7 +1105,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8b242b3757014ca08c0be26603c856e5", + "model_id": "683ea97790a64507b71e617e6bb1960f", "version_major": 2, "version_minor": 0 }, @@ -1144,10 +1144,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:40.113143Z", - "iopub.status.busy": "2024-07-01T15:05:40.112512Z", - "iopub.status.idle": "2024-07-01T15:05:40.560298Z", - "shell.execute_reply": "2024-07-01T15:05:40.559714Z" + "iopub.execute_input": "2024-07-02T12:04:21.087384Z", + "iopub.status.busy": "2024-07-02T12:04:21.086898Z", + "iopub.status.idle": "2024-07-02T12:04:21.530187Z", + "shell.execute_reply": "2024-07-02T12:04:21.529650Z" } }, "outputs": [ @@ -1293,10 +1293,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:40.563315Z", - "iopub.status.busy": "2024-07-01T15:05:40.562801Z", - "iopub.status.idle": "2024-07-01T15:05:40.624738Z", - "shell.execute_reply": "2024-07-01T15:05:40.624116Z" + "iopub.execute_input": "2024-07-02T12:04:21.532970Z", + "iopub.status.busy": "2024-07-02T12:04:21.532489Z", + "iopub.status.idle": "2024-07-02T12:04:21.594306Z", + "shell.execute_reply": "2024-07-02T12:04:21.593726Z" } }, "outputs": [ @@ -1400,10 +1400,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:40.627071Z", - "iopub.status.busy": "2024-07-01T15:05:40.626639Z", - "iopub.status.idle": "2024-07-01T15:05:40.635299Z", - "shell.execute_reply": "2024-07-01T15:05:40.634756Z" + "iopub.execute_input": "2024-07-02T12:04:21.597613Z", + "iopub.status.busy": "2024-07-02T12:04:21.597278Z", + "iopub.status.idle": "2024-07-02T12:04:21.605873Z", + "shell.execute_reply": "2024-07-02T12:04:21.605434Z" } }, "outputs": [ @@ -1533,10 +1533,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:40.637389Z", - "iopub.status.busy": "2024-07-01T15:05:40.636989Z", - "iopub.status.idle": "2024-07-01T15:05:40.641711Z", - "shell.execute_reply": "2024-07-01T15:05:40.641175Z" + "iopub.execute_input": "2024-07-02T12:04:21.607881Z", + "iopub.status.busy": "2024-07-02T12:04:21.607595Z", + "iopub.status.idle": "2024-07-02T12:04:21.612387Z", + "shell.execute_reply": "2024-07-02T12:04:21.611934Z" }, "nbsphinx": "hidden" }, @@ -1582,10 +1582,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:40.643683Z", - "iopub.status.busy": "2024-07-01T15:05:40.643498Z", - "iopub.status.idle": "2024-07-01T15:05:41.152016Z", - "shell.execute_reply": "2024-07-01T15:05:41.151428Z" + "iopub.execute_input": "2024-07-02T12:04:21.614443Z", + "iopub.status.busy": "2024-07-02T12:04:21.614030Z", + "iopub.status.idle": "2024-07-02T12:04:22.120240Z", + "shell.execute_reply": "2024-07-02T12:04:22.119680Z" } }, "outputs": [ @@ -1620,10 +1620,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:41.154341Z", - "iopub.status.busy": "2024-07-01T15:05:41.154029Z", - "iopub.status.idle": "2024-07-01T15:05:41.162706Z", - "shell.execute_reply": "2024-07-01T15:05:41.162252Z" + "iopub.execute_input": "2024-07-02T12:04:22.122526Z", + "iopub.status.busy": "2024-07-02T12:04:22.122160Z", + "iopub.status.idle": "2024-07-02T12:04:22.130544Z", + "shell.execute_reply": "2024-07-02T12:04:22.130091Z" } }, "outputs": [ @@ -1790,10 +1790,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:41.164766Z", - "iopub.status.busy": "2024-07-01T15:05:41.164446Z", - "iopub.status.idle": "2024-07-01T15:05:41.171486Z", - "shell.execute_reply": "2024-07-01T15:05:41.171059Z" + "iopub.execute_input": "2024-07-02T12:04:22.132648Z", + "iopub.status.busy": "2024-07-02T12:04:22.132322Z", + "iopub.status.idle": "2024-07-02T12:04:22.139582Z", + "shell.execute_reply": "2024-07-02T12:04:22.139132Z" }, "nbsphinx": "hidden" }, @@ -1869,10 +1869,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:41.173399Z", - "iopub.status.busy": "2024-07-01T15:05:41.173075Z", - "iopub.status.idle": "2024-07-01T15:05:41.934946Z", - "shell.execute_reply": "2024-07-01T15:05:41.934291Z" + "iopub.execute_input": "2024-07-02T12:04:22.141499Z", + "iopub.status.busy": "2024-07-02T12:04:22.141182Z", + "iopub.status.idle": "2024-07-02T12:04:22.871798Z", + "shell.execute_reply": "2024-07-02T12:04:22.871228Z" } }, "outputs": [ @@ -1909,10 +1909,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:41.937509Z", - "iopub.status.busy": "2024-07-01T15:05:41.937076Z", - "iopub.status.idle": "2024-07-01T15:05:41.952809Z", - "shell.execute_reply": "2024-07-01T15:05:41.952240Z" + "iopub.execute_input": "2024-07-02T12:04:22.874107Z", + "iopub.status.busy": "2024-07-02T12:04:22.873751Z", + "iopub.status.idle": "2024-07-02T12:04:22.889160Z", + "shell.execute_reply": "2024-07-02T12:04:22.888693Z" } }, "outputs": [ @@ -2069,10 +2069,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:41.954986Z", - "iopub.status.busy": "2024-07-01T15:05:41.954646Z", - "iopub.status.idle": "2024-07-01T15:05:41.960097Z", - "shell.execute_reply": "2024-07-01T15:05:41.959674Z" + "iopub.execute_input": "2024-07-02T12:04:22.891280Z", + "iopub.status.busy": "2024-07-02T12:04:22.890945Z", + "iopub.status.idle": "2024-07-02T12:04:22.896314Z", + "shell.execute_reply": "2024-07-02T12:04:22.895869Z" }, "nbsphinx": "hidden" }, @@ -2117,10 +2117,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:41.961941Z", - "iopub.status.busy": "2024-07-01T15:05:41.961770Z", - "iopub.status.idle": "2024-07-01T15:05:42.348365Z", - "shell.execute_reply": "2024-07-01T15:05:42.347794Z" + "iopub.execute_input": "2024-07-02T12:04:22.898366Z", + "iopub.status.busy": "2024-07-02T12:04:22.898042Z", + "iopub.status.idle": "2024-07-02T12:04:23.354782Z", + "shell.execute_reply": "2024-07-02T12:04:23.354256Z" } }, "outputs": [ @@ -2202,10 +2202,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:42.350754Z", - "iopub.status.busy": "2024-07-01T15:05:42.350573Z", - "iopub.status.idle": "2024-07-01T15:05:42.359462Z", - "shell.execute_reply": "2024-07-01T15:05:42.358866Z" + "iopub.execute_input": "2024-07-02T12:04:23.357430Z", + "iopub.status.busy": "2024-07-02T12:04:23.357055Z", + "iopub.status.idle": "2024-07-02T12:04:23.366373Z", + "shell.execute_reply": "2024-07-02T12:04:23.365890Z" } }, "outputs": [ @@ -2333,10 +2333,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:42.361756Z", - "iopub.status.busy": "2024-07-01T15:05:42.361579Z", - "iopub.status.idle": "2024-07-01T15:05:42.366530Z", - "shell.execute_reply": "2024-07-01T15:05:42.365855Z" + "iopub.execute_input": "2024-07-02T12:04:23.368851Z", + "iopub.status.busy": "2024-07-02T12:04:23.368495Z", + "iopub.status.idle": "2024-07-02T12:04:23.374119Z", + "shell.execute_reply": "2024-07-02T12:04:23.373635Z" }, "nbsphinx": "hidden" }, @@ -2373,10 +2373,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:42.368583Z", - "iopub.status.busy": "2024-07-01T15:05:42.368393Z", - "iopub.status.idle": "2024-07-01T15:05:42.547146Z", - "shell.execute_reply": "2024-07-01T15:05:42.546558Z" + "iopub.execute_input": "2024-07-02T12:04:23.376452Z", + "iopub.status.busy": "2024-07-02T12:04:23.376105Z", + "iopub.status.idle": "2024-07-02T12:04:23.576168Z", + "shell.execute_reply": "2024-07-02T12:04:23.575585Z" } }, "outputs": [ @@ -2418,10 +2418,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:42.549711Z", - "iopub.status.busy": "2024-07-01T15:05:42.549286Z", - "iopub.status.idle": "2024-07-01T15:05:42.557834Z", - "shell.execute_reply": "2024-07-01T15:05:42.557185Z" + "iopub.execute_input": "2024-07-02T12:04:23.578422Z", + "iopub.status.busy": "2024-07-02T12:04:23.578237Z", + "iopub.status.idle": "2024-07-02T12:04:23.586182Z", + "shell.execute_reply": "2024-07-02T12:04:23.585742Z" } }, "outputs": [ @@ -2507,10 +2507,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:42.559948Z", - "iopub.status.busy": "2024-07-01T15:05:42.559775Z", - "iopub.status.idle": "2024-07-01T15:05:42.735572Z", - "shell.execute_reply": "2024-07-01T15:05:42.734991Z" + "iopub.execute_input": "2024-07-02T12:04:23.588296Z", + "iopub.status.busy": "2024-07-02T12:04:23.587874Z", + "iopub.status.idle": "2024-07-02T12:04:23.783615Z", + "shell.execute_reply": "2024-07-02T12:04:23.783030Z" } }, "outputs": [ @@ -2550,10 +2550,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:42.737707Z", - "iopub.status.busy": "2024-07-01T15:05:42.737529Z", - "iopub.status.idle": "2024-07-01T15:05:42.742129Z", - "shell.execute_reply": "2024-07-01T15:05:42.741571Z" + "iopub.execute_input": "2024-07-02T12:04:23.785886Z", + "iopub.status.busy": "2024-07-02T12:04:23.785554Z", + "iopub.status.idle": "2024-07-02T12:04:23.789936Z", + "shell.execute_reply": "2024-07-02T12:04:23.789389Z" }, "nbsphinx": "hidden" }, @@ -2590,107 +2590,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "01c1fefd1d1549a1ac3d1168746bc81e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0423a125c3324adc9f2433bebe77773b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "070af112be824f3a9dfc9d11f6c99bdb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_268de63ed1994c07842b4b562dfac3f6", - "placeholder": "​", - "style": "IPY_MODEL_2a1a89abfab4432f93e32ce870b637ab", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "08550632bef14f9a894de4b50f4b0628": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d78ce21ee1fc44e8b680bda13d37d943", - "placeholder": "​", - "style": "IPY_MODEL_abecf5a0521e45f78a788d98cc335e5c", - "tabbable": null, - "tooltip": null, - "value": " 4.42M/4.42M [00:00<00:00, 77.0MB/s]" - } - }, - "0abf4ae675284a88873e14026b73ab9e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0cfffd1a2e16481ba0fb26b13818b9d3": { + "007a3563b0514e35b0a7409f1a0e8668": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2743,49 +2643,7 @@ "width": null } }, - "0febc72cf36d4d939a7991cbb880240e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b374b826cf5a4a668332dc70f8c2fe4a", - "IPY_MODEL_213628c3350547b8801807bf6755bac5", - "IPY_MODEL_08550632bef14f9a894de4b50f4b0628" - ], - "layout": "IPY_MODEL_c87df7230ab74cf3b4ce36554b4f64b5", - "tabbable": null, - "tooltip": null - } - }, - "109113d68eb84c2eace6f4deda6b040b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "11703dfe59744973b7ee5db1b50a7304": { + "0205ebdad1d64de8a1bd7d1c741d5fcb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2838,48 +2696,60 @@ "width": null } }, - "126a880302694496ab5834d71ecffa75": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6bb8ca43d39f43d0933376cc22b61a88", - "placeholder": "​", - "style": "IPY_MODEL_ef22307e229c427e9f2c45041e108373", - "tabbable": null, - "tooltip": null, - "value": "Generating test split: 100%" - } - }, - "160c29ae9eb04803b9e5fc42229024de": { - "model_module": "@jupyter-widgets/controls", + "052177a0e94b458eb71c811c3229f857": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "182fe610a03c4f0c8820d62efd2942a9": { + "0826f288ec1f413988e02f4ef8849c28": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2932,7 +2802,7 @@ "width": null } }, - "197981c8f9c84c00abea85184c72fcd5": { + "088b60ea8401405ea27804efbb34b231": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2948,17 +2818,40 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ac933a814c124345b0730704f11cfbc8", + "layout": "IPY_MODEL_40e0d768badf43758c95df2555d1a977", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_2a940901f95f4ae58045f253ec9f48b7", + "style": "IPY_MODEL_29258ac24b084216b09e806906959044", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "19d83e638f7a404ba0eb4fdd71302435": { + "0a39ed2c512b4f33865071d90e585e06": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ac0dd2e3b9574dfba4e088b07dc9917a", + "placeholder": "​", + "style": "IPY_MODEL_7d2cf7fe1d884127b2ea048061916752", + "tabbable": null, + "tooltip": null, + "value": " 5.15k/5.15k [00:00<00:00, 778kB/s]" + } + }, + "0b2e2b62fbba4e8e919185c698964e99": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3011,41 +2904,7 @@ "width": null } }, - "19dfb010e30849f38c848ea70dda5645": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1a2b07452f87444f8ac98839eeafdd7b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1ab8a64cb49340769b8aa2cc1774732d": { + "0cae058fc562457bbb502b466cfdfcab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3098,49 +2957,57 @@ "width": null } }, - "1ba2c9f296904da78195fe3e45321059": { + "0d1f1b12cc3545b0b78b6f64afe61ba8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_833e5dbaba7546f582547cdf7571c108", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_21904a4bfca34e3295a0b17083f1cdb9", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b1d5272979684bff96c71500a455d400", + "IPY_MODEL_6b095fb924ef41358579ec879bf0f9fe", + "IPY_MODEL_0a39ed2c512b4f33865071d90e585e06" + ], + "layout": "IPY_MODEL_72961bb987d24298bfdb11eb59546963", "tabbable": null, - "tooltip": null, - "value": 40.0 + "tooltip": null } }, - "1c8e1b8efcbf4cd6ad8ccd71c8886907": { + "0e97775e042e4049bb15d621385de0b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d84b7a5330814c309bc2e3a29fd936ef", + "max": 26421880.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f4bfad9cd0da4d31a8d5c783407a73c8", + "tabbable": null, + "tooltip": null, + "value": 26421880.0 } }, - "213628c3350547b8801807bf6755bac5": { + "0ec179f1c53a4547a89ad81af9b56fa0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3156,33 +3023,35 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c71cb776520442f0baba7a63fdbf2324", - "max": 4422102.0, + "layout": "IPY_MODEL_d90986d0f1bb4e8ebf632742ca0c49a3", + "max": 8845.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_a1990d1ffd9240a7a4bf2438eaf81754", + "style": "IPY_MODEL_7004a3b5592a40ee8328f00432adfc79", "tabbable": null, "tooltip": null, - "value": 4422102.0 + "value": 8845.0 } }, - "21904a4bfca34e3295a0b17083f1cdb9": { + "0f8071081d82450c9dd7fd9a927b6b1f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2529da9ccb564a7d98cf91d4e2f454fc": { + "0f83d37dd1394bc7a4f3ffc18b97b21c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3235,147 +3104,96 @@ "width": null } }, - "255e06fe46cb4c0eaa40336d22beaf70": { - "model_module": "@jupyter-widgets/base", + "1262e1266fb7438b9a905b26b4129cf0": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_eaa35cd4c5ae462181de3ad1ab98c2d1", + "placeholder": "​", + "style": "IPY_MODEL_9bc90fd3c0264b26b5bf1c99f4b9caad", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" } }, - "25aea1e677d84e4da5e2f1a580b847bb": { + "159251baf5e8425b8c9f8d7acb9abc55": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "266601a55125440a88a8a16e00cebd66": { + "1696a28972cf4c1c95e3e3bf755c8d21": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bd7060172fb747a6ae92a503a3922356", + "IPY_MODEL_5779a50d69944438b953e80eb37bbcac", + "IPY_MODEL_359bb8b698c94cf8b32d650da4752723" + ], + "layout": "IPY_MODEL_be6b57b7d12a497fbc96e8e89b08f15a", + "tabbable": null, + "tooltip": null } }, - "268de63ed1994c07842b4b562dfac3f6": { - "model_module": "@jupyter-widgets/base", + "1a9f98ff0f0446e7b89c4fe4fffc3418": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1262e1266fb7438b9a905b26b4129cf0", + "IPY_MODEL_0e97775e042e4049bb15d621385de0b0", + "IPY_MODEL_56000f81200d41e0bfa6f6b08d883916" + ], + "layout": "IPY_MODEL_75221b9dde234f55bcd73f8bba5f3fa5", + "tabbable": null, + "tooltip": null } }, - "295b6321cc6f4b1bbfa02a28f8581b1d": { + "1e5f76275f894a96a2d651d0a386fdf9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3428,7 +3246,30 @@ "width": null } }, - "299c0f0403e1447fb83af15e00e8f19f": { + "1ef3f8ae36734efb86b54939cb9711d4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7b58054c0d6a418194fc7e1f039c639b", + "placeholder": "​", + "style": "IPY_MODEL_864d773ce416475ba6a1e506b36063dc", + "tabbable": null, + "tooltip": null, + "value": " 4/4 [00:00<00:00, 1198.12it/s]" + } + }, + "1f5d840cd56a4162b5ad826e1f2902c2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3481,25 +3322,23 @@ "width": null } }, - "2a1a89abfab4432f93e32ce870b637ab": { + "1fb6203f0a3f47309b3fefc7cf4a8522": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "2a940901f95f4ae58045f253ec9f48b7": { + "1fdf0f2ba1e440ccaf02e74fc4b28520": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3515,60 +3354,146 @@ "description_width": "" } }, - "2cb677caec644d3ab2a8b6a70208559e": { - "model_module": "@jupyter-widgets/base", + "21a5ba5f675d47938f0e977783a004ba": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2d5192bd86654b04b8a872e4841a73ee", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1fb6203f0a3f47309b3fefc7cf4a8522", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "21a93c7e2dfc4569b325ed80637cf469": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ff08f8bfa09d42838688c6f725adb306", + "placeholder": "​", + "style": "IPY_MODEL_aea843e930ac410596a0f4cb4f6520e0", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 65.61it/s]" + } + }, + "240d9d285e4c42e9a24006d9d2988868": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1e5f76275f894a96a2d651d0a386fdf9", + "placeholder": "​", + "style": "IPY_MODEL_416fa493cc9c4ff6ad13e8b6e6aedbaa", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: 100%" + } + }, + "25f2773590254b58b3ac4b1c0a886c35": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f1c238f4a14549229bdf80d577253ccf", + "placeholder": "​", + "style": "IPY_MODEL_f0b50dd1b20c48b6911a694433d48e05", + "tabbable": null, + "tooltip": null, + "value": " 4.83k/4.83k [00:00<00:00, 623kB/s]" + } + }, + "27b9b136f3bb4b1a80402df468b5c136": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2865f56223344611aa17c9ec66a2d090": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f9978a29787547e3bc5e59bde742651c", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cd6bbb8ca872405fa17b2571965191b3", + "tabbable": null, + "tooltip": null, + "value": 60000.0 } }, - "2d09848b13f94c7a9483a0063af7658b": { + "29258ac24b084216b09e806906959044": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3584,7 +3509,7 @@ "description_width": "" } }, - "2f77ed4c555c4365a30f1c760cb59e74": { + "2c4aaf8a7a84451d93bb9c185069cfe6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3602,23 +3527,190 @@ "text_color": null } }, - "348018e48d954c87b48ff2a6e7470304": { + "2d5192bd86654b04b8a872e4841a73ee": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2ffbe85316974d029eab626642378580": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_62e4f2d9c4534ebbab778993d057a978", + "IPY_MODEL_0ec179f1c53a4547a89ad81af9b56fa0", + "IPY_MODEL_5c88bd64b2f44f8ab2aa0198c89462d3" + ], + "layout": "IPY_MODEL_44a3e2129c4243e4862df806c2d8c5af", + "tabbable": null, + "tooltip": null + } + }, + "306584df97934511bd6de92ca49b025b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "30c3b868ba4b46ea9bcdb05e1c6d5613": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "367462867871411f81ad39c2100a77d8": { + "3256f32acb0e4cf5b5de459cdd30f479": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3633,15 +3725,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_93b948080aae40babe81f47f38dc60fa", + "layout": "IPY_MODEL_5e25f06738614802b41458873966a7a2", "placeholder": "​", - "style": "IPY_MODEL_3f77fa09c365457f893db8dde97d6a1a", + "style": "IPY_MODEL_3b900abb40be48198b5e1814d396c692", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:07<00:00, 8559.65 examples/s]" + "value": " 10000/10000 [00:01<00:00, 8596.66 examples/s]" } }, - "3773b260a0514063a4cb27c7bcfcdb72": { + "32b658a174274a4997618547ef7ef447": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3694,53 +3786,110 @@ "width": null } }, - "3abd2a96be1649ed9f2a7594cfdf3bbd": { + "32f22fc4e23745929d001d9647682786": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f15ed2b240814bb897b777075c726c92", - "placeholder": "​", - "style": "IPY_MODEL_956d09bfdd86417caf76bb337c098a81", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7684491703b342af8b42512fb30334e4", + "IPY_MODEL_fe1973b9b1fa4957b9894f465a0fe87c", + "IPY_MODEL_c9693739925b43cd83cb4e68fc01ecc9" + ], + "layout": "IPY_MODEL_dd1415dc221544d78c38cecb125e95de", "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "tooltip": null } }, - "3ddd27d196364f1db80581facbadf18f": { + "33c9e2d67e4e498a9badfc73dd036c12": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_79d53959ea3648699bfb173209305675", - "placeholder": "​", - "style": "IPY_MODEL_160c29ae9eb04803b9e5fc42229024de", + "layout": "IPY_MODEL_a2e082221e6d4efe981d8286fcaa40bd", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_422391611be34f58bd16d29a7a790f7f", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 40.0 + } + }, + "33e89871cb224a0bb17051bdb6a4736f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "3ec84e0ec4d94afd8f15a91eb757624e": { + "3598bd0162e44744bf0e88509c1fcc05": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3793,93 +3942,30 @@ "width": null } }, - "3edb1a47c3314c0abfc78f23d62ebe68": { + "359bb8b698c94cf8b32d650da4752723": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0cfffd1a2e16481ba0fb26b13818b9d3", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_70ca2521a7cf454c8f41cc8665bd8572", + "layout": "IPY_MODEL_d44de894f1eb4db0ad9f986867905216", + "placeholder": "​", + "style": "IPY_MODEL_91eaa66c2eb641e689fc8028aee35c80", "tabbable": null, "tooltip": null, - "value": 60000.0 - } - }, - "3f77fa09c365457f893db8dde97d6a1a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3fa46dee97a14f9594eb60312b03e045": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a50bac222b154e1e8f1af99c2d2f7cb5", - "IPY_MODEL_f306b412103a4a999f13f32ecb0841fe", - "IPY_MODEL_838e5992cb0f492aa79d9e4411b13437" - ], - "layout": "IPY_MODEL_1ab8a64cb49340769b8aa2cc1774732d", - "tabbable": null, - "tooltip": null - } - }, - "424a8de7240d4c088b2b2dbadf1113ab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 40/40 [00:00<00:00, 64.56it/s]" } }, - "4367f895c508411fb72fbf123bfd2662": { + "372ab13ae5c8452ead0d7884763b3fc8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3932,43 +4018,30 @@ "width": null } }, - "445bd193a0b443b68d88db83f68b1135": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4751ad8ff2014ae4aefb61464aa0b996": { + "3746c22618f54648a82eac82edf13ec6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0826f288ec1f413988e02f4ef8849c28", + "placeholder": "​", + "style": "IPY_MODEL_7fd76734cd4b4cec9bba7cdd76aaea68", + "tabbable": null, + "tooltip": null, + "value": " 29.5k/29.5k [00:00<00:00, 4.49MB/s]" } }, - "4a97191b1a1643199e46244e6611352a": { + "3851a48a716b467ba9b981bd35b1822c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4021,7 +4094,31 @@ "width": null } }, - "4c9f6ca0676a4e6bbace6bdaf151e92c": { + "39838b65ab134d2a9a445437586fec98": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bf04eda28d94482ebdbf589d87951c61", + "IPY_MODEL_92fe75b0bd1341e9878165f8c906fc19", + "IPY_MODEL_3746c22618f54648a82eac82edf13ec6" + ], + "layout": "IPY_MODEL_5d3e10744606438787cdfd6315052b40", + "tabbable": null, + "tooltip": null + } + }, + "3b900abb40be48198b5e1814d396c692": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4039,7 +4136,7 @@ "text_color": null } }, - "50042e9a2b5145a780c7c3d799e26aad": { + "3ed339ad73774a5cae0f763c178cbf4b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4092,7 +4189,25 @@ "width": null } }, - "5594cd23fb504b0dbdef0ecfe202453c": { + "409b5a2567834d99aba6129faa130451": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "40e0d768badf43758c95df2555d1a977": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4145,33 +4260,7 @@ "width": null } }, - "5695fa5956b04b45a058d58f6cb27b12": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_87900fda6f274f88ab3a99c82a5a9940", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1a2b07452f87444f8ac98839eeafdd7b", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "57fa64edffdb4d37a90dbea656009ab1": { + "416fa493cc9c4ff6ad13e8b6e6aedbaa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4189,23 +4278,7 @@ "text_color": null } }, - "58ba69b1748d4a2bb5d07f10349efa22": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "5b07f8803c514642801639b40c1aa34b": { + "422391611be34f58bd16d29a7a790f7f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4221,7 +4294,7 @@ "description_width": "" } }, - "5c0a9c7370bb48c09729cb766ab1781a": { + "44a3e2129c4243e4862df806c2d8c5af": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4274,79 +4347,7 @@ "width": null } }, - "5d069f3fc0fd47028eaaf3380b16e427": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_97c91dea2ffc40f1830438b9a24225ce", - "placeholder": "​", - "style": "IPY_MODEL_635f8889b38545dca62037898e9e98c2", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 71.33it/s]" - } - }, - "5d1a794999184d7c86308a072ca269b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e5fa84089fac429dba7a0f14fcadf7b8", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2d09848b13f94c7a9483a0063af7658b", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "5f29c5efd23943e1a08518f859506345": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a24112b64ebe4079b08768fea3888272", - "placeholder": "​", - "style": "IPY_MODEL_19dfb010e30849f38c848ea70dda5645", - "tabbable": null, - "tooltip": null, - "value": " 29.5k/29.5k [00:00<00:00, 4.28MB/s]" - } - }, - "61b5f9d9099a4161a69f1c58aaa1f54e": { + "46552aea691e492084a7278f7a059830": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4364,30 +4365,23 @@ "text_color": null } }, - "61c7ca03d1b84ecdbe6bfb8765d33dd4": { + "488f0ba8d1c24d58adaefa23ebad9e9f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8c7ec74595b64ca194e8d3ba1c2a16fe", - "placeholder": "​", - "style": "IPY_MODEL_d627f7cbc1534c10a92cc7fd0f874ca6", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:36<00:00, 1693.23it/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "624903d3a14d4864906b939e0507936f": { + "4957f5fe7164427d8b712200dde5c3ab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4403,17 +4397,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3773b260a0514063a4cb27c7bcfcdb72", - "max": 60000.0, + "layout": "IPY_MODEL_ddb1bbe42c9e442091cc9c4122b5de26", + "max": 4422102.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_1c8e1b8efcbf4cd6ad8ccd71c8886907", + "style": "IPY_MODEL_e85e1e91a24f4199a9a4b3e9abe8696f", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": 4422102.0 } }, - "6296fc9f1a3947edb989ab3a35afbefe": { + "495daf880acd479da7fa63fedf1e1368": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4428,73 +4422,74 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f247cc3e079b4ad2aa902a3150c5d9ec", - "IPY_MODEL_783884a15ffc4bceb98545ac1564a7f5", - "IPY_MODEL_fc671361cddb4f3e9903ef6aae4d3083" + "IPY_MODEL_240d9d285e4c42e9a24006d9d2988868", + "IPY_MODEL_21a5ba5f675d47938f0e977783a004ba", + "IPY_MODEL_513c96503e024d098d8203aa3b604a38" ], - "layout": "IPY_MODEL_66aef97a11f842d89fcec4deed40e16d", + "layout": "IPY_MODEL_306584df97934511bd6de92ca49b025b", "tabbable": null, "tooltip": null } }, - "62c6658ea89d458aa1198b576f9eee56": { + "4a57dceefdc148afb5c7afa8adec5114": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "635f8889b38545dca62037898e9e98c2": { + "4aadbbb3e859454a93556ff943f76e5b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "64e2e67bdc244016895a62ad062fa077": { + "4d801b30b791427d9103f41505cf1a3e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_953f69d720d74dc0824fc0ac9a4ffa3b", - "placeholder": "​", - "style": "IPY_MODEL_a38689b69ffd44938ebabe7dc9710b39", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8dbd4d3399124f6d8275c1d0fdfe9983", + "IPY_MODEL_4957f5fe7164427d8b712200dde5c3ab", + "IPY_MODEL_cab386a86c594ee2885f6d1679103b3b" + ], + "layout": "IPY_MODEL_625866dbaec44035a15f3927c4b770e5", "tabbable": null, - "tooltip": null, - "value": "100%" + "tooltip": null } }, - "66aef97a11f842d89fcec4deed40e16d": { + "4dda8d782c00439b8a9eefdfe211c961": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4547,60 +4542,25 @@ "width": null } }, - "6930211e1e8a42d88c3294247388155e": { - "model_module": "@jupyter-widgets/base", + "4ec1fcd52f8c4d51bb3475d2f3c24732": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "69835f01f4d24840900be4eafa6cd376": { + "4ff41db514e041798fc3d0bf13325104": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4653,7 +4613,54 @@ "width": null } }, - "6bb8ca43d39f43d0933376cc22b61a88": { + "513c96503e024d098d8203aa3b604a38": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9009c4b403d146b493913cc05ca55a44", + "placeholder": "​", + "style": "IPY_MODEL_ac82938d47c543a89ca5def5e546d7da", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:07<00:00, 8644.15 examples/s]" + } + }, + "5191d0744a454151b8fae157e5a21ef4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fffb62594db04599b3628dceafda46f1", + "IPY_MODEL_2865f56223344611aa17c9ec66a2d090", + "IPY_MODEL_d4be07fa12674628ae93c0119edbf6e1" + ], + "layout": "IPY_MODEL_052177a0e94b458eb71c811c3229f857", + "tabbable": null, + "tooltip": null + } + }, + "51bb6dd9acdc4544b4d17f4f020b1764": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4706,7 +4713,7 @@ "width": null } }, - "6c1c35f1bae449bb91822d760764fd52": { + "55923d8f76544ee5b5e53cb28dcbbcc5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4721,15 +4728,103 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8205e7ba3ebf40938d66cce708243de9", + "layout": "IPY_MODEL_0f83d37dd1394bc7a4f3ffc18b97b21c", "placeholder": "​", - "style": "IPY_MODEL_bc15b56e48ef468eb9e5db2eba40dd06", + "style": "IPY_MODEL_8be082c69bad41aa815fa99c34e5a9ea", "tabbable": null, "tooltip": null, - "value": "Map (num_proc=4): 100%" + "value": " 40/40 [00:00<00:00, 65.15it/s]" + } + }, + "56000f81200d41e0bfa6f6b08d883916": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9eace039e9d343e1a0113042a3582776", + "placeholder": "​", + "style": "IPY_MODEL_409b5a2567834d99aba6129faa130451", + "tabbable": null, + "tooltip": null, + "value": " 26.4M/26.4M [00:00<00:00, 120MB/s]" + } + }, + "5779a50d69944438b953e80eb37bbcac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1f5d840cd56a4162b5ad826e1f2902c2", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_488f0ba8d1c24d58adaefa23ebad9e9f", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "5c88bd64b2f44f8ab2aa0198c89462d3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ed5bd36e898a43dc9c5cb8e283abbead", + "placeholder": "​", + "style": "IPY_MODEL_890e03a51fce4dd185e5a42dc5da23ed", + "tabbable": null, + "tooltip": null, + "value": " 8.85k/8.85k [00:00<00:00, 1.48MB/s]" + } + }, + "5c9cad60b37f4313a6899ca1a71bbee0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "6c4353aa625f407c8370f78a1dc830c8": { + "5d3e10744606438787cdfd6315052b40": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4782,31 +4877,7 @@ "width": null } }, - "6ca247bf72f54f03aabdd5d72546025f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f035123f0a8341818f2529edc8258078", - "IPY_MODEL_5d1a794999184d7c86308a072ca269b6", - "IPY_MODEL_a774929f38e2462193ebeff227330d56" - ], - "layout": "IPY_MODEL_d460961168ad48bf8a3a86fe06603769", - "tabbable": null, - "tooltip": null - } - }, - "6cb79bd433b44c4c8cd62d84839582bc": { + "5e25f06738614802b41458873966a7a2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4854,38 +4925,12 @@ "overflow": null, "padding": null, "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6d4b2efa08f448b0a99ccda6ee415ef7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6cb79bd433b44c4c8cd62d84839582bc", - "max": 4833.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_58ba69b1748d4a2bb5d07f10349efa22", - "tabbable": null, - "tooltip": null, - "value": 4833.0 + "top": null, + "visibility": null, + "width": null } }, - "6d5821fefb5648caac6867e9f7a4c67b": { + "6095c69a4f934899a783495c289c15a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4938,63 +4983,30 @@ "width": null } }, - "6de62af38a2f43a9846f333eda1224f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "70b6c17f51c948158afefdd56830a23f": { + "6102ff846ce741a4aa1c83f94cf213b4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6c1c35f1bae449bb91822d760764fd52", - "IPY_MODEL_766722799c914e01bd6ba03a4860a722", - "IPY_MODEL_81491c5e50a34db7ab3810ebfafe7b12" - ], - "layout": "IPY_MODEL_2529da9ccb564a7d98cf91d4e2f454fc", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0b2e2b62fbba4e8e919185c698964e99", + "placeholder": "​", + "style": "IPY_MODEL_a2c46edab30a43d3ad1274496e23dc19", "tabbable": null, - "tooltip": null - } - }, - "70ca2521a7cf454c8f41cc8665bd8572": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null, + "value": " 40/40 [00:00<00:00, 68.42it/s]" } }, - "72cf872836144d31ac5f693e9157dde9": { + "625866dbaec44035a15f3927c4b770e5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5047,41 +5059,30 @@ "width": null } }, - "732da230ecd142e79d60e75c14f8749a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7662e69c3e7b45a1bc4d55996a7060cc": { + "62e4f2d9c4534ebbab778993d057a978": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4dda8d782c00439b8a9eefdfe211c961", + "placeholder": "​", + "style": "IPY_MODEL_d89ee00461d14abe96f3f0cdcfa3da61", + "tabbable": null, + "tooltip": null, + "value": "Downloading readme: 100%" } }, - "766722799c914e01bd6ba03a4860a722": { + "640d5d2692d64656a67cd09cee644495": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5097,67 +5098,40 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_88f5a8e733a449bf9d33c407463abc0b", - "max": 60000.0, + "layout": "IPY_MODEL_007a3563b0514e35b0a7409f1a0e8668", + "max": 4.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_ad6f123f6f11456097bebc2f41cfafd7", + "style": "IPY_MODEL_ded2f3b115fb46e48b5699012c011fa5", "tabbable": null, "tooltip": null, - "value": 60000.0 - } - }, - "76cd9d157bf74d6e93db6f5727c6f900": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7f5b0df354d74d42b00745784e61cbb5", - "IPY_MODEL_d844173c6e344ebcbb4c2988636ce3a8", - "IPY_MODEL_f68300c0882c4adca9ac2341e102684c" - ], - "layout": "IPY_MODEL_ddea9d00c6b648c2ab8a73e6395f71ba", - "tabbable": null, - "tooltip": null + "value": 4.0 } }, - "783884a15ffc4bceb98545ac1564a7f5": { + "645dbaa1cd59415da2cc2b69430972fa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c5cfb97d21914845a48cbeea88f4d542", - "max": 5148.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cb7c5ad137844450a4dd8bb2cd5b55d5", + "layout": "IPY_MODEL_33e89871cb224a0bb17051bdb6a4736f", + "placeholder": "​", + "style": "IPY_MODEL_159251baf5e8425b8c9f8d7acb9abc55", "tabbable": null, "tooltip": null, - "value": 5148.0 + "value": "100%" } }, - "786e4946ac9d4815956096e2294ce1a9": { + "647ec368e3354d458cfed043dad850ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5175,30 +5149,57 @@ "text_color": null } }, - "78c28ce7e495439eb9b5618da236dfff": { + "683ea97790a64507b71e617e6bb1960f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e1aad335fcff4496842cc4f52b05fb6a", + "IPY_MODEL_be4ee2ccce154754b1f1e8d49134ee62", + "IPY_MODEL_edb3baaca40743c08801b6e9bff25752" + ], + "layout": "IPY_MODEL_51bb6dd9acdc4544b4d17f4f020b1764", + "tabbable": null, + "tooltip": null + } + }, + "6b095fb924ef41358579ec879bf0f9fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6930211e1e8a42d88c3294247388155e", - "placeholder": "​", - "style": "IPY_MODEL_d5b89a2622784b2684e5d0e4a1d8e288", + "layout": "IPY_MODEL_3ed339ad73774a5cae0f763c178cbf4b", + "max": 5148.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1fdf0f2ba1e440ccaf02e74fc4b28520", "tabbable": null, "tooltip": null, - "value": "Downloading builder script: 100%" + "value": 5148.0 } }, - "79d53959ea3648699bfb173209305675": { + "6ca7ade3edba440ba7226afd89340130": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5251,94 +5252,60 @@ "width": null } }, - "7a5e963277ae42569b466604816aee6f": { - "model_module": "@jupyter-widgets/controls", + "6ccb235983834c00ac32be1422c16641": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7ec457de82a94296bda5ce8043891a1e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a1f03e62934145f48df36ed07ef54135", - "placeholder": "​", - "style": "IPY_MODEL_57fa64edffdb4d37a90dbea656009ab1", - "tabbable": null, - "tooltip": null, - "value": " 8.85k/8.85k [00:00<00:00, 1.45MB/s]" - } - }, - "7f5b0df354d74d42b00745784e61cbb5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b56fcd9aca4c49c0b688460c48f52150", - "placeholder": "​", - "style": "IPY_MODEL_0423a125c3324adc9f2433bebe77773b", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "81491c5e50a34db7ab3810ebfafe7b12": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c0717785491f4d29856b706b3233759a", - "placeholder": "​", - "style": "IPY_MODEL_c9c1491278bb49a0a831ab5dea82a8c5", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 7815.27 examples/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "8205e7ba3ebf40938d66cce708243de9": { + "6f3f698e19f14817b2b2fa6c67e55a47": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5391,33 +5358,23 @@ "width": null } }, - "8224804dbbd04b29bd71274520c5718d": { + "7004a3b5592a40ee8328f00432adfc79": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_299c0f0403e1447fb83af15e00e8f19f", - "max": 29515.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8824a37abc7b47a7b37e0eb6c3e6cc11", - "tabbable": null, - "tooltip": null, - "value": 29515.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8239b72ad4ca43fb92f0bc981abfd95b": { + "72961bb987d24298bfdb11eb59546963": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5470,7 +5427,7 @@ "width": null } }, - "833e5dbaba7546f582547cdf7571c108": { + "736ef5bce23e47429bfcb196fb8b85b3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5523,7 +5480,7 @@ "width": null } }, - "838e5992cb0f492aa79d9e4411b13437": { + "743f0d74186d4b7093498a547ab9ac95": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5538,15 +5495,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c07a9548b6234526a02e4a5ca84bc144", + "layout": "IPY_MODEL_7b5cc6d910b546ce964b6b2bbec05343", "placeholder": "​", - "style": "IPY_MODEL_266601a55125440a88a8a16e00cebd66", + "style": "IPY_MODEL_b3495f2ab71b4f848590703a190ddebc", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.32it/s]" + "value": " 40/40 [00:00<00:00, 68.82it/s]" + } + }, + "751475cab3c24730bab0fbab4d5284f2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "8767f058e5b649bfb0c2d444b49f3f9d": { + "75221b9dde234f55bcd73f8bba5f3fa5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5599,7 +5574,33 @@ "width": null } }, - "87900fda6f274f88ab3a99c82a5a9940": { + "759a332c02e64ce79a364cd518bc163e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6095c69a4f934899a783495c289c15a3", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5c9cad60b37f4313a6899ca1a71bbee0", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "75af0524012d41858477feaee9949557": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5652,23 +5653,7 @@ "width": null } }, - "8824a37abc7b47a7b37e0eb6c3e6cc11": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "88c76968e9da4cb6ae77b6883ae64280": { + "7684491703b342af8b42512fb30334e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5683,15 +5668,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_69835f01f4d24840900be4eafa6cd376", + "layout": "IPY_MODEL_a61e85ca959b4dafbe01836e2add2005", "placeholder": "​", - "style": "IPY_MODEL_4c9f6ca0676a4e6bbace6bdaf151e92c", + "style": "IPY_MODEL_4ec1fcd52f8c4d51bb3475d2f3c24732", "tabbable": null, "tooltip": null, - "value": "Generating train split: 100%" + "value": "100%" } }, - "88f5a8e733a449bf9d33c407463abc0b": { + "7b58054c0d6a418194fc7e1f039c639b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5744,7 +5729,7 @@ "width": null } }, - "8a368087070540ac84cfd57d04c80102": { + "7b5cc6d910b546ce964b6b2bbec05343": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5797,54 +5782,7 @@ "width": null } }, - "8b242b3757014ca08c0be26603c856e5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_070af112be824f3a9dfc9d11f6c99bdb", - "IPY_MODEL_624903d3a14d4864906b939e0507936f", - "IPY_MODEL_61c7ca03d1b84ecdbe6bfb8765d33dd4" - ], - "layout": "IPY_MODEL_b6006aab30524546a2357c0b60b3422c", - "tabbable": null, - "tooltip": null - } - }, - "8b62a322205f4dbd9b437035f7710286": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bd4ca863b31b4a6087a17d6cfa52ba96", - "placeholder": "​", - "style": "IPY_MODEL_8be92883d1f447b7b27692d27d470559", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" - } - }, - "8be92883d1f447b7b27692d27d470559": { + "7d2cf7fe1d884127b2ea048061916752": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5862,7 +5800,7 @@ "text_color": null } }, - "8c7ec74595b64ca194e8d3ba1c2a16fe": { + "7df97d24399f4f8a980e937ed234ad3c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5915,7 +5853,43 @@ "width": null } }, - "8e4fdf510840497e9b8908d892a617e3": { + "7fd76734cd4b4cec9bba7cdd76aaea68": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "823bddadbc6644c283f25f9cc6a18fc8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "831b82774fb644faa4c010b37968f99b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5930,41 +5904,114 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ef43f60fb2ce4517935a3a3d655e6e4c", + "layout": "IPY_MODEL_32b658a174274a4997618547ef7ef447", "placeholder": "​", - "style": "IPY_MODEL_445bd193a0b443b68d88db83f68b1135", + "style": "IPY_MODEL_0f8071081d82450c9dd7fd9a927b6b1f", "tabbable": null, "tooltip": null, - "value": "Downloading readme: 100%" + "value": "100%" } }, - "8fd06c99c9a747d8b7932274f22d7a1f": { + "846e19cb26a94bdba7b363dce398b69c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_99c1a284b0e04c9a85ab4ee83de08fc0", + "IPY_MODEL_759a332c02e64ce79a364cd518bc163e", + "IPY_MODEL_743f0d74186d4b7093498a547ab9ac95" + ], + "layout": "IPY_MODEL_c5594aabc34c40e2bd69e47ea0624f4a", + "tabbable": null, + "tooltip": null + } + }, + "864d773ce416475ba6a1e506b36063dc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "877c0b06e48d4616b74e70c7b9e6abff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "890e03a51fce4dd185e5a42dc5da23ed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "89956ffd6bd842798b8752c8f8fbcef6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8a368087070540ac84cfd57d04c80102", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_25aea1e677d84e4da5e2f1a580b847bb", + "layout": "IPY_MODEL_bd6988dd8c6745d9a63c01e21b21baa3", + "placeholder": "​", + "style": "IPY_MODEL_647ec368e3354d458cfed043dad850ce", "tabbable": null, "tooltip": null, - "value": 4.0 + "value": "100%" } }, - "93b948080aae40babe81f47f38dc60fa": { + "8a3f12d334d645c8a42ca8a0292075a9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6017,7 +6064,48 @@ "width": null } }, - "953f69d720d74dc0824fc0ac9a4ffa3b": { + "8be082c69bad41aa815fa99c34e5a9ea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8dbd4d3399124f6d8275c1d0fdfe9983": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6ca7ade3edba440ba7226afd89340130", + "placeholder": "​", + "style": "IPY_MODEL_bdd6eef2f72d4192953e456956c77bd9", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "9009c4b403d146b493913cc05ca55a44": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6070,7 +6158,7 @@ "width": null } }, - "956d09bfdd86417caf76bb337c098a81": { + "91eaa66c2eb641e689fc8028aee35c80": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6088,7 +6176,59 @@ "text_color": null } }, - "9717f3b4aaae491d9cb2e07d49a003a5": { + "92fe75b0bd1341e9878165f8c906fc19": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3851a48a716b467ba9b981bd35b1822c", + "max": 29515.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4aadbbb3e859454a93556ff943f76e5b", + "tabbable": null, + "tooltip": null, + "value": 29515.0 + } + }, + "94beed83d4f34e37885835c7ee53b3e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c9e6261cabb7413784e072a38690acc3", + "max": 4833.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c9722775eec64862b3c787b4a9da67b5", + "tabbable": null, + "tooltip": null, + "value": 4833.0 + } + }, + "96b3b9a948504544be06e5692d10926d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6103,16 +6243,57 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_ab1b471e80f9406fabb0d7e0b174084c", - "IPY_MODEL_197981c8f9c84c00abea85184c72fcd5", - "IPY_MODEL_5d069f3fc0fd47028eaaf3380b16e427" + "IPY_MODEL_e451b86b3b73462bb7d10f31b67e7f35", + "IPY_MODEL_ff2c7db5dbda44b8b24ca18490cb3473", + "IPY_MODEL_3256f32acb0e4cf5b5de459cdd30f479" ], - "layout": "IPY_MODEL_19d83e638f7a404ba0eb4fdd71302435", + "layout": "IPY_MODEL_ed769dcb47ca423fb840b23690485ebe", "tabbable": null, "tooltip": null } }, - "97c91dea2ffc40f1830438b9a24225ce": { + "99c1a284b0e04c9a85ab4ee83de08fc0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_da9f7efe26b243e7bed64d6bd9746699", + "placeholder": "​", + "style": "IPY_MODEL_bff32efaaebb4a2789332d03ffc174f6", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "9bc90fd3c0264b26b5bf1c99f4b9caad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9eace039e9d343e1a0113042a3582776": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6165,25 +6346,31 @@ "width": null } }, - "98e13251741f42169572ab3c91ade8e4": { + "a0b406e9eaf143599fd4e302b57381b4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_89956ffd6bd842798b8752c8f8fbcef6", + "IPY_MODEL_088b60ea8401405ea27804efbb34b231", + "IPY_MODEL_6102ff846ce741a4aa1c83f94cf213b4" + ], + "layout": "IPY_MODEL_7df97d24399f4f8a980e937ed234ad3c", + "tabbable": null, + "tooltip": null } }, - "9a36f96ef3224e05847983090297222a": { + "a201453cadfa4bccaf26c6f446b4e7ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6236,30 +6423,25 @@ "width": null } }, - "9f1afcead928423ab651a3cfb6bc7cc4": { + "a2c46edab30a43d3ad1274496e23dc19": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cfc5b02015154a29bae32de6ea0acd51", - "placeholder": "​", - "style": "IPY_MODEL_7a5e963277ae42569b466604816aee6f", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 59.96it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9fda0321906e4bb7a73fc697ca19c8e3": { + "a2e082221e6d4efe981d8286fcaa40bd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6312,41 +6494,7 @@ "width": null } }, - "a145248aa276456f95640b1b4a24d4bf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a1990d1ffd9240a7a4bf2438eaf81754": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a1f03e62934145f48df36ed07ef54135": { + "a3af79b4c771458595c44a209a768d66": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6399,7 +6547,7 @@ "width": null } }, - "a24112b64ebe4079b08768fea3888272": { + "a61e85ca959b4dafbe01836e2add2005": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6452,66 +6600,23 @@ "width": null } }, - "a31c56a1f6f544c1846467d596dd7b15": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a38689b69ffd44938ebabe7dc9710b39": { + "a955b675afa4453385243c0af21d7bb7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a50bac222b154e1e8f1af99c2d2f7cb5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5c0a9c7370bb48c09729cb766ab1781a", - "placeholder": "​", - "style": "IPY_MODEL_2f77ed4c555c4365a30f1c760cb59e74", - "tabbable": null, - "tooltip": null, - "value": "100%" + "bar_color": null, + "description_width": "" } }, - "a6307f65c4f14a07ad202a2748b4132f": { + "ac0dd2e3b9574dfba4e088b07dc9917a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6564,7 +6669,43 @@ "width": null } }, - "a774929f38e2462193ebeff227330d56": { + "ac82938d47c543a89ca5def5e546d7da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "aea843e930ac410596a0f4cb4f6520e0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b1d5272979684bff96c71500a455d400": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6579,63 +6720,49 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_11703dfe59744973b7ee5db1b50a7304", + "layout": "IPY_MODEL_372ab13ae5c8452ead0d7884763b3fc8", "placeholder": "​", - "style": "IPY_MODEL_786e4946ac9d4815956096e2294ce1a9", + "style": "IPY_MODEL_27b9b136f3bb4b1a80402df468b5c136", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 67.06it/s]" + "value": "Downloading data: 100%" } }, - "a7cf6a20863544c78418cc502f39b678": { + "b3495f2ab71b4f848590703a190ddebc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8b62a322205f4dbd9b437035f7710286", - "IPY_MODEL_8fd06c99c9a747d8b7932274f22d7a1f", - "IPY_MODEL_db1fd46972524542bbb7ec0eeef4b2ba" - ], - "layout": "IPY_MODEL_182fe610a03c4f0c8820d62efd2942a9", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a9efee99388e4bd987cba82e4c249be5": { + "b3f80c6a23394b5dbcb460b9a19b34ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8e4fdf510840497e9b8908d892a617e3", - "IPY_MODEL_de7773b079344e19b9f86e5643e773ed", - "IPY_MODEL_7ec457de82a94296bda5ce8043891a1e" - ], - "layout": "IPY_MODEL_a6307f65c4f14a07ad202a2748b4132f", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "aa609ade2290479691002af80a845d3d": { + "bd6988dd8c6745d9a63c01e21b21baa3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6688,7 +6815,7 @@ "width": null } }, - "ab1b471e80f9406fabb0d7e0b174084c": { + "bd7060172fb747a6ae92a503a3922356": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6703,33 +6830,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_255e06fe46cb4c0eaa40336d22beaf70", + "layout": "IPY_MODEL_a201453cadfa4bccaf26c6f446b4e7ee", "placeholder": "​", - "style": "IPY_MODEL_98e13251741f42169572ab3c91ade8e4", + "style": "IPY_MODEL_2c4aaf8a7a84451d93bb9c185069cfe6", "tabbable": null, "tooltip": null, "value": "100%" } }, - "abecf5a0521e45f78a788d98cc335e5c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ac339d14f5334e5fbce36888ade893b6": { + "bdd1580a8e924b29bc29315b007f1f26": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6782,7 +6891,51 @@ "width": null } }, - "ac933a814c124345b0730704f11cfbc8": { + "bdd6eef2f72d4192953e456956c77bd9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "be4ee2ccce154754b1f1e8d49134ee62": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_75af0524012d41858477feaee9949557", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_877c0b06e48d4616b74e70c7b9e6abff", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "be6b57b7d12a497fbc96e8e89b08f15a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6835,49 +6988,30 @@ "width": null } }, - "ad6f123f6f11456097bebc2f41cfafd7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "aeda1e802b974623a7d922ff793e1002": { + "bf04eda28d94482ebdbf589d87951c61": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f4f96f825f2043db8c6d5179d06cd01c", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_348018e48d954c87b48ff2a6e7470304", + "layout": "IPY_MODEL_0205ebdad1d64de8a1bd7d1c741d5fcb", + "placeholder": "​", + "style": "IPY_MODEL_f0fcd694fc07412a83769122e48dd5c1", "tabbable": null, "tooltip": null, - "value": 10000.0 + "value": "Downloading data: 100%" } }, - "b13b21c3b7544706aacfbba4f3504a8b": { + "bfd46491d1764708be24b2103e5e6cb5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6892,39 +7026,52 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_3abd2a96be1649ed9f2a7594cfdf3bbd", - "IPY_MODEL_d7462fe7497245929fb556be574c9b66", - "IPY_MODEL_e7d291738cf84330bb7fbd4947e558a1" + "IPY_MODEL_645dbaa1cd59415da2cc2b69430972fa", + "IPY_MODEL_33c9e2d67e4e498a9badfc73dd036c12", + "IPY_MODEL_21a93c7e2dfc4569b325ed80637cf469" ], - "layout": "IPY_MODEL_295b6321cc6f4b1bbfa02a28f8581b1d", + "layout": "IPY_MODEL_4ff41db514e041798fc3d0bf13325104", "tabbable": null, "tooltip": null } }, - "b374b826cf5a4a668332dc70f8c2fe4a": { + "bff32efaaebb4a2789332d03ffc174f6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f679da4310d84ae0a1679faa5659f6c7", - "placeholder": "​", - "style": "IPY_MODEL_0abf4ae675284a88873e14026b73ab9e", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c34dc272c24c40c697da60df89a38f25": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b56fcd9aca4c49c0b688460c48f52150": { + "c4fcca6ce699447399e56dfc004afddb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6977,7 +7124,7 @@ "width": null } }, - "b6006aab30524546a2357c0b60b3422c": { + "c5594aabc34c40e2bd69e47ea0624f4a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7030,31 +7177,46 @@ "width": null } }, - "b69aa5fb137444eb962d31f239578d65": { + "c9693739925b43cd83cb4e68fc01ecc9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_64e2e67bdc244016895a62ad062fa077", - "IPY_MODEL_1ba2c9f296904da78195fe3e45321059", - "IPY_MODEL_9f1afcead928423ab651a3cfb6bc7cc4" - ], - "layout": "IPY_MODEL_ba0143519d7f4309b1af7b6461fd8a90", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bdd1580a8e924b29bc29315b007f1f26", + "placeholder": "​", + "style": "IPY_MODEL_751475cab3c24730bab0fbab4d5284f2", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 40/40 [00:00<00:00, 68.93it/s]" + } + }, + "c9722775eec64862b3c787b4a9da67b5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "ba0143519d7f4309b1af7b6461fd8a90": { + "c9e6261cabb7413784e072a38690acc3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7107,7 +7269,7 @@ "width": null } }, - "ba30ea8e68274773937367758a4abf1b": { + "cab386a86c594ee2885f6d1679103b3b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7122,134 +7284,83 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_72cf872836144d31ac5f693e9157dde9", + "layout": "IPY_MODEL_6f3f698e19f14817b2b2fa6c67e55a47", "placeholder": "​", - "style": "IPY_MODEL_e7eedd97596a479c9a69c82d61e53877", + "style": "IPY_MODEL_c34dc272c24c40c697da60df89a38f25", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 64.53it/s]" + "value": " 4.42M/4.42M [00:00<00:00, 53.3MB/s]" } }, - "bc15b56e48ef468eb9e5db2eba40dd06": { + "cd6bbb8ca872405fa17b2571965191b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "bc98754b340343f594559442ba450aa4": { + "cf4a395a6d57451092b05d86340035d6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_88c76968e9da4cb6ae77b6883ae64280", - "IPY_MODEL_3edb1a47c3314c0abfc78f23d62ebe68", - "IPY_MODEL_367462867871411f81ad39c2100a77d8" - ], - "layout": "IPY_MODEL_9a36f96ef3224e05847983090297222a", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "bd4ca863b31b4a6087a17d6cfa52ba96": { - "model_module": "@jupyter-widgets/base", + "d15f06ef2c454254bee0f59957e49d4b": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "bd4e5e775e0d4b5d90568b686f8fd56f": { + "d2775a5c6f9b4c439174c1b5f34446b5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_78c28ce7e495439eb9b5618da236dfff", - "IPY_MODEL_6d4b2efa08f448b0a99ccda6ee415ef7", - "IPY_MODEL_ee2470d66aed4014820acd898b666713" - ], - "layout": "IPY_MODEL_ccb6f4531ee843d4ad0080744e6078d2", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c0717785491f4d29856b706b3233759a": { + "d44de894f1eb4db0ad9f986867905216": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7302,60 +7413,72 @@ "width": null } }, - "c07a9548b6234526a02e4a5ca84bc144": { - "model_module": "@jupyter-widgets/base", + "d4be07fa12674628ae93c0119edbf6e1": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d82285fcd9b84504a28fb9c9b1ad268f", + "placeholder": "​", + "style": "IPY_MODEL_edb2e6f6c0214dae8109a703bb56a3ba", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 5257.56 examples/s]" + } + }, + "d4c59b0bfa86424a8c95a71f890f5454": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f2b0f79e655c4494923cc58f73494551", + "IPY_MODEL_94beed83d4f34e37885835c7ee53b3e7", + "IPY_MODEL_25f2773590254b58b3ac4b1c0a886c35" + ], + "layout": "IPY_MODEL_d75e706d71cc4c7d8ec28bc9b0e5e02a", + "tabbable": null, + "tooltip": null + } + }, + "d72826ff906b4e3e81e8eb6291d1cc9a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c5cfb97d21914845a48cbeea88f4d542": { + "d75e706d71cc4c7d8ec28bc9b0e5e02a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7408,7 +7531,7 @@ "width": null } }, - "c71cb776520442f0baba7a63fdbf2324": { + "d82285fcd9b84504a28fb9c9b1ad268f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7461,30 +7584,7 @@ "width": null } }, - "c8467f56948a44689852152948675255": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5594cd23fb504b0dbdef0ecfe202453c", - "placeholder": "​", - "style": "IPY_MODEL_109113d68eb84c2eace6f4deda6b040b", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:01<00:00, 8360.91 examples/s]" - } - }, - "c87df7230ab74cf3b4ce36554b4f64b5": { + "d84b7a5330814c309bc2e3a29fd936ef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7537,7 +7637,7 @@ "width": null } }, - "c9c1491278bb49a0a831ab5dea82a8c5": { + "d89ee00461d14abe96f3f0cdcfa3da61": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7555,23 +7655,7 @@ "text_color": null } }, - "cb7c5ad137844450a4dd8bb2cd5b55d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ccb6f4531ee843d4ad0080744e6078d2": { + "d90986d0f1bb4e8ebf632742ca0c49a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7624,7 +7708,30 @@ "width": null } }, - "cf6f623149dc4d96afc8c831b7926d0a": { + "d9f443785177406fb3840783c441fddc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e186a328526e44f2abaeb0fbc2e6a273", + "placeholder": "​", + "style": "IPY_MODEL_d2775a5c6f9b4c439174c1b5f34446b5", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" + } + }, + "da9f7efe26b243e7bed64d6bd9746699": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7677,7 +7784,7 @@ "width": null } }, - "cfc5b02015154a29bae32de6ea0acd51": { + "dd1415dc221544d78c38cecb125e95de": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7730,7 +7837,7 @@ "width": null } }, - "d460961168ad48bf8a3a86fe06603769": { + "ddb1bbe42c9e442091cc9c4122b5de26": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7783,117 +7890,23 @@ "width": null } }, - "d5b89a2622784b2684e5d0e4a1d8e288": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d60f32b2907d4a288385a30c717ef39d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_126a880302694496ab5834d71ecffa75", - "IPY_MODEL_aeda1e802b974623a7d922ff793e1002", - "IPY_MODEL_c8467f56948a44689852152948675255" - ], - "layout": "IPY_MODEL_50042e9a2b5145a780c7c3d799e26aad", - "tabbable": null, - "tooltip": null - } - }, - "d627f7cbc1534c10a92cc7fd0f874ca6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d6465626e3264fa58f44ddccd18cfef2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3ddd27d196364f1db80581facbadf18f", - "IPY_MODEL_5695fa5956b04b45a058d58f6cb27b12", - "IPY_MODEL_ba30ea8e68274773937367758a4abf1b" - ], - "layout": "IPY_MODEL_6c4353aa625f407c8370f78a1dc830c8", - "tabbable": null, - "tooltip": null - } - }, - "d7462fe7497245929fb556be574c9b66": { + "ded2f3b115fb46e48b5699012c011fa5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3ec84e0ec4d94afd8f15a91eb757624e", - "max": 26421880.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6de62af38a2f43a9846f333eda1224f2", - "tabbable": null, - "tooltip": null, - "value": 26421880.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "d78ce21ee1fc44e8b680bda13d37d943": { + "e186a328526e44f2abaeb0fbc2e6a273": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7946,33 +7959,30 @@ "width": null } }, - "d844173c6e344ebcbb4c2988636ce3a8": { + "e1aad335fcff4496842cc4f52b05fb6a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_aa609ade2290479691002af80a845d3d", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_732da230ecd142e79d60e75c14f8749a", + "layout": "IPY_MODEL_a3af79b4c771458595c44a209a768d66", + "placeholder": "​", + "style": "IPY_MODEL_823bddadbc6644c283f25f9cc6a18fc8", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": "100%" } }, - "db1fd46972524542bbb7ec0eeef4b2ba": { + "e451b86b3b73462bb7d10f31b67e7f35": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7987,15 +7997,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2cb677caec644d3ab2a8b6a70208559e", + "layout": "IPY_MODEL_8a3f12d334d645c8a42ca8a0292075a9", "placeholder": "​", - "style": "IPY_MODEL_7662e69c3e7b45a1bc4d55996a7060cc", + "style": "IPY_MODEL_4a57dceefdc148afb5c7afa8adec5114", "tabbable": null, "tooltip": null, - "value": " 4/4 [00:00<00:00, 1226.49it/s]" + "value": "Generating test split: 100%" } }, - "dcea0f344da44aa4bd657710ee8edf49": { + "e57ec2490fdc4028b01834557f09baa2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8048,31 +8058,49 @@ "width": null } }, - "dcfb76cdced842fd810c0329fa0f1c7f": { + "e6e9051f4c2a49228c32a25f39a57f4c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ff86e317738e43de99250a83cfb7ad7f", - "IPY_MODEL_8224804dbbd04b29bd71274520c5718d", - "IPY_MODEL_5f29c5efd23943e1a08518f859506345" - ], - "layout": "IPY_MODEL_4a97191b1a1643199e46244e6611352a", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e57ec2490fdc4028b01834557f09baa2", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d15f06ef2c454254bee0f59957e49d4b", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 40.0 + } + }, + "e85e1e91a24f4199a9a4b3e9abe8696f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "ddea9d00c6b648c2ab8a73e6395f71ba": { + "eaa35cd4c5ae462181de3ad1ab98c2d1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8125,33 +8153,31 @@ "width": null } }, - "de7773b079344e19b9f86e5643e773ed": { + "ec86bd0afa46422aa85bf2778e427f2a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9fda0321906e4bb7a73fc697ca19c8e3", - "max": 8845.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5b07f8803c514642801639b40c1aa34b", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_831b82774fb644faa4c010b37968f99b", + "IPY_MODEL_e6e9051f4c2a49228c32a25f39a57f4c", + "IPY_MODEL_55923d8f76544ee5b5e53cb28dcbbcc5" + ], + "layout": "IPY_MODEL_0cae058fc562457bbb502b466cfdfcab", "tabbable": null, - "tooltip": null, - "value": 8845.0 + "tooltip": null } }, - "df8581440a0d42198080a4cd32ee9a4a": { + "ed5bd36e898a43dc9c5cb8e283abbead": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8204,7 +8230,7 @@ "width": null } }, - "e5fa84089fac429dba7a0f14fcadf7b8": { + "ed769dcb47ca423fb840b23690485ebe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8257,7 +8283,25 @@ "width": null } }, - "e7d291738cf84330bb7fbd4947e558a1": { + "edb2e6f6c0214dae8109a703bb56a3ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "edb3baaca40743c08801b6e9bff25752": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8272,56 +8316,57 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_df8581440a0d42198080a4cd32ee9a4a", + "layout": "IPY_MODEL_3598bd0162e44744bf0e88509c1fcc05", "placeholder": "​", - "style": "IPY_MODEL_4751ad8ff2014ae4aefb61464aa0b996", + "style": "IPY_MODEL_cf4a395a6d57451092b05d86340035d6", "tabbable": null, "tooltip": null, - "value": " 26.4M/26.4M [00:00<00:00, 105MB/s]" + "value": " 60000/60000 [00:36<00:00, 1626.06it/s]" } }, - "e7eedd97596a479c9a69c82d61e53877": { + "ee5d45a366aa46a4a7c3de67f844b7ba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d9f443785177406fb3840783c441fddc", + "IPY_MODEL_640d5d2692d64656a67cd09cee644495", + "IPY_MODEL_1ef3f8ae36734efb86b54939cb9711d4" + ], + "layout": "IPY_MODEL_c4fcca6ce699447399e56dfc004afddb", + "tabbable": null, + "tooltip": null } }, - "ee2470d66aed4014820acd898b666713": { + "f0b50dd1b20c48b6911a694433d48e05": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dcea0f344da44aa4bd657710ee8edf49", - "placeholder": "​", - "style": "IPY_MODEL_61b5f9d9099a4161a69f1c58aaa1f54e", - "tabbable": null, - "tooltip": null, - "value": " 4.83k/4.83k [00:00<00:00, 527kB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "ef22307e229c427e9f2c45041e108373": { + "f0fcd694fc07412a83769122e48dd5c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -8339,7 +8384,7 @@ "text_color": null } }, - "ef43f60fb2ce4517935a3a3d655e6e4c": { + "f1c238f4a14549229bdf80d577253ccf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8392,7 +8437,7 @@ "width": null } }, - "f035123f0a8341818f2529edc8258078": { + "f2b0f79e655c4494923cc58f73494551": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8407,15 +8452,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6d5821fefb5648caac6867e9f7a4c67b", + "layout": "IPY_MODEL_f8aafa4a992b42cf95a5ace2356676d6", "placeholder": "​", - "style": "IPY_MODEL_a145248aa276456f95640b1b4a24d4bf", + "style": "IPY_MODEL_d72826ff906b4e3e81e8eb6291d1cc9a", "tabbable": null, "tooltip": null, - "value": "100%" + "value": "Downloading builder script: 100%" + } + }, + "f4bfad9cd0da4d31a8d5c783407a73c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f15ed2b240814bb897b777075c726c92": { + "f8aafa4a992b42cf95a5ace2356676d6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8468,56 +8529,7 @@ "width": null } }, - "f247cc3e079b4ad2aa902a3150c5d9ec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8239b72ad4ca43fb92f0bc981abfd95b", - "placeholder": "​", - "style": "IPY_MODEL_fed701653a71451196013b62e55b30ef", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "f306b412103a4a999f13f32ecb0841fe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4367f895c508411fb72fbf123bfd2662", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_62c6658ea89d458aa1198b576f9eee56", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "f4f96f825f2043db8c6d5179d06cd01c": { + "f9978a29787547e3bc5e59bde742651c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8570,7 +8582,33 @@ "width": null } }, - "f679da4310d84ae0a1679faa5659f6c7": { + "fe1973b9b1fa4957b9894f465a0fe87c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_736ef5bce23e47429bfcb196fb8b85b3", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b3f80c6a23394b5dbcb460b9a19b34ff", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "ff08f8bfa09d42838688c6f725adb306": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8623,71 +8661,33 @@ "width": null } }, - "f68300c0882c4adca9ac2341e102684c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ac339d14f5334e5fbce36888ade893b6", - "placeholder": "​", - "style": "IPY_MODEL_424a8de7240d4c088b2b2dbadf1113ab", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 67.31it/s]" - } - }, - "fc671361cddb4f3e9903ef6aae4d3083": { + "ff2c7db5dbda44b8b24ca18490cb3473": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cf6f623149dc4d96afc8c831b7926d0a", - "placeholder": "​", - "style": "IPY_MODEL_a31c56a1f6f544c1846467d596dd7b15", + "layout": "IPY_MODEL_6ccb235983834c00ac32be1422c16641", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a955b675afa4453385243c0af21d7bb7", "tabbable": null, "tooltip": null, - "value": " 5.15k/5.15k [00:00<00:00, 866kB/s]" - } - }, - "fed701653a71451196013b62e55b30ef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 10000.0 } }, - "ff86e317738e43de99250a83cfb7ad7f": { + "fffb62594db04599b3628dceafda46f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8702,12 +8702,12 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8767f058e5b649bfb0c2d444b49f3f9d", + "layout": "IPY_MODEL_30c3b868ba4b46ea9bcdb05e1c6d5613", "placeholder": "​", - "style": "IPY_MODEL_01c1fefd1d1549a1ac3d1168746bc81e", + "style": "IPY_MODEL_46552aea691e492084a7278f7a059830", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": "Map (num_proc=4): 100%" } } }, diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index 452755a26..32831e810 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:46.317874Z", - "iopub.status.busy": "2024-07-01T15:05:46.317719Z", - "iopub.status.idle": "2024-07-01T15:05:47.417876Z", - "shell.execute_reply": "2024-07-01T15:05:47.417402Z" + "iopub.execute_input": "2024-07-02T12:04:27.356934Z", + "iopub.status.busy": "2024-07-02T12:04:27.356523Z", + "iopub.status.idle": "2024-07-02T12:04:28.474290Z", + "shell.execute_reply": "2024-07-02T12:04:28.473753Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7a801c5ee1e11be3732a7ea01725de8aca8d147d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@46226527e9d4c8f7ccdf91ff5dac4d6ee27e022b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:47.420276Z", - "iopub.status.busy": "2024-07-01T15:05:47.420000Z", - "iopub.status.idle": "2024-07-01T15:05:47.437670Z", - "shell.execute_reply": "2024-07-01T15:05:47.437224Z" + "iopub.execute_input": "2024-07-02T12:04:28.476781Z", + "iopub.status.busy": "2024-07-02T12:04:28.476419Z", + "iopub.status.idle": "2024-07-02T12:04:28.493512Z", + "shell.execute_reply": "2024-07-02T12:04:28.493079Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:47.439750Z", - "iopub.status.busy": "2024-07-01T15:05:47.439498Z", - "iopub.status.idle": "2024-07-01T15:05:47.478024Z", - "shell.execute_reply": "2024-07-01T15:05:47.477526Z" + "iopub.execute_input": "2024-07-02T12:04:28.495747Z", + "iopub.status.busy": "2024-07-02T12:04:28.495323Z", + "iopub.status.idle": "2024-07-02T12:04:28.552204Z", + "shell.execute_reply": "2024-07-02T12:04:28.551635Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:47.480262Z", - "iopub.status.busy": "2024-07-01T15:05:47.479916Z", - "iopub.status.idle": "2024-07-01T15:05:47.483182Z", - "shell.execute_reply": "2024-07-01T15:05:47.482737Z" + "iopub.execute_input": "2024-07-02T12:04:28.554311Z", + "iopub.status.busy": "2024-07-02T12:04:28.553993Z", + "iopub.status.idle": "2024-07-02T12:04:28.557548Z", + "shell.execute_reply": "2024-07-02T12:04:28.557017Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:47.485314Z", - "iopub.status.busy": "2024-07-01T15:05:47.484937Z", - "iopub.status.idle": "2024-07-01T15:05:47.492797Z", - "shell.execute_reply": "2024-07-01T15:05:47.492370Z" + "iopub.execute_input": "2024-07-02T12:04:28.559563Z", + "iopub.status.busy": "2024-07-02T12:04:28.559241Z", + "iopub.status.idle": "2024-07-02T12:04:28.566506Z", + "shell.execute_reply": "2024-07-02T12:04:28.566080Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:47.494826Z", - "iopub.status.busy": "2024-07-01T15:05:47.494542Z", - "iopub.status.idle": "2024-07-01T15:05:47.497119Z", - "shell.execute_reply": "2024-07-01T15:05:47.496587Z" + "iopub.execute_input": "2024-07-02T12:04:28.568485Z", + "iopub.status.busy": "2024-07-02T12:04:28.568190Z", + "iopub.status.idle": "2024-07-02T12:04:28.570814Z", + "shell.execute_reply": "2024-07-02T12:04:28.570270Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:47.499036Z", - "iopub.status.busy": "2024-07-01T15:05:47.498842Z", - "iopub.status.idle": "2024-07-01T15:05:50.430868Z", - "shell.execute_reply": "2024-07-01T15:05:50.430331Z" + "iopub.execute_input": "2024-07-02T12:04:28.572815Z", + "iopub.status.busy": "2024-07-02T12:04:28.572491Z", + "iopub.status.idle": "2024-07-02T12:04:31.525677Z", + "shell.execute_reply": "2024-07-02T12:04:31.525153Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:50.433520Z", - "iopub.status.busy": "2024-07-01T15:05:50.433131Z", - "iopub.status.idle": "2024-07-01T15:05:50.442780Z", - "shell.execute_reply": "2024-07-01T15:05:50.442322Z" + "iopub.execute_input": "2024-07-02T12:04:31.528465Z", + "iopub.status.busy": "2024-07-02T12:04:31.528045Z", + "iopub.status.idle": "2024-07-02T12:04:31.537314Z", + "shell.execute_reply": "2024-07-02T12:04:31.536783Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:50.444757Z", - "iopub.status.busy": "2024-07-01T15:05:50.444440Z", - "iopub.status.idle": "2024-07-01T15:05:52.320323Z", - "shell.execute_reply": "2024-07-01T15:05:52.319680Z" + "iopub.execute_input": "2024-07-02T12:04:31.539264Z", + "iopub.status.busy": "2024-07-02T12:04:31.539089Z", + "iopub.status.idle": "2024-07-02T12:04:33.395993Z", + "shell.execute_reply": "2024-07-02T12:04:33.395329Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:52.322868Z", - "iopub.status.busy": "2024-07-01T15:05:52.322271Z", - "iopub.status.idle": "2024-07-01T15:05:52.341011Z", - "shell.execute_reply": "2024-07-01T15:05:52.340483Z" + "iopub.execute_input": "2024-07-02T12:04:33.398417Z", + "iopub.status.busy": "2024-07-02T12:04:33.397878Z", + "iopub.status.idle": "2024-07-02T12:04:33.416211Z", + "shell.execute_reply": "2024-07-02T12:04:33.415751Z" }, "scrolled": true }, @@ -609,10 +609,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:52.343025Z", - "iopub.status.busy": "2024-07-01T15:05:52.342731Z", - "iopub.status.idle": "2024-07-01T15:05:52.350595Z", - "shell.execute_reply": "2024-07-01T15:05:52.350103Z" + "iopub.execute_input": "2024-07-02T12:04:33.418164Z", + "iopub.status.busy": "2024-07-02T12:04:33.417840Z", + "iopub.status.idle": "2024-07-02T12:04:33.425514Z", + "shell.execute_reply": "2024-07-02T12:04:33.425080Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:52.352704Z", - "iopub.status.busy": "2024-07-01T15:05:52.352276Z", - "iopub.status.idle": "2024-07-01T15:05:52.361059Z", - "shell.execute_reply": "2024-07-01T15:05:52.360522Z" + "iopub.execute_input": "2024-07-02T12:04:33.427421Z", + "iopub.status.busy": "2024-07-02T12:04:33.427245Z", + "iopub.status.idle": "2024-07-02T12:04:33.435924Z", + "shell.execute_reply": "2024-07-02T12:04:33.435472Z" } }, "outputs": [ @@ -848,10 +848,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:52.363255Z", - "iopub.status.busy": "2024-07-01T15:05:52.362931Z", - "iopub.status.idle": "2024-07-01T15:05:52.370565Z", - "shell.execute_reply": "2024-07-01T15:05:52.370092Z" + "iopub.execute_input": "2024-07-02T12:04:33.437900Z", + "iopub.status.busy": "2024-07-02T12:04:33.437577Z", + "iopub.status.idle": "2024-07-02T12:04:33.445125Z", + "shell.execute_reply": "2024-07-02T12:04:33.444685Z" } }, "outputs": [ @@ -965,10 +965,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:52.372696Z", - "iopub.status.busy": "2024-07-01T15:05:52.372359Z", - "iopub.status.idle": "2024-07-01T15:05:52.380928Z", - "shell.execute_reply": "2024-07-01T15:05:52.380440Z" + "iopub.execute_input": "2024-07-02T12:04:33.447029Z", + "iopub.status.busy": "2024-07-02T12:04:33.446852Z", + "iopub.status.idle": "2024-07-02T12:04:33.455323Z", + "shell.execute_reply": "2024-07-02T12:04:33.454897Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:52.382940Z", - "iopub.status.busy": "2024-07-01T15:05:52.382568Z", - "iopub.status.idle": "2024-07-01T15:05:52.389986Z", - "shell.execute_reply": "2024-07-01T15:05:52.389445Z" + "iopub.execute_input": "2024-07-02T12:04:33.457305Z", + "iopub.status.busy": "2024-07-02T12:04:33.457003Z", + "iopub.status.idle": "2024-07-02T12:04:33.464266Z", + "shell.execute_reply": "2024-07-02T12:04:33.463800Z" } }, "outputs": [ @@ -1197,10 +1197,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:52.392057Z", - "iopub.status.busy": "2024-07-01T15:05:52.391736Z", - "iopub.status.idle": "2024-07-01T15:05:52.398743Z", - "shell.execute_reply": "2024-07-01T15:05:52.398311Z" + "iopub.execute_input": "2024-07-02T12:04:33.466390Z", + "iopub.status.busy": "2024-07-02T12:04:33.465996Z", + "iopub.status.idle": "2024-07-02T12:04:33.473134Z", + "shell.execute_reply": "2024-07-02T12:04:33.472705Z" } }, "outputs": [ @@ -1300,10 +1300,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:52.400864Z", - "iopub.status.busy": "2024-07-01T15:05:52.400548Z", - "iopub.status.idle": "2024-07-01T15:05:52.408413Z", - "shell.execute_reply": "2024-07-01T15:05:52.407979Z" + "iopub.execute_input": "2024-07-02T12:04:33.475300Z", + "iopub.status.busy": "2024-07-02T12:04:33.474982Z", + "iopub.status.idle": "2024-07-02T12:04:33.482977Z", + "shell.execute_reply": "2024-07-02T12:04:33.482536Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index cc4207eec..2bf6c15a0 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -791,7 +791,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'cancel_transfer', 'getting_spare_card', 'change_pin', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'visa_or_mastercard', 'supported_cards_and_currencies', 'card_about_to_expire'}
+Classes: {'visa_or_mastercard', 'getting_spare_card', 'card_about_to_expire', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'cancel_transfer', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'change_pin', 'card_payment_fee_charged'}
 

Let’s view the i-th example in the dataset:

diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index 94ec2b5de..8395c410d 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:55.109624Z", - "iopub.status.busy": "2024-07-01T15:05:55.109456Z", - "iopub.status.idle": "2024-07-01T15:05:57.756143Z", - "shell.execute_reply": "2024-07-01T15:05:57.755510Z" + "iopub.execute_input": "2024-07-02T12:04:36.240740Z", + "iopub.status.busy": "2024-07-02T12:04:36.240404Z", + "iopub.status.idle": "2024-07-02T12:04:38.828958Z", + "shell.execute_reply": "2024-07-02T12:04:38.828416Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7a801c5ee1e11be3732a7ea01725de8aca8d147d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@46226527e9d4c8f7ccdf91ff5dac4d6ee27e022b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:57.758704Z", - "iopub.status.busy": "2024-07-01T15:05:57.758362Z", - "iopub.status.idle": "2024-07-01T15:05:57.761689Z", - "shell.execute_reply": "2024-07-01T15:05:57.761157Z" + "iopub.execute_input": "2024-07-02T12:04:38.831414Z", + "iopub.status.busy": "2024-07-02T12:04:38.831139Z", + "iopub.status.idle": "2024-07-02T12:04:38.834207Z", + "shell.execute_reply": "2024-07-02T12:04:38.833787Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:57.763881Z", - "iopub.status.busy": "2024-07-01T15:05:57.763378Z", - "iopub.status.idle": "2024-07-01T15:05:57.766675Z", - "shell.execute_reply": "2024-07-01T15:05:57.766123Z" + "iopub.execute_input": "2024-07-02T12:04:38.836176Z", + "iopub.status.busy": "2024-07-02T12:04:38.835855Z", + "iopub.status.idle": "2024-07-02T12:04:38.838727Z", + "shell.execute_reply": "2024-07-02T12:04:38.838306Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:57.768614Z", - "iopub.status.busy": "2024-07-01T15:05:57.768315Z", - "iopub.status.idle": "2024-07-01T15:05:57.808437Z", - "shell.execute_reply": "2024-07-01T15:05:57.807887Z" + "iopub.execute_input": "2024-07-02T12:04:38.840549Z", + "iopub.status.busy": "2024-07-02T12:04:38.840377Z", + "iopub.status.idle": "2024-07-02T12:04:38.923955Z", + "shell.execute_reply": "2024-07-02T12:04:38.923459Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:57.810722Z", - "iopub.status.busy": "2024-07-01T15:05:57.810309Z", - "iopub.status.idle": "2024-07-01T15:05:57.814281Z", - "shell.execute_reply": "2024-07-01T15:05:57.813706Z" + "iopub.execute_input": "2024-07-02T12:04:38.926011Z", + "iopub.status.busy": "2024-07-02T12:04:38.925614Z", + "iopub.status.idle": "2024-07-02T12:04:38.929422Z", + "shell.execute_reply": "2024-07-02T12:04:38.928857Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'cancel_transfer', 'getting_spare_card', 'change_pin', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'visa_or_mastercard', 'supported_cards_and_currencies', 'card_about_to_expire'}\n" + "Classes: {'visa_or_mastercard', 'getting_spare_card', 'card_about_to_expire', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'cancel_transfer', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'change_pin', 'card_payment_fee_charged'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:57.816292Z", - "iopub.status.busy": "2024-07-01T15:05:57.816001Z", - "iopub.status.idle": "2024-07-01T15:05:57.819153Z", - "shell.execute_reply": "2024-07-01T15:05:57.818607Z" + "iopub.execute_input": "2024-07-02T12:04:38.931544Z", + "iopub.status.busy": "2024-07-02T12:04:38.931095Z", + "iopub.status.idle": "2024-07-02T12:04:38.934251Z", + "shell.execute_reply": "2024-07-02T12:04:38.933726Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:05:57.821168Z", - "iopub.status.busy": "2024-07-01T15:05:57.820783Z", - "iopub.status.idle": "2024-07-01T15:06:01.454864Z", - "shell.execute_reply": "2024-07-01T15:06:01.454218Z" + "iopub.execute_input": "2024-07-02T12:04:38.936534Z", + "iopub.status.busy": "2024-07-02T12:04:38.936327Z", + "iopub.status.idle": "2024-07-02T12:04:42.537806Z", + "shell.execute_reply": "2024-07-02T12:04:42.537162Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:01.457576Z", - "iopub.status.busy": "2024-07-01T15:06:01.457191Z", - "iopub.status.idle": "2024-07-01T15:06:02.359759Z", - "shell.execute_reply": "2024-07-01T15:06:02.359194Z" + "iopub.execute_input": "2024-07-02T12:04:42.540458Z", + "iopub.status.busy": "2024-07-02T12:04:42.540268Z", + "iopub.status.idle": "2024-07-02T12:04:43.423626Z", + "shell.execute_reply": "2024-07-02T12:04:43.423064Z" }, "scrolled": true }, @@ -451,10 +451,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:02.362504Z", - "iopub.status.busy": "2024-07-01T15:06:02.362099Z", - "iopub.status.idle": "2024-07-01T15:06:02.365173Z", - "shell.execute_reply": "2024-07-01T15:06:02.364692Z" + "iopub.execute_input": "2024-07-02T12:04:43.426912Z", + "iopub.status.busy": "2024-07-02T12:04:43.426508Z", + "iopub.status.idle": "2024-07-02T12:04:43.429416Z", + "shell.execute_reply": "2024-07-02T12:04:43.428926Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:02.368303Z", - "iopub.status.busy": "2024-07-01T15:06:02.367393Z", - "iopub.status.idle": "2024-07-01T15:06:04.354878Z", - "shell.execute_reply": "2024-07-01T15:06:04.354255Z" + "iopub.execute_input": "2024-07-02T12:04:43.431781Z", + "iopub.status.busy": "2024-07-02T12:04:43.431407Z", + "iopub.status.idle": "2024-07-02T12:04:45.304891Z", + "shell.execute_reply": "2024-07-02T12:04:45.304275Z" }, "scrolled": true }, @@ -521,10 +521,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:04.359326Z", - "iopub.status.busy": "2024-07-01T15:06:04.358175Z", - "iopub.status.idle": "2024-07-01T15:06:04.383863Z", - "shell.execute_reply": "2024-07-01T15:06:04.383356Z" + "iopub.execute_input": "2024-07-02T12:04:45.309001Z", + "iopub.status.busy": "2024-07-02T12:04:45.307874Z", + "iopub.status.idle": "2024-07-02T12:04:45.333199Z", + "shell.execute_reply": "2024-07-02T12:04:45.332708Z" }, "scrolled": true }, @@ -654,10 +654,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:04.387331Z", - "iopub.status.busy": "2024-07-01T15:06:04.386438Z", - "iopub.status.idle": "2024-07-01T15:06:04.396138Z", - "shell.execute_reply": "2024-07-01T15:06:04.395755Z" + "iopub.execute_input": "2024-07-02T12:04:45.336771Z", + "iopub.status.busy": "2024-07-02T12:04:45.335844Z", + "iopub.status.idle": "2024-07-02T12:04:45.346004Z", + "shell.execute_reply": "2024-07-02T12:04:45.345452Z" }, "scrolled": true }, @@ -767,10 +767,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:04.398058Z", - "iopub.status.busy": "2024-07-01T15:06:04.397776Z", - "iopub.status.idle": "2024-07-01T15:06:04.401475Z", - "shell.execute_reply": "2024-07-01T15:06:04.401092Z" + "iopub.execute_input": "2024-07-02T12:04:45.348315Z", + "iopub.status.busy": "2024-07-02T12:04:45.347931Z", + "iopub.status.idle": "2024-07-02T12:04:45.352195Z", + "shell.execute_reply": "2024-07-02T12:04:45.351669Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:04.403322Z", - "iopub.status.busy": "2024-07-01T15:06:04.403036Z", - "iopub.status.idle": "2024-07-01T15:06:04.408720Z", - "shell.execute_reply": "2024-07-01T15:06:04.408332Z" + "iopub.execute_input": "2024-07-02T12:04:45.354318Z", + "iopub.status.busy": "2024-07-02T12:04:45.354009Z", + "iopub.status.idle": "2024-07-02T12:04:45.360212Z", + "shell.execute_reply": "2024-07-02T12:04:45.359737Z" } }, "outputs": [ @@ -928,10 +928,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:04.410591Z", - "iopub.status.busy": "2024-07-01T15:06:04.410423Z", - "iopub.status.idle": "2024-07-01T15:06:04.416683Z", - "shell.execute_reply": "2024-07-01T15:06:04.416154Z" + "iopub.execute_input": "2024-07-02T12:04:45.362212Z", + "iopub.status.busy": "2024-07-02T12:04:45.361899Z", + "iopub.status.idle": "2024-07-02T12:04:45.368332Z", + "shell.execute_reply": "2024-07-02T12:04:45.367912Z" } }, "outputs": [ @@ -1014,10 +1014,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:04.418724Z", - "iopub.status.busy": "2024-07-01T15:06:04.418385Z", - "iopub.status.idle": "2024-07-01T15:06:04.424043Z", - "shell.execute_reply": "2024-07-01T15:06:04.423521Z" + "iopub.execute_input": "2024-07-02T12:04:45.370347Z", + "iopub.status.busy": "2024-07-02T12:04:45.370035Z", + "iopub.status.idle": "2024-07-02T12:04:45.375916Z", + "shell.execute_reply": "2024-07-02T12:04:45.375352Z" } }, "outputs": [ @@ -1125,10 +1125,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:04.426089Z", - "iopub.status.busy": "2024-07-01T15:06:04.425788Z", - "iopub.status.idle": "2024-07-01T15:06:04.434068Z", - "shell.execute_reply": "2024-07-01T15:06:04.433526Z" + "iopub.execute_input": "2024-07-02T12:04:45.377933Z", + "iopub.status.busy": "2024-07-02T12:04:45.377533Z", + "iopub.status.idle": "2024-07-02T12:04:45.386285Z", + "shell.execute_reply": "2024-07-02T12:04:45.385744Z" } }, "outputs": [ @@ -1239,10 +1239,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:04.435974Z", - "iopub.status.busy": "2024-07-01T15:06:04.435800Z", - "iopub.status.idle": "2024-07-01T15:06:04.441070Z", - "shell.execute_reply": "2024-07-01T15:06:04.440586Z" + "iopub.execute_input": "2024-07-02T12:04:45.388235Z", + "iopub.status.busy": "2024-07-02T12:04:45.387909Z", + "iopub.status.idle": "2024-07-02T12:04:45.393341Z", + "shell.execute_reply": "2024-07-02T12:04:45.392791Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:04.443100Z", - "iopub.status.busy": "2024-07-01T15:06:04.442719Z", - "iopub.status.idle": "2024-07-01T15:06:04.447928Z", - "shell.execute_reply": "2024-07-01T15:06:04.447468Z" + "iopub.execute_input": "2024-07-02T12:04:45.395404Z", + "iopub.status.busy": "2024-07-02T12:04:45.395057Z", + "iopub.status.idle": "2024-07-02T12:04:45.400341Z", + "shell.execute_reply": "2024-07-02T12:04:45.399863Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:04.450005Z", - "iopub.status.busy": "2024-07-01T15:06:04.449608Z", - "iopub.status.idle": "2024-07-01T15:06:04.453217Z", - "shell.execute_reply": "2024-07-01T15:06:04.452674Z" + "iopub.execute_input": "2024-07-02T12:04:45.402359Z", + "iopub.status.busy": "2024-07-02T12:04:45.402038Z", + "iopub.status.idle": "2024-07-02T12:04:45.405437Z", + "shell.execute_reply": "2024-07-02T12:04:45.405020Z" } }, "outputs": [ @@ -1443,10 +1443,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:06:04.455383Z", - "iopub.status.busy": "2024-07-01T15:06:04.455056Z", - "iopub.status.idle": "2024-07-01T15:06:04.460142Z", - "shell.execute_reply": "2024-07-01T15:06:04.459596Z" + "iopub.execute_input": "2024-07-02T12:04:45.407623Z", + "iopub.status.busy": "2024-07-02T12:04:45.407307Z", + "iopub.status.idle": "2024-07-02T12:04:45.412091Z", + "shell.execute_reply": "2024-07-02T12:04:45.411668Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/workflows.html b/master/tutorials/datalab/workflows.html index 4720c4579..cef347d5d 100644 --- a/master/tutorials/datalab/workflows.html +++ b/master/tutorials/datalab/workflows.html @@ -833,7 +833,7 @@

4. Identify Data Issues Using Datalab @@ -879,13 +879,13 @@

4. Identify Data Issues Using Datalab - +
- - - - - - - - - + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
@@ -3473,14 +3473,36 @@

3. (Optional) Visualize class imbalance issues -

Find Spurious Correlation between Vision Dataset features and class labels#

-

In this section, we demonstrate how to identify spurious correlations in a vision dataset using the cleanlab library. Spurious correlations are unintended associations in the data that do not reflect the true underlying relationships, potentially leading to misleading model predictions and poor generalization.

-

We will utilize the Datalab class from cleanlab with the image_key attribute to pinpoint vision-specific issues such as dark_score, blurry_score, odd_aspect_ratio_score, and more in the dataset. By analyzing these correlations, we can understand their impact on model performance and take steps to enhance the robustness and reliability of our machine learning models.

-
-

1. Load the dataset#

-

We will demonstrate this workflow using the CIFAR-10 dataset by selecting 100 images from two random classes. To illustrate the impact of spurious correlations between image features and class labels, we will showcase how altering all images of a class, such as darkening them, significantly reduces the dark_score. This demonstrates the strong correlation detection of darkness within the dataset.

-

Similarly, we can observe significant reductions in blurry_score and odd_aspect_ratio_score when one of the classes contains images with corresponding characteristics such as blurriness or an unusual aspect ratio between width and height.

+
+

Identify Spurious Correlations in Image Datasets#

+

This section demonstrates how to detect spurious correlations in image datasets by measuring how strongly individual image properties correlate with class labels. These correlations could lead to unreliable model predictions and poor generalization.

+

By providing an image_key argument, we can analyze image-specific attributes such as:

+
    +
  • Darkness

  • +
  • Blurriness

  • +
  • Aspect ratio anomalies

  • +
  • More image-specific features from CleanVision

  • +
+

This analysis helps us identify unintended biases in our datasets and guides steps to enhance the robustness and reliability of our machine learning models.

+
+

1. Load the Dataset#

+

We’ll use a subset of the CIFAR-10 dataset for this demonstration, selecting 100 images from two random classes. To illustrate spurious correlations:

+
    +
  • We’ll artificially introduce a bias by altering all images of one class (e.g., darkening them).

  • +
  • The correlation scores range from 0 to 1, where:

    +
      +
    • Scores close to 0 indicate a strong correlation between an image property and class labels, suggesting a likely spurious correlation.

    • +
    • Scores close to 1 suggest little to no correlation between the property and class labels.

    • +
    +
  • +
  • By introducing this bias, we expect to see:

    +
      +
    • A decrease in the dark_score for the darkened class, indicating an increased correlation between darkness and that class label.

    • +
    • Similar effects can be observed with blurry_score or odd_aspect_ratio_score by introducing corresponding characteristics to one class.

    • +
    +
  • +
+

This setup allows us to demonstrate how Datalab detects strong correlations between image features and class labels.

@@ -3802,8 +3824,8 @@

Vision-specific property scores in the original dataset
-
-

Vision-specific property scores in the transformed dataset#

+
+

Image-specific property scores in the transformed dataset#

@@ -3874,7 +3896,7 @@

Vision-specific property scores in the transformed dataset -{"state": {"5daa3a2aa6bb4c9f84ea2674afd64ead": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fc145740c00f4075a0ddec1338af6a17": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "bd44e36d29ce400580eb9c39706e9764": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5daa3a2aa6bb4c9f84ea2674afd64ead", "max": 200.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_fc145740c00f4075a0ddec1338af6a17", "tabbable": null, "tooltip": null, "value": 200.0}}, "ef85a24fdc2e4cf783b12b95dc654a54": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7d1e93d6b2384e198a1aab9f26b5c1fa": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b80a9a6f3cc8460ba1eacd1eebdd1695": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ef85a24fdc2e4cf783b12b95dc654a54", "placeholder": "\u200b", "style": "IPY_MODEL_7d1e93d6b2384e198a1aab9f26b5c1fa", "tabbable": null, "tooltip": null, "value": "100%"}}, "981dd7e875cd448284efead3ec98c9ab": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5c30ade94053466c8c64d7b0abffbc55": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6681d426ed2e406a80e7d1e331ba04a8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_981dd7e875cd448284efead3ec98c9ab", "placeholder": "\u200b", "style": "IPY_MODEL_5c30ade94053466c8c64d7b0abffbc55", "tabbable": null, "tooltip": null, "value": "\u2007200/200\u2007[00:00<00:00,\u2007784.17it/s]"}}, "11db28fa3e49460cb17bc5b1cbe02474": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1fa7dd59335f4faa818bcf4e966c7c70": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b80a9a6f3cc8460ba1eacd1eebdd1695", "IPY_MODEL_bd44e36d29ce400580eb9c39706e9764", "IPY_MODEL_6681d426ed2e406a80e7d1e331ba04a8"], "layout": "IPY_MODEL_11db28fa3e49460cb17bc5b1cbe02474", "tabbable": null, "tooltip": null}}, "277e9c9f4f2942e8ba4a67175d4da165": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a1e2e6018ec643d38a6a7f43c30c3d0b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5fe8b6850a5246f4896ff6995970d3c4": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_277e9c9f4f2942e8ba4a67175d4da165", "max": 200.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a1e2e6018ec643d38a6a7f43c30c3d0b", "tabbable": null, "tooltip": null, "value": 200.0}}, "2b75c32350ca4a21bcc6c23534605260": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7055ef739a1f4669a5783ae634c9e715": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6cc234a88c8e4669af66844757fac7f7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2b75c32350ca4a21bcc6c23534605260", "placeholder": "\u200b", "style": "IPY_MODEL_7055ef739a1f4669a5783ae634c9e715", "tabbable": null, "tooltip": null, "value": "100%"}}, "0e8630e122434af98c6e33cb01b60aa5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f812040db2d642d08a03d0f598afe058": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7df90a685b4747759b5a5df590246cc1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0e8630e122434af98c6e33cb01b60aa5", "placeholder": "\u200b", "style": "IPY_MODEL_f812040db2d642d08a03d0f598afe058", "tabbable": null, "tooltip": null, "value": "\u2007200/200\u2007[00:00<00:00,\u2007847.08it/s]"}}, "ba235d6a06cb4c11a73df384a365fbe8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bc30a28b7d6044ff9e4159420fbd7a37": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6cc234a88c8e4669af66844757fac7f7", "IPY_MODEL_5fe8b6850a5246f4896ff6995970d3c4", "IPY_MODEL_7df90a685b4747759b5a5df590246cc1"], "layout": "IPY_MODEL_ba235d6a06cb4c11a73df384a365fbe8", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"302d670260304f5d973a1863227c2b38": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2ce33b586399430db7231ec582a8ad1c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ccd3930d3b25423fb8d520dc87205752": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_302d670260304f5d973a1863227c2b38", "max": 200.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2ce33b586399430db7231ec582a8ad1c", "tabbable": null, "tooltip": null, "value": 200.0}}, "57d53163a3e24cfb8adf32a3c2859334": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d6c64d036d3c464bba338c11b7d7e118": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "37657cc47549425e81123fbc00061dcd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_57d53163a3e24cfb8adf32a3c2859334", "placeholder": "\u200b", "style": "IPY_MODEL_d6c64d036d3c464bba338c11b7d7e118", "tabbable": null, "tooltip": null, "value": "100%"}}, "d6941ea7ad6a41efb80f48dde9923682": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a55c5a0d7aca4c16a982994a5595ca08": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6bdd7248294f4094a2da7c7af2e67e50": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d6941ea7ad6a41efb80f48dde9923682", "placeholder": "\u200b", "style": "IPY_MODEL_a55c5a0d7aca4c16a982994a5595ca08", "tabbable": null, "tooltip": null, "value": "\u2007200/200\u2007[00:00<00:00,\u2007811.85it/s]"}}, "440b53038a3d4c4c964a83e8b710361f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ab730d681373436cbffc495350a9abe1": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_37657cc47549425e81123fbc00061dcd", "IPY_MODEL_ccd3930d3b25423fb8d520dc87205752", "IPY_MODEL_6bdd7248294f4094a2da7c7af2e67e50"], "layout": "IPY_MODEL_440b53038a3d4c4c964a83e8b710361f", "tabbable": null, "tooltip": null}}, "797a5104afa24ca5b172ddc308a704ec": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "34fad403248e49fb9d7ed5541db4875e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e621caf6c19d4d638ba32cd7caed9a15": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_797a5104afa24ca5b172ddc308a704ec", "max": 200.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_34fad403248e49fb9d7ed5541db4875e", "tabbable": null, "tooltip": null, "value": 200.0}}, "1245fefd15c748ca9a6c437e90990634": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4c9fcf59ee52451aad0a525849ecf86b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3f75258f70194866856b4da554e4dbeb": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1245fefd15c748ca9a6c437e90990634", "placeholder": "\u200b", "style": "IPY_MODEL_4c9fcf59ee52451aad0a525849ecf86b", "tabbable": null, "tooltip": null, "value": "100%"}}, "5fccbfa0a7a94b55a6825fc52ecdeee3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9d67c6a8b80b4718975da970d5ba6be1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "06e95a0f1df9408095248eef0924c604": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5fccbfa0a7a94b55a6825fc52ecdeee3", "placeholder": "\u200b", "style": "IPY_MODEL_9d67c6a8b80b4718975da970d5ba6be1", "tabbable": null, "tooltip": null, "value": "\u2007200/200\u2007[00:00<00:00,\u2007725.51it/s]"}}, "22612fb7095f4323876a32fa6832ebee": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e44decacc70f4d08b59475e297136aab": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3f75258f70194866856b4da554e4dbeb", "IPY_MODEL_e621caf6c19d4d638ba32cd7caed9a15", "IPY_MODEL_06e95a0f1df9408095248eef0924c604"], "layout": "IPY_MODEL_22612fb7095f4323876a32fa6832ebee", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0}

@@ -4008,9 +4030,9 @@

Vision-specific property scores in the transformed dataset3. (Optional) Visualize class imbalance issues -
  • Find Spurious Correlation between Vision Dataset features and class labels
  • z-|2amUCFfh`yDfFhDxdO+Jos7IiqefGpQ_TP?LF5nd0O!ZmXGxikp3l4hvD-gSwEq zOwDFoh1dC#<^$9r;>z6rLw^z7#ou4Gs%X>j8hj#=I!k(UT#Bi4=CIy6ZB1mGjH|GV z^|`-eKEv5D85rHw*kn`}qb?HP9?@WQNu%%*kQdkIt}5yVjIGVNty718R-qPW`)6|i zex(coUX~b}uGfaI{zSn`>@gaN>6JVSyK_(;eQ-mz?KP_C7AvkoERz-Me&-!ePGgSi*SQh?;$DuI=SApWF;^%zs*HmFD z*rcqr$W5mobtbYkb`UlQPL?>;RACM+wA*R-w*^J8ld<(b3#I(yLf_SfiiAJ`7F*Sa z{c^=k<&ZT-ja9+Jg~GNeq1^TCxB{Zepj^I-K9cu;6R#9jeO%vX4QMhzdF|101!%F( z3{LzIxKq2v*q~2VZeI*#WIM#=KobIGKVGwO!I=#FIaqz-T8OJbUvb8_E%0IQEZvGc zDp?PTD#5a=Q|71^!&@vKcp+(Y1JYmFEsFm7u6thbaeZ)R534AIGH{g zO!nFEih$ybYn&N}aI9@>!yLNniu|>lQ|AtBO)#ch?3I3>N(noCGSP7Z^{X+0@Js>g z;AFU33lv!Y`Y#buns99zxU~M#{dS_cS)_yI^m6%_p!3`m|X-QdO8f+byAX%qG6mH^c8*L}8 z)BoB=>1k5bd&S2PC13T>T_@BXVe)S=+T?yG*<@U$U!`#WgG!ua<7&W5f@-X*foIM* zV+1GmEnodO=QHBegoIl#ak}lMeaZSPJmh%;-*{$SG~To(?|Y!A@b`#@;_K-J_{YCg z<1CF!;*5vI2*vn?;J1XOI9VQ-oXk0xl=C{?`t?^RuE-ibr|hi(SsS;UOh&kkOdyTr z6f=h=`r?W5T2xVHsq`bw#L7wGl*6JwT1yl_#lzPEXw4C{ zZB12XFqV;XftQ{lF-yAKyf(1&IZ>8#BVu(9@?3N$yyNN}>23DQV~Y#7Q!#q}1fh7g|M6X1$u<7m#&EVGPR zxkYJ-rsJ$Bu{X2yo49@8iW<8tz`-wp;EKlMtj+Vd6%9`Jw%>+T$x^^~9r@{{SQ;gL z_m~L?!+r)Kb~?o@vwZ4*)CQIPX+~+e)GvG;fQSpqm=)ycZ{nTWM=FPbH$Oww8d22} zJ1Px=mP;4PI`Gi4kt%l9{Tk_JoU0;;OA6tabBf{*OGzF~+=+?fn~Iovr_OfMqz_ z$0bQl^JZ|2^EQ$myXS_qia&Bvvd>`+nX0DK(G_96$4~Q46#fg;4OAOL0`e2rf-DHo zYsD+4TBpY`&3Dm3#?Pdm#D|_Y^a_63HPE;2mSWtvV-n*SKCj=-%cyIXX||IAjIFD# zboVr?q)z(6R}L_)tf(=1ePF-Dy>Kw^*kLh0I=vCWyyxGJtlw}q~&X|NH9ZQj0J zQPf>Ero}xfGU@SUGe*Ux`>&>Q1#gYy!u1JaKH8Vlo!R zwC~l(*HHU=3@53tl9pmb9ch-{Gp<&)ns4+MeS@SU?mDV-J;R=NbZzbn{7fDWMAdHC z39ifjEbSR_&5&Co^5fsfmGj4EjaZiBv>=?Pb#W)rbGWxtmPfR+W$s9;-$=;WCJYO-dR_y z`GOvUeL`8iSw9vW-{y29)r`3no(80p_1K%lJT9q}9fi*4TdVr}kHK!PDD}KnRI2ev z+xo#)Cwze|?Um14^o#>8t1DD#;yqDrn69p<&9Jx3m1advz~9jGceZ`qUY{S^y7+ya zT^}5Uot_hMki4qTBE2q!m%Lkc`MVZAUzNtKs1F`Coz?swLLwap#JRe{*=I}pyktgA zRX-`#Wb7-dO5;>u$bf3~@f#?0a!npmkJ5`Z+04a-WBVpf0EbQpR&JO>@JT_WcTeym z`Uxtb_#7Ww?UXu2On6vxg;b?;V!pJ*42?_oJP@v>+E)D|@`nLk8PobNop53n#-cMT zZ#yMt1qHSow90=$U@qfIh)@>tOZ$*f4p|9j$|ePDIdnD2br<%?6w4UqMaTV@S?G)b zt}p}m#4G44uSjcQ&O9Zlv#G9~oDx>22z~Qs%ttNDF*^0Mf>#axA$`WgIc5t<_i6YR z5bQzIYMN2Epz?c_uYa&`sm#<2|KLo}W`MCYh`_ICTH%73f7D2?=yHD0qx^^kdWr_ibgoQ0 zFXvy6Ysgq|dx&{;`s+IKsYvIHWmn>;UtP02%0Fo&=RL*oK7qQ7_cO9~x@LFpryn-h zFP14Vo^RI-T!yT1g2EGau=s5_;a`+_A@qp4J_LUt19{~NRGYe$dWv`M};F!BMB|=$D&Z4@e4u*b-Yz+mn1UP zQ*Br>v~V)iq=sK_Ya8TuZ?91o{f({PbWeOHv_sC&yq%OIvykb< zFuF{qd~3L^^B;|Xg>tKkD!*@gb2-p&jmWI(tA5rYzk*+LdUqmF)5;9%yK?wj%HY$D zVU%<1HV>t+usHKmrVIiPTUaSVla~EV@{eM=zyj;fdvCoFQ_Xv{7`KRxQm}YURD{kO zl;|j_UcyE$I2Ag?S!%4}MMdnWf&%~DXEAM|E64=bxo1Xl3jQmmsk#@%;az4;q{ZVX z=da?JnQSJ8cT%SABLJ;Q6Y*I>bd7N4hcBe>RwhAkDf@o$KiXw|0w1SzRCL^3THK%6N$f*VN}12%s?SbbE;k@%u1xUxnk2A<<-A#cUGu%+Xs^T zfWH$I#&z#_982>`ZgG-ym!e&^#7m?9K9;Nr?UFMLTUWhcrK+Vr;&6|tzg8*a#Zc#N zoy{UGCP)3C0Aqnu-6lCJ7s#O3wSMLb!L>@WcaLbfYdEe}T+X-Z7*Ep*ZZP5uJ6EY# zP2=m;YRcn|QS)rNU4G1y=R4VA#j1*w2Z_%SWF5{Zn6>#!}6t! z!eFz7*7s@x@EY1WlfcE3KWE$?C&i^oLC-xfI+CWH)-9~$UfRU~d^qH>BnLP}b*~_{ zzG%hadpi_TL>vkjt{VUEXinLqRs(G)TZp!)W7BQB){W7xxs~0JOReR(l$Oguw=9!A z9*U7g^|>6+q?7)c54AgkgrV~OTNY=`b1Y@DKIs0O%j^)-bT1b)8dp7JKc63(Epe!- zJjoM*7s(xL>h{yNM;FfOZ>pbqyinH%91b4+yS)9hw73`+3)(JkLDVVQ=@W1y*f{n8 zF8>Y}kdgFW8#Dtdi~sw9LE}D#9MV(nwb7KkScd9(ny_=bnu;F`5}+H)&aqHPBGO(r zW*JpYql&nIIt=U6T1HE>u9r(R zCCH6$-_^8Hs8y!Ej+?02%J0&^LYYH_?WM>t1Kesz=Nu{js@mti1kwE0iSpe31A?vDUX% z@e+!Rnm;Q7cG>7ph2SH-#Apb6yimg3qijT{$eok0SJl04bm|}7VGF(rLzpFRZ3?|F zy@VqcO0`}GB-C;}2X!W4f?t57d?2EBJgptp`6#h^QR@U$mIA1oOwSIXajQQn)`^6f zNqv1F|C&TD$v>Zhmgj;$*i`Ct9LzG-anbL&z#CsUtv99mJhr4dw9wA1CcS{|069W6 zV5dB#;LgM9{)nP2`Z!WlUKpKLfN$mB8PKr9|u}Z$z6_xyAdvl$n(?CUiPH*sRWj2a*e4f*)FMOg?H*+$KchJ2uA@?}roTV;{9 zM!U(I)N0zP7{lliJ?oXcrZBAv(7I1hUI$)67Z3V!xX$Tuo>&PMtkUGGKUrweHTj4g zM@rpBQ*L1gH7`Pt{|Mz&5dfSewXS&c6lYQwTcb?fUoVMv__X!qG#wHAhV(_doR9hi zmtxJl>wZ3$p=Xn*Da;k=@1Z)CP59bbO(;v@%Mq$a9EO}eG#rWC!LDtGM_t>8c_DMS z0`<+X>KDW*riyf$VJTz4@!-**=WT1v!cgADYqqf5@+xy$Yz$qX7c6tnqRglXp*<|o zhE8wSw*i%$r7A_132)`JP{4i9Dl*Q)zH{tJbq(g&OM?(bU% zOM>T;L4I!xHZ!6lKTelhD3-WdV9=uc$WAwZISCu|_rgd}|N+ z0M1=mRq*5!hKKyKoN1p>@jMzv)Z{*J%J;oD%>yMLXmOW5rNWi5v6W>_6w$$k|6|7N zB{7)4r;>}xxXaRT2e)|df``v|c)S&_7MIxCP<)L{dJNO0?J|6uwk}K-xws9>Y~QHz z)`si~woPmD3KPk#{f|G=sDC{7%LQNB(SR|eRCzJnR}&Q9-~>$jYIE1q&CUg1udZeM zk(q|7X#0}UesG;bMJ~|iBToTMX}(?EYSyz8;0+bNoH5x_zBz)=al!IXA&iY z9lOlzp_#o`!tF*8tET)z_IYkWgmr3!?^i;>Cum&ra~s5BOw#@M&9qScgnp%aLI3Sm z)s)jvr{;U^m?g>O%1puMN~~zP--eC32yI-34ssp>x0u1Wh#APG9EK%3w?b)0kpLE; zM8ww_)euhRB)vSA_%2%B_G41S0-SdUF8dmYM?~EvbxRkM%i_cbKV}POC3QMOtyOF}E zX?Q7r_e$zh4pv;N?yrzTR2!9IvPoQ#7gF@Fc?TmTZErNCZkFI7ZdH^Iba+|sXa#Sm z;+1A=^DJCa%5CSADZqT%@E-Zg_>|6(+7qw1>Bq9Zw7%+>m>GLrWrS6E zWoc=hZAz+Swy7s(nrHrXg5=q%G*+U%OFZcl8Ld<*bQwjV_&$841TslVP@$cmF)mKz zZgi46a`Qx;=M~xRdcsHTtW!`beC_iH#Q^H@9bmhf==T*%?Dd}r^sKuCq>~FKEwo#h zrv1dRZG(Z?WgMUM$WSY^c+^Ib4c*|hyW54c>q?UUh!{rL8a=69it$Z)KfLxRn}G26 zVAdDL({(zrR>GC0S%UHsVup4wyco3T;V~mF_(clOom?VS8>D_!FdQlif1U2Wd;_mj zy2^Rqk_Gfye$$2T8CQzPa@BkyO}&@P_GB&bgF(H-UVv5Gn7Rj^^JTu)dTdgdI(&TR23m*a&`P~{I&hxw>=&UMB_ee`{R=+U@1 zf9!2tTvYr>X7+Wg;BV_~f&8xHnlZ)BxU4=-v(Y*_I{lEFwkRC>2CJI>k_ zFRT$)7JlQqZV9p&yIEzsYXS}}J%8&CbI`6J#e8dQM&*i`?c{7P5i`(OeaYq*upF>j zr7AM;;eyi6v5wN6{M?=Bzv5F^mw1Exw&WL^;-gR8mGVi@WInJ6$jDM^s-?i~G}D}4 z$l(F$3}5bzB`>ibSgO6yKYg%Vf&BjgkU($0T_b3eRabF*r$j7nsG$ac?w*L==@*fv zzXhYR;2p4&wexIaAK}Wy( zJ2ix7^;ZT^Ev*vfLzcmX^4&&DvzCf#*L+lmk~GS?;7MB$4rY}_wJf9NyZT5u(brI1 zC(sUfxHnc&Ada<4Nbk&+2uE=SXC_z4a(Y6vwAU268#c3BE&804n+Sc0NugD>OX1Qg ziZCiMoJCFJ=>Vl)yDG>x7m&}oq2J7AX@+J-=G+Pe0zMCB16{tLl~(8Y)t9f zJllA;8_u5W$1*jh36XbupyD2>9ldjF69Lzh(6?;}2$?8hrhGuztk&rwo0A$?XmEla zrn5DT38da^4L_*(2(%pa2H>wTPLlehKapOGvK4jUZSY{oVUSS`>{pJRHLk+B9P@nEiZ|R1_C#gLMAf9I$@h&n%-FP zB;lmwGM?&1O|{TC3#p{R_+dv`F;mH_Ecv5CPKEEWR4!?vLP9z|={0$=PV>*yHNwc= zJCk$ODQv0>yf)!fjSfS_awft9|3~7Y7Gx1TkA5! zSFgB{M%4n|pamZGS_r(Ri&#kOXo=C~rc%g4<}cBcD}nz<^b|~%FcFnLvIy~}h_tN4 z-uvtGQ!8d7d6nT!wO*&lhc7PhnwsheutSt8C!v)b&{se*V)quri7#V z4sI<#33a8$*$nL!@Wc?~ul&hM(;bNR^E7XX)rA5)@iaZ*4Tk%i7Y|rd91{e65=WY5 zc}AZfW+};iXxc;2Cvl`HOC~Pd@%B=$5)?Bsr&_ao^ZxYZ{B;Rzb!3);<5^0ZKwA3s zdFvE*r&kJ3rM5RbJ!#lSF(XsZdT?@R%jv49!csav5JIBIck39JCHhj1%sc&(?A=EG zX`JJ;`hy1RmSz}Z>K<>W7`viDzZv25jD4ZXur5Bt_W>0#o|cdmV;6AY&k;s#Yi7Tk zuwUqZKNql(U(g>^0SEZ~4FCO=@q0)4DVB2}`pG&eU5ih7YLs=M2JArWVzPF}&b1L( z>yx<9jla9;T(O$3W_gDy(W7FqFU2@_BPth4Vt;KC>$gelv`yk_yN!z{_lj}8n&s_O z!sw5Rgc@eGq!-~7L>e~vx6DUF{t{8l*qacUX$d2AyeyMP6p<1|MmI0V?*HlNIKo_? z#I=4A$}rk4Qsh<97R7?rT=i}eO{GUWb@d*FFeUV(vFj>V!?NaJZj5dGdtLzN$Gk+* zSm;t$bs1;P^5bglO%|qYcY@J)yAz)9Z0_uQ#|PZ0Icb!ZPE!LT_Y`QaVr0cn>f+0M zyM;RjZNUWNYJ7B`6x@jb4tV%9oKRwe;AMgupbk`&UE^4Izv9YhHo^@a8kBI zM*r4CRB08wG<~PoYHksvwZgTa^=zKKsVgE&@X=GnUaU1HhC5cewp8y$jL6Dj+F%;p zXL2`qg0i36zFSC7glBD;uv^ALxDlpyV#8EmWH?Gl?FN5oVX1T;T2}J`BL!jYp=}w= zYblG-&YjKl#yUk-dUjMFe1OElR+>P)zLPJ0heTs5RFZ#`Jdq&^xdSr7zpdqdAzgQ4 zOe7N&eG)~DM<=yWErw>OJ))_JX@G!b((C=Eg!7F36gEHU1MjoYkz`^*k(ZavBZHhr z+7K-Q`6;RrMT>Zq=F4c2e;J=PhD9<*G9`4WKdhY7Jbyr|Icy+DvmthA3;a3W&0&Q; zjv1K?%{6@|bJeFkB|SP9%JYR0dmY%1+7bwD3Ky#G@;nuq4t0={?eIgg<{A$pnG!1L z-}k7b82ZYpv7MTecuZGk!mCMGdgQ&B@EF8M4b`Ok8bx^ZafZe+2xm^}&KC4c0DIJ0Fu7u` zGF!_ig1chm)@nE};92Vh^k9~%KUsaj9xXKhXhZDIBK!w_6;*pq)-=ZunlYt2L+sML zephyev1JI&n9_?O_9i&&-y9N5OL}*vc}y^@0RH8xd$jyD%Bre2emG%V^oDld3!Hp? zVdBvR={p4VmpMG5qS76uFAdb+-d5%9`a<5#hKd+VIC6hLQ_Ajzfze`C(vBXvFp#-_ zbV8x9x%@6=SC)HB=Dp?G=z9{Q&qxfv9x)NS91Kxd^4(LkhI5bcax;2ZaY$B8<~GD?nsx(A^?AJm(AkrylC z#4GI54M{CwFjYV%Re#VO3DOP6~f8@H~fKu4|r(_@jZqC~&KC(HlOX*JW(vzyChH|AVb!h00d@A!ISwm~u+-y~T5nzm|TJ%+%JPQvuap z$^PngcRessySLue9F447+EOsF?f4`UG(nKDzXhV72g{T5}V;@vn|Y58gN0lux- z#R9sg(1*m(<*rv;LA%jY=YvuYojC6hOa;Uwh1n@I;rmJ6&&03wfO@0~s1pOoep%V} zjFjU*J1`kL7Q`jq7Kak=@#~yQ?!uFc+2jCY^qnGwfRqJ!tDy^d2XeSy! zDKo5-8q>W_BzyIF+ItzJl6x@|IBk{43hH__Q{tJTnUQH&p zMB9q&cV*0H^k=mz(U^~{+zuj#{4@S zDrNPRy7!3RH=(jRdzDr^?GKKU4fusqP!sj0?E0kp{-i5g4EdKDMD8un z`g*jOXA|_%jHq;spwzj?{nKgP^+4**J>X*qUPR3>$aiEC$9YvOQLxIFl@L8?y@tAU zD3lI6rH6o2NHt~2Gk&_azga7yiiOUF4416RSHxlb5_C!jbysYKL@|B}A-D3N5N(M|@>c+F28ay6!4BDo$At-#EPNtX z4)@>j6xdGDot^}5NRfaQ;gS;u0TcbsMcFd9up`yqO9Fng>`kG@{=ZFb4cFo&XpGltEBGCf4eg zYZ>EgrPRJCbI& zjMKCkQijFp7koi5*>_Es6&e3gCCdl$b1^vTh(-Rh`SVZTZIgTG64^cf3q_Bo`=gh% z6dlZd%0H8Z2QPr&Pk4o#-bebs{)05szn=Ux0Pir^6^Ll@*OM2+n9q2VkBfUc{?PXH z7#B&rAT2G6w`4FT&F;QmkAu=_Fg#~nsV+%dVqG%G=o7!JdvroHbRN4ai)vX`1zLUg zk(H(X3GL1|bdI~`bDWx7&t9B_^@IUu3lhRPTp{An!IgsqVFST|=hY}rVMeM81Y!YY z=}%9>G>=zwv?H_X5|Qza%%KtwNlkLX?|P6Q@tojCYHR*uKz`&tlcK~gPeP1RNU0U~ zVsOmiVFNcy1r+908RqK{$J-qlYxp5FL`7S~izH1-!x|z|+&Pwlcx8-b5C{FNl=R`i zm^q!mGU%`j8kRwarLs-WPQnVei!GQ$s29xqOW9gL%}Rvtr%AqKg+L0miy<;2K_Tv& z)(ZngO};Tx-i+!jptZFn0$ey1fXo1l;n)mN$;QftVP{3JX2&xxLuO;8GrjTh%-ML^YDn9k zY{axu491X9HZFF?KJAeP`T><7$=U_`?SZ)mBVP7?IsW=N>Ly0C3NAWKh z@dUIuyoqBBZQIFqmlw2)Z`DN<$G1_A!Z6nv{-6`Eaxidgrxd8ixhbz!B56IG?K!YA zr&WgilKEAz_@-TqjO2KS&~me&J%aTC7!*)Uro!Z3WF(;#r7q%2=3$8lcNF0t;|MRA z(uUqm`TSjsF|P ztH(H7qLtbxyGO+aT=wm&;5Gj`_?#CH>oot2!Q7y1DeerYO7m=4Ac*HdYt|aSq+&ih zAL7P-pv^s<8rlXV+i$H1kfz035NDvROPSD9KKe<@K!5zc$l6!317S-EtXUi z-LK=lF2rOIS#HeKeA8!tHN?JCGI;SS5K6M19k7zd%ALM~$!eLbpP++gIhlahag~-$ zKp(r%k)Yg7pmbF|eHF9>K}*o=9$;gQUlNVuN1>N+s*oifbD}T7xa(kC^f0>Gz9ia` z;%)z|2SQ%lSl2V?u8<`b7B9rZCVn_=HQP9g@B7CF%~U;u-r9wrgZ4WP(be<}IxCch z#SbkVh@~|Yy(g1~(!|e}AMN7JRPDDGfP_}fzhH}>c44SxlG=qAd~B^?#kl@gs@!XT zUU1@UY4hQ*KIG3=h<7(;PVsl7Xarx(}?er8A*MpM~!kW;g4ehB(R(eDJR``5LTvGgy z?BFZnauZ|6Ns7NQ)t6wMYh#g>=a8os08s!$0VN7*A}tG$h2#w5X5SVB)n@P{t5{Ft z=bnA|7D+wC)XS}QO;p$6NZfSF8hpFtLJ5O!o74kQy|in)ece8K0o6%O$;y&OyI8m` zUVwE0SaKH1LRW%vt${*Tva~o03ew_KLCNVWU47f-OUMUSzMLTTX9H^pV-p=%p_#Q3 zHoGh15yUA|v}+q%0S+@qz_?}=Hp#lAaU}7&B5@2{5M?@zbnT$d?YqmDUBI|^o05Q0p>ps zFekGnClTjI*oX`mNzf;m(vVDKTG3{y&9-bA zpP=P4WuPAh0^e$5uAui110iqD=!bz|x6;5%ynx~%q+jTWbRkf|-vRr35=Y_;Um^z&ov|{S!Gs(cw{ZX;u2!HslcbI=1MrY?lK)M#mt|xXvI(YeK(G}5eE!T1e zn%e^F~*g_=n)lkWCvTAiQebY3d(+|v-PWqMdr)AD0KzlR1}*1 ztprBK8oJ2oH*ej(_RBOgDjF1lrBK#u_)2|{N?hiQMC#SV zoHKQnyjxI=Gs;hB?=gPX1VpAzjPFB9XqCW~&V~0253ZTS(}(}>|NZ=?+M*&^es@k< z!9AqmC5y~uo>tooe=|7=x;Ysx6W#5pK)JjoXThbiIynR`mvO$+-%`!Kx?|sRE1toc zC1dA>$vO=VAa9P1wRM8T+o&aXt`-6 zTpXzBpX~N`q^2voYylvi*(L)~#s{KhI}nBSK%})c=;$b09f*gwU|Z#Y$6 zRdf_qTvv3VjGK_w+M650@i7GdUIT(lr;Pm(zE*N!7t-+M178G1Xi7(S`e+-slm~knp!lod8vW5 zosO#td|5i6>`dh$$n-EQNvTUT$o++DCtZLI` zTb$0B?-IO3X&PrJudr|;cB+B*P+^X{M;W5|2I3GuWn@Aqlcnki)RhXjy=}SOHQeg% z_W}-iu-{3~Y<{o1r=q~Z%64zZNMGP)))e=j1c93wQ`~H_6j*1FSCIIhz-~-rC}1M9 zy)Hh&lHK>KE;<;ZT^OFTiQLE%=aSYU}Bq6sPSz-^0yK_?EIbZ8z=6 zm%-biwX#eeI6ww7V?D#N!;3KQFNnKCJQ?EakPmeQwnraZ*MROK6)26tFH#%sBwE#i zTucjcp&>|pNDgN6y8ZC8o5WdJ5dVv^h7WafYR_=C{*1_4eJlpW_-P%MHYV9FNV#l@ zv^<%8Yh8>mtyMTZ;f@SXNz)Y59@|?jdh>0C>!xF)MLqv==j;=%n?YBLdMf5V87-!% zMSZ8WJ?}?{zkC4?h?y=d_Vudoww`xkZW+w`2IhSS=Cr-#+7i;ymk|aHVeo!xr6AG$ zk=QUV>QgC=SFNwzFC9jW7Y*_^KheI_ILt~Cz6!}&mpHni7~Fb{Q-jguRd~r*iQ%eW z7^~A)0sAo!!%yr-6*K)^KHqdu_m3zlikejO3%t*TT zDU_6JrW@H!3W<8nT%vNBLZV>pMOUezYjf5*&A@~EG-s`kOup4{W(d1v1xaGoPpk>XM;`=?z%nTLKEg94$ z1FSqo5m?M~(KJr$;)(TVBgc<0ysH^rv8cY3lV}fNH~@45~dgC7%-mfmjHRVtRA7JwqiQllyicRU2(koR*vEV=O{hdWMA} zKpvizu*=II5u&G>+M`@ku+P{HajQfxJ@KBsQDn(3glng8*;BzbH)~&hrOd1*X<7Fq zr}-1$Y-C;TRfyQif~_lAVJPrpxXX9V(fFy^sjt!9KF*~w4kd<*Rt<4b6Vu9L#8BYJ zfD_k)*L3r%#HQSPJuBr+Ss~QWSGdzd!cGqf>mE`E91MHYI{st4=RyJ6UEjR^Pbnc; z_hx@C*;x+ACYs^Tup64QH4Hr61dhPpr}&c351%Nk!UO7m=-rQCTdOR(0h!zuPxUHPO+OvR7d2!4rXSa= zOUNp^C4>#7nozFa=S^JlIWo@LzFEhuYrkSzpI=oOK|wx$#=^6>JY`+uh>Xb#4LQTG zX%xy{-sK@=MVVEZQMq|x2&c;)^j!t4@QCc&wDwM#Zc|i(!NBGEd)WE~$rmwIVrTGd z>se9Nch^1aD;aj{KPX~T%e=d;{iCMy5#FtpC~v{fNWO?U9XsQ>z3BL|0M=!EQ8n76V-Z4M=sQ}_?`^)--e$N9hbTrsJ z+)LCmAr&dSZUNqLfa_rZN)t3=z<&gsru~WMZph&qRloxk5RIs3i{ZDl;xUu z2`Udr4@+|li7x4CiF9^|0@WKK;SVRLA(`cVIC&|}?xI;kH!`eWm9YqU0OV}dMaB&X zE!E@!ArHuON64i)X8x{Zi_hPZp`-jWrb8a}H8=5&*cZe2M+VX@D(?B!15zdb=jka% z@j8#UWG#zOMn2POBL6<2ln6!s(6x{U34m!pnbMIKmdW@fJo%FRX`p{5;CNYN1rU(+z2!qbB@xl{e* z6cA0{*6$m1r|IAGBqK}01QQV!6_uN4$GQcW3pJ0`l9myZLSNe7*J-lb!4w6f9Db!| z(NBkwv7a!bhNW$=>tRsXK!k-VV+v9*o<17>VzBM+HEh6O73%E3uG}xqowr{O;I7r9 z!gKsh_`@rfq=mTL<+r5zvxjfVn4dyWnXG{;P-~Sy>@t1QGu5wMkWZ>00$uO}Z;6yH zpmYJF3pia+(`l#;@00c3#NeTwZJd$1dfFl3y#h0>0i*XO#u!F3d%k$pe;tDdlYlIs zWbFe8Iy#@e5|Z)MPBUFOi;vs(+;&6VPnquB)p{SR@4>e=IAu2IF5&6YU3gfx@67Ai z;-$36e340~*!Y0(#awJ2}giT(`Y@&?W*yg3oHr&tZuz}Dp?709NXfexP zex4~CoxPGLZ|ZLM(=1f<1Ty<<)n(3J$@4lXK{ggTdnHfz)ZxN%UA0^cI@I^Cn51mW zo(AoKeVOO{Nb{c|3r7ysyiNBVtA8^z5`jHegnf4{gKZ4;{VTpiriTgW<^e3b2q%8x z`p=Ly1UNxJl+Hxr6W0HxW30cuqHUV4<)B^*GIrDD6MZ3u{Eyhyh|>*x=*mm7Y&0|+ z5#iRE2#pc{_9`G;*&-F18gQjcKKfuy7-?5^s^10_g`SNfD7-O$8vu%41)PS@nJ)r0uy=k1raPGF>*f>F zlRi&;SKi&c(v{OR@5YUrrNZco-b+3Z$s zJ>Z?tj(U<++pdcfW5}+tDG=V|>B_urS}k5%Yw^Zf3!!RX23)Y9BN$!61XQqkjR)J> zali!YE%BIOtmE#iw7_rGo$DmZE3kVON2M(AbfSceTZu;*+wu zc#%z_#~e?xN!4i|SvB7Ek*U+Zr>gUes@BerR2}|eDo^}E6YA4OQJ-*w>1!MRPFRp0 z_?Yupqmw+xGBfa}RK1GB-&^GvL4#4B$Afvb#s~nzE*G-Y?2>HAPz?)ILKtjMZJH~F z)NB!wR$L~e3oo_IDoK*84JXN*d=EGKDUW?Cg3Tz8pye@XmhVqU4`zqom`hq`_#)PQ zM5{eXb!%|zW4*V3_`t-|vTb~F8i|0!V8ouTU%yPmDu;&}e)Z(S9%Cvp34QC4bM z;Ejx)e;J5hPD;X#-U;X3PP)bDCdA)$Wcx{tBRd->9ER%^qk9#9pOl|?5j%crxNV6& z=dg|v?#Qs6$)=Erx71`>Ub)0=nF$@S=bY9-%7$6L&q|(Sqk=QPzq^a8;2}!M*u^Ih zgQZ!&Y|a?dUcmZUf8$kl(Ro6$$yY0Ahlkl};>Pc|Dw9uI?7>VuaY4rom;ojCe5Z7V zhke-{79jq%iEe=mY;xj`1-(aZrZBwltBwKB`?4D{v~&{*10~t)CzRGv^`*rFM-v*p zRC(&?rRGydQ~Ja^b|f8k)FE(;`2Bc89bR|YeE@cJ+7W&Lnc;`MB&t)giW$-t=qZPq zPjGW9^LhP%;>~b@N3jJ?fq z*}w_&ME{silR;yS35MTv;R7yT;@l^XC}Tl8hME>x?js!T}wi7qI@ieeZ;SBP5CZ+ zr5l$8hKPQnx@GzCFY40LrX&|Y%|%(|pELS&#Mo>gm08U<>GD_dPHK|9ReSo&AAW z1Gfhc>oYH%`+<$xddgjBfwYP>bOEJnk0;hAX*zch8#)EGA@^Kfz`By>u8p%eeZq-m ztz8bX5q@D&;rbT^;kp;VTc3fySke@q^c3Vm*SSyoJ_55}*o?|u&%pIK4$C{8IZm$2 z+aWFxRZfkjxMwWdT48n$uk~~e|loZtxE}ySJv-+@#Cq@ z`BR!x?&)J*EH^w0+B-F ze+K7UdaQ{j_+vS8KrDJ}vN>e0r0XxbT-$^FKtRu%v21}XsSfBz&s^37qDF1)N6R9| zIC_lJv119+@^r*zZ>|C0E!)MsW4o9G8Blp801wD`oUHb891n^1Y*{0z?aA`?NRb{J zBy9y9!OmwUtNrs~GpMn>RoTh@yOJLCN?d}&2eN)lR}Lz2iXqL+KwRFR>F+`R_m0#; z{(@2OMkv>Aeu%foV66Sn6p}igeJtZQxqHI6eUW=l%G1tEovjBlHs$pt6rbVV;~~Dk zE&4D0X=_h1@u{TtN8#CP>AJq%hEv(}>uVyutYnQTzQ@!u6CT;FWD$aP>u+eoZ_iR^ z?JGl_TRc>1dT37NDresoXYHdxDqPRnWZUBX9HuQjbSK^#7}e+d6MhEebNtl$Od=Zi zO+x)ltxWr>5rA7WfbUQEnhGeJIukX6p+czbmC8`zT0a_;7w^&nzjplU1>rRZI*jh& z)PcelbEo9+uJRq)#u>bbd?%DwgmxI9-II3y;H*Ty)01Xvx*IwbRtCxnow74_qs&g( z8M*!FYg=YQWSfxdzRX_2trDs0EBv1~30bJbEY;kW=2EQpA4&Ds_jZ)UKi6W*O9!-c z07?1l(m`9gzC1LckaQyu^S%~}1e4>-zFN|4zq%ubVn?3X@w4ju>wL+M^5yLQN|W84 zJ#(V2%{ZU>=OAZyS(;Sv^ydi~bt8}a(pg0vB@zjD=kuLmul!}0hj5cU-wpP_GJims z)`2A{#qg~15sLRWk)Ojmzu!ok*RVhi=a@kq=AUau^tG6Ch86TM_l&4uGY1Xp;AJiv z(Ly?e)AIdO9M9pA>~AIq@?q7a13K+P{SzFl4^0f~4tpOp0w%)`Y1MGxG|$R9*ajEs z$lO75-V3wo=e$@MT0kF%s^5?WEg4w|wPfP-4P=VC?;qTi6&^pnJFM|fI^6e<^2!SD zALt#?Zkv_pgGsSU`(4^`+WM>lPrJsr5Cu8{=00 zD4YBLL?(rMl(C2Y$Taknk<}`=S7wjqynsQQaU;FpuIAP}F7^Tj>;|p*y?NP*{LW|2 z;J4rEhV$ERT`7bcaP>6X44%RqSAQomox0O?4A;s8amRAQP1Q_Xt&)6C($SQ3f|R3K z=>!S2tmr;cIVs7WOLMHAmXapI8SKs}r+mn= zfIfh$2>};o`L)mHfm?brw&q(uU`xT+by=`u$6kZ?W~YSV|3;);E+6P4Q2lGXP^on6 z(7Dg6E})>5u`+YsL$1XIm-x5ecv~et06WP9%cBJ%o-)RW=6VK(tQd0@+G2DS#SSUZ zmljERqlc_(MaAc(_+dA)pj)7j2?HPMx2|ad{iXA z5qYtoej*IlmBB@%ujcV&l*P8qxwww;hHmy{2`*K~R9aQ-IcNHM9!syuS<@!;hO>Tm zb9MJoJk<4OK$Z?cGZmknu=c^%ENz0fW+obRtZ9?wOQJTvT=U>Em1UeYMOQwVeLP3R zPfr?mW+ckLHB?}=DXfG%4PQ)<(x-0Ns*FonJ>HVQ|Ih`>VcCvb3TPl2p+cCqjWv?gmTpRT0 z<|PvWTqq_$*a*;5TSYICr9`KmsoFE~eHX^ahwPf5-3{xzQSF|9px!SNvJ8sOR>YV% z@2=#9cK3mE91;>xc^QywRiA0XU0lAKPAJO7DhXJkNRXgCB0d8 zq6@d`s98wk7}}71D0x)pP}Vh*>7hCo8g)$6zA32Ry&5&!r^!3QwvUc?AZ-r@e*GsK zUor>XXHu^JKjtChW>vEfJ)ha}LJgx}+ivp` zQt^H+>%rx-?6FRI)q@_86;H-u$=fMJteWJKXZUl-d4?^| zknub_37T@j&x6G&p0 zl^TZ1&e}Z}!lRCnowZvmz?lcf&R|obr1|~-zv`}cH;x<0fA6Pg#Cup92$fCNPJrNc z4WDGk!b-LiC-%olTho&IteMeH&qS+ld5s13fctb0a*vWHIo2PNMK;;Z?&<92u*iBe zL)NdzW|Kv->Q~kF*IIkUJn$GO+INcZCNH*+;lATgt)cBq3c|D-Gu(IS_MNg!nh&Da zT^iYxqIn>C+a>kGEZ%I@L7A)VW`ElrV$e0q$DSTP1PI><1ffyPVFM^vKgI((N1P}< zcD@H<4nl(1za*kbA0K({9#Wq~fGIR#mmlc%+laP%9I=;v{Lx)R(W&r(w$i_f``~fH zHi}$gj=E2KoUo1}_ouwn{gAIlQtKRxEDRoT3Z53GogOL^3P(d!hv_eLEN1c_V>-sG)hCP}6qT@-%MaPqji;gEpBQ2Q3 zt}cJ|dg9#L@{Z5qdr@fJ@eGsFASZcuJ8F3*TeZ5)9a*da+cxdbw2G~-}6)>WN66Kd`Qp`=WAN7s}I2L z3gd0sB9)p~bl+k&NU|Xi1xJ2j$zdm!xgLI7i6?Z0mi_qc z*!gfzTfa#c+gjzf96(^5BR|~JK9Khq8uP8eJaL$~DLl3F`V2O5pPBPyoW1;HoW1<^H}N2CqNhh3rpBPCo&!bTFFj@7$WNe zebFpuRf7E81-iswSiL^ZiU~`y1GLf!jZaGE1Z0s8)59Rx;FNKJr;Kwd5dbIza4PlS zYXxao&NUO$n5PL?NY*&P*qaM580v%^!-}Y&P2FEX12DZKNPy2Tz-(>jH;fxCr2`s_ z{@I}5#bO*QSA&@0J{OL8p9sp6UeMtz?$&2pB;7dzNeK`%X8i4$tG)48ms;P0TvQhq z^$o?C(|dk#UF%&hT`b%ZqY@l6gydhJI^DCTf0$sOnCuR;|UMA?z=L9Oe5phTUmY)m%CX zVMcv6RsCaM{oa1q-PP-zP0P$rQ;!t53ib&X{t4Yf%2+aC8jqw*Kn*di*QPYK)0wx8 z-gsi>gwSucGnB05wdj|)h z8#+mZqflh&O+CrW>aWb32V!X3uipw10}l_+FP#`&?3bVaK8&Z;f=Em05`l+7)4X7g zL74Q7PLl2idNY{<}s%62Q0i%Au5#TKYlX|yW;RIaLvYlsT4U!goKR`=7j#Fs`~ zYUoA-48}jHa{_Q*xoid;az@KjdFGVjI_|5EQiWZ=H@Ed#wR+}&K(fun-Z4_9u8iy< zrKqa>s>;c4cj%M&uI!r}9y8D33RfMhEWjmO|_p?=G#&jA(ECp;>8rgqdww;*Q) zDCPGFp)kJd1(Q;luI!Z`)*z_x+amF1M&-w7BmM7$IBh-d;!@xjt_&Xw?|ChRS7@ZN zUxcLi-xZz5FCDXD^2EPRAoy7&2GU|zYeNrGW{NS@E_TgrFT_w~!v6R5rrb5VoBGei z2va2kIBDUyKvCqzd40DwesJehDy4`SMS7>n;k=7x*=DE`uSm*#V}G-8yQe2@N`>^h z7AePRmv}Vb4{5>C$sz|SJ%i_=Y=0f*&=N6v6Ri5^N0|7NWp$6DJ{ zb`eTT6D6J00g(%F$(1FUD~M@;udmY8E~^Vn@Ro(ag-JgD(IY#jmt|3sYrg9fjDrfy z^MO}AT7zN4H-k_-KYX@WZ+6Xvo~!h~i*0??zzbO~$LKI1Drf9QBl9VWO zayv;6Q<+sTe`ce*jmiXcTbYN6`7etT$^Q%$k5sHI0o7pYuWYHR=(Zu zGHofZ3eN)as~)s%jTE?9FjUq&boksOcvrO_^Ta|)5(=NXB8{WhqQkbD5*@A4Z>gB` z&zMO4o3k$P@Us7uGAgL&K(n-erX+86H6GwxWr((A%^uzSoe-X$4Z6ihr2IZ1RQSHM ziw|%VoUl3vYl+u7_$2|2)P)Pq=Q)h&73X(Hew9FJZ>tXN`yf`N5+O!@aJZMv%`UNE z&`-R-!OyN*##a=J>ZNJz^1^GC=AEJ1`m9nUAuIdllY6wb}H7N4C z2!QXdoYSIM4PkZ#zoa0Aqs%q~PZketJpQ^LDYs#wbO$HZAmh%MGtB(5Y&;ov$e!XK z*XxA~c^(#T%M*nCvkzlc@3zfFCIA)YKEls^qT9MkO+~4~JT2hoi0D2eGAxuZ7v1t3 zVMfRqG3k1|m?wXaC;{L1!$Ao)sPw0Zh#*=vDae&0aU!bK7A6v!&n~NWhg6R-fk7E_ z$V7j2M5W&jSwPrsZAZk%dRw)9BCr4tdH5(Kc#~6HMmKaLn9~ArF;|0LQ);kQ!pKV3 z>sc9xD#h2#bgiD}*I%bIk*1dUw480V{x}jEs<5H1KRJ*vuCcER6J_H)*D0Ltuy|3P zrh?yk0Fu2DEt%CB?S8eY5{JvF!aP&cA3}D|4BbC5C)<^3M%KV4O}4yKD)yMYLVY7ORxmM2 zV{3F@XZDnjcWSgkx^vUT(>BEbShCZTrDL5RE!_7I`YOa8hVjd=-XNJ?FdZ)p;}qfq zp$mj{{P^B{Uog#mwY@?=4Rme!snWl})#bWcf!ANPz6zt(R?QV%@P0<0>cvlAumVJ_ zZv>*FjS;9opfUoFbD=@WTm8da!KlYZTu=Pz@i1gTUd@;eH7mTF+-)*hT^#4f0;|A< zmhEAJ&5VvG&!7gv$`&hvgRCL9 zKmRBz!|%^JtwcQ6tlLW5VJ($`CNl`#_@DDIOC-TbCb}sOO=gqu9m~ySlby)MvaO?Q z>E_O+$(YAm*N7(cp_~Fo`*ii!Xq2-H^-W z2l<}pT8e9(I0;2}9@`bQ7D75LJVHf(;U1Y=OZF9N% zv^+XGdNk4h99=K@VG^zqxXR%wfvX5tA@0c`n*Z|i|2!%}+QL!(&OR?;Ks*?Vp2y=j z8q*pu9+JOt6ke}ldMVx2+xAz{L<#vZrOG$<_abx;${g3yK`4KCFA|UV0LPM`0~n}7 z7uOf-5nFYZo-^CnIf{Q!Ts!cLGqOidf&;?<5ao;*^NO>)QA5^jq@N6it7{OP>B?ok zE~|3C2EyDW5|(22FeZKk2l$U#Y+G(F1(%EUIPbR|hd5?frLWa9#R?$PDrQC_1r(%s zLzJc+SZX>CP!lfdfPA+5~I?2K|DmItCN=<7s%uUj+x%9MA9KjD+ z<4$@JbqS-Br6P3U1eUmvFJRH4F|6(ncgSZSw#%BXjJhv^Gr`sU69U3bziGz7;%xW{kp^&qx7diG(~@DY{&Jd z(KAMW8Zp`Wd%;c**ZY;;v|fBBQ+Zu%ZuYCS-iD1DR5Jc4);1aR^uPc8@D&5g#9sz@ zxY;rYDlRN&h3%2%5+ho7ZVB_kl$o0s*1Zq+g0gWGG2@8=aVxGDRP8{3$IFp2o{Un? z)+>B};qeBh=P^8N*!mk~T(+zN^PBoUjf`jIThxw$Z-cq==R%0Y!dbhtF;$J9AvyW(wW1eV8MV{D1?ThSQYL7lnA7=f;M>w3oDtLwR}D*r&Cn{9<*Eo{?QH}`EblAQLr6Js_REarI%ppelt8MBy-rx`hGEui}@ ztG^D$yuWz%ZK?k&Jl~7RW+38yfscqX8y}S6T(9bj>$*>-2jxvkCTuqfO*wOTefJvjB771n!GNM5O~02(Z-BjHsSdawu(s;4H@91~J+v z1`cyBW0CT?)l*aq9a z>I1MV7-*=M=N+)Fv|xBZ)+I{3s%;V@HFD9u+ ztxBZ3IDqs68xiEVP?Y1sr~g2;6Ui_X)AO}OWTs9P%qDK^^p3k_5N*zK&l1V2~Nr~Si z!B7vM)~cVuzB^6<*C*a$3Ew0{7ypDLoc=lWA^A5CNxrEY%Ki}gDb>sT+aa!~OvP_l z&|CVu$hsl&b}Qe|HPH3uuBg$8D5U_b@4jV3 zL+sJSM~_YSRZ^gmLhdlw+S0S;43eB%5>!%JB`g3I39ID2HjfhH0(ESNfNm>guXqj_67R!ERv?If5)xrKP3PAj*Q+&N)C+*Icp! z?|lwfm%|+#M$uXU8aTaOa~BkV8{HsKCy(e1RzXP>Xf_E{P@sacDq#ObHxqP=A-d|I zRz|lWbSh{%QuOmt5G(^bpr>OjSn3z?_ydWGB)-f7j_4QLV)kp9-jsHAjg?JmoK^+( zZm&1{neSB!|plm=y(>sP0ty+zuWT9e=5H?`oqy5$f(!zO!>L~^Yh$o^EI`FzsAIHELnY_{-FPd z`wW=AKG%PIZkjMclfq^(ZEyG6X0vZ;*|@<0gQM5GCLc@xZ4<7(W%24*h=;ezyD4v7 z&QnvNJP!2nF3Q`2)SLanlG37eE-MMVb5R*2QOoj4%+w6?V#?oH>;eK0nu# zyZ(^Jc-B|PBQy42ACJ-4e}%MR3THyr&xO@(5A^<*f|W1$RAQn=?C`JE3B$?6(c3Vo zt*(wlJG)Jp=hB8F`$Sbe?PqL!XdR^yJ;jE+*GR2U_mX26ne(Aztg!OLDgj_{t^O+lB*oQ_NyL zFGz}8Ed7QMP=`{i7o$TeHXvT_>g6@;=z!3(&7Hi*HL;;*QMrZStjd{61Z!31JQ6$a zkd}7xJY>rG#;R#A>Knc1sNpQZ1qzLEiVyaS=Tf8yRr1{3&--wVz0T~E!NEb9x$zlf zP=2twQJ#F?n$RoJSucLkWj!2tTf4l6!>?(Vnlz)yU2@XANKU>(>|JyN8%ci~amKjC zR3Ktgc#iPwmO;8qa+Tp`cc&53_?`Ktb(s1>5SX*RZMCToc@osz0y!B0>x>) za~IrTJgw`ylKL%siqTb+sq)HIFQWN`26EO#GYWMcq^v>@lY>m>G2i_p(XTk*luURZ zX+|U71C?gHhc69zPnEWOh?h!8CGlv)*dpo1y$FRU7GjVi0EM8zA3d81BK#@)aPYin z_u3@GYjkb3fnSd?iOR2zz9{wZ|LW+E_E=Buct(1Vz1r*)V3AkAZiAjl?-@&JEVbF{ zfBtCCBc<2LQ{96RRo~~Ts#|*ZX?auce&1qF&%5htS6)}Qw>4Z{T|%bNRlU8cOOwg( zleVrdH`S`tJKK8w2_Ct9ai&D|$s+kN+`LS)QV3do9)At?J!TYZ467+L+>7hf>8 zLTvpvo(k%J315FGUvYDO`T6ge4f^Hhe|Sy$<>&vxM(OWKtp1{~$q~j6M3WwYraq7} z(+uKLzGHSto;w`CoD+w|@@5SSE2oUm|2zTS!+!aIep60_Dh!qV{B1LmyX|{zFuQF; zFYG-GpUtI6qdUqa|26t|gAj1BbwXapg%?@AxKGEEsb%>G8;Z06^g{A|MjpCg{EXVm zrusauh)JqW(wGB*Ulbo{&haEcz2PMBz0o998DX=%mPk%MTWPTeK7Me(FE|of$DcP7 zaUO`SFUk2;xUiA8taV&V#O{nc|9In|C}R07LQw>>b;FCt^OT}8MJK;?dOC`Lc#ID; z60gnLW>+72E&MxB#Yro~hJIkD|K@&ot*23M!|$RfdRPm;wS@{xAetGgX(>eWBQ-^4 zwwaHWoaFF8>AMtWA)@o*@KG+|2iy>k0C-q{V-Jqbivj)bu)K8dleiV~d5+wLaW%UW z`_30rh$K204@;!c!A=wD0dh8#B0)grDXtd@8;41-8nb>Bd>9Mu8GmT?mZilah|0G; zP(>=`%D_QqD(TAbai`?>&3ySK!*BlkZ*wJOj2@dU37-u{$j6dxPf4h47g*#Yilx-{ z(qIaW{9*t!X%n6>& zQzHnrosp+8arE70GUjZFizfA9qnw4fOzF!>B#=cWyY4&m&4<)I zF}l4v&3J&_qn!Czp=vtaoR7Z^d7FE56N`FnsPFGU0iKgz^jt zWef>spdDp&z}2k{)zJpECA!4KK=y_R&JzA}qkE}bHZ5nB0Wu`R+KL_yWyOqRHAk?z z-!E^P+gpHz)4lfVai2P5BDxi$l6&w+)_0os2wk;vyXn;f^c&d_HGc5RN8HBUFYMW=9Kh5 zsE`)rp1D?RDRKh68^9{W75rvZ!>=61$`pb6eMce#TR)3>|DB!9Kq@H3VYSRxs3$Mv zRj^XujZ~xXC$8O{HViwXd2oLmryga}e@ZGGh%eA}h^J&9ymVtlaIBHerY0Z*+wlBq!@Ky~Zy%(6iZUJWDIhMBjTUhd2tvM~fdLwnc zS>iGOk3WJ3=R!u9J$&@zkJ|pN@Ik`wz>vN8aIe3$o3)Xvg6Df`)KQ=gEPOdDK`DCDeGI+t7$)+ej-}G_d$T;&GSV*-*im literal 37648 zcmZUaV{|6Z)37(TjXO3s-q^{;wrv}CY?~X~wr$(C?d-e1|MT(vGBZ70r@PKn_37%V zt4N8I?9DA~-H9x0T}^DA?HoObTumIEEbMHFm|;nYWaF3~a3p4FA1T z{l9)LqJPiI<|agrCN>5Zw#FuoM0Tb`&gK?QM5Y$jCPe@4Ms_y#jwVh{CdNcAP8POi zM4r|bh77Ro>xW%ij+?&|7~FT{{Bf={rEDNnBNbg*#;luVWE5#M6$-_Y%4Ku#(3x2h z!bwm^g?<#Ssy!f{oNrz&@s0A0^NfXvgZuqp{xQhNY{Jb?Zd%;odrja=K;S!pKBR%m zD2qv@W!voFkYnuDcYQX+uBSo``;AY>IrKs@^diwLq$kII#10&$8u&{J{kJwrf_v;9 zyx@TYzBSsMFT!w_BDrUJfCD*b*_38>yAVsky-E;4Tl5Ho+VzgMv^C}Bbb9xL799)6uIkZEK_gw? zB%BiEP8?LmNN_Aa%rbUdrrQy!o&pG6;aNzq3v0knRD@LLR{B`YrH`C`N5gPXI$BYG zozA;^xlgj~S!bx0t5Q$L8)2H&j`RbcKNtGOz2#E-otg0yngT-d9H^YTBe6sW6nw2< zA>)i&ASQZJ-|^OZs=U2GkOTsS^>w4rk(iG3$o zpInM5nAYGOmg~?+KOn}JD2j`FJ|veCpo5*0@K+rUMJS=DNu`5Q6I3UiuGi^|2XrCO zUitbbZlg;1COWj;y|YQFomjxd_pdV2;20p8NTrxzDZ`X~=JniMtUKC`;v@Q&*; z^PQLDSkJ(CUk};?xoj~-1%+y|tK+uh794t!kV;`41JC$AJ*}$ZiEAlU&L(t8-=4a) z2?MUBdqR~Hqobfvnqq=SeG^F27< z{8dPa`DyTUl_b8JO4Tf`PC()2@1)@N5k&YBLj(!q4{)GPeiq%beTXA!4G|(erDX|e z<$laN1A~X@6yc(gqOE$pGYaDk5J&tt_r!Smprca+`vzhe;z7$0P`MUy83B*Sg02C^ zA|4N;za3dQbgyTuHoNDE%~7iT7Yr&;Vs!9>Sax)V`abZ%Kgf9u$0goNuc`lwTe>%6 z%&OZ`oz|P8W=eTwaIHwQbd-~obT|W!D{BH$u_}%$j6$Arf=6bqK3lS3QM*3+Mn213 z;o^jcTBt;M;}_{WI@BCws)K~7#~A7iY)wk?9Y}e0{ar9$O^Fp_g*Xc0&kxyb0RBug zY@|9KdI?z+uEyB|#J0uYI9M?8Pi5m2*_&QOlLZ@n4bgzhpEm>;_2i(D!vaeN1-8JI zTv;TQk6csp^Kko@S@}wt-n{I~2IZhw;J6e&>Td=iE0fglDA0WgcrAn|jBK7Upn;!e5*9UZyY^@`%JvCD|_ zVCqoCg!;b68$5+%n~FAZxt);i*VCoV;g|M?P%w+~`cD^gK$96X)cgYoMkGGvky27V zRJXM=a&UzX?8i==hPSd)W~f+nkQF-C$rI&8X=z28Q8c~?rq7cTirnkcELX&BMYhW2 zt_Isjm;oZh)j<$WJlz8bgLU3go@n5&@A zbc$)7#DEQcMkDHJ#(~M#96S4&#jz&&$L?TD0AfDc4$XQ9W%pAG4B#%JK50D!Za@M{K6c27VnxKs?(4dG^hi_wnZ9Pz(nuu$yB^ z8~$ZGse$0M%fggx@MB@z$Nr@<^Q-n+P0-uha}DWeTe$&eu#4J++uKWNa;?{<#6Z(7 zbBUmly5vrOs`X4)Z6jV&e$XHCd7!}vh#xf;!&VOn15`LsT6Z^`Vgsy}mcn#${lmb$ z$%4(%8d_C{xa9Bh<6NBgg)5B8_?8{QjDU0jNFy2QV)!vl4j87`~67liAQa-UY^JV(to+@P;t{~V`q3-(K6o2aow(;mI_WY__pK3%6J$-!hpS@@sP|51Zz?mWEs*U&&*b1vbRX zdZ-kK?_u&xTk#+-e{x*vZS2(+#E|kn*NC>V(GxPBYangtHahg34eD{x!NMqqmpT7b^L#Z zaN|tAP&EqCy-+@ zuc>P9c7}*?(YZ>orsJ%3xHL_Log~Q|1AR2#?c4)I(pw)6A@%%Fdp&%ocy|Q)+?^c^ zmAG-_@M-Jz#7mlin&`mpP{Z>_Bt44-#MX~k_%cKxbR&&+_A96irI?}305MCX!5v6Ds2^#OJj_K z##4#HeeR|h0z5HHC|JrFP0|GQ{` zY^cP>ZWVUE&`^nH_n?k1r8VJ>tE4rNjH}%0U<9A-IkS$0vGxC&z778_Xcr;LHxDm4 z6RLWv=1ihYV;+8q2nH#{6%`!gce+~$o|RNX_i}W7dVYSs-#S{`m`UYWIiC_EJR3-@ zm`Qau8KHzt@A7FU!hCBYk4W)Q9hL|w_+7`I?iZI5pJaZ4LF%u9n)8EtoM*g*QRJZh z7BX%(thvJ&A(rpfgsEu7D7tn%6903*@#BZ~u0AU>c0A#T7Y|V`t?nBb&AfX{;2#{9 zcX!lc6uRVA-<7;{e0dt#g)q$V?S~;#=Ez?iHS|%Ka@x-~7%+H}U@CKJik>hczIVON z+VT5d?!e~@`}nX%$_Zlt)*SN$`XPH`d%fIrbxjf2W}3Tb8)Z%bM!!kIP=VDtL)>WT z4-Avs1}A^y8dVfVa9`{Wo%chzPs6NZhqrr10+jNn3_YTAD8CfuYS-E>A}Prl7t1z@ zc@=-=*yY0wo&5$Odbecpy(OAwN?@`YTu!xy%7#v3<8u$jKCNO0(nn&Q7k%jd+B_uxV0&&^b+XV`N*(pGGc_%D#-BYvKvu&-B*MU}YA zaoq@ooEnW1O%6@CGn6WMMe|4=v|fyn6);peBrAAbi9bWKRl`UUC%qmUkD^7(~SYYZtR^`e;3hR`xs*-JiRZ zr-onE&Lau8hl-8xR(ldE@-t4g?eVcj#ZJ?syAbBz2GhL4HXH=jckO|DtPZ;e#~?Q1%8{=HKOUwQ+ha zTb~9^Ia27Fz5zt))fuhN>YfYF?Xj>!cvpdhp=eI+i~M#=*ro}1r13rIw~HKRc_u)Y zqH9l|I-G6r@24f7iz0oc?@SMAT4gu|m$Q1v#SR$?B!CwQ>$DY8ab? z$v;mK=g=R=Bg*QvunBPvDQyA2fmb#A2x5`XvPqN`z~E5e>XSUaXnf*O=kizC`E?2| z>-JD2Jll2vw-ud^DA?32&()VjIOh&mV)Up1g|%>%<NfG7 z;^raofi}5&>abkDZi@sS6vnLZ_C_5mrF+MQy{~T;DPR@t$33V?4+0k6U!674d>(Q^ zg??%HgVYSxmR;uyT@?!I>^Qo;p92OPS`UU&9I-VdiY1ZW z9PT?4jiAD#%;mOM>u)2Z)rOEdjKF>3?=IF1ya_%0&xCg^JQ6AIohz2OgfUs|DQdW;yez zS%GQcRYC+mGGCCf*KaerX{|lefALy4ZlD)(%sltWPTN-R=w$0@=je#^Xlr->y?Yq) zaCZ25TbLU0owj`&dzvaiva4bEOF6eUupxKDSaYJb_q>0uv&d!Q194n-%e)%yrNb*E zxA}aI;&F+n9$QPwG2kf-=wV#OxC}kc#PMw4Ta}JBLt;N3fXcv0B`7PROb@x2{7w?o zbMp|(A19M7u=y5X;kMVi1Sm$jOvaZjv6fabX6nJDLRmrSxJI0kJ!nntF-G_@Rub1P}cRpmOcv{Y36 zrGs(Bk_Y4&YGcK?o*{I|t82?}*9n~ELm2{UwZw&!f*^W+WWCf0MV67Ki(FIbPM^Pv zhv(joLL;r*^+~xt?%$5LxSL$*4a@z3?Qg--f<4;4&ruCR6UM+kSC{)-RB`;?vA;gGz-SeRU>8S=rzL8_)HwwO-+SCd7rpoqv&=1UV4*~F0L99yH(#4Cj z!)8{aP|AMS2AtUMDZE*ZKlGJ1iHFvTo$NuSG%;DLyplWupaR0#A;@5>LKEU0g~%Wc zyx0w-H;!l;QZNlg*m0Cyy`L}{1_uy}`bB-F!4uBVcm%*xjd}rmcZsxZmUxz|Mf)V4 zxet6C_q&~Mm;v)T7*%>)2{29J@D?t$devK_hPvSb4^Mf>%I z3BTK|nEKTBAgFNZ*>%X<%poT;mj>CDKBtRD;>9|81vX2OblRc|;dcQ~Tt^ zuO|qe*gltok;@Lo`+om?>`hul{q-A%cQ zEpesbvHK{38UwBS&c50!*M3j3XZRsk>~^Rxq(M`A4QJe|YE* z8_T&Mg{;j25`t7=>czu9pWuJLiu}s-?m&Fvu3=WODv2Fl1AcSYDXFonOAvP1&xD`W z!98F8s8ySRmRo5@1H!Eg&mq9c((2PL1L@I?KguIOgHqpH8F$2s(B*4=#WhrBy1s4` zWSfOq=BHfGQaGhwelMmc#s$DL#5%i}@uVdRMjHsQMTMg?A6e+mVb5H22#5U+i)j9| zWmJ>jLg2A1!O%W%XR^lon}X%{6qovm2;{!&7Yqq+CBzO0oacF3e}n(1b>}oay*bDDXkm&7WTFxb;ao>mg^fm*%0mQO&7SY8m*gbmCBQ zyC`>Fey0DUdxe6ewa|(6?~yWA>5q0>C<3$+CB7{{4vl4NZ_C|>AH~}~$0|jw5VhG zzw+D%R1J5x(=QPpj>^K-POSd@d}-wqsyiWfM;)HX%|e%OExp1SVzdkLaH$Ikruq~} z$RIH6DlBUoPzhsOes2oge)!NOv3LKwm-}aLGAFOrmFq~XFurv!&Xgx0uV+53V$ux_ zWu@0|0e=2T*i8zZxBqypzKa)<;VWvFe){fk7+r`1zLbRt?VvGRo?D~8i?h&WlRTYt zfJt&C-}kEMcnB6l(*HRQ{oh7>09k@}b)$q9opK*!ib8p$K;z;;X?8n-Atx{SfzoD= zP*#4kv<4i|j-L`gE z)#?&OOs(m1$Ox5F+T z@ZaeDC9pqm$4GNMXdwNmcKs8oJW33Q`#UZw9%$N#RP`m#)TPmG=INC=`a+3EIQ(w} zgF`wHB(-o?ayvmS2$HM$LG+RJBmL zg7kyHNx`FT|1br!iLJz_4aUSsp6Db$SGpsp4$`Xc!0hX5>@n}uGj9%Sc#DfMLWyanJ7=eM29X0pgwId#Z!TYnp%N7WyLLQ!M zPXsa@5Qix?S@F~ITrC}n&VVpZ$P+f#tB)w;r3UO-5WInw!aSM%u>gEJ zNR2_43GZO|Dj)KOjHF8f(==n^K6nr`$#lc-c^bw#T@{x(xS9@K{U?aR#V0=LIj}mE zc1A9mhZ$9j4>l(u1dR zY~F9;ibblNukM+U_Ew5NDDiSYU5$@+;J0oE@Klk6{18Cc!Mk9r(<+4_@f25Y2UMVI ziGvZWR`oQ|)K#!qcYFR`_;OHqwS8GZk5 zM{5SDcLi?6GW)Qcd>+ZT3tRGGfM9?t`yu+^q2|VY%8@VT@+ZW^mCY^^^CAAk@Uf7A zvkgJ`xcU382bc(38MZ;|dR|FP?Q?3k{00@XcXzv{R<||$6%-4rerqC|Yi1aDa!J@6 zzT4qPfb-3;iUD)hr|(TeBOBWTCo3zfi|rXth2dDV9dsj5B(EI4M5b9GKdKDdCP}PB zT}U%`mr^=twe3c%a)uRtW*6Xg4gdGw%)YwLI^MWEW@zD9^5PawX8j%~Kfr!OIl34K zUWCp(zWNW?{xL^o&j`B7eK4#(%;JbL`uTgM3FV#nRr(40W}RCM^5#A-6Pj#O7uvoz0iR7YIn8g#n0eNqYWIoawc+dCx zB$P#TuG!lV%GruuAU0avQOM*0hetaX6GNaHaSOROttM)JDsdCpVMh zPA^*E6K!t=cr_R)xv4R;Kg{28BYapPt3x+pFc{9?tA3yJ3bCSWu;X8Q9~2{X0&9*9 z(UD&JfNX4fBIq~@5wgKtA0i)q>JC{Kwqyme1uz1vqI`@FvwcJp<5E)#VYY*p*HXgw zo%3A2L|lh@@$tVR3YZuU!_}rSSTJQXFq=ya;Rb;Nn9~(D(Fk{WkzVmWT^%n}=-LrM zrp{-6pfQK;Zre&gi@r(%D|wqV;A^oGJWP+(R)^hTDf=X!Hy8r%PO;pTuBQ1n9O~<= z*4F(g-@okN-wd*a1I@()%HmKh2TcM1-t9B%Pq#FJ$GN^h?wi@rChbOsK)8u>o2u%m@*_(HZq~3J#Dg(9hAqF5 z;P8H3gOz8Pd>5QQ>dighd;L^2DuK)4)LnqN>FDz@j(tay(vohJi|6Q7i=EaUtj$n= z9dO}p2d9sPjBP|kmkJ7S1UYTwYCpQ>N= z7Oy{|7XV`qvy&zyqGWEORKt0haYRrs!kK3Lx+>{{rj1g6->pp1O9ASWxhmpM6`|g& zGRVd}S9aMI%DjHj$5!d$GE3Lasd#6&8?|SCjW6{;MWix0eoOAnEJJw6Hd=sK7tJTP zf;x$blIGz+Yj3p@`Cm&S#EJ43Tsai=^YI&y@%=0P4Yv6XQnk?4WrBH(Gy9W5mm{o|28k|J8-woNsR8Ls0qO{v zT1J032%Cxz^4DIim@}q^ER^nMrIj=-$m`czZ z+&G6}Ham}&Y^ftSE1Hh%W#`M{iR8n_Ri8kw?(?0?d9ccUn_2zf<-bq_(#VHf3c0MY zPS}&MkXyQ24k5-j2-kLwKNz*aF0`PSausj~rk)vi_44mwuS^*Y$E@w=@|jmu%rv~i z|Kw-r-poDf%1UsIw|h&K-rI%mUR-fSIWRtxUjlmk^|QN7(!LimEP1{kspNYg<;||D zdMI>%Nhb3Tq_Qt0&>u=XUY$=t=}YaG%NjUb74UV3vW`@haIy$YTxX$rR($QNX1Ia{ zr_F|ul{CJ%tgejRrvwh|+LQCzmoK-;o;6b<#U+H?VuyN!My4!8``R&K5! z)-G&610S^Phkf7}X6pPYX4Z3rzLnA{YpVi;4cVTuxe&+-ioeSeJs+VU-ejnd_vfl6# zd_>&c2p?PO06jO?kCuBRgwVQYzT4ae246fm?xPmb2|>S$g}sFYq}nXweZTGv)8138y?N4K>?M9&jrp#VDT^UO z%&iWw>H7AS4$jqJG<%sY`Qv5ND5;)O-y#l0?Kr*Qb`!%%oqIoKSAM^y^L)B@4y`OE z1zL@-Ax%J>K?NjF|9*ElVpvz9Tz6|}KD^)7PjyNo?Xs;@&$YLd6Vb_}Yj87L03TI5 z*5?{mb~l)uUGzfQKx}z8x=(%mLcJs) zrH2UNku;|==^*xJ+d>U(TXYUyfTK#-u;Zfx}_Hx<_E@k#~pRn}t~xnO_R6kiMd z5L{$?TgY$46O^6Mq-k1OY)%sFEFiHJoue9WwSNF~3~zO@gp%*v>izk(WCOpN>^iU` z$5veoaFEU7CTlIICtYbTtJkq`(YMid$b2Y>VGaO#T)inDBx&32HB3hYP5e6Gc+#?} z`Z1?vYlHd~6r}fQXP7x7F_m`7xV01Ta+~P^2Jm-W)5b6mi)yeQcZAqvy<}RuUptX6 zP}_vHo%qu<0OE`F(j#B13HZea~^{7#BRKpaal%%+|U+Tbu+fjJK zQtl>bgMyRW$JlI=C)p`(76|dyjbgm6^&J2i^cxB7t6fXg(dY`JbTi$^+zxEmcRfOk zlH@wLUG9eIZwuPW)rMSzhUyI^9TvqW)kTsiml~- zgvO_MTwkn#_LEhzI|X8&b(L|fU$8#`#rU7Stj_~r&SknL4u_6CGCZxq6qE=J-S$wD zCkwl`te-T3N7E5>DdW_^Pl-wE)cPS(*ii3KRW5D6hOQ6B$c8_|S zq|o5`s`xaHEh18$WXvy{H9T7dO<;zTrG}gAX>5GVB3e-JR|^0tn~{HpT3Vwfz!OWs zXKtiHHvHjht`$3B7V;89YQ~h09&eDN;Xrk~Og|w7ZBQOwVF`OBR{ObqHWoXt#wzJO z?8Kogg;TD~x|>t8XHy%z z9#0%2;OEkmMu;UJtT+7C;Y1v&yJAvJba~FCFRU=RicSd8iNzx7SiZt62?jnqi`v`4 z+{i~OR^Y2YTu#}Wto&ri-yF65uTeeWw()%|d!=!{JOz2l8t?l{B41Kla`?Ykewrvh z^&8(%2Q%IK6DJAjm3Lot4G46czjKqn&79Xf`fI9^i=4x{{}MUdHsT~~kb4z_a;P77 zRDAdUvZ*Yj!Hk~XW}*XP&MaGXvK=g<9oWs8*L^%A2PIB{#*IN=4(bhPwxSmwNx8<2 zHDkCGo;G=HpPhHv7BiT=-?7kVDTgYpJ(x^U-nCnsiDg(qI?WvCi`_L}_crww+85pp?$RnznQ+@NK43r8|IsLH})=_~28WUoa zNsTBz+9pnifw4J)C$Err!;l;MF>OCJ$$7{5h6C~{MCN!sx!&h3*q#vVgN}k?yWDF_ z6gle!P4ITCZb*I!#5*rO(tNc>h@au~31d#q76jQI5~vyA`?B0E3&qqs@Z=iC9~62= zC_d&o07gMzP32T>pjAbex*RsM^t>FSm8zZqC79_uV&GEm%Y+EY@-<8dSewi1-i~oc zSJ=k6NZPX-+A~%u8(AqX;MXqklTXK11L)PoyGB$HA9T4rLO;j9&c=8{NNVMt-)KP# z&~vgkji>?&E(8C(@Q%!%sFz&xyl)a2l#oBWf7)f{J?KC~dT;{Q#Fg-0e@TIKxP2=) zzark-eDm0)m@J@s!xs^GP#>Ja3Kticy^YATs^ZA`7UgB0C}VoS^YJf#kBX}~i*&^m zd=~Nl%`~G&2+B+e+xGcVWux3?hvfMEi#=93!;Du8#d-nwH75^qG`{ROCl#C#`)n~& zEeZ)cXH}7br51gkP17IKH-N~TL$GC&^1hhjjSgXu_4%lQNU35p zV+q3>y~zGgR{V$TsW}(n23@II%SDMG+Yx~RiaLeRS8AXS#iGdTT@p0kd_XV3r!Rh1 z50GoIC(<))bUfojvIQDsM}ioY24hT`qG0XnL|PHbKVPLu^~ z`6u^X3sbAavDC*iB20(<%8)8I)1vN;pxo@n(Nqu~Ki7O^@VD|`6vP%8+lCc3WhYlGe7V(tKPOw%NOWY^2vnPFs_2Y4#GE{MAvnK^}8 zYk7}&=~xj|fn|14tXV<^SnU&6&jKtT9+VEoB$Vp@vB~CBNwqle+1e}``%p>rX;$q2 z2{*X?gH=|X$u%QHvLxFW|A%U|ZdBm+3g5{hO?9}O9yzNdE5a>duL+`})b*!Xiku>f zEA)(}SsXssGMP;w(FL+?lPo%?bA^QKZ^32aO;1XmQzNuI&c|vI@)r`My^CtdIR=J( zdYb5!D*SeDbr!n>B!wU1OskwYhlp&gYsbHI-WB-kIO)&r`I@9nxZEmzz7-X=`?RBC z2O3tRg^}j{*C{Cgo(oiXWh9r#*-c~oT#sd@^A6gR#GmeT$qOo7Jo?Gbi89WoN(boq zhZTf30~fz{}IKH&iXsLv-MHF(~`MTOr+ z)a74KC!jv4Q;hJ`FImzblEM`d7DQg-lVfH0oU;?=q?6CXdF$t2A#o#W*d6~&4anHK zW+yPoZe)O}rzD#?Hq{hORUG}-t=6e z0xP1p79eOIqi=hvGDWnIob~_o5J_Ir;pMf)a7o;8xX?P_iD@6@?2JylVvt#e(G-30 zXrH>dC-DutWv6Dow+p}hO@(_|qW`gOHs0a=mdU#=Kw^+S|wKs z-*x7rn`~j|^yN$MSB(1#Me2TpTIKQD^K1b%2W~@eyV@i67K(xc<&+ob9AxF2aYU{R zK`^~Q+Za>P7&R{AfBTQjc>VqP5BR#i`bQJZoe=WtY<{~tx%l9{qImt@(JBu6!@WhO zR!DVYZ`&*j;B;${K$K9}-rMvR0X8-8z1IR8Y|6*F^q!n#E%yz`u zR*zoOc%rvBU;O~J!13`mw`fPTa!{mG3uVl)dv)*0BnQfKd!MO?rTAYMtPW%+_ScPL ztz0jqrspo2i+i7*+Q7<*>!)4bicI(_CqlduOP8Pw4;?2$Y%`Z#HDUd$M{ECU*dT`l zvu3yJD~bHK{bw!itn4N|E@inS%d)bgEHAGF>FdqJe=AH#%hcytW7JC|R-!F@nTnyJ z-`SD4X*SgLT9iNr<`TA1G9~VodtL|`eT*l z6hu+mr2)|gHr$Dpg_y3^ED8q!#{?Yodv?A+mK2RH9$2ac#P(b0xk}h@jBgMxeCm!$|Sk$i9zSAAb7>(L!x*yxq ziEnI+r0Q-Ot_`KWBT%Pl=8mLRP64CmRcea5!I5!E>sX}yZsHP?n`IZWCyyN z9J{;2yR~!lyx-mL&bI!s1*t1H1q~I9Ejf&QqNyi+#C<*f8NIP$tV41WUzrz8cK^c? z8ESNVpPmV^)LQxk<$L^vPI{JtWzD;rKvUI!a_@7<&$8oTBC54!d|*||cl!%{iVf7H zlhoKzo;o&w?At?Fb`tiZWJi)*f1%Fn{lN;t7xmicW!KANB|%xQrm35j4PhYNYM6bK zgmW&`bg?+2eD2d$Flj`(JqyXhxpj9F?4seVp~Y2()BRfwGN1k>L@a~z<#k9bizXCf z`YZ`%HE=n`eH(Jm9L*HsRNXAE7+Wb&lG?cFxK$`knN=l90LW|qUiq}pRgh_XLtwaC)&a_3CiY(Thk zlr_cnuc5<@@bL;l{NQ18%-3yJqd>@*%9Jy4e0kv2eExEW3i9A#dHt`WQiG76XfSqV z-3S1=@~GZg!Rz#(aP|yGHA`Oc_&NyV$&`WqWL_po*N){Ph$9LwsTq_kxXAx~L1&G`z5QMw4N`iwWM4nO5T z*P4NlDGv5652jUWXOFzbUeStXua_TWGH|qg!DqMHs4%H$gZSfwTNQQJCCgIy*oe}v zN0T7lDIu}TzkaGD#2+XRfvX1jM`Vt9X8hNfJ-SC-ab)hq?yT&*VIr!{SNa;L`8+o( zvp<5zHr?U8OBi51C4VxXDn`ttU00-QGd zYH-y#+<;CECgjFD;~Jc{ma=CRH@F_ac4%Ymm~!%9(eRr+wznw%emYw(hDBb-pO${o zDJ1OH26h*2DgF!_gONdzk;{S+!JF#e1-pH3rwI-WBfN$DS!2?l{{ zM$yZP(~0_4SAc)tytfsrBnr(ocix8X0TF}K<%PF^kpwOkFr z+^&Yhhy8DeiDjo}SX2=ypBvlss^(Dz!07F6{ldW$0Y;AwA(xXhDuvF-QMg2tGi1)W zY7lkYfIBST)*^Cu-Vz~Q0;2)4C81m@)~7QC?;q8wosP)ePosCt-k(gZlioB9=a~mR znBm?gDDMWx$UYuFxvH&!l-Zv6OXfQ`zwy@kFLDZX0WD$SKj!sgE%FKouLG&pTn?4d zju{h@&dV%nH4KGX0jh+-s{{I90h{+am?<0{w>x zJ3pe;u27iV&KzSR{LO6rWaJvY*iCeowSF|`i4(%sFPe&7sQa~AzH8CxOOyEPxb3Uc zJ=w*{?aA^hlvl;s{^Z>BuTjQ8eJm~f#Z+DyZP?7Yl1mWBJjH864m{1Vcm2sT8EshbiG&$XZG4ZHzOdg7zeqSxXp&^m;e; zly+-Q-r2yJbWO8Hz=ZjW2v_Ej7~9CKiQ$b&gdTMuLXu;utOJ6v9yR&dfEw1-947}H zL&OxSr*f?BM3HMwd|MtWkCE)lbS@iP|5#6)86&j7Kd-wY=uw>U0?*hClDPsPk|tyLLf=P;nU zh8Wp&bxst0 ztu835Uvmr}j=`R!PA_$Sdg5$>r!qoe^C0VAK{uU%qPKN%iX9B|dBsNUY;p`8PeGl> zBCK}kKc4x+FxVl=bGKUBeeNr9b0*7blOiT>-b1=2eyk` z%t2E!qG4Y&RX&3aXS>GjH^2f(ds9 zM4j9CQ^OC2K@V}(=e~a(fd)yR>h9fTtkQzL$c%Y0?aR|-`Z@nTEd;ejFZGm{Yj2b` z5lNx6{^NdXQkUsD)K@Nzf7Rd$qw0kFG3fPW**j6YNu2NB$Kw`zxkGZhR&a+Eks7wH zo^Na0>gu3ia9Bw>*s&2q3jgK&=e&UgGQre!+ut&K`hYZKzLR_YTmjXsdl8sFsGaK; zJDv8e=rt-5ztLfIJe5Mj@0QQd+Yt(%Bj|8K`y{R)E%Nq|b8SS8$Wwgl9D&=wShEXO zxv5`~jK?!G9(_GP`>dPp6CxVCl*xZQrH)5g@pV$xMCefG8Zw^9AlbRCoiMW>+83%9 zg7c|S`ArlB)*+q~n*N_hENygN0e(9EOO?l}Eqv)d&oziVWyAv6?fB%q1BSQ1_n<6> z)xFogT#8jLYSt^3^}eb!t$59hY~B|S*b}|aZRNes#SG^Moj90FQ-|dlVHTwTr7Oeo zH86`-E~Rs{?_7r=xE4RCbOuA+95Cl1Hxpdy3mxLmw|tpZJ;8Dhp=4hDF-Zz^|A%zr zy73{M*&teupU%*FrC!V&rUA9#bbYTaZm3pzj@SKDA@{CCPv5N@`Qv|Tc>E@`Zlu(p zv5Nrl5vTj--LVi5wc*V*i$845QFH)M$*JAbC3% zdV&F$@(=j=c%VW|1SEM3a{>+^;hcNvRr%kd!Q;kgK3lH@+)-M?>pj z5QkKjp5Z7F;q2)0@dfcAA=m*j+{Ndo8<9%giN8cz$Se7^RoZFxq;?*lmBJKcd!m;t z5ux&!S_fk%U+I{<+`G>{W%_ftaPu6Xr!EK_~fhmJy#eH@`EpVg8 zq^2B5T9EnM$}pq+^vu9otH=b^Ohb3rM7LDjSds5JA>-9JbRZ$obC`P|Ir&C0Ya3(}<~pey?#LaSG6cEb z;oML=bTbr~fXv9#%BEie*x_yH`$8+s%S}OA0#eL7B5#=qe7LrenxNj-ms&RuP?~K9NNI;i(gMHmq{6K;nKH>s>aS_;<*~*OJh=7%hPkb!Ok4S z@G49Bv|Q(*pkGX#VG#fwA>|)Umb4&E`VUv$IW;ABNV=YxN3V96{#Qt4<|Z3yMc>zv zcrBkEXRmKd*i_pL+UZ5*zrfDY5o)CA;N>PAQQ!8}Ph^wE>s93A;1!-Pp0sHr`4lXb zn$6YG=Huq!;{bF;`Eqo4`yQFWI++`KI+5cb{EO3ydAe5MoCTHY6!Sn|jL~8?0u48{ z(b|f~Bey#wyz;O1uCuHCGp7*O+x_G0>&RtSEXpj$AgQ{bIePl6ZX>e7O<^Mn6iaB+ z6Arj_gmYGz@GH9c4Qwmu$uHt{x+F(T;A(a29n#gcwvkN6cVxB(PB|l-kVUQRVploC zOWe}B*yX6@4xtfp(zc6)YuhY$c4+SS)}-+z{WJ6!FFM^jXRPMQY4Y#`^K9x6s*RVs zST-z=lXoFtz0T_y;cDpr0j)q%zadJPyHnk>ctR5oGTpisRvx!rgXkJTgI3+d@s$#h z+|WV|0Nphaz1=S&Pk#wUWyxo9flnlZ8b|`nOwbj~z(AU!f&Y07sE66XW48fcE z0)!T|OEa0oQ$pa)OaVfR+NGJejOq3iIR6W0s=OJy2V}sbY`97%rM@J+XRf+za@1P?Abn6P~n$uraGF zs%059-_={niM@vEI)Qc|!@aYL0&%QWLRx3GL^z5w*fY6GmeT{GrN5@o-H4gpYtds; zZX)zGCPb@hm%^b{6k$|i*o&IR(+NtyepS$KE+C&}L%*5L(+tgw&AAr}1deXI5MCy} zJHTOBOMcf5TA_7JM)K(1t3S>!-o5>D^*Q<}&?9$k?V7l?f_oFo9GvUb=027QlZO3+ zk=s6sso6RZYAt$;$|6~6g-@J?&5P;ZiU?z+#;I0lnXFJ$w+Z&GiDt%FhJ4OlfU0Fm z{*AL)oUn&x%<0Y%8}gBiI|8?|+QWFF#yd-(KEaM`vF?-@JPl z81lJuL6JZ5s|mbX|LNwJ=S*LRG~m=67f*tHN2>l~eR@ zMTD^;;#8fY!{HfWjz;1vwUs1AL&q@;`KC-BtazMA%eF~jBXzCJ z?@|ATD)q&W5pG(^hkw`CMN)(#49h&t3o>0Nqzap=ChV|+w&3;cBzB$9VZ7AGwqf?| zC;DvcA)M3!Hs>HMLJ{UAL6ufr8k!~O=6^Nz9o|p3`;g;6cs8BgZLj*iNM%YB6UZETiK6l`ZKeKCY+kl5vWLKqC8YZ$8|{}Qkl}kgk1r_62C%K>)Ojn zQ$|EG%2X#cv7$iR{GqOrbdTlO z?fmMN49V3aH?k z2*#>4Jd|v0%aB|>awChX1-wBEGVHAoWKEM;XzOT-(Uqn`WTErd=*gAB|08+|CMir* zrH?E^z9}L#E3uFM`tsDsOf;`Dys6gf6#0n7M}-^km>5WtfNXPU^F(jbO?+YVY9E0#K+MH7;got$<$)G5*S*jGC@Mw4bMCOS~=+@QbJE4sUSWV_w{2 zO?6BV^jREPn&laNewbZJ?!(d^fXXyKml~y@KkDh!qbz5eH1e`1*-=Khn7y)L=}zmEkh zE+%t#?A#hbv_6Xq+xWYi&JC;OYSKG2iEb5(eHq538*#ZX68o!@SieqUr*#rn+ihGt zxi^f<)ugvG38UXDcF&?idv05yI>fFlaon-rb_MG)IJ3%2KYuHgZ^-A&RQKKf?Y?jm zCf61^9|dlQAk0~v*^E6`U~E`{vHJ?_evG)?7jD8dW?_GJCyG_JWK_uBtfTX?&)5W} zODK66aa5|{-|lbA9Cjv@QJQCWFw1_Vr_4uF{t{Kp#G5dgSqVLKyeyLk6cLIdql=eg z=l^tU91*V1;@Z9lWf*N2De`J)i((vFjpN!?KoO?u>2x zTV8Q9iv{#Mynlb0Atgi7N1cV>X8>sNz(bwp*p0{g@JVuG5Fp>GIhz ze4}B8v$7R3`nM*cO0D43^qpd>u|?3<3fF?yvwQZ2u82&*M|Tx_@z$6c?nLSOQoR*1 zCM%C=gK0FM$<^Qq&i>u@T_Qadp0zY#m&QW55utW!!%$%4ILb)<27hT`sWcu+tNDPD zg0l9|wgTq$ltpjn&S!dkouVi`KdN^=z+&MmO`u-e$rr!DMPn;el7EyUks%Iw05T%K zE#*FuZn!a~k_n1Fi=xG&gW9MSLnG84)6~E;z`$;0yL^NjrzHb3bD?~BmUWMV*( z)62$@LCGU^h?2nl6jh0$MZ8M$Wwgk@jt?8dDw!jhGP<-MX3lAz-=ozWK9Hl?FuU{x zevEf>c%hGD#^%Cu&DhD@^yx@RkI#kid}7322livO1VWp`g{iwdPlc*O1Egd-{E)1< z#luLZj7s+RBPuC|zOiazr^Y0n)72U9Y8G}q@?K7O3}U2&YN`bsh=r9*>hI)Vh~DB_ zB#TNX7!Y-|2elR8&O6IET~;Z*n5dpd@ax*KC)bQ2T5&scity^=43%XN&YabqFX)~C z_NcYsa>cvKY(1k0?n;nbui?CaXRQ~|g4tF5$?7Zi=&1of8)kPN;Xm-BsM=$)raOkv zj5*yoVwdLiyRtL%EkkI=oL(HUH^5>4?vP+w^1E}*LxN!j@GoD@qm{2gt7_i(=7e$8 z8{YjWaPswqiANWt?-0~q=J1G$N^_LHG*EwgQpiCP-gIsBJ&Dn0B!*v)n8;lYrYiU6>hv3$moD?&c)DCN z|CVx({yMD;eczo#fXNE3&W|49As7gOP*xWC?kQTszQ=gE8QrWnq^qWI8)h|2yNRWG zKj(NZXw0~Ad7AVlCOFbuQDGfDGq|c1M$8qNR}^CbM~4xaXYk8aEmM)skqIYJlw=V7R0}q3 ziF_C(K{4iZWw`3%yq)1Ai}Sji?hG$InObTXSGqEXrtZk6GB1*4RFNT|DB~m>+-huR z zwe9WhAJkT6ab@H99Rqd-?p-mUM(@fr96ylx-!2|}Y0u6&LA*YTGaE;;MwaGvb4V)G z&Ws|p95QMJoZH8K>SiCqkk6&b9=jT>-_>B}T@6U2^~8I@c2SHurwrelJon^l**7Un zZ4Nq>Q0-CnXSc&se@XVE%ch+|lc-`KT$^LUypeJk%c#hVnG!YZcZ}|~C@U4u#>uGV zyU_>awr&>*ba$Z-si7-fk6gjJ(Ou_*S`Y0w?=Vay#3aOQ7n<<>r0i$n*LpxbRt40F z4rHHJwmc)1I8YBv`VP4kMgRspHijzilhrqIY=5i@^`u$-{%lXEo+;Df#%k5{K2Rz7 zz#h;c(F6W&w#TvC8gx5H`ECkj1Z@s`L+b}pyx79;e~!7j^LP@t^=V~ zic|5_2otRc=>f%*u@pL>m$~F)ePC-qSn|_=)siXy>F{gWnD8-Ymd@&SX zYB0I?KpX2(GS4pPqZx7OI6+66y@f#8_ehoU*LERKvB~gr@LbzLbP>Gh}g8UW0n*pK#2(Uxe<8fue zBnzL2m&5&cJO!~+e5WVDJ3e2)MIwp5Gsniz#;i6q^~)K zMZTzT8L}&+!^foDgz!%8Qz&~Z_CBM=Bs-vYCK@d=*du0TaL<;|V}OKm`Q# zV`8m+$#z%d52*D|_>jcmHqM^HyxgE7EYWg9U;G}nMn}dEC&48nZ~Yw*@&L#KN*=W2 z9ZfS_#%bDgDZ}dY311RS_FdCtMZv#U$?~53TnzR)BFTR?fBxb7ZE^=qBD>>%q3Gds zzxR?-(a!A0{E_P zN>7P-$A70fvc!*~f}8v?Ec1|m3xC#y6`qEFCjSd16_Sz)Uy=_mRTb71>$J}BQQE}O zGS(0DJ5`5f=rLqcltD$7YxEfKzehmW>*Xt5pg!9t_PGTtE7;^0rA-k~BpsmE9AbsV^cu}QsagywwvW21|H4pbkCq+ZYvD>n!mSt6- z)%TwnEsalTbH1iy+!Y_=)bx7x@+7PW4A@(c5Xs>Rk$?`493%)EC=N0&M`a2lQcVzu z1j^cw=98FWM{`}FlmSmAcE1%n8Uf?0ein+vFUiOBsjDVNL;2vIv3A|nzI z@z}JU7${ou!wHXpN&J|TF;5JI*+@7XU#r*=}U5XlJj^ z(HI}MT^lE6!8BAwTdU6`c>7&xcwXbtt~6v_skeR@o;cMS9Gd4=Kf`;dGPSg!o%R3C zd#zqO|5k6Y=U>Blzmj&;KoLrB6<1JQ?EQyiih}^7p<@7jp|-hJT*Uy=1+Nh4DbQFK zEbZ2IdCA_4>P(=uttASaJ5_*;08HT62vEuT%0^&kMz7|_*Iv5J#!IjD`pehO`pecr zTK{A{rj=pPhlH|zvD5cy_cYK3AVnHit0W)q-nyi;V>@SeV~_~@vdK%uS@0GpnnWDM zKWEGn&|>!{_A#_>C)-_K&?dfBS5fTWMkNZ}T&MekM!@Kx_EzD!D4X|IZu&R= zZxpW{;%tdlYQ5|p7wd4@w{L>C{OjN`FYecA{)oZdU~DO_45(`JY*`@4=Rs}O>c6CF zK06zd#(tpHJ)P>>1~lbgzX|K_!^QHFpLIvb$&GD&4b2s9iG|4viLgl=PHW9J&f>fNwm~yfUqfr{LeNh81Bd8Z`WhN5 zP{ZVhQU@ZnhM{+4&`=uq+4Q5GyqTK)-U5*Ds>K&<^3zTXwOmq%@Is8Om8=-I|58e(E*DF@4*mU%fCx;Ohk%L6t%IulO)V#xoY9 z1>o9y65rt z?~@&TMM7@k>^MpB3sZXu)|oaInRyOHY5_0>z!XrXpk~tY0GUY6&~NsAK~QZvPcn=3 z)PL^zhcA)TT}(aQYUf0C8II&lr@Xw%OP9qnA*fw3N&&X|{`{ z>*57?7l0*up)71AC|4RNWF||=SyGUaQv)TtuXOEgr!OJzSow5<_@8yGA@ohOV})wg zYS^r={V5QB($bmci&oVx zg`6x>Our1Ndo2|P-v-UMBiR;uNw`{Yz(~h3y_fW^a@9*O#}S#T75gK#gh`X!q4&80)=6 z+ol%2G;En#!kS!?n$ndFX=FU!#RU=vFIXH5@5z7D6^XlYjKc@wla*4RA!tv8e;g40 z(|~X?YH}8Fe1wI_fUyL9mMII#K&F*#W{aaVt&T#pT_8H?)oD@$@yrDx8B@=6GTdy* zmdOcPIa3b$>pn+y8uK(bq@<0Vl*aUaqzbW}PQxZv-A{XGdL-q zqnx^^l02tQ#|5pNy7@>luyub_ZP>yee&}uHABWLdIT4VqM7FDmm5>fz{wRhb`nBas zE`WS3#xaU@$S8sllyMidJmYu2>+5jSW#k_fQ6CbznHR(I-#tp7LiCk(U;M;_%GM5v zN~AG7($~;QPQQBVwzZ$9g;CXj1g1h+ui`7UL8@_?@7hX2z|2OHpQl7oZ3#hJ$%xjg zi7{ttFL{?x%rnY&XzvMr)+9uxc8u>sNqCjOmG*`Ai3jIQ;_k!$_y2x=U2Rd3EWbY^ zwcrk};U$yIWu8{s48NEh1l{Zmm#OY{SD;*9lfB?lU7c(Km+Ls+?r*7O-`uuuxffr< zoF!xXg~>b&`aVR4jSL#oL!@DBhZM0nT8fGQ6%%6s3zJ^%`rwe`xI9<@v1(a^u z2p1b_`a8S*ZK>(%E}H;|d$vhOl<|&e*>*%>-4SWc4LUZ;W(VTtZFvva10I_=`0GxU zXB8cT73URQDB~)mHMi(u8pZP+@ZpF)REg-j>gdJv9X+(8`st1Q9m?VKC);hSI%RdR ziGNQoPvf+cZTtJmdf2ZoQCVrDzS}WdZ;!tAfIYoS-+sXEY|tM`py@8ib#~@|(UALk zG{2^@1Si-e&46_(p57SO7$r@Ag>$I|kGEh8=cu zOtM`Nx@?KGf|-4PosS5uZ8$yQu?)YJrXkbr-dihrLvDrZ+GAryJp}Xk>8Z#~4RL4Wcl zykMfljMdLf)ajdm{TPTDDE6a@o@D;`Jm0a+W-mxZs&EPSk!_5I6%cmQ2s;ymQIC>| zW&3l$e{T9I18wVGHinjvVVJ$6Rnz;k)=U?VP`05R3h7))|5w39g>iA8A&l)TR8fF# zGq@O5py!pkcaH->WV4TliVQ@N(5W+#K`m0>lVm`s*ec4(WV zUn^<_kI^Q~Y_l=)732;Z8TF9(3KE9(w>l#r5w}AHv=Dx&BI)&nYYL2Y{K$n;zx~`5 zDk#m#m>(N5?P%oHJmdH)({cQj$8r4iKs)Ufr|fd_NrPVxwAfy$-ZI&*2ik70aBul7 zKp zAYEowk3L}Z+TGm`&WGk76o%#>+zib>oY2X6(~9{4@?;5JGx1INWY$;x0M~pd$^C&{ z&I|?6r3`Ay04w)V1Qzq_XqupP@x6Bn7<%$$Km{!%!05*1%^H;GY@r`6MuXGN2X}2%-WmDqy0TPQMlHdE@cf%wRx zbD{ni2#h-247GM3BGT<}lGUlEn!w>;5iVK1(guFzHLshjUTbUg+DDX{tbWi|S3et~^!WO7hdLWj^XUxziiS(_ z<$i3J0V$dOodvhL z(xs=~vv-Oj+0k$9%UbqKu)T$~ufNhAtR@$*?rBbMN`PIEHQk#Ku?Ym5J~Cn;_*=Nk zcg-evdNfPJqT79(3uPS23`eRO=AdS#g~ynI;BNtEt}Fd?^{d3H+ag2ZIn)-m_rAA5olWVT8iL$cviCw@#i-2EE%`dHf&Ms47snI+`O&(dS;x7y< z3H66Zl_WKYy0Z%z0Av7=bUpZir#oUji9$$WA+bp$g z6stjV-ncmju!+epX?%BwRvP}b0cku&g;49c5V7(#2cMfG2t-Iw3z_f%zsk0oKNeOlkm5i}6g<RkxQ7n(DV#++rUWOGh!bJ zF}MP~lMrkLl_gf-&bGx-2OTS4`XUi>e?X7Jb=qDr)vU{F@2#TXBgIoLfIR;JnyNfv#KzvHz$Uyx$NoQ zRltZxbl;|Rbka1Nq7obiA=lr-HZDlMikBjGI?uM86;1tc)x*A&VYl&vA~yBRhpRe1 zY8oGr-Fk`27UGQLt9W~3r#}~D4>^)Fw4A6^pt}NLNL8HBc;KY>^k96CNXdk0t`aBw zGAOk()b^wjt^l}#ajpQk0-OhwYuKy=XaD_Q|GVtQI5Z^*|H44JMQWzhlDf+GC4u^! zviCkCr=;WVw%h%~1s=O{6Xg%6fD2H@=ZAaL?ENiL_`ftsR5Gci2};ts$|6|?Z)qf| z^=gh>sb}#W>FU1=9}(@By6fPb$FQPba1r6kfFeA2`6(FaYHVnm*t^ z0?yNZMV-NU_KrdgnaVD^Hcq|{*rzI$Uz@F!fE};|#^rcPpRuPAL%AXUsk3=JyGT>y zf7i3+M|HU{gw~`GhX84_n$L5Tj8wrMo0PKL5-&;R0qtRGj^Rp6I$I)*9kM|6B1rhx zlhcrla(_K}CB4T*vxKf?SidM^5%vJs*{qB78<1M6*#p8Jkl~K7OK+3;yOJ*+zaw2o z`A1BB5NdC{$Q;gzu9&gE97NLxMro}}5eL^Wwiu|GL zArBgW(0~f1JuL_gxKQYJN&iiS23%t=`}qLjTHPx=$1lRazG2s~kdV9ljud}({~hV` zQ%EY4IdBDLtrEyxrcZjV`lSobR&KJ~t8fL>wWWCofcxq=G zXQZs2c1U=cz|3mE=)Hb1hS7|kFW>av!QjaxU<)W)`_zGs&8KgKYj^6Pna-TWXKZ_6 zyP@r;%=YeVy^qz8;9DP@G9PrO@O0`fJfYhU=5>7WO6Ch5>qOMts9lAGwGwzs6H042 zau?2oPhQD*BtBOCZ#vHU%Nts! z>0A!VwIF>roj%dGV95W7b&UkwAcxMpB-2Ji#}O57oT<<_@h@)zB9%>2p{jvYI_0BJ z(}ZE?fpZf0bE(ovu8u?hdh#-SPRGR;Z^CtzrcdE=6BqH4jExYUh+*GzG3NV@#fjgA zyCNYyGVCuZDo&5T3r|i?UKl#KqtZLaDhboemqCpZP?SJK=>(q7#i;W;7O8$0P!zg1 zilFey{9OPjdIfMAK4-BAl)&Ep6&UVdq_3+_On3S`@l|4S__ycy~Y6mG4(nsg)=JPEoH~9)n$Ia((GA!o%A3*15@f0@O z6;3SN>r{=7cWcQ3NCq!)$pAyT_#DD%Qe|So1y40BV`#DP zWeB(GH`5weu%&N_{a&}pW>!OcEp|wm^rT90v@Wv3a@%Z21Vw_rt%#HlP z#9Bzu3h8@i^o0T8WdZ4>{_RTwlP?GeF9)==QlV7oILq=fCSQ#&Q1)o4rWbYc25u@R zrCYK5^xK*$_)qRBdK>~)6=({LZMpbRd#oX!)Xl})YZ5!=czjK2PWzmy@v4u^oc85Z zod;93R(_=B@V8O<{Vw$Cd|D~$9d0muZR6jF2+{%{a-M5+a-*@#4gAqmuj=rZRXIk` zVAT8ZU|g*+0>H4l^;qh5$-T!=3=3338f?#OdL;}g*&-yhxJ*bBUTV2javicZoaBz= zJ2=2kW$b$qd`4vit&B;x{BS~AFx&jbLelyoFXG(?wA#~D#|K3ACoS1OoCKVK2eE9t ztr_-Ap0p0CP+T}O=uAOeLt~+Kv&zs)XY&S5)(p_iuJn|R7!YPP19d~LWn(>Bg=Zb? zX7~yJQ^2MxLsudvUT@|z?asO{oR%&_Ros6G<8His_YQnbO3H#knx@2?_ z;_o`T{ir69?Tr&Q!}ZAMTE*Wd^(Rrpj_(?7Yho`rth0nW(rst5A!Op!G?|r`E^%97 zLPP8Yr*)FD5!P?Bl84u*;w04-6Rx-zm0hpwHc?3@ zrOK&fcQ8zuB(#I}R0(C`-}bipOr1%du#%?B*ee_t4V*Ae^tbucHIVfWyl*VNLgBv(K! zL|NsJ8GR&TY&4MStQMPe6D3iSt9pPHxNlAt{hmPK}1RXDr)VVYUyjZCP51 z-3$n!-^1P$TAQ2iJ8JQGdSb+_sf1@L>zBRw_S9zoDZL2o>2qEzH|(Nm`urP-UY?Us zcl%-(TpVrLovs=yMI8;radlXdFp|P@%H*n0Puo-a8dK*j=w-5wiy7&q>1m_5%amZ^mw!W0&fHeRR)d%^+ITmVUG>a*U&gI33%TAf=~0HhWzS0B_hT z<}F*r9JscV7XrwDi;a`j-c`m!sy$oQNNQ`cygpK-hXzU8Ku56ixyfq%eAo?YVsBJd zvj47R2R#y(;P9TzAJdhCf}9daZ)PAN?@#pip#OVEYvKNa(db5?YZpJnQ)JNBerkxM zfoC7f`1S3cGH&1A-qZ55^Co8-fs74#eGSD2xA$a-FKvtQOMlqf(@cC3sr^xS;95Gb zZ+cxqtOo*z#59+b!Usg0RLG>Dso@|l{M_Dv%IH)a4oobWjn za5iNoS_WN(P}(b%uEMo_G$}8hr3HCy|J6&vYj$)P-NCK{g(c<=-q@)<0c^!m6%;Mx21O}*6WX?`0H~!%IcqKiRIJ*r4HaG`IR&aX7rg0q(;)U6qpQ~w;~>?})jg*g3r zLPy=q8&31AtdnhUppJ|k^v-)>G=0pAm7xdpaj5wX zThOwRiBQWX4&T70X#4)gT^aHC_T6ENf7Fq_zm-=;yuYD$#JX)x=94VIp}yoN`B??8 z9cECMKd8wCG9F(AEm=Uxn(|VurF9LEjnw)U+>S}Bf0T{=e;|Xx9m?2yeq#oDZ>1A7)bgVHOy#5|dm+uSMp{ai z2z$tnc5l02$lxOR+-vfLC~b4f?UQR}ot(-eZZgEqo0Ho8YLhYNaN$4UA{U`!-O~pM z_7pNVyVgN`F}#KqUj--M)fSI6xM7sqz`7}Y6r}xug#7jS%KIz}=)1R?5O9E&9|LXP zwWTLzYq|BiwG@mUp9Q~m{5N=xc1jukZ$#?p@}52l)j!q?g`A3>Ryp6RuApF*u`zR= zORm+05c$_%c`YL`0o&OG)1?I>ku%1K-u(;$85s*5S~5DT;xEt9cSi|>(F4}CrQ&;2 zeD@of;Vn?ew1E%x8`tzk{f2~2QM#Jcv%%Uk!uwQXme$7tRICI~uH>)x(sgOGha*o< z!hx5AJ5NWRo(#Pl+<82*Rk3~pnEQn#)NEC}X3zZc=fKG1ye`77ikvK{Uk$@`X>b+k zLwfvv%3|AI!?=#|hOYl*2`*K;S-Op;-TF)))MGbpa?!LBz2l-kTwmUP7Wa9*8_=c0 z&~(nHC#-_-X-s?PTQfKf#@e*f@>x=Qu5}sPJ2O410)LH z^|n?nyIU*g+{H;qO1_G|?7p*{vv-yUHtWp!q%&cBKyYVHb6ag)RrLGupKC$XVUQnW zXCMj2&m9c-iJgKxeG`yr0NhXpXaDX9$udp@c-2yW;Di zW59m=!>g0vdA@_zAEz$@{{ED51?{Qv>Lh%AQws~vn6M_)fP`}Ub8seLQGfJQse_GJ z_L40hc7Oeq4pJ!Fz=%zPDiUXquD)7=`o(>QFt#(Hj;3PSOT7I04Z552f~f#O6jLB< z6zG|)VwWgVVpGpm?Kb&-2xAmQc3sdekoCi;c9}ph@8=0!232R1WK80BSNcM|`@|&< zDG8{Y1~gmM+njpIU^eus$4lb&t6mbCi4wO|$*`uC(Z0|}eXyO<-t5AnbGPQGc}Qbt z+K_)JdsJVmtm`JzeReJ^>bR(VW>CL*HD~{JD6b$PU(0CHCa)j^-$<^rB;;HEh$`z6 z*(>tRlPkswd}Kmd7x{B7w3}-p*qn@YnLl^21r;$$A>T9G*dH%oalbLT><_O8=3u=J zaeRO0K!bTbFdOUji?>Yn>w$S$uX|+F1A4QoA<5jUQ?2yZ5#^dUGyG1)2kCO%o9TOB z8_*u2p|Yq*KX^}HhlcZ#8A|Rpi@YMOLTS;k(^tPfq1Q@Mnc+_%ml?J)Lnia}Nzl** zKMi7ojd&8~Pq__q7pOqZC4lnz$B0Un~Cqs=MCZIBq2Wy`Q2H?_q5qR5n>V z0fO5#e3BgtE7?w**dHftO-t&tW=1G zBJ0r%S-&EiO%}gQC*IIkUJn$G;+jolaCNH*+;lATgt)cDA6T(a!Gu(IS_MNg!nh&DaT^iYxqIn>C z+a>kG#NKSxL7A)VW`ElrV$e0q$DSTP1PI><1ffyPhXYtxKgMG`N1P}DRoT3 zZ54?EgOL^3P(gaYv_eLE$EKBJ@cJ!~h&`G8qT@-%MaPqji;gEpBQ2Q3t}cJ|dg46W z@{Z5qdr@fJ@eG(>BuWsY>= z3qz-<>wA91^>Dt%j5}$YoMpIqolkq$_dL}I85;659}+ag`I?sN>H`qI!g!muNTuc# z-M5$^l57Y>!I7U>vb0iX`AR_>Hk0Dvf6Jlzy5@FF`iI|EE(%?tW!HW?c0SzG)^F0q zwpRHq#}rui$Pf3l59B?D#(ZlqPaGz03Qz64K7)e)XD>fFz&MMZK|IN^ z%AVv{Wna#|WPX{kWPX{kWPa6ehv%<^U-cT^`Nf(hha2^%JJXZSh2@poW!gBb}iHyg9RKO^e_lEIAvVmDdU_<1ON&FoJu|TT0t6?bIrsw z=4k>Jk~K~+_T~Z%hB_g~up%mGQ}3{~Ke>Nz1u^7k7 z)gWfL&xK>&CxY^%7j!s_yY<-?Nq3GwQUU~x8Gn1`YH$42rPlW#7uCf@eM4dA^qyZ_ z*Lv4W7YnyUvINH+OBYl))&zcLA!w7MjuC=9Q{D&&7j)Q`t`co~%44C|8&5A2l-L&4 z@+UA1ma-{XJ$s?|E1MNfWs6m{*48rbEsRK-1r>>WW^jaRMRldOK%bU(;7z{{_6|Xo z@BJFX)Y@8i`lYkAq2Jn(xtpIMs=CvvRcmo*2>Xj5ZTWtUfp;2JHJ6T6m{FfiRsYym zzqcQDclCN_Gd1(m)FTD1f_)B#e?s?=GL~PM#v>^cutiMkwJDA5bmncNH=dYGA@rN= z3}tcFrmHDe?b(}Cy^rL-ipo!l1uJU1Ii-u8Ll?V{f*nGAN{UWg&t(T-_eF#54URF-oZiWhE5XUC=`i% zQ%~};`YTiEff(BM>$if$z{A7yOD9Gb`{n1q594XIAktF0MBri2G%uKA5GH*i6dpvG z!!Z0=I!O?giRQ!dn!x5 zBvn8a8X8m-Ddm8Js&ew% z9r`3btSjA%aQOUahF6mnAlV8;<1x5fsNXW`b3lcR3Xh7OsU0=aEy!5`O8I?4D2(rV z!8}!_D|_XKH3%yFwn)60QTZ_@N&h<`PFs(=xD@z>E5paadtM9S6&k7R7a=MBcSYy% zOUJC3Jn^p+2!2+Hfwb7w+R%e6nqo|~i(PZu3o%rgu>XC%DR<58rv7s=!c@rsPFgrF zP!#EMUf->aAKW>WN-1JSk=|)?IPaoawi&9#E0Qwb*xzj2?&(RJQX&1WMapp|CLRs= zLt1cjvdBS7&oUO849D-`!Kd)`;&fAIz+t)Jku%&+qKA^hzgg?YvDWsKU4+uoL`f%g zK;%MPa%D;83St`I>#KCN%jyDizGY!>VUo{(^vKTXWm%Nun(z7q- zpV{bcqcQ>AR_0-1{>(=oG3vV&<=|YU)|-@o>?JTqz#*ED?KwdMtVqaoew&+SnvnHTZO=Ba&=X}up&7=lHJqFz0c;*Yp7w${`1en~(hb>V_jd=6uJ#rfTlUnNl5+p5C^KZq5nM2L|e9PVXvvr8-(^b_xI@UyFy zv8~D5&e&4)5co1|vDeFe+b=d!K|W6JhbSI!r7WtOtNO#X8iJB#4T}6O0^qwV=d>tR zLzrE`FDXdjD6`GLlf^?DkH79m%59h^-N8vU$hb4+3^Tth8&Ad^vZwgR^?Kn#o`=QT z@&sZ3?88{qyKQrk2|$IpkMMJ!=(es>Q&FlgPYd`tBD&9r3=1X9MYsG$m=SVDOu8N~ z=E>h9O2GI1a8QB`D*Y)UB8Zkv3UcL0oQP_*g^7gbv&*X8A=P6{U{J;!GSOchQR%ls z77(^u+Y#}x-d1g&2rR%u9zF^Q-sBXQ(GA@Q=CnXu%+;XRlp3s+FtXD1dRE4vO7S%_ zU90E$_1Ec4q^V^-EoWP;KaPZkDr~6hPYxuEYwYX7MA>-Hbqc3DEMAnSso=LBfMl;k zOJ;ROyI-xU#Nl$PFwfNVhmhSfL-$Y2$#$ihk+rkW-@40vHO9pah{HmmxFh^FDm2|b zzf4D@-)iX`(Km`C<>DjQE12%cZZWe~yYCZ1lP&L*ialnpP~S+66- zof@r>?%Z_ov`sMpmhALo=~(AS3->*Qz6!C2Vf-?zH%O)zOvekuIE6St=mKFKKfX8L z7ff?sZLiQz16^Bws`PJgb-Auq;PqFnufnLcRdYobyr0phdhyd2tN>B#8-eI(V+1M? zsEoklTxd}8R{tBq-$>^gCdavc-zvAZy6&&p*n_@cXk) zD-q8%>$VbiSW6|L$qYg_{^vZ*5_xcvxo(O>^VuYP$8yuzWaqN6Z0qP+y1BDyGUoBt zHR8#|Rf{)n@kacxvkS^*vNv?pKo6Zf7c()LIx*}#Ok$4X;tOD0H{^2pLB1!tmf~6` zPD0Tgc^NJmopEiPqD)a7=#rxALw&!2d?D-%3T=95*o8iI7uoQ6+g$EGEsu_l9!>N= zN7qY!n1rhYu5!3a;3~pZhKaYx#ws4fcv(HNy5D$i;=kYj>#KX)Rx^kJX%c|V3fiQQ8 zgr%51jENt?0sf;F+m@S4!R2B-&iif0A&wbV>1*{&u>#1nin-B90R>qfQ30^99QVx9 zxS+EFMpF6gz@~^!F=20Z1_NOvHIXGN*RXNzHt}{A1DZ~K;4*5t#^tC~L<3Pqo*#DJ zv-G-zZ(uy7+ej*+aH)u=lM9)LPO`9#ip{03Qq$TDbCa}dE*?u8Og?QhB`XM6C>C#nqth9%>o6_!6SmV<&Bw( zirCapRuMxj8dZGFJkwKD7o@XM-Ph_FMqK1;zb>)HDE(;=P0?Q(+j0GA^o-G;MohN; zUa-@{^?s!{trwrkR9+XGoBe97w_&3Om5hIiwM_;+{qKK2e8s>r@s|M}Zng}9iVF)` zVSA*x#E90NTf)3BW#;CEb??KypllpP%y?oz+=}Z3RXY&i@p7b$C!>_J^$Oo#c)Wq> zc?=I5w*E#Lmo2Nn{HDH7BjZ{57PVvG+hDHzxey|;aMmtuOjZGrsw)6+CvFu6wVJC- z6N(Mw#P~v)Fh>1+aHWTXEL(ik+2C`=Mxt~&5rkFdnJJ~d%A9;W!tIYd9McM zoi}>6*fKc76T6Uu2dI^f4+5l%{fO0&u%83A+nE&d$S~&!(mTpjP+i+-%sxNP>Uu7# z%0E!(W?Nxc3)}S7&3)U9B&U7u#F$M6i+P>`C}cEE#w;e|X-3Xk3+TSf>aT+_?=PNx zTk8J`&-Ws-8Hjja;3J~U#s?)i*Q@&Cx~^_^*Q^p|G#)-geUS%UhzquE!-lTdI{hBa zY=S-EXcIZv5-@7QEWq41f&1bRQR%=00xY#OBdX_=97@|DIE(SOL5%i^fy123SfqSz z^%NDu_-s=#-oUojBW?$tT;dvZux;H?`)G6CvT*&ul^Nae(LlqnX83TZX3)GD*>SNAGI}4{@SP*W^;MRU`T*<-1{&(+ zc?Ya3Ef^k0x^Tva?N!`@BC79E)| zFgD$YDvu*=AW?QJmTUucMH@gx*6Gv@IUQm7I)qfEYTDYiu zo1NQ)^AB0uJpug>+;571Qy?}G=dVjU?;ZL>K?j#I$(dB|A8Hwn?jKOrZne{6q9I?_XOk?MxBdx(BY z^)mmmj4LWr@f#NOmi{iXF3h~m+c$J8cD=bPs|!pa24^SQG}r%UCVw*e=_x%O=V|eB zbEk}4I7$b(_Gq2tDwg{)TLsh>b`ed4d0o%JADSz-4iIf!vudEfR`p76)P@pDql6pIXexpY-axqf8o-Ti5U7(!bOx)SqzW{f1S%*{L0J{B z|Du}-y3`R}bxGC)I&0J)A89*a4W9D4!nXO_(}^dH z&{Rl+LQ59UFbJ&lgiv^X9T>trb?zZ`w+QMIB zo;;SUzEFSA|HFL-OkbbtKR!227@*z*pS zdg^0wmMNb+YV=jKPaieqDmtXuo%LCGT)Y1B@CbMPXQB-S*rQuF3|6;2&^cWSR=(g< ziHRDqKe|>YjCK-7A;X-jx;pZ}>^5bd$7x2dqD1smG_IQ#!`$FDYZzyAm}D=ng98$i za_V*iGz$%SfOugtW+542ESy?g5trj1tJq9f7B>vx;gzpEov{(nBRg=!1cO`;1R%}X z)_>hMK&RIsrWt)eb4t?jl#!$>BVBpYPczl9`g*lREo}*|#vO4O9i>F6FiJelfF<3a zw|6eZEFW-B?>&-d)5)?t@ssrOWMFT17P~+>i(Q^1 zsl^6dxsv2!!*Qi4;;Wt)Bt?CdenSYT!+6z;(c!!r5U+Px@>*|GR9{+a346AB1I&P=Z$^d zhimM0CQl4@qGjgBXOQ6c!RkhN@_lPUuS93P_(hkLZ{Th1((( z4}8gstlT|0L{$%5q2Nx?2Nc|eLtWNkFU;+)5sxJ#F6@VZ6Vft>pcu0XzKUeqZOd0N zsYP%aJJ$9}L#YT9XPwSnaD(x*uJ20fx9llKS5cCy9Qvr~XY zx3s$rdWyVfETys3W~=}Cqdkw5UI0&Z4@OjdpR1~F>D{O0O}+blizz4XuB%;nUESW+ z+CptEA(7>(-d@$ENi_FKTUVExYE|l;ZN2^kkK8`F*LLIP?vt_YzWY=mGA7dmWW~r3 zGkmA5K0sECtp4qbFBn@Pw*DJW1@*s#uRoNpxH-T4{P)ZT{qplaye9qf^M7HZ^!FrI ze^FTO{_z9Ru=mr{2XbbbL0m?1On%67hXa^%;;>lWtYKm0lo9#^C%}8i86VJZ%85{g zVOpQRZANmpeXk8>w~go(yNBVkxfEGmN4ZG9Mt@rn0xpkE$m_W9BFi`O>3FWMEPqYI z;5C3=NIJ^MLl=aUQG3}`pXU`ZIloC7hv@T*;v>yDo+PL@oFu+CnxrZtY_``D$;oFc zE%w024-WVRM?&l9-Dcu-1JU&*IU@>}BJy6ejzo!AigD*3ZyXc_)V@V13b3_qQStbS zQdFkk*|$zl7r`EnxqwFEwOQNj>O-%Ee+Q~KX@%I(5A5{c-0!aSH0o{momYDgsouA? zP+|EkGeZe2!)1OTp-3Dy^RbeX93Cirm%=PW@K_u^N_G2y8{+ZP4hwMPw$XVpV5c3H zm+pNMw?ewfk-IRiW_M!W`CoZSry+F-4OoDWm^`qFh zSg6JLL#wweEf&#HzU_f3QW-%84mwjgL57bzCH-vX%P$FN^WT4)$|qy=*knHVY%qX3 zmJ51HzGu6@B3(`_N``s8Oc@7irAQE@4ye1=~78O@J*td1B^;$5V3-Oi!mKzfOuDPG%VFO8&gJQ1Ghk%Cc5$MqI98X7Y67#= zurEG%ZFtOOn80Ae>KbnN{K*s}U%dT-RM zELidV;(#{xof^vm*R%2JhxGSnc~{RV?vylAz^_7kG;q^fn!OwZP0}^snW6V(cW2LU zJ`Q0V>XAk!y%@(UN0;om7F&PuNh`qPIyRounS6R3Yv<>p%JA&z(Jtu-G@T75eXbYR zBYOHbf$pHoUzxy@?3M@eQ}!Pb#qpDeNi&@r#W-8yngpCK`BW|ODEv4`Cr*D7J5T?X zF^-(vTpmE9LsZLd-5$vljny3wF|jl|aUJo-oe6@O*?Kti{54R)#2#Q2HbVqj*>&A% zQS?M;9;{&?TcK<|r0$8C?A2+;1MD94|<{1*oGbEHTB$yy|l+giKw>DHq8`PGE5%bpA8zMMM_|J{*rE=M{ob&|9 zX$+|-dN`C76JpgIQRsfZylHN40Txd8+ONl*D*Vv8tuS0k8yzVNkI@lhj8R7=b##QO zsF|Wbclbm)y5EhCigo1eHAp7B)p?|ItJ$ z0nlKo$^o$rI^eXs@}~J%-`u;9dE(v3h{%fgI=ySq#i!M;21<3&{6q&Lr%Obi$1thz}!it#?iWNkeWEJyJurva!z92!c#2`fUrse_7bO zK|E4vx4CtlkB6F5veTeKT9kX{TCt@_S@UiHt00a!=M}8YPrVwrSOEwz2V#qDbA{v= z(^%Nv`6$Yun1DfufCt77MzQ?+@1|*&+p68RTDP$BF*n1n)-VAywrvp|3*k4hS=I1J zxg^sL>PZ^e0PI80qVs=emmrV|BZ*aK4n)1;AUT1R`fj8eg}>VD?zA=EnSwTVP{qH# z(W@4CBsG_AA%o}89*tXo-+5~+!H2UY!UtDNdaVXOtLD-rH(>a82RG>0Z;6takh++r8*;7^hE5M`ESTIvCFU06aP$M^lm6s`E3$*kvhDG`4FY zVk<{>r7c-_IeCY(u7COY?>nD+3uhVl7tRn@b)MEN$*0Ux zED5hdLDGAH>FX9?7M?e7yT1iHt<{>7&7^m~*PA8Y&HVTyxZN&fSm47)KmMpUEfqdU z_#Ifc7a#8Rw|0j;a#ipghK)K3)PW_C)iEx_fiimARxueFE24xN?{ga(k!%}jC5r|Y J{|D@jyGnf@LjM2& diff --git a/master/searchindex.js b/master/searchindex.js index 2c6f7b4df..47f457c5d 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 85, 90, 91, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 90, 91, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 90, 91, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 69, 92, 96, 97, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 84, 85, 90, 97, 105], "benchmark": [1, 38, 84, 85, 90, 91, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 90, 91, 96, 97, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 62, 63, 67, 69, 70, 71, 72, 74, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 76, 78], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 62, 71, 80, 82, 84, 96, 98, 99, 101, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 60, 62, 63, 66, 70, 71, 75, 79, 80, 82, 83, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 89, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 63, 90, 91, 96, 97, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 90, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 62, 63, 64, 65, 66, 71, 72, 80, 81, 82, 83, 84, 85, 86, 89, 90, 91, 96, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 90, 94, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 60, 64, 67, 70, 79, 83, 92, 94, 95, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 60, 62, 67, 70, 71, 72, 84, 92, 98, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 61, 62, 63, 64, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 71, 72, 74, 79, 88, 89, 90, 91, 92, 95, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 62, 64, 67, 70, 72, 74, 75, 83, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 98], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 60, 62, 64, 71, 73, 75, 78, 82, 84, 87, 88, 89, 90, 92, 94, 95, 96, 97, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 64, 65, 66, 67, 69, 70, 71, 72, 74, 80, 82, 83, 91, 96, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 37, 39, 42, 44, 47, 57, 63, 64, 66, 72, 74, 75, 76, 78, 79, 85, 90, 91, 94, 95, 96, 98, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 64, 67, 69, 70, 71, 72, 94, 96, 103, 104], "trace": [1, 90, 91, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 83, 88, 89, 91, 92, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 84, 89, 90, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 91, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 90, 91, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 84, 90, 91, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 62, 63, 64, 69, 71, 72, 74, 76, 78, 79, 83, 90, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 62, 70, 71, 72, 76, 94, 95, 96, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 65, 66, 67, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 87, 89, 90, 91, 96, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 61, 67, 70, 74, 84, 87, 88, 89, 90, 91, 92, 98, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 69, 74, 88, 91, 95, 96, 98, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 74, 98, 101, 108], "better": [1, 5, 10, 44, 53, 62, 64, 72, 74, 75, 84, 88, 89, 91, 94, 95, 96, 98, 99, 102, 103, 104, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 61, 62, 67, 69, 71, 72, 74, 78, 82, 87, 89, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 62, 72, 74, 87, 89, 90, 91, 92, 94, 96, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 70, 74, 84, 87, 88, 90, 98, 99, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 62, 63, 70, 71, 72, 98, 101, 104], "amount": [1, 3, 92], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 91, 92, 95, 96], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 96, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 84, 87, 88, 90, 91, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 91, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 89, 96, 97, 98, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 47, 53, 56, 57, 72, 92, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 62, 74, 94, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 64, 72, 74, 75, 87, 89, 90, 91, 92, 94, 95, 98, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 60, 62, 63, 66, 70, 71, 72, 74, 79, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 72, 76, 79, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 62, 63, 64, 66, 67, 70, 71, 72, 74, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 63, 64, 66, 69, 74, 90, 91, 92, 98, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 97, 98, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 62, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 62, 63, 64, 66, 67, 83, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 62, 64, 66, 69, 70, 71, 72, 74, 75, 80, 82, 83, 84, 89, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 74, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 65, 71, 90, 91, 92, 94, 95, 99], "yield": [1, 38, 42], "between": [1, 5, 10, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 60, 62, 63, 66, 69, 71, 72, 74, 75, 78, 82, 83, 85, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 62, 63, 64, 69, 70, 78, 82, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 61, 62, 69, 70, 72, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 92, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 71, 74, 84, 87, 89, 90, 94, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 62, 63, 67, 69, 87, 88, 89, 90, 91, 92, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 69, 70, 74, 76, 78, 82, 88, 89, 90, 91, 92, 94, 95, 97, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 71, 72, 76, 87, 88, 89, 90, 91, 92, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10, 96], "python": [1, 2, 42, 61, 74, 90, 91, 96, 97, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 64, 95, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 87, 88, 89, 92, 95, 96, 97, 98, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 66, 74, 84, 88, 89, 95, 96, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 61, 62, 64, 66, 67, 69, 70, 72, 74, 76, 78, 79, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 83, 85, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 71, 72, 74, 87, 88, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 61, 70, 74, 75, 88, 89, 90, 91, 94, 96, 98, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 74, 96, 98, 106], "astyp": [1, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 63, 64, 66, 70, 71, 72, 74, 76, 78, 79, 80, 83, 89, 90, 92, 96, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 70, 74, 75, 92, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 88, 89, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 85, 96, 97, 98], "choic": [1, 8, 44, 53, 55, 92, 98, 102, 104], "replac": [1, 56, 61, 72, 87, 88, 90, 91, 92, 95, 96, 97, 98, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 72, 89, 90, 91], "05": [1, 10, 27, 31, 56, 70, 74, 80, 82, 94, 97, 98, 99, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 90, 91, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 90, 91, 92, 96, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 74, 87, 89, 90, 91, 94, 96, 97, 99, 101, 102], "max_it": [1, 88, 89, 95, 104], "10000": [1, 41, 97, 98], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 61, 62, 64, 70, 71, 72, 74, 76, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 64, 69, 79, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 74, 84, 88, 89, 92, 94, 95, 98, 107, 108], "impli": [1, 10, 37, 63, 70], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 62, 63, 64, 66, 69, 70, 74, 78, 82, 89, 90, 91, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 62, 63, 64, 67, 87, 88, 94, 95, 99, 102, 103, 106], "maximum": [1, 10, 71, 79, 83, 107], "minimum": [1, 8, 10, 21, 44, 46, 64, 69, 82], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 69, 74, 90, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 90, 92, 96, 98, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 61, 62, 63, 64, 67, 69, 70, 71, 74, 75, 76, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 79, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 90, 96], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 61, 62, 63, 65, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 62, 66, 70, 74, 79, 83, 84, 87, 88, 89, 91, 95, 98, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 60, 61, 64, 71, 72, 74, 76, 84, 85, 89, 96, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 61, 62, 63, 64, 66, 69, 70, 71, 72, 74, 78, 79, 80, 82, 88, 91, 92, 95, 96, 97, 98, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 61, 64, 66, 67, 69, 71, 72, 74, 75, 87, 88, 90, 91, 92, 94, 95, 96, 97, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 79, 80, 82, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 89, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 61, 62, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 87, 88, 90, 91, 94, 95, 96, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 61, 62, 67, 69, 70, 71, 72, 74, 75, 79, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 60, 61, 62, 64, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 17, 41, 44, 52, 53, 57, 69, 72, 74, 87, 88, 90, 91, 92, 96, 97, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 62, 63, 67, 69, 70, 71, 72, 74, 76, 79, 83, 85, 88, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 61, 62, 71, 74, 79, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 62, 84, 90, 91, 95, 96, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 90, 92, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 90, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 61, 62, 64, 66, 70, 71, 72, 74, 75, 78, 80, 82, 85, 87, 88, 89, 92, 94, 95, 96, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 61, 62, 71, 72, 74, 76, 78, 82, 83, 84, 88, 89, 90, 91, 92, 95, 96, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 60, 85], "produc": [1, 2, 5, 9, 10, 17, 49, 62, 72, 74, 76, 78, 84, 87, 88, 89, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 61, 62, 63, 74, 91, 95, 96, 98, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 69, 90, 91, 92, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 63, 70, 88, 92, 95, 97, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 61, 66, 69, 74, 75, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 71, 72, 91, 92, 96, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 71, 74, 79, 87, 88, 95, 96, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 29, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 84, 87, 89, 90, 91, 92, 94, 98, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 64, 67, 70, 90, 91, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 62, 67, 69, 70, 71, 90, 91, 97, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 61, 98, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 64, 67, 71, 72, 74, 76, 79, 83, 87, 89, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 60, 61, 62, 63, 64, 71, 72, 74, 76, 78, 79, 80, 82, 83, 89, 96, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 62, 64, 70, 76, 78, 79, 80, 82, 83, 87, 88, 89, 98, 101, 102, 103, 107, 108], "ball": [1, 97], "bin": [1, 3, 64, 90, 91, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 61, 69, 72, 74, 87, 88, 89, 90, 91, 92, 95, 96, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 61, 62, 63, 64, 67, 69, 70, 71, 72, 75, 78, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 62, 63, 69, 72, 82, 92, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 83, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 90, 91, 96, 97, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 80, 82, 83, 84, 87, 88, 89, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 61], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 63, 64, 65, 66, 71, 72, 84, 96, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 62, 64, 72, 74, 84, 88, 89, 95, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 61, 73, 74, 75, 84, 85, 87, 88, 106], "wrap": [2, 38, 42, 51, 61, 71, 74, 84, 87, 88, 90, 91, 94, 95, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 61, 70, 71, 74, 79, 87, 89, 90, 91, 92, 94, 95, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 61, 71, 74, 75, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 62, 65, 71, 72, 84, 85, 87, 88, 89, 94, 95, 98, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 74], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 62, 63, 64, 69, 71, 74, 76, 78, 82, 84, 85, 89, 90, 91, 92, 94, 95, 96, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 61, 67, 70, 71, 74, 85, 96, 98, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 72, 74, 76, 90, 91, 94, 97, 98, 101, 104, 108], "four": [2, 10, 97, 99, 108], "clf": [2, 3, 5, 49, 74, 84, 87, 94, 96, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 60, 61, 71, 73, 74, 84, 87, 88, 92, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 74, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 60, 61, 87, 89, 90, 91, 94, 95, 96, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 88, 97, 98, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 62, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 78, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 60, 61, 62, 63, 64, 65, 69, 71, 72, 73, 74, 79, 80, 81, 82, 83, 85, 88, 92, 93, 100, 105], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 62, 63, 64, 65, 67, 70, 71, 72, 74, 76, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 71, 74, 84, 87, 90, 91, 94, 95, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 62, 64, 72, 79, 80, 82, 88, 89, 95, 96, 98, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 62, 63, 67, 70, 72, 74, 87, 88, 89, 90, 92, 94, 96, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 63, 72, 74, 79, 82, 83, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 61, 62, 63, 66, 67, 69, 70, 71, 72, 74, 75, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 60, 62, 67, 69, 71, 74, 87, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 44, 46, 49, 52, 53, 54, 64, 67, 70, 72, 74, 75, 84, 85, 88, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 64, 69, 70, 74, 76, 78, 88, 92, 94, 98, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 61, 62, 63, 64, 66, 67, 70, 71, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 62, 74, 84, 87, 88, 89, 90, 94, 95, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 62, 69, 72, 74, 88, 89, 90, 91, 95], "loss": [2, 39, 61, 72, 74, 92], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 74, 84, 92, 96, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 61, 62, 67, 70, 71, 74, 75, 85, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 61, 71, 72, 82, 84, 85, 89, 90, 91, 92, 96, 98], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 60, 61, 62, 63, 64, 66, 71, 72, 74, 75, 76, 78, 79, 85, 87, 88, 89, 92, 94, 97, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 62, 90, 91, 92, 96, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 63, 64, 69, 70, 74, 76, 88, 95, 96, 98, 102, 103, 106, 107], "clonabl": [2, 74], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 62, 67, 70, 71, 72, 74, 75, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 61, 62, 63, 64, 66, 69, 71, 72, 74, 75, 78, 80, 82, 87, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 74, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 66, 70, 74, 80, 85, 90, 96, 98, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 62, 63, 64, 66, 69, 70, 74, 84, 90, 91, 92, 94, 98, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 64, 65, 67, 70, 71, 72, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 74, 87, 88, 89, 96, 98, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 74, 84, 89, 92, 98, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 61, 71, 74, 88, 89, 90, 91, 95, 98, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 74, 92], "independ": [2, 3, 10, 63, 74, 95, 96, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 61, 74, 75, 78, 82, 84, 87, 88, 96, 98, 105, 106], "neural": [2, 39, 61, 71, 74, 89, 92, 98, 102, 104, 106], "network": [2, 38, 39, 42, 61, 71, 74, 88, 89, 92, 95, 98, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 71, 74, 87, 88, 89, 91, 92, 94, 95, 104, 105], "initi": [2, 3, 14, 19, 38, 42, 52, 62, 74, 87, 95, 98], "insid": [2, 42, 74, 98, 99], "There": [2, 3, 7, 52, 84, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 67, 69, 70, 85, 88, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 62, 74, 88, 89, 90, 95, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 78, 82, 84, 87, 92, 94, 95, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 60, 61, 67, 70, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 64, 74, 85, 103], "everyth": [2, 70, 99], "els": [2, 70, 90, 92, 96, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 84, 90, 96, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 63, 64, 65, 66, 71, 72, 76, 80, 82, 83, 91, 92, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 61, 63, 64, 66, 67, 70, 71, 72, 74, 75, 79, 80, 82, 83, 97, 98, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 63, 64, 66, 67, 69, 70, 72, 74, 76, 78, 79, 82, 85, 87, 89, 90, 91, 94, 95, 96, 97, 100], "erron": [2, 3, 37, 44, 47, 57, 63, 64, 72, 74, 75, 76, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 62, 66, 69, 74, 75, 80, 82, 83, 84, 87, 88, 94, 95, 96, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 74, 84, 88, 89, 90, 91, 95, 96, 98, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 84, 88, 89, 90, 91, 95, 96, 98, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 74, 84, 87, 88, 98, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 61, 62, 64, 70, 71, 72, 74, 79, 80, 84, 88, 89, 90, 91, 95, 97, 98, 99, 101, 103, 104, 106], "x_train": [2, 87, 90, 91, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 74, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 60, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 88, 93, 100, 101, 105, 106], "pred": [2, 44, 57, 87, 88, 105, 106], "x_test": [2, 87, 90, 91, 99, 102, 106], "might": [2, 5, 10, 52, 62, 74, 79, 87, 88, 90, 91, 92, 96, 98, 103], "case": [2, 3, 10, 14, 37, 49, 52, 62, 74, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 61, 63, 64, 66, 72, 74, 84, 87, 90, 91, 94, 97, 99, 103], "adapt": [2, 38, 40, 57, 60, 74, 104], "skorch": [2, 74, 84, 98], "kera": [2, 60, 67, 70, 74, 84, 98, 103], "scikera": [2, 61, 74, 98], "open": [2, 41, 96, 97, 103, 108], "doesn": [2, 10, 74, 84], "t": [2, 3, 4, 7, 10, 18, 28, 29, 38, 39, 41, 42, 43, 44, 49, 55, 56, 66, 71, 72, 74, 80, 82, 83, 84, 90, 91, 92, 94, 95, 96, 97, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 61, 62, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 61, 67, 69, 71, 74, 84, 85, 87, 88, 90, 91, 95, 101, 108], "made": [2, 5, 17, 38, 42, 53, 74, 87, 88, 92, 95, 96, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 74, 90, 91, 97, 98, 99, 102], "inherit": [2, 7, 39, 74], "baseestim": [2, 42, 74], "yourmodel": [2, 74], "def": [2, 7, 15, 38, 42, 61, 74, 88, 89, 90, 91, 92, 96, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 71, 72, 74, 87, 90, 92, 96, 97, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 63, 64, 66, 67, 69, 70, 71, 74, 78, 79, 90, 91, 92, 94, 95, 96, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 61, 63, 64, 67, 70, 71, 74, 75, 78, 80, 82, 87, 88, 90, 92, 94, 95, 98, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 63, 83, 92, 98, 107], "state": [2, 3, 5, 38, 39, 42, 48, 74, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 71, 72], "et": [2, 3, 37, 39, 71, 72], "al": [2, 3, 37, 39, 71, 72], "2021": [2, 3, 37, 71, 72], "weak": [2, 70], "supervis": [2, 10, 90, 91, 98, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 60, 67, 70, 71, 72, 74, 76, 80, 82, 85, 90, 100, 105], "uncertainti": [2, 10, 46, 71, 74, 98, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 62, 69, 70, 74, 84, 90, 91, 92, 98, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 61, 62, 72, 74, 84, 85, 88, 90, 91, 96, 97, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 60, 62, 63, 66, 67, 71, 72, 74, 78, 79, 80, 82, 84, 85, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 60, 61, 74, 95], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 61, 63, 64, 66, 67, 70, 71, 72, 74, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 60, 74, 87, 88, 90, 91, 96, 97, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 63, 70, 71, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 87, 88, 98], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 61, 62, 63, 66, 67, 69, 72, 74, 75, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 61, 70, 74, 84, 85, 88, 91, 92, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 71, 72, 76, 78, 79], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 71, 72, 84, 88, 89, 90, 91, 92, 94, 95, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 64, 74, 84, 88, 90, 92, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 62, 64, 67, 70, 72, 75, 89, 91, 95, 98, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 62, 63, 67, 69, 71, 72, 74, 89, 90, 94, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 71, 74, 87, 88, 89, 94, 95, 96, 98, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 64, 71, 72, 82], "tild": 2, "paper": [2, 4, 10, 62, 71, 80, 82, 97, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 74, 88], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 62, 63, 66, 67, 70, 74, 75, 82, 88, 90, 95, 97, 98, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 74, 85, 98, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 64, 80, 98], "clean": [2, 69, 72, 74, 75, 84, 87, 88, 90, 91, 97, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 74, 89, 96, 98, 99, 101, 102, 103], "messi": [2, 74, 99], "ridden": [2, 74], "autom": [2, 9, 10, 74, 84, 91, 97, 98], "robust": [2, 47, 52, 74, 91, 96, 98], "prone": [2, 74], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 61, 64, 65, 67, 70, 71, 72, 74, 75, 83, 84, 85, 88, 96, 97, 98, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 62, 69, 74, 90, 91, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 62, 78, 82, 89, 90, 91, 95, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 66, 69, 70, 71, 72, 74, 76, 78, 79, 83, 85, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 62, 63, 67, 69, 70, 71, 74, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "experiment": [2, 38, 39, 41, 42, 43, 64, 85, 98], "wrapper": [2, 61, 87, 88, 89, 106], "around": [2, 69, 90, 91, 103, 104, 108], "fasttext": [2, 60], "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 71, 74, 87, 88, 94, 95, 96, 97, 98, 107, 108], "along": [2, 49, 64, 82, 90, 91, 92, 96, 98, 104], "dimens": [2, 57, 76, 79, 92, 98, 104, 107], "select": [2, 9, 10, 27, 51, 62, 72, 92, 96, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 74, 87, 89, 90, 91, 92, 94, 95, 96, 97, 99, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 64, 67, 70, 72, 74, 75, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 74, 87, 89, 94, 97, 98, 103, 107], "By": [2, 37, 63, 64, 74, 90, 96, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 63, 64, 66, 71, 74, 84, 88, 89, 90, 91, 95, 96, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 74], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 62, 63, 64, 66, 69, 70, 71, 72, 74, 75, 76, 78, 84, 85, 88, 90, 91, 97, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 60, 62, 71, 74, 85, 87, 88, 90, 91, 92, 94, 95, 96, 98, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 69, 71, 74, 79, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 95, 96, 99, 101, 102, 104, 106], "consist": [2, 3, 38, 42, 51, 57, 62, 96, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 61, 64, 69, 72, 74, 75, 78, 82, 84, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 63, 74, 91, 95], "close": [2, 3, 10, 41, 47, 71, 89, 90, 91, 92, 94, 95, 96, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 72, 74, 98], "equival": [2, 3, 38, 42, 47, 71, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 63, 64, 74, 98, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 63, 99], "certain": [2, 3, 5, 38, 42, 61, 70, 74, 90, 91, 96, 97, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 82, 90, 91, 92, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 61, 62, 64, 70, 71, 72, 74, 79, 80, 82, 90], "filter": [2, 3, 10, 41, 43, 56, 63, 65, 66, 68, 70, 77, 78, 79, 81, 82, 83, 84, 85, 87, 88, 89, 92, 95, 96, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 63, 64, 65, 66, 67, 68, 69, 70, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 98, 102, 103, 106, 107, 108], "particularli": [2, 84, 101, 104], "filter_bi": [2, 3, 41, 44, 64, 85, 98], "frac_nois": [2, 44, 64, 80, 98], "min_examples_per_class": [2, 44, 64, 98, 99], "impact": [2, 4, 10, 90, 91, 92, 96], "ml": [2, 4, 5, 9, 10, 16, 74, 84, 87, 88, 90, 91, 92, 94, 95, 96, 101, 102, 106], "accuraci": [2, 39, 72, 87, 88, 89, 92, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 64, 76, 78, 80, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 62, 64, 70, 76, 78, 80, 88, 89, 90, 96, 98, 101, 105], "caus": [2, 44, 49, 90, 91, 96, 98], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 63, 64, 65, 67, 68, 70, 71, 73, 77, 79, 80, 81, 83, 84, 85, 87, 88, 90, 91, 97, 98, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 62, 64, 65, 66, 67, 68, 69, 72, 73, 75, 77, 78, 80, 81, 82, 85, 98, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 66, 71, 72, 99], "control": [2, 5, 9, 10, 17, 41, 44, 62, 70, 71, 74, 80, 82, 90, 91, 96, 97, 98], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 62, 63, 66, 67, 69, 71, 72, 74, 78, 82, 84, 87, 88, 90, 91, 92, 94, 95, 96, 97, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 74, 96, 97, 98, 99, 101, 104], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 61, 62, 63, 67, 69, 70, 71, 74, 78, 79, 82, 83, 84, 85, 88, 89, 90, 92, 95, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 62, 63, 64, 69, 71, 72, 74, 76, 78, 79, 83, 85, 87, 88, 89, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 62, 69, 71, 72, 74, 76, 78, 79, 107, 108], "statement": [2, 41, 62, 69, 71, 72, 74, 76, 78, 79], "big": [2, 41, 64, 70, 74, 99], "limit": [2, 5, 17, 41, 52, 64, 96, 103, 107, 108], "memori": [2, 38, 41, 42, 64, 70, 76, 78, 90, 107], "label_issues_batch": [2, 40, 64, 98], "find_label_issues_batch": [2, 40, 41, 64, 98], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 62, 63, 64, 66, 67, 70, 71, 72, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 69, 70, 71, 72, 78, 82, 90, 96, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 85, 99], "label_issu": [2, 41, 44, 64, 67, 74, 76, 85, 87, 88, 89, 92, 95, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 74], "clf_final_kwarg": [2, 74], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 62, 63, 64, 66, 67, 69, 70, 72, 74, 75, 78, 82, 84, 89, 92, 94, 95, 99, 101, 103, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 64, 66, 67, 70, 72, 74, 75, 76, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 64, 67, 70, 72, 74, 75, 76, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 102, 104, 106, 107, 108], "final": [2, 10, 74, 87, 94, 96, 103, 105, 106], "remain": [2, 74, 85, 87, 88, 92, 96, 102, 106, 108], "datasetlik": [2, 57, 74], "beyond": [2, 5, 7, 9, 10, 12, 36, 84, 87, 88, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 61, 62, 63, 74, 82, 87, 88, 89, 90, 91, 94, 95, 96, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 61, 62, 63, 74, 79, 83, 85, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 71, 96], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 94, 96], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 96], "torch": [2, 38, 39, 42, 88, 89, 92, 95, 97, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 61, 62, 67, 70, 74, 84, 85, 89, 90, 91, 92, 96, 98, 99, 104], "tensorflow": [2, 57, 61, 84, 89, 98], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 61, 64, 67, 68, 69, 70, 71, 74, 82, 84, 88, 89, 91, 92, 94, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 78, 79, 80, 82, 83, 85, 88, 89, 90, 91, 92, 96, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 72, 79, 83, 87, 88, 89, 92, 94, 95, 96, 98, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 62, 63, 69, 71, 83, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 74, 89, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 61, 62, 63, 64, 67, 70, 71, 72, 74, 76, 78, 79, 82, 83, 87, 90, 91, 92, 94, 96, 97, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 61, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 87, 88, 89, 90, 91, 92, 94, 95, 97, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 89, 92, 95, 96, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 62, 67, 69, 74, 80, 82, 83, 84, 87, 88, 89, 90, 91, 94, 95, 96, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 61, 62, 76, 78, 92, 98, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 62, 63, 64, 67, 70, 71, 72, 76, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 61, 72, 84, 87, 88, 95, 98, 104], "eg": [2, 5, 10, 57, 67, 70, 90, 91, 98], "repeat": [2, 57, 62, 101, 104], "appli": [2, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 66, 71, 80, 87, 88, 89, 90, 91, 92, 94, 96, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 64, 71, 75], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 60, 62, 63, 64, 66, 67, 70, 71, 72, 74, 76, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 74, 82, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 62, 63, 64, 66, 71, 72, 74, 79, 80, 82, 83, 87, 89, 92, 94, 95, 96, 97, 98, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 61, 62, 69, 78, 82, 88, 97, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 62, 63, 64, 66, 69, 70, 72, 75, 76, 78, 82, 91, 98, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 62, 64, 67, 69, 72, 78, 82, 90, 96, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 62, 69, 71, 72, 75, 78, 82, 87, 88, 89, 92, 94, 95, 96, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 85, 92, 94, 96, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 61, 64, 71, 72, 74, 75, 80, 82, 97, 98, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 69, 71, 82, 85, 91, 93, 96, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 61, 69, 71, 72, 74, 78, 82, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 61, 62, 63, 64, 67, 69, 71, 72, 74, 75, 83, 85, 88, 89, 91, 92, 95, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 84, 87, 88, 92, 94, 95, 96, 97, 98, 101, 102, 103, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 69, 91, 97, 98, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 63, 64, 70, 85, 92, 96, 98, 103], "observ": [2, 3, 47, 54, 89, 90, 91, 96, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 62, 63, 64, 67, 69, 72, 78, 80, 82, 83, 84, 87, 88, 89, 92, 94, 95, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 73, 74, 87, 88, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 62, 64, 69, 71, 72, 76, 78, 91, 96, 98, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 62, 64, 67, 72, 74, 76, 78, 79, 84, 88, 89, 91, 92, 95, 98, 103, 106, 107], "label_issues_mask": [2, 44, 72, 74, 85], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 78, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 64, 67, 70, 71, 72, 74, 76, 80, 82, 84, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 64, 80, 85, 87, 88, 98, 99], "significantli": [2, 10, 92, 96, 99, 101, 105], "reduc": [2, 41, 44, 57, 89, 96, 98], "time": [2, 10, 38, 41, 42, 57, 62, 83, 85, 87, 88, 90, 92, 94, 97, 98, 99, 103, 104, 106, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 61, 72, 87, 92, 94, 96, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 74, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 74, 89, 96, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 70, 92, 96, 99, 101, 105], "caution": [2, 5, 98], "previous": [2, 5, 14, 57, 71, 74, 85, 87, 89, 90, 94, 95, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 74, 87, 90, 92, 94, 96, 98, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 62, 66, 69, 72, 74, 80, 82, 85, 87, 91, 94, 96, 97, 98, 101, 102, 103, 108], "still": [2, 41, 42, 57, 71, 87, 92, 98, 104], "extra": [2, 38, 42, 57, 61, 62, 63, 74, 92, 95, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 63, 66, 67, 74, 76, 80, 91, 103], "overwritten": [2, 74], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 61, 66, 98], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 70, 72, 74, 79, 89, 90, 91, 92, 96, 98, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 64, 72, 90, 94, 102, 103], "earli": [2, 92], "stop": [2, 92], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 71, 87, 90, 92, 94, 102, 106, 108], "f": [2, 7, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 61, 74, 79, 83, 89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 62, 70, 71, 74, 76, 78, 88, 89, 92, 96, 98, 105, 107], "access": [2, 10, 14, 38, 42, 74, 91, 92, 97, 102], "hyperparamet": [2, 66, 71, 92], "purpos": [2, 52, 90, 91, 96, 98, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 62, 64, 74, 88, 90, 92, 95, 97, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 74], "yourself": [2, 5, 41, 91, 96], "altern": [2, 7, 10, 49, 54, 57, 61, 62, 72, 85, 88, 89, 92, 94, 95, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 61, 62, 64, 71, 72, 74, 78, 79, 82, 83, 84, 87, 88, 90, 91, 92, 94, 95, 96, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 62, 71, 74, 92, 94, 95, 96, 98, 104], "offer": [2, 5, 9, 10, 88, 89, 90, 91, 95, 98, 99, 102], "after": [2, 3, 5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 62, 74, 88, 90, 92, 95, 96, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 71, 74, 87, 90, 96], "label_issues_df": [2, 74, 92], "similar": [2, 10, 37, 38, 42, 54, 57, 62, 66, 67, 69, 71, 74, 78, 82, 90, 91, 92, 94, 95, 96, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 61, 63, 64, 66, 69, 70, 71, 74, 78, 79, 80, 82, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 67, 74, 90, 91], "were": [2, 3, 5, 10, 37, 42, 52, 63, 69, 82, 87, 89, 94, 98, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 71, 79, 84, 92, 96, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 62, 63, 72, 91, 98, 99, 108], "num_class": [2, 37, 41, 57, 61, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 79, 90, 96, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 74, 79, 83, 88, 89, 90, 91, 92, 94, 95, 96, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 72, 96, 98, 99, 104], "trick": [2, 98], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 62, 70, 71, 72, 84, 90, 91, 92, 94, 95, 96, 103, 104], "account": [2, 37, 62, 66, 71, 72, 88, 95, 98, 99, 101, 102, 104, 106], "word": [2, 3, 56, 82, 83, 98], "remov": [2, 10, 32, 37, 38, 42, 44, 74, 84, 87, 88, 92, 95, 96, 97, 98, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 62, 63, 69, 72, 74, 78, 82, 89, 90, 91, 92, 95, 96, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 61, 72, 74, 76, 84, 85, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 62, 64, 66, 71, 72, 74, 75, 76, 84, 87, 88, 89, 92, 95, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 65, 67, 68, 69, 70, 71, 72, 73, 74, 77, 81, 84, 87, 88, 90, 93, 97, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 72, 74], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 61, 70, 74, 76, 78, 79, 80, 98], "test": [2, 5, 10, 27, 42, 49, 52, 61, 74, 84, 87, 88, 90, 91, 92, 94, 95, 96, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 62, 71, 72, 74, 87, 88, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 70, 74, 87, 88, 89, 90, 91, 92, 98, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 72, 88, 90, 91, 94, 95, 98, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 66, 71, 74, 84, 91, 92, 94, 95, 96, 99, 103], "save_spac": [2, 10, 73, 74], "potenti": [2, 10, 37, 44, 56, 64, 67, 70, 72, 74, 76, 78, 83, 85, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 88, 95], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 61, 62, 63, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 61, 63, 64, 66, 82, 90, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 62, 64, 72, 76, 78, 83, 84, 90, 92, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 64, 67, 72, 74, 76, 78, 79, 84, 97, 98, 101, 103, 107, 108], "prefer": [2, 72, 80, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 88, 95, 98, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 74], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 61, 62, 64, 66, 70, 71, 72, 74, 75, 76, 78, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 72, 74], "mostli": [2, 57, 69, 74, 102, 106], "longer": [2, 35, 48, 49, 56, 74, 85, 88, 95, 98, 103], "info": [2, 5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 63, 74, 82, 91, 96, 97, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 62, 63, 66, 70, 74, 79, 82, 89, 90, 92, 94, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 74, 97, 99], "unless": [2, 38, 42, 52, 74, 98], "our": [2, 3, 10, 61, 62, 72, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 74, 88, 89, 90, 91, 92, 94, 95, 96, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 63, 64, 69, 72, 74, 76, 78, 79, 84, 90, 91, 96, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 62, 63, 64, 67, 70, 72, 74, 75, 76, 78, 79, 85, 91, 92, 94, 95, 96, 98, 101, 106], "label_qu": [2, 62, 74, 88, 99, 101, 106], "measur": [2, 5, 37, 62, 63, 74, 84, 87, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 62, 63, 64, 66, 67, 69, 72, 74, 75, 78, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 106], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 62, 63, 66, 69, 70, 72, 74, 75, 78, 82, 88, 89, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 70, 99, 101], "against": [2, 38, 42, 90, 94, 96, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 74, 79, 83, 88, 89, 90, 91, 92, 94, 95, 96, 99, 106, 107], "ad": [2, 38, 42, 91, 101, 106], "precis": [2, 53, 55, 64, 67, 70, 96, 97, 98, 99, 107, 108], "definit": [2, 7, 35, 49, 74, 87, 94], "accessor": [2, 74], "describ": [2, 10, 19, 62, 71, 72, 74, 80, 82, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 74, 97], "clear": [2, 38, 42, 54, 74, 88, 95, 106], "save": [2, 5, 17, 38, 41, 42, 70, 74, 96, 98, 103, 107, 108], "space": [2, 5, 10, 71, 74, 92, 94, 96, 97], "place": [2, 38, 42, 52, 57, 74, 87, 101], "larg": [2, 9, 10, 41, 52, 74, 92, 94, 95, 98, 103, 104, 107, 108], "deploi": [2, 9, 10, 74, 92, 94, 95, 98], "care": [2, 10, 38, 42, 52, 74, 95, 96, 98, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 74, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 74], "__init_subclass__": [2, 40, 42, 73, 74], "set_": [2, 42, 74], "_request": [2, 42, 74], "pep": [2, 42, 74], "487": [2, 42, 74], "look": [2, 5, 7, 10, 17, 38, 42, 57, 74, 79, 87, 90, 91, 94, 95, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 62, 63, 67, 70, 74, 79, 82, 83, 84, 89, 90, 94, 95, 96, 97, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 74], "infer": [2, 42, 57, 74, 79, 83, 87, 88, 92, 101, 102], "signatur": [2, 38, 42, 74], "accept": [2, 38, 42, 54, 55, 72, 74, 90, 91, 98], "metadata": [2, 10, 42, 74, 92, 94, 95, 108], "through": [2, 5, 7, 42, 74, 88, 89, 91, 95, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 74, 98, 99, 108], "request": [2, 42, 74, 87, 88, 91, 95, 96, 97, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 61, 62, 64, 70, 74, 78, 82, 83, 84, 89, 92, 96, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 67, 70, 71, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 74, 96, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 71, 74, 98, 99, 108], "dev": [2, 42, 74], "0487": [2, 42, 74], "get_metadata_rout": [2, 40, 42, 73, 74], "rout": [2, 42, 74], "pleas": [2, 38, 42, 61, 74, 84, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 74, 85, 89, 90, 91, 92, 93, 94, 95, 96, 99], "mechan": [2, 38, 42, 74], "metadatarequest": [2, 42, 74], "encapsul": [2, 17, 42, 69, 74], "get_param": [2, 40, 42, 60, 61, 73, 74], "subobject": [2, 42, 74], "param": [2, 10, 38, 42, 61, 71, 74, 98], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 61, 62, 63, 70, 74, 79, 83, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 73, 74], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 61, 62, 63, 67, 69, 70, 72, 74, 79, 83, 89, 90, 98, 101, 102, 103, 108], "unchang": [2, 38, 42, 74, 108], "relev": [2, 17, 27, 42, 74, 92, 94, 96], "enable_metadata_rout": [2, 42, 74], "set_config": [2, 42, 74], "meta": [2, 42, 74], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 74, 98], "alia": [2, 38, 42, 74], "metadata_rout": [2, 42, 74], "retain": [2, 42, 57, 74], "chang": [2, 33, 35, 38, 41, 42, 46, 74, 82, 87, 88, 89, 90, 95, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 60, 61, 72, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 69, 74], "pipelin": [2, 42, 74, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 64, 74, 76, 78, 79, 83, 88, 95, 98], "updat": [2, 14, 38, 41, 42, 52, 61, 74, 85, 90, 92], "set_param": [2, 40, 42, 60, 61, 73, 74], "simpl": [2, 38, 42, 44, 62, 72, 74, 87, 88, 90, 91, 92, 94, 95, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 62, 64, 70, 72, 74, 79, 82, 83, 85, 90, 91, 92, 94, 95, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 74, 80, 82, 83, 108], "latter": [2, 38, 42, 74, 104], "compon": [2, 42, 74], "__": [2, 42, 74], "set_score_request": [2, 73, 74], "structur": [3, 71, 94, 96, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 62, 71, 72, 76, 78, 82, 92, 94, 96, 97, 98, 99, 103, 108], "channel": [3, 89, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 63, 88, 91, 97], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 63, 64, 85, 98, 99], "un": 3, "under": [3, 10, 38, 42, 63, 70, 71, 91, 96, 104], "joint": [3, 37, 44, 47, 57, 63, 64, 97], "num_label_issu": [3, 41, 44, 64, 79, 83, 85], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 64, 102], "don": [3, 84, 91, 92, 94, 95, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 64, 99], "off": [3, 44, 57, 69, 92, 96, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 64, 67, 70, 71, 80, 82, 83, 90, 91, 99, 107, 108], "confident_learn": [3, 44, 64, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 62, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 76, 79, 89, 90, 91, 92, 96, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 90, 91, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 87, 88, 89, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 69, 70, 76, 78, 87, 91, 92, 94, 96, 97, 98, 99, 104, 106], "As": [3, 7, 84, 90, 91, 95, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 61, 70, 88, 89, 90, 91, 92, 95, 96, 98, 99, 102], "approach": [3, 37, 41, 44, 61, 87, 94, 96, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 72, 88, 91, 95, 96, 99, 106], "know": [3, 10, 90, 91, 92, 94, 95, 98, 99, 101, 106], "cut": [3, 69, 84, 99], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 70, 84, 96, 98, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 66, 67, 69, 70, 72, 75, 82, 97, 98, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 78, 79, 80, 84, 85, 89, 98, 102, 104, 108], "num_issu": [3, 7, 41, 89, 90, 91, 92, 94, 95, 96, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 61, 62, 88, 97, 98, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 63, 64, 66, 72, 90, 91, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 63, 64, 66, 74, 87, 88, 90, 91, 92, 94, 95, 98, 99, 101, 106], "fashion": [3, 5, 76, 87], "2x2": 3, "incorrectli": [3, 37, 63, 64, 67, 94, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 64, 72, 84, 87, 89, 90, 91, 94, 95, 96, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 62, 66, 69, 75, 78, 82, 83, 89, 90, 91, 92, 94, 95, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 64, 70, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 62, 63, 70, 79, 103, 104], "done": [3, 10, 61, 74, 90, 98, 99, 102, 104, 105], "overfit": [3, 10, 67, 70, 87, 89, 90, 91, 92, 94, 95, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 62, 63, 69, 70, 71, 72, 82, 87, 89, 90, 96, 98, 99, 102, 103], "baselin": [3, 38, 44, 88, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 64, 70, 74, 82, 98], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 62, 64, 70, 78, 80, 82, 83, 89, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 62, 71, 76, 78, 84, 88, 92, 96, 98, 107], "practic": [3, 87, 88, 91, 92, 99, 104, 106], "complet": [3, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 66, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 70, 80, 97], "again": [3, 61, 87, 98, 104], "simplifi": [3, 15, 98], "understand": [3, 9, 10, 37, 63, 70, 91, 96, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 71, 72, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 61, 92, 96, 101], "speed": [3, 44, 88, 97, 98, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 66, 82, 89, 96, 103], "enumer": [3, 38, 42, 89, 90, 91, 92, 96, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 82, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 72, 76, 79, 89, 96, 98, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 66, 75, 87, 89, 96], "eqn": [3, 47], "margin": [3, 44, 47, 49, 72], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 63, 99, 105], "poorli": [3, 47, 87, 96], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 74, 75, 89, 90, 94, 99, 102, 106], "exact": [3, 10, 47, 52, 87, 90, 91, 92, 94, 96], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 64, 69, 78, 80, 82, 90, 91, 92, 96, 98, 103, 107], "percent": 3, "often": [3, 37, 47, 63, 98, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 70, 87, 88, 89, 90, 92, 94, 95, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 61, 84, 85, 87, 88, 89, 90, 91, 94, 95, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 90, 92, 96, 97, 98, 99, 105, 106], "becaus": [3, 47, 53, 57, 69, 95, 96, 98, 99, 101, 103], "littl": [3, 41, 97, 103, 108], "uniform": [3, 72, 97, 98, 99], "20": [3, 7, 43, 83, 89, 92, 95, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 92, 104], "bound": [3, 24, 26, 38, 42, 56, 66, 67, 69, 70, 103], "reason": [3, 23, 38, 42, 53, 71], "comment": [3, 56, 96, 108], "end": [3, 5, 38, 42, 54, 70], "file": [3, 5, 13, 40, 41, 60, 70, 87, 89, 90, 94, 95, 97, 98, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 85, 87, 88, 90, 91, 92, 94, 95, 96, 99, 107, 108], "five": [3, 67, 70, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 103], "confident_threshold": [3, 10, 23, 24, 41, 71], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 70, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 101, 102, 106, 107, 108], "u": [4, 87, 88, 89, 90, 92, 94, 96, 98, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 96, 103], "contribut": [4, 10, 19, 96, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 94, 96], "metric": [4, 5, 10, 19, 20, 22, 27, 29, 32, 45, 51, 52, 54, 55, 57, 61, 70, 71, 87, 88, 89, 92, 94, 95, 96, 99, 106], "10": [4, 10, 19, 20, 24, 27, 29, 32, 38, 39, 52, 70, 71, 72, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 71, 91, 95, 96, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 71, 90, 91, 92, 94, 95, 96, 98, 104], "knn": [4, 10, 14, 19, 27, 29, 32, 51, 52, 53, 54, 55, 71, 94, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 62, 66, 67, 69, 70, 71, 74, 78, 92, 96, 97], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 61, 62, 88, 91, 95, 96, 98, 102, 103, 106], "lowest": [4, 10, 62, 70, 91, 92, 94, 96, 98, 101, 102, 103, 107], "fall": [4, 10, 69, 78, 82, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 63, 64, 67, 74, 84, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 71, 96, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 64, 67, 70, 72, 79, 83, 84, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 71, 84, 88, 89, 90, 91, 94, 95, 96, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 64, 84, 88, 89, 90, 91, 92, 95, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 62, 87, 89, 96, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 63, 89, 90, 91, 92, 94, 95, 99], "num_featur": [4, 5, 17, 38, 42, 61], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 69, 71, 94, 96, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 61, 96], "nearestneighbor": [4, 5, 10, 19, 52, 54, 71, 94, 104], "cosin": [4, 10, 52, 53, 55, 71, 96, 104], "dim": [4, 71, 92, 107], "euclidean": [4, 5, 10, 52, 53, 55, 69, 71, 94], "dimension": [4, 27, 53, 57, 89, 99, 104], "scikit": [4, 42, 53, 54, 57, 71, 84, 87, 88, 89, 90, 91, 94, 95, 96, 98, 106], "fewer": [4, 10, 44, 57, 71, 96, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 60, 71, 85, 89, 90, 91, 92, 94, 95, 99], "exce": [4, 52, 92, 96], "transform": [4, 10, 33, 49, 52, 55, 57, 71, 72, 87, 88, 91, 92, 95, 104, 108], "rel": [4, 10, 37, 52, 62, 63, 71, 90, 91, 92, 94, 95, 99, 104], "adjust": [4, 39, 44, 52, 66, 71, 72, 84, 96, 99], "closer": [4, 10, 69, 103], "highli": [4, 91, 92], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 70, 96, 97, 104], "convers": 4, "neg": [4, 10, 69, 70, 90, 91, 96, 97], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 98], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 74, 76, 78, 92, 95, 97, 98], "55": [4, 56, 96, 97, 103, 106], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 89, 92, 93, 94, 95, 96, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 96, 97], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 62, 70, 79, 80, 87, 88, 89, 90, 94, 95, 96, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 60, 64, 71, 74, 75, 84, 96], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 60, 61, 76, 78], "pip": [5, 7, 9, 12, 36, 61, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 71, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 84, 97], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 84, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 106], "image_kei": [5, 10, 92, 96], "interfac": [5, 9, 10, 54, 84, 98, 99], "librari": [5, 10, 42, 54, 67, 70, 71, 84, 88, 90, 95, 96, 97, 98], "goal": [5, 106], "track": [5, 7, 14, 15, 84, 90, 97, 98, 99], "intermedi": [5, 9, 91], "statist": [5, 10, 14, 23, 27, 37, 62, 63, 70, 91, 94, 95, 96, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 62, 69, 78, 82, 85, 88, 89, 92, 95, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 92], "face": [5, 10, 13, 17, 92, 97, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 62, 63, 69, 71, 90, 91, 92, 95, 98, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 62, 63, 75, 79, 82, 83, 88, 94, 95, 96, 98, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 62, 63, 66, 67, 69, 70, 90, 91, 94, 95, 96, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 70, 89, 90, 98, 103], "local": [5, 7, 10, 13, 38, 39, 42, 89, 90, 91, 92, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 71, 80, 82, 83, 84, 86, 90, 91, 93, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 87, 88, 94, 95, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 62, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 88, 90, 91, 95, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 67, 69, 70, 71, 76, 78, 79, 84, 90, 91, 93, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 87, 88, 96, 106], "pil": [5, 92, 96], "cleanvis": [5, 10], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 80, 82, 91, 92, 98, 100, 102, 107], "load_dataset": [5, 13, 92], "glue": 5, "sst2": 5, "properti": [5, 13, 14, 35, 38, 42], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 63, 70, 79, 83, 84, 97, 99, 103, 107, 108], "empti": [5, 13, 47, 62, 91, 96, 98, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 84, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 62, 64, 67, 69, 70, 72, 78, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 91, 93, 96, 97, 98, 99, 102, 103, 107], "real": [5, 17, 84, 90, 91, 98, 99, 101, 106, 107], "world": [5, 17, 84, 90, 91, 98, 99, 101, 106, 107], "interact": [5, 17, 95, 98], "thereof": [5, 17], "insight": [5, 17, 70, 101], "best": [5, 9, 10, 17, 48, 62, 72, 87, 88, 90, 91, 92, 94, 95, 96, 98, 101, 102, 104, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 76, 89, 90, 91, 92, 94, 95, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 67, 70, 89, 90, 91, 92, 94, 95, 99, 102, 103], "lexicograph": [5, 48, 57, 89, 90, 91, 92, 94, 95, 99, 102], "squar": [5, 57, 74, 97, 106], "csr": [5, 52, 96], "evenli": 5, "omit": [5, 69, 70, 92, 96, 103], "itself": [5, 33, 38, 42, 52, 96, 103], "three": [5, 10, 37, 62, 63, 74, 79, 87, 89, 90, 91, 94, 97, 99, 101, 105, 106, 107, 108], "indptr": [5, 96], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 84, 102, 108], "th": [5, 10, 43, 48, 56, 57, 62, 64, 67, 69, 70, 71, 80, 82, 83, 95, 102, 103, 108], "ascend": [5, 37, 63, 92, 99], "segment": [5, 76, 78, 79, 100], "reflect": [5, 10, 52, 87, 88, 94, 95, 96, 101, 103, 104, 106], "maintain": [5, 61], "kneighbors_graph": [5, 19, 54, 94], "illustr": [5, 96], "todens": 5, "second": [5, 49, 57, 70, 72, 90, 94, 98, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 84, 90, 96, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 62, 96, 98, 101, 108], "unspecifi": [5, 17, 44, 64], "interest": [5, 17, 23, 79, 83, 87, 88, 95, 96, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 74, 75, 97, 106, 108], "random_st": [5, 87, 89, 90, 91, 92, 96, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 84, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 84, 92, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 71, 96], "mode": [5, 12, 19, 38, 41, 42, 104], "4x4": 5, "float64": [5, 27, 38, 42, 82], "compress": [5, 10, 52, 57, 76, 78, 96], "toarrai": [5, 52, 96], "NOT": [5, 41, 95], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 91], "suppos": [5, 10, 67, 87, 88, 104, 106], "who": [5, 69, 87, 94, 96, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 61, 90, 98], "clean_learning_kwarg": [5, 10, 11, 24, 31, 98, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 85], "prune_by_noise_r": [5, 44, 64, 99], "report": [5, 7, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 63, 83, 84, 89, 90, 91, 94, 95, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34], "show_all_issu": [5, 34], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 60, 61, 63, 68, 77, 78, 80, 81, 82, 85, 89, 90, 91, 92, 94, 95, 96, 97, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 70, 79, 83, 87, 91, 92, 94, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 64, 72, 83, 96, 108], "onc": [5, 23, 37, 38, 42, 87, 90, 98, 99, 102, 103], "familiar": [5, 96], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 62, 63, 66, 69, 70, 74, 78, 79, 80, 82, 84, 85, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 66, 69, 71, 72, 78, 82, 84, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 62, 71, 82, 90, 91, 94, 96, 99, 103], "issue_summari": [5, 7, 10, 14, 96], "With": [5, 9, 10, 41, 88, 95, 98, 99, 101, 106, 107, 108], "usag": [5, 41, 61], "usual": [5, 13, 33, 34, 92, 101, 106], "ti": [5, 62], "exhibit": [5, 7, 10, 14, 79, 89, 90, 91, 92, 94, 95, 99, 103], "ie": [5, 74], "likelihood": [5, 10, 41, 43, 44, 64, 69, 71, 72, 76, 80, 96], "wherea": [5, 10, 57, 64, 87, 88, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 72, 84, 90, 91, 96, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 10, 23, 38, 42, 97], "non_iid": [5, 10, 11, 15, 27, 91, 92, 94, 95, 96, 99], "hypothesi": [5, 96], "iid": [5, 7, 9, 27, 94, 99], "never": [5, 89, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 72, 103], "123": [5, 90, 91], "456": [5, 87, 88, 89], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 61, 80, 82, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 66, 80, 82, 87, 88, 89, 90, 91, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 90, 91, 92, 94, 95, 99], "789": 5, "get_issu": [5, 10, 14, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89, 90, 91, 92, 94, 95, 99], "focu": [5, 10, 14, 95, 96, 107, 108], "full": [5, 10, 14, 41, 61, 70, 92, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 63, 79, 83, 84, 107], "specific_issu": [5, 14], "lie": [5, 10, 71, 72, 88, 89, 90, 91, 92, 94, 95, 96, 99], "get_issue_summari": [5, 10, 14, 91, 96], "get_info": [5, 14, 91, 95, 96, 97], "yet": [5, 18, 28, 61, 97, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 90], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 89, 90, 92], "load": [5, 13, 41, 70, 92, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 62, 84, 90, 95], "overwrit": [5, 90], "separ": [5, 37, 49, 66, 90, 91, 92, 96, 98, 103, 105], "static": 5, "rememb": [5, 95, 98, 99], "part": [5, 10, 38, 42, 44, 67, 69, 70, 89, 90, 96, 97, 107, 108], "ident": [5, 10, 23, 57, 95, 96], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 84, 87, 88, 97, 101, 106], "walk": 7, "alongsid": [7, 38, 42, 90, 98], "pre": [7, 8, 10, 38, 42, 90, 91, 106], "runtim": [7, 38, 41, 42, 74, 76, 78, 89, 92, 98], "issue_manager_factori": [7, 15, 90], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 88, 96, 99, 106], "next": [7, 62, 84, 87, 88, 89, 94, 95, 96, 98, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 90, 91, 96], "mark": [7, 10, 85, 103, 104, 106], "regard": [7, 91, 99], "rand": [7, 49, 52, 90, 91, 96], "is_": [7, 10, 90], "_issu": [7, 10, 90], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 90], "whole": [7, 10, 27, 38, 42, 91, 96], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 90], "popul": [7, 95], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 79, 83, 96, 98, 102], "intermediate_arg": 7, "min": [7, 49, 69, 82, 90, 98, 104], "sin_filt": 7, "sin": 7, "arang": [7, 96], "kernel": [7, 96], "affect": [7, 10, 38, 42, 53, 76, 82, 95, 96, 98], "easili": [7, 47, 85, 87, 88, 89, 91, 94, 95, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 97, 104], "sai": [7, 10, 38, 42, 96, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 69, 72, 88, 94, 95, 96, 98, 99, 101, 104], "try": [7, 9, 10, 41, 44, 61, 62, 76, 78, 84, 91, 92, 94, 95, 98, 99, 107], "won": [7, 38, 42, 90, 91, 98, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 90], "instanti": [7, 17, 41, 61, 71, 88, 89, 91, 94], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 70, 89, 90, 91, 92, 94, 95, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 61, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 61, 74, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 90, 91, 96, 97, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32], "group": [8, 9, 27, 32, 97, 103, 108], "dbscan": [8, 10, 32], "hdbscan": 8, "etc": [8, 10, 23, 33, 38, 42, 47, 61, 62, 80, 84, 90, 91, 94, 95, 98, 99, 102, 106], "sensit": [8, 10, 55, 96], "ep": [8, 32, 70], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 96], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 32, 96], "cluster_id": [8, 10, 11, 32, 96], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 91, 92, 94, 95, 96, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 74, 96, 98, 105], "nondefault": 9, "Near": [9, 98], "imbal": [9, 22, 66, 71, 72, 91], "null": [9, 11, 15, 22, 91, 92, 95, 99], "togeth": [9, 10, 47, 88, 90, 91, 92, 94, 95, 99, 106, 108], "built": [9, 49], "own": [9, 38, 40, 42, 54, 60, 66, 67, 70, 76, 80, 87, 88, 89, 91, 92, 94, 95, 96, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 61, 94, 95, 96, 104], "fulli": [9, 10, 38, 42, 61, 98], "platform": [9, 10, 84, 92, 94, 95, 98], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 61, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 72, 87, 94, 98, 99, 106, 107], "100x": [9, 10], "faster": [9, 10, 41, 71, 74, 76, 78, 98, 99], "intellig": [9, 10], "quickli": [9, 10, 39, 87, 89, 92, 94, 95, 98, 102, 104, 107, 108], "fix": [9, 10, 62, 88, 95, 96, 99, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 62, 63, 69, 88, 92, 95, 98, 106], "power": [9, 10, 92, 94, 95, 97, 99, 108], "automl": [9, 10, 84, 98], "system": [9, 10, 89, 92, 94, 95, 107], "foundat": [9, 10, 84, 96], "improv": [9, 10, 62, 87, 88, 91, 92, 97, 98, 99, 106, 107], "click": [9, 10, 89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 88, 89, 95, 97, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 87, 88, 91, 97, 98, 106], "free": [9, 10, 84, 89, 91, 92, 94, 95, 98, 99], "page": [10, 91, 98, 99], "variou": [10, 14, 31, 40, 58, 60, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103], "why": [10, 95], "matter": [10, 37, 63], "didn": [10, 96], "plu": [10, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 90, 91, 92, 94, 95, 96, 98, 99], "class_imbal": [10, 11, 15, 21, 91, 92, 94, 95, 96, 99], "data_valu": [10, 11, 15, 22, 96], "No": [10, 11, 87, 88, 95, 96, 98], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 69, 87, 88, 108], "issue_scor": 10, "atyp": [10, 71, 90, 91, 92, 94, 95, 99, 104], "datapoint": [10, 32, 44, 49, 57, 72, 75, 84, 87, 88, 89, 90, 91, 94, 95, 98, 105, 106], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 89], "expertis": 10, "interpret": [10, 97, 98, 99, 102, 106], "annot": [10, 37, 48, 62, 63, 64, 66, 67, 69, 70, 79, 82, 83, 84, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 94, 95], "preced": 10, "incorrect": [10, 69, 72, 75, 87, 89, 90, 91, 92, 94, 95, 96, 99, 103, 106], "due": [10, 41, 44, 72, 76, 78, 89, 90, 91, 92, 94, 95, 99, 106], "appear": [10, 37, 48, 63, 64, 67, 75, 91, 92, 94, 95, 96, 106, 107], "now": [10, 41, 85, 87, 88, 89, 91, 96, 98, 101, 103, 104, 106, 108], "token": [10, 43, 56, 78, 79, 80, 81, 82, 83, 98, 99, 100], "hamper": [10, 92, 97], "analyt": [10, 84, 96, 98, 101], "lead": [10, 69, 72, 92, 96, 103], "draw": [10, 90, 91], "conclus": [10, 95], "let": [10, 38, 42, 71, 72, 87, 88, 89, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 106], "head": [10, 87, 88, 89, 91, 92, 94, 95, 96, 97, 99, 101, 106], "97": [10, 87, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 87, 91, 96, 97, 99, 103], "680894": 10, "41": [10, 96, 97, 103, 106], "746043": 10, "794894": 10, "98": [10, 97, 98, 106, 108], "802911": 10, "give": [10, 49, 72, 99, 101, 107], "li": [10, 71], "especi": [10, 87, 88, 92, 96, 98, 106], "veri": [10, 37, 63, 67, 69, 88, 90, 91, 92, 94, 95, 98, 99, 101, 104, 106], "rare": [10, 44, 70, 90, 91, 92, 94, 95, 98, 99], "anomal": [10, 72, 90, 91, 92, 94, 95, 99], "articl": [10, 41, 98], "blog": 10, "unexpect": [10, 38, 42, 95], "consequ": 10, "inspect": [10, 88, 89, 91, 92, 99, 103, 106], "011562": 10, "62": [10, 96, 99, 103, 106], "019657": 10, "22": [10, 89, 90, 92, 96, 97, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 95, 96, 97, 103, 108], "056865": 10, "smaller": [10, 71, 96, 102, 103], "extrem": [10, 90, 91, 92, 94, 95, 96, 98, 99], "record": [10, 38, 42, 89, 94, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 83], "resolut": 10, "video": [10, 97], "audio": [10, 90, 91, 93, 98], "minor": [10, 56], "variat": 10, "translat": 10, "d": [10, 55, 87, 94, 95, 96, 98, 99, 102, 106, 108], "constant": [10, 32, 74], "median": [10, 31, 55], "question": [10, 23, 84, 99], "nearli": [10, 23, 91, 92, 94, 95], "awar": [10, 85, 99], "presenc": [10, 52, 54, 99], "36": [10, 96, 97, 108], "066009": 10, "80": [10, 39, 87, 94, 102, 106], "003906": 10, "093245": 10, "005599": 10, "27": [10, 94, 96, 97, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 96, 97, 99, 102, 106, 108], "signific": [10, 94, 95, 96, 99], "violat": [10, 94, 95, 96, 99], "assumpt": [10, 94, 95, 96, 99], "changepoint": [10, 94, 95, 99], "shift": [10, 52, 54, 94, 95, 99], "drift": [10, 91, 94, 96, 99], "autocorrel": [10, 94, 95, 99], "almost": [10, 94, 95, 99], "adjac": [10, 52, 94, 95, 99], "tend": [10, 37, 47, 94, 95, 99, 107, 108], "sequenti": [10, 38, 42, 61, 92], "pai": [10, 95], "attent": [10, 96], "realli": [10, 88, 95, 101, 107], "mere": 10, "highlight": [10, 79, 83, 90, 91, 94, 96, 107], "necessarili": [10, 62, 70, 95, 99], "wrong": [10, 62, 67, 69, 85, 88, 90, 91, 95, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 82, 87, 94, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 67, 70, 103], "x2": [10, 67, 70, 103], "10th": 10, "100th": 10, "90": [10, 82, 87, 94, 99, 105, 106], "similarli": [10, 38, 42, 90, 92, 94, 96, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 70, 96, 101], "blogpost": 10, "proper": [10, 57, 62, 67, 70, 87, 92, 95, 98, 101, 103], "scenario": [10, 52, 54, 72, 90, 91], "underli": [10, 43, 54, 71, 80, 82, 96, 108], "stem": [10, 71, 104], "evolv": 10, "influenc": 10, "act": [10, 69, 90], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 61, 63, 69, 72, 76, 78, 79, 84, 92, 94, 95], "problem": [10, 33, 41, 49, 79, 84, 90, 91, 92, 95, 98], "deploy": [10, 87, 88, 99, 106], "overlook": [10, 69, 103], "fact": 10, "thu": [10, 37, 42, 63, 87, 89, 94, 95, 99, 105, 108], "diagnos": [10, 91, 98], "24": [10, 89, 96, 97, 99, 101, 103, 106, 108], "681458": 10, "37": [10, 90, 96, 97], "804582": 10, "64": [10, 42, 87, 92, 94, 96, 99, 103], "810646": 10, "815691": 10, "78": [10, 87, 94, 97, 99, 103, 106], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 70, 98], "rarest": [10, 91], "q": [10, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 92, 95, 96, 97, 99, 101, 108], "75": [10, 49, 90, 91, 96, 97, 101, 102, 103, 106, 108], "33": [10, 38, 42, 96, 97, 103], "68": [10, 87, 97, 99, 103], "excess": [10, 92], "dark": [10, 107], "bright": [10, 96, 108], "blurri": [10, 92, 96], "lack": [10, 61, 96], "unusu": [10, 96, 103, 104], "cluster": [10, 19, 32], "slice": 10, "poor": [10, 96], "subpopul": 10, "faq": [10, 84, 91, 92, 94, 95, 100], "get_self_confidence_for_each_label": [10, 49, 72], "r": [10, 41, 74, 90, 91, 96, 106, 107], "tabular": [10, 84, 86, 90, 91, 93, 96, 98, 101], "categor": [10, 71, 86, 87, 90, 91, 93, 98, 106], "encod": [10, 50, 70, 76, 79, 87, 88, 94, 95, 98, 106, 107], "71": [10, 96, 97, 99, 103, 106, 108], "70": [10, 82, 94, 96], "69": [10, 99, 106], "subgroup": [10, 96], "wors": [10, 96, 101], "ratio": [10, 96], "miss": [10, 28, 38, 42, 57, 67, 69, 98, 103, 106], "pattern": [10, 96], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 71, 98], "quantif": 10, "39": [10, 88, 89, 90, 92, 95, 96, 97, 98, 103, 106, 107, 108], "32": [10, 89, 90, 96, 97, 101, 103], "valuabl": [10, 19, 96], "exert": [10, 91], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 84, 97], "health_summary_kwarg": 10, "tandem": [10, 97], "view": [10, 38, 42, 43, 44, 78, 80, 82, 84, 87, 88, 89, 90, 91, 94, 95, 97, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 71, 104], "outsid": [10, 98, 102], "outlierissuemanag": [10, 15, 22, 29], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107], "howev": [10, 38, 42, 52, 57, 87, 88, 89, 92, 94, 95, 96, 101, 105, 107], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 63], "versa": [10, 63], "light": [10, 92, 96, 97, 103, 107], "29": [10, 92, 96, 97, 101, 102, 103, 107, 108], "low_inform": [10, 92, 96], "odd_aspect_ratio": [10, 92, 96], "35": [10, 90, 96, 97, 101, 102, 103], "odd_siz": [10, 92, 96], "doc": [10, 38, 42, 71, 84, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 89, 90, 91, 92, 94, 95, 96, 99, 102, 106], "is_outlier_issu": [11, 90, 91, 92, 94, 95, 96, 99], "outlier_scor": [11, 29, 90, 91, 92, 94, 95, 96, 99, 104], "is_near_duplicate_issu": [11, 90, 91, 92, 94, 95, 96, 98, 99], "near_duplicate_scor": [11, 20, 90, 91, 92, 94, 95, 96, 98, 99], "near_duplicate_set": [11, 20, 22, 90, 91, 92, 94, 95, 98, 99], "is_non_iid_issu": [11, 91, 94, 95, 96, 99], "non_iid_scor": [11, 27, 91, 94, 95, 96, 99], "is_class_imbalance_issu": [11, 91, 96], "class_imbalance_scor": [11, 21, 91, 96], "is_underperforming_group_issu": [11, 91, 96], "underperforming_group_scor": [11, 32, 91, 96], "is_null_issu": [11, 91, 96], "null_scor": [11, 28, 91, 96], "is_data_valuation_issu": [11, 96], "data_valuation_scor": [11, 19, 96], "studio": [12, 84, 91, 92, 94, 95, 98], "data_issu": [12, 16, 17, 34], "issue_find": [12, 16], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 61, 72, 90, 91, 92, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "fail": 13, "hold": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 92], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": 14, "strategi": [14, 49, 96, 98], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 64, 67, 70, 74, 76, 78, 90, 91, 98], "recomput": [14, 88], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 63, 84], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 71, 90], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 76, 78], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 96, 99, 103, 107, 108], "creation": [17, 42, 96], "execut": [17, 38, 42, 90, 98, 103], "coordin": [17, 67, 69, 70, 103, 108], "At": [17, 70, 98], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 61], "vstack": [19, 57, 92, 97, 98, 99, 101, 102], "25": [19, 27, 38, 49, 55, 91, 92, 96, 97, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 90, 91, 92, 98, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 88, 95, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 84, 87, 89, 90, 92, 96, 97, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 69, 84, 99, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 71, 72, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "perform_clust": [22, 32], "get_worst_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 62, 98, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 66, 69, 70], "scalartyp": [24, 26], "covari": [24, 26, 74, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 72, 76, 78, 103, 107], "empir": [27, 48, 62], "cumul": 27, "ecdf": 27, "histogram": [27, 94, 96, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 61, 92, 96, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 78, 82, 90, 104, 106], "prompt": 28, "address": [28, 88, 90, 91, 95, 98], "enabl": [28, 42, 54], "scaling_factor": [29, 55], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 70, 88, 108], "50": [32, 42, 96, 98, 99, 101, 103, 104, 106], "keepdim": [32, 98], "signifi": 32, "absenc": 32, "int64": [32, 89, 101], "npt": 32, "int_": 32, "id": [32, 62, 90, 92, 96, 98, 101], "unique_cluster_id": 32, "_description_": 32, "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 71, 89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 89, 91, 98], "datset": 34, "exclud": [34, 43, 79, 83, 90, 108], "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 90, 91], "continu": [35, 61, 87, 88, 92, 95, 96, 98, 101, 103, 106, 108], "binari": [35, 49, 57, 64, 66, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 90], "typeerror": [35, 49], "12": [35, 49, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 62, 63, 72, 90, 91, 92, 97, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 87, 88, 89, 91, 92, 94, 95, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 96, 98, 99], "rank_classes_by_label_qu": [37, 91], "merg": [37, 52, 56, 84, 97, 98, 108], "find_overlapping_class": [37, 98, 99], "problemat": [37, 63, 79, 83, 89, 103, 108], "unnorm": [37, 63, 99], "abov": [37, 38, 41, 42, 54, 57, 62, 69, 70, 72, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 87, 88, 89, 90, 91, 94, 95, 96, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 87, 89, 90, 91, 94, 96, 99, 101], "df": [37, 57, 83, 89, 96, 98], "overall_label_qu": [37, 63], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 63, 72], "label_nois": [37, 63], "human": [37, 97, 107, 108], "clearli": [37, 72, 92, 103, 107], "num": [37, 63, 97, 99], "overlap": [37, 84, 97, 98, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 72, 96], "vehicl": [37, 97], "truck": [37, 97, 104, 107], "intuit": [37, 63], "car": [37, 97, 103, 107], "frequent": [37, 62, 96, 98, 106], "characterist": [37, 96], "l": [37, 38, 42, 67, 69, 70], "class1": 37, "class2": 37, "relationship": [37, 96], "dog": [37, 57, 63, 65, 79, 97, 98, 104, 105, 108], "cat": [37, 57, 63, 65, 97, 98, 104, 105], "captur": [37, 89, 103, 104, 107], "co": [37, 38, 39], "noisy_label": [37, 90, 91, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 63, 70], "overall_label_health_scor": [37, 63, 99], "half": [37, 38, 40, 42, 63, 97, 108], "health_scor": [37, 63], "classes_by_label_qu": [37, 91], "cnn": [38, 40, 42, 92], "cifar": [38, 39, 96, 97, 104], "teach": [38, 39], "bhanml": 38, "blob": [38, 96], "master": [38, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 70, 89, 90, 91, 92, 94, 95, 98, 99, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 92, 101], "overridden": [38, 42], "although": [38, 42, 71, 87, 94], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 63, 70, 78, 82, 98, 101, 102, 103, 105, 108], "hook": [38, 42, 97], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 70], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 92], "init": [38, 42, 99], "no_grad": [38, 42, 92, 104], "init_weight": [38, 42], "linear": [38, 42, 88, 92, 95], "fill_": [38, 42], "net": [38, 42, 89, 92, 97], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 92], "tensor": [38, 39, 42, 89, 92, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 89], "buffer": [38, 40, 42, 96], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 61], "cpu": [38, 40, 42, 44, 89, 92], "move": [38, 42, 49, 85, 97], "cuda": [38, 40, 42, 89, 92], "devic": [38, 42, 89, 92], "gpu": [38, 42, 88, 89, 95], "live": [38, 42], "copi": [38, 42, 74, 87, 89, 90, 91, 94, 96, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 92, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 84, 90, 96, 97, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 74, 75, 96, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 95], "resolv": [38, 42, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 92, 96, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 92], "break": [38, 42, 92, 96, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 92], "16": [38, 42, 49, 52, 61, 78, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 72, 97, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 91, 92, 96, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 89, 90, 91, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 96, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 70, 90, 92, 96, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 89, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 87, 94], "fire": [38, 42, 97], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 90, 91], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 92, 94, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 88, 89, 95], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 61, 85, 98], "design": [38, 42, 52], "ordereddict": [38, 42], "detach": [38, 42, 92], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 63, 69], "complex": [38, 42], "integr": [38, 42, 54, 84, 98], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 88, 95, 97], "desir": [38, 42, 52, 56, 70], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 89], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 92], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 61, 92], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 92, 98], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 72, 96, 98], "250": [39, 90, 91, 99, 103], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 88, 92, 95, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 92, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 60, 96, 108], "wish": [40, 60, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 98], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 77, 78, 79, 80, 81, 82, 83, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 76, 78, 92, 98, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 92], "loader": [40, 42, 92], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 85], "mini": [41, 76, 78, 98], "low_self_confid": [41, 44, 64], "self_confid": [41, 44, 45, 49, 64, 66, 72, 80, 82, 87, 88, 98, 99], "conveni": [41, 54, 87, 88, 89, 95], "script": 41, "labels_fil": [41, 98], "pred_probs_fil": [41, 98], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 62, 107], "read": [41, 46, 91, 98, 99, 104, 108], "zarr": [41, 98], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 98], "hdf5": 41, "further": [41, 43, 63, 64, 66, 69, 70, 78, 79, 89, 98], "yourfil": 41, "npy": [41, 97, 98, 107], "mmap_mod": [41, 107], "tip": [41, 44, 61, 98], "save_arrai": 41, "your_arrai": 41, "disk": [41, 97, 98], "npz": [41, 108], "maxim": [41, 62, 76, 78, 107], "multiprocess": [41, 44, 64, 76, 78, 92, 98], "linux": [41, 76, 78], "physic": [41, 44, 76, 78, 103], "psutil": [41, 44, 76, 78], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 70, 90, 98, 103, 104], "store_result": 41, "becom": [41, 96, 104], "verifi": [41, 54, 98, 101, 104], "long": [41, 62, 71, 101], "enough": [41, 57, 96, 98], "chunk": [41, 105], "ram": [41, 97], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 98], "shortcut": 41, "encount": [41, 44, 76], "1000": [41, 89, 95, 98, 104], "aggreg": [41, 45, 49, 62, 66, 69, 72, 82, 98, 99, 101], "seen": [41, 98, 104, 108], "far": [41, 62], "label_quality_scor": [41, 66, 69, 72, 75, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 64, 66, 72, 80, 82], "low_normalized_margin": [41, 44, 64], "issue_indic": [41, 69, 92], "update_num_issu": 41, "arr": [41, 98], "chunksiz": 41, "convnet": 42, "bespok": [42, 61], "download": [42, 89, 96, 98, 104], "mnist": [42, 84, 89, 97], "handwritten": 42, "digit": [42, 89, 97], "last": [42, 49, 67, 70, 90, 91, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 72, 74, 89, 96, 99, 102, 103, 108], "templat": 42, "flexibli": 42, "among": [42, 62, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 88, 104], "span": 43, "sentenc": [43, 56, 80, 82, 83, 88, 95], "token_classif": [43, 56, 80, 82, 83, 98], "encourag": [44, 64, 72, 75], "multilabel_classif": [44, 63, 64, 66, 72, 98, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 64, 72, 99], "num_to_remove_per_class": [44, 64], "bad": [44, 52, 64, 69, 72, 95, 98], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 64, 66, 72, 80, 82], "label_issues_idx": [44, 72], "entropi": [44, 46, 48, 49, 71, 72], "prune_by_class": [44, 64, 99], "predicted_neq_given": [44, 64, 99], "prune_counts_matrix": 44, "smallest": [44, 72], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 84, 88, 98], "too": [44, 49, 52, 71, 92, 98, 103], "thread": [44, 64], "window": [44, 97], "shorter": [44, 67], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 98], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 85], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 66], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 66], "softmin": [45, 49, 66, 69, 78, 82], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 96], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 61, 62, 84, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 89, 96], "behav": 46, "unnecessari": [46, 98], "slightli": [46, 87, 88], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": 47, "propag": 47, "throughout": [47, 57, 74, 83, 89, 101, 107, 108], "increas": [47, 55, 69, 71, 72, 89, 90, 96, 98, 101, 102, 108], "dot": [47, 82, 98], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 62], "ensembl": [48, 49, 62, 72, 87, 94, 98, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 62], "format_multiannotator_label": [48, 62, 101], "formatted_label": [48, 57], "old": [48, 57, 85, 97], "check_consensus_label_class": 48, "consensus_label": [48, 62, 101], "consensus_method": [48, 62], "consensu": [48, 62, 84, 100, 108], "establish": [48, 61, 88, 106], "compute_soft_cross_entropi": 48, "soft": [48, 97], "find_best_temp_scal": 48, "coarse_search_rang": [48, 74, 98], "fine_search_s": [48, 74, 98], "temperatur": [48, 49, 69, 78, 82], "scale": [48, 55, 87, 96, 97, 98, 104, 107], "factor": [48, 49, 55, 76, 78], "minim": [48, 69, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 97], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 72], "get_confidence_weighted_entropy_for_each_label": [49, 72], "scorer": 49, "alpha": [49, 66, 69, 90, 91, 96, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 64, 94, 95, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 92, 94, 98, 103], "discount": 49, "s_ema": 49, "175": [49, 92, 99, 103], "underflow": 49, "nan": [49, 62, 87, 94, 96, 101, 106], "aggregated_scor": 49, "base_scor": 49, "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 66], "n_sampl": [49, 96], "n_label": 49, "worst": [49, 101], "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": 49, "get_label_quality_scores_per_class": [49, 65, 66], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 89], "wider": 49, "splitter": 49, "kfold": [49, 92], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 92, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 64, 70, 76, 79, 87, 94, 97, 98, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 71], "reli": [52, 71, 88, 89, 90, 91, 95, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 98], "manner": [52, 66, 87, 88, 96, 101, 106], "701": 52, "900": [52, 87, 94, 106], "436": 52, "000": [52, 88, 92, 95, 96, 97, 108], "idea": [52, 72, 103], "dens": [52, 61, 96], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 63, 102], "vari": [52, 69, 91], "exact_duplicate_set": 52, "main": [52, 62], "front": [52, 97], "consider": 52, "capabl": [52, 84], "come": [52, 57, 90, 91, 98, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 62, 87, 94, 96], "slower": 53, "decid": [53, 62, 88, 95, 97, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 71], "spatial": [53, 71], "decis": [53, 87, 90, 91], "That": [53, 99, 102], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 67, 70, 71, 89, 90, 91, 92, 94, 95, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "exp": [55, 71, 72, 90], "dt": 55, "right": [55, 67, 70, 88, 95, 102, 103, 104], "strength": [55, 70, 96], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 97], "thumb": 55, "ood_features_scor": [55, 71, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 89, 90, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 84, 98, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 90, 91, 92, 94, 96, 108], "nbitbas": [56, 66], "probs_merg": 56, "0125": [56, 82], "0375": 56, "075": 56, "025": 56, "color": [56, 79, 90, 91, 94, 96, 99, 102, 104, 106, 107], "red": [56, 70, 90, 91, 96, 97, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 72, 87, 94, 98, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 62, 85, 92, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 70, 95, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 90, 91, 96, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 71, 88, 89, 94, 95, 96, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 84, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 89, 92, 96, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 67, 70, 96, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 70, 79, 83, 88, 89, 94, 95, 96, 99, 108], "jupyt": [57, 89, 90, 91, 92, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 62, 89, 91, 97, 98, 99, 101, 102, 103, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 64], "keraswrappermodel": [60, 61, 84], "keraswrappersequenti": [60, 61], "tf": [61, 89], "legaci": 61, "newer": 61, "interim": 61, "advis": [61, 102], "stabil": [61, 71], "until": 61, "accommod": 61, "keraswrapp": 61, "huggingface_keras_imdb": 61, "unit": [61, 108], "model_kwarg": [61, 74], "compile_kwarg": 61, "sparsecategoricalcrossentropi": 61, "layer": [61, 88, 89, 95, 104], "my_keras_model": 61, "from_logit": 61, "declar": 61, "apply_softmax": 61, "analysi": 62, "analyz": [62, 84, 96, 99, 101, 102], "get_label_quality_multiannot": [62, 101], "vote": 62, "crowdsourc": [62, 84, 101], "dawid": [62, 101], "skene": [62, 101], "analog": [62, 97, 101], "chosen": [62, 72, 96, 98, 101], "crowdlab": [62, 101], "unlabel": [62, 92, 94, 95, 101, 104, 107], "get_active_learning_scor": [62, 101], "activelab": [62, 101], "priorit": [62, 69, 103, 107, 108], "showcas": [62, 96], "best_qual": 62, "quality_method": 62, "calibrate_prob": 62, "return_detailed_qu": 62, "return_annotator_stat": 62, "return_weight": 62, "label_quality_score_kwarg": 62, "did": [62, 63, 87, 88, 89, 94, 99, 101, 106], "majority_vot": 62, "broken": [62, 70, 97, 106], "highest": [62, 70, 90, 92, 105], "0th": 62, "consensus_quality_scor": [62, 101], "annotator_agr": [62, 101], "reman": 62, "1st": 62, "2nd": [62, 76], "3rd": 62, "consensus_label_suffix": 62, "consensus_quality_score_suffix": 62, "suffix": 62, "emsembl": 62, "weigh": [62, 97], "agreement": [62, 101], "agre": 62, "prevent": [62, 98], "overconfid": [62, 105], "detailed_label_qu": [62, 101], "annotator_stat": [62, 101], "model_weight": 62, "annotator_weight": 62, "warn": 62, "labels_info": 62, "num_annot": [62, 101], "deriv": [62, 101], "quality_annotator_1": 62, "quality_annotator_2": 62, "quality_annotator_m": 62, "annotator_qu": [62, 101], "num_examples_label": [62, 101], "agreement_with_consensu": [62, 101], "worst_class": [62, 101], "trustworthi": [62, 101, 106], "get_label_quality_multiannotator_ensembl": 62, "weigtht": 62, "budget": 62, "retrain": [62, 88, 106], "active_learning_scor": 62, "active_learning_scores_unlabel": 62, "get_active_learning_scores_ensembl": 62, "henc": [62, 89, 90, 101], "get_majority_vote_label": [62, 101], "event": 62, "lastli": [62, 94], "convert_long_to_wide_dataset": 62, "labels_multiannotator_long": 62, "wide": [62, 87, 88, 89], "labels_multiannotator_wid": 62, "common_multilabel_issu": [63, 65], "exclus": [63, 102], "rank_classes_by_multilabel_qu": [63, 65], "overall_multilabel_health_scor": [63, 65], "multilabel_health_summari": [63, 65], "classes_by_multilabel_qu": 63, "inner": [64, 78, 96], "find_multilabel_issues_per_class": [64, 65], "per_class_label_issu": 64, "label_issues_list": 64, "pred_probs_list": [64, 72, 92, 99], "anim": [65, 104], "rat": 65, "predat": 65, "pet": 65, "reptil": 65, "box": [67, 69, 70, 97, 103], "object_detect": [67, 69, 70, 103], "return_indices_ranked_by_scor": [67, 103], "overlapping_label_check": [67, 69], "suboptim": [67, 69], "locat": [67, 69, 96, 103, 107, 108], "bbox": [67, 70, 103], "image_nam": [67, 70], "y1": [67, 70, 103], "y2": [67, 70, 103], "later": [67, 70, 71, 88, 108], "corner": [67, 70, 103], "xyxi": [67, 70, 103], "io": [67, 70, 89, 96, 97], "keras_cv": [67, 70], "bounding_box": [67, 70, 103], "detectron": [67, 70, 103], "detectron2": [67, 70, 103], "readthedoc": [67, 70], "en": [67, 70], "latest": [67, 70], "visual": [67, 68, 70, 87, 90, 91, 92, 106, 108], "draw_box": [67, 70], "mmdetect": [67, 70, 103], "swap": [67, 69, 79, 83], "penal": [67, 69], "concern": [67, 69, 84, 91], "issues_from_scor": [68, 69, 77, 78, 79, 81, 82, 83, 103, 107, 108], "compute_overlooked_box_scor": [68, 69], "compute_badloc_box_scor": [68, 69], "compute_swap_box_scor": [68, 69], "pool_box_scores_per_imag": [68, 69], "object_counts_per_imag": [68, 70, 103], "bounding_box_size_distribut": [68, 70, 103], "class_label_distribut": [68, 70, 103], "get_sorted_bbox_count_idx": [68, 70], "plot_class_size_distribut": [68, 70], "plot_class_distribut": [68, 70], "get_average_per_class_confusion_matrix": [68, 70], "calculate_per_class_metr": [68, 70], "aggregation_weight": 69, "imperfect": [69, 98], "chose": [69, 101, 103], "imperfectli": [69, 103], "dirti": [69, 72, 75, 106], "subtyp": 69, "badloc": 69, "nonneg": 69, "high_probability_threshold": 69, "auxiliary_input": [69, 70], "iou": [69, 70], "heavili": 69, "auxiliarytypesdict": 69, "pred_label": [69, 88], "pred_label_prob": 69, "pred_bbox": 69, "lab_label": 69, "lab_bbox": 69, "similarity_matrix": 69, "min_possible_similar": 69, "scores_overlook": 69, "low_probability_threshold": 69, "scores_badloc": 69, "accident": [69, 88, 94, 95, 98], "scores_swap": 69, "box_scor": 69, "image_scor": [69, 78, 107], "discov": [70, 91, 96, 108], "abnorm": [70, 92, 103], "auxiliari": [70, 104, 107], "_get_valid_inputs_for_compute_scor": 70, "object_count": 70, "down": 70, "bbox_siz": 70, "class_distribut": 70, "plot": [70, 90, 91, 96, 99, 102, 104, 106, 107], "sorted_idx": [70, 104], "class_to_show": 70, "hidden": [70, 104], "max_class_to_show": 70, "plt": [70, 79, 90, 91, 92, 96, 99, 102, 104, 106], "matplotlib": [70, 79, 90, 91, 92, 96, 99, 102, 103, 104, 106], "pyplot": [70, 79, 90, 91, 92, 96, 99, 102, 104, 106], "prediction_threshold": 70, "overlai": [70, 103], "figsiz": [70, 90, 91, 92, 96, 99, 102, 104], "save_path": [70, 103], "blue": [70, 97, 99, 103], "overlaid": 70, "side": [70, 97, 103], "figur": [70, 96, 99, 102, 104, 106], "extens": [70, 99, 101], "png": [70, 96, 103], "pdf": [70, 71], "svg": 70, "num_proc": [70, 92], "intersect": [70, 98], "tp": 70, "fp": 70, "ground": [70, 97, 99, 101, 106], "truth": [70, 99, 101, 106], "bias": [70, 96], "avg_metr": 70, "distionari": 70, "95": [70, 80, 82, 94, 97, 99, 106], "per_class_metr": 70, "Of": 71, "find_top_issu": [71, 72, 104], "behind": [71, 99], "dist_metr": 71, "subtract": [71, 72], "renorm": [71, 72, 98], "least_confid": 71, "sum_": 71, "log": [71, 72, 85], "softmax": [71, 78, 82, 92], "literatur": 71, "gen": 71, "liu": 71, "lochman": 71, "zach": 71, "openaccess": 71, "thecvf": 71, "cvpr2023": 71, "liu_gen_pushing_the_limits_of_softmax": 71, "based_out": 71, "distribution_detection_cvpr_2023_pap": 71, "fit_scor": [71, 104], "ood_predictions_scor": 71, "pretrain": [71, 88, 89, 95, 104], "adjust_confident_threshold": 71, "probabilist": [71, 87, 89, 90, 91, 94, 95, 104, 105], "order_label_issu": [72, 85], "whichev": [72, 105], "argsort": [72, 88, 92, 95, 99, 103, 104, 106], "max_": 72, "get_label_quality_ensemble_scor": [72, 98, 99], "weight_ensemble_members_bi": 72, "custom_weight": 72, "log_loss_search_t_valu": 72, "0001": [72, 97], "scheme": 72, "log_loss_search": 72, "log_loss": [72, 95], "1e0": 72, "1e1": 72, "1e2": 72, "2e2": 72, "quality_scor": [72, 104], "forth": 72, "top_issue_indic": 72, "rank_bi": [72, 85], "weird": [72, 83], "minu": 72, "prob_label": 72, "max_prob_not_label": 72, "AND": [72, 95], "get_epistemic_uncertainti": [73, 74], "get_aleatoric_uncertainti": [73, 74], "corrupt": [74, 106], "linearregress": [74, 98, 106], "y_with_nois": 74, "n_boot": [74, 98], "include_aleatoric_uncertainti": [74, 98], "sole": [74, 87, 90, 101, 104], "bootstrap": [74, 98, 106], "resampl": [74, 89, 98], "epistem": [74, 98, 104, 106], "aleator": [74, 98, 106], "model_final_kwarg": 74, "coars": 74, "thorough": [74, 98], "fine": [74, 88, 89, 95, 104], "grain": 74, "grid": [74, 96], "varianc": [74, 99], "epistemic_uncertainti": 74, "residu": [74, 75, 98], "deviat": [74, 103, 106], "aleatoric_uncertainti": 74, "outr": 75, "contin": 75, "raw": [75, 84, 85, 91, 92, 97, 98, 101, 103, 104, 106], "aka": [75, 89, 99, 103, 106, 108], "00323821": 75, "33692597": 75, "00191686": 75, "semant": [76, 78, 79, 100], "pixel": [76, 78, 79, 92, 104, 107], "h": [76, 78, 79, 107], "height": [76, 78, 79, 96, 107], "w": [76, 78, 79, 107], "width": [76, 78, 79, 96, 107], "labels_one_hot": [76, 79, 107], "stream": [76, 104, 108], "downsampl": [76, 78, 107], "shrink": [76, 78], "divis": [76, 78, 90], "common_label_issu": [77, 79, 81, 83, 107, 108], "filter_by_class": [77, 79, 107], "segmant": [78, 79], "num_pixel_issu": [78, 107], "product": [78, 92, 96, 98], "pixel_scor": [78, 107], "enter": 79, "legend": [79, 90, 91, 96, 102, 103, 106, 107], "colormap": 79, "background": [79, 96], "person": [79, 98, 103, 107, 108], "ambigu": [79, 83, 88, 89, 95, 97, 99, 108], "systemat": [79, 83, 101], "misunderstood": [79, 83], "issues_df": [79, 92], "class_index": 79, "issues_subset": [79, 83], "filter_by_token": [81, 83, 108], "token_score_method": 82, "sentence_score_method": 82, "sentence_score_kwarg": 82, "compris": [82, 83], "token_scor": [82, 108], "converg": 82, "toward": [82, 96], "_softmin_sentence_scor": 82, "sentence_scor": [82, 108], "token_info": 82, "02": [82, 90, 91, 96, 99, 103], "03": [82, 94, 96, 97, 99, 103, 108], "04": [82, 94, 96, 103, 104], "08": [82, 96, 99, 103, 106, 108], "commonli": [83, 85, 90, 91, 102, 108], "But": [83, 95, 99, 106, 108], "restrict": [83, 98], "reliabl": [84, 87, 89, 96, 98, 101, 107], "thousand": 84, "imagenet": [84, 97], "popular": [84, 101, 103], "centric": [84, 92, 94, 95, 100], "minut": [84, 87, 88, 89, 94, 95, 97, 101, 102, 103, 106, 107, 108], "conda": 84, "feature_embed": [84, 104], "Then": [84, 87, 88, 92, 98], "your_dataset": [84, 89, 90, 91, 92, 94, 95, 98], "column_name_of_label": [84, 89, 90, 91, 92, 94, 95], "plagu": [84, 91], "untrain": 84, "\u30c4": 84, "label_issues_info": [84, 91], "sklearn_compatible_model": 84, "framework": [84, 102, 103], "complianc": 84, "tag": [84, 102, 108], "sequenc": 84, "recognit": [84, 89, 98, 108], "train_data": [84, 87, 88, 104, 106], "gotten": 84, "test_data": [84, 87, 88, 99, 102, 104, 106], "deal": [84, 91, 96], "tutori": [84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "feel": [84, 89, 91, 98], "ask": [84, 98], "slack": [84, 98], "project": [84, 106], "welcom": 84, "commun": [84, 98], "guidelin": [84, 103], "piec": 84, "smart": [84, 92, 94, 95, 98], "edit": [84, 98], "easier": [84, 96, 99], "unreli": [84, 87, 89, 94, 95], "link": [84, 89, 97, 103], "older": 85, "outlin": 85, "substitut": 85, "v2": [85, 87, 94], "get_noise_indic": 85, "psx": 85, "sorted_index_method": 85, "order_label_error": 85, "label_errors_bool": 85, "latent_estim": 85, "num_label_error": 85, "learningwithnoisylabel": 85, "neatli": 85, "organ": [85, 87, 94, 97, 108], "reorgan": 85, "baseline_method": 85, "incorpor": [85, 99], "research": [85, 99], "polyplex": 85, "terminologi": 85, "label_error": 85, "quickstart": [87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "sql": [87, 94], "databas": [87, 94], "excel": [87, 94], "parquet": [87, 94], "student": [87, 94, 106, 108], "grade": [87, 94, 106], "exam": [87, 94, 106], "letter": [87, 94, 108], "hundr": [87, 94], "mistak": [87, 88, 92, 94, 95], "extratreesclassifi": 87, "extratre": 87, "ranked_label_issu": [87, 88], "branch": [87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106], "preprocess": [87, 88, 91, 94, 96, 104, 106], "standardscal": [87, 94, 104], "labelencod": [87, 88], "train_test_split": [87, 88, 90, 91, 104], "accuracy_scor": [87, 88, 89, 95, 99], "grades_data": [87, 94], "read_csv": [87, 88, 94, 95, 96, 106], "demo": [87, 91, 94, 102], "stud_id": [87, 94], "exam_1": [87, 94, 106], "exam_2": [87, 94, 106], "exam_3": [87, 94, 106], "letter_grad": [87, 94], "f48f73": [87, 94], "53": [87, 90, 91, 94, 96, 97, 102, 103], "00": [87, 90, 91, 94, 96, 97, 104], "77": [87, 90, 91, 94, 103], "0bd4e7": [87, 94], "81": [87, 94, 95, 103, 106, 108], "great": [87, 94, 97], "particip": [87, 94], "cb9d7a": [87, 94], "61": [87, 94, 96, 99, 103, 106], "94": [87, 94, 97, 99, 103, 106], "9acca4": [87, 94], "48": [87, 94, 96, 97, 99, 103], "x_raw": [87, 94], "labels_raw": 87, "interg": [87, 88], "categorical_featur": [87, 106], "x_encod": [87, 94], "get_dummi": [87, 94, 106], "drop_first": [87, 94], "numeric_featur": [87, 94], "scaler": [87, 94, 104], "x_process": [87, 94], "fit_transform": [87, 94, 96], "bring": [87, 88, 92, 94, 95, 101, 106], "byod": [87, 88, 92, 94, 95, 101, 106], "tress": 87, "held": [87, 89, 94, 95, 97, 103, 104, 105], "straightforward": [87, 89, 94], "benefit": [87, 89, 105, 107], "num_crossval_fold": [87, 89, 94, 101], "tabl": [87, 94, 97, 101], "212": [87, 99], "review": [87, 88, 91, 94, 95, 97, 98, 99, 103, 106, 107, 108], "iloc": [87, 88, 89, 94, 95, 96, 106], "92": [87, 90, 99, 103], "93": [87, 97, 103, 106], "827": 87, "99": [87, 96, 97, 99], "86": [87, 91, 92, 94, 99, 103, 106], "74": [87, 96, 103, 106], "637": [87, 94], "79": [87, 97, 103], "65": [87, 90, 96, 103], "cheat": 87, "0pt": 87, "120": [87, 90, 91], "233": 87, "83": [87, 99, 103, 106, 108], "76": [87, 99, 102, 103, 106], "suspici": [87, 94], "carefulli": [87, 92, 94, 95], "examin": [87, 90, 91, 94, 96, 103], "labels_train": 87, "labels_test": 87, "test_siz": [87, 88, 90, 91], "acc_og": [87, 88], "783068783068783": 87, "robustli": [87, 88, 106], "14": [87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [87, 88], "8095238095238095": 87, "blindli": [87, 88, 89, 98, 106], "trust": [87, 88, 89, 98, 99, 101, 105, 106], "effort": [87, 88, 106], "intent": [88, 95], "servic": [88, 95, 98], "onlin": [88, 95], "bank": [88, 95, 97], "banking77": [88, 95], "oo": [88, 95], "categori": [88, 92, 95, 96], "shortlist": [88, 95, 106], "scope": [88, 95], "logist": [88, 90, 91, 95, 101, 104], "probabilit": [88, 89], "drop": [88, 94, 96, 98, 101, 106], "earlier": [88, 108], "sentence_transform": [88, 95], "sentencetransform": [88, 95], "payment": [88, 95], "cancel_transf": [88, 95], "transfer": [88, 95], "fund": [88, 95], "cancel": [88, 95], "transact": [88, 95], "my": [88, 95], "revert": [88, 95], "morn": [88, 95], "realis": [88, 95], "yesterdai": [88, 95], "rent": [88, 95], "tomorrow": [88, 95], "raw_text": [88, 95], "raw_label": 88, "raw_train_text": 88, "raw_test_text": 88, "raw_train_label": 88, "raw_test_label": 88, "getting_spare_card": [88, 95], "visa_or_mastercard": [88, 95], "lost_or_stolen_phon": [88, 95], "card_about_to_expir": [88, 95], "card_payment_fee_charg": [88, 95], "beneficiary_not_allow": [88, 95], "supported_cards_and_curr": [88, 95], "apple_pay_or_google_pai": [88, 95], "change_pin": [88, 95], "card": [88, 95, 97], "utter": [88, 95], "encond": 88, "test_label": [88, 99, 102, 104], "suit": [88, 95, 96, 97, 98], "electra": [88, 95], "discrimin": [88, 95], "googl": [88, 95], "train_text": 88, "test_text": 88, "home": [88, 95, 97], "runner": [88, 95], "google_electra": [88, 95], "pool": [88, 95, 98, 104], "leverag": [88, 89, 95, 98, 99, 101], "computation": [88, 89, 95], "intens": [88, 89, 95], "400": [88, 95], "858371": 88, "547274": 88, "826228": 88, "966008": 88, "792449": 88, "identified_issu": [88, 106], "lowest_quality_label": [88, 89, 95, 99, 106], "to_numpi": [88, 95, 96, 106], "44": [88, 96, 97, 102, 103], "646": 88, "390": 88, "628": 88, "121": [88, 99], "702": 88, "863": 88, "135": 88, "337": [88, 103], "735": 88, "print_as_df": 88, "inverse_transform": 88, "charg": [88, 95], "cash": [88, 95], "holidai": [88, 95], "sent": [88, 95, 108], "mine": [88, 95], "expir": [88, 95], "fight": 88, "hors": [88, 97, 104], "duck": [88, 97], "me": [88, 95, 96], "whoever": [88, 95], "consum": [88, 106], "18": [88, 89, 95, 96, 97, 98, 99, 103, 104, 106, 107, 108], "baseline_model": [88, 106], "87": [88, 91, 92, 103, 106], "acceler": [88, 106], "19": [88, 89, 92, 95, 96, 97, 98, 99, 103, 104, 106, 107, 108], "89": [88, 90, 94, 103, 106], "spoken": 89, "500": [89, 96, 104, 108], "english": [89, 97], "pronunci": 89, "wav": 89, "huggingfac": [89, 90, 91, 92, 98], "voxceleb": 89, "speech": [89, 108], "your_pred_prob": [89, 90, 91, 94, 95], "tensorflow_io": 89, "huggingface_hub": 89, "reproduc": [89, 94, 96, 99, 101], "command": 89, "wget": [89, 103, 107, 108], "navig": 89, "browser": 89, "jakobovski": 89, "archiv": [89, 108], "v1": 89, "tar": [89, 96, 104], "gz": [89, 96, 104], "mkdir": [89, 108], "spoken_digit": 89, "xf": 89, "6_nicolas_32": 89, "data_path": 89, "listdir": 89, "nondeterminist": 89, "file_nam": 89, "endswith": 89, "file_path": 89, "join": [89, 92, 96, 98], "7_george_26": 89, "0_nicolas_24": 89, "0_nicolas_6": 89, "listen": 89, "display_exampl": 89, "expand": [89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "pulldown": [89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "colab": [89, 90, 91, 92, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 89, "pathlib": 89, "ipython": [89, 96], "load_wav_16k_mono": 89, "filenam": 89, "khz": 89, "file_cont": 89, "read_fil": 89, "sample_r": 89, "decode_wav": 89, "desired_channel": 89, "squeez": 89, "rate_in": 89, "rate_out": 89, "16000": 89, "wav_file_nam": 89, "audio_r": 89, "wav_file_exampl": 89, "plai": [89, 97, 98], "button": 89, "wav_file_name_exampl": 89, "7_jackson_43": 89, "hear": 89, "extractor": 89, "encoderclassifi": 89, "spkrec": 89, "xvect": 89, "feature_extractor": 89, "from_hparam": 89, "run_opt": 89, "uncom": [89, 96], "ffmpeg": 89, "backend": 89, "wav_audio_file_path": 89, "torchaudio": 89, "extract_audio_embed": 89, "emb": [89, 92], "signal": 89, "encode_batch": 89, "embeddings_list": [89, 92], "embeddings_arrai": 89, "512": [89, 92], "196311": 89, "319459": 89, "478975": 89, "2890875": 89, "8170238": 89, "89265": 89, "898056": 89, "256195": 89, "559641": 89, "559721": 89, "62067": 89, "285245": 89, "21": [89, 90, 96, 97, 99, 103, 106, 108], "709627": 89, "5033693": 89, "913803": 89, "819831": 89, "1831515": 89, "208763": 89, "084257": 89, "3210397": 89, "005453": 89, "216152": 89, "478235": 89, "6821785": 89, "053807": 89, "242471": 89, "091424": 89, "78334856": 89, "03954": 89, "23": [89, 92, 96, 97, 99, 103, 106], "569176": 89, "761097": 89, "1258295": 89, "753237": 89, "3508866": 89, "598274": 89, "23712": 89, "2500": 89, "tol": 89, "decreas": [89, 96, 98], "cv_accuraci": 89, "9708": 89, "issue_type_descript": [89, 90, 91, 92, 94, 95, 99], "lt": [89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 104], "gt": [89, 90, 91, 92, 94, 95, 96, 99, 101, 108], "9976": 89, "986": 89, "002161": 89, "176": [89, 97, 99, 102], "002483": 89, "2318": 89, "004411": 89, "1005": 89, "004857": 89, "1871": 89, "007494": 89, "040587": 89, "999207": 89, "999377": 89, "975220": 89, "999367": 89, "identified_label_issu": [89, 95], "516": 89, "1946": 89, "469": 89, "2132": 89, "worth": [89, 99], "6_yweweler_25": 89, "7_nicolas_43": 89, "6_theo_27": 89, "6_yweweler_36": 89, "6_yweweler_14": 89, "6_yweweler_35": 89, "6_nicolas_8": 89, "sound": 89, "quit": [89, 104], "underneath": 90, "hood": [90, 96, 98], "alert": 90, "introduct": 90, "mayb": [90, 91, 95], "your_feature_matrix": [90, 91], "toi": [90, 91, 92, 96, 97, 99, 101], "inf": [90, 91], "mid": [90, 91], "bins_map": [90, 91], "create_data": [90, 91], "y_bin": [90, 91], "y_i": [90, 91], "y_bin_idx": [90, 91], "y_train": [90, 91, 99, 106], "y_test": [90, 91, 99, 106], "y_train_idx": [90, 91], "y_test_idx": [90, 91], "slide": [90, 91, 97], "frame": [90, 91], "x_out": [90, 91], "tini": [90, 91], "concaten": [90, 91, 105], "y_out": [90, 91], "y_out_bin": [90, 91], "y_out_bin_idx": [90, 91], "exact_duplicate_idx": [90, 91], "x_duplic": [90, 91], "y_duplic": [90, 91], "y_duplicate_idx": [90, 91], "noisy_labels_idx": [90, 91, 102], "scatter": [90, 91, 96, 99, 102, 106], "black": [90, 91, 97, 106], "cyan": [90, 91], "plot_data": [90, 91, 96, 99, 102, 106], "fig": [90, 91, 92, 96, 97, 104, 106], "ax": [90, 91, 92, 96, 104, 106], "subplot": [90, 91, 92, 96, 104], "set_titl": [90, 91, 92, 96, 104], "set_xlabel": [90, 91], "x_1": [90, 91], "fontsiz": [90, 91, 92, 96, 99, 102], "set_ylabel": [90, 91], "x_2": [90, 91], "set_xlim": [90, 91], "set_ylim": [90, 91], "linestyl": [90, 91, 96], "circl": [90, 91, 99, 102], "misclassifi": [90, 91], "zip": [90, 91, 92, 96, 103, 108], "label_err": [90, 91], "180": [90, 91, 103], "marker": [90, 91], "facecolor": [90, 91, 96], "edgecolor": [90, 91, 96], "linewidth": [90, 91, 96, 104], "dup": [90, 91], "first_legend": [90, 91], "align": [90, 91], "title_fontproperti": [90, 91], "semibold": [90, 91], "second_legend": [90, 91], "45": [90, 91, 96, 97, 99, 103], "gca": [90, 91], "add_artist": [90, 91], "tight_layout": [90, 91, 96], "ideal": [90, 91], "remaind": 90, "modal": [90, 91, 98, 101], "132": [90, 91, 99, 103], "9318": 90, "006940": 90, "007830": 90, "40": [90, 91, 95, 96, 97], "014828": 90, "107": [90, 91, 99, 102], "021241": 90, "026407": 90, "notic": [90, 99, 101, 103], "3558": [90, 91], "126": [90, 91, 99, 103], "006636": [90, 91], "130": [90, 91], "012571": [90, 91], "129": [90, 91], "127": [90, 91], "014909": [90, 91], "128": [90, 91, 92], "017443": [90, 91], "6160": [90, 91], "131": [90, 91, 107], "000000e": [90, 91], "000002": [90, 91], "463180e": [90, 91], "07": [90, 91, 92, 94, 96, 99, 103, 106, 108], "51": [90, 91, 94, 96, 97, 99, 103], "161148": [90, 91], "859087e": [90, 91], "30": [90, 91, 92, 96, 97, 98, 102, 107, 108], "3453": 90, "029542": 90, "031182": 90, "057961": 90, "058244": 90, "54": [90, 96, 97, 99, 103], "039122": 90, "044598": 90, "105": [90, 103], "105196": 90, "133654": 90, "43": [90, 96, 97, 99, 103], "168033": 90, "125": 90, "101107": 90, "183382": 90, "109": [90, 97, 103], "209259": 90, "211042": 90, "221316": 90, "average_ood_scor": 90, "34530442089193386": 90, "52": [90, 96, 97, 103, 108], "169820": 90, "087324e": 90, "259024": 90, "583757e": 90, "91": [90, 103], "346458": 90, "341292e": 90, "specfi": 90, "new_lab": 90, "scoring_funct": 90, "div": 90, "rem": 90, "inv_scal": 90, "49": [90, 96, 97, 99, 103], "superstitionissuemanag": 90, "unlucki": 90, "superstit": 90, "to_seri": 90, "issues_mask": 90, "summary_scor": 90, "9242": 90, "is_superstition_issu": 90, "superstition_scor": 90, "26": [90, 92, 96, 97, 99, 101, 103], "047581": 90, "090635": 90, "129591": 90, "164840": 90, "lurk": [91, 92, 99], "thoroughli": 91, "8561": 91, "001908": 91, "003564": 91, "007331": 91, "008963": 91, "009664": 91, "0227": 91, "022727": 91, "conceptu": 91, "856061": 91, "355772": 91, "616034": 91, "821750": 91, "901562": 91, "betweeen": 91, "859131": 91, "417707": 91, "664083": 91, "970324": 91, "816953": 91, "375317": 91, "641516": 91, "890575": 91, "531021": 91, "460593": 91, "601188": 91, "826147": 91, "752808": 91, "321635": 91, "562539": 91, "948362": 91, "090243": 91, "472909": 91, "746763": 91, "878267": 91, "examples_w_issu": [91, 98], "013445": 91, "025184": 91, "026376": 91, "inde": [91, 95], "miscellan": [91, 93, 108], "428571": 91, "111111": 91, "571429": 91, "407407": 91, "592593": 91, "337838": 91, "092593": 91, "662162": 91, "333333": [91, 97], "952381": 91, "666667": [91, 96], "portion": 91, "huge": [91, 99], "worri": [91, 95], "critic": 91, "60": [92, 96, 99, 106], "torchvis": [92, 96, 104], "tensordataset": 92, "stratifiedkfold": [92, 102], "tqdm": 92, "autonotebook": 92, "math": 92, "fashion_mnist": 92, "num_row": [92, 96], "60000": 92, "transformed_dataset": [92, 96], "with_format": 92, "255": [92, 97], "cpu_count": 92, "torch_dataset": 92, "quick": [92, 102, 104], "super": [92, 94, 95], "relu": 92, "batchnorm2d": 92, "maxpool2d": 92, "lazylinear": 92, "flatten": [92, 96], "get_test_accuraci": 92, "testload": [92, 104], "energi": 92, "trainload": [92, 104], "n_epoch": 92, "patienc": 92, "criterion": 92, "crossentropyloss": 92, "adamw": 92, "best_test_accuraci": 92, "start_epoch": 92, "running_loss": 92, "best_epoch": 92, "end_epoch": 92, "3f": [92, 106], "acc": [92, 99], "time_taken": 92, "compute_embed": 92, "compute_pred_prob": 92, "train_batch_s": 92, "num_work": 92, "worker": [92, 108], "train_id_list": 92, "test_id_list": 92, "train_id": 92, "test_id": 92, "embeddings_model": 92, "ntrain": 92, "trainset": 92, "testset": 92, "pin_memori": 92, "fold_embed": 92, "fold_pred_prob": 92, "finish": 92, "482": 92, "720": 92, "749": 92, "329": [92, 94, 103], "88": [92, 97, 99, 102, 103, 106], "195": 92, "439": 92, "493": 92, "060": 92, "851": 92, "330": [92, 103], "505": 92, "491": 92, "476": 92, "340": 92, "739": 92, "328": [92, 103], "310": 92, "490": 92, "reorder": 92, "hstack": [92, 98, 99, 101], "vision": 92, "grayscal": [92, 96], "max_preval": [92, 96], "7714": 92, "3772": 92, "3585": 92, "166": 92, "3651": 92, "27080": 92, "873833e": 92, "40378": 92, "915575e": 92, "25316": 92, "390277e": 92, "06": [92, 99, 103, 108], "2090": 92, "751164e": 92, "14999": 92, "881301e": 92, "9569": 92, "11262": 92, "000003": 92, "coat": [92, 97], "shirt": [92, 97], "19228": 92, "000010": 92, "dress": 92, "32657": 92, "000013": 92, "bag": [92, 97, 104, 105], "21282": 92, "000016": 92, "53564": 92, "000018": 92, "pullov": 92, "6321": 92, "30968": 92, "001267": 92, "30659": 92, "000022": [92, 108], "47824": 92, "001454": 92, "3370": 92, "000026": 92, "54565": 92, "001854": 92, "9762": 92, "258": 92, "47139": 92, "000033": 92, "166980": 92, "986195": 92, "997205": 92, "sandal": [92, 97], "948781": 92, "999358": 92, "54078": 92, "17371": 92, "000025": 92, "plot_label_issue_exampl": 92, "ncol": [92, 104], "nrow": [92, 104], "ceil": 92, "axes_list": 92, "label_issue_indic": 92, "gl": 92, "sl": 92, "fontdict": 92, "imshow": [92, 96, 104], "cmap": [92, 96, 106], "grai": 92, "subplots_adjust": 92, "hspace": 92, "outsiz": 92, "outlier_issu": [92, 95], "outlier_issues_df": 92, "depict": [92, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 92, "n_comparison_imag": 92, "sample_from_class": 92, "number_of_sampl": 92, "non_outlier_indic": 92, "isnul": [92, 96], "non_outlier_indices_excluding_curr": 92, "sampled_indic": 92, "label_scores_of_sampl": 92, "top_score_indic": 92, "top_label_indic": 92, "sampled_imag": 92, "get_image_given_label_and_sampl": 92, "image_from_dataset": 92, "corresponding_label": 92, "comparison_imag": 92, "images_to_plot": 92, "idlist": 92, "iterrow": 92, "near_duplicate_issu": [92, 98], "closest": 92, "counterpart": 92, "near_duplicate_issues_df": 92, "plot_near_duplicate_issue_exampl": 92, "seen_id_pair": 92, "get_image_and_given_label_and_predicted_label": 92, "duplicate_imag": 92, "nd_set": 92, "challeng": 92, "dark_issu": 92, "reveal": [92, 103, 107], "dark_scor": [92, 96], "dark_issues_df": 92, "is_dark_issu": 92, "34848": 92, "203922": 92, "50270": 92, "204588": 92, "3936": 92, "213098": 92, "733": 92, "217686": 92, "8094": 92, "230118": 92, "plot_image_issue_exampl": 92, "difficult": 92, "disproportion": [92, 96], "lowinfo_issu": 92, "low_information_scor": [92, 96], "lowinfo_issues_df": 92, "is_low_information_issu": 92, "53050": 92, "067975": 92, "40875": 92, "089929": 92, "9594": 92, "092601": 92, "34825": 92, "107744": 92, "37530": 92, "108516": 92, "lot": 92, "workflow": [93, 98, 100, 106], "histgradientboostingclassifi": 94, "cat_featur": 94, "boost": [94, 98, 101, 106], "xgboost": [94, 98, 106], "think": [94, 95, 98, 102, 107, 108], "nonzero": 94, "358": 94, "941": 94, "294": [94, 103], "46": [94, 96, 97, 99, 103], "7109": 94, "000005": [94, 95], "886": 94, "000059": 94, "709": 94, "000104": 94, "723": 94, "000169": 94, "689": 94, "000181": 94, "3590": 94, "051882e": 94, "683133e": 94, "536582e": 94, "406589e": 94, "324246e": 94, "6165": 94, "582": 94, "185": [94, 96, 97, 103], "187": [94, 97], "898": 94, "0000": [94, 95, 97, 99], "865": 94, "515002": 94, "837": 94, "556480": 94, "622": 94, "593068": 94, "593207": 94, "920": 94, "618041": 94, "4386345844794593e": 94, "issue_result": 94, "000842": 94, "555944": 94, "004374": 94, "sorted_issu": 94, "73": [94, 96, 97, 102, 103, 106], "deserv": 94, "outlier_result": 94, "sorted_outli": 94, "56": [94, 96, 97, 106], "96": [94, 96, 97, 99, 102, 103, 106], "style": [94, 96, 107], "font": 94, "18px": 94, "ff00ff": 94, "bac": 94, "unintend": [94, 95, 96], "duplicate_result": 94, "lowest_scoring_dupl": 94, "idxmin": [94, 98], "indices_to_displai": 94, "tolist": [94, 98, 102], "perhap": [94, 99, 101], "second_lowest_scoring_dupl": 94, "next_indices_to_displai": 94, "wari": [94, 95, 98], "dive": [95, 96], "your_featur": 95, "text_embed": 95, "data_dict": [95, 99, 101], "85": [95, 103], "38": [95, 96, 97, 103], "9710": 95, "981": 95, "974": 95, "000146": 95, "982": [95, 97], "000224": 95, "971": 95, "000507": 95, "980": [95, 97], "000960": 95, "3584": 95, "994": 95, "009642": 95, "999": 95, "013067": 95, "013841": 95, "433": 95, "014722": 95, "989": 95, "018224": 95, "6070": 95, "160": [95, 106], "095724": 95, "148": 95, "006237": 95, "546": 95, "099341": 95, "514": 95, "006485": 95, "481": 95, "123418": 95, "008165": 95, "313": [95, 103], "564102": 95, "572258": 95, "574915": 95, "31": [95, 96, 97, 99, 101, 103], "575507": 95, "575874": 95, "792090": 95, "257611": 95, "698710": 95, "182121": 95, "771619": 95, "data_with_suggested_label": 95, "suggested_label": 95, "withdraw": 95, "monei": 95, "lowest_quality_outli": 95, "OR": 95, "636c65616e6c616220697320617765736f6d6521": 95, "phone": [95, 97], "gone": 95, "samp": 95, "br": 95, "press": [95, 108], "nonsens": 95, "sens": 95, "detriment": 95, "duplicate_issu": 95, "fee": 95, "go": [95, 96, 97, 99], "strongli": 95, "p_valu": 95, "benign": 95, "curat": 95, "bigger": 96, "make_classif": 96, "5000": [96, 104], "n_featur": 96, "n_inform": 96, "n_redund": 96, "n_repeat": 96, "n_class": 96, "n_clusters_per_class": 96, "flip_i": 96, "class_sep": 96, "faiss": 96, "x_faiss": 96, "float32": [96, 103], "normalize_l2": 96, "index_factori": 96, "hnsw32": 96, "flat": [96, 97], "metric_inner_product": 96, "a_min": 96, "a_max": 96, "create_knn_graph": 96, "assert": 96, "indices_1d": 96, "ravel": 96, "distances_1d": 96, "sort_graph_by_row_valu": 96, "warn_when_not_sort": 96, "50000": 96, "523": 96, "991400": 96, "356958": 96, "362": 96, "619565": 96, "108": [96, 103], "500000": 96, "651929": 96, "999827": 96, "031217": 96, "933716": 96, "627345": 96, "998540": 96, "530909": 96, "296974": 96, "646765": 96, "942721": 96, "332824": 96, "803246": 96, "625202": 96, "999816": 96, "474031": 96, "706253": 96, "655108": 96, "997703": 96, "131466": 96, "912389": 96, "639200": 96, "4995": 96, "998646": 96, "504755": 96, "746777": 96, "680033": 96, "4996": 96, "894230": 96, "340986": 96, "816472": 96, "640711": 96, "4997": 96, "999100": 96, "428545": 96, "592421": 96, "658949": 96, "4998": 96, "986792": 96, "273710": 96, "618033": 96, "4999": 96, "986776": 96, "273524": 96, "618084": 96, "instabl": 96, "proxim": 96, "analys": 96, "comfort": 96, "explor": [96, 103, 104], "third": 96, "parti": [96, 108], "newsgroup": 96, "alt": [96, 97], "atheism": [96, 97], "sci": [96, 97], "fetch_20newsgroup": 96, "newsgroups_train": 96, "header": 96, "footer": 96, "quot": 96, "df_text": 96, "target_nam": 96, "enlighten": 96, "omnipot": 96, "19apr199320262420": 96, "kelvin": 96, "jpl": 96, "nasa": 96, "gov": 96, "baa": 96, "nhenri": 96, "he": 96, "nno": 96, "ge": 96, "nlucki": 96, "babi": [96, 97], "tfidfvector": 96, "feature_extract": 96, "x_vector": 96, "data_valuation_issu": 96, "147": [96, 99, 103], "500047": 96, "500093": 96, "499953": 96, "1068": 96, "1069": 96, "1070": 96, "1071": 96, "1072": 96, "1073": 96, "concentr": 96, "seaborn": 96, "sn": 96, "distinguish": 96, "strip": 96, "stripplot": 96, "hue": [96, 106], "dodg": 96, "jitter": 96, "axvlin": [96, 104], "xlabel": 96, "ourselv": 96, "make_blob": 96, "center": [96, 97], "cluster_std": 96, "n_noisy_label": 96, "meaning": [96, 98, 104], "silhouette_scor": 96, "gridsearchcv": 96, "silhouett": 96, "cluster_label": 96, "fit_predict": 96, "param_grid": 96, "grid_search": 96, "best_kmean": 96, "best_estimator_": 96, "underperforming_group_issu": 96, "328308": 96, "tab10": 96, "domain": 96, "knowledg": [96, 99], "dataset_tsv": 96, "ag": [96, 106], "gender": 96, "educ": 96, "experi": 96, "highsalari": 96, "indiana": 96, "phd": 96, "male": 96, "bachelor": 96, "femal": 96, "kansa": 96, "school": [96, 97], "ohio": 96, "57": [96, 97, 99], "california": 96, "59": [96, 97, 103], "34": [96, 97, 99, 101, 103, 108], "63": [96, 99, 103, 106], "47": [96, 97, 103], "stringio": 96, "sep": [96, 108], "simplic": [96, 102], "ordinalencod": 96, "columns_to_encod": 96, "encoded_df": 96, "salari": 96, "573681": 96, "underpin": 96, "caught": 96, "whenev": 96, "generate_data_depend": 96, "num_sampl": 96, "a1": 96, "a2": 96, "a3": 96, "375": 96, "975": 96, "non_iid_issu": 96, "796474": 96, "842432": 96, "922562": 96, "820759": 96, "873136": 96, "887373": 96, "825101": 96, "855875": 96, "751795": 96, "835796": 96, "ylabel": [96, 104], "coolwarm": 96, "colorbar": [96, 106], "strong": 96, "evid": 96, "inter": 96, "mitig": 96, "risk": 96, "deeper": 96, "tsv": 96, "tab": 96, "pars": 96, "annual_spend": 96, "number_of_transact": 96, "last_purchase_d": 96, "rural": 96, "4099": 96, "2024": [96, 108], "6421": 96, "nat": 96, "suburban": 96, "5436": 96, "4046": 96, "66": [96, 97], "3467": 96, "67": [96, 97, 103, 106], "4757": 96, "4199": 96, "4991": 96, "4655": 96, "82": [96, 97, 99, 103, 106], "5584": 96, "urban": 96, "3102": 96, "6637": 96, "9167": 96, "6790": 96, "5327": 96, "parse_d": 96, "lose": 96, "intact": 96, "encode_categorical_column": 96, "placehold": 96, "dropna": [96, 101], "category_to_numb": 96, "_encod": 96, "gender_encod": 96, "location_encod": 96, "focus": [96, 99, 101, 102, 106], "null_issu": 96, "833333": 96, "sorted_indic": [96, 103], "sorted_df": 96, "nice": 96, "styler": 96, "combined_df": 96, "concat": [96, 106], "highlight_null_valu": 96, "val": [96, 99], "yellow": [96, 97], "highlight_datalab_column": 96, "lightblu": 96, "highlight_is_null_issu": 96, "orang": [96, 97], "styled_df": 96, "nbsp": [96, 98, 99], "160000": 96, "820000": 96, "460000": 96, "470000": 96, "960000": 96, "620000": 96, "550000": 96, "660000": 96, "670000": [96, 97], "370000": 96, "530000": 96, "710000": 96, "020000": 96, "320000": 96, "990000": 96, "rarer": 96, "fairer": 96, "randomli": [96, 99], "class_imbalance_issu": 96, "countplot": 96, "xtick": 96, "rotat": 96, "ytick": 96, "filtered_df": 96, "xy": 96, "va": 96, "textual": 96, "get_ytick": 96, "nbar": 96, "nimbal": 96, "get_legend_handles_label": 96, "title_fonts": 96, "mislead": 96, "pinpoint": 96, "blurry_scor": 96, "odd_aspect_ratio_scor": 96, "enhanc": [96, 99, 101, 103], "alter": [96, 98], "darken": 96, "reduct": 96, "aspect": 96, "cifar10": 96, "markdown": 96, "root": [96, 104], "selected_class": 96, "convert_to_png_imag": 96, "bytesio": [96, 97], "seek": 96, "max_num_imag": 96, "list_imag": 96, "list_label": 96, "num_imag": 96, "img": [96, 104, 106], "toronto": [96, 104], "edu": [96, 104], "kriz": [96, 104], "170498071": [96, 104], "101603839": 96, "38it": 96, "dataset_dict": 96, "from_dict": [96, 98], "apply_dark": 96, "transformed_list_imag": 96, "transformed_dataset_dict": 96, "plot_imag": [96, 104], "num_images_to_plot": 96, "num_col": 96, "hide": 96, "get_property_scor": 96, "_spurious_correl": 96, "get_specific_property_scor": 96, "property_scores_df": 96, "property_nam": 96, "standard_property_scor": 96, "transformed_property_scor": 96, "295": [96, 103], "light_scor": 96, "415": 96, "325": 96, "odd_size_scor": 96, "grayscale_scor": 96, "015": 96, "refin": 97, "instruct": [97, 98], "studi": [97, 103], "mnist_test_set": 97, "imagenet_val_set": 97, "tench": 97, "goldfish": 97, "white": [97, 108], "shark": 97, "tiger": 97, "hammerhead": 97, "electr": 97, "rai": 97, "stingrai": 97, "cock": 97, "hen": 97, "ostrich": 97, "brambl": 97, "goldfinch": 97, "hous": 97, "finch": 97, "junco": 97, "indigo": 97, "bunt": 97, "american": [97, 108], "robin": 97, "bulbul": 97, "jai": 97, "magpi": 97, "chickade": 97, "dipper": 97, "kite": 97, "bald": 97, "eagl": 97, "vultur": 97, "grei": 97, "owl": 97, "salamand": 97, "smooth": 97, "newt": 97, "spot": [97, 98, 103], "axolotl": 97, "bullfrog": 97, "tree": 97, "frog": [97, 104], "tail": 97, "loggerhead": 97, "sea": 97, "turtl": 97, "leatherback": 97, "mud": 97, "terrapin": 97, "band": 97, "gecko": 97, "green": [97, 108], "iguana": 97, "carolina": 97, "anol": 97, "desert": 97, "grassland": 97, "whiptail": 97, "lizard": 97, "agama": 97, "frill": 97, "neck": 97, "allig": 97, "gila": 97, "monster": 97, "european": 97, "chameleon": 97, "komodo": 97, "dragon": 97, "nile": 97, "crocodil": 97, "triceratop": 97, "worm": 97, "snake": 97, "ring": 97, "eastern": 97, "hog": 97, "nose": 97, "kingsnak": 97, "garter": 97, "water": 97, "vine": 97, "night": 97, "boa": 97, "constrictor": 97, "african": 97, "rock": 97, "indian": 97, "cobra": 97, "mamba": 97, "saharan": 97, "horn": 97, "viper": 97, "diamondback": 97, "rattlesnak": 97, "sidewind": 97, "trilobit": 97, "harvestman": 97, "scorpion": 97, "garden": 97, "spider": 97, "barn": 97, "southern": 97, "widow": 97, "tarantula": 97, "wolf": 97, "tick": 97, "centiped": 97, "grous": 97, "ptarmigan": 97, "ruf": 97, "prairi": 97, "peacock": 97, "quail": 97, "partridg": 97, "parrot": 97, "macaw": 97, "sulphur": 97, "crest": 97, "cockatoo": 97, "lorikeet": 97, "coucal": 97, "bee": 97, "eater": 97, "hornbil": 97, "hummingbird": 97, "jacamar": 97, "toucan": 97, "breast": 97, "mergans": 97, "goos": 97, "swan": 97, "tusker": 97, "echidna": 97, "platypu": 97, "wallabi": 97, "koala": 97, "wombat": 97, "jellyfish": 97, "anemon": 97, "brain": 97, "coral": 97, "flatworm": 97, "nematod": 97, "conch": 97, "snail": 97, "slug": 97, "chiton": 97, "chamber": 97, "nautilu": 97, "dung": 97, "crab": 97, "fiddler": 97, "king": 97, "lobster": 97, "spini": 97, "crayfish": 97, "hermit": 97, "isopod": 97, "stork": 97, "spoonbil": 97, "flamingo": 97, "heron": 97, "egret": 97, "bittern": 97, "crane": 97, "bird": [97, 104], "limpkin": 97, "gallinul": 97, "coot": 97, "bustard": 97, "ruddi": 97, "turnston": 97, "dunlin": 97, "redshank": 97, "dowitch": 97, "oystercatch": 97, "pelican": 97, "penguin": 97, "albatross": 97, "whale": 97, "killer": 97, "dugong": 97, "lion": 97, "chihuahua": 97, "japanes": 97, "chin": 97, "maltes": 97, "pekinges": 97, "shih": 97, "tzu": 97, "charl": 97, "spaniel": 97, "papillon": 97, "terrier": 97, "rhodesian": 97, "ridgeback": 97, "afghan": [97, 108], "hound": 97, "basset": 97, "beagl": 97, "bloodhound": 97, "bluetick": 97, "coonhound": 97, "tan": 97, "walker": 97, "foxhound": 97, "redbon": 97, "borzoi": 97, "irish": 97, "wolfhound": 97, "italian": 97, "greyhound": 97, "whippet": 97, "ibizan": 97, "norwegian": 97, "elkhound": 97, "otterhound": 97, "saluki": 97, "scottish": 97, "deerhound": 97, "weimaran": 97, "staffordshir": 97, "bull": 97, "bedlington": 97, "border": 97, "kerri": 97, "norfolk": 97, "norwich": 97, "yorkshir": 97, "wire": 97, "fox": 97, "lakeland": 97, "sealyham": 97, "airedal": 97, "cairn": 97, "australian": 97, "dandi": 97, "dinmont": 97, "boston": 97, "miniatur": 97, "schnauzer": 97, "giant": 97, "tibetan": 97, "silki": 97, "wheaten": 97, "west": 97, "highland": 97, "lhasa": 97, "apso": 97, "retriev": 97, "curli": 97, "golden": 97, "labrador": 97, "chesapeak": 97, "bai": 97, "german": [97, 108], "shorthair": 97, "pointer": 97, "vizsla": 97, "setter": 97, "gordon": 97, "brittani": 97, "clumber": 97, "springer": 97, "welsh": 97, "cocker": 97, "sussex": 97, "kuvasz": 97, "schipperk": 97, "groenendael": 97, "malinoi": 97, "briard": 97, "kelpi": 97, "komondor": 97, "sheepdog": 97, "shetland": 97, "colli": 97, "bouvier": 97, "de": 97, "flandr": 97, "rottweil": 97, "shepherd": 97, "dobermann": 97, "pinscher": 97, "swiss": [97, 108], "mountain": 97, "bernes": 97, "appenzel": 97, "sennenhund": 97, "entlebuch": 97, "boxer": 97, "bullmastiff": 97, "mastiff": 97, "french": 97, "bulldog": 97, "dane": 97, "st": 97, "bernard": 97, "huski": 97, "alaskan": 97, "malamut": 97, "siberian": 97, "dalmatian": 97, "affenpinsch": 97, "basenji": 97, "pug": 97, "leonberg": 97, "newfoundland": 97, "pyrenean": 97, "samoi": 97, "pomeranian": 97, "chow": 97, "keeshond": 97, "griffon": 97, "bruxelloi": 97, "pembrok": 97, "corgi": 97, "cardigan": 97, "poodl": 97, "mexican": 97, "hairless": 97, "tundra": 97, "coyot": 97, "dingo": 97, "dhole": 97, "wild": 97, "hyena": 97, "kit": 97, "arctic": 97, "tabbi": 97, "persian": 97, "siames": 97, "egyptian": 97, "mau": 97, "cougar": 97, "lynx": 97, "leopard": 97, "snow": 97, "jaguar": 97, "cheetah": 97, "brown": [97, 107], "bear": 97, "polar": 97, "sloth": 97, "mongoos": 97, "meerkat": 97, "beetl": 97, "ladybug": 97, "longhorn": 97, "leaf": 97, "rhinocero": 97, "weevil": 97, "fly": 97, "ant": 97, "grasshopp": 97, "cricket": 97, "stick": 97, "insect": 97, "cockroach": 97, "manti": 97, "cicada": 97, "leafhopp": 97, "lacew": 97, "dragonfli": 97, "damselfli": 97, "admir": 97, "ringlet": 97, "monarch": 97, "butterfli": 97, "gossam": 97, "wing": 97, "starfish": 97, "urchin": 97, "cucumb": 97, "cottontail": 97, "rabbit": 97, "hare": 97, "angora": 97, "hamster": 97, "porcupin": 97, "squirrel": 97, "marmot": 97, "beaver": 97, "guinea": 97, "pig": 97, "sorrel": 97, "zebra": 97, "boar": 97, "warthog": 97, "hippopotamu": 97, "ox": 97, "buffalo": 97, "bison": 97, "bighorn": 97, "sheep": 97, "alpin": 97, "ibex": 97, "hartebeest": 97, "impala": 97, "gazel": 97, "dromedari": 97, "llama": 97, "weasel": 97, "mink": 97, "polecat": 97, "foot": 97, "ferret": 97, "otter": 97, "skunk": 97, "badger": 97, "armadillo": 97, "toed": 97, "orangutan": 97, "gorilla": 97, "chimpanze": 97, "gibbon": 97, "siamang": 97, "guenon": 97, "pata": 97, "monkei": 97, "baboon": 97, "macaqu": 97, "langur": 97, "colobu": 97, "probosci": 97, "marmoset": 97, "capuchin": 97, "howler": 97, "titi": 97, "geoffroi": 97, "lemur": 97, "indri": 97, "asian": 97, "eleph": 97, "bush": 97, "snoek": 97, "eel": 97, "coho": 97, "salmon": 97, "beauti": 97, "clownfish": 97, "sturgeon": 97, "garfish": 97, "lionfish": 97, "pufferfish": 97, "abacu": 97, "abaya": 97, "academ": 97, "gown": 97, "accordion": 97, "acoust": 97, "guitar": 97, "aircraft": 97, "carrier": 97, "airlin": 97, "airship": 97, "altar": 97, "ambul": 97, "amphibi": 97, "clock": [97, 108], "apiari": 97, "apron": 97, "wast": 97, "assault": 97, "rifl": 97, "backpack": 97, "bakeri": 97, "balanc": 97, "beam": 97, "balloon": 97, "ballpoint": 97, "pen": 97, "aid": 97, "banjo": 97, "balust": 97, "barbel": 97, "barber": 97, "chair": [97, 103], "barbershop": 97, "baromet": 97, "barrel": 97, "wheelbarrow": 97, "basebal": 97, "basketbal": 97, "bassinet": 97, "bassoon": 97, "swim": 97, "cap": 97, "bath": 97, "towel": 97, "bathtub": 97, "station": 97, "wagon": 97, "lighthous": 97, "beaker": 97, "militari": 97, "beer": 97, "bottl": 97, "glass": 97, "bell": 97, "cot": 97, "bib": 97, "bicycl": [97, 107], "bikini": 97, "binder": 97, "binocular": 97, "birdhous": 97, "boathous": 97, "bobsleigh": 97, "bolo": 97, "tie": 97, "poke": 97, "bonnet": 97, "bookcas": 97, "bookstor": 97, "bow": 97, "brass": 97, "bra": 97, "breakwat": 97, "breastplat": 97, "broom": 97, "bucket": 97, "buckl": 97, "bulletproof": 97, "vest": 97, "butcher": 97, "shop": 97, "taxicab": 97, "cauldron": 97, "candl": 97, "cannon": 97, "cano": 97, "mirror": [97, 103], "carousel": 97, "tool": [97, 99, 101], "carton": 97, "wheel": 97, "teller": 97, "cassett": 97, "player": 97, "castl": 97, "catamaran": 97, "cd": 97, "cello": 97, "mobil": [97, 108], "chain": 97, "fenc": [97, 107], "mail": 97, "chainsaw": 97, "chest": 97, "chiffoni": 97, "chime": 97, "china": 97, "cabinet": 97, "christma": 97, "stock": 97, "church": 97, "movi": 97, "theater": 97, "cleaver": 97, "cliff": 97, "dwell": 97, "cloak": 97, "clog": 97, "cocktail": 97, "shaker": 97, "coffe": 97, "mug": 97, "coffeemak": 97, "coil": 97, "lock": 97, "keyboard": 97, "confectioneri": 97, "ship": [97, 104], "corkscrew": 97, "cornet": 97, "cowboi": 97, "boot": 97, "hat": 97, "cradl": 97, "crash": 97, "helmet": 97, "crate": 97, "infant": 97, "bed": 97, "crock": 97, "pot": 97, "croquet": 97, "crutch": 97, "cuirass": 97, "dam": 97, "desk": 97, "desktop": 97, "rotari": 97, "dial": 97, "telephon": 97, "diaper": 97, "watch": 97, "dine": 97, "dishcloth": 97, "dishwash": 97, "disc": 97, "brake": 97, "dock": 97, "sled": 97, "dome": 97, "doormat": 97, "drill": 97, "rig": 97, "drum": 97, "drumstick": 97, "dumbbel": 97, "dutch": 97, "oven": 97, "fan": 97, "locomot": 97, "entertain": 97, "envelop": 97, "espresso": 97, "powder": 97, "feather": 97, "fireboat": 97, "engin": [97, 107], "screen": 97, "sheet": 97, "flagpol": 97, "flute": 97, "footbal": 97, "forklift": 97, "fountain": 97, "poster": 97, "freight": 97, "fry": 97, "pan": 97, "fur": 97, "garbag": 97, "ga": 97, "pump": 97, "goblet": 97, "kart": 97, "golf": 97, "cart": 97, "gondola": 97, "gong": 97, "grand": 97, "piano": 97, "greenhous": 97, "grill": 97, "groceri": 97, "guillotin": 97, "barrett": 97, "hair": 97, "sprai": 97, "hammer": 97, "dryer": 97, "hand": [97, 99], "handkerchief": 97, "drive": 97, "harmonica": 97, "harp": 97, "harvest": 97, "hatchet": 97, "holster": 97, "honeycomb": 97, "hoop": 97, "skirt": 97, "horizont": 97, "bar": 97, "drawn": 97, "hourglass": 97, "ipod": 97, "cloth": 97, "iron": 97, "jack": 97, "lantern": 97, "jean": 97, "jeep": 97, "jigsaw": 97, "puzzl": 97, "pull": 97, "rickshaw": 97, "joystick": 97, "kimono": 97, "knee": 97, "pad": 97, "knot": 97, "ladl": 97, "lampshad": 97, "laptop": 97, "lawn": 97, "mower": 97, "knife": 97, "lifeboat": 97, "lighter": 97, "limousin": 97, "ocean": 97, "liner": 97, "lipstick": 97, "slip": 97, "shoe": 97, "lotion": 97, "speaker": 97, "loup": 97, "sawmil": 97, "magnet": 97, "compass": 97, "mailbox": 97, "tight": 97, "tank": 97, "manhol": 97, "maraca": 97, "marimba": 97, "maypol": 97, "maze": 97, "cup": [97, 103], "medicin": 97, "megalith": 97, "microphon": 97, "microwav": 97, "milk": 97, "minibu": 97, "miniskirt": 97, "minivan": 97, "missil": 97, "mitten": [97, 98], "mix": 97, "bowl": 97, "modem": 97, "monasteri": 97, "monitor": 97, "mope": 97, "mortar": 97, "mosqu": 97, "mosquito": 97, "scooter": 97, "bike": 97, "tent": 97, "mous": [97, 98], "mousetrap": 97, "van": 97, "muzzl": 97, "nail": 97, "brace": 97, "necklac": 97, "nippl": 97, "obelisk": 97, "obo": 97, "ocarina": 97, "odomet": 97, "oil": 97, "oscilloscop": 97, "overskirt": 97, "bullock": 97, "oxygen": 97, "packet": 97, "paddl": 97, "padlock": 97, "paintbrush": 97, "pajama": 97, "palac": [97, 108], "parachut": 97, "park": 97, "bench": 97, "meter": 97, "passeng": 97, "patio": 97, "payphon": 97, "pedest": 97, "pencil": 97, "perfum": 97, "petri": 97, "dish": 97, "photocopi": 97, "plectrum": 97, "pickelhaub": 97, "picket": 97, "pickup": 97, "pier": 97, "piggi": 97, "pill": 97, "pillow": 97, "ping": 97, "pong": 97, "pinwheel": 97, "pirat": 97, "pitcher": 97, "plane": 97, "planetarium": 97, "plastic": 97, "plate": 97, "rack": 97, "plow": 97, "plunger": 97, "polaroid": 97, "camera": 97, "pole": [97, 107], "polic": 97, "poncho": 97, "billiard": 97, "soda": 97, "potter": 97, "prayer": 97, "rug": 97, "printer": 97, "prison": 97, "projectil": 97, "projector": 97, "hockei": 97, "puck": 97, "punch": 97, "purs": 97, "quill": 97, "quilt": 97, "race": 97, "racket": 97, "radiat": 97, "radio": 97, "telescop": 97, "rain": 97, "recreat": 97, "reel": 97, "reflex": 97, "refriger": 97, "remot": 97, "restaur": 97, "revolv": 97, "rotisseri": 97, "eras": 97, "rugbi": 97, "ruler": 97, "safe": 97, "safeti": 97, "salt": 97, "sarong": 97, "saxophon": 97, "scabbard": 97, "bu": [97, 107], "schooner": 97, "scoreboard": 97, "crt": 97, "screw": 97, "screwdriv": 97, "seat": 97, "belt": 97, "sew": 97, "shield": 97, "shoji": 97, "basket": 97, "shovel": 97, "shower": 97, "curtain": 97, "ski": 97, "sleep": 97, "door": 97, "slot": 97, "snorkel": 97, "snowmobil": 97, "snowplow": 97, "soap": 97, "dispens": 97, "soccer": [97, 108], "sock": [97, 98], "solar": 97, "thermal": 97, "collector": 97, "sombrero": 97, "soup": 97, "heater": 97, "shuttl": 97, "spatula": 97, "motorboat": 97, "web": 97, "spindl": 97, "sport": [97, 108], "spotlight": 97, "stage": 97, "steam": 97, "arch": 97, "bridg": 97, "steel": 97, "stethoscop": 97, "scarf": 97, "stone": 97, "wall": [97, 107], "stopwatch": 97, "stove": 97, "strainer": 97, "tram": 97, "stretcher": 97, "couch": 97, "stupa": 97, "submarin": 97, "sundial": 97, "sunglass": 97, "sunscreen": 97, "suspens": 97, "mop": 97, "sweatshirt": 97, "swimsuit": 97, "swing": 97, "switch": 97, "syring": 97, "lamp": 97, "tape": 97, "teapot": 97, "teddi": 97, "televis": [97, 108], "tenni": 97, "thatch": 97, "roof": 97, "thimbl": 97, "thresh": 97, "throne": 97, "tile": 97, "toaster": 97, "tobacco": 97, "toilet": 97, "totem": 97, "tow": 97, "tractor": 97, "semi": 97, "trailer": 97, "trai": 97, "trench": 97, "tricycl": 97, "trimaran": 97, "tripod": 97, "triumphal": 97, "trolleybu": 97, "trombon": 97, "tub": 97, "turnstil": 97, "typewrit": 97, "umbrella": 97, "unicycl": 97, "upright": 97, "vacuum": 97, "cleaner": 97, "vase": 97, "vault": 97, "velvet": 97, "vend": 97, "vestment": 97, "viaduct": 97, "violin": 97, "volleybal": 97, "waffl": 97, "wallet": 97, "wardrob": 97, "sink": 97, "wash": 97, "jug": 97, "tower": 97, "whiskei": 97, "whistl": 97, "wig": 97, "shade": [97, 107], "windsor": 97, "wine": 97, "wok": 97, "wooden": 97, "spoon": 97, "wool": 97, "rail": 97, "shipwreck": 97, "yawl": 97, "yurt": 97, "websit": 97, "comic": 97, "book": 97, "crossword": 97, "traffic": [97, 103, 107], "sign": [97, 107, 108], "dust": 97, "jacket": [97, 103], "menu": 97, "guacamol": 97, "consomm": 97, "trifl": 97, "ic": 97, "cream": 97, "pop": 97, "baguett": 97, "bagel": 97, "pretzel": 97, "cheeseburg": 97, "mash": 97, "potato": 97, "cabbag": 97, "broccoli": 97, "cauliflow": 97, "zucchini": 97, "spaghetti": 97, "squash": 97, "acorn": 97, "butternut": 97, "artichok": 97, "pepper": [97, 98], "cardoon": 97, "mushroom": 97, "granni": 97, "smith": 97, "strawberri": 97, "lemon": 97, "pineappl": 97, "banana": 97, "jackfruit": 97, "custard": 97, "appl": 97, "pomegran": 97, "hai": 97, "carbonara": 97, "chocol": 97, "syrup": 97, "dough": 97, "meatloaf": 97, "pizza": 97, "pie": 97, "burrito": 97, "eggnog": 97, "alp": 97, "bubbl": 97, "reef": 97, "geyser": 97, "lakeshor": 97, "promontori": 97, "shoal": 97, "seashor": 97, "vallei": 97, "volcano": 97, "bridegroom": 97, "scuba": 97, "diver": 97, "rapese": 97, "daisi": 97, "ladi": 97, "slipper": 97, "corn": 97, "rose": 97, "hip": 97, "chestnut": 97, "fungu": 97, "agar": 97, "gyromitra": 97, "stinkhorn": 97, "earth": 97, "star": 97, "wood": 97, "bolet": 97, "ear": 97, "cifar10_test_set": 97, "airplan": [97, 104], "automobil": [97, 104], "deer": [97, 104], "cifar100_test_set": 97, "aquarium_fish": 97, "boi": 97, "camel": 97, "caterpillar": 97, "cattl": [97, 108], "cloud": 97, "dinosaur": 97, "dolphin": 97, "flatfish": 97, "forest": 97, "girl": 97, "kangaroo": 97, "lawn_mow": 97, "man": 97, "maple_tre": 97, "motorcycl": [97, 107], "oak_tre": 97, "orchid": 97, "palm_tre": 97, "pear": 97, "pickup_truck": 97, "pine_tre": 97, "plain": 97, "poppi": 97, "possum": 97, "raccoon": 97, "road": [97, 107], "rocket": 97, "seal": 97, "shrew": 97, "skyscrap": 97, "streetcar": 97, "sunflow": 97, "sweet_pepp": 97, "trout": 97, "tulip": 97, "willow_tre": 97, "woman": [97, 103], "caltech256": 97, "ak47": 97, "bat": 97, "glove": 97, "birdbath": 97, "blimp": 97, "bonsai": 97, "boom": 97, "breadmak": 97, "buddha": 97, "bulldoz": 97, "cactu": 97, "cake": 97, "tire": 97, "cartman": 97, "cereal": 97, "chandeli": 97, "chess": 97, "board": 97, "chimp": 97, "chopstick": 97, "coffin": 97, "coin": 97, "comet": 97, "cormor": 97, "globe": 97, "diamond": 97, "dice": 97, "doorknob": 97, "drink": 97, "straw": 97, "dumb": 97, "eiffel": 97, "elk": 97, "ewer": 97, "eyeglass": 97, "fern": 97, "fighter": 97, "jet": [97, 106], "extinguish": 97, "hydrant": 97, "firework": 97, "flashlight": 97, "floppi": 97, "fri": 97, "frisbe": 97, "galaxi": 97, "giraff": 97, "goat": 97, "gate": 97, "grape": 97, "pick": [97, 98], "hamburg": 97, "hammock": 97, "harpsichord": 97, "hawksbil": 97, "helicopt": 97, "hibiscu": 97, "homer": 97, "simpson": 97, "horsesho": 97, "air": 97, "skeleton": 97, "ibi": 97, "cone": 97, "iri": 97, "jesu": 97, "christ": 97, "joi": 97, "kayak": 97, "ketch": 97, "ladder": 97, "lath": 97, "licens": 97, "lightbulb": 97, "lightn": 97, "mandolin": 97, "mar": 97, "mattress": 97, "megaphon": 97, "menorah": 97, "microscop": 97, "minaret": 97, "minotaur": 97, "motorbik": 97, "mussel": 97, "neckti": 97, "octopu": 97, "palm": 97, "pilot": 97, "paperclip": 97, "shredder": 97, "pci": 97, "peopl": [97, 103], "pez": 97, "picnic": 97, "pram": 97, "prai": 97, "pyramid": 97, "rainbow": 97, "roulett": 97, "saddl": 97, "saturn": 97, "segwai": 97, "propel": 97, "sextant": 97, "music": 97, "skateboard": 97, "smokestack": 97, "sneaker": 97, "boat": 97, "stain": 97, "steer": 97, "stirrup": 97, "superman": 97, "sushi": 97, "armi": [97, 108], "sword": 97, "tambourin": 97, "teepe": 97, "court": 97, "theodolit": 97, "tomato": 97, "tombston": 97, "tour": 97, "pisa": 97, "treadmil": 97, "fork": 97, "tweezer": 97, "unicorn": 97, "vcr": 97, "waterfal": 97, "watermelon": 97, "weld": 97, "windmil": 97, "xylophon": 97, "yarmulk": 97, "yo": 97, "toad": 97, "twenty_news_test_set": 97, "comp": 97, "graphic": [97, 107], "misc": [97, 108], "sy": 97, "ibm": 97, "pc": 97, "hardwar": 97, "mac": 97, "forsal": 97, "rec": 97, "crypt": 97, "electron": 97, "med": 97, "soc": 97, "religion": 97, "christian": [97, 108], "talk": [97, 108], "polit": 97, "gun": 97, "mideast": 97, "amazon": 97, "neutral": 97, "imdb_test_set": 97, "all_class": 97, "20news_test_set": 97, "_load_classes_predprobs_label": 97, "dataset_nam": 97, "labelerror": 97, "url_bas": 97, "5392f6c71473055060be3044becdde1cbc18284d": 97, "url_label": 97, "original_test_label": 97, "_original_label": 97, "url_prob": 97, "cross_validated_predicted_prob": 97, "_pyx": 97, "num_part": 97, "datatset": 97, "allow_pickl": 97, "pred_probs_part": 97, "url": 97, "_of_": 97, "nload": 97, "imdb": 97, "ve": [97, 98, 99, 101, 103], "capit": 97, "29780": 97, "256": [97, 98, 103], "780": 97, "medic": [97, 108], "doctor": 97, "254": [97, 103], "359223": 97, "640777": 97, "184": [97, 99], "258427": 97, "341176": 97, "263158": 97, "658824": 97, "337349": 97, "246575": 97, "662651": 97, "248": 97, "330000": 97, "355769": 97, "251": [97, 103], "167": [97, 99, 103], "252": [97, 108], "112": 97, "253": [97, 103], "022989": 97, "049505": 97, "190": [97, 99, 103], "002216": 97, "000974": 97, "000873": 97, "000739": 97, "32635": 97, "32636": 97, "32637": 97, "32638": 97, "32639": 97, "32640": 97, "051": 97, "002242": 97, "997758": 97, "002088": 97, "001045": 97, "997912": 97, "002053": 97, "997947": 97, "001980": 97, "000991": 97, "998020": 97, "001946": 97, "002915": 97, "998054": 97, "001938": 97, "002904": 97, "998062": 97, "001020": 97, "998980": 97, "001018": 97, "002035": 97, "998982": 97, "999009": 97, "0003": 97, "0002": 97, "071": 97, "067269": 97, "929": 97, "046": 97, "058243": 97, "954": 97, "035": 97, "032096": 97, "965": 97, "031": 97, "012232": 97, "969": 97, "022": 97, "025896": 97, "978": 97, "020": [97, 99], "013092": 97, "018": 97, "013065": 97, "016": 97, "030542": 97, "984": 97, "013": 97, "020833": 97, "987": 97, "012": 97, "010020": 97, "988": 97, "0073": 97, "0020": 97, "0016": 97, "0015": 97, "0014": 97, "0013": 97, "0012": 97, "0010": 97, "0008": 97, "0007": 97, "0006": 97, "0005": 97, "0004": 97, "244": [97, 103, 108], "452381": 97, "459770": 97, "523364": 97, "460784": 97, "446602": 97, "103774": 97, "030612": 97, "110092": 97, "049020": 97, "0034": 97, "0032": 97, "0026": 97, "0025": 97, "4945": 97, "4946": 97, "4947": 97, "4948": 97, "4949": 97, "4950": 97, "846": 97, "7532": 97, "532": 97, "034483": 97, "009646": 97, "965517": 97, "030457": 97, "020513": 97, "969543": 97, "028061": 97, "035443": 97, "971939": 97, "025316": 97, "005168": 97, "974684": 97, "049751": 97, "979487": 97, "019920": 97, "042802": 97, "980080": 97, "017677": 97, "005115": 97, "982323": 97, "012987": 97, "005236": 97, "987013": 97, "012723": 97, "025126": 97, "987277": 97, "010989": 97, "008264": 97, "989011": 97, "010283": 97, "027778": 97, "989717": 97, "009677": 97, "990323": 97, "007614": 97, "010127": 97, "992386": 97, "005051": 97, "994949": 97, "005025": 97, "994975": 97, "005013": 97, "994987": 97, "001859": 97, "001328": 97, "000929": 97, "000664": 97, "186": [97, 99], "188": [97, 99, 102], "189": [97, 99], "snippet": 98, "nlp": [98, 108], "mind": [98, 99], "alphanumer": 98, "facilit": 98, "seamless": 98, "classlabel": 98, "guidanc": 98, "labels_str": 98, "datalab_str": 98, "labels_int": 98, "remap": 98, "datalab_int": 98, "my_dict": 98, "pet_nam": 98, "rover": 98, "rocki": 98, "speci": 98, "datalab_dataset": 98, "number_of_class": 98, "total_number_of_data_point": 98, "feed": 98, "alphabet": 98, "labels_proper_format": 98, "your_classifi": 98, "issues_datafram": 98, "class_predicted_for_flagged_exampl": 98, "class_predicted_for_all_exampl": 98, "grant": 98, "On": [98, 99, 103], "merged_dataset": 98, "label_column_nam": 98, "datataset": 98, "fair": [98, 99], "game": 98, "speedup": [98, 104], "tempfil": 98, "mkdtemp": 98, "sped": 98, "anywai": 98, "pred_probs_merg": 98, "merge_rare_class": 98, "count_threshold": 98, "class_mapping_orig2new": 98, "heath_summari": 98, "num_examples_per_class": 98, "rare_class": 98, "num_classes_merg": 98, "other_class": 98, "labels_merg": 98, "new_c": 98, "merged_prob": 98, "new_class": 98, "original_class": 98, "num_check": 98, "ones_array_ref": 98, "isclos": 98, "though": [98, 99, 108], "successfulli": 98, "virtuou": [98, 101], "cycl": [98, 101], "jointli": 98, "junk": 98, "clutter": 98, "unknown": 98, "caltech": 98, "combined_boolean_mask": 98, "mask1": 98, "mask2": 98, "gradientboostingclassifi": [98, 99], "true_error": [98, 99, 102], "101": [98, 103], "102": [98, 102, 103], "104": [98, 99, 103], "model_to_find_error": 98, "model_to_return": 98, "cl0": 98, "randomizedsearchcv": 98, "expens": 98, "param_distribut": 98, "learning_r": [98, 99], "max_depth": [98, 99], "magnitud": 98, "coeffici": [98, 106], "optin": 98, "environ": [98, 99], "rerun": [98, 99], "cell": [98, 99], "unabl": [98, 99], "render": [98, 99], "nbviewer": [98, 99], "cleanlearninginot": [98, 99], "fittedcleanlearn": [98, 99], "linearregressionlinearregress": 98, "unexpectedli": 98, "emphas": 98, "crucial": 98, "merge_duplicate_set": 98, "merge_kei": 98, "construct_group_kei": 98, "merged_set": 98, "consolidate_set": 98, "issubset": 98, "frozenset": 98, "sets_list": 98, "mutabl": 98, "new_set": 98, "current_set": 98, "intersecting_set": 98, "lowest_score_strategi": 98, "sub_df": 98, "filter_near_dupl": 98, "strategy_fn": 98, "strategy_kwarg": 98, "duplicate_row": 98, "group_kei": 98, "to_keep_indic": 98, "groupbi": 98, "explod": 98, "to_remov": 98, "isin": [98, 104], "kept": 98, "ids_to_remove_seri": 98, "assist": 98, "streamlin": 98, "ux": 98, "agpl": 98, "compani": 98, "commerci": 98, "email": 98, "team": 98, "discuss": 98, "anywher": 98, "profession": 98, "expert": 98, "depth": 99, "survei": [99, 108], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "103": [99, 103], "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103, 108], "037843": 99, "222": 99, "614915": 99, "122": [99, 103], "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "magic": 99, "liter": 99, "identif": 99, "x27": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "percentag": 99, "offset": 99, "nquestion": 99, "overestim": 99, "answer": 99, "experienc": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "197": [99, 103], "196": [99, 103], "170": 99, "214": 99, "164": [99, 102], "198": [99, 103], "191": [99, 103], "117": [99, 106], "206": [99, 103], "115": [99, 103], "193": 99, "194": 99, "201": [99, 103], "174": 99, "163": 99, "150": [99, 101, 103, 108], "169": [99, 108], "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "155": [99, 103], "156": 99, "172": [99, 102], "157": 99, "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "n_estim": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "300": [101, 108], "noisier": 101, "111": [101, 106], "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "zfill": 101, "row_na_check": 101, "notna": 101, "reset_index": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "na": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "09": [102, 103, 106], "275": 102, "267": 102, "225": 102, "171": 102, "234": 102, "165": 102, "227": [102, 103], "262": [102, 103], "263": [102, 103], "266": [102, 103], "139": 102, "143": [102, 103], "216": [102, 103], "265": 102, "159": [102, 103], "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "nc": [103, 107, 108], "s3": [103, 107, 108], "amazonaw": [103, 107, 108], "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "unzip": [103, 108], "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "224": 103, "231": 103, "293": 103, "235": 103, "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "277": 103, "279": 103, "287": 103, "299": 103, "276": 103, "307": 103, "321": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "283": 103, "243": 103, "303": 103, "316": 103, "247": 103, "323": 103, "327": 103, "226": 103, "228": 103, "232": 103, "219": 103, "239": 103, "240": 103, "209": 103, "242": 103, "202": 103, "230": 103, "215": 103, "220": 103, "229": 103, "217": [103, 108], "237": 103, "207": 103, "204": 103, "84": [103, 106], "205": 103, "223": 103, "153": 103, "149": 103, "140": 103, "124": 103, "246": 103, "268": 103, "273": 103, "284": 103, "110": 103, "136": 103, "145": 103, "173": 103, "297": 103, "317": 103, "192": 103, "332": 103, "324": 103, "203": 103, "320": 103, "314": 103, "199": 103, "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "336": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": 103, "candid": 103, "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "anomali": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "test_pred_prob": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "39742139": 104, "91it": 104, "visualize_outli": 104, "txt_class": 104, "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "inevit": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "hist": 104, "train_outlier_scor": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "ok": [105, 108], "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "price": 106, "incom": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "homework": 106, "3d": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "367": 106, "318": 106, "305": 106, "560": 106, "657": 106, "688": 106, "view_datapoint": 106, "preds_og": 106, "r2_og": 106, "838": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "2400": 108, "52e0": 108, "1a00": 108, "871": 108, "connect": 108, "443": 108, "await": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "71mb": 108, "mb": 108, "directori": 108, "inflat": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "3mb": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "came": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [60, 0, 0, "-", "models"], [62, 0, 0, "-", "multiannotator"], [65, 0, 0, "-", "multilabel_classification"], [68, 0, 0, "-", "object_detection"], [71, 0, 0, "-", "outlier"], [72, 0, 0, "-", "rank"], [73, 0, 0, "-", "regression"], [77, 0, 0, "-", "segmentation"], [81, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "metric"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_worst_cluster"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[61, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[61, 2, 1, "", "KerasWrapperModel"], [61, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[61, 3, 1, "", "fit"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "predict_proba"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[61, 3, 1, "", "fit"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "predict_proba"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[62, 1, 1, "", "convert_long_to_wide_dataset"], [62, 1, 1, "", "get_active_learning_scores"], [62, 1, 1, "", "get_active_learning_scores_ensemble"], [62, 1, 1, "", "get_label_quality_multiannotator"], [62, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [62, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[63, 0, 0, "-", "dataset"], [64, 0, 0, "-", "filter"], [66, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[63, 1, 1, "", "common_multilabel_issues"], [63, 1, 1, "", "multilabel_health_summary"], [63, 1, 1, "", "overall_multilabel_health_score"], [63, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[64, 1, 1, "", "find_label_issues"], [64, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[66, 1, 1, "", "get_label_quality_scores"], [66, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[67, 0, 0, "-", "filter"], [69, 0, 0, "-", "rank"], [70, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[67, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[69, 1, 1, "", "compute_badloc_box_scores"], [69, 1, 1, "", "compute_overlooked_box_scores"], [69, 1, 1, "", "compute_swap_box_scores"], [69, 1, 1, "", "get_label_quality_scores"], [69, 1, 1, "", "issues_from_scores"], [69, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[70, 1, 1, "", "bounding_box_size_distribution"], [70, 1, 1, "", "calculate_per_class_metrics"], [70, 1, 1, "", "class_label_distribution"], [70, 1, 1, "", "get_average_per_class_confusion_matrix"], [70, 1, 1, "", "get_sorted_bbox_count_idxs"], [70, 1, 1, "", "object_counts_per_image"], [70, 1, 1, "", "plot_class_distribution"], [70, 1, 1, "", "plot_class_size_distributions"], [70, 1, 1, "", "visualize"]], "cleanlab.outlier": [[71, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[71, 3, 1, "", "fit"], [71, 3, 1, "", "fit_score"], [71, 3, 1, "", "score"]], "cleanlab.rank": [[72, 1, 1, "", "find_top_issues"], [72, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [72, 1, 1, "", "get_label_quality_ensemble_scores"], [72, 1, 1, "", "get_label_quality_scores"], [72, 1, 1, "", "get_normalized_margin_for_each_label"], [72, 1, 1, "", "get_self_confidence_for_each_label"], [72, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[74, 0, 0, "-", "learn"], [75, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[74, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[74, 3, 1, "", "__init_subclass__"], [74, 3, 1, "", "find_label_issues"], [74, 3, 1, "", "fit"], [74, 3, 1, "", "get_aleatoric_uncertainty"], [74, 3, 1, "", "get_epistemic_uncertainty"], [74, 3, 1, "", "get_label_issues"], [74, 3, 1, "", "get_metadata_routing"], [74, 3, 1, "", "get_params"], [74, 3, 1, "", "predict"], [74, 3, 1, "", "save_space"], [74, 3, 1, "", "score"], [74, 3, 1, "", "set_fit_request"], [74, 3, 1, "", "set_params"], [74, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[75, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[76, 0, 0, "-", "filter"], [78, 0, 0, "-", "rank"], [79, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[76, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[78, 1, 1, "", "get_label_quality_scores"], [78, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[79, 1, 1, "", "common_label_issues"], [79, 1, 1, "", "display_issues"], [79, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[80, 0, 0, "-", "filter"], [82, 0, 0, "-", "rank"], [83, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[80, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[82, 1, 1, "", "get_label_quality_scores"], [82, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[83, 1, 1, "", "common_label_issues"], [83, 1, 1, "", "display_issues"], [83, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 87, 88, 92, 94, 95, 98, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 89, 90, 91, 92, 93, 94, 95, 96, 98, 99, 102], "creat": [7, 90, 91, 96, 99, 101], "your": [7, 84, 90, 91, 95, 96, 98, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 90], "basic": 7, "check": [7, 96], "intermedi": 7, "advanc": [7, 90], "us": [7, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": [8, 96], "cluster": [8, 96, 98], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 90], "cleanlab": [9, 10, 84, 87, 88, 89, 92, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 84, 92, 94, 95], "mode": [9, 10, 84, 92, 94, 95], "can": [10, 91, 97, 98, 99, 101], "detect": [10, 89, 91, 92, 94, 95, 96, 98, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "input": 10, "label": [10, 24, 26, 31, 84, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 71, 92, 94, 95, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 91, 92, 94, 95], "duplic": [10, 20, 91, 92, 94, 95, 98, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 95, 96], "iid": [10, 95, 96], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 85, 96, 99, 107], "imbal": [10, 21, 96], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 92, 96, 104], "specif": [10, 22, 96, 107], "underperform": [10, 96, 98], "group": [10, 96, 98], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 96], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 84, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "valuat": [10, 96], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 96], "paramet": [10, 99], "get": [12, 90, 91, 101, 102, 103, 107, 108], "start": [12, 97], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 73, 74, 75, 98, 106], "prioriti": 31, "order": 31, "find": [31, 84, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 92], "dataset": [37, 63, 84, 88, 89, 91, 92, 95, 96, 97, 98, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 64, 67, 76, 80, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 90], "token_classification_util": 56, "util": 57, "valid": [58, 92, 105], "fasttext": 59, "model": [60, 84, 87, 88, 89, 92, 94, 95, 98, 99, 101, 102, 103, 104, 106], "kera": 61, "multiannot": [62, 101], "multilabel_classif": 65, "rank": [66, 69, 72, 75, 78, 82, 99], "object_detect": 68, "summari": [70, 79, 83], "learn": [74, 91, 98, 99], "segment": [77, 107], "token_classif": [81, 108], "open": [84, 98], "sourc": [84, 98], "document": 84, "quickstart": 84, "1": [84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "2": [84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "common": [84, 85, 108], "3": [84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [84, 98], "error": [84, 88, 92, 98, 99, 101, 102, 103, 106, 107, 108], "train": [84, 87, 88, 89, 96, 98, 104, 106], "robust": [84, 87, 88, 99, 106], "noisi": [84, 87, 88, 99, 106], "4": [84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 103, 104, 106], "curat": 84, "fix": [84, 98], "level": [84, 97, 99, 108], "5": [84, 87, 89, 91, 92, 94, 96, 99, 101, 106], "improv": [84, 101], "via": [84, 99, 101], "mani": [84, 99], "other": [84, 101, 103, 106], "techniqu": 84, "contribut": 84, "how": [85, 98, 99, 101, 102, 108], "migrat": 85, "version": 85, "0": 85, "from": [85, 87, 88, 90, 91, 99, 106], "pre": [85, 89, 96, 98, 104], "function": [85, 90], "name": 85, "chang": 85, "modul": [85, 99], "new": 85, "remov": 85, "argument": [85, 90], "variabl": 85, "cleanlearn": [86, 98, 99], "tutori": [86, 93, 97, 100], "structur": 87, "tabular": [87, 94], "requir": [87, 88, 90, 91, 92, 94, 95, 101, 102, 103, 104, 106, 107, 108], "depend": [87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "load": [87, 88, 89, 90, 91, 94, 95, 96, 106], "process": [87, 94, 104, 106], "select": [87, 94], "comput": [87, 89, 92, 94, 95, 96, 98, 101, 105], "out": [87, 89, 90, 91, 92, 94, 95, 101, 105], "sampl": [87, 89, 90, 91, 92, 94, 95, 101, 105], "predict": [87, 89, 90, 91, 92, 94, 95, 96, 101, 102, 103, 105], "probabl": [87, 89, 90, 91, 92, 94, 95, 96, 101, 105], "more": [87, 88, 91, 99, 106], "text": [88, 95, 96, 108], "format": [88, 95, 98, 102, 103], "defin": [88, 92, 95, 96, 106], "potenti": [88, 101, 106], "an": [89, 92, 98], "audio": 89, "import": [89, 90, 91, 92, 97, 99, 101], "them": [89, 97, 99], "speechbrain": 89, "featur": [89, 92, 96, 104], "fit": 89, "linear": 89, "workflow": [90, 96, 99], "audit": [90, 91], "classifi": [90, 91, 96], "instanti": 90, "object": [90, 96, 103], "increment": 90, "specifi": [90, 98], "nondefault": 90, "save": 90, "ad": 90, "A": 91, "unifi": 91, "all": [91, 99], "kind": [91, 103], "skip": [91, 97, 99, 101], "detail": [91, 97, 99, 101], "about": 91, "addit": 91, "inform": [91, 92], "fetch": [92, 97], "normal": 92, "fashion": 92, "mnist": 92, "prepar": [92, 96], "k": [92, 94, 105], "fold": [92, 105], "cross": [92, 105], "embed": [92, 104], "7": [92, 99], "view": 92, "most": [92, 108], "like": 92, "exampl": [92, 98, 99, 104], "sever": 92, "set": [92, 99], "dark": [92, 96], "top": [92, 107], "low": 92, "numer": 94, "categor": [94, 96], "column": 94, "construct": 94, "nearest": 94, "neighbour": 94, "graph": [94, 96], "drift": [95, 102], "miscellan": 96, "acceler": 96, "knn": 96, "obtain": 96, "identifi": [96, 98, 103], "explan": 96, "vector": 96, "perform": 96, "visual": [96, 99, 103, 104, 107], "score": [96, 99, 101, 102, 103, 107, 108], "synthet": 96, "result": 96, "predefin": 96, "slice": [96, 98], "i": [96, 98, 99, 105], "catch": 96, "valu": 96, "encod": 96, "initi": [96, 101], "sort": 96, "6": [96, 99], "spuriou": 96, "correl": 96, "between": 96, "vision": 96, "pass": 96, "relat": 96, "transform": 96, "imageenh": 96, "induc": 96, "properti": 96, "origin": 96, "understand": 97, "evalu": 97, "health": [97, 99], "8": [97, 99], "popular": 97, "faq": 98, "what": [98, 99, 105], "do": [98, 99], "infer": 98, "correct": 98, "ha": 98, "flag": 98, "should": 98, "v": 98, "test": [98, 99, 104], "big": 98, "limit": 98, "memori": 98, "why": 98, "isn": 98, "t": 98, "work": [98, 99, 101, 108], "me": 98, "differ": [98, 103], "clean": [98, 99], "final": 98, "hyperparamet": 98, "tune": 98, "onli": 98, "one": [98, 99, 102, 107], "doe": [98, 101, 108], "take": 98, "so": 98, "long": 98, "when": [98, 99], "run": 98, "licens": 98, "under": 98, "answer": 98, "question": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "twenti": 99, "lowest": 99, "qualiti": [99, 101, 102, 103, 107, 108], "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "too": 99, "you": 99, "re": 99, "One": 99, "rule": 99, "overal": [99, 107], "accur": 99, "thi": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "major": 101, "vote": 101, "better": 101, "statist": 101, "compar": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "without": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "analysi": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [71, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [73, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [63, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [64, "module-cleanlab.multilabel_classification.filter"], [67, "filter"], [76, "filter"], [80, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "fasttext": [[59, "fasttext"]], "models": [[60, "models"]], "keras": [[61, "module-cleanlab.models.keras"]], "multiannotator": [[62, "module-cleanlab.multiannotator"]], "multilabel_classification": [[65, "multilabel-classification"]], "rank": [[66, "module-cleanlab.multilabel_classification.rank"], [69, "module-cleanlab.object_detection.rank"], [72, "module-cleanlab.rank"], [78, "module-cleanlab.segmentation.rank"], [82, "module-cleanlab.token_classification.rank"]], "object_detection": [[68, "object-detection"]], "summary": [[70, "summary"], [79, "module-cleanlab.segmentation.summary"], [83, "module-cleanlab.token_classification.summary"]], "regression.learn": [[74, "module-cleanlab.regression.learn"]], "regression.rank": [[75, "module-cleanlab.regression.rank"]], "segmentation": [[77, "segmentation"]], "token_classification": [[81, "token-classification"]], "cleanlab open-source documentation": [[84, "cleanlab-open-source-documentation"]], "Quickstart": [[84, "quickstart"]], "1. Install cleanlab": [[84, "install-cleanlab"]], "2. Find common issues in your data": [[84, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[84, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[84, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[84, "improve-your-data-via-many-other-techniques"]], "Contributing": [[84, "contributing"]], "Easy Mode": [[84, "easy-mode"], [92, "Easy-Mode"], [94, "Easy-Mode"], [95, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[85, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[85, "function-and-class-name-changes"]], "Module name changes": [[85, "module-name-changes"]], "New modules": [[85, "new-modules"]], "Removed modules": [[85, "removed-modules"]], "Common argument and variable name changes": [[85, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[86, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[87, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[87, "1.-Install-required-dependencies"], [88, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [95, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[87, "2.-Load-and-process-the-data"], [94, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[87, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [94, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[87, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[87, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[88, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[88, "2.-Load-and-format-the-text-dataset"], [95, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[88, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[88, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[89, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[89, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[89, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[89, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[89, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[89, "5.-Use-cleanlab-to-find-label-issues"], [94, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[90, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[90, "Install-and-import-required-dependencies"]], "Create and load the data": [[90, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[90, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[90, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[90, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[90, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[90, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[90, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[91, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[91, "1.-Install-and-import-required-dependencies"], [92, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[91, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[91, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[91, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[91, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[91, "Get-additional-information"]], "Near duplicate issues": [[91, "Near-duplicate-issues"], [92, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[92, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[92, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[92, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[92, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[92, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[92, "7.-Use-cleanlab-to-find-issues"]], "View report": [[92, "View-report"]], "Label issues": [[92, "Label-issues"], [94, "Label-issues"], [95, "Label-issues"]], "View most likely examples with label errors": [[92, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[92, "Outlier-issues"], [94, "Outlier-issues"], [95, "Outlier-issues"]], "View most severe outliers": [[92, "View-most-severe-outliers"]], "View sets of near duplicate images": [[92, "View-sets-of-near-duplicate-images"]], "Dark images": [[92, "Dark-images"]], "View top examples of dark images": [[92, "View-top-examples-of-dark-images"]], "Low information images": [[92, "Low-information-images"]], "Datalab Tutorials": [[93, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[94, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[94, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[94, "Near-duplicate-issues"], [95, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[95, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[95, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[95, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[95, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[96, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[96, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[96, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[96, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[96, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[96, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[96, "Explanation:"]], "Data Valuation": [[96, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[96, "1.-Load-and-Prepare-the-Dataset"], [96, "id2"], [96, "id5"]], "2. Vectorize the Text Data": [[96, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[96, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[96, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[96, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[96, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[96, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [96, "id3"]], "3. (Optional) Cluster the Data": [[96, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[96, "4.-Identify-Underperforming-Groups-with-Datalab"], [96, "id4"]], "5. (Optional) Visualize the Results": [[96, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[96, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[96, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[96, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[96, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[96, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[96, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[96, "1.-Load-the-Dataset"]], "2: Encode Categorical Values": [[96, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[96, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[96, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[96, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[96, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[96, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[96, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[96, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[96, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Find Spurious Correlation between Vision Dataset features and class labels": [[96, "Find-Spurious-Correlation-between-Vision-Dataset-features-and-class-labels"]], "1. Load the dataset": [[96, "1.-Load-the-dataset"]], "2. Creating Dataset object to be passed to the Datalab object to find vision-related issues": [[96, "2.-Creating-Dataset-object-to-be-passed-to-the-Datalab-object-to-find-vision-related-issues"]], "3. (Optional) Creating a transformed dataset using ImageEnhance to induce darkness": [[96, "3.-(Optional)-Creating-a-transformed-dataset-using-ImageEnhance-to-induce-darkness"]], "4. (Optional) Visualizing Images in the dataset": [[96, "4.-(Optional)-Visualizing-Images-in-the-dataset"]], "5. Finding image-specific property scores": [[96, "5.-Finding-image-specific-property-scores"]], "Vision-specific property scores in the original dataset": [[96, "Vision-specific-property-scores-in-the-original-dataset"]], "Vision-specific property scores in the transformed dataset": [[96, "Vision-specific-property-scores-in-the-transformed-dataset"]], "Understanding Dataset-level Labeling Issues": [[97, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[97, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[97, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[97, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[98, "FAQ"]], "What data can cleanlab detect issues in?": [[98, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[98, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[98, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[98, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[98, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[98, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[98, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[98, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[98, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[98, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[98, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[98, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[98, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[98, "Can't-find-an-answer-to-your-question?"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [60, "module-cleanlab.models"], [61, "module-cleanlab.models.keras"], [62, "module-cleanlab.multiannotator"], [63, "module-cleanlab.multilabel_classification.dataset"], [64, "module-cleanlab.multilabel_classification.filter"], [65, "module-cleanlab.multilabel_classification"], [66, "module-cleanlab.multilabel_classification.rank"], [67, "module-cleanlab.object_detection.filter"], [68, "module-cleanlab.object_detection"], [69, "module-cleanlab.object_detection.rank"], [70, "module-cleanlab.object_detection.summary"], [71, "module-cleanlab.outlier"], [72, "module-cleanlab.rank"], [73, "module-cleanlab.regression"], [74, "module-cleanlab.regression.learn"], [75, "module-cleanlab.regression.rank"], [76, "module-cleanlab.segmentation.filter"], [77, "module-cleanlab.segmentation"], [78, "module-cleanlab.segmentation.rank"], [79, "module-cleanlab.segmentation.summary"], [80, "module-cleanlab.token_classification.filter"], [81, "module-cleanlab.token_classification"], [82, "module-cleanlab.token_classification.rank"], [83, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[60, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[61, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[61, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[61, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[62, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[63, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[64, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[64, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[64, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[65, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[66, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[66, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[66, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[67, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[67, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[68, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[69, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[70, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[71, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[71, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[72, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[72, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[72, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[73, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[74, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[74, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[74, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[75, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[75, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[76, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[76, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[77, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[78, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[78, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[78, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[79, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[80, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[80, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[81, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[82, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[82, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[82, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[83, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 85, 90, 91, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 90, 91, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 90, 91, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 69, 92, 96, 97, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 84, 85, 90, 97, 105], "benchmark": [1, 38, 84, 85, 90, 91, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 90, 91, 96, 97, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 62, 63, 67, 69, 70, 71, 72, 74, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 76, 78], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 62, 71, 80, 82, 84, 96, 98, 99, 101, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 60, 62, 63, 66, 70, 71, 75, 79, 80, 82, 83, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 89, 96, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 63, 90, 91, 96, 97, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 90, 96, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 62, 63, 64, 65, 66, 71, 72, 80, 81, 82, 83, 84, 85, 86, 89, 90, 91, 96, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 87, 90, 94, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 60, 64, 67, 70, 79, 83, 92, 94, 95, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 60, 62, 67, 70, 71, 72, 84, 92, 98, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 61, 62, 63, 64, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 71, 72, 74, 79, 88, 89, 90, 91, 92, 95, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 62, 64, 67, 70, 72, 74, 75, 83, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 98], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 60, 62, 64, 71, 73, 75, 78, 82, 84, 87, 88, 89, 90, 92, 94, 95, 96, 97, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 64, 65, 66, 67, 69, 70, 71, 72, 74, 80, 82, 83, 91, 96, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 37, 39, 42, 44, 47, 57, 63, 64, 66, 72, 74, 75, 76, 78, 79, 85, 90, 91, 94, 95, 96, 98, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 64, 67, 69, 70, 71, 72, 94, 96, 103, 104], "trace": [1, 90, 91, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 83, 88, 89, 91, 92, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 84, 89, 90, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 91, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 90, 91, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 84, 90, 91, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 62, 63, 64, 69, 71, 72, 74, 76, 78, 79, 83, 90, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 62, 70, 71, 72, 76, 94, 95, 96, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 65, 66, 67, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 87, 89, 90, 91, 96, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 61, 67, 70, 74, 84, 87, 88, 89, 90, 91, 92, 98, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 69, 74, 88, 91, 95, 96, 98, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 74, 98, 101, 108], "better": [1, 5, 10, 44, 53, 62, 64, 72, 74, 75, 84, 88, 89, 91, 94, 95, 96, 98, 99, 102, 103, 104, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 61, 62, 67, 69, 71, 72, 74, 78, 82, 87, 89, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 62, 72, 74, 87, 89, 90, 91, 92, 94, 96, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 70, 74, 84, 87, 88, 90, 98, 99, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 62, 63, 70, 71, 72, 98, 101, 104], "amount": [1, 3, 92], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 91, 92, 95, 96], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 96, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 84, 87, 88, 90, 91, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 91, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 89, 96, 97, 98, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 47, 53, 56, 57, 72, 92, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 85, 97, 98, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 78, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 62, 74, 94, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 64, 72, 74, 75, 87, 89, 90, 91, 92, 94, 95, 98, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 60, 62, 63, 66, 70, 71, 72, 74, 79, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 72, 76, 79, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 62, 63, 64, 66, 67, 70, 71, 72, 74, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 63, 64, 66, 69, 74, 90, 91, 92, 98, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 97, 98, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 62, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 83], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 62, 63, 64, 66, 67, 83, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 62, 64, 66, 69, 70, 71, 72, 74, 75, 80, 82, 83, 84, 89, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 74, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 65, 71, 90, 91, 92, 94, 95, 99], "yield": [1, 38, 42], "between": [1, 5, 10, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 60, 62, 63, 66, 69, 71, 72, 74, 75, 78, 82, 83, 85, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 62, 63, 64, 69, 70, 78, 82, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 61, 62, 69, 70, 72, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 92, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 71, 74, 84, 87, 89, 90, 94, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 62, 63, 67, 69, 87, 88, 89, 90, 91, 92, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 69, 70, 74, 76, 78, 82, 88, 89, 90, 91, 92, 94, 95, 97, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 71, 72, 76, 87, 88, 89, 90, 91, 92, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10, 96], "python": [1, 2, 42, 61, 74, 90, 91, 96, 97, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 64, 95, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 87, 88, 89, 92, 95, 96, 97, 98, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 66, 74, 84, 88, 89, 95, 96, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 61, 62, 64, 66, 67, 69, 70, 72, 74, 76, 78, 79, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 82, 83, 85, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 71, 72, 74, 87, 88, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 61, 70, 74, 75, 88, 89, 90, 91, 94, 96, 98, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 74, 96, 98, 106], "astyp": [1, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 63, 64, 66, 70, 71, 72, 74, 76, 78, 79, 80, 83, 89, 90, 92, 96, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 70, 74, 75, 92, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 88, 89, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 85, 96, 97, 98], "choic": [1, 8, 44, 53, 55, 92, 98, 102, 104], "replac": [1, 56, 61, 72, 87, 88, 90, 91, 92, 95, 96, 97, 98, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 72, 89, 90, 91], "05": [1, 10, 27, 31, 56, 70, 74, 80, 82, 94, 97, 98, 99, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 90, 91, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 90, 91, 92, 96, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 74, 87, 89, 90, 91, 94, 96, 97, 99, 101, 102], "max_it": [1, 88, 89, 95, 104], "10000": [1, 41, 97, 98], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 61, 62, 64, 70, 71, 72, 74, 76, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 64, 69, 79, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 74, 84, 88, 89, 92, 94, 95, 98, 107, 108], "impli": [1, 10, 37, 63, 70], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 62, 63, 64, 66, 69, 70, 74, 78, 82, 89, 90, 91, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 62, 63, 64, 67, 87, 88, 94, 95, 99, 102, 103, 106], "maximum": [1, 10, 71, 79, 83, 107], "minimum": [1, 8, 10, 21, 44, 46, 64, 69, 82], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 69, 74, 90, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 90, 92, 96, 98, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 61, 62, 63, 64, 67, 69, 70, 71, 74, 75, 76, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 75, 79, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 74, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 90, 96], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 61, 62, 63, 65, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 62, 66, 70, 74, 79, 83, 84, 87, 88, 89, 91, 95, 98, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 60, 61, 64, 71, 72, 74, 76, 84, 85, 89, 96, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 61, 62, 63, 64, 66, 69, 70, 71, 72, 74, 78, 79, 80, 82, 88, 91, 92, 95, 96, 97, 98, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 61, 64, 66, 67, 69, 71, 72, 74, 75, 87, 88, 90, 91, 92, 94, 95, 96, 97, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 61, 62, 63, 64, 67, 69, 70, 71, 72, 74, 76, 79, 80, 82, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 89, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 61, 62, 64, 67, 69, 70, 71, 72, 74, 76, 78, 79, 87, 88, 90, 91, 94, 95, 96, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 61, 62, 67, 69, 70, 71, 72, 74, 75, 79, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 60, 61, 62, 64, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 17, 41, 44, 52, 53, 57, 69, 72, 74, 87, 88, 90, 91, 92, 96, 97, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 62, 63, 67, 69, 70, 71, 72, 74, 76, 79, 83, 85, 88, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 61, 62, 71, 74, 79, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 62, 84, 90, 91, 95, 96, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 90, 92, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 90, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 61, 62, 64, 66, 70, 71, 72, 74, 75, 78, 80, 82, 85, 87, 88, 89, 92, 94, 95, 96, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 61, 62, 71, 72, 74, 76, 78, 82, 83, 84, 88, 89, 90, 91, 92, 95, 96, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 60, 85], "produc": [1, 2, 5, 9, 10, 17, 49, 62, 72, 74, 76, 78, 84, 87, 88, 89, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 61, 62, 63, 74, 91, 95, 96, 98, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 69, 90, 91, 92, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 63, 70, 88, 92, 95, 97, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 61, 66, 69, 74, 75, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 71, 72, 91, 92, 96, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 71, 74, 79, 87, 88, 95, 96, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 29, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 79, 82, 83, 84, 87, 89, 90, 91, 92, 94, 98, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 64, 67, 70, 90, 91, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 62, 67, 69, 70, 71, 90, 91, 97, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 61, 98, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 64, 67, 71, 72, 74, 76, 79, 83, 87, 89, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 60, 61, 62, 63, 64, 71, 72, 74, 76, 78, 79, 80, 82, 83, 89, 96, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 62, 64, 70, 76, 78, 79, 80, 82, 83, 87, 88, 89, 98, 101, 102, 103, 107, 108], "ball": [1, 97], "bin": [1, 3, 64, 90, 91, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 61, 69, 72, 74, 87, 88, 89, 90, 91, 92, 95, 96, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 61, 62, 63, 64, 67, 69, 70, 71, 72, 75, 78, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 62, 63, 69, 72, 82, 92, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 79, 80, 83, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 85, 90, 91, 96, 97, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 78, 80, 82, 83, 84, 87, 88, 89, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 61], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 63, 64, 65, 66, 71, 72, 84, 96, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 62, 64, 72, 74, 84, 88, 89, 95, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 61, 73, 74, 75, 84, 85, 87, 88, 106], "wrap": [2, 38, 42, 51, 61, 71, 74, 84, 87, 88, 90, 91, 94, 95, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 61, 70, 71, 74, 79, 87, 89, 90, 91, 92, 94, 95, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 61, 71, 74, 75, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 62, 65, 71, 72, 84, 85, 87, 88, 89, 94, 95, 98, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 74], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 62, 63, 64, 69, 71, 74, 76, 78, 82, 84, 85, 89, 90, 91, 92, 94, 95, 96, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 61, 67, 70, 71, 74, 85, 96, 98, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 72, 74, 76, 90, 91, 94, 97, 98, 101, 104, 108], "four": [2, 10, 97, 99, 108], "clf": [2, 3, 5, 49, 74, 84, 87, 94, 96, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 60, 61, 71, 73, 74, 84, 87, 88, 92, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 74, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 60, 61, 87, 89, 90, 91, 94, 95, 96, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 88, 97, 98, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 62, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 78, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 60, 61, 62, 63, 64, 65, 69, 71, 72, 73, 74, 79, 80, 81, 82, 83, 85, 88, 92, 93, 100, 105], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 62, 63, 64, 65, 67, 70, 71, 72, 74, 76, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 71, 74, 84, 87, 90, 91, 94, 95, 96, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 62, 64, 72, 79, 80, 82, 88, 89, 95, 96, 98, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 62, 63, 67, 70, 72, 74, 87, 88, 89, 90, 92, 94, 96, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 63, 72, 74, 79, 82, 83, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 61, 62, 63, 66, 67, 69, 70, 71, 72, 74, 75, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 76, 79, 80, 82, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 60, 62, 67, 69, 71, 74, 87, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 44, 46, 49, 52, 53, 54, 64, 67, 70, 72, 74, 75, 84, 85, 88, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 64, 69, 70, 74, 76, 78, 88, 92, 94, 98, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 61, 62, 63, 64, 66, 67, 70, 71, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 62, 74, 84, 87, 88, 89, 90, 94, 95, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 62, 69, 72, 74, 88, 89, 90, 91, 95], "loss": [2, 39, 61, 72, 74, 92], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 74, 84, 92, 96, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 61, 62, 67, 70, 71, 74, 75, 85, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 61, 71, 72, 82, 84, 85, 89, 90, 91, 92, 96, 98], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 60, 61, 62, 63, 64, 66, 71, 72, 74, 75, 76, 78, 79, 85, 87, 88, 89, 92, 94, 97, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 62, 90, 91, 92, 96, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 63, 64, 69, 70, 74, 76, 88, 95, 96, 98, 102, 103, 106, 107], "clonabl": [2, 74], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 62, 67, 70, 71, 72, 74, 75, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 61, 62, 63, 64, 66, 69, 71, 72, 74, 75, 78, 80, 82, 87, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 74, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 66, 70, 74, 80, 85, 90, 96, 98, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 62, 63, 64, 66, 69, 70, 74, 84, 90, 91, 92, 94, 98, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 64, 65, 67, 70, 71, 72, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 74, 87, 88, 89, 96, 98, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 74, 84, 89, 92, 98, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 61, 71, 74, 88, 89, 90, 91, 95, 98, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 74, 92], "independ": [2, 3, 10, 63, 74, 95, 96, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 61, 74, 75, 78, 82, 84, 87, 88, 96, 98, 105, 106], "neural": [2, 39, 61, 71, 74, 89, 92, 98, 102, 104, 106], "network": [2, 38, 39, 42, 61, 71, 74, 88, 89, 92, 95, 98, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 71, 74, 87, 88, 89, 91, 92, 94, 95, 104, 105], "initi": [2, 3, 14, 19, 38, 42, 52, 62, 74, 87, 95, 98], "insid": [2, 42, 74, 98, 99], "There": [2, 3, 7, 52, 84, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 67, 69, 70, 85, 88, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 62, 74, 88, 89, 90, 95, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 62, 63, 64, 67, 69, 70, 71, 72, 74, 78, 82, 84, 87, 92, 94, 95, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 60, 61, 67, 70, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 64, 74, 85, 103], "everyth": [2, 70, 99], "els": [2, 70, 90, 92, 96, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 84, 90, 96, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 63, 64, 65, 66, 71, 72, 76, 80, 82, 83, 91, 92, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 61, 63, 64, 66, 67, 70, 71, 72, 74, 75, 79, 80, 82, 83, 97, 98, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 63, 64, 66, 67, 69, 70, 72, 74, 76, 78, 79, 82, 85, 87, 89, 90, 91, 94, 95, 96, 97, 100], "erron": [2, 3, 37, 44, 47, 57, 63, 64, 72, 74, 75, 76, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 62, 66, 69, 74, 75, 80, 82, 83, 84, 87, 88, 94, 95, 96, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 74, 84, 88, 89, 90, 91, 95, 96, 98, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 84, 88, 89, 90, 91, 95, 96, 98, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 74, 84, 87, 88, 98, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 61, 62, 64, 70, 71, 72, 74, 79, 80, 84, 88, 89, 90, 91, 95, 97, 98, 99, 101, 103, 104, 106], "x_train": [2, 87, 90, 91, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 74, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 60, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 88, 93, 100, 101, 105, 106], "pred": [2, 44, 57, 87, 88, 105, 106], "x_test": [2, 87, 90, 91, 99, 102, 106], "might": [2, 5, 10, 52, 62, 74, 79, 87, 88, 90, 91, 92, 96, 98, 103], "case": [2, 3, 10, 14, 37, 49, 52, 62, 74, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 61, 63, 64, 66, 72, 74, 84, 87, 90, 91, 94, 97, 99, 103], "adapt": [2, 38, 40, 57, 60, 74, 104], "skorch": [2, 74, 84, 98], "kera": [2, 60, 67, 70, 74, 84, 98, 103], "scikera": [2, 61, 74, 98], "open": [2, 41, 96, 97, 103, 108], "doesn": [2, 10, 74, 84], "t": [2, 3, 4, 7, 10, 18, 28, 29, 38, 39, 41, 42, 43, 44, 49, 55, 56, 66, 71, 72, 74, 80, 82, 83, 84, 90, 91, 92, 94, 95, 96, 97, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 61, 62, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 61, 67, 69, 71, 74, 84, 85, 87, 88, 90, 91, 95, 101, 108], "made": [2, 5, 17, 38, 42, 53, 74, 87, 88, 92, 95, 96, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 74, 90, 91, 97, 98, 99, 102], "inherit": [2, 7, 39, 74], "baseestim": [2, 42, 74], "yourmodel": [2, 74], "def": [2, 7, 15, 38, 42, 61, 74, 88, 89, 90, 91, 92, 96, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 71, 72, 74, 87, 90, 92, 96, 97, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 63, 64, 66, 67, 69, 70, 71, 74, 78, 79, 90, 91, 92, 94, 95, 96, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 61, 63, 64, 67, 70, 71, 74, 75, 78, 80, 82, 87, 88, 90, 92, 94, 95, 98, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 63, 83, 92, 98, 107], "state": [2, 3, 5, 38, 39, 42, 48, 74, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 71, 72], "et": [2, 3, 37, 39, 71, 72], "al": [2, 3, 37, 39, 71, 72], "2021": [2, 3, 37, 71, 72], "weak": [2, 70], "supervis": [2, 10, 90, 91, 98, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 60, 67, 70, 71, 72, 74, 76, 80, 82, 85, 90, 100, 105], "uncertainti": [2, 10, 46, 71, 74, 98, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 62, 69, 70, 74, 84, 90, 91, 92, 98, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 61, 62, 72, 74, 84, 85, 88, 90, 91, 96, 97, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 60, 62, 63, 66, 67, 71, 72, 74, 78, 79, 80, 82, 84, 85, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 60, 61, 74, 95], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 61, 63, 64, 66, 67, 70, 71, 72, 74, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 60, 74, 87, 88, 90, 91, 96, 97, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 63, 70, 71, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 87, 88, 98], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 61, 62, 63, 66, 67, 69, 72, 74, 75, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 61, 70, 74, 84, 85, 88, 91, 92, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 71, 72, 76, 78, 79], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 71, 72, 84, 88, 89, 90, 91, 92, 94, 95, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 64, 74, 84, 88, 90, 92, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 62, 64, 67, 70, 72, 75, 89, 91, 95, 98, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 62, 63, 67, 69, 71, 72, 74, 89, 90, 94, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 71, 74, 87, 88, 89, 94, 95, 96, 98, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 64, 71, 72, 82], "tild": 2, "paper": [2, 4, 10, 62, 71, 80, 82, 97, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 74, 88], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 62, 63, 66, 67, 70, 74, 75, 82, 88, 90, 95, 97, 98, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 74, 85, 98, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 64, 80, 98], "clean": [2, 69, 72, 74, 75, 84, 87, 88, 90, 91, 97, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 74, 89, 96, 98, 99, 101, 102, 103], "messi": [2, 74, 99], "ridden": [2, 74], "autom": [2, 9, 10, 74, 84, 91, 97, 98], "robust": [2, 47, 52, 74, 91, 96, 98], "prone": [2, 74], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 61, 64, 65, 67, 70, 71, 72, 74, 75, 83, 84, 85, 88, 96, 97, 98, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 62, 69, 74, 90, 91, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 62, 78, 82, 89, 90, 91, 95, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 66, 69, 70, 71, 72, 74, 76, 78, 79, 83, 85, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 62, 63, 67, 69, 70, 71, 74, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "experiment": [2, 38, 39, 41, 42, 43, 64, 85, 98], "wrapper": [2, 61, 87, 88, 89, 106], "around": [2, 69, 90, 91, 103, 104, 108], "fasttext": [2, 60], "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 71, 74, 87, 88, 94, 95, 96, 97, 98, 107, 108], "along": [2, 49, 64, 82, 90, 91, 92, 96, 98, 104], "dimens": [2, 57, 76, 79, 92, 98, 104, 107], "select": [2, 9, 10, 27, 51, 62, 72, 92, 96, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 74, 87, 89, 90, 91, 92, 94, 95, 96, 97, 99, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 64, 67, 70, 72, 74, 75, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 74, 87, 89, 94, 97, 98, 103, 107], "By": [2, 37, 63, 64, 74, 90, 96, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 63, 64, 66, 71, 74, 84, 88, 89, 90, 91, 95, 96, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 74], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 62, 63, 64, 66, 69, 70, 71, 72, 74, 75, 76, 78, 84, 85, 88, 90, 91, 97, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 60, 62, 71, 74, 85, 87, 88, 90, 91, 92, 94, 95, 96, 98, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 69, 71, 74, 79, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 95, 96, 99, 101, 102, 104, 106], "consist": [2, 3, 38, 42, 51, 57, 62, 96, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 61, 64, 69, 72, 74, 75, 78, 82, 84, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 63, 74, 91, 95], "close": [2, 3, 10, 41, 47, 71, 89, 90, 91, 92, 94, 95, 96, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 72, 74, 98], "equival": [2, 3, 38, 42, 47, 71, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 63, 64, 74, 98, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 63, 99], "certain": [2, 3, 5, 38, 42, 61, 70, 74, 90, 91, 96, 97, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 82, 90, 91, 92, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 61, 62, 64, 70, 71, 72, 74, 79, 80, 82, 90], "filter": [2, 3, 10, 41, 43, 56, 63, 65, 66, 68, 70, 77, 78, 79, 81, 82, 83, 84, 85, 87, 88, 89, 92, 95, 96, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 63, 64, 65, 66, 67, 68, 69, 70, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 98, 102, 103, 106, 107, 108], "particularli": [2, 84, 101, 104], "filter_bi": [2, 3, 41, 44, 64, 85, 98], "frac_nois": [2, 44, 64, 80, 98], "min_examples_per_class": [2, 44, 64, 98, 99], "impact": [2, 4, 10, 90, 91, 92, 96], "ml": [2, 4, 5, 9, 10, 16, 74, 84, 87, 88, 90, 91, 92, 94, 95, 96, 101, 102, 106], "accuraci": [2, 39, 72, 87, 88, 89, 92, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 64, 76, 78, 80, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 62, 64, 70, 76, 78, 80, 88, 89, 90, 96, 98, 101, 105], "caus": [2, 44, 49, 90, 91, 96, 98], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 63, 64, 65, 67, 68, 70, 71, 73, 77, 79, 80, 81, 83, 84, 85, 87, 88, 90, 91, 97, 98, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 62, 64, 65, 66, 67, 68, 69, 72, 73, 75, 77, 78, 80, 81, 82, 85, 98, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 66, 71, 72, 99], "control": [2, 5, 9, 10, 17, 41, 44, 62, 70, 71, 74, 80, 82, 90, 91, 96, 97, 98], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 62, 63, 66, 67, 69, 71, 72, 74, 78, 82, 84, 87, 88, 90, 91, 92, 94, 95, 96, 97, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 74, 96, 97, 98, 99, 101, 104], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 61, 62, 63, 67, 69, 70, 71, 74, 78, 79, 82, 83, 84, 85, 88, 89, 90, 92, 95, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 62, 63, 64, 69, 71, 72, 74, 76, 78, 79, 83, 85, 87, 88, 89, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 62, 69, 71, 72, 74, 76, 78, 79, 107, 108], "statement": [2, 41, 62, 69, 71, 72, 74, 76, 78, 79], "big": [2, 41, 64, 70, 74, 99], "limit": [2, 5, 17, 41, 52, 64, 96, 103, 107, 108], "memori": [2, 38, 41, 42, 64, 70, 76, 78, 90, 107], "label_issues_batch": [2, 40, 64, 98], "find_label_issues_batch": [2, 40, 41, 64, 98], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 62, 63, 64, 66, 67, 70, 71, 72, 76, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 69, 70, 71, 72, 78, 82, 90, 96, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 85, 99], "label_issu": [2, 41, 44, 64, 67, 74, 76, 85, 87, 88, 89, 92, 95, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 74], "clf_final_kwarg": [2, 74], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 62, 63, 64, 66, 67, 69, 70, 72, 74, 75, 78, 82, 84, 89, 92, 94, 95, 99, 101, 103, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 64, 66, 67, 70, 72, 74, 75, 76, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 64, 67, 70, 72, 74, 75, 76, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 102, 104, 106, 107, 108], "final": [2, 10, 74, 87, 94, 96, 103, 105, 106], "remain": [2, 74, 85, 87, 88, 92, 96, 102, 106, 108], "datasetlik": [2, 57, 74], "beyond": [2, 5, 7, 9, 10, 12, 36, 84, 87, 88, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 61, 62, 63, 74, 82, 87, 88, 89, 90, 91, 94, 95, 96, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 61, 62, 63, 74, 79, 83, 85, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 71, 96], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 94, 96], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 96], "torch": [2, 38, 39, 42, 88, 89, 92, 95, 97, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 61, 62, 67, 70, 74, 84, 85, 89, 90, 91, 92, 98, 99, 104], "tensorflow": [2, 57, 61, 84, 89, 98], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 61, 64, 67, 68, 69, 70, 71, 74, 82, 84, 88, 89, 91, 92, 94, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 78, 79, 80, 82, 83, 85, 88, 89, 90, 91, 92, 96, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 72, 79, 83, 87, 88, 89, 92, 94, 95, 96, 98, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 62, 63, 69, 71, 83, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 74, 89, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 61, 62, 63, 64, 67, 70, 71, 72, 74, 76, 78, 79, 82, 83, 87, 90, 91, 92, 94, 96, 97, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 61, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 87, 88, 89, 90, 91, 92, 94, 95, 97, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 89, 92, 95, 96, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 62, 67, 69, 74, 80, 82, 83, 84, 87, 88, 89, 90, 91, 94, 95, 96, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 61, 62, 76, 78, 92, 98, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 62, 63, 64, 67, 70, 71, 72, 76, 79, 80, 82, 83, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 61, 72, 84, 87, 88, 95, 98, 104], "eg": [2, 5, 10, 57, 67, 70, 90, 91, 98], "repeat": [2, 57, 62, 101, 104], "appli": [2, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 66, 71, 80, 87, 88, 89, 90, 91, 92, 94, 96, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 64, 71, 75], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 60, 62, 63, 64, 66, 67, 70, 71, 72, 74, 76, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 74, 82, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 62, 63, 64, 66, 71, 72, 74, 79, 80, 82, 83, 87, 89, 92, 94, 95, 96, 97, 98, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 61, 62, 69, 78, 82, 88, 97, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 62, 63, 64, 66, 69, 70, 72, 75, 76, 78, 82, 91, 98, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 62, 64, 67, 69, 72, 78, 82, 90, 96, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 62, 69, 71, 72, 75, 78, 82, 87, 88, 89, 92, 94, 95, 96, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 85, 92, 94, 96, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 61, 64, 71, 72, 74, 75, 80, 82, 97, 98, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 69, 71, 82, 85, 91, 93, 96, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 61, 69, 71, 72, 74, 78, 82, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 61, 62, 63, 64, 67, 69, 71, 72, 74, 75, 83, 85, 88, 89, 91, 92, 95, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 84, 87, 88, 92, 94, 95, 96, 97, 98, 101, 102, 103, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 69, 91, 97, 98, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 63, 64, 70, 85, 92, 96, 98, 103], "observ": [2, 3, 47, 54, 89, 90, 91, 96, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 62, 63, 64, 67, 69, 72, 78, 80, 82, 83, 84, 87, 88, 89, 92, 94, 95, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 83, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 73, 74, 87, 88, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 62, 64, 69, 71, 72, 76, 78, 91, 96, 98, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 62, 64, 67, 72, 74, 76, 78, 79, 84, 88, 89, 91, 92, 95, 98, 103, 106, 107], "label_issues_mask": [2, 44, 72, 74, 85], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 78, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 64, 67, 70, 71, 72, 74, 76, 80, 82, 84, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 64, 80, 85, 87, 88, 98, 99], "significantli": [2, 10, 92, 96, 99, 101, 105], "reduc": [2, 41, 44, 57, 89, 96, 98], "time": [2, 10, 38, 41, 42, 57, 62, 83, 85, 87, 88, 90, 92, 94, 97, 98, 99, 103, 104, 106, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 61, 72, 87, 92, 94, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 74, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 74, 89, 96, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 70, 92, 96, 99, 101, 105], "caution": [2, 5, 98], "previous": [2, 5, 14, 57, 71, 74, 85, 87, 89, 90, 94, 95, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 74, 87, 90, 92, 94, 96, 98, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 62, 66, 69, 72, 74, 80, 82, 85, 87, 91, 94, 96, 97, 98, 101, 102, 103, 108], "still": [2, 41, 42, 57, 71, 87, 92, 98, 104], "extra": [2, 38, 42, 57, 61, 62, 63, 74, 92, 95, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 63, 66, 67, 74, 76, 80, 91, 103], "overwritten": [2, 74], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 61, 66, 98], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 70, 72, 74, 79, 89, 90, 91, 92, 96, 98, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 64, 72, 90, 94, 102, 103], "earli": [2, 92], "stop": [2, 92], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 71, 87, 90, 92, 94, 96, 102, 106, 108], "f": [2, 7, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 61, 74, 79, 83, 89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 62, 70, 71, 74, 76, 78, 88, 89, 92, 96, 98, 105, 107], "access": [2, 10, 14, 38, 42, 74, 91, 92, 97, 102], "hyperparamet": [2, 66, 71, 92], "purpos": [2, 52, 90, 91, 96, 98, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 62, 64, 74, 88, 90, 92, 95, 97, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 74], "yourself": [2, 5, 41, 91, 96], "altern": [2, 7, 10, 49, 54, 57, 61, 62, 72, 85, 88, 89, 92, 94, 95, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 61, 62, 64, 71, 72, 74, 78, 79, 82, 83, 84, 87, 88, 90, 91, 92, 94, 95, 96, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 62, 71, 74, 92, 94, 95, 96, 98, 104], "offer": [2, 5, 9, 10, 88, 89, 90, 91, 95, 98, 99, 102], "after": [2, 3, 5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 62, 74, 88, 90, 92, 95, 96, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 71, 74, 87, 90, 96], "label_issues_df": [2, 74, 92], "similar": [2, 10, 37, 38, 42, 54, 57, 62, 66, 67, 69, 71, 74, 78, 82, 90, 91, 92, 94, 95, 96, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 61, 63, 64, 66, 69, 70, 71, 74, 78, 79, 80, 82, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 67, 74, 90, 91], "were": [2, 3, 5, 10, 37, 42, 52, 63, 69, 82, 87, 89, 94, 98, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 71, 79, 84, 92, 96, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 62, 63, 72, 91, 98, 99, 108], "num_class": [2, 37, 41, 57, 61, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 79, 90, 96, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 74, 79, 83, 88, 89, 90, 91, 92, 94, 95, 96, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 72, 96, 98, 99, 104], "trick": [2, 98], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 62, 70, 71, 72, 84, 90, 91, 92, 94, 95, 96, 103, 104], "account": [2, 37, 62, 66, 71, 72, 88, 95, 98, 99, 101, 102, 104, 106], "word": [2, 3, 56, 82, 83, 98], "remov": [2, 10, 32, 37, 38, 42, 44, 74, 84, 87, 88, 92, 95, 96, 97, 98, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 62, 63, 69, 72, 74, 78, 82, 89, 90, 91, 92, 95, 96, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 61, 72, 74, 76, 84, 85, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 62, 64, 66, 71, 72, 74, 75, 76, 84, 87, 88, 89, 92, 95, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 65, 67, 68, 69, 70, 71, 72, 73, 74, 77, 81, 84, 87, 88, 90, 93, 97, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 72, 74], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 61, 70, 74, 76, 78, 79, 80, 98], "test": [2, 5, 10, 27, 42, 49, 52, 61, 74, 84, 87, 88, 90, 91, 92, 94, 95, 96, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 62, 71, 72, 74, 87, 88, 96, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 70, 74, 87, 88, 89, 90, 91, 92, 98, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 72, 88, 90, 91, 94, 95, 98, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 66, 71, 74, 84, 91, 92, 94, 95, 96, 99, 103], "save_spac": [2, 10, 73, 74], "potenti": [2, 10, 37, 44, 56, 64, 67, 70, 72, 74, 76, 78, 83, 85, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 88, 95], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 61, 62, 63, 85, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 61, 63, 64, 66, 82, 90, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 62, 64, 72, 76, 78, 83, 84, 90, 92, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 64, 67, 72, 74, 76, 78, 79, 84, 97, 98, 101, 103, 107, 108], "prefer": [2, 72, 80, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 88, 95, 98, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 74], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 61, 62, 64, 66, 70, 71, 72, 74, 75, 76, 78, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 72, 74], "mostli": [2, 57, 69, 74, 102, 106], "longer": [2, 35, 48, 49, 56, 74, 85, 88, 95, 98, 103], "info": [2, 5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 63, 74, 82, 91, 96, 97, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 62, 63, 66, 70, 74, 79, 82, 89, 90, 92, 94, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 74, 97, 99], "unless": [2, 38, 42, 52, 74, 98], "our": [2, 3, 10, 61, 62, 72, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 74, 88, 89, 90, 91, 92, 94, 95, 96, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 63, 64, 69, 72, 74, 76, 78, 79, 84, 90, 91, 96, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 62, 63, 64, 67, 70, 72, 74, 75, 76, 78, 79, 85, 91, 92, 94, 95, 96, 98, 101, 106], "label_qu": [2, 62, 74, 88, 99, 101, 106], "measur": [2, 5, 37, 62, 63, 74, 84, 87, 96, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 62, 63, 64, 66, 67, 69, 72, 74, 75, 78, 80, 82, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 106], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 62, 63, 66, 69, 70, 72, 74, 75, 78, 82, 88, 89, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 70, 99, 101], "against": [2, 38, 42, 90, 94, 96, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 74, 79, 83, 88, 89, 90, 91, 92, 94, 95, 96, 99, 106, 107], "ad": [2, 38, 42, 91, 101, 106], "precis": [2, 53, 55, 64, 67, 70, 96, 97, 98, 99, 107, 108], "definit": [2, 7, 35, 49, 74, 87, 94], "accessor": [2, 74], "describ": [2, 10, 19, 62, 71, 72, 74, 80, 82, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 74, 97], "clear": [2, 38, 42, 54, 74, 88, 95, 106], "save": [2, 5, 17, 38, 41, 42, 70, 74, 96, 98, 103, 107, 108], "space": [2, 5, 10, 71, 74, 92, 94, 96, 97], "place": [2, 38, 42, 52, 57, 74, 87, 101], "larg": [2, 9, 10, 41, 52, 74, 92, 94, 95, 98, 103, 104, 107, 108], "deploi": [2, 9, 10, 74, 92, 94, 95, 98], "care": [2, 10, 38, 42, 52, 74, 95, 96, 98, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 74, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 74], "__init_subclass__": [2, 40, 42, 73, 74], "set_": [2, 42, 74], "_request": [2, 42, 74], "pep": [2, 42, 74], "487": [2, 42, 74], "look": [2, 5, 7, 10, 17, 38, 42, 57, 74, 79, 87, 90, 91, 94, 95, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 62, 63, 67, 70, 74, 79, 82, 83, 84, 89, 90, 94, 95, 96, 97, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 74], "infer": [2, 42, 57, 74, 79, 83, 87, 88, 92, 101, 102], "signatur": [2, 38, 42, 74], "accept": [2, 38, 42, 54, 55, 72, 74, 90, 91, 98], "metadata": [2, 10, 42, 74, 92, 94, 95, 108], "through": [2, 5, 7, 42, 74, 88, 89, 91, 95, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 74, 98, 99, 108], "request": [2, 42, 74, 87, 88, 91, 95, 96, 97, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 61, 62, 64, 70, 74, 78, 82, 83, 84, 89, 92, 96, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 67, 70, 71, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 74, 96, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 71, 74, 98, 99, 108], "dev": [2, 42, 74], "0487": [2, 42, 74], "get_metadata_rout": [2, 40, 42, 73, 74], "rout": [2, 42, 74], "pleas": [2, 38, 42, 61, 74, 84, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 74, 85, 89, 90, 91, 92, 93, 94, 95, 96, 99], "mechan": [2, 38, 42, 74], "metadatarequest": [2, 42, 74], "encapsul": [2, 17, 42, 69, 74], "get_param": [2, 40, 42, 60, 61, 73, 74], "subobject": [2, 42, 74], "param": [2, 10, 38, 42, 61, 71, 74, 98], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 61, 62, 63, 70, 74, 79, 83, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 73, 74], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 61, 62, 63, 67, 69, 70, 72, 74, 79, 83, 89, 90, 98, 101, 102, 103, 108], "unchang": [2, 38, 42, 74, 108], "relev": [2, 17, 27, 42, 74, 92, 94, 96], "enable_metadata_rout": [2, 42, 74], "set_config": [2, 42, 74], "meta": [2, 42, 74], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 74, 98], "alia": [2, 38, 42, 74], "metadata_rout": [2, 42, 74], "retain": [2, 42, 57, 74], "chang": [2, 33, 35, 38, 41, 42, 46, 74, 82, 87, 88, 89, 90, 95, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 60, 61, 72, 74, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 69, 74], "pipelin": [2, 42, 74, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 64, 74, 76, 78, 79, 83, 88, 95, 98], "updat": [2, 14, 38, 41, 42, 52, 61, 74, 85, 90, 92], "set_param": [2, 40, 42, 60, 61, 73, 74], "simpl": [2, 38, 42, 44, 62, 72, 74, 87, 88, 90, 91, 92, 94, 95, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 62, 64, 70, 72, 74, 79, 82, 83, 85, 90, 91, 92, 94, 95, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 74, 80, 82, 83, 108], "latter": [2, 38, 42, 74, 104], "compon": [2, 42, 74], "__": [2, 42, 74], "set_score_request": [2, 73, 74], "structur": [3, 71, 94, 96, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 62, 71, 72, 76, 78, 82, 92, 94, 96, 97, 98, 99, 103, 108], "channel": [3, 89, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 63, 88, 91, 97], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 63, 64, 85, 98, 99], "un": 3, "under": [3, 10, 38, 42, 63, 70, 71, 91, 96, 104], "joint": [3, 37, 44, 47, 57, 63, 64, 97], "num_label_issu": [3, 41, 44, 64, 79, 83, 85], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 64, 102], "don": [3, 84, 91, 92, 94, 95, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 64, 99], "off": [3, 44, 57, 69, 92, 96, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 64, 67, 70, 71, 80, 82, 83, 90, 91, 99, 107, 108], "confident_learn": [3, 44, 64, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 62, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 76, 79, 89, 90, 91, 92, 96, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 90, 91, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 87, 88, 89, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 69, 70, 76, 78, 87, 91, 92, 94, 96, 97, 98, 99, 104, 106], "As": [3, 7, 84, 90, 91, 95, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 61, 70, 88, 89, 90, 91, 92, 95, 96, 98, 99, 102], "approach": [3, 37, 41, 44, 61, 87, 94, 96, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 72, 88, 91, 95, 96, 99, 106], "know": [3, 10, 90, 91, 92, 94, 95, 98, 99, 101, 106], "cut": [3, 69, 84, 99], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 70, 84, 96, 98, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 66, 67, 69, 70, 72, 75, 82, 97, 98, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 61, 62, 63, 64, 66, 67, 69, 70, 71, 78, 79, 80, 84, 85, 89, 98, 102, 104, 108], "num_issu": [3, 7, 41, 89, 90, 91, 92, 94, 95, 96, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 61, 62, 88, 97, 98, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 63, 64, 66, 72, 90, 91, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 63, 64, 66, 74, 87, 88, 90, 91, 92, 94, 95, 98, 99, 101, 106], "fashion": [3, 5, 76, 87], "2x2": 3, "incorrectli": [3, 37, 63, 64, 67, 94, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 64, 72, 84, 87, 89, 90, 91, 94, 95, 96, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 62, 66, 69, 75, 78, 82, 83, 89, 90, 91, 92, 94, 95, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 64, 70, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 62, 63, 70, 79, 103, 104], "done": [3, 10, 61, 74, 90, 98, 99, 102, 104, 105], "overfit": [3, 10, 67, 70, 87, 89, 90, 91, 92, 94, 95, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 62, 63, 69, 70, 71, 72, 82, 87, 89, 90, 96, 98, 99, 102, 103], "baselin": [3, 38, 44, 88, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 64, 70, 74, 82, 98], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 62, 64, 70, 78, 80, 82, 83, 89, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 62, 71, 76, 78, 84, 88, 92, 96, 98, 107], "practic": [3, 87, 88, 91, 92, 99, 104, 106], "complet": [3, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 66, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 70, 80, 97], "again": [3, 61, 87, 98, 104], "simplifi": [3, 15, 98], "understand": [3, 9, 10, 37, 63, 70, 91, 96, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 71, 72, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 61, 92, 96, 101], "speed": [3, 44, 88, 97, 98, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 66, 82, 89, 96, 103], "enumer": [3, 38, 42, 89, 90, 91, 92, 96, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 82, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 72, 76, 79, 89, 96, 98, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 66, 75, 87, 89, 96], "eqn": [3, 47], "margin": [3, 44, 47, 49, 72], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 63, 99, 105], "poorli": [3, 47, 87, 96], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 74, 75, 89, 90, 94, 99, 102, 106], "exact": [3, 10, 47, 52, 87, 90, 91, 92, 94, 96], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 64, 69, 78, 80, 82, 90, 91, 92, 98, 103, 107], "percent": 3, "often": [3, 37, 47, 63, 98, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 70, 87, 88, 89, 90, 92, 94, 95, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 61, 84, 85, 87, 88, 89, 90, 91, 94, 95, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 90, 92, 96, 97, 98, 99, 105, 106], "becaus": [3, 47, 53, 57, 69, 95, 96, 98, 99, 101, 103], "littl": [3, 41, 96, 97, 103, 108], "uniform": [3, 72, 97, 98, 99], "20": [3, 7, 43, 83, 89, 92, 95, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 92, 104], "bound": [3, 24, 26, 38, 42, 56, 66, 67, 69, 70, 103], "reason": [3, 23, 38, 42, 53, 71], "comment": [3, 56, 96, 108], "end": [3, 5, 38, 42, 54, 70], "file": [3, 5, 13, 40, 41, 60, 70, 87, 89, 90, 94, 95, 97, 98, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 85, 87, 88, 90, 91, 92, 94, 95, 96, 99, 107, 108], "five": [3, 67, 70, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 103], "confident_threshold": [3, 10, 23, 24, 41, 71], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 70, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 101, 102, 106, 107, 108], "u": [4, 87, 88, 89, 90, 92, 94, 96, 98, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 96, 103], "contribut": [4, 10, 19, 96, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 94, 96], "metric": [4, 5, 10, 19, 20, 22, 27, 29, 32, 45, 51, 52, 54, 55, 57, 61, 70, 71, 87, 88, 89, 92, 94, 95, 96, 99, 106], "10": [4, 10, 19, 20, 24, 27, 29, 32, 38, 39, 52, 70, 71, 72, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 71, 91, 95, 96, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 71, 90, 91, 92, 94, 95, 96, 98, 104], "knn": [4, 10, 14, 19, 27, 29, 32, 51, 52, 53, 54, 55, 71, 94, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 62, 66, 67, 69, 70, 71, 74, 78, 92, 96, 97], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 61, 62, 88, 91, 95, 96, 98, 102, 103, 106], "lowest": [4, 10, 62, 70, 91, 92, 94, 96, 98, 101, 102, 103, 107], "fall": [4, 10, 69, 78, 82, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 63, 64, 67, 74, 84, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 71, 96, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 64, 67, 70, 72, 79, 83, 84, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 71, 84, 88, 89, 90, 91, 94, 95, 96, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 64, 84, 88, 89, 90, 91, 92, 95, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 62, 87, 89, 96, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 63, 89, 90, 91, 92, 94, 95, 99], "num_featur": [4, 5, 17, 38, 42, 61], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 69, 71, 94, 96, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 61, 96], "nearestneighbor": [4, 5, 10, 19, 52, 54, 71, 94, 104], "cosin": [4, 10, 52, 53, 55, 71, 96, 104], "dim": [4, 71, 92, 107], "euclidean": [4, 5, 10, 52, 53, 55, 69, 71, 94], "dimension": [4, 27, 53, 57, 89, 99, 104], "scikit": [4, 42, 53, 54, 57, 71, 84, 87, 88, 89, 90, 91, 94, 95, 96, 98, 106], "fewer": [4, 10, 44, 57, 71, 96, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 60, 71, 85, 89, 90, 91, 92, 94, 95, 99], "exce": [4, 52, 92, 96], "transform": [4, 10, 33, 49, 52, 55, 57, 71, 72, 87, 88, 91, 92, 95, 104, 108], "rel": [4, 10, 37, 52, 62, 63, 71, 90, 91, 92, 94, 95, 99, 104], "adjust": [4, 39, 44, 52, 66, 71, 72, 84, 96, 99], "closer": [4, 10, 69, 103], "highli": [4, 91, 92], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 70, 96, 97, 104], "convers": 4, "neg": [4, 10, 69, 70, 90, 91, 96, 97], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 98], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 74, 76, 78, 92, 95, 97, 98], "55": [4, 56, 96, 97, 103, 106], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 89, 92, 93, 94, 95, 96, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 96, 97], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 62, 70, 79, 80, 87, 88, 89, 90, 94, 95, 96, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 60, 64, 71, 74, 75, 84, 96], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 60, 61, 76, 78], "pip": [5, 7, 9, 12, 36, 61, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 71, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 84, 97], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 84, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 103, 106], "image_kei": [5, 10, 92, 96], "interfac": [5, 9, 10, 54, 84, 98, 99], "librari": [5, 10, 42, 54, 67, 70, 71, 84, 88, 90, 95, 96, 97, 98], "goal": [5, 106], "track": [5, 7, 14, 15, 84, 90, 97, 98, 99], "intermedi": [5, 9, 91], "statist": [5, 10, 14, 23, 27, 37, 62, 63, 70, 91, 94, 95, 96, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 62, 69, 78, 82, 85, 88, 89, 92, 95, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 92], "face": [5, 10, 13, 17, 92, 97, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 62, 63, 69, 71, 90, 91, 92, 95, 98, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 62, 63, 75, 79, 82, 83, 88, 94, 95, 96, 98, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 62, 63, 66, 67, 69, 70, 90, 91, 94, 95, 96, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 70, 89, 90, 98, 103], "local": [5, 7, 10, 13, 38, 39, 42, 89, 90, 91, 92, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 71, 80, 82, 83, 84, 86, 90, 91, 93, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 87, 88, 94, 95, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 62, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 88, 90, 91, 95, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 67, 69, 70, 71, 76, 78, 79, 84, 90, 91, 93, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 87, 88, 96, 106], "pil": [5, 92, 96], "cleanvis": [5, 10, 96], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 80, 82, 91, 92, 98, 100, 102, 107], "load_dataset": [5, 13, 92], "glue": 5, "sst2": 5, "properti": [5, 13, 14, 35, 38, 42], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 63, 70, 79, 83, 84, 97, 99, 103, 107, 108], "empti": [5, 13, 47, 62, 91, 96, 98, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 84, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 62, 64, 67, 69, 70, 72, 78, 80, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 91, 93, 96, 97, 98, 99, 102, 103, 107], "real": [5, 17, 84, 90, 91, 98, 99, 101, 106, 107], "world": [5, 17, 84, 90, 91, 98, 99, 101, 106, 107], "interact": [5, 17, 95, 98], "thereof": [5, 17], "insight": [5, 17, 70, 101], "best": [5, 9, 10, 17, 48, 62, 72, 87, 88, 90, 91, 92, 94, 95, 96, 98, 101, 102, 104, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 76, 89, 90, 91, 92, 94, 95, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 67, 70, 89, 90, 91, 92, 94, 95, 99, 102, 103], "lexicograph": [5, 48, 57, 89, 90, 91, 92, 94, 95, 99, 102], "squar": [5, 57, 74, 97, 106], "csr": [5, 52, 96], "evenli": 5, "omit": [5, 69, 70, 92, 96, 103], "itself": [5, 33, 38, 42, 52, 96, 103], "three": [5, 10, 37, 62, 63, 74, 79, 87, 89, 90, 91, 94, 97, 99, 101, 105, 106, 107, 108], "indptr": [5, 96], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 84, 102, 108], "th": [5, 10, 43, 48, 56, 57, 62, 64, 67, 69, 70, 71, 80, 82, 83, 95, 102, 103, 108], "ascend": [5, 37, 63, 92, 99], "segment": [5, 76, 78, 79, 100], "reflect": [5, 10, 52, 87, 88, 94, 95, 101, 103, 104, 106], "maintain": [5, 61], "kneighbors_graph": [5, 19, 54, 94], "illustr": [5, 96], "todens": 5, "second": [5, 49, 57, 70, 72, 90, 94, 98, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 84, 90, 96, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 62, 96, 98, 101, 108], "unspecifi": [5, 17, 44, 64], "interest": [5, 17, 23, 79, 83, 87, 88, 95, 96, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 74, 75, 97, 106, 108], "random_st": [5, 87, 89, 90, 91, 92, 96, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 84, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 84, 92, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 71, 96], "mode": [5, 12, 19, 38, 41, 42, 104], "4x4": 5, "float64": [5, 27, 38, 42, 82], "compress": [5, 10, 52, 57, 76, 78, 96], "toarrai": [5, 52, 96], "NOT": [5, 41, 95], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 91], "suppos": [5, 10, 67, 87, 88, 104, 106], "who": [5, 69, 87, 94, 96, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 61, 90, 98], "clean_learning_kwarg": [5, 10, 11, 24, 31, 98, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 85], "prune_by_noise_r": [5, 44, 64, 99], "report": [5, 7, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 63, 83, 84, 89, 90, 91, 94, 95, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34], "show_all_issu": [5, 34], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 60, 61, 63, 68, 77, 78, 80, 81, 82, 85, 89, 90, 91, 92, 94, 95, 96, 97, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 70, 79, 83, 87, 91, 92, 94, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 64, 72, 83, 96, 108], "onc": [5, 23, 37, 38, 42, 87, 90, 98, 99, 102, 103], "familiar": [5, 96], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 62, 63, 66, 69, 70, 74, 78, 79, 80, 82, 84, 85, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 66, 69, 71, 72, 78, 82, 84, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 62, 71, 82, 90, 91, 94, 96, 99, 103], "issue_summari": [5, 7, 10, 14, 96], "With": [5, 9, 10, 41, 88, 95, 98, 99, 101, 106, 107, 108], "usag": [5, 41, 61], "usual": [5, 13, 33, 34, 92, 101, 106], "ti": [5, 62], "exhibit": [5, 7, 10, 14, 79, 89, 90, 91, 92, 94, 95, 99, 103], "ie": [5, 74], "likelihood": [5, 10, 41, 43, 44, 64, 69, 71, 72, 76, 80, 96], "wherea": [5, 10, 57, 64, 87, 88, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 72, 84, 90, 91, 96, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 10, 23, 38, 42, 97], "non_iid": [5, 10, 11, 15, 27, 91, 92, 94, 95, 96, 99], "hypothesi": [5, 96], "iid": [5, 7, 9, 27, 94, 99], "never": [5, 89, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 72, 103], "123": [5, 90, 91], "456": [5, 87, 88, 89], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 61, 80, 82, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 66, 80, 82, 87, 88, 89, 90, 91, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 90, 91, 92, 94, 95, 99], "789": 5, "get_issu": [5, 10, 14, 89, 90, 91, 92, 94, 95, 96, 98, 99, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89, 90, 91, 92, 94, 95, 99], "focu": [5, 10, 14, 95, 96, 107, 108], "full": [5, 10, 14, 41, 61, 70, 92, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 63, 79, 83, 84, 107], "specific_issu": [5, 14], "lie": [5, 10, 71, 72, 88, 89, 90, 91, 92, 94, 95, 96, 99], "get_issue_summari": [5, 10, 14, 91, 96], "get_info": [5, 14, 91, 95, 96, 97], "yet": [5, 18, 28, 61, 97, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 90], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 89, 90, 92], "load": [5, 13, 41, 70, 92, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 62, 84, 90, 95], "overwrit": [5, 90], "separ": [5, 37, 49, 66, 90, 91, 92, 96, 98, 103, 105], "static": 5, "rememb": [5, 95, 98, 99], "part": [5, 10, 38, 42, 44, 67, 69, 70, 89, 90, 96, 97, 107, 108], "ident": [5, 10, 23, 57, 95, 96], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 84, 87, 88, 97, 101, 106], "walk": 7, "alongsid": [7, 38, 42, 90, 98], "pre": [7, 8, 10, 38, 42, 90, 91, 106], "runtim": [7, 38, 41, 42, 74, 76, 78, 89, 92, 98], "issue_manager_factori": [7, 15, 90], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 88, 96, 99, 106], "next": [7, 62, 84, 87, 88, 89, 94, 95, 96, 98, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 90, 91, 96], "mark": [7, 10, 85, 103, 104, 106], "regard": [7, 91, 99], "rand": [7, 49, 52, 90, 91, 96], "is_": [7, 10, 90], "_issu": [7, 10, 90], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 90], "whole": [7, 10, 27, 38, 42, 91, 96], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 90], "popul": [7, 95], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 79, 83, 96, 98, 102], "intermediate_arg": 7, "min": [7, 49, 69, 82, 90, 98, 104], "sin_filt": 7, "sin": 7, "arang": [7, 96], "kernel": [7, 96], "affect": [7, 10, 38, 42, 53, 76, 82, 95, 96, 98], "easili": [7, 47, 85, 87, 88, 89, 91, 94, 95, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 97, 104], "sai": [7, 10, 38, 42, 96, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 69, 72, 88, 94, 95, 96, 98, 99, 101, 104], "try": [7, 9, 10, 41, 44, 61, 62, 76, 78, 84, 91, 92, 94, 95, 98, 99, 107], "won": [7, 38, 42, 90, 91, 98, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 90], "instanti": [7, 17, 41, 61, 71, 88, 89, 91, 94], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 70, 89, 90, 91, 92, 94, 95, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 61, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 61, 74, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 88, 89, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 90, 91, 96, 97, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32], "group": [8, 9, 27, 32, 97, 103, 108], "dbscan": [8, 10, 32], "hdbscan": 8, "etc": [8, 10, 23, 33, 38, 42, 47, 61, 62, 80, 84, 90, 91, 94, 95, 98, 99, 102, 106], "sensit": [8, 10, 55, 96], "ep": [8, 32, 70], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 96], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 32, 96], "cluster_id": [8, 10, 11, 32, 96], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 91, 92, 94, 95, 96, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 74, 96, 98, 105], "nondefault": 9, "Near": [9, 98], "imbal": [9, 22, 66, 71, 72, 91], "null": [9, 11, 15, 22, 91, 92, 95, 99], "togeth": [9, 10, 47, 88, 90, 91, 92, 94, 95, 99, 106, 108], "built": [9, 49], "own": [9, 38, 40, 42, 54, 60, 66, 67, 70, 76, 80, 87, 88, 89, 91, 92, 94, 95, 96, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 61, 94, 95, 96, 104], "fulli": [9, 10, 38, 42, 61, 98], "platform": [9, 10, 84, 92, 94, 95, 98], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 61, 84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 72, 87, 94, 98, 99, 106, 107], "100x": [9, 10], "faster": [9, 10, 41, 71, 74, 76, 78, 98, 99], "intellig": [9, 10], "quickli": [9, 10, 39, 87, 89, 92, 94, 95, 98, 102, 104, 107, 108], "fix": [9, 10, 62, 88, 95, 96, 99, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 62, 63, 69, 88, 92, 95, 96, 98, 106], "power": [9, 10, 92, 94, 95, 97, 99, 108], "automl": [9, 10, 84, 98], "system": [9, 10, 89, 92, 94, 95, 107], "foundat": [9, 10, 84, 96], "improv": [9, 10, 62, 87, 88, 91, 92, 97, 98, 99, 106, 107], "click": [9, 10, 89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 88, 89, 95, 97, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 87, 88, 91, 97, 98, 106], "free": [9, 10, 84, 89, 91, 92, 94, 95, 98, 99], "page": [10, 91, 98, 99], "variou": [10, 14, 31, 40, 58, 60, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103], "why": [10, 95], "matter": [10, 37, 63], "didn": [10, 96], "plu": [10, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 90, 91, 92, 94, 95, 96, 98, 99], "class_imbal": [10, 11, 15, 21, 91, 92, 94, 95, 96, 99], "data_valu": [10, 11, 15, 22, 96], "No": [10, 11, 87, 88, 95, 96, 98], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 69, 87, 88, 108], "issue_scor": 10, "atyp": [10, 71, 90, 91, 92, 94, 95, 99, 104], "datapoint": [10, 32, 44, 49, 57, 72, 75, 84, 87, 88, 89, 90, 91, 94, 95, 98, 105, 106], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 89], "expertis": 10, "interpret": [10, 97, 98, 99, 102, 106], "annot": [10, 37, 48, 62, 63, 64, 66, 67, 69, 70, 79, 82, 83, 84, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 94, 95], "preced": 10, "incorrect": [10, 69, 72, 75, 87, 89, 90, 91, 92, 94, 95, 96, 99, 103, 106], "due": [10, 41, 44, 72, 76, 78, 89, 90, 91, 92, 94, 95, 99, 106], "appear": [10, 37, 48, 63, 64, 67, 75, 91, 92, 94, 95, 96, 106, 107], "now": [10, 41, 85, 87, 88, 89, 91, 96, 98, 101, 103, 104, 106, 108], "token": [10, 43, 56, 78, 79, 80, 81, 82, 83, 98, 99, 100], "hamper": [10, 92, 97], "analyt": [10, 84, 96, 98, 101], "lead": [10, 69, 72, 92, 96, 103], "draw": [10, 90, 91], "conclus": [10, 95], "let": [10, 38, 42, 71, 72, 87, 88, 89, 91, 92, 94, 95, 96, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 106], "head": [10, 87, 88, 89, 91, 92, 94, 95, 96, 97, 99, 101, 106], "97": [10, 87, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 87, 91, 96, 97, 99, 103], "680894": 10, "41": [10, 96, 97, 103, 106], "746043": 10, "794894": 10, "98": [10, 97, 98, 106], "802911": 10, "give": [10, 49, 72, 99, 101, 107], "li": [10, 71], "especi": [10, 87, 88, 92, 96, 98, 106], "veri": [10, 37, 63, 67, 69, 88, 90, 91, 92, 94, 95, 98, 99, 101, 104, 106], "rare": [10, 44, 70, 90, 91, 92, 94, 95, 98, 99], "anomal": [10, 72, 90, 91, 92, 94, 95, 99], "articl": [10, 41, 98], "blog": 10, "unexpect": [10, 38, 42, 95], "consequ": 10, "inspect": [10, 88, 89, 91, 92, 99, 103, 106], "011562": 10, "62": [10, 96, 99, 103, 106], "019657": 10, "22": [10, 89, 90, 92, 96, 97, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 95, 96, 97, 103, 108], "056865": 10, "smaller": [10, 71, 96, 102, 103], "extrem": [10, 90, 91, 92, 94, 95, 96, 98, 99], "record": [10, 38, 42, 89, 94, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 83], "resolut": 10, "video": [10, 97], "audio": [10, 90, 91, 93, 98], "minor": [10, 56], "variat": 10, "translat": 10, "d": [10, 55, 87, 94, 95, 96, 98, 99, 102, 106, 108], "constant": [10, 32, 74], "median": [10, 31, 55], "question": [10, 23, 84, 99], "nearli": [10, 23, 91, 92, 94, 95], "awar": [10, 85, 99], "presenc": [10, 52, 54, 99], "36": [10, 96, 97, 108], "066009": 10, "80": [10, 39, 87, 94, 102, 106], "003906": 10, "093245": 10, "005599": 10, "27": [10, 94, 96, 97, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 96, 97, 99, 102, 106], "signific": [10, 94, 95, 99], "violat": [10, 94, 95, 96, 99], "assumpt": [10, 94, 95, 96, 99], "changepoint": [10, 94, 95, 99], "shift": [10, 52, 54, 94, 95, 99], "drift": [10, 91, 94, 96, 99], "autocorrel": [10, 94, 95, 99], "almost": [10, 94, 95, 99], "adjac": [10, 52, 94, 95, 99], "tend": [10, 37, 47, 94, 95, 99, 107, 108], "sequenti": [10, 38, 42, 61, 92], "pai": [10, 95], "attent": [10, 96], "realli": [10, 88, 95, 101, 107], "mere": 10, "highlight": [10, 79, 83, 90, 91, 94, 96, 107], "necessarili": [10, 62, 70, 95, 99], "wrong": [10, 62, 67, 69, 85, 88, 90, 91, 95, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 82, 87, 94, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 67, 70, 103], "x2": [10, 67, 70, 103], "10th": 10, "100th": 10, "90": [10, 82, 87, 94, 99, 105, 106], "similarli": [10, 38, 42, 90, 92, 94, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 70, 101], "blogpost": 10, "proper": [10, 57, 62, 67, 70, 87, 92, 95, 98, 101, 103], "scenario": [10, 52, 54, 72, 90, 91], "underli": [10, 43, 54, 71, 80, 82, 108], "stem": [10, 71, 104], "evolv": 10, "influenc": 10, "act": [10, 69, 90], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 61, 63, 69, 72, 76, 78, 79, 84, 92, 94, 95], "problem": [10, 33, 41, 49, 79, 84, 90, 91, 92, 95, 98], "deploy": [10, 87, 88, 99, 106], "overlook": [10, 69, 103], "fact": 10, "thu": [10, 37, 42, 63, 87, 89, 94, 95, 99, 105, 108], "diagnos": [10, 91, 98], "24": [10, 89, 96, 97, 99, 101, 103, 106], "681458": 10, "37": [10, 90, 96, 97], "804582": 10, "64": [10, 42, 87, 92, 94, 96, 99, 103], "810646": 10, "815691": 10, "78": [10, 87, 94, 97, 99, 103, 106], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 70, 98], "rarest": [10, 91], "q": [10, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 92, 95, 96, 97, 99, 101, 108], "75": [10, 49, 90, 91, 96, 97, 101, 102, 103, 106, 108], "33": [10, 38, 42, 96, 97, 103], "68": [10, 87, 97, 99, 103], "excess": [10, 92], "dark": [10, 107], "bright": [10, 96, 108], "blurri": [10, 92, 96], "lack": [10, 61, 96], "unusu": [10, 103, 104], "cluster": [10, 19, 32], "slice": 10, "poor": [10, 96], "subpopul": 10, "faq": [10, 84, 91, 92, 94, 95, 100], "get_self_confidence_for_each_label": [10, 49, 72], "r": [10, 41, 74, 90, 91, 96, 106, 107], "tabular": [10, 84, 86, 90, 91, 93, 96, 98, 101], "categor": [10, 71, 86, 87, 90, 91, 93, 98, 106], "encod": [10, 50, 70, 76, 79, 87, 88, 94, 95, 98, 106, 107], "71": [10, 96, 97, 99, 103, 106], "70": [10, 82, 94, 96], "69": [10, 99, 106], "subgroup": [10, 96], "wors": [10, 96, 101], "ratio": [10, 96], "miss": [10, 28, 38, 42, 57, 67, 69, 98, 103, 106], "pattern": [10, 96], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 71, 98], "quantif": 10, "39": [10, 88, 89, 90, 92, 95, 96, 97, 98, 103, 106, 107, 108], "32": [10, 89, 90, 96, 97, 101, 103], "valuabl": [10, 19, 96], "exert": [10, 91], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 84, 97], "health_summary_kwarg": 10, "tandem": [10, 97], "view": [10, 38, 42, 43, 44, 78, 80, 82, 84, 87, 88, 89, 90, 91, 94, 95, 97, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 71, 104], "outsid": [10, 98, 102], "outlierissuemanag": [10, 15, 22, 29], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 90, 91, 92, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107], "howev": [10, 38, 42, 52, 57, 87, 88, 89, 92, 94, 95, 96, 101, 105, 107], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 63], "versa": [10, 63], "light": [10, 92, 96, 97, 103, 107], "29": [10, 92, 96, 97, 101, 102, 103, 107, 108], "low_inform": [10, 92, 96], "odd_aspect_ratio": [10, 92, 96], "35": [10, 90, 96, 97, 101, 102, 103], "odd_siz": [10, 92, 96], "doc": [10, 38, 42, 71, 84, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 89, 90, 91, 92, 94, 95, 96, 99, 102, 106], "is_outlier_issu": [11, 90, 91, 92, 94, 95, 96, 99], "outlier_scor": [11, 29, 90, 91, 92, 94, 95, 96, 99, 104], "is_near_duplicate_issu": [11, 90, 91, 92, 94, 95, 96, 98, 99], "near_duplicate_scor": [11, 20, 90, 91, 92, 94, 95, 96, 98, 99], "near_duplicate_set": [11, 20, 22, 90, 91, 92, 94, 95, 98, 99], "is_non_iid_issu": [11, 91, 94, 95, 96, 99], "non_iid_scor": [11, 27, 91, 94, 95, 96, 99], "is_class_imbalance_issu": [11, 91, 96], "class_imbalance_scor": [11, 21, 91, 96], "is_underperforming_group_issu": [11, 91, 96], "underperforming_group_scor": [11, 32, 91, 96], "is_null_issu": [11, 91, 96], "null_scor": [11, 28, 91, 96], "is_data_valuation_issu": [11, 96], "data_valuation_scor": [11, 19, 96], "studio": [12, 84, 91, 92, 94, 95, 98], "data_issu": [12, 16, 17, 34], "issue_find": [12, 16], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 61, 72, 90, 91, 92, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "fail": 13, "hold": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 92], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": 14, "strategi": [14, 49, 96, 98], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 64, 67, 70, 74, 76, 78, 90, 91, 98], "recomput": [14, 88], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 63, 84], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 71, 90], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 76, 78], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 96, 99, 103, 107, 108], "creation": [17, 42, 96], "execut": [17, 38, 42, 90, 98, 103], "coordin": [17, 67, 69, 70, 103, 108], "At": [17, 70, 98], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 61], "vstack": [19, 57, 92, 97, 98, 99, 101, 102], "25": [19, 27, 38, 49, 55, 91, 92, 96, 97, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 90, 91, 92, 98, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 88, 95, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 84, 87, 89, 90, 92, 96, 97, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 69, 84, 99, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 71, 72, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "perform_clust": [22, 32], "get_worst_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 62, 98, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 66, 69, 70], "scalartyp": [24, 26], "covari": [24, 26, 74, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 72, 76, 78, 103, 107], "empir": [27, 48, 62], "cumul": 27, "ecdf": 27, "histogram": [27, 94, 96, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 61, 92, 96, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 78, 82, 90, 104, 106], "prompt": 28, "address": [28, 88, 90, 91, 95, 98], "enabl": [28, 42, 54], "scaling_factor": [29, 55], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 70, 88, 108], "50": [32, 42, 96, 98, 99, 101, 103, 104, 106], "keepdim": [32, 98], "signifi": 32, "absenc": 32, "int64": [32, 89, 101], "npt": 32, "int_": 32, "id": [32, 62, 90, 92, 96, 98, 101], "unique_cluster_id": 32, "_description_": 32, "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 71, 89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 89, 91, 98], "datset": 34, "exclud": [34, 43, 79, 83, 90, 108], "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 90, 91], "continu": [35, 61, 87, 88, 92, 95, 96, 98, 101, 103, 106, 108], "binari": [35, 49, 57, 64, 66, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 90], "typeerror": [35, 49], "12": [35, 49, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 62, 63, 72, 90, 91, 92, 97, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 87, 88, 89, 91, 92, 94, 95, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 96, 98, 99], "rank_classes_by_label_qu": [37, 91], "merg": [37, 52, 56, 84, 97, 98, 108], "find_overlapping_class": [37, 98, 99], "problemat": [37, 63, 79, 83, 89, 103, 108], "unnorm": [37, 63, 99], "abov": [37, 38, 41, 42, 54, 57, 62, 69, 70, 72, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 87, 88, 89, 90, 91, 94, 95, 96, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 87, 89, 90, 91, 94, 96, 99, 101], "df": [37, 57, 83, 89, 96, 98], "overall_label_qu": [37, 63], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 63, 72], "label_nois": [37, 63], "human": [37, 97, 107, 108], "clearli": [37, 72, 92, 103, 107], "num": [37, 63, 97, 99], "overlap": [37, 84, 97, 98, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 72, 96], "vehicl": [37, 97], "truck": [37, 97, 104, 107], "intuit": [37, 63], "car": [37, 97, 103, 107], "frequent": [37, 62, 96, 98, 106], "characterist": [37, 96], "l": [37, 38, 42, 67, 69, 70], "class1": 37, "class2": 37, "relationship": 37, "dog": [37, 57, 63, 65, 79, 97, 98, 104, 105, 108], "cat": [37, 57, 63, 65, 97, 98, 104, 105], "captur": [37, 89, 103, 104, 107], "co": [37, 38, 39], "noisy_label": [37, 90, 91, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 63, 70], "overall_label_health_scor": [37, 63, 99], "half": [37, 38, 40, 42, 63, 97, 108], "health_scor": [37, 63], "classes_by_label_qu": [37, 91], "cnn": [38, 40, 42, 92], "cifar": [38, 39, 96, 97, 104], "teach": [38, 39], "bhanml": 38, "blob": [38, 96], "master": [38, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 70, 89, 90, 91, 92, 94, 95, 98, 99, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 92, 101], "overridden": [38, 42], "although": [38, 42, 71, 87, 94], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 63, 70, 78, 82, 98, 101, 102, 103, 105, 108], "hook": [38, 42, 97], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 70], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 92], "init": [38, 42, 99], "no_grad": [38, 42, 92, 104], "init_weight": [38, 42], "linear": [38, 42, 88, 92, 95], "fill_": [38, 42], "net": [38, 42, 89, 92, 97], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 92, 96], "tensor": [38, 39, 42, 89, 92, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 89], "buffer": [38, 40, 42, 96], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 61], "cpu": [38, 40, 42, 44, 89, 92], "move": [38, 42, 49, 85, 97], "cuda": [38, 40, 42, 89, 92], "devic": [38, 42, 89, 92], "gpu": [38, 42, 88, 89, 95], "live": [38, 42], "copi": [38, 42, 74, 87, 89, 90, 91, 94, 96, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 92, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 84, 90, 96, 97, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 74, 75, 96, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 95], "resolv": [38, 42, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 92, 96, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 92], "break": [38, 42, 92, 96, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 92], "16": [38, 42, 49, 52, 61, 78, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 72, 97, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 91, 92, 96, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 89, 90, 91, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 96, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 70, 90, 92, 96, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 89, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 87, 94], "fire": [38, 42, 97], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 90, 91], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 92, 94, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 88, 89, 95], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 61, 85, 98], "design": [38, 42, 52], "ordereddict": [38, 42], "detach": [38, 42, 92], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 63, 69], "complex": [38, 42], "integr": [38, 42, 54, 84, 98], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 88, 95, 97], "desir": [38, 42, 52, 56, 70], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 89], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 92], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 61, 92], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 92, 98], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 72, 96, 98], "250": [39, 90, 91, 99, 103], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 88, 92, 95, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 92, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 60, 96, 108], "wish": [40, 60, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 98], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 77, 78, 79, 80, 81, 82, 83, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 76, 78, 92, 98, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 92], "loader": [40, 42, 92], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 85], "mini": [41, 76, 78, 98], "low_self_confid": [41, 44, 64], "self_confid": [41, 44, 45, 49, 64, 66, 72, 80, 82, 87, 88, 98, 99], "conveni": [41, 54, 87, 88, 89, 95], "script": 41, "labels_fil": [41, 98], "pred_probs_fil": [41, 98], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 62, 107], "read": [41, 46, 91, 98, 99, 104, 108], "zarr": [41, 98], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 98], "hdf5": 41, "further": [41, 43, 63, 64, 66, 69, 70, 78, 79, 89, 98], "yourfil": 41, "npy": [41, 97, 98, 107], "mmap_mod": [41, 107], "tip": [41, 44, 61, 98], "save_arrai": 41, "your_arrai": 41, "disk": [41, 97, 98], "npz": [41, 108], "maxim": [41, 62, 76, 78, 107], "multiprocess": [41, 44, 64, 76, 78, 92, 98], "linux": [41, 76, 78], "physic": [41, 44, 76, 78, 103], "psutil": [41, 44, 76, 78], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 70, 90, 98, 103, 104], "store_result": 41, "becom": [41, 96, 104], "verifi": [41, 54, 98, 101, 104], "long": [41, 62, 71, 101], "enough": [41, 57, 96, 98], "chunk": [41, 105], "ram": [41, 97], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 98], "shortcut": 41, "encount": [41, 44, 76], "1000": [41, 89, 95, 98, 104], "aggreg": [41, 45, 49, 62, 66, 69, 72, 82, 98, 99, 101], "seen": [41, 98, 104, 108], "far": [41, 62], "label_quality_scor": [41, 66, 69, 72, 75, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 64, 66, 72, 80, 82], "low_normalized_margin": [41, 44, 64], "issue_indic": [41, 69, 92], "update_num_issu": 41, "arr": [41, 98], "chunksiz": 41, "convnet": 42, "bespok": [42, 61], "download": [42, 89, 96, 98, 104], "mnist": [42, 84, 89, 97], "handwritten": 42, "digit": [42, 89, 97], "last": [42, 49, 67, 70, 90, 91, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 72, 74, 89, 96, 99, 102, 103], "templat": 42, "flexibli": 42, "among": [42, 62, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 88, 104], "span": 43, "sentenc": [43, 56, 80, 82, 83, 88, 95], "token_classif": [43, 56, 80, 82, 83, 98], "encourag": [44, 64, 72, 75], "multilabel_classif": [44, 63, 64, 66, 72, 98, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 64, 72, 99], "num_to_remove_per_class": [44, 64], "bad": [44, 52, 64, 69, 72, 95, 98], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 64, 66, 72, 80, 82], "label_issues_idx": [44, 72], "entropi": [44, 46, 48, 49, 71, 72], "prune_by_class": [44, 64, 99], "predicted_neq_given": [44, 64, 99], "prune_counts_matrix": 44, "smallest": [44, 72], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 84, 88, 98], "too": [44, 49, 52, 71, 92, 98, 103], "thread": [44, 64], "window": [44, 97], "shorter": [44, 67], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 98], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 85], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 66], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 66], "softmin": [45, 49, 66, 69, 78, 82], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 96], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 61, 62, 84, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 89, 96], "behav": 46, "unnecessari": [46, 98], "slightli": [46, 87, 88], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": 47, "propag": 47, "throughout": [47, 57, 74, 83, 89, 101, 107, 108], "increas": [47, 55, 69, 71, 72, 89, 90, 96, 98, 101, 102, 108], "dot": [47, 82, 98], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 62], "ensembl": [48, 49, 62, 72, 87, 94, 98, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 62], "format_multiannotator_label": [48, 62, 101], "formatted_label": [48, 57], "old": [48, 57, 85, 97], "check_consensus_label_class": 48, "consensus_label": [48, 62, 101], "consensus_method": [48, 62], "consensu": [48, 62, 84, 100, 108], "establish": [48, 61, 88, 106], "compute_soft_cross_entropi": 48, "soft": [48, 97], "find_best_temp_scal": 48, "coarse_search_rang": [48, 74, 98], "fine_search_s": [48, 74, 98], "temperatur": [48, 49, 69, 78, 82], "scale": [48, 55, 87, 96, 97, 98, 104, 107], "factor": [48, 49, 55, 76, 78], "minim": [48, 69, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 97], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 72], "get_confidence_weighted_entropy_for_each_label": [49, 72], "scorer": 49, "alpha": [49, 66, 69, 90, 91, 96, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 64, 94, 95, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 92, 94, 98, 103], "discount": 49, "s_ema": 49, "175": [49, 92, 99, 103], "underflow": 49, "nan": [49, 62, 87, 94, 96, 101, 106], "aggregated_scor": 49, "base_scor": 49, "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 66], "n_sampl": [49, 96], "n_label": 49, "worst": [49, 101], "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": 49, "get_label_quality_scores_per_class": [49, 65, 66], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 89], "wider": 49, "splitter": 49, "kfold": [49, 92], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 92, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 64, 70, 76, 79, 87, 94, 97, 98, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 71], "reli": [52, 71, 88, 89, 90, 91, 95, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 98], "manner": [52, 66, 87, 88, 96, 101, 106], "701": 52, "900": [52, 87, 94, 106], "436": 52, "000": [52, 88, 92, 95, 96, 97, 108], "idea": [52, 72, 103], "dens": [52, 61, 96], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 63, 102], "vari": [52, 69, 91], "exact_duplicate_set": 52, "main": [52, 62], "front": [52, 97], "consider": 52, "capabl": [52, 84], "come": [52, 57, 90, 91, 98, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 62, 87, 94, 96], "slower": 53, "decid": [53, 62, 88, 95, 97, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 71], "spatial": [53, 71], "decis": [53, 87, 90, 91], "That": [53, 99, 102], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 67, 70, 71, 89, 90, 91, 92, 94, 95, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "exp": [55, 71, 72, 90], "dt": 55, "right": [55, 67, 70, 88, 95, 102, 103, 104], "strength": [55, 70, 96], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 97], "thumb": 55, "ood_features_scor": [55, 71, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 89, 90, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 84, 98, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 90, 91, 92, 94, 96, 108], "nbitbas": [56, 66], "probs_merg": 56, "0125": [56, 82], "0375": 56, "075": 56, "025": 56, "color": [56, 79, 90, 91, 94, 96, 99, 102, 104, 106, 107], "red": [56, 70, 90, 91, 96, 97, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 72, 87, 94, 98, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 62, 85, 92, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 70, 95, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 90, 91, 96, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 71, 88, 89, 94, 95, 96, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 84, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 89, 92, 96, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 67, 70, 96, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 70, 79, 83, 88, 89, 94, 95, 96, 99, 108], "jupyt": [57, 89, 90, 91, 92, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 62, 89, 91, 97, 98, 99, 101, 102, 103, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 64], "keraswrappermodel": [60, 61, 84], "keraswrappersequenti": [60, 61], "tf": [61, 89], "legaci": 61, "newer": 61, "interim": 61, "advis": [61, 102], "stabil": [61, 71], "until": 61, "accommod": 61, "keraswrapp": 61, "huggingface_keras_imdb": 61, "unit": [61, 108], "model_kwarg": [61, 74], "compile_kwarg": 61, "sparsecategoricalcrossentropi": 61, "layer": [61, 88, 89, 95, 104], "my_keras_model": 61, "from_logit": 61, "declar": 61, "apply_softmax": 61, "analysi": [62, 96], "analyz": [62, 84, 96, 99, 101, 102], "get_label_quality_multiannot": [62, 101], "vote": 62, "crowdsourc": [62, 84, 101], "dawid": [62, 101], "skene": [62, 101], "analog": [62, 97, 101], "chosen": [62, 72, 96, 98, 101], "crowdlab": [62, 101], "unlabel": [62, 92, 94, 95, 101, 104, 107], "get_active_learning_scor": [62, 101], "activelab": [62, 101], "priorit": [62, 69, 103, 107, 108], "showcas": 62, "best_qual": 62, "quality_method": 62, "calibrate_prob": 62, "return_detailed_qu": 62, "return_annotator_stat": 62, "return_weight": 62, "label_quality_score_kwarg": 62, "did": [62, 63, 87, 88, 89, 94, 99, 101, 106], "majority_vot": 62, "broken": [62, 70, 97, 106], "highest": [62, 70, 90, 92, 105], "0th": 62, "consensus_quality_scor": [62, 101], "annotator_agr": [62, 101], "reman": 62, "1st": 62, "2nd": [62, 76], "3rd": 62, "consensus_label_suffix": 62, "consensus_quality_score_suffix": 62, "suffix": 62, "emsembl": 62, "weigh": [62, 97], "agreement": [62, 101], "agre": 62, "prevent": [62, 98], "overconfid": [62, 105], "detailed_label_qu": [62, 101], "annotator_stat": [62, 101], "model_weight": 62, "annotator_weight": 62, "warn": 62, "labels_info": 62, "num_annot": [62, 101], "deriv": [62, 101], "quality_annotator_1": 62, "quality_annotator_2": 62, "quality_annotator_m": 62, "annotator_qu": [62, 101], "num_examples_label": [62, 101], "agreement_with_consensu": [62, 101], "worst_class": [62, 101], "trustworthi": [62, 101, 106], "get_label_quality_multiannotator_ensembl": 62, "weigtht": 62, "budget": 62, "retrain": [62, 88, 106], "active_learning_scor": 62, "active_learning_scores_unlabel": 62, "get_active_learning_scores_ensembl": 62, "henc": [62, 89, 90, 101], "get_majority_vote_label": [62, 101], "event": 62, "lastli": [62, 94], "convert_long_to_wide_dataset": 62, "labels_multiannotator_long": 62, "wide": [62, 87, 88, 89], "labels_multiannotator_wid": 62, "common_multilabel_issu": [63, 65], "exclus": [63, 102], "rank_classes_by_multilabel_qu": [63, 65], "overall_multilabel_health_scor": [63, 65], "multilabel_health_summari": [63, 65], "classes_by_multilabel_qu": 63, "inner": [64, 78, 96], "find_multilabel_issues_per_class": [64, 65], "per_class_label_issu": 64, "label_issues_list": 64, "pred_probs_list": [64, 72, 92, 99], "anim": [65, 104], "rat": 65, "predat": 65, "pet": 65, "reptil": 65, "box": [67, 69, 70, 97, 103], "object_detect": [67, 69, 70, 103], "return_indices_ranked_by_scor": [67, 103], "overlapping_label_check": [67, 69], "suboptim": [67, 69], "locat": [67, 69, 96, 103, 107, 108], "bbox": [67, 70, 103], "image_nam": [67, 70], "y1": [67, 70, 103], "y2": [67, 70, 103], "later": [67, 70, 71, 88, 108], "corner": [67, 70, 103], "xyxi": [67, 70, 103], "io": [67, 70, 89, 96, 97], "keras_cv": [67, 70], "bounding_box": [67, 70, 103], "detectron": [67, 70, 103], "detectron2": [67, 70, 103], "readthedoc": [67, 70], "en": [67, 70], "latest": [67, 70], "visual": [67, 68, 70, 87, 90, 91, 92, 106, 108], "draw_box": [67, 70], "mmdetect": [67, 70, 103], "swap": [67, 69, 79, 83], "penal": [67, 69], "concern": [67, 69, 84, 91], "issues_from_scor": [68, 69, 77, 78, 79, 81, 82, 83, 103, 107, 108], "compute_overlooked_box_scor": [68, 69], "compute_badloc_box_scor": [68, 69], "compute_swap_box_scor": [68, 69], "pool_box_scores_per_imag": [68, 69], "object_counts_per_imag": [68, 70, 103], "bounding_box_size_distribut": [68, 70, 103], "class_label_distribut": [68, 70, 103], "get_sorted_bbox_count_idx": [68, 70], "plot_class_size_distribut": [68, 70], "plot_class_distribut": [68, 70], "get_average_per_class_confusion_matrix": [68, 70], "calculate_per_class_metr": [68, 70], "aggregation_weight": 69, "imperfect": [69, 98], "chose": [69, 101, 103], "imperfectli": [69, 103], "dirti": [69, 72, 75, 106], "subtyp": 69, "badloc": 69, "nonneg": 69, "high_probability_threshold": 69, "auxiliary_input": [69, 70], "iou": [69, 70], "heavili": 69, "auxiliarytypesdict": 69, "pred_label": [69, 88], "pred_label_prob": 69, "pred_bbox": 69, "lab_label": 69, "lab_bbox": 69, "similarity_matrix": 69, "min_possible_similar": 69, "scores_overlook": 69, "low_probability_threshold": 69, "scores_badloc": 69, "accident": [69, 88, 94, 95, 98], "scores_swap": 69, "box_scor": 69, "image_scor": [69, 78, 107], "discov": [70, 91, 96, 108], "abnorm": [70, 92, 103], "auxiliari": [70, 104, 107], "_get_valid_inputs_for_compute_scor": 70, "object_count": 70, "down": 70, "bbox_siz": 70, "class_distribut": 70, "plot": [70, 90, 91, 96, 99, 102, 104, 106, 107], "sorted_idx": [70, 104], "class_to_show": 70, "hidden": [70, 104], "max_class_to_show": 70, "plt": [70, 79, 90, 91, 92, 96, 99, 102, 104, 106], "matplotlib": [70, 79, 90, 91, 92, 96, 99, 102, 103, 104, 106], "pyplot": [70, 79, 90, 91, 92, 96, 99, 102, 104, 106], "prediction_threshold": 70, "overlai": [70, 103], "figsiz": [70, 90, 91, 92, 96, 99, 102, 104], "save_path": [70, 103], "blue": [70, 97, 99, 103], "overlaid": 70, "side": [70, 97, 103], "figur": [70, 96, 99, 102, 104, 106], "extens": [70, 99, 101], "png": [70, 96, 103], "pdf": [70, 71], "svg": 70, "num_proc": [70, 92], "intersect": [70, 98], "tp": 70, "fp": 70, "ground": [70, 97, 99, 101, 106], "truth": [70, 99, 101, 106], "bias": [70, 96], "avg_metr": 70, "distionari": 70, "95": [70, 80, 82, 94, 97, 99, 106], "per_class_metr": 70, "Of": 71, "find_top_issu": [71, 72, 104], "behind": [71, 99], "dist_metr": 71, "subtract": [71, 72], "renorm": [71, 72, 98], "least_confid": 71, "sum_": 71, "log": [71, 72, 85], "softmax": [71, 78, 82, 92], "literatur": 71, "gen": 71, "liu": 71, "lochman": 71, "zach": 71, "openaccess": 71, "thecvf": 71, "cvpr2023": 71, "liu_gen_pushing_the_limits_of_softmax": 71, "based_out": 71, "distribution_detection_cvpr_2023_pap": 71, "fit_scor": [71, 104], "ood_predictions_scor": 71, "pretrain": [71, 88, 89, 95, 104], "adjust_confident_threshold": 71, "probabilist": [71, 87, 89, 90, 91, 94, 95, 104, 105], "order_label_issu": [72, 85], "whichev": [72, 105], "argsort": [72, 88, 92, 95, 99, 103, 104, 106], "max_": 72, "get_label_quality_ensemble_scor": [72, 98, 99], "weight_ensemble_members_bi": 72, "custom_weight": 72, "log_loss_search_t_valu": 72, "0001": [72, 97], "scheme": 72, "log_loss_search": 72, "log_loss": [72, 95], "1e0": 72, "1e1": 72, "1e2": 72, "2e2": 72, "quality_scor": [72, 104], "forth": 72, "top_issue_indic": 72, "rank_bi": [72, 85], "weird": [72, 83], "minu": 72, "prob_label": 72, "max_prob_not_label": 72, "AND": [72, 95], "get_epistemic_uncertainti": [73, 74], "get_aleatoric_uncertainti": [73, 74], "corrupt": [74, 106], "linearregress": [74, 98, 106], "y_with_nois": 74, "n_boot": [74, 98], "include_aleatoric_uncertainti": [74, 98], "sole": [74, 87, 90, 101, 104], "bootstrap": [74, 98, 106], "resampl": [74, 89, 98], "epistem": [74, 98, 104, 106], "aleator": [74, 98, 106], "model_final_kwarg": 74, "coars": 74, "thorough": [74, 98], "fine": [74, 88, 89, 95, 104], "grain": 74, "grid": [74, 96], "varianc": [74, 99], "epistemic_uncertainti": 74, "residu": [74, 75, 98], "deviat": [74, 103, 106], "aleatoric_uncertainti": 74, "outr": 75, "contin": 75, "raw": [75, 84, 85, 91, 92, 97, 98, 101, 103, 104, 106], "aka": [75, 89, 99, 103, 106, 108], "00323821": 75, "33692597": 75, "00191686": 75, "semant": [76, 78, 79, 100], "pixel": [76, 78, 79, 92, 104, 107], "h": [76, 78, 79, 107], "height": [76, 78, 79, 107], "w": [76, 78, 79, 107], "width": [76, 78, 79, 107], "labels_one_hot": [76, 79, 107], "stream": [76, 104, 108], "downsampl": [76, 78, 107], "shrink": [76, 78], "divis": [76, 78, 90], "common_label_issu": [77, 79, 81, 83, 107, 108], "filter_by_class": [77, 79, 107], "segmant": [78, 79], "num_pixel_issu": [78, 107], "product": [78, 92, 96, 98], "pixel_scor": [78, 107], "enter": 79, "legend": [79, 90, 91, 96, 102, 103, 106, 107], "colormap": 79, "background": [79, 96], "person": [79, 98, 103, 107, 108], "ambigu": [79, 83, 88, 89, 95, 97, 99, 108], "systemat": [79, 83, 101], "misunderstood": [79, 83], "issues_df": [79, 92], "class_index": 79, "issues_subset": [79, 83], "filter_by_token": [81, 83, 108], "token_score_method": 82, "sentence_score_method": 82, "sentence_score_kwarg": 82, "compris": [82, 83], "token_scor": [82, 108], "converg": 82, "toward": [82, 96], "_softmin_sentence_scor": 82, "sentence_scor": [82, 108], "token_info": 82, "02": [82, 90, 91, 96, 99, 103, 108], "03": [82, 94, 96, 97, 99, 103, 108], "04": [82, 94, 96, 103], "08": [82, 96, 99, 103, 104, 106, 108], "commonli": [83, 85, 90, 91, 102, 108], "But": [83, 95, 99, 106, 108], "restrict": [83, 98], "reliabl": [84, 87, 89, 96, 98, 101, 107], "thousand": 84, "imagenet": [84, 97], "popular": [84, 101, 103], "centric": [84, 92, 94, 95, 100], "minut": [84, 87, 88, 89, 94, 95, 97, 101, 102, 103, 106, 107, 108], "conda": 84, "feature_embed": [84, 104], "Then": [84, 87, 88, 92, 98], "your_dataset": [84, 89, 90, 91, 92, 94, 95, 98], "column_name_of_label": [84, 89, 90, 91, 92, 94, 95], "plagu": [84, 91], "untrain": 84, "\u30c4": 84, "label_issues_info": [84, 91], "sklearn_compatible_model": 84, "framework": [84, 102, 103], "complianc": 84, "tag": [84, 102, 108], "sequenc": 84, "recognit": [84, 89, 98, 108], "train_data": [84, 87, 88, 104, 106], "gotten": 84, "test_data": [84, 87, 88, 99, 102, 104, 106], "deal": [84, 91, 96], "tutori": [84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "feel": [84, 89, 91, 98], "ask": [84, 98], "slack": [84, 98], "project": [84, 106], "welcom": 84, "commun": [84, 98], "guidelin": [84, 103], "piec": 84, "smart": [84, 92, 94, 95, 98], "edit": [84, 98], "easier": [84, 96, 99], "unreli": [84, 87, 89, 94, 95, 96], "link": [84, 89, 97, 103], "older": 85, "outlin": 85, "substitut": 85, "v2": [85, 87, 94], "get_noise_indic": 85, "psx": 85, "sorted_index_method": 85, "order_label_error": 85, "label_errors_bool": 85, "latent_estim": 85, "num_label_error": 85, "learningwithnoisylabel": 85, "neatli": 85, "organ": [85, 87, 94, 97, 108], "reorgan": 85, "baseline_method": 85, "incorpor": [85, 99], "research": [85, 99], "polyplex": 85, "terminologi": 85, "label_error": 85, "quickstart": [87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "sql": [87, 94], "databas": [87, 94], "excel": [87, 94], "parquet": [87, 94], "student": [87, 94, 106, 108], "grade": [87, 94, 106], "exam": [87, 94, 106], "letter": [87, 94, 108], "hundr": [87, 94], "mistak": [87, 88, 92, 94, 95], "extratreesclassifi": 87, "extratre": 87, "ranked_label_issu": [87, 88], "branch": [87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106], "preprocess": [87, 88, 91, 94, 96, 104, 106], "standardscal": [87, 94, 104], "labelencod": [87, 88], "train_test_split": [87, 88, 90, 91, 104], "accuracy_scor": [87, 88, 89, 95, 99], "grades_data": [87, 94], "read_csv": [87, 88, 94, 95, 96, 106], "demo": [87, 91, 94, 102], "stud_id": [87, 94], "exam_1": [87, 94, 106], "exam_2": [87, 94, 106], "exam_3": [87, 94, 106], "letter_grad": [87, 94], "f48f73": [87, 94], "53": [87, 90, 91, 94, 96, 97, 102, 103], "00": [87, 90, 91, 94, 96, 97, 104], "77": [87, 90, 91, 94, 103, 108], "0bd4e7": [87, 94], "81": [87, 94, 95, 103, 106, 108], "great": [87, 94, 97], "particip": [87, 94], "cb9d7a": [87, 94], "61": [87, 94, 96, 99, 103, 106], "94": [87, 94, 97, 99, 103, 106], "9acca4": [87, 94], "48": [87, 94, 96, 97, 99, 103], "x_raw": [87, 94], "labels_raw": 87, "interg": [87, 88], "categorical_featur": [87, 106], "x_encod": [87, 94], "get_dummi": [87, 94, 106], "drop_first": [87, 94], "numeric_featur": [87, 94], "scaler": [87, 94, 104], "x_process": [87, 94], "fit_transform": [87, 94, 96], "bring": [87, 88, 92, 94, 95, 101, 106], "byod": [87, 88, 92, 94, 95, 101, 106], "tress": 87, "held": [87, 89, 94, 95, 97, 103, 104, 105], "straightforward": [87, 89, 94], "benefit": [87, 89, 105, 107], "num_crossval_fold": [87, 89, 94, 101], "tabl": [87, 94, 97, 101], "212": [87, 99], "review": [87, 88, 91, 94, 95, 97, 98, 99, 103, 106, 107, 108], "iloc": [87, 88, 89, 94, 95, 96, 106], "92": [87, 90, 99, 103], "93": [87, 97, 103, 106, 108], "827": 87, "99": [87, 96, 97, 99], "86": [87, 91, 92, 94, 99, 103, 106], "74": [87, 96, 103, 106], "637": [87, 94], "79": [87, 97, 103], "65": [87, 90, 96, 103], "cheat": 87, "0pt": 87, "120": [87, 90, 91], "233": 87, "83": [87, 99, 103, 106, 108], "76": [87, 99, 102, 103, 106], "suspici": [87, 94], "carefulli": [87, 92, 94, 95], "examin": [87, 90, 91, 94, 96, 103], "labels_train": 87, "labels_test": 87, "test_siz": [87, 88, 90, 91], "acc_og": [87, 88], "783068783068783": 87, "robustli": [87, 88, 106], "14": [87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [87, 88], "8095238095238095": 87, "blindli": [87, 88, 89, 98, 106], "trust": [87, 88, 89, 98, 99, 101, 105, 106], "effort": [87, 88, 106], "intent": [88, 95], "servic": [88, 95, 98], "onlin": [88, 95], "bank": [88, 95, 97], "banking77": [88, 95], "oo": [88, 95], "categori": [88, 92, 95, 96], "shortlist": [88, 95, 106], "scope": [88, 95], "logist": [88, 90, 91, 95, 101, 104], "probabilit": [88, 89], "drop": [88, 94, 96, 98, 101, 106], "earlier": [88, 108], "sentence_transform": [88, 95], "sentencetransform": [88, 95], "payment": [88, 95], "cancel_transf": [88, 95], "transfer": [88, 95], "fund": [88, 95], "cancel": [88, 95], "transact": [88, 95], "my": [88, 95], "revert": [88, 95], "morn": [88, 95], "realis": [88, 95], "yesterdai": [88, 95], "rent": [88, 95], "tomorrow": [88, 95], "raw_text": [88, 95], "raw_label": 88, "raw_train_text": 88, "raw_test_text": 88, "raw_train_label": 88, "raw_test_label": 88, "card_about_to_expir": [88, 95], "lost_or_stolen_phon": [88, 95], "getting_spare_card": [88, 95], "change_pin": [88, 95], "card_payment_fee_charg": [88, 95], "supported_cards_and_curr": [88, 95], "beneficiary_not_allow": [88, 95], "visa_or_mastercard": [88, 95], "apple_pay_or_google_pai": [88, 95], "card": [88, 95, 97], "utter": [88, 95], "encond": 88, "test_label": [88, 99, 102, 104], "suit": [88, 95, 96, 97, 98], "electra": [88, 95], "discrimin": [88, 95], "googl": [88, 95], "train_text": 88, "test_text": 88, "home": [88, 95, 97], "runner": [88, 95], "google_electra": [88, 95], "pool": [88, 95, 98, 104], "leverag": [88, 89, 95, 98, 99, 101], "computation": [88, 89, 95], "intens": [88, 89, 95], "400": [88, 95], "858371": 88, "547274": 88, "826228": 88, "966008": 88, "792449": 88, "identified_issu": [88, 106], "lowest_quality_label": [88, 89, 95, 99, 106], "to_numpi": [88, 95, 96, 106], "44": [88, 96, 97, 102, 103], "646": 88, "390": 88, "628": 88, "121": [88, 99], "702": 88, "863": 88, "135": 88, "337": [88, 103], "735": 88, "print_as_df": 88, "inverse_transform": 88, "charg": [88, 95], "cash": [88, 95], "holidai": [88, 95], "sent": [88, 95, 108], "mine": [88, 95], "expir": [88, 95], "fight": 88, "hors": [88, 97, 104], "duck": [88, 97], "me": [88, 95, 96], "whoever": [88, 95], "consum": [88, 106], "18": [88, 89, 95, 96, 97, 98, 99, 103, 104, 106, 107], "baseline_model": [88, 106], "87": [88, 91, 92, 103, 106], "acceler": [88, 106], "19": [88, 89, 92, 95, 96, 97, 98, 99, 103, 104, 106, 107], "89": [88, 90, 94, 103, 106], "spoken": 89, "500": [89, 96, 104, 108], "english": [89, 97], "pronunci": 89, "wav": 89, "huggingfac": [89, 90, 91, 92, 98], "voxceleb": 89, "speech": [89, 108], "your_pred_prob": [89, 90, 91, 94, 95], "tensorflow_io": 89, "huggingface_hub": 89, "reproduc": [89, 94, 96, 99, 101], "command": 89, "wget": [89, 103, 107, 108], "navig": 89, "browser": 89, "jakobovski": 89, "archiv": [89, 108], "v1": 89, "tar": [89, 96, 104], "gz": [89, 96, 104], "mkdir": [89, 108], "spoken_digit": 89, "xf": 89, "6_nicolas_32": 89, "data_path": 89, "listdir": 89, "nondeterminist": 89, "file_nam": 89, "endswith": 89, "file_path": 89, "join": [89, 92, 96, 98], "7_george_26": 89, "0_nicolas_24": 89, "0_nicolas_6": 89, "listen": 89, "display_exampl": 89, "expand": [89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "pulldown": [89, 90, 91, 92, 97, 99, 101, 102, 104, 106, 108], "colab": [89, 90, 91, 92, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 89, "pathlib": 89, "ipython": [89, 96], "load_wav_16k_mono": 89, "filenam": 89, "khz": 89, "file_cont": 89, "read_fil": 89, "sample_r": 89, "decode_wav": 89, "desired_channel": 89, "squeez": 89, "rate_in": 89, "rate_out": 89, "16000": 89, "wav_file_nam": 89, "audio_r": 89, "wav_file_exampl": 89, "plai": [89, 97, 98], "button": 89, "wav_file_name_exampl": 89, "7_jackson_43": 89, "hear": 89, "extractor": 89, "encoderclassifi": 89, "spkrec": 89, "xvect": 89, "feature_extractor": 89, "from_hparam": 89, "run_opt": 89, "uncom": [89, 96], "ffmpeg": 89, "backend": 89, "wav_audio_file_path": 89, "torchaudio": 89, "extract_audio_embed": 89, "emb": [89, 92], "signal": 89, "encode_batch": 89, "embeddings_list": [89, 92], "embeddings_arrai": 89, "512": [89, 92], "196311": 89, "319459": 89, "478975": 89, "2890875": 89, "8170238": 89, "89265": 89, "898056": 89, "256195": 89, "559641": 89, "559721": 89, "62067": 89, "285245": 89, "21": [89, 90, 96, 97, 99, 103, 106, 108], "709627": 89, "5033693": 89, "913803": 89, "819831": 89, "1831515": 89, "208763": 89, "084257": 89, "3210397": 89, "005453": 89, "216152": 89, "478235": 89, "6821785": 89, "053807": 89, "242471": 89, "091424": 89, "78334856": 89, "03954": 89, "23": [89, 92, 96, 97, 99, 103, 106], "569176": 89, "761097": 89, "1258295": 89, "753237": 89, "3508866": 89, "598274": 89, "23712": 89, "2500": 89, "tol": 89, "decreas": [89, 96, 98], "cv_accuraci": 89, "9708": 89, "issue_type_descript": [89, 90, 91, 92, 94, 95, 99], "lt": [89, 90, 91, 92, 94, 95, 96, 97, 99, 101, 104], "gt": [89, 90, 91, 92, 94, 95, 96, 99, 101, 108], "9976": 89, "986": 89, "002161": 89, "176": [89, 97, 99, 102], "002483": 89, "2318": 89, "004411": 89, "1005": 89, "004857": 89, "1871": 89, "007494": 89, "040587": 89, "999207": 89, "999377": 89, "975220": 89, "999367": 89, "identified_label_issu": [89, 95], "516": 89, "1946": 89, "469": 89, "2132": 89, "worth": [89, 99], "6_yweweler_25": 89, "7_nicolas_43": 89, "6_theo_27": 89, "6_yweweler_36": 89, "6_yweweler_14": 89, "6_yweweler_35": 89, "6_nicolas_8": 89, "sound": 89, "quit": [89, 104], "underneath": 90, "hood": [90, 96, 98], "alert": 90, "introduct": 90, "mayb": [90, 91, 95], "your_feature_matrix": [90, 91], "toi": [90, 91, 92, 96, 97, 99, 101], "inf": [90, 91], "mid": [90, 91], "bins_map": [90, 91], "create_data": [90, 91], "y_bin": [90, 91], "y_i": [90, 91], "y_bin_idx": [90, 91], "y_train": [90, 91, 99, 106], "y_test": [90, 91, 99, 106], "y_train_idx": [90, 91], "y_test_idx": [90, 91], "slide": [90, 91, 97], "frame": [90, 91], "x_out": [90, 91], "tini": [90, 91], "concaten": [90, 91, 105], "y_out": [90, 91], "y_out_bin": [90, 91], "y_out_bin_idx": [90, 91], "exact_duplicate_idx": [90, 91], "x_duplic": [90, 91], "y_duplic": [90, 91], "y_duplicate_idx": [90, 91], "noisy_labels_idx": [90, 91, 102], "scatter": [90, 91, 96, 99, 102, 106], "black": [90, 91, 97, 106], "cyan": [90, 91], "plot_data": [90, 91, 96, 99, 102, 106], "fig": [90, 91, 92, 96, 97, 104, 106], "ax": [90, 91, 92, 96, 104, 106], "subplot": [90, 91, 92, 96, 104], "set_titl": [90, 91, 92, 96, 104], "set_xlabel": [90, 91], "x_1": [90, 91], "fontsiz": [90, 91, 92, 96, 99, 102], "set_ylabel": [90, 91], "x_2": [90, 91], "set_xlim": [90, 91], "set_ylim": [90, 91], "linestyl": [90, 91, 96], "circl": [90, 91, 99, 102], "misclassifi": [90, 91], "zip": [90, 91, 92, 96, 103, 108], "label_err": [90, 91], "180": [90, 91, 103], "marker": [90, 91], "facecolor": [90, 91, 96], "edgecolor": [90, 91, 96], "linewidth": [90, 91, 96, 104], "dup": [90, 91], "first_legend": [90, 91], "align": [90, 91], "title_fontproperti": [90, 91], "semibold": [90, 91], "second_legend": [90, 91], "45": [90, 91, 96, 97, 99, 103, 108], "gca": [90, 91], "add_artist": [90, 91], "tight_layout": [90, 91, 96], "ideal": [90, 91], "remaind": 90, "modal": [90, 91, 98, 101], "132": [90, 91, 99, 103], "9318": 90, "006940": 90, "007830": 90, "40": [90, 91, 95, 96, 97], "014828": 90, "107": [90, 91, 99, 102], "021241": 90, "026407": 90, "notic": [90, 99, 101, 103], "3558": [90, 91], "126": [90, 91, 99, 103], "006636": [90, 91], "130": [90, 91], "012571": [90, 91], "129": [90, 91], "127": [90, 91], "014909": [90, 91], "128": [90, 91, 92], "017443": [90, 91], "6160": [90, 91], "131": [90, 91, 107], "000000e": [90, 91], "000002": [90, 91], "463180e": [90, 91], "07": [90, 91, 92, 94, 96, 99, 103, 106, 108], "51": [90, 91, 94, 96, 97, 99, 103], "161148": [90, 91], "859087e": [90, 91], "30": [90, 91, 92, 96, 97, 98, 102, 107, 108], "3453": 90, "029542": 90, "031182": 90, "057961": 90, "058244": 90, "54": [90, 96, 97, 99, 103, 108], "039122": 90, "044598": 90, "105": [90, 103], "105196": 90, "133654": 90, "43": [90, 96, 97, 99, 103], "168033": 90, "125": 90, "101107": 90, "183382": 90, "109": [90, 97, 103, 108], "209259": 90, "211042": 90, "221316": 90, "average_ood_scor": 90, "34530442089193386": 90, "52": [90, 96, 97, 103], "169820": 90, "087324e": 90, "259024": 90, "583757e": 90, "91": [90, 103], "346458": 90, "341292e": 90, "specfi": 90, "new_lab": 90, "scoring_funct": 90, "div": 90, "rem": 90, "inv_scal": 90, "49": [90, 96, 97, 99, 103], "superstitionissuemanag": 90, "unlucki": 90, "superstit": 90, "to_seri": 90, "issues_mask": 90, "summary_scor": 90, "9242": 90, "is_superstition_issu": 90, "superstition_scor": 90, "26": [90, 92, 96, 97, 99, 101, 103], "047581": 90, "090635": 90, "129591": 90, "164840": 90, "lurk": [91, 92, 99], "thoroughli": 91, "8561": 91, "001908": 91, "003564": 91, "007331": 91, "008963": 91, "009664": 91, "0227": 91, "022727": 91, "conceptu": 91, "856061": 91, "355772": 91, "616034": 91, "821750": 91, "901562": 91, "betweeen": 91, "859131": 91, "417707": 91, "664083": 91, "970324": 91, "816953": 91, "375317": 91, "641516": 91, "890575": 91, "531021": 91, "460593": 91, "601188": 91, "826147": 91, "752808": 91, "321635": 91, "562539": 91, "948362": 91, "090243": 91, "472909": 91, "746763": 91, "878267": 91, "examples_w_issu": [91, 98], "013445": 91, "025184": 91, "026376": 91, "inde": [91, 95], "miscellan": [91, 93, 108], "428571": 91, "111111": 91, "571429": 91, "407407": 91, "592593": 91, "337838": 91, "092593": 91, "662162": 91, "333333": [91, 97], "952381": 91, "666667": [91, 96], "portion": 91, "huge": [91, 99], "worri": [91, 95], "critic": 91, "60": [92, 96, 99, 106], "torchvis": [92, 96, 104], "tensordataset": 92, "stratifiedkfold": [92, 102], "tqdm": 92, "autonotebook": 92, "math": 92, "fashion_mnist": 92, "num_row": [92, 96], "60000": 92, "transformed_dataset": [92, 96], "with_format": 92, "255": [92, 97], "cpu_count": 92, "torch_dataset": 92, "quick": [92, 102, 104], "super": [92, 94, 95], "relu": 92, "batchnorm2d": 92, "maxpool2d": 92, "lazylinear": 92, "flatten": [92, 96], "get_test_accuraci": 92, "testload": [92, 104], "energi": 92, "trainload": [92, 104], "n_epoch": 92, "patienc": 92, "criterion": 92, "crossentropyloss": 92, "adamw": 92, "best_test_accuraci": 92, "start_epoch": 92, "running_loss": 92, "best_epoch": 92, "end_epoch": 92, "3f": [92, 106], "acc": [92, 99], "time_taken": 92, "compute_embed": 92, "compute_pred_prob": 92, "train_batch_s": 92, "num_work": 92, "worker": [92, 108], "train_id_list": 92, "test_id_list": 92, "train_id": 92, "test_id": 92, "embeddings_model": 92, "ntrain": 92, "trainset": 92, "testset": 92, "pin_memori": 92, "fold_embed": 92, "fold_pred_prob": 92, "finish": 92, "482": 92, "720": 92, "801": 92, "329": [92, 94, 103], "88": [92, 97, 99, 102, 103, 106], "195": 92, "468": 92, "493": 92, "060": 92, "793": 92, "330": [92, 103], "505": 92, "570": 92, "476": 92, "340": 92, "822": 92, "328": [92, 103], "310": 92, "reorder": 92, "hstack": [92, 98, 99, 101], "vision": 92, "grayscal": [92, 96], "max_preval": [92, 96], "7714": 92, "3772": 92, "3585": 92, "166": 92, "3651": 92, "27080": 92, "873833e": 92, "40378": 92, "915575e": 92, "25316": 92, "390277e": 92, "06": [92, 99, 103, 108], "2090": 92, "751164e": 92, "14999": 92, "881301e": 92, "9569": 92, "11262": 92, "000003": 92, "coat": [92, 97], "shirt": [92, 97], "19228": 92, "000010": 92, "dress": 92, "32657": 92, "000013": 92, "bag": [92, 97, 104, 105], "21282": 92, "000016": 92, "53564": 92, "000018": 92, "pullov": 92, "6321": 92, "30968": 92, "001267": 92, "30659": 92, "000022": [92, 108], "47824": 92, "001454": 92, "3370": 92, "000026": 92, "54565": 92, "001854": 92, "9762": 92, "258": 92, "47139": 92, "000033": 92, "166980": 92, "986195": 92, "997205": 92, "sandal": [92, 97], "948781": 92, "999358": 92, "54078": 92, "17371": 92, "000025": 92, "plot_label_issue_exampl": 92, "ncol": [92, 104], "nrow": [92, 104], "ceil": 92, "axes_list": 92, "label_issue_indic": 92, "gl": 92, "sl": 92, "fontdict": 92, "imshow": [92, 96, 104], "cmap": [92, 96, 106], "grai": 92, "subplots_adjust": 92, "hspace": 92, "outsiz": 92, "outlier_issu": [92, 95], "outlier_issues_df": 92, "depict": [92, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 92, "n_comparison_imag": 92, "sample_from_class": 92, "number_of_sampl": 92, "non_outlier_indic": 92, "isnul": [92, 96], "non_outlier_indices_excluding_curr": 92, "sampled_indic": 92, "label_scores_of_sampl": 92, "top_score_indic": 92, "top_label_indic": 92, "sampled_imag": 92, "get_image_given_label_and_sampl": 92, "image_from_dataset": 92, "corresponding_label": 92, "comparison_imag": 92, "images_to_plot": 92, "idlist": 92, "iterrow": 92, "near_duplicate_issu": [92, 98], "closest": 92, "counterpart": 92, "near_duplicate_issues_df": 92, "plot_near_duplicate_issue_exampl": 92, "seen_id_pair": 92, "get_image_and_given_label_and_predicted_label": 92, "duplicate_imag": 92, "nd_set": 92, "challeng": 92, "dark_issu": 92, "reveal": [92, 103, 107], "dark_scor": [92, 96], "dark_issues_df": 92, "is_dark_issu": 92, "34848": 92, "203922": 92, "50270": 92, "204588": 92, "3936": 92, "213098": 92, "733": 92, "217686": 92, "8094": 92, "230118": 92, "plot_image_issue_exampl": 92, "difficult": 92, "disproportion": [92, 96], "lowinfo_issu": 92, "low_information_scor": [92, 96], "lowinfo_issues_df": 92, "is_low_information_issu": 92, "53050": 92, "067975": 92, "40875": 92, "089929": 92, "9594": 92, "092601": 92, "34825": 92, "107744": 92, "37530": 92, "108516": 92, "lot": 92, "workflow": [93, 98, 100, 106], "histgradientboostingclassifi": 94, "cat_featur": 94, "boost": [94, 98, 101, 106], "xgboost": [94, 98, 106], "think": [94, 95, 98, 102, 107, 108], "nonzero": 94, "358": 94, "941": 94, "294": [94, 103], "46": [94, 96, 97, 99, 103, 108], "7109": 94, "000005": [94, 95], "886": 94, "000059": 94, "709": 94, "000104": 94, "723": 94, "000169": 94, "689": 94, "000181": 94, "3590": 94, "051882e": 94, "683133e": 94, "536582e": 94, "406589e": 94, "324246e": 94, "6165": 94, "582": 94, "185": [94, 96, 97, 103, 108], "187": [94, 97], "898": 94, "0000": [94, 95, 97, 99], "865": 94, "515002": 94, "837": 94, "556480": 94, "622": 94, "593068": 94, "593207": 94, "920": 94, "618041": 94, "4386345844794593e": 94, "issue_result": 94, "000842": 94, "555944": 94, "004374": 94, "sorted_issu": 94, "73": [94, 96, 97, 102, 103, 106], "deserv": 94, "outlier_result": 94, "sorted_outli": 94, "56": [94, 96, 97, 106], "96": [94, 96, 97, 99, 102, 103, 106], "style": [94, 96, 107], "font": 94, "18px": 94, "ff00ff": 94, "bac": 94, "unintend": [94, 95, 96], "duplicate_result": 94, "lowest_scoring_dupl": 94, "idxmin": [94, 98], "indices_to_displai": 94, "tolist": [94, 98, 102], "perhap": [94, 99, 101], "second_lowest_scoring_dupl": 94, "next_indices_to_displai": 94, "wari": [94, 95, 98], "dive": [95, 96], "your_featur": 95, "text_embed": 95, "data_dict": [95, 99, 101], "85": [95, 103], "38": [95, 96, 97, 103], "9710": 95, "981": 95, "974": 95, "000146": 95, "982": [95, 97], "000224": 95, "971": 95, "000507": 95, "980": [95, 97], "000960": 95, "3584": 95, "994": 95, "009642": 95, "999": 95, "013067": 95, "013841": 95, "433": 95, "014722": 95, "989": 95, "018224": 95, "6070": 95, "160": [95, 106], "095724": 95, "148": 95, "006237": 95, "546": 95, "099341": 95, "514": 95, "006485": 95, "481": 95, "123418": 95, "008165": 95, "313": [95, 103], "564102": 95, "572258": 95, "574915": 95, "31": [95, 96, 97, 99, 101, 103], "575507": 95, "575874": 95, "792090": 95, "257611": 95, "698710": 95, "182121": 95, "771619": 95, "data_with_suggested_label": 95, "suggested_label": 95, "withdraw": 95, "monei": 95, "lowest_quality_outli": 95, "OR": 95, "636c65616e6c616220697320617765736f6d6521": 95, "phone": [95, 97], "gone": 95, "samp": 95, "br": 95, "press": [95, 108], "nonsens": 95, "sens": 95, "detriment": 95, "duplicate_issu": 95, "fee": 95, "go": [95, 96, 97, 99], "strongli": [95, 96], "p_valu": 95, "benign": 95, "curat": 95, "bigger": 96, "make_classif": 96, "5000": [96, 104], "n_featur": 96, "n_inform": 96, "n_redund": 96, "n_repeat": 96, "n_class": 96, "n_clusters_per_class": 96, "flip_i": 96, "class_sep": 96, "faiss": 96, "x_faiss": 96, "float32": [96, 103], "normalize_l2": 96, "index_factori": 96, "hnsw32": 96, "flat": [96, 97], "metric_inner_product": 96, "a_min": 96, "a_max": 96, "create_knn_graph": 96, "assert": 96, "indices_1d": 96, "ravel": 96, "distances_1d": 96, "sort_graph_by_row_valu": 96, "warn_when_not_sort": 96, "50000": 96, "524": 96, "991400": 96, "356924": 96, "363": 96, "619581": 96, "108": [96, 103], "500000": 96, "651929": 96, "999827": 96, "031217": 96, "933716": 96, "627345": 96, "998540": 96, "530909": 96, "296974": 96, "646765": 96, "942721": 96, "332824": 96, "803246": 96, "625202": 96, "999816": 96, "474031": 96, "706253": 96, "655108": 96, "997703": 96, "131466": 96, "912389": 96, "639200": 96, "4995": 96, "998646": 96, "504755": 96, "746777": 96, "680033": 96, "4996": 96, "894230": 96, "340986": 96, "816472": 96, "640711": 96, "4997": 96, "999100": 96, "428545": 96, "592421": 96, "658949": 96, "4998": 96, "986792": 96, "273710": 96, "618033": 96, "4999": 96, "986776": 96, "273524": 96, "618084": 96, "instabl": 96, "proxim": 96, "analys": 96, "comfort": 96, "explor": [96, 103, 104], "third": 96, "parti": [96, 108], "newsgroup": 96, "alt": [96, 97], "atheism": [96, 97], "sci": [96, 97], "fetch_20newsgroup": 96, "newsgroups_train": 96, "header": 96, "footer": 96, "quot": 96, "df_text": 96, "target_nam": 96, "enlighten": 96, "omnipot": 96, "19apr199320262420": 96, "kelvin": 96, "jpl": 96, "nasa": 96, "gov": 96, "baa": 96, "nhenri": 96, "he": 96, "nno": 96, "ge": 96, "nlucki": 96, "babi": [96, 97], "tfidfvector": 96, "feature_extract": 96, "x_vector": 96, "data_valuation_issu": 96, "147": [96, 99, 103], "500047": 96, "500093": 96, "499953": 96, "1068": 96, "1069": 96, "1070": 96, "1071": 96, "1072": 96, "1073": 96, "concentr": 96, "seaborn": 96, "sn": 96, "distinguish": 96, "strip": 96, "stripplot": 96, "hue": [96, 106], "dodg": 96, "jitter": 96, "axvlin": [96, 104], "xlabel": 96, "ourselv": 96, "make_blob": 96, "center": [96, 97], "cluster_std": 96, "n_noisy_label": 96, "meaning": [96, 98, 104], "silhouette_scor": 96, "gridsearchcv": 96, "silhouett": 96, "cluster_label": 96, "fit_predict": 96, "param_grid": 96, "grid_search": 96, "best_kmean": 96, "best_estimator_": 96, "underperforming_group_issu": 96, "328308": 96, "tab10": 96, "domain": 96, "knowledg": [96, 99], "dataset_tsv": 96, "ag": [96, 106], "gender": 96, "educ": 96, "experi": 96, "highsalari": 96, "indiana": 96, "phd": 96, "male": 96, "bachelor": 96, "femal": 96, "kansa": 96, "school": [96, 97], "ohio": 96, "57": [96, 97, 99], "california": 96, "59": [96, 97, 103], "34": [96, 97, 99, 101, 103, 108], "63": [96, 99, 103, 106], "47": [96, 97, 103], "stringio": 96, "sep": [96, 108], "simplic": [96, 102], "ordinalencod": 96, "columns_to_encod": 96, "encoded_df": 96, "salari": 96, "573681": 96, "underpin": 96, "caught": 96, "whenev": 96, "generate_data_depend": 96, "num_sampl": 96, "a1": 96, "a2": 96, "a3": 96, "375": 96, "975": 96, "non_iid_issu": 96, "796474": 96, "842432": 96, "922562": 96, "820759": 96, "873136": 96, "887373": 96, "825101": 96, "855875": 96, "751795": 96, "835796": 96, "ylabel": [96, 104], "coolwarm": 96, "colorbar": [96, 106], "strong": 96, "evid": 96, "inter": 96, "mitig": 96, "risk": 96, "deeper": 96, "tsv": 96, "tab": 96, "pars": 96, "annual_spend": 96, "number_of_transact": 96, "last_purchase_d": 96, "rural": 96, "4099": 96, "2024": [96, 108], "6421": 96, "nat": 96, "suburban": 96, "5436": 96, "4046": 96, "66": [96, 97], "3467": 96, "67": [96, 97, 103, 106], "4757": 96, "4199": 96, "4991": 96, "4655": 96, "82": [96, 97, 99, 103, 106], "5584": 96, "urban": 96, "3102": 96, "6637": 96, "9167": 96, "6790": 96, "5327": 96, "parse_d": 96, "lose": 96, "intact": 96, "encode_categorical_column": 96, "placehold": 96, "dropna": [96, 101], "category_to_numb": 96, "_encod": 96, "gender_encod": 96, "location_encod": 96, "focus": [96, 99, 101, 102, 106], "null_issu": 96, "833333": 96, "sorted_indic": [96, 103], "sorted_df": 96, "nice": 96, "styler": 96, "combined_df": 96, "concat": [96, 106], "highlight_null_valu": 96, "val": [96, 99], "yellow": [96, 97], "highlight_datalab_column": 96, "lightblu": 96, "highlight_is_null_issu": 96, "orang": [96, 97], "styled_df": 96, "nbsp": [96, 98, 99], "160000": 96, "820000": 96, "460000": 96, "470000": 96, "960000": 96, "620000": 96, "550000": 96, "660000": 96, "670000": [96, 97], "370000": 96, "530000": 96, "710000": 96, "020000": 96, "320000": 96, "990000": 96, "rarer": 96, "fairer": 96, "randomli": [96, 99], "class_imbalance_issu": 96, "countplot": 96, "xtick": 96, "rotat": 96, "ytick": 96, "filtered_df": 96, "xy": 96, "va": 96, "textual": 96, "get_ytick": 96, "nbar": 96, "nimbal": 96, "get_legend_handles_label": 96, "title_fonts": 96, "aspect": 96, "anomali": [96, 103], "enhanc": [96, 99, 101, 103], "artifici": 96, "alter": [96, 98], "darken": 96, "blurry_scor": 96, "odd_aspect_ratio_scor": 96, "setup": 96, "cifar10": 96, "markdown": 96, "root": [96, 104], "selected_class": 96, "convert_to_png_imag": 96, "bytesio": [96, 97], "seek": 96, "max_num_imag": 96, "list_imag": 96, "list_label": 96, "num_imag": 96, "img": [96, 104, 106], "toronto": [96, 104], "edu": [96, 104], "kriz": [96, 104], "170498071": [96, 104], "69520911": 96, "78it": 96, "dataset_dict": 96, "from_dict": [96, 98], "apply_dark": 96, "transformed_list_imag": 96, "transformed_dataset_dict": 96, "plot_imag": [96, 104], "num_images_to_plot": 96, "num_col": 96, "hide": 96, "get_property_scor": 96, "_spurious_correl": 96, "get_specific_property_scor": 96, "property_scores_df": 96, "property_nam": 96, "standard_property_scor": 96, "transformed_property_scor": 96, "295": [96, 103], "light_scor": 96, "415": 96, "325": 96, "odd_size_scor": 96, "grayscale_scor": 96, "015": 96, "refin": 97, "instruct": [97, 98], "studi": [97, 103], "mnist_test_set": 97, "imagenet_val_set": 97, "tench": 97, "goldfish": 97, "white": [97, 108], "shark": 97, "tiger": 97, "hammerhead": 97, "electr": 97, "rai": 97, "stingrai": 97, "cock": 97, "hen": 97, "ostrich": 97, "brambl": 97, "goldfinch": 97, "hous": 97, "finch": 97, "junco": 97, "indigo": 97, "bunt": 97, "american": [97, 108], "robin": 97, "bulbul": 97, "jai": 97, "magpi": 97, "chickade": 97, "dipper": 97, "kite": 97, "bald": 97, "eagl": 97, "vultur": 97, "grei": 97, "owl": 97, "salamand": 97, "smooth": 97, "newt": 97, "spot": [97, 98, 103], "axolotl": 97, "bullfrog": 97, "tree": 97, "frog": [97, 104], "tail": 97, "loggerhead": 97, "sea": 97, "turtl": 97, "leatherback": 97, "mud": 97, "terrapin": 97, "band": 97, "gecko": 97, "green": [97, 108], "iguana": 97, "carolina": 97, "anol": 97, "desert": 97, "grassland": 97, "whiptail": 97, "lizard": 97, "agama": 97, "frill": 97, "neck": 97, "allig": 97, "gila": 97, "monster": 97, "european": 97, "chameleon": 97, "komodo": 97, "dragon": 97, "nile": 97, "crocodil": 97, "triceratop": 97, "worm": 97, "snake": 97, "ring": 97, "eastern": 97, "hog": 97, "nose": 97, "kingsnak": 97, "garter": 97, "water": 97, "vine": 97, "night": 97, "boa": 97, "constrictor": 97, "african": 97, "rock": 97, "indian": 97, "cobra": 97, "mamba": 97, "saharan": 97, "horn": 97, "viper": 97, "diamondback": 97, "rattlesnak": 97, "sidewind": 97, "trilobit": 97, "harvestman": 97, "scorpion": 97, "garden": 97, "spider": 97, "barn": 97, "southern": 97, "widow": 97, "tarantula": 97, "wolf": 97, "tick": 97, "centiped": 97, "grous": 97, "ptarmigan": 97, "ruf": 97, "prairi": 97, "peacock": 97, "quail": 97, "partridg": 97, "parrot": 97, "macaw": 97, "sulphur": 97, "crest": 97, "cockatoo": 97, "lorikeet": 97, "coucal": 97, "bee": 97, "eater": 97, "hornbil": 97, "hummingbird": 97, "jacamar": 97, "toucan": 97, "breast": 97, "mergans": 97, "goos": 97, "swan": 97, "tusker": 97, "echidna": 97, "platypu": 97, "wallabi": 97, "koala": 97, "wombat": 97, "jellyfish": 97, "anemon": 97, "brain": 97, "coral": 97, "flatworm": 97, "nematod": 97, "conch": 97, "snail": 97, "slug": 97, "chiton": 97, "chamber": 97, "nautilu": 97, "dung": 97, "crab": 97, "fiddler": 97, "king": 97, "lobster": 97, "spini": 97, "crayfish": 97, "hermit": 97, "isopod": 97, "stork": 97, "spoonbil": 97, "flamingo": 97, "heron": 97, "egret": 97, "bittern": 97, "crane": 97, "bird": [97, 104], "limpkin": 97, "gallinul": 97, "coot": 97, "bustard": 97, "ruddi": 97, "turnston": 97, "dunlin": 97, "redshank": 97, "dowitch": 97, "oystercatch": 97, "pelican": 97, "penguin": 97, "albatross": 97, "whale": 97, "killer": 97, "dugong": 97, "lion": 97, "chihuahua": 97, "japanes": 97, "chin": 97, "maltes": 97, "pekinges": 97, "shih": 97, "tzu": 97, "charl": 97, "spaniel": 97, "papillon": 97, "terrier": 97, "rhodesian": 97, "ridgeback": 97, "afghan": [97, 108], "hound": 97, "basset": 97, "beagl": 97, "bloodhound": 97, "bluetick": 97, "coonhound": 97, "tan": 97, "walker": 97, "foxhound": 97, "redbon": 97, "borzoi": 97, "irish": 97, "wolfhound": 97, "italian": 97, "greyhound": 97, "whippet": 97, "ibizan": 97, "norwegian": 97, "elkhound": 97, "otterhound": 97, "saluki": 97, "scottish": 97, "deerhound": 97, "weimaran": 97, "staffordshir": 97, "bull": 97, "bedlington": 97, "border": 97, "kerri": 97, "norfolk": 97, "norwich": 97, "yorkshir": 97, "wire": 97, "fox": 97, "lakeland": 97, "sealyham": 97, "airedal": 97, "cairn": 97, "australian": 97, "dandi": 97, "dinmont": 97, "boston": 97, "miniatur": 97, "schnauzer": 97, "giant": 97, "tibetan": 97, "silki": 97, "wheaten": 97, "west": 97, "highland": 97, "lhasa": 97, "apso": 97, "retriev": 97, "curli": 97, "golden": 97, "labrador": 97, "chesapeak": 97, "bai": 97, "german": [97, 108], "shorthair": 97, "pointer": 97, "vizsla": 97, "setter": 97, "gordon": 97, "brittani": 97, "clumber": 97, "springer": 97, "welsh": 97, "cocker": 97, "sussex": 97, "kuvasz": 97, "schipperk": 97, "groenendael": 97, "malinoi": 97, "briard": 97, "kelpi": 97, "komondor": 97, "sheepdog": 97, "shetland": 97, "colli": 97, "bouvier": 97, "de": 97, "flandr": 97, "rottweil": 97, "shepherd": 97, "dobermann": 97, "pinscher": 97, "swiss": [97, 108], "mountain": 97, "bernes": 97, "appenzel": 97, "sennenhund": 97, "entlebuch": 97, "boxer": 97, "bullmastiff": 97, "mastiff": 97, "french": 97, "bulldog": 97, "dane": 97, "st": 97, "bernard": 97, "huski": 97, "alaskan": 97, "malamut": 97, "siberian": 97, "dalmatian": 97, "affenpinsch": 97, "basenji": 97, "pug": 97, "leonberg": 97, "newfoundland": 97, "pyrenean": 97, "samoi": 97, "pomeranian": 97, "chow": 97, "keeshond": 97, "griffon": 97, "bruxelloi": 97, "pembrok": 97, "corgi": 97, "cardigan": 97, "poodl": 97, "mexican": 97, "hairless": 97, "tundra": 97, "coyot": 97, "dingo": 97, "dhole": 97, "wild": 97, "hyena": 97, "kit": 97, "arctic": 97, "tabbi": 97, "persian": 97, "siames": 97, "egyptian": 97, "mau": 97, "cougar": 97, "lynx": 97, "leopard": 97, "snow": 97, "jaguar": 97, "cheetah": 97, "brown": [97, 107], "bear": 97, "polar": 97, "sloth": 97, "mongoos": 97, "meerkat": 97, "beetl": 97, "ladybug": 97, "longhorn": 97, "leaf": 97, "rhinocero": 97, "weevil": 97, "fly": 97, "ant": 97, "grasshopp": 97, "cricket": 97, "stick": 97, "insect": 97, "cockroach": 97, "manti": 97, "cicada": 97, "leafhopp": 97, "lacew": 97, "dragonfli": 97, "damselfli": 97, "admir": 97, "ringlet": 97, "monarch": 97, "butterfli": 97, "gossam": 97, "wing": 97, "starfish": 97, "urchin": 97, "cucumb": 97, "cottontail": 97, "rabbit": 97, "hare": 97, "angora": 97, "hamster": 97, "porcupin": 97, "squirrel": 97, "marmot": 97, "beaver": 97, "guinea": 97, "pig": 97, "sorrel": 97, "zebra": 97, "boar": 97, "warthog": 97, "hippopotamu": 97, "ox": 97, "buffalo": 97, "bison": 97, "bighorn": 97, "sheep": 97, "alpin": 97, "ibex": 97, "hartebeest": 97, "impala": 97, "gazel": 97, "dromedari": 97, "llama": 97, "weasel": 97, "mink": 97, "polecat": 97, "foot": 97, "ferret": 97, "otter": 97, "skunk": 97, "badger": 97, "armadillo": 97, "toed": 97, "orangutan": 97, "gorilla": 97, "chimpanze": 97, "gibbon": 97, "siamang": 97, "guenon": 97, "pata": 97, "monkei": 97, "baboon": 97, "macaqu": 97, "langur": 97, "colobu": 97, "probosci": 97, "marmoset": 97, "capuchin": 97, "howler": 97, "titi": 97, "geoffroi": 97, "lemur": 97, "indri": 97, "asian": 97, "eleph": 97, "bush": 97, "snoek": 97, "eel": 97, "coho": 97, "salmon": 97, "beauti": 97, "clownfish": 97, "sturgeon": 97, "garfish": 97, "lionfish": 97, "pufferfish": 97, "abacu": 97, "abaya": 97, "academ": 97, "gown": 97, "accordion": 97, "acoust": 97, "guitar": 97, "aircraft": 97, "carrier": 97, "airlin": 97, "airship": 97, "altar": 97, "ambul": 97, "amphibi": 97, "clock": [97, 108], "apiari": 97, "apron": 97, "wast": 97, "assault": 97, "rifl": 97, "backpack": 97, "bakeri": 97, "balanc": 97, "beam": 97, "balloon": 97, "ballpoint": 97, "pen": 97, "aid": 97, "banjo": 97, "balust": 97, "barbel": 97, "barber": 97, "chair": [97, 103], "barbershop": 97, "baromet": 97, "barrel": 97, "wheelbarrow": 97, "basebal": 97, "basketbal": 97, "bassinet": 97, "bassoon": 97, "swim": 97, "cap": 97, "bath": 97, "towel": 97, "bathtub": 97, "station": 97, "wagon": 97, "lighthous": 97, "beaker": 97, "militari": 97, "beer": 97, "bottl": 97, "glass": 97, "bell": 97, "cot": 97, "bib": 97, "bicycl": [97, 107], "bikini": 97, "binder": 97, "binocular": 97, "birdhous": 97, "boathous": 97, "bobsleigh": 97, "bolo": 97, "tie": 97, "poke": 97, "bonnet": 97, "bookcas": 97, "bookstor": 97, "bow": 97, "brass": 97, "bra": 97, "breakwat": 97, "breastplat": 97, "broom": 97, "bucket": 97, "buckl": 97, "bulletproof": 97, "vest": 97, "butcher": 97, "shop": 97, "taxicab": 97, "cauldron": 97, "candl": 97, "cannon": 97, "cano": 97, "mirror": [97, 103], "carousel": 97, "tool": [97, 99, 101], "carton": 97, "wheel": 97, "teller": 97, "cassett": 97, "player": 97, "castl": 97, "catamaran": 97, "cd": 97, "cello": 97, "mobil": [97, 108], "chain": 97, "fenc": [97, 107], "mail": 97, "chainsaw": 97, "chest": 97, "chiffoni": 97, "chime": 97, "china": 97, "cabinet": 97, "christma": 97, "stock": 97, "church": 97, "movi": 97, "theater": 97, "cleaver": 97, "cliff": 97, "dwell": 97, "cloak": 97, "clog": 97, "cocktail": 97, "shaker": 97, "coffe": 97, "mug": 97, "coffeemak": 97, "coil": 97, "lock": 97, "keyboard": 97, "confectioneri": 97, "ship": [97, 104], "corkscrew": 97, "cornet": 97, "cowboi": 97, "boot": 97, "hat": 97, "cradl": 97, "crash": 97, "helmet": 97, "crate": 97, "infant": 97, "bed": 97, "crock": 97, "pot": 97, "croquet": 97, "crutch": 97, "cuirass": 97, "dam": 97, "desk": 97, "desktop": 97, "rotari": 97, "dial": 97, "telephon": 97, "diaper": 97, "watch": 97, "dine": 97, "dishcloth": 97, "dishwash": 97, "disc": 97, "brake": 97, "dock": 97, "sled": 97, "dome": 97, "doormat": 97, "drill": 97, "rig": 97, "drum": 97, "drumstick": 97, "dumbbel": 97, "dutch": 97, "oven": 97, "fan": 97, "locomot": 97, "entertain": 97, "envelop": 97, "espresso": 97, "powder": 97, "feather": 97, "fireboat": 97, "engin": [97, 107], "screen": 97, "sheet": 97, "flagpol": 97, "flute": 97, "footbal": 97, "forklift": 97, "fountain": 97, "poster": 97, "freight": 97, "fry": 97, "pan": 97, "fur": 97, "garbag": 97, "ga": 97, "pump": 97, "goblet": 97, "kart": 97, "golf": 97, "cart": 97, "gondola": 97, "gong": 97, "grand": 97, "piano": 97, "greenhous": 97, "grill": 97, "groceri": 97, "guillotin": 97, "barrett": 97, "hair": 97, "sprai": 97, "hammer": 97, "dryer": 97, "hand": [97, 99], "handkerchief": 97, "drive": 97, "harmonica": 97, "harp": 97, "harvest": 97, "hatchet": 97, "holster": 97, "honeycomb": 97, "hoop": 97, "skirt": 97, "horizont": 97, "bar": 97, "drawn": 97, "hourglass": 97, "ipod": 97, "cloth": 97, "iron": 97, "jack": 97, "lantern": 97, "jean": 97, "jeep": 97, "jigsaw": 97, "puzzl": 97, "pull": 97, "rickshaw": 97, "joystick": 97, "kimono": 97, "knee": 97, "pad": 97, "knot": 97, "ladl": 97, "lampshad": 97, "laptop": 97, "lawn": 97, "mower": 97, "knife": 97, "lifeboat": 97, "lighter": 97, "limousin": 97, "ocean": 97, "liner": 97, "lipstick": 97, "slip": 97, "shoe": 97, "lotion": 97, "speaker": 97, "loup": 97, "sawmil": 97, "magnet": 97, "compass": 97, "mailbox": 97, "tight": 97, "tank": 97, "manhol": 97, "maraca": 97, "marimba": 97, "maypol": 97, "maze": 97, "cup": [97, 103], "medicin": 97, "megalith": 97, "microphon": 97, "microwav": 97, "milk": 97, "minibu": 97, "miniskirt": 97, "minivan": 97, "missil": 97, "mitten": [97, 98], "mix": 97, "bowl": 97, "modem": 97, "monasteri": 97, "monitor": 97, "mope": 97, "mortar": 97, "mosqu": 97, "mosquito": 97, "scooter": 97, "bike": 97, "tent": 97, "mous": [97, 98], "mousetrap": 97, "van": 97, "muzzl": 97, "nail": 97, "brace": 97, "necklac": 97, "nippl": 97, "obelisk": 97, "obo": 97, "ocarina": 97, "odomet": 97, "oil": 97, "oscilloscop": 97, "overskirt": 97, "bullock": 97, "oxygen": 97, "packet": 97, "paddl": 97, "padlock": 97, "paintbrush": 97, "pajama": 97, "palac": [97, 108], "parachut": 97, "park": 97, "bench": 97, "meter": 97, "passeng": 97, "patio": 97, "payphon": 97, "pedest": 97, "pencil": 97, "perfum": 97, "petri": 97, "dish": 97, "photocopi": 97, "plectrum": 97, "pickelhaub": 97, "picket": 97, "pickup": 97, "pier": 97, "piggi": 97, "pill": 97, "pillow": 97, "ping": 97, "pong": 97, "pinwheel": 97, "pirat": 97, "pitcher": 97, "plane": 97, "planetarium": 97, "plastic": 97, "plate": 97, "rack": 97, "plow": 97, "plunger": 97, "polaroid": 97, "camera": 97, "pole": [97, 107], "polic": 97, "poncho": 97, "billiard": 97, "soda": 97, "potter": 97, "prayer": 97, "rug": 97, "printer": 97, "prison": 97, "projectil": 97, "projector": 97, "hockei": 97, "puck": 97, "punch": 97, "purs": 97, "quill": 97, "quilt": 97, "race": 97, "racket": 97, "radiat": 97, "radio": 97, "telescop": 97, "rain": 97, "recreat": 97, "reel": 97, "reflex": 97, "refriger": 97, "remot": 97, "restaur": 97, "revolv": 97, "rotisseri": 97, "eras": 97, "rugbi": 97, "ruler": 97, "safe": 97, "safeti": 97, "salt": 97, "sarong": 97, "saxophon": 97, "scabbard": 97, "bu": [97, 107], "schooner": 97, "scoreboard": 97, "crt": 97, "screw": 97, "screwdriv": 97, "seat": 97, "belt": 97, "sew": 97, "shield": 97, "shoji": 97, "basket": 97, "shovel": 97, "shower": 97, "curtain": 97, "ski": 97, "sleep": 97, "door": 97, "slot": 97, "snorkel": 97, "snowmobil": 97, "snowplow": 97, "soap": 97, "dispens": 97, "soccer": [97, 108], "sock": [97, 98], "solar": 97, "thermal": 97, "collector": 97, "sombrero": 97, "soup": 97, "heater": 97, "shuttl": 97, "spatula": 97, "motorboat": 97, "web": 97, "spindl": 97, "sport": [97, 108], "spotlight": 97, "stage": 97, "steam": 97, "arch": 97, "bridg": 97, "steel": 97, "stethoscop": 97, "scarf": 97, "stone": 97, "wall": [97, 107], "stopwatch": 97, "stove": 97, "strainer": 97, "tram": 97, "stretcher": 97, "couch": 97, "stupa": 97, "submarin": 97, "sundial": 97, "sunglass": 97, "sunscreen": 97, "suspens": 97, "mop": 97, "sweatshirt": 97, "swimsuit": 97, "swing": 97, "switch": 97, "syring": 97, "lamp": 97, "tape": 97, "teapot": 97, "teddi": 97, "televis": [97, 108], "tenni": 97, "thatch": 97, "roof": 97, "thimbl": 97, "thresh": 97, "throne": 97, "tile": 97, "toaster": 97, "tobacco": 97, "toilet": 97, "totem": 97, "tow": 97, "tractor": 97, "semi": 97, "trailer": 97, "trai": 97, "trench": 97, "tricycl": 97, "trimaran": 97, "tripod": 97, "triumphal": 97, "trolleybu": 97, "trombon": 97, "tub": 97, "turnstil": 97, "typewrit": 97, "umbrella": 97, "unicycl": 97, "upright": 97, "vacuum": 97, "cleaner": 97, "vase": 97, "vault": 97, "velvet": 97, "vend": 97, "vestment": 97, "viaduct": 97, "violin": 97, "volleybal": 97, "waffl": 97, "wallet": 97, "wardrob": 97, "sink": 97, "wash": 97, "jug": 97, "tower": 97, "whiskei": 97, "whistl": 97, "wig": 97, "shade": [97, 107], "windsor": 97, "wine": 97, "wok": 97, "wooden": 97, "spoon": 97, "wool": 97, "rail": 97, "shipwreck": 97, "yawl": 97, "yurt": 97, "websit": 97, "comic": 97, "book": 97, "crossword": 97, "traffic": [97, 103, 107], "sign": [97, 107, 108], "dust": 97, "jacket": [97, 103], "menu": 97, "guacamol": 97, "consomm": 97, "trifl": 97, "ic": 97, "cream": 97, "pop": 97, "baguett": 97, "bagel": 97, "pretzel": 97, "cheeseburg": 97, "mash": 97, "potato": 97, "cabbag": 97, "broccoli": 97, "cauliflow": 97, "zucchini": 97, "spaghetti": 97, "squash": 97, "acorn": 97, "butternut": 97, "artichok": 97, "pepper": [97, 98], "cardoon": 97, "mushroom": 97, "granni": 97, "smith": 97, "strawberri": 97, "lemon": 97, "pineappl": 97, "banana": 97, "jackfruit": 97, "custard": 97, "appl": 97, "pomegran": 97, "hai": 97, "carbonara": 97, "chocol": 97, "syrup": 97, "dough": 97, "meatloaf": 97, "pizza": 97, "pie": 97, "burrito": 97, "eggnog": 97, "alp": 97, "bubbl": 97, "reef": 97, "geyser": 97, "lakeshor": 97, "promontori": 97, "shoal": 97, "seashor": 97, "vallei": 97, "volcano": 97, "bridegroom": 97, "scuba": 97, "diver": 97, "rapese": 97, "daisi": 97, "ladi": 97, "slipper": 97, "corn": 97, "rose": 97, "hip": 97, "chestnut": 97, "fungu": 97, "agar": 97, "gyromitra": 97, "stinkhorn": 97, "earth": 97, "star": 97, "wood": 97, "bolet": 97, "ear": 97, "cifar10_test_set": 97, "airplan": [97, 104], "automobil": [97, 104], "deer": [97, 104], "cifar100_test_set": 97, "aquarium_fish": 97, "boi": 97, "camel": 97, "caterpillar": 97, "cattl": [97, 108], "cloud": 97, "dinosaur": 97, "dolphin": 97, "flatfish": 97, "forest": 97, "girl": 97, "kangaroo": 97, "lawn_mow": 97, "man": 97, "maple_tre": 97, "motorcycl": [97, 107], "oak_tre": 97, "orchid": 97, "palm_tre": 97, "pear": 97, "pickup_truck": 97, "pine_tre": 97, "plain": 97, "poppi": 97, "possum": 97, "raccoon": 97, "road": [97, 107], "rocket": 97, "seal": 97, "shrew": 97, "skyscrap": 97, "streetcar": 97, "sunflow": 97, "sweet_pepp": 97, "trout": 97, "tulip": 97, "willow_tre": 97, "woman": [97, 103], "caltech256": 97, "ak47": 97, "bat": 97, "glove": 97, "birdbath": 97, "blimp": 97, "bonsai": 97, "boom": 97, "breadmak": 97, "buddha": 97, "bulldoz": 97, "cactu": 97, "cake": 97, "tire": 97, "cartman": 97, "cereal": 97, "chandeli": 97, "chess": 97, "board": 97, "chimp": 97, "chopstick": 97, "coffin": 97, "coin": 97, "comet": 97, "cormor": 97, "globe": 97, "diamond": 97, "dice": 97, "doorknob": 97, "drink": 97, "straw": 97, "dumb": 97, "eiffel": 97, "elk": 97, "ewer": 97, "eyeglass": 97, "fern": 97, "fighter": 97, "jet": [97, 106], "extinguish": 97, "hydrant": 97, "firework": 97, "flashlight": 97, "floppi": 97, "fri": 97, "frisbe": 97, "galaxi": 97, "giraff": 97, "goat": 97, "gate": 97, "grape": 97, "pick": [97, 98], "hamburg": 97, "hammock": 97, "harpsichord": 97, "hawksbil": 97, "helicopt": 97, "hibiscu": 97, "homer": 97, "simpson": 97, "horsesho": 97, "air": 97, "skeleton": 97, "ibi": 97, "cone": 97, "iri": 97, "jesu": 97, "christ": 97, "joi": 97, "kayak": 97, "ketch": 97, "ladder": 97, "lath": 97, "licens": 97, "lightbulb": 97, "lightn": 97, "mandolin": 97, "mar": 97, "mattress": 97, "megaphon": 97, "menorah": 97, "microscop": 97, "minaret": 97, "minotaur": 97, "motorbik": 97, "mussel": 97, "neckti": 97, "octopu": 97, "palm": 97, "pilot": 97, "paperclip": 97, "shredder": 97, "pci": 97, "peopl": [97, 103], "pez": 97, "picnic": 97, "pram": 97, "prai": 97, "pyramid": 97, "rainbow": 97, "roulett": 97, "saddl": 97, "saturn": 97, "segwai": 97, "propel": 97, "sextant": 97, "music": 97, "skateboard": 97, "smokestack": 97, "sneaker": 97, "boat": 97, "stain": 97, "steer": 97, "stirrup": 97, "superman": 97, "sushi": 97, "armi": [97, 108], "sword": 97, "tambourin": 97, "teepe": 97, "court": 97, "theodolit": 97, "tomato": 97, "tombston": 97, "tour": 97, "pisa": 97, "treadmil": 97, "fork": 97, "tweezer": 97, "unicorn": 97, "vcr": 97, "waterfal": 97, "watermelon": 97, "weld": 97, "windmil": 97, "xylophon": 97, "yarmulk": 97, "yo": 97, "toad": 97, "twenty_news_test_set": 97, "comp": 97, "graphic": [97, 107], "misc": [97, 108], "sy": 97, "ibm": 97, "pc": 97, "hardwar": 97, "mac": 97, "forsal": 97, "rec": 97, "crypt": 97, "electron": 97, "med": 97, "soc": 97, "religion": 97, "christian": [97, 108], "talk": [97, 108], "polit": 97, "gun": 97, "mideast": 97, "amazon": 97, "neutral": 97, "imdb_test_set": 97, "all_class": 97, "20news_test_set": 97, "_load_classes_predprobs_label": 97, "dataset_nam": 97, "labelerror": 97, "url_bas": 97, "5392f6c71473055060be3044becdde1cbc18284d": 97, "url_label": 97, "original_test_label": 97, "_original_label": 97, "url_prob": 97, "cross_validated_predicted_prob": 97, "_pyx": 97, "num_part": 97, "datatset": 97, "allow_pickl": 97, "pred_probs_part": 97, "url": 97, "_of_": 97, "nload": 97, "imdb": 97, "ve": [97, 98, 99, 101, 103], "capit": 97, "29780": 97, "256": [97, 98, 103], "780": 97, "medic": [97, 108], "doctor": 97, "254": [97, 103], "359223": 97, "640777": 97, "184": [97, 99], "258427": 97, "341176": 97, "263158": 97, "658824": 97, "337349": 97, "246575": 97, "662651": 97, "248": 97, "330000": 97, "355769": 97, "251": [97, 103], "167": [97, 99, 103], "252": 97, "112": 97, "253": [97, 103], "022989": 97, "049505": 97, "190": [97, 99, 103], "002216": 97, "000974": 97, "000873": 97, "000739": 97, "32635": 97, "32636": 97, "32637": 97, "32638": 97, "32639": 97, "32640": 97, "051": 97, "002242": 97, "997758": 97, "002088": 97, "001045": 97, "997912": 97, "002053": 97, "997947": 97, "001980": 97, "000991": 97, "998020": 97, "001946": 97, "002915": 97, "998054": 97, "001938": 97, "002904": 97, "998062": 97, "001020": 97, "998980": 97, "001018": 97, "002035": 97, "998982": 97, "999009": 97, "0003": 97, "0002": 97, "071": 97, "067269": 97, "929": 97, "046": 97, "058243": 97, "954": 97, "035": 97, "032096": 97, "965": 97, "031": 97, "012232": 97, "969": 97, "022": 97, "025896": 97, "978": 97, "020": [97, 99], "013092": 97, "018": 97, "013065": 97, "016": 97, "030542": 97, "984": 97, "013": 97, "020833": 97, "987": 97, "012": 97, "010020": 97, "988": 97, "0073": 97, "0020": 97, "0016": 97, "0015": 97, "0014": 97, "0013": 97, "0012": 97, "0010": 97, "0008": 97, "0007": 97, "0006": 97, "0005": 97, "0004": 97, "244": [97, 103], "452381": 97, "459770": 97, "523364": 97, "460784": 97, "446602": 97, "103774": 97, "030612": 97, "110092": 97, "049020": 97, "0034": 97, "0032": 97, "0026": 97, "0025": 97, "4945": 97, "4946": 97, "4947": 97, "4948": 97, "4949": 97, "4950": 97, "846": 97, "7532": 97, "532": 97, "034483": 97, "009646": 97, "965517": 97, "030457": 97, "020513": 97, "969543": 97, "028061": 97, "035443": 97, "971939": 97, "025316": 97, "005168": 97, "974684": 97, "049751": 97, "979487": 97, "019920": 97, "042802": 97, "980080": 97, "017677": 97, "005115": 97, "982323": 97, "012987": 97, "005236": 97, "987013": 97, "012723": 97, "025126": 97, "987277": 97, "010989": 97, "008264": 97, "989011": 97, "010283": 97, "027778": 97, "989717": 97, "009677": 97, "990323": 97, "007614": 97, "010127": 97, "992386": 97, "005051": 97, "994949": 97, "005025": 97, "994975": 97, "005013": 97, "994987": 97, "001859": 97, "001328": 97, "000929": 97, "000664": 97, "186": [97, 99], "188": [97, 99, 102], "189": [97, 99], "snippet": 98, "nlp": [98, 108], "mind": [98, 99], "alphanumer": 98, "facilit": 98, "seamless": 98, "classlabel": 98, "guidanc": 98, "labels_str": 98, "datalab_str": 98, "labels_int": 98, "remap": 98, "datalab_int": 98, "my_dict": 98, "pet_nam": 98, "rover": 98, "rocki": 98, "speci": 98, "datalab_dataset": 98, "number_of_class": 98, "total_number_of_data_point": 98, "feed": 98, "alphabet": 98, "labels_proper_format": 98, "your_classifi": 98, "issues_datafram": 98, "class_predicted_for_flagged_exampl": 98, "class_predicted_for_all_exampl": 98, "grant": 98, "On": [98, 99, 103], "merged_dataset": 98, "label_column_nam": 98, "datataset": 98, "fair": [98, 99], "game": 98, "speedup": [98, 104], "tempfil": 98, "mkdtemp": 98, "sped": 98, "anywai": 98, "pred_probs_merg": 98, "merge_rare_class": 98, "count_threshold": 98, "class_mapping_orig2new": 98, "heath_summari": 98, "num_examples_per_class": 98, "rare_class": 98, "num_classes_merg": 98, "other_class": 98, "labels_merg": 98, "new_c": 98, "merged_prob": 98, "new_class": 98, "original_class": 98, "num_check": 98, "ones_array_ref": 98, "isclos": 98, "though": [98, 99, 108], "successfulli": 98, "virtuou": [98, 101], "cycl": [98, 101], "jointli": 98, "junk": 98, "clutter": 98, "unknown": 98, "caltech": 98, "combined_boolean_mask": 98, "mask1": 98, "mask2": 98, "gradientboostingclassifi": [98, 99], "true_error": [98, 99, 102], "101": [98, 103], "102": [98, 102, 103], "104": [98, 99, 103], "model_to_find_error": 98, "model_to_return": 98, "cl0": 98, "randomizedsearchcv": 98, "expens": 98, "param_distribut": 98, "learning_r": [98, 99], "max_depth": [98, 99], "magnitud": 98, "coeffici": [98, 106], "optin": 98, "environ": [98, 99], "rerun": [98, 99], "cell": [98, 99], "unabl": [98, 99], "render": [98, 99], "nbviewer": [98, 99], "cleanlearninginot": [98, 99], "fittedcleanlearn": [98, 99], "linearregressionlinearregress": 98, "unexpectedli": 98, "emphas": 98, "crucial": 98, "merge_duplicate_set": 98, "merge_kei": 98, "construct_group_kei": 98, "merged_set": 98, "consolidate_set": 98, "issubset": 98, "frozenset": 98, "sets_list": 98, "mutabl": 98, "new_set": 98, "current_set": 98, "intersecting_set": 98, "lowest_score_strategi": 98, "sub_df": 98, "filter_near_dupl": 98, "strategy_fn": 98, "strategy_kwarg": 98, "duplicate_row": 98, "group_kei": 98, "to_keep_indic": 98, "groupbi": 98, "explod": 98, "to_remov": 98, "isin": [98, 104], "kept": 98, "ids_to_remove_seri": 98, "assist": 98, "streamlin": 98, "ux": 98, "agpl": 98, "compani": 98, "commerci": 98, "email": 98, "team": 98, "discuss": 98, "anywher": 98, "profession": 98, "expert": 98, "depth": 99, "survei": [99, 108], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103, 108], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "103": [99, 103], "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103, 108], "037843": 99, "222": 99, "614915": 99, "122": [99, 103], "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "magic": 99, "liter": 99, "identif": 99, "x27": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "percentag": 99, "offset": 99, "nquestion": 99, "overestim": 99, "answer": 99, "experienc": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "197": [99, 103], "196": [99, 103], "170": 99, "214": 99, "164": [99, 102], "198": [99, 103], "191": [99, 103], "117": [99, 106], "206": [99, 103], "115": [99, 103, 108], "193": 99, "194": 99, "201": [99, 103], "174": 99, "163": 99, "150": [99, 101, 103, 108], "169": 99, "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "155": [99, 103], "156": 99, "172": [99, 102], "157": 99, "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "n_estim": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "300": [101, 108], "noisier": 101, "111": [101, 106], "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "zfill": 101, "row_na_check": 101, "notna": 101, "reset_index": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "na": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "09": [102, 103, 106, 108], "275": 102, "267": 102, "225": 102, "171": 102, "234": 102, "165": 102, "227": [102, 103], "262": [102, 103], "263": [102, 103], "266": [102, 103], "139": 102, "143": [102, 103], "216": [102, 103], "265": 102, "159": [102, 103], "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "nc": [103, 107, 108], "s3": [103, 107, 108], "amazonaw": [103, 107, 108], "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "unzip": [103, 108], "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "224": 103, "231": [103, 108], "293": 103, "235": 103, "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "277": 103, "279": 103, "287": 103, "299": 103, "276": 103, "307": 103, "321": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "283": 103, "243": 103, "303": 103, "316": 103, "247": 103, "323": 103, "327": 103, "226": 103, "228": 103, "232": 103, "219": 103, "239": 103, "240": 103, "209": 103, "242": 103, "202": 103, "230": 103, "215": 103, "220": 103, "229": 103, "217": 103, "237": 103, "207": 103, "204": 103, "84": [103, 106], "205": 103, "223": 103, "153": 103, "149": 103, "140": 103, "124": 103, "246": 103, "268": 103, "273": 103, "284": 103, "110": 103, "136": 103, "145": 103, "173": 103, "297": 103, "317": 103, "192": 103, "332": 103, "324": 103, "203": 103, "320": 103, "314": 103, "199": 103, "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "336": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": 103, "candid": 103, "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "test_pred_prob": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "19884004": 104, "38it": 104, "visualize_outli": 104, "txt_class": 104, "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "inevit": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "hist": 104, "train_outlier_scor": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "ok": [105, 108], "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "price": 106, "incom": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "homework": 106, "3d": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "367": 106, "318": 106, "305": 106, "560": 106, "657": 106, "688": 106, "view_datapoint": 106, "preds_og": 106, "r2_og": 106, "838": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "2400": 108, "52e0": 108, "1a00": 108, "871": 108, "connect": 108, "443": 108, "await": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "kb": 108, "mb": 108, "directori": 108, "inflat": 108, "182": 108, "113": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "came": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [60, 0, 0, "-", "models"], [62, 0, 0, "-", "multiannotator"], [65, 0, 0, "-", "multilabel_classification"], [68, 0, 0, "-", "object_detection"], [71, 0, 0, "-", "outlier"], [72, 0, 0, "-", "rank"], [73, 0, 0, "-", "regression"], [77, 0, 0, "-", "segmentation"], [81, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "metric"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_worst_cluster"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[61, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[61, 2, 1, "", "KerasWrapperModel"], [61, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[61, 3, 1, "", "fit"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "predict_proba"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[61, 3, 1, "", "fit"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "predict_proba"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[62, 1, 1, "", "convert_long_to_wide_dataset"], [62, 1, 1, "", "get_active_learning_scores"], [62, 1, 1, "", "get_active_learning_scores_ensemble"], [62, 1, 1, "", "get_label_quality_multiannotator"], [62, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [62, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[63, 0, 0, "-", "dataset"], [64, 0, 0, "-", "filter"], [66, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[63, 1, 1, "", "common_multilabel_issues"], [63, 1, 1, "", "multilabel_health_summary"], [63, 1, 1, "", "overall_multilabel_health_score"], [63, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[64, 1, 1, "", "find_label_issues"], [64, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[66, 1, 1, "", "get_label_quality_scores"], [66, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[67, 0, 0, "-", "filter"], [69, 0, 0, "-", "rank"], [70, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[67, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[69, 1, 1, "", "compute_badloc_box_scores"], [69, 1, 1, "", "compute_overlooked_box_scores"], [69, 1, 1, "", "compute_swap_box_scores"], [69, 1, 1, "", "get_label_quality_scores"], [69, 1, 1, "", "issues_from_scores"], [69, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[70, 1, 1, "", "bounding_box_size_distribution"], [70, 1, 1, "", "calculate_per_class_metrics"], [70, 1, 1, "", "class_label_distribution"], [70, 1, 1, "", "get_average_per_class_confusion_matrix"], [70, 1, 1, "", "get_sorted_bbox_count_idxs"], [70, 1, 1, "", "object_counts_per_image"], [70, 1, 1, "", "plot_class_distribution"], [70, 1, 1, "", "plot_class_size_distributions"], [70, 1, 1, "", "visualize"]], "cleanlab.outlier": [[71, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[71, 3, 1, "", "fit"], [71, 3, 1, "", "fit_score"], [71, 3, 1, "", "score"]], "cleanlab.rank": [[72, 1, 1, "", "find_top_issues"], [72, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [72, 1, 1, "", "get_label_quality_ensemble_scores"], [72, 1, 1, "", "get_label_quality_scores"], [72, 1, 1, "", "get_normalized_margin_for_each_label"], [72, 1, 1, "", "get_self_confidence_for_each_label"], [72, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[74, 0, 0, "-", "learn"], [75, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[74, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[74, 3, 1, "", "__init_subclass__"], [74, 3, 1, "", "find_label_issues"], [74, 3, 1, "", "fit"], [74, 3, 1, "", "get_aleatoric_uncertainty"], [74, 3, 1, "", "get_epistemic_uncertainty"], [74, 3, 1, "", "get_label_issues"], [74, 3, 1, "", "get_metadata_routing"], [74, 3, 1, "", "get_params"], [74, 3, 1, "", "predict"], [74, 3, 1, "", "save_space"], [74, 3, 1, "", "score"], [74, 3, 1, "", "set_fit_request"], [74, 3, 1, "", "set_params"], [74, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[75, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[76, 0, 0, "-", "filter"], [78, 0, 0, "-", "rank"], [79, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[76, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[78, 1, 1, "", "get_label_quality_scores"], [78, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[79, 1, 1, "", "common_label_issues"], [79, 1, 1, "", "display_issues"], [79, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[80, 0, 0, "-", "filter"], [82, 0, 0, "-", "rank"], [83, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[80, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[82, 1, 1, "", "get_label_quality_scores"], [82, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[83, 1, 1, "", "common_label_issues"], [83, 1, 1, "", "display_issues"], [83, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 87, 88, 92, 94, 95, 98, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 89, 90, 91, 92, 93, 94, 95, 96, 98, 99, 102], "creat": [7, 90, 91, 96, 99, 101], "your": [7, 84, 90, 91, 95, 96, 98, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 90], "basic": 7, "check": [7, 96], "intermedi": 7, "advanc": [7, 90], "us": [7, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": [8, 96], "cluster": [8, 96, 98], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 90], "cleanlab": [9, 10, 84, 87, 88, 89, 92, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 84, 92, 94, 95], "mode": [9, 10, 84, 92, 94, 95], "can": [10, 91, 97, 98, 99, 101], "detect": [10, 89, 91, 92, 94, 95, 96, 98, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "input": 10, "label": [10, 24, 26, 31, 84, 87, 88, 89, 91, 92, 94, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 71, 92, 94, 95, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 91, 92, 94, 95], "duplic": [10, 20, 91, 92, 94, 95, 98, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 95, 96], "iid": [10, 95, 96], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 85, 96, 99, 107], "imbal": [10, 21, 96], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 92, 96, 104], "specif": [10, 22, 96, 107], "underperform": [10, 96, 98], "group": [10, 96, 98], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 96], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 84, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "valuat": [10, 96], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 96], "paramet": [10, 99], "get": [12, 90, 91, 101, 102, 103, 107, 108], "start": [12, 97], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 73, 74, 75, 98, 106], "prioriti": 31, "order": 31, "find": [31, 84, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 92], "dataset": [37, 63, 84, 88, 89, 91, 92, 95, 96, 97, 98, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 64, 67, 76, 80, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 90], "token_classification_util": 56, "util": 57, "valid": [58, 92, 105], "fasttext": 59, "model": [60, 84, 87, 88, 89, 92, 94, 95, 98, 99, 101, 102, 103, 104, 106], "kera": 61, "multiannot": [62, 101], "multilabel_classif": 65, "rank": [66, 69, 72, 75, 78, 82, 99], "object_detect": 68, "summari": [70, 79, 83], "learn": [74, 91, 98, 99], "segment": [77, 107], "token_classif": [81, 108], "open": [84, 98], "sourc": [84, 98], "document": 84, "quickstart": 84, "1": [84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "2": [84, 85, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "common": [84, 85, 108], "3": [84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [84, 98], "error": [84, 88, 92, 98, 99, 101, 102, 103, 106, 107, 108], "train": [84, 87, 88, 89, 96, 98, 104, 106], "robust": [84, 87, 88, 99, 106], "noisi": [84, 87, 88, 99, 106], "4": [84, 87, 88, 89, 90, 91, 92, 94, 95, 96, 99, 101, 103, 104, 106], "curat": 84, "fix": [84, 98], "level": [84, 97, 99, 108], "5": [84, 87, 89, 91, 92, 94, 96, 99, 101, 106], "improv": [84, 101], "via": [84, 99, 101], "mani": [84, 99], "other": [84, 101, 103, 106], "techniqu": 84, "contribut": 84, "how": [85, 98, 99, 101, 102, 108], "migrat": 85, "version": 85, "0": 85, "from": [85, 87, 88, 90, 91, 99, 106], "pre": [85, 89, 96, 98, 104], "function": [85, 90], "name": 85, "chang": 85, "modul": [85, 99], "new": 85, "remov": 85, "argument": [85, 90], "variabl": 85, "cleanlearn": [86, 98, 99], "tutori": [86, 93, 97, 100], "structur": 87, "tabular": [87, 94], "requir": [87, 88, 90, 91, 92, 94, 95, 101, 102, 103, 104, 106, 107, 108], "depend": [87, 88, 89, 90, 91, 92, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "load": [87, 88, 89, 90, 91, 94, 95, 96, 106], "process": [87, 94, 104, 106], "select": [87, 94], "comput": [87, 89, 92, 94, 95, 96, 98, 101, 105], "out": [87, 89, 90, 91, 92, 94, 95, 101, 105], "sampl": [87, 89, 90, 91, 92, 94, 95, 101, 105], "predict": [87, 89, 90, 91, 92, 94, 95, 96, 101, 102, 103, 105], "probabl": [87, 89, 90, 91, 92, 94, 95, 96, 101, 105], "more": [87, 88, 91, 99, 106], "text": [88, 95, 96, 108], "format": [88, 95, 98, 102, 103], "defin": [88, 92, 95, 96, 106], "potenti": [88, 101, 106], "an": [89, 92, 98], "audio": 89, "import": [89, 90, 91, 92, 97, 99, 101], "them": [89, 97, 99], "speechbrain": 89, "featur": [89, 92, 104], "fit": 89, "linear": 89, "workflow": [90, 96, 99], "audit": [90, 91], "classifi": [90, 91, 96], "instanti": 90, "object": [90, 96, 103], "increment": 90, "specifi": [90, 98], "nondefault": 90, "save": 90, "ad": 90, "A": 91, "unifi": 91, "all": [91, 99], "kind": [91, 103], "skip": [91, 97, 99, 101], "detail": [91, 97, 99, 101], "about": 91, "addit": 91, "inform": [91, 92], "fetch": [92, 97], "normal": 92, "fashion": 92, "mnist": 92, "prepar": [92, 96], "k": [92, 94, 105], "fold": [92, 105], "cross": [92, 105], "embed": [92, 104], "7": [92, 99], "view": 92, "most": [92, 108], "like": 92, "exampl": [92, 98, 99, 104], "sever": 92, "set": [92, 99], "dark": [92, 96], "top": [92, 107], "low": 92, "numer": 94, "categor": [94, 96], "column": 94, "construct": 94, "nearest": 94, "neighbour": 94, "graph": [94, 96], "drift": [95, 102], "miscellan": 96, "acceler": 96, "knn": 96, "obtain": 96, "identifi": [96, 98, 103], "explan": 96, "vector": 96, "perform": 96, "visual": [96, 99, 103, 104, 107], "score": [96, 99, 101, 102, 103, 107, 108], "synthet": 96, "result": 96, "predefin": 96, "slice": [96, 98], "i": [96, 98, 99, 105], "catch": 96, "valu": 96, "encod": 96, "initi": [96, 101], "sort": 96, "6": [96, 99], "spuriou": 96, "correl": 96, "pass": 96, "relat": 96, "transform": 96, "imageenh": 96, "induc": 96, "properti": 96, "origin": 96, "understand": 97, "evalu": 97, "health": [97, 99], "8": [97, 99], "popular": 97, "faq": 98, "what": [98, 99, 105], "do": [98, 99], "infer": 98, "correct": 98, "ha": 98, "flag": 98, "should": 98, "v": 98, "test": [98, 99, 104], "big": 98, "limit": 98, "memori": 98, "why": 98, "isn": 98, "t": 98, "work": [98, 99, 101, 108], "me": 98, "differ": [98, 103], "clean": [98, 99], "final": 98, "hyperparamet": 98, "tune": 98, "onli": 98, "one": [98, 99, 102, 107], "doe": [98, 101, 108], "take": 98, "so": 98, "long": 98, "when": [98, 99], "run": 98, "licens": 98, "under": 98, "answer": 98, "question": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "twenti": 99, "lowest": 99, "qualiti": [99, 101, 102, 103, 107, 108], "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "too": 99, "you": 99, "re": 99, "One": 99, "rule": 99, "overal": [99, 107], "accur": 99, "thi": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "major": 101, "vote": 101, "better": 101, "statist": 101, "compar": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "without": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "analysi": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [71, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [73, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [63, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [64, "module-cleanlab.multilabel_classification.filter"], [67, "filter"], [76, "filter"], [80, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "fasttext": [[59, "fasttext"]], "models": [[60, "models"]], "keras": [[61, "module-cleanlab.models.keras"]], "multiannotator": [[62, "module-cleanlab.multiannotator"]], "multilabel_classification": [[65, "multilabel-classification"]], "rank": [[66, "module-cleanlab.multilabel_classification.rank"], [69, "module-cleanlab.object_detection.rank"], [72, "module-cleanlab.rank"], [78, "module-cleanlab.segmentation.rank"], [82, "module-cleanlab.token_classification.rank"]], "object_detection": [[68, "object-detection"]], "summary": [[70, "summary"], [79, "module-cleanlab.segmentation.summary"], [83, "module-cleanlab.token_classification.summary"]], "regression.learn": [[74, "module-cleanlab.regression.learn"]], "regression.rank": [[75, "module-cleanlab.regression.rank"]], "segmentation": [[77, "segmentation"]], "token_classification": [[81, "token-classification"]], "cleanlab open-source documentation": [[84, "cleanlab-open-source-documentation"]], "Quickstart": [[84, "quickstart"]], "1. Install cleanlab": [[84, "install-cleanlab"]], "2. Find common issues in your data": [[84, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[84, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[84, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[84, "improve-your-data-via-many-other-techniques"]], "Contributing": [[84, "contributing"]], "Easy Mode": [[84, "easy-mode"], [92, "Easy-Mode"], [94, "Easy-Mode"], [95, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[85, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[85, "function-and-class-name-changes"]], "Module name changes": [[85, "module-name-changes"]], "New modules": [[85, "new-modules"]], "Removed modules": [[85, "removed-modules"]], "Common argument and variable name changes": [[85, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[86, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[87, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[87, "1.-Install-required-dependencies"], [88, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [95, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[87, "2.-Load-and-process-the-data"], [94, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[87, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [94, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[87, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[87, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[88, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[88, "2.-Load-and-format-the-text-dataset"], [95, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[88, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[88, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[89, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[89, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[89, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[89, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[89, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[89, "5.-Use-cleanlab-to-find-label-issues"], [94, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[90, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[90, "Install-and-import-required-dependencies"]], "Create and load the data": [[90, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[90, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[90, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[90, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[90, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[90, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[90, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[91, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[91, "1.-Install-and-import-required-dependencies"], [92, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[91, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[91, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[91, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[91, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[91, "Get-additional-information"]], "Near duplicate issues": [[91, "Near-duplicate-issues"], [92, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[92, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[92, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[92, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[92, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[92, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[92, "7.-Use-cleanlab-to-find-issues"]], "View report": [[92, "View-report"]], "Label issues": [[92, "Label-issues"], [94, "Label-issues"], [95, "Label-issues"]], "View most likely examples with label errors": [[92, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[92, "Outlier-issues"], [94, "Outlier-issues"], [95, "Outlier-issues"]], "View most severe outliers": [[92, "View-most-severe-outliers"]], "View sets of near duplicate images": [[92, "View-sets-of-near-duplicate-images"]], "Dark images": [[92, "Dark-images"]], "View top examples of dark images": [[92, "View-top-examples-of-dark-images"]], "Low information images": [[92, "Low-information-images"]], "Datalab Tutorials": [[93, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[94, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[94, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[94, "Near-duplicate-issues"], [95, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[95, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[95, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[95, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[95, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[96, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[96, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[96, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[96, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[96, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[96, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[96, "Explanation:"]], "Data Valuation": [[96, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[96, "1.-Load-and-Prepare-the-Dataset"], [96, "id2"], [96, "id5"]], "2. Vectorize the Text Data": [[96, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[96, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[96, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[96, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[96, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[96, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [96, "id3"]], "3. (Optional) Cluster the Data": [[96, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[96, "4.-Identify-Underperforming-Groups-with-Datalab"], [96, "id4"]], "5. (Optional) Visualize the Results": [[96, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[96, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[96, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[96, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[96, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[96, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[96, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[96, "1.-Load-the-Dataset"], [96, "id8"]], "2: Encode Categorical Values": [[96, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[96, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[96, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[96, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[96, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[96, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[96, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[96, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[96, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[96, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Creating Dataset object to be passed to the Datalab object to find image-related issues": [[96, "2.-Creating-Dataset-object-to-be-passed-to-the-Datalab-object-to-find-image-related-issues"]], "3. (Optional) Creating a transformed dataset using ImageEnhance to induce darkness": [[96, "3.-(Optional)-Creating-a-transformed-dataset-using-ImageEnhance-to-induce-darkness"]], "4. (Optional) Visualizing Images in the dataset": [[96, "4.-(Optional)-Visualizing-Images-in-the-dataset"]], "5. Finding image-specific property scores": [[96, "5.-Finding-image-specific-property-scores"]], "Image-specific property scores in the original dataset": [[96, "Image-specific-property-scores-in-the-original-dataset"]], "Image-specific property scores in the transformed dataset": [[96, "Image-specific-property-scores-in-the-transformed-dataset"]], "Understanding Dataset-level Labeling Issues": [[97, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[97, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[97, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[97, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[98, "FAQ"]], "What data can cleanlab detect issues in?": [[98, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[98, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[98, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[98, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[98, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[98, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[98, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[98, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[98, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[98, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[98, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[98, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[98, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[98, "Can't-find-an-answer-to-your-question?"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [60, "module-cleanlab.models"], [61, "module-cleanlab.models.keras"], [62, "module-cleanlab.multiannotator"], [63, "module-cleanlab.multilabel_classification.dataset"], [64, "module-cleanlab.multilabel_classification.filter"], [65, "module-cleanlab.multilabel_classification"], [66, "module-cleanlab.multilabel_classification.rank"], [67, "module-cleanlab.object_detection.filter"], [68, "module-cleanlab.object_detection"], [69, "module-cleanlab.object_detection.rank"], [70, "module-cleanlab.object_detection.summary"], [71, "module-cleanlab.outlier"], [72, "module-cleanlab.rank"], [73, "module-cleanlab.regression"], [74, "module-cleanlab.regression.learn"], [75, "module-cleanlab.regression.rank"], [76, "module-cleanlab.segmentation.filter"], [77, "module-cleanlab.segmentation"], [78, "module-cleanlab.segmentation.rank"], [79, "module-cleanlab.segmentation.summary"], [80, "module-cleanlab.token_classification.filter"], [81, "module-cleanlab.token_classification"], [82, "module-cleanlab.token_classification.rank"], [83, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[60, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[61, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[61, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[61, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[61, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[61, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[62, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[62, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[63, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[63, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[64, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[64, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[64, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[65, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[66, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[66, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[66, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[67, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[67, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[68, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[69, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[69, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[70, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[70, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[71, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[71, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[71, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[72, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[72, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[72, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[72, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[73, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[74, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[74, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[74, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[74, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[75, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[75, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[76, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[76, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[77, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[78, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[78, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[78, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[79, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[79, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[80, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[80, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[81, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[82, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[82, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[82, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[83, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[83, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file diff --git a/master/tutorials/clean_learning/tabular.ipynb b/master/tutorials/clean_learning/tabular.ipynb index 835b9297f..0c56c3881 100644 --- a/master/tutorials/clean_learning/tabular.ipynb +++ b/master/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:01:38.704463Z", - "iopub.status.busy": "2024-07-01T15:01:38.704282Z", - "iopub.status.idle": "2024-07-01T15:01:39.968773Z", - "shell.execute_reply": "2024-07-01T15:01:39.968140Z" + "iopub.execute_input": "2024-07-02T12:00:24.117516Z", + "iopub.status.busy": "2024-07-02T12:00:24.117048Z", + "iopub.status.idle": "2024-07-02T12:00:25.333194Z", + "shell.execute_reply": "2024-07-02T12:00:25.332647Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7a801c5ee1e11be3732a7ea01725de8aca8d147d\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@46226527e9d4c8f7ccdf91ff5dac4d6ee27e022b\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:01:39.971457Z", - "iopub.status.busy": "2024-07-01T15:01:39.971069Z", - "iopub.status.idle": "2024-07-01T15:01:39.990015Z", - "shell.execute_reply": "2024-07-01T15:01:39.989387Z" + "iopub.execute_input": "2024-07-02T12:00:25.335570Z", + "iopub.status.busy": "2024-07-02T12:00:25.335300Z", + "iopub.status.idle": "2024-07-02T12:00:25.352966Z", + "shell.execute_reply": "2024-07-02T12:00:25.352544Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:01:39.992806Z", - "iopub.status.busy": "2024-07-01T15:01:39.992402Z", - "iopub.status.idle": "2024-07-01T15:01:40.303536Z", - "shell.execute_reply": "2024-07-01T15:01:40.302965Z" + "iopub.execute_input": "2024-07-02T12:00:25.355177Z", + "iopub.status.busy": "2024-07-02T12:00:25.354929Z", + "iopub.status.idle": "2024-07-02T12:00:25.498882Z", + "shell.execute_reply": "2024-07-02T12:00:25.498315Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:01:40.336204Z", - "iopub.status.busy": "2024-07-01T15:01:40.335666Z", - "iopub.status.idle": "2024-07-01T15:01:40.340138Z", - "shell.execute_reply": "2024-07-01T15:01:40.339623Z" + "iopub.execute_input": "2024-07-02T12:00:25.528732Z", + "iopub.status.busy": "2024-07-02T12:00:25.528329Z", + "iopub.status.idle": "2024-07-02T12:00:25.532259Z", + "shell.execute_reply": "2024-07-02T12:00:25.531790Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:01:40.342354Z", - "iopub.status.busy": "2024-07-01T15:01:40.342145Z", - "iopub.status.idle": "2024-07-01T15:01:40.351148Z", - "shell.execute_reply": "2024-07-01T15:01:40.350569Z" + "iopub.execute_input": "2024-07-02T12:00:25.534236Z", + "iopub.status.busy": "2024-07-02T12:00:25.534064Z", + "iopub.status.idle": "2024-07-02T12:00:25.542721Z", + "shell.execute_reply": "2024-07-02T12:00:25.542178Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:01:40.353562Z", - "iopub.status.busy": "2024-07-01T15:01:40.353231Z", - "iopub.status.idle": "2024-07-01T15:01:40.356046Z", - "shell.execute_reply": "2024-07-01T15:01:40.355491Z" + "iopub.execute_input": "2024-07-02T12:00:25.544841Z", + "iopub.status.busy": "2024-07-02T12:00:25.544667Z", + "iopub.status.idle": "2024-07-02T12:00:25.547142Z", + "shell.execute_reply": "2024-07-02T12:00:25.546723Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:01:40.358053Z", - "iopub.status.busy": "2024-07-01T15:01:40.357874Z", - "iopub.status.idle": "2024-07-01T15:01:40.885000Z", - "shell.execute_reply": "2024-07-01T15:01:40.884377Z" + "iopub.execute_input": "2024-07-02T12:00:25.549121Z", + "iopub.status.busy": "2024-07-02T12:00:25.548952Z", + "iopub.status.idle": "2024-07-02T12:00:26.069775Z", + "shell.execute_reply": "2024-07-02T12:00:26.069166Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:01:40.887806Z", - "iopub.status.busy": "2024-07-01T15:01:40.887346Z", - "iopub.status.idle": "2024-07-01T15:01:42.858439Z", - "shell.execute_reply": "2024-07-01T15:01:42.857751Z" + "iopub.execute_input": "2024-07-02T12:00:26.072294Z", + "iopub.status.busy": "2024-07-02T12:00:26.072111Z", + "iopub.status.idle": "2024-07-02T12:00:27.964122Z", + "shell.execute_reply": "2024-07-02T12:00:27.963476Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:01:42.861505Z", - "iopub.status.busy": "2024-07-01T15:01:42.860685Z", - "iopub.status.idle": "2024-07-01T15:01:42.872129Z", - "shell.execute_reply": "2024-07-01T15:01:42.871534Z" + "iopub.execute_input": "2024-07-02T12:00:27.966793Z", + "iopub.status.busy": "2024-07-02T12:00:27.966128Z", + "iopub.status.idle": "2024-07-02T12:00:27.975803Z", + "shell.execute_reply": "2024-07-02T12:00:27.975266Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:01:42.874722Z", - "iopub.status.busy": "2024-07-01T15:01:42.874312Z", - "iopub.status.idle": "2024-07-01T15:01:42.879185Z", - "shell.execute_reply": "2024-07-01T15:01:42.878651Z" + "iopub.execute_input": "2024-07-02T12:00:27.977956Z", + "iopub.status.busy": "2024-07-02T12:00:27.977648Z", + "iopub.status.idle": "2024-07-02T12:00:27.981829Z", + "shell.execute_reply": "2024-07-02T12:00:27.981303Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:01:42.881719Z", - "iopub.status.busy": "2024-07-01T15:01:42.881293Z", - "iopub.status.idle": "2024-07-01T15:01:42.890936Z", - "shell.execute_reply": "2024-07-01T15:01:42.890441Z" + "iopub.execute_input": "2024-07-02T12:00:27.984025Z", + "iopub.status.busy": "2024-07-02T12:00:27.983701Z", + "iopub.status.idle": "2024-07-02T12:00:27.990825Z", + "shell.execute_reply": "2024-07-02T12:00:27.990380Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:01:42.893152Z", - "iopub.status.busy": "2024-07-01T15:01:42.892940Z", - "iopub.status.idle": "2024-07-01T15:01:43.010191Z", - "shell.execute_reply": "2024-07-01T15:01:43.009566Z" + "iopub.execute_input": "2024-07-02T12:00:27.992803Z", + "iopub.status.busy": "2024-07-02T12:00:27.992505Z", + "iopub.status.idle": "2024-07-02T12:00:28.104238Z", + "shell.execute_reply": "2024-07-02T12:00:28.103750Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:01:43.012877Z", - "iopub.status.busy": "2024-07-01T15:01:43.012678Z", - "iopub.status.idle": "2024-07-01T15:01:43.015881Z", - "shell.execute_reply": "2024-07-01T15:01:43.015414Z" + "iopub.execute_input": "2024-07-02T12:00:28.106465Z", + "iopub.status.busy": "2024-07-02T12:00:28.106127Z", + "iopub.status.idle": "2024-07-02T12:00:28.108811Z", + "shell.execute_reply": "2024-07-02T12:00:28.108400Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:01:43.017749Z", - "iopub.status.busy": "2024-07-01T15:01:43.017574Z", - "iopub.status.idle": "2024-07-01T15:01:45.116344Z", - "shell.execute_reply": "2024-07-01T15:01:45.115698Z" + "iopub.execute_input": "2024-07-02T12:00:28.110759Z", + "iopub.status.busy": "2024-07-02T12:00:28.110457Z", + "iopub.status.idle": "2024-07-02T12:00:30.104044Z", + "shell.execute_reply": "2024-07-02T12:00:30.103432Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:01:45.119290Z", - "iopub.status.busy": "2024-07-01T15:01:45.118731Z", - "iopub.status.idle": "2024-07-01T15:01:45.130593Z", - "shell.execute_reply": "2024-07-01T15:01:45.130118Z" + "iopub.execute_input": "2024-07-02T12:00:30.106906Z", + "iopub.status.busy": "2024-07-02T12:00:30.106328Z", + "iopub.status.idle": "2024-07-02T12:00:30.117548Z", + "shell.execute_reply": "2024-07-02T12:00:30.117099Z" } }, "outputs": [ @@ -771,10 +771,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-01T15:01:45.132594Z", - "iopub.status.busy": "2024-07-01T15:01:45.132413Z", - "iopub.status.idle": "2024-07-01T15:01:45.200709Z", - "shell.execute_reply": "2024-07-01T15:01:45.200202Z" + "iopub.execute_input": "2024-07-02T12:00:30.119573Z", + "iopub.status.busy": "2024-07-02T12:00:30.119249Z", + "iopub.status.idle": "2024-07-02T12:00:30.150922Z", + "shell.execute_reply": "2024-07-02T12:00:30.150454Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/clean_learning/text.html b/master/tutorials/clean_learning/text.html index 87f58e815..c0155c6ba 100644 --- a/master/tutorials/clean_learning/text.html +++ b/master/tutorials/clean_learning/text.html @@ -817,7 +817,7 @@